

Driven by the development of
very-high-speed commu nicationJin ks

and incredibly powerful microprocessors,

computer networks of increasing

complexity and diversity are being

built at a rapidly increasing rate. The

information technology industry now

faces the task of developing technology

that will permit the construction of

computer networks on the scale of the

global telephone network.

DECnet Phase V: An OSI Implementation
focuses on the most recent version of

Digital Equipment Corporation's Digital

Network Architecture (DNA). It gives

a detailed explanation of the concepts,

services, protocols, mechanisms, and

capabilities making up DNA Phase V

and its DECnet implementations.

The book provides an in-depth look

at DECnet Phase V and discusses the

important issues involv d in the design

and implementation of very large

networks. It presents key Open Systems

Interconnection (OSI) concepts and

shows how DECnet Phase V hardware

and software products implement

international standards associated with

the OSI model. It will be of interest to

information technology managers,

information systems technical staff,

distributed systems managers, network

administrators, users of DECnet

computer networks, and anyone wishing

to gain a perspective on the challenges

involved in implementing the OSI

architecture .

James Martin is one of the world's

most successful authors .of computer

textbooks, having written over seventy

authoritative books on database
teleprocessing, telecommunications,

interactive systems, and the impact of

computers on business and society. Many

of his publications have been best-sellers

in their fields and some continue to

change perceptions in the industry.

Mr. Martin received an M .A. in Physics

from Oxford University and worked for

IBM for nineteen years. He subsequently

founded a number of compani~s and

has served as a high-level advisor for

several governments.'He was awarded

a D.Sc. from Stanford University, U.K.,

for his accomplishments in information

engineering and is a lifetime fellow

of the ACPA for his work in data

processing education.

Joe Leben is President of Leben, Inc.,

a consulting firm that specializes

in writing books and developing technical

training courses for the information

technology industry. Mr. Leben maintains

a working knowledge of state-of-the-art

computing and communications
technologies in both the small- and large­

system environments. He has extensive

experience in writing textbooks and
using modern training and information­

dissemination techniques, including text,

computer-based training, linear and

interactive video, and multimedia

technology.

Jacket design: Susan Marsh

DECnet Phase V
An OSI Implementation

] tJmes Martin

Jo Leben

Dig·ital Press

Copyright© 1992 by James Martin.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys­

tem, or transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without prior written permission of the publisher.

Printed in the United States of America.

987654321

Order number EY-H882E-DP.

The publisher offers discounts on bulk orders of this book. For information, please write:

Special Sales Department

Digital Press

12 Crosby Drive

Bedford, MA 01730

Design: Susan Marsh Design

Production: Nancy Benjamin

Composition: TSI Graphics, Inc.

Printing: Hamilton Printing Co.

Trademarks and trademarked products mentioned in this book include: American Tele­

phone and Telegraph Corporation, AT&T; Apple Computer, Inc., AppleTalk; Digital

Equipment Corporation, All-In-1, DDCMP, DECnet, Digital Network Architecture, DNA,

Mailbus, Notes, VAX Message Router, the Digital logo; International Business Machines

Corporation, IBM; Intel Corporation; Novell Corporation, NetWare, American Airlines,

Sabre; Hayes Corporation, Smartmodem; Xerox Corporation

The views expressed in this book are those of the authors, not of the publisher. Digital

Equipment Corporation is not responsible for any errors that may appear in this book.

Library of Congress Cataloging-in-Publication Data

Martin, James

DECnet phase V: an OSI implementation/James Martin, Joe Leben.

p. cm.

Includes index.

ISBN 1-55558-076-9

1. Computer network architectures. 2. DECnet (Computer network architecture)

I. Leben, Joe. II. Title.

TK5105.5.M366 1992

004.6-dc20

To Corinthia-]M

To the Dweebs. I'll miss you.-JL

CHAPTER 1

CHAf'Hll 2

C:Hl\f'HR 3

CllAPHll 4

CHAl'HR 5

CHlll'TEB 6

Cll!lf'HR 7

CHl\f'TER S

CHAPTER 9

CHA HR 10

CHJIPHR 11

CHAPTER 12

COl\!TENTS

Preface ix
How to Read This Book x11

List of Acronyms xm

Prnlog 1

The Future of Networking 3

PART I: The Digital Network Arnhiiect11re Hi

Network Architectures 17
The OSI Reference Model 36
The Digital Network Architecture

PART II: DNA F1mcti!:mal la11ers 33

The Physical Layer 85
The Data Link Layer 109
The Network Layer 130
Network Layer Protocols 164
Network Layer Routing 190
The Transport Layer 207
The DNA Phase V Session Control Layer 239
OSI Upper-Layer Architecture 254

vii

CHAPTER 1 3

CHAPTER 1 4

CHAPTER 1 5

CHAPTER 1 6

CHAPTER 1 7

CHAPTER 1 8

CHAPTER 1 9

CHAPTER 20

CHAPTER 21

CHAPTER 22

CHAPTER 23

CHAPTER 24

APPENDIX A

APPENDIX B

viii

PART Ill: Network Applications 291

DNA Applications 293
OSI Applications 302

PART IV: Related Architectures and Mechanisms 315

Distributed Computing Services 317
The Naming Service 346
Network Management 377
X.25 Access 391

PART V: Data Link Layer Protocols 409

HDLC, SDLC, and LAPB Data Links 411
DDCMP Data Links 429
Local Area Network Data Links 439
CSMA/CD and Ethernet 462
Fiber Distributed Data Interface 490
Bridge and Extended LAN Architecture 518

ISO Standards for the OSI Model 527
DNA Phase V Architectural Specifications 529

Glossary 531

Index 549

PREFACE

Computer networks of increasing complexity and diversity are being
built at a rapidly increasing rate. The exponential growth of computer
networks that we are experiencing is being driven by two complementary
technologies: very high speed local area and wide area communication
links and incredibly powerful microprocessors. The computer industry is
faced with the requirement to create networking technology that will per­
mit the construction of massively large computer networks on the scale
of the global telephone network. Such networks are required to create
the distributed computer applications that will be built in the 1990s.

During the mid-1970s, several of the major computer manufactur­
ers perceived that a large part of their future market was to come from
distributed data processing. A wide range of machines would be hooked
together into all manners of configurations. A user or an application
program at one machine would want to employ the facilities, data, or
processing power of another machine, easily and inexpensively. For
widely varying devices to be linked together, the hardware and software
of those devices would have to be compatible; if compatibility was not
achieved, complex interfaces would have to be built for meaningful
communication to take place. To facilitate this compatibility, hardware
manufacturers have developed network architectures that allow com­
plex networks to be built using diverse types of equipment.

One of the most widely used of these manufacturers' architectures
is Digital Equipment Corporation's Digital Network Architecture
(DNA). DNA, which has evolved through a series of phases, is imple­
mented in the DECnet family of hardware and software networking
products. This book presents a detailed explanation of the concepts,
protocols, functions, and capabilities constituting Phase V of DNA and
its DECnet implementations.

ix

Acknowledgments This project began in the spring of 1989, and the writing of this book
was very much a collaborative effort between the authors and the people
responsible for developing Phase V of DNA. Without the help and co­
operation of the people at Digital, this book could never have been writ­
ten. There are a great many people whom we wish to thank.

x

We will begin by thanking Mike Meehan, our editor at Digital
Press, for all his help. We know Mike is glad this book finally has been
completed because he just told us the correspondence associated with
this project has completely filled his file cabinets and he had begun to
fear for the trees of New England.

Mahendra Patel also has our heartfelt thanks. Without Mahen­
dra's enthusiastic cooperation, we would not have been able to gain ac­
cess to the key people and the important proprietary information we re­
quired.

Mahendra's able assistant, Israel Gat, played an extremely impor­
tant role in this project. Without Israel's patience, diplomacy, and tire­
less efforts to keep the review process organized, this project would
never have come to completion.

On every book project of this nature there is always one individual
who bears the brunt of the review burden, reviewing portions of the
manuscript that need to be looked over right now and for which no
other volunteer can quickly be found. The "master reviewer" on this
project was Paul Koning, and he has our thanks for the review job he
did for us.

An important part of the research we conducted during the devel­
opment of this book took the form of lengthy meetings with Mahendra
and the senior architects responsible for Phase V of DNA. As a result of
these meetings, we began to understand the philosophy behind Digital's
networking strategy and came to realize how important Phase V of
DNA was to Digital's future and to the computer industry as a whole.
We would like to thank all of these people, including John Adams, Lois
Frampton, John Harper, Bill Hawe, Tony Lauck, and Dave Oran, for
the time they gave us.

Equally important was the process of refining our initially imper­
fect understanding of the technical details surrounding Phase V of DNA.
We accomplished this mainly through many iterations of a long review
and revision process involving the people already mentioned and the fol­
lowing Digital staff members: Ross Callon, Carl Cargill, Dah-Ming
Chiu, Eric Davison, Frank Dolan, Nick Emery, Len Fehskens, Elliot
Gerberg, Art Harvey, Jerry Hutchison, Charles Kaufman, Jeffrey

Lukowsky, Peter Mierswa, Radia Perlman, Judy Pomper, Dave Robin­
son, Mike Shand, Mark Sylor, Pat Stetson, Peg Tillery, Roy Varughese,
Kathy Vogel, and Henry Yang.

Last, but not least, thanks are due to Jim Miller, Rodger Miles,
Molly Garcia, and everyone else involved in operating and maintaining
the worldwide internal Digital computer network. The Digital network
allowed us almost instant access to anyone in Digital anywhere in the
world. It would not have been possible to coordinate the many details
associated with this project using more conventional forms of communi­
cation. That, in the end, is what this book is really all about.

James Mar.tin
Joe Leben

xi

xii

HOW TO READ THIS BOOK

This book can be read from front to back, but it is likely that many
readers will wish to skip around-at least at a first reading-and read
those sections that appear to be of the most interest. This can be done,
especially by those readers at least somewhat conversant with OSI con­
cepts. We recommend, however, that a reader not familiar with the OSI
model read at least the chapters in the Prolog and in Part I before dip­
ping into the more technical chapters.

A good way to get an initial feel for DNA Phase V is to skim
through the book and look at the diagrams. We tried to include enough
information in the diagrams so they are understandable on their own
without the reader having to consult the text.

The text of each chapter describes the technical details surrounding
Phase V of DNA and DECnet. But this book also attempts to provide
some insights behind the engineering tradeoffs the network architects
made while the architecture was in development. The vehicles for these
insights are the unnumbered boxes labeled "Network Architect." These
boxes, rather than containing technical content, contain the opinions of
those Digital staff members who were instrumental in the development
of key parts of the architecture.

The numbered boxes contain background information that can be
skipped on a first reading, unless the reader is specifically interested in
the technical content of a particular box.

To take a good short path through the book, read Chapters 1, 2, 3,
4, 9, 11, 12, 15, 16, and 17.

LIST OF ACRONYMS

A B M asynchronous balanced mode
A c s E Association Control Service Element
A D M asynchronous disconnected mode

AM Amendment
AN s 1 American National Standards Institute

AP D u application-protocol-data-unit
AP 1 application programming interface; application-process-invocation

A R M asynchronous response mode
A s c Accredited Standards Committee
As E application-service-element
As N abstract syntax notation

As N . 1 Abstract Syntax Notation One
Au 1 Attachment Unit Interface
B E R basic encoding rules

c A certification authority
cc ITT International Telegraph and Telephone Consultative Committee

c D Committee Draft
c DA M Committee Draft Amendment
c L N s Connectionless-mode Network service
c M I P Common Management Information protocol
c D N s Connection-mode Network service

c R c cyclic redundancy check
cs MA I c D Carrier Sense Multiple Access with Collision Detection

DA dynamic assignment
D A c dual-attachment concentrator
D A D Draft Addendum
DA M Draft Amendment
DA s dual-attachment station

xiii

xiv

DA s s Distributed Authentication Security Service
D c E data circuit-terminating equipment

D D c M P Digital Data Communication Message Protocol
DE c net Term used in the names of Digital Equipment Corporation's hardware

and software products that conform to the Digital Network Architec­
ture

DE s American National Standard Data Encryption Algorithm
D I s Draft International Standard

D L M data link mapping
D Ls AP data-link-service-access-point
D Ls Du data-link-service-data-unit
D LP Du data-link-protocol-data-unit

D NA Digital Network Architecture
D P Draft Proposal

D s A P Destination service access point
D s s A Distributed System Security Architecture

DTE data terminal equipment
E M A Enterprise Management Architecture
F c s frame check sequence

FD D 1 Fiber Distributed Data Interface
F o I R L fiber-optic inter-repeater link
FT AM File Transfer, Access, and Management

GA P gateway access protocol
G M T Greenwich mean time

HD L c High-Level Data Link Control
I D L interface definition language

I E E E Institute of Electrical and Electronics Engineers
1 M initialization mode

I s D N Integrated Services Digital Network
I so International Organization for Standardization

J Tc 1 ISO/IEC Joint Technical Committee 1
LA N local area network

LA P B Link Access Procedures-Balanced
LAT local area transport
L L c Logical Link Control

LL c - PD u logical-link-control-protocol-data-unit
LL c -s Du logical-link-control-service-data-unit

M A c Medium Access Control
MA c - PD u medium-access-control-protocol-data-unit
MA c -s Du medium-access-control-service-data-unit

MA c F multiple-association-control-function

MA N metropolitan area network
M D 1 medium dependent interface
M E N management event notification

M I c E management information control and exchange
MD P Maintenance Operations Protocol
M T A message transfer agent
N c L Network Control Language
N c P Network Control Program
N D M normal disconnected mode
N ET network entity title

NP Du network-protocol-data-unit
N s AP network-service-access-point

N s c T s namespace creation timestamp
N s Du network-service-data-unit

N s P Network Service Protocol
P c I protocol-control-information

P D A D Proposed Draft Addendum
PD u protocol-data-unit
PD v presentation-data-value

PP Du physieal-protocol-data-unit; presentation-protocol-data-unit
P s A P physical-service-access-point; presentation-service-access-point
P s Du physical-service-data-unit; presentation-service-data-unit

R P c remote procedure call
Rs A Rivest, Shamir, and Adleman

s A B M Set Asynchronous Balanced Mode
s A B M E Set As~chronous Balanced Mode Extended

s Ac F sing~e-association-control-function

s A P service-access-point
s A s single-attachment station

s D L c Synchronous Data Link Control
s Du service-data-unit
s N A Systems Network Architecture

s NA c P Subnerwork Access Protocol role (Subnetwork Access role)
s N A P Subnetwork Access Protocol

s N D c P Subnetwork Dependent Convergence Protocol role (Subnetwork Depen­
dent Convergence role)

s NI c P Subnetwork Independent Convergence Protocol role (Subnetwork Inde-
pendent Convergence role)

s N R M Set Normal Response Mode
s PD u session-protocol-data-unit
s s AP session-service-access-point; source-service-access-point

xv

xvi

s sou session-service-data-unit
s v c switched virtual circuit

Tc P 11 P Transmission Control Protocol/Internet Protocol
T Pou transport-protocol-data-unit

TR Technical Report
Ts AP transport-service-access-point
Tsou transport-service-data-unit

u A user agent
u 1 Unnumbered Information

u 1 o Unique identifier
u T Universal Time

u Tc Coordinated Universal Time
v c virtual call

w AN wide area network

Pro log

CHAPTER 1

The Future of Networking

The 1990s will be a decade of revolutionary change in computer net­
working.

Revolutions occur frequently in the computer industry. The first in-·
formation systems revolution occurred in the 1950s, when business dis­
covered the computer. What was at first viewed as a market that would
require perhaps 10 large computers expanded overnight into a market
for many thousands of these machines.

Another revolution occurred in the 1960s, when we discovered that
one computer could "speak" to another over telecommunications lines.
Computers have been speaking to one another ever since.

In the 1970s two parallel revolutions began. Microprocessors dra­
matically reduced the cost of computation, and computer manufacturers
began developing comprehensive architectures for interconnecting their
computers using communication facilities. One of these architectures is
the Digital Network Architecture (DNA), which has evolved through
five phases since the mid-1970s. Digital uses the term DECnet to refer to
hardware and software implementations of this architecture.

The visible revolution of the 1980s was the discovery by business of
the personal computer and the technical workstation. By the end of the
1980s, most knowledge workers had computers they could call their
own. A less visible revolution of the 1980s was the development of opti­
cal fiber cables with bit rates of billions of bits per second.

The revolution occurring in the 1990s is that the network architec­
tures we began developing in the 1970s are beginning to bear their fruit:
we can now begin to hook together all the computers of the world. This
will be the most wide-reaching revolution of them all.

Computer networking really began in the 1970s, so we have had
about two decades of experience with this technology. Those who have

3

4

A Computer on
Every Desk

Worldwide
Standards

PROLOG

contributed heavily to computer networking, and to the technology de­
scribed in this book, feel that it will take about another decade to ac­
complish the task of interconnecting all the world's computers. The tech­
nology described in this book will help us achieve that end.

It is clear now that there should be a computer on everyone's desk and
that these machines should be able to access a vast diversity of informa­
tion resources. Every desktop computer should be able to communicate
with every other computer, just as the telephone handsets of the world
can intercommunicate. Machines running the processes of commerce,
often without operators, should be able to communicate automatically
with the corresponding machines of their trading partners. The world
will become a vast mesh of computers interacting automatically with one
another over high-speed networks.

To create worldwide computer networks that interlink everybody's
desks, we need standards-like the telephone network. Telephony stan­
dards, established by the International Telegraph and Telephone Consul­
tative Committee (CCITT) are essential to the connectivity the telephone
industry achieves. Standards for computer networking, set by the Inter­
national Organization for Standardization (ISO) working with the
CCITT, are essential for connectivity in the computer industry.· Both
CCITT and ISO are described in Chapter 2.

Computer networking standards are highly complex. A reference
model that guides the development of these standards is the Reference
Model for Open Systems Connection, or OSI model. This seven-layer
reference model is introduced in Chapter 3 and described in detail
throughout this book. The OSI model is now accepted by all computer
vendors, although some vendors, notably IBM, also use network archi­
tectures that date back to an era before the recognition that worldwide
networking standards are essential. In inventing the protocols and algo­
rithms needed for networking millions of computers, Digital Equipment

• Both CCITI and ISO are acronyms whose letters do not match up with their
spelled-out names. This is because the acronyms are based on the "official"
names of these organizations, which are in the French language. We are using
the English translations of the French names as they appear in the documents
published in the English language by CCITI and ISO.

CHAPTER 1: THE FUTURE OF NETWORKING 5

Corporation has made vital contributions to the standards for the OSI
model. Phase V of DNA and its DECnet hardware and software prod­
ucts represent innovative implementations of those standards.

High-Speed Over the short history of data communication and computer network­
Communications ing, the speed with which computers communicate with one another has

been steadily increasing. The first computers that exchanged streams of
bits did so at a miserably low speed. When I wrote my first book on data
communication, the standard transmission speed was 14.8 7-bit charac­
ters per second. As modems dropped in price, it became increasingly
common to communicate at 1200 bits per second (bps), and then at
2400 bps. Today it is commonplace for computers to communicate over
ordinary telecommunications facilities at 9600 and 19,200 bps, using in­
expensive modems.

Along with the increase in the speed with which data can be trans­
ferred over conventional telecommunications facilities was the explosive
growth of local area networking (LAN) technology. In 1980 Digital,
Intel, and Xerox published the Ethernet Speci"fication, which defined a
low-cost method by which computers of all sizes could exchange data
over relatively short distances (up to 2.8 kilometers) at a rate of 10 mil­
lion bps. Today thousands of inexpensive Ethernet networks are in daily
use, connecting mainframes, minicomputers, personal computers, and
workstations. Ethernet has been the high-speed communications
medium of choice throughout the 1980s. The Fiber Distri{Juted Data In­
terface (FDDI) technology that is emerging in the 1990s will allow ma­
chines to exchange data at 100 million bps. Companies such as Digital
and IBM have designed LAN protocols operating at a billion bits per sec­
ond for use during the second half of the 1990s. Still higher speeds will
be needed and will become economically achievable.

Today we are used to computers operating over Ethernet networks
at 10 million bps within buildings, and we are beginning to operate
FDDI LANs at 100 million bps. LAN usage is widespread. Most build­
ings have LANs; much software and hardware have been built for use on
LANs. However, when we transmit beyond a building over wide area
networks (WANs), we frequently throttle the transmission speed down,
often to 9600 bps, which has resulted in islands of computing. Comput­
ers interact within a building differently from the way they interact over
long distances. Within a building we can build distributed systems that
give subsecond response times. When we interact with a faraway com­
puter, the increase in response time is often cripplingly frustrating.

PllOLOG

One of the great needs of the 1990s is to remove the extreme speed
differences between local area networks and wide area networks. A great
opportunity is to extend LAN services nationwide and eventually world­
wide. WANs should be as fast as LANs. Optical fiber trunks make that
possible and economically desirable.

Standards have been created for metropolitan area networks
(MANs), with the assumption that high·-capacity cabling can be built
across a city, whereas it may not be economical over long distances. In
practice, continent-wide optical fiber trunks have been built. LANs,
MANs, and WANs need to be integrated, leading to an era of worldwide
computer networking at today's LAN speeds and higher.

Telecommunications common carriers are beginning to make wide­
band communication facilities available at a reasonable cost. Today the
Tl facility allows communication at 1.544 million bps (Mbps) and is
used in business as commonly as 9600-bps facilities were just a few years
ago. T3 facilities, which provide a data rate of 45 Mbps, are starting to
become commonplace in North America. By the end of the decade, 200
Mbps will be as common as Tl is today, and 1 or 2 gigabits per second
will be available as a premium service.

The optical fiber was invented just in time for the computer indus­
try. The gigabit fibers of today will evolve into fibers that can transmit
hundreds of billions and eventually trillions of bits per second. Major
telecommunications highways will use mass-produced cables containing
hundreds and eventually thousands of optical fibers. We are building
prodigious transmission capacity. Most of today's optical-fiber trunks
are grossly underutilized, especially in their transmission computer
data. In some telephone companies demand has been increasing at 6 per­
cent per year, but the bit capacity of long-distance trunks has been in­
creasing at 100 percent per year, resulting in much unused transmission
capacity, often referred to as "dark fiber."

With the increases in speed in both local area networks and wide
area networks, a question that comes to mind is how much bandwidth is
enough.

NETWORK ARCHITECT

Gordon Bell sponsored a meeting a few years ago at which a number of com··

puter networking pioneers talked about the future of computer networking.

One of their conclusions was that by the year 2000 it would be technically feasi­

ble to send somewhere around 1015 bits per second down a single cable. I think

GHAPTEfl 1: THE FUTURE OF NETWORKING 7

this was a cable containing 100 optical fibers. It is interesting, however, that the

observation was made at the meeting that the maximum bandwidth a person at

a workstation would need is about a gigabit per second. This is the bandwidth

you need to send high-resolution motion pictures. A human being simply can't

absorb data any faster than that.

An obvious question we might ask is that if a person's bandwidth is
limited to a gigabit per second, do we really need networking technology
that lets us send data at 1015 bps, which is roughly a million times faster
than the human bandwidth limit. This question leads to a discussion of
computing paradigms.

A computing paradigm refers to a mindset that governs how we view the
way computers are used. Two completely different computing paradigms
have developed in parallel, leading to two divergent views of the world
of computing and networking. The companies that grew up in the world
of large, centralized processors tend to have one view of computing and
networking, and the companies that grew up in the world of small, de­
centralized processors tend to have another view.

Tim large, Centralized Paradigm

The large, centralized paradigm tends to look at the world of computing
and networking as having a hierarchical structure, with terminals and
workstations at the bottom and large computers at the top. The com­
puter network exists to provide human users with access to computing
power. Computing applications run on a relatively small number of
large, centralized processors, and computing system users use terminals
and workstations to access the computing applications. In this paradigm,
when a centralized processor runs out of computing power, it is replaced
with a bigger and faster model. The large, centralized paradigm leads to
a model of computing in which the user submits a request or a job, the
centralized processor computes a result, and the result is sent back to the
user.

With the large, centralized paradigm, it is difficult to envision a need
for extremely high bandwidth communication, except to create high­
capacity trunks that are multiplexed to funnel traffic from large numbers
of individual users into mainframe computer centers.

8

Digital's View of
Networking

PROLOG

The Small, Decentralized Paradigm

The small, decentralized paradigm tends to look at the world of computing
and networking as being characterized by mesh-structured networks of
computers, in which each computer is a peer of all the other computers. A
computer network exists to allow computers to talk to each other. Com­
puting applications run on a large number of decentralized processors, and
sometimes multiple processors cooperate to produce a single result. A peer­
to-peer networking environment is ideally suited to the creation of a dis­
tributed computing environment, where the computing power is spread
over a large number of processors. In a distributed computing environ­
ment, when an application needs more computing power, the computing
power often can be provided by plugging another processor into the net­
work rather than by replacing the processor with a bigger one.

With such a paradigm, very high bandwidth communication is ex­
tremely important. There is essentially no limit to the communication
bandwidth that can be used in such an environment. This is because the
communication facilities are used not only by people talking to comput­
ers, they are also used by computers talking to computers. In such an en­
vironment, it might be necessary to send billions of bits from one ma­
chine to another very quickly, to satisfy the needs of a distributed
computing application.

In the past, IBM believed in the paradigm of large, centralized comput­
ing, while Digital subscribed to the paradigm of small, distributed com­
puting. Today both organizations know that an enterprise should have
both centralized and decentralized computing.

IBM's pioneering work in networking led to a hierarchical network­
ing model with mainframes at the top exercising much of the control.
Digital's pioneering led to peer-to-peer networks with highly distributed
control. Today computer manufacturers no longer are as divided into the
two camps as they were in the 1970s. Everyone now agrees that peer-to­
peer networking will be a requirement in the future, and all computer
manufacturers, including IBM, are moving their networking technology
in that direction.

Digital's vision of networking does not look on networks as primar­
ily a medium for communication but rather as a medium for computing.
The communication facilities that a network provides are simply by­
products of a networked, distributed computing environment. Most of
the communication that takes place in a distributed computing environ-

The Future Is
Everything

Digital's
Networking
Strategy

CHAPTER 1: THE FUTURE OF NETWORKING 9

ment has nothing to do with a person sitting at a terminal or worksta­
tion. Rather, communication consists of computers talking to other com­
puters.

The enterprise of the future will use both centralized computing and net­
works of small computers. Both have essential roles to play. A major
trend today is the consolidation of mainframe centers. A mainframe cen­
ter with its building, operating staff, and software is expensive. If net­
works are reliable and use high-capacity trunks, a large enterprise does
not need 10 mainframe centers. It saves money to consolidate those cen­
ters into one (or possibly two, for disaster protection). A consolidated
center can afford to have large computers that can solve large problems.
Some computing centers will have supercomputers of immense power.

The large enterprise of the late 1990s will also have a computer on
everyone's desk, connected by LANs to a diversity of file servers,
database servers, and the like, with wideband networks linking the indi­
vidual LANs and connecting them to a small number of corporate com­
puter centers with massive computing power. Notebook computers will
link into this network, sometimes using cellular radio techniques, such as
are used today to provide mobile telephone service. The computers
within the corporation will interact directly with the computers of the
corporation's trading partners, sending and receiving transactions and
information. There will be direct links to many service organizations that
provide information and all forms of specialized processing.

Although Digital began as a minicomputer company, it is evolving into a
computer networking company. This is a necessary by-product of the
fact that in order to bring the power of many processors to bear on a
large problem, those processors must be able to communicate effectively
with one another. It is of strategic importance that Digital support the
creation of a standardized, global computer networking infrastructure
because this will substantially expand the market for Digital's products
and services. Digital is essentially a high-volume company, and a high­
volume company must adopt one of two strategies:

• Fragmentation. One strategy is to fragment the market and attempt to
compete in that market by dominating more fragments than anyone else.
This strategy is essentially a strategy of financial control, in which a com­
pany attempts to make a market relatively static by fragmenting it.

10

The Distributed
Computing
Environment

PROLOG

• Homogenization. The other strategy is to homogenize the market in
order to expand and enlarge it. A company that adopts this strategy has
to be the best at that part of the market it wants to participate in and it
must have leadership products.

Digital's approach has been to drive for the adoption of interna­
tional standards in an attempt to enlarge the market through homoge­
nization. This book describes how international standards have been in­
corporated into Digital's networking strategy at all levels.

The goal that Digital is trying to achieve with its networking technology
is nothing less than to provide the technical capability to create a global
distributed computing environment. Such an environment would allow
all of the world's computers to participate in a single, integrated network
in much the same way as today's telephones are interconnected. We can
divide the technology that is required to create such a distributed com­
puting environment into three categories:

• network infrastructure

• distributed computing services

• distributed computing applications

Network Infrastructure

The network infrastructure consists, first, of physical things, such as ca­
bling, telecommunications facilities, modems, repeaters, and other com­
ponents that physically connect computers. On top of the physical things
are the necessary software subsystems-such as operating systems and
networking software-that turn a set of equipment into a logically co­
herent network that can be reliably used to move a string of bits from
one computer in the network to any other computer. The chapters in
Part I, Part II, and Part V are concerned with building the network in­
frastructure.

A large problem in developing the network infrastructure that
support a global network is scale. The networking technologies that have
been used in the past reach their limits when a few tens of thousands of
computers are hooked together. What is needed is the technology to cre­
ate a network infrastructure capable of supporting millions of computers
so we can eventually have an infrastructure roughly on the scale of the
global telephone network.

Problems of
Worldwi!le
Networldng

CHAPTER 1: THE FlJTIJRE OF NETWORKING 11

Distributed Computing Services

If we are using a network infrastructure to create a true distributed com­
puting environment, then we must begin to view the entire network as a
distributed operating system.

An operating system that runs on a single computing system pro­
vides application programs with essential services, such as providing a
means for giving an object a name, requesting the date and time of day,
and allowing one procedure to invoke another procedure through a sub­
routine call facility. In a distributed computing environment, a comput­
ing application should be able to call on the services of the network to
provide a similar set of services on a network-wide basis. For example, a
distributed computing application should be able to access resources by
name without needing to know where in the network those resources re­
side. An application should be able to request the date and time of day
and not need to be concerned with how the clocks on all the processors
in the network are synchronized. And a procedure running on one com­
puting system should be able to pass control to a procedure running on
some other computing system in the same way it passes control to a local
subroutine.

Distributed computing services, described in Chapters 15 and 16, use
the underlying network infrastructure to provide high-level services to
distributed computing applications without requiring those applications
to have detailed knowledge of the underlying network infrastructure.

Distributed Computing Applications

Distributed computing applications are applications that use distributed
computing services and the underlying network infrastructure to do use­
ful work. These applications are introduced in Part III. If the network in­
frastructure exists and the distributed computing servkes provide the
right kind of functions, it should be possible to create distributed com­
puting applications much easier than the distributed applications of the
past. Of course, creating a distributed computing application will never
be as easy as creating an application that runs on a single computing sys­
tem or one that uses simple data communication facilities.

To achieve networking with a vast number of computers worldwide and
in different enterprises, some difficult problems need to be solved. In cre­
ating Phase V of DNA, Digital has developed ingenious solutions to

12 PROLOG

many of these problems, and many of these solutions have found their
way into international standards.

Names and Addresses

A complex addressing problem exists when a computer network is
worldwide and links machines of many organizations. Worldwide ad­
dressing schemes have now been standardized, and support for these
standards are included in DNA Phase V. Mechanisms that allow sym­
bolic names to be assigned to users and to network resources are also im­
portant. A comprehensive distributed naming service is an important
component of DNA Phase V. Network addressing is described in Chap­
ter 7, and the DNA Phase V naming service is described in Chapter 16.

Routing

A DECnet network uses devices called routers to select the optimum
path over which to transmit packets of data. The optimum route varies,
depending on the current network topology and whether any circuits or
nodes are out of action. On a very large network, with perhaps hundreds
of thousands or millions of nodes, the routing problem is much more
difficult to solve than on a small network. DNA Phase V defines a pow­
erful distributed routing algorithm that is effective on very large net­
works. This routing algorithm has been accepted by ISO as an interna­
tional standard and is described in Chapter 9.

Congestion

Associated with the routing problem is congestion control. Traffic jams
can occur on a network just as they do in a city at rush hour. Drivers
in a city listen to helicopter reports and try to avoid the worst conges­
tion. Congestion avoidance is important in a computer network as well.
In a computer network there is no traffic helicopter, so ingenious tech­
niques are needed to prevent congestion from occurring, especially when
networks are very large. When queues build up, it is desirable to stop
pumping more traffic over an overloaded link. DNA Phase V includes in­
novative congestion avoidance mechanisms, which are described in
Chapter 10.

Conclusion

CHAPTER 1: THE FUTURE OF NETWORKING 13

Management

As networks become larger, their control and management become com­
plex. It is essential that network management functions that were per­
formed by humans in earlier generations of networks be done automati­
cally in the future. A user should be able to simply plug a machine into
the network and start using it-"plug and play." The network should
automatically update its routing databases and other tables to reflect the
existence of the new machine. In DNA Phase V, many mechanisms previ­
ously controlled by human network managers have been integrated into
the underlying communication protocols. Digital's view of network man­
agement is that the network manager's main concern should be with set­
ting policy rather than with day-to-day operation of the network. Net­
work management is described in Chapter 17.

By the mid 1980s, the personal computer and the technical workstation
had become widespread in the world of business and government. Noth­
ing has been the same since. The ability to have one's own computer has
freed millions of knowledge workers to use the computer in ways we
could not have foreseen just a short time ago.

The world will seem small from the viewpoint of a computer con­
nected to a worldwide computer network. You have probably seen Wall
Street's or Chicago's trading rooms on television. These rooms where
stock, bond, and futures traders work appear to be filled with human
chaos, the traders frantically gesturing and shouting at one another. Such
communication could be done better with the aid of a computer net­
work. Some trading rooms are being automated, and once they are, the
traders need not be in one room in Chicago; they could be in Tokyo,
Paris, Auckland, and Gaborone all linked together. Computer networks
take a localized activity and make it worldwide. This globalization is
happening at a furious rate in many different spheres of activity.

Already money flashes around the world at the speed of light on op­
tical fibers. Hundreds of billions of dollars are moved daily over elec­
tronic funds transfer networks. Market crashes are worldwide and hap­
pen with computerized speed. Computerized stock markets will need to
operate 24 hours a day.

What American Airlines did with its Sabre airline reservation sys­
tem, Nippon Life can do in the insurance business-worldwide. New
chains of commerce, like the Benneton clothing chain, can spread world-

14 PRO LOG

wide at high speed. Many corporations will seek strategic partners
worldwide, their operations linked with computer-to-computer trans­
missions. When all the millions of computers used by these organizations
are connected to each other and can easily communicate, the world of in­
formation systems will never be the same. More important, the world of
commerce will never be the same again.

PARTI

The Digital Network
Architecture

Human
Communication
Analogy

CHAPTER 2

Network Architecture

In the early days of computer networking, individual computer manu­
facturers produced communication products that worked only in con­
junction with their own computing equipment, and data communication
links between equipment of different manufacturers were difficult to im­
plement. Today networks have increased in capability and complexity.
In modern computer networks, the functions relating to data transmis­
sion are performed by complex hardware, firmware, and software oper­
ating in the various devices making up a network. To make it easier to
manage this complexity, the functions performed in network devices are
divided into independent functional layers, much like the skins of an
onion. Each functional layer hides the complexities and the evolution of
the lower layers from the layers above. It would be of great benefit to
users of computing equipment for the computing industry to standard­
ize the interfaces between the layers and to define the rules governing the
way in which complementary layers in different network machines ex­
change messages with one another. This standardization is one of the
roles of modern computer network architectures.

A network architecture is a comprehensive plan that governs the
design of the hardware and software components making up a computer
network. Before we discuss the nature of network architectures, we will
introduce the functions of a computer network by using an analogy to
describe the benefits of independent functional layers in complex sys­
tems.

An analogy can be made between the communication functions per­
formed in a computer network and the functions performed in ordinary
human communication. Figure 2.1 shows how we might divide the func-

17

18

FIGURE 2.1

FIGURE 2.2

PART I: THE DIGITAL NETWORK ARCHITECTURE

Layers of human communication.

IDEAS IDEAS

LANGUAGE LANGUAGE

PHYSICAL PHYSICAL

tions performed during human communication into three independent
layers.

The Physical Layer

In the Physical layer, the two parties must select and use a common com­
munication medium. A typical communication medium used in human
communication might be sound waves in air. For example, Figure 2.2
shows the physical medium used when two parties are involved in a face-

Physical layer: human speech.

IDEAS

LANGUAGE

PHYSICAL

Speak/Listen

Sound Waves

IDEAS

LANGUAGE

PHYSICAL

Speak/Listen

FIGURE 2.3

CHAPTER 2: NETWORK ARCHITECTURE 19

to-face conversation. In human communication, it is important that both
parties agree upon and use the same communication medium. For exam­
ple, if one party is speaking, but the other party is deaf and can only read
written words, no communication takes place.

The Language Layer

Once a common physical medium has been chosen, each party involved
in a conversation must use a language understood by the other. If one
party speaks only French and the other only English, little communica­
tion will take place. Figure 2.3 shows the Language layer when two par­
ties are conducting a conversation using the English language. With no
common language, there is no successful dialog, even though both par­
ties may have agreed to use the same communication medium. If I call a
Tokyo hotel and get a clerk who does not speak English, I will not be
able to book a room, even though I might have an excellent telephone
connection.

The Ideas Layer

We might think of the highest layer in human communication as the
Ideas layer. In this layer, each person involved in a conversation must
have some idea of what the conversation is about and must understand
the concepts being discussed. Figure 2.4 shows the Ideas layer when two
parties are discussing horticulture. If an English-speaking gardener es-

Language layer: English.

IDEAS IDEAS

LANGUAGE LANGUAGE

English English

PHYSICAL PHYSICAL

Speak/Listen Speak/Listen

-.VV\f\
Sound Waves

20

FIGURE 2.4

PART I: THE DIGITAL NETWORK ARCHITECTURE

Ideas layer: Horticulture.

IDEAS IDEAS

Horticulture Horticulture

LANGUAGE LANGUAGE

Eriglish E~ish

PHYSICAL PHYSICAL

Speak/Listen Speak/Listen

~
7~

r.

~ Sound Waves

tablishes a good telephone connection with another English-speaking
person and begins a technical discussion on horticulture, little real com­
munication is likely to take place if the second party is a two-year-old
child.

Protocols

In each layer in any communication system, a set of precisely defined
rules must be agreed to and followed by both parties for communication
to be successful. The rules governing communication at a given layer are
called protocols. Each set of protocols can be thought of as a rule book
that specifies a set of procedures governing communication. Each layer
on one side communicates with a complementary layer on the other side
using a protocol. Both parties must adhere exactly to the protocol; other­
wise, communication is not possible.

Human Communication Protocols

The protocols involved in the Physical layer of human communication are
simple and involve mechanical procedures. When two parties agree to
use a common communication medium, they must both observe the same
rules in using that medium. For example, on some long-distance tele­
phone circuits, both people are not able to talk at the same time. If both
people speak at once, no communication takes place. For the Language
layer, the protocols involve procedures described by the rules of gram­
mar and syntax for the common language. When two parties agree to

Message
Transmission

CHAPTER 2: NETWORK ARCHITECTURE 21

use English, they agree to abide by the rules of grammar and syntax that
govern the English language. For the Ideas layer, the protocols involve
procedures described by the body of knowledge concerning the subject
being discussed. If two parties are discussing horticulture, the protocols
might involve technical details concerning botany and agriculture.

Changing Protocols

When people communicate, they can change the protocol for a given
layer as long as both parties agree and change to the same new protocol.
In effect, they agree to change the rule book for one of the layers. The
protocols can be changed for one layer without requiring the protocols
to be changed for the other layers. This makes the protocols used in each
layer independent of the protocols used in the other layers. For example,
in business people often begin a transaction by exchanging letters and
then mutually decide a telephone conversation is needed. They may then
decide a face-to-face meeting is required to continue the discussion. The
rules, or protocols, governing the Ideas and Language layers remain the
same each time the discussion is resumed, even though the protocol gov­
erning the Physical layer may change. Multilingual people might shift a
conversation to a second language. As long as both parties agree to do
so, the change in protocol for the Language layer does not necessitate
changes in the Physical or Ideas layer.

In human communication, a dialog between two communicating parties
can be viewed as taking place via messages transmitted back and forth
between the two parties (see Figure 2.5). For each message, there must be
a sender and a receiver. On the sending end, an idea generates a message,
which is transmitted to the second party via the agreed-upon communi­
cations medium. At the receiving end, the message is received and con­
verted back into the original idea.

Functional Layers

Messages sent from a sender to a receiver in a human dialog can be
viewed as passing through a number of functional layers. Messages are
processed by hardware and software residing in, or controlled by, the
two communicating parties. For example, in a face-to-face conversation,
the hardware consists of the nervous systems, the mouths, and the ears
of the two people. The software consists of the thought processes, both

22

FIGURE 2.5

PART I: THE DIGITAL NETWORK ARCHITECTURE

Message transmission.

MESSAGE MESSAGE

conscious and unconscious, used to conduct the conversation. There is
an interface between each pair of layers, and each functional layer pro­
vides a set of services to the layer above it. A message passes down
through the functional layers on the sending end, flows over a communi­
cations medium to the receiver, and moves up through corresponding
functional layers on the receiving end.

Some interfaces in communication systems are concrete and define
the characteristics of cables, connectors, and signals; others are abstract
and define the semantics of the services one layer provides to another.
Concrete interfaces must be adhered to exactly to achieve portability
from one implementation to another; abstract interfaces need not be as
rigidly standardized. It does not matter if the layer boundaries are a little
fuzzy in the two communicating systems, as long as concrete interfaces
and protocols are rigidly adhered to. As we will see in later chapters, the
emphasis in determining conformance to communication standards is on
concrete interfaces and protocols and not on abstract layer interfaces.
However, standard layer interfaces are important because they define the
services a protocol must supply, and they allow a protocol operating in
one layer to be changed without affecting the protocols operating in the
other layers.

Coming back to our human communication analogy, Figure 2.6
shows how the sender uses a high-level set of functions operating in the
Ideas layer to formulate a message. Another set of functions, operating
in the Language layer, is used to place that message into words. Still an­
other function set, operating in the Physical layer, controls the mouth
and the tongue in sending the message orally over the communications

FIGURE 2.6

Network
Architectures

CHAPTER 2: NETWORK ARCHITECTURE 23

Layers of software.

IDEAS IDEAS

Horticulture Horticulture

t t
MESSAGE MESSAGE

LANGUAGE LANGUAGE

Speak/Listen Speak/Listen

medium. The ear of the receiver is controlled by a low-level set of func­
tions, operating in the Physical layer, that detects the sound waves carry­
ing the message. A function set operating in the Language layer trans­
lates those sounds into words. A set of functions operating in the Ideas
layer reconstructs the meaning of the original message from those words.

Computer Network Functional Layers

A computer network can be viewed on a number of different levels, just
as can human communication. At each level, a functional layer-imple­
mented using hardware, firmware, or software-provides a useful set of
functions. As with the model of human communication discussed earlier,
each functional layer should be as independent as possible of the others.
Independence of the layers gives a computer network great flexibility.

Network architectures define the way in which communication functions
are divided into functional layers. They also define the layer protocols,
the concrete interfaces, and the abstract interfaces between the func­
tional layers. Protocols and interfaces make up the standards to which
different machines and software modules must conform in order to effec­
tively communicate. When new products are created that conform to the
architecture, they will be compatible and can be linked with other prod­
ucts that also conform to the architecture. The goals and standards of a
network architecture are important to both the users of computer net-

24

The Nature of
Architecture

PART I: THE DIGITAL NETWORK ARCHITECTURE

works and the organizations that provide computer networking equip­
ment and services. A network architecture must provide users with a va­
riety of choices in the configuration of computer networks, and it must
allow users to change a configuration with relative ease as their systems
evolve. For the providers of networking products and services, architec­
tures permit the mass production of hardware and software building
blocks that can be used in a variety of different systems. They also pro­
vide standards that allow development laboratories to create new ma­
chines and software that will be compatible with existing products.
These new products can then be integrated into existing computer net­
works without the need for designing costly conversion mechanisms or
making extensive software modifications.

Although network architectures provide rules for the development of
new products, these rules can change. This is because the term architec­
ture in the computer industry often implies an overall scheme or plan
that may be evolving. The architecture defines an overall framework that
allows the architecture to evolve and change to support new technolo­
gies. In Digital's view, an architecture also defines all the details needed
to guide implementors in creating products that will fully conform to the
architecture and, therefore, that will interoperate with all other imple­
mentations of the architecture. One of the DNA architects characterizes
architecture in this way:

NETWORK ARCHITECT

An architecture must be always complete, but it is never finished. It must pro­

vide a framework that permits change.

A good architecture ought to relate primarily to the needs of the end
users rather than to enthusiasms for particular techniques. A well-archi­
tected house, for example, is one that reflects the desired lifestyle of its
owners rather than one designed to exploit a building technique that is
currently in vogue. Fred Brooks, author of The Mythical Man-Month
[1], defined architecture in a way that makes a clear distinction between
architecture and engineering:

By the architecture of a system, I mean the complete and detailed specification

of the user interface. For a computer this is the programming manual. For a

CHAPTER 2: NETWORK ARCHITECTURE 25

compiler it is the language manual For the entire system it is the union of

the manuals the user must consult to do his entire job The architect of a

system, like the architect of a building, is the user's agent. It is his job to bring

professional and technical knowledge to bear in the unalloyed interest of the

user, as opposed to the interests of the salesman, the fabricator, etc.

The view of architecture that Digital engineers have is somewhat
different from that of Fred Brooks. At Digital, architecture is not viewed
as being associated only with the user.

NETWORK ARCHITECT

I think we would see architecture as being equally concerned with the needs of

the user and with the needs of the fabricator. There's no point in having a won­

derful architecture that can't be implemented! In Digital, architecture is an inte­

gral part of the engineering process.

Proprietary Network Architectures

Network architectures can be based on either accepted standards or pro­
prietary standards developed by a particular organization, such as a
computer manufacturer. Until recently, proprietary network architec­
tures have played a more important role in the computer industry than
architectures based on widely accepted standards. This is because com­
puter manufacturers began providing advanced data communication ca­
pabilities long before today's standards were developed. Computer man­
ufacturers were forced to develop proprietary network architectures to
give an overall cohesiveness to their product lines. In today's information
systems environment, architectures based on accepted standards are, in
the long run, more desirable from the point of view of computer users,
since they give the user the widest possible range of choices in configur­
ing a network. Any vendor who implements the applicable standards can
then be a candidate as a supplier. However, the standards underlying an
architecture must be carefully chosen so they are likely to live a long
time, provide for low-cost implementations, provide a broad range of
functions, and are widely accepted.

The two most commonly used proprietary network architectures
today are Digital's Digital Network Architecture (DNA) and IBM's Sys­
tems Network Architecture (SNA). The first products that conformed to
each of these architectures were released at about the same time, in the
mid 1970s. In the past, a computer manufacturer's architecture was de-

26

Standards
Organizations

PART I: THE DIGITAL NETWORK ARCHITECTURE

signed for computer networks built with the products of only that manu­
facturer. The early manufacturer's architectures often made it difficult to
interconnect machines offered by competing vendors. Most computer
manufacturers, including Digital and IBM, however, provided facilities
that allowed connections between otherwise incompatible equipment. As
we saw in Chapter 1, in the future much more extensive forms of inter­
networking will be required to allow the machines of many different
vendors to be interconnected to form an integrated, global computer net­
work. It is a major goal of today's network architecture development to
allow diverse equipment from many different vendors to be intercon­
nected using standard interfaces and protocols. Because of this, widely
accepted standards are playing an increasingly important role in network
architecture development.

A number of organizations around the world are actively involved in de­
veloping standards and architectures for data communication and com­
puter networking. Three important standards organizations for the in­
formation systems and communication industries are ISO, IEC, and
CCITT, all of which we discuss next. Other important standards organi­
zations are described briefly in Box 2.1. Some important terms making
up the alphabet soup of information systems standardization are defined
in Box 2.2. [2]

International Organization for Standardization

A prominent standards organization is the International Organization
for Standardization (ISO), the largest standards organization in the
world. ISO produces large numbers of standards on nearly every subject,
from humane animal traps to screw threads. It is also the dominant in­
formation technology standardization organization in the world. The
members of ISO are individual national standards organizations; only
national positions-positions representing an entire country-are dis­
cussed in ISO. The ISO member organization from the United States is
the American National Standards Institute (ANSI); all major industrial­
ized countries have a similar standards organization that represents its
national interests in ISO. ISO technical meetings take place at various lo­
cations around the world.

The secretariat of ISO, located in Geneva, Switzerland, is the orga­
nization charged with running the day-to-day affairs of ISO, including
keeping track of its numerous Technical Committees (TCs) and publish-

BOX 2.1

Other Standards
Organizations

CHAPTER 2: NETWORK ARCHITECTURE

American National Standards Institute (ANSI)

Virtually every country in the world has a national standards organi­
zation responsible for publishing standards to guide that nation's in­
dustries. In the United States, this organization is ANSI. ANSI is a
non"profit organization that writes the rules for standards bodies to
follow and publishes standards produced under its rules of consen­
sus. ANSI accredits standards committees to write standards in areas
of their expertise. The major accredited standards committees (ASCs)
in the information technology arena are:

• JTC1 TAG. This is the U.S. technical advisory group (TAG) for the
ISO/IEC JTC1. This group provides U.S. positions on JTC1 standards
and is the single interface to ISO/IEC JTCl in the United States.

• ASC X3. This committee produces approximately 90 percent of the
standards for U.S. information technology and provides the technical
expertise for a majority of U.S. technical advisory groups to the sub­
committees and working groups in ISO/IEC JTC1.

• ASC TL This group is the voluntary standards-making body for the U.S.
telecommunications industry and sets U.S .. national telecommunications
standards. T1 helps the State Department with CCITT positions.

• ASC X12. This group is responsible for standards relating to elec­
tronic data interchange (EDI) in the United States. It acts to set na­
tional positions for the United Nations EDIFACT group, which is es­
tablishing EDI standards worldwide.

ANSI has a small secretariat located in New York City whose func­
tion is organizational and administrative rather than technical. ANSI
is not a government organization; it is funded by its members and
through the sale of standards. ANSI standards can be obtained di­
rectly from ANSI or from OMNICOM or Global Engineering Docu­
ments.

National standards organizations from other countries include:

" France. Association Francaise de Normalisation (AFNOR)

" United Kingdom. British Standards Institute (BSI)

" Canada. Canadian Standards Association (CSA)

" Germany. Deutsches Institut fur Normung e.V. (DIN)

" Japan. Japanese Industrial Standards Committee (JISC)

These standards organizations have the same general role and organi­
zation as ANSI and provide a discussion forum for individuals. Some
of those individuals then participate in international meetings and

27

28

BOX 2.1

continued

PART I: THE DIGITAL NETWORK ARCHITECTURE

represent the agreed views of their countries. It is the national bodies
that vote in the formal approval process for standards.

European Computer Manufacturers Association (ECMA)

ECMA was originally formed by a group of European companies.
Since then, its membership has grown to become international and in­
cludes representatives from such organizations as IBM, Digital,
AT&T, British Telecom, and Toshiba. ECMA is considered a regional
standards organization and develops information technology stan­
dards for the European region. ECMA standards are often forwarded
to ISO/IEC JTCl for development as international standards. Such co­
operation between organizations can result in a faster standards devel­
opment process, since consensus has already been demonstrated.
ECMA has a small secretariat in Geneva, and its members meet in var­
ious places throughout Europe.

Comite European de Normalization (CEN) and Comite
European de Normalisation dans le domain Electrique
(CENELEC)

CEN and its associated organization CENELEC have a relationship sim­
ilar to that between ISO and IEC. They are concerned with the adoption
of standards by the countries of the European Economic Community
(EEC) and other European countries. Standards adopted by CEN/CEN­
ELEC are called European Norms (ENs) and are binding for procure­
ment purposes on the CEN's member countries. CEN normally does not
develop its own standards but instead relies heavily on standards devel­
oped by other organizations, especially ISO. Where there is no ISO or
IEC standard, however, CEN will develop its own standard and forward
it to ISO for development as an international standard.

National Institute for Science and Technology (NIST)

NIST (formerly known as the National Bureau of Standards) is a U.S.
government organization. ISO standards often cover broad ranges of
function and allow many choices to be made by individual implemen­
tors. The NIST has taken a leadership role in creating profiles that
define preferred groups of choices from among the many options doc­
umented in ISO standards. Initially this was done in an informal work­
shop that developed implementors' agreements. As the importance of
these profiles has increased and other organizations have started simi­
lar work internationally, the NIST workshop has become more for-

BOX 2.1

continued

CHAPTER 2: NETWORK ARCHITECTURE

mally organized. NIST is one of the three major international contrib­
utors to the development of Internationally Standardized Profiles
(ISPs), which are the profiles formally ratified by ISO.

European Workshop on Open Systems (EWOS)

EWOS has the same role in Europe as the NIST workshop has in the
United States. EWOS was started primarily by members of SPAG (see
below) to ensure that Europe had a voice in the development df profiles.
It also serves as the Technical Committee to support the technical activ­
ity of CEN. EWOS and NIST work closely together to achieve and
maintain harmonization of their profiles. EWOS is located in Brussels.

Promotion of OSI/ Asia and Oceania Workshop (POSI/ AOW)

AOW is another organization that contributes to the international
adoption of profiles. POSI is a Japanese organization concerned with
promoting the adoption of ISO standards for the OSI model, while
AOW is an open workshop that includes Australia and other Pacific
countries as well as Japan.

Corporation for Open Systems (COS)

COS was initiated as a consortium of computer manufacturers and
others to encourage the adoption of ISO information systems stan­
dards. It has initially directed its efforts toward the development of
testing procedures to allow vendors to demonstrate conformance to
ISO standards. COS operates as a non-profit organization funded by
its members. It does not produce standards nor does it contribute to
the development of standards. COS is located in McLean, VA.

Standards Promotion and Application Group (SPAG)

SP AG was initially a private consortium of European companies, set
up with objectives similar to those of COS. Like COS, it has now di­
rected its efforts primarily toward the development of testing proce­
dures, and it cooperates closely with COS in that regard. Membership
in SPAG is now open, and many U.S. companies are members.

Electrical Industries Association (EIA)

EIA is an association of companies involved in electrical and related indus­
tries. EIA undertakes some standardization projects and operates in that
capacity as an accredited organization (AO) under the rules of consensus

29

30

BOX 2.1

continued

PART I: THE DIGITAL NETWORK ARCHITECTURE

standards formulated by ANSI. The standards developed by the EIA are
concerned primarily with physical communication interfaces and electrical
signaling. A well-known EIA standard is EIA-232-D, which documents
the way in which a terminal or computer is attached to a modem.

Institute of Electrical and Electronic Engineers (IEEE)

IEEE is a professional society whose members are individual engineers
rather than companies. Most of its activities are only peripherally related
to information technology, but it became the focus for development of
local area network standards under its project 802 (see Chapters 21 and
22). The IEEE is also an AO, which operates under ANSI guidelines
when it develops standards. Like the EIA, it rarely develops complex an­
ticipatory systems standards, such as those falling under the OSI model
umbrella, but ordinarily concentrates instead on product standards.

Conference of European PTTs (CEPT)

CEPT was established by the European PTTs primarily to develop
technical standards that could be used in Europe prior to the develop­
ment of corresponding CCITT standards. With the establishment of
ETSI (see below), CEPT remains a closed forum that is concerned
mainly with marketing and lobbying.

European Telecommunications Standards Institute (ETSI)

ETSI was established by the European Economic Commission to for­
malize many of the activities formerly undertaken by CEPT. Member­
ship is open to suppliers of telecommunications equipment and ser­
vices, PTTs, and other industrial organizations, with formal voting on
a national basis. ETSI develops European telecommunications stan­
dards (ETSs). Some of these are intended as a basis for the provision of
services and as a foundation for CCITT work, while others are ori­
ented toward permission to connect testing for the attachment of
equipment to public networks. ETSI is based in Sophie Antipolis,
France. It has its own permanent technical staff and depends on the
participation of its members.

Open Systems Foundation (OSF)

OSF is a non-profit organization established by a number of computer
manufacturers to develop a common foundation for open computing.
It is not directly concerned with standards but rather with the develop-

BOX 2.1

continued

CHAPTER 2: NETWORK ARCHITECTURE

ment of an agreed collection of software around a UNIX-like operat­
ing system kernel. OSF has its own permanent technical staff and de­
pends on the participation of its members.

X/Open

X/Open was set up by European computer manufacturers to develop a
consistent UNIX-like suite of application programming interfaces to
permit application portability. Membership is open and worldwide.

31

ing the standards the Technical Committees produce. The Technical
Committees, which not only create the standards but also determine
what standards to produce, are composed of thousands of volunteers
from computer manufacturers, suppliers of communication products,
major computer users, governments, and consulting organizations. To
participate, these delegates operate under the aegis of the national body.
So a delegate from the United States not only brings technical expertise
to the committee but also represents his or her sponsoring organization,
ANSI, and the United States itself. A TC is ordinarily divided into Sub­
committees (SCs) and Working Groups (WGs), which write the stan­
dards. The standards then receive the approval of the Technical Commit­
tee as a whole before they finally become accepted as international
standards.

Closely associated with ISO is the International Electrotechnical
Commission (IEC). IEC has a role similar to that of ISO but is restricted
to electrical and electronic matters. There is an agreement between ISO
and IEC to ensure that their work does not overlap. In the field of infor­
mation technology standards, IEC's role is limited to Physical layer as­
pects, such as electrical safety. ISO and IEC have recently merged their
Technical Committees working on information technology into a single
organization, called ISO/IEC Joint Technical Committee 1 (JTCl), to en­
sure and improve continued close cooperation.

JTCl is the ISO/IEC Technical Committee responsible for a particu­
larly important framework for a computer network architecture called
the Reference Model for Open Systems Interconnection, or the OSI
model. The OSI model is introduced in Chapter 3 and forms the basis for
the latest phase of Digital's own DNA. JTCl is also publishing a com­
prehensive set of standards for the various functional layers defined by
the OSI model. Many of those standards are described in this book.

32

BOX 2.2

Other Standards
Terminology

PART I: THE DIGITAL NETWORK ARCHITECTURE

Manufacturing Automation Protocol (MAP)

MAP is a project started in the United States by General Motors to de­
velop a single standard for communication between devices in a fac­
tory automation environment. Its work has been based on U.S. na­
tional and ISO standards and also defines additional standards specific
to factory automation applications.

Technical and Office Protocol (TOP)

TOP is a complementary project to MAP started by Boeing to extend
the applicability of MAP into other environments, such as office infor­
mation systems and computer-aided design.

Government Open Systems Interconnection Profile (GOSIP)

GOSIP is a name for procurement-oriented standard profiles specify­
ing how ISO standards will be used for U.S. government computing.
The acronym GOSIP has been adopted by other countries to describe
their own government procurement specifications.

European Procurement Handbook for Open Systems (EPHOS)

EPHOS is a project similar to GOSIP for government computing
throughout Europe.

Open Distributed Processing (ODP)

ODP is a project started within ISO to develop standards for a hetero­
geneous distributed computing environment. It is defining an overall
reference model for distributed computing that goes beyond the OSI
model.

PO SIX

POSIX is a standard developed by IEEE under its project 1003 that
defines a UNIX-like interface to basic operating system functions to
provide application portability.

There are four major steps in the standardization process. A stan­
dard begins its journey through the standardization process as a working
document. After the working group or subcommittee agrees the working
document should be developed into an international standard, it becomes
a committee draft, at which time ISO/IEC assigns a unique number to it.

CHAPTER 2: NETWORK ARCHITECTURE 33

At this stage, the standard is referred to with the letters "CD," such as
ISO CD 12345. (A committee draft was formerly called a draft proposal
and was abbreviated DP.) After the subcommittee or working group
agrees that the standard is close to being accepted as an international
standard, it is given draft international standard status and is referred to
using its number and the letters DIS, such as ISO DIS 12345. A standard
may go through multiple revisions at both the committee draft and draft
international standard phases. A standard that has made it all the way
through the standardization process and has been accepted by ISO is
called an international standard and is referred to only by its number,
such as ISO 12345. ISO sometimes produces documents called technical
reports when support cannot be obtained for the publication of a stan­
dard, when a subject is still under technical development, or when a Tech­
nical Committee has collected information of a different kind from that
normally published as a standard. The identification number of a techni­
cal report is preceded by the letters TR, such as ISO TR 12345.

ISO also produces amendments to international standards as
changes to them are required. Like the international standards them­
selves, amendments go through four phases. An amendment to an inter­
national standard begins as a working draft and then progresses to a
committee draft amendment (CDAM), goes on to become a draft
amendment (DAM), and finally becomes an amendment (AM) when it is
approved. Generally, amendments are eventually incorporated into the
text of their associated standards after the amendment is accepted.
Amendments were formerly called addenda (ADs), draft amendments
were called draft addenda (DADs), and committee draft amendments
were proposed draft addenda (PDADs).

Most of the standards described in this book are accepted interna­
tional standards, but some are currently in draft status and a few exist in
the form of committee drafts. However, because standards often change
their status quickly from CD to DIS and from DIS to accepted interna­
tional standards, we will refer to standards using only their numbers,
such as ISO 7498. Check with your country's national standards organi­
zation or with one of the many organizations that sell copies of interna­
tional standards of the actual status of any particular ISO standard.
ISO/IEC standards documents and technical reports can be obtained in
the United States from ANSI, Inc., 1430 Broadway, New York, NY
10018. The following organizations also stock copies of ISO standards:
OMNICOM, 501 Church Street, N.E., Vienna, VA 22180, (703) 281-
1135; and Global Engineering Documents, 2805 McGaw Avenue,
Ervine, CA 92714, (800) 854-7179.

34 PART I: THE DIGITAL NETWORK ARCHITECTURE

International Telegraph and Telephone Consultative Committee

The International Telegraph and Telephone Consultative Committee
(CCITT) has existed since around the turn of the century and is the lead­
ing organization involved in the development of standards relating to
telephone and other telecommunications services. CCITT is a part of the
International Telecommunications Union (ITU), which in turn is a body
of the United Nations. The delegation to the ITU from the United States
is the Department of State. In other countries, the ITU delegation is often
the governmentally controlled Postal, Telephone, and Telegraph (PTT)
organization.

CCITT deals with standards for interconnecting the world's tele­
phone networks and for the signaling systems used by modems in send­
ing computer data over telephone lines. CCITT calls the standards it
produces recommendations, which have such names as Recommenda­
tion X.25 and Recommendation X.400. It was a natural outgrowth of
the data aspects of telephone service that CCITT should become in­
volved in information system standards, particularly those directly re­
lated to public data networks. In the last decade, CCITT has also been
involved in a major effort to define standards for a worldwide Integrated
Services Digital Network (ISDN) for providing unified public voice and
data communication services.

The principal contributors to CCITT are individuals representing
the public and private telecommunications organizations, although non­
voting memberships are also open to industrial organizations. CCITT
maintains a secretariat in Geneva, where most of the meetings take
place. However, representation is international. As with ISO, all of the
technical contribution comes from individual volunteers drawn primar­
ily from telephone companies and other companies that supply telecom­
munications products and services. Again, membership is limited to na­
tional body representation -it is the State Department, not U.S common
carriers, that represents the U.S. national position.

CCITT recommendations are published at four-year intervals, with
the color of the covers changed with each new edition. Although the
recommendations are newly published every four years, each new ver­
sion represents evolutionary change from the previous version; many of
the recommendations change little from one version of the recommen­
dations to another. The color for the set of 1988 CCITT recommenda­
tions is blue, so that set of CCITT recommendations is called the Blue
Book. The Blue Book contains new recommendations and all the revi­
sions to existing ones approved from 1985 through 1988. The Blue

Conclusion

References

CHAPTER 2: NETWORK ARCHITECTURE 35

Book was published a piece at a time beginning in 1989. The Blue Book
recommendations will be in common use through about 1993, after
which all revisions approved since 1989 will be incorporated into a new
set of recommendations. Each set of CCITT recommendations is pub­
lished in the form of a series of volumes, each of which is divided into
separately bound fascicles. Each fascicle can be ordered separately.
CCITT recommendations can be obtained from the United States De­
partment of Commerce, National Technical Information Service, 5285
Port Royal Road, Springfield, VA 22161. They can also be obtained
from OMNICOM and Global Engineering Documents, whose ad­
dresses were given previously.

ISO, IEC, and CCITT cooperate quite closely. ISO and CCITT, in
particular, have a strong interest in aligning their standards and thus try
not to duplicate work between them. (Unfortunately, duplication of ef­
fort still sometimes occurs.) Standards of mutual interest typically are de­
veloped in one organization and then published by both. For example,
the OSI model was developed principally by a subcommittee of ISO and
is documented in ISO 7498; CCITT also publishes the OSI model as Rec­
ommendation X.200. Similarly, CCITT has developed Recommendation
X.400, which standardizes electronic mail facilities. Recommendation
X.400 has been adopted by ISO, which publishes it as ISO 10021. The
technical people participating in committees of ISO are very often the
same people as on CCITT committees, and the technical development
activities associated with information systems standardization are often
undertaken jointly by ISO and CCITT.

ISO's publication of the Reference Model for Open Systems Interconnec­
tion (the OSI model) was an extremely important development in the
world of computer networking. The definition of international standards
that fit into the OSI model framework is even more important. The OSI
model and ISO's complete architecture for computer networking are in­
troduced in Chapter 3.

1. Frederick P. Brooks, The Mythical Man-Month: Essays on Software
Engineering, Addison-Wesley Publishing Company, Reading, MA,
1975.

2. Carl F. Cargill, Information Technology Standardization: Theory,
Process, and Organizations, Digital Press, Bedford, MA, 1989.

CHAPTER 3

The OSI
Reference Model

Given the immense proliferation of intelligent computing devices now
occurring, one of the activities most important to the future of informa­
tion technology is the setting of standards to enable machines of differ­
ent manufacturers to communicate. In 1984, as a start in the setting of
such standards, ISO accepted as an international standard ISO 7498,
Open Systems Interconnection-Basic Reference Model. ISO 7498 is a
short document that describes the seven-layer Reference Model for
Open Systems Interconnection that provides a common basis for the co­
ordination of standards development for the purpose of interconnecting
open systems. The term open in this context means systems open to one
another by virtue of their mutual use of applicable standards. The OSI
model describes how machines can communicate with one another in a
standardized and highly flexible way by defining the functional layers
that should be incorporated into each communicating machine. The OSI
model does not define the networking software itself, nor does. it define
detailed standards for that software; it simply defines the broad cate­
gories of functions each layer should perform.

OSI Model Layers The OSI model defines the seven independent functional layers shown in
Figure 3.1. Each layer performs a different set of functions, and the in­
tent is to make each layer as independent as possible from all the others.
However, complete layer independence is difficult to achieve.

NETWORK ARCHITECT

Each layer provides a defined set of services by building on the layers below it.

It is impossible for them to be completely independent. But the mechanisms of

each layer are always independent of the mechanisms of the adjacent layers.

FIGURE 3.1

37

OSI model functional layers.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

The ISO working group responsible for defining the OSI model
began by establishing a number of principles that guided the develop­
ment of the reference model. These principles are listed in Box 3.1. While
it may be difficult to prove that the seven layers selected represent the
best possible solution, the general principles listed in Box 3.1 guided the
ISO working group in answering the questions of where a boundary
should be placed and how many layers there should be. Organizations
have now had much experience with developing network architectures
based on the seven OSI model layers. For the most part, the layer divi­
sions of the OSI model have proven to be well thought out. But there is
still some controversy.

NETWORK ARCHITECT

There is still a general tension in standardization. If you have a group of people

who are very focused on a certain area-whether it's a certain technology, like

FDDI, or a certain layer, like the Session layer-there's a great tendency for

them to say, "Well, everything we have to do to make this work-not just work

but to be really useful-we should do in our layer, because you can't trust those

people who are working on the other layers." This leads to something that has
been called the "49-layer model" because all of the functions that are put in the

seven layers start reappearing in each of the seven layers. We have to guard

against this because you end up with the problems being solved in each layer be­

coming as complex as the entire original problem.

We next provide brief descriptions of each of the seven layers of the
OSI model, beginning with the lowest layer. After we describe the seven
OSI model layers, we will show how the OSI model relates to the com­
plete OSI architecture and introduce concepts important in the OSI envi-

38

BOX 3.1

The Principles of
Layering

PART I: THE DIGITAL NETWORK ARCHITECTURE

Principle 1. Collect similar functions in the same layer.

Principle 2. Create separate layers to handle functions that are
manifestly different in the process performed or the involved
technology.

Principle 3. Allow changes in functions or protocols to be made
within a layer without affecting other layers.

Principle 4. Create a layer of easily localized functions so the layer
could be totally redesigned and its protocols changed in a major way
to take advantage of new advances in architectural, hardware, or
software technology without changing the expected services from and
provided to the adjacent layers.

Principle 5. Create a layer where there is a need for a different level
of abstraction in the handling of data.

Principle 6. Create for each layer boundaries with adjacent layers
only.

Principle 7. Select boundaries at a point that past experience has
demonstrated to be successful.

Principle 8. Create a boundary at a point where the description of
services can be small and the number of interactions across the
boundary minimized.

Principle 9. Create a boundary where it may be useful at some time
to have the corresponding interface standardized.

Principle 10. Do not create so many layers as to make the system
engineering task of describing and integrating the layers more difficult
than necessary.

ronment. Part II of this book examines each of the layers in detail, de­
scribes the ISO standards that apply to each, and shows how the DNA
Phase V architecture incorporates the ISO standards.

The Physical Layer

The lowest layer of the OSI model is the Physical layer. It allows signals,
such as electrical signals, optical signals, or radio signals, to be ex­
changed among communicating machines. The Physical layer, shown in
Figure 3.2, typically consists of hardware permanently installed in the

FIGURE 3.2

FIGURE 3.3

CHAPTER 3: THE OSI REFERENCE MODEL

The Physical layer is concerned with sending and receiving signals.

1111111111111111111

::::::::::::::::::: c:::::J

Physical

Electrical, Optical,
or Radio Signals

Physical Circuit

1111111111111111111

::::::::::::::::::: c:::::J

Physical

39

communicating devices. The Physical layer also addresses the cables,
connectors, modems, and other devices used to connect machines. Mech­
anisms in each of the communicating machines control the generation
and detection of signals that are interpreted as 0 bits and 1 bits. The
Physical layer does not assign any significance to the bits. For example, it
is not concerned with how many bits make up each unit of data, nor is it
concerned with the meaning of the data being transmitted. In the Physi­
cal layer, the sender simply transmits a signal and the receiver detects it.

The Data Link Layer

Control mechanisms in the Data Link layer handle the transmission of
data units over a physical circuit. Functions operating in the Data Link
layer allow data to be transmitted, in a relatively error-free fashion, over
a sometimes error-prone physical circuit (see Figure 3.3). This layer is
concerned with how bits are grouped into collections and performs syn­
chronization functions with respect to failures occurring in the Physical
layer. The Data Link layer implements error-detection mechanisms that
identify transmission errors. With some types of data links, the Data

The Data Link layer is responsible for the transmission of data units over a physical circuit.

1111111111111111111

::::::::::::::::::: c:::::J

Data Link

Physical

Error-Free
Data Link

Error-Prone Physical Circuit

1111111111111111111

::::::::::::::::::: c:::::J

Data Link

Physical

40 PART I: THE DIGITAL NETWORK ARCHITECTURE

Link layer may also perform procedures for flow control, for data unit
sequencing, and for recovering when transmission errors occur.

Some data links interconnect only two computers, such as with a
point-to-point telecommunications facility. Other types of data links
allow many computers to be interconnected, such as in a typical local

.~

area network. When more than two computers are attached to a single
data link, any computer can be viewed as being connected by a single link
with any other computer attached to the data link, even though there may
be devices, such as repeaters or bridges, between any two stations.

The Network Layer

We will refer to a device containing an instance of the Network layer and
the Data Link and Physical layers below it as a node.* Nodes that act as
the source or the final destination of data are called end nodes. Between
any two end nodes may be nodes acting as intermediaries that perform
routing and relaying functions. These are called intermediate nodes. The
facilities provided by the Network layer supply a service that higher layers
employ for moving bits from one end node to another, where the bits may
flow through any number of intermediate nodes. End nodes generally im­
plement all seven layers of the OSI model, allowing application programs
to exchange information with each other. It is possible for intermediate
nodes performing only routing and relaying functions to implement only
the bottom three layers of the OSI model, as shown in Figure 3.4.t Notice
that the path between any two nodes may at one instant be via a number
of data links. The application programs running in two end nodes that
wish to communicate should not need to be concerned with the route
data units take nor with how many data links they travel over. The Net­
work layer functions operating in end nodes and in intermediate nodes
together handle these routing and relaying functions. Whereas the Data
Link layer provides for data transmission between adjacent nodes across

* OSI documentation uses the term system instead of node. However, we feel the
term system is overused in information systems literature, and we prefer node to
the more formal OSI term system.

t In actual practice, for an intermediate node to communicate with network
management mechanisms, all seven layers are required, although some of the
upper layers may implement a minimum set of functions. The term skinny stack
is sometimes used to refer to such an implementation of only a minimum set of
functions in one or more of the upper layers.

CHAPTER 3: THE OSI REFERENCE MODEL 41

F I G u R E 3 . 4 The Network layer allows communication across multiple data links.

lllllUlllHJIHlll 1111111111111111111

:::::::~i:::::: r=::J ::::::::::::::::::: r=::J

Data Link

Physical

Data Link

Physical

a single data link, the Network layer provides for the much more complex
task of transmitting data between any two nodes in the network, regard­
less of how many data links may need to be traversed.

The Transport Layer

The Transport layer builds on the services of the Network layer and the
layers below it to form the uppermost layer of a reliable end-to-end data
transport service. The Transport layer hides from the higher layers all the
details concerning the actual moving of data from one computer to an­
other and shields network users from the complexities of network opera­
tion. The lowest three layers of the OSI model (see Figure 3.1) implement
a common physical network many machines can share independently of
one another, just as many independent users share the postal service. It is
possible for the postal service to occasionally lose a letter. To detect
the loss of a letter, two users of the postal service might apply their own
end-to-end controls, such as sequentially numbering their letters. The
functions performed in the Transport layer can include similar end-to­
end integrity controls to recover from lost, out-of-sequence, or duplicate
messages.

Transport layer functions handle addressing of the processes, such
as application programs, that use the network for communication. The
Transport layer can also control the rate at which messages flow through
the network to prevent and control congestion. Whereas the Network
layer is concerned with the interface between network nodes and oper­
ates in end nodes and intermediate nodes, the Transport layer provides
an end-to-end service that programs can use for moving data back and
forth between them. The Transport layer is the lowest layer required
only in the computers running the programs that use the network for
communication (see Figure 3.5).

42

FIGURE 3.5

1111111111111111111

:::::::::::::::::::c=:J
Transport

Network

Data Link

Physical

FIGURE 3.6

PART I: THE DIGITAL NETWORK ARCHITECTURE

The Transport layer is the lowest layer required only in the computers that are communicating.

1111111111111111111

:::::::::::::::::::c=:J
End-to-End Transport Connection

Transport

Network

Data Link

Network Physical

Data Link Data Link

Physical

The Session Layer

There is a fundamental difference in orientation between the bottom
four layers and the top three. The bottom four layers are concerned more
with the network itself and provide a data transport service; the top
three layers are more concerned with the application programs that use
the network for communication. (See Figure 3.6.)

The Session layer is the lowest of the layers associated with the appli­
cation programs and is responsible for organizing the dialog between two
application programs and for managing the data exchanges between
them. To do this, the Session layer imposes a structure on the interaction
between two communicating programs. (See Figure 3.7.) The Session
layer defines three types of dialogs: two-way simultaneous interaction,
where both programs can send and receive concurrently; two-way alter­
nate interaction, where the programs take turns sending and receiving;

The layers of the OSI model can be divided into those that provide a data transport service and
those that supply application program services.

Application { Application Layer
Program Presentation Layer

Services Session Layer
'-------'-----'

{

Transport Layer

Data Network Layer
Transport 1---------1

Service Data Link Layer

Physical Layer

FIGURE 3.7

1111111111111111111

::::::::::::::::::: c=::J

Session

Transport

Network

Data Link

Physical

CHAPTER 3: THE OSI REFERENCE MODEL 43

The Session layer organizes the dialog between two application programs.

1111111111111111111

::::::::::::::::::: C:=:J
Dialog Between Application Programs

Session

Transport

Network

Data Link

Physical

and one-way interaction, where one program sends and the other only re­
ceives.· In addition to organizing the dialog, Session layer services include
establishing synchronization points within the dialog, allowing a dialog
to be interrupted, and resuming a dialog from a synchronization point.

The Presentation Layer

The five layers below the Presentation layer are all concerned with the
orderly movement of a string of bits from one program to another. The
Presentation layer is the lowest layer interested in the meaning of those
bits and deals with preserving the information content of data transmit­
ted over the network. (See Figure 3.8.)

The Presentation layer is concerned with three types of data syn­
taxes that can be used for describing and representing data:

• Abstract Syntax. An abstract syntax consists of a formal definition of the
information content of the data two programs exchange. An abstract
syntax is concerned only with information content and not with how
that information content is represented in a computer or how it is en­
coded for transmission. For example, an abstract syntax might define a
data type called AccountNumber, values of which consist of integers.
ISO 8824 Abstract Syntax Notation One (ASN.1) defines an interna­
tional standard notation that is often used in practice to define abstract
syntaxes in the OSI environment.

* Although one-way interaction is defined in ISO 7498, no ISO protocol uses this
type of dialog.

44

FIGURE 3.8

1111111111111111111

:::::::::mm:::: c=::J

Presentation

Session

Transport

Network

Data Link

Physical

PART I: THE DIGITAL NETWORK ARCHITECTURE

The Presentation layer is responsible for preserving the information content of the data
transmitted over the network.

Information Content Encoded for Transmission

:::

Network

Data Link Data Link 11

Physical Physical

Hlllllllllllllllll

::::::::::::::::::: c=:=I

Presentation

Session

Transport

Network

Data Link

Physical

• Local Concrete Syntax. A local concrete syntax defines how the informa­
tion content of data is actually represented in a computing system. Two
communicating systems might use different local concrete syntaxes. For
example, one system might represent an integer as a binary number
using 2's complement notation; another system might use a string of dec­
imal digits. ISO standards do not address the local concrete syntax, anc'
programs are free to represent data in any desired way.

• Transfer Syntax. A transfer syntax defines how the information content
of data is encoded for transmission over the network. A value of the Ac­
countNumber type might be transferred over the network using some
form of encoding scheme that identifies the value as being of the Ac­
countNumber type, specifies that it consists of an integer, and encodes
that integer's value using a minimum number of bits. ISO 8825,
Specification of Basic Encoding Rules for ASN.1, specifies one way in
which the information content of data units defined using ASN.1 nota­
tion can be encoded for transmission. The basic encoding rules are often
used in the OSI environment to produce transfer syntaxes.

The OSI model defines two major functions for the Presentation layer.
The first is for the two communicating Presentation entities to negotiate a
common transfer syntax to be used to transfer the data units defined by a
particular abstract syntax. The second is to ensure that one system does
not need to care what local concrete syntax the other system is using. If the
local concrete syntaxes in the two communicating systems are different,
the Presentation layer is responsible for transforming from the local con­
crete syntax to the transfer syntax in the sending system and from the
transfer syntax to the local concrete syntax in the receiving system.

CHAPTER 3: THE OSI REFERENCE MODEL 45

The Application Layer

The topmost layer, the one user processes plug into, is the Application
layer. (See Figure 3.9.) The Application layer is concerned with high-level
functions that provide support to the application programs using the net­
work for communication. The Application layer provides a means for
application programs to access the system interconnection facilities to
exchange information. It provides all functions related to communica­
tion between systems not provided by the lower layers. The Application
layer is more open ended than the layers below. Due to the wide variety
of applications that will ultimately use networks for communication,
many standards for the Application layer are likely to be developed.

The OSI Network Now that we have briefly described the functions of the seven layers of
Architecture the OSI model, we will show how the OSI model relates to the complete

OSI architecture ISO is defining and introduce the major concepts under­
lying the OSI architecture.

There is widespread confusion between the OSI model and ISO's
ultimate plan for a complete network architecture based on the OSI
model. After the OSI model became accepted as an international stan­
dard, a major part of ISO's work in the area of information system stan­
dardization has been to develop and publish comprehensive standards
for each of the seven OSI model layers. These standards provide de­
tailed descriptions of the services provided by each layer and the proto­
cols each layer employs for communication. The standards ISO is <level-

FI G u R E 3 . 9 The Application layer is the topmost layer into which user processes plug.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Communication Between User Processes

Network

Data Link

Network

Data Link Data Link II
Physical Physical

Session

Transport

Network

Data Link

Physical

46

OSI Concepts

PART I: THE DIGITAL NETWORK ARCHITECTURE

oping for the seven layers of the OSI model will ultimately define a fully
standardized network architecture. At the time of this writing, many of
the standards making up the OSI architecture are now accepted interna­
tional standards. Others exist as draft international standards and as
draft proposals, so all work has not yet been fully completed for all
seven layers. Appendix A lists many of the standards that make up the
OSI architecture. Since the statuses of international standards change
rapidly, all standards are shown using the ISO designation, even though
some of them may be in committee draft (CD) or draft international
standard (DIS) status. Consult your country's national standards orga­
nization or an organization such as OMNICOM or Global Engineering
Documents (see Chapter 2) for the current status of each international
standard. Even though some standards may not currently have full in­
ternational standard status, the standardization process is at a
sufficiently advanced stage that full implementation of the OSI network
architecture has been started by many organizations. The latest version
of the Digital Network Architecture is based on many of the ISO stan­
dards that now exist for OSI architecture.

There is no requirement on the part of any hardware or software
vendor to adhere to the principles set forth in the documentation of the
OSI model or to adopt the ISO standards that are emerging for the seven
layers of the OSI model. However, there is a worldwide trend in the in­
formation technology industry toward acceptance of and conformance
to the ISO standards that make up the OSI architecture.

The OSI model is concerned with the interconnection of systems-the
way in which they exchange information-and not the internal func­
tions performed by a given system. In OSI terminology, a system is
defined as:

A set of one or more computers, the associated software, peripherals, termi­

nals, human operators, physical processes, transfer means, etc., th,at forms

an autonomous whole capable of performing information processing and/or

information transfer.

The OSI model provides a generalized view of a layered architec­
ture. With the broad definition given for a system, the architecture can
apply to a very simple system, such as a point-to-point connection be­
tween two computers, or to a very complex system, such as the intercon­
nection of two entire computer networks. As we stated earlier, we will
often use the term node in place of the ISO term system.

Services and
Protocols

FIGURE 3.10

CHAPTER 3: THE OSI REFERENCE MODEL 47

The ISO standards making up the complete OSI architecture define for
each layer a single service definition and one or more protocol
specifications. A service definition defines the specific services a layer
provides to the layer above it but says nothing about how those services
are to be provided. A protocol specification describes the formats of the
data units exchanged and specifies the procedures a layer must perform
in exchanging those data units in providing the services of that layer. The
relationship between the services layer N provides and the protocol gov­
erning its operation are shown in Figure 3.10. As shown there, the layer
N protocol uses the services of layer N-1 to provide a defined set of ser­
vices to layer N+l above it.

The relationship between a layer's service definition and its protocol specification.

Layer N Service

Layer N

Layer N - 1 Service

Many earlier network architectures and network implementations
did not make a clear distinction between the services a layer provides
and the protocols it uses in supplying those services. This meant that if a
protocol needed to be changed, perhaps to enhance network efficiency,
the changes often directly affected users of the network. By clearly sepa­
rating services from protocols, such problems can be minimized. One of
the underlying concepts in the standards making up the OSI architecture
is that the service definition for a layer is always independent of protocol
specifications.

Service Definition Before we examine what is contained in the service definition for a layer,
we must define the following two OSI terms:

48

FIGURE 3.11

PART I: THE DIGITAL NETWORK ARCHITECTURE

• Entity. An entity is an active element within a layer. Two communicating en­
tities within the same layer but in different network nodes are called peer
entities. Entities in the Application layer are called Application entities, enti­
ties in the Presentation layer are called Presentation entities, and so on. A
particular layer provides services to entities running in the layer above.

• Service-Access-Point (SAP). A service-access-point is the point at which
the services of a layer are provided. Each layer provides service-access­
points at which entities in the layer above request the services of that
layer. Each service-access-point has an SAP address, by which the partic­
ular entity that is employing a layer service can be differentiated from all
other entities that might also be able to use that layer service.

Abstract Interfaces

Layer N is the service provider, and layer N+l operating above layer N is
the service requester or service user. The service definition for layer N
defines the services layer N provides to entities running in layer N+l via
a service-access-point into layer N. The set of services provided by layer
N defines the abstract interface between layer N and layer N+l. (See Fig­
ure 3.11.) There is an abstract interface between any two adjacent layers
of the architecture. The service definitions for the various OSI model lay­
ers describe these abstract interfaces. An abstract interface describes the
semantics of the interactions between two architectural layers. An ab­
stract interface does not specify implementation details, nor does it de­
scribe the syntax that must be used to implement the interface. The inter-

A service provider provides a defined set of services to a service requester via a service-access­
point. The set of services provided by layer N defines a abstract interlace between layer N and
layer N + 1.

Layer N

Service
Requester

Service ································ ··
Interface Layer N Service Layer N Service

Service
Provider

[SAP - service-access-point

Layer N Protocol

CHAPTER 3: THE OSI REFERENCE MODEL 49

actions between two adjacent layers are described only in terms of an ab­
stract set of services that layer N provides to layer N+l.

Concrete Interfaces

In addition to abstract interfaces, concrete interfaces are also important
at some points in the architecture, especially in the Physical layer and at
points where application programming interfaces (APis) must be
specified. A concrete interface might describe a point in the architecture
at which a physical connector is used, for example, to connect a physical
device to a transmission medium. A concrete interface might provide
specific electrical and mechanical specifications for the cables and con­
nectors that must be used for devices and cables to properly implement
the architecture. A concrete interface might also define an application
programming interface a programmer must adhere to in writing pro­
grams to request the services of a layer.

Service Primitives

The ISO service definition for a layer documents the services a layer pro­
vides to the layer above in terms of a set of service primitives, each of
which has a defined set of parameters. The service primitives precisely
define the abstract interface between a layer and the layer above it. The
ISO standards define four general types of service primitive:

• Request. Issued by a service requester to request that a particular service
be performed by a service provider and to pass parameters needed to
fully specify the requested service.

· Indication. Issued by the service provider to notify a service requester
that a significant event has occurred.

· Response. Issued by the service requester to acknowledge or complete
some procedure previously invoked by the service provider through an
indication primitive.

• Confirm. Issued by a service provider to notify the service requester of
the results of one or more request primitives the service requester previ­
ously issued.

A particular service typically uses two or more service primitives.
Figure 3.12 shows two time-sequence diagrams that show the sequence
in which service primitives might be issued using the ISO model of ser-

50 PART I: THE DIGITAL NETWORK ARCHITECTURE

FIGURE 3.12 Time-sequence diagrams for a nonconfirmed service and a confirmed service.

Nonconfirmed Service Confirmed Service

vice primitives. In a time-sequence diagram, service primitives are repre­
sented by arrows, and time flows down. The first diagram shows an ex­
ample of a nonconfirmed service, in which the service requester is not in­
formed of the completion of the service request. In the normal case, a
request invoked at one end results in an indication being invoked at the
other. The second service shown in Figure 3.12 is a confirmed service, in
which the service requester is informed by the distant peer entity of the
success or failure of the service request.

Semantics versus Syntax

A set of service primitives and their parameters together define the ab­
stract interface between two adjacent architectural layers. It is important
to realize that an abstract interface defines only the semantics, or mean­
ing, of service primitives. The standard does not specify any particular
method for invoking a particular service, nor does it define how a service
is to be implemented. Implementation details are the responsibility of the
vendors that build networking products. In Part II, when we examine
each of the layers in detail, we describe the ISO service primitives for
each layer and also introduce the way in which Digital defines the ab­
stract interfaces between layers in the DNA architecture.

Service-Data-Units

Some layer services are intended to be used to transmit units of data
from a layer entity in one node to a peer layer entity in another node. A

Protocol
Specifications

FIGURE 3.13

CHAPTER 3: THE OSI REFERENCE MODEL 51

layer does this by issuing a data transfer request service primitive to the
layer below and passing the data unit to be transferred as a parameter of
the request primitive. Data units passed from a service requester to a ser­
vice provider are called service-data-units (SDUs). The name of the SDU
passed from a layer to the layer below begins with the name of the layer
to which the SDU is passed. The SDUs passed to the Physical layer by the
Data Link layer are called physical-service-data-units (PSDUs), the SDUs
passed from the Network layer to the Data Link layer are called data­
/ink-service-data-units (DLSDUs), and so on. The SDU for a particular
layer is an abstract definition. In an actual implementation, the data
making up an SDU can be passed from a layer to the layer below in any
desired way (for example, as parameters in a procedure call) and need
not all be passed at the same time.

Another principle of the OSI model is that when two network nodes are
communicating with one another, an entity in each layer in the first node
communicates with its peer entity in the second node using a protocol.
Figure 3.13 illustrates protocols operating in each of the seven layers of
the OSI model. The ISO standards for each of the OSI model layers docu­
ment one or more protocol specifications for the protocol(s) that control
the operation of that layer. In some layers, ISO standards define more
than one protocol that can be used to provide the services of that layer.
For example, a number of separate protocol specifications describe the
operation of the Network layer. Each Network layer protocol speci­
fication describes a different element of the Network layer's functions.

A protocol specification describing the procedures layer N performs
in supplying its services to layer N+l defines the following:

• the formats of the data units exchanged between peer layer N entities

A separate protocol controls the operation of each of the layers in the OSI model.

Application Layer Application Layer Protocol Application Layer

Presentation Layer
Presentation Layer Protocol

Presentation Layer

Session Layer
Session Layer Protocol

Session Layer

Transport Layer
Transport Layer Protocol

Transport Layer

Network Layer
Network Layer Protocol

Network Layer

Data Link Layer Data Link Layer Protocol
Data Link Layer

Physical Layer
Physical Layer Protocol

....:. Physical Layer

52 PART I: THE DIGITAL NETWORK ARCHITECTURE

• the interactions that occur between peer layer N entities in exchanging
data units

• the way in which layer N and layer N+l interact in exchanging the ser­
vice primitives defined in the service definition for layer N

• the way in which the layer N and layer N-1 interact in exchanging the
service primitives defined in the service definition for layer N-1

Protocol-Data-Units

Data units sent from a layer entity in one node to a peer layer entity in
another node are called protocol-data-units (PDUs). In many cases, a
layer constructs a protocol-data-unit from the service-data-unit passed
down from the layer above simply by adding protocol-control-informa­
tion (PCI) to it. (See Figure 3.14.) Some of the information making up
the protocol information may be passed down from layer N+l to layer N

FIGURE 3.14 A layer accepts a service-data-unit from the layer above and adds protocol-control-information
to it to create a protocol-data-unit, which it sends to its peer entity.

Layer N

NPDU

SAP - service-access-point
SDU - service-data-unit
PDU - protocol-data-unit
PCI - protocol-control-Information

N+ 1 POU

NPDU

NPDU

CHAPTER 3: THE OSI REFERENCE MODEL 53

in the form of service primitive parameters. The PCI is used to control
the peer-to-peer protocol operating in a particular layer. Protocol­
control-information is carried in the form of a header (and, in the case of
the Data Link layer, also a trailer) that are added to the SDU. The PDUs
appear to flow from a layer N entity in the sending node to a layer N en­
tity in the receiving node using the layer N protocol. From this perspec­
tive, functions performed in layer N-1 and below are hidden from layer
N.

A layer N entity can also itself generate PDUs apart from the PDUs
it creates from the SDUs it receives from layer N+l. Such generated
PDUs are typically transmitted between peer layer N entities to control
the operation of the layer N protocol. The layer N+l service requester is
not directly aware of the existence of these PDUs, although the service
requester might be aware of effects caused by them.

Interface-Data-Units

The OSI model precisely defines the way in which the SDU is actually
passed across the interface between layer N+l and layer Nin the form
of interface data and interface-control-information (ICI). A set of inter­
face data plus its associated ICI makes up an interface-data-unit (IDU).
An interface-data-unit is defined as the data unit passed across the ab­
stract interface at the service-access-point in a single interaction. Figure
3.15 shows how a single service-data-unit might be passed across the in­
terface in three pieces, each of which makes up a single interface-data­
unit. Layer N accepts the interface-data-units and extracts the interface­
control-information and the interface data from them to create the
protocol-control-information and the service-data-unit. Once all the in­
terface-data-units have been passed across the interface, layer N uses
the protocol-control-information and the service-data-unit to construct
a protocol-data-unit for transmission to the peer entity. The service­
data-unit can be passed across the interface in the form of multiple in­
terface-data-units in the sending node, the receiving node, or both. The
number of interface-data-units need not be the same in the sending and
receiving nodes.

Although ISO standards define the way in which information is
passed across the interface between layer N+l and layer N, the reader
must realize that ISO service definitions define abstract interfaces, and
they are not meant to serve as implementation models. An abstract inter­
face can be implemented in any desired way, and it may not be possible
in an actual implementation to identify the data units described above.

54

FIGURE 3.15

PART I: THE DIGITAL NETWORK ARCHITECTURE

Interface data together with interface-control-information (ICI) make up an interface-data-unit
(IOU), which is defined as the data unit that is transferred across the abstract interlace in a
single interaction. In this example, the service-data-unit is passed across the interlace using
three interactions in the form of three separate IDUs.

Layer N

IOU IOU
,-----A-----.. ,-----A-----..

l1c1l1nterface Data l l1c1l1nterface Data l

~
PCI

NSDU :

ICI - intertace-control-intormation
IOU - interface-data-unit
SAP - service-access-point
SOU - service-data-unit
POU - protocol-data-unit
PCI - protocol-controHnformation

Segmentation and Concatenation

A layer supporting a segmentation function may slice up an SDU into
multiple segments. It then adds PCI to each segment to create multiple
PDUs that it transmits separately. This is shown in Figure 3.16. A layer
supporting a concatenation function may group multiple PDUs into a
single block that it transmits as a single unit between peer layer entities.
The layer N+l service requester is not aware of the operation of the seg­
mentation or concatenation functions when they are used. Note that the
segmentation and blocking functions are completely separate from the
notion of the SDU being possibly passed across the layer interface in
multiple interface-data-units. The layer N+l service requester is not
aware that the segmentation or blocking functions are taking place and

CHAPTER 3: THE OSI REFERENCE MODEL 55

FIGURE 3.16 A layer protocol may support a segmentation capability that allows ii to break a service-data­
unil into pieces, each of which ii sends in the form of a separate protocol-data-unit.

Layer N

SAP - seivice-access-point
SOU - service-data-unit
POU · protocol-<lata-unit
PCI - protocol-controHnformation

N+ 1 PDU

NPDU

perceives only the service-data-unit itself, which might be passed across
the interface in multiple interface-data-units.

Informal Protocol-Data-Unit Names

Certain protocol-data-units handled by the lower layers have come to
have informal names that are often used in networking literature. The
data-link-protocol-data-units (DLPDUs) passed between peer Data Link
layer entities are often called frames. The network-protocol-data-units
(NPDUs) passed between Network layer entities are typically called
packets. These informal names predate the OSI model and are often not
used consistently. To avoid confusion, the committees responsible for
creating the OSI model have assigned the new formal names to the data
units. However, some networking experts find exclusive use of the for­
mal names for the data units a bit cumbersome:

This language is often known as internationalbureaucratspeak. We will
avoid it where possible in favor of more familiar nomenclature actually used
by working scientists and engineers. [1]

56 PART I: THE DIGITAL NETWORK ARCHITECTURE

The engineers who invented the terms feel less hostile toward them.

NETWORK ARCHITECT

OSI terminology is weird and wonderful. ISO doesn't use the same terms peo­
ple in the United States grew up with in computer networking. This is partly be­
cause some of the informal terms don't translate well-some of them are not

neutral in other languages. So in order to be international, we invented these
new terms that have now taken on important meanings.

We will adopt a middle ground and use the internationalbureaucrat­
speak where necessary, but we will avoid it where using the more infor­
mal terms will not confuse matters. For example, in the chapters dis­
cussing the Network layer, we will typically use the informal term packet
instead of NPDU. But in a world that is becoming increasingly oriented
to OSI, it is necessary that we all become familiar with its "weird and
wonderful" terminology.

Conformance to Standards

Unlike service-data-units, which can be physically implemented in any de­
sired way, protocol-data-units must be formatted exactly as they are
defined in the ISO protocol specification. They are the basis for successful
communication between network machines. As we have seen, the ISO ser­
vice definition for a particular layer defines the services that a layer must
provide to the layer above it. However, the service definition does not
provide implementation details, and the interfaces between the layers
within an actual device or software system are often fuzzy. They are fuzzy
sometimes because of past history and sometimes to satisfy specific imple­
mentation objectives, such as achieving good performance, conforming to
packaging constraints, and accommodating non-OSI protocols.

Conformance to ISO standards is not based on conformance to the
abstract interfaces described in service definitions; it is based on confor­
mance to the protocol specification and to any concrete interfaces the
standards may define. The protocol specification defining the procedures
for a given layer must be adhered to precisely if two nodes are to inter­
operate properly. And the data units flowing between machines at a
given layer must conform exactly, bit by bit, to the protocol-data-unit
formats defined in the standard. While service-data-units are abstract,
protocol-data-units are real. By employing appropriate test equipment,

Connection-Mode
versus
Connectionless­
Mode Service

CHAPTER 3: THE OSI REFERENCE MODEL 57

we can actually see the PDUs flowing across the wires or other physical
circuits that implement the network, and we can examine the various
headers and see exactly how the bits are set. The protocol specification
for a layer precisely defines each type of PDU peer entities in that layer
can exchange and specifies the purpose of each bit in the headers. These
bits must be set precisely as the protocol specification describes for two
computers to communicate using an OSI protocol. Any concrete inter­
faces defined in a standard, such as the specification of signal characteris­
tics or for a plug or a connector, must also be adhered to exactly; other­
wise, a device attempting to implement the standards will not be
plug-compatible with other devices conforming to the standards.

The service definitions and protocol specifications for all layers above the
Physical layer of the OSI model define both a connection-mode and a
connectionless-mode style of operation. A given layer may provide a
connection-mode service, a connectionless-mode service, or both to the
layer above it. A connection-mode service provides a service similar to
that provided by the telephone system. It consists of three distinct
phases:

1. connection establishment (we dial a call)

2. data transfer (we talk over the connection)

3. connection release (we hang up the phone)

A connectionless-mode service works more like the postal system.
The service accepts each data unit for transmission and tries its best to
deliver it, just as the postal system accepts addressed letters and attempts
to deliver them to their intended recipients.

The OSI model, as described in ISO 7498, originally defined only a
connection-mode style of operation. At any given layer, communication
could originally take place only after a connection was established be­
tween two peer entities in a given layer. Soon after ISO 7498 was first
published, it was realized that this dependence on the establishment of a
connection at each layer limited the power and scope of the reference
model by specifically excluding entire classes of technology that are in­
herently connectionless in nature. An ISO committee then developed an
amendment to ISO 7498 specifying an alternative connectionless-mode
style of operation for each layer above the Physical layer. The service
definition for each layer now defines connection-mode services and con­
nectionless-mode services. Protocol specifications are also provided that

58 PART I: THE DIGITAL NETWORK ARCHITECTURE

describe protocols to provide each type of service. Documentation of
connectionless-mode services and protocols has often been added in the
form of amendments to the original standards. Let us look at the charac­
teristics of connection-mode and connectionless-mode operation.

Connection-Mode Operation

With a connection-mode style of operation, communication takes place
in the three phases described earlier: connection establishment, data
transfer, and connection release. There must be a three-party agreement
between the two communicating partners and the provider of the service
before data transfer can take place. With a connection-mode service,
data transfer always involves a pair of peer layer entities. If a layer entity
wishes to transmit a PDU to two or more other peer layer entities, it
must establish a separate connection with each, and it must transmit the
PDU to each peer entity in a separate operation. With a connection­
mode service, the full address of the recipient need be specified only
when the connection is established. Enough information must be pro­
vided with each data unit transferred only to identify the connection
with which it is associated. A connection-mode service is often described
as providing reliable and sequential data transfer. As long as the connec­
tion remains established, the sender can generally assume each data unit
sent is successfully received and that the data units are received in the
same order sent. If something goes wrong, the connection is either reset
or released, and all parties are informed of the reset or release. The con­
nection can be reset or released at any time by either of the communicat­
ing parties or by the service provider. This is an inherent property of a
connection-mode service because any of the three parties can indepen­
dently fail at any time.

The mechanisms used in various layers to supply a connection-mode
service must perform two functions related to error correction: sequence
checking and message acknowledgement. If layer N is supplying a con­
nection-mode service to layer N+1, these two functions must be per­
formed either by the layer N protocol itself or by at least one of the pro­
tocols operating below layer N. To perform the sequence checking
function, PDUs being sent are assigned sequence numbers. As PDUs are
received, the sequence number of each incoming PDU is checked to en­
sure that PDUs have arrived in the sequence in which they were sent and
that none have been sent twice. Periodically, the receiving layer entity
sends an acknowledgement so the sending entity knows the PDUs have
arrived successfully. If problems occur and the receiving entity informs

CHAPTER 3: THE OSI REFERENCE MODEL 59

the sending entity that PDUs were not successfully received, the sending
entity retransmits them.

Connectionless-Mode Operation

With a connectionless-mode style of operation, communication takes
place in a single phase. The service requester hands an SDU to the service
provider and gives the service provider the full address of the destination
to which the SDU is to be sent. The service provider then packages the
SDU in a PDU and attempts to deliver the PDU to its destination. Each
PDU must contain the full address of its intended recipient and is han­
dled independently from all other PDUs. A connectionless-mode service
may incur less protocol overhead than a connection-mode service, espe­
cially when small amounts of data must be transferred. The delay in­
volved in sending small amounts of data is also often less with a connec­
tionless-mode service because no time is spent in setting up a connection
before the data are sent. With a connectionless-mode service, there is no
need to establish a logical connection between the sending and the re­
ceiving entities, and each PDU is sent and processed independently of
any other PDU. No sequence checking is done to ensure that data units
are received in the same sequence in which they were sent, and the re­
ceiver sends no acknowledgement that it has received a PDU. No flow
control or error recovery is provided as part of a connectionless-mode
service. With a connectionless-mode service, PDUs can be sent to one
destination or to several destinations using the same service request.
When a connectionless-mode service is used at a given layer, any flow
control and error recovery services required must be provided either in a
higher layer or by the communicating application programs.

A connectionless-mode service is typically described as providing a
best-efforts delivery service. It is also sometimes called a datagram ser­
vice. The sender does not know for sure a data unit being sent will actu­
ally be received by its intended recipient. A connectionless-mode service
is not a reliable service. It is important to point out here that the term re­
liable used in this context is perhaps not the best term that could be used.
Reliable has a "good" connotation that does not apply here. For exam­
ple, a connection-mode service, although considered reliable, may pro­
vide a very poor service if frequent failures cause the connection to be
constantly broken, thus requiring new connections to be established to
continue data transfer. On the other hand, a connectionless service may
deliver 999,999 data units out of every 1,000,000 sent. However, we
cannot consider it reliable because we don't know for sure.

60 PART I: THE DIGITAL NETWORK ARCHITECTURE

NETWORK ARCHITECT

Take this thing of reliability and guarantee of delivery. A connection-oriented

person would say: "A connectionless service does not provide reliable delivery."

But a connection-oriented service, even though it is described as reliable, doesn't

provide reliable delivery either. When they refer to the service as reliable, what

they really mean is: "If we don't give it to you, we will usually tell you we're not

giving it to you." I say "usually" here because even the failure detection can

never be 100 percent guaranteed. It is also interesting to note that with a "reli­

able" connection-mode service, the breaking of connections also voids the deliv­

ery and sequencing guarantees, thus still requiring recovery procedures in the

higher layers. We need new terminology. Instead of using the term "reliable,"

perhaps we should start saying "positive notification of failure" or something

like that.

Connectionless-Mode versus Connection-Mode Applications

The OSI model makes a distinction between connectionless-mode appli­
cations and connection-mode applications. A connectionless-mode ap­
plication is one that simply sends data units into the network at the level
of the Application layer and does not need the network to tell it whether
the data unit was successfully received. Such an application may not care
whether the data unit was received, or it might implement its own proce­
dures for implementing end-to-end controls.

A connection-mode application is one that needs to establish a con­
nection with another application and to have the network itself perform
the required end-to-end controls. Most of today's applications that use
the facilities of a computer network are connection-mode applications
that want the network to accept the burden of providing a connection­
mode, reliable data transfer service. However, there are some applica­
tions that require only a best-efforts datagram service, all the way up to
the Application layer, and these may begin to increase in number over
the years.

A network might implement a connectionless service at each layer to
support connectionless-mode applications and a connection-mode ser­
vice at each layer to support connection-mode applications. However,
things often are not that straightforward. It is quite possible to provide a
connection-mode service at one layer using a connectionless-mode ser­
vice at the layer below. It is also possible to provide a connectionless­
mode service at a particular layer by using a connection-mode service at

FIGURE 3.17

CHAPTER 3: THE OSI REFERENCE MODEL 61

the layer below. Consistent with the definitions of each of the layers, the
combinations of connectionless-mode and connection-mode service
shown in Figure 3 .17 are possible within the context of the OSI model.
The Physical layer provides a service that cannot be categorized as either
a connectionless-mode or a connection-mode service. The Data Link
layer can provide either a connection-mode or a connectionless-mode
service. Likewise, the Network layer can provide either a connectionless­
mode or a connection-mode service on top of either form of Data Link
service. And the Transport layer can provide either a connectionless­
mode or a connection-mode Transport service on top of either form of
Network service. Above the Transport layer, conversions are not al­
lowed. The Session, Presentation, and Application layers must together
provide a connectionless-mode service for connectionless-mode applica­
tions or a connection-mode service for connection-mode applications.

At the level of the Data Link layer, there is generally little contro­
versy concerning whether a connection-mode or a connectionless-mode
style of operation should be supported. Analyzing such factors as trans­
mission speed, average error rate, and cost determines whether a data
link protocol should provide a connection-mode service or a connection­
less-mode service. In a wide-area networking environment, speed and
throughput typically are relatively low and the cost and the error rate are
relatively high. So most wide-area networking data link protocols pro­
vide a reliable data transfer service. In a local area networking environ-

A variety of combinations of connectionless-mode and connection-mode services are possible
in the context of the OSI model.

Connectionless-Mode
Service

Application

Data Link

Connection-Mode
Service

Application

Data Link

62

Conclusion

Reference

PART I: THE DIGITAL NETWORK ARCHITECTURE

ment, transmission speed is very high, and the error rate and the cost are
typically low. Therefore, a connectionless-mode style of operation is
more appropriate. The broadcast nature of the local area network trans­
mission medium also favors a connectionless approach.

The protocols operating in the Network layer generally are designed
to operate using both connection-mode and connectionless-mode Data
Link services, depending on the types of data link employed. At the level
of the Transport layer, there is also little controversy. The majority of
today's network applications require a reliable Transport service, and lit­
tle use is made of a connectionless-mode Transport service. It is possible,
however, that this may change in the future as connectionless-mode ap­
plications grow in number.

The Network Layer Controversy

Things are not as straightforward for the Network layer as they are for
the other layers. There is great controversy in networking circles regard­
ing whether the Network layer should provide a connection-mode ser­
vice or whether a connectionless-mode Network service is sufficient.
Digital is in the connectionless-mode camp and says only a datagram ser­
vice is required in the Network layer, although the DNA Phase V archi­
tecture provides a connection-mode Network service for those requiring
it. Many of the operators of public data networks, on the other hand,
want to provide a connection-mode Network service. IBM also tends to
be in the connection-mode camp with its SNA architecture. We will have
more to say about the differences between connection-mode and connec­
tionless-mode services in Part II, when we examine each of the OSI
model layers in detail.

The DNA Phase V architecture is an implementation of the OSI architec­
ture, and the ISO standards developed for the OSI architecture play im­
portant roles in the architecture. Chapter 4 introduces DNA Phase V and
examines the way in which the DNA architecture has embraced ISO
standards for the seven layers of the OSI model.

1. Andrew S. Tanenbaum, Computer Networks-Second Edition, Pren­
tice Hall, Englewood Cliffs, NJ, 1988.

CHAPTER 4

The Digital

Network Architecture

This chapter discusses Digital's approach to computer networking by in­
troducing the Digital Network Architecture (DNA). We will see that a
primary thrust of the latest version of DNA is to incorporate into the
DNA architecture the ISO standards for the OSI model introduced in
Chapter 3.

DNA and DECnet Many users of Digital equipment and software are familiar with the
term DECnet, which is used in the names of Digital's networking prod­
ucts. We will begin our examination of the Digital Network Architec­
ture by discussing the relationship between DECnet and DNA.

The Digital Network Architecture consists of an architectural
overview document, a set of specifications for each layer, and descrip­
tions of each protocol that operates within each layer. These together
constitute DNA. DNA, as a network architecture, is essentially a set of
paper specifications, not a hardware or software product. All the com­
ponents of DNA described in this book, while controlled by Digital and
copyrighted, are available to the public. It is not necessary to have a li­
cense with Digital to purchase the detailed functional specifications of
DNA. Be forewarned, however, that the detailed specifications of DNA
make up a stack of manuals about three feet high, and are not for the
faint of heart.

DECnet refers to a specific set of products that implement the Digi­
tal Network Architecture. The DECnet product line consists of hard­
ware products, software products, and documentation for those prod­
ucts. Examples of DECnet hardware products are routers that relay
messages from node to node through the network and host computing
systems. An example of a DECnet software product might be the DEC-

63

64 PART I: THE DIGITAL NETWORK ARCHITECTURE

net networking software that runs in a host computer. The DECnet
products, unlike the architecture, are licensed products. They are paid
for, and they have support policies associated with them, just like other
Digital products.

DNA Architectural The specifications that make up the Digital Network Architecture pre­
Specificalions cisely define the architecture. A list of the most important DNA Phase V

architectural specifications is included in Appendix B. The architectural
specifications are designed to guide Digital engineers in developing DEC­
net hardware and software products so they all adhere to the same set of
standards, thus allowing the products to be easily interconnected to form
networks. They can also be used by other vendors in creating hardware
and software products that can participate in a DECnet network on an
equal basis with Digital products. The various types of information con­
tained in the DNA architectural specifications are listed in Box 4.1.

Architectural Digital has been involved in the development of network architectures
Design Principles since the early 1970s. Since then, Digital network architects have devel­

oped a number of design principles that have been refined as architec­
tures have evolved. Some of the important design P\inciples that guided
the development of DNA are listed below: ·

• Self-Stabilization. No matter what sort of failure occurs, algorithms and
protocols should be constructed so the system always attains a correct,
stable state when the failure is corrected or the failing component is re­
moved from the network. The best example of this principle is found in
the routing algorithm. The Phase V routing algorithm stabilizes in finite
time to "good routes," provided no continuous topological changes
occur.

• No Single Point of Failure. Algorithms and protocols should be designed,
where feasible, so there will be no single component whose failure will
cause the entire network to fail. It should be possible to add redundant
equipment and software to the network and expect that higher reliability
and availability will result. For example, in ro_l!ting, algorithms will al­
ways find a path if a physical path exists, and in naming, replication of
directories allows for continued operation even if one or more name
servers fail.

· Locality. Individual parts of the system should self-stabilize even if con­
tinuous failures are occurring that affect the system on a global basis.

BOX 4.1

DNA Architectural
Specifications

CHAPTER 4: THE DIGITAL NETWORK ARCHITECTURE

Protocols

A protocol defines the way a layer entity in one node communicates
with a peer entity in another node. A protocol defines the formats of
the data units handled by a particular layer and the way in which infor­
mation is exchanged among computers in the network in that layer.
Precise specification of protocols and accurate implementations of
those protocols allow diverse network machines to communicate suc­
cessfully with one another across the network. The specifications for
each architectural layer describe the protocols that apply to that layer.

Abstract Service Interfaces

An abstract service interface defines the way a layer in a node com­
municates with the layer above it in the same node. Descriptions of
abstract service interface specifications constitute one of the fundamen­
tal characteristics of a layered architecture. Service interface specifica­
tions allow the complexities of a lower layer to be hidden from the lay­
ers above it. ISO standards define service interfaces in terms of abstract
service primitives and parameters; DNA architectural specifications
define abstract service interfaces in terms of a set of function and proce­
dure declarations written in the Modula 2+ programming language.
The function and procedure declarations for an abstract service inter­
face precisely define the services a layer can request of the layer below
it. Digital defines DNA service interfaces in terms of programming lan­
guage functions and procedures rather than English language state­
ments because a formal specification language allows a service interface
to be defined with precision and without ambiguity. The use of a partic­
ular programming language to define a service interface, however,
should not be taken to imply that implementations of the architecture
must use this language or must even be constrained to using procedure
calls. The architecture can be implemented in any desired way, for
example, using hardware or software interrupts or mechanisms operat­
ing in integrated circuits instead of procedure calls.

Concrete Interfaces

In addition to abstract service interfaces, which are defined for all
pairs of adjacent layers in the architecture, the architecture also defines
concrete interfaces at key points. A concrete interface is defined at any
point where it is necessary to describe the physical characteristics of a
plug or a connector and the characteristics of the signals flowing over
the interface. A concrete interface might also describe an application

65

66

BOX 4.1

continued

PART I: THE DIGITAL NETWORK ARCHITECTURE

programming interface (API) that defines how an application program
requests network services.

Configuration Mechanisms

Configuration mechanisms are the means by which the network auto­
matically adapts to a changing environment. These include mecha­
nisms that allow the network to modify its operation in response to
changing network topologies and to control adaptive algorithms to
improve the performance of the network. For example, when a new
computing system is connected to the network, the architecture
specifies the mechanisms used to allow that system to become, auto­
matically, an active part of the network.

Network Management Mechanisms

Network management mechanisms describe the means by which a dis­
tributed network can be controlled and monitored. In Digital's view,
network management constitutes all those elements of network opera­
tion that cannot be done automatically by the underlying network pro­
tocols. It also concerns the gathering of information for offline analysis
and processing to measure the performance, reliability, and availability
of the network.

Again, the best example of this principle can be found in routing. The
network should stabilize locally to good routes even if there are continu­
ous topology changes occurring elsewhere in the network.

• Minimal Dependence on Network Management. The algorithms and
protocols should depend as little as possible on explicit human network
management actions. The system should be self-managing as much as
possible, and network management should concentrate on the setting of
policy rather than on day-to-day operation. Algorithms and protocols
should be designed so components can be plugged into the network and
become part of it with little or no human intervention.

• Invariants in System Operation. The invariants of the system must be
stated so the system is never permitted to enter an incorrect state.

• Determinism. The state of the system must be determined only by the
characteristics of the system itself and must not depend on history. The
best example of this is in routing. The routes calculated must be a func-

The Evolution of
DNA

CHAPTER 4: THE DIGITAL NETWORK ARCHITECTURE 67

tion only of the network topology, not a function of past events that have
occurred. This makes the operation of the network entirely predictable.

• Scalability. Algorithms and protocols should be designed so they scale
well to support very large networks.

• Interoperability. Algorithms and protocols should be designed so they fa­
cilitate the interconnection of a variety of different types of network
equipment.

• No Cliffs. Algorithms and protocols should be designed so when param­
eters exceed their design limits, no catastrophic failure occurs as soon as
the limit is exceeded. The effect of adding one to anything should be to
make things slightly worse than they were before, but there should be no
point where adding one will cause the entire network to fail.

• Configurable Redundancy. It should be possible to configure a range of net­
work topologies to make tradeoffs among cost, performance, and availabil­
ity. For example, it should be possible to configure a network so a critical ap­
plication can continue to operate despite the failure of a node or a data link.

Before we describe the actual architectural layers constituting the current
version of the Digital Network Architecture, we w1ll discuss how DNA
has evolved over the years. We will then see how the latest version of
DNA has incorporated ISO standards into the architecture. The develop­
ment of DNA began in the early 1970s, when most of the major com­
puter vendors were beginning to discover the value of computer commu­
nication across networks. Digital published its first DNA specification at
about the same time IBM announced its Systems Network Architecture
(SNA). Since then, DNA has evolved through a series of five phases.

DNA Phase I

Phase I of DNA was introduced in 1974. DECnet implementations of
Phase I of DNA included support only for PDP-11 computing systems
running the RSX-11 operating system. These implementations provided
the ability to communicate in a standardized manner over point-to-point
links between pairs of processors.

DNA Phase II

DNA Phase II was introduced in 1976. A major enhancement over Phase
I was that the architects guaranteed they would not make incompatible

68 PART I: THE DIGITAL NETWORK ARCHITECTURE

changes from one version to the next. The Phase II architecture was also
defined with sufficient precision that it was possible to have multiple, dif­
ferent implementations of the architecture that could interoperate with
one another. DECnet implementations of Phase II of DNA were imple­
mented for many of the Digital operating systems commonly used in that
era, such as RSTS, TOPS-10, and TOPS-20. Phase II still provided only
for point-to-point communication between pairs of processors; no inter­
mediate node routing capabilities were included.

DNA Phase Ill

DNA Phase III was introduced in 1980 and provided the user with the
ability to construct networks of up to 255 processors in any desired
configuration. To handle such networks, this phase introduced an adap­
tive routing capability that allowed the computers themselves to deter­
mine the location of each node and to relay messages from one computer
to any other computer, possibly through a number of intermediate
nodes. An architecture for network management was also introduced in
Phase III, and Digital developed gateways to other types of network,
such those conforming to IBM's SNA standards and CCITT Recommen­
dation X.25. Recommendation X.25 defines the means by which a com­
puter is attached to a packet-switched data network. (The various roles
that X.25 plays in the context of DNA are introduced in Chapters 7 and
8 and are discussed in detail in Chapter 18.)

DNA Phase IV

Phase IV of DNA was introduced in 1982. Phase IV defined a 16-bit net­
work address that allowed users to construct networks theoretically con­
taining up to about 64,000 nodes. However, network management con­
straints limited the practical size of networks to networks somewhat
smaller than this because it is difficult to use the 16-bit address space that
densely. DNA Phase IV added support for high-speed communication
over short distances by integrating into the architecture support for the
Ethernet form of local area network (developed jointly by Digital, Intel,
and Xerox). The support for local area networks made it easy to connect
large numbers of devices to the network. Phase IV also expanded the
adaptive routing capability to include support for hierarchical routing.
Hierarchical routing is a technique that allows adaptive routing to oper­
ate efficiently in large networks by dividing the network into subdivi-

FIGURE 4.1

CHAPTER 4: THE DIGITAL NETWORK ARCHITECTURE 69

sions called areas. Hierarchical routing is discussed in detail in Chapters
7 and 9.

The layers of the Phase IV architecture have much similarity to the
layers of the OSI model, especially at the lower levels of the architecture.
However, at the time DNA Phase IV was introduced, ISO standards for
many of the protocols had not yet emerged; therefore, many of the DNA
Phase IV protocols remained Digital's own. Figure 4.1 illustrates the
functional layers of the DNA Phase IV architecture, and Box 4.2 con­
tains a brief description of each layer.

DNA Phase V

DNA Phase V, the subject of this book, was first introduced in 1987, and
the first DECnet Phase V products to implement the architecture were
brought to the market by Digital in 1991. The development of DNA
Phase V took place over a number of years and was guided by the fol­
lowing five major objectives:

• support for very large networks (1,000,000+ nodes)

• integration of ISO standards into the architecture

• definition of a new network management model

• compatibility with DNA Phase IV

• equal or better performance than Phase IV implementations

The following sections discuss each of these five major objectives.
Support for Very Large Networks DNA Phase V was specifically de­

signed to support very large networks. The theoretical maximum size of

DNA Phase IV Functional layers.

Network User

Network Management

Network Application

Session Control

End Communication

Routing

Data Link

Physical Link

70

BOX4.2

DNA Phase IV
Functional Layers

PART I: THE DIGITAL NETWORK ARCHITECTURE

The Physical Link Layer

The DNA Phase IV Physical Link layer corresponds exactly with the
Physical layer of the OSI model. It is concerned with the transmission
of bits across a physical medium, such as a telephone connection or a
local area network cable. The Phase IV architecture uses international
standards for describing the operation of this layer.

The Data Link Layer

The Phase IV Data Link layer corresponds exactly to the Data Link
layer of the OSI model. The Data Link layer supports the proprietary
Digital Data Communication Message Protocol (DDCMP) for wide
area networking and the Ethernet Specification for local area net­
working.

The Routing Layer

The Routing layer is analogous to the Network layer in the OSI
model. The Routing layer uses the building blocks of nodes and links
implemented by the Physical and Data Link layers to implement a net­
work of any desired configuration. The Routing layer allows a node to
send data units to any other node in the network, independently of
how many intermediate nodes the data units have to pass through to
arrive at their destinations. The Phase IV Network layer provides a
connectionless-mode datagram service. The addressing structure of
DNA Phase IV allows for a theoretical maximum of about 64,000
nodes.

The End Communication Layer

There is a close correspondence between the functions performed by
the End Communication layer and the functions performed by the OSI
Transport layer. A major purpose of the End Communication layer is
to provide for reliable communication between programs using the
underlying datagram Routing layer service. The Data Link layer itself

a network conforming to the DNA Phase V architecture is essentially un­
limited; implementation considerations rather than architectural con­
straints limit the size of DECnet Phase V networks that can be built. The
initial products supporting Phase V make it possible to build networks of

BOX 4.2

continued

CHAPTER 4: THE DIGITAL NETWORK ARCHITECTURE

may in some cases provide an essentially error-free data communica­
tion service between a pair of network nodes. However, since the
Routing layer provides a connectionless-mode datagram service, the
End Communication layer must ensure packets are placed into their
proper sequence, duplicate packets are eliminated, and retransmission
is requested when packets are lost.

The Session Control Layer

The Session Control layer performs some of the functions specified for
the three uppermost layers of the OSI model: the Session, Presentation,
and Application layers. It deals with such things as assigning names to
objects in the computing environment, controlling access to those ob­
jects, and requesting communication services.

Higher Layers

Above the Session Control layer in the Phase IV architecture are three
more layers that each directly access Session Control layer services. All
of these layers operate above the operating system interface and are
perceived by the operating system as network applications:

The Network Application Layer. The Network Application layer
implements commonly used network facilities, such as transferring
files from one computing system to another, providing facilities for
logging onto a remote computing system, and electronic mail.

The Network Management Layer. The Network Management layer
uses the facilities of the network to exchange messages concerning the
status of network nodes, communication links, and other network
components. This layer implements a variety of user interfaces net­
work managers can use to monitor the status of the network and to
gather statistics on network operation.

Network User Layer. The Network User layer represents the actual
users of the network. These are the people and the application pro­
grams that use the network to perform useful work.

71

up to a million or so nodes. In addition, internetworking capabilities are
defined that allow a DECnet Phase V network to be interconnected with
other DECnet networks and with any other network implementing the
ISO standards for the OSI model, leading ultimately to a single global

72 PART I: THE DIGITAL NETWORK ARCHITECTURE

data network. The very large OSI network addresses Phase V uses {up to
20 octets· compared to 16 bits in Phase IV) allow for addresses on all
networks to be globally unique. When networks begin to be intercon­
nected, the network addresses of the nodes will remain unique in a man­
ner similar to global telephone numbers. To support such large net­
works, the routing algorithm that handles the relaying of messages from
a source node to a destination node has been improved over that in
Phase IV so it performs well in a very large network.

Integration of ISO Standards ISO standards for the OSI architecture
have been integrated into DNA to allow computers from any vendor
supporting the ISO standards to participate as a full partner in a DECnet
Phase V network. The approach Digital has taken with respect to the in­
tegration of ISO standards and protocols is twofold:

1. Where an ISO protocol exists that duplicates functions previously
performed by a Digital protocol, Digital has replaced its own proto­
col with the appropriate ISO protocol. Where a Digital protocol has
been replaced, Digital has also retained support for its own protocol
for the purposes of compatibility with Phase IV.

2. Where there is an ISO protocol that performs a similar function as a
DNA protocol, but where the Digital protocol has some important
advantage, such as higher performance, or a greater range of func­
tions, DNA supports both the ISO and the DNA protocols, allowing
the user to employ either one. Automatic network mechanisms select
the required protocols as needed.

Digital's stated motivation for integrating the ISO standards directly
into the DNA architecture is to provide support for multivendor net­
works. In Digital's view, the market for networking products has been
constrained by the ability to interconnect equipment from various ven­
dors. Digital believes that by supporting multi-vendor connectivity, it
will greatly expand its own market for networking products.

• ISO standards and other documentation concerning the OSI model typically
refer to a collection of 8 bits as an octet. Much of the DNA documentation also
uses the term octet for a collection of 8 bits. Even though the term byte is today
more common than octet, we will adopt the OSI terminology and use the term
octet to refer to an arbitrary collection of 8 bits, such as when it is used to
describe a networking protocol. But we will continue to use the term byte when
referring to a collection of 8 bits in a storage system.

CHAPTER 4: THE DIGITAL NETWORK ARCHITECTURE 73

NETWORK ARCHITECT

The only company that can bet its business on Digital's proprietary network

architecture is Digital. So if you buy into this vision of very large networks, then,

by definition, these large networks must be based on standards. The standards

must be extremely good technically to solve these kinds of problems because they

are very difficult problems to solve. The essential problem facing the industry, and

the real challenge, is that we must have extremely well thought out standards that

everyone agrees to and implements consistently. Digital's approach says that ISO

standards should be an integral part of the network. This means that wherever

there is a place ISO standards should play a role, then that is the place they get

slotted in. In Digital's view, ISO standards are not a means just for interoperabil­

ity between DECnet networks and anyone else's network. Digital's goal is one of

total interoperability with anyone who chooses to implement the ISO standards.

We believe the computer industry cannot afford to have artificial bound­

aries between networks conforming to entirely different architectures-such as

connecting an OSI network to one conforming to IBM's SNA-because this

forces you into a gateway model. With gateways, you get the Union of the lia­

bilities and the Intersection of the capabilities of the two architectures being

connected. If you are forced to use gateways to interconnect a group of incom­

patible networks, you will be too restricted. If you think of it strictly from a

user-to-computer view, then there are all sorts of translation mechanisms you

can get away with that really do not cost you very much. But in a computer-to­

computer environment, with very large numbers of nodes, these translation

mechanisms would very seriously limit the kinds of networks you could build.

New Network Management Model DNA Phase V defines a new network
management model that allows for either centralized or decentralized
management of both small and large networks. The new network man­
agement model promotes the distribution of function among various
processors in the network but allows users to employ a single central
focus for network management if they choose to do so. The network
management model allows for continuous network operation. It is never
necessary to shut a DECnet network down to perform network manage­
ment functions or to reconfigure portions of the network. The network
management model was strongly influenced by early drafts of the ISO
standards for network management, and Digital's work has also
influenced the development of those standards. Digital feels it will be rel­
atively simple to provide support of OSI network management when it
becomes accepted as an international standard. The characteristics of the

74 PART I: THE DIGITAL NETWORK ARCHITECTURE

DNA Phase V network management model are introduced later in this
chapter and are examined in detail in Chapter 17.

Compatibility with Phase IV A network that conforms to DNA Phase V
is fully capable of supporting equipment and software conforming to
Phase IV of the architecture in order to provide an orderly transition
from a Phase IV environment to a Phase V environment. A major reason
for providing compatibility with Phase IV is that networks behave in
many ways like living organisms. It is not possible with a large computer
network simply to shut it down to install a new release of the networking
software on all the computers. The transition to new software must be
made in an orderly manner on one portion of the network at a time.
During the transition period it must be possible for the network to con­
tinue in operation with some nodes running Phase V software and others
continuing to run in a Phase IV environment. Another reason for provid­
ing backward compatibility is that many hardware and software imple­
mentations of DNA Phase V are more sophisticated and more complex
and require more resources than those for Phase IV. Certain older imple­
mentations of DNA, running on older hardware, will not be converted
to Phase V. To allow Digital customers to continue using such hardware,
it is necessary to support those Phase IV implementations on a continu­
ing basis. The Phase V network management model discussed previously
also provides for coexistence with nodes conforming to Phase IV of the
architecture. From a network management perspective, it is not possible
for a Phase IV node to manage Phase V nodes, but Phase V nodes do
have the capability to manage Phase IV nodes.

Performance A guiding principle in the design of the Phase V proto­
cols and mechanisms is that their implementations must be capable of
providing performance at least equal to the performance provided by the
Phase IV facilities they replace. In many cases, Phase V implementations
provide better performance than their Phase IV counterparts.

DNA Phase V The layer structure of the Phase V architecture is shown in Figure 4.2. In
Functional Layers Phase V of DNA, the lowest four layers of the architecture conform ex­

actly to the OSI model and use the ISO standards defined for those layers.
Above the Transport layer, the user can choose between Digital propri­
etary protocols and ISO standard protocols for the upper three layers of
the OSI model. As stated earlier, the intent in DNA Phase Vis to use ISO
standard protocols wherever possible. However, both ISO standard pro­
tocols and DNA proprietary protocols are supported in the lower layers
for compatibility with earlier versions of the architecture. This view of the

FIGURE 4.2

CHAPTER 4: THE DIGITAL NETWORK ARCHITECTURE

DNA Phase V Functional layers.

DNA Protocol
Stack

OSI Protocol
Stack

OSI Application •

A lication
Presentation Naming

Service }
OSI Upper Layer (OSUL)

Session Architecture
1--~~~---'--'-~---'-'-'-~-I

DNA Session
Control

Transport

Network

Data Link

Physical

75

architecture as supporting multiple protocol stacks is a key to the flexibil­
ity of the DNA Phase V architecture. DNA Phase V has been designed so
other important protocol stacks, such as the Transmission Control Proto­
col/Internet Protocol (TCP/IP) suite, can be supported as needed.

The Physical Layer

The Physical layer of the Phase V architecture is similar in function to the
Phase IV Physical Link layer. It is analogous to the Physical layer of the
OSI model and includes architectural specifications that define three
major forms of physical link:

• Modem Connect. This specification defines support for international
standards that govern the way a computer is connected to an analog or
digital data transmission facility in a wide area networking environment.

• CSMA/CD LAN. This specification covers both the Physical and Data
Link layers and documents specifications for how a computer is at­
tached to a carrier sense multiple access with collision detection
(CSMA/CD) form of local area network (LAN). The CSMA/CD LAN
specification supports the CSMA/CD form of LAN defined by the IEEE
802.2/802.3 and ISO 8802-2/8802-3 standards. Support is also pro­
vided for the Ethernet form of LAN, described by the Ethernet
Speci-fi,cation jointly published by Digital, Intel, and Xerox. CSMA/CD
and Ethernet LANs are compatible and support a data transmission rate
of 10 megabits per second over a multiaccess transmission facility using
various types of transmission media. Digital's implementations of the
CSMA/CD and Ethernet LAN standards are described in Chapter 22.

76 PART I: THE DIGITAL NETWORK ARCHITECTURE

• FDDI LAN. This specification describes both the Physical and Data Link
layers and defines how a computer is attached to a Fiber Distributed
Data Interface (FDDI) form of local area network. FDDI is described by
the ANSI X3T9.5 standards and by ISO 9314. An FDDI LAN supports a
data transmission rate of 100 megabits per second over a ring-structured
network, typically using a fiber-optic transmission medium. Digital's im­
plementation of the FDDI form of LAN is described in Chapter 23.

The architecture is designed so other forms of local area network,
such as the IEEE/ISO token ring and token bus forms of LAN, can be ac­
commodated easily if needed. The main differences between Phase IV
and Phase V in the Physical layer is that Phase V has added support for
the IEEE/ISO CSMNCD and ISO FDDI forms of LAN. The Phase V
Modem Connect specification also provides a network management in­
terface that is more explicit than the Phase IV equivalent of Modem
Connect. Chapter 5 discusses the Physical layer in detail.

The Data Link Layer

The Data Link layer in the Phase V architecture is similar to the Data
Link layer in the Phase IV architecture. It is analogous to the OSI model
Data Link layer and includes architectural specifications for five forms of
data links:

• HDLC. The HDLC specification includes support for ISO's High Level
Data Link Control (HDLC) protocol, defined by ISO 3309, 4335, 7809,
and 8885.

• LAPB. The LAPB specification defines a subset of the HDLC protocol
used for compatibility with X.25 networks, defined by CCITT Recom­
mendation X.25 and ISO 7776.

• CSMA/CD LAN. The Data Link layer portion of the CSMNCD LAN
specification includes support for the CSMNCD and Ethernet forms of
LAN, defined by IEEE 802.3, ISO 8802-3, and Version 2 of the Ethernet
Specification.

• FDDI LAN. The Data Link layer portion of the FDDI LAN specification
includes support for the ISO FDDI forms of LAN, defined by the ANSI
X3T9.5 standards and ISO 9314.

• DDCMP. The DDCMP specification continues support for the Digital Data
Communication Message Protocol (DDCMP) included in DNA Phase IV.

The main differences between Phase IV and Phase V in the Data
Link layer is that Phase V has added support for HDLC and for the

CHAPTER 4: THE DIGITAL NETWORK ARCHITECTURE 77

CSMNCD and FDDI forms of LAN. Chapter 6 discusses the Data Link
layer in detail, and the chapters in Part V describe the various protocols
supported by the DNA Data Link layer.

The Network Layer

The Network layer in the Phase V architecture is similar to the Routing
layer in the Phase IV architecture. The Phase V Network layer is the
same as the OSI model Network layer, and Network layer architectural
specifications include support for the following ISO standards:

• The normal mode of operation of the DNA Phase V Network layer is to
provide the ISO connectionless-mode Network service (CLNS) described
in ISO 8348 Amendment 1 using the network addressing structure
defined in ISO 8348 Amendment 2. The CLNS is provided using the pro­
tocols described in ISO 8473, ISO 9542, and ISO 10589.

• Optional support is also provided for the ISO connection-mode Net­
work service (CONS), described in ISO 8348, using the network ad­
dressing structure defined in ISO 8348 Amendment 2. The CONS is pro­
vided to allow for communication between a DNA Phase V node and a
node on an X.25 network that supports only the CONS using the proto­
cols described in ISO 8878 and ISO 8208.

The main thrust of the changes Digital has made in the Network
layer is to accommodate very large networks, to support the attachment
of devices from multiple vendors to a DECnet network, and to intercon­
nect the separate networks of different organizations. Key to this are the
use of the ISO Network layer standards and the support of ISO network
addressing standards that specify the use of globally unique addresses.
DNA Phase V defines a unique distributed routing algorithm that sup­
ports very large networks. This routing algorithm has been accepted by
ISO for standardization as a Network layer protocol described in ISO
10589. The Network layer also includes support for the connection­
mode Network service to allow DNA Phase V nodes to communicate di­
rectly with other nodes on X.25 packet-switched data networks, but the
strategic thrust of Phase V is to provide a datagram Network service.
Chapters 7, 8, and 9 describe the Network layer in detail.

The Transport Layer

The Transport layer of the DNA Phase V architecture is similar to the
End Communication layer of Phase IV. It provides support for the OSI

78 PART I: THE DIGITAL NETWORK ARCHITECTURE

Transport protocol and also for Digital's own Transport protocol:

• The Phase V Transport layer provides the OSI Transport service defined
in ISO 8072 and implements classes 0, 2, and 4 of the OSI Transport
protocol defined by ISO 8073. Class 4 Transport is the preferred operat­
ing mode.

• A second protocol defined for the Transport layer is the DNA Network
Services Protocol (NSP) implemented in the DNA Phase IV End Commu­
nication layer. Much of the experience Digital gained in building Digi­
tal's NSP Transport protocol was used by ISO in specifying the Class 4
ISO Transport protocol.

The main difference between the Phase IV and Phase V architectures
in the Transport layer is that Digital has adopted the ISO standards for
this layer. However, Digital's NSP protocol is still supported for compat­
ibility with Phase IV systems. Chapter 10 describes the Transport layer in
detail.

Higher Layers

Above the Transport layer are two separate protocol stacks that provide
support for two separate classes of application. Other protocol stacks
are likely to be added as well to meet the needs of Digital's customers.
The higher layers are where the networking and communication pieces
of the DNA architecture are integrated with the rest of the computing
environment, such as the operating system, the applications that run on
it, and system management facilities. DNA Phase V is designed to sup­
port both proprietary DNA applications and applications conforming to
ISO standards.

• DNA Session Control Layer. DNA applications communicate with other
DNA applications using the DNA Session Control layer. Even though the
fifth layer of the OSI model is named the Session layer, it has little in
common with the DNA Session Control layer. Chapter 11 examines the
DNA Session Control layer.

• OSI Higher Layers. OSI applications communicate with other OSI appli­
cations using the OSI Session, Presentation, and Application layers. Sup­
port for the three OSI upper layers is defined by the architectural
specification for the OSI Upper Layer (OSUL) architecture. Chapter 12
describes the OSUL architecture in detail.

To send a message from one user process to another using the net­
work, a DNA application passes a user message to an implementation of

The Naming
Service

CHAPTER 4: THE DIGITAL NETWORK ARCHITECTURE 79

the DNA Session Control layer using an application programming inter­
face defined by the local operating system environment. An OSI applica­
tion passes a user message to an implementation of the OSUL architec­
ture. An application that needs to communicate with other DNA
applications and with other OSI applications can use the facilities of
both protocol stacks. It would then employ the interface appropriate for
the partner with which it is communicating.

The DNA Session Control layer or the OSI upper layers add proto­
col-control-information (PCI) to each user message in the form of head­
ers to create a transport-service-data-unit (TSDU), which it passes down
to a Transport layer entity. The Transport layer is not concerned with
whether the TSDU originated in the DNA protocol stack or in the OSI
protocol stack. It simply knows the service-access-point address of the
peer Transport entity to which the message is to be delivered. The Trans­
port entity operates using the ISO protocol for the Transport layer
whether a message originated from a DNA Session Control layer entity
or from an OSI Session layer entity.

The support for both DNA applications and OSI applications using
separate protocol stacks should not be viewed as a compromise that
makes the DNA Phase V architecture somehow less than compliant with
ISO standards. The support for both stacks reflects the real-world fact
that there are currently more DNA applications running on DECnet net­
works than there are OSI applications. This is likely to be the case for
some time to come. There would have been no advantage in attempting
to merge the DNA Session Control layer with the three OSI upper layers.
Digital's view is that as OSI applications continue to be developed and as
they grow in capability, more use will begin to be made of the OSI upper
layer stack by applications running on DECnet networks. Over time, the
DNA proprietary upper-layer protocol stack will become less important.

A growing problem in computer networking, especially with large net­
works, involves identifying, locating, and accessing network resources
and the people that use them. Network resources include anything that
can be accessed via the network, including devices, files, databases, and
application programs. A computer network requires an easy-to-use di­
rectory service for locating resources by name. The DNA Phase V nam­

ing service provides such a directory facility. Conceptually, the function
of the naming service is simple: a user provides the naming service with a
name, and the naming service passes back the set of attributes associated
with that name. The naming service can store attribute values for any

80

Network
Management

PART I: THE DIGITAL NETWORK ARCHITECTURE

type of named object the user finds useful. An important attribute associ­
ated with a named object is the address of the node on which the object
resides. Storing the address of a resource as an attribute of its name al­
lows the user to locate network resources by name alone without regard
to where in the network they reside.

The naming service allows network users to create a single name­
space containing the names of all the objects that can be referenced, any­
where in a possibly global network. For good performance and high
availability, the naming service implements the namespace in the form of
directories stored in a distributed database. The namespace directories
can be both partitioned (different sets of directories are maintained by
different nodes) and replicated (the same sets of directories can be main­
tained by multiple nodes). The naming service is central to the operation
of a DECnet Phase V network, and each node in the network implements
a naming service component called a clerk. Users employ a clerk to re­
quest naming service operations. Certain nodes in the network also im­
plement naming service components called name servers, each of which
is responsible for maintaining a portion of the namespace. Clerks com­
municate with name servers to satisfy name lookup operations. Chapter
16 describes the naming service in detail.

The DNA Phase V approach to network management is based on an
overall approach to the management of distributed systems, in which the
communication network is viewed as only one aspect of the distributed
system. Digital's overall approach to distributed system management is
described by the enterprise management architecture (EMA). The enter­
prise management architecture defines a distributed system as a collec­
tion of individual computing systems tied together by a communication
network for the purposes of sharing resources between the various com­
puting systems. The EMA can be viewed as a meta-architecture that en­
sures consistency among a family of management architectures in the
same way an individual architecture ensures consistency among a family
of implementations. The DNA Phase V network management architec­
ture is one of a series of management architectures that fall under the
EMA umbrella. The DNA Phase V network management architecture
describes how the components of a DNA Phase V communication net­
work are managed. Other management architectures describe how vari­
ous other components in the total distributed system are managed.

Each major component of the DNA Phase V architecture, including
each architectural layer, has interfaces with a network management com-

Conclusion

CHAPTER 4: THE DIGITAL NETWORK ARCHITECTURE 81

ponent. DNA Phase V network management allows network managers
to monitor the operation of a network component and to change its op­
erating characteristics. It allows parameter values to be specified that de­
scribe how various aspects of the network are to operate and also allows
parameter values automatically set by DNA Phase V protocols to be fine­
tuned as necessary. DNA network management also allows network
managers to start and stop network components as needed, to monitor
the operation of the network, and to extract information relating to net­
work traffic and network performance characteristics. Chapter 17 de­
scribes the DNA network management architecture in detail.

With DNA Phase V, Digital has solved a great many of the problems as­
sociated with building very large networks. These solutions include a so­
phisticated, distributed routing algorithm capable of scaling into the mil­
lions of nodes, a global naming service that allows users to access
resources without having to know where they are located, and a network
management scheme that allows automated monitoring and controlling
of network resources in a global network.

Chapter 5 begins Part II of this book, which examines in detail each
of the functional layers making up the DNA Phase V architecture. Chap­
ter 5 discusses the lowest layer of the architecture, the Physical layer.

PARTll

DNA Functional

Layers

Physical Layer
Functions

CHAPTER 5

The Physical Layer

The DNA Physical layer is responsible for the transmission of signals
across a physical transmission medium connecting two or more devices.
Some Physical layer implementations must also provide support for the
establishment and release of calls, as over a switched telephone line. Typ­
ically the hardware associated with the Physical layer consists of electri­
cal cables, appropriate connectors, and two or more communicating de­
vices capable of both generating and detecting voltages or other types of
signal, such as microwave transmissions or light flowing through an op­
tical fiber. The hardware might also include modems, transceivers, re­
peaters, concentrators, or other signaling devices. Hardware or firmware
permanently installed in the communicating machines typically controls
the generation and detection of these signals. A physical link might in­
volve the concatenation of a series of data circuits, such as in a typical
long-distance telephone link. The Physical layer hides the complexity of
such a concatenation of circuits from users of the Physical layer and
makes the circuits appear to be a single physical circuit. A user of the
Physical layer is typically an entity running in the Data Link layer, but
the Network layer and network management entities also sometimes di­
rectly access the services of the Physical layer.

The documentation of the OSI model (ISO 7498) and the DNA architec­
tural specifications list the following major functions of the Physical
layer:

• Circuit Establishment and Release. Allows a physical circuit to be dy­
namically established when it is required and released when the circuit is

86

Transmission
Alternatives

PART II: DNA FUNCTIONAL LAYERS

no longer needed. This function is provided for a circuit implemented by
a temporary facility, such as a dial-up line in the telephone network.

• Bit synchronization. Establishes synchronization in a receiving device
with a stream of bits coming in and clocks data in from the communica­
tion circuit at the correct rate.

• Physical-Service-Data-Units. Defines the physical-service-data-unit
(PSDU) passed down from a user of the Physical layer in the sending de­
vice and up from the Physical layer to its user in the receiving device. A
PSDU typically consists of a single bit.

• Data Transfer and Sequencing. Allows electrical signals to be exchanged
over the circuit connecting two communicating devices and allows bits
to be accepted by the receiving device in the same order in which they are
delivered by the sending device.

• Fault Condition Notification. Notifies the Physical layer user when fault
conditions occur.

• Network Management. Controls and monitors the operation of func­
tions operating in the Physical layer. Network management functions in­
clude setting the operating characteristics of the communication link, ac­
tivating and deactivating physical circuits, monitoring the status of
physical links, and performing diagnostic procedures, such as loopback
tests.

• Medium Specific Control Functions. Provides control functions for
specific forms of transmission medium, such as encoding/decoding, car­
rier sensing, collision detection, and collision announcement functions
for CSMA/CD LAN data links, and detection of illegal cabling topolo­
gies for FDDI data links.

The circuit used to connect communicating devices that the Physical
layer addresses has several characteristics, including:

• duplex or half-duplex transmission

• point-to-point, multipoint, or multiaccess circuits

• synchronous or asynchronous transmission

Duplex or Half-Duplex Transmission

Some types of physical circuits permit communication in both directions
at the same time. These are called duplex, or full-duplex, circuits. Half­
duplex circuits allow communication in both directions but in only one

FIGURE 5.1

FIGURE 5.2

CHAPTER 5: THE PHYSICAL LAYER 87

A point-to-point circuit using a direct cable connection.

1111111111111111111 1111111111111111111
1111111111111111111 c::::::::J 1111111111111111111 c::::::::J 1111111111111111111 1111111111111111111

h. ..n
I'"' -

c::::::::J c::::::::J

direction at a time. A third form of circuit, called a simplex circuit, al­
lows communication in only one direction. Simplex circuits are not ordi­
narily used for data communication because even if information needs to
be transmitted in one direction, control signals of some kind generally
must flow in the opposite direction to control communication functions.

Point-to-Point, Multipoint, or Multiaccess Circuits

In the Physical layer three types of circuits can be used for interconnect­
ing devices in the network: point-to-point, multipoint, and multi-access.

The simplest circuit consists of a point-to-point connection between
a pair of devices. An example of a point-to-point circuit is shown in Fig­
ure 5.1, in which two devices are directly attached by a cable. A more
complex type of point-to-point circuit might be implemented by a pair of
modems and a telephone line, as shown in Figure 5 .2. Collections of
point-to-point circuits can be used to create any desired network
configuration. In a typical DECnet Phase V network, routers are usually
connected to one another using point-to-point circuits to form a mesh
structure. Certain types of local area network, such as FDDI, also use
collections of point-to-point links to create ring structures. Examples of
the mesh and ring configurations are shown in Figure 5.3. In most cases,
point-to-point circuits are implemented by a direct electrical or optical
connection between each pair of devices. But another type of point-to-

A point-to-point circuit using a telecommunications link.

1111111111111111111 1111111111111111111
1111111111111111111 c::::::::J 1111111111111111111 c::::::::J 1111111111111111111 1111111111111111111

p.-..{aaac
[J[J[JCJ)--Q

c::::::::J c::::::::J

88

FIGURE 5.3

FIGURE 5.4

PART II: DNA FUNCTIONAL LAYERS

Mesh and ring configurations using point-to-point circuits.

=

point connection can be implemented via a virtual circuit connecting a
pair of computers that communicate using a packet-switched data net­
work, typically implementing CCITT Recommendation X.25.

With a multipoint circuit, any number of devices are connected
using a single physical connection, as shown in Figure 5.4. With a multi­
point circuit, one device acts as the master and is in control of the circuit,
while the other devices act as slaves. Each slave receives all the transmis­
sions of the master, and the master receives the transmissions of all the
slaves. The slaves cannot communicate directly with each other; they can
communicate directly only with the master. In the Data Link layer, how­
ever, DNA models a multipoint physical circuit as a collection of sepa­
rate point-to-point links between the master and each of the slaves.
Thus, the multipoint characteristics of the link are hidden from layers
above the Data Link layer.

A multipoint circuit.

Slaves

Master

FIGURE 5.5

Cable Plant
Considerations

CHAPTER 5: THE PHYSICAL LAYER 89

A multiaccess circuit.

m:mmmmm c=J

A multiaccess circuit has some similarities to a multipoint circuit in
that any number of devices can be attached to a single physical circuit, as
shown in Figure 5 .5. However, with a multiaccess circuit, all devices act
as peers, and there is no master/slave relationship between devices. Each
device on the multiaccess circuit receives all the transmissions of all the
others. The CSMA/CD form of local area network uses a multiaccess cir­
cuit to attach all devices to a common bus- or tree-structured transmis­
sion medium.

Synchronous versus Asynchronous Transmission

Data can be transmitted over a physical link in either an asynchronous
or a synchronous fashion. With asynchronous transmission, sometimes
called start-stop, a small number of bits, such as the 8 bits representing a
single character, are sent at a time. Relatively simple equipment can be
used because the two devices must be in synchronization only for the
time it takes to transmit and receive a single character.

With synchronous transmission, bits are sent in a continuous
stream. A block of perhaps hundreds or even thousands of bits can be
sent at one time, and for the duration of the entire block the receiving
device must stay in synchronization with the transmitting device. Box
5 .1 provides brief descriptions of the characteristics of asynchronous and
synchronous transmission.

Work is being done in various standards bodies, with the Electronic In­
dustries Association (EIA) playing a leadership role, in developing archi­
tectures to govern the way in which electrical and optical cables should
be installed in buildings to support flexible network topologies.

90

BOX 5.1

Asynchronous and
Synchronous
Transmission

PART II: DNA FUNCTIONAL LAYERS

Asynchronous Transmission

Asynchronous transmission is well suited for slow-speed transmission,
for example, with keyboard devices that do not have a buffer and with
which the operator sends characters along the line at more or less ran­
dom intervals. With asynchronous transmission, each transmitted
character begins with a start bit and ends with one or more stop bits.
The start bit indicates the beginning of a transmission, and there can
be an indeterminate interval between transmitted characters.
Characters are transmitted when the operator presses the keys. The
receiving machine has a clocking device that starts when the start bit is
detected and operates for as many bits as there are in a character. The
receiving machine uses the clocking device to tell where each bit starts
and ends. Asynchronous transmission often is used to communicate
over short distances, for example, over the cable that attaches an inex­
pensive terminal to a terminal controller. Simple asynchronous trans­
mission techniques also are sometimes used in computer networks
where a high bandwidth is not required.

Synchronous Transmission

When machines transmit to each other continuously and with regular
timing, synchronous transmission can provide more efficient transmis­
sion. Here the bits are strung together and are transmitted in a continu­
ous stream. There are no start bits, stop bits, or pauses. The bit stream is
divided into units called frames, and all the bits in the frame are trans­
mitted at equal time intervals. The transmitting and receiving machines
must remain in synchronization during the time it takes to transmit a
complete frame. Devices using synchronous transmission employ a wide
variety of frame lengths. The frame size may vary from a few bits to
thousands of bits. A period of time is taken up between the transmission
of one frame and the next, so the larger the frame length, in general, the
higher can be the overall speed of transmission. On the other hand, the
larger the frame, the higher the probability that an error will occur dur­
ing transmission, which will require the frame to be retransmitted. A
compromise between these two factors must be made.

Wiring Environments

The EIA technical report TR 48.1 describes one such standard that
defines three different types of environment in which network cabling
can be used:

CHAPTER 5: THE PHYSICAL LAYER 91

• Work Area Environment. A work area environment consists of an open
area within a building in which walls and cabling are not considered per­
manent. In any given work area, the distances spanned by cabling are
relatively short and relatively few devices are installed. One type of work
area might be a general office area in which typical network equipment
consists of devices connected to some form of LAN and employed by end
users. Typical devices installed in such a work area might be personal
computers, file and print servers, and technical workstations. Another
type of work area might be a computer room in which various types of
host computer equipment are installed.

• Building Environment. A building environment is a building, or a collec­
tion of floors in a building, in which the walls and the wiring are consid­
ered relatively permanent. In a building environment, the distances
spanned by cable runs are moderate, and relatively large numbers of de­
vices are installed.

• Campus Environment. A campus environment involves a number of
buildings connected by cable segments making up what is often called a
backbone network. In a campus environment, distances are relatively
great and cables are often permanently installed in underground tunnels.

Local area networks typically form the basis of network wiring in work
area, building, and campus environments, with common carrier facilities
most often linking multiple widely separated building and campus envi­
ronments. Most early local area networks were installed in work area
environments, where a relatively small number of network devices were
connected in an ad hoc manner. In today's environment, building and
campus environments are increasingly important as organization-wide
networks are being created to link together all parts of an organization.
Careful planning is of the greatest importance in building and campus
environments because of the relative permanence of the wiring and its
greater cost relative to the wiring installed in a work area environment.

Equipment Rooms

The EIA cable plant architecture defines three types of equipment rooms,
which are those physical places in the three environments at which cables
are physically terminated (see Figure 5.6). An equipment room is a dedi­
cated space for facility wiring in which all types of wiring might be termi­
nated, including wiring for data, telephone, electrical power, security, and
fire alarms. Network cabling is terminated in each type of equipment
room using various types of patch panels that facilitate documentation,

92

FIGURE 5.6

Physical Layer
Standards

PART II: DNA FUNCTIONAL LAYERS

Hierarchy of equipment rooms.

l
2000 meters

l
500 meters

1

To Work Areas

maintenance, and reconfiguration. Equipment rooms normally are kept
locked and are accessed only by qualified service personnel.

The equipment room at the top of the hierarchy is called the main
cross connect equipment room. A campus of buildings has a single main
cross connect equipment room used to terminate cabling running to each
individual building or collection of building floors in the campus envi­
ronment. For each building or for each collection of floors making up an
individual building environment, there is a single intermediate cross con­
nect equipment room that terminates the cabling running from the main
cross connect equipment room. Cabling is run from the intermediate
cross connect equipment room to as many telecommunications cross
connect equipment rooms as are needed to serve the needs of the build­
ing environment. Cabling runs from a telecommunications cross connect
equipment room to the individual work areas it serves.

DNA Phase V supports a number of international standards that define
the operation of the Physical layer. Standards are supported for the wide
area networking environment as well as for the local area network envi­
ronment. This chapter concentrates on standards that define the opera­
tion of wide area networking circuits. Physical layer standards for local
area networks are also introduced in this chapter, but Physical layer de­
tails for LANs are deferred to the chapters in Part V. Chapters 22 and 23

CHAPTER 5: THE PHYSICAL LAYER 93

in Part V describe the two major forms of LAN technology currently
supported by DNA Phase V.

DTE-DCE Interface In the wide area networking environment, various international stan­
Standards <lards, all similar in function, define the way in which a computing device

is attached to a signaling device, such as a modem. These standards
define the concrete interface between a device in a class called data ter­
minal equipment (DTE) and a device in a complementary class called
data circuit-terminating equipment (DCE). The communication adapters
in terminals and computers are common examples of devices containing
DTEs; modems are common examples of devices containing DCEs. The
important DTE-DCE interface standards for the wide area networking
environment include:

EIA-232-D and
Recommendation
V.24

• EIA-232-D

• CCITT Recommendation V.24

• EIA-422

• EIA-423

• EIA-449

• CCITT Recommendation V.35

The EIA publishes standards analogous to some published by CCITT. A
common EIA standard for the Physical layer is EIA-232-D. The EIA-
232-D standard has CCITT counterparts-Recommendation V.24 and
Recommendation V.28-that together are equivalent to the EIA-232-D
standard. EIA-232-D defines 25 interchange circuits that carry positive
and negative voltages ranging from about 5 to 15 volts to connect a com­
puting device (DTE) to a signaling device (DCE), such as a modem. Not
all 25 circuits need be used. As few as 3 circuits can be used for commu­
nication between two devices and still be in conformance with the stan­
dard; however, many implementations use more than the minimum.
CCITT Recommendation V.24 defines these same 25 circuits, and Rec­
ommendation V.28 defines the electrical characteristics of the signals.
The standard defines the interface as suitable for serial transmission at
speeds up to about 20,000 bits per second at a distance of typically 50
feet or less. In practice, the EIA-232-D standard is often used over dis­
tances up to a few hundred feet.

94

FIGURE 5.7

FIGURE 5.8

PART II: DNA FUNCTIONAL LAYERS

EIA-232-D cable connector and circuits.

Protective Ground -
Transmitted Data -

Received Data -
Request to Send -

Clear to Send -
Data Set Ready -

Signal Ground -
Rcvd Line Sig Detector -

Reserved­
Reserved­

Unassigned -
Sec Rcvd Line Sig Del -

Sec Clear to Send -

AA -1
BA -2
BB -3
CA -4
CB -5
cc -6
AB -7
CF -8

-9
-10
-11

SCF -12
SCB -13

14 - SBA - Sec Transmitted Data
15 - DB - Transmission Sig Elem liming
16 - SBB - Sec Received Data
17 -DD - Receiver Sig Elem liming
18 - Unassigned
19 - SCA - Sec Request to Send
20 - CD - Data Terminal Ready
21 - CG - Signal Quality Detector
22 - CE - Ring Indicator
23 - CH/Cl - Data Signal Rate Selector
24 - DA - Transmit Sig Elem liming
25 - Unassigned

A 25-pin connector, such as that shown in Figure 5.7, is most often
used for implementing an EIA-232-D connection. However, a 9-pin con­
nector is used in many implementations, including many serial commu­
nications adapters installed in personal computers. Figure 5. 7 also shows
some of the commonly used functions of EIA-232-D circuits.

Figure 5.8 illustrates a typical long-distance implementation of a
physical circuit between two computers. In this case, the computer on

Two computers connected by two modems and a telecommunications link.

1111111111111111111

m:mm:::mm c::::J

1111111111111111111

:::::m::::::::::: c::::J

CHAPTER 5: THE PHYSICAL LAYER 95

the left has circuitry that performs the functions of a DTE. It is con­
nected via a short cable that uses two 25-pin EIA-232-D connectors to a
complementary device with circuitry that performs the functions of a
DCE. The computer on the right also implements a DTE connected by
another EIA-232-D cable to a DCE. The DCEs are connected to each
other by a telephone line of arbitrary length. In this example, the two
computers each implement a DTE in a communication adapter, and the
two DCEs are implemented in a pair of compatible modems.

Notice that there are three physical connections in this configuration.
The DTE on the left is connected to its DCE by an EIA-232-D cable, the
two DCEs are connected by a telephone line, and the DTE on the right is
connected to its DCE by another EIA-232-D cable. The Physical layer is
concerned only with the interface between the DTE and the DCE. The
way in which the two DCEs (modems) exchange signals is governed by
entirely different sets of international standards and is of no concern to
DNA. As long as both modems use the same signaling scheme, the way in
which they exchange signals is of no concern to the two DTEs.

A null modem cable is sometimes used to directly connect two DTEs
over short distances using only the data interchange circuits. A null
modem is a special cable or connecting device that crosses circuits to
simulate the presence of a pair of modems between the two communicat­
ing devices. Figure 5 .9 shows a possible null modem cable configuration
for connecting two DTEs using the EIA-232-D standard.

F 1 G u R E 5 . 9 Typical null-modem cable.

Other Physical
Layer Standards

7 --------- 7
2 2
3 3

4 =i c 4

~ ___ __,X'""---- ~
6 6
20 20

EIA-232-D is the most commonly used Physical layer standard for imple­
menting relatively low-speed wide area networking circuits. The EIA
also defines specifications for higher-performance circuits, including the
following:

96 PART II: DNA FUNCTIONAL LAYERS

• EIA-422-A. The EIA-422-A standard is entitled Electrical Characteristics
of Balanced Voltage Digital Interface Circuits. It specifies an alternative
method to EIA-232-D for connecting a DTE to a DCE. The EIA-422-A
standard specifies a more electrically stable method for generating bal­
anced positive and negative voltages in the range of from 2 to 6 volts­
the voltage level normally used in integrated circuits. The standard states
these techniques can be used to implement equipment capable of trans­
mitting and receiving data at up to 10 megabits per second. However,
many implementations are limited to speeds much less than this.

• EIA-423-A. The EIA-423-A standard, entitled Electrical Characteristics
of Unbalanced Voltage Digital Interface Circuits, is similar to EIA-422-A
but specifies the use of unbalanced rather than balanced signals. As with
EIA-422-A, this standard states that these techniques can be used to im­
plement equipment capable of transmitting and receiving data at up to
10 megabits per second. However, as with EIA-422-A, many implemen­
tations are limited to speeds much less than this.

• EIA-449. The EIA-449 standard is entitled General Purpose 37-position
and 9-position Interface for Data Terminal Equipment and Data Cir­
cuit-Terminating Equipment Employing Serial Binary Data Interchange.
It defines signal characteristics, provides functional descriptions of inter­
change circuits, and specifies the characteristics of the physical connec­
tors used to implement the EIA-422-A and EIA-423-A standards.

Modem Standards It is desirable that independent organizations be able to design and man­
ufacture modems and data processing equipment with modems inte­
grated into them. To permit this, various standards exist for modem de­
sign that permit modems of different manufacturers to communicate
with one another. It is desirable that modem standards be internationally
accepted and permit international transmission. To this end, CCITT has
published a series of standards for modems in its V series of Recommen­
dations. In addition to the international standards for modems, ad hoc
standards for modems have arisen simply because certain types of
modem are, or have been, widely used. As long as a modem manufac­
turer conforms to a standard in designing a modem, modems of different
manufacturers can communicate with one another over any type of ana­
log telecommunication link. Two types of standards are important for
modems:

• the signals used for transmitting data between two compatible modems
over the physical circuit

CHAPTER 5: THE PHYSICAL LAYER

• the command set used by the computer to control the operation of the
modem

Signaling System

97

As we have already introduced, the Physical layer is concerned only with
the way in which a computer is attached to a modem and how the com­
puter communicates with it, so the modems can implement any desired
form of signaling between them as long as both modems implement the
same type of signaling. Some commonly used signaling system standards
have been set by AT&T. An obsolete AT&T modem, the Model 212A
Data Set, implemented two alternative signaling systems to support data
transmission at either 300 bits per second or 1200 bits per second.
Modems compatible with the two signaling systems of the Model 212A
modem are in common use today. The signaling system most often used
by the manufacturers of 2400 bps modems in the United States is de­
scribed by CCITT Recommendation V.26bis. Many manufacturers of
high-speed modems for use over the switched telephone network con­
form to CCITT recommendation V.32, which specifies a data transmis­
sion rate of 9600 bits per second.

Command Set

A modem manufacturer can use any desired command set that the com­
puter must employ in controlling the modem. However, many manufac­
turers of modems use the command set first introduced by the Hayes
Corporation for its Smartmodem family of modems for personal com­
puters. This command set, generally referred to as the AT command set,
is now a de facto standard. The AT command set implements commands
the computer can issue to perform such functions as setting the modem's
data transmission rate, dialing the telephone number of the computer
with which it would like to communicate, and controlling the modem's
automatic answering features.

Recommendations V.25 and V.25bis

CCITT Recommendations V.25 and V.25bis are international standards
for performing some of the functions implemented by the Hayes AT
command set. These include dialing the telephone number of the modem
with which a connection is desired and for controlling the automatic an­
swering .features of the modem.

98

Digital Circuits

Physical Layer
Specifications

FIGURE 5.10

PART II: ONA FUNCTIONAL LAYERS

The DNA Phase V Physical layer also supports the use of industry stan­
dard digital circuits for connecting communicating devices. In the United
States, most common carriers provide digital circuits that support vari­
ous data rates. Other countries provide such telecommunications ser­
vices as well. When a digital circuit is used, modems are not required and
devices called digital service units (DSUs) or line drivers provide the in­
terface between the communicating device and the digital circuit. (See
Figure 5.10.)

As introduced in Chapter 4, DNA Phase V includes three architectural
specifications that define Physical layer capabilities. No proprietary pro­
tocols are included in the Physical layer; only accepted international
standards are used. The three Physical layer specifications are:

• Modem Connect

• CSMA/CD LAN

• FDDI LAN

There is a separate architectural specification for each of the above,
and each is augmented by documents describing the associated ISO stan­
dards each specification incorporates. The DNA architectural
specifications and the ISO standards often combine descriptions of both
the Physical layer and the Data Link layer for a particular type of data
link. An actual implementation of the Physical layer is closely tied to an
implementation of the Data Link layer for a particular form of transmis-

A digital circuit.

1111111111111111111

:::m:m:::mm C=:J

CHAPTER 5: THE PHYSICAL LAYER 99

sion technology, and both are often implemented in hardware in the
same device. The DNA specifications and ISO standards for the Physical
layer typically contain information about service definitions, concrete in­
terfaces, and protocol specifications.

Service Definitions

A Physical layer service definition defines the abstract interface between a
Physical layer entity and a user of the Physical layer entity. This abstract
interface defines the services a Physical layer entity provides to its user.

The international standards for local area networking technology
(the IEEE 802/ISO 8802 family of standards) define the abstract interface
between a Physical layer entity and its users in terms of service primitives.
(Chapter 3 introduced the service primitives used in ISO standards to doc­
ument abstract interfaces.) DNA architectural specifications for Modem
Connect and the two forms of LAN describe the abstract services the
Physical layer provides to its users in terms of procedure declarations.

Concrete Interfaces

In addition to the abstract interfaces described by service definitions,
standards for the Physical layer also define concrete interfaces. These in­
clude specifications for physical connectors and cables and the character­
istics of the various types of signals exchanged. They also define the
characteristics of certain types of devices, such as the transceivers, con­
centrators, and repeaters used in constructing networks.

Protocol Specifications

A protocol specification for the Physical layer involves mechanical, elec­
trical, functional, and procedural means for activating and deactivating
physical circuits and for transmitting signals across them. Protocol
specifications for the Physical layer are contained in the architectural
specifications for Modem Connect and the two forms of LAN supported
by DNA Phase V.

We continue by discussing each of the Physical layer architectural
specifications that define the operation of the DNA Phase V Physical
layer. This chapter includes details for Modem Connect. The two forms
of LAN are introduced, but details concerning the Physical layer for
CSMNCD LANs are in Chapter 22, and details concerning the Physical
layer for FDDI LANs are in Chapter 23.

100 PART 11: DNA FUN CT I 0 NA L LAYERS

Modem Connect The Modem Connect specification defines how the DNA Phase V Physical
layer operates over WAN telecommunication links. Modem Connect sup­
ports any type of modem or service unit for communication over a con­
ventional analog telecommunications link or over a digital data service.
Figure 5.11 shows the Modem Connect architectural model when HDLC
is used in the Data Link layer and the DNA Phase V Network layer is the
user of the Data Link layer service. A user of Modem Connect accesses its
services via a port. A port is a data structure employed by a particular
Modem Connect user. A port is assigned to a user upon request and re­
mains associated with that user until it is explicitly released. Each user has
its own port assigned, and many users can access the services of Modem
Connect simultaneously, each through its own assigned port.

FIGURE 5.11

Modem Connect defines two types of ports: call control ports and
data ports. The Network layer (and other Data Link service users) com­
municate directly with a Modem Connect entity through a call control
port. A Data Link layer entity communicates with Modem Connect
through a data port.

The following sections introduce the important services and functions
provided by Modem Connect through the call control and data ports.

Call Control Port Services

The services accessed via a call control port are used to control and mon­
itor the circuit establishment and circuit release functions for switched
lines. A call control port allows higher layer entities to request the estab­
lishment of an outgoing call, such as over a dial-up line, to handle in­
coming calls, and to clear established calls. The call control services are

Modem Connect architectural model.

Data Link Layer

Modem Connect Physical Layer

BOX 5.2

Modem Connect
Call Control
Service Interface
Procedures

CHAPTER 5: THE PHYSICAL LAYER 101

not used when a leased line is employed. The procedure declarations
defining the Call Control services are listed in Box 5.2.

The following function and procedure declarations define the
abstract interface between the Physical layer and a user of the
Physical layer in terms of the call control services a Modem Connect
entity provides to its users.

Port Control Functions

• CcOpenPort. Assigns system resources for a call control port, which
is a data structure that defines an access point to the switched line
call control service.

• CcEnablePort. Allows the user to gain access to a call control port
that was previously disabled and then subsequently made available
again th~ough a network management action.

• CcClosePort. Frees up the system resources assigned to an existing
call control port.

Call Control Functions

• CcCallConnectedPoll. Determines whether a call has come in on a
switched line circuit.

• CcHoldCall. Attaches a call control port to a call so other users of
the Modem Connect entity are unable to clear the call.

• CcClearCall. Requests that the call associated with the call control
port be cleared.

• CclnitiateCall. Allows the user to employ a call control port to make
an outgoing call to establish a switched line circuit.

• CcCallState. Returns the status of the call currently associated with a
particular call control port. Possible status conditions include con­
necting, connected, disconnecting, disconnected, and disconnect
pending.

• CcDisconnectReason. Obtains information about the reason an
established call was disconnected or that an outgoing call request
failed to connect.

Control Functions

• PhCallConnectedPoll. Determines whether a call has come in on a
switched line circuit.

102

BOX 5.2

continued

PART II: DNA FUNCTIONAL LAYERS

• PhAttachToCall. Used only with switched lines to attach a data port
to a connected switched line.

• PhEnableTransmit. Enables the transmitter component of a Modem
Connect entity and activates the modem's Request to Send inter­
change circuit.

• PhEnableTransmitPoll. Determines whether an operation requested
by the PhEnableTransmit function has been completed, either suc­
cessfully or unsuccessfully.

• PhDisableTransmit. Disables the transmitter component of a Modem
Connect entity and deactivates the modem's Request to Send inter­
change circuit.

• PhDisableTransmitPoll. Determines whether an operation requested
by the PhDisableTransmit function has been completed, either suc­
cessfully or unsuccessfully.

• PhEnableReceieve. Enables the receiver component of a Modem
Connect entity.

• PhTestForLoopback. Used to perform a loopback test function.

Data Port Services

The services accessed via a data port allow a user of the Physical layer to
transmit and receive data on either a leased or a switched circuit. They are
also used to control line turnaround operations on half-duplex circuits.
These services can be requested for both switched and nonswitched tele­
communications facilities. For example, an HDLC data link might request
these services in order to transmit and receive individual bits over a physi­
cal circuit. The data transfer services Modem Connect supplies are inde­
pendent of characteristics of individual devices and physical circuits. The
procedure calls defining the Data Transfer service are listed in Box 5.3.

Polled Interfaces

The procedure declarations that make up the service interface to Modem
Connect, like all service interfaces defined for the layers of the DNA
Phase V architecture, document a polled interface. To transmit data
using a polled interface, the user makes a request to transmit and then
follows that request with explicit requests to determine whether the op­
eration has been completed. Actual implementations of the service inter-

BOX 5.3

Modem Connect
Data Service
Interface
Procedures

CHAPTER 5: THE PHYSICAL LAYER

The following function and procedure declarations define the
abstract interface between the Physical layer and a user of the
Physical layer in terms of the data transfer services a Modem
Connect entity provides to its users.

Port Control Functions

• PhOpenPort. Reserves system resources for a data port, which is a
data structure that defines an access point to the data transmission
services for a modem connect line.

• PhClosePort. Frees up the system resources assigned to an existing
data port.

• PhEnablePort. Allows the user to gain access to a data port that was
previously disabled and then subsequently made available again
through a network management action.

Data Transfer Functions

• PhTransmitBit. Issued by a user of the Physical layer entity to
enqueue a single bit of data for physical transmission.

• PhReceiveBit. Issued by a user of the Physical layer entity to read a
single bit of the data received by a Modem Connect entity.

103

face, however, are much more likely to use interrupts rather than a
polled interface. With interrupts, the user makes a request and then con­
tinues with other tasks. When the request has been satisfied, the user is
notified with an interrupt.

Service interfaces are defined in the DNA Phase V architecture using
polled interfaces because a polled interface is easier to describe than an
interface using interrupts. As discussed in Chapter 3, abstract interfaces
are intended to convey only the semantics of the services they describe.
They are not intended to restrict the implementation of that interface to
any particular set of techniques. An implementor is free to choose any
desired method to build an implementation of the services defined by an
abstract service interface.

Call References

Modem Connect assigns unique identifiers, known as call references, to
incoming and outgoing calls. Call references are assigned via a counter

104

FIGURE 5.12

PART II: DNA FUNCTIONAL LAYERS

maintained for each switched line. The counter is incremented for each
incoming and outgoing call attempt made on a line, thus providing a
unique call reference for each attempted call. Call references provide a
means of tying together the call establishment and release phases with
the data transfer phase. They also provide a means for correlating man­
agement information about the various phases of a call.

Call Sharing

The call sharing feature allows calls on a switched line to be accessed by
more than one user of the Physical layer. For example, a network man­
agement entity and a DNA Network layer entity might share the same
call and thus both use the same physical circuit. When the call sharing
feature is used, the clearing of calls is coordinated by Modem Connect so
that when one user requests that a call be cleared, the call will be re­
tained if it is currently in use by some other user.

Modem Connect Operation

A detailed architectural model that illustrates how a Modem Connect
entity controls a single physical circuit is shown in Figure 5 .12. Requests
made by a user of the Physical layer are handled by the line handler com­
ponent. At the lowest level of the architectural model, the interchange
circuit interface component provides access to the DTE-DCE inter­
change circuits. These are the physical circuits implemented in the cable

Modem Connect functional components.

Interchange circuits

CSMA/CD LANs

CHAPTER 5: THE PHYSICAL LAYER 105

and connectors used to connect the DTE (computer) to the DCE (modem
or other signalling device). The line handler uses the services of the trans­
mitter and receiver components in providing each service to a user of
Modem Connect. Modem Connect provides a bit-stream interface to its
users in which data pass across the interface in 1-bit units.

A Modem Connect entity user sending data passes bits across the in­
terface, one at a time, to the line handler. The line handler passes them to
the transmitter component, which adds them to the end of the transmit
queue. The transmitter concurrently removes bits from the front of the
transmit queue and clocks them onto the transmit interchange circuit. To
service a user receiving data, the receiver component clocks bits from the
receive interchange circuit and adds them to the end of the receive queue.
A user receiving data issues a request to the line handler for each bit. For
each request, the line handler asks for a bit from the receiver component,
which then removes a bit from the front of the receive queue. Both the
transmitter and the receiver components operate autonomously from the
service interface. The transmit and receive queues act as a buffer between
the line handler component and the transmitter and receiver components.

One form of local area network supported by DNA Phase V is the
CSMNCD form of data link. CSMNCD stands for carrier sense multi­
ple access with collision detection and refers to the way access to the
communication medium is controlled. This is a LAN standard defined by
the IEEE and is documented in IEEE 802.2 and IEEE 802.3. These stan­
dards are also published by ISO as ISO 8802-2 and ISO 8802-3. A
CSMNCD LAN typically uses coaxial cable or twisted-wire pair cable
for transmission at a rate of 10 megabits per second. The CSMNCD
LAN data link also provides support for the Ethernet Speci-fication,
which describes the local area networking scheme jointly developed by
Digital, Intel, and Xerox and used in DECnet networks for many years.
Ethernet was used as the model for the development of the IEEE/ISO
CSMNCD standard. It is similar to IEEE/ISO CSMNCD but uses a
slightly different frame format. Ethernet is defined in DNA Phase V
mainly for compatibility with Phase IV of the architecture. The CSMNCD
and Ethernet LAN data links are described in detail in Chapter 22.

In a CSMNCD implementation of a local area network, a group of
communicating devices are connected to a common cable, often using
devices called medium access units (MAUs) (see Figure 5.13). A medium

106

FIGURE 5.13

FDDILANs

PART 11: DNA FUNCTIONAL LAYERS

CSMA/CD form of local area network.

1111111111111111111 1111111111111111111

:mmmmmm c:::::::J :m::mmm:m c:::::::J

access unit is sometimes called a transceiver. When one device sends
data, all the other devices on the cable receive the data. Thus, a
CSMA/CD LAN implements a multiaccess form of physical circuit.
Physical layer standards for the CSMA/CD form of LAN specify the
characteristics of the signals broadcast over the communication medium
and define the type of hardware used to connect a device to the commu­
nication medium and to connect individual cable segments with one an­
other to form a bus- or tree-structured network.

A CSMA/CD LAN can be implemented using many different types
of transmission mediums, including:

• original thick Ethernet cable

• less expensive thin Ethernet cable

• coaxial cable used for cable television distribution

• fiber-optic cable

• twisted-pair telephone cable

All the forms of transmission medium supported by DNA Phase V
are compatible with one another and all support a data rate of 10
megabits per second. Additional information about the Physical layer for
the IEEE/ISO CSMA/CD and Ethernet forms of local area network is
provided in Chapter 22.

Another form of local area networking DNA Phase V supports is Fiber
Distributed Data Interface (FDDI). The FDDI standard was initially de­
veloped by a committee of ANSI and is now an accepted international
standard described by ISO 9314. An FDDI LAN uses a series of fiber-

FIGURE 5.14

Other Physical
Layer Standards

CHAPTER 5: THE PHYSICAL LAYER

A small FDDI network consisting of a dual ring of trees.

1111111111111111111
1111111111111111111
1111111111111111111

~Primary Ring

/ / Secondary Ring

107

~--Point-to-Point

Fiber-Optic Links

Concentrator

optic point-to-point circuits to form a logical ring configuration. The
FDDI standard supports many configurations. A commonly used
configuration is a dual ring of trees, in which devices called concentra­
tors are connected to form a dual ring structure with a primary ring and
a secondary ring. Individual stations are then connected directly to the
concentrators to form tree structures. (See Figure 5.14.)

FDDI LANs support a data rate of 100 megabits per second and
provide the ability to build very high speed backbone networks that can
be used to interconnect slower CSMNCD networks. FDDI LANs can
also be used to support powerful workstations that must communicate
with one another using very high transmission rates. Additional informa­
tion about the Physical layer for the FDDI form of local area network is
provided in Chapter 23.

The Physical layer of the DNA architecture is structured in a modular
fashion so that as support is required for new forms of circuit, additional
Physical layer specifications can be added to accommodate them. Of par­
ticular interest in today's environment is the emerging technology of inte­
grated services digital networks (ISDN). Support can also easily be added

108

Conclusion

PART II: DNA FUNCTIONAL LAYERS

for other types of LANs, including the token bus technology-com­
monly used in the factory automation environment and based on IEEE
802.4/ISO 8802-4-and the token ring standard, based on IEEE
802.5/ISO 8802-5.

The Physical layer implements the mechanisms required to provide cir­
cuits between network devices. But procedures must be provided that
run on top of these circuits to allow them to be used for exchanging data
in a reliable fashion. These procedures are implemented in the Data Link
layer, the subject of Chapter 6.

Data Link Layer
Services

CHAPTER 6

The Data Link Layer

The Data Link layer is responsible for handling data transmission from
one network device to another and for shielding higher layers from any
concerns about the physical transmission medium. The Data Link layer
uses the point-to-point, multipoint, and multiaccess forms of physical
circuit provided by the Physical layer to implement two fundamentally
different types of data links: nonbroadcast links and broadcast links. A
typical nonbroadcast link might be implemented by a simple point-to­
point telecommunications circuit between exactly two devices. A typical
broadcast link might be implemented by a local area network connecting
hundreds of devices. A broadcast link might be implemented by a multi­
access circuit, as in the case of a CSMA/CD LAN, or by a series of point­
to-point circuits, as in the case of FDDI.

A critical function of the Data Link layer for all types of data links is
to detect errors that occur during transmission, perhaps when a burst of
noise obscures the signals representing one or more bits. Error detection
is accomplished through the use of redundant data transmitted with each
unit of data in the form of a frame check sequence (PCS) field. For
broadcast data links to which many devices may be attached on a peer
basis, the Data Link layer must perform additional functions, such as
scheduling the use of the transmission medium and resolving contention.

The Data Link layer must provide a set of basic services to a user of the
Data Link layer service and perform certain general functions in provid­
ing those services. The OSI model and the DNA Phase V architecture list
the following services and functions of the Data Link layer:

• Data Link Connection Establishment and Release. Dynamically estab­
lishes, for a connection-mode Data Link service, a logical data link con-

10!1

110 PART II: DNA FUNCTIONAL LAYERS

nection between two users of the Data Link service (typically Network
layer entities) and releases the connection when it is no longer required.
These functions are not provided for a connectionless-mode Data Link
service, in which connections are not established or released. (Later in
this chapter we discuss in detail the differences between a connection­
mode Data Link service and a connectionless-mode Data Link service.)

• Data-Link-Service-Data-Units. Defines the data-link-service-data-unit
(DLSDU) passed down from the user of the Data Link layer service to a
Data Link layer entity in the sending device and up from a Data Link layer
entity to the user of the Data Link layer service in the receiving device.

• Framing. Creates a single data-link-protocol-data-unit (DLPDU) from each
DLSDU passed from a user of the Data Link layer service, marks the begin­
ning and the end of the DLPDU when sending, and determines the beginning
and ending of frames when receiving. The informal name most often used
for the DLPDU exchanged between peer Data Link layer entities is frame.

• Data Transfer. Transfers frames over a physical circuit, extracts the
DLSDU from each frame by removing the protocol-control-information
(PCI), and passes DLSDUs up to the user of the Data Link layer service
in the receiving device.

• Frame Synchronization. Establishes and maintains synchronization be­
tween the sending device and the receiving device. This means the receiving
device must be capable of determining where each frame begins and ends.

• Frame Sequencing. Uses sequence numbers to ensure that frames are de­
livered in the same order in which they were transmitted (does not apply
to a connectionless-mode Data Link service).

• Error Detection. Detects transmission errors, frame format errors, and
procedural errors on the data link connection using redundant bits car­
ried in the PCI in the frame.

• Error Recovery. Recovers from errors detected on data links using con­
nection-mode operation (does not apply to a connectionless-mode Data
Link service).

• Identification and Parameter Exchange. Performs a set of identification
and parameter exchange functions, typically prior to the exchange of
frames carrying user data. Some types of Data Link services allow pa­
rameter values to be negotiated.

• Flow Control. Controls the rate at which a user of a connection-mode
Data Link layer service receives frames to prevent a user of the Data Link
layer service from being overloaded (does not apply to a connectionless­
mode Data Link service).

Architectural
Model

FIGURE 6.1

CHAPTER 6: THE DATA LINK LAYER 111

• Physical Layer Services. Uses the services of the Physical layer to transmit
and receive data and to control the operation of the physical communi­
cation link.

• Network Management. Performs network management functions to
control the operation of the Data Link layer. Management functions in­
clude setting data link layer protocol operating characteristics, enabling
and disabling data link connections, monitoring the status of enabled
connections, and performing a loopback test for testing the data link.

A general architectural model of a Data Link layer entity is shown in Fig­
ure 6.1. This model shows how the Data Link layer uses the services of
the Physical layer and how it provides services to a user of the Data Link
layer service. Each specific type of Data Link layer service defines a
somewhat different architectural model, but each is similar to that
shown in Figure 6.1. A user of the Data Link layer service perceives both
stations and ports:

• Stations. In many types of data link, a station corresponds to a particular
instance of a Data Link layer entity and corresponds to a single Physical
layer entity." A station typically represents a physical point of attach-

~:·

With an FDDI data link, a station can contain zero, one, or two Data Link layer
entities, and a station can attach to either one or two full-duplex optical fiber
cable segments. So an FDDI station is somewhat different from other types of
data link station. The FDDI form of data link is described in Chapter 23.

A typical Data Link layer architectural model.

Data Link Data Link Data Link Data Link
Service Service Service

•••

Transmission Medium

112

Service
Definitions and
Protocol
Specifications

FIGURE 6.2

PART 11: DNA FUNCTIONAL LAYERS

ment to the transmission medium. A particular node must implement at
least one station to attach that node to the network. A station is identi­
fied by a station address that is unique among all the stations attached to
the same data link.

• Ports. A Data Link layer port consists of a data structure that represents
a particular user of the Data Link layer service. Each user of the Data
Link layer has a port that it uses to request Data Link layer services. A
particular station can implement any number of ports, and a user can si­
multaneously employ more than one port. However, a port can service
only a single user at a time.

As introduced in Chapter 3, the ISO standards for the Data Link layer
include both service definitions and protocol specifications. The relation­
ship between the services the Data Link layer provides and the protocol
governing its operation is shown in Figure 6.2. As shown there in the
context of the OSI model, the data link protocol uses the services of the
Physical layer to provide a defined set of services to a user of the Data
Link layer service above it.

A user of the Data Link layer service in one node accesses the Data
Link service via a data-link-service-access-point (DLSAP) and passes a
DLSDU for delivery to the user of the Data Link layer service at the

The relationship between the Data Link layer service definition and the Data Link layer protocol
specification.

Data Link Layer Service ----------, r------- Data Link Layer Service

Data Link Layer

The Data Link protocol uses
~the Physical layer service to__..

provide the Data Link layer
service to the Network layer.

Data Link Layer

Physical Layer Service ___ __.t t._ ____ Physical Layer Service

Physical Circuit

FIGURE 6.3

CHAPTER 6: THE DATA LINK LAYER 113

other end of the link. The Data Link layer entity adds PCI to the DLSDU
in the form of a header and a trailer to create a data-link-protocol-data­
unit (DLPDU), or frame, and uses the services of the Physical layer to
transmit the frame across the data link. The Data Link layer entity at the
other end of the link removes the PCI and delivers the enclosed DLSDU
to the user of the Data Link layer service there. This process is summa­
rized in Figure 6.3.

The standards for the layers above the Data Link layer make a clear
separation between the service definition and the protocol specification,
and each is published by ISO in a separate document. The intent is to
have a single ISO service definition and one or more protocol specifica­
tions for each layer. Because the Physical and the Data Link layers are so
tightly integrated in actual implementations, it is common for a single
ISO standard to describe service definitions and protocol specifications
for both the Physical layer and the Data Link layer. Many local area net­
work standards documents take this approach. In the Data Link layer
standards for protocols to support wide area network data links, there is
often not a clear separation between the service definition and the proto­
col specification. The main reason for this is that many of the wide area

The Data Link layer service.

DLPDU (Frame} DLPDU (Frame}

DLSAP - data-link-service-access-point
DLSDU - data-link-service-data-unit
DLPDU - data-link-protocoH::lata-unit
NPDU - network-protocol-data-unit
PCI - protocol-control-information

Physical Circuit

114

Data Link Layer
Service
Definitions

PART II: DNA FUNCTIONAL LAYERS

networking data link protocols were developed before work was com­
pleted on the OSI model.

As with the standards for all the OSI model layers, a Data Link layer ser­
vice definition describes an abstract set of services a user of the Data
Link layer service can request. The service definition can be implemented
in any desired way, and conformance to the standard is not based on any
formal adherence to the service definition. However, it does define what
types of service the Data Link layer must provide to users invoking its
services. Many service definitions now exist for the Data Link layer. The
discussion of the Network layer in Chapters 7, 8, and 9 shows how the
Network layer makes use of widely differing types of Data Link technol­
ogy in providing a unified interface to the Transport layer.

Local Area Network Data Links

Data Link technology for local area networks implements a broadcast
type of data link, in which many stations can be attached on a peer basis
to a common transmission medium. All stations on the link receive the
transmissions of all other stations, and mechanisms must be provided for
determining when a station can transmit and which transmissions should
be accepted.

Service definitions for the local area networking environment are
defined by the IEEE/ISO LAN architecture documented in the IEEE
802/ISO 8802 family of LAN standards and by the standards for the
FDDI form of data link. The IEEE/ISO LAN architecture and the ISO
FDDI standard define a number of ways in which a local area network
can be implemented (e.g., CSMA/CD bus, token bus, token ring, and
FDDI timed token ring).

Figure 6.4 shows how the layering structure of the two lowermost
layers of the OSI model have been evolving as LAN technology has ma­
tured. To present a unified LAN interface to users of the Data Link layer
service, the IEEE/ISO LAN architecture divides the Data Link layer into
two sublayers: the Logical Link Control (LLC) sublayer and the Medium
Access Control (MAC) sublayer. The FDDI form of LAN can also use
the IEEE/ISO LLC sublayer. Since all forms of LANs can share a com­
mon LLC sublayer, they can all present a similar interface to users of the
LLC sublayer. The protocols operating in the LLC sublayer are based on
those defined for HDLC and so share a similar frame format with the
protocols used in the wide area networking environment. The LLC ser-

FIGURE 6.4

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI Model

CHAPTER 6: THE DATA LINK LAYER

Comparison of the layers of the OSI model, the IEEE/ISO LAN architecture, and the FDDI form
of LAN.

Logical Link Control (LLC) Logical Link Control (LLC)
...................................

Medium Access Control (MAC) Medium Access
Control (MAC)

Station

115

Physical Layer Management
Protocol (PHY)

Physical ·-----------------------------
Physical Layer Medium

(SMT)

Dependent (PMD)

IEEE/ISO LAN Architecture FOOi LAN Architecture

vice definition is documented in IEEE 802.2 and ISO 8808-2. The way in
which DNA Phase V implements the LLC service definition is described
in detail in Chapter 21.

Differences in transmission technology are addressed in the MAC
sublayer and in the Physical layer. Various forms of LAN also break the
Physical layer into sublayers. For example, the FDDI form of local area
networking defines a Physical Layer Protocol (PHY) sublayer and a
Physical Layer Medium Dependent (PMD) sublayer. The FDDI standard
also defines a Station Management (SMT) function that interfaces with
the MAC, PHY, and PMD sublayers. The MAC sublayer and the Physi­
cal layer for the CSMNCD and FDDI forms of LAN are described in
Chapters 22 and 23.

LAN data links implement a broadcast form of data link, in which
each station on the data link receives all frames transmitted by all the
other stations. The broadcast data link can be implemented using a mul­
tiaccess circuit in which all stations immediately receive any frame trans­
mitted. A broadcast data link can also be implemented by a collection of
point-to-point circuits forming a ring configuration. With a ring struc­
ture, each frame is repeated from station to station around the ring, thus
ensuring that all stations receive each frame. With a broadcast data link,
a station can send each frame to multiple stations on the data link. A

116 PART II: DNA FUNCTIONAL LAYERS

broadcast form of data link can provide a broad range of services that
allow different types of users to employ simultaneously the services of
the broadcast data link. Such services include the following:

• Multiplexing. This service makes it possible for more than one type of
user to simultaneously use the Data Link layer service. Different types of
users of the Data Link service might include DNA Phase V Network
layer entities, TCP/IP users, and local area transport (LAT) users.

• Address Filtering. Each station on a broadcast data link receives the
frames transmitted by all other stations on the data link. Each frame
contains both a source and a destination station address. The address fil­
tering function allows a station to specify the destination address value
or values it will accept as being addressed to it.

• Protocol Filtering. This service allows a data link user to specify which
types of frames it will accept based on data link addressing. For example,
a user of the Data Link layer service might specify that it will accept only
frames conforming to the Ethernet format and not those conforming to
the IEEE/ISO CSMA/CD frame format.

• Multicasting. This service allows a station to send a frame to multiple
destination stations on the data link.

The services associated with broadcast forms of data links are dis­
cussed further in Chapter 22 on the CSMA/CD form of local area data
link and in Chapter 23 on FDDI.

Wide Area Network Data Links

Data link technology for wide area networking typically implements a
nonbroadcast type of data link in which only two stations are attached
using a point-to-point facility. Multipoint data links are also supported
in some situations, although, as discussed in Chapter 5, a multipoint cir­
cuit is modeled in the Data Link layer as a collection of point-to-point
links. The main data link protocol for the wide area networking environ­
ment is High-level Data Link Control (HDLC), which has its roots in
IBM's Synchronous Data Link Control (SDLC), first described in the
mid-1970s. HDLC predates the OSI model, and the ISO HDLC standard
itself contains no separate service definition of the services the Data Link
layer provides to the layer above. The reason for this is that the HDLC
standard predates the OSI model and was standardized before there was
such a clear distinction between a service definition and a protocol spec­
ification. The DNA Phase V documentation for HDLC does, however,

ISO 8886 Data
Link Service
Definition

Connectionless­
Mode Data Link
Service

CHAPTER 6: THE DATA LINK LAYER 117

contain a precise definition of the service interface between the Data
Link layer and the layer above. The documentation of the DDCMP data
link protocol also contains a precise definition of the Data Link layer ser­
vice interface.

In an attempt to unify the services and protocols defined for the Data
Link layer, ISO has published ISO 8886, Data Link Service Definition.
This service definition defines an abstract set of service primitives, each
with a defined set of parameters, that defines the services a Data Link layer
entity provides to a user of the Data Link layer service. The Data Link ser­
vice definition defines both a connectionless-mode service and a connec­
tion-mode service. These services are similar to those defined by the
IEEE/ISO LAN architecture service definition, described in Chapter 21.

The ISO Data Link service definition, however, is less useful than the
service definitions defined for the other layers in the OSI architecture.

NETWORK ARCHITECT

The Data Link service is much more of an architectural abstraction than, say,

the Network layer service. This is because, in reality, the service the Data Link

layer supplies is very dependent on the type of data link used. Frankly, ISO

8886 really exists only because of the feeling that every layer "ought to have" a

single service definition.

To give a feeling for the type of service the Data Link layer provides,
we next describe the ISO 8886 Data Link layer service definition. How­
ever, the DNA Phase V architectural specifications describe separately
the service that each type of data link supplies to a user of that data link.
The types of data link supported by DNA Phase V are introduced later in
this chapter and are described in detail in the chapters in Part V.

We can think of a connectionless-mode Data Link service as a black box.
The user of the Data Link layer service at one end of the data link inserts
a DLSDU into the black box. If no error occurs during transmission to
corrupt the data, an identical copy of the DLSDU emerges from the
black box at the other end of the link, and the user of the Data Link layer
service there accepts it. When a transmission error occurs, the Data Link
service detects the error, discards the erroneous data, and nothing
emerges from the other end of the black box.

118 PART II: DNA FUNCTIONAL LAYERS

The DL_UNITDATA Service

A connectionless-mode Data Link service defines a single data transfer
service with the two service primitives listed in Box 6.1. The time-se­
quence diagram in Figure 6.5 shows the way in which the two service
primitives are issued in providing the connectionless-mode Data Link
service.

To send a DLSDU from one Data Link layer service user to another
across a data link, the Data Link layer service user in the sending device
issues a DL_UNITDATA.request primitive to a Data Link entity in the
sending device. The Data Link entity transfers the DLSDU specified by
the user_data parameter to the device defined by the destination_address
parameter. The Data Link entity in the receiving device passes the
DLSDU to the user of the Data Link layer service at the destination by is­
suing the DL_UNITDATA.indication service primitive. If something
happens during frame transmission to corrupt the data in the DLSDU,
the Data Link layer entity in the destination device detects this fact, dis­
cards the erroneous frame, and does not issue the DL_UNITDATA.indi­
cation primitive. Thus, when a transmission error occurs, the user of the
Data Link layer service in the destination device has no knowledge that
the delivery of a DLSDU was even attempted. Neither the source nor the
destination station is aware that an error has occurred.

Connection-Mode With a connection-mode Data Link service, a logical connection between
Data Link Service the sending and the receiving stations must be established before data

transfer can begin. The logical connection must be maintained while

F 1 G u RE 6. 5 A lime-sequence diagram for the DL_UNITDATA service.

DL_UNITDATA.

BOX 6.1

Connectionless­
Mode Data Link
Service Primitives

CHAPTER 6: THE DATA LINK LAYER

The DL_UNITDATA Service

DL_UNITDATA.request

DL UNITDATA.indication

source address
destination address
quality_of _service
user data

source address
destination address
quality_ of_ service
user data

119

data transfer proceeds, and the connection is released after all data trans­
fer operations have been completed. With a connection-mode Data Link
service, the user of the Data Link service at one end requests a connec­
tion, the Data Link service and the user at the other end agree, and the
Data Link service establishes the connection. We can think of the con­
nection-mode Data Link service as a pair of pipes that connect two users
of the Data Link layer service, one pipe for data flowing in each direc­
tion. A user of the Data Link layer service at one end inserts a DLSDU
into the appropriate pipe, and an identical copy of the DLSDU emerges
at the other end. The protocol that provides a connection-mode Data
Link service attempts to correct any errors detected, most often by auto­
matically retransmitting frames found to be in error. With a connection­
mode Data Link service, an identical copy of each DLSDU emerges from
the pipe for each DLSDU inserted, whether or not transmission errors
occur. If an error occurs from which the Data Link service cannot re­
cover, it releases the connection and informs the two Data Link layer ser­
vice users of this fact.

For the connection-mode service, the Data Link service definition
defines four services, each of which involves a separate set of service
primitives. The service primitives for the connection-mode Data Link
service are listed in Box 6.2 and are described below:

120

BOX 6.2

Connection-Mode
Data Link Service
Primitives

PART II: DNA FUNCTIONAL LAYERS

The DL_CONNECT Service

DL_CONNECT.request

DL CONNECT.indication

DL_CONNECT.response

DL CONNECT.confirm

The DL_DAT A Service

DL _DATA. request

DL DATA.indication

The DL_DISCONNECT Service

DL_DISCONNECT.request

DL DISCONNECT.indication

called address
calling_ address
quality_of_service

called address
calling_ address
quality_of _service

responding_ address
quality_of _service

responding_address
quality_of_service

user data

user data

reason

originator
reason

BOX 6.2

continued

CHAPTER 6: THE DATA LINK LAYER

The DL_RESET Service

DL_RESET.request

DL RESET.indication

DL_RESET.response

DL RESET.confirm

reason

originator
reason

121

• DL_CONNECT. The DL_CONNECT connection establishment service
is used to establish a logical link connection between two users of the
Data Link layer service. The DL_CONNECT service is a confirmed ser­
vice in which the service requester is informed of the success or failure of
the attempt to establish a connection with a distant peer Data Link layer
service user. The DL_CONNECT service is provided through the four
DL_CONNECT service primitives. Figure 6.6 (page 122) includes time­
sequence diagrams that show how service primitives are issued to pro­
vide the DL_CONNECT service.

• DL_DATA. The DL_DATA service is a data transfer service that can be
used by two users of the Data Link layer service after a connection has
been successfully established with the DL_CONNECT service. The
DL_DATA service is provided by the two DL_DATA service primitives.
Figure 6.7 (page 123) is a time-sequence diagram that shows the se­
quence in which the two DL_DATA data transfer service primitives are
issued. Notice that the requester of the data transfer operation is not in­
formed of the success or failure of the data transfer operation. However,
the connection-mode data transfer service is a guaranteed delivery ser­
vice because the Data Link layer service requester can assume delivery
was accomplished as long as the connection is not released or reset.

• DL_DISCONNECT. The DL_DISCONNECT service is used to discon­
nect a connection previously established by the DL_CONNECT service.

122 PART II: DNA FUNCTIONAL LAYERS

FIGURE 6.6 Time-sequence diagrams for the DL_CDNNECT service.

DL_CONNECT.

DL_CONNECT. DL_CONNECT.

Successful Data Link connection establishment Data Link connection establishment collision

Data Link user rejection of an attempt to establish
a Data Link connection

Data Link service rejection of an attempt to establish
a Data Link connection

The DL_DISCONNECT service is provided through the two DL_DIS­
CONNECT service primitives. Figure 6.8 (page 124) includes time­
sequence diagrams that show ways in which a connection can be re­
leased using the DL_DISCONNECT service.

• DL_RESET. The DL_RESET service can be used to reset a link connec­
tion to its initial state while data is being transferred. The reset operation
can be issued by either user of the Data Link layer service or by the Data
Link layer entity on either end of the link. The DL_RESET service is pro­
vided through the DL_RESET service primitives. Although the standard

FIGURE 6.7

CHAPTER 6: THE DATA LINK LAYER 123

A lime-sequence diagram for the DL_DATA service.

defines a reset service, it is not implemented in any actual data link im­
plementation.

Connectionless- At first glance it may appear that the connection-mode Data Link service
Mode versus is to be preferred because of its ability to handle error correction. How-
Connection-Mode ever, each type of service has its own advantages and disadvantages, and
Service both types of Data Link services are employed in DECnet Phase V net-

works. With local area network technology, the transmission medium is
highly reliable, and the vast majority of transmitted frames do get
through. Also, a local area network is a broadcast type of service in
which any device on the network can communicate with any of the oth­
ers. Any two users typically stay in communication only for a small frac­
tion of a second due to the very high transmission speeds used. For these
reasons most local area network implementations provide a connection­
less-mode Data Link service. Recovery from the rare transmission errors
that occur is left to higher layers.

When dial-up telecommunications facilities are used to connect two
devices, however, the circuit is more error prone than a local area net­
work circuit, and a connection-mode Data Link service is most often em­
ployed to handle retransmission of erroneous frames in the Data Link
layer to provide a reliable Data Link service.

The two types of Data Link services are not incompatible and can co­
exist in the same network. In a complex network, a connectionless-mode
Data Link service might be used in a part of the network implemented
using a LAN, and a connection-mode Data Link service might be used in

124 PART II: DNA FUNCTIONAL LAYERS

FIGURE 6.8 Time-sequence diagrams for the DL_DISCONNECT service.

Data link connection release requested by a Data link
service user

Data link connection release requested simultaneously
by both Data link service users

Data link connection release requested by the Data link
service

Data link connection release requested simultaneously
by a Data link service user and the Data link service

Data Link Layer
Protocol
Specifications

other parts of the network constructed using long-distance telecommuni­
cations facilities. Such a situation is illustrated in Figure 6.9.

The Data Link service definition describes the services a Data Link entity
provides to a user of the Data Link layer service above it. A protocol
specification for the Data Link layer, on the other hand, precisely defines
the formats of the data-link-protocol-data-units (DLPDUs), or frames,
peer entities in the Data Link layer exchange with each other. It also
specifies the rules that govern the exchanges of frames that take place in

FIGURE 6.9

1111111111111111111

::::::::::::::::::: c::::J

Network

Data Link

Physical

CHAPTER 6: THE DATA LINK LAYER

Combination of connectionless-mode Data Link service and connection-mode Data Link
service.

1111111111111111111

::::::::::::::::::: c::::J

Network Network

Data Link

Physical

125

Data Link Service Data Link Service

supplying the Data Link service. The entity in each communicating de­
vice must employ exactly the same frame formats and must follow the
same rules; otherwise, communication is not possible. Therefore, confor­
mance to the ISO standards for the Data Link layer is based on exact ad­
herence to a protocol specification. The interface between the Data Link
layer and a user of the Data Link layer service defined in the service defi­
nition is abstract; it can be implemented in any desired way. But the
frames that two peer Data Link layer entities exchange with each other
are real; we can actually see the frames flowing over the wire if we use
appropriate test equipment.

Many protocol specifications currently exist that define frame for­
mats and procedures for exchanging frames in the Data Link layer. For
example, the IEEE/ISO LAN standards documents describe protocol
specifications for the local area networking environment; the documen­
tation of HDLC describes the protocol specification for HDLC links; the
documentation of X.25 protocols describes the protocol specification for
the Data Link layer in the X.25 packet-switched data network environ­
ment; and DNA architectural documentation defines the protocol speci­
fication for DDCMP links. These various protocol specifications are de­
scribed in the chapters in Part V.

The next sections describe general protocol mechanisms used in im­
plementing the protocols the Data Link layer uses in controlling data
link operation. When a connectionless-mode Data Link service is used,
some of these protocol mechanisms may not be implemented in the Data

126 PART 11: DNA FUNCTIONAL LAYERS

Link layer; instead, similar protocol mechanisms must be provided in
higher layers to provide similar functions.

Error Detection

When a Data Link layer entity receives a DLSDU from a user of the Data
Link layer service, it encapsulates the DLSDU in a frame. As part of the
encapsulation process, the Data Link layer entity places the frame
through an algorithm that calculates a cyclical redundancy check (CRC)
value. This CRC value is then placed in the FCS field in the frame's
trailer and transmitted over the Data Link as part of the frame. When the
Data Link layer in a receiving station accepts a frame, it places the frame
through an identical algorithm to calculate its own CRC value. If the cal­
culated FCS field value matches the received FCS field value, the Data
Link layer accepts the frame and assumes it has not been corrupted dur­
ing transmission. It then extracts the DLSDU from the frame and passes
the DLSDU up to the user of the Data Link layer service. If the values do
not match, the Data Link layer assumes the frame has been corrupted,
possibly through a transmission error, and discards it. Since this error
detection mechanism is operating in the Data Link layer, the user of the
Data Link layer service never receives the DLSDUs contained in cor­
rupted frames.

Error Correction

With a connectionless-mode Data Link service, error correction is left to
a higher layer. The connection-mode Data Link service, however, imple­
ments a mechanism that causes the missing frames resulting from trans­
mission errors to be retransmitted. A sending station places a sequence
number in each frame it sends. A receiving station checks the sequence
numbers in the frames it receives to verify there are no missing frames. If
the receiving station detects one or more missing frames, it notifies the
sending station of that fact and the sending station retransmits the miss­
ing frame(s).

Flow Control

Flow control mechanisms control the flow of frames between a sender
and a receiver to prevent the sender from transmitting frames faster than
the receiver can accept them. One type of flow control mechanism uses a
window to control the flow of frames. With this type of flow control,

CHAPTER 6: THE DATA LINK LAYER 127

there is a limit to the number of frames the sender can transmit before it
must wait for an acknowledgement. This value is known as the window
size. The window size value that sending and receiving Data Link entities
maintain prevents a sending station from sending more frames than the
receiving station is able to accept at a given time. With some protocols,
Data Link entities exchange control frames during link initialization to
exchange window size values. When a Data Link layer entity sends the
number of frames specified by the window size without receiving an ac­
knowledgement, it stops sending until it receives an acknowledgement.

The window size limits the number of frames the sending Data Link
layer entity transmits and thus prevents the receiving Data Link layer en­
tity from being overloaded. If the Data Link layer entity in the receiving
station waits for multiple frames to arrive, the number of frames allowed
to accumulate before a response must be sent depends on the window
size. The receiving Data Link layer entity can also use acknowledgements
and control frames to control the rate at which it receives frames. In this
way the receiving Data Link layer entity can ensure it does not receive
more data than it has the resources to handle.

DNA Phase V Data The Data Link layer in DNA Phase V includes support for several stan­
Links <lards for the Data Link layer to handle the different types of data links

used to construct a computer network. The Data Link layer protocols
defined in the DNA Phase V architecture include protocols suitable for
implementing local area network data links and wide area network data
links.

Local Area Network Data Links

Local area networking protocols are most often used when two or more
network devices are located relatively close together (generally less than
a mile or two). As discussed earlier, local area networks implement a
broadcast form of data link implemented using either a bus- or a tree­
structured multiaccess circuit or a collection of point-to-point circuits
forming a ring configuration. The LAN data links supported by DNA
Phase V include the following:

• CSMA/CD LAN. This is a LAN standard defined by the IEEE and docu­
mented in IEEE 802.2 and IEEE 802.3. These standards are also pub­
lished by ISO as ISO 8802-2 and ISO 8802-3. CSMNCD stands for car­
rier sense multiple access with collision detection and refers to the way

128 PART II: DNA FUNCTIONAL LAYERS

access to the communication medium is controlled. A CSMNCD LAN
typically uses a coaxial cable for transmission at a rate of 10 megabits
per second. The CSMA/CD LAN data link is described in detail in Chap­
ter 22. The CSMNCD LAN data link also provides support for the Eth­
ernet Specification, which describes the local area networking scheme
jointly developed by Digital, Intel, and Xerox and which has been used
in DECnet networks for many years. Ethernet was used as the model for
the development of the IEEE/ISO CSMNCD standard. It is similar to
IEEE/ISO CSMNCD but uses a slightly different frame format. Ethernet
is defined in DNA Phase V mainly for compatibility with Phase IV of the
architecture. The Ethernet Specification is also described in Chapter 22.

• Fiber Distributed Data Interface (FDDI). The fiber distributed data inter­
face (FDDI) is a form of LAN that uses a series of point-to-point fiber­
optic circuits forming a ring configuration. An FDDI LAN supports a
data transmission rate of 100 megabits per second. The FDDI standard
was developed by a committee of ANSI and has now also been accepted
by ISO as an international standard (ISO 9314). It shares the same spec­
ifications for the Logical Link Control (LLC) layer as IEEE 802.2/ISO
8802-2 and so is compatible with the IEEE/ISO standards for local area
networks. FDDI is described in detail in Chapter 23.

Because the IEEE/ISO forms of local area network and FDDI can
both use a common Logical Link Control sublayer and can present a
similar interface to users of the Data Link layer service, the DNA Phase
V architecture is capable of accommodating the other forms of local area
network in common use, including the token bus form based on IEEE
802.4/ISO 8802-4 and the token ring form based on ISO 802.5/ISO
8802-5.

Wide Area Networking Data Links

Wide area networking protocols are most often used when two or more
network devices must be connected using a relatively long-distance
telecommunications facility, such as a leased telephone line or a private
microwave or satellite circuit. Wide area networking protocols are used
over distances ranging from a few miles to many thousands of miles. The
wide area networking data links defined by DNA Phase V include the
following:

• High-level Data Link Control (HDLC). This is a data link protocol de­
scribed by international standards published by both CCITT and ISO.
Many variations and modes of operation of HDLC have been defined.

Conclusion

CHAPTER 6: THE DATA LINK LAYER 129

DNA Phase V specifies the use of both the normal response mode
(NRM) for data links operating in a half-duplex fashion and the asyn­
chronous balanced mode (ABM) for full-duplex links. Normal response
mode is essentially equivalent to IBM's synchronous data link control
(SDLC) protocol used in SNA networks; asynchronous balanced mode is
the preferred operating mode in DNA Phase V. HDLC is described in de­
tail in Chapter 19.

· Link Access Procedure-Balanced (LAPB). This is a variant of HDLC
that describes the operation of the Data Link layer in a packet-switched
data network that implements CCITT Recommendation X.25. The
DNA Phase V architecture includes support for the LAPB specification
for compatibility with X.25. CCITT Recommendation X.25 is described
in Chapter 18.

· Digital Data Communications Message Protocol (DDCMP). This is a
Digital proprietary protocol that has been used in DECnet networks for
many years. It is defined in DNA Phase V mainly for compatibility with
Phase IV of the architecture. DDCMP is described in detail in Chapter
20.

In the DNA Phase V environment, a major user of the Data Link service
is the Network layer. Whereas the Data Link layer is concerned only
with transmitting data across a single data link between adjacent net­
work devices, the Network layer is concerned with carrying data be­
tween any two devices in the network. Chapter 7 introduces the Net­
work layer and describes the services it provides to the Transport layer
above it; Chapter 8 describes the protocols the Network layer uses to
supply the Network service; and Chapter 9 describes the protocols that
control the way in which packets are routed through the network.

Subnetworks

130

CHAPTER 7

The Network Layer

The purpose of the Network layer is to provide a means by which Trans­
port layer entities operating in any two computing systems in the net­
work can exchange data with one another as if they were directly con­
nected. From the perspective of the Network layer, a DECnet network is
made up of a collection of general-purpose computing systems and spe­
cialized devices, such as routers and nameservers. We will call all such
devices network nodes, or nodes, as we have been doing in earlier chap­
ters. As we introduced in Chapter 3, there are two types of node: end
nodes are typically the source and the destination of user data, and in­
termediate nodes relay user data through the network when the two end
nodes are not directly connected. Intermediate nodes are often called
routers; this is the term we will often use in this book because it is more
descriptive of their function.

The nodes making up the network are interconnected by data links.
Nodes and data links together form subnetworks, where a collection of
nodes are attached to a single virtual transmission medium so that each
node is one hop from any other node. A hop is defined as a traversal
from one node to an adjacent node across a single data link.· A subnet­
work employing a broadcast form of data link technology, such as a

• Traversing from one station to any other in a ring-structured LAN or in an
extended LAN is viewed as a single hop, even though a data unit may be
relayed many times from one device to another through the LAN. Relaying
performed by stations, repeaters, or bridges in a LAN or extended LAN is a
Data Link layer function and is hidden from the Network layer.

Services and
Protocols

FIGURE 7.1

CHAPTER 7: THE NETWORK LAYER 131

CSMNCD LAN, can contain two or more nodes; a subnetwork employ­
ing a point-to-point form of data link technology, such as an HDLC
telecommunications link, has exactly two nodes. An X.25 packet­
switched data network (PSDN) is another example of a type of subnet­
work that contains two or more nodes. In an X.25 PSDN, the internal
workings of the network are hidden from the individual computers at­
tached to the network, and an X.25 PSDN appears as a single virtual
transmission medium, in which each node is a single hop from any other
node attached to the network.

As with other OSI model layers, ISO standards for the OSI architecture
define the Network layer in terms of a service definition and a protocol
specification. The relationship between the services the Network layer
provides and the protocol governing its operation is shown in Figure 7.1.
As shown there, a Network layer protocol uses the services of the Data
Link layer to provide a defined set of services to the Transport layer
above it.

In a typical use of the Network layer service, illustrated in Figure
7.2, a Transport layer entity in one node accesses the Network layer ser­
vice via a network-service-access-point (NSAP) and passes a network­
service-data-unit (NSDU) to the Network layer entity for delivery to the
Transport layer entity at the destination node. The Network layer entity
adds PCI to the NSDU in the form of a header to create a network-

The relationship between the Network layer service definition and the Network layer protocol
specification.

Network Layer Service -----~

Network Layer

Network layer protocols use the
Data Link layer service to___...
provide the Network layer
service to the Transport layer.

Data Link Layer Service ---~t t~---

Network Layer Service

Network Layer

132 PART II: DNA FUNCTIONAL LAYERS

FIGURE 7.2 The Network layer service.

TPDU

Network Layer

NPDU (packet) NPDU (packet)

NSAP - network-service-access-point
NSDU - network-service-data-unit
NPDU - network-protocol-data-unit
TPDU - transport-protocol-data-unit
PCI - protocol control information

Routing

protocol-data-unit (NPDU) and then passes the NPDU to the Data Link
layer in the form of a DLSDU. * We will typically use the informal term
packet in the chapters on the Network layer to mean an NPDU. If there
are one or more routers between two communicating end nodes, Net­
work layer entities in the routers move the packet to the destination
node. The Network layer entity in the destination node removes the PCI
from the packet and delivers the enclosed NSDU to the Transport layer
entity there.

A major function of the Network layer is to determine the best path for
moving each packet to its destination based on the current topology of
the network. This is called the routing function. t The network might be

* The Network layer supports a segmentation facility. If it is used, a single NSDU
may be split into multiple pieces, each of which is carried in a separate NPDU
with its own protocol control information.

t ISO standards for the Network layer use the spelling "routeing," but we use the
more common spelling, "routing," throughout this book, even in the titles of
the standards themselves.

CHAPTER 7: THE NETWORK LAYER 133

made up of a large number of nodes interconnected in various ways. It is
also likely, especially in a large network, that the topology of the network
is constantly changing as new nodes and links are added, as existing
nodes and links are removed, and as failures occur. To determine the best
path for a packet at any given instant, the DNA Phase V Network layer
uses a distributed routing algorithm to determine the route over which
each packet travels in reaching its destination. The operation of the DNA
Phase V routing algorithm is described in Chapter 9, and specific details
concerning how the routing algorithm operates need not concern us here.
Routers also perform a relaying function in moving each packet from one
node to the next over the route it travels through the network.

Network Layer The Network layer service definition is described in the following inter-
Service Definition national standards:

• ISO 8348, Network Service Definition

• Amendment 1, Connectionless-mode Transmission

• Amendment 2, Network Layer Addressing

• Amendment 3, Additional Features of the Network Service

With the Data Link layer, most experts agree there is a place for
both a connectionless-mode and a connection-mode Data Link service.
However, the world of computer networking has historically been di­
vided into two camps regarding the one type of Network service a com­
puter network should provide.

NETWORK ARCHITECT

The CLNS/CONS controversy was once a raging battle. Now it's more like an

armed truce, since everyone realizes that nothing dramatic is going to happen

very quickly. Everyone now is rather bored with it as well. It's kind of like
North and South Korea.

A computer network typically offers users either a connectionless­
mode Network service (CLNS) or a connection-mode Network service
(CONS). Digital is in the CLNS camp, although it does provide support
for the CONS. IBM and the telecommunications industry are mainly in
the CONS camp. We shall have more to say about this division after we
examine the characteristics of the two forms of Network service.

134

The
Connectionless­
Mode Network
Service (CLNS)

PART II: DNA FUNCTIONAL LAYERS

The connectionless-mode Network service makes routing decisions inde­
pendently for each packet, and each packet may flow over a different
path through the network. A connectionless-mode Network service can
be thought of as a black box. The Transport entity at one end inserts an
NSDU into the black box. Then, if nothing goes wrong, an identical
copy of the NSDU emerges from the black box at the other end and is re­
ceived by the Transport layer entity there. Three things can go wrong
during the operation of a connectionless Network service:

• Lost Packets. It is possible for the Network layer to lose a packet. For ex­
ample, a transmission error may occur when the Network layer trans­
mits, over a connectionless data link, a frame containing a packet. In
such a case, the connectionless Data Link layer detects the error and dis­
cards the frame. When the Network service loses a packet, no NSDU
emerges from the black box at the destination. The Transport entity is
not explicitly notified of the error; the NSDU in the lost packet simply
does not appear at the destination.

• Out-of-Sequence Packets. Each packet may take a different amount of
time to arrive at its destination. So, if the Transport layer entity at one
end inserts a number of NSDUs into the black box, they may appear at
the other end in a sequence different from the sequence in which they
were sent.

• Duplicate Packets. Duplicate packets can also be received. For example,
a sending Transport entity uses a timer to help determine if an NSDU it
has sent has been received. If the timer expires before the sending Trans­
port entity receives an acknowledgement, the Transport entity sends the
NSDU again. In some cases, the timer may expire while an acknowledge­
ment is still in transit, thus causing duplicate NSDUs to arrive at the des­
tination.

Because it is possible for some packets to be lost or to travel over
· different paths and thus delivered in a sequence different from the se­
quence sent or delivered more than once, a connectionless-mode Net­
work service cannot be considered reliable. As we pointed out in Chap­
ter 3, the word reliable in this context does not have a "good" or "bad"
connotation. It simply means that a higher layer-typically the Trans­
port layer-is responsible for detecting lost packets and requesting their
retransmission, placing the packets into their proper sequence, and de­
tecting and discarding duplicate packets.

A connectionless-mode Network service is often called a datagram
service.

Connectionless­
Mode Network
Service Definition

BOX 7.1

Connectionless­
Mode Network
Service Primitives

FIGURE 7.3

CHAPTER 7: THE NETWORK LAYER 135

Box 7.1 lists the service primitives defined in ISO 8348, Network Service
Definition, Amendment 1: Connectionless-Mode Transmission. Figure
7.3 is a time-sequence diagram that shows the sequence in which the ser­
vice primitives are issued. A Transport layer entity in the source node is­
sues an N_UNITDATA.request primitive to the Network layer entity
below it to hand an NSDU over to the Network layer. The Network
layer entity encapsulates the NSDU in a packet for transmission through
the network. The Network layer entities in the two end nodes and the
Network layer entities in all the routers along the path the packet travels
provide the Network layer service. They work together to transfer the

N_UNITDATA.request

N UNITDATA.indication

source address
destination address
quality_of_service
user data

source address
destination address
quality_of_service
user data

A lime sequence diagram for the N_UNITDATA service.

N_UNITDATA.

136

Connection-Mode
Network Service
(CONS)

PART II: DNA FUNCTIONAL LAYERS

NSDU specified in the user_data parameter to the node whose network
address is specified in the destination_address parameter at a quality of
service described by the quality _of_service parameters. The Network
layer entity in the destination node extracts the NSDU from the packet
and passes it up to the Transport layer entity by issuing the N_UNIT,
DATA.indication service primitive.

CLNS Interface Procedure Declarations

The DNA Phase V architecture also defines the abstract service interface
between a Network layer entity and a Transport layer entity. The proce­
dure declarations that define the services the Network layer provides to
its user (most often a Transport layer entity) in supplying the connection­
less-mode Network service are listed in Box 7.2.

With the connection-mode Network service (CONS), a Network service
user requests that a connection be established, the Network service and
the user at the other end both agree, and the Network service establishes
the connection, sometimes called a virtual circuit.

We can think of the connection-mode Network service as two pipes
between a pair of Transport layer entities, one pipe for data flowing in
one direction and another for data flowing in the opposite direction. The
Transport entity at one end inserts an NSDU into the appropriate pipe.
When all goes well, an identical copy of the NSDU emerges at the other
end. In a network providing the CONS, all the physical resources re­
quired to support the pipe are typically assigned when the connection is
established, and all packets flowing through the pipe typically flow over
the same physical path. Once a connection has been established, full ad­
dressing information does not have to be included in each packet flowing
over the connection; all that is needed is a reference to the connection a
packet is associated with. The NSDUs that the Transport layer sends into
the network always arrive in the same sequence in which they were sent,
and the CONS attempts to ensure that no packets are lost or duplicated.
If an error occurs that prevents a packet from being delivered, the con­
nection is released and the two Transport layer entities are informed that
the virtual circuit is no longer available.

The connection-mode Network service is considered to be a reliable
service; failures are automatically corrected, if necessary, to ensure that
NSDUs inserted into the pipe at one end emerge intact and in the same

BOX 7.2

CLNS Interface
Procedure
Declarations

CHAPTER 7: THE NETWORK LAYER

The following function and procedure declarations define the
abstract interface between the Network layer and a user of the
Network layer in terms of the services a Network layer entity pro­
vides to a user requesting the connectionless-mode Network service
(CLNS).

Port Control Functions

• OpenPort. Allocates a port for use by a Network service user. A port
is a data structure that maintains pointers to its users, identifies the
network addresses associated with a port, and identifies the entity
using the port.

• ClosePort. Deallocates a port opened via the OpenPort function.

Data Transfer Functions

• Transmit. Causes an NSDU to be queued for transmission by the
Network layer.

• CheckTransmitBuffer. Checks the status of a previously enqueued
transmit buffer.

• SupplyReceiveBuffer. Provides a receive buffer for use by a Network
layer entity.

• CheckReceiveBuffer. Determines whether any buffer supplied with a
SupplyReceiveBuffer function has been filled with received data and
returns the contents of the buffer to the Network service user if it
contains a packet.

Miscellaneous Functions

• ReadBlockSize. Determines the maximum packet size the Network
layer entity can transmit without having to segment the packet.

• GetAddresses. Determines the set of network addresses associated
with a port.

137

sequence at the other end. As we pointed out in Chapter 3, the term reli­
able in this context does not necessarily have a "good" connotation. It
simply means that appropriate error-recovery procedures are imple­
mented in the Network layer. As with the connection-mode Data Link
service described in Chapter 6, failures can occur to cause the connection
to be released. However, when a failure occurs, the Transport entities
both ends are notified that the connection was released. Experts at D

138 PART II: DNA FUNCTIONAL LAYERS

tal, however, question whether the CONS, especially in a large and het­
erogeneous network, really does provide a reliable service.

NETWORK ARCHITECT

When connection-oriented X.25 networks began to be used, we quickly ob­

served that they didn't really work reliably and that you still had to treat an

X.25 Network service as an unreliable service. The people who were trying to

sell X.25 as a service wanted something they could standardize, in order to cre­

ate a bigger market for their services. So they put a whole bunch of things into

X.25, which then evolved into the CONS. This myth of the CONS being reli­

able was started at that point because they were attempting to provide what

they thought was a reliable service. As it turned out, they can't provide a reliable

service because of congestion problems. Just as in the telephone service, a call

gets disconnected every once in a while. But when people are talking on the tele­

phone and that happens, they can recover. The X.25 people forgot that people

do recover on an end-to-end basis with their conversations. So that's how com­

puters should be programmed to operate. We don't have any problem with the

concept of virtual circuits, providing the virtual circuits are provided by the

Transport layer on an end-to-end basis between the two computers involved.

But where the unreliability comes in is when you start stacking all the virtual

circuits on top of each other, through all the intermediate machines, and end up

having to trust the integrity of all those intermediate machines.

We will discuss further this issue of reliability later in this chapter
when we examine the CLNS versus CONS controversy.

DNA Phase V and the CONS

DNA Phase V incorporates support for both the CLNS and the CONS.
However, this should not be taken to mean that when an organization im­
plements a DECnet Phase V network it can choose the style of Network
service it prefers. A DECnet Phase V network always operates internally
using a connectionless Network service. The Network layer in routers pro­
vides only the CLNS, and the DNA Phase V routing functions use only the
CLNS in relaying user data through the network. The DNA Phase V rout­
ing algorithm is closely tied to the connectionless-mode Network service. It
is interesting to note that, at the time of this writing, standards for routing
exist only for connectionless-oriented routing. There are currently no stan­
dards-even de-facto ones-for connection-oriented routing.

CHAPTER 7: THE NETWORK LAYER 139

The normal operating mode of the Network layer in an end node is
also to use the CLNS. For example, a Transport entity in a DECnet
Phase V node sends data to a Transport entity in another DECnet Phase
V node via DECnet Phase V routers using the CLNS. The DNA Phase V
Network layer in end nodes, however, does provide full support for the
CONS as an alternative to the CLNS. But direct support for the CONS
in the Network layer has a limited scope within the context of the DNA
Phase V architecture. The CONS might be requested by a Transport en­
tity in a DNA Phase Vend node when it needs to communicate with a
Transport entity in a non-DNA end node supporting only the CONS.
This facility typically would be used when a DNA end node needs to
communicate over an X.25 PSDN with an X.25 node supporting only
the CONS.

Connection-Mode Network Service Definition

Box 7.3 lists the service primitives defined in ISO 8348, Network Service
Definition, for the connection-mode Network service. The service primi­
tives listed in Box 7.3 are issued in a manner similar to that of the con­
nection-mode service primitives defined for the Data Link layer in Chap­
ter 6. We do not describe these further here, since the CONS has limited
use in a DECnet Phase V network.

CONS Interface Procedure Declarations

The procedure declarations defining the abstract service interface be­
tween the Network layer and a user communicating with another user
over a PSDN conforming to CCITT Recommendation X.25 are listed in
Box 7.4 (page 142).

The CLNS versus The proponents of the connection-mode Network service say the Net­
CONS Controversy work layer should provide a reliable service, and users should not have

to worry about end-to-end controls above the Network layer; the net­
work should do this work for them. It permits a much simpler Transport
layer protocol to be used, since the Transport layer does not have to
check for lost, out-of-sequence, or duplicate packets. In the CONS camp
fall the common carriers who are used to supplying network services and
charging for them.

The proponents of the connectionless-mode Network service, on the
other hand, say the job of the Network layer is to move the bits from one
end of the network to another and nothing else. This camp is represented

140

BOX 7.3

Connection-Mode
Network Service
Primitives

PART II: DNA FUNCTIONAL LAYERS

The N_CONNECT Service

N_CONNECT.request

N CONNECT.indication

N_CONNECT.response

N CONNECT.confirm

The N_DATA Service

N_DATA.request

N DATA.indication

called address
calling_ address
receipt_ confirmation_ selection
expedited_data_selection
quality_of_service, user data

called address
calling_ address
receipt confirmation selection
expedited_data_selection
quality_of_service
user data

responding_ address
receipt_confirmation_selection
expedited_data_selection
quality_of_service
user data

responding_ address
receipt confirmation selection
expedited_data_selection
quality_of _service, user data

user data
confirmation_request

user data
confirmation_ request

BOX 7.3

continued

CHAPTER 7: THE NETWORK LAYER

The N_DATA_ACKNOWLEDGE Service

N_DATA_ACKNOWLEDGE.request

N DATA ACKNOWLEDGE.indication

The N_EXPEDITED_DATA Service

N_EXPEDITED_DATA.request

N EXPEDITED DATA.indication

The N_RESET Service

N_RESET.request

N RESET.indication

N_RESET.response

N RESET. confirm

The N_DISCONNECT Service

N_DISCONNECT.request

N DISCONNECT.indication

user data

user data

reason

originator
reason

reason
user data
responding_ address

originator
reason
user data
responding_ address

141

142

BOX 7 .4

CONS Interface
Procedure
Declarations

PART II: DNA FUNCTIONAL LAYERS

The following function and procedure declarations define the
abstract interface between the Network layer and a user of the
Network layer in terms of the services a Network layer entity pro­
vides to a user requesting the connection-mode Network service
(CONS).

Port Control Functions

• OpenPort. Allocates a port for use by a Network service user. A port
is a data structure that can be used later to establish a Network con­
nection.

• ClosePort. Deallocates a port opened via the OpenPort function.

Connection Control Functions

• MakeCall. Establishes a Network connection and associates it with a
port opened previously with the OpenPort function.

• ReadAccept. Obtains data about a connection established using the
MakeCall function.

• ListenForCall. Adds a filter to the list of filters the Network service
user maintains that determine the criteria for accepting calls.

• StopListeningFor. Removes a filter from the list of filters the Network
service user maintains that determine the criteria for accepting calls.

• Listen. Determines whether an inbound Network connection request
has been received.

• TakeCall. Indicates the Network service user intends to accept an
inbound Network connection request. The connection request is then
later accepted and bound to a port using the AcceptCall function.

• CannotTakeCall. Refuses an inbound Network connection request.

• AcceptCall. Accepts an incoming Network connection request and
binds it to a port; issued after a TakeCall function.

• ClearCall. Disconnects an established Network connection.

Data Transfer Functions

• TransmitData. Causes an NSDU to be queued for transmission over
an established Network connection.

• TransmitPoll. Checks for the completion of the transmission of a
packet initiated by a previous TransmitData function.

BOX 7.4

continued

CHAPTER 7: THE NETWORK LAYER

ReceiveData. Provides the Network layer entity with a buffer to
receive the NSDU in an incoming packet. Where a received data unit

• is longer than the packet size established for the connection, the
Network service user issues multiple ReceiveData functions and
reassembles the original NSDU.

ReceivePoll. Checks for the completion of the previous ReceiveData
function.

ShowPortStatus. Obtains information about a port and its associated
Network connection.

Reset. Acknowledges that the Network layer entity has reset a
Network connection. The Network service user determines that a

• Network connection reset has occurred by issuing the
ShowPortStatus function.

143

by the Internet community, which has over 20 years of experience with a
large, heterogeneous computer network. Digital falls into this camp as
well, having much experience with DECnet networks, which have also
always employed connectionless-mode Network service.

NETWORK ARCHITECT

The people who advocated the connection-mode form of Network service

would just as soon have had no Transport layer. This controversy is, in a sense,
the great religious divide. The champions of the connection-mode network ser­

vice have always been the people that make their living from selling the network

as a service, so they want to provide a complete service within the network it­

self. The telephone people have this network they say the computer people need,
and they want to charge for that. The original champions of the connectionless­

mode form of Network service, on the other hand, were those in the ARPANET

world. They were people who were interested in using computers; they didn't

care too much about how the service is provided. The problem is that the tele­

phone people and the computer people have very different viewpoints.

Those in the connectionless camp say that experience has show
that a Network layer service can never be regarded as completely rel

144 PART II: DNA FUNCTIONAL LAYERS

able, no matter what types of reliability features are built into it, espe­
cially in a large and heterogeneous network. The Transport layer is the
lowest layer that is required only in the two machines that are communi­
cating. In a large network, there may be Network layer entities operating
in many machines that are not under the control of the two communicat­
ing parties.

Imagine that you are using a global network to implement what
must be absolutely reliable data transmission. The network uses many
forms of data link technology, and each packet must travel through
many routers, over many types of communication facilities, in many dif­
ferent countries, to arrive at its destination. In such a situation, the
mechanisms operating in the Network layer in all the various routers are
not under your control. It would be entirely understandable if you were
unwilling to trust the claims of the operators of individual subnetworks
that they never lose packets.

NETWORK ARCHITECT

The situation I try to make people understand is that the Network layer is in­
herently a multiparty situation, where there are not just multiple machines, but

multiple organizations involved. If you have a Transport protocol that does not

have robust error detection and error correction facilities, what you are saying is

that, when you transmit data from your computer in one location to your com­
puter in another location, you have total, absolute, and implicit trust in every

organization that may touch those bits between your two computers. If you are

a bank, or an insurance company, or anyone who cares anything about your

data, you wouldn't make that assumption. You have to implement end-to-end

controls in the Transport layer, because it is only there that you can place the
mechanisms to recover from the failures of other people's equipment. The fun­

damental property of the Transport layer is that it's the lowest layer that needs

to exists only in the two end systems that are communicating with one another.

If you are the end system, then you've clearly got to trust the guy at the other
end, because that's the guy whom you're communicating with. But it's the low­

est layer in which that's the only person you've got to trust.

The main problem with depending on a reliable Network layer ser­
vice and not performing error recovery in higher layers is that in a large
network there may be too many places where something can go wrong.
Suppose we are trying to transfer a long file from one computer to an­
other over a complex network in which each packet must flow through a

CHAPTER 7: THE NETWORK LAYER 145

great many routers in reaching its destination. If the network is imple­
mented using the CONS, a separate connection must be set up on each
subnetwork over which the packets must travel. If any one of those con­
nections is broken while the file is being transferred and we are not doing
error recovery in any of the layers above the Network layer, then we don't
know what has been delivered and what has not, and so we have to start
the file transfer over from the beginning. In a large network, in which the
chances are relatively high that at least one failure will occur that will
cause a connection to be released before the file is completely transferred,
it may never be possible to complete the file transfer operation.

In networks that use the CONS, it is useful to perform error recov­
ery in the Transport layer (Class 4 Transport), even though error recov­
ery processing is also being done in the Network layer. If we do this, then
the two end systems keep track of what has been successfully transferred
as the file transfer operation proceeds. If a particular Network layer con­
nection is broken, Class 4 Transport can ask that a new connection be
established, and the file transfer operation can pick up where it left off
using the new connection. The file transfer operation will complete even
though Network layer connections are being released and new ones are
being established as the file transfer operation proceeds.

The main point here is that experience has shown that we must per­
form error recovery processing in the Transport layer whether or not we
are doing it in the Network layer. If you are going to implement in the
Transport layer all required end-to-end controls anyway, then a simple,
datagram Network service is all that is required. It is difficult to justify
the expense of providing a reliable Network service, especially in a large
and heterogeneous computer network. Why place the reliability controls
in both layers? This is exactly the point of view adopted by many in the
connectionless camp, including Digital.

Box 7.5 summarizes some of the advantages and disadvantages of
both the CONS and the CLNS. Keep in mind that each disadvantage
listed for each form of service can be addressed through the use of addi­
tional mechanisms performed in the Network layer, so it remains ex­
tremely difficult for individuals in the two camps to convince each other
that their way is best.

NETWORK ARCHITECT

Both the CLNS and the CONS have their disadvantages. We think the advan­

tages of the connectionless Network service far outweigh the disadvantages. But

there's no doubt they both have their disadvantages. What we really need is

146

BOX 7.5

Advantages and
Disadvantages of
CONS and CLNS

PART 11: ONA FUNCTIONAL LAYERS

Connection-Mode Network Service

Advantages

• The path through the network that data packets take is ordinarily
fixed for the duration of the connection, so less overhead may be
associated with forwarding packets. The difficult decisions are all
made during the connection-establishment phase.

• Router and data link resources to support a connection are reserved
when the connection is established, so end nodes using the connec­
tion are less affected by other network traffic loads.

• Because there are definite connection establishment and connection
release phases, it is easy to create accounting schemes that charge for
connect time.

• Because errors are detected and corrected by Network layer proto­
cols, the protocols in the Transport layer may hot need to handle
lost, duplicated, or out-of-sequence packets.

Disadvantages

• The connection establishment phase is quite complex, and the
requirement for connection establishment may result in excessive
overhead for applications that transmit only small bursts of data.

• The path that data packets travel over a connection ordinarily
remains fixed for the duration of the connection. If a router or data
link associated with the path fails or becomes congested, the connec­
tion must be released even though an alternate path through the net­
work may exist.

• After a connection is established, resources associated with that con­
nection remain allocated even when no data packets are being trans­
mitted. It may not be possible to assign those resources to other users
of the Network service, thus possibly reducing the efficiency of
resource utilization.

• The establishment and maintenance of information concerning the
connection and its associated resources, among many network com­
ponents, is inherently complex and may lead to difficulties due to

BOX7.5

continued

CHAPTER 7: THE NETWORK LAYER

unforeseen situations or small errors or misjudgments in implemen­
tation details.

• The error detection and correction property of the CONS may be
only illusory. Therefore, if the higher layers assume that the reliabil­
ity attribute is real, they may experience failures; if the higher layers
assume that the reliability guarantee is not real, they end up duplicat­
ing the work.

Connectionless-Mode Network Service

Advantages

• Since there is no connection-establishment phase, initial data trans­
mission may begin more quickly than with the connection-mode
Network service.

• There is no fixed path over which data packets must travel.
Therefore, the connectionless-mode Network service can be made
more robust than the connection-mode Network service and can
allow alternative paths to be used when routers or data links fail.

• Because no router or data link resources need be reserved in advance
and kept idle when not being used, network resources can be used
more efficiently.

Disadvantages

• Because there is no fixed path for data packets, each router must
determine the data link to use for the next hop independently for
each data packet.

• The Transport layer protocols must support adequate congestion­
avoidance procedures to avoid catastrophic failures when router
and/or data link resources reach the saturation point.

• Since it is not possible to charge for connect time, it is more difficult
to implement accounting schemes for charging for network usage
than with a connection-mode Network service.

• Since the Network layer provides only a datagram service, the proto­
cols that operate in the Transport layer are complex and must handle
lost, duplicated, and out-of-sequence packets.

147

148 PART II: DNA FUNCTIONAL LAYERS

something that reduces the disadvantages of the connectionless service. The cur­

rent buzzwords for it are lightweight connections or flows. This is something

where there is a very small amount of state information associated with the

communication. It doesn't require end-to-end synchronization, and it shouldn't

require the assignment of dedicated processing or memory resources beyond

very small amounts. Such a service would avoid the major disadvantage of the

CLNS-that of requiring every single packet to be routed completely indepen­

dently of all other packets. With the connectionless service, every packet has to

carry around all the routing baggage, including full network addresses, and it

has to carry that across every hop through the network. When you have a burst

of several megabytes of these for a file that are following hard on each other's

heels, you should be able to take advantage of that fact.

It is our feeling that Digital and those in the connectionless camp are
justified in preferring the connectionless-mode Network service. The real
controversy involves only where to place the complexity: in the Network
layer or in the Transport layer. It makes better sense to us to place the
end-to-end controls in the two machines that are communicating, even if
this makes the software running in the end nodes a bit more complex.
From our point of view, a major advantage of the CLNS is that it can be
made more robust than the CONS. Since each packet is routed indepen­
dently through the network, each can find its own optimal path, depend­
ing on network conditions, at the instant it is being transmitted. Since
the connection-mode Network service generally establishes a fixed path
for all packets flowing over a connection, it is possible that changing net­
work conditions can cause the chosen path to become less than optimal
as time passes. Also, if a resource along the path fails, the connection
must be broken, even though other paths may exist at that time between
the source node and the destination.

What is really unfortunate, however, is that the ISO committees
were not able to agree on a single approach for the Network layer. In the
Data Link layer it is appropriate to support both a connectionless-mode
and a connection-mode style of operation, depending on the data link
technology used. But the controversy that has caused support for both a
connectionless-mode and a connection-mode service to be included in
the Network layer has caused the OSI Network layer to be much too
complex. The world of networking-both the connectionless and con­
nection-mode camps-would probably have been better served in the
long run had ISO adopted only one of the approaches in the Network
layer rather than both. But many at Digital disagree with this view.

Network Layer
Protocol
Specification

Network Layer
Protocols

CHAPTER 7: THE NETWORK LAYER 149

NETWORK ARCHITECT

If OSI had continued to define only the CONS, as in the original OSI model,

OSI would have become the European networking standard, and the United

States would have stayed with TCP/IP. Now what we were hoping to have was

a single worldwide standard. We didn't want to have a U.S. standard and a Eu­

ropean standard. Having two standards that are geographically different is

much worse than having two standards that coexist worldwide. I think the most

likely outcome of all of this is that both the CLNS and the CONS will exist to

the end of the century. But the CONS will be something that will be pushed in­

creasingly into a niche. It won't die; it will survive. But increasingly, migration

to the CLNS will push the CONS more and more into the background. The ex­

plosion of TCP/IP usage, even in Europe, lends additional credence to this view.

In some layers of the OSI model, the intent is to define a single interna­
tional standard protocol specification that defines how the services of
that layer should be provided. This is not possible in the Network layer
because the Network layer must be able to provide the Network service
using a wide variety of subnetwork technologies and interconnection
strategies. So there will remain a family of Network layer protocols that
will be used to provide the Network layer service. These protocols are
described in a number of ISO documents and in the DNA Phase V archi­
tectural specifications.

There are five important ISO protocols the DNA Phase V architecture sup­
ports for the Network layer. Many Digital engineers played a major role in
developing these international standards as members of ISO committees.

Protocols for Supplying the CLNS

Three ISO protocols work together to supply the connectionless-mode
Network service:

• ISO 8473, Protocol for Providing the Connectionless-mode Network
Service. The ISO 8473 protocol is often called the ISO Internet Protocol.
End nodes use the ISO Internet protocol for exchanging user data with
each other in supplying the CLNS to two peer Transport layer entities. It
is designed to handle data transmission between end nodes connected by
an arbitrary number of subnetworks of various types.

150 PART II: DNA FUNCTIONAL LAYERS

• ISO 9542, End System to Intermediate System Routing Exchange Pro­
tocol for Providing the Connectionless-mode Network Service. The ISO
ES-IS Routing Exchange Protocol, for short, defines the procedures that
allow end nodes and routers to communicate with one another for the
purposes of exchanging information to control the routing function.
This protocol allows an end node to automatically configure itself into
the network by exchanging configuration information with a router.

• ISO 10589, Intermediate System to Intermediate System Intra-Domain
Routing Exchange Protocol for Use in Conjunction with the Protocol
for Providing the Connectionless-mode Network Service (ISO 8473).
ISO 10589, often called the IS-IS Routing Protocol, is based on the dis­
tributed routing algorithm originally designed by Digital for DNA Phase
V. Digital's routing protocol has been accepted by ISO for standardiza­
tion and at the time of this writing is a draft international standard. This
protocol defines the procedures that control how data packets and pack­
ets containing routing information are relayed between routers. The IS­
IS routing protocol is examined in detail in Chapter 9.

Protocols for Supplying the CONS

Two protocols are used to supply the connection-mode Network service
for communication with another node attached to an X.25 packet­
switched data network. However, these two protocols have a different
relationship from that of the protocols for supplying the CLNS:

• ISO 8208, X25 Packet-level Protocol for Data Terminal Equipment. This
is the ISO version of CCITT Recommendation X.25. Recommendation
X.25 and ISO 8208 define the interface between a computer and a packet­
switched data network. ISO 8208 is a protocol that predates the CONS
and does not itself supply all the services required to provide the CONS.

• ISO 8878, Use of X25 to Provide the OSI Connection-mode Network
Service. ISO 8878 is a protocol that enhances the services provided by
ISO 8208 to supply all the services required to provide the CONS. ISO
8878 can be viewed as a sublayer running on top of ISO 8208 that
defines how the CONS is provided using the underlying X.25 packets
and procedures.

The protocols for supplying the CLNS and the CONS are described
further in Chapter 8.

We next discuss in detail the characteristics of network nodes to see
how the Network layer protocols are implemented in the various types
of node that can make up a DECnet Phase V network.

Node Types

CHAPTER 7: THE NETWORK LAYER 151

The Network layer functions that a node is capable of performing de­
pend on the node's role in the network. As we described at the beginning
of this chapter, two major types of nodes are defined by the DNA Phase
V architecture: end nodes and routers.

End Nodes

End nodes are computing systems that originate packets for transmission
to other end nodes and that receive packets originating in other end nodes.
End nodes are not capable of performing the routing function and do not
implement the ISO 10589 IS-IS routing protocol. In most cases, an end
node is attached to a single data link, such as a single local area network or
a single point-to-point data link. End nodes can, however, be attached to
more than one data link to provide better protection from failures. Three
types of end node can be attached to a DECnet Phase V network:

• Phase V End Nodes. These end nodes support both the ISO 84 73 Inter­
net protocol and the ISO 9542 ES-IS protocol. This type of node can be
attached to the network and will exchange the required information with
the router to which it is connected to automatically configure itself into
the network. A Phase V node also supports the CONS for communica­
tion with another end node supporting only the CONS.

• Non-DNA End Nodes. These end nodes support the ISO 8473 Internet
protocol but not the ISO 9542 ES-IS protocol. This type of node can ex­
change data packets with other end nodes but must first be manually
configured into the network using network management procedures.

• Phase IV End Nodes. These nodes implement the DNA Phase IV archi­
tecture and can communicate only with nodes whose network addresses
map into the 16-bit network address space defined by the DNA Phase IV
architecture. Support for such nodes is provided for backward compati­
bility with DNA Phase IV and for transition from a Phase IV to a Phase
V environment.

Routers

Routers are devices that, in addition to being able to originate and serve
as the final destination of packets, are able to perform the routing func­
tion and can relay packets from other source nodes to other destination
nodes. Routers can be implemented in general-purpose computing sys­
tems, but they are more typically implemented as special-purpose devices

152

Hierarchical
Routing

PART II: DNA FUNCTIONAL LAYERS

that perform only the routing function. Two types of routers can func­
tion in a DNA Phase V network:

• Phase V Routers. These routers implement the ISO 84 73 Internet proto­
col, the ISO 9542 ES-IS routing exchange protocol, and the ISO 10589
IS-IS routing protocol. Phase V routers also implement parts of the Phase
IV routing algorithm to allow them to interoperate with Phase IV end
nodes and routers.

• Phase IV Routers. These routers use 16-bit network addresses and imple­
ment the DNA Phase IV routing algorithm. They can participate in a
DNA Phase V network, with certain restrictions, since Phase V routers
also support the DNA Phase IV routing algorithm.

Phase V and Phase IV routers are classified as either level 1 routers
or level 2 routers and use a hierarchical routing scheme designed to sup­
port large networks. The hierarchical routing scheme used by DNA
Phase V is described next.

An individual DECnet Phase V network, consisting of a collection of end
nodes, routers, and data links operated by a single organization, is called
an administrative domain. The boundaries of an administrative domain
are determined only by a network management policy, and an administra­
tive domain is not an architecturally defined entity. An administrative do­
main can be subdivided into a number of routing domains. A routing do­
main is a set of end nodes and routers that share routing information,
operate according to the same routing protocol, and are contained within
a single administrative domain. Some routing domains in an administra­
tive domain may not be DNA domains and may run a routing algorithm
other than the DNA Phase V routing algorithm. On the other hand, an
administrative domain can also consist of a single routing domain. Like
an administrative domain, the boundaries of a routing domain are also
determined by policy and not by architectural specifications.

To support very large routing domains, possibly containing a mil­
lion or more nodes, DNA Phase V routing domains are themselves hier­
archical. A large DNA routing domain can be partitioned into regions
called areas, which are the largest subdivisions of a network defined by
the architecture. Each node (end node or router) resides in exactly one
area. The division of a large network into separate areas can improve
network performance by reducing the amount of routing overhead com­
pared to using a single area of the same size. It also allows interarea
traffic to be confined to a particular set of routers and data links.

FIGURE 7.4

D Level 2 Router

D Level 1 Router

8 End Node

CHAPTER 7: THE NETWORK LAYER 153

Level 1 and Level 2 Routing

Routing in a multiple-area routing domain is classified as either level 1
routing or level 2 routing:

• Level 1 Routing. Routing within an area is called level 1 routing and is
handled by level 1 routers. A level 1 router routes network traffic directly
toward destination nodes within its own area and toward a level 2 router
when it determines a packet's destination node is in a different area.

• Level 2 Routing. Routing of network traffic between areas is called level
2 routing and is handled by level 2 routers. A level 2 router performs
level 1 routing for traffic destined to nodes within its own area and level
2 routing for traffic destined for other areas. Level 2 routing also in­
cludes interdomain routing for traffic destined to other routing domains
and to other administrative domains.

A routing domain divided into areas is shown in Figure 7.4. Keep in
mind that the space limitations of the printed page make it necessary to

A routing domain divided into four areas.

154 PART II: DNA FUNCTIONAL LAYERS

show an unrealistically small network. An actual network would typi­
cally be much larger than the network shown in Figure 7.4 before it
would be advisable to divide the network into areas. Each end node in a
routing domain that is divided into areas must be attached to either a
level 1 or a level 2 router. If an end node originates a packet destined for
a node in some other area, the end node transmits the packet to its
router. If that router is a level 1 router, it sends the packet to the nearest
level 2 router in its own area. That router then moves the packet to a
level 2 router in the destination area. The level 2 router then transmits
the packet via level 1 routing to the destination end node.

lnterdomain Routing

Routing can also take place between individual routing domains, thus al­
lowing individual DECnet routing domains and other types of networks
to be interconnected to form even larger networks. Such interdomain
traffic is handled using a technique called static routing, which uses ta­
bles of routing information maintained by level 2 routers using network
management procedures. The level 2 routers at the boundaries between
routing domains decide how traffic goes out to other routing domains
and how it comes in from other routing domains. Because a routing do­
main administered by one organization can be connected to a routing
domain administered by some other organization, it is important that the
two networks do not merge when they are connected. The static routing
technique used at the boundary between routing domains prevents this
from happening. We will have more to say about this in Chapter 9 when
we examine routing in detail.

An individual organization can also set up multiple routing domains
of its own, each of which functions as a separate DECnet network. These
can also be connected using interdomain routing facilities. An organiza­
tion may choose to divide its own network into multiple routing do­
mains for a number of reasons:

• Reduction of Routing Traffic. Only data traffic, and not routing traffic,
is exchanged between the routing domains, thus reducing the amount of
routing control traffic flowing through the network.

• Very Large Networks. Theoretically, the number of areas a routing do­
main can contain is unlimited. In practice, however, there will be limits
to the size of a routing domain due to router implementation considera­
tions. Networks of unlimited size can still be built by dividing the net­
work into multiple routing domains.

CHAPTER 7: THE NETWORK LAYER 155

• Robustness. Routing domains are isolated from each other, and each
routing domain is protected from failures that might occur in the other
routing domains. This allows failures to have an impact only on the
routing domains in which they occur.

• Interoperability with Other Routing Algorithms. All the nodes in a rout­
ing domain must run the same routing algorithm. Constructing a net­
work having multiple routing domains allows collections of nodes run­
ning entirely different routing algorithms to coexist in the same network.

The static routing information used to control interdomain routing
consists of reachable addresses identified by lists of address pre-fixes.
Lists of address prefixes are maintained, using network management
procedures, by each level 2 router that communicates with another rout­
ing domain. Each reachable address in a level 2 router's address prefix
list is associated with a circuit connecting that router to some other rout­
ing domain. If a level 2 router receives a packet having a destination ad­
dress that matches one of its address prefixes, the level 2 router relays the
packet out of its domain over the circuit associated with that address
prefix. The level 2 router in the destination routing domain is then re­
sponsible for determining an optimal route and for relaying the packet to
the next node along the path to its final destination. The static routing
information required to reach end nodes in other routing domains is au­
tomatically distributed around the level 2 domain by the routing algo­
rithm, just as all other routing information is distributed.

We can make an analogy between the notion of address prefixes and
the system of telephone number area codes used in the United States. All
the telephone numbers in northern Wisconsin have an area code of 715.
In a similar manner, if all the computers in northern Wisconsin were in
the same routing domain, which might consist of one or more areas,
their network addresses would all begin with the same address prefix,
say 1234. All level 2 routers in other routing domains that are capable of
reaching the computers in the northern Wisconsin routing domain
would then have a reachable address of 1234 in their address prefix lists
and would be capable of routing traffic via static routing to the northern
Wisconsin routing domain. In actual practice, the telephone area code
analogy is not exact because the boundaries of a routing domain are not
necessarily determined by geographic location, as telephone area codes
are, but are determined by the organization administering the routing
domain.

We next examine the format of the network addresses used to
uniquely identify nodes in a network.

156

Network
Addressing

Router Address
Interpretation

FIGURE 7.5

PART II: ONA FUNCTIONAL LAYERS

Access to Network layer services, as in other layers, is through a service­
access-point. Network-service-access-point (NSAP) addresses are the
network addresses of end nodes and routers in a DECnet Phase V net­
work. Unlike the small 16-bit addresses used in DNA Phase IV, which
the Digital network architects freely admit was a mistake because it
placed severe limitations on the sizes of networks that could be built, the
ISO standard NSAP addresses used in DNA Phase V are very large-up
to 160 bits in length. There are two ways in which we can view the net­
work addresses that DNA Phase V uses. First, we can look at them from
the viewpoint of a router that must interpret the NSAP address in mak­
ing routing decisions. Second, we can look at them from the viewpoint of
the ISO Network layer addressing standards that concern addressing au­
thorities and network managers who must ensure that network ad­
dresses are assigned so each address is globally unique.

A router interprets an NSAP address as shown in Figure 7.5. The entire
NSAP address must be at least 10 octets in length and can be no longer
than 20 octets. The format of the last 9 octets is defined by the DNA
Phase V architecture, which conforms to the format specified in the ISO
10589 routing protocol.

Addressing Authority Dependent Octets

The format of the initial octets of the NSAP address is defined by an ad­
dressing authority responsible for the assignment of the values for the
initial octets of NSAP addresses for individual organizations. The assign­
ment of values to the initial octets of the address is the mechanism by
which NSAP addresses are guaranteed to be globally unique. But the
way in which this value is assigned is beyond the scope of the DNA
Phase V architecture. The addressing authorities that assign address val­
ues are discussed later in this chapter.

A router view of a DNA Phase V network address.

Area Address

Initial NSAP Address Octets } I LOG-AREA ID SEL

1-11 octets 2 octets 6 octets 1 octet

CHAPTER 7: THE NETWORK LAYER 157

The LOC-AREA Field

The LOC-AREA field in the address is the first part of the NSAP address
defined by the DNA Phase V architecture. It contains a 2-octet value
set by the organization implementing the network. The value assigned to
the initial octets of the address plus the LOC-AREA value (the entire ad­
dress minus the last 7 octets) define the bounds of an area and together
are called the area address. Some subset of the initial octets of the ad­
dress plus the LOC-AREA field can be used to define address prefixes to
group areas into routing domains. The actual lengths of address pre­
fixes and the way in which areas are grouped into routing domains are
strictly a matter of policy determined by network managers. The DNA
Phase V architecture places no restrictions on how address prefixes are
administered.

The large number of octets that can be used to uniquely define an
area theoretically permits building an individual routing domain with an
almost unlimited number of areas. But, as we have already stated, imple­
mentation considerations will typically limit the number of areas a rout­
ing domain can contain. However, a large network can still have an al­
most unlimited number of areas by dividing the network into multiple
routing domains.

The ID Field

The ID field contains a 6-octet value that uniquely identifies a node
within its area. The entire address, including a 1-byte SEL field value of
binary 0, is called the network entity title (NET) of the node. The node's
NET uniquely identifies the node in the OSI environment. The ISO
10589 routing protocol requires only that ID field values be unique
within an individual area. However, the DNA Phase V architectural
specifications for the Network layer recommend that the ID field value
for each node be chosen using the IEEE local area network addressing
plan, in which case the ID field values themselves are guaranteed to be
globally unique. Each DECnet node is assigned a nodeID value during
manufacture chosen according to the IEEE addressing plan. A node's
DECnet nodeID value is ordinarily used as the ID value in the node's net­
work address. The routing algorithm does not depend on a correspon­
dence between ID field values and nodeID values. However, if the IEEE
local area network addressing plan is used to generate the ID field value
of a nodes's address, the node can be plugged into an OSI network any­
where in the world and be guaranteed of having a unique NSAP address.

158

Automatic
Configuration of
End Nodes

Multiple Area
Addresses

PART II: ONA FUNCTIONAL LAYERS

The SEL Field

The SEL field is the last octet of the address. It contains a 1-octet value
that acts as a selector to define the particular type of Transport layer en­
tity that is to receive the packet. The SEL field values are not architec­
turally defined and are set by the sending Transport layer entity. The fol­
lowing values are two possible SEL field values used by Transport layer
entities to identify the Transport entity within the node to which a
packet is destined:

• 32. A packet whose PCI contains this SEL field value is a data or control
packet sent to an ISO Transport layer entity in a DNA Phase V node.

• 33. A packet whose PCI contains this SEL field value is a data or control
packet sent to an NSP Transport layer entity.

Other SEL field values are permitted to allow interoperation with
nodes that do not follow the DNA Phase V addressing plan. The SEL
field value is not required to uniquely identify a node. Thus, a node's
NET is considered to contain a SEL field value of binary 0.

The area addresses of a router must be set using an explicit network
management function before the router is attached to the network. A
network management action is required to set a value for a router's area
address (the initial octets of the address plus the LOC-AREA field) be­
cause assignment of routers to routing domains and areas is inherently a
policy matter that must be controlled by network managers. When an
end node is attached to a DECnet Phase V router, the end node gets the
value of its area address from the router to which it is attached, and it
typically gets its ID field value from its own internal nodeID value. The
SEL field value used in the address fields in a packet's PCI is assigned by
the entity creating the packet. Thus, an end node is capable of generating
its own complete NSAP address when it is attached to the network with­
out requiring human intervention.

In some circumstances it may be desirable for an area (and hence any of
the nodes within it) to have more than one area address. For example, if
the area is attached to public data networks via multiple connections, it
may be useful to have network addresses that correspond to each point
of attachment. However, all the routers in an area must have at least one
area address common to each node adjacent to it. During normal opera­
tion, all the routers in an area must have the same area address or the
same set of area addresses.

CHAPTER 7: THE NETWORK LAYER 159

ISO Network Layer
Addressing
Standards

The structure of the NSAP addresses used in the DNA Phase V architec­
ture conforms to the international standard addressing scheme defined
by ISO 8348, Network Service Definition, Amendment 2: Network
Layer Addressing. This addressing scheme defines methods by which the
initial octets of the network addresses can be assigned so all the network
addresses an organization generates are globally unique. Although net­
work managers must be aware of the hierarchical structure of NSAP ad­
dresses as defined in ISO 8348, Amendment 2, this hierarchical structure
is not known to routers. As discussed in the previous section, routers
work only with area addresses, which are defined as the initial octets of
the address plus the LOC-AREA field (the complete address minus the
last seven octets.)

FIGURE 7.6

Amendment 2 to ISO 8348 makes clear distinctions among three
concepts, illustrated in Figure 7.6, associated with describing the seman­
tics of a network address:

• Abstract Syntax. The abstract syntax of network addresses is the means
employed in ISO 8348, Amendment 2, to define the hierarchical struc­
ture of a network address and is used by addressing authorities to allo­
cate and assign network address values. An abstract syntax defines infor­
mation content without specifying how that information content is
represented in a computer or encoded for transmission. The standard al­
lows the abstract syntax of a network address value to be expressed in ei­
ther decimal or binary form.

• Encoding. Encoding refers to the way in which a network address value
is represented in the protocol-control-information attached to a packet
and conveyed between nodes during Network layer protocol operation.
The way in which address values are encoded has no relation to the ab-

Network addressing concepts associated with address semantics and syntax.

Network Address
Allocation by an

Abstract
Semantics

Addressing
Syntax

Authorit

Conveyance
Encoding by Protocols

Representation in External
Humanly Reference

Readable Form S ntax

160 PART II: DNA FUNCTIONAL LAYERS

stract syntax that defines how address values are allocated and assigned.
For example, the abstract syntax might define an address value as con­
sisting of decimal digits. That address value might be encoded using a bi­
nary number to represent the decimal address value. Alternatively, some
scheme might be used to individually encode each decimal digital of the
address value. According to ISO 8348, Amendment 2, addresses can be
encoded in any desired way, but the standard recommends certain pre­
ferred encoding methods. Other ISO standards for the OSI model and
the DNA Phase V architecture specify that NSAP addresses be encoded
using the ISO preferred binary encoding scheme, in which each digit of a
decimal address is represented in a 4-bit semi-octet.

• External Reference Syntax. This is the syntax of a network address as it
might be displayed in human-readable form in a printed report or on a dis­
play screen. The way a network address is externally represented can be
different from both the abstract syntax and the encoding method. For ex­
ample, the abstract syntax might define address values as being decimal,
the encoding method might be the preferred binary encoding scheme, and
the external reference syntax might use decimal numbers with punctuation
added to separate the various fields of the address for ease of reading.

ISO 8348, Amendment 2, is concerned only with the abstract syntax
of network addresses and for allocating and assigning address values.
The ISO standard addressing scheme defines a hierarchical address, with
the top level of the hierarchy being a number of addressing domains,
each of which is associated with an addressing authority. An addressing
authority can then allocate addresses within its own domain, or it can
further subdivide its domain and assign an authority to each subdomain
it creates. This process can be continued to an arbitrary extent, limited
only by the maximum network address length. The uniqueness of ad­
dresses within a particular addressing domain must be ensured by the
authority responsible for allocating addresses in that domain.

The addressing authority and network management view of a DNA
Phase V NSAP address, which conforms to the ISO network addressing
standard, is illustrated in Figure 7. 7. According to the ISO addressing stan­
dard, the NSAP address is divided into two major parts, the initial domain
part (IDP) and the domain specific part (DSP). We have already described
the low-order nine octets of the DSP for DNA Phase V addresses.

The IDP makes up the beginning of an ISO network address and is
further divided into an authority and format identifier (AFI) and an ini­
tial domain identifier (IDI). DNA Phase V supports any valid AFI and
IDI. The abstract syntax of the IDP specifies that IDP values are allo-

CHAPTER 7: THE NETWORK LAYER 161

FIGURE 7.7 The addressing authority and network administration view of a DNA Phase V network address.

Initial Domain Part (IDP) Domain Specific Part (DSP)

Authority and Forma1
Identifier (AFI)

1 octet

Initial Domain HO-DSP l LOC-AREAI ID }sEL Identifier {IDI)

variable variable 2 octets 6 octets 1 octet

cated in the form of decimal digits. This does not indicate, however, that
the IDP must be encoded as decimal digits. It only indicates that address­
ing authorities must allocate and assign IDP values in the form of deci­
mal digits. As indicated earlier, the DNA Phase V architecture specifies
that AFI and IDI values are encoded using a 4-bit semi-octet to encode
each decimal digit.

Authority and Format Identifier (AFI)

The AFI contains a two-digit decimal number that defines the addressing
authority responsible for allocating IDI values, defines the format of the
IDI, and specifies whether the abstract syntax of the domain specific part
(DSP) of the address is binary or decimal. DSP address values can be al­
located and assigned using either values expressed as decimal numbers or
values expressed as binary numbers. DSP values in DNA Phase V NSAP
addresses use a binary abstract syntax, and DSP values are allocated and
assigned in the form of strings of hexadecimal digits.

The Initial Domain Identifier (IOI)

Specific AFI values determine the format of the IDI. For example, AFI
value 48 for a decimal DSP and AFI value 49 for a binary DSP specify
that the IDI is a null value and 0 decimal digits in length. With this IDP
value, the entire address is contained in the DSP. These are called local
AFI values, and NSAP address values that are allocated using them can­
not be guaranteed to be globally unique.

The other AFI values thus far defined can be divided into two cate­
gories: those associated with ISO-administered addressing plans and
those associated with CCITT-administered addressing plans.

ISO Address Administration

With ISO address administration, each IDP value identifies a particular
country or an international organization. An addressing authority in

162 PART II: DNA FUNCTIONAL LAYERS

each country assigns one or more unique values for the high-order DSP
(HO-DSP) field of the DSP to each organization applying for them. That
organization then ensures that the HO-DSP field of the DSP for each net­
work address it creates contains one of the values the addressing author­
ity assigned it. The organization must then guarantee the value of the re­
maining bits in the DSP is different within that HO-DSP value. In this
way an individual organization is guaranteed that each of its network
addresses is globally unique.

For a DNA Phase V NSAP address using the ISO addressing
scheme, an organization in the United States begins each of its NSAP ad­
dresses with the IDP value assigned to the United States and applies to an
addressing authority in the United States for a value it can use for the
HO-DSP field in the DSP. The organization then assigns a unique value
to the LOC-AREA field of the address for each area it defines within that
HO-DSP field value.

Unique AFI values are assigned to each of the following ISO-admin­
istered addressing plans:

• ISO 3166 DCC. With this scheme, the IDI consists of a three-digit code
allocated according to ISO 3166. This is an ISO-defined geographically
oriented addressing plan that assigns IDI values to countries and na­
tional areas independent of public data networks. This is the addressing
scheme typically used to assign network addresses in DECnet Phase V
networks.

• ISO 6523 ICD. The IDI consists of a four-digit international code desig­
nator (ICD) allocated according to ISO 6523. This is an ISO-defined
nongeographic addressing plan that assigns addresses to certain types of
international organizations, such as the United Nations, the Red Cross,
and certain maritime and avionics networks that are nongeographical or
multinational in scope.

CCITT Address Administration

With CCITT address administration, the values contained in the IDP
identify not an entire country but an individual subscriber, in a similar
manner to a telephone number.

Unique AFI values are assigned to each of the following CCITT-ad­
ministered addressing plans:

• CCITT X.121. With this scheme, the IDI consists of a sequence of up to
14 decimal digits defined by CCITT Recommendation X.121. This is a

Conclusion

CHAPTER 7: THE NETWORK LAYER 163

CCITT-defined addressing plan that assigns addresses to individual
DTEs in X.21 and X.25 networks.

• CCITT F.69. The IDI consists of a sequence of up to 8 decimal digits
defined by CCITT Recommendation F.69. This is the CCITT-defined ad­
dressing plan for the international telex network.

• CCITT E.163. The IDI consists of a sequence of up to 12 decimal digits
defined by CCITT Recommendation E.163. This is the CCITT-defined
addressing plan for the global telephone network.

• CCITT E.164. The IDI consists of a sequence of up to 15 decimal digits
defined by CCITT Recommendation E.164. This is the CCITT-defined
addressing plan for the global integrated services digital network
(ISDN).

This chapter has introduced the function of the Network layer in the
DNA Phase V architecture. Chapter 8 further describes the operation of
the Network layer protocols used to supply the connectionless-mode
Network service and introduces the protocols used to supply the connec­
tion-mode Network service.

Data Links and
Subnetworks

Broadcast Data
Links

164

CHAPTER 8

Network Layer Protocols

In Chapter 7, we introduced the five important ISO protocols the DNA
Phase V architecture supports for the Network layer. In this chapter, we
examine in detail the two protocols used in both end systems and
routers to provide the connectionless-mode Network service (CLNS),
and we introduce the two protocols end systems and routers used to
provide the connection-mode Network service (CONS). Chapter 9 de­
scribes the ISO 10589 routing protocol implemented only in routers. Be­
fore we describe the specific protocols used in end systems and routers
to provide the Network service, we must examine the characteristics of
the underlying data links and subnetworks used to provide the Network
service.

In Chapter 6, we saw that DNA Phase V permits the use of a wide vari­
ety of different types of data links to interconnect computing systems.
Network layer entities must be able to use the services of all these differ­
ent types of links in providing the Network layer service of moving a
packet from a source node to a destination node. As we introduced in
Chapter 7, a network is generally made up of a number of subnetworks,
each of which consists of a collection of nodes connected to one another
by a particular form of data link technology. The various types of data
links used to construct subnetworks can be divided into two categories:
broadcast data links and nonbroadcast data links. We describe each of
these next.

A broadcast data link is one in which a given node's transmissions are
received by all the other nodes attached to the link. Subnetworks imple­
mented by local area network equipment typically use a broadcast form

Nonbroadcast
Data Links

CHAPTER 8: NETWORK LAYER PROTOCOLS 165

of data link technology. A broadcast data link can implement a subnet­
work that contains two or more nodes. An important feature of a broad­
cast data link is that it allows a multicast facility to be implemented, in
which a node can send a data unit to a group of other nodes on the data
link. For example, an end node or a router might want to send a data
unit to all the other routers on the data link. With a broadcast data link,
it can do so in a single operation.

A broadcast data link supplies the IEEE 802.2/ISO 8802-2 Logical
Link Control (LLC) sublayer service introduced in Chapter 6 and de­
scribed further in Chapter 21. An IEEE/ISO form of LAN can supply ei­
ther a connectionless-mode or a connection-mode Data Link service.
With DNA Phase V, the Network layer makes use of only the IEEE/ISO
connectionless-mode LLC sublayer service.

The Network layer views nonbroadcast data links as networks that con­
tain exactly two nodes. Examples of nonbroadcast links are HDLC and
DDCMP telecommunication links and the virtual circuits provided by an
X.25 packet-switched data network. A reliable, connection-mode Data
Link service is generally provided over nonbroadcast links, although the
service requester may not perceive the connection establishment or con­
nection release phases of the service. There are three main types of non­
broadcast data link: permanent point-to-point links, dynamically estab­
lished point-to-point links, and multipoint links.

Permanent Point-to-Point Links

Examples of permanent point-to-point links are private communication
facilities, leased telecommunication links, and permanent virtual circuits
provided by X.25 PSDNs. These are links that stay connected at all times
unless a failure occurs. For a permanent link, the connection establish­
ment and connection release phases of the connection-mode Data Link
service are performed by network management; Network layer entities
perceive only the data transfer phase of the service.

Dynamically Established Point-to-Point Links

With dynamically established point-to-point links, the data link is estab­
lished when it is needed and released when it is no longer required. Ex­
amples of dynamically established point-to-point data links are dial-up
telecommunications links and point-to-point links implemented by

166 PART 11: DNA FUNCTIONAL LAYERS

switched virtual circuits (SVCs) in X.25 PSDNs. The DNA Phase V Net­
work layer supports two types of dynamically established point-to-point
data links; they differ in how the connection establishment and connec­
tion release phases of the connection-mode Data Link service are per­
formed.

• Static Point-to-Point Links. With a static point-to-point link, the Net­
work layer entities work with the link as if it were a permanent point-to­
point link. The connection is established by a network management ac­
tion, and the connection typically remains established during network
operation unless a failure occurs.

• Dynamically Assigned Point-to-Point Links. With a dynamically as­
signed point-to-point data link, the Network layer entities using it are in­
volved in the connection establishment and connection release phases of
the Data Link service. If a node receives a packet and then determines the
packet must be sent over a dynamically assigned data link over which no
connection currently exists, the Network layer entity establishes the con­
nection. This may require that a telephone number be dialed or that an
X.25 switched virtual circuit be established. The protocol attempts to
use an already existing connection for transmission whenever possible to
minimize the connection establishment overhead. Once a connection has
been established, it is retained until a certain period of time has elapsed
during which no traffic has flowed over the connection. After the time in­
terval has elapsed, the connection is released.

Multipoint Data Links

With a multipoint data link, one of the nodes is designated as the pri­
mary node; all the other nodes are designated as secondary nodes. The
primary node is in control of the link; a secondary node originates traffic
only when the primary node grants it permission. The primary node can
communicate with any of the secondary nodes, but a secondary node can
communicate only with the primary node. Secondary nodes cannot ex­
change data directly with one another over the data link. DNA models a
multipoint data link as a collection of point-to-point links, and so the
multipoint characteristics of the link are hidden from Network layer en­
tities. Network layer entities view a multipoint data link as if it were a
set of point-to-point subnetworks, each of which connects the primary
node with one of the secondary nodes.

Although the DNA Phase V architecture defines support for multi­
point data links, they are rarely used today in computer networks having

CHAPTER 8: NETWORK LAYER PROTOCOLS 167

the primary goal of peer-to-peer communication among all nodes. They
are often used, however, in other forms of network in which computers
are connected to large numbers of simple terminals.

Network Example An example of a network that implements a number of subnetworks em­
ploying both broadcast and nonbroadcast data links is shown in Figure
8.1. To move a packet from node A, on the left, to node H, on the right,
the packet must travel in the following manner:

FIGURE 8.1

1. The packet travels from node A to node B over the subnetwork im­
plemented by a local area network (a broadcast data link).

A network employing broadcast and nonbroadcast data links.

1111111111111111111

::::m::::m:m: C:==J
A

Network
L
MAC

Physical

Network

HDLC X.25

Physical Physical

Network

~AC HDLC

Physical Physical

X.25 Packet-Switched
Data Network

1111111111111111111

::::::::::::::::::: C:==J
H

Physical

168 PART II: DNA FUNCTIONAL LAYERS

2. The packet travels from node B to node F over the subnetworks im­
plemented by point-to-point data links.

3. The packet travels from node F to node Gover an X.25 PSDN (an­
other point-to-point data link).

4. The packet travels from node G to node H over the subnetwork im­
plemented by a LAN (another broadcast data link).

To understand how various types of data link technologies are used
to provide a unified Network service, it is necessary to understand how
the Network layer is organized and how it accesses the services of the un­
derlying Data Link layer.

Internal
Organization of
the Network Layer

The Network layer has a somewhat more complex organization than
many of the other layers. One reason for its complexity is that it is possi­
ble for a network to be constructed with different types of subnetworks.
As we have seen, some subnetworks may provide only a connectionless­
mode Data Link service, others may provide only a connection-mode
Data Link service, and some may provide both. In addition, many alter­
native forms of data link technology can be used to supply the Data Link
service. All of these must together be used to provide a unified service to
users of the Network layer.

Network Sublayers

The DNA Phase V architecture divides the Network layer into two sub­
layers: a subnetwork independent layer and a subnetwork dependent
layer. An important reason for dividing the network layer into two sub­
layers is to make it possible to provide a consistent Network layer service
using the facilities of a wide variety of different types of subnetworks
using various types of data link. The following are the major functions of
the two Network layer sublayers:

• Subnetwork Independent Sublayer. The major function of the subnet­
work independent sublayer is to provide either the CLNS or the CONS
on the request of a user of the Network layer service (typically a Trans­
port layer entity).

• Subnetwork Dependent Sublayer. The major function of the subnetwork
dependent layer is to access the underlying services of the Data Link
layer on the request of the subnetwork independent sublayer.

FIGURE 8.2

CHAPTER 8: NETWORK LAYER PROTOCOLS 169

Network Layer Protocol Roles

ISO has described the way in which the Network layer is organized in
ISO 8648, Internal Organization of the Network Layer. This interna­
tional standard describes three roles that a Network layer protocol can
play in helping to provide the Network layer service. It is helpful to view
the three protocol roles as operating within the two Network layer sub­
layers, as shown in Figure 8.2. Following are descriptions of the three
Network layer protocol roles:

• Subnetwork Independent Convergence Protocol Role (SNICP). A proto­
col operating in the SNICP role operates to provide the requested Net­
work service to a user of the Network layer service using a well-defined
set of underlying capabilities. It interfaces directly with the Network
layer service requester (typically the Transport layer) and is independent
of the actual Data Link services used to provide the Network service.

• Subnetwork Access Protocol Role (SNAcP). A protocol operating in the
SNAcP role directly accesses the services of the Data Link layer in help-
ing to provide the requested Network service. .

• Subnetwork Dependent Convergence Protocol Role (SNDCP). A proto­
col operating in the SNDCP role augments the functions provided by a
protocol operating in the SNAcP role to provide the services the subnet­
work independent sublayer requires to provide the requested Network
service.

Network layer sublayers and protocol roles.

Network Service User

Subnetwork Independent
Convergence Role (SNICP)

Subnetwork {
Independent

Sublayer 1----------------1
Subnetwork Dependent

{

Convergence Role (SNDCP)
Subnetwork

Dependent Subnetwork Access
Sublayer Role (SNAcP)

'----------..---------'
Data Link Layer

170

Protocols for
Supplying the
CLNS

PART II: DNA FUNCTIONAL LAYERS

The SNICP role operates in the subnetwork independent sublayer,
the SNAcP role operates in the subnetwork dependent sublayer, and the
SNDCP role, when it is required, helps to interface between the two sub­
layers. A single protocol can provide one, two, or all three of the proto­
col roles. Generally the SNICP and SNAcP roles are always required, but
the SNDCP role may be null in some cases. Let us look at some examples
of how the three protocol roles work together to provide the Network
layer service.

Suppose the Transport layer requests the CLNS and the underlying
subnetwork uses a broadcast form of data link that provides a connec­
tionless-mode Data Link service. In this case, a single protocol may play
both the SNAcP role of accessing the underlying Data Link service and
the SNICP role of providing the Network service to the Transport layer
entity. Here, the Data Link service provides exactly the functions re­
quired to provide the CLNS, and the SNDCP role is null.

In a more complex case, the Transport layer may request the CLNS,
and the underlying Data Link service may provide only a connection­
mode service, possibly using an X.25 virtual circuit. In such a case, one
protocol may play the SNAcP role of accessing the connection-mode
Data Link service, and an entirely different protocol may play the SNICP
role of providing the network service to the Transport layer. In that case,
the characteristics of the underlying Data Link service are quite different
from the Network service being requested. For example, the CLNS has
no connection establishment and release phases. A third protocol (it may
or may not be the same protocol operating in the SNICP role) is required
operating in the SNDCP role. It defines the procedures for selecting an
existing Data Link connection, establishing a new Data Link connection
when required, transferring data over the connection, and determining
when to release the Data Link connection when it is no longer required.

As a packet moves through the network, different protocols, operat­
ing in the various roles, may be used for each hop the packet takes over a
data link. The protocols used for each hop are those appropriate for the
Network service requested and the data link technology used on that link.

The remainder of this chapter describes the ISO protocols that oper­
ate in end systems and routers for providing both the CLNS and the
CONS, beginning with protocols for providing the CLNS.

The preferred operating mode of the DNA Phase V Network layer is to
use the protocols that supply the CLNS. This is the Network layer ser­
vice requested by the Transport layer most often in a DECnet Phase V

ISO 8473 Internet
Protocol

ISO 8473
Subnetwork
Dependent Layer
Functions

ISO 8473
Subnetwork
Dependent
Sublayer Service
Definition

CHAPTER 8: NETWORK LAYER PROTOCOLS 171

network. The ISO 84 73 Internet protocol supplies the CLNS and works
in conjunction with the ISO 9542 ES-IS routing protocol and the ISO
10589 IS-IS routing protocol. (These three protocols were introduced in
Chapter 7.) The next sections describe the ISO 8473 Internet protocol
and the ISO 9542 ES-IS routing protocol; the ISO 10589 IS-IS routing
protocol is described in Chapter 9.

The ISO Internet protocol is described in ISO 8473, Protocol for Provid­
ing the Connectionless-mode Network Service. A major portion of ISO
8473 concerns the SNICP role in the subnetwork independent sublayer
and specifies the procedures that end nodes use for exchanging user data
with each other in supplying the CLNS to users of the Network service. A
part of the Internet protocol also operates in the subnetwork dependent
layer and is concerned with accessing the underlying Data Link services.

We will first discuss the functions of the ISO 84 73 Internet protocol
that operate in the subnetwork dependent sublayer; then we will look at
the ISO 84 73 functions performed in the subnetwork independent sub­
layer.

The functions of the ISO 8473 protocol that operate in the subnetwork
dependent layer are concerned mainly with the SNDCP role of augment­
ing the underlying Data Link service to provide the service expected by
the subnetwork independent sublayer. The SNDCP role of the ISO 84 73
protocol is concerned with how the subnetwork dependent sublayer per­
forms data link initialization, hop-by-hop segmentation over subnet­
works with small maximum frame sizes, and connection establishment
and release for dynamically established data links.

We will see that ISO 8473 defines specific SNDCP functions for ac­
cessing subnetworks .implemented by local area networks, X.25 virtual
circuits, and point-to-point data links.

The specification of the ISO 84 73 Internet protocol includes a service
definition of the interface between the subnetwork dependent sublayer
and the subnetwork independent layer. Unlike the interfaces between
layers, this service interface is not standardized and appears in the ISO
standard only for descriptive purposes. As with other service definitions,
this interface is defined in terms of a set of service primitives and service
primitive parameters. These are listed in Box 8.1. Figure 8.3 is a time-se-

172

BOX 8.1

Subnetwork
Dependent
Sublayer Service
Primitives

FIGURE 8.3

PART II: DNA FUNCTIONAL LAYERS

SN_UNITDATA.request

SN UNITDATA.indication

source address
destination address
quality_of_service
user data

source address
destination address
quality_of_service
user-data

quence diagram that shows the sequence in which the service primitives
are issued to transmit a packet across a single data link.

There is a difference between the service definition described here
and the one presented in Chapter 7 that defines the services the Network
layer provides to a user of the Network layer service. The service defini­
tion described in Chapter 7 defines the service the Network layer pro­
vides as a whole; the service definition described in Box 8.1 defines the
service the subnetwork dependent sublayer provides to the subnetwork
dependent sublayer.

In a typical use of the Network layer service, a Transport layer en­
tity issues an N_UNITDATA.request primitive to hand an NSDU over to

A time-sequence diagram for the SN·UNITDATA service.

SN_UNITDATA.
SN_UNITDATA.

FIGURE 8.4

CHAPTER 8: NETWORK LAYER PROTOCOLS 173

a Network layer entity for transmission through the network. A Net­
work layer entity in the node at the final destination then issues an
N_UNITDATA.indication primitive to pass the NSDU up to the destina­
tion Transport layer entity. With this service, the routing and relaying of
packets between routers are hidden from the Transport layer entities.
The roles of the subnetwork independent and subnetwork dependent
sublayers in routing packets through the network is shown in Figure 8.4.

After the subnetwork independent sublayer receives an NSDU from
a Transport layer entity, it encapsulates the NSDU in a packet and issues
an SN_UNITDATA.request primitive to the subnetwork dependent sub-

The roles of the subnetwork independent sublayer and the subnetwork dependent sublayer in
routing data through different types of subnetworks.

HDLC X.25

Physical Physical

1111111111111111111

:::::::::::::::::::~
Transport

Subnet Independent
Su networ
Dependent

HDLC

Physical Physical

X.25 Packet-Switched
Data Network

1111111111111111111

:::::::::::::::::::~

Physical

174

Subnetwork
Dependent
Service Interface
Procedure
Declarations

ISO 8473
Subnetwork
Dependent
Sublayer
Functions

PART II: ONA FUNCTIONAL LAYERS

layer below to transmit the packet over a single subnetwork. The sub­
network dependent sublayer entity provides the service of accessing a
Data Link layer service to transfer the packet specified by the user_data
parameter across a single data link. A subnetwork dependent entity in
the receiving node then passes the packet up to the subnetwork inde­
pendent sublayer in that node by issuing the SN_UNITDATA.indication
primitive.

If the packet has reached a router and not the destination end node,
the subnetwork independent sublayer in the router performs the routing
function and issues another SN_UNITDATA.request primitive to relay
the packet across the next subnetwork. This process continues until the
packet reaches its final destination. The subnetwork independent sub­
layer in the destination node then extracts the NSDU from the packet
and issues the N_UNITDATA.indication primitive to pass the NSDU up
to the destination Transport entity.

Like the interface between the Transport layer and the Network layer,
the DNA Phase V architecture defines the interface between the subnet­
work independent sublayer and the subnetwork dependent sublayer. The
architectural specification for the Network layer uses the terms circuit
and adjacency in defining this service interface. A circuit is a generic term
that includes any type of link, including a local area network broadcast
link, a point-to-point link, an attachment to a node on a DDCMP multi­
point link, a dial-up link, or an X.25 virtual circuit. An adjacency repre­
sents the combination of a circuit and a node attached to that circuit.

For example, a router attached to a LAN having 10 end nodes at­
tached to it and no other routers perceives one circuit with 10 adjacen­
cies. The procedure declarations that define the services a subnetwork
dependent sublayer entity supplies to a subnetwork independent sub­
layer entity are listed in Box 8.2.

As we have described, the subnetwork dependent sublayer provides the
function of accessing a real Data Link layer service to provide the service
of transmitting packets from one node to another. As we have seen, the
subnetwork dependent sublayer is capable of working with many types
of data links, some of which may offer a connectionless-mode and some
of which may offer a connection-mode Data Link layer service.

The ISO 84 73 Internet protocol functions running in the subnet­
work dependent sublayer operate in the SNDCP role and perform the

BOX 8.2

Subnetwork
Dependent
Sublayer Interface
Procedure
Declarations

CHAPTER 8: NETWORK LAYER PROTOCOLS

The following function and procedure declarations define the
abstract interface between the subnetwork independent sublayer and
the subnetwork dependent sublayer of the Network layer in terms of
the services a subnetwork dependent sublayer entity provides to a
subnetwork independent sublayer entity.

Circuit Control Functions

• CircuitStatus. Determines the status of a circuit.

• Reinitialize. Resets a circuit so previously received messages are dis­
carded.

• SupplyCircuitUpComplete. Informs the subnetwork dependent sub­
layer that the update process of the routing algorithm recognizes that
a circuit is up.

• SupplyCircuitDownComplete. Informs the subnetwork dependent
sublayer that the update process of the routing algorithm recognizes
that a circuit is down.

Adjacency Control Functions

• AdjacencyStatus. Determines the status of an adjacency.

• SupplyBroadcastAdjacencyUpComplete. Informs the subnetwork
dependent sublayer that the update process of the routing algorithm
recognizes that an adjacency on a broadcast circuit is up.

• SupplyBroadcastAdjacencyDownComplete. Informs the subnetwork
dependent sublayer that the update process of the routing algorithm
recognizes that an adjacency on a broadcast circuit is down.

Data Transfer Functions

• Transmit. Transmits the contents of a buffer containing an NSDU.

• CheckTransmitBuffer. Checks the status of a buffer whose contents
previously were sent as a result of the Transmit function.

• SupplyReceiveBuffer. Provides a receive buffer for use by a subnet­
work dependent sublayer entity.

• CheckReceiveBuffer. Determines whether any buffer supplied with a
SupplyReceiveBuffer function has been filled with received data and
returns the contents of the buffer to the subnetwork independent
sublayer entity when a packet arrives.

175

176 PART 11: DNA FUNCTIONAL LAYERS

subnetwork dependent convergence functions required to offer a uni­
form interface to the subnetwork independent layer, no matter what the
actual characteristics of the underlying Data Link layer service are.

In some cases, the underlying Data Link layer service provides a
connectionless-mode service. In such a case, the subnetwork dependent
convergence function consists of a simple mapping to the Data Link ser­
vice required to implement the SN_UNITDATA.request primitive. In
other cases, the underlying Data Link layer service may provide a con­
nection-mode service, such as that offered by an X.25 virtual circuit. In
such a case, the subnetwork dependent convergence function consists of
the specification of an actual protocol that uses an existing connection or
establishes a new connection, if required, to relay the packet across the
connection and then releases the connection at an appropriate time.

Subnetwork Dependent Convergence General Model

In general, when the subnetwork dependent sublayer receives a packet
from the subnetwork independent sublayer as a result of an SN_UNIT­
DATA.request primitive, it attempts to determine what it needs to trans­
mit the packet to the next node along its path. It then transmits the
packet to the appropriate node. If for any reason the subnetwork depen­
dent sublayer entity is unable to transmit the packet to an appropriate
next node, it discards the packet and generates, if so requested, an Error
Report packet to be returned to the source.

ISO 8473 Subnetwork Dependent
Convergence Functions

The ISO 84 73 Internet protocol defines subnetwork dependent conver­
gence functions for three types of subnetworks:

• Point-to-Point Subnetworks. These subnetworks are implemented by
conventional wide area networking Data Link protocols. DNA Phase V
supports both HDLC and DDCMP data links for point-to-point subnet­
works. With an HDLC or DDCMP point-to-point link, the SNDCP role
of the Data Link protocol consists of a simple mapping function.

• Broadcast Subnetworks. These subnetworks are implemented by local
area networks that supply the Logical Link Control (LLC) service
defined in IEEE 802.2/ISO 8802-2. The LLC service is exactly the service
required to support the CLNS, so the SNDCP function consists of a sim­
ple mapping to the LLC service primitives.

ISO 8473
Subnetwork
Independent
Sublayer

CHAPTER 8: NETWORK LAYER PROTOCOLS 177

• X.25 Virtual Circuits. These subnetworks supply a connection-mode
Data Link service. An X.25 virtual circuit subnetwork is an example of a
dynamically assigned point-to-point data link. The SNDCP function for
X.25 virtual circuits specifies a protocol for choosing an existing connec­
tion, establishing a new connection when required, transferring data
over a connection, and releasing the connection when appropriate. This
protocol is augmented by additional policies and parameters described in
the DNA Phase V architectural specification for the Network layer.

We next describe the functions of the ISO 84 73 Internet protocol
that operate in the subnetwork independent layer to provide the CLNS
to a user of the Network layer.

As we introduced earlier, the subnetwork independent sublayer is responsi­
ble for the transmission of packets between any two end nodes in the net­
work wishing to communicate with one another. The ISO 84 73 protocol
functions operating in the subnetwork independent layer are not concerned
with the type of service provided by the individual subnetworks over which
packets must travel; they are independent of the Data Link layer.

The functions of the ISO 8473 Internet protocol operating in the
subnetwork independent sublayer play the SNICP role and supply the
Network service directly to a user of the Network layer service. These
protocol functions define the way in which two end nodes exchange
packets with each other to provide the CLNS.

ISO 8473 Packets

The ISO 84 73 Internet protocol defines two network-protocol-data-units
(NPDUs), or packets, that are used to control its operation. Following are
brief descriptions of the two ISO 84 73 Internet protocol packet types:

• Data Packet. Carries NSDUs between users of the Network layer service
in the two end nodes that are communicating using the Network service.

• Error Report Packet. Returned to the originating node when a Data
packet is discarded because of a problem. It is generated by the node that
discarded the packet if requested by the sender of the packet.

Packet Format Figure 8.5 shows the general format of a Network
layer packet. It begins with a protocol identifier field that identifies the
packet as one associated with the ISO 84 73 Internet protocol. Following
the identifier field is a length indicator, which contains a value indicating

178

FIGURE 8.5

FIGURE 8.6

PART 11: DNA FUNCTIONAL LAYERS

The general format of a Network layer packet.

Protocol Header
Header

Identifier
Length

Fixed Portion
Variable Portion Data

(optional)

the length of the header portion of the message. After the length field is
the fixed portion of the header, which has the same format for both Data
and Error Report packets. Following the fixed portion of the header is an
optional variable portion that contains additional parameters. Following
the variable portion of the header is the data portion of the packet. In a
Data packet, the data portion contains the NSDU passed from a user of
the Network layer service for transmission by the Network service.

Packet Header Fields Figure 8.6 shows the format of Data and Error

Data packet and Error Report packet format.

Protocol Length Version/Protocol
Lifetime Identifier Indicator ID Extension

SP}~1 Type
Segment

Checksum Length

Checksum
Destination

Address Length

~ Destination Address (up to 20 bytes) ~

Source
Address Length

Source Address (up to 20 bytes) *
~

Data Unit Identifier

Segment Offset Total Length

I
Header Variable Portion

l Data

J J

FIGURE 8.7

CHAPTER 8: NETWORK LAYER PROTOCOLS

Header variable portion parameter format.

Parameter
Code

Length Parameter Value

179

Report packets. When a packet contains parameters in the variable por­
tion of the header, each parameter is structured as shown in Figure 8. 7. A
parameter begins with a 1-octet code identifying the parameter's type,
followed by a 1-octet field giving the parameter's length, and ending with
one or more octets containing the parameter's value. The parameters
that can be included in both the fixed and the variable portions of the
header for Data and Error Report packets are listed in Box 8.3.

ISO 8473
Subnetwork
Independent
Protocol Functions

The procedures performed by the subnetwork independent layer of the
Network layer and the mechanisms used in implementing these proce­
dures are described in both ISO 8473 and the DNA architectural
specification for the Network layer. The operation of the ISO 84 73 Inter­
net protocol is defined in terms of a set of protocol functions docu­
mented in ISO 8473. Not all functions need be supported by an imple­
mentation of ISO 8473. Box 8.4 (page 182) describes each protocol
function described in the ISO 84 73 protocol specification.

Protocol Function Subsets

ISO 84 73 defines two subsets of the full protocol, each of which needs to
implement only some of the protocol functions:

• Inactive Network Layer Subset. This protocol subset consists of a limited
number of protocol functions that can be used when it is known that
both the source and the destination end nodes are in the subnetwork.

• Nonsegmenting Subset. This protocol subset allows a simplified form of
packet header to be used if it is known that it will not be necessary to
segment packets over any of the subnetworks that connect the source
and the destination nodes.

DNA Phase V provides the full protocol. The inactive Network
layer subset is provided for compatibility with the equipment of other
vendors that does not support the full protocol.

180

BOX 8.3

ISO 8473 Data and
Error Report Packet
Header Fields

PART II: DNA FUNCTIONAL LAYERS

Header Fixed Portion Fields

• Network Layer Protocol Identifier. Contains the value 129 and
identifies the packet as being associated with the ISO 8473 protocol.

• Length Indicator. Contains a value giving the length of the header.

• Version/Protocol ID Extension. Contains the value 1.

• Lifetime. Contains a value specifying the remaining lifetime of the
packet in units of 1/2 second.

• Segmentation Permitted (SP). Contains the value 1 if segmentation is
permitted.

• More Segments (MR). Contains the value 1 if more segments follow
this one.

• Error Report (ER). Contains the value 1 to request the return of an
Error Report packet should this packet be discarded.

• Type. Contains the value 28 if the packet is a Data packet; contains
the value 1 if the packet is an Error Report packet.

• Segment Length. Contains a value giving the length of the entire
packet, including the header.

• Checksum. Used to contain a calculated checksum to detect corrup­
tion of the data in the packet's header. The use of this field is
optional and is not recommended in DNA. When not used, both
octets are set to values of 0.

• Destination Address Length. Contains a value giving the length of
the destination address field that follows.

• Destination Address. Contains the network address of the node to
which the packet is being sent.

• Source Address Length. Contains a value giving the length of the
source address field that follows.

• Source Address. Contains the network address of the node originat­
ing the packet.

• Data Unit Identifier. Contains a unique identifier generated by the
source node (included only in packets having the Segmentation Per­
mitted field set to 1).

• Segment Offset. Contains a value indicating the relative position
within the original PDU of this segment (included only in packets
having the Segmentation Permitted field set to 1).

BOX 8.3

continued

CHAPTER 8: NETWORK LAYER PROTOCOLS

• Total Length. Total length of the entire PDU before segmentation
(included only in packets having the Segmentation Permitted field set
to 1).

Header Variable Portion Fields

• Padding. Used to align the data portion of the PDU on some desired
boundary.

• Security. Used to contain implementation-defined security informa­
tion.

• Source Routing. Used to contain information about the route the
packet should take through the network.

• Route Recording. Used to record information about the route the
packet travels through the network.

• Quality of Service. Used to contain values describing quality-of-ser­
vice parameters. This field contains the congestion experienced indi­
cator used to implement congestion avoidance procedures.

• Priority. Used to contain a value specifying the relative priority of the
packet.

• Reason for Discard. Used in Error Report packets sent after a node
discards a packet to indicate the reason a packet was discarded.

Protocol Function Categories

181

The ISO 84 73 protocol specification divides the protocol functions into
three categories:

• Type 1. These are functions that all implementations of the full protocol
must provide.

• Type 2. An implementation may or may not provide these functions. If a
node receives a packet that selects a type 2 function that the node does not
provide, the node discards the PDU and generates an Error Report packet.

• Type 3. An implementation may or may not provide these functions. If a
node receives a packet that selects a type 3 function that the node does
not provide, the node processes the packet as if the function had not
been selected.

Figure 8.8 (page 184) lists the protocol functions, indicates each
function's type, indicates the functions that must be provided by the full

182

BOX 8.4

ISO 8473 ES-ES
Protocol Functions

PART II: DNA FUNCTIONAL LAYERS

• PDU Composition. Constructs packets according to the rules gov­
erning the encoding of packets defined in the protocol specification.

• PDU Decomposition. Removes protocol-control-information from
packets.

• Header Format Analysis. Analyzes information in the packet header
and determines whether it is in the correct format.

• PDU Lifetime Control. Used to enforce a maximum lifetime for a
packet so no packet can circulate endlessly through the network.

• Route PDU. Determines the node to which a packet should be for­
warded and the underlying service that must be used to move the
packet to that node.

• Forward PDU. Transmits a packet over a data link to the node deter­
mined as a result of the route PDU function.

• Segmentation. Breaks up a large packet for transmission over a data
link into two or more smaller packets.

• Reassembly. Reassembles the original packet segmented using the
segmentation function.

• Discard PDU. Discards a packet that cannot be processed because of
a lack of resources, a protocol violation, or an error that occurred
during its transmission.

• Error Reporting. Attempts to return an Error Report packet when
the discard PDU function was used to discard a packet.

• PDU Header Error Detection. Performs a checksum calculation on
the protocol-control-information to ensure that it has not been cor­
rupted.

• Padding Function. Allows space to be reserved in a packet header to
allow the data portion to be aligned on a convenient boundary, such
as a word boundary in a computer.

• Security. Used to implement protection and data integrity controls.
The standard does not specify how the protection is to be provided,
only where in the packet header security information can be
encoded. (This protocol function is not provided by DNA Phase V.)

• Source Routing. Allows the source node to specify the path through
the network a generated packet should take. (This protocol function
is not provided by DNA Phase V.)

• Record Route. Records the route traveled by a packet as it passes
through each router on its way to the destination node.

BOX 8.4

continued

Subnetwork
Independent
Sublayer Protocol
Mechanisms

CHAPTER 8: NETWORK LAYER PROTOCOLS

• Quality-of-Service Maintenance. Provides information to routers
that can be used in making routing decisions where those decisions
affect the quality of service the Network service provides to a user of
the Network layer service.

• Priority. Allows a packet having a higher priority value in its header
to be processed ahead of packets having lower priorities. (This pro­
tocol function is not provided by DNA Phase V.)

• Congestion Notification. Sets an indicator in a packet's header to
indicate that congestion was experienced in transmitting the packet
over a data link.

183

protocol and the two protocol subsets, and summarizes the protocol
functions that the DNA Phase V implementation of ISO 84 73 provides.

The descriptions of the protocol functions in ISO 84 73 precisely docu­
ment all aspects of Network layer protocol operation for the CLNS.
However, the descriptions are overly detailed for all but those who build
products implementing the protocol. Full descriptions of the protocol
functions used to provide the CLNS would fill a rather large book, so we
cannot describe them here in detail. The following sections contain gen­
eral descriptions of the various types of protocol mechanisms used in the
DNA Phase V Network layer to implement ISO 8473. Here we provide a
high-level overview of some of the more interesting aspects of the opera­
tion of the ISO 8473 Internet protocol.

Routing

The routing function determines the path over which a packet flows
from the source node to the destination no_de. The routing function in a
router extracts and interprets routing PCI from the packets it receives,
forwards packets based on the destination address in the PCI, and finds
an alternative route when nodes or data links fail. The routing function
also receives reports from the subnetwork dependent layer concerning
changes in the availability of the routers and the end nodes to which it is

184 PART II: DNA FUNCTIONAL LAYERS

FIGURE 8.8 Network layer protocol function support

Full Nonsegmenting Inactive Supported by
Function Protocol Subset Subset DNAPhaseV

PDU Composition Type 1 Type 1 Type 1 Yes

PDU Decomposition Type 1 Type 1 Type 1 Yes

Header Format Analysis Type 1 Type 1 Type 1 Yes

PDU Lifetime Control Type 1 Type 1 n.a. Yes

Route PDU Type 1 Type 1 n.a. Yes

Forward PDU Type 1 Type 1 n.a. Yes

Segmentation Type 1 n.a. n.a. Yes

Reassembly Type 1 n.a. n.a. Yes

Discard PDU Type 1 Type 1 n.a. Yes

Error Reporting Type 1 Type 1 n.a. Yes

PDU Header Error Detection Type 1 Type 1 n.a. Yes

Security Type2 Type 2 n.a. No

Complete Source Routing Type 2 Type2 n.a. No

Complete Route Recording Type2 Type2 n.a. No

Partial Source Routing Type3 Type3 n.a. No

Partial Route Recording Type3 Type 3 n.a. Yes

Quality of Service Maintenance Type3 Type3 n.a. No

Priority

Congestion Notification

Padding Function

Type3 Type3 n.a. No

Type3 Type3 n.a. Yes

Type3 Type3 n.a. Yes

attached and returns error reports to the user of the Network layer ser­
vice when necessary. The ISO 84 73 Internet protocol describes a routing
protocol function but does not specify the algorithm that is to be used to
perform it. As we have already discussed, routing in a DNA Phase V net­
work is handled by the ISO 10589 IS-IS routing protocol, described in
Chapter 9.

Segmentation and Reassembly

In some situations, packets may be too large to be transmitted by the
Data Link layer in a single transmission frame, perhaps because devices
having a limited frame buffer size are used to implement the data link. In
such a case, a segmentation function breaks up the packet into smaller
packets. Packets that are segmented remain so until they are received by
the destination node. A reassembly function in the Network layer in the
destination node reassembles the packet after receiving all the segments.

CHAPTER 8: NETWORK LAYER PROTOCOLS 185

(Note that this function is different from the Transport layer function of
breaking long messages into individual packets before passing them
down to a Network layer entity in separate NSDUs.)

POU Lifetime Control

PDU lifetime control places a limit on the amount of time a packet can
remain in the network and thus ensures that a packet does not circulate
endlessly through the network. This function is important to the Trans­
port layer because the Transport layer requires that each packet is either
delivered in a bounded amount of time or discarded. Packets that remain
in the network too long can cause the Transport layer message sequence
number mechanism to fail.

Congestion Avoidance

The congestion avoidance function keeps track of the available buffer re­
sources in each router. When the average number of packets in the queue
for a given data link exceeds some predefined value, the router sets a
congestion experienced indicator in the packets it forwards over that
data link. This information is used by the Transport layer congestion
avoidance functions described in Chapter 10. If the queue continues to
grow, the router begins to discard packets to prevent deadlocks. The
congestion control function regulates the ratio of traffic being relayed by
a node to traffic originated by that node.

We next examine the functions that are performed by the ISO 9542
ES-IS routing protocol.

ISO 9542 ES-IS The ISO ES-IS routing protocol is described in ISO 9542, End System to
Routing Protocol Intermediate System Routing Exchange Protocol for Providing the Con­

nectionless-mode Network Service. This protocol allows end nodes and
routers to communicate with one another for the purposes of exchanging
information to control the routing function. This protocol defines how
an end node exchanges routing control information with a router to au­
tomatically configure itself into the network. The 9542 ES-IS protocol
works with two types of information: configuration information and
route redirection information:

• Configuration Information. Configuration information allows end nodes
and routers to learn of each other's existence and to determine if they are

186 PART II: DNA FUNCTIONAL LAYERS

reachable. This information allows end nodes and routers to dynami­
cally learn of their availability, thus eliminating the need for explicit net­
work management actions when connecting a new end node to the net­
work or when disconnecting an end node or router.

• Route Redirection Information. Route redirection information allows
routers to inform end nodes of better routes to use when forwarding
packets to a particular destination node. A better path could be another
router on the same subnetwork as the source end node or the destination
end node itself if it is on the same subnetwork as the source end node.
Allowing the routers to inform end nodes of better routes minimizes the
complexity of the routing decisions end nodes must make and allows end
nodes to make use of more efficient routes when transmitting future
packets. For example, a source end node need not check to see whether
the destination end node is in its own subnetwork. The source end node
simply sends the first packet to a router it knows about. If the router de­
termines that the destination end node is in the same subnetwork as the
source end node, it informs the source end node of that fact. The source
end node can then forward all subsequent packets directly to the destina­
tion end node.

The following sections describe the formats of the packets defined
by the ISO ES-IS protocol and list the procedures the protocol defines.

ISO 9542 ES-IS Protocol Packet Types

The ISO 9542 ES-IS protocol defines three packet types used to exchange
routing information:

• Redirect. This packet is generated by a router when it receives a Data
packet from an end node and determines that the end node could have
forwarded the packet directly to the node to which the router is about to
forward the packet. The Redirect packets provide the end node that orig­
inally sent the Data packet with the subnetwork address of the node to
which it should forward future packets for the specified destination.

• End System Hello (ESH). This packet, called Endnode Hello in the DNA
Phase V documentation, is generated periodically by each end node to
inform all routers currently on the data link of the existence of the end
node.

• Intermediate System Hello (ISH). This packet, called Router Hello in the
DNA Phase V documentation, is generated periodically by each router
on a data link to inform all end nodes on that data link of the existence
of the router.

Protocols for
Supplying the
CONS

CHAPTER 8: NETWORK LAYER PROTOCOLS 187

ISO 9542 Protocol Functions

The ISO 9542 protocol specification describes the operation of the ES-IS
routing protocol in terms of a set of protocol functions. Not all functions
need be supported by an implementation of ISO 9542. Box 8.5 describes
each of the protocol functions defined in ISO 9542.

The remainder of this chapter introduces the protocols used in sup­
plying the CONS.

Two protocols are used to supply the CONS: ISO 8208 and ISO 8878.
Together they provide the CONS, but not in the same way as ISO 8473,
ISO 9542, and ISO 10589 supply the CLNS. As described in Chapter 7,
DNA Phase V end nodes support the CONS for communication with
other nodes attached to an X.25 PSDN.

ISO 8208 X.25 Protocol

The specification of the main protocol used to implement the X.25 inter­
face is described in ISO 8208, X.25 Packet-level Protocol for Data Ter­
minal Equipment. The ISO 8208 protocol is a subnetwork dependent
sublayer protocol that operates in the SNAcP role to access the underly­
ing subnetwork service in an X.25 network. The ISO 8208 protocol is
identical to the protocol described in the 1984 Red Book version of Rec­
ommendation X.25 published by CCITT. The 1984 version of X.25
defines a protocol rich enough in function that it provides all required fa­
cilities to directly provide the CONS. However, the X.25 and the CONS
are defined in different ways.

The CONS, described by ISO 8348, Network Service Definition, is
defined in terms of the following:

• service primitives that define actions and events

• service primitive parameters

• the interrelationships among valid sequences of actions and events

Recommendation X.25, on the other hand, is defined in terms of the
following:

• procedures for establishing and using virtual circuits

• the formats of packets associated with virtual circuit procedures

• procedures for optional user facilities

188

BOX 8.5

ISO 9542 ES-IS
Protocol Functions

PART II: DNA FUNCTIONAL LAYERS

• Protocol Timers. Maintenance of timers used to trigger the execution
of other protocol functions.

• Report Configuration. Used by end nodes and routers to inform each
other of their existence and of their network addresses.

• Record Configuration. Used by a router to record configuration
information obtained from end nodes and other routers to update
the router's routing information database and by an end node to
record the configuration of routers on a subnetwork.

• Flush Old Configuration. Used by a router or an end node to flush
old configuration information from the router's routing information
database after the expiration of a timer.

• Query Configuration. Issued to locate an end node when no router is
currently reachable on the subnetwork.

• Configuration Response. Issued in response to the query configura­
tion function.

• Configuration Notification. Used by end nodes and routers to trans­
mit configuration information to a node that has become newly
available.

• Request Redirect. Used by routers to provide an end node with a bet­
ter path over which to forward Data packets.

• Record Redirect. Used by end nodes to handle Redirect packets
received from routers issuing the request redirect function.

• Refresh Redirect. Used by end nodes to refresh redirection informa­
tion when packets are received in order to increase the length of time
a redirection persists without allowing it to persist indefinitely.

• Flush Old Redirect. Flushes redirection entries in the routing infor­
mation database after the expiration of a timer.

• PDU Header Error Detection. Performs a checksum cakulation on
the protocol-control-information to ensure that it has not been cor­
rupted.

• Protocol Error Processing. Discards packets found to contain proto­
col errors.

Because Recommendation X.25 was not originally designed for the
purpose of supplying the CONS, it does not indicate exactly how X.25
procedures and packets should be used to supply the Network service.
To supplement the information in ISO 8208 and Recommendation X.25,
ISO has published ISO 8878.

Conclusion

CHAPTER 8: NETWORK LAYER PROTOCOLS 189

ISO 8878 Provision of CONS Using X.25

The protocol defined in ISO 8878, Use of X.25 to Provide the OSI Con­
nection-mode Network Service, is a protocol operating in the subnet­
work independent sublayer. ISO 8878 operates in the SNICP and
SNDCP roles and can be viewed as running in a thin layer on top of a
lower sublayer in which the ISO 8208 protocol operates. The ISO 8878
protocol defines how X.25 packets and procedures are used to supply
the various services defined in the service definition for the CONS.

ISO 8878 also defines a protocol operating in the SNDCP role that
specifies how an older version of Recommendation X.25 can be used to
supply the CONS. Many PSDNs are still operating using the procedures
defined by the 1980 Yellow Book version of Recommendation X.25. The
1980 version does not provide a sufficiently powerful protocol to furnish
all the services required to supply the CONS. The protocol specified in
ISO 8878 defines procedures by which information concerning certain
elements of the protocol is carried in the headers of 1980 X.25 packets,
and other information concerning the protocol is carried in the data por­
tion of special X.25 Data packets. The protocol generates these and
transmits them along with Data packets that carry information passed
down from the Transport layer.

Chapter 7 introduced the functions of the Network layer, and this chap­
ter discussed the protocols that end nodes use to communicate with each
other and to exchange information with routers. Another important
Network layer protocol involves the procedures routers use in communi­
cating with each other in choosing routes and relaying user traffic
through the network. The ISO 10589 routing protocol is the subject of
Chapter 9.

Routing Algorithm
Properties

190

CHAPTER 9

Network Layer
Routing

The routing function in a computer network must determine the path
over which each packet travels from a source node to a destination
node. Routing in computer networks is a very difficult problem, to
which there does not exist today a totally acceptable solution. There is
no known algorithm that always relays packets, over optimal routes, to
their correct destinations in the face of an arbitrary network topology,
an arbitrary amount of network traffic, and an arbitrary set of failures.
However, the routing problem can be partitioned into two parts: rout­
ing within a single routing domain and routing between administrative
domains.

As discussed in Chapter 7, an administrative domain includes all
the end systems, routers, and subnetworks making up a network that is
the responsibility of a single organization. The DNA Phase V routing
algorithm solves the problem of routing within a single routing do­
main. The routing algorithm designed specifically for DNA Phase V has
now been accepted as the basis for the international standard ISO
10589-Intermediate System to Intermediate System Intra-Domain
Routing Exchange Protocol for use in Conjunction with the Protocol
for Providing the Connectionless-mode Network Service (ISO 8473).
After we describe how the DNA Phase V routing algorithm handles in­
tradomain routing, we will discuss the more difficult problem of inter­
domain routing.

In developing the routing algorithm for DNA Phase V, the DNA archi­
tects began by determining the desirable properties of a routing algo­
rithm.

Types of Routing
Algorithms

CHAPTER 9: NETWORK LAYER ROUTING 191

NETWORK ARCHITECT

First, the algorithm has to be robust; if a physical path exists between a source

node and a destination node, then the routing algorithm should be able to find

it. The algorithm must compute good routes; if there are multiple paths between

two nodes, the system should use the one with the lowest cost. The algorithm
must stabilize quickly; when changes occur in the network, new routes should

be computed quickly, and the system should stabilize fast and should not oscil­

late. The algorithm has to be frugal; it should use minimum amounts of CPU

cycles, memory, and network bandwidth. And the algorithm must be fault­

tolerant; it should be able to survive data corruption and failures of hardware

and communication links. It is difficult, to say the least, to achieve all of these

objectives simultaneously.

We will next examine the types of routing algorithms that can be
used in a computer network.

The ISO Technical Report TR 9575, OSI Routing Framework, provides
a general discussion of routing in an OSI network and identifies five
forms of routing that can be employed in a computer network. These are
summarized in Figure 9 .1 and are described in the following sections.

Static Routing

With static routing, all routing information for each node is precom­
puted and is provided to each router through a management action.
Static routing has the advantage that sophisticated computational meth­
ods can be used for computing routes, since routes are not computed in
real time. However, with static routing techniques, routing information
must be recomputed and provided to the routers each time the network
topology changes. Thus, static routing techniques are generally not well
suited to large networks that may be constantly changing.

Quasistatic Routing

Quasistatic routing is similar to static routing except the routing infor­
mation that is computed and provided to each node includes information
about alternative paths that can be used when certain types of failures

192

FIGURE 9.1

Method

Static

Quasistatic

Centralized

Distributed

Distance
Vector

Link
State

PART 11: DNA FUNCTIONAL LAYERS

Characteristics of five types of routing algorithms.

Collection Distribution Computation Adaptability

Through network Through network Routes computed None in real time.
management. management. offline.

Through network Through network Routes computed Limited adaptibility to
management. management. offline. failures.

Routers report information Central facility distributes Routes computed by Can adapt to any changes
about the local forwarding information to central facility. to the central facility, but
environment to a central each router. routers have difficulty
facility. finding the central facility.

Routers report current Routers accept routing Routes computed Adapts to any changes
routes to each neighbor information from neighbor individually by each router that are reported by
router. routers and redistribute on receipt of information neighbors.

their view of local that changes their routing
neighborhood. decisions.

Routers collect Routers globally distribute Routes computed individ- Adapts to any changes
globally provided information about their ually by each router upon that are reported in the
information to obtain a local environments to all receipt of information that link state information.
map of the routing domain. other routers. changes their map of the

routing domain.

occur. Quasistatic routing techniques can handle certain types of topo­
logical changes, such as links becoming unavailable, but major changes
to the network topology still require routing information to be recom­
puted offline for the routers.

Centralized Routing

With centralized routing, end nodes and routers report information
about their local environments to a centralized facility. The centralized
facility accumulates routing information from all the nodes in the net­
work, computes routes, and sends to each router the information it
needs to handle routing decisions. In effect, only the centralized facility
has complete knowledge of the network topology. Although, in theory, a
centralized routing scheme can respond to topological changes, it has
two major drawbacks. First, a way must be found for relaying the rout­
ing information to the centralized facility after a topological change oc­
curs. This is difficult because the routing information maintained by the

CHAPTER 9: NETWORK LAYER ROUTING 193

centralized facility cannot be reliably used for this purpose after the net­
work topology changes. Second, the delays inherent in propagating rout­
ing information to and from the centralized facility can cause the calcu­
lated routes to be different from the routes that should be used.

Distributed Adaptive Routing

With distributed adaptive routing, nodes dynamically sense their local
environments and exchange this information with each other in a dis­
tributed fashion. Each node then periodically computes new routes for
relaying packets from one node to the next. Distributed adaptive algo­
rithms are robust, and they can quickly adapt to changing network
topologies. There are two main types of distributed adaptive routing:
distance-vector routing and link state routing. Each of these is discussed
next.

Distance-Vector Routing With a distance-vector routing algorithm,
also sometimes called a Bellman-Ford algorithm, each node in the net­
work learns about the network topology by exchanging routing informa­
tion packets with its neighbors. In effect, each node learns what its
neighbors think the network looks like. Each node then constructs a new
description of the network topology and communicates this new picture
to its neighbors. The process is repeated and eventually stabilizes when
all the nodes learn they have the same description of the network topol­
ogy. The routing algorithm defined by DNA Phase IV is a distance­
vector algorithm.

A distance-vector algorithm is a relatively simple algorithm and is
relatively easy to design and implement. A major problem with distance­
vector routing, however, is that the computational complexity of the al­
gorithm grows quite rapidly with the size of the network. It is well suited
to networks having a maximum size of perhaps 64 areas with 1,000
nodes per area, but it does not scale well much beyond this limit. An­
other problem is that under certain circumstances, the algorithm can
take many iterations to converge after topology changes occur. In a net­
work containing routers having varying levels of performance, and links
having varying bandwidths, the slowest routers in the network and the
slowest links tend to become convergence bottlenecks. Problems that
occur with distance-vector algorithms also tend to be difficult to diag­
nose because none of the routers see the actual original messages describ­
ing the topology of the network; they see only messages indicating what
the network looks like to the router's neighbors. The information ex­
changed by routers consists basically only of distance information. Net-

194

Link State
Algorithm
Operation

PART II: DNA FUNCTIONAL LAYERS

work management generally requires map and path information as well
as distance information for effective troubleshooting.

Link State Routing With a link state routing algorithm, which is the
type of routing algorithm chosen for DNA Phase V, instead of a node
learning about the topology of the network by asking its neighbors what
they think it looks like, a router determines what its individual area of
the network looks like and then broadcasts that information to all the
other routers. With link state routing each router broadcasts information
about its local environment, so it is eventually possible for all the routers
to receive a complete description of the network topology. Each router
then knows where all the other nodes are and what links interconnect
them. In contrast with distance-vector routing, link state algorithms con­
verge in a single iteration after a topology change. A link state algorithm
also provides the map and path information network management re­
quires for troubleshooting.

NETWORK ARCHITECT

We chose a link state algorithm mainly because it scales better and it converges
faster. While a network's routing is unconverged, routing doesn't work, which

means the network doesn't work. You want the network to stay out of the

unconverged state as much as possible. Also, since every node has a map of the

entire network topology, problems are easier to diagnose. You can look at any

node's map of the network and determine if that map is the same as the maps

maintained by other nodes. The main disadvantage of link state algorithms is

that they are much more difficult to design and build than distance-vector

algorithms.

The basic function of a routing algorithm is to determine the paths over
which packets travel through the network. A path is a particular se­
quence of connected nodes and links between the node originating a
packet and the packet's destination node. The DNA Phase V routing al­
gorithm is a distributed algorithm, a component of which runs in every
active router.

The Pseudonode

Special considerations must be given to broadcast links, such as those
employed in local area networks. One way to implement the algorithm

FIGURE 9.2

CHAPTER 9: NETWORK LAYER ROUTING 195

for a broadcast link would be to model the broadcast link as a set of sep­
arate point-to-point links between each node on the broadcast link to all
of the other nodes-a full mesh topology. This causes the number of log­
ical links to grow quadratically as the number of nodes grows, thus caus­
ing the computational complexity of the algorithm to grow much too
quickly. This problem is solved by modeling the broadcast transmission
medium itself as a node on the network (called the pseudonode). This
converts the full mesh topology of the network into a logical star topol­
ogy having many fewer logical links, as shown in Figure 9.2.

Routing Control Packets

The information contained in the packet types exchanged by the routers
provides considerable insight into the operation of the DNA Phase V
routing algorithm. Box 9 .1 lists the packet types used to control the op­
eration of the routing algorithm.

Link State Routing Processes

The DNA Phase V link state routing algorithm consists of four major
processes:

• update

• forward

• decision

• receive \

The pseudonode.

196

BOX 9.1

Routing Control
Packets

PART II: ONA FUNCTIONAL LAYERS

• LAN Level 1 Router-to-Router Hello. Broadcast over a local area
network (LAN) subnetwork to discover the network addresses of all
level 1 routers on that subnetwork.

• LAN Level 2 Router-to-Router Hello. Broadcast over a LAN subnet­
work to discover the network addresses of all level 2 routers on that
subnetwork.

• Point-to-Point Router-to-Router Hello. Transmitted by a router on a
nonbroadcast data link in response to a Router Hello packet from an
adjacent router to determine whether the adjacent router is a level 1
or a level 2 router.

• Link State Packet, Level 1. Generated by level 1 and level 2 routers
and propagated to all routers in an area. The contents of a level 1
Link State packet describe the topology of the network in the imme­
diate neighborhood of the router that generates it.

• Link State Packet, Level 2. Generated by level 2 routers and propa­
gated to all level 2 routers in a private subnetwork. The contents of a
level 2 Link State packet describe the topology of the network with
respect to the level 2 routers (in a private subnetwork) in the immedi­
ate neighborhood of the level 2 router that generates it.

• Complete Sequence Numbers Packet, Level 1. Generated periodically
by a designated level 1 router attached to a broadcast link. It pro­
vides adjacent routers with information about the designated router's
LSP database. This information allows routers to ensure that their
level 1 routing information is synchronized.

• Complete Sequence Numbers Packet, Level 2. Generated by level 2
routers in a manner similar to that of Complete Sequence Numbers
packets, level 1.

• Partial Sequence Numbers Packet, Level 1. Sent over point-to-point
links by a level 1 router to acknowledge received LSPs. Also sent
when a router determines that some other router has one or more
level 1 LSPs that are more up-to-date than those in its LSP database
and serves as a request for the more up-to-date LSPs.

• Partial Sequence Numbers Packet, Level 2. Generated by level 2
routers in a manner similar to that of Partial Sequence Numbers
packets, level 1.

• XID Message. Used for compatibility with DNA Phase IV in con­
junction with DDCMP data links.

The Update
Process

FIGURE 9.3

[Packet

CHAPTER 9: NETWORK LAYER ROUTING 197

Figure 9.3 shows how these four major processes relate to each
other and to the routing information maintained by routers. The follow­
ing sections describe the operation of the four main functions of the
routing algorithm.

The update process is a distributed algorithm in which all routers in the
network participate. Its operation is based on much research that has
been done on routing algorithms over the years. [1, 2, 3, 4] In running
the update process, each router in the network packages the adjacency
information determined by the subnetwork dependent layer into a rout­
ing control packet called a Link State packet (LSP), which describes the
router's local environment. The LSP contains information about the
reachability and identity of the router's immediate neighbors. By "imme-

A functional model of DNA Phase V routing algorithm.

Transport Layer

Data Packet J

[Routing Packet J--1 Update

T I
Routing Information Base

Link State
Packet Database 1

Receive Decision

Forwarding J Database

l Data Packet J

Forward Data Packet

198 PART 11: DNA FUNCTIONAL LAYERS

diate neighbors" we mean all those nodes currently reachable from the
router over a single link.

Link State Packets

A router's LSP contains the following information:

• Router Identification. Identifies the router that generated the LSP.

• Sequence Number and Lifetime Indicator. Used to allow the update pro­
cess to determine the relative age of the LSP.

• Checksum. Used to detect LSP corruption.

• Link Entries. Includes a separate entry for each of the links attached to
the router. Each entry contains the following information:
-Link Status. Contains information about the status of the link.
-Node Identification. Contains information about the identification of

all the neighbor nodes that can be reached via the link. For a point-to­
point link this describes a single node. For a broadcast link, this de­
scribes all the nodes that can be reached via that link.

-Link Cost. Contains a locally determined indication of the cost of
using the link.

Level 1 and Level The information contained in an LSP differs depending on whether the
2 Routers LSP was generated by a level 1 router or a level 2 router. LSPs generated

by level 1 routers list all that router's neighbors, both end nodes and
other routers. LSPs generated by level 2 routers do not list end nodes­
they list neighbor nodes that are other level 2 routers and nodes in other
routing domains reachable from that level 2 router. Information about
reachable nodes in other routing domains consists of static routing infor­
mation that must be entered for level 2 routers using network manage­
ment procedures. Interdomain routing is discussed later in this chapter.

Flooding

The update process in each router is also responsible for propagating
LSPs throughout the network using a technique called -flooding. Each
router sends out its own LSP over each of its links so all its neighbor
routers receive it. A router sends its LSP over a poinMo-point link only if
there is another router at the ~ther end of the link. For a broadcast link,
a router multicasts its LSP to all the routers on the link. Each router
propagates its LSP both periodically and whenever there is a change in

CHAPTER 9: NETWORK LAYER ROUTING 199

any of that router's links. A level 1 router does not send LSPs outside its
area, and a level 2 router propagates LSPs only to other level 2 routers in
the routing domain. A level 2 router does not propagate LSPs outside its
routing domain.

When a router receives an LSP from another router, it determines if it
has ever received an LSP from that router before. If not, it stores the LSP
in its local link state database. It then propagates the received LSP using
the same procedure it uses to propagate its own LSP, except that it does
not send the LSP to the router from which it received the LSP. If a router
receives an LSP identical to one it already has in its link state database, it
acknowledges receipt of the LSP but does not propagate the LSP.

Since LSPs are forwarded from router to router throughout the net­
work, it is possible for a router to receive an LSP older than one it al­
ready has in its link state database. When this occurs, the router does not
forward the LSP it received (the older LSP). Instead, it sends a copy of
the newer LSP (the one it is currently holding) to the router from which
it received the older LSP. In the absence of topological changes, the algo­
rithm converges quickly. After convergence, each level 1 router contains
a complete topological map of its area, and each level 2 router contains a
topological map of the relationships among areas. Routers use these
topological maps to compute least-cost routes from any source node to
any destination node.

Sequence Number Packets

A key responsibility of the update process is to make sure that the latest
LSPs eventually reach every router in the network. To ensure that the up­
date process is reliable, routers send control packets, called Sequence
Number packets (SNPs), that inform adjacent routers of the current con­
tents of their LSP databases. There are two types of Sequence Number
packets: Partial Sequence Number packets (PSNPs) and Complete Se­
quence Number packets (CSNPs). A router attached to a point-to-point
link uses a PSNP to explicitly acknowledge each LSP it receives. The
PSNP contains the router's node ID and information identifying the LSP
that the PSNP acknowledges, including the LSP's sequence number. A
router attached to a broadcast link does not individually acknowledge
each LSP received. Instead, through an election process, one of the
routers on each broadcast link is elected the designated router. The des­
ignated router on a broadcast link periodically multicasts over that link
information about all the LSPs currently in its 'own LSP database. A
router multicasts this information in the form of a set of CSNPs that in-

200 PART II: DNA FUNCTIONAL LAYERS

dicate the sequence numbers of all the LSPs in the router's LSP database.
The set of CSNPs a router multicasts contains enough information to
allow routers receiving it to determine whether the receiving router's and
sending router's LSP databases are synchronized. If a router determines
that some other router has more up-to-date LSPs, it sends a PSNP to that
router as a request for the more up-to-date LSPs.

LSP Checksums

An interesting part of the update process concerns the checksum values
the update process places in the Link State packets it generates. The
checksum values contained in LSPs are calculated only by the routers
that initially generate the LSPs; they are not regenerated as the LSPs are
flooded through the network. This makes it possible for any router to de­
tect an LSP that has been corrupted, by either a transmission error or a
problem in one of the routers. In this way, no router can inadvertently
change the information in an LSP without one of the other routers de­
tecting it.

LSP Sequence Number Space

Another interesting aspect of the update process is the system of sequence
numbers used to sequentially number LSPs. In most protocols that de­
pend on a system of sequence numbers, a relatively small, circular se­
quence number space is used. The network architects determined that a
small, circular sequence number space would not be suitable for LSPs. If
the sequence numbers are allowed to wrap around, then the sequence
number space must be large enough so an old LSP will time out before a
new LSP having the same value as the previous one is generated. But a
large, circular space causes problems when dealing with router failures. If
a router fails, it does not know with which sequence number to begin
numbering its LSPs, because it does not know what values are in the LSPs
already in the network. This could be solved by having the router wait for
a period of time equal to the LSP timeout value. But if the network is set
up so LSPs time out after, say, 30 minutes, a failed router would have to
wait 30 minutes before coming back up. There would then have to be a
difficult tradeoff between how much bandwidth is consumed sending out
new LSPs to keep them from dying out when the router is up and how
long a router has to wait to come back up after a failure.

The solution was to use a 32-bit, linear sequence number space that
does not wrap around. A router continually increases the sequence num-

The Decision
Process

The Forward
Process

CHAPTER 9: NETWORK LAYER ROUTING 201

ber value as it generates LSP values, and the value does not wrap around.
Instead, if a router runs out of numbers, it shuts itself down. However,
with a 32-bit sequence number, a router generating a new LSP every 20
seconds would be able to stay in operation for over a thousand years be­
fore running out of numbers.

With a linear sequence number space, a router that starts up, either
initially or after a failure, always numbers its first LSP with a sequence
number value of 0. Let us say router A fails, restarts, and sends out an
LSP having a sequence number value of 0. Router B receives that LSP
and determines it already has an LSP from router A. The sequence num­
ber in the LSP held by router B will have a sequence number higher than
the one in the LSP just received from router A. This causes router B to
send the LSP back to router A. In this way, router A learns the sequence
number that was contained in the LSP it issued to everyone else before it
failed. It can then add one to that number and go on from there. Theo­
retically there may be a problem if a router manages to stay up for a
thousand years, but from an engineering perspective this is good enough.

The decision process uses the link state database generated through oper­
ation of the update process to determine the least-cost path to each
router in the routing domain. The decision process does this by running
a shortest path first (SPF) graph minimization algorithm to find the best
path through the network to any destination. [5] This information is
used to create a forwarding database, from which the forward process
can determine the least-cost next hop for each Data packet it receives.
The SPF algorithm uses the link state database to construct a spanning
tree of the network topology-a graph structure in which redundant
paths and loops have been eliminated. The SPF algorithm essentially
finds the shortest path to each destination node, starting with the router
itself as the root of a shortest-path tree, and records the neighbors on the
shortest path to each destination. It also computes an adjacency set for
each destination node, which is a representation of all the equal-cost
paths for the next hop to each destination. Adjacency sets allow traffic to
be split across these equal-cost paths.

The forward process decides for each Data packet received which link to
forward that Data packet over. This process inspects the destination
NSAP address of each Data packet it receives and uses the forwarding
database generated by the decision process to determine the correct link

202 PART II: DNA FUNCTIONAL LAYERS

over which to forward the packet. It then queues the packet for trans­
mission over that link. If the forwarding database indicates there are
multiple equal-cost paths to the destination, the forward process per­
forms a load-splitting function and transmits successive Data packets
over different links to evenly distribute the traffic over the adjacency set.

When the forward process is unable to deliver a Data packet, it dis­
cards the packet. If the discarded packet requested an error report in its
protocol-control-information, the forward process returns an Error Re­
port packet to the source node. The Error Report packet specifies the
node at which the error occurred and the nature of the error.

When the forward process forwards the Data packet onto the same
subnetwork from which it was received, it also sends a Redirect packet
to the packet's source node to inform the source node that it could have
sent the packet directly to the destination node. Subsequent Data packets
generated by that node can then be sent directly to the node identified in
the Redirect packet without further involvement of the router.

Router Resource Shortages

An interesting aspect of the forward process is the way in which the al­
gorithm is designed to handle situations where routers run out of re­
sources. Each router maintains an attribute called the hippity cost.

NETWORK ARCHITECT

The most significant cost associated with traversing a subnetwork is associated

with the hops, or the cost of crossing a data link between two nodes. But there

is a cost associated with the processing a node performs before making the next

hop. So in going from node A to node B to node C, we say hippity-hop, hippity­

hop. So the hippity cost is the cost that applies to the node between two hops.

The hippity cost is a routing metric that defines the relative cost of a
packet traversing a router. The algorithm is carefully designed so when a
router runs out of resources, it keeps running but sets its hippity cost at­
tribute to infinity and notifies rietwork management it has run out of re­
sources. Other routers then route traffic around that router if they can.
This is useful because the worst-case memory requirements for a router
can be much more than their average-case memory requirements. Tran­
sient conditions can occur in which the memory required is many times
the average memory requirement. It is not practical to design a router to

The Receive
Process

CHAPTER 9: NETWORK LAYER ROUTING 203

handle the worst-case condition that may persist for only a few seconds,
so the algorithm is designed to deal with these worst-case conditions.

Router Failure Example

As an example, let us suppose we have a broadcast subnetwork with
1000 end nodes and several routers. The designated router, operating on
behalf of the link's pseudonode, constructs a Link State packet that re­
ports a link to each of the nodes attached to the broadcast link. Thus, the
designated router's LSP is very large-it contains entries for all 1000 end
nodes and all the other routers. The designated router sends this LSP to
the other routers, so they maintain this large LSP in their memory as
well. With such a large number of nodes on the link, the routers might be
tight on memory.

Let us suppose now that the designated router fails. Through an
election process, one of the other routers will become the new designated
router. It will, on behalf of the pseudonode, build its own LSP reporting
a link to each of the nodes on the data link. But since the original LSP
will not yet have timed out, the router will have to store both the old one
and the new one. If the router was already tight on memory, it will run
out of memory. The algorithm is designed to handle such a situation.
The router signals an out-of-memory condition and changes its hippity
cost value to a value of infinity. This effectively causes the router to stop
routing until the problem resolves itself. As soon as the original LSP
times out, the router will discard it, thus making room for the new LSP.
The router will then quickly go back into normal operation.

The receive process analyzes the protocol-control-information accompa­
nying each packet to decide the action it should take for that packet. The
receive process takes one of four actions for each packet it receives:

• Pass the Packet to Transport. If the packet is a Data packet and the
NSAP address indicates the packet is addressed to this node, the packet
is passed up to a Transport layer entity.

• Pass the Packet to the Forward Process. If the packet is a Data packet
and the NSAP address indicates it is not addressed to this node, the
packet is passed to the forward process, which forwards it over one of
the router's data links.

• Pass the Packet to the Update Process. If the packet is a Routing Control
packet, the packet is passed to the update process.

204

lnterdomain
Routing

PART II: DNA FUNCTIONAL LAYERS

• Discard the Packet. The packet is discarded if its PCI does not corre­
spond to any of the packet types handled by the routing algorithm, if the
lifetime control process determines its lifetime is up, or if congestion has
made it necessary to discard the Data packet.

As we stated earlier in this chapter, the DNA Phase V routing algorithm
is designed to provide an automated solution to the problem of intrado­
main routing. DNA Phase V now provides only a partial solution to the
more complex problem of interdomain routing when the network may
be made up of multiple administrative domains run by different organi­
zations.

NETWORK ARCHITECT

The problems of routing in the interdomain environment are very different from

the problems of routing in the intradomain environment. Within a single rout­

ing domain, the routing problem is one of optimizing the communications that
take place among the various nodes, and the routing problem can be described

relatively simply. We just have to take an arbitrary set of nodes and subnet­

works and set things up so any node can reach any other node. And in the

absence off ailure, we'd like the data to take an optimal path through the net­

work. When we connect together the networks of two or more different organi­

zations, the problem becomes one not of optimization but one of causing the

networks to interact in a very controlled way. In such an environment, the

problem of routing is to provide a means for controlling and restricting the

traffic flows that occur between the networks. The concern becomes one of who
can talk to who via who. Routing between administrative domains is more con­

cerned with implementing policy than it is with optimizing the routing.

Policy Concerns

A simple interdomain routing scenario provides an example of possible
policy constraints. Figure 9.4 shows three administrative domains run by
Waterloo University, the University of British Columbia (UBC), and the
University of Wisconsin. A Canadian law states that data traffic flowing
between two locations both physically in Canada cannot flow outside of
Canada. Therefore, with the topology shown in Figure 9 .4, if the link be­
tween UBC and Waterloo fails, the routing algorithm must not allow

FIGURE 9.4

CHAPTER 9: NETWORK LAYER ROUTING

An interdomain routing example.

University of
Wisconsin

University of
British Columbia

205

UBC to send traffic to Waterloo through the Wisconsin network. But if
the link between UBC and Wisconsin fails, the routing algorithm can
allow Wisconsin to send traffic to UBC through Waterloo.

A routing algorithm designed to run in a single administrative do­
main typically would be designed to automatically respond to any link
failure and to find an alternative route. A routing algorithm designed for
routing between administrative domains must provide for policy deci­
sions to be made regarding which routes are legal and which are not.

Private Policy Information

A second source of complexity in routing between administrative do­
mains concerns the fact that the policies governing routing decisions may
not themselves be public knowledge in the network. For example, each
organization may want to keep its own policies private. So what is
needed is a scheme in which only routes are disseminated and not the
policies used to determine those routes. This can be done, but it makes
the routing problem more difficult. Routing algorithms typically avoid
creating loops, around which packets circulate endlessly, by having
sufficient knowledge about the network topology to prevent loops from
occurring. But if policies are not known throughout the network, indi­
vidual routers may not have enough information to detect loops. What i~
needed is a routing scheme capable of detecting loops without having

206

Conclusion

References

PART II: ONA FUNCTIONAL LAYERS

total topology information. Such a routing scheme eventually will be
worked out, but this is still the subject of research and controversy.

The DNA Phase V routing algorithm currently uses static routing
information to control the flow of traffic from one administrative do­
main to another when interdomain routing is required. The problem
with static routing is that it does not allow the network itself to suppress
loops. Loops are, in effect, suppressed in the network administrator's
head.

The Network layer provides important services for choosing routes for
user traffic and for relaying that traffic through the network. These ser­
vices are used by the Transport layer to provide a reliable end-to-end
data transfer service that processes running in end nodes can use for
communicating with one another. The functions performed by the
Transport layer are the subject of Chapter 10.

1. J. McQuillan, et al., "The New Routing Algorithm for the Arpanet,"
IEEE Transactions on Communications, May 1980.

2. E. C. Rosen, "The Updating Protocol of Arpanet's New Routing Al­
gorithm," Computer Networks, vol. 4, no. 1, 1980.

3. E. C. Rosen, "Vulnerabilities of Network Control Protocols: An
Example," Computer Communication Review, July 1981.

4. Radia Perlman, "Fault-tolerant Broadcasting of Routing Informa­
tion," Computer Networks 7, 1983.

5. E. W. Dijkstra, "A Note on Two Problems in Connexion with
Graphs," Numerische Mathematik 1, 1959.

CHAPTER 10

The Transport Layer

The main role of the Transport layer of the OSI model, and in the DNA
Phase V architecture, is to handle the end-to-end exchange of data be­
tween two users of the Transport service. The Transport layer in DNA
provides a reliable, sequential data transfer service between users.
Again, "reliable" in this context means that the destination node either
receives all messages sent or receives an indication that an error has oc­
curred. "Sequential" means that the Transport layer delivers messages to
the receiver in the same sequence in which they are sent. Another func­
tion that the OSI Transport service provides is multiplexing, that is, a
user can establish multiple concurrent connections to one or more other
Transport service users.

Users of the Transport layer service normally consist of either an
OSI Session layer entity or a DNA Session Control layer entity, depend­
ing on which higher-layer protocol stack the two communicating users
are employing. The Transport layer provides an end-to-end data trans­
mission service using protocols to enhance the inherent characteristics of
the underlying Network service. The Transport layer is the lowest layer
required only in the machines running user processes. This relationship
is shown in Figure 10.1. Although not shown in Figure 10.1, the Trans­
port layer is also present in routers for use by network management.

There are two architectural specifications for the Transport layer of
the DNA Phase V architecture. The preferred form of transport is
defined by the OSI Transport specification, which incorporates ISO
standards for the Transport layer of the OSI model. The other Transport
layer specification describes Digital's own proprietary network service
protocol (NSP). The NSP transport protocol is provided mainly for
compatibility with DNA Phase IV. Class 4 of the OSI transport protocol
had its roots in Digital's NSP protocol, and there are a great many simi-

201

208

FIGURE 10.1

1111111111111111111

::::::::::mm::: c::::J

OSI Transport

FIGURE 10.2

PART II: DNA FUNCTIONAL LAYERS

The Transport layer is the lowest layer required only in the computers that are communicating.

1111111111111111111

::::::::::::::::::: c::::J

larities between them. Class 4 of OSI transport is essentially an enhance­
ment and refinement of Digital's proprietary NSP protocol. The various
OSI transport classes are described later in this chapter.

As with other OSI model layers, the ISO standards that define the Trans­
port layer include both a service definition and a protocol specification.
The relationship between the services the Transport layer provides and
the protocol governing its operation is shown in Figure 10.2. As shown
there, the Transport layer protocol uses the services of the Network layer
to provide a defined set of services to a user of the Transport service.

The relationship between the Transport layer service definition and the Transport layer protocol
specification.

Transport Layer Service-------~ ~--_____,_. Transport Layer Service

Transport Layer

The Transport layer protocol uses
the Network layer service to
provide the Transport layer service
to a Transpo:i service user.

Network Layer Service ----~t t~----

Transport Layer

Network Layer Service

FIGURE 10.3

Data Link Layer

CHAPTER 10: THE TRANSPORT LAYER 209

The Transport layer can use either the connectionless-mode Net­
work service (CLNS) or the connection-mode Network service (CONS)
(described in Chapter 7). However, when the DNA Session Control layer
uses the services of the Transport layer, only the CLNS is used; the
CONS is supported only for the OSI upper-layer protocol stack. In a typ­
ical use of the Transport layer service, a Transport service user in one
node accesses the Transport service via a transport-service-access-point
(TSAP) and passes a transport-service-data-unit (TSDU) to the Transport
layer entity for delivery to the Transport service user in the destination
node. The transmitting Transport layer entity adds PCI to the TSDU in
the form of a header to create a transport-protocol-data-unit (TPDU).
The Transport layer then uses the services of the Network layer to trans­
mit the TPDU through the network to the destination node. The Trans­
port layer entity at the destination removes the PCI and delivers the en­
closed TSDU to the Transport service user there. This process is
summarized in Figure 10.3. As we will discuss later, and which is not
shown in Figure 10.3, a Transport layer entity can segment a TSDU for
transmission in the form of multiple TPDUs, and it can also group multi­
ple TPDUs for transmission in the form of a single packet.

The Transport layer service.

'----v----'
TPDU (message)

'----v----'
TPDU (message)

TSAP - transport-service-access-point
TSOU - transport-service-data-unit
TPDU - transport-protocol-data-unit
SPDU - session-protocol-data-unit
PCI - protocol control information

210

OSI Transport
Service Definition

PART II: DNA FUNCTIONAL LAYERS

As with other layers of the OSI model, the ISO standards for the Trans­
port layer define both a connection-mode Transport service and a con­
nectionless-mode Transport service. By far the greatest number of
today's networking applications require a reliable Transport service, so
the DNA Phase V architectural layers above the Network layer provide a
connection-mode service. The connectionless-mode services defined in
the ISO standards for the Transport, Session, Presentation, and Applica­
tion layers are not currently addressed by DNA Phase V, although sup­
port for connectionless-mode services could easily be added to the archi­
tecture should connectionless applications become more prevalent.

The OSI transport protocol specification defines five classes of
Transport layer protocols that can be used to supply the Transport ser­
vice: classes 0, 1, 2, 3, and 4. Box 10.1 describes the five classes of OSI
transport protocols. DNA Phase V supports three of these: classes 0, 2,
and 4. (Classes 1 and 3 are implemented very infrequently throughout
the industry, and support for them is not included in DNA Phase V.)
Classes 0 and 2 are designed to be run only over the connection-mode
Network service (CONS); class 4 transport can be run over either the
CONS or the connectionless-mode Network service (CLNS) and is the
preferred transport protocol class. Class 4 transport is the only allowable
class when the DNA Session Control layer uses the Transport service.
Classes 0 and 2 are provided for use only by the OSI upper-layer proto­
col stack.

NETWORK ARCHITECT

The CLNS versus CONS controversy in the Network layer carries over into the

Transport layer. What has happened is that the world is developing two distinct

ways of doing the Transport service. One uses the connectionless Network ser­

vice and class 4 transport. Class 4 transport is designed to recover from any­

thing bad the Network layer is going to do to it, including loss, duplication,
mis-sequencing, and so on. The other camp is designed around a connection-ori­

ented Network service together with a trivial transport protocol-class 0 or

2-which do nothing other than a bit of addressing.

Our feeling at Digital is that class 4 transport is the only one that really
works in heterogeneous networks because class 4 is the only one that can deal

with anything going wrong. Classes 0 and 2 basically assume that nothing goes

wrong in the Network service. And classes 1 and 3 have kind of fallen by the

wayside-no one uses them. None of the classes other than class 4 adds sub­

stantial value to the underlying Network service. Class 4 transport was really

BOX 10.1

Five Classes of OSI
Transport Protocols

CHAPTER 10: THE TRANSPORT LAYER

• Class 0: Simple Class. This class was developed initially by CCITT
for teletext applications. It is sometimes mandated for use with the
CCITT X.400 messaging systems, although this is not technically
necessary. Class 0 is the simplest form of transport protocol and
assumes that most required protocol mechanisms for supplying a
reliable Transport connection are supplied by the Network layer.
Class 0 transport requires the connection-mode Network service
(CONS). DNA Phase V supports class 0 transport.

• Class 1: Basic Error Recovery Class. This class was also initially
developed by CCITT and is designed for use with a Network service
using the X.25 protocols for packet-switched data networks. The
main difference between class 1 and class 0 is that class 1 employs
sequence numbers so limited error recovery is possible; class 0 does
not use sequence numbers. Class 1 transport operates only over the
CONS. DNA Phase V does not support class 1 transport.

• Class 2: Multiplexing Class. Class 2 is also an enhancement of class
0 and permits multiple Transport connections to be created using a
single Network connection. It also requires the CONS. DNA Phase
V supports class 2 transport.

• Class 3: Error Recovery and Multiplexing Class. This class effec­
tively combines the capabilities of class 1 and class 2. It also requires
the CONS. DNA Phase V does not support class 3 transport.

• Class 4: Error Detection and Recovery Class. This is the only trans­
port class that operates over the connectionless-mode Network ser­
vice (CLNS). It performs in the Transport layer all required protocol
mechanisms to provide a reliable Transport connection running on
top of either the CLNS or the CONS. Class 4 transport is the recom­
mended transport protocol and is expected to be the most widely
used in a DECnet Phase V network.

designed to run over the CONS, but it happens to have the property that it is

also perfectly happy to run over the CLNS. This is different for all the other

classes, which can't run over the CLNS at all.

211

So we spent a lot of effort getting the class 4 transport protocol to work
efficiently, but we also included support for class 0 and class 2. For example,

some publicX.400 messaging services mandate the use of class 0 transport. But

our basic philosophy is that in the normal mode of operation, a DECnet Phase

V network will use class 4 transport.

212

BOX 10.2

OSI Transport
Service Primitives

PART II: ONA FUNCTIONAL LAYERS

With the connection-mode Transport service, the user of the Trans­
port service at one end requests a connection, both the Transport service
itself and the Transport service user at the other end agree, and the
Transport service establishes the connection. We can then think of the
Transport service as a set of two pipes connecting the two transport
users-one pipe for messages flowing in one direction and the other for
messages flowing in the opposite direction. The user at one end inserts a
message into the appropriate pipe, and an identical copy of the message
emerges at the other end. Messages inserted into the pipe emerge from
the other end in the same sequence in which they were sent. The protocol
providing the connection-mode Transport service corrects any errors de­
tected by automatically retransmitting frames that are either missing or
found to be in error. With the connection"mode Transport service, either
an identical copy of each message emerges from the pipe, in the proper
sequence, for each message transmitted, or the connection is released and
the two Transport layer users are informed of the failure.

The Transport layer service definition for the connection-mode
Transport layer service is described in ISO 8072, Transport Service
Definition. This international standard defines a number of services,
each of which involves a set of service primitives. The service primitives
for the connection-mode Transport service are listed in Box 10.2 and are
described in the following sections.

The T_CONNECT Service

T_CONNECT.request

T CONNECT.indication

called address
calling_ address
expedited_data_option
quality_of_service
user data

called address
calling_address
expedited_data_option
quality_of_service
user data

BOX 10.2

continued

CHAPTER 10: THE TRANSPORT LAYER

T_CONNECT.response

T CONNECT. confirm

The T_DATA Service

quality_of _service
responding_ address
expedited_data_option
user data

quality_of _service
responding_ address
expedited_data_option
user data

T_DATA.request

T DATA.indication

The T_EXPEDITED_DATA Service

T_EXPEDITED_DATA.request

T EXPEDITED DATA.indication

The T _DISCONNECT Service

T_DISCONNECT.request

T DISCONNECT.indication

user data

user data

user data

user data

user data

disconnect reason
user data

213

214 PART II: DNA FUNCTIONAL LAYERS

The T_CONNECT Service

The T_CONNECT connection establishment service is used to establish
a connection between two users of the Transport service. A Transport
connection consists of a virtual circuit in the Transport layer between
two users of the Transport service. A Transport connection must be es­
tablished before two Transport service users can exchange data. The pro­
cess of connection establishment allows the users of the Transport ser­
vice to negotiate mutually acceptable characteristics for the connection,
such as selecting the class of protocol to be used and determining
whether messages should carry checksums to detect errors that might
otherwise be undetected by the underlying Network service.

The T_CONNECT service is defined by four T_CONNECT service
primitives. The T_CONNECT service is a confirmed service in which
users of the Transport service are informed of the success or failure of the
attempt to establish a Transport connection. Figure 10.4 contains time­
sequence diagrams that show how the four T_CONNECT service primi­
tives are issued in three situations: successful connection establishment,
rejection of the connection request by the peer Transport service user,
and rejection of the connection request by the Transport service itself.

The T_DATA Service

Once connection establishment has been successfully performed, the
Transport connection enters the data transfer phase, which provides the
two users of the Transport service with a full duplex path for the ex­
change of data. The two Transport service users employ the two T_DATA
service primitives to exchange data units. Figure 10.5 is a time-sequence
diagram that shows the sequence in which the two T_DATA data transfer
service primitives are issued. Notice the T_DATA service is a noncon­
firmed service, and the requester of the Transport service data transfer op­
eration is not explicitly informed of its completion. However, the
T _DATA service provides for reliable data transfer. If a data unit is deliv­
ered successfully, all previous data units will also have been delivered, in
the order sent, without duplication or omission. Either a data transfer op­
eration is successful or transport informs the user of the failure by releas­
ing the connection.

CHAPTER 10: THE TRANSPORT LAYER

FIGURE 10.4 Time-sequence diagrams for the T-CONNECT service.

T_CONNECT.

Successful Transport connection establishment

T _DISCONNECT.
T _DISCONNECT.

Transport service user rejection of an attempt to
establish a Transport connection

Transport service rejection of an attempt to establish
a Transport connection

FIGURE 10.5 Time-sequence diagram for the T-OATA service.

215

216

FIGURE 10.6

PART II: DNA FUNCTIONAL LAYERS

The T_EXPEDITED_DATA Service

OSI transport classes 2 and 4 provide an additional data transfer service
called T_EXPEDITED_DATA. This service permits a single, short data
message to be transmitted that will bypass any blockages in the normal
flow of traffic over the Transport connection. However, an Expedited
data message is not necessarily transferred any faster than normal data
messages. Figure 10.6 is a time-sequence diagram showing the sequence
in which the two T_EXPEDITED_DATA data transfer service primitives
are issued.

Time-sequence diagram for the T-EXPEDITED-DATA service.

T_EXPEDITED_

The T_DISCONNECT Service

The T_DISCONNECT service is used to release a connection previously
established by the T_CONNECT service. The T_DISCONNECT service
is provided through the two T _DISCONNECT service primitives. Either
Transport service user can issue a T_DISCONNECT.request service
primitive to request the release of a connection. The Transport service it­
self also can, for some internal reason, release a connection by issuing
the T_DISCONNECT.indication primitive. Figure 10.7 includes time­
sequence diagrams that show ways in which a Transport connection can
be released. If a connection is released by one user of the Transport ser­
vice, the Transport layer entity issues the T_DISCONNECT.indication

CHAPTER 10: THE TRANSPORT LAYER 217

FIGURE 10.7 Time-sequence diagrams for the T-DISCONNECT service.

T _DISCONNECT.
T _DISCONNECT.

Transport connection release requested by a
Transport service user

Transport connection release requested simultaneously
by both Transport service users

T _DISCONNECT.

T _DISCONNECT. T _DISCONNECT.

Transport connection release requested by the
Transport service

Transport connection release requested simultaneously
by a Transport service user and the Transport service

primitive to the other user. If both users simultaneously release the con­
nection, neither user may receive the indication. If the Transport layer
entity itself releases the connection, both users receive the indication. If a
transport user and the Transport service simultaneously release the con­
nection, the other user receives the indication. The reason parameter in
the T_DISCONNECT.indication primitive contains values that describe
the reason for the connection release and identify the entity that initiated
the disconnect request.

218

OSI Transport
Service Interface
Procedure
Declarations

BOX 10.3

OSI Transport
Service Interface
Procedure
Declarations

PART II: ONA FUNCTIONAL LAYERS

The DNA Phase V architectural specification for OSI transport also
defines the abstract interface between a Transport layer entity and a user
of the Transport layer service. The procedure declarations defining the
services a Transport layer entity provides to a Transport service user are
listed in Box 10.3.

The following function and procedure declarations define the
abstract interface between the Transport layer and a user of the
Transport layer in terms of the services a Transport layer entity pro­
vides to a user.

Port Control Functions

• Openlncoming. Allocates a port in the Transport layer used to
accept an inbound request for a connection.

• OpenOutgoing. Allocates a port in the Transport layer used later to
establish an outbound connection.

• Close. Deallocates a port allocated with either Openlncoming or
Open Outgoing.

Connection Control Functions

• ConnectTransmit. Requests an outbound connection using a port
allocated with OpenOutgoing.

• OutgoingConnectPoll. Obtains the results of a previously issued
Connect Transmit.

• IncomingConnectPoll. Issued after Openlncoming to determine
whether an inbound connection request was received.

• Accept. Initiates the acceptance of an inbound Transport connection.

• AcceptPoll. Checks for the completion of a previously issued Accept call.

• DisconnectTransmit. Requests the disconnection of a Transport con­
nection.

• DisconnectReceive. Determines whether the peer Transport layer
entity has disconnected the Transport connection and obtains infor­
mation about the reason for the disconnection.

Normal Data Transfer Functions

• DataReceive. Associates a receive buffer with a port that can be used
to accept a received normal (not expedited) Data message over the
Transport connection.

BOX 10.3

continued

CHAPTER 10: THE TRANSPORT LAYER

• DataReceivePoll. Checks for the completion of a previously issued
DataReceive call and returns a buffer containing a message if it has
completed.

• DataTransmit. Queues a transmit buffer for the transmission of a
normal (not expedited) Data message over the Transport connection.

• DataTransmitPoll. Retrieves a previously queued transmit buffer for
which a Data Transmit operation has been completed.

Expedited Data Transfer Functions

• ExpeditedReceive. Associates a receive buffer with a port that can be
used to accept a received Expedited data message over the Transport
connection.

• ExpeditedReceivePoll. Checks for the completion of a previously
issued ExpeditedReceive call and returns a buffer containing an
Expedited data message if it has completed.

• ExpeditedTransmit. Queues a transmit buffer for the transmission of
an Expedited data message over the Transport connection.

• ExpeditedTransmitPoll. Retrieves a previously queued transmit buffer
for which an ExpeditedTransmit operation has been completed.

Miscellaneous Functions

• Read.Address. Requests the Transport layer entity to supply a list of
the network addresses currently being used to support the transport
protocol.

• State. Returns the status of a port.

• Status. Determines the status of a specified protocol and obtains the
minimum receive buffer size.

NETWORK ARCHITECT

219

Both the ISO standards and the DNA specifications define the Transport layer

service interface in terms of a single TSD U passed across the inter(ace as a unit.
One way to implement the inter(ace is to pass the whole TSD U across the inter­

(ace in a single operation. But it is also possible to allow a user to pass the

TSD U across the interface in pieces and to then pass a bit across the interface

signalling when the last piece of the TSD U has been passed. One way to handle

this in the receiver is to have the receiver ask for some number of octets to be

220

OSI Transport
Protocol
Specification

OSI Transport
Protocol
Messages

PART II: ONA FUNCTIONAL LAYERS

passed across the interface, rather than having to receive the whole TSD U in a
single piece. This is a good example of how ingenuity can be applied to the

implementation of a standard. A software designer does not have to blindly

implement the standard in the most obvious way. The obvious thing to do is not
always the best thing.

The OSI transport protocol specification is documented in ISO 8073,
Connection Oriented Transport Protocol Specification. As described ear­
lier, DNA Phase V supports classes 0, 2, and 4 of the OSI transport pro­
tocol, with class 4 being the recommended class. By supporting the OSI
transport protocol, users of the Transport service running in computing
systems that implement DECnet Phase V software can communicate not
only with one another but with transport users running in any type of
computing system implementing class 0, 2, or 4 of the OSI transport pro­
tocol and the appropriate lower layers. The DNA Transport layer inte­
grates the three supported classes of OSI transport protocol with the
proprietary NSP protocol and offers a single, consistent service interface
to the Transport service user. The choice of protocol to be used is made
when the Transport layer receives a request for a Transport connection.

The OSI transport protocol defines 10 different TPDUs to control the
operation of the protocol. Unlike DLPDUs (generally called frames) and
NSDUs (often called packets), there is no generally accepted informal
name for TPDUs. Where no confusion will result, we will sometimes call
TPDUs messages.

TPDU Types

All but one of the 10 TPDU types are used to support class 4 transport;
classes 0 and 2 employ other subsets of the 10 TPDU types. Box 10.4
gives brief descriptions of the 10 TPDU types defined by the OSI trans­
port protocol specification.

TPDU Format

Figure 10.8 shows the general format of an OSI transport TPDU. It be­
gins with a length field giving the length of the header portion of the
message. Following the length field is the fixed portion of the header,
which has a different format for each of the different types of TPDUs.

BOX10.4

Transport Protocol
Data Units

FIGURE 10.8

CHAPTER 10: THE TRANSPORT LAYER

• Connection request (CR). Carries a request for a new Transport con­
nection to be established between a source Transport layer entity and
a destination Transport layer entity.

• Connection confirm (CC). Carries confirmation of acceptance of a
request for the establishment of a Transport connection.

• Data (DT). Carries normal user data between transport entities over
a Transport connection.

• Expedited data (ED). Carries expedited user data between transport
entities over a Transport connection.

• Acknowledgment (AK). Acknowledges the receipt of one or more
data TPDUs and/or allocates credit to permit the transmission of ad­
ditional messages. (The concept of credit is described when we dis­
cuss the flow control procedures of the transport protocol.)

• Expedited acknowledgment (EA). Acknowledges the receipt of an
Expedited data TPDU.

• Reject (RJ). Used only by transport classes 1 and 3 and so is not used
by DNA Phase V.

• Error (ER). Sent by a Transport layer entity receiving a message con­
stituting a protocol violation.

• Disconnect request (DR). Carries a rejection of a request for Trans­
port connection establishment or a request that a Transport connec­
tion be released.

• Disconnect confirm (DC). Acknowledges the receipt of a Disconnect
request TPDU.

221

Following the fixed portion of the header for some types of TPDUs is a

variable portion of the header optionally containing additional parame­
ters. Following the variable portion of the header is the data portion of
the TPDU. In a Data TPDU, the data portion contains all or part of the
TSDU passed to the Transport layer entity by the Transport service user
for transmission over the Transport connection.

General format of a Transport layer TPDU.

Header
Header

Length Variable Portion Data
Fixed Portion (optional)

222

FIGURE 10.9

OSI Transport
Elements of
Procedure

FIGURE 10.10

PART II: DNA FUNCTIONAL LAYERS

Data TPDU format for class 4 transport

Header TPDUCode J
Destination Reference

Length Indicator 0·1111· I 0·0000· 1
j Send Sequence

Number(NR)

Header Variable Portion
~

l ! Data

TPDU Header Fields

Figure 10.9 shows the format of a Data TPDU for class 4 transport.
When a message contains parameters in the variable portion of the
header, each parameter included is structured as shown in Figure 10.10.
A parameter begins with a 1-octet code identifying the parameter's type,
followed by a 1-octet field giving the parameter's length, and ending
with one or more octets containing the parameter's value. The parame­
ters that can be included in both the fixed and the variable portions of
the header are listed in Box 10.5 (pages 224-225). Each TPDU has a dif­
ferent header format, and not all the parameters are carried in all the
TPDUs. The DNA Phase V architectural specifications and the ISO stan­
dards for the Transport layer contain detailed specifications of the for­
mat of the header for each individual TPDU.

We next discuss the mechanisms that class 4 transport uses to create and
support the connection between Transport layer entities. The specific
protocol mechanisms the OSI transport protocol defines are called ele-

Header variable portion parameter format.

Parameter
Code

Length Parameter Value

OSI Transport
Protocol
Mechanisms

CHAPTER 10: THE TRANSPORT LAYER 223

ments of procedure in the OSI transport protocol specification. The ele­
ments of procedure precisely document the Network layer service primi­
tives involved and the exchanges of TPDUs occurring during operation
of the transport protocol. The OSI transport elements of procedure are
augmented by additional documentation in the DNA Phase V architec­
tural specifications, where Digital has gone beyond what is required by
the ISO standards in documenting the operation of the transport proto­
col. To fully understand how the DNA Phase V version of the OSI trans­
port protocol operates, read the OSI transport protocol specification in
conjunction with the DNA Phase V documentation for the Transport
layer. The elements of procedure defining the operation of the OSI trans­
port protocol are briefly described in Box 10.6 (pages 226-227).

The following sections contain general descriptions of the various types
of protocol mechanisms the OSI transport protocol uses. Here we pro­
vide a high-level overview of some of the more interesting aspects of OSI
transport protocol operation.

Connection Establishment

Upon request of a Transport service user (typically an OSf Session layer
entity or a DNA Session Control layer entity), the source OSI Transport
layer entity transmits a Connection request (CR) message to the destina­
tion Transport layer entity to establish a connection. This begins a proce­
dure in which the class of protocol operation is chosen and other charac­
teristics of the connection are negotiated. The Connection request
message indicates the preferred transport protocol class, any acceptable
alternative classes, and various other characteristics of the desired con­
nection, such as the maximum message size. The destination Transport
layer entity receiving the Connection request analyzes the information it
contains and, if it determines it is able to comply with the connection re­
quest, responds with a Connection confirm (CC) message. The Connec­
tion confirm message specifies the protocol class that will actually be
used and other characteristics of the connection.

Normal Data Transfer

The transport protocol implements a full duplex path between a pair
of communicating Transport service users and uses Data TPDUs to
transfer data from transmit buffers in one Transport layer entity to

224

BOX 10.5

TPDU Header
Parameters

PART 11: ONA FUNCTIONAL LAYERS

TPDU Header Fixed Portion Parameters

• Length Indicator. Length of the header in octets, excluding the length
indicator field itself.

• TPDU Code. Code identifying a message's TPDU type.

• Credit. Credit allocation used to implement flow control procedures.

• Source Reference. A value identifying the Transport connection
within the source Transport layer entity's node.

• Destination Reference. A value identifying the Transport connection
within the destination Transport layer entity's node.

• Class. A value used during Transport connection negotiation indicat­
ing which of the five transport classes is preferred.

• Option. Specifies whether normal or extended flow control fields are
used. Normal flow control fields use 7-bit sequence numbers and 4-
bit credit fields; extended flow control fields use 31-bit sequence
numbers and 16-bit credit fields. A DECnet Phase V network nor­
mally uses extended flow control fields.

• Reason. A value that describes the reason for requesting the
release of a connection or for rejecting a request for connection
establishment.

• EOT. Indicates the last TPDU in a TSDU.

• TPDU-NR. Send sequence number for a Data message.

• EDTPDU-NR. Send sequence number for an Expedited data message.

• YR-TU-NR. Send sequence number of the next normal Data mes­
sage the destination Transport layer entity expects to receive.

• YR-EDTU-NR. Send sequence number of the next Expedited data
message the destination Transport layer entity expects to receive.

TPDU Header Variable Portion Parameters

• Calling TSAP Identifier. Identifies the transport-service-access-point
(TSAP) used by the source Transport service user.

• Called TSAP Identifier. Identifies the transport-service-access-point
used by the destination Transport service user.

• TPDU Size. Maximum allowable TPDU size in octets.

BOX 10.5

continued

CHAPTER 10: THE TRANSPORT LAYER

• Version Number. Specifies the version number of the transport pro­
tocol being used. This parameter is provided in anticipation of
future versions of the transport protocol being developed.

• Security. A user-defined parameter that specifies information about
security procedures.

• Checksum. The result of passing the message through a checksum
algorithm. Used only for class 4 transport.

• Additional Option Selection. Used to select various options to be
used during protocol operation.

• Alternative Protocol Class. Indicates one or more alternative proto­
col classes that can be used if the destination Transport layer entity
is not able to run the requested protocol class or elects to use some
other protocol class.

• Acknowledge Time. Provides an estimate of the amount of time a
Transport layer entity will take to acknowledge a Data message.

• Throughput. A set of values specifying the transport user's through­
put requirements in octets per second.

• Residual Error Rate. A set of values specifying target and minimum
rates of unreported user data loss.

• Priority. A value indicating the priority of the Transport connection.

• Transit Delay. A set of values indicating the target and the maximum
values for the amount of time it should take to transmit a Data mes­
sage between transport entities.

• Reassignment Time. A value indicating how long transport should
wait for a response when trying to reassign the Transport connection
to another Network connection.

• Additional Information. Implementation-defined information related
to releasing a Transport connection.

• Subsequence Number. A sequence number assigned to an Acknowl­
edge message to ensure that Acknowledge messages are processed in
the correct sequence.

• Flow Control Confirmation. Used to echo the parameter values con­
tained in the last Acknowledge message received.

• Invalid Message. Used to specify the bit pattern of a rejected message.

225

226

BOX 10.6

OSI Transport
Protocol Elements
of Procedure

PART II: DNA FUNCTIONAL LAYERS

• Assignment of Network Connections. When the OSI transport pro­
tocol uses the connection-mode Network service (CONS) it either
assigns the Transport connection to an existing Network connection
or requests a new Network connection.

• Transport-Protocol-Data-Unit Transfer. Used in all classes of OSI
transport to carry messages between Transport entities.

• Segmenting and Reassembling. Allows large TSDUs to be broken
into multiple TPDUs for transmission.

• Concatenation and Separation. Allows multiple TPDUs to be trans­
mitted in a single packet (NSDU). OSI transport allows TPDUs from
different connections to be carried in a single packet. DNA Phase V
does not concatenate TPDUs from different connections but does
handle the receipt of packets containing concatenated TPDUs from
different Transport connections.

• Connection Establishment. Used to create a new Transport connection.

• Connection Refusal. Used to refuse a request for the establishment of
a Transport connection.

• Normal Release. Used to release a Transport connection.

• Error Release. Used only in transport classes 0 and 2 to release a
Transport connection as a result of the release or reset of an underly­
ing Network connection.

• Association of TPDUs with Transport Connections. Used to inter­
pret as TPDUs the NSDUs passed up from the Network layer entity
in the destination node and to associate each one with the appropri­
ate Transport connection.

• Data TPDU Numbering. Assigns a send sequence number to each'
TPDU for the purposes of recovery, flow control, and resequencing
functions.

• Expedited Data Transfer. Used to transfer Expedited data TPDUs
between Transport entities.

• Reassignment After Failure. Defined by OSI transport for use with the
CONS to attempt to recover from the release of a Network connection
by establishing a new Network connection. This procedure is defined
only for class 3 transport and so is not implemented by DNA Phase V.
However, an alternative method for reestablishing Network connec-

BOX 10.6

continued

CHAPTER 10: THE TRANSPORT LAYER

tions is provided when class 4 transport is run over the CONS.

• Retention Until Acknowledgment of TPDUs. Copies of certain
TPDUs are retained after transmission until they are acknowledged,
to permit their retransmission should they fail to be delivered cor­
rectly. Supported by class 4 transport only.

• Resynchronization. This element of procedure applies only to classes
1 and 3 transport and so does not apply to DNA Phase V.

• Multiplexing and Demultiplexing. Used only for Transport connec­
tions operating over the CONS to allow multiple Transport connec­
tions to share the same Network connection.

• Explicit Flow Control. Used to regulate the flow of TPDUs over the
Transport connection independent of the flow control mechanisms
operating in other layers.

• Checksum. Implements an algorithm to calculate the checksum used
to detect corruption of TPDUs by the Network service provider, a
lower layer, or a hardware failure.

• Frozen References. Prevents the reuse of a connection reference while
TPDUs associated with the old use of the connection reference may
still exist in the network.

• Retransmission on Timeout. Used with class 4 transport to detect
TPDUs the Network service provider loses and does not inform the
Transport layer entity of the loss.

• Resequencing. Used with class 4 transport by a destination Trans­
port layer entity to place TPDUs into the sequence in which they
were sent by the source Transport layer entity.

• Inactivity Control. Used with class 4 transport operating over the
CLNS to detect apparent loss of network connectivity between com­
municating nodes.

• Treatment of Protocol Errors. Procedures for handling TPDUs that
constitute protocol violations.

• Splitting and Recombining. Used by class 4 transport to allow a
Transport connection to concurrently use multiple Network connec­
tions. DNA Phase V does not support the splitting function for
source nodes but does support the recombining function for destina­
tion nodes.

227

228 PART II: DNA FUNCTIONAL LAYERS

receive buffers in another Transport layer entity over an active Trans­
port connection. An underlying connectionless-mode Network service
or connection-mode Network service is used to perform the data
transfer.

Expedited Data Transfer

Classes 2 and 4 transport provide the expedited data transfer service, al­
lowing short data messages to be transmitted that bypass blockages
caused by normal flow control procedures. Class 0 transport does not
provide the expedited data transfer service.

Error Detection and Retransmission

The Transport layer provides detection and recovery from loss, duplica­
tion, corruption, and misordering of data units that might occur in
lower layers. It employs send sequence numbers and an acknowledg­
ment mechanism to ensure that messages are delivered and an optional
checksum capability to detect message corruption. The class 4 transport
protocol also employs a retransmission timer to detect lost messages.
The timer is started when a Data message is transmitted and is stopped
when the message's acknowledgment is received. If the timer expires be­
fore the sending Transport layer entity receives the acknowledgment,
the sending Transport layer entity assumes the message has been lost
and retransmits it.

NETWORK ARCHITECT

The retransmission timer function is an example of where the ISO standard

gives no direction. The standard says there must be a value for a time limit

determining after what time interval a message will be retransmitted. But the

standard says nothing about how this timer should be set. This timer value

could be a network management parameter set by a network manager. The

number could be set small for a small network to give better performance and

bigger for a large network to ensure a message is retransmitted only if it is really

lost. But we decided to develop an algorithm in the protocol itself that adjusts

the timer automatically.

We use an adaptive algorithm that maintains an average estimate of the

round-trip delay on each Transport connection. This algorithm allows the

Transport service to set the interval of the retransmission timer so it is short
enough to ensure that lost messages are detected quickly but not so short that it

CHAPTER 10: THE TRANSPORT LAYER 229

is likely for the message to still be in transit. The timer interval is thus automati­

cally adjusted depending on current conditions in the network rather than

depending on manual assignment.

This is an example of where we have gone beyond what is specified in the

ISO standards to provide enhanced function. This goes along with the philo­

sophical attitude we have about network management-we feel that algorithms

for optimizing network performance should run in the networking protocols

themselves rather than in a network manager's head.

Another area in which DNA improves on the ISO standard is the
way in which acknowledgments are sent. According to the ISO stan­
dards, a user could send an individual acknowledgment for each message
received. However, this would ordinarily result in inefficient use of band­
width. The DNA specification for the transport protocol allows trans­
port to delay the sending of acknowledgments as a way of reducing the
amount of computation required in the end systems to operate the trans­
port protocol and to reduce the number of messages that have to be
propagated through the network. For example, when an end system re­
ceives a packet that is not the last packet in a TSDU, transport might
wait until all the packets have been received before sending an acknowl­
edgment rather than acknowledging each packet individually.

Flow Control

The transport protocol also uses acknowledgments to implement flow
control procedures to balance the relative speeds of the sender and the
receiver. The Transport service recovers from messages being lost or du­
plicated by lower layers and ensures that messages are passed to the re­
ceiving Transport service user in the same order in which they were
transmitted. Classes 2 and 4 transport also assign send sequence num­
bers to Data messages in order to provide reliable, sequenced message
delivery. As Data messages arrive at their destination, the destination
Transport layer entity returns an acknowledgment message to the source
Transport layer entity indicating the sequence number up to which Data
messages have thus far been successfully received. Class 0 transport does
not implement explicit flow control, nor does it number Data messages
or send acknowledgments. Instead, procedures in the CONS are used to
provide flow control facilities with class 0 transport.

Although the OSI transport protocol defines a comprehensive
scheme to provide end-to-end flow control and defines a number of rules

230 PART 11: DNA FUNCTIONAL LAYERS

for correct behavior, it does not make entirely clear what each rule is
meant to achieve within the overall flow control procedure. The DNA
Phase V architectural specification for the Transport layer augments the
ISO protocol specification by providing a detailed description of the flow
control algorithm. It also presents a detailed example of a possible im­
plementation as an aid to implementors. The flow· control procedures
defined by the DNA Phase V architecture go much further than simply
implementing the ISO standard and thus are able to perform flow con­
trol in a highly efficient manner.

The transport protocol implements flow control based on the con­
cept of credit. This means, in effect, that the destination Transport layer
entity tells the source Transport layer entity how many messages it is pre­
pared to receive. The source transport is then able to transmit only that
many messages, after which it must wait until it is granted additional
credit. Flow control operates in conjunction with the sequence number­
ing scheme. The way in which credit is granted to a source Transport
layer entity by a destination Transport layer entity is done in a carefully
designed manner. It is not enough for the destination Transport layer en­
tity to say simply, "You can send me another eight messages." The Net­
work service may at any given time contain an unknown number of Data
messages in transit. So the credit granting mechanism uses the Data mes­
sage sequence numbering scheme in granting credit. A destination Trans­
port layer entity grants credit based on the directive: "You can send all
Data messages up to the message whose sequence number is n." Such a
scheme leads to the concept of a flow control window that slides up the
sequence numbering space and defines the range of Data messages a des­
tination Transport layer entity is prepared to receive.

NETWORK ARCHITECT

This idea of assigning credits in flow control is an example of where we take

advantage of an ambiguity in the ISO protocol specification to achieve

enhanced performance. The ISO scheme is very simple. It says we should send

credits telling the other user how many messages it can send to us. But deciding

how many credits to send is not covered in the standard. If we have only one

buffer, and we implement the ISO flow control algorithm in a simple-minded
manner, we might send the user ti single credit. That would allow the other user

to send only one message before it must wait for another credit allowing it to

send the next message. This might result in long delays if the two users are far

apart. With our scheme, even if we have only one buff er, we might send the

other user a lot of credits because we know we can process the data very fast.

CHAPTER 10: THE TRANSPORT LAYER

This allows the other user to send a large number of messages, and as long as
we're able to process them rapidly, we're OK.

231

The ffow control algorithms in our version of transport implement various

dynamic schemes allowing us to determine how many credits we can send to the

other side, independent of the buffer resources we have available. This is an

example of where we have applied significant ingenuity to provide good perfor­

mance.

Class 4 transport can use either normal flow control fields or ex­
tended flow control fields. Normal flow control fields specify the use of
7-bit sequence numbers and 4-bit credit fields; extended flow control
fields specify the use of 31-bit sequence numbers and 16-bit credit fields.
A DECnet Phase V network normally uses extended flow control fields.
This is because in a very high speed network, it is possible for a 7-bit se­
quence number space to wrap around before an old TPDU having a
given sequence number has disappeared from the network. This can
cause two different TPDUs to have the same sequence number value,
thus violating one of the reliability guarantees of class 4 transport.

Congestion Avoidance

Congestion occurs when a network or part of a network is overloaded
and has insufficient communication resources for the volume of traffic it
is experiencing. A congested network exhibits all sorts of undesirable be­
havior, such as excessive transit delay. The goal in a computer network
should be not only to recover after congestion occurs, but to stop con­
gestion from occurring in the first place. The DNA version of OSI trans­
port contains mechanisms designed to achieve this goal by attempting to
reduce the load on the Network service to prevent congestion from oc­
curring. This idea of reducing the load to reduce or prevent congestion is
an important characteristic of the DNA Phase V congestion avoidance
scheme.

NETWORK ARCHITECT

It's important to point out that the scheme we picked for dealing with conges­

tion has the property of controlling congestion without introducing any addi­

tional traffic or load on the network. This is unlike many other congestion con­

trol schemes, which do absolutely the wrong thing. When the network becomes
congested, many schemes-the one used in SNA being one example-cause

232 PART II: DNA FUNCTIONAL LAYERS

more traffic to be sent into the network to signal congestion is occurring. So

when you're near the cliff, and you get congested, the congestion messages send
you over the cliff.

Class 4 transport implements two algorithms concerned with con­
gestion. One is a congestion avoidance algorithm that attempts to pre­
vent congestion from occurring; the other is a congestion recovery algo­
rithm designed to recover from congestion if the first algorithm fails. The
changeover from one to the other occurs when transport determines the
Network service has lost a message. As long as the Network service does
not lose messages, transport assumes the first algorithm is working.
Once the Network service begins to lose messages, transport assumes
congestion is occurring and invokes the congestion recovery algorithm.
Following are descriptions of the operations of these two algorithms:

• Congestion Avoidance Algorithm. The congestion avoidance algorithm
operates in conjunction with the Network service. It employs the conges­
tion experienced indicator the Network service sets in the PCI attached
to packets when the traffic across a data link increases beyond a prede­
termined point. If during any sampling period the number of messages
encountering congestion reaches a certain threshold, the Transport layer
entity reduces the size of its flow control window, thus reducing the
amount of traffic flowing over the Transport connection. This reduces
the number of messages the Network service needs to handle and re­
duces the load on the network accordingly. When congestion abates,
each Transport entity independently begins to gradually increase its flow
control window size to increase the message flow.

• Congestion Recovery Algorithm. The congestion recovery algorithm is
invoked whenever a Transport layer entity determines that the Network
service has lost a message. When this occurs, the Transport layer entity
detecting the lost message assumes the Network service is experiencing
congestion and dramatically reduces the flow of new Data messages into
the network. It does this by initially setting its flow control window to a
value of 1, permitting only the lost message to be retransmitted. The
value of the window is then increased by 1 each time the number of Data
messages for which acknowledgments have been received since the last
change becomes greater than the current value of the local credit win­
dow. As long as no further messages are lost by the Network service, the
local credit window gradually grows until it reaches the value originally
assigned by the peer Transport layer entity.

CHAPTER 10: THE TRANSPORT LAYER 233

Reassignment After Failure

When the class 4 protocol operates over the CONS, DNA attempts to
maintain the Transport connection even if the underlying Network con­
nection fails. The Transport service does this either by reassigning the
Transport connection to some other appropriate existing Network con­
nection or by requesting the establishment of a new Network connection
to support the Transport connection. The Transport service user is not
aware of the reassignment operation.

Segmentation and Reassembly

OSI transport permits the OSI Session or DNA Session Control user to
transmit extremely large messages. If the underlying Network service is
unable to accept a single message of the desired size, the Transport layer
entity divides that large TSDU into a number of smaller TPDUs for
transmission. The receiving Transport layer entity reconstructs the orig­
inal TSDU after it has received the final segment and passes it to the des­
tination Transport service user. Note that the segmentation and re­
assembly function is different from the notion described earlier of
passing a single TSDU across the interface to transport in multiple
pieces. Here, the Transport layer itself is transmitting a single TSDU in
multiple TPDUs.

Multiplexing

Classes 2 and 4 of transport implement a multiplexing function, intro­
duced earlier, allowing a user to set up any number of Transport connec­
tions between the same pair of users or between different pairs of users.
Multiplexing allows multiple Transport connections to be assigned to a
single Network connection. Each Transport connection in the network is
independent of any other Transport connection. When a connection is
established, the two Transport entities exchange 16-bit reference num­
bers that are assigned to the connection. These numbers are assigned so
they are unique among all the Transport connections controlled by a
given Transport layer entity. Messages carried over a given connection
carry the reference number associated with the destination Transport
layer entity. Some messages also carry the reference number associated
with the source Transport layer entity as well. Each end of the connec­
tion has its own reference number, and these reference numbers are as­
signed independently. This is quite different from earlier protocols, such

234 PART II: DNA FUNCTIONAL LAYERS

as X.25, where the two ends agree on a single identifier. Using a single
identifier leads to various protocol complexities, such as collisions in ref­
erence number assignment.

Concatenation

A Transport layer entity may group together TPDUs in order to pass them
to the Network service in the form of a single packet for transmission
through the network. Concatenation is sometimes called piggybacking
and, especially with very small messages, can increase the efficiency of the
Transport and Network services. The concatenation function is especially
useful to group Data and Acknowledgment messages in a single packet
when they are traveling in the same direction over the same connection.

NETWORK ARCHITECT

The architecture allows a Transport entity to receive messages from the same

Transport connection or from different Transport connections that are grouped

together in the same packet. However, DECnet implementations will use con­
catenation only to group TPDUs from the same Transport connection and

won't attempt to group TPDUs from different Transport connections. The latter

is simply much harder to do than it's worth.

Connection Release

As introduced earlier, a Transport connection can be released on the re­
quest of either transport user entity or the Transport service itself. A
transport user can request the release of a connection at any time. How­
ever, if the user wants to ensure that all messages it has sent have arrived
at their destination, the user is responsible for determining this before re­
leasing the Transport connection; the Transport layer does not provide
this as a service. When the Transport service user requests the connection
release, it must ensure that any messages in transit have been successfully
received before requesting the connection release. For class 2 and class 4
transport, a Transport layer entity releases the connection by transmit­
ting a Disconnect request (DR) message to its peer. The Transport layer
entity receiving a Disconnect request message acknowledges its receipt
by sending a Disconnect confirm (DC) message. With class 0 transport, a
Transport layer entity releases the Transport connection by requesting
the underlying CONS to release the Network connection.

NSP Transport

NSP Transport
Service Interface
Procedure
Declarations

NSP Transport
Protocol
Messages

NSP Transport
Protocol
Mechanisms

CHAPTER 10: THE TRANSPORT LAYER 235

The second architectural specification for the DNA Phase V Transport
layer describes the Digital proprietary network services protocol (NSP).
NSP was designed specifically for DNA and has been a part of DNA
since its inception. It can be used for communication between two users
of the NSP Transport service running DECnet Phase V software, but its
main purpose is for backward compatibility with DNA Phase IV. The
NSP transport protocol has many similarities to class 4 of OSI transport.

The interface between a DNA Session Control layer entity and an NSP
Transport layer entity is defined by essentially the same procedure decla­
rations listed in Box 10.3. The architectural specification for the NSP
transport protocol documents any minor differences.

Fourteen types of messages can flow over an NSP Transport connection
to convey user data between two users of the NSP Transport service and
to control the operation of the NSP transport protocol. These 14 types
can be divided into three categories: Data messages, Control messages,
and Acknowledgment messages. Box 10. 7 contains brief descriptions of
the 14 NSP transport protocol messages.

As with the OSI transport protocol, the NSP transport protocol involves
a great many procedures, many of which are similar to those employed
by OSI transport. A detailed understanding of the NSP transport proto­
col procedures is required only by those who build products that imple­
ment the NSP transport protocol. Complete descriptions of the proce­
dures are contained in the architectural specification for NSP Transport.
The following sections provide a high-level overview of the more inter­
esting aspects of NSP transport protocol operation. We concentrate here
on those aspects of the NSP transport protocol that are different from
OSI transport.

Connection Establishment

NSP establishes, maintains, and releases NSP Transport connections by
exchanging control messages with a peer NSP entity. An established con­
nection implements two separate data subchannels, each carrying mes­
sages in both directions:

236

BOX 10.7

NSP Transport
Messages

PART 11: ONA FUNCTIONAL LAYERS

Data Messages

• Data Segment. Carries a message or a portion of a message passed
down to an NSP Transport layer entity by a DNA Session Control
layer entity.

• Expedited. Carries urgent data originating in a higher DNA layer.

• Data Request. Carries information used to control the NSP transport
flow control algorithm.

• Expedited Request. Carries expedited flow control information.

Control Messages

• Connect Initiate. Carries information about a request for the estab­
lishment of an NSP Transport connection.

• Connect Confirm. Carries information about the acceptance of a re­
quest for the establishment of an NSP Transport connection.

• Disconnect Initiate. Carries information about the rejection of a re­
quest for the establishment of NSP Transport connection or a re­
quest for the release of an established NSP Transport connection.

• No Resources. Sent by an NSP Transport layer entity when it re­
ceives a Connect Initiate or Retransmitted Connect Initiate message
and the entity has no resources available to establish a new port.

• Disconnect Complete. Acknowledges the receipt of a Disconnect Ini­
tiate message.

• No Link. Sent by an NSP Transport layer entity when it receives a
message referring to a nonexistent NSP Transport connection.

• No Operation. Has no function and is included for compatibility
with a previous version of the NSP transport protocol.

Acknowledgment Messages

• Data Acknowledgment. Acknowledges receipt of one or more Data
Segment messages or, optionally, Connect Confirm, Expedited, Data
Request, or Expedited Request messages.

• Other Data Acknowledge. Acknowledges receipt of one or more
Connect Confirm, Expedited, Data Request, or Expedited Request
messages.

• Connect Acknowledgment. Acknowledges receipt of a Connect Initi­
ate message or a Retransmitted Connect Initiate message.

CHAPTER 10: THE TRANSPORT LAYER 237

· Normal-Data Subchannel. This subchannel carries normal Data mes­
sages between two NSP entities.

• Other-Data Subchannel. This subchannel carries expedited Data mes­
sages and messages related to the NSP flow control algorithm.

Data Transfer

The DNA Session Control layer passes data units to an NSP Transport
layer entity for transmission over an NSP Transport connection. User
data units are transported between NSP entities in Data Segment mes­
sages. Like OSI transport, NSP can handle the transmission of very large
messages between Transport layer entities. If NSP needs to handle a mes­
sage larger than the maximum packet size supported by the Network
service, it breaks the message into segments and passes each segment to
the Network service in the form of a separate Data Segment message.
Each Data Segment message contains a message sequence number and
other control information. The destination NSP entity uses Data Seg­
ment sequence numbers to reassemble the segments. NSP segments only
normal data. Expedited data messages have a limited size that is always
smaller than the packet size supported by the Network service.

Flow Control

The flow control mechanisms that NSP implements ensure that messages
are not lost because of limited buffering capability at the destination
NSP entity and that deadlocks do not occur. Flow control mechanisms
operate independently over both the normal-data and the other-data
subchannels. When an NSP Transport connection is established, each
NSP Transport layer entity informs its peer entity of the method to be
used for flow control for messages flowing to it. Two types of flow con­
trol are supported by NSP. With the first method, called on/off only, the
destination NSP Transport layer entity explicitly tells the source NSP
Transport layer entity when to stop and when to start sending data. With
the second method, called segment with on/off, the destination NSP
Transport layer entity sends the source NSP Transport layer entity a re­
quest count, which indicates the number of segments it can accept. In ad­
dition, the destination entity can always tell the source entity either to
stop sending data unconditionally or to start sending data under the nor­
mal request count conditions. The receiver also controls the flow of mes­
sages over the other-data subchannel with an other-data request count.

238

Conclusion

PART II: DNA FUNCTIONAL LAYERS

Data Retransmission

The NSP Transport entities at each end of a Transport connection posi­
tively acknowledge received Data messages. If a source NSP Transport
layer entity fails to receive a positive acknowledgment within a prede­
termined time interval, it automatically retransmits the message. As
with class 4 OSI transport, the time interval is adjusted dynamically
based on the round-trip delay determined by the source NSP Transport
layer entity.

Congestion Avoidance

While the flow control mechanisms protect against an NSP Transport
layer entity having a shortage of buffer resources, they do not handle
problems associated with resource shortages in other parts of the net­
work. NSP employs congestion avoidance mechanisms similar to those
of OSI transport to adapt to changing traffic loads. A difference between
NSP and OSI transport is that in NSP the congestion information is not
used by the receiver to control credits. Instead, the information is for­
warded by the receiver to the transmitter in Acknowledgment messages.
The transmitter then adjusts the maximum number of Data Segment
messages sent but not acknowledged it is allowed to have outstanding.
This reduces the number of Data Segment messages flowing across the
NSP Transport connection, thus reducing the load on the network.

Connection Release

An NSP Transport connection can be released at any time. The connec­
tion can be released by either one of the communicating Transport ser­
vice users or by one of the peer NSP Transport entities.

The Transport layer provides a general-purpose data transfer service that
all types of users can employ for reliable communication. The layers
above the Transport layer add value to this basic data Transport service.
Chapter 11 introduces the DNA Session Control layer that forms one of
the two major higher-layer protocol stacks the DNA Phase V architec­
ture provides above the Transport layer.

FIGURE 11.1

CHAPTER 11

The DNA Phase V
Session Control Layer

The Session Control layer is the layer of one of the upper-layer protocol
stacks of DNA that presents an interface to programs using a DECnet
Phase V network. By programs, we mean all types of applications, in­
cluding those written by users and those supplied by Digital. Programs
that implement components of DNA, such as those making up network
management and the naming service, also use the services of the Session
Control layer for communication. The Session Control layer provides
services that allow programs to communicate with one another and re­
quests services of the Transport layer in providing its services. The rela­
tionship between the services the Session Control layer provides and the
protocol governing its operation is shown in Figure 11.1. As shown

The relationship between the Session Control layer service and the Session Control layer
protocol.

Session Control Layer Service -----~ ~-__,.- Session Control Layer Service

The Session Control protocol

Session Control Layer
uses the Transport layer __ ._..
service to provide the Session Session Control Layer
Control layer service to a pair
of end users.

Transport Layer Service ___ __.+ +...._ ____ Transport Layer Service

239

240 PART II: DNA FUNCTIONAL LAYERS

there in the context of the OSI model, the DNA Session Control layer
protocol uses the services of the Transport layer to provide a defined set
of services to a user of the Session Control layer. The DNA Session Con­
trol layer provides an alternative method to the three upper OSI layers­
the Session layer, the Presentation layer, and the Application layer-for
accessing Transport layer facilities.

The major purpose of the Session Control layer is to form a bridge
between applications using a Transport connection for communication
and the Transport layer itself. The Session Control layer provides a set of
enhanced functions needed by an application program running under the
control of an operating system. Many of the functions of the Session
Control layer protocol consist of a relatively simple mapping to the basic
communication services provided by the Transport layer. Among the
functions the Session Control layer performs are:

• matching each incoming Transport connection establishment request
with the appropriate user of a Session Control layer entity

• managing Transport connections on behalf of users of the Session Con­
trol layer entity

• enforcing access control policies to restrict communication between
users of the Session Control layer

• using the naming service to maintain information about the protocols
supported by the node on which a local object resides and the address of
that node*

• accessing the services of the naming service to perform a name lookup
operation to retrieve information about the protocols supported by a re­
mote object and the address of the remote node

• selecting sets of appropriate communications protocols supported in
common between the two Session Control layer users attempting to
communicate over a Transport connection

• selecting the specific set of addresses and communication protocols to be
used in an attempt to set up a Transport connection between the node in
which the local object resides and the node in which the remote object
resides

·we use the term object to refer to anything the naming service can maintain a
name for and store information about. A local object is one residing in the same
node as the Session Control layer entity itself; a remote object is one residing in
some other node.

C H A P T E R 1 1 : T H E 0 N A P H A S E V S E S S I 0 N C 0 N T R 0 L LAY E R 241

Session Control
Layer Components

A Session Control layer entity implements three major components. The
relationship among these functional components and their relationship
with the naming service are shown in Figure 11.2. The arrows indicate

FIGURE 11.2

the flows of information between components. The lower components
provide services to the components above them. Notice that the address
resolution component of the Session Control layer also interfaces di­
rectly with the clerk component of the naming service. The functions of
the naming service clerk are introduced in this chapter and are described
in detail in Chapter 16. The major functions of the three Session Control
layer components and the naming service clerk are as follows:

• Naming Service Clerk. Provides the services of retrieving attribute infor­
mation associated with objects and maintaining attribute information
associated with local objects.

• Connection Control. Accesses Transport layer communication services
on behalf of an object residing on the local node (such as a local applica­
tion program). Also accesses Transport layer services on behalf of the ad-

Session Control layer functional components.

242

The Connection
Control
Component

PART II: DNA FUNCTIONAL LAYERS

dress selection component of Session Control and on behalf of the nam-
. .
mg service.

• Address Resolution. Accesses the naming service clerk to determine,
given the name of an object (possibly residing in a remote node) all the
various sets of communication protocols and associated addressing in­
formation that can be used to support communication between the local
object and the remote object.

• Address Selection. Determines, given the name of an object, the specific
set of protocol and addressing information, from among all the possible
sets found by the address resolution component, that may be used for
communication. The selected set of protocols and addressing informa­
tion is used to attempt to establish a Transport connection.

Notice that the user of the Session Control layer can access any of
the three Session Control layer components, as well as the naming ser­
vice clerk itself. The specific component the user accesses depends on
how much is known about the remote object with which the user wishes
to communicate. The following sections discuss in detail the functions of
each of the three components of the Session Control layer.

The connection control component is concerned with functions related
to establishing, maintaining, and releasing Transport connections. The
connection control component also enforces access control policies
defined by the installation. The services the connection control compo­
nent provides using the underlying Transport layer communication ser­
vices include the following:

• requesting an outbound Transport connection to an object based on the
communication protocols and associated addressing information
specified in the request

• receiving an incoming Transport connection request from the Transport
layer

• validating access control information

• sending and receiving data

• monitoring a Transport connection

• releasing a Transport connection

Each of the above connection control component functions is de­
scribed next.

CHAPTER 11: THE DNA PHASE V SESSION CONTROL LAYER 243

Requesting a Connection by Destination Address

To directly use the services of the connection control component, the
user must already have access to all required information concerning the
communication protocols and associated addressing information re­
quired to establish communication between the local object and a remote
object. There are three possible users of the connection control compo­
nent:

• A User of the Session Control Layer. When a user of the Session Control
layer, such as a DNA application program, already knows the specific
communication protocols and associated addressing information re­
quired for communicating with the remote object, the user can access the
connection control component directly, thus bypassing the address selec­
tion and address resolution components of Session Control.

• The Address Selection Component. The address selection component of
the Session Control layer can access the connection control component
to establish Transport connections on behalf of users of the Session Con­
trol layer.

• The Clerk Component of the Naming Service. The naming service clerk
may also need to access connection control to set up Transport connec­
tions it uses to communicate with nameserver components of the naming
service. Nameservers are the components of the naming service that
maintain attribute information for names.

In performing its functions, the connection control component for­
mats the data associated with each request for the establishment of a
Transport connection it receives, issues a connection establishment re­
quest to the Transport layer, and starts an outgoing connection timer if
the user requested it. If the timer expires before the remote Transport
layer entity accepts or rejects the connection establishment request, the
Session Control layer entity releases the Transport connection.

Receiving a Connect Request

The Session Control layer provides a major value-added service over and
above the basic communication services that the Transport layer pro­
vides. When the connection control component receives an incoming re­
quest from the Transport layer for the establishment of a Transport con­
nection, it begins by analyzing the information associated with the
incoming connection to obtain descriptors of the source and destination

244 PART II: DNA FUNCTIONAL LAYERS

objects and access control information. It then validates the access con­
trol information it receives using functions determined by the specific
system implementing the local node. That information can be either an
explicit access control string (including a password) or a request to in­
voke a proxy on behalf of the requesting user.

Proxy mapping is a mechanism by which a user on one node in the
network can be given access to accounts on another node in the network
without knowing the access control information of the target accounts.
This is accomplished by setting up an association on the target node be­
tween the remote user and the proxy accounts on the local node. When
the connection control component receives a request for connection es­
tablishment that references a proxy account name, it selects the appro­
priate proxy account and verifies that the user requesting access is per­
mitted to use that account.

Once access control information has been validated, the connection
control component next identifies, activates, or creates a destination ap­
plication context using an algorithm defined by the particular system im­
plementing the local node. This algorithm determines if an existing ap­
plication in that node corresponds to the destination application
specified in an incoming request for a Transport connection. The algo­
rithm may include an interface to the local operating system that creates
a new user context in which to run the application. Once the local appli­
cation context has been identified or created, the connection control
component delivers the incoming connection establishment request to
the appropriate application and starts an incoming timer. If the timer ex­
pires before the application accepts the connection establishment re­
quest, the Session Control layer entity issues a reject to the Transport
layer.

Sending and Receiving Data

The sending and receiving of data are system-dependent functions that
are passed directly to the Transport layer. The Session Control layer can
handle requests by users of the Session Control layer to exchange data
with each other in a number of different ways. The Session Control layer
can handle two forms of buffering and three different data transfer inter­
faces.

The two buffering techniques that the Session Control layer pro­
vides include one technique in which the end user handles buffering and
one technique in which the Session Control layer itself performs the
buffering function:

CHAPTER 11: THE DNA PHASE V SESSION CONTROL LAYER 245

• End User Buffering. With this buffering technique, the sending end user
passes entire buffers of data to the Session Control layer and then polls
the Session Control layer to determine when transmission of the data in
the buffer has been completed. In a similar manner, a receiving Session
Control user passes an empty buffer to Session Control and then polls
Session Control to determine when the buffer has been completely filled.

• Session Control Buffering. With this buffering technique, a sending end
user requests transmission of the data in a buffer. Session Control either
accepts or rejects the request. If Session Control accepts the request, the
end user can reuse the buffer immediately. When a receiving end user
passes Session Control a buffer to be filled with received data, Session
Control either replies with a no data indication or immediately com­
pletely fills the buffer with received data.

The three data transfer interfaces the Session Control layer supports
include techniques for working with messages, segments, and streams of
data:

• Message Interface. This interface allows end users of the Session Control
layer service to send and receive individual messages of any desired size.
Senders and receivers work with messages contained in buffers using ei­
ther the end user buffering or Session Control buffering technique.

• Segment Interface. This interface allows end users of the Session Control
layer service to send messages limited in size to the maximum allowable
transport-protocol-data-unit (TPDU) size. Senders and receivers work
with messages contained in buffers using either the end user buffering or
Session Control buffering technique.

• Stream Interface. This interface allows end users to view data as a con­
tinuous stream of octets, in which an occasional "end-of-message"
marker may be inserted. The stream interface is similar to the segment
interface, but the buffer size is not restricted by the maximum allowable
TPDU size. The stream interface requires the use of the Session Control
buffering technique.

Monitoring a Transport Connection

If requested by the user of the Session Control layer entity, the connec­
tion control component will monitor the Transport connection and will
release the Transport connection if it detects the Transport layer has de­
tected a probable network disconnection between the two communicat­
ing nodes or when it detects a failure to respond to a request for the es­
tablishment of a Transport connection.

246

The Address
Resolution
Component

PART II: ONA FUNCTIONAL LAYERS

Disconnecting or Aborting a Transport Connection

If an application requests the release of a Transport connection, the Ses­
sion Control layer waits until all previously transmitted messages have
been acknowledged and then issues to the Transport layer entity a re­
quest for the release of the Transport connection. If an application issues
a request for a Transport connection abort, the Session Control layer im­
mediately issues a disconnect request to the Transport layer. In such a
case, previously transmitted but unacknowledged data may not be deliv­
ered to the remote application. Notification of a Transport layer connec­
tion release or abort initiated by the remote Transport layer entity is
passed directly to the application along with any data associated with
the request for the release or abort of the Transport connection.

We next examine the functions performed by the address resolution
component of the Session Control layer.

The address resolution component of the Session Control layer performs
three important functions. One function is associated with local objects
(objects residing in the same node as the local Session Control layer en­
tity), the second is associated with remote objects (objects residing in
other nodes in the network), and the third is associated with performance.

Local Objects

The Session Control layer accesses the services of a naming service clerk to
determine information about communication protocols and associated ad­
dressing information associated with objects, such as application pro­
grams, accessible via the network. An important responsibility of the ad­
dress resolution component is to periodically update the protocol and
addressing information stored in the naming service for local objects. Ob­
jects may move from one node to another and addresses may change. It is
one responsibility of the address resolution component to ensure that the
information stored in the naming service for local objects is up to date.

Remote Objects

A second important function of the address resolution component is to
accept the name of the remote object with which a local object is at­
tempting to communicate and to retrieve protocol and addressing infor­
mation for that object. In doing this, the address resolution component
uses the services of the naming service clerk to acquire information

Towers

C H A P TE R 1 1 : T H E D N A P H A S E V S E S S I 0 N C 0 N T R 0 l l A Y E R 247

about all the communication protocols and associated addressing infor­
mation through which it may be possible to communicate with the re­
mote object. The address resolution component then attempts to identify
communication protocols mutually supported by both the local node
and the remote node.

Previous versions of Session Control (as in DECnet Phase IV net­
works) required tables maintained via explicit network management pro­
cedures that specified associations between node names and node ad­
dresses for those nodes with which local users might need to communicate.
The size of the table, and consequently the number of node names known
to a particular Session Control entity, was limited by the storage available
in the local node. Furthermore, the information in the table was sometimes
out of date, thus resulting in messages sometimes being delivered to the
wrong destinations. With DNA Phase V, all Session Control layer entities
have access to the naming service, which provides access to attribute infor­
mation for all objects known to the network. By using a global naming ser­
vice to maintain the association between object names and their addresses,
the number of names to which a given node has access is no longer limited
by the resources installed in the node itself. Since the address resolution
component in each node is responsible for periodically updating the infor­
mation in the naming service concerning local objects, attribute informa­
tion stored for remote objects is more likely to be up to date.

Caching

A third function the address resolution component performs is related to
performance. Whenever the address resolution component locates proto­
col and addressing information for a remote object, it stores that infor­
mation in a local cache for possible later reference. The protocol and ad­
dressing information for frequently accessed objects tends to remain in
the cache, thus eliminating the need to access the naming service to re­
trieve attribute information for frequently accessed objects.

The address resolution component performs its functions through
the use of data structures called protocol towers, or simply towers. Tow­
ers are a unique feature of DNA Phase V, which we describe next.

In previous versions of DNA, there was no choice of the protocol that op­
erated at each layer below the application itself, and each node had a single
unique Network layer address. With DNA Phase V, a node can support
multiple transport protocols (for example, both NSP and OSI transport)

248

FIGURE 11.3

PART II: DNA FUNCTIONAL LAYERS

and also may have multiple Network layer addresses. For applications
to communicate, they must agree on the protocols both will employ and
they must agree on a compatible set of operational parameters for those
protocols. In addition, two communicating users must have informa­
tion about the addresses that indicate to each layer where to deliver data.
This information is collected in a tower. A tower is a data structure, main­
tained in the naming service, which contains protocol and addressing in­
formation for each object that can be located via the network. An object's
DNA$Towers attribute contains the object's tower data structure.

A tower consists of a protocol sequence along with associated ad­
dress and protocol-specific information. A protocol sequence is an or­
dered list of protocol identifiers, each of which consists of an octet string
naming a particular protocol. Some protocol identifiers are defined by
Digital; others can be defined by network managers.

Associated with each protocol identifier in a tower is a component
of the address and other protocol-specific information applying to the
specified protocol. The address information indicates the access point
through which this layer provides service to the next higher layer proto­
col in the sequence. Other protocol-specific information may be included
in this field. Figure 11.3 illustrates the structure of a tower. Typically, a
tower will extend from the DNA Application layer to the Network layer.
An object often will have multiple towers associated with it.

Establishing Protocol Sequences for Communication

We next walk through a typical use of the address resolution service in
which an application program in one node wants to communicate with
an application program in another node. The user of the address resolu-

Tower structure.

b-- -=
Layeri+1 Layer i+1 parameters and

Protocol Identifier address data that select
layer i+2 protocol

Layeri Layer i parameters and

Protocol Identifier address data that select
layer i + 1 protocol

Layeri-1 Layer i-1 parameters and

Protocol Identifier address data that select
layer i protocol

CHAPTER 11: THE DNA PHASE V SESSION CONTROL LAYER 249

tion component-in this case, the address selection component of the
Session Control layer-begins by passing to the address resolution com­
ponent the tower associated with the local application program and the
name of the remote application program with which the local program is
attempting to communicate. The address resolution component then
searches the local cache to see if the tower associated with the remote
program is currently available. If it is not, the address resolution compo­
nent accesses the naming service clerk and retrieves the DNA$Towers at­
tribute associated with the name of the remote program.

After the address resolution component has access to the towers for
both the local and the remote programs, it matches up the protocol se­
quences in the local and remote towers. A pair of protocol sequences are
said to match if the protocol identifiers in one member of the pair are
identical to, are in the same order as, and map one-to-one with those in
the other member. The address resolution component passes to its user
the results of this matching operation, which consists of the protocol se­
quences and associated addressing and protocol-specific information
supported by both the local and the remote nodes. This constitutes infor­
mation about all the protocols through which it may be possible to es­
tablish communication between the two application programs.

The algorithm matching up the two towers may result in no com­
mon protocol sequences, in which case communication is not possible
between the two programs. Alternatively, it may result in a single match­
ing protocol sequence or in multiple matching protocol sequences. Each
matching sequence found is returned to the address resolution compo­
nent user along with the address and other protocol-specific information
from both the local and the remote towers. The user of the address reso­
lution component service may then select the specific protocols and ad­
dresses to be used in attempting to establish a Transport connection be­
tween the local program and the remote program.

As we have already discussed, to improve performance, protocol se­
quences and address pairs are cached for future use. An application may
request that the information cached about a name be discarded and new
protocol sequences and address pairs generated. An application program
might request this in the event a request for the establishment of a con­
nection fails.

Maintenance of Towers

Because each end node automatically generates its Network layer ad­
dress when it is attached to the network, the addresses associated with

250

The Address
Selection
Component

PART II: DNA FUNCTIONAL LAYERS

protocols below the Session Control layer may change with time. For ex­
ample, if a node is disconnected from its router, moved to another part of
the network, and plugged into some other router, its network address
will automatically be changed as the node is reconfigured into the net­
work. The address resolution component includes a function an applica­
tion program can request to maintain the protocol and address informa­
tion stored in the naming service for local objects.

Using information about the higher layers the application program
passes to the Session Control layer and information about the lower lay­
ers the Session Control layer obtains from the underlying Transport layer
entities, the address resolution component uses the naming service to up­
date the information stored in the DNA$Towers attribute for each local
object, thus ensuring that the information stored in the tower for each
object is up to date.

We next examine the functions performed by the address selection
component of the Session Control layer.

The address selection component allows a local program to establish a
Transport connection with a remote program based only on the name of
the remote application program. By using the address selection compo­
nent, the local user is relieved of the responsibility for knowing the ad­
dresses associated with the remote object and about the protocols sup­
ported by the remote node. The address selection component accesses
the services of the address resolution component to obtain the addresses
and protocol sequences associated with a remote object. It also uses the
services of the connection control component to establish a Transport
connection with the remote application program once protocol and ad­
dress information has been obtained.

For compatibility with DNA Phase IV, an application program
can alternatively request the establishment of a Transport connection
by specifying the name of the node on which the remote application
program resides and information about higher layer protocols and ad­
dresses. For compatibility with existing applications, the address se­
lection component accepts a six-character node alias and converts it
to the full DNA Phase V node name. The Session Control layer then
uses the services of the address resolution component to locate infor­
mation about Transport and Network layer protocols and associated
addressing information.

C H A P T E R 1 1 : T H E D N A P H A S E V S E S S I 0 N C 0 N T R 0 L L A Y E R 251

Ordering the Protocol Sequences

As we discussed earlier, the address resolution component attempts to
find the set of all protocol sequences and associated addressing informa­
tion mutually supported by both the local and the remote objects. The
address selection component uses a system-specific algorithm to place
the elements of this set into a specific sequence. It then uses the services
of the connection control component to attempt to establish a Transport
connection with the remote object using the first protocol sequence in
the set. If the address resolution component fails to establish a Transport
connection using the first element of the protocol sequence set, it tries
again using the second element of the set. It continues to step through the
protocol sequence set until one of the following situations occurs:

• A Transport connection is successfully established.

• The reason for the failure indicates that further attempts would be futile.

• The protocol sequence set is exhausted.

End User Interface The end user interface to the DNA Session Control layer is defined in a
manner similar to that of the interfaces to the lower layers, in terms of a
series of procedure declarations. These procedure declarations are listed
in Box 11.1. Many of the calls request specific Session Control services,
and others request services of the Transport layer. The Session Control
layer passes requests for Transport layer services directly to the Trans­
port layer. Note that the procedure declarations listed in Box 11.1 in­
clude no procedures for performing data transfer functions over the un­
derlying Transport connection. As discussed earlier, the interface
between end users and the Session Control layer is implementation de­
pendent. The Session Control layer supports end user and Session Con­
trol layer buffering techniques and the message, segment, and stream
data transfer interfaces in an implementation-dependent manner.

Conclusion The DNA Session Control layer provides users with an important point
of entry into a DECnet Phase V network. Of increasing importance in
the future will be the higher-layer protocol stack the DNA Phase V archi­
tecture provides as an alternative to the DNA Session Control layer: the
OSI Application, Presentation, and Session layers. The OSI upper layer
architecture defined by DNA Phase Vis introduced in Chapter 12.

252

BOX 11.1

DNA Session
Control Layer End
User Interface
Procedures

PART II: DNA FUNCTIONAL LAYERS

The following function and procedure declarations define the
abstract interface between the Session Control layer and a user of the
Session Control layer in terms of the services a Session Control layer
entity provides to its users.

Name and Address Conversion Functions

• NodeNameTolnternal. Passes a naming service external format node
name to the naming service clerk for conversion to internal format.
If the name is a node name synonym, the name is first converted to
the node's full name before passing it to the naming service clerk.

• NameToAddress. Maps the name of an object to a set of protocol
sequences supported by both the local system and the remote system
on which the named object resides and returns the addresses of the
service-access-points identifying the sending and receiving entities.

• KeepMeHere. Requests the DNA$Towers attribute of a named
object to be periodically updated on an ongoing basis with current
protocol and address information.

• RemoveFromHere. Halts the updating of the DNA$Towers attribute
for a named object.

• EnumerateLocalTowers. Returns the set of local towers available at
the end user interface to the Session Control layer.

Transport Connection Functions

• ConnectAddress. Requests a Transport connection by specifying
explicit protocol and address information for both the source and
the destination nodes.

• ConnectNodeAddress. Requests a Transport connection by specify­
ing explicit protocol and address information for the destination
node.

BOX 11.1

continued

C H A P T E R 1 1 : T H E D N A P H A S E V S E S S I 0 N C 0 N T R 0 L L A Y E R 253

• ConnectObjectName. Requests a Transport connection by specifying
the name of the remote object and protocol information for the Ses­
sion Control layer and above.

• ConnectNodeName. Requests a Transport connection by specifying
the DNA Phase IV node name of the node on which the remote
object resides. This function is provided for compatibility with Phase
IV of DNA.

Port Control Functions

• Openlncoming. Opens a port into the Session Control layer and
waits for a matching incoming request for a connection.

• IncomingPoll. Polls a Session Control layer port for incoming data.

• VerifyNodeName. Verifies the remote node name for an incoming
connect request if this function was deferred.

• Accept. Accepts or rejects an incoming request for a connection.

Transport Connection Release Functions

• DisconnectTransmit. Requests that a Transport connection be
released.

• DisconnectReceive. Issued in response to the receipt of a Disconnect­
Transmit request to obtain disconnect data.

Port Status Functions

• PortStatus. Requests information concerning the services available at
the indicated Session Control layer port.

• TPModuleStatus. Requests information concerning the services
available at the underlying Transport layer port.

254

CHAPTER 12

OSI Upper-Layer
Architecture

The three upper layers of the OSI model provide an alternative means to
the DNA Session Control layer that an application program can use to
request communication services in a DECnet Phase V network. This
chapter describes the functions of the three upper OSI model layers and
describes how the DNA Phase V OSI upper-layer architecture imple­
ments them.

The four lower layers of the OSI architecture handle the end-to-end
transfer of streams of octets-raw data. The lower-layer infrastructure is
concerned with the network machines and the communication links con­
necting them. The Transport layer and the layers beneath it together pro­
vide a reliable end-to-end data transfer service that application programs
running in end nodes use for communication. In contrast, the services
provided by the three upper layers of the OSI model are concerned with
the· application programs themselves. They define how application pro­
grams transfer meaningful information using the services of the underly­
ing communication infrastructure. The intent of the developers of the
upper three layers of the OSI model was to provide a rich set of applica­
tion-oriented services for creating distributed computing applications.

The Application layer provides OSI communication support di­
rectly to distributed applications. Unlike the lower layers, many proto­
cols for the Application layer are specific to a particular distributed ap­
plication, and the functions performed in the Application layer are
dependent on that application. The Presentation layer is concerned with
the information content of the data units that application programs ex­
change and with how that information content is encoded for transmis­
sion through the network. The Session layer is responsible for organiz­
ing the dialog between two application programs and for managing the
data exchanges between them.

CHAPTER 12: OSI UPPER·LAYER ARCHITECTURE 255

DNA Phase V The DNA Phase V specifications for the three OSI upper layers are
OSUL Architecture contained in a single document that describes the OSI upper-layer

(OSUL) architecture. The OSUL architecture defines an implementa­
tion model for the OSI Application, Presentation, and Session layers.
The delineation between the layers is not as clearly defined in the
OSUL architecture as it is for the lower four layers in the DNA Phase V
architecture.

NETWORK ARCHITECT

In the lower layers, you will find that our implementation tends to be structured

very much like the reference model, with appropriate interfaces closely resem­

bling the service interfaces defined in the ISO standards. If you look at the

upper layers, it is very difficult to build an efficient, practical implementation

that accurately reflects the layering structure. The Application, Presentation,

and Session layers turn out to be so closely related that the best thing to do is to

have one big state machine for all three layers rather than implementing a sepa­

rate state machine for each. So, in the upper layers, we feel the layering struc­

ture of the OSI model is not quite right; I think you'll find very few people who

disagree with that. Nevertheless, it's something we have to live with because we

realize it would be impossible at this point to make radical changes to the OSI

model.

We now begin an examination of the three layers that make up the
OSUL architecture in DNA Phase V, continuing to work from the bot­
tom up.

The Session Layer The Session layer provides services to structure the interaction between
two application programs. The standards for the Session layer define two
types of dialogs: two-way, simultaneous interaction, where both pro­
grams can send and receive concurrently, and two-way, alternate interac­
tion, where the programs take turns sending and receiving. In addition to
organizing the dialog, Session layer services include the establishment of
synchronization points within the dialog, which allows a dialog to be in­
terrupted and to be resumed from a synchronization point.

There is some controversy in the OSI community surrounding the
services the Session layer provides.

256 PART II: DNA FUNCTIONAL LAYERS

NETWORK ARCHITECT

The way the standards for the Session layer were created worked something like

this. Say I call you in and say I'd like you to build me a workshop. And you say,

sure, what are some things you want to do? And I say, how about metalwork­

ing; that would be really interesting. But then electronics would be interesting as
well, and so would woodworking. In the end, I give you a blank check, and a

year later you come back and say here's your workshop.

I start out by going into it and try to make a table. I find this pile of wood,

go to the lathe, and start building. But I find that I need a chisel, and there
aren't any chisels. Then I decide to build a radio instead. I go to the electronics

bench and start to build the radio but immediately discover that everything is
there that I need, except for a soldering iron.

This is what the Session layer is like. There are lots of useful, general mech­

anisms. But when you actually begin to use them, you sometimes find they don't

do quite what you need them to do. Or, because of the Session layer's position

in the layering structure, it really doesn't work the way you want it to work.

What is essentially happening now is that we are working hard on the standards

for the Application layer, and we are finding that most of the new protocols

being developed simply don't use many of the features originally designed into

the Session layer. If we were to start over again, we would probably not have a

separate Session layer. Instead, we might define the Session synchronization ser­

vices in a separate Application layer standard.

Services and Protocols

As with the other OSI model layers, ISO standards for the Session layer
include both a service definition and a protocol specification. The rela­
tionship between the services the Session layer provides and the protocol
governing its operation is shown in Figure 12.1. The Session layer proto­
col uses the services of the Transport layer to provide a defined set of ser­
vices to a user of the Session layer service. Note, however, that even
though the Presentation layer is above the Session layer in the OSI
model, the actual user of Session layer services is an entity in the Appli­
cation layer. Each service the Session layer provides is mapped to a corre­
sponding service of the Presentation layer. The Presentation layer then
adds value to some of these Session layer services and provides addi­
tional services of its own to an Application layer entity.

FIGURE 12.1

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE

The relationship between the Session layer service definition and the Session layer protocol
specification.

Session Layer Service -----~

Session Layer

The Session layer protocol uses
the Transport layer service to
provide the Session layer service
to a Session service user.

Session Layer Service

Session Layer

Transport Layer Service ---~t t~---- Transport Layer Service

Session Layer Service Definition

257

The service definition for the Session layer is documented in ISO 8326,
Session Service Definition. The functions provided by the Session layer
are divided into a number of functional units. The functional units em­
ployed by a pair of users of the Session layer service are negotiated when
the Session connection is established. Many of the services defined in
functional units for the Session layer require the entity requesting the ser­
vice to own a token, which grants that entity the right to request that ser­
vice. Some of the services defined for the Session layer consist of request­
ing a particular token from the partner entity and passing a token to the
partner upon request. Box 12.1 lists the services provided by all Session
layer functional units.

The following are brief descriptions of the functional units included
in the Session layer, all of which are supported by the OSUL architecture:

• Kernel. The kernel functional unit allows the use of basic session services
that must be provided by any implementation of the Session layer.

• Negotiated Release. This functional unit allows the use of services that
restrict the release of the Session connection to the partner who owns the
Release token. Also, it allows a partner Session layer entity to reject a re-

258

BOX 12.1

Session Layer
Services

PART II: DNA FUNCTIONAL LAYERS

Kernel Functional Unit

• Session Connection Establishment. Requests the establishment of a
Session connection.

• Normal Data Transfer. Transfers data over a Session connection.

• Session Connection Release. Requests the orderly release of a Session
connection.

• User Abort of a Session Connection. Issued by a Session service user
to request the immediate release of a Session connection.

• Provider Abort of a Session Connection. Issued by a Session layer
entity to request the immediate release of a Session connection.

Negotiated Release Functional Unit

• Requesting an Orderly Negotiated Release. Requests a negotiated
release of a Session connection in which the partner can either accept
or reject the request. This service can be issued only by the partner
who currently owns the Release token.

• Requesting the Release Token. Requests the Release token from the
partner who currently owns it.

• Passing the Release Token. Passes the Release token to the other partner.

Half-Duplex Functional Unit

• Requesting the Data Token. Requests the Data token from the part­
ner who currently owns it.

• Passing the Data Token. Passes the Data token to the other partner.

Activity Management Functional Unit

• Starting an Activity. The partner issuing this service must own the
Major/Activity token. If the functional units concerning the Data
token or the Synchronize-minor tokens are in effect, the partner
must own these tokens as well.

• Ending an Activity. The partner issuing this service must own the
Major/Activity token. If the functional units concerning the Data
token or the Synchronize-minor tokens are in effect, the partner
must own these tokens as well.

• Interrupting an Activity. The partner interrupting the activity may
resume it later. The partner issuing this service must own the
Major/Activity token.

• Resuming an Interrupted Activity. The partner issuing this service

BOX 12.1

continued

CHAPTER 12: OSI UPPER-LAYER ARCHITICTURE

must own the Major/Activity token. If the functional units concern­
ing the Data token or the Synchronize-minor tokens are in effect, the
partner must own these tokens as well.

• Discarding an Activity. The partner issuing this service might discard
an activity for any of a number of defined reasons. To discard an
activity, the partner must own the Major/Activity token.

• Requesting the Major/Activity Token. Requests the Major/Activity
token from the partner who currently owns it.

• Passing the Major/Activity Token. Passes the Major/Activity token
to the other partner.

• Passing Control to the Other Partner. This service might be issued by a
partner who currently owns all tokens and wishes to pass ownership
of them to the other partner. This service could be performed by using
the services of passing tokens to the other partner and is included in
the Session service for compatibility with an older Session protocol.

Minor Synchronize Functional Unit

• Establishing a Minor Synchronization Point. This service can be
issued only by the partner entity currently owning the Synchronize­
minor token.

• Requesting the Synchronize-Minor Token. Requests the Synchro­
nize-minor token from the partner who currently owns it.

• Passing the Synchronize-Minor Token. Passes the Synchronize-minor
token to the other partner.

Major Synchronize Functional Unit

• Establishing a Major Synchronization Point. This service can be issued
only by the partner entity currently owning the Major/Activity token.

• Requesting the Synchronize-Major Token. Requests the Synchronize­
major token from the partner who currently owns it.

• Passing the Synchronize-Major Token. Passes the Synchronize-major
token to the other partner.

Exception Reporting Functional Unit

• User Exception Reporting. Reporting of exceptional conditions by a
Session layer user.

• Provider Exception Reporting. Reporting of exceptional conditions
by a Session layer entity.

259

260 PART II: DNA FUNCTIONAL LAYERS

quest for the release of a Session connection, in which case the Session
connection remains established.

• Half-Duplex. This functional unit allows two-way alternate interactions
to take place over the Session connection. When the Half-duplex func­
tional unit is chosen, data can be sent over the Session connection only
by the partner currently in possession of the Data token. The services
defined for the Half-duplex functional unit are concerned with request­
ing and passing the Data token. Both the Half-duplex and Duplex func­
tional units cannot be in effect for the same Session connection.

• Duplex. This functional unit allows two-way simultaneous interactions
to take place over the Session connection. When the Duplex functional
unit is in effect, data can be sent over the Session connection by either
partner at any time, and possession of the Data token is not required.
Both the Half-duplex and Duplex functional units cannot be in effect for
the same Session connection.

• Expedited Data. This functional unit allows the use of a single expedited
data transfer service allowing a single short data unit to be sent over the
Session connection. The expedited data transfer service allows blockages
in the data transport service to be bypassed.

• Typed Data. This functional unit allows the use of a single typed data
transfer service allowing data to be exchanged outside the normal flow
of data over the Session connection. When the half-duplex functional
unit is in effect, an entity can send data using the typed data transfer ser­
vice even though it does not currently own the Data token.

• Activity Management. This functional unit allows the use of application
exchanges in which an activity is divided into a number of restartable di­
alogs, each of which can be divided into smaller restartable units using
one or more checkpoints.

• Minor Synchronize. This functional unit allows use of the dialog control
services defined in the Session layer. Dialog control services consist of two
types of synchronization points in the data stream flowing between two
users of the Session layer service. A minor synchronization point marks a
checkpoint within a dialog, and a. major synchronization point separates
individual dialogs from one another. The Minor Synchronize functional
unit consists of services for establishing checkpoints within a dialog.

• Major Synchronize. This functional unit allows a dialog to be ended by
establishing a major synchronization point. The Major Synchronize
functional unit consists of services for establishing a major synchroniza­
tion point.

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE 261

• Resynchronize. This functional unit allows the use of a single resynchro­
nize service requesting a dialog to be reset to a synchronization point.

• Capability Data Exchange. This functional unit can be chosen only when
the Activity Management functional unit has also been chosen. It allows
the use of a single capability data exchange service for transferring data
concerning the capabilities of application programs.

• Exceptions. This functional unit allows the use of services for reporting
exceptional conditions.

Amendments to the ISO Session Layer Service Definition

As of the time of this writing, ISO has published three amendments to
ISO 8326, Basic Connection Oriented Session Service Definition:

• Amendment 1, Session Symmetric Synchronization for the Session Ser­
vice. This amendment defines an optional Session Symmetric Synchro­
nization functional unit, which allows two full-duplex users of the Ses­
sion service to independently identify minor synchronization points on
their sending data flows. It also allows users to resynchronize on one or
both directions of flow. As of the time of this writing, the OSUL architec­
ture does not support session symmetric synchronization since there cur­
rently are no OSI applications that require this functional unit.

• Amendment 2, Unlimited User Data. In ISO 8326, some session services
limit user data to 512 octets, while others do not specify a user data pa­
rameter. This amendment defines a new version of the Session protocol
that allows the use of an arbitrarily large user data parameter with all
Session layer services. The OSUL architecture supports unlimited user
data.

• Amendment 3, Connectionless Mode Transmission. ISO 8326 defines a
connection-mode Session layer service. This amendment defines a con­
nectionless-mode Session layer service. Support for this amendment is
not included in the OSUL architecture. As of the time of this writing, the
DNA Phase V architecture supports only connection-mode services in
the Transport layer and above.

Session Layer Protocol Specification

The protocol specification for the Session layer is documented in ISO
8327, Session Protocol Specification. The protocol mechanisms to sup­
ply the optional services defined in the amendments to 8326 are de­
scribed in the amendments to ISO 8327. Because of the many different

262 PART 11: DNA FUNCTIONAL LAYERS

types of services the Session layer provides, the protocol controlling its
operation is relatively complex. However, the Session protocol accesses
the underlying Transport layer services in a straightforward manner.
Each Session layer service primitive causes one or more session-protocol­
data-units (SPDUs) to be generated. The Session layer uses a Transport
connection to carry these SPDUs over the network. The ISO standards
for the Session layer define three possible mappings between Session con­
nections and Transport connections:

• One-to-One. With a one-to-one mapping, a Session connection causes a
Transport connection to be established. The Transport connection is
then released when the Session connection is released.

• One-to-Many. With a one-to-many mapping, a single Session connection
employs several Transport connections, one after the other. This capabil­
ity is useful if Session layer entities wish to be able to recover from the re­
lease of Transport connections, possibly due to network failures.

• Many-to-One. With a many-to-one mapping, a single Transport connec­
tion is reused and supports two or more Session connections, one after
the other. The OSUL architecture does not support this form of mapping
and does not permit a Transport connection to be reused.

The Session protocol supports segmentation and concatenation
functions. To allow the use of unlimited user data parameters, a single
session-service-data-unit (SSDU) can be segmented into multiple SPDUs,
each of which is carried over the network in a separate transport-proto­
col-data-unit (TPDU).

Multiple SPDUs can also be concatenated and carried in a single
TPDU to reduce the number of network interactions required to support
the Session protocol. For example, a Give Token SPDU can be concate­
nated with a Data Transfer SPDU, both of which can be carried together
in a single TPDU. ISO 8326, Session Protocol Spedfication, specifies the
types of SPDU that can be combined and defines both a basic and an ex­
tended form of concatenation. Basic concatenation is more restrictive
than extended concatenation as to the types of SPDUs that can be com­
bined in the same TPDU. The OSUL architecture supports basic concate­
nation but not extended concatenation.

NETWORK ARCHITECT

We felt that supporting extended concatenation would complicate buffer handling

and increase processing overhead while not significantly reducing network traffic.

The Presentation
Layer

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE 263

We next examine the services the Presentation layer provides to an
Application layer entity.

In the OSI environment, an application program sends data to another
application program in a distributed system by using a data transfer
service provided by the Presentation layer. The Presentation layer also
provides services for negotiating the way in which data elements are
to be encoded for transmission through the network and services that
allow its users to access the services provided by the underlying Ses­
sion layer.

The unit of data the user of the Presentation layer service passes
down to a Presentation layer entity is the presentation-service-data-unit
(PSDU). A PSDU can contain one or more presentation-data-values
(PDVs). A PDV can be a complex data structure, and in many cases a
PSDU will consist of a single PDV. A PDV typically consists of an appli­
cation-protocol-data-unit (APDU) or a part of an APDU. An Application
layer protocol defines the information content of the PDVs that the two
communicating programs exchange with each other and the procedures
governing the exchange of those PDVs. Consider a distributed personnel
application: one of the PDVs exchanged by the programs in such a sys­
tem might be a particular type of record containing elements of informa­
tion about an employee.

To the layers below the Presentation layer, the data units exchanged
consist simply of strings of octets. The lower layers are concerned with
ensuring that the string of octets received by a receiving entity is identical
to the string of octets transmitted. The Presentation layer, on the other
hand, is concerned with preserving the information content of the data
contained in the PDVs exchanged by application programs. The aim of
the OSI architecture is to allow information systems to be interconnected
with a minimum of agreement outside the ISO standards for the OSI
model themselves.

One of the functions of the Presentation layer is to allow users of the
Presentation layer service to unambiguously exchange PDVs with each
other without requiring one open system to have knowledge of the form
of data representation used by the other open system. A program run­
ning in open system A should be able to transmit numeric information
over the network to a program running in open system B without having
to know how open system B represents numeric values. To this end, the
definition of a presentation-data-value is concerned only with the infor­
mation content of the PDV and not with the way the information it con-

264

FIGURE 12.2

PART II: DNA FUNCTIONAL LAYERS

tains is represented in a computer or the way in which it is encoded for
transmission over the network.

As with the other OSI model layers, ISO standards for the Presenta­
tion layer include both a service definition and a protocol specification.
The relationship between the services the Presentation layer provides and
the protocol governing its operation is shown in Figure 12.2. The Presen­
tation layer protocol uses the services of the Session layer to provide a
defined set of services to a user of the Presentation service.

Data Syntax

The Presentation layer is concerned with three data syntax types that can
be used to describe and represent data (see Figure 12.3):

• Abstract Syntax. An abstract syntax formally defines the information
content of all the PDVs sent during the operation of a particular Appli­
cation layer protocol. An abstract syntax is concerned with information
content only and not with how that information content is represented
in a computer or how it is encoded for transmission. For example, an ab­
stract syntax might define a data type called CheckingBalance, values of
which consist of integers. It does not specify whether a value of the
CheckingBalance data type is represented by decimal digits, binary num­
bers, or any other form.

• Local Concrete Syntax. A local concrete syntax defines how a particular
PDV is represented in a computing system. The local concrete syntax used

The relationship between the Presentation layer service definition and the Presentation layer
protocol specification.

Presentation
Layer Service

P sentation Layer

The Presentation layer protocol
uses the Session layer service to
provide the Presentation layer
service to a Presentation service
user.

Session Layer Service ---~+

Presentation
Layer Service

Presentation La er

Session Layer Service

FIGURE 12.3

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE 265

Converting from system A's local concrete syntax to transfer syntax and from transfer syntax to
system B's local concrete syntax.

Open System A Open System B

Application-Entity

Information Content Defined
by Abstract Syntax

Represented Using
System A's Local
Concrete Syntax

Represented Using
System B's Local
Concrete Syntax

Application-Entity

Presentation-Entity

~ Presentation
Connection

Presentation-Entity

PSDU - presentation-service-data-unit
PPDU - presentation-protocol-data-unit
POV - presentation-data-value

Encoded for Transmission Using
a Common Transfer Syntax

in the sending open system might be different from the local concrete syn­
tax used in the receiving open system. For example, one system might rep­
resent a value of the CheckingBalance type as a 32-bit binary number
using 2's complement notation; another system might represent a Check­
ingBalance value as a string of decimal digits, where each decimal digit is
represented by a 4-bit binary number (packed-decimal notation).

• Transfer Syntax. A transfer syntax defines how a particular PDV is en­
coded for transmission over the network. For example, a value of the
CheckingBalance type might be transferred over the network using some
encoding scheme that identifies a particular value as being of the Check­
ingBalance type, specifies that it consists of an integer, and encodes that
integer's value using a minimum number of bits. The two Presentation
layer entities must agree on a particular transfer syntax to be used to
transfer the PDVs defined by each abstract syntax employed by the two
users of the Presentation layer service.

Abstract Syntax A set of definitions of the information content of all
the PDVs that can be exchanged during the operation of an Application
layer protocol is called an abstract syntax. Each abstract syntax is as­
signed a name known to the two users of the Presentation layer service.
For two Presentation layer users to communicate successfully, they must

266 PART II: DNA FUNCTIONAL LAYERS

agree on the names of one or more abstract syntaxes they intend to use.
As the communication proceeds, the two Presentation layer service users
can modify their agreement by adding the names of new abstract syntax
definitions to the set of abstract syntaxes they intend to use, or they can
delete the names of abstract syntax definitions from this set. In other
words, they can change the set of PDVs they intend to exchange as com­
munication proceeds.

Consider our hypothetical distributed personnel system. An abstract
syntax would consist of formal definitions of the information content of
the records exchanged between a pair of programs supporting the dis­
tributed personnel system.

Abstract Syntax Notation An abstract syntax is defined with an ab­
stract syntax notation. An abstract syntax notation provides a means for
defining data types without specifying how values of those data types
will actually be represented internally in a computer or how they will be
encoded for transmission through the network.

Standards for the various layers of the OSI model do not require the
use of any particular abstract syntax notation for describing data struc­
tures. In fact, ISO standards are specifically designed for great generality
and allow an abstract syntax to be specified in any desired manner. How­
ever, there is an ISO standard that defines an abstract syntax notation
commonly used in the OSI environment for defining abstract syntaxes:
ISO 8824, Abstract Syntax Notation One (ASN.1).

Abstract Syntax Notation One (ASN.1)

ASN.1 is supported by the OSUL architecture for defining abstract syn­
taxes. ASN.1 can be used for two related purposes: to define data types
and to express values of those data types.

ASN.1 Data Type Assignments One use of ASN.1 is as a standard nota­
tion for describing the information content of the PDVs that two users of
the Presentation layer service exchange with each other. ASN.1 defines a
number of primitive data types that can be used to construct more com­
plex data structures. Examples of primitive types defined by ASN.1 follow:

INTEGER

BOOLEAN

BIT STRING

OCTET STRING

SEQUENCE

SET

an integer of arbitrary length

a data type containing a TRUE or FALSE value

a list of 0 or more binary digits

a list of 0 or more 8-bit octets

an ordered list of other data types

an unordered list of other data types

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE 267

ASN.1 also includes a number of additional predefined types. For
example, ASN.1 includes definitions of a number of data types that can
contain characters from particular character sets. For example, the Print­
ableString type can contain characters that include the upper- and lower­
case letters, the 10 digits, space, and the 11 special characters()'+-.,/:=?.

An example of a data type used to represent a simple employee
record expressed in ASN.1 data type notation follows:

Employee ::=SEQUENCE

name PrintableString,

empNumber INTEGER,

salary INTEGER,

hireYear INTEGER

The above ASN. l code defines the Employee data type as an or­
dered list made up of a PrintableString data type called name followed
by three integer data types called empNumber, salary, and hire Year.
ASN.1 also allows default values to be assigned to values in a SET or SE­
QUENCE data type. A data value equal to the default value does not
have to be transmitted.

Tags Each data type defined as part of ASN.l (INTEGER, Printa­
bleString, etc.) has an identifying tag associated with it consisting of a
number. Tags can also be explicitly assigned to defined types to differen­
tiate them from one another. We will see how the tags are used to distin­
guish one data type from another when we examine how a value of an
ASN.1 data type is encoded. ASN.1 defines four different classes of tags:

• UNIVERSAL. UNIVERSAL tags are those assigned to the simple data
types defined in the ASN.1 specification.

• APPLICATION. APPLICATION tags are meant to be assigned to data
types defined in international standards and have universal meaning
within a particular ASN.1 module.

• PRIVATE. PRIVATE tags are assigned to data types defined by an individ­
ual enterprise and have universal meaning within that enterprise. Digital
does not recommend the use of PRIVATE tags, since they must have univer­
sal meaning among all the abstract syntaxes defined by a given enterprise.

• Context Specific. Context Specific tags are used to provide identification
for the data types within some other data type. Digital recommends the
use of Context Specific tags wherever possible to distinguish one data
type from another within a data structure.

268 PART II: DNA FUNCTIONAL LAYERS

The ASN.1 specification defines the tags associated with the UNI­
VERSAL data types. For example, all SEQUENCE data types have a tag
of 16, PrintableString data types have a tag of 19, and INTEGER data
types have a tag of 2. In the Employee data type defined above, tags are
assigned as follows:

Employee tag 16

name tag 19

empNumber tag 2

salary tag 2

hire Year tag2

When a value of a particular type is encoded for transmission, the
value's class and tag value are encoded along with it. In this manner, a
Presentation layer entity receiving an encoded value can determine its
type by examining its tag.

Tags can also be explicitly assigned to the data types in an ASN.1
data type definition to distinguish one data type from another. For exam­
ple, suppose we change our Employee example to the following:

Employee : : = SET
{

name PrintableString,
empNumber INTEGER,
salary INTEGER,
hireYear INTEGER

By defining Employee as a SET data type, it would be possible for
the four data types that make up the set to be arranged in any sequence.
With the above definition it would be possible to distinguish a name
value from values of any of the three integer types because the name data
type is the only one in the set having a PrintableString tag. But it would
not be possible to distinguish an empNumber value, say, from a salary
value. We can solve this problem by assigning a different Context
Specific tag to each of the three integer data types, as in the following
example:

Employee : : = SET
{

name PrintableString,

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE

empNumber [OJ INTEGER,
salary [lJ INTEGER,
hireYear [2J INTEGER

269

When values of any of the three integer types are now encoded, the
value's Context Specific tag accompanies it, thus distinguishing each of
the three integer types from the others. An empNumber value would
have the Context Specific tag 0 included with it, a salary value would
have the tag 1 included with it, and a hire Year value would have the tag
2 included with it.

With the above ASN.1 definition, empNumber, salary, and hire Year
values would also include a UNIVERSAL tag of 2 to indicate that they
are integer data types. When Context Specific tags are defined for a data
type, it is often not necessary for the UNIVERSAL tag to be carried with
encodings of those data types. This is because when the receiver sees a
value of a data type including a Context Specific tag, the Context specific
tag is all the receiver requires to determine the value's type. For example,
if the Context Specific tag identifies a value as a salary value, the receiver
implicitly knows from the ASN.1 abstract syntax definition that the
salary value is an integer, and so the UNIVERSAL tag of 2 is redundant.
The ASN.1 definition can specify that the UNIVERSAL tag be omitted
from the encoding by including the IMPLICIT keyword. In the following
example, the IMPLICIT keyword indicates that values of the empNum­
ber, salary, and hire Year types are implicitly of the integer type, as in the
following example:

Employee SET

name PrintableString,
empNurnber [OJ IMPLICIT INTEGER,
salary [lJ IMPLICIT INTEGER,
hire Year [2J IMPLICIT INTEGER

With the above abstract syntax definition, only the Context Specific
tags and not the UNIVERSAL tags are included in encodings of emp­
Number, salary, and hire Year values.

ASN.1 Data Value Assignments Another way in which ASN.1 can be
used is to express, in a human-readable manner, the value of a particular
instance of a data type. A particular value of the Employee data type
might be specified in ASN.1 value notation as:

270 PART II: DNA FUNCTIONAL LAYERS

jamesMartin employee

}

"James Martin",
123456,

72000,

1972

We next discuss ways in which PDVs defined by an abstract syntax
are represented in a real open system and how they are encoded for
transmission.

Local Concrete Syntax

As we have stated previously, definitions of the PDVs that users of the
Presentation layer service exchange constitute an abstract syntax specify­
ing information content only. The way in which the information content
of a PDV value is actually stored in a computer is called a local concrete
syntax. The sending open system may use a local concrete syntax differ­
ent from the local concrete syntax used by the receiving open system to
represent a particular PDV value.

The following are just a few ways in which local concrete syntaxes
can be different:

• The sending system might represent a PrintableString data type using the
EBCDIC character code; the receiving system might use ASCII.

• The sending system might represent an INTEGER data type using a
packed-decimal format in which each decimal digit is contained in a
semi-octet with the final semi-octet representing the integer's sign; the re­
ceiving system might represent an INTEGER data type as a binary value
stored in a 32-bit word.

• The sending system might represent an INTEGER data type using 1 's
complement notation; the receiving system might represent an INTE­
GER data type using 2's complement notation.

• The sending system might represent a floating-point value using one for­
mat; the receiving system might use another.

In addition to the above differences, which ordinarily can be han­
dled using straightforward conversions, two users of the Presentation
layer service might exchange PDVs that contain complex data structures
consisting of values of many different data types, some of which may be

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE 271

optional in the data structure. The question then becomes one of how
the Presentation layer entity in the receiving system parses the data struc­
tures contained in a PDV to determine the meaning of each data value
contained in it.

Transfer Syntax

The information content of a PDV must be sent over the network in a
way that preserves that information content. To do this, some method
must be used for encoding the information content defined by a PDV
into a string of octets that can be sent over the network. The receiving
open system must then be able to decode the octet string it receives to
completely recreate the information content of the original PDV. The set
of rules used to encode and decode the information content of a PDV for
transmission results in a transfer syntax. Each transfer syntax is given a
name known to the two Presentation layer entities and to the two users
of the Presentation layer service.

To set up a Presentation connection, two users of the Presentation
layer service must agree on the set of abstract syntaxes they intend to use
during communication, and they must inform their associated Presenta­
tion layer entities of the names of those abstract syntaxes. The job of the
Presentation layer in establishing a Presentation connection is to negoti­
ate a common transfer syntax for each abstract syntax the two commu­
nicating users of the Presentation layer service intend to use. The stan­
dards for .the Presentation layer do not specify any particular transfer
syntax that must be used. In fact, a Presentation layer entity might be
able to use any number of transfer syntaxes to transfer PDVs defined by
a given abstract syntax. The two peer Presentation layer entities must
agree on the one common transfer syntax they intend to use to transfer
PDVs defined using each abstract syntax.

ISO 8825, Specification of Basic Encoding Rules for ASN.1, defines
a set of rules for encoding and decoding values of data types defined
using ASN.1 notation. If a particular abstract syntax definition is ex­
pressed in ASN.1 notation, then application of the basic encoding rules
(BER) produces a transfer syntax for a PDV defined by that abstract syn­
tax definition. In practice in the OSI environment, the basic encoding
rules are typically used to produce transfer syntaxes.

The basic encoding rules use a type/length/value (TLV) form of en­
coding. An empNumber value of 123456 from our hypothetical person­
nel record would be encoded using 5 octets, as shown in Figure 12.4. The

272

FIGURE 12.4

PART II: DNA FUNCTIONAL LAYERS

Basic encoding rules transfer syntax encoding of an empNumbervalue of 123456 in binary and
hexadecimal.

Length Value

0 3 0 1 E 2 4 0

~---TagO

10:0:0:0:0:0:0: 111: 1: 1:0:0:0: 1:010: 1 :0:0:0:0:0:01
3 Value Octets

Final Octet of Length

~--- Primitive Data Type

Class 3 (Context Specific)

first octet defines the value's type. The first two bits contain the binary
value 11 (decimal 3), which indicates that the value is of a Context
Specific data type; the 0 in the next bit indicates that the value is a primi­
tive data type and is not made up of other data types; and the final five
bits contain a tag value of binary 00000 (decimal 0) indicating the data
type's tag is 0, indicating an empNumber value. The second octet contains
the number of octets used to contain the value, in this case, 00000010
(decimal 3). The first bit position is used to indicate the final octet of the
length field, thus allowing for an unlimited length value. A 0 in the first
position of the length field indicates that no more length octets follow. A
value is encoded using the minimum number of octets required to encode
that value, in this case, 3. The third, fourth, and fifth octets contain the
decimal value 123456 in binary using 2's complement notation.

Presentation Contexts

The association of the name of an abstract syntax with the name of a
particular transfer syntax is called a presentation context. Each presenta­
tion context is given a name known to the two users of the Presentation
layer service. The set of the names of all the presentation contexts, and
thus all the abstract syntaxes, that can be used over a Presentation con­
nection is called the defined context set (DCS). Presentation layer ser­
vices are defined for modifying the defined context set by adding presen­
tation context names to it and deleting them from it. There is also a
default context, which names a presentation context to use when the
defined context set is empty.

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE 273

Transformation to and from Transfer Syntax

The OSI model specifies that a function of the Presentation layer is to
transform each PDV being sent from the local concrete syntax to the trans­
fer syntax and to transform each PDV received from the transfer syntax to
the local concrete syntax. However, these conversions are purely internal
functions of the Presentation layer entity and have no effect on the opera­
tion of the Presentation layer protocol. The Presentation layer conversion
function can, therefore, be implemented in any desired way.

In some cases, no conversion is even necessary. For example, if two
users of the Presentation layer service are running in similar computing
systems using the same local concrete syntax, the transfer syntax might
specify that the data units be exchanged as is, without any conversion to
a different transfer syntax. In such a case, the Presentation layer would
perform a null function in converting from local concrete syntax to
transfer syntax in the sending system and from transfer syntax to local
concrete syntax in the receiving system.

Where conversion is required to and from the transfer syntax, the
place in the layering structure where the conversion is performed can
vary. When a Presentation connection is established, transfer syntaxes
are negotiated and the two users of the Presentation layer service are
given information about the defined context set. The defined context set
provides each user with information about the transfer syntax to be used
for each abstract syntax identified in the defined context set. Therefore,
in a particular implementation of the OSI upper layers, the user of the
Presentation layer service (in the Application layer) can be given the re­
sponsibility for encoding each PDV sent and for decoding each PDV re­
ceived. Since the encoding and decoding of PDVs is an internal function
that has no effect on the Presentation layer protocol, it does not really
matter where the conversion is performed. This, in fact, is how the DNA
Phase V OSUL architecture implements the conversion function to and
from transfer syntax. The user of the Presentation layer service is respon­
sible for encoding and decoding PDVs sent and received. The Presenta­
tion layer is responsible for encoding and decoding only its own proto­
col-control-information (PCI) and not user data.

NETWORK ARCHITECT

Standards for the OSI model define only abstract services and a protocol

specification for each layer. It is important to realize that the OSI model is not

necessarily an implementation model. Since the actual conversion process itself

274 PART II: DNA FUNCTIONAL LAYERS

doesn't have any effect .<;m the Presentation protocol, it doesn't really matter,

from the viewpoint of conformance to the standards and whether two imple­

mentations will interoperate, where the conversion is performed. There are two

primary reasons for making the conversion the responsibility of the application

itself rather than the Presentation layer-efficiency and simplicity. It turns out

that there is a real performance advantage to having the encoding and the

decoding done by the application program rather than by the Presentation layer.

This way, the encoding and decoding can be done directly between the applica­

tion memory and the message buffers, which is the way we have chosen to do it.

By making the conversion the responsibility of the application, the conversion
routines can also be more efficient than a general-purpose set of conversion rou­

tines. For example, some values can be preencoded at compile time, saving the

encode/decode overhead. Requiring the application to handle the conversion is

also a much more simple approach to the conversion. The OSUL interface

treats the user data as a stream of octets held in a sequence of buffers. With this

approach, there is no need for a complicated and general interface to return user

data in local concrete syntax.

Making the user of the Presentation layer service responsible for the
encoding and decoding of PDVs seems at first glance to appear as if
something has been left out of the Presentation layer. However, this is
just one of those cases where the DNA Phase V architects have achieved
performance advantages by interpreting and implementing the standards
in a way that might not be immediately obvious.

Presentation Layer Service Definition

The service definition for the Presentation layer is documented in ISO
8822, Presentation Service Definition. Like the Session layer, the Presen­
tation layer service definition divides services into functional units. The
functional units themselves are grouped into two collections: Session
functional units and Presentation functional units. Box 12.2 lists the ser­
vices provided by the Presentation functional units in DNA Phase V.

Session Functional Units The Session functional units define the ser­
vices that the Presentation layer maps to services actually provided by the
underlying Session layer (we described these earlier in this chapter). Each
functional unit defined for the Session layer has a corresponding func­
tional unit in the Presentation layer. The Session services that the Presen­
tation layer can make available to a Presentation layer service user depend
on which functional units are supported by the underlying Session layer.

BOX 12.2

Presentation Layer
Service

CHAPTER 12: OSI UPPER-LAYER ARCHITICTURE

Kernel Functional Unit

• Connection Establishment. Establishes a Presentation connection.

• Normal Data Transfer. Transfers data over a Presentation connection.

• Connection Release. Requests the orderly release of a Presentation
connection.

• User Connection Abort. Issued by a Presentation service user to
request the immediate release of a Presentation connection.

• Provider Connection Abort. Issued by a Presentation layer entity to
request the immediate release of a Presentation connection.

Context Management Functional Unit

• Alter Context. Adds or deletes the name of a presentation context in
the defined context set.

275

Presentation Functional Units The service definition for the Presenta­
tion layer defines three Presentation functional units:

• Kernel. If the use of the kernel functional unit is chosen during Presenta­
tion connection establishment, only the default presentation context and
those presentation contexts in the defined context set negotiated when the
Presentation connection was established can be used during the life of the
Presentation connection. This means the Presentation layer must have
knowledge, at the time the connection is established, of all the PDVs that
will be exchanged during the life of the Presentation connection. The con­
tents of the defined context set cannot be modified during the life of the
Presentation connection if only the kernel functional unit is chosen.

• Context Management. If the context management functional unit is cho­
sen, the two entities are able to modify the defined context set during the
life of the Presentation connection. Support for this functional unit
means that users of the Presentation layer service can inform the Presen­
tation layer of additional abstract syntaxes used to define the PDVs ex­
changed over the Presentation connection while the connection is in op­
eration. When an abstract syntax is added, the two Presentation entities
negotiate a common transfer syntax for that abstract syntax to add a
new presentation context to the defined context set.

~ Context Restoration. If the context restoration functional unit is chosen,
the state of the defined context set can be restored after a resynchroniza-

276

The Application
Layer

PART II: DNA FUNCTIONAL LAYERS

tion occurs in the Session layer. The DNA Phase V OSUL architecture
does not support the context restoration functional unit.

We feel that there are serious defects in the definition of context restoration in

the existing ISO standards for the Presentation layer, making them unimple­

mentable. In any case, context restoration is not needed by applications and

imposes unnecessary overhead. With activities that are interrupted but not ter­

minated, it is necessary to remember the defined context set for an arbitrary

long time in case the activity is ever resumed.

Presentation Layer Protocol Specification

The protocol specification for the Presentation layer is documented in
ISO 8823, Presentation Protocol Specification. Some of the mechanisms
in the Presentation layer protocol are concerned with negotiating trans­
fer syntaxes during connection establishment and for maintaining the
defined context set. Other mechanisms consist of a straightforward map­
ping to the services provided by the Session layer. These services map di­
rectly to an analogous service provided by the Session layer, with the ex­
ception of resynchronize. The Presentation protocol allows the defined
context set to be modified when resynchronizing and hence defines
specific presentation-protocol-data-units (PPDUs) for this service. Each
service primitive requesting a Presentation layer service results in the
generation of a specific PPDU that is passed down to the Session layer in
the form of a session-service-data-unit (SSDU).

The structure of the Application layer is quite complex, and a number of
terms must be introduced to explain its organization. Thus far, we have
been describing communication in the OSI environment as that taking
place between application programs running in end systems. The ISO
7498 definition of the OSI model is more abstract than this and describes
communication between open systems in terms of interactions taking
place between application-processes operating in open systems.

Application-Processes

An application-process represents a set of resources, including process­
ing resources, within an open system that can be used to perform infor-

FIGURE 12.5

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE 277

mation processing activities. An invocation of an application-process is a
particular use of the resources defined by an application-process to per­
form a particular information processing activity. An application-process
is identified by an application-process-title. An application-process-title
must be unambiguous throughout the OSI environment, giving each ap­
plication-process a globally unique name.

It is helpful to think of an application-process as an application pro­
gram and an application-process-invocation as one execution of that ap­
plication program. The purpose of the OSI model is to allow an applica­
tion-process-invocation in one open system to exchange information
with an application-process-invocation running in another open system
(see Figure 12.5).

During the time since the OSI model was first defined in ISO 7498,
additional work has been done on the Application layer, and this work is
documented in another international standard, ISO 9545, Application
Layer Structure. This international standard defines the following:

• the nature of the standards for the Application layer and the relationship
among those standards

• the architectural framework in which individual standard protocols for
the Application layer are developed

• categories of identifiable Application layer elements necessary for the
specification and operation of Application layer protocols

• how distributed information processing activities are related to Applica­
tion layer standards

Distributed applications are constructed of multiple application­
processes all cooperating to perform information processing activities.
Cooperation between pairs of application-processes takes place via rela-

Communication between application processes running in open systems.

Application OSI Communications Application
Process A Process B

11111111111111111111 11111
1111111111111111111 11111 i:::=::::J 1111111111111111111 11111

i:::=::::J i:::=::::J

Open System A Open System B

278

FIGURE 12.6

PART II: DNA FUNCTIONAL LAYERS

tionships established among invocations of those application-processes.
Each invocation of an application-process is responsible for coordinating
its interactions with other application-process-invocations.

Application-Entities

Application-processes normally represent resources associated with OSI
communication and also resources not associated with communication.
Therefore, part of an application-process can be viewed as residing in the
OSI Application layer, and part of it is outside the scope of the OSI ar­
chitecture, as shown in Figure 12.6. The OSI model defines the term ap­
plication-entity (AE) to represent the part of an application-process that
provides resources for OSI communication. Each application-entity de­
scribes a set of Application layer capabilities used for a specific purpose.
Those parts of the application-process not associated with OSI commu­
nication may call on one or more application-entities in the application­
process for the purposes of communication. Like application-processes,
application-entities have names, called application-entity-titles, that
must be unambiguous in the OSI environment. An application-entity­
title is made up of its associated application-process-title plus an applica­
tion-entity-qualifier.

Relationship between application processes and the IJSI model.

Application Application
Process A Process B

Application Layer Application Layer

Presentation Presentation

Session Session

Transport Transport

Network Network
1111111111111111111 11111111
lllllllllllllllllllfb Data Link Data Link 11111111 c::::::::J 1111111111111111111 11111111

I- Physical Physical

~ 1 c::::::::J
J

Open System A Open System B

OSI Network

FIGURE 12.7

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE 279

An application-process can include one or more application-entities,
each representing a different set of resources used for OSI communication.
An application-entity provides a particular component of a distributed ap­
plication with access to the OSI communication facilities it needs to com­
municate with another component of the distributed application.

This notion of different types of application-entities is a distinguish­
ing feature between the Application layer and the other layers of the OSI
model. In the lower layers, each layer can be viewed as implementing a
single entity type. For example, the functions performed by the Presenta­
tion layer can be viewed as being performed by a single presentation-en­
tity type (see Figure 12. 7). Similarly, a single entity type is defined for all
the other OSI model layers.

Application-Service-Elements An application-entity can be further
broken down into a collection of application-service-elements (ASEs),
each of which provides a set of OSI communication functions for a par­
ticular purpose (see Figure 12.8). There are a number of international
standard ASEs, each of which is defined by a service definition and a pro­
tocol specification. An ASE's service definition describes the abstract ser­
vices the ASE provides to its users; an ASE's protocol specification de­
scribes the formats of the application-protocol-data-units (APDUs) used
by the ASE and specifies the rules by which these APDUs are exchanged.

An ASE defines a particular set of functions associated with OSI
communication capabilities. Those parts of an application-process not
directly associated with OSI communication use the services of an appli­
cation-entity, which consists of one or more ASEs, to request OSI com­
munication functions. In performing its functions, an ASE can also call
on the services of other ASEs in the application-entity. An ASE can also
use the services provided by the Presentation layer in carrying out com­
munications functions.

The Application layer and multiple application-entities.

Application
Layer

Presentation
Layer

280

FIGURE 12.8

Association
Control Service
Element

PART II: ONA FUNCTIONAL LAYERS

An application-entity can comprise multiple application-service-elements.

Application
Layer

The OSI model itself does not specify the types of ASEs that will be
defined for the Application layer. This has deliberately been left open­
ended so the services provided by the Application layer can be extended
indefinitely as new uses for OSI networking are developed. There is one
ASE, however, that each application-entity must contain: the association
control service element (ACSE). Support for ACSE is included in the
DNA Phase V OSUL architecture.

In addition to general-purpose ASEs, likely to be used in many ap­
plication-entities, many specific application-oriented ASEs will be
defined. These are ASEs that support specific types of networking appli­
cations. An example of a standard for an application-oriented ASE is
ISO 8571, File Transfer, Access, and Management (FTAM). FTAM is de­
scribed in Chapter 14.

Since there is no layer above the Application layer in the OSI model,
there can be no notion of connections between application-entities as
there are between entities in the lower layers. However, for meaningful
communication to take place, there must be a relationship formed be­
tween two application-entities. For an application-entity-invocation in
one open system to exchange information with an application-entity­
invocation in another open system, there must be one or more applica­
tion-associations between them. An application-association is a logical
binding between two application-entity-invocations, one of which is
called the initiator and the other the responder.

FIGURE 12.9

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE 281

In effect, the ACSE provides the service of binding an application
program executing in one open system with an application program exe­
cuting in another open system for the purpose of exchanging informa­
tion between them. ACSEs are responsible for establishing and releasing
application-associations. (See Figure 12.9.)

Since no meaningful communication can take place in the OSI envi­
ronment unless an association is formed between a pair of application­
entity-invocations, support for ACSE must be included in each applica­
tion-entity defined. Support for only an ACSE is sufficient to allow for
communication to take place. The two communicating application-en­
tity-invocations each use the services of an ACSE to establish an applica­
tion-association and then call on the services of the Presentation layer to
transmit APDUs between them. This is shown in Figure 12.10. As we
will see later in this chapter, the OSUL architecture provides services that
application programs can use to communicate in this manner.

Application-Contexts

An application-context defines a common set of rules shared by a pair of
communicating application-entity-invocations, each including a set of
ASEs (possibly only an ACSE) and an association between them. An ap­
plication-context defines a particular set of communication capabilities

An application-association between two application processes.

Presentation

Session

Transport

Network
::::::::::::::::::: ---D-at_a_L_1·n-k--1
1111111111111111111

Physical

Open System A

Application­
Association

OSI Network

Presentation

Session

Transport

Network
1--------i:llllllll

Data Link :mm: c::::::J
Physical

Open System B

282

FIGURE 12.10

PART II: DNA FUNCTIONAL LAYERS

The ACSE is the only ASE necessary for OSI communications.

Presentation

Session

Transport

Network
::::::::::::::::::: ...-1---D-a-ta_L_1·n-k--t
1111111111111111111

Physical

Open System A

Application­
Association

OSI Network

Presentation

Session

Transport

Network
1---------1:•1111111

Data Link :::::::: c::::::J
Physical

Open System B

for two communicating application-entity-invocations. Each applica­
tion-association has only one application-context.

Association-Control-Functions

The Application layer structure standard defines association-control­
functions, which coordinate associations and ASEs. There are two types
of association-control-functions: single-association-control-functions
(SACFs) and multiple-association-control-functions (MACFs). An SACF
is associated with a single association and thus a single application con­
text; an MACF is associated with an entire application-entity-invoca­
tion. Figure 12.11 shows an example of three application-entity invoca­
tions and four application-associations. The MACF maps each service
the application-entity-invocation provides to one of the associations and
coordinates the interactions taking place on these associations.

ACSE Service Definition

The ACSE defines four straightforward services other ASEs in the appli­
cation-entity and in the application-process itself can invoke for estab­
lishing and releasing application associations. The services defined in the
ACSE service definition are listed in Box 12.3.

FIGURE 12.11

Application-Process A

CHAPTER 12: OSI UPPER-LAYER ARCHITICTURE

Three application-entities and four application-associations showing the single-application­
control-funclions (SACFs) and multiple-application-control-functions (MACFs).

Application-Process C

ASE-2 ASE-3

SACF ASE-3 SACF ASE-4

ACSE ACSE
El!li'QIE!i

ACSE Protocol Specification

Application-Process B

ASE-3 ASE-2

SACF ASE-4

ACSE

283

The protocol specification for the ACSE describes the operation of the
ASCE in providing the services just described and also specifies the for­
mats of the application-protocol-data-units (APDUs) exchanged in es-

284

BOX 12.3

ACSE Services

PART II: DNA FUNCTIONAL LAYERS

• Association Establishment. This service causes a new application­
association to be established between an initiator application-entity­
invocation and a responder application-entity-invocation. A great
many parameters are associated with this service, but most are
mapped to the Presentation layer and Session layer entities beneath
ACSE. Each association established causes a connection to be estab­
lished by the Presentation layer; there is always a one-to-one rela­
tionship between an application-association and a Presentation layer
connection. Parameters passed when this service is invoked also con­
tain information about the required underlying Session layer ser­
vices. This is a confirmed service, and the responder application­
entity-invocation can reply either negatively or positively to the
request to establish an application-association.

• Association Release. This service can be issued by either of the appli­
cation-entity-invocations to request the release of an existing appli­
cation-association. This is a confirmed service, and the responder
application-entity-invocation can reply either negatively or positively
to the request to release an application-association. This service pro­
vides for graceful association release without the loss of information
in transit, whether the responder replies positively or negatively.

• User Association Abort. This service can be issued by either of the
application-entity-invocations to cause the abnormal release of an
existing association. It is a nonconfirmed service and always causes
the association to be released without requiring a response from the
partner application-entity-invocation. Invoking this service may
result in information in transit to be lost.

• Provider Association Abort. This service is issued by ACSE itself to
signal that the association has been released, possibly due to a failure
in the network. Invoking this service may cause information in tran­
sit to be lost.

tablishing and releasing associations. In general, a set of APDUs is
defined for each of the four ACSE services described previously. Each of
the service primitives included in the service definition has its own
unique APDU defined for it, and the invocation of each service primitive
causes a single APDU to flow to the partner application-entity. Box 12.4
lists the APDUs used in providing the ACSE services listed in Box 12.3.

There is a tight binding between the ACSE and the connection man­
agement services provided by the Presentation and Session layers. There

BOX 12.4

ACSE APDUs

OSUL Interfaces

CHAPTER 12: OSI UPPER·LAYER ARCHITICTURE

• A-Associate-Request. The A-Associate-Request (AARQ) APDU is
sent to request the establishment of an application-association .

• A-Associate-Response. The A-Associate-Response (AARE) APDU is
used as a response to an AARQ APDU in performing the applica­
tion-association establishment service .

• A-Release-Request. The A-Release-Request (RLRQ) APDU is sent to
request the release of an application-association .

• A-Associate-Response. The A-Release-Response (RLRE) APDU is
used as a response to an RLRQ APDU in performing the applica­
tion-association release service.

• A-Abort. The A-Abort (ABRT) APDU is sent to request the abort of
an application-association.

285

is a one-to-one mapping between an application-association and a Pre­
sentation connection and a one-to-one mapping between a Presentation
connection and a Session connection. Establishing an application-associ­
ation causes a Presentation connection to be established, which causes a
Session connection to be established. Releasing an application-associa­
tion causes the Presentation connection to be released, which causes the
Session connection to be released.

The DNA Phase V OSUL architecture defines two abstract interfaces:
an interface between OSUL and a user of OSUL services and an inter­
face between OSUL and the Transport layer service. The services the
Transport layer provides to OSUL are described in Chapter 10; this
chapter describes only the services OSUL provides to an application-en­
tity-invocation.

As with the other layers in the DNA Phase V architecture, access to
OSUL services are provided through a port. An OSUL port is a data
structure that represents an actual or potential application-association.
A port must be referenced in each request for an OSUL service. An appli­
cation-entity-invocation can open an OSUL port as either an initiator or
as a responder:

• Initiator. A port opened as an initiator allows an application-entity-invo­
cation to initiate the establishment of an application-association with an­
other application-process-invocation.

286

BOX 12.5

OSUL Service
Interface
Procedure
Declarations

PART II: ONA FUNCTIONAL LAYERS

• Responder. A port opened as a responder tells OSUL that the applica­
tion-entity-invocation is prepared to receive a request for the establish­
ment of an application-association.

Box 12.5 lists the procedure declarations documenting the services
an application-entity-invocation can request of OSUL. The services are
divided into four groups:

• services provided by ACSE for the establishment and release of applica­
tion-associations

• services provided by OSUL for the management of buffers used during
data transfer operations

services provided by the Presentation layer for presentation-context
management and data transfer

• services provided by the Presentation layer that map to services provided
by the Session layer

Note that the OSUL service interface procedures compare quite
closely to the ACSE, Presentation, and Session services defined in the ISO
standards

The following procedure declarations define the abstract interface
between OSUL and an application-entity-invocation in terms of the
services OSUL provides to an application-entity-invocation.

Port Management Functions

• Openlnitiator. Allocates an OSUL port enabling the OSUL user to
initiate the establishment of an association with another application­
entity-invocation.

• OpenResponder. Allocates an OSUL port enabling the OSUL user to
accept incoming requests for the establishment of an association
with another application-entity-invocation.

Buffer Management Functions

• GetEvent. Prepares a port to receive an incoming request for an
OSUL service.

• GiveBuffers. Passes temporary ownership of a buffer to OSUL.

• SendMore. Passes subsequent segments of user data to OSUL for an
outbound service request.

BOX 12.5

continued

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE

ACSE Functions

• Associate. Initiates the process of establishing an association with
another application-entity-invocation and optionally passes one or
more PDVs to the peer application-entity-invocation.

• AssociateAccept. Accepts an incoming request from another applica­
tion-entity-invocation for the establishment of an association.

• AssociateRefuse. Rejects an incoming request from another applica­
tion-entity-invocation for the establishment of an association .

• ExceptionReport. Generates an exception report concerning events
not serious enough to terminate an application-association.

• Release. Requests the orderly termination of an association.

• ReleaseReply. Replies to a request for the orderly termination of an
association.

• Abort. Requests the immediate termination of an association.

Presentation Service Functions (Provided by Presentation
Layer)

• Data. Sends PDVs to the peer application-entity-invocation using a
Transport connection over the normal flow.

• TypedData. Sends PDVs to the peer application-entity-invocation in
the form of Session service typed data.

• ExpeditedData. Sends PDVs to the peer application-entity-invoca­
tion using a Transport connection over the expedited flow.

• CapabilityData. Sends PDVs to the peer application-entity-invoca­
tion in the form of Session service capability data .

• CapabilityDataReply. Sends PDVs to the peer application-entity-in­
vocation in the form of Session service capability reply data.

• AlterContext. Sends to the peer application-entity-invocation lists of
additions and deletions to be made to the Presentation service­
defined context set and, optionally, a set of PDVs.

• AlterContextReply. Sends to the peer application-entity-invocation
lists of accepted and rejected additions and deletions to the defined
context set and, optionally, a set of PDVs.

Presentation Service Functions (Provided by Session Layer)

• ActivityStart. Requests the beginning of a Session service activity.

• ActivityStartReply. Replies to a request for the beginning of an activity.

• ActivityEnd. Requests the end of a Session service activity.

287

288

BOX 12.5

continued

PART II: ONA FUNCTIONAL LAYERS

• Activitylnterrupt. Requests interruption of a specified Session service
activity.

• ActivitylnterruptReply. Replies to a request for the interruption of
an activity.

• ActivityResume. Requests resumption of a specified activity .

• ActivityDiscard. Requests a specified activity to be discarded .

• ActivityDiscardReply. Replies to a request to discard an activity .

• TokenGive. Relinquishes control of the specified Session service to­
kens to the peer application-entity-invocation.

• TokenPlease. Requests the peer application-entity-invocation to re­
linquish control of the specified Session service tokens.

• GiveControl. Relinquishes control of all currently owned Session
service tokens.

• SynchMajor. Establishes a Session service major synchronization
point.

• SynchMajorReply. Replies to a request for the establishment of a
major synchronization point.

• SyncMinor. Establishes a Session service minor synchronization point.

• SynchMinorReply. Replies to a request for the establishment of a
minor synchronization point.

• Resynchronize. Resets an application association to conditions asso­
ciated with the specified synchronization point.

• ResynchronizeReply. Replies to a request for resynchronization.

OSUL Interface Style

The OSUL architecture does not restrict the number of simultaneous ap­
plication-associations that can be formed between application-entity­
invocations. OSUL achieves this by having no resources of its own that
are specific to a particular application-association. Instead, an applica­
tion-entity-invocation passes to OSUL the resources-such as the buffer
resources-required to establish an application-association.

This style of interface makes it possible for an application-entity­
invocation to implement its own flow control procedures. An applica­
tion-entity-invocation passes temporary ownership of buffers to OSUL
for the purposes of sending and receiving APDUs. An application-entity­
invocation can temporarily stop receiving APDUs by not providing
OSUL with a buffer.

Conclusion

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE 289

Unlimited User Data

OSUL supports the use of unlimited user data fields in Presentation ser­
vice primitives through the use of a segmented interface. All inbound and
outbound requests for data transfer services include a more flag. If a re­
quest for an outbound data transfer service includes a more flag that is
false, OSUL knows there are no more segments of user data to transmit.
When the operation completes, OSUL returns ownership of the buffer to
the application-entity-invocation. When the more flag is true in a request
for an outbound data transfer service, OSUL expects the application-en­
tity-invocation to pass subsequent segments of user data by issuing Send­
More functions.

Inbound user data segments are handled through the use of a
GetEvent function. GetEvent is used to receive each segment of inbound
user data. If the more flag is false, the inbound service request is com­
plete. If the more flag is true, the next user data segment is received by
the issuing of another GetEvent function. For efficiency reasons, user
buffers are passed directly to the Transport layer entity for both inbound
and outbound data.

This chapter concludes our discussion of the functional layers that make
up the DNA Phase V architecture. The two chapters in Part III introduce
the uses to which a DECnet Phase V network can be put: Chapter 13 in­
troduces applications that employ the DNA Session Control layer for
communication, and Chapter 14 introduces applications that use OSUL
for communication.

PART Ill

Network Applications

CHAPTER 13

DNA Applications

The chapters in Part III discuss the applications to which a large hetero­
geneous computer network can be put. Distributed computing applica­
tions will become increasingly important in the 1990s as we bring the
power of multiple computing systems to bear on a single problem.
Client-server operations will be employed everywhere, with software in
desktop computers interacting with software in larger server computers.
Particularly important forms of distributed computing applications will
involve the transmission of information to computers in other organiza­
tions-sometimes within the same enterprise, sometimes in a different
enterprise. Direct communication between computers in separate enter­
prises is one of the primary ways to improve business efficiency. The
term electronic data interchange (EDI) is used to describe such systems.
This chapter begins by describing examples of the innovative applica­
tions that can be built using a sophisticated networking infrastructure.

Goodyear has implemented a worldwide EDI system in which com­
puters in their supplier locations interact directly with the computers
they use for planning production. Quality checks on supplier materials
are performed at supplier sites before the materials are shipped, and the
results are transmitted to the computer that schedules the manufacturing
process. If the material is inadequate for the batches of work currently
planned, it is not shipped. When the material is usable but of variable
quality, the computer-to-computer interaction permits it to be appropri­
ately allocated to the production process. This computer-to-computer
interaction saves money, gives Goodyear early warning of problems, and
enables them to find alternate suppliers, usually without delaying the
production schedule. Navistar cut its inventories by nearly $200 million
by building computer-to-computer links to its suppliers and implement­
ing just-in-time inventory control. The General Motors EDI payment

293

294

FIGURE 13.1

PART Ill: NETWORK APPLICATIONS

system handles transactions totaling half a billion dollars in value every
month.

The chapters in Part III divide applications into two categories. We
define DNA applications-described in this chapter-as those applica­
tions that request communication services using rhe DNA Session Con­
trol layer. OSI applications-described in Chapter 14-are those that
request communication services using the three upper layers of the OSI
model protocol stack (the OSUL architecture).

Figure 13.1 shows the architectural layers of the DNA Phase Var­
chitecture and how DNA applications request networking services. DNA
applications are provided by Digital, offered by many third-party ven­
dors specializing in developing application software for the Digital envi­
ronment, and written by end users themselves. Digital provides a wide
range of networking applications, from general-purpose network-wide
applications, such as file transfer programs, to highly specific distributed
applications written to meet the needs of specific customers.

The relationship of a DNA application program to the DNA Phase V architecture.

DNA
Application Program

DNA Session Control
Service Interface

OSI Session\ Control Layer

~.
Transport Layer

Network Layer

Data Link Layer

Physical Layer

[.

Appli1ation Layer

I

Digital DNA
Applications

CHAPTER 13: DNA APPLICATIONS 295

Digital Field Service Application

A distributed computing application that is being developed by the Dig­
ital field service organization is an example of the kind of distributed
application that can be built when sophisticated networking mecha­
nisms are available to interconnect the computer networks of different
organizations.

In fixing a hardware problem at a customer's site, a field service rep­
resentative often must be dispatched twice: the first time to do the diag­
nosis and a second time to do the repair if the required part is not avail­
able on site. The goal of Digital's field service organization is to place a
computer on each customer's computer network that constantly moni­
tors that customer's equipment. The monitoring computer will gather
preventative maintenance data and transmit it to Digital's own computer
network, where the data will be forwarded to one of a number of analy­
sis centers around the world.

At these analysis centers, complex expert systems will analyze the
preventative maintenance data and attempt to predict when field-re­
placeable devices are about to fail. The expert systems at the analysis
centers will communicate with a distributed inventory system to locate
the required field-replaceable parts. The distributed inventory applica­
tion will then communicate with a logistics application that will pull
field-replaceable units from inventory and communicate with the net­
work of a shipping company to schedule the shipping of the items to the
customer's site. When the logistics application on the Digital network re­
ceives confirmation from the shipper's network that the item has arrived
at the customer's site, the logistics application will notify a field engineer­
ing scheduling application, which will handle the dispatching of a field
engineer.

This system will be driven entirely by computer-to-computer com­
munication. People are not involved until the very end of the process,
when an engineer is actually dispatched to the customer's site to install
the replacement part. The idea is that the entire distributed system is
driven by machines and directed by computation.

The remainder of this chapter describes four general-purpose network­
ing applications, provided by Digital, that use the DNA Session Control
layer for communication: virtual terminal mechanisms, electronic mail,
computer conferencing, and remote file access. These applications are
used by a great many of Digital's customers.

296 PART Ill: NETWORK APPLICATIONS

Virtual Terminal Mechanisms

The virtual terminal mechanisms in DNA Phase Vallow a terminal user
to communicate with an application running on any host processor at­
tached to the network. These mechanisms define a client/server func­
tional model for communicating between a client node running an appli­
cation program and a server node to which a terminal is directly
attached.

Virtual Terminal Facilities The DNA Phase V virtual terminal mecha­
nisms provide the following facilities:

• Distribution of terminal handling functions between the client node and
the server node.

• Support for heterogeneous client systems that may run different operat­
ing systems. The operating system running in the client node can manage
a terminal in its own way, regardless of which operating system runs in
the server node.

• Functions operating at the operating system level to provide terminal
input/output and management functions, including accepting input even
if the program has not issued a read request (typeahead), taking action
on certain characters immediately as keys are struck, recognizing ANSI
standard escape sequences on input and output, and reading and setting
terminal device characteristics.

Virtual Terminal Protocols Virtual terminal mechanisms are provided
through the use of two protocols:

• Command Terminal (CTERM) Protocol. The Command Terminal
(CTERM) protocol implements a model of a terminal that provides a
common mode of access to command language processors such as the
Digital Command Language (DCL). The CTERM protocol uses the ser­
vices of the Foundation protocol.

• Foundation (FOUND) Protocol. The Foundation (FOUND) protocol
provides a basic set of connection management facilities and a transpar­
ent data transport capability over which a number of terminal usage
models can run.

The goal of the CTERM and FOUND protocols is to allow a host­
based application to treat all terminals in exactly the same manner,
whether they are directly attached to the host or communicate with the
host over a DECnet network.

CHAPTER 13: DNA APPLICATIONS 297

Electronic Mail

Electronic mail systems are without a doubt among the most important
networking applications in use today. Certainly the very large Digital in­
ternal network is used quite heavily by people for exchanging electronic
messages. Almost everyone in the worldwide Digital organization now
has access to a terminal or workstation connected to the internal net­
work and can send and receive electronic messages. Almost all of Digi­
tal's customers that have extensive DECnet networks installed use them
at least partially for electronic messaging applications.

Digital markets a wide range of products that provide electronic
mail capabilities. Most of these products fall under the umbrella of the
MAILbus family of products. The MAILbus product family provides fa­
cilities for the creation, transmission, reception, and management of
electronic messages in a heterogeneous, distributed computing environ­
ment. In the MAILbus environment, a message can consist of a combina­
tion of text and data files of various types. The MAILbus product family
consists of a number of products that together provide message handling
services and directory services across a broad range of hardware and
software systems.

The VAX Message Router product is Digital's main software system
for providing a basic network-wide, store-and-forward message trans­
port service and a descriptive directory service. The message transport
service provides an application-independent mechanism for reliably re­
laying messages from an application on one computer system to an appli­
cation on another computing system without requiring a direct end-to­
end connection between the two. The message transport is accomplished
by storing messages at one or more points along the path between the
communicating applications. The Message Router supports both elec­
tronic mail and nonmail applications and provides an application pro­
gramming interface users can employ for developing user-written mes­
saging applications.

The descriptive directory service provided by the Message Router
provides access to directory entries that allow users to locate other users
of the system given possibly incomplete descriptive information. The in­
formation contained in such directory entries includes users' names, or­
ganizations, locations, and electronic mail addresses.

A variety of products can be used with the Message Router to allow
messages to be exchanged between users in the following environments:

• DECnet Phase IV networks

• DECnet Phase V networks

298 PART Ill: NETWORK APPLICATIONS

• Messaging systems conforming to CCITT Recommendation X.400

• IBM Professional Office Systems (PROFS) networks

• IBM Systems Network Architecture Distribution Services (SNADS) net­
works

The Message Router and its related products can be used with a
number of software systems to provide end users with access to elec­
tronic mail applications. For example, Digital's ALL-IN-1 office automa­
tion application provides end users with access to electronic messaging
facilities as well as other office automation functions.

Computer Conferencing

A DNA application called Notes allows users throughout a DNA net­
work to participate in round-table discussions using their terminals or
workstations. Any number of Notes computer conferences can be estab­
lished in a network. Conference participants use the Notes client soft­
ware installed on their own nodes. The Notes client software communi­
cates with Notes server software using a DNA Application layer
protocol allowing access to conferences located anywhere in the net­
work. Users employ Notes client software to read and write conference
entries, called topics and replies. Any user can create a new topic. Other
users can read the topics other users have created and can then post
replies to them. New users joining a conference can view the existing
notes and all the replies already posted to them. They can then reply to
existing notes. Users can also create new topics of their own, to which all
other conference members can post replies.

The Notes software allows users to conduct meetings with people in
different geographic locations in which not all the meeting participants
need to be online at the same time. Participants can join in a discussion
from their own terminals or workstations at times convenient to them.
Notes also offers the advantage of keeping a detailed record of the pro­
ceedings of a meeting, which can be searched by a variety of criteria,
such as the name of participant, a specific subject, or a keyword. Notes
can be used for a variety of purposes, such as to create an electronic bul­
letin board, to support the collaborative writing of a document, or to
conduct an internal seminar. Notes is particularly useful when a group of
people need to discuss issues and make decisions when it is not possible
for all the participants to meet face to face.

CHAPTER 13: DNA APPLICATIONS 299

Ease-of-Use Features Users can request listings of topics posted by
author, title, and date and the number of replies posted to each topic.
Users can read notes either sequentially or at random and can request
that only those notes and replies that the user has not already seen be
displayed. The Notes software provides a number of facilities that make
it easy for a user to access computer conferences:

Notebook. Notes maintains a notebook for each user containing the
user's own personal list of conferences of interest. Users can add or
delete conferences from their notebooks. The notebook allows users to
define personal names for conferences and allows remote conferences to
be accessed without requiring the user to know on what node the confer­
ence is running. When a user accesses a conference, the notebook can
optionally show whether new entries have been made since the last time
the user accessed the conference. The notebook also keeps track of what
notes and responses the user has already read and maintains a profile of
user preferences, including personal name, editor choice, and default
printer specifications.

• Markers. Users can create user-defined names, called markers, that point
to entries in a conference. Markers can be used as special reminders of
things to do or to flag notes of special interest.

· Keywords. Users can define keywords to group notes that are concerned
with a particular subject or that do not have other attributes (such as
title, author, or time of entry) in common. Keywords are useful for
grouping notes that may not have the keyword in the note text or title
but that do address the subject the keyword represents.

• Imported Text. The Notes software allows notes and replies to be cre­
ated outside of Notes using any desired editor and later imported to the
conference.

Moderators A moderator is a person responsible for creating and
managing one or more computer conferences. The Notes software sup­
ports both public and private conferences. For private conferences, the
moderator can restrict access to a specific group of participants by speci­
fying names and network locations. Public conferences have no restric­
tions on who may participate. The moderator can send announcements
of new conferences to participants and can also create special notices dis­
played for all participants each time the conference is accessed. The
moderator of a conference has special capabilities for controlling the dis­
cussion, including the following:

300 PART Ill: NETWORK APPLICATIONS

• deleting or hiding notes the moderator deems inappropriate to the dis­
cussion or which require further clarification

• changing the titles of topics or replies to topics to improve the organiza­
tion of a conference

• creating keywords that can be associated with notes in the conference

• designating additional conference moderators

Remote File Access

In most computer networks there is a requirement for providing pro­
grams with access to the files residing on other nodes in the network. For
example, it might be necessary to transfer files from one computer sys­
tem to another when the computer systems involved in the file transfer
operation may not conform to the same hardware architecture or run the
same operating system. It also may be necessary to allow an application
program to issue read and write requests for files residing on other nodes
in the same manner as if the file resided on the user's own local node.
Such file operations in a heterogeneous network environment are sup­
ported in the DNA Phase V environment by an architecture called the
Data Access Protocol (DAP). Implementation of DAP provides the fol­
lowing functions and features:

• supports heterogeneous file systems

• retrieves a file from an input device, such as a disk file or a terminal

• sends a file to an output device, such as a disk file, a magnetic tape file, or
a printer

• transfers files between systems in a heterogeneous environment

• supports the creation, deletion, and renaming of files stored on remote
computing systems

• lists the directories of the file systems on remote computing systems

• recovers from transient errors and reports fatal errors to the user

• allows multiple data streams to be sent to the same remote file

• allows users to submit and execute remote command files

• permits sequential, random, and indexed access to records stored in the
file systems of remote computer systems

• supports wildcard file specification for sequential file retrieval, file dele­
tion, file renaming, and command file execution

• permits the optional use of a file checksum facility to ensure file integrity

Conclusion

CHAPTER 13: DNA APPLICATIONS 301

DAP is designed to minimize protocol overhead. For example, the
file transfer mode eliminates the need for DAP Control messages after a
file transfer operation has begun. Also, small file records can be blocked
together and sent in one protocol message. When two cooperating pro­
cesses exchange DAP messages, one of the processes operates as the
client and the other as the server. The input/output (I/O) commands is­
sued by the client are mapped into equivalent DAP messages and trans­
mitted via a Transport connection to the server at the remote system.
The server interprets the DAP commands and performs the file I/O on
behalf of the client. The server then returns status information and file
data to the client.

Implementations of DAP-such as in VAX VMS-typically allow
users to employ the same programming statements (e.g., READ and
WRITE) and operating system commands (e.g., COPY) to access local
files and remote files.

By the year 2000 the world will be laced with intercorporate networks,
over which the computers in one corporation will interact directly with
the computers in other corporations to form powerful distributed com­
puting applications. Many of the decisions of commerce will be made at
computer speed, in an optimal fashion, on a worldwide basis. Once this
electronic interaction becomes a basic infrastructure of commerce, exec­
utives will wonder how they ever managed without it.

A great many such distributed computing applications exist and will
be written using the DNA Session Control layer for communication. Of
increasing importance in the world of networking, however, will be ap­
plications conforming to the architecture defined by the OSI upper lay­
ers: the Application, Presentation, and Session layers. Network applica­
tions that use the OSI upper layers for communication are the subject of
Chapter 14.

CHAPTER 14

OSI Applications

As we discussed in Chapter 12, the Application layer is made up of a
number of application-entities, each describing a particular set of OSI
communication capabilities. An application-entity is in turn made up of
a collection of application-service-elements (ASEs), each of which is
defined by a service definition and a protocol specification. The service
definition for an ASE describes the abstract services the ASE provides to
its users, and an ASE's protocol specification describes the formats of the
application-protocol-data-units (APDUs) used and specifies the rules by
which they are exchanged by application entities in providing the ASE's
services.

An ASE defines a particular set of functions associated with OSI
communication capabilities. Those parts of an application-process not
directly associated with OSI communications use the services of an ap­
plication-entity, which consists of one or more ASEs, to request OSI
communications functions. In performing its functions, an ASE can call
on the services of other ASEs in the application-entity and can also use
the services provided by the Presentation layer in providing communica­
tions functions.

User-Written OSI Chapter 12 described the OSUL architecture, which defines how the
Applications three upper layers of the OSI model are integrated into the DNA Phase

V architecture. The OSUL architecture provides support for the associa­
tion control service element (ACSE). The OSUL architecture also in­
cludes support for the OSI Presentation and Session layers. User-written
application programs gain access to the OSI environment by requesting
the services provided by the service interface defined by the OSUL archi­
tecture. An implementation of the OSUL architecture provides an appli-

302

International
Standard OSI
Applications

FIGURE 14.1

CHAPTER 14: OSI APPLICATIONS 303

cation programming interface (API) that implements the abstract inter­
face defined in the OSUL architecture. The OSUL abstract interface,
defined through a series of procedure declarations, was described in
Chapter 12. An application program uses the API defined by an imple­
mentation of the OSUL architecture to establish and release application­
associations using the functions provided by the ACSE. It also uses the
API to request the data transfer and dialog management services pro­
vided by implementations of the OSI Presentation and Session layers.
The relationship between a user-written OSUL application program and
the DNA Phase V architecture is shown in Figure 14.1.

As described in Chapter 12, there will be many international standards
for the Application layer. As just described, each of these standards takes
the form of an ASE. Some ASEs, such as the association control service el­
ement (ACSE), are general-purpose ASEs that provide services to other
ASEs and to an application-process. Implementations of general-purpose

The relationship of an OSI application program to the ONA Phase V architecture.

DNAOSUL
Architecture

OSI
Application Program

OSUL
Service Interface

. .
I----!~~

DNA Session Control
Service Interface

AppliGation La#er lliQi!J DNA Session Control Layer

:c--_:,.... -----1

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

304

File Transfer,
Access, and
Management

PART Ill: NETWORK APPLICATIONS

ASEs-such as ACSE-generally provide only application programming
interfaces that allow other ASEs and application programs to request
their services. They do not provide services directly to human users.

There will also be many international standards developed for more
application-specific ASEs designed to provide specific types of services,
sometimes directly to human users. International standards for dis­
tributed computing applications that use the services of ASEs will also be
developed. This chapter examines an application-specific ASE-often
implemented in the OSI environment-for which Digital provides an
implementation: File Transfer, Access, and Management (FTAM) for
providing remote access to data files. It also examines an international
standard for a distributed computing application: the X.400 Message
Handling System for electronic mail applications. Another important in­
ternational standard for a distributed computing application is the
X.500 Directory. The X.500 Directory provides naming services in the
OSI environment and is introduced in Chapter 16.

In the remainder of this chapter, we examine the characteristics of
the FTAM ASE and the X.400 distributed computing application.

File Transfer, Access, and Management (FTAM) is an international stan­
dard, documented in ISO 8571, that defines an ASE for the Application
layer of the OSI model. The FTAM ASE defines the functions required to
support a remote file system in the OSI environment. The broad aim in
the standardization of a file service is to allow file users on open systems
to be able to transfer, access, or manage information held on any type of
system that behaves as if it stores data files. Such a system is called a vir­
tual -filestore in the FTAM environment.

Master-Slave Relationship

The actions supported by FTAM take the form of master-slave relation­
ships. Each activity is started by one of the two file service users having
some objective to achieve. This user is called the initiator. The other user
is the responder, which takes a passive role and reacts to requests made
by the initiator. The act of transferring data from the file at the initiator
to the file at the responder (either a record at a time or the entire file) can
be viewed conceptually as being performed by a copying application
having local access to one filestore and remote access to the other (see
Figure 14.2). Whenever file data records are being transferred from one

CHAPTER 14: OSI APPLICATIONS 305

FIGURE 14.2 A conceptual view of a file transfer operation using FTAM.

Local
Tie

Initiator Responder

Local Access Through
Copy

Remote Access Through
Local File ~stem OSI Communication Facilities

Application

IFTAM I irnMJ
Presentation Presentation

Session Session

Transport Transport

Network Network
1111111111111111111 lllHll
1111111111111111111 Data Link Data Link 11111111 i::::=:::J 1111111111111111111 .!::: llllllH

I--" Physical Physical Remote

i::::=:::JJ 1 i::::=:::J File

J
Open System A Open System B

OSI Network

filestore to another, one of the users is the sender and the other is the re­
ceiver. An initiator or a responder can be either the sender or the receiver
in any particular data transfer operation.

The Virtual Filestore

The virtual filestore in FTAM describes a conceptual model of a file
service that might be implemented in any desired way in an open sys­
tem. The virtual filestore is an abstraction that can be emulated by the
file service existing in a real computing system. A virtual filestore con­
sists of a collection of files, each of which has a unique name. A funda­
mental FTAM concept is that an FTAM user accesses a single file at a
time, which is called the selected file. Each file in a filestore has two
components:

• Attributes. Attributes specify information about the file, such as the file's
name, the actions permitted on the file, the file's size, and so on.

• Contents. The contents make up the information stored in the file and
any data describing the file's structuring (pointers, indexes, etc.).

306 PART Ill: NETWORK APPLICATIONS

Document Types

Different types of files are defined in the FTAM standard to support dif­
ferent types of processing. These are described as document types.
FTAM currently defines five document types:

• FTAM-1. Unstructured text.

• FTAM-2. Sequential text.

• FTAM-3. Unstructured binary.

• FTAM-4. Sequential binary.

• FTAM-5. Simple hierarchical file.

FTAM Functional Units

FTAM defines a broad range of functions to support file operations. Not
all implementations of FTAM will necessarily support all the functions
defined in the international standard. The FTAM standard defines two
ways in which subsets of these functions can be defined. At the most
basic level, FTAM functions are grouped into functional units. To be in
conformance with the standard, an FTAM implementation must support
a functional unit either completely or not at all.

FTAM Service Classes

At a higher level, the standard defines a number of service classes, each
of which supports broad categories of use. These classes are as follows:

• Transfer Class. This service class allows for the transfer of files or parts
of files between open systems using a relatively simple protocol.

• Management Class. This service class allows control of the virtual file­
store, such as renaming and deleting files, but does not include file trans­
fer functions.

• Transfer and Management Class. This service class combines all the
functions included in the transfer class and the management class.

• Access Class. This service class allows an initiating user to perform file
access operations on individual units of data in the remote filestore, such
as reading and writing individual records.

• Unconstrained Class. This service class allows the designer to choose the
functional units to be implemented.

FIGURE 14.3

CHAPTER 14: OSI APPLICATIONS 307

The following sections describe the file operations that can be per­
formed for the transfer and management classes, the most commonly im­
plemented FTAM service classes.

Transfer Class An open system implementing the transfer class and
operating as the initiator can copy a file from a remote filestore residing
on some other open system in the OSI environment to the local system or
it can copy a file from the local system to a remote filestore. If the remote
system also supports limited file management functions, the initiator can
also move files in either direction. A move operation is different from a
copy in that the original file is deleted after the operation is completed.
An open system operating in the role of the responder can respond to re­
quests made by other systems for file copy and move operations.

Management Class An open system implementing the management
class and operating in the role of an initiator can create files, delete
files, and read the attributes of files in a filestore on a remote system. If
the remote system supports full file management operations, the system
can also modify file attributes of files stored in a filestore on the remote
system. As a responder, a system responds to requests made by a re­
mote system to create files, delete files, read file attributes, and modify
file attributes.

Services Used by FTAM

FTAM uses three specific services in the OSI environment (see Figure
14.3):

• Association Control Service Element (ACSE). FTAM employs the ACSE
to establish the application-associations required to establish communi­
cation between file service users to support file transfer and management

Services used by FTAM.

Application
Layer

~~

Presentation Layer

Session Layer

308

X.400 Message
Handling System

PART Ill: NETWORK APPLICATIONS

activities. At any instant, the file protocol operates so there is only one
file activity in progress over a particular association; if more than one file
activity is necessary, more than one association is established.

• Presentation Layer Services. FTAM uses the services of the underlying
Presentation layer to transfer data between Application layer entities to
support file transfer and management operations.

• Session Layer Services. The Session layer services that FTAM requests via
the Presentation layer include the control of the dialog between the ini­
tiator and the responder and the creation of synchronization points to
support file checkpointing and recovery operations.

FTAM Implementations

As an international standard for an ASE, FTAM is described in terms of
a service definition and protocol specification in the same manner as for
other ISO international standards for the OSI architecture. The FTAM
service definition defines the semantics of FTAM services but does not
specify any particular user or application programming interface that
should be used to implement FTAM services. Therefore, it is likely that
different implementations of FTAM may look very different to users and
to application programs. However, if the protocol specification is ad­
hered to, different implementations of FTAM will interoperate in the
OSI environment.

The main objective of the X.400 message handling system is to allow
users to exchange messages on a store-and-forward basis. X.400 defines
a number of standard message handling services useful in creating sys­
tems that implement electronic mail services. Recommendation X.400
does not specify information about how an electronic mail facility
should be built, nor does it specify anything about what the user or ap­
plication programming interface to such a system should look like.
Rather it concentrates on the specification of aspects of message han­
dling systems that allow one electronic mail system to interwork with
other electronic mail systems conforming to the X.400 protocol
specifications.

Digital products provide electronic mail services through the MAIL­
bus family of products that run on various Digital processors. The
MAILbus product family was initially introduced before the X.400 mes­
sage handling system was accepted as an international standard, and

FIGURE 14.4

CHAPTER 14: OSI APPLICATIONS 309

MAILbus products do not currently use the X.400 standard for exchang­
ing messages among themselves. However, the MAILbus products fully
conform with the X.400 in the way they interwork with other X.400 im­
plementations.

Recommendation X.400 documents a service definition and a pro­
tocol specification. It uses the services of the ACSE and the services of the
Presentation layer in performing communication functions. (See Figure
14.4.)

We next describe the major components of the X.400 message han­
dling system architectural model.

User Agents

Users of the message handling system access X.400 services through an
intermediary called a user agent (UA). A user called an originator em­
ploys a user agent to send a message to one or more other users called re­
cipients. The user agents are in turn interconnected using facilities collec­
tively called the Message Transfer System (MTS). The architectural
model defined by the X.400 standard is shown in Figure 14.5.

Message Transfer Agents

The message transfer system is itself composed of message trans{ er
agents (MTAs) interconnected using OSI communication facilities, as
shown in Figure 14.6. MTAs physically exchange messages with one an­
other using OSI Presentation layer facilities.

A message originator creates messages using the assistance of a user
agent. A user agent is an application-process that can communicate di-

Services used by X.400.

Application
Layer ---Presentation Layer

Session Layer

310 PART Ill: NETWORK APPLICATIONS

FIGURE 14.5 OSI X.400 message handling system architectural model.

Message Handling Environment

reedy with a message transfer agent to submit messages on behalf of a
single user. The message transfer system uses message transfer agents to
deliver to one or more recipient user agents the messages submitted to it.
The message transfer system can also return noti-fications to a message
originator. A user agent can accept delivery of messages directly from the
message transfer system, or it can use the capabilities of a message store
to receive delivered messages for subsequent retrieval by a user agent.

Message Stores

According to the X.400 standard, a user agent accepting messages di­
rectly from a message transfer agent must be available at the time a
message is delivered. However, it is possible to implement a user agent
on a different computing system from the message transfer agent with
which it interacts. For example, a user agent might be implemented in
the user's own computing system-possibly a personal computer or
workstation-in which case, the user agent may not be available at all
times. In such a situation, it is likely that a particular user agent will be
active for only a very short time each day, during which all message

CHAPTER 14: OSI APPLICATIONS 311

FIGURE 14.6 Message transfer agents in the message transfer system.

Message Handling Environment

traffic is exchanged. X.400 provides message stores (MSs) that handle
the common situation where the user agent may not be attached to the
message handling system when a message arrives.

A message store acts on behalf of a user agent and provides a secure,
continuously available storage medium a message transfer agent can use
to store messages for later retrieval by a message agent. A message store
is associated with a single user. When a message store is implemented, all
messages destined for a particular user agent are delivered to the message
store. If the user agent is active at the time a message is received, that
user can receive an alert indicating a message has been received and has
been placed into that user's message store. The message transfer system
considers a message to have been delivered when it is accepted either by
a user agent or by a message store. A user can direct his or her message
store to forward received messages to some other destination in the mes­
sage handling system.

A message store can be implemented in the same computer system
implementing a user agent, it can be located in the same computer sys­
tem as a message transfer agent, or it can be implemented in a computer
system different from either the user agent or the message transfer agent.

312 PART Ill: NETWORK APPLICATIONS

The most common configuration is to implement a user agent's message
store in the same computer system as the message transfer agent serving
that user agent.

X.400 Messages

A message in the X.400 environment can be viewed as being made up of
an envelope and its contents. The envelope carries information accessed
by message transfer agents as they are transmitting the message through
the message transfer system. The message's content consists of the infor­
mation the originating user agent is using the message transfer system to
deliver to one or more recipient user agents. Message transfer agents do
not examine or modify the content of messages as they move messages
through the message transfer system.

Message Transfer System Operation

The message transfer system implemented by a set of interconnected
message transfer agents provides a general-purpose, store-and-forward
message transfer service independent of any particular application. It
provides the means by which user agents exchange messages with each
other.

Message Transfer System Interactions

Two basic interactions can take place between message transfer agents
and user agents or message stores:

• Submission. The submission interaction provides the means by which an
originating user agent passes a message to a message transfer agent.

• Delivery. The delivery interaction provides the means by which a mes­
sage transfer agent moves a message to its destination(s).

The originator's user agent uses the Submission interaction to pass a
message to the message transfer agent serving that user agent. The origi­
nator's message transfer agent then uses the delivery interaction to trans­
fer the message from one message transfer agent to the next until the
message reaches the message transfer agent serving the recipient's user
agent. That message transfer agent then passes the message to the recipi­
ent's user agent or to the message store serving the recipient.

Notifications The message transfer system can implement two types
of notifications: delivery and nondelivery. When a message transfer agent

Conclusion

CHAPTER 14: OSI APPLICATIONS 313

determines that a message cannot be delivered, it generates a nondelivery
notification, which is sent back to the user agent originating the nonde­
liverable message. A message originator can also request a delivery
notification, which serves as a positive acknowledgment of message
delivery.

This chapter and the previous one provided a brief introduction to the
types of applications for which a DECnet Phase V network can be used.
As computer networks become ubiquitous, the variety of networking ap­
plications will increase. The chapters in Part IV introduce an important
set of related architectures and networking mechanisms that support the
functional layers of the DNA Phase V architecture. Chapter 15 begins
Part IV by examining the distributed computing services that are used by
components of the DNA architecture and that can also be employed by
users of a DECnet Phase V network.

PART IV

Related Architectures
and
Mechanisms

CHAPTER 15

Distributed Computing Services

Applications that use the network for communication and various com­
ponents of the networking software itself require certain common ser­
vices. It is desirable that the network infrastructure provide these ser­
vices rather than each application and each component of the
networking software being forced to provide them for itself. With re­
spect to these common services, the network infrastructure can in many
ways be viewed as a distributed operating system. An operating system,
typically running on a single computing system, provides the applicqtion
programs it controls with a broad range of useful services, including, but
not limited to:

• providing the date and the time of day

• providing security services

• allowing one procedure to invoke the execution of some other procedure

• assigning unique identifiers to objects such as programs and files

• locating computing system objects, such as programs and files, based on
names users have assigned to them

DNA Phase V includes a collection of architectures that define how
many of these same services can be supplied to users on a network-wide
basis. This chapter examines architectures for an important set of dis­
tributed computing services:

• Digital Time Service Architecture. This architecture defines services and
algorithms for maintaining and providing, in all network nodes, a con­
sistent, correct date and time of day.

• Distributed Authentication Security Service Architecture. This architec­
ture defines a subset of a comprehensive framework for security that
Digital is developing. It is an architecture-related to DNA Phase Vas

317

318

FIGURE 15.1

PART IV: RELATED ARCHITECTURES AND MECHANISMS

well as to other architectures-that defines a comprehensive set of secu­
rity services that can be used in implementing distributed systems.

• Remote Procedure Call Architecture. This architecture defines services
by which a procedure executing in one computing system can pass con­
trol to a procedure residing in some other node of the network using a
simple procedure call mechanism.

• Unique Identifier Architecture. This architecture defines a service that
distributed systems and the DECnet software itself can use to obtain an
identifier guaranteed to be globally unique over space and time.

Another important distributed computing service is provided by the
DNA Phase V naming service. The naming service allows users to assign
names to objects that mean the same thing anywhere in the network and
to maintain a set of attribute values associated with each name, including
the address of the node on which the object resides. The naming service
accepts an object's name from a user and passes back the set of attributes
associated with that name. The naming service is such an important part
of DNA Phase V that we examine it separately in Chapter 16.

The time service, the remote procedure call service, the unique
identifier service, and the naming service can be viewed as running in a
layer between the DNA Session Control layer and the application pro­
grams (both Digital-developed and user-developed) employing the net­
work for communication. This layer is sometimes called the Network
Applications layer, as shown in Figure 15.1. These services are called by
user applications and sometimes by each other as well. Some of the dis­
tributed computing services implement distributed algorithms, compo­
nents of which are executed in each node in the network. The various
components of these distributed algorithms must communicate with

Distributed computing services residing in a Network Applications layer.

Network Applications

Time Service
Architecture

CHAPTER 15: DISTRIBUTED COMPUTING SERVICES 319

each other using protocols in performing their functions. This communi­
cation is handled through the use of DNA Session Control connections
and/or Data Link layer services.

We will examine each of the four distributed computing services in
detail.

The notion of time is taken for granted in most of today's centralized
computer systems. However, the mechanisms used to provide time in
these systems are inadequate when applied to distributed systems. Even
if all the computers in the network have accurate clocks, we cannot ex­
pect a diverse group of computer operators to all set the clocks correctly
on a large number of computers. So in the distributed environment, new
mechanisms are required for consistently setting the clocks on all the
computers and for maintaining their accuracy. A single, global notion of
time is necessary to coordinate the operation of a sophisticated dis­
tributed system. There are three major uses for time values in a dis­
tributed computing environment:

• Time Ordering of Events. Given two events occurring either at the same
or at different places in the network, it is often useful to be able to deter­
mine which event took place first.

• Measuring Time Intervals. Given two events occurring either at the same
or at different places in the network, it is often useful to be able to deter­
mine the length of the time interval elapsed between the times the two
events occurred. Accurate performance measurements in a distributed
system require this ability.

• Scheduling of Events. It is often useful to be able to specify that an
event-or a set of distributed events-should take place either before or
after a specified time.

To be able to use time values for the above purposes, a time service
must be available that allows users to obtain consistent time values no
matter where they reside in the network. This is not possible if each node
in the network is responsible for independently maintaining its own in­
ternal clock. The DNA Phase V time service is a distributed algorithm, a
component of which runs in every network node, responsible for syn­
chronizing all the clocks in the network. Any user in the network can ob­
tain a time value by requesting it from the time service. A major goal of
the time service is to provide a time value on request with a minimum
probability of the time value being incorrect. This is a difficult goal to ac­
complish because, unlike other services where faults or errors can be de-

320

BOX 15.1

Goals of the Time
Service

PART IV: RELATED ARCHITECTURES AND MECHANISMS

• Correctness. The architecture is designed to minimize the probability
of a user obtaining an incorrect time value.

• C!ient-Server 1\!odel.. The :?!'chitect!!!'e co!lforms to the clie!!t-server
model in which clients query servers for time values and in which the
complexity of the architecture centers in the servers rather than in
the clients.

• Simplicity. The architecture provides a simple and conventional view
of time values and uses a single generally accepted standard for rep­
resenting time.

• Quality. A component of each time value consists of a value that
places a bound on the possible inaccuracy associated with that time
value. The actual inaccuracy that can be associated with a time value
is not specified in the architecture. Inaccuracy depends on the accu­
racy of the physical components used to maintain time values and on
the network resources available for synchronizing clocks in the net­
work.

• Fault Tolerance. The architecture is designed to withstand and com­
pensate for a small number of servers that may be maintaining incor­
rect time values.

• Scale. The architecture is designed to accommodate network growth
and can function correctly in networks of any size.

• Auto Configuration. The architecture allows clients and servers to be
added to the network with little or no management intervention. In
addition, clients and servers are able to initialize their clocks with no
human intervention.

• Performance. The architecture is designed so the algorithms used
consume a minimum amount of network resources in performing
their functions.

• Monotonicity. The architecture is designed so that, except in dealing
with extreme failures, clocks never run backward and forward ad­
justments in clock values are made gradually.

tected immediately, faulty time values are difficult to detect. Moreover, in
a distributed system, faulty time values may lead to undetected incorrect
operation of other distributed algorithms, such as the naming service.

In addition to providing time values with a minimum probability of
providing the incorrect time, the time service has a number of other
goals. These goals are listed in Box 15.1.

CHAPTER 15: DISTRIBUTED COMPUTING SERVICES 321

Time Values

We begin our discussion of how the time service meets its goals by exam­
ining the types of time values the time service is designed to maintain.
Historically, time values have been based on the rotation of the earth
about its axis. A time value based on this standard is called Universal
Time (UT) and is the basis of our international and civil time standards.
Universal Time corresponds with Greenwich Mean Time (GMT), the
time of day in Greenwich, England, when Greenwich is on standard
time. With Universal Time, a second is defined as 1/86400 of a mean
solar day. A problem with Universal Time is that the earth's rotation is
gradually slowing. So for precise scientific work, in 1964, the Interna­
tional Congress on Weights and Measures redefined the second to be
9,192,631,770 vibrations of the characteristic frequency of an atomic
clock based on the cesium atom. Unlike the earth, the cesium atom is not
gradually slowing and thus provides a much more precise measure of
time. This time is called Coordinated Universal Time, often designated
by the acronym UTC. Coordinated Universal Time is maintained by an
international organization called the International Time Bureau. The
DNA Phase V time service is based on Coordinated Universal Time.

Since Universal Time is continually slowing with respect to the vi­
bration of the atomic clock used to maintain Coordinated Universal
Time, the International Time Bureau periodically adjusts the atomic
clock through the use of leap seconds to bring Coordinated Universal
Time into coordination with Universal Time. The International Time Bu­
reau announces these adjustments in advance and always performs the
adjustment during the last minute of the month in which the correction
is necessary. When such adjustments are necessary, it is possible for the
last minute of the month to contain 61 seconds instead of 60 seconds.
(Actually, the rules for leap seconds also allow for removing one second;
thus, theoretically, the last minute of a month might have only 59 sec­
onds. However, since the earth is slowing down and is not expected to
speed up, it is unlikely that a minute of Coordinated Universal Time will
ever have 59 seconds.)

A value can be obtained for Coordinated Universal Time, via a tele­
phone call, radio, or satellite link in many parts of the world through
various organizations. For example, in the United States the radio sta­
tions WWV in Colorado and WWVH in Hawaii broadcast values for
Coordinated Universal Time throughout the day.

Since Coordinated Universal Time corresponds to Greenwich Mean
Time, it is often modified by a factor called the time differential factor

322 PART IV: RELATED ARCHITECTURES AND MECHANISMS

(TDF). A TDF value is added or subtracted from a UTC value to obtain
a time representation corresponding to the local time in some other time
zone. For example, to obtain the standard time in the Eastern time zone
of the United States, we would subtract a TDF value of 5 hours from the
l.JlC vaiue.

Time Value Inaccuracy

A characteristic inherent in the measurement of time is that a time value
can never be said to be completely accurate. This is because no clock can
be kept perfectly in synchronization with UTC. Four factors relate to
how well a clock keeps time:

• Inaccuracy. A clock's inaccuracy represents how far its time value devi­
ates from Coordinated Universal Time. The inaccuracy of a clock can
never be known exactly, but it is possible to determine an upper bound
for its inaccuracy.

• Drift. The inaccuracy of a clock is not constant but increases over time.
Drift is a measure of the rate at which the inaccuracy of a clock is in­
creasing. Like inaccuracy, drift can never be determined exactly, but we
can place an upper bound on a clock's drift.

• Skew. Skew is a measure of the difference between a clock's value and the
value for UTC at any instant. The upper bound of a clock's skew is a fac­
tor of the upper bound on a clock's inaccuracy and the upper bound on
the clock's drift.

• Resolution. Clocks used in computer systems generally are digital and
measure time in discrete ticks. A clock's resolution is a measure of the
time interval between ticks.

Since a clock can never represent time completely accurately, the
value the time service provides includes both an estimated value for UTC
and an inaccuracy value, which is an upper bound on how inaccurate
that time value is. Therefore, it is possible to determine only that the
exact value for UTC at any instant falls somewhere between the esti­
mated time value minus the inaccuracy and the estimated time value plus
the inaccuracy (see Figure 15.2). When algorithms use the time values
the time service provides-for example, in attempting to determine
which of two events occurred first-the inaccuracy values the time ser­
vice returns must be taken into account in comparing the two time val­
ues. If the two events occurred relatively close together in time, it is pos­
sible for the time ranges representing the times at which they occurred to

FIGURE 15.2

FIGURE 15.3

CHAPTER 15: DISTRIBUTED COMPUTING SERVICES

A lime value, consisting of an estimated UTC value and an inaccuracy value.

Estimated
UTC Value

Upper I Upper
Bound Bound

on on
!-Inaccuracy ---inaccuracy-:
I .

Actual UTC value
can be anywhere in

this range.

323

intersect, as shown in Figure 15.3. When such a situation occurs, al­
though one of the events may have occurred earlier than the other, the
order in which the two events occurred cannot be determined.

Time Value Representation

The time values that the time service works with and represents in inter­
faces and protocol messages consist of two types: binary absolute time
and binary relative time. Binary absolute time contains an estimate of an

If two events occur at the limes indicated by these lime values, the order in which the two
events occurred cannot be determined.

Estimated
UTC Value

Upper Upper
Bound I Bound

on t on r Inaccuracy -1---1naccuracy -1
Tlmemt--~~~~~~+-~~~~~~-t

Event A I
I Time Value
[-Intersection--:

Time of t--~~~~~~---11--~~~~~~--t
Event B 1 ,

I--- Upper --!---
. Bound '

t on
Inaccuracy

Estimated
UTC Value

Upper --.-.j
Bound

on
Inaccuracy

324

FIGURE 15.4

PART IV: RELATED ARCHITECTURES AND MECHANISMS

actual UTC value; binary relative time contains an estimate of an elapsed
time interval. These two types of time values are represented with identi­
cal formats. The four components that currently make up a time value in
the time service architecture are shown in Figure 15.4 and described
beiow:

• Version. This field represents the version of the time service architecture
being used. It must contain the value 1.

• Time Differential Factor. This field can be used to modify the value in the
Coordinated Universal Time Estimate field to convert that value to the
time in some other time zone. This field is present in an expression of bi­
nary relative time, but, since a TDF value is meaningless in a relative
time value, it must contain the value zero in an expression of a relative
time value.

• Inaccuracy Value. This field places an upper bound on the inaccuracy
value inherent in the Coordinated Universal Time Estimate field.

Coordinated Universal Time Estimate. This field estimates the time
elapsed since midnight of October 15, 1582, the time at which the Gre­
gorian calendar was officially adopted. This number can be used to ob­
tain an estimate of the calendar date and an estimated value for UTC.

The exact format of the time values the time service works with may
change over time as certain international standards that are currently
being developed mature.

Time Service Architectural Model

The two major components that implement the distributed algorithms
defined by the architecture are time service clerks and time service
servers. Some of the servers may have access to a time provider, a device
that obtains an accurate value for UTC from a service using a telephone
line, radio communication, or satellite link. Each network node imple­
menting the DNA Phase V architecture contains either a clerk or a server
but not both. Both clerks and servers implement clocks that maintain

Format of a Coordinated Universal Time (UTC) value.

lime
Version Differential

Factor
Inaccuracy Coordinated Universal lime Estimate

CHAPTER 15: DISTRIBUTED COMPUTING SERVICES 325

values for the date, Coordinated Universal Time, inaccuracy, and a TDF
value. A user of the time service makes a request of the time service for a
time value. If that user's node implements a time service server, the server
provides the time value; if the node implements a time service clerk, the
clerk provides it. The time service defines clerks and servers to minimize
the amount of synchronization that must take place to maintain the cor­
rect time in all nodes. Most nodes implement clerks, and servers are im­
plemented in only some nodes. The complexity of synchronizing time
values is handled mainly by the servers.

A clerk keeps its clock in synchronization by obtaining time values
from some minimum number of servers, defined by a management at­
tribute. The clerk then runs an algorithm that computes the intersection
of all time values it obtains to calculate a "correct" time value. The algo­
rithm defined in the time service architecture is designed so the clerk ob­
tains the correct time even if somewhat fewer than half of the servers
queried return incorrect time values.· The clerk then uses the time value
it computes to adjust the time value it maintains in its own internal clock
to improve its accuracy. The clerk adjusts its time value gradually so no
user experiences discontinuities in the time values it obtains and so the
clock never runs backward. However, the architecture has a provision
for a clerk to make a step adjustment in the clock's value if the clerk de­
termines its clock is wildly out of synchronization with UTC.

In an implementation of the time service, it is desirable that at least
some of the time service servers have access to a time provider that pro­
vides an accurate value for UTC. To synchronize its clock, a server with
access to a time provider periodically obtains an accurate time value
from its time provider. Servers without access to a time provider periodi­
cally synchronize their clocks by obtaining the time from other servers in
a manner similar to that of clerks.

Local and Global Sets

The time service assumes that in most networks most of the nodes are
connected to local area networks having relatively short communication
delays and that individual local area networks may be connected by

* The function that determines how many time servers can be faulty is
int((n-1)12). This means, for example, that 4 out of 9 or 4 out of 10, but not 5
out of 10, servers can be faulty and the time service will still provide the correct
time.

326 PART IV: RELATED ARCHITECTURES AND MECHANISMS

wide-area-networking links that may have a much longer communica­
tion delay. Each local area network implements a set of time servers
known as the local set. It is possible for the local set to be empty for any
given local area network. If there are enough servers in a given local set,

11 1 1 1 1 . • • 1 1 i • , 1 1 1 . . 1
au Ine uerKs uuia1n u1ne va1ues u111y uuu1 sn ve1:> iu tlle iu1..a1 sn, Luus

reducing communication delays and improving the accuracy of the time
values maintained by the clerks.

Even though there may be enough servers to satisfy the needs of all
the clerks attached to a given local area network, it is possible that none
of these servers implements a time provider. To handle this situation and
also the situation where there are not enough servers available in the local
set, another set of servers is designated as a global set. These servers are
available throughout the network. It is desirable that one or more of the
servers in the global set have access to a time provider that servers can use
as a source of accurate Coordinated Universal Time. The time service can
function, however, even if no server has access to a time provider. In the
absence of a time provider, a network manager must from time to time
mimic a time provider on at least some of the servers and must provide
those servers with accurate values for UTC. Choosing the global set re­
quires a network management action. A server is made a part of the
global set simply by registering its name with the naming service.

When a local area network does not have a server with access to a
time provider, one of the servers in the local set is designated as a courier
server, whose responsibility it is to import an accurate time value from
one of the global servers. The use of a courier reduces the message traffic
so not all of the servers on the local set need to import the time from a
global server.

Advertisement and Solicitation Protocol

Servers periodically announce themselves to other servers attached to the
same data link by sending multicast messages. A server must advertise on
all the data links to which it is connected. Servers receive these advertise­
ment messages and build lists of all the servers with which they can com­
municate. Clerks discover the servers in the local set by multicasting solic­
itation messages on all the data links to which the clerk is connected. (A
server also does this when it first comes up.) A server replies to a solicita­
tion message from a clerk by sending back its list of local servers. This al­
lows a clerk to determine which servers are available to it. A server re­
sponds to a solicitation message not with a multicast message but with a
message sent individually to the sender of the solicitation message.

CHAPTER 15: DISTRIBUTED COMPUTING SERVICES 327

Representative Inaccuracy Values

As discussed earlier, the inaccuracy value maintained by a clock increases
in value as time goes on. Specific goals for maximum inaccuracy values
are not defined by the architecture, but an appendix to the architectural
specification contains some calculations showing what kinds of inaccu­
racy values implementations should be capable of providing. Accuracy
values maintained by a clerk are functions of the following:

• the inherited inaccuracy in the time value a server provides

• the communication delay over the data links used to synchronize time
values with servers

• the resolution of the clerk's clock

• the maximum value for the drift of the clerk's clock

The time service specification shows that for typical hardware the
inherited inaccuracy of the time value provided by a server will be 10 ms,
a typical computer system's clock has a resolution of 10 ms, a typical
clock has a drift of one part in 10-4, and a typical communication delay
across a local area network is 20 ms. With these figures, the initial inac­
curacy in the clerk's clock at the time of synchronization is 30 ms.'' In 15
minutes after synchronization, the inaccuracy will be 120 ms; an hour
after synchronization, the inaccuracy will be 390 ms. If the clerk must
synchronize with a server across a wide area networking link with a
delay of 500 ms, the initial inaccuracy will be 270 ms, the inaccuracy 15
minutes after synchronization will be 360 ms, and the inaccuracy an
hour after synchronization will be 630 ms.

The specification then goes on to show that with optimized hard­
ware using inexpensive crystal clocks and high-speed local area network
links, the inherited accuracy can be reduced to 2 ms, the clock resolution
can be reduced to 1 ms, the clock's drift can be reduced to 1 part in 10-6 ,

and the communication delay can be reduced to 2 ms. With this kind of
optimized hardware, the initial inaccuracy of a clerk's clock immediately
after synchronization would be reduced to 4 ms. Fifteen minutes after
synchronization, the inaccuracy would increase to only 5 ms, and a full
hour after synchronization the inaccuracy would still be only 8 ms.

" Since the communication delay contributes 20 ms to the width of the interval, it
contributes only 10 ms to the inaccuracy; these examples, therefore, assume
that the communication delay contributes only half its value to the inaccuracy.

328 PART IV: RELATED ARCHITECTURES AND MECHANISMS

Distributed At the time of this writing, a task force at Digital is developing a compre-
Authentication hensive plan for security in distributed systems called the Distributed
Security Service System Security Architecture (DSSA). The intent of DSSA is to define a
Arr;!'!itecture comp!'ehe!!sive sec~irity frame"'0!'k e:tn0 ~ st>t of protocol spi>cifirntions

that will enable users and systems to interact with one another in a se­
cure fashion in a highly decentralized and distributed computing envi­
ronment. Unlike more specific architectures, such as DNA for network­
ing, a security architecture is much more pervasive and affects hardware,
operating systems, networks, and both Digital-developed and user-devel­
oped applications. Therefore, DSSA will have effects on many architec­
tures outside the scope of DNA Phase V.

DSSA Security Categories

The DSSA framework breaks the broad topic of security in distributed
systems into five major components, which are introduced in Box 15.2.
As one step along the long-term journey toward completing the design of
the overall DSSA security framework, the Distributed Authentication Se­
curity Service (DASS) defines an implementation model for most of the
requirements of the authentication component of DSSA and also ad­
dresses a portion of the requirements for the delegation and secure chan­
nels components.

Principals and Objects

Digital's security architectures discuss security in terms of principals that
access objects in a distributed system. A principal can be either a human
user or a program, such as one running on a node or a server in a dis­
tributed system. Both principals and objects have names known through­
out the distributed system. As such, the security architectures depend on
having access to a global directory service, such as that provided by the
naming service described in Chapter 16.

Network Login

Many earlier security systems have been designed around a system of
user accounts that individuals have on computer systems. A person that
wants to access 10 computers would have to register a user account on
each of them. Such a system on a large, possibly global, distributed sys-

CHAPTER 15: DISTRIBUTED COMPUTING SERVICES 329

tern would be cumbersome at best. Instead of establishing accounts on in­
dividual computer systems, DASS defines the notions of global identity
and network logins. Each principal has a name known globally and recog­
nized on every node in the network. This means a user can use the same
authentication procedures to login to any node without having to first set
up a new account on that node. It is important to note that a user is not
necessarily able to access the resources of any node in the network. Each
node recognizes users by their names and has a policy concerning which
users are allowed to access its resources.

Mutual, Strong Authentication

The authentication scheme defined by DASS provides for authentication
that is both mutual and strong. Mutual authentication means that each of
two communicating parties can learn the other party's name. Not only is
it necessary for a server to know who a client is, but the client must also
know that it is talking to an authentic server. For example, users who are
accessing a file server would like to know the server is authentic before en­
trusting it with their files. Strong authentication means that in the ex­
change of information taking place during the authentication, neither
party obtains any information it might subsequently use to impersonate
the other party to someone else. The requirement for mutual authentica­
tion is relatively easy to meet and simply calls for authentication proce­
dures to take place in both directions. But the requirement for strong au­
thentication is more difficult to satisfy.

Cryptography

Many forms of cryptography can be used to encipher data for transmission
over a network to protect the data from eavesdropping. A system of cryp­
tography is often called a cryptosystem. Some cryptosystems depend on
keeping secret the algorithms used to encipher and decipher messages.
Such a system is of little use in computer systems because it is difficult to
keep the algorithm secret. Once the system has been broken and the algo­
rithm divulged, all users of the algorithm are compromised, and all com­
puter systems using that algorithm have to be changed. Cryptosystems bet­
ter suited to computer applications use algorithms that are public and that
depend on the use of a cryptographic key that is kept secret. Users might
know the algorithm used to decipher a message but cannot decipher it un­
less they also have knowledge of the unique key required to decipher it.

330

BOX 15.2

DSSA Security
Components

PART IV: RELATED ARCHITECTURES AND MECHANISMS

• Authentication. Authentication is the process whereby one user
(either a person or a node) verifies the identity of another user. The
classic way in which authentication is accomplished in computer sys­
tems is through systems of user IDs and passwords. However, there
are a number of disadvantages to passwords, and the authentication
component of DSSA provides procedures that overcome those disad­
vantages and are easier to use than current methods.

• Secure Channels. Because the network must be assumed to be an
inherently public medium, data that must be kept private must be
protected from eavesdropping while in transit. This is most often
accomplished with cryptographic techniques in which messages are
enciphered before transmission and deciphered after receipt. A chan­
nel using a cryptography mechanism is called a secure channel. Cryp­
tography also protects data integrity because an intruder cannot
modify, replay, or suppress data in transit without the receiver detect­
ing it.

• Installing and Loading. Software often will have to be downline
loaded across the network from one computing system to another. A
method of attacking the security of a network is to install a Trojan
horse, typically a piece of software that is not easily detectable and
that can have some desired effect. For example, an unauthorized
party who desires to gain access to the files stored on a particular
computing system might arrange to add a Trojan horse to the soft­
ware normally downline loaded to that computing system. The Tro­
jan horse might implement functions, such as storing away files the
computing system has access to, allowing the unauthorized person
access to those files. This part of DSSA defines procedures using
cryptographic techniques to verify the correctness of the software
downline loaded across the network and executed in network
machines.

• Access Control. The access control part of DSSA is related to, but
different from, authentication. Authentication verifies the identity of
a user; access control provides a means of specifying what that user
is able to do after gaining access to the network. For example, a
human user performs the authentication process once, at the begin­
ning of the session. Then access control functions determine what
operations are valid for that user during the life of the session. Access
control procedures are based on two types of principals: users and

BOX 15.2

continued

CHAPTER 15: DISTRIBUTED COMPUTING SERVICES

systems. A user is an abstraction of the person who uses systems and
resources and requests access to objects. A system is an abstraction
of a computing system running a particular piece of software. A sys­
tem is usually a DECnet network node. Groups are names represent­
ing some collection of users and/or systems. The principal method
for defining who can do what in a distributed system is based on
access control lists that define access rights to defined objects.

• Delegation. Delegation is the process by which one party authorizes
a second party to act as its representative in the distributed system.
For example, when a human user performs the authentication pro­
cess at a workstation, that user delegates to the workstation the right
to act as a surrogate for that user in the distributed system. This dele­
gation might be expressed in the form of a certificate a user "signs"
during the authentication procedure. The delegation certificate, in
effect, tells the remote system that the user trusts the workstation to
accurately reflect that user's requests.

NETWORK ARCHITECT

331

Strong authentication can't be done with passwords alone. Mutual authentica­

tion can be done with passwords by having a sign and a countersign the two

parties must say to assure one another of their identities. But whichever party

speaks first reveals information that can be used by the second party to imper­

sonate it to a third party. Longer sequences (often seen in spy movies) cannot

solve the problem in general. Further, anyone who can eavesdrop on the conver­

sation can impersonate either party in a subsequent conversation, unless pass­

words are used only once. Cryptography provides a means by which one party

can prove the knowledge of a secret without having to reveal the secret to the

other party.

Symmetric Cryptography Algorithms Most cryptosystems in use at the
time of this writing employ symmetric algorithms, in which both the
sender and the receiver require knowledge of the key used to encipher the
message. That same key is then used to decipher the message. With a sym­
metric crypto system, a sender enciphers a message by putting it through

332 PART IV: RELATED ARCHITECTURES AND MECHANISMS

an algorithm, using a particular cryptographic key value, to transform the
message so it is unreadable by ordinary means. The enciphered message is
then transmitted to the receiver. The receiver places the enciphered mes­
sage through a complementary algorithm, using the identical crypto­
graphic key value, to obtain a copy of the original message.

A commonly used public cryptography algorithm was adopted in
the United States in 1981 as ANSI X3.92-1981, American National
Standard Data Encryption Algorithm (DES). The DES form of cryptog­
raphy enciphers data in 64-bit blocks using a 56-bit cryptographic key.
The DES algorithm has proven over the years to be very secure and, to
our knowledge, no one has yet been able to decipher a message enci­
phered with the DES algorithm without knowing the cryptographic key.
The DES algorithm is widely used in the banking industry. DASS uses the
DES algorithm for most of the cryptography it does, especially where
large quantities of data are involved. The DES scheme is used because
the algorithm is simple, and data can be enciphered using the DES algo­
rithm much more quickly than with other schemes.

The DES algorithm has a number of disadvantages, however, forcer­
tain applications. With the very high speed computer systems that are
today possible, it is becoming conceivable that a very fast computer-or
a set of distributed systems working collectively-could break the code
by searching through all possible 56-bit keys. Another disadvantage of
the DES algorithm is that both the sender and the receiver must be in pos­
session of the same cryptographic key value, which must be kept secret.

Symmetric algorithms do not provide adequate protection if there is
a high probability that an intruder could learn the value of the crypto­
graphic key. In a large distributed computing environment, the require­
ment that every node know a secret key for every other node becomes
unmanageable. Also, prior knowledge of keys does not work for applica­
tions such as electronic mail, where there is a requirement for sending
mail securely to users all over the world. It would be desirable for the
sender to change the cryptographic key often and to inform the receiver
of the key value it is using. But how can cryptographic key values be sent
over the network in a secure manner? An eavesdropper that obtains the
cryptographic key will be able to decipher any message enciphered using
that key. Until about the mid-1970s, the commonly used method for
sending cryptographic keys over a network in a secure manner consisted
of obtaining cryptographic key values from a trusted third party, with
which both parties already share a key. But in 1978, three researchers
named Rivest, Shamir, and Adleman developed a scheme that eliminated
the need for relying on a trusted third party.

CHAPTER 15: DISTRIBUTED COMPUTING SERVICES 333

Asymmetric Cryptography Algorithms An asymmetric cryptography al­
gorithm is one in which the key used to decipher a message is different
from the key used to encipher it. It must not be possible to derive the key
that must be used to decipher the message from the key used to encipher
it. Because the key used to encipher the message cannot be used to deci­
pher it, it does not matter who knows its value, and the value of such a
key can be made public with no compromise of security. Cryptosystems
using asymmetric algorithms are often called public key systems. The al­
gorithm described by Rivest, Shamir, and Adleman is generally called the
RSA public key cryptography system. [1] Rivest, Shamir, and Adleman
built on the preliminary work of Diffie and Hellman on public key cryp­
tography. [2]

With the RSA public key cryptosystem, the cryptographic key used
to encrypt a message can be sent over the network without compromis­
ing a message enciphered using that key. Such a crypto system can be
made much more secure than one using a symmetric algorithm. In set­
ting up for the transmission of an enciphered message, the intended re­
ceiver generates two key values: a private key, which the receiver keeps
secret, and a public key, which the receiver sends to the sender. The
sender then enciphers the message using the public key and transmits the
enciphered message to the receiver. The receiver then deciphers the mes­
sage using the private key it has kept secret. With such a system, know­
ing the value of the public key does an eavesdropper no good because it
cannot be used to decipher the message. Deciphering the message re­
quires knowledge of the private key, which is not transmitted over the
network. The system works in the opposite direction as well. A message
enciphered with the private key can be deciphered with the public key.

DASS Strong Authentication

The facilities provided by the RSA public key crypto system are exactly
what is needed to provide a strong authentication facility. Node A can
prove to node B that it has knowledge of a secret without actually di­
vulging that secret to node B. Without such a facility a system of pass­
words is not secure. The DASS authentication scheme uses RSA public
key cryptography. It is feasible to use RSA public key cryptography for
authentication, even though it requires far more resources than the DES
algorithm, because a relatively small amount of information is ex­
changed during the authentication procedure.

A strong authentication system using RSA public key cryptography
might work something like this:

334 PART IV: RELATED ARCHITECTURES AND MECHANISMS

1. Each node in the network chooses a public key/private key pair. It
then keeps the private key value secret and publishes the public key
value.

2. Node A authenticates to node B by sending it a message containing
an identifier both unenciphered and enciphered using its secret pri­
vate key.

3. Node B obtains node /\s public key value.

4. Node B deciphers the identifier it received from node A in enciphered
form using node Ns public key value.

5. If the deciphered identifier matches the identifier it received in unenci­
phered form, node B knows that node A is authentic because only the
real node A knows the private cryptographic key that had to have
been used to encipher the information.

Mutual authentication can be accomplished with the above system
by using the same procedure to authenticate node B to node A. The sys­
tem works, of course, only if each node can keep its own private crypto­
graphic key secret. But because private cryptographic key values never
have to be transmitted over the network, methods can be devised for
keeping them secure. The actual cryptographic techniques the DASS au­
thentication scheme uses are a good bit more complex than just de­
scribed in order to deal with a variety of problems and security threats.
We discuss some of these next.

Certificates

A flaw in the strong authentication scheme described in the preceding
section is that each node must have a way of determining another node's
public cryptography key. A ubiquitous service, such as the naming ser­
vice, could be used to maintain public key values, but this would repre­
sent a point in the system that could be compromised. To avoid the ne­
cessity of one user requiring the other user's public key value, a system of
certificates is used in DASS for authentication. With the DASS authenti­
cation scheme, each new principal must register its name with a
certification authority (CA). A new node would go to the CA, present its
public key value, and prove it has a particular name. The mechanism for
this depends on the level of security to be provided. The CA then issues
the node a certificate, which consists of a message containing an identifier
and a public key value, both enciphered using the C!\s private key. Now,
when node A authenticates to node B, node A includes its certificate in

CHAPTER 15: DISTRIBUTED COMPUTING SERVICES 335

the authentication message it sends to node B. Node B can determine
node A's public key value by deciphering the certificate using the CA's
public key value, which everyone knows.

An important characteristic of certificates is that their use does not
require the CA to be available at the time authentication takes place. The
CA need be available only when a new principal requires a certificate,
thus making it much easier to keep the CA safe from compromise. (One
possible plan for keeping the CA safe is to implement it on a small com­
puter that could be locked away in a safe and taken out only when a prin­
cipal needs to apply for a certificate.) However, since a certificate issued
by the CA is likely to be used by a principal for a relatively long period of
time, perhaps months, the system must include procedures for revoking
certificates should private key values fall into the wrong hands. The DASS
specification discusses methods for handling certificate revocation.

Timestamps

The authentication scheme we have been discussing allows for positive
authentication, but only if the message is accepted only once. If an eaves­
dropper were listening in on an authentication exchange between node A
and node B, it could make a copy of the certificate and then use it to im­
personate node A to node B. To avoid the possibility of this happening,
two additional requirements must be met. The authentication message
(containing the certificate) that node A sends to node B must be accept­
able only to node B and not to any other principal. It is also necessary for
node B to accept an authentication message only once.

DASS solves the first problem by including in the authentication
message not only a name that identifies node A but also a name that
identifies node B. Node A enciphers both its own identifier and node B's
identifier. Then when node B deciphers the authentication message, it
will accept the message as authentic only if it sees its own name in it.
This prevents an eavesdropper from using the authentication message to
authenticate to some other node. An eavesdropper could still imperson­
ate node A to node B, however, by using an identical copy of the authen­
tication message. To prevent this from happening, the enciphered au­
thentication message also contains a timestamp indicating the time the
authentication took place. Node B then keeps track of all authentication
messages it receives over a short period of time, say five minutes. If it re­
ceives the same message twice over a five-minute period, it rejects the
second one. Then once the five-minute period is up, it discards the me

336 PART IV: RELATED ARCHITECTURES AND MECHANISMS

sages it has been keeping and simply rejects any authentication messages
it receives having a timestamp more than five minutes old.

Delegation

The scheme just described provides a means by which one principal can
authenticate itself to another principal. In a distributed system, however,
such one-to-one authentication is not enough. When a human user logs
onto a distributed system, the user wants to use the distributed system to
access resources on his or her behalf. This requires the user to give the
node at which the desired service is performed the right to represent that
user in the system for the purposes of gaining access to resources on be­
half of that user. For one principal to represent another principal, the
first principal must provide the second principal with access to the RSA
private key value to use in subsequent authentication procedures. DSSA
provides mechanisms for allowing one principal to pass a secret to an­
other principal for a limited amount of time for the purposes of delega­
tion. Secrets passed over the network are always encrypted so eavesdrop­
pers cannot learn them.

Authentication of Human Users

As we have seen, the strong authentication system defined by DASS is
based on RSA public key cryptography, which is computationally com­
plex. Since human users would find it difficult to perform cryptography
calculations in their heads, it is not possible for a human to strongly au­
thenticate to the node at which he or she logs in. So the first link between
the human user and the login node can represent a weak link in the au­
thentication chain.

Smart Cards

The use of smart cards to handle the initial login can allow strong au­
thentication procedures to be implemented on behalf of human users. A
smart card is essentially a credit-card-sized computer a user carries
around to handle the details of gaining access to a distributed system. Be­
cause smart cards currently are too expensive to be used in gene:ral-pur­
pose network authentication schemes, the DASS architecture accommo­
dates but does not require the use of smart cards for login. In the future,
smart cards will become less expen~ive and will begin to play a more im­
portant role in providing secure access by human users to distributed
systems.

CHAPTER 15: DISTRIBUTED COMPUTING SERVICES 337

Remote Procedure The idea behind providing a remote procedure call (RPC) facility in a
Call Architecture network architecture is that procedure calls are a well-understood mech­

anism for transferring control and data from one procedure to another
in a computer program. Almost all standard programming languages,
such as FORTRAN, C, and COBOL, have such a mechanism, and proce­
dure call semantics for these languages are well defined. It is therefore of
great utility to extend the procedure call mechanism from a set of proce­
dures in a single-computer environment to the distributed system envi­
ronment. An RPC mechanism provides an excellent tool for implement­
ing the client/server paradigm in a distributed system.

NETWORK ARCHITECT

The idea of the remote procedure call is of strategic importance to application

developers in a distributed computing environment. Basically, it turns writing

distributed applications from something akin to rocket science to something

more like placing an overseas telephone call.

Figure 15.5 shows the basic concept behind a procedure call mecha­
nism. Procedure A executes a CALL statement, possibly referencing
some parameters, which passes control to procedure B. While procedure
B executes, procedure A waits. When procedure B finishes its processing,
it executes a RETURN statement. The RETURN statement causes con­
trol to be passed to the statement immediately after the CALL statement
in procedure A. In most language/operating system environments, proce­
dure calls can be nested to any desired level, as where procedure A in
Figure 15.5 calls procedure C, which in turn calls procedure D.

The idea behind a remote procedure call facility is to allow the pro­
cedure call mechanism to work when the calling procedure and the
called procedure reside in different computing systems connected by a
communications network. Ideally this should be done so the calling pro­
cedure can call a remote procedure using exactly the same technique it
would use to call a procedure residing on the same computing system. In
other words, the mechanisms the RPC facility employs should be hidden
from both the calling and the called procedures. The problems associated
with creating an RPC facility lie in three major areas:

• Locating the called procedure. The RPC facility must provide a means
for locating the called procedure in the network.

338

FIGURE 15.5

PART IV: RELATED ARCHITECTURES AND MECHANISMS

Procedure call mechanism.

Procedure A

.I
Procedure B

CALL B --l---r-----1

'-t- RETURN

Procedure C
CALL C --+-l-

Procedure D
CALL D --i--;-

'--+--RETURN

'-t-- RETURN

• Passing parameters. With the procedure call mechanism implemented in
traditional language environments, communication between the two
procedures is based on a shared address space. Parameter values are gen­
erally passed by reference, which means the calling procedure passes the
called procedure pointers to the parameter values. When the two proce­
dures reside on different computing systems, there is no common address
space. Therefore, an RPC facility must be able to handle the passing of
parameters in both directions.

• Binding the called procedure to the calling procedure. With a conven­
tional procedure call mechanism, many techniques can be used for bind­
ing. With early binding, a linking mechanism is used to construct a single
program module containing both the calling and the called procedure.
Both the calling and the called procedures are then loaded into storage at
the same time. With late binding, the procedure call mechanism imple­
mented by the operating system may allow the called procedure to be dy­
namically loaded into computer storage at the time the CALL is executed.
With a remote procedure call facility, binding is even more complex be­
cause it involves finding the server containing the desired procedure.

Remote Procedure Call Functional Model

A simplified functional model of an RPC facility is shown in Figure 15.6.
The RPC facility serving the calling procedure may use a global naming

CHAPTER 15: DISTRIBUTED COMPUTING SERVICES 339

service to determine on which node in the network the called procedure
resides. The server is found before the actual call executes. The process
of finding the server's address is called importing. In this functional
model, a calling procedure executes a procedure call in the same manner
as if it were executing a procedure call to a local procedure. A module
called a stub in the local node mimics the presence of the actual proce­
dure to which the calling procedure is attempting to pass control. There
is a unique stub for each set of procedures using the RPC facility in the
client. The stub in turn requests the services of the RPC facility.

The RPC facility uses the services of the communication network to
transmit parameter information, in the form of RPC-protocol-data-units
(RPC-PDUs), to and from the RPC facility in the remote node. When the
RPC facility in the remote system receives the RPC-PDUs generated as a
result of the procedure call, it determines whether the requested called

FIG u R E 1 5 . 6 RPC facility functional model.

Calling Called
Procedure Procedure

RPC RPC
Runtime Runtime

RPC Protocol Data Units

Communications Network

340 PART IV: RELATED ARCHITECTURES AND MECHANISMS

procedure already resides in computer storage there. If it does not, a fa­
cility in the remote node loads the program module containing the re­
quested procedure and passes control to it, again using a stub unique to
that procedure. The called procedure then passes parameter information
back to the calling procedure and passes control back to it using a pro­
cess similar to that described for the calling procedure.

The process of converting the parameter information in the local
node into RPC-PDUs and performing the same process in the opposite
direction is called marshalling. The marshalling process is straightfor­
ward if the two procedures represent parameter values using the same
data representation. On Digital operating systems almost all program­
ming languages use the same data formats. But this may not be true in
other computing environments. To be useful in a heterogeneous environ­
ment, it is necessary for an RPC facility to handle the situation where the
calling procedure and the called procedure use different formats, so data
conversion must be done by the marshalling routines.

DNA Phase V RPC Architectural Model

The architecture for the DNA Phase V remote procedure call facility pro­
vides support for a heterogeneous computing system environment. The
architectural model for the DNA Phase V RPC facility is shown in Figure
15.7. Like other distributed computing services, the RPC architecture
uses a client/server model. The calling procedure is the client, and the
procedure being called is the server. Both the client procedure and the
server procedure execute as though they both resided in the same com­
puting system.

Packages and Binding

Server procedures are grouped together in units called interfaces. An in­
terface consists of the externally visible characteristics of a set of proce­
dures. An interface is defined using an inter(ace de-{inition language
(IDL). The interface definition defines the procedures, parameters, and
error conditions of the interface. Each interface is assigned a unique in­
terface identi-{ier. This interface identifier is known to both the client and
the server stubs. The client uses the interface identifier to find a server
supporting the desired interface. In many applications there will be more
than one such server.

To execute a remote procedure through the RPC facility, the RPC
facility in the node executing the client procedure must learn what inter-

FIGURE 15.7

Unique Identifier
Architecture

CHAPTER 15: DISTRIBUTED COMPUTING SERVICES

DNA Phase V RPC architectural model.

Client
Procedure

Client
Stub

RPC
Runtime

Language-Specific •
CALL Interface

Request/Response/Exception--··--···~

Interface

··--····--.. --··-- ··--·-- Connect/Send/Receive -­
Interface

DNA Session
Control Entity

DNA Naming Service

DNA Session Control Connection

Server
Procedure

Server
Stub

RPC
Runtime

DNA Session
Control Entity

341

face the desired procedure is a part of. The RPC facility in the node exe­
cuting the calling procedure then performs an address resolution, or im­
porting, procedure using the naming service to determine where in the
network the package resides. After a successful importing procedure, the
RPC facility performs a binding operation that sets up a communication
path, using a DNA Session Control connection, between the RPC run­
time module serving the client procedure and the RPC runtime module
in the server procedure's node. The binding operation takes place at the
time the first call in the interface is executed using that interface. The
RPC facilities in both nodes then use this connection for the purposes of
requesting remote procedure invocation between the client procedure
and the server procedure and transmitting the results of the invocation.

The Unique Iden#fier (UID) architecture defines a service any user can
employ to obtain an identifier that is unique over space and time. There
is a very high probability that the identifier obtained through this service

342 PART IV: RELATED ARCHITECTURES AND MECHANISMS

is different from any other identifier assigned by the UID service operat­
ing anywhere in a possibly global network. The UID architecture is
unique in that it is designed to provide its service without requiring the
setting of any management information and without requiring any com­
munication between nodes in the distributed system. The algorithm pro­
viding the UID service in a given node is completely self-contained and
requires no external communication.

The UID service is designed to be used by other distributed comput­
ing services. For example, the naming service uses the UID service to ob­
tain unique identifiers it attaches to objects it stores attributes for. Net­
work management also uses unique identifiers to control its operation.
User-written applications can use the UID service to obtain unique
identifiers they can use to unambiguously label objects, processes, events,
and entities. Once the UID service has assigned an identifier, the process
requesting it is ensured that there is an extremely low (but not zero)
probability that the same identifier will be assigned by some other invo­
cation of the UID service either in that node or in any other node in the
network. Duplicate identifiers can occur only if the UID service is operat­
ing incorrectly, if node identifiers migrate, or if time runs backward on
the clock in a node.

The UID service assigns unique identifiers whose components are
based on the node's node ID, a value for Coordinate Universal Time
(UTC), and other values that are used to ensure that there is a very high
probability of the identifiers being unique over both space and time.
However, even though a value for UTC is currently a part of the
identifier, identifiers assigned by the UID service must be used only to en­
sure uniqueness and not for the purpose of time ordering events. This is
because future versions of the architecture may use means other than
UTC values, such as large random numbers, to achieve uniqueness.

UID Properties

The following are the properties of the unique identifiers the UID service
assigns:

• Uniqueness. There is a very high probability that each UID value the
UID service generates on any DNA Phase V node is different from any
other UID value.

• Immutability. A UID value, once assigned, is guaranteed never to be
changed as long as it is manipulated only by the UID service.

FIGURE 15.8

CHAPTER 15: DISTRIBUTED COMPUTING SERVICES 343

• Lexical Ordering. There exists a specific lexical ordering of any set of
UIDs.

• Lack of Temporal Ordering. The architecture does not specify a means
of placing a set of UIDs into the sequence in which they were created.

um Service Operations

The UID service allows users of the servtce to request three different
types of operations:

•creating a new UID

• testing two UIDs for equality

• sorting a set of UIDs based on their values

Users of the UID service should perform operations on UIDs using
only these three operations in order to preserve the immutability prop­
erty of UIDs.

um Internal Structure

We will examine the internal structure of a UID next to provide some in­
sight into the lengths to which the architecture goes to ensure that the
probability of two UIDs being the same is extremely small. A unique
identifier assigned by the UID service currently consists of the four com­
ponents shown in Figure 15.8 and described below:

• Node ID. Each node in the network must be assigned at least one 48-bit
node address assigned from the IEEE 802 address space. It is a require­
ment of the DNA Phase V architecture that each node must be assigned a
48-bit node ID even if it does not have a local area network interface
adapter. The node address field in a UID guarantees that the UIDs gener­
ated by one node will be different from UIDs generated by any other
node, anywhere in the world. The remainder of the UID is used to guar­
antee that a single node never generates the same UID value twice.

General format of a UID.

Node ID Clock Sequence No. Version Adjusted Coordinated Universal Time

344 PART IV: RELATED ARCHITECTURES AND MECHANISMS

• Clock Sequence Value. It is possible for a node to have a clock that lacks
the property of monotonicity, which means it is possible under some cir­
cumstances for a clock to run backward. For example, a system might
fail, reboot, and reinitialize its clock to some value lower than the value
it contained when the failure occurred. To provide a unique UlD value
even when such an event occurs, the UID service maintains a clock se­
quence number it changes whenever the UID service detects that the
clock has run backward or that it is possible the clock may have run
backward. Also, if the UID service loses the current clock sequence num­
ber, for example, after a catastrophic system failure, it reinitializes the
clock sequence number using a random number before assigning new
UID values.

• Version Number. This field identifies the version of the UID service archi­
tecture in effect at the time the UID was created. A version number is
necessary because UIDs often are attached to objects having very long
lifetimes. It is possible for a UID attached to an object to be processed in
the future by a system implementing subsequent versions of the UID ar­
chitecture. To ensure correct operation, it is necessary for the UID service
to determine that the UID was created using an implementation of a pre­
vious version of the architecture.

• Adjusted Time Value. A UID contains a UTC value field. In most imple­
mentations of the UID service, this value is obtained using the time ser­
vice described earlier in this chapter, although the architecture allows a
value for UTC to be obtained using any desired means. Because it is pos­
sible on a very fast processor for multiple users to request UIDs within
the same system clock tick, the UID service adjusts the UTC time value it
generates by adding a different value to it for each new UID it assigns
within the same tick of the system clock. In this way, the UID service as­
signs a different time value for each UID it generates.

Although we show the internal structure of the UID as it is defined
by the version of the architecture current as of the time of this writing,
the architectural specification warns that the means by which UIDs are
generated and the internal structure of the UID may change in subse­
quent versions of the architecture. Changes may be necessary to bring
the UID service into conformance with international standards now
under development or to accommodate changes in requirements for the
UID service. Therefore, users should regard the value the UID service as­
signs to a unique identifier as an opaque data structure whose internal
structure is hidden.

Conclusion

References

CHAPTER 15: DISTRIBUTED COMPUTING SERVICES 345

This chapter introduced the important distributed computing services
used by components of the DNA Phase V architecture and by users of a
DECnet Phase V network. As discussed in this chapter, an extremely im­
portant distributed computing service implements a naming function
that can be used to assign names to objects and to retrieve attributes as­
sociated with those names. The DNA Phase V naming service requires a
chapter of its own, and its operation is described in Chapter 16.

1. Whitfield Diffie and Martin E. Hellman, "New Directions in Cryp­
tography," IEEE Transactions on Information Theory, vol. IT-22,
no. 6, November 1976.

2. R. L. Rivest, A. Shamir, and L. Adleman, "A Method for Obtaining
Digital Signatures and Public-key Cryptosystems," Communications
of the ACM, vol. 21, no. 2, February 1978.

346

CHAPTER 16

The Naming Service

Computer networks in many organizations are providing an ever grow­
ing and ever more sophisticated set of services to their users. To permit
growing numbers of users to use these services effectively, they must be
easy to locate and easy to use. A growing problem in computer network­
ing-especially with large networks-involves identifying, locating, and
accessing network devices, the people who use them, and the application
programs running on them. In some cases, the resources provided by
computer networks are underutilized simply because the users of the net­
work are unaware of the facilities the network provides or are unable to
find them. Many of the difficulties associated with locating network re­
sources arise from the lack of an easy-to-use directory service for naming
resources and for locating them using their assigned names. The naming
service in DNA Phase V is Digital's solution to the directory problem.

NETWORK ARCHITECT

In Phase II of DNA, each node had a node name. There was no routing, so you

could only talk to your neighbor nodes. When we put routing in, we assigned an

address to each node. The question then became one of how to map between

node names and node addresses, because we didn't want to require users to

work with node addresses. We looked at the problem of translating node names

to node addresses in a reliable, robust fashion, and we quickly concluded that it

was a very hard problem. We decided not to try to solve it in Phase III or even

in Phase IV. We provided each node with its own database that it used to trans­

late node names into node addresses. That database simply consisted of a file

that users updated and shipped around the network. In effect, the way we dealt

with node name databases was outside the scope of the architecture. We couldn't

deal with the naming problem in Phase III or Phase IV because it was simply

Objects and
Names

FIGURE 16.1

CHAPTER 16: THE NAMING SERVICE 347

too hard a problem to solve given the resources we had available. It ended up
taking us a long time and a lot of resources to adequately solve the naming prob­

lem, and we have included this solution in Phase V of the architecture.

Conceptually the main function of the naming service is very simple: it
accepts a name and passes back the set of attributes associated with that
name (see Figure 16.1). The naming service can be used to store attribute
values for any type of named object the user of the naming service finds
useful, including network devices and application programs. An impor­
tant attribute that can be associated with a named object is the address
of the node on which the object resides. An object's address consists of a
set of towers that describe all the ways in which communication can be
established with the named object. (Towers are described in Chapter 11.)
The naming service allows network users to create a global namespace
containing the names of all the objects that can be referenced, anywhere
in a possibly global network.

The naming service is an integral part of the infrastructure of a
DECnet Phase V network and is central to the network's operation. The
services provided by the naming service are available at all times to all
nodes in the network. For this reason, the DNA Phase V architects built
into the naming service a variety of features to make it a highly robust,
highly available network facility. A key concern during the design of the
naming service was scalability-the naming service had to serve the
needs of very large networks.

NETWORK ARCHITECT

We went to tremendous lengths, even beyond what we did in routing, to make

the naming service scale indefinitely. We recognized that users might want to

carve networks up for the purposes of autonomy and to serve the varying needs
of different organizations. But we also realized that from the viewpoint of nam-

Function of the naming service.

Globally

Unique --­
Name

Naming
Service

Set of
____,.. Attribute

Values

348 PART IV: RELATED ARCHITECTURES AND MECHANISMS

ing things, the boundaries between networks become highly artificial and incon­
venient. Organizations really need the ability to develop a single, global names­

pace in which anyone anywhere can name things in a consistent fashion. So we

went to great lengths to make sure the naming service could provide that capa­

bility. Initial implementations of the naming service will be able to store enough

names to serve the needs of networks as large as a million or so nodes. The
architecture itself is scalable, so implementations will eventually be capable of

storing hundreds of millions of names to give the naming service the capability

of implementing something as large as a worldwide directory of computer net­

work resources.

Naming Service
Requirements and
Design Goals

The DNA Phase V naming service was designed to meet a number of
technical goals to support the directory services required in modern com­
puter networks. The following are the most important of these require-
ments and design goals:

• Homogeneity. The naming service should be available as a service on all
DNA Phase V network nodes.

• Compatibility. The naming service should be compatible with the nam­
ing services provided by DNA Phase IV.

• Decentralizability. Management of the naming service should be done in
a decentralized fashion to avoid the inefficiencies associated with central­
ized management of network resources.

· Predictability. The naming service should be able to uniquely identify
named objects in a large network so there is a very low probability of
two objects having the same name.

• Location Independence. The naming service should permit a named ob­
ject to be moved from one location to another in the network without re­
quiring its name to be changed.

· Stability. The naming service should allow two isolated networks, each
with its own private namespace, to be merged into a single network hav­
ing a single namespace without requiring names to be changed.

• Simplicity. The naming service should be easy to understand, easy to use,
easy to implement, and easy to manage. It must be able to adapt itself to
changes that occur in the network to limit the amount of effort necessary
to set up the naming service and to keep it running.

• Extensibility. The naming service should allow new functions to be
added without disrupting existing functions.

Kinds of Names

CHAPTER 16: THE NAMING SERVICE 349

• Robustness. The naming service must be at least as reliable and available
as any of the resources whose names it stores. The objective is that the
inability to communicate with a resource should never be solely due to a
fault in the naming service.

• Efficiency. The process of looking up the attributes associated with a
name must be fast and efficient so users are able to use the naming ser­
vice to locate resources without paying a performance penalty.

• Flexibility. The naming service should be adaptable to naming a wide va­
riety of objects, including nodes, files, users, application programs, de­
vices, and the internal objects the naming service itself uses to maintain
the namespace.

• Security. The naming service should ensure the privacy and integrity of
names by preventing unauthorized disclosure, modification, insertion, or
deletion of the naming information it maintains.

Before discussing the characteristics and features of the naming service, it
will be helpful to describe the sorts of names a directory service might
store. Basically four types of names can be used to identify resources in a
computer network: addresses, routes, primitive names, and descriptive
names.

Addresses

An address is a form of name that identifies a resource by its location
in the network. Previous phases of DNA used this sort of name to iden­
tify resources. Although network resources in DNA Phase IV can be
identified using an arbitrary string of characters, the use of a character
string to identify a resource is really no more than a user conve­
nience-the character string simply stands for the resource's address.
The node address is derived by using a simple table lookup procedure
on the local node. As a network grows, the relationships between
nodes and the resources residing on them become increasingly complex
and arbitrary. There are problems associated with using addresses to
name objects when the objects are replicated in the network and fre­
quently moved from one node to another. Names can become invali­
dated as resources are reconfigured and as new nodes are added and
old nodes deleted.

350 PART IV: RELATED ARCHITECTURES AND MECHANISMS

Routes

A route names a resource by enumerating the exact path that must be
traversed from the user to the resource in question. Routes are even more
problematic than addresses as a means of identifying network resources.
Route names depend on who is accessing a resource as well as where that
resource is located-different users will use different routes. What is
even worse, network reconfiguration can cause the names of resources to
change over time.

Primitive Names

A primitive name is a character string that uniquely identifies a resource.
An important feature of primitive names is that they are unambiguous­
no two objects in the network can have the same primitive name. Primi­
tive names can be constructed in any desired manner, and there is no par­
ticular relationship between a primitive name and any of the attributes
associated with the name. Primitive names are the types of names the
naming service processes. In a DNA Phase V network, a user name might
look something like ENG.NAC.DaveOran. If Dave Oran is on one node
today and some other node tomorrow, the address attribute of his name
can be changed, so that other users can still refer to him by the name
ENG.NAC.DaveOran without having to be aware that his node address
changed.

Descriptive Names

A descriptive name is a name that identifies an object by specifying infor­
mation about the attributes of that object. A descriptive name might
refer to no objects, to a single object, or to more than one object. An ex­
ample of a descriptive name might be "the mailbox of the person with
signatory responsibility for the engineering cost center." A descriptive
name uniquely identifies an object only if enough attribute information is
included to differentiate the named object from all other objects. The
above descriptive name uniquely identifies a particular mailbox as long
as there is one and only one person with signatory responsibility for the

·engineering cost center.
Directory services that manipulate descriptive names are potentially

the most powerful; however, they are also the most demanding of com­
puting resources and are difficult to distribute among multiple computer
systems.

Namespace
Logical Structure

CHAPTER 16: THE NAMING SERVICE 351

CCITT Recommendation X.500, also called the OSI Directory, doc­
umented in ISO 9594-is an international standard for a naming service
that has some descriptive naming capabilities. The OSI Directory is in­
troduced at the end of this chapter. Digital is developing products to pro­
vide the services of the OSI Directory using the DNA Phase V naming
service as a base.

In creating a naming service that stores and manipulates pnm1t1ve
names, the namespace can be structured in a number of ways. The fol­
lowing are characteristics of some possible ways in which a namespace
might be structured.

Flat Structure

The simplest namespace organization has a flat structure in which the
names consist of arbitrary strings of symbols. A flat structure is easy for
users to understand and places no restriction on the ways in which new
names could be assigned (except possibly character set and length con­
straints). However, assigning unique names in a flat namespace becomes
increasingly difficult as the size of the network, and hence the size of the
namespace, mcreases.

Tree Structure

A tree is a graph structure in which each node has exactly one parent and
any number of children. The bottommost nodes in the tree are called leaf
nodes. A line connecting a parent node to a child node is called an arc of
the graph. (See Figure 16.2.) Many existing computer file systems use a
tree-structured naming system. Such file systems generally use a rooted
tree structure; in which a single node is an ancestor of all other nodes.

Trees permit the use of a decentralized approach to naming that
provides a natural, hierarchical scheme for organizing the namespace.
Each user or group of users is free to organize a given portion of the
namespace in any desired manner. A problem with a tree-structured
namespace is that each object is permitted to have only one name be­
cause each node under the root has only one parent.

Directed Graph Structure

A directed graph is similar to a tree, but a given node can have any num­
ber of parent nod,es (see Figure 16.3). A directed graph can be a rooted

352

FIGURE 16.2

FIGURE 16.3

PART IV: RELATED ARCHITECTURES AND MECHANISMS

Tree structure.

-~Root Node

directed graph, in which one node is the ancestor of all other nodes, or it
can be unrooted, in which there is no such common ancestor. Computer
file systems that permit alias names, in which a given file can have more
than one name, often implement a rooted, directed graph structure. A
problem with a namespace structured as a directed graph is that endless
cycles are possible. A name containing an endless loop is of little use, so
most naming systems employing a directed graph structure contain
mechanisms to prevent cycles from occurring. The structure of such a
namespace is termed an acyclic, rooted, directed graph. This is the type
of namespace structure employed by the naming service.

Acyclic, rooted, directed graph structure.

CHAPTER 16: THE NAMING SERVICE 353

Simple Names and Full Names

The underlying structure used to create the namespace is that of a tree.
Each arc of the tree is assigned a simple name, which consists of a string
of octets having no internal structure. A complete name, called a full
name, consists of a concatenation of all the simple names assigned to a
set of arcs that begins at the root of the tree and ends with the object in
question.

The underlying tree structure permits the use of simplified algo­
rithms for namespace maintenance. The tree structure is augmented by
allowing a given node to have arcs from more than one parent node.
These additional arcs allow a given object to have more than one name
(i.e., there can be more than one collection of arcs from the root of the
graph to a particular node). Allowing a node to have more than one par­
ent allows users to view the underlying tree structure as if it were a di­
rected graph.

Characteristics of We next examine the characteristics of names. We discuss the concept of
Names referential transparency and then examine the semantics and the syntax

of the primitive names the naming service stores and manipulates.

Referential Transparency

An important property of the names maintained by the naming service is
that of referential transparency. This means that a full name always
refers to the same thing no matter which user provided the name, and
that the name can be freely passed outside the naming service (for exam­
ple, on pieces of paper) from one user to another without the possibility
of confusion.

Name Semantics

The naming service maintains full names. To the naming service, a full
name consists of the concatenation of the simple names of a set of arcs
beginning at the root of the namespace. Each full name in a namespace
begins with a simple name containing a unique identifier called the
namespace creation timestamp (NSCTS). The NSCTS is assigned to the
namespace at the time the namespace is first created. This unique
identifier ensures that each full name in the namespace is different from
the full names stored in any other namespace. By assigning a unique
identifier to each namespace, it is possible to merge together any collec-

354 PART IV: RELATED ARCHITECTURES AND MECHANISMS

tion of namespaces without requiring changes to any of the names in
those namespaces. The naming service provides facilities so users them­
selves do not have to supply the NSCTS value when working with the
naming service.

Name Syntax

Two syntaxes are employed by the naming service for representing
names: an external syntax and an internal syntax. The external syntax
refers to names in human-readable form; the internal syntax refers to
names passed across the application programming interface to the nam­
ing service and maintained internally in the namespace database. The ex­
ternal syntax is designed for readability, while the internal syntax is de­
signed to be convenient to encode in programs, protocols, and databases.

External Names

An external name consists of two parts: a namespace nickname and a
concatenation of simple names. The namespace nickname is translated
locally by the naming service into the NSCTS value uniquely identifying
the namespace. If a namespace nickname is omitted from an external
name, the naming service chooses a preselected NSCTS value.

The namespace nickname and the concatenation of simple names
making up a full name are an ordered list of strings of letters, digits, and
certain punctuation characters from the ISO Latin-1 character set. The
case of each string is preserved by the naming service: when retrieved, a
name registered with a mix of upper- and lowercase characters will ap­
pear exactly as it was entered. Lookups, however, are case-insensitive.
The strings "jamesmartin," "JAMESMARTIN," and "JamesMartin" all
refer to the same simple name.

The naming service also allows binary simple names to be used, in
which the characters %x or %X are followed by a string of hexadecimal
digits. Binary names allow users and application programs to work with
names made up of data that cannot be expressed using the allowable
character set.

The simple names in a full name are separated by periods(.). For a
period or any other punctuation mark to be used as part of a simple
name, the simple name must be enclosed in double quotation marks. The
following are examples of full names:

• Parts.widgets.left-handed.SMOKESHIFTER

• ENG.NAC.JarnesMartin

Attributes

CHAPTER 16: THE NAMING SERVICE 355

• Governm~nt:Treasury.Bills.CurrentSeries

• ENG:Engineering.Networks.Arch.Specs

• ENG.NAC.MARTIN.%xFA01E700FC

• ULTRIX.Sources."OSITransport.c"

Internal Names

While users generally work with external names, the naming service it­
self works only with internal names. All names must be converted to in­
ternal form before being passed across the interface to the naming ser­
vice. This conversion generally is performed in software that directly
interfaces with the naming service on behalf of an end user or an appli­
cation program. An internal name consists of an NSCTS value followed
by a sequence of fields each containing a simple name. The NSCTS and
simple name values are encoded using a scheme defined in the naming
service architecture. All programs interfacing directly with the naming
service treat internal names as opaque data structures and must process
them using the procedures described in the naming service architecture.

The naming service stores values for a set of attributes associated with
each name in the namespace. Values can be stored for two types of at­
tributes: single-valued attributes and set-valued attributes. A single-val­
ued attribute can take on only one value at a time; a set-valued attribute
can take on any number of values, including zero values (an empty set).

Attribute Operations

The operations that can be performed on attributes were carefully
specified to permit efficient, relatively simple mechanisms to be designed
to perform those operations in a highly distributed and replicated envi­
ronment. This is discussed further when we see how update operations
are performed on the namespace database.

Two operations are defined for single-valued attributes:

• Read. Reads the attribute value.

· Replace. Replaces the attribute value.

Notice that no other update operation other than a complete re­
placement is defined. The distributed update mechanisms would have

356

Directories

PART IV: RELATED ARCHITECTURES AND MECHANISMS

been extremely difficult to design had an update operation been
specified, for example, allowing a value to be added to or subtracted
from an attribute containing a numeric value.

Three operations are defined for set-valued attributes:

• Full Lookup. Reads all existing values in the set.

• Redundant Insert. Inserts a new value into the set. A value is added to
the set only if that value does not already exist in the set. (A set-valued
attribute is a true set and not a bag, which allows duplicate values.)

• Redundant Delete. Deletes an existing value from the set. No error con­
dition is returned if the value does not exist in the set.

Attribute Names

Each different type of attribute that can be stored for a name itself has a
name. Users of the naming service can assign attribute names to any type
of attribute they wish to associate with a named object. However, the
naming service architecture and other parts of the DNA Phase V archi­
tecture assign names for certain attributes useful for many types of ob­
jects. Attribute names assigned by Digital always have at least one $
character in them to distinguish them from names created by users.

There are two general categories of attributes: global attributes and
class-specific attributes. Global attributes are attributes defined by the
naming service architecture itself. The meaning of a global attribute is
defined by the architecture and is the same for any name with which it is
associated. Class-speci"fic attributes are attributes whose definition de­
pends on the value assigned to the Class attribute, one of the global at­
tributes.

We will defer a detailed discussion of the global attributes until after
we have examined the objects the naming service uses to maintain the
namespace graph structure.

In the naming service, the nodes of the underlying tree structure of the
directed graph represent directories, each having a unique name, which
is itself maintained by the naming service. Each directory has a number
of attributes associated with it, including certain of the global attributes
defined by the architecture, and contains zero or more directory entries.

Figure 16.4 shows a simple namespace in which each of the directo­
ries making up the namespace is represented by a circle. The entries

FIGURE 16.4

CHAPTER 16: THE NAMING SERVICE

Directory structure of a simple namespace.

ENG SITES EQUIPMENT

NAC

Light Roman indicates child directory entry
Bold Roman indicates soft link entry
Bold Italic indicates object entry

NICKNAMES

357

MODELS

stored in a directory are shown at the bottom of the circle. The simple
name of the arc leading to each directory is shown at the top of the cir­
cle. Each directory has a full name made up of a concatenation of the
names of the arcs leading to it in the tree structure. The root directory
stores the highest-level directory entries making up the namespace and is
considered to be unnamed. There is a single root for the entire name­
space, and all the directories can be located under the root. The entries in
the directories are linked together to form an acyclic, rooted, directed
graph structure.

Types of Directory Entries

Each of the entries stored in a directory has a simple name and a set of
attributes. Some of the attributes stored for directory entries consist of

358 PART IV: RELATED ARCHITECTURES AND MECHANISMS

the global attributes defined by the architecture. Entries for simple names
stored in directories can be of three types:

• Object Entries. These entries form the leaves of the underlying tree struc­
ture. Object entries can store global attributes and also attributes that
users associate with named objects. For example, one of the attributes
stored for an object entry is typically the DNA$Towers attribute repre­
senting the address of the object in the network. (The DNA$Towers at­
tribute is described in Chapter 11.)

• Child Pointer Entries. These entries name the arcs of the underlying tree
structure. One of the global attributes stored for a child pointer entry
consists of a pointer to a child directory in the namespace tree.

• Soft Link Entries. These entries name the arcs that augment the underly­
ing tree structure to form a directed graph. One of the global attributes
stored for a soft link entry is a pointer used to implement alias names.

Global Attributes

As introduced earlier, the meanings of global attributes are defined by
the architecture and are the same for all entries stored by the naming ser­
vice. Box 16.1 lists the global attributes assigned in the naming service
architecture. Some of the global attributes are associated with directories
and with all three types of directory entries; others apply only to directo­
ries, child pointer entries, soft link entries, or object entries. Most of
them store values that the naming service uses to control its own opera­
tion. Therefore, the meanings of the global attributes give important in­
sights into how the naming service performs its functions.

Directory Invariants

As discussed earlier, the child pointers in the directories making up the
namespace always form a tree structure. A tree of directories makes up
the entire namespace. The namespace enforces two directory invari­
ants, conditions from which the directory structure is never permitted
to deviate.

• Directory Invariant 1. Each directory has exactly one parent. This invari­
ant guarantees that the namespace logical structure always forms a tree.

• Directory Invariant 2. No directory is a child of any of its descendants.
This invariant ensures that the namespace logical structure does not con­
tain any cycles.

Multiple
Namespaces

Namespace
Implementation

CHAPTER 16: THE NAMING SERVICE 359

In practice there is seldom a need for a given network to have more than
one namespace. The implementation of a single logical namespace con­
taining the names of all network resources allows everyone in the net­
work to have access to any resource in the network. The naming service
does, however, allow a network to implement multiple namespaces if an
installation requires them. Multiple namespaces may be necessary in cer­
tain unusual cases for security purposes where an installation wishes to
use the naming service in a compartmentalized environment that uses
mandatory security controls. Support for multiple namespaces also helps
when the namespaces for two isolated networks are about to be merged
to form a single, integrated namespace.

The function of mapping a name stored in a namespace into a set of at­
tributes is relatively simple in concept. If the naming service were imple­
mented in a centralized fashion, with the entire namespace contained in a
single database stored on a single computing system, an existing file system
could be used in a straightforward manner to implement the naming ser­
vice. However, in a large network it is infeasible to store all the names in a
single central location. One reason for this is that the naming service would
then constitute a single point of failure in the network. Since the naming
service is employed by all users to locate resources, failure of the naming
service would mean failure of the entire computer network. Another reason
to avoid a centralized naming service is that it would suffer from poor per­
formance in a large network. The cost of accessing a centralized naming ser­
vice from distant points in the network would be high, and the naming ser­
vice would quickly become both a processing and a bandwidth bottleneck.

A major challenge in designing the naming service was to make the
service operate in a highly distributed fashion and to make it work
efficiently in a large, possibly global network. To meet its design objec­
tives, the naming service must be highly available, highly robust, and
highly distributed. To achieve the required performance and availability,
the namespace is stored in a database that is both partitioned and par­
tially replicated. The term partitioned means pieces of the database are
stored in different physical locations on separate computing systems.
The term partially replicated means the same piece of the namespace can
be stored on multiple computing systems.

We next describe the major components that make up the naming
service and examine the protocols by which naming service components
communicate in carrying out naming operations.

360

BOX 16.1

Naming Service
Global Attributes

PART IV: RELATED ARCHITECTURES AND MECHANISMS

Global Attributes Associated with Directories and All
Directory Entries

"' Creation Tin1estamp(Di~S$CTS). A si:ugle-valuc.:J attributt p.ttSt:1J.i:

and non-null for every directory entry. It contains a value, unique in
space and time, that is assigned when the entry is created and is
never changed. It also serves as a timestamp marking the time the
object was initially created.

• Update Timestamp (DNS$UTS). A single-valued attribute present
for every directory entry and non-null for every object that is up­
dated. For object entries, it provides a timestamp indicating the time
at which the most recent update of an object's attribute values was
made.

• Access Control Set (DNS$ACS). A set-valued attribute containing
a value for each access control element in the object's access con­
trol set.

Global Attributes Associated with Directories

• Replicas (DNS$Replicas). A set-valued attribute identifying all the
clearinghouses storing a replica of this directory.

• Convergence (DNS$Convergence). A single-valued attribute describ­
ing how persistent a directory should be in keeping its replicas up to
date. It contains three possible values: LOW, MEDIUM, and HIGH.
The value LOW indicates that the propagator function is not to be
run when updates are made and that the skulker should be run at
least once every 24 hours for a directory having pending updates.
The value MEDIUM indicates that the propagator is to be run once
for each update and that the skulker should be run at least once
every 12 hours for a directory having pending updates. The value
HIGH indicates that the propagator is to be run once for each up­
date and that a skulk should be scheduled for no more than 1 hour
in the future for a directory having pending updates.

• All Up To (DNS$AllUpTo). A single-valued attribute giving a maxi­
mum value for how out of date the replicas of the directory are. All
replicas are guaranteed to have received all updates whose time
stamps are earlier than this value.

• Clearinghouse Name (DNS$CHName). A single-valued attribute
containing a boolean variable used to enforce the clearinghouse in­
variants.

BOX 16.1

continued

CHAPTER 16: THE NAMING SERVICE

• Parent Pointer (DNS$ParentPointer). A set-valued attribute contain­
ing a set of pointers to each directory's parent in the namespace tree
from the directory in question up to the root. This attribute is main­
tained by nameservers to keep the graph of the namespace properly
connected.

• Directory Version (DNS$DirectoryVersion). A single-valued attribute
giving the current version of a directory.

• Up Grade To (DNS$UpGradeTo). A single-valued attribute used to
control the upgrading of a directory from one version of the naming
service to another.

Global Attribute Associated with Child Pointer Entries

• Child Creation Timestamp (DNS$ChildCTS). A single-valued at­
tribute containing the creation timestamp of the child directory
pointed to by this child pointer entry.

Global Attribute Associated with Soft Link Entries

• Link Target (DNS$LinkTarget). A single-valued attribute containing
the full name of the entry the soft link entry points to.

• Link Time Out (DNS$LinkTimeOut). A single-valued attribute indi­
cating the time after which the soft link is to be either checked or
deleted.

Global Attributes Associate with Object Entries

• Class (DNS$Class). A single-valued attribute used to classify objects
according to the type of object being named.

• Class Version (DNS$ClassVersion). A single-valued attribute used to
allow the definition of an object class to be evolved over time.

• Object Unique Identifier (DNS$0bjectUID). A single-valued at­
tribute used to store a unique identifier for the object assigned ac­
cording to the rules of the Unique Identifier (UID) architecture de­
scribed in Chapter 15.

• Node Address (DNS$Address). A single-valued attribute used only
for compatibility with DNA Phase IV to store the address of the
node on which the object resides. In a DNA Phase V network, the
DNA$Towers attribute is used to store node address information.

361

362

Naming Service
Components

FIGURE 16.5

PART IV: RELATED ARCHITECTURES AND MECHANISMS

The namespace database is implemented in the form of repositories
called clearinghouses. The two major functional components of the
naming service are clerks and nameservers. Users request naming service
op~ratlon~ thr01Jgh ~ clerk 7 ':~rhich commi_!nicate "'.x.rith !!2.!!leservers ~!l

behalf of users. Nameservers retrieve information from and update clear­
inghouses on behalf of the clerks. Clearinghouses, clerks, and name­
servers are distributed among the nodes in the network.

A nameserver can control one or more clearinghouses, but each clear­
inghouse is controlled by one and only one nameserver. A clerk can com­
municate with any of the nameservers in the network. These relation­
ships are illustrated in Figure 16.5, which shows how a clerk might ac­
cess two nameservers and two clearinghouses in satisfying a request for a
naming operation.

Clearinghouses

The unit of both partitioning and replication of the namespace is the in­
dividual directory. A collection of directories stored on a particular sys-

Each nameserver is responsible for one or more clearinghouses. A clerk accesses the
nameserver responsible for the clearinghouse that the clerk determines is most likely to
contain the directories required to satisfy its request. A clerk may access several nameservers
in satisfying a request for a naming service.

User Request for
a Naming Service

Operation

Nameserver

1
Clearinghouse Clearinghouse Clearinghouse Clearinghouse

CHAPTER 16: THE NAMING SERVICE 363

tern and accessible by a single nameserver is called a clearinghouse.
Clearinghouses are either active or inactive. When at least one clearing­
house is active in a given system, the system is currently acting as a
nameserver. Although a nameserver typically has access to a single clear­
inghouse, which contains all the directories the nameserver can directly
access, it is possible for a nameserver to concurrently control and access
multiple clearinghouses. This might happen when a nameserver fails and
a clearinghouse has to be moved to a new nameserver.

Clerks

A clerk is the naming service component that implements the application
programming interface to the naming service and that performs naming
service operations on behalf of end users and application programs. All
requests for naming operations that users make, either directly or indi­
rectly, are made of a naming service clerk. Each node in the network con­
tains an implementation of a clerk. Box 16.2 lists the functions a user of
the naming service can ask a clerk to perform.

Nameservers

A nameserver is the naming service component that actually accesses the
clearinghouses containing the directories making up the namespace. Not
all nodes implement a nameserver component. A network should include
enough nameservers to provide the performance, robustness, and avail­
ability required for a given size network. A nameserver can be imple­
mented in a general-purpose computing system performing other tasks
as well as naming. However, in large networks it is likely that the name­
server function will be performed by specialized processors, just as the
routing function is generally performed by specialized routers.

A nameserver is composed of four major modules, as shown in Fig­
ure 16.6. The following are descriptions of the functions of the name­
server modules:

• Control. The Control module of a nameserver coordinates the overall
operation of the nameserver, such as turning it on and off and bringing
clearinghouses online. The Control module is also responsible for peri­
odically advertising the availability of the nameserver.

• Transaction Agent. The Transaction Agent module performs the opera­
tions requested by clerks. The transaction agent is responsible for accessing
one or more clearinghouses and for communicating with other transaction
agents to coordinate the creation, deletion, and modification of directories.

364

BOX 16.2

Naming Service
Clerk Functions

PART IV: RELATED ARCHITECTURES AND MECHANISMS

• EnumerateAttributes. Enumerates the attributes of an object entry,
directory entry, soft link, or clearinghouse.

• ReadAttribute. Returns the value(s) of the specified attribute.

• ModifyAttribute. Modifies (or deletes) an attribute or attribute
value.

• TestAttribute. Tests for whether a value is a current attribute value.

• CreateObject. Adds an object entry to the namespace.

• EnumerateObject. Returns the names of object entries from the
namespace.

• DeleteObject. Removes an object entry from the namespace.

• CreateDirectory. Creates a child directory under the specified parent
directory.

• AddReplica. Adds a clearinghouse from the replica set of a directory.

• RemoveReplica. Removes a clearinghouse from the replica set of a
directory.

• DeleteDirectory. Removes the specified directory from the names­
pace.

• EnumerateChildren. Returns information about child directories of
the specified parent directory.

• Skulk. Skulks a directory to force convergence of its replicas.

• CreateLink. Creates a soft link entry.

• DeleteLink. Deletes a soft link entry.

• EnumerateLinks. Enumerates the soft link entries in a directory.

• ResolveName. Follows a chain of soft links and returns the full name
of the entry pointed to. Cycles are detected.

• TestGroup. Tests for group membership, allowing for recursively
defined groups and for detecting cycles.

• Update Sender. The Update Sender module is responsible for spreading
changes made to directories in the local clearinghouse to all other clear­
inghouses that contain copies of that directory. This process is described
later when we discuss directory updating.

• Update Listener. The Update Listener module receives directory updates
from the update sender and records the changes in the appropriate clear­
inghouse. The update sender and the update listener are also responsible

FIGURE 16.6

Naming Service
Protocols

FIGURE 16.7

CHAPTER 16: THE NAMING SERVICE

Nameserver modules.

EJ
Update
Listener

Nameserver

Transaction
Agent

Update
Sender

365

for ensuring that clearinghouses can find each other when a new clear­
inghouse is created or when a clearinghouse is moved.

Four protocols are used in implementing the distributed algorithms that
the naming service uses to perform its functions, as shown in Figure 16.7
and briefly described next:

· Solicitation and Advertisement Protocol. The Solicitation and Advertise­
ment protocol (S.Protocol) is the means by which clerks learn about
available nameservers. Nameservers periodically advertise their avail­
ability by multicasting advertisement messages. Clerks can also solicit
advertisements from nameservers.

Naming service protocols.

Clerk

S.Protocol C.Protocol

M.Protocol

EJ Control Transaction Transaction
Agent C.Protocol Agent

Update Update P.Protocol Update Update
Listener Sender Listener Sender

Nameserver

366

Namespace
Partitioning

PART IV: RELATED ARCHITECTURES AND MECHANISMS

• Clerk-Server Protocol. The Clerk-Server protocol (C.Protocol) is the pro­
tocol a clerk uses to request naming information from a nameserver.

• Directory Maintenance Protocol. The Directory Maintenance protocol
(M.Protocol) is used by Transaction Agent modules to coordinate their
activities in creating, deleting, and modifying directory entries in clear­
inghouses.

• Update Propagation Protocol. The Update Propagation protocol (P.Pro­
tocol) is the protocol that Update Sender modules and Update Listener
modules use to propagate directory updates from one clearinghouse to
another.

We next describe methods used for partitioning and replicating the
namespace. After that we will walk through a typical naming operation
to see how a naming operation is performed.

Partitioning of the namespace is accomplished by deciding which clear­
inghouses will contain which directories. A particular clearinghouse
need not contain all the directories that make up the underlying name­
space tree structure. However, it must be possible for a naming service
clerk to always be able to access any directory in the namespace.

As introduced earlier, a clerk must be able to find the root of the
namespace by coming in from any clearinghouse, and the clerk must
then be able to locate any directory once it has found the root. One way
this could have been accomplished would be to require each clearing­
house to maintain a copy of the root directory. However, to enhance the
scalability of the naming service, the architects of the naming service de­
cided not to require this restriction. Instead, clearinghouses are assigned
names so the naming service itself can be used to locate clearinghouses in
the network. The architecture enforces certain invariants on the assign­
ment of clearinghouse names to enable any clerk to locate any directory
beginning in any clearinghouse.

Clearinghouse Invariants

Clearinghouse names are assigned according to a set of rules that ensure
that a name lookup for a clearinghouse cannot fail because the clearing­
house in which a required directory is located cannot be found. These
naming rules revolve around two clearinghouse invariants that are never
violated during normal operation of the naming service:

Directory
Replication

CHAPTER 16: THE NAMING SERVICE 367

• Clearinghouse Invariant 1. A clearinghouse must contain at least one di­
rectory whose name is closer to the root of the namespace than the name
of the clearinghouse itself. This invariant guarantees that the root is al­
ways reachable by starting at any clearinghouse.

• Clearinghouse Invariant 2. Every directory must be replicated in at least
one clearinghouse whose name is closer to the root than the name of the
directory itself. This invariant guarantees that every directory is reach­
able from the root without having to look up a clearinghouse, which
would in turn require looking up the subject directory.

Namespace replication is accomplished by storing a given directory in
more than one clearinghouse. A copy of a directory stored in a particular
clearinghouse is called a replica. There are three kinds of replicas:

• Master Replicas. One and only one replica of a directory is designated
the master replica. To simplify maintenance, certain types of update op­
erations are performed only on master replicas. For example, the master
replica is the only replica in which a new directory can be created by
adding a child pointer to a higher-level directory.

• Secondary Replicas. Another type of replica is a secondary replica. New
soft link or object entries can be added either to a master or a secondary
replica, and existing directory entries can be updated in either master or
secondary replicas.

• Read-Only Replicas. A third kind of replica is a read-only replica. It can
handle requests for name lookups but cannot service user requests for
adding or updating directory entries. Read-only replicas are updated
only by the naming service itself.

We next walk through a typical naming service operation. We will
see how the components of the naming service work together to access
the partitioned and replicated namespace database in performing nam­
ing operations.

Naming Operation A naming service user requests a naming operation by communicating
with a clerk via the clerk-client interface. A typical naming operation
might be to issue the ReadAttribute function to retrieve a particular at­
tribute in a directory entry.

368 PART IV: RELATED ARCHITECTURES AND MECHANISMS

To satisfy a retrieval request for a directory entry, a clerk begins by
choosing a clearinghouse likely to have the requested directory entry and
establishing communication with the nameserver responsible for that
clearinghouse. In most cases, the clerk will do this using information
from a parent directory it '1 lr.,;:iny h::is stort>cl in a cache.

Assuming the clerk can locate the appropriate clearinghouse from
information available to it, the clerk communicates with the nameserver
responsible for that clearinghouse using the C.Protocol and requests the
desired directory entry. It then passes the attributes associated with the
directory entry to the user.

Walking the Namespace Tree

In some cases, the clerk will not know which clearinghouse contains the
required directory, and it must walk the namespace tree to locate the
clearinghouse containing the directory entry it is looking for. Even
though a clerk may not have information about the clearinghouse that
contains the information the clerk is searching for, it must have some in­
formation to get started. This may be a directory entry for some ancestor
directory above the desired entry's parent. In the worst case, the clerk
may have to begin in any clearinghouse whose address is available to it.
In the absence of any cached directory entries, the clerk uses the address
of a nameserver that has advertised its availability or an address in a stat­
ically configured list of nameservers available to the clerk.

Depending on where it starts, the clerk may have to follow a number
of pointers to reach the clearinghouse that contains the entry it is search­
ing for. If the clerk has already found a clearinghouse containing the root
of the namespace, it can start at the root and follow pointers found in
child directory entries until it reaches the desired directory entry.

It is possible-especially when a clerk first becomes operational and
has no cached directory entries-for the clerk to not yet have access to a
clearinghouse that contains the root of the namespace. In such a case,
one of the clearinghouse invariants described earlier guarantees that a
clearinghouse not containing a replica of the root directory must contain
a pointer to another clearinghouse closer to the root. The clerk can fol­
low these pointers from clearinghouse to clearinghouse, moving up at
least one level each time, until it eventually reaches a clearinghouse that
has a root directory replica. It can then follow child pointers until it finds
the entry it is looking for.

We next examine the way in which the naming service handles up­
date operations and how directory replicas are brought into convergence.

Namespace
Updating

CHAPTER 16: THE NAMING SERVICE 369

The updating algorithms defined by the naming service architecture are
designed to operate efficiently and correctly in a highly distributed envi­
ronment. The updating algorithms operate so all updates are total, idem­
potent, and commutative:*

• Total. Total means that an update can always be applied without regard
to any of the updates made in the past.

• Idempotent. Idempotent means that multiple applications of the same
update to the database has the same effect as a single application of the
update.

· Commutative. Commutative means that a series of updates can be ap­
plied in any order with identical results.

The total and idempotent aspects of attribute updating are facili­
tated through the limited types of allowed update operations. For exam­
ple, attribute values can only be completely replaced and cannot be in­
cremented or decremented. The commutative aspect of updating is
handled via update timestamps. All updates made to the database imple­
menting the namespace are time stamped and are always applied so the
update entering the network most recently always wins.

Loose Consistency Guarantees

A first look at the features provided by the naming service can give the
impression that it has many of the features associated with a general­
purpose distributed database facility. However, the architectural
specifications for the naming service specifically warn against using it for
such general-purpose applications.

NETWORK ARCHITECT

Although the database used to maintain a namespace can be used to perform

many of the functions a user might want in a distributed database system, the

naming service has many characteristics making it ill suited for such uses. The

naming service is intended to be used to store a small amount of information for

a very large number of things, rather than a lot of information about a few

things. Also, the level of replication the naming service supports is far beyond

the level of replication typically associated with distributed databases. A typical

* The operation to create a new attribute does not satisfy these properties.

370 PART IV: RELATED ARCHITECTURES AND MECHANISMS

distributed database might implement two, three, or four replicas, but beyond

that the overhead ordinarily gets too great. The naming service is designed to

support possibly 100 replicas of the same directory scattered around a world­

wide network.

The naming service provides very loose consistency guarantees to
allow the namespace to be partitioned and replicated to provide for high
levels of availability and performance. Immediately after a change is
made to one replica of a directory, a temporary situation may exist in
which different users may get different answers when querying the nam-
. .
mg service.

Suppose I move from Boston to San Francisco. Before moving I up­
date the address attribute associated with the ENG.NAC.JamesMartin
user name in the Boston clearinghouse. In a large organization, it is likely
that the directory storing the object entry for ENG.NAC.JamesMartin is
replicated in a great many clearinghouses maintained by different name­
servers. Immediately after I update the address attribute of my user
name, those users that happen to be using the nameserver controlling the
Boston clearinghouse will have immediate access to my new e-mail ad­
dress. However, if someone in London attempts to send me an e-mail
message immediately after I change my address, it is possible that the
clearinghouse used in London may not yet have been informed of the
change, and the message may go to Boston instead of San Francisco.

It is also possible for two users employing different clearinghouses
to each attempt to register the same name in the naming service and both
be allowed to do so. After the directories converge, only one of the
names registered will be valid: To handle this type of situation, the nam­
ing service uses the notion of safe and unsafe names.

NETWORK ARCHITECT

One of the most unusual features of the naming service is this notion of loose

consistency guarantees. If two people go to the naming service and both register

the name Dave Oran, and they happen to go to two different nameservers,

those two nameservers will both accept the name. Such a situation would be

totally unacceptable in most distributed database applications. Instead of trying

to do distributed synchronization with two-phase commits or trying to imple­

ment a quorum consensus algorithm, we implemented the notion of safe names

and unsafe names. When you first register your name, it's unsafe. At any time

CHAPTER 16: THE NAMING SERVICE 371

you can go in and ask the naming service: "Is my name safe yet? Is my name

safe yet? Is my name safe yet?" And eventually either you will be told your

name is safe, or you will be told someone else claimed that name before you did.

In a well-managed, well-designed network, a name will become safe within min­

utes and often within seconds. And also, if the installation's naming conventions

are well designed, name conflicts will occur very seldom, so the problems associ­

ated with unsafe names will be rare. But the architecture takes great pains to

ensure that no matter what, at some point either a name becomes safe or you

are notified that someone else claimed it first. The alternative was that we would

have had to require a quorum of the nodes to be operational in order to be able

to do an update. Many more people would be upset if they tried to give a name

to something and they were told they couldn't do it than by allowing an opera­

tion to occasionally fail because the directories didn't converge immediately.

Directory Update Convergence

When an update is made to a replica of a directory, the nameserver con­
trolling that replica typically makes a one-time attempt to spread that
change to all other clearinghouses containing replicas of that directory.
This updating attempt is performed by a naming service function called
the propagator. In most cases, the propagator causes convergence to take
place relatively quickly. The function of the propagator as described in the
naming service architecture is relatively simple and defines the function as
being performed at the time each update is made. However, the architec­
tural description of the propagator suggests a series of optimizations of
this function that actual implementations might employ, including:

• running the propagator as a background thread, thus allowing responses
to be returned to naming service clerks more rapidly than if propagation
occurred synchronously

• waiting for a short time before running the propagator function to allow
updates to be batched, thus potentially reducing the number of required
connections to the same clearinghouse

• sequencing the transmission of updates by clearinghouse rather than by
entry to make better use of network resources

• caching connections to clearinghouses to potentially reduce the overhead
associated with connection establishment and authentication operations

• omiting the propagation function if an execution of the convergence al­
gorithm (described next) is scheduled soon

372 PART IV: RELATED ARCHITECTURES AND MECHANISMS

The Skulker

A network manager can specify that the propagator should not be run
for certain directories. Even if the propagator was executed, there may
be situations where one or more clearinghouses were not available at the
time the propagator function was run. There is another convergence al­
gorithm, called the skulker, that operates periodically for each directory
in the namespace. It forces convergence for those updates the propagator
was not able to fully propagate.

NETWORK ARCHITECT

During the design of the naming service architecture we gave the convergence

algorithm the nickname "the midnight skulker," and it sort of stuck. You're let­

ting the system go on during the day, and then at night the skulker will skulk

around through all the clearinghouses and fix everything up for you. The skulker

is the background algorithm that runs around through the replicated directories,

figures out what's different about them, and makes them all the same.

Skulk Operation Execution of the convergence algorithm is called a
skulk. Skulks operate independently on each directory in a namespace
and can be done at intervals set individually by network managers for
each directory. For each directory, the master replica is linked to the sec­
ondary replicas in a virtual ring structure. (A master replica that is not
replicated simply points to itself.) The virtual ring keeps multiple skulks
of a single directory from getting in each other's way. For a skulk opera­
tion to complete successfully, it is necessary for all clearinghouses con­
taining replicas of the directory being skulked to be online during the
time the skulk is executed.

The following is a simplified description of what the skulker does in
bringing replicas of a directory into convergence:

1. The skulker gathers up all updates made to the master replica and all
updates made to secondary replicas and applies them to the clearing­
house in which the skulker is running.

2. The skulker then spreads all the gathered updates to all other replicas
of the directory so the master replica and all secondary replicas are
brought into synchronization.

3. Finally, the skulker informs all the replicas of the timestamp of the lat­
est update that all of them are guaranteed to have seen. This timestamp
is maintained for each directory replica in the DNS$AllUpTo attribute.

CHAPTER 16: THE NAMING SERVICE 373

The skulker is a distributed algorithm that can be started by any
nameserver, and it is possible for skulks to be running concurrently in
more than one replica of a given directory. The algorithm is designed so
when this happens, resources may be wasted but the directory will not be
corrupted and all replicas will still converge. To increase efficiency, a
function of the skulker detects the operation of other skulkers in the
same directory and terminates all the skulks except for the one most re­
cently started. Once the skulk process has completed successfully for a
given directory, all replicas are guaranteed to be in convergence as of the
time contained in the DNS$AllUpTo attribute.

The more frequently skulks are run, the more up to date all the
replicas of a directory will be. In a large network, skulks can be expen­
sive to execute, so network managers must make tradeoffs between the
cost of the computing resources required to maintain convergence and
the cost of being somewhat out of synchronization for a period of time.
(What is the cost of not being able to locate ENG.NAC.JamesMartin for
a while?) Network managers can control the frequency of skulks either
by adjusting one of the global attributes associated with each directory
or by manually initiating skulks.

Skulk Operation Failure In a large, global network, it is possible for a
skulk operation to fail. If the skulker repeatedly fails to complete suc­
cessfully, it is due to one of the following reasons:

• One or more replicas of a directory are not available because one or
more clearinghouses are currently offline.

• The network has become partitioned, so communication with one or
more clearinghouses is not possible.

• A clearinghouse has been destroyed due to a hardware failure or a seri­
ous operator error.

• The clocks in the network have gone out of synchronization to such an
extent that updates to directories are being rejected.

• The structure of the namespace has been corrupted.

• A nameserver has a programming error causing it to operate incorrectly.

• There is an error in the naming service architecture itself.

If either of the first two situations occurs, the skulk operation will
eventually complete successfully once the offline clearinghouses are
placed online or after the required resources are made available to re­
cover from the network partitioning. The next four situations require
more elaborate recovery procedures typically requiring network manage-

374 PART IV: RELATED ARCHITECTURES AND MECHANISMS

ment intervention. The naming service architecture describes these recov­
ery procedures in detail. As for the last reason:

NETWORK ARCHITECT

We feel confident that we have addressed all seven reasons for a skulk operation
failing. But the seventh type off ailure would be rather serious and the prospect

of that happening sometimes keeps us up at night.

X.500 and the OSI As introduced earlier, CCITT Recommendation X.500 and ISO 9594,
Directory the OSI Directory, describe an international standard for a naming ser­

vice. The DNA Phase V naming service has some similarity to the OSI
Directory. Both the naming service and an implementation of the OSI Di­
rectory allow a user to specify a name and get back either an indication
that the name does not exist or the set of attributes associated with that
name. There are, however, also a great many differences between the
naming service and the OSI Directory. Perhaps the biggest difference is
that the naming service operates only on primitive names, whereas the
OSI Directory works with limited forms of descriptive names.

Distinguished Attributes

The OSI Directory stores sets of attribute names and attribute values.
One type of attribute the OSI Directory stores is called a distinguished
attribute, which functions as a name. Distinguished attributes can be
used to provide a function similar to returning the set of attributes asso­
ciated with a name. (For example, what attributes are associated with
ENG.NAC.JamesMartin?)

Descriptive Searches

Another major function provided by the OSI Directory, not provided by
the naming service, is the search function. The search function allows a
user to request a search based on an arbitrary set of attribute name/at­
tribute value pairs. These are called attribute value assertions (AVAs) in
the terminology unique to X.500 and the OSI Directory. An example of
an informally stated set of AVAs might be: "Give me information about
all the users whose Group attribute has the value 'Network and Commu-

CHAPTER 16: THE NAMING SERVICE 375

nications' and whose Division attribute has the value 'Engineering'."
The naming service does not provide such descriptive search capabilities.

Differences Between the Naming Service and the DSI Directory

The following is a list of the major differences between the naming ser­
vice and the OSI Directory:

• The naming service maintains primitive names and allows only name­
to-attribute mapping; the OSI Directory maintains descriptive names
and allows limited descriptive searches in addition to name-to-attribute
mappmg.

• In the naming service graph structure, the arcs of the graph do not have
types associated with them; in the OSI Directory, all the arcs of the graph
are typed.

• In the naming service, there is no formal schema or enforced formal
structure associated with a namespace. Users are able to structure a
namespace in any desired manner. An OSI Directory namespace has a
formal schema defining allowable data types and places constraints on
the shape of the namespace graph structure.

• The naming service defines detailed methods for allowing portions of the
namespace to be replicated. The OSI Directory currently provides no in­
formation on how replication should be handled. The OSI Directory
standard currently includes a general discussion of replication but leaves
the details of how it is to be accomplished to individual implementors.

• The naming service provides access control facilities for implementing
security functions. The OSI Directory currently provides no access con­
trol facilities.

NETWORK ARCHITECT

To build an implementation of the OSI Directory today, you have to add a lot

of things not discussed in the standard. This is a problem for interoperability.

The things addressed in the standard will interoperate, but things that go

beyond the standard may not. So if somebody implements replication, you can

only replicate among nameservers of a given vendor. It is the intention of Digital
to eventually merge the naming service with the OSI Directory. And when that

is done, the user will get the best of both worlds. The real problem today is that

the OSI Directory is not yet complete and won't be until about 1992.

376

Conclusion

PART IV: RELATED ARCHITECTURES AND MECHANISMS

The DNA Phase V naming service is a ubiquitous service, available on all
network nodes, that users can employ to locate network resources. An­
other ubiquitous set of services pervading the entire DNA Phase V archi-
l.t:<..;i..Urt l.-UHLti1IS r1101iitoring ai1d cvutrol!ing the YU.Gt array af resources
that make up a computer network. The network management aspects of
the DNA Phase V architecture are described in Chapter 17.

International
Standards

CHAPTER 17

Network Management

DNA network management allows network managers to control and
monitor the operation of a DECnet Phase V communication network. It
allows parameter values to be specified that describe how various aspects
of the network are to operate and allows parameter values automatically
set by DNA Phase V protocols to be fine-tuned as necessary. DNA net­
work management allows network managers to start and stop network
components as needed, to monitor the operation of the network, and to
extract and analyze information relating to network traffic and network
performance. Network management data is collected in real time and can
be used to generate statistical and auditing information.

Digital's philosophy is that network management should be limited
to the setting of options related to matters of policy rather than those re­
lated to the normal operation of the network. For example, all network
protocols-such as the protocol controlling the distributed routing algo­
rithm-have mechanisms built into them to control normal network op­
eration. These mechanisms are outside the scope of network management.
They automatically set parameters to the proper values as link failures
occur and as nodes come up and down. No network management inter­
vention is required to control the day-to-day operation of the network.

DNA Phase V network management is based on the emerging interna­
tional standards for network management. The draft international stan­
dards for network management that ISO is developing divide manage­
ment functions into five specific management functional areas (SMFAs):

• configuration management

• fault management
377

378

Network
Management
Evolution

Enterprise
Management
Architecture

PART IV: RELATED ARCHITECTURES AND MECHANISMS

• performance management

• security management

• accounting management

The current ISO draft internationai standards do not cover aii as­
pects of managing communication networks. In cases where standards
are not currently being developed, DNA Phase V uses proprietary solu­
tions. Digital's intention is to migrate toward international standards
when they become available.

Network management has been a part of DNA since about 1978, when
DNA Phase II was introduced. Until the development of the network
management architecture included in DNA Phase V, DNA network man­
agement was defined in a single architectural specification defining the
network management aspects of all components of DNA. Such a mono­
lithic approach to network management led to a number of problems,
including a large and unwieldy network management document and
difficulties in keeping the network management architectural
specification synchronized with the architectural specifications for other
components.

In DNA Phase V, there is still a network management architectural
specification. However, it describes only the general approach to net­
work management. The details concerning the management aspects of
each individual architectural module are contained in the architectural
specification for the module itself. Such an approach moves the responsi­
bility for the management aspects of an architectural module to the ar­
chitectural group responsible for that part of the architecture. For such
an approach to work, provision must be made for guaranteeing consis­
tency in the management approach from one architectural module to an­
other, both within and outside the DNA Phase V architecture. This led to
a requirement for an overall management architecture within which the
DNA Phase V network management architecture would fit.

While DNA Phase V was being developed, it became clear that with the
advent of truly distributed systems, the distinction between the manage­
ment of a local computing system and the management of the network
was beginning to break down. What was needed was a much more gen­
eral approach to management. This resulted in the development of the
Enterprise Management Architecture (EMA), which defines a distributed

CHAPTER 17: NETWORK MANAGEMENT 379

system as a collection of individual computing systems tied together by a
communication network for the purposes of sharing resources. EMA is a
meta-architecture that ensures consistency among a family of manage­
ment architectures in the same way an individual architecture ensures
consistency among a family of implementations. EMA is based on ob­
ject-oriented design principles. Object-oriented design views data values
as being embedded within an object. Data values are accessed through
the object itself rather than directly from the outside. The DNA Phase V
network management architecture is only one of a series of management
architectures that will eventually fall under the EMA umbrella. The
DNA Phase V network management architecture describes how the com­
ponents making up a DNA Phase V communication network are man­
aged. Other management architectures describe how various other com­
ponents in the total distributed system are managed.

The Entity Model At the heart of the enterprise management architecture is the entity
model. The entity model uses the term entity to refer to any type of object
in a distributed system that must be managed. The concept of an entity
closely corresponds to the concept of an object in object-oriented design.
Management can be described as a feedback loop between a person (a
manager) and a set of entities (the things that are managed) (see Figure
17.1). The entity model defines two major classes of software components:

FIGURE 17.1

• Directors. A director is a software system that managers use to manage
the various components of a distributed system.

· Agents. An agent consists of a software component associated with the
entity being managed.

Monitor/control feedback loop.

Monitor

Network
Manager

Entities

Control

380

FIGURE 17.2

Entity Hierarchy

PART IV: RELATED ARCHITECTURES AND MECHANISMS

Director, agent, and management protocol.

Director

Management Protocol

Directors communicate with agents by means of a management pro­
tocol that handles the flow of information between the two. The rela­
tionship between directors, agents, and a management protocol is shown
in Figure 17.2.

The management information and operations that pass between di­
rectors and entities are described below:

• Directives. Directives flow from a director to an agent, and responses to
directives flow back from an agent to a director. Directives consist of
commands a director issues to an entity, possibly as a result of a manager
issuing a command to the director. Most management needs are satisfied
by two directives: Show to read a value of interest to management and
Set to change a value. The directives Add and Remove are also defined
for management information consisting of a set of values. Directives for
certain types of entities also include actions. Examples of actions apply­
ing to many types of entities are Enable and Disable, which allow an en­
tity to be turned on and off. Many other actions are specific to a particu­
lar type of entity. The detailed definitions of actions are entity specific.

• Events. Events flow from an agent to a director. An event is generated
when some specific normal or abnormal condition occurs that is of inter­
est to management.

A distributed system is constructed from manageable components, and
the more computing systems there are in the distributed system, the more
manageable components there are. To allow effective management of dis­
tributed systems using very large networks, the components must be orga­
nized into a logical structure, and they must be named so managers can

FIGURE 17.3

CHAPTER 17: NETWORK MANAGEMENT 381

deal with the complexity. EMA uses a hierarchical system for naming en­
tities in which parent entities can have child entities subordinate to them.

Entity Classes

While all entities, from a management perspective, share a common ar­
chitecture, they are far from similar in function. For example, a Trans­
port layer entity performs functions very different from those performed
by a Network layer entity. However, entities can be grouped into classes;
all entity instances that are members of the same class are similar. In gen­
eral, the architectural specification for a particular component-such as
OSI transport-defines a specific entity class.

Within a particular class of entity, there may be a number of child
entities. For example, within the OSI transport entity class, there is a
child entity class called OSI Transport Port. A port defines an end point
of an OSI transport connection. There is an instance of the Port entity
class within the OSI Transport entity instance for every OSI Transport
connection currently in operation. (See Figure 17.3.)

Entity hierarchical structure.

Node Entity Instance

OSI Transport Entity Instance

Port Entity 1-i
Instance

h

t-

l1

Connection 4

Connection 3

Connection 2

Connection 1

382

Network
Management
Entities

PART IV: RELATED ARCHITECTURES AND MECHANISMS

Instances of a class can vary slightly. For example, an OSI Transport
Port entity instance requesting the establishment of a Transport connec­
tion is slightly different from an OSI Transport Port entity instance ac­
cepting a connection request. However, the differences are minor and
both types of OSI Transport Port erni1y insrnnces are members uf the
same entity class.

Entity Attributes

An entity has a set of internal variables defined for it. The variables that
can be inspected or set by a management action are called attributes. The
values of an entity's attributes represent all the information about the en­
tity that are of concern to management. Box 17 .1 describes the four
types of attributes that can be associated with an entity instance.

With respect to DNA Phase V network management, systems making up
the network are defined as the highest-level components in the naming
hierarchy. Each system (end node, router, name server, etc.) in the net­
work is represented to network management by an instance of the Node
entity class. Each Node entity instance is assigned a globally unique
name. The name of the Node entity instance is used as the highest-level
identifier in the name assigned to each manageable entity within that
node. Node entity instance names are registered with the naming service
along with the attributes associated with that node, including the node's
network-service-access-point (NSAP) address.

Below the Node entity instance in the entity hierarchy are class
names of Module entities. A module consists of a group of networking
functions that together provide a particular service. For example, there is
a Module entity class associated with each different type of entity that can
run in each of the architectural layers. The Transport layer includes an
NSP Transport Module entity class and an OSI Transport Module entity
class. At the next level down in the hierarchy are entity classes subordi­
nate to the Module entity class. These are defined to allow individual
management of some part of a module's functions. For example, the
High-level Data Link Control (HDLC) module includes a child entity
class named Link. Since there can be many links attached to the node over
which the HDLC protocol can operate, there must be a separate Link en­
tity instance for each HDLC link attached to the node. The network man­
agement architecture allows any number of levels of child entity classes to
be specified. In the HDLC example, the hierarchy has three levels:

BOX 17.1

Entity Attribute
Types

CHAPTER 17: NETWORK MANAGEMENT

• Identification. An identification attribute uniquely identifies an entity
instance to management.

• Characteristic. A characteristic attribute allows a manager to control
the operating parameters of an entity. For example, the parameters
that determine the DDCMP polling rate or the cost of a routing cir­
cuit are characteristic attributes. In general, characteristic attributes
take default values when the entity is created, and their values can be
changed only through a network management action. The values of
characteristic attributes are not changed during normal distributed
system operation.

• Status. Status attributes allow a manager to inspect the current state
of an entity. Unlike characteristic attributes, status attributes can
change without management intervention. For example, the values
of status attributes can change as a result of normal distributed sys­
tem operation.

• Counter. A counter attribute indicates the number of times an opera­
tion has been performed by an entity or the number of times a par­
ticular condition has been detected. As with status attributes,
counter attributes change in value as a result of normal distributed
system operation.

1. an instance of the Node entity class

2. an instance of the HDLC Module entity class

3. an instance of the Link entity class

Entity Instance Names

383

The full name of an entity instance is made up by concatenating all the
individual entity class and instance names in the hierarchy. Each entity
name is made up of a global part and a local part. The global part con­
sists of the name of the Node entity class and instance; the local part is
made up of all the child entity classes and instances, up to the level of the
Node entity instance. For example, the name "Node NAC.Dept57
HDLC Link DSV-0" might refer to HDLC link "DSV-0" attached to the
computing system whose node name is NAC.Dept57.

The global part of the name is used to establish a connection be­
tween the node in which the access module resides and the node contain­
ing the required agent. An agent in the node entity then uses the local

384

Entity
Architectural
Model

FIGURE 17.4

PART IV: RELATED ARCHITECTURES AND MECHANISMS

part of the entity name to identify the next level of child entity to which
the directive is addressed. If there are multiple levels of child entities, the
process is repeated by each child entity in the hierarchy until the destina­
tion agent is reached.

Although a distributed system employs many different types of entities
that have very different characteristics, from a management perspective
all entities have a common architecture. As we have seen, one or more
Module entities are associated with each of the layers of the DNA Phase
V architecture. The architectural model of the OSI Transport layer entity,
from a management perspective, is shown in Figure 17.4. All entities are
made up of the following:

• Name. Each entity has a name associated with it that uniquely identifies
it in the distributed system. Global entity names-such as the names of
instances of the Node entity class in DNA Phase V-are registered with
the DNA Phase V naming service.

• State Machine Definition. An entity's state machine definition defines a
set of state variables whose values define the entity's state at any given in­
stant. For DNA Phase V entities, an entity's state machine definition is
ordinarily a part of the entity's protocol specification and is not
specifically related to network management.

OSI Transport entity architectural model.

c Q)

Network ~ ~
Management.-..--__, ~ ~

Director ~ E
::;;:

OSI
Transport

User

OSI
Transport

Client

Director
Architectural
Model

CHAPTER 17: NETWORK MANAGEMENT 385

Interfaces. Interfaces to the entity define the operations that provide
input to and output from the state machine.

Interfaces

A typical entity, such as the Transport layer entity shown in Figure 17.4,
has three types of interfaces, only the first of which is directly associated
with management:

• Management Interface. The management interface defines the way in
which a director access module issues directives to the agent and the way
in which the agent sends information about events to the director access
module.

• Service Interface. The service interface defines how the entity provides
services to other entities. For example, the OSI Transport layer entity ser­
vice interface defines the operations a user of the OSI Transport entity
(such as the DNA Session Control layer) can request of the Transport
layer entity.

• Client Interface. The client interface defines the operations the entity can
request of other entities. For example, the OSI Transport layer entity
client interface defines the operations the OSI Transport layer entity can
request of a Network layer entity.

Managers use the software that makes up a director to control and mon­
itor a collection of entities. For example, to control and manage a com­
munication network, a network manager might use director software
specifically designed to manage a DECnet Phase V communication net­
work. To control the operation of a distributed system, a distributed sys­
tem manager might use director software designed to handle all aspects
of the distributed system, with management of the communication net­
work being only part of the management function. The director architec­
ture has been specifically designed to be extensible to allow for the man­
agement function to be expanded in a consistent manner over time.

The director provides an interface between a manager and a collec­
tion of manageable objects, each represented by an entity. Directors are
themselves manageable objects conforming to the entity model. Figure
17.5 shows the architecture of the director. It consists of the following
components:

• Kernel. The kernel provides a set of services that support and integrate
the other functions of the director.

386

FIGURE 17.5

PART IV: RELATED ARCHITECTURES AND MECHANISMS

Management Director architectural model.

LJ LJ

Function
API Management

Information
Repository

• Management Information Repository. The management information
repository is a database of management information about the entities
being managed.

• Application Programming Interfaces. A set of application programming
interfaces (APis) define how the other three types of director components
can be plugged into the director. The director APis allow the other three
components to be implemented in a manner independent of the particu­
lar hardware or operating system on which the kernel and the manage­
ment information repository are run.

• Presentation Modules. A presentation module consists of software that
handles a particular style of user interface between a manager and a di­
rector. Any number of presentation modules can be plugged into the di­
rector to handle different user interface styles. Presentation modules are
independent of the entities being managed and of the functions that can
be applied to them.

• Function Modules. A function module consists of software that handles
a set of specific management applications. It implements a set of specific
management actions that can be applied to a collection of entities. Fune-

Network
Management
Operation

DNA Phase V
Management
Architectures

CHAPTER 17: NETWORK MANAGEMENT 387

tion modules are independent of the entities being managed and of the
user interface style a manager employs.

• Access Modules. An access module consists of software that handles com­
munication with one or more of the entities being managed. Access mod­
ules are independent of the functions that can be applied to the entities and
of the user interface style a manager employs. An access module operates as
a sink that receives information about events the managed entities generate.

The DNA Phase V network management architecture is designed to use
many of the distributed computing services described in Chapters 15 and
16. For example, network management uses the naming service to man­
age names and the time service to obtain date and time-of-day values.
Network management also uses the services of the DNA Session Control
layer to provide communication capabilities for management compo­
nents. The services of the Data Link layer are also sometimes used di­
rectly to handle some basic management operations, such as loading and
dumping when not all Network protocols are operating, for example,
during node initialization or after certain types of failures.

A number of architectures support DNA Phase V network management
and the entity model. The following sections provide overviews of these
architectures.

Common Management Information Protocol

In most cases, the network management director software will reside in
one or more nodes remote from the node in which the managed entity
and its agent reside. Communication between the director and the agent
is controlled by an Application layer protocol called the common man­
agement information protocol (CMIP). DNA Phase V CMIP is based on
the emerging ISO standards for CMIP. The DNA Phase V version of
CMIP is a combination of two protocols:

• Management Information Control and Exchange. The management in­
formation control and exchange (MICE) protocol is used to send direc­
tives from a director to a node agent.

• Management Event Notification. The management event noti'fication
(MEN) protocol is used to send event reports from a node agent to a
director.

388 PART IV: RELATED ARCHITECTURES AND MECHANISMS

DNA CMIP is a simple request-response protocol operating over a
DNA Session Control connection. It provides operations to show and set
management attribute values, to request the execution of management
actions, and to report on events that occur.

Network Control Language

The network control language (NCL) defines a command line interface
that network managers can use to communicate with a director. NCL is
new to DNA Phase V and replaces the command interface to the net­
work control program (NCP) used to manage DNA Phase IV networks.
NCL provides network managers with access to the directives defined for
all DNA Phase V entities. NCL specifies general syntax rules defining
how network management commands must be entered and how re­
sponses are displayed. An implementation of NCL accepts input from a
terminal and issues directives to entities using MICE protocol messages.

The NCL command syntax consists of a verb, an entity name, and a
sequence of argument identifiers or identifier/value pairs. The following
are examples of NCL commands:

• Set node NAC.Littleton Routing Circuit 73 Cost 10

• Show Node NAC.Littleton DDCMP Link 67 All Counters

NCL allows wildcards to be specified at various points in an NCL
command to allow a network manager to specify a management opera­
tion for a group of entity instances. The following is an example of an
NCL command with a wildcard:

• Show Node NAC.Littleton DDCMP Link * All Counters

This command would cause all the DDCMP link entities m the
NAC.Littleton node to return all their counter values. NCL also provides
commands that request naming service operations, for example, to register
the name of a new node in the naming service. Additionally, NCL supports
DNA Phase IV network management commands and allows a network
manager to manage a DNA Phase IV node from a DNA Phase V node.

Event Logging

DNA provides mechanisms that enable the information generated as a
result of events that occur to be distributed to points in the network
where the event information can be stored and analyzed. DNA Phase V
event logging consists of the following components:

CHAPTER 17: NETWORK MANAGEMENT 389

• Event Sources. An event source detects events and initiates the genera­
tion of event reports.

• Event Sinks. An event sink accepts event reports from an event source
and processes, stores, or displays them. Phase V event logging allows for
an arbitrary number of event sinks, possibly with each providing differ­
ent features.

• Event dispatchers. An event dispatcher serves as an intermediary be­
tween event sources and event sinks.

Each entity in the network that reports events has an event dis­
patcher. Entities in a node post event reports to the local event dis­
patcher, which is responsible for buffering event reports and distributing
them to event sinks using the management event notification protocol.

Network management can be used to control the operation of event
dispatchers. Event streams can be created defining the sinks for event in­
formation and event filters defining the types of event reports each event
sink is to receive. An event sink can also perform further event filtering.
Event filtering permits certain event sinks to process only certain types of
events. For example, event filtering can be based on the types of events
the event sink will accept or on the particular types of entities from
which event reports will be accepted.

Maintenance Operations Protocol

Maintenance operations consist of simple functions that must be avail­
able in a node even when the services of the higher layers of the architec­
ture are not available. For example, certain functions must be available
even when a node is in the process of initializing itself and is not yet fully
operational. DNA Phase V defines a simple management protocol called
the Maintenance Operations Protocol (MOP). MOP requires the "man­
aging" node to be on the same data link as the "managed" node. MOP
uses the services of the Data Link layer directly and requires only mini­
mal Data Link layer protocol support. The MOP modules handle all
message acknowledgment and retransmission functions and do not re­
quire the services of any of the layers above the Data Link layer. MOP
defines the following maintenance functions:

• Downline Load. The downline load function allows a node to request a
memory image from an adjacent node on the data link. If the image is
that of a program, the downline load function allows program execution
to be started at a specified memory address following the load. On a

390

Conclusion

PART IV: RELATED ARCHITECTURES ANO MECHANISMS

broadcast data link, a node can multicast its downline load request and
obtain the memory image from the first node responding to the request.

• Upline Dump. The upline dump function allows a node to send the con­
tents of its own memory to an adjacent node over a single data link. On
a broadcast data link, a node can multicast its dump request and then
send its memory dump to the first node that responds.

• Link Loopback Test. The loopback test function can be issued to test a
communication link by looping a test message at various points along
the physical connection. By moving the loopback point and isolating
components, a network manager can use this function to diagnose link
problems and locate component failures.

• System Console Control. The system console control function can be
used to control remote, possibly unattended, nodes through emulation of
a console terminal. This function also allows the remote node to be
restarted.

The network management provisions built into the DNA Phase V archi­
tecture provide an orderly means for the setting of network management
policy and for monitoring and controlling the network. The final chapter
in this part on related architectures and mechanisms concerns the role of
packet-switched data networks (PSDNs) and CCITT Recommendation
X.25 in a DNA Phase V network.

CHAPTER 18

X.25 Access

Many of today's public data networks use packet-switching techniques
and conform to CCITT Recommendation X.25. Recommendation X.25
defines how a computer is attached to a packet-switched data network
(PSDN). We begin by describing the characteristics of X.25. We then de­
scribe the DNA Phase V X.25 Access architecture and examine the vari­
ous roles X.25 can play in a DECnet Phase V network.

A computer that uses a PSDN conforming to X.25 for communica­
tion must implement a data terminal equipment (DTE) function; the net­
work device to which the DTE is connected implements a complementary
data circuit-terminating equipment (DCE) function. Recommendation
X.25 defines the interface between an X.25 DTE and an X.25 DCE. It is
important to note that X.25 defines only this interface-the way a com­
puter plugs into the network and exchanges packets with it-and does
not specify how the network is implemented internally. Recommendation
X.25 contains specifications for the interface between a DTE and a DCE
at three levels (see Figure 18.1):

• X.25 Level 1. This interface defines the characteristics of the physical
link between a DTE and a DCE. This part of Recommendation X.25
corresponds to the Physical layer of the OSI model. X.25 defines level 1
through reference to other standards, such as X.21, X.21bis, and the V
series of modem standards.

• X.25 Level 2. This interface defines the protocol used to reliably pass
frames of data between a DTE and a DCE. It corresponds to the Data
Link layer of the OSI model and is defined by the Link Access Proce­
dures-Balanced (LAPB) data link protocol. LAPB is a functional subset
of the HDLC data link protocol described in Chapter 19.

391

392

FIGURE 18.1

X.25 Packets

PART IV: RELATED ARCHITECTURES AND MECHANISMS

Comparison of Recommendation X.25 with DNA and the OSI model.

DNA Recommendation X.25 OSI Model

DNA Application X.25 Application OSI Application

~ication

DNA Session Control Presentation
Session

Transport Transport

subnetwork ~f
lnd~ndent N t k
Subnetwork J e wor
Dependent

,{ Subnetwork
Network lnd~ndent l Subnetwork

Dependent X.25 Level 3

Data Link X.25 Level 2 Data Link

Physical X.25 Level 1 Physical

• X.25 Level 3. This interface defines the format and meaning of the data
portion of the frames defined in level 2 and is often called the X.25
packet level. It corresponds to part of the Network layer of the OSI
model and specifies the procedures by which X.25 packets are passed be­
tween a DTE and a DCE. This same interface is defined in ISO 8208,
Packet-Level Protocol for Data Terminal Equipment. X.25 level 3 and
ISO 8208 are essentially identical.

A PSDN might be constructed using a great many DCEs and a num­
ber of intermediate routing nodes, called switches, to construct networks
having a complex topology, as shown in Figure 18.2. However, an X.25
DTE connected to an X.25 DCE perceives any other DTE on the net­
work as being only one hop away. In this respect, a PSDN can be viewed
as a subnetwork in the same manner as an HDLC point-to-point data
link. A PSDN providing the X.25 interface is often represented in dia­
grams as a cloud. The complexities of the PSDN implementation are hid­
den from the user, and an X.25 DTE at one end of the network perceives
only a point-to-point virtual circuit between itself and an X.25 DTE at
the other end. (See Figure 18.3.)

The X.25 DTE/DCE packet-level interface consists of definitions of the
formats of packets passed between a DTE and a DCE. Packets contain
both user data and commands used to control the operation of the X.25
protocol. Box 18.1 contains brief descriptions of some of the X.25 com­
mand packets. The control information in each packet is used by devices
in the PSDN to determine how to relay the packet through the network.

CHAPTER 18: X.25 ACCESS 393

FIGURE 18.2 A possible X.25 network implementation.

1111111111111111111

::::::::::::::::::: c:::::J

X.25
Interface

X.25 Features

i-------tDCE

i-------. DCE

X.25
Interface

c:::::J

Routing functions in a PSDN are implementation dependent, and the al­
gorithms used for routing are not defined by Recommendation X.25.

A PSDN conforming to X.25 typically offers to its users two major types
of facilities: permanent virtual circuits (PVCs) and switched virtual cir­
cuits (SVCs). * These facilities are described in the following sections.
Other features of X.25 are briefly described in Box 18.2.

* The DNA architectural specifications use the term switched virtual circuit
(SVC) for this type of facility, whereas CCITT Recommendation X.25 uses the
term virtual call (VC). We will adopt the DNA Phase V terminology in this
chapter and use the term switched virtual circuit.

394

FIGURE 18.3

PART IV: RELATED ARCHITECTURES AND MECHANISMS

X.25 virtual circuit.

X.25 Network

Permanent Virtual Circuits

A user of a PSDN may wish to be permanently connected with another
network user in much the same way as two users are connected using a
leased telephone connection. A permanent virtual circuit provides this
facility. The users are permanently connected to their respective X.25
DCEs. They use the communication facilities of the network and con­
sume network resources only when they are actually transmitting data;
however, they remain logically connected permanently as though an ac­
tual physical circuit exists between them. Typically the users of a perma­
nent virtual circuit pay a monthly connect charge plus a charge based on
total data transmitted over the virtual circuit.

Switched Virtual Circuits

When an X.25 DTE requests the establishment of a switched virtual cir­
cuit, the network establishes a virtual circuit with another user, the two

BOX 18.1

X.25 Control
Packets

X.25 Access
Architectural
Model

CHAPTER 18: X.25 ACCESS

• Call Request. A DTE sends a Call Request packet to request the es­
tablishment of a switched virtual circuit.

• Incoming Call. A DCE accepts the Call Request packet and generates
an Incoming Call packet, which it sends to the destination DTE. This
asks the destination DTE if it can accept the request for the estab­
lishment of a switched virtual circuit.

• Call Accepted. The destination DTE transmits a Call Accepted
packet as a positive response to an Incoming Call packet.

• Call Connected. The originating DTE accepts the Call Accepted
packet and transmits a Call Connected packet as the final step in es­
tablishing a switched virtual circuit.

• Clear Indication. A Clear Indication packet is transmitted when a
destination DTE is not able to accept an Incoming Call packet. It
gives the reason for refusing to accept the call.

• Clear Request. A Clear Request packet is transmitted when a DTE
wants to request the release of a switched virtual circuit.

• Clear Confirmation. A DTE transmits a Clear Confirmation packet
as a positive acknowledgment to a Clear Request packet as the final
step in releasing a switched virtual circuit.

395

DTEs exchange messages for a time over the virtual circuit, and then one
of the two DTEs requests disconnection of the virtual circuit. A DTE re­
quests an SVC by sending a Call Request packet to the DCE. When the
DCE receives the Call Request packet from a DTE, it sends an Incoming
Call packet across the network to the destination DTE. If the destination
DTE accepts the call, the two DTEs can then begin exchanging Data
packets with each other over the switched virtual circuit.

Users employing SVCs are generally charged based on connect time,
quantity of data transmitted, or both. In requesting an SVC, the user per­
ceives little difference between using a PSDN and using ordinary dial-up
telephone facilities. All the complexities of routing through a packet­
switched data network are hidden from the two communicating DTEs.

Support for X.25 in DNA Phase V is defined in the X.25 access specifi­
cation. This specification defines an architectural model consisting ol
modules and interfaces. These modules and interfaces, and some ways in

396

BOX18.2

X.25 Features

PART IV: RELATED ARCHITECTURES AND MECHANISMS

• Logical Channels. A given DTE is allowed to concurrently establish
up to 409 5 different logical channels to other DTEs attached to the
network by assigning a different 12-bit virtual circuit number to each
(specific implementations may limit a DTE to fewer than 4095 logi­
cal channels). For example, a DTE might be implemented in a com­
puting system supporting many users (people or application pro­
grams), many of whom may need to use the PSDN for communication
at any given time. Virtual circuit numbers are assigned to both per­
manent virtual circuits and switched virtual circuits. Each SVC and
PVC is assigned a separate logical channel with its own virtual circuit
number. Each message a DTE transmits on behalf of a user contains
the virtual circuit number to w~ich the message is associated to dis­
tinguish it from message traffic generated by other users.

• Flow Control. An X.25 PSDN implements flow control mechanisms
to control the rate at which it accepts packets from each DTE. Flow
control is implemented independently in each direction on a logical
channel through the use of a windowing mechanism. The window
size represents the maximum number of sequentially numbered Data
packets that may be outstanding at any given time.

• Interrupt Packets. A DTE can use Interrupt packets to send data that
bypasses the normal packet sequence. Interrupt packets can be deliv­
ered even when the destination DTE is not accepting normal Data
packets. A DTE sending Interrupt packets receives an Interrupt Con­
firmation packet for every Interrupt packet it sends. A DTE must
wait until it receives a confirmation before sending the next Interrupt
packet.

• Reset Packets. A DTE or the PSDN itself can send a Reset packet
across the DTE/DCE interface to reinitialize a virtual circuit. A reset
causes all Data and Interrupt packets in transit to be discarded.

• Call Clearing. A DTE receives an Incoming Call packet from its DCE
when some other DTE is requesting that a switched virtual circuit be
established with it. When a DTE receives an Incoming Call packet, it
has the option of accepting or rejecting the request. A DTE rejects a
request for a virtual circuit by sending a Clear Request packet. Either
of the DTEs connected by an SVC can release the SVC by issuing a
Clear Request packet. The DCE responds by sending a Clear Indica­
tion packet to the opposite DTE. That DTE then responds by send­
ing a Clear Confirmation to its DCE. That DCE then sends a Clear
Confirmation packet to the DTE originally requesting release of the
SVC.

BOX 18.2

continued

CHAPTER 18: X.25 ACCESS

• Restart Facility. Either a DTE or a DCE can issue a Restart Indica­
tion packet to clear all virtual circuits at the DTE/DCE interface. A
DTE sends a Restart Indication packet to the DCE as part of its ini­
tialization procedure.

• Closed User Groups. This optional facility of X.25 allows network
managers to form logical groups of X.25 DTEs. If a user requests the
use of a closed user group and the destination DTE is in it, the desti­
nation DTE is informed that the user requested the closed user
group. This provides a method for determining that the caller is a
"friend" without the destination DTE needing to manage a list of
DTE addresses.

• Call Redirection. This optional facility of X.25 allows an incoming
request for a virtual circuit to be redirected to some other DTE. Ca­
pabilities of this facility include specifying a list of alternative DTEs
to try to specify a logical chain of DTEs for continued redirection.

• Network User Identification. This optional facility of X.25 allows a
DTE to provide information to the PSDN, on a per-call basis, for
such purposes as security, network management, or billing.

• Call Charging. This optional facility of X.25 includes mechanisms
for determining who is charged for a virtual circuit and for providing
information for calculating charges.

397

which they are related, are illustrated in Figure 18.4. Keep in mind that
the modules defined in the X.25 access specification are architectural
modules and not actual modules of executable code. However, in the fol­
lowing discussion we will refer to the architectural modules as if they
were physical modules, in order to conceptually describe how implemen­
tations might combine the architectural modules to provide X.25 access
facilities.

X.25 Access Module

The X.25 access module is the module that allows a user to request the
services provided by the X.25 interface. This is the only module that has
to be implemented because it is the only module that provides an appli­
cation programming interface to X.25 services. As we will show later, a
user of the X.25 access module can be a DNA Network layer entity, a

398

FIGURE 18.4

PART IV: RELATED ARCHITECTURES AND MECHANISMS

X.25 access modules and interfaces.

X.25 Service Interface

X.25Access
Module

X.25 Client Interface

X.25 Client
Module

X.25 GAP Interface

Network Layer Entity,
Transport Layer Entity, or
X.25 Application Program

X.25 GAP Interface

X.25 Server
Module

X.25 Gateway
Node

X.25 Service Interface

X.25Access
Module

X.25 Protocol Interface

X.25 Protocol
Module

DNA Transport layer entity, an application program issuing requests for
X.25 services, or an X.25 server module. The X.25 access module pro­
vides an X.25 service interface that allows its users to request its services
via ports into the X.25 access module. Ports are data structures used to
represent X.25 virtual circuits. The procedure declarations documenting
the functions of the X.25 service interface are listed in Box 18.3. Note
that this is an abstract interface; an implementation of the X.25 access

BOX 18.3

X.25 Service
Interface

CHAPTER 18: X.25 ACCESS

The following function and procedure declarations define the ab­
stract interface between the X.25 access module and a user of the
X.25 access module in terms of the services the X.25 access module
provides to a user.

• OpenPort. Opens a port into the X.25 access module. A port is a
data structure that can be used for subsequent binding to an incom­
ing or outgoing switched virtual circuit via a TakeCall or MakeCall
function.

• ShowPortStatus. Reads the status of an X.25 access module port,
which reflects the status of the virtual circuit with which it is bound.

• ClosePort. Releases a port and any of the resources associated with it.

• OpenPvc. Allocates a permanent virtual circuit for subsequent use
and implicitly opens the port bound to the permanent virtual circuit.

• AcknowledgeComsFailure. Acknowledges that a failure of the PSDN
has been detected for a port bound to a permanent virtual circuit.

• MakeCall. Establishes a switched virtual circuit and binds it to a
specified port.

• Read Accept. Reads the data provided by some PSDNs when the
PSDN accepts an outgoing call.

• ListenForCall. Adds a filter to the list of existing filters in the X.25
access module. Each filter defines the criteria for matching an incom­
ing call to the listener defined when the function is invoked.

• StopListeningFor. Deletes a filter from the list of existing filters in the
X.25 access module.

• Listen. Polls for an incoming call that satisfies any filter defined by a lis­
tener defined previously by an invocation of the ListenForCall function.

• TakeCall. Binds an incoming call that matches a listener's filter to a
specified X.25 access port.

• CannotTakeCall. Indicates that the incoming call cannot be bound
to the listener, even though it has matched one of the listener's filters.

• AcceptCall. Accepts an incoming call already bound to a port as a
result of a TakeCall function.

• ClearCall. Clears an incoming or outgoing switched virtual circuit.

• ReadClear. Reads the data generated when the PSDN clears a virtual
circuit.

399

400

BOX 18.3

continued

PART IV: RELATED ARCHITECTURES AND MECHANISMS

• Reset. Resets a virtual circuit bound to a port or acknowledges that
the PSDN has reset a virtual circuit.

• ReadReset. Reads the data generated when the PSDN resets a virtual
circuit.

• TransmitData. Queues a transmit buffer containing a Data packet to
be sent over a virtual circuit.

• TransmitPoll. Polls a transmit buffer previously queued by a Trans­
mitData function to determine if it has been transmitted.

• ReceiveData. Queues a receive buffer that can be used to receive a
Data packet over a virtual circuit.

• ReceivePoll. Polls a receive buffer previously queued by a Receive­
Data function to determine if it contains a Data packet.

• lnterruptTransmit. Sends interrupt data over a virtual circuit.

• lntcrruptPoll. Polls for an Interrupt Acknowledgment received as a
result of a previously issued IntcrruptTransmit function.

• InterruptReceive. Reads received interrupt data over a virtual circuit.

• IntcrruptConfirm. Acknowledges interrupt data previously received
using the InterruptReceive function.

module must specify the actual application programming interface a pro­
gram would use to request X.25 services.

The functions provided in the X.25 service interface are employed
by users to request X.25 services, such as establishing SVCs and trans­
mitting data over them. A user makes an outgoing request for the estab­
lishment of an SVC by issuing an OpenPort function followed by a
MakeCall function. Once the SVC has been established, the user sends
and receives data over the SVC by issuing TransmitData, TransmitPoll,
ReceiveData, and ReceivePoll functions.

A user, called the listener, sets up a list of filters that indicates which in­
coming calls the local X.25 access module should inform the listener about.
The listener maintains the filter list by issuing ListenForCall and StopListen­
ingFor functions. When an incoming call matches the call criteria specified
in a filter, the X.25 access module notifies the listener. The listener then has
the option of accepting the call or explicitly refusing to accept it. If one lis­
tener rejects a call, the X.25 access module restarts its matching procedure
and attempts to find a listener who will accept the call.

CHAPTER 18: X.25 ACCESS 401

The X.25 Protocol Module

The X.25 protocol module performs the functions of the X.25 packet­
level protocol to gain access to a PSDN. The X.25 protocol module pro­
vides an X.25 protocol interface. This interface is accessed only by the
X.25 access module and is substantially similar to the X.25 service inter­
face. An implementation of the X.25 protocol module performs the func­
tion of an X.25 DTE for the node in which it is implemented and com­
municates directly with an X.25 DCE in the PSDN.

X.25 Client and Server Modules

The X.25 client and X.25 server modules are necessary when the X.25
access module and the X.25 protocol module are in different nodes. The
X.25 access module uses the services of an X.25 client module, which in
turn communicates with an X.25 server module in another node. The
X.25 server module can then use the services of the X.25 protocol mod­
ule in that node to access the PSDN. The X.25 client module provides an
X.25 client interface allowing the X.25 access module to request its ser­
vices. Like the X.25 level 3 protocol interface, this interface is similar to
the X.25 service interface.

The X.25 client and server modules communicate with one another
using the gateway access protocol (GAP). The client and server modules
each provide an X.25 gateway access interface allowing them to commu­
nicate using the GAP. The DNA Phase V X.25 access specification de­
fines the GAP messages that the X.25 gateway server and client must be
able to accept. These are listed in Box 18.4.

Although not shown in Figure 18.4, the X.25 client and server mod­
ules also implement an interface to the DNA Session Control layer al­
lowing the GAP to operate over a DNA Phase V Session Control layer
connection. This is the same interface described in Chapter 11.

Module Combinations

The architectural modules that make up X.25 access can be combined in
various ways to allow the X.25 interface to be used for three purposes:

• Two Network layer entities in a pair of DECnet Phase V routers can use
a virtual circuit as a point-to-point subnetwork to connect them.

• A Transport layer entity in a DECnet Phase V node can access a local
X.25 access module to exchange data with another Transport layer en­
tity using the ISO CONS, described in Chapter 8.

402

BOX 18.4

X.25 Gateway
Access Protocol
Messages

PART IV: RELATED ARCHITECTURES AND MECHANISMS

Messages Received by X.25 Gateway Server

• Open. Requests the establishment of a permanent virtual circuit.

• Outgoing Call. Requests an outgoing request for the estabiishment of
a switched virtual circuit to the destination specified in the message.

• Outgoing Accept. Accepts a previously received incoming request for
the establishment of a switched virtual circuit.

• Clear Request. Indicates that a user has issued a ClearCall function
to the X.25 access module requesting that a virtual circuit be cleared.

• Reset Request. Indicates that a user has issued a Reset function to
the X.25 access module requesting that a virtual circuit be reset.

• No Comm Seen. Indicates that a user has issued a AcknowledgeComs­
Failure function to the X.25 access module indicating it has detected a
failure of the PSDN for a port bound to a permanent virtual circuit.

Messages Received by X.25 Gateway Client

• Open Accept. Accepts an incoming request for the establishment of a:
permanent virtual circuit.

• Open Reject. Rejects an incoming request for the establishment of a
permanent virtual circuit. The message indicates the reason for the
rejection.

• Incoming Accept. Indicates to the Gateway Client acceptance of an
outgoing request for the establishment of a switched virtual circuit.

• Incoming Call. Indicates to the Gateway Client that there is an in­
coming requel)t for the .establishment of a switched virtual circuit.

• Clear Indication. Indicates that the PSDN has issued a request to
clear a switched virtual circuit.

• Clear Confirm. Indicates that the PSDN has confirmed a request to
clear a switched virtual circuit.

• Reset Indication. Indicates that the PSDN has issued a request to
reset a switched virtual circuit.

• An application designed to communicate using X.25 protocols can com­
municate, through a local X.25 Access module, with another X.25 appli­
cation using the X.25 protocol.

Each of these uses of X.25 is described next with examples of the
X.25 architectural modules that are used in each case.

BOX18.4

continued

Using an X.25
Network as a
Subnetwork

CHAPTER 18: X.25 ACCESS

• No Com. Indicates that communication is currently impossible on
the permanent virtual circuit.

Messages Received by Both Client and Server

• Connect. Establishes an association between an X.25 client module
and an X.25 server module.

• Accept. Sent in response to the receipt of a Connect message to accept
the establishment of an association between a client and a server.

• Reject. Sent in response to the receipt of a Connect message to reject
the establishment of an association between a client and a server.

• Call Reject. Rejects a previously received Outgoing Call or Incoming
Call message.

• Clear Expected. Indicates that a Clear Request or Clear Indication
message is expected and that data should be discarded in order for
the message to be read.

• Reset Confirmation. Confirms a previous request for reset of a
switched virtual circuit.

• Reset Confirmation Marker. Indicates the point in the data at which
a request for the reset of a switched virtual circuit occurred.

• Data. Contains outbound or inbound data.

• Interrupt Complete. Contains interrupt data completing an Interrupt
message.

• Interrupt Incomplete. Contains incomplete interrupt data that are
part of an Interrupt message.

• Interrupt Confirmation. Used for flow control to confirm receipt of
an Interrupt message.

403

In this use of X.25, two routers can be connected using an X.25 virtual
circuit as a data link. The virtual circuit is then used for the purpose of
sending DNA network traffic between the two routers. When an X.25
virtual circuit is used to interconnect routers, the virtual circuit is used to
implement what appears to the routers to be a simple point-to-point
link. The X.25 access module and X.25 protocol module are used to im­
plement such a use of an X.25 virtual circuit, as shown in Figure 18.5.

The DNA Network layer in this case is the user of the X.25 access
module, and the X.25 protocol module is used to perform the function

404

FIGURE 18.5

Local
Area

Network
Data
Link

PART IV: RELATED ARCHITECTURES AND MECHANISMS

of an X.25 DTE in sending and receiving X.25 data packets and com­
mands. In this use of X.25, the application programs using the network
for communication are not aware of the fact that X.25 virtual circuits
are being used. When a PSDN is employed in this manner, the PSDN can
be viewed as a subnetwork m which any DECnet router attached tu the
PSDN is a single hop away from any other router attached to that PSDN.

Use of an X.25 virtual circuit as a subnetwork in a DECnet Phase V network.

End Node

Router

X.25 Virtual Circuit
Data Link

PSDN

End Node

1111111111111111111
1111111111111111111
1111111111111111111

Local
Area

Network
Data
Link

Using X.25 to
Supply the CONS

FIGURE 18.6

CHAPTER 18: X.25 ACCESS 405

There are two ways routers can use an X.25 virtual circuit for carry­
ing network traffic:

• Data Link Mapping. With data link mapping (OLM), an X.25 virtual
circuit is set up by a network manager between two routers and remains
available for use by those routers until a network manager releases it.
Such a virtual circuit can be used without restriction-in the same man­
ner as any other point-to-point connection-to exchange data traffic
and routing control packets between the two routers.

• Dynamic Assignment. With dynamic assignment (DA), an X.25 SVC is
set up when there is traffic requiring it. Dynamic assignment SVCs are
used only to carry user data; they are not used to carry routing control
information. Routing over DA SVCs is done using the static routing
mechanisms for interdomain routing discussed in Chapter 9.

As discussed in Chapters 7 and 8, the DNA Phase V Network layer also
provides support for the connection mode Network service (CONS) for
users who require the use of the CONS. This use of X.25 is illustrated in
Figure 18.6. As with the previous use of X.25, only the X.25 access mod­
ule and the X.25 protocol module are required to provide the CONS. In
this case, the user of the X.25 access module is the DNA Transport layer.

Use of an X.25 virtual circuit to supply the CONS.

DNA Phase V
End Node

111111111111111
111111111111111
111111111111111

CONS End System

-:JDCE

PSDN

406

X.25 Gateway
Access

FIGURE 18.7

PART IV: RELATED ARCHITECTURES AND MECHANISMS

An implementation of the X.25 protocol module in a DECnet node at­
tached to the PSDN provides the function of an X.25 DTE.

When X.25 is used to supply the CONS, one additional protocol is
used: ISO 8878, Use of X.25 to Provide the OSI Connection-Mode Net­
work Service. X.25 level 3 and ISO 8208 define a protocol that is suffi­
ciently powerful to provide all the services needed to supply the CONS.
However, because Recommendation X.25 predates the OSI model, it
does not specifically provide information about how the X.25 protocol
should be used to provide all the services specified in the CONS. ISO
8878 can be viewed as operating in a sublayer on top of ISO 8208 (X.25
level 3) defining how X.25 packets and procedures are used to supply all
the services defined by the CONS.

With this use of X.25, the X.25 access module can be used to allow an
X.25 application running in a DECnet node to use the services of an
X.25 protocol module in the same node or in some other node. A node
implementing the X.25 access module to support either local or remote
access by X.25 applications is called an X.25 gateway node. The services
that X.25 applications request can be handled in various ways.

Figure 18.7 shows the simplest possibility in which an X.25 applica­
tion, running in a DECnet node, is communicating with an X.25 applica­
tion in a system (which may or may not be a DECnet node) attached to a
PSDN. In this case the X.25 Access module allows the X.25 application

Use of an X.25 gateway node.

FIGURE 18.8

CHAPTER 18: X.25 ACCESS 407

in the DECnet node to request X.25 services. The X.25 protocol module
performs the function of the X.25 DTE and sends and receives X.25 con­
trol and data packets to communicate with the other X.25 application.
In this example, implementations of the X.25 access module and the
X.25 protocol module both reside in the same node and so no protocol is
required for them to communicate with one another.

It is not necessary, however, for an X.25 application to reside in the
X.25 gateway node. The use of the X.25 client module and the X.25
server module to support remote access to an X.25 gateway node is
shown in Figure 18.8. Here, the X.25 application running in node A is
the user of the X.25 access module in node A. It in turn uses the services
of the X.25 client module to communicate with the X.25 server module

Remote access to an X.25 gateway node using the X.25 client and X.25 server modules.

Local
Area

Network
Data
Link

Node A

X.25 Protocol

X.25Access 11111111111111 __ _
1------111111111111111 I

X.25 Server 11111111111111µ::==:!1

X.25 Gateway Node

408

Multiple Uses of
X.25

Conclusion

PART IV: RELATED ARCHITECTURES AND MECHANISMS

in node B. Implementations of the client and server modules use the gate­
way access protocol (GAP), running over a DNA Session Control con­
nection, to handle communication between them. The X.25 server mod­
ule in node B then uses another implementation of the X.25 access
module in node B to request X.25 services. It in turn uses the X.25 pro­
tocol module, which performs the functions of an X.25 DTE to access
the PSDN.

Internetworking between DECnet Phase V nodes and DECnet Phase
IV nodes is fully supported. A node implementing a Phase IV X.25 access
module can request the services of a Phase V X.25 gateway node and
vice versa.

Implementations of the four X.25 architectural modules can be com­
bined to allow X.25 to be used in a variety of ways in the same network.
A DECnet network can be constructed using X.25 virtual circuits to im­
plement some of the point-to-point connections between routers. At the
same time X.25 Gateway nodes can operate as DTEs connected to one
or more X.25 PSDNs. X.25 applications in DECnet nodes that do not
implement X.25 DTEs can access the gateway nodes to request X.25 ser­
vices. In the same network, any DECnet node can use a PSDN to provide
the ISO CONS. The CONS users can then exchange data over the CONS
connection.

This chapter, which concludes Part IV on related architectures and mech­
anisms, showed a variety of ways in which the virtual circuits provided
by packet-switched data networks can be used in constructing a DECnet
Phase V network. The final part of this book-Part V-examines the
Data Link layer of the architecture in detail and discusses the various
types of subnetworks the Network layer can use. Part V begins with
Chapter 19 introducing High-level Data Link Control (HDLC), the main
data link protocol used for point-to-point data links in the wide area net­
working environment.

PART V

Data Link Layer
Protocols

HDLC Service
Definition and
Protocol
Specification

CHAPTER 19

HDLC, SDLC, and LAPB Data Links

The types of data links described in this chapter and Chapter 20 are de­
signed to implement wide area networking data links using conventional
telecommunications facilities. As mentioned in the chapters in Parts II
and III, it is a goal of ISO to define a single service definition and one or
more protocol specifications for each layer of the OSI model. Currently,
a single ISO standard defines a Data Link layer protocol specification for
the wide area networking environment. This is High-Level Data Link
Control (HDLC), documented in the standards documents listed in Box
19.1. Chapter 20 describes the Digital Data Communication Message
Protocol (DDCMP), another protocol for wide area networking, pro­
vided in DNA Phase V mainly for compatibility with DNA Phase IV.

The original specification of ISO HDLC permits operation only over
a physical circuit that supports synchronous transmission. However, an
amendment to ISO 3309 defines the changes that are required to HDLC
to allow the protocol to be used over an asynchronous (start-stop) line.
DNA Phase V HDLC supports both synchronous and asynchronous
transmission. (See Chapter 5 for a discussion of the differences between
synchronous and asynchronous transmission.)

The HDLC protocol predates the OSI model, and the standards for HDLC
do not separate the service definition from the protocol specification. The
DNA Phase V documentation for HDLC, however, does specify a service
definition in terms of procedure declarations the same as it does for the
other layers of the architecture. We will examine these later when we look
at the DNA Phase V architectural model for HDLC.

An HDLC entity operates in the Data Link layer of the architecture. It
provides a set of services to a user of the HDLC entity and requests the ser-

411

412

BOX 19.1

ISO Standards That
Define HDLC

PART V: DATA LINK LAYER PROTOCOLS

• ISO 3309, HDLC Procedures-Frame Structure

• ISO 4335, HDLC Elements of Procedures

• ISO 7776, HDLC Procedures-X.25 LAPB-comjJaiible DTE Datu
Link Procedures

• ISO 7809, HDLC Procedures-Consolidation of Classes of Proce­
dures

• ISO 8471, HDLC Data Link Address Resolution

• ISO 8885, HDLC Procedures-General Purpose XID Frame Infor­
mation Field Content and Format

vices of a modem connect entity operating below it in the Physical layer.
The HDLC protocol specification precisely defines the formats of the
frames exchanged during protocol operation and describes, in detail, the
procedures controlling the exchange of frames. We continue this discus­
sion of the HDLC protocol by introducing some important terminology.

Stations and Data Each device attached to a data link that handles data link protocol func­
Links tions is called a data station, or a station. Data links connecting stations

can be either unbalanced or balanced. An unbalanced link connects two or
more stations, with one of the stations designated as the primary station
and all the others designated as secondary stations. Such a communication
facility is sometimes used to connect a computer to one or more terminals.
With computer networks, balanced facilities more often are used. A bal­
anced data link connects two stations only, with each station called a com­
bined station, either of which can originate message transmission.

Commands and
Responses

HDLC Operating
Modes

On an unbalanced data link, messages that the primary station sends are
called commands; messages that the secondary station sends in reply to
commands are called responses. With a balanced facility, either station
can originate a transmission by sending a command; the other station
then replies with a response.

The HDLC protocol specification defines three operational modes to
support three types of protocol operations. Only two of these are in­
cluded in DNA Phase V HDLC. All three HDLC operational modes are
described next.

Nonoperational
Modes

CHAPTER 19: HDLC, SDLC, AND LAPB DATA LINKS 413

Balanced Mode

Balanced mode, referred to as asynchronous balanced mode (ABM) in
the ISO HDLC standard, supports a balanced data link that connects
two combined stations using a full-duplex physical circuit. Either station
can initiate frame transmission, and frame transmission can take place in
both directions at the same time. DNA Phase V HDLC supports bal­
anced mode, and this is the preferred operating mode of an HDLC data
link in a DECnet Phase V network.

Normal Mode

Normal mode, referred to as normal response mode (NRM) in the ISO
HDLC standard, is used to support unbalanced data links that connect
two or more stations using a half-duplex physical circuit. One of the sta­
tions on the link is the primary station and the others are secondary sta­
tions. A secondary station cannot initiate transmission without first re­
ceiving permission from the primary station. DNA Phase V HDLC
supports normal mode as an alternative to balanced mode.

Asynchronous Response Mode

The ISO HDLC standard also defines an asynchronous response mode
(ARM), in which each station performs the function of both a primary
and a secondary station. With ARM, the data link consists logically of
two primary/secondary station pairs. In this mode either station can initi­
ate transmission, but one of the stations typically retains responsibility for
the data link. In practice, asynchronous response mode was found to have
a number of limitations and is today considered obsolete by most author­
ities. It has been superseded in most cases by balanced mode. The DNA
Phase V architecture does not support asynchronous response mode.

In addition to the three operational modes, there are three nonopera­
tional modes:

• Asynchronous Disconnected Mode. The asynchronous disconnected
mode (ADM) applies to a station on a balanced data link that is logically
and/or physically disconnected from the link.

• Normal Disconnected Mode. The normal disconnected mode (NDM)
applies to a station on an unbalanced link that is logically and/or physi­
cally disconnected from the link.

414

Support for SDLC

Support for X.25
and LAPB

Frame Format

PART V: DATA LINK LAYER PROTOCOLS

• Initialization Mode. The initialization mode (IM) is intended to be the
mode a station is in before it actually becomes operational. One sta­
tion can put another station into initialization mode when it is neces­
sary to perform some hardware-specific initialization procedure. DNA
Phase V HDLC does not employ m1t1ahzat10n mode for station initiai­
ization or other types of maintenance procedures. Such functions are
the responsibility of the DNA Maintenance Operation Protocol
(MOP). The use of MOP is discussed later when we examine HDLC
protocol operation.

The HDLC protocol has its roots in the Synchronous Data Link Control
(SDLC) protocol developed by IBM in the early 1970s for use in SNA. At
the time IBM developed SDLC, the predominant data link configuration
consisted of a single primary station (typically a host computer or com­
munications controller) connected to multiple secondary stations (typi­
cally terminals), using a multipoint, half-duplex physical circuit. IBM's
SDLC is a functional subset of HDLC and is compatible with the normal
mode of HDLC; a DNA Phase V station operating in normal mode can
successfully communicate with a station conforming to IBM's SDLC
specification. Normal mode requires one station to take the role of the
primary station and the others to take the role of secondary stations. A
management parameter must be set to designate one of the stations as
the primary station for a link operating in normal mode.

CCITT Recommendation X.25 (discussed in detail in Chapter 18)
defines how a computer is attached to a packet-switched data network
(PSDN). A portion of Recommendation X.25 defines the procedures that
determine how frames of data are passed between the computer and the
PSDN. This procedure is called Link Access Procedures-Balanced
(LAPB) and is similar to the balanced mode of HDLC. An appendix on
LAPB is included in the architectural specification for DNA Phase V
HDLC.

As discussed in Chapter 6, the data unit transmitted over a data link is a
data-link-protocol-data-unit (DLPDU), more typically called a frame.
Some frames are originated by mechanisms operating in the Data Link
layer itself and are used to control the operation of the data link. Other

FIGURE 19.1

CHAPTER 19: HDLC, SDLC, AND LAPB DATA LINKS 415

frames are used to carry the data-link-service-data-unit (DLSDU)
passed down from an HDLC user for transmission over the data link.
As shown in Figure 19.1, each frame is divided into three major parts: a
header, a variable-length information field, and a trailer. Protocol­
control-information (PCI) is carried in the header and the trailer.
Frames originated in the Data Link layer sometimes use the information
field to carry control information. The following sections describe the
fields in an HDLC frame.

Beginning Flag Field

Each frame begins with a flag field, which consists of a single octet con­
taining the unique bit configuration 0111 1110. A bit stuffing technique
(described later) guarantees that only a flag field will contain six consec­
utive 1-bits.

Address Field

The field following the flag field is a single octet in length and is inter­
preted as the station address. The position of this field within the frame
(the octet immediately following the beginning flag) defines this field as
the address field. When a station originates a command, the command
includes an address that identifies the station to which the frame is being
sent. The address field value distinguishes whether a frame is a command
or a response. A command always contains the station address of the re­
ceiving station; a response always contains the address of the sending
station. The HDLC addressing scheme is an artifact of the multipoint
data link orientation of the original SDLC specification, and, on a bal­
anced data link that connects only two stations, the station address
serves no real purpose. However, the address field is present in all HDLC
frames for consistency of format.

HDLC transmission frame.

Header

Flag Address Control Information

Trailer

Frame Check
Sequence (FCS)

Flag

416 PART V: DATA LINK LAYER PROTOCOLS

Control Field

The control field is 1 or 2 octets in length. The control field determines
the type of frame being transmitted, conveys information necessary for
the proper sequencing of frames, and carries control information. The
position of the control field within the frame (the fieid immediateiy after
the address field) defines this field as the control field.

Information Field

A variable-length information field is used to carry the data portion of
the frame. It consists of either control information or data passed down
from a user of the HDLC entity. Some frames originating in the Data
Link layer do not use an information field. The HDLC specification al­
lows the information field to be any number of bits in length. However,
most implementations of HDLC require the information field to be some
multiple of eight bits, as is the case with DNA Phase V HDLC. The size
can be zero octets for some commands and responses. Although HDLC
does not specifically define a maximum length for the information field,
a particular HDLC implementation may set limits on the size of a frame
based on the size of the available buffer. The receiving station knows
where the first octet of the information field begins because it always im­
mediately follows the control field.

Frame Check Sequence Field

The frame check sequence (FCS) field contains either a 16-bit or a 32-bit
cyclic redundancy check (CRC) value used for error detection. The pro­
cedures used to generate and process the CRC are described in Chapter
6. Digital implementations of HDLC use a 32-bit CRC value but support
a 16-bit CRC for communication with stations supporting only a 16-bit
CRC.

NETWORK ARCHITECT

There is always a chance, no matter how small, that a frame will be damaged in

such a way that the CRC value remains correct. We decided that, especially for

high-speed links, 16-bit CRC values are inadequate for really good protection

from errors. On a line operating at 10 megabits per second, a 16-bit CRC might
allow an undetected error to get through about once per month. With a 32-bit

CRC, there will be an undetected error about every 10 years.

CHAPTER 19: HDLC, SDLC, AND LAPB DATA LINKS 417

The way in which stations determine whether to use a 16-bit or 32-
bit CRC is discussed later in this chapter.

Ending Flag Field

The end of a frame is marked by another flag field containing the same
bit configuration as the beginning flag field (01111110).

Frame and Control The three types of HDLC frames all share the same general format de­
Field Formats scribed previously. The following are brief descriptions of each frame

type:

• Information Frames. The primary function of Information frames (!­
frames) is to carry user data, although they sometimes also implicitly
perform control functions, such as serving as positive acknowledgments
to frames sent.

• Supervisory Frames. Supervisory frames (S-frames) are used to control
the transmission of I-frames and are exchanged only when the link is in a
state where it is possible to transmit and receive I-frames. They carry in­
formation necessary for supervisory control functions, which include re­
questing transmission, requesting a temporary suspension of transmis­
sion, acknowledging the receipt of I-frames, and reporting on status.
Normal, routine transmission over a data link involves only I-frames and
S-frames.

• Unnumbered Frames. Unnumbered frames (U-frames) are used to carry
data and to perform control functions, such as performing initialization
procedures, controlling the data link, and invoking diagnostic sequences.

1-0ctet and 2-0ctet Control Fields

I-frames and S-frames transmitted during HDLC operation can contain
either 1-octet or 2-octet control fields; U-frames always contain 1-octet
control fields. With DNA Phase V HDLC, a data link normally uses 2-
octet control fields in I-frames and S-frames and runs using modulo-128
operation. This is the preferred operating mode because it increases link
throughput, especially on circuits having long propagation delays, such
as satellite circuits. If one or both of the stations support only 1-octet
control fields, then modulo-8 operation is used with 1-octet control fields
in I-frames and S-frames.

418

I-Frame Format

FIGURE 19.2

PART V: DATA LINK LAYER PROTOCOLS

· Modulo-8 Operation. When stations operate in single-octet control field
mode, 3 bits are used for frame sequence numbers. Three-bit sequence
number values allow frame sequence numbers to range from 0 through
7. Modulo-8 operation allows a sending station to transmit up to seven
frames in sequence befort it inu~L re:quest ail a.cknovv!cdgment.

• Modulo-128 Operation. When stations operate in 2-octet control field
mode, frame sequence numbers consist of 7-bit values, allowing values
from 0 through 127. Modulo-128 operation allows a sending station to
transmit up to 127 frames in sequence before an acknowledgment is re­
quired.

The following sections describe the formats of I-frames, S-frames,
and U-frames.

Figure 19.2 illustrates the format of I-frames and shows how the con­
trol field bits are interpreted for 2-octet control fields. A 0 in bit posi­
tion 1 in the first control field octet identifies the frame as an I-frame.
The remainder of the bits in the 2-octet I-frame control field are used to
contain a send count [N(S)], a receive count [N(R)], and a poll/final
(P/F) bit. The count fields are used to control frame sequencing. The
poll/final bit is used to request acknowledgments. For an unbalanced
data link, the poll/final bit is also used by the primary station to poll the
secondary stations.

I-frame format.

Control Field

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CHAPTER 19: HDLC, SDLC, AND LAPB DATA LINKS 419

S-Frame Format Figure 19.3 illustrates the frame format for S-frames, showing the con­
trol field layout for a 2-octet control field. The 2 bits provided for the
function code allow up to four different S-frame commands and four dif­
ferent S-frame responses. S-frames do not carry information fields. When
bit position 1 of the first control field octet is 1, bit position 2 further
identifies the frame as being either an S-frame or a U-frame. A 10 in bit
positions 1 and 2 identifies the frame as an S-frame. The remainder of
the bits in the S-frame control octet are interpreted as containing a 2-bit
function code, a receive count [N(R)], and a poll/final (P/F) bit. The func­
tion code bits identify the type of command or response the frame repre­
sents. Box 19.2 describes the three most commonly used S-frame com­
mands and responses.

F 1 G u R E 1 9 . 3 S-frame format.

P/F N(R) Count

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

U-Frame Format Figure 19.4 illustrates the format of U-frames, showing details for the
control field. U-frames always have 1-octet control fields. Some U-frame
commands and responses have information fields; others do not. An 11-
bit configuration in bit positions 1 and 2 of the first control field octet
identifies the frame as a U-frame. The remainder of the bits are inter­
preted as a poll/final bit and function code bits. The function code bits in
a U-frame identify the type of command the frame represents. The five
function code bits allow for up to 32 different commands and 32 differ­
ent responses, only some of which are actually used in an implementa-

420

FIGURE 19.4

HDLC
Architectural
Model

FIGURE 19.5

HDLC
Service

User

HDLC
Service

User

PART V: DATA LINK LAYER PROTOCOLS

U-frame format.

2345678

tion of HDLC. Box 19.3 (page 422) provides brief descriptions of the
most commonly used U-frames.

DNA Phase V HDLC uses Exchange Station Identification (XID)
and Unnumbered Information (UI) frames to support a link initialization
procedure and defines how the information fields of DI-frames are used
to support a protocol multiplexing function. These aspects of DNA
Phase V HDLC are described later in this chapter.

Figure 19.5 illustrates the DNA Phase V HDLC architectural model and
shows how the HDLC entity relates to its users and to the Physical layer.
Other higher-level protocols, such as the DNA Maintenance Operations
Protocol (MOP), can also concurrently use the services of an HDLC en­
tity over the same data link through the protocol multiplexing feature. A

HDLC architectural model.

HDLC
Service

User

•••

Transmission Medium

HDLC
Service

User

Data Link
Layer

Physical
Layer

BOX 19.2

S-Frame
Commands and
Responses

HDLC Service
Interface
Procedure
Declarations

HDLC Protocol
Operation

CHAPTER 19: HOLC, SOLC, AND LAPB DATA LINKS

• Receiver Ready (RR). Command or response sent to indicate that the
station is ready to receive another I-frame or to acknowledge previ­
ously received I-frames.

• Receiver Not Ready (RNR). Command or response sent to indicate
that the station is temporarily unable to accept additional I-frames.

• Reject (REJ). Command or response sent to request the retransmis­
sion of one or more I-frames.

421

user of the HDLC entity accesses its services through a port. A port is the
point in the HDLC entity at which the HDLC service interface is located.
Any number of users in a node can open a port into an HDLC entity.

The DNA Phase V architectural specification for HDLC defines the ab­
stract interface between an HDLC entity and a user of its services. The
function and procedure declarations that define this abstract interface
are listed in Box 19.4 (page 423).

The ISO and DNA Phase V documentation for HDLC describe, in detail,
the procedures controlling protocol operation. DNA Phase V HDLC
supports all procedures required by a data link operating in either bal­
anced mode or normal mode. DNA Phase V also defines a number of
procedures that go beyond the ISO HDLC standard while remaining in
conformance with it. We first describe a number of procedures defined
by ISO HDLC.

Bit Stuffing and Synchronous Framing

When HDLC operates over a circuit using synchronous transmission, the
data stream consists of a series of frames, each of which consists of a
continuous stream of bits. HDLC always operates in transparent mode,
meaning that any desired bit configurations can be carried in the data in
the frame's information field. A requirement for achieving transparency
is to ensure that flag octets, which contain six consecutive 1-bits, are not
transmitted in any part of the frame other than in the beginning and end­
ing flag field positions. If a flag field appeared anywhere else in the frame,

422

BOX19.3

LI-Frame
Commands and
Responses

PART V: DATA LINK LAYER PROTOCOLS

• Set Asynchronous Balanced Mode (SABM). Command issued to
place the data link into balanced mode.

• Set Asynchronous Balanced Mode Extended (SABME). Command
issued to place the datalink into balanced mode using 2-octet con­
trol fields. This is the normal operating mode of HDLC data links in
a DECnet Phase V network.

• Set Normal Response Mode (SNRM). Command issued to place the
data link into normal mode.

• Set Normal Response Mode Extended (SNRME). Command issued
to place the data link into normal mode using 2-octet control fields.

• Unnumbered Information (UI). Used for transmitting unnumbered
information frames between stations. DNA Phase V does not dis­
criminate between the command and response forms of the UI-frame.
In DNA Phase V HDLC, DI-frames are used to implement a protocol
multiplexing facility allowing a data link to be used concurrently by
more than one user.

• Disconnect (DISC). Command issued to terminate a previously set
operational mode. On a dial-up line, the station receiving the DISC
command also physically disconnects itself from the line.

• Exchange Station Identification (XID). Commands or responses
issued to exchange and negotiate configuration information. The
DNA Phase V HDLC specification uses XID commands and
responses to implement a station identification procedure used to
negotiate operational parameters, such as the use of either a 16-bit or
a 32-bit FCS field.

• Unnumbered Acknowledgment (UA). Response issued to acknowl­
edge receipt and acceptance of SABM, SABME, SNRM, SNRME,
and DISC commands.

• Frame Reject (FRMR). Response issued to indicate abnormal con­
ditions. The command contains bits indicating the reason for the
rejection, such as an invalid or unimplemented command function
code, a frame with an information field that should not have one,
or a frame with an information field too big for the station's
buffer.

• Disconnect Mode (DM). Response issued as a positive acknowledg­
ment to a DISC command to indicate that the receiving station is
now in disconnect mode.

BOX 19.4

HDLC Service
Interface
Procedure
Declarations

CHAPTER 19: HDLC, SDLC, AND LAPB DATA LINKS

The following function and procedure declarations define the
abstract interface between a DNA Phase V HDLC entity and a user
of its services.

Port Control Functions

• OpenPort. Opens a port into an HDLC entity that can be used to
request its services. A user can open only one port for exchanging
I-frames and multiple ports for exchanging DI-frames.

• ClosePort. Closes a port into an HDLC entity.

Data Transfer Functions

• Transmit. Transmits sequenced data using I-frames.

• TransmitPoll. Polls for return of transmit buffers used to send
I-frames.

• TransmitUnsequenced. Transmits data using DI-frames.

• TransmitPollUnsequenced. Polls for return of transmit buffers used
to send DI-frames.

• Receive. Queues an empty buffer to receive I-frame or DI-frame data.

• ReceivePoll. Polls for received data and the status of the data.

Control Functions

• AttachToCall. Associates a call with a port.

• InitializeLink. Starts operation of the I-frame service of the HDLC
protocol on a link.

• StopLink. Stops operation of the I-frame service on a link.

• ShowLinkStatus. Shows the status of the HDLC protocol on the link.

423

stations would have no way of knowing where a frame begins and ends.
If the protocol is to be transparent, however, frames must be capable of
containing bit sequences of any desired bit configuration, including
octets containing the flag configuration (01111110). When HDLC oper­
ates over a circuit that supports synchronous transmission, a technique
called bit stuffing handles this apparent contradiction.

In transmitting the data between a beginning and an ending flag, the
transmitting station inserts an extra 0-bit into the data stream each time

424 PART V: DATA LINK LAYER PROTOCOLS

it detects a sequence of five 1-bits. The transmitter turns off the bit­
stuffing mechanism when it transmits an actual beginning or ending flag.
In this way, no consecutive sequence of six 1-bits is ever transmitted ex­
cept when an actual flag is sent over the link. A complementary tech­
nique is used by the receiver in removing tht: e:xtia 0-Lils. Whenever the
receiver detects five 1-bits followed by a 0-bit, it discards the 0-bit, thus
restoring the bit stream to its original value. The bit stuffing technique
ensures that six 1-bits in a row will never occur except in a flag field.
When the receiver detects six consecutive 1-bits, it knows it has received
a genuine flag.

At high bit rates, the time it takes to process each frame received
may be greater than the minimum time between frames, which is defined
by ISO HDLC as the time it takes to transmit a single flag sequence. To
prevent a case where every other frame is lost on a high-speed link, DNA
Phase V HDLC defines a procedure for informing the transmitter of the
minimum acceptable time between frames. The transmitter uses this
value to send additional flags between frames to provide the required
delay.

Octet Stuffing and Asynchronous Framing

When HDLC operates over a circuit using asynchronous (start-stop)
transmission, the data stream consists of a stream of octets. Octets are
grouped into frames using a different procedure than that defined for
synchronous HDLC. The ISO standard for asynchronous HDLC defines
two octet values that are used to control the operation of the protocol:
the fiag octet value and the control escape octet value. The actual values
to be used for the flag and control escape octets must be agreed upon in
advance between the two communicating stations.

The transmitter begins a frame by sending a flag octet and ends a
frame by sending another flag octet. The transmitter uses an octet
stuffing procedure to ensure that no flag octets appear between the be­
ginning and ending flags. Between the transmission of the beginning and
ending flags, the transmitter checks each octet's value to see if it is equal
to either the flag or control escape value. If the transmitter detects either
a flag or control escape octet, it complements the octet's sixth bit. It then
transmits a control escape octet followed by the modified flag or control
escape octet. When a receiver receives a flag octet, it knows that it has re­
ceived a genuine beginning or ending flag. When a receiver receives a
control escape octet, it discards it and complements the sixth bit in the
octet that follows, thus restoring the byte stream to its original value.

DNA Phase V
Extensions to ISO
HDLC

CHAPTER 19: HDLC, SDLC, AND LAPB DATA LINKS 425

Pipelining and Acknowledgment

One of the primary responsibilities of HDLC is to detect corrupted and
lost frames and, when they are detected, to cause required frames to be
retransmitted. To achieve this, transmitted frames require acknowledg­
ments from the receiving station indicating whether frames were received
correctly. With HDLC, a technique called pipelining is used in which
multiple I-frames can be sent before the sending station requires an ac­
knowledgment. As discussed earlier, with 2-octet control fields, up to
127 I-frames can be transmitted between acknowledgments.

To ensure that no frames are lost and that all frames are properly
acknowledged, the sequence numbers contained in I-frames and S­
frames are employed to control I-frame transmission. All stations main­
tain counters that keep track of a send count value and a receive count
value. These two counters are used to set the count fields in the control
octets of the I-frames and S-frames the station transmits. The transmitter
always keeps track of how many I-frames it has sent, and the receiver
keeps track of how many I-frames it has received. When a station re­
ceives an acknowledgment, that acknowledgment contains the sequence
number of the next I-frame the other station expects to receive. This im­
plicitly acknowledges all I-frames up to, but not including, the frame
having the specified sequence number. In this way a frame can acknowl­
edge several previously transmitted I-frames. To ensure that acknowledg­
ments are received in a timely manner, the HDLC specification allows a
limit to be set on the number of frames the Physical layer can queue up
for transmission at any time. This allows the Physical layer to maintain
continuous transmission while ensuring that an up-to-date acknowledg­
ment can be sent with minimum delay.

Flow Control

HDLC defines a simple flow control procedure that a station can use
when it is temporarily unable to receive additional I-frames, possibly due
to lack of buffers. A station indicates that the other station is to stop
sending I-frames by transmitting a Receiver Not Ready (RNR) S-frame.
This causes the opposite station to stop sending I-frames until it receives
a Receiver Ready (RR) frame.

In addition to the HDLC procedures to support balanced mode and nor­
mal mode, DNA Phase V HDLC defines additional procedures that go
beyond the ISO standard. These are described in the following sections.

426 PART V: DATA LINK LAYER PROTOCOLS

Link Initialization

The DNA Phase V HDLC link initialization procedure ensures that two
stations are able to establish, in an unambiguous manner, the initial state
0f t:he li!lk 0!" !0 rest:::i.rt: a link ::ifti>r link f:lilnrP Tnfnrm::ition i~ exch:mgecl
during the link initialization procedure using the information fields of
XID frames. The link initialization procedure has three phases:

1. Station Identification. In this phase, the stations exchange informa­
tion about their capabilities to determine the operational parameters
that will be used to govern link operation.

2. Disconnection. In this phase, each of the stations forces the link into
one of the two disconnected modes by transmitting DISC U-frames.

3. Link Establishment. In this phase, one of the stations transmits a U­
frame command to initialize the link. The U-frame command gener­
ally used is the Set Asynchronous Balanced Mode Extended (SABME)
command. This places the link into balanced mode using 7-bit se­
quence numbers. The Set Asynchronous Balanced Mode (SABM)
command is used if one or both of the stations supports only 3-bit se­
quence numbers. The Set Normal Response Mode (SNRM) com­
mand is used if the stations need to use normal mode, possibly for
compatibility with IBM's SDLC.

CRC Negotiation

An important operational parameter negotiated during execution of the
DNA Phase V link initialization procedure is whether 16-bit or 32-bit
CRCs will be used. To determine this, an XID frame is sent during link
initialization that carries a special 48-bit CRC sequence. This CRC se­
quence is produced using a polynomial designed so the last 16 bits of the
48-bit CRC will pass the 16-bit CRC algorithm and the last 32 bits will
pass the 32-bit CRC algorithm. In this manner, the frame is received cor­
rectly by a station supporting only a 16-bit CRC, only a 32-bit CRC, or
either. The stations then negotiate whether a 16-bit or 32-bit CRC will
be used during link operation. A 32-bit CRC is used if both stations sup­
port it; otherwise, a 16-bit CRC is used.

Protocol Multiplexing

The ISO HDLC specification does not specify procedures allowing more
than one higher-level protocol to concurrently use the same data link.
The DNA Phase V architecture defines a protocol multiplexing facility in

CHAPTER 19: HDLC, SDLC, AND LAPB DATA LINKS 427

the Data Link layer, which, like the station identification procedure, goes
beyond the ISO standard while remaining completely in conformance
with it. DNA Phase V HDLC defines the way in which such multiplexing
is handled through protocol identi-fiers that are assigned and registered
by Digital. The DNA Phase V architecture assigns a protocol identifier to
each protocol that can use the services of the Data Link layer. With
HDLC, user data can be carried in I-frames by only one protocol at a
time; thus, a user can open only one port into an HDLC data link for ex­
changing I-frames. The identifier of the protocol to be carried by !­
frames is determined during the station initialization procedure. Data for
any number of other protocols can be carried using UI-frames. A user
can, therefore, open any number of ports into an HDLC data link for ex­
changing UI-frames. The DNA Phase V architecture defines a protocol
identifier to be carried in the information field of UI-frames. The proto­
col identifier is specified when a port is allocated, and DNA Phase Vim­
plementations of HDLC ensure that a port receives only the UI-frames
having the appropriate protocol identifiers.

Maintenance Functions

The protocol multiplexing facility allows the DNA Phase V Network
layer protocol and the Maintenance Operations Protocol to run concur­
rently over the same data link. The DNA Phase V HDLC architectural
specification documents how stations can use the HDLC protocol to sup­
port the maintenance functions defined by MOP. MOP is a Data Link
layer user and can use an HDLC data link to perform such functions as
message loopback testing of the link, upline dumping of memory con­
tents, downline loading of initialization code, and console operations.
MOP messages are carried in UI-frames. The protocol multiplexing facil­
ity allows these maintenance operations to be performed any time the
link is operational without interfering with normal data transfer of !­
frames over the link.

Protocol Error Detection

Each station must be able to detect errors in the operation of the proto­
col. Errors that can occur during data link operation include receipt of
invalid frames, including frames containing invalid sequence numbers,
frames having invalid frame type identifiers, and frames that are too
long. When a station detects a protocol error, it generates a network
management event and transmits a Frame Reject (FRMR) U-frame com-

428

Conclusion

PART V: DATA LINK LAYER PROTOCOLS

mand. When a station receives a FRMR command, it also generates a
network management event and begins the link initialization procedure.

This chapter introduced HULC, the main data link protocoi used to im­
plement point-to-point links in the wide area networking environment.
DNA Phase V HDLC supports all procedures required by a data link op­
erating in either balanced mode or normal mode over both synchronous
and asynchronous circuits and defines a number of procedures that go
beyond the ISO standard. Chapter 20 examines DDCMP, a Digital pro­
prietary protocol that can be used as an alternative to HDLC for wide
area networking data links.

CHAPTER 20

DDCMP Data Links

The Digital Data Communication Message Protocol (DDCMP) was de­
signed a number of years ago by Digital and is the primary wide area
networking data link protocol in networks that conform to Phase IV and
previous phases of DNA. It is an octet-oriented protocol but has many of
the characteristics of bit-oriented protocols, such as HDLC, especially
the characteristic of code transparency. DDCMP is concerned with the
logical transmission of data grouped into physical blocks called mes­
sages. Even though we have been using the term frame to refer to the
data unit exchanged in the Data Link layer, we will use the term message
in this chapter to be consistent with the DDCMP documentation. Both
the DDCMP service definition and protocol specification are described
in the DDCMP architectural specification. The architectural specifica­
tion for DDCMP has not changed from DNA Phase IV and has not been
rewritten. The structure of the DDCMP architectural specification is,
therefore, somewhat different from the structure of the Phase V architec­
tural specifications. This chapter discusses some of the features of
DDCMP, describes the DDCMP service interface, and examines the
DDCMP protocol specification.

DDCMP Features DDCMP is a versatile data link protocol that supports both point-to­
point links connecting a pair of communicating stations and multipoint
links in which a single control station communicates with two or more
tributary stations over the same data link. Like HDLC, DDCMP can be
used over both synchronous and asynchronous (start-stop) links. The
following are some of the features of DDCMP:

• error detection using the 16-bit cyclic redundancy check (CRC) error de­
tection polynomial

429

430

DDCMP Service
Definition

PART V: DATA LINK LAYER PROTOCOLS

• error correction by means of retransmitting lost and corrupted messages

• message sequencing allowing up to 255 messages to be outstanding be-
fore an acknowledgment is required

• op~rntion with a wide variety of communication hardware

• positive startup procedure that synchronizes both ends of the link

• simplicity of operation using a small number of message formats

• a maintenance mode for diagnostic testing and bootstrapping functions

• data transparency of any bit sequence using a length-field framing tech­
mque

• operation over full-duplex, half-duplex, point-to-point, and multipoint
circuits

Like the HDLC protocol described in Chapter 19, a DDCMP entity op­
erates in the Data Link layer of the architecture. It provides a set of ser­
vices to a user of a DDCMP entity and requests the services of a modem
connect entity operating below it in the Physical layer.

DDCMP Service Interface Commands and Responses

The DDCMP architectural specification describes the interface between
a DDCMP entity and a user of its services in terms of a set of abstract
commands a user can issue to a DDCMP entity and a set of responses the
DDCMP entity can send back to the user. These commands and re­
sponses are listed in Box 20.1.

DDCMP Protocol The DDCMP documentation contains a protocol specification that pre-
Specification cisely defines the formats of the messages exchanged during protocol op­

eration and describes in detail the procedures controlling the exchange of
messages. The remainder of this chapter describes the DDCMP protocol
specification. We begin with a look at the message formats defined in the
protocol specification.

DDCMP Message The DNA Phase V architectural specification for DDCMP refers to data­
Formats link-protocol-data-units (DLPDUs) as messages. Two types of messages

can be transmitted over the data link when DDCMP is in operation:

BOX 20.1

DDCMP Service
Interface
Commands and
Responses

CHAPTER 20: DDCMP DATA LINKS

Commands to DDCMP

The following are commands a Data Link service user can issue to a
DDCMP Data Link layer entity.

• Initialize Link. Starts DDCMP operation over the data link.

• Stop Link. Stops DDCMP operation over the data link. May discon­
nect the modem from the line by placing it "on hook" when the pro­
tocol is used with a dial-up link.

• Transmit Message. Passes a Data message to DDCMP for transmis­
sion over the data link.

• Receive Message. Provides one or more empty buffers to DDCMP
for the receipt of Data messages.

• Return Transmit Buffers. Optional command issued after halting
DDCMP operation to return outstanding transmit buffers to the
user.

• Enter Maintenance Mode. Changes DDCMP operation to mainte­
nance mode.

Responses from DDCMP

The following are the responses a DDCMP entity issues to a user of
the DDCMP service in response to the above commands.

• Initialize on Other End. Issued when the station on the other end
of the link has restarted or initialized. Protocol operation stops
and must be restarted by issuing another Initialize Link command.

• Initialization Complete. Optionally issued in response to an Initialize
Link command.

• Message Transmitted. Issued in response to a Transmit Message
command after the message has been acknowledged by the other
station.

• Message Received. Issued in response to a Receive Message com­
m,and after a message has been successfully received.

• Transient Error. Issued after an error threshold counter has over­
flowed.

• Persistent Error. Issued in response to an error condition from which
recovery might not be possible.

431

432

FIGURE 20.1

PART V: DATA LINK LAYER PROTOCOLS

Data messages and Control messages. There are one Data message, five
Control messages, and one Maintenance data message:

• Data messages

• Acknowiedge (ACK) messages

• Negative Acknowledge (NAK) messages

• Reply to Message Number (REP) messages

• Start Message (STRT) messages

• Start Acknowledge (STACK) messages

• Maintenance data messages

The following sections describe the formats of the seven types of
DDCMP messages.

Data Messages

Data messages contain sequence numbers and are employed to carry user
data over a DDCMP link. Figure 20.1 shows the format of a Data mes­
sage. A Data message contains the following fields:

• Start of Header. A Start-of-Header (SOH) code (hex '81') indicating a
Data message.

• Byte Count. A 14-bit field containing a count of the number of octets in
the Data field.

• Flags. A 2-bit field containing two flags. The first bit is a Quick Sync
flag, indicating that resynchronization should follow this message; the
second bit is a Select flag, used to give the receiver permission to transmit
over a half-duplex or multipoint link.

• Response Number. Contains a number used to acknowledge correctly re­
ceived messages from the other station.

• Transmit Number. Contains a number identifying this message.

• Station Address. Contains the address of the station on a multipoint link
to which the message is being sent or the address of the originating sta­
tion. Stations on point-to-point links use the address value hex '01'.

DDCMP data message format.

SOH
X'81'

Byte Count
Response Transmit Station

" Number Number Address
Block Check 1

Data (......... l __ B_loc-'~-C-he_c_k 2__.

FIGURE 20.2

CHAPTER 20: DDCMP DATA LINKS 433

• Block Check 1. Contains a 16-bit Cyclic Redundancy Check (CRC)
value calculated on the contents of the header fields from the SOH octet
through the Station Address octet.

• Data. Contains the data transmitted in this message. It must contain the
number of octets specified in the Byte Count field.

• Block Check 2. Contains a 16-bit CRC value calculated on the contents
of the Data field.

Control Messages

A Control message is an unnumbered message that carries channel,
transmission status, and initialization information over a DDCMP link.
Figure 20.2 shows the format of a Control message. A Control message
contains the following fields:

• ENQ. An ENQ code (hex '05') indicating a Control message.

• Type. An 8-bit code indicating the type of Control message.

• Subtype or Reason. A 6-bit code containing either a Subtype or Reason
code for some types of Control messages. The Subtype field typically is
not used and normally contains six 0-bits.

• Flags. Same as the Flags field for Data messages.

• Receiver Field. Used to pass control information from the Data message
receiver to the Data message sender.

• Sender Field. Used to pass control information from the Data message
sender to the Data message receiver.

• Station Address. Same as the station address field for Data messages.

• Block Check. Contains a 16-bit CRC value calculated on the contents of
the fields from the ENQ octet through the Station Address octet.

ACK and NAK Messages The Acknowledge (ACK) and Negative Ac­
knowledge (NAK) messages are used to provide positive and negative ac­
knowledgments to Data messages. Their formats are similar and are
shown in Figure 20.3.

DDCMP control message format.

f
Subtype~

T

ENQ Type Receiver Sender Station Block Check
X'05'

or 9 Field Field Address
Reason s

.J.

434

FIGURE 20.3

PART V: DATA LINK LAYER PROTOCOLS

Acknowledge (ACK) and negative acknowledge (NAK) message formats.

Acknowledge (ACK)

F
ENO ACK Subtype I Response I X'05' I x·u;. I 000000 l ~ I i\iumber I

Negative Acknowledge (NAK)

F
ENO NAK

Reason ~ Response
X'05' X'02' Number

s

Fill
X'OO'

Fill
X'OO'

Station
I Address

Station
Address

Block Check

Block Check

.J.

• ENQ. An ENQ code (hex '05') indicating that this is a form of Control
message.

• ACK Type or NAK Type. Contains the value hex '01' for an ACK and
hex '02' for a NAK.

• Subtype or Reason. In an ACK this is a Subtype field containing six O­
bits; in a NAK this is a Reason field indicating the reason for the nega­
tive acknowledgment.

• Flags. Same as the Flags field for Data messages.

• Response Number. Contains a number used to acknowledge correctly re-
ceived messages from the other station.

• Fill. Contains the value hex '00'.

• Station Address. Same as the station address field for Data messages.

• Block Check. Contains a 16-bit CRC value calculated on the contents of
the fields from the ENQ octet through the Station Address octet.

REP, STRT, and STACK Messages The Reply to Message Number (REP),
Start (STRT), and Start Acknowledge (STACK) messages all have similar
formats and are illustrated in Figure 20.4. The Reply to Message Number
(REP) message is used to request status information from the data re­
ceiver. It is generally sent when the message sender has sent a message and
has not heard back from the message receiver before a time-out occurs.
The Start (STRT) message is used to establish initial contact and to per­
form synchronization on the link. The Start Acknowledge (STACK) mes­
sage is used to respond to a STRT message after the station has completed
its initialization. The fields contained in these messages are as follows:

• ENQ. An ENQ code (hex '05') indicating that this is a form of Control
message.

FIGURE 20.4

CHAPTER 20: DDCMP DATA LINKS

Reply to message number (REP), start (STRT), and start acknowledge (STACK) message
formals.

Reply to Message Number (REP)

ENO
X'OS'

Start (STRT)

ENO
X'OS'

: F
REP Subtypei 1 Fill
'03' 000000! g X'OO'

: s

iF
STAT Subtype\ 1 Fill
X'06' 00000019 X'OO'

is

Start Acknowledge (STACK)

: F
ENO STACK Subtypei 1 Fill
X'OS' X'07' 0000001 g

ls X'OO'

Block Check Message Station
Number Address

Fill Station Block Check
X'OO' Address

Fill Station Block Check
X'OO' Address

435

• REP Type, STRT Type, or STACK Type. Contains the value hex '03' for
REP, hex '06' for STRT, or hex '07' for STACK.

• Subtype. Contains six 0-bits.

• Flags. Same as the Flags field for Data messages.

• Fill. Contains the value hex '00'.

• Message Number or Fill. For REP, contains the number of the last se­
quential Data message (not including retransmissions) sent by the mes­
sage sender. For STRT and STACK, contains the value hex '00'.

• Station Address. Same as the station address field for Data messages.

• Block Check. Contains a 16-bit CRC value calculated on the contents of
the fields from the ENQ octet through the Station Address octet.

Maintenance Data Messages DDCMP operates in either online mode,
which is the normal operating mode, or in maintenance mode. The
Maintenance data message format is used when the link is operating in
maintenance mode. Maintenance data messages are used for such func­
tions as downline loading of program code and upline dumping opera­
tions. As shown in Figure 20.5, the Maintenance data message is similar
in format to the Data message. Its fields are as follows:

• Data Link Escape. A Data Link Escape (DLE) code (hex '90') indicates
that this is a Maintenance data message.

436 PART V: DATA LINK LAYER PROTOCOLS

FIGURE 20.5 Maintenance data message format.

DLE
X'90'

Byte Count
oF
; I

! g

Fill
X'OO'

Fill
X'OO'

Station
Address

Block Check 1 Block ~heck 2

Protocol
Operation

i s

Byte Count. A 14-bit field containing a count of the number of octets in
the Data field of the message.

Flags. Contains the value binary '11' for Maintenance data messages.

Fill. Contains the value hex '00'.

Fill. Contains the value hex '00'.

Station Address. Same as the station address field for Data messages.

Block Check 1. Contains a 16-bit CRC value calculated on the contents
of the header fields from the DLE octet through the Station Address
octet.

Data. Contains the data transmitted in this message. It must contain the
number of octets specified in the Byte Count field.

Block Check 2. Contains a 16-bit CRC value calculated on the contents
of the Data field.

The procedures used during protocol operation that govern the exchange
of messages over a DDCMP data link can be divided into three major
categories:

• framing procedures

• link management procedures

• message exchange procedures

Framing Procedures

Framing procedures concern both byte framing and message framing.
The process of byte framing properly groups bits in the incoming bit
stream into 8-bit octets. The protocol defines different byte framing pro­
cedures that can be used over asynchronous (start-stop) links and syn­
chronous links. When the protocol operates over an asynchronous link,

CHAPTER 20: DDCMP DATA LINKS 437

byte framing is inherent in the operation of the physical link. With a syn­
chronous link, the sender begins transmission by sending four or more
SYN patterns (binary 1001 0110). The receiver searches the incoming bit
stream for two consecutive SYN patterns. Once it has located them, the
receiver knows each successive group of 8 bits makes up an octet in the
incoming bit stream. The receiver then ignores any subsequent SYN pat­
terns and searches for the first octet containing a non-SYN pattern.

After it has achieved octet synchronization by using the appropri­
ate byte framing procedure, the protocol achieves message framing by
searching for one of the three starting message octets-SOH, ENQ, or
DLE-in the incoming bit stream. One of these octets must appear im­
mediately after the byte framing sequence or immediately after the final
octet of the previous message. If one of these octets is not found in the
proper location, the receiver assumes byte framing has been lost. The
message framing procedures provide for a totally transparent data field;
once a starting octet has been found, no more searching for a particular
bit configuration is performed. The length field contained in each Data
or Maintenance data message is used to tell the receiver where it will
find the last octet of the message. Since Control messages have a fixed
length, the receiver implicitly knows the location of the last octet of a
Control message.

Link Management Procedures

Link management procedures coordinate the sending and receiving of
data over half-duplex links in which data can be transmitted in only one
direction at a time. They also coordinate transmission on a multipoint
link, which contains one control station and two or more tributary sta­
tions. Transmission over a half-duplex circuit and over a multipoint link
is controlled through the use of the Select flag in the header of each mes­
sage. The transmitting station indicates that it is finished transmitting by
setting the Select flag to 1 in its last message. Receipt of a message in
which the Select flag is set to 1 gives the receiving station permission to
begin transmitting. On a multipoint link, the control station identifies
the tributary station to which a message is destined by including a sta­
tion address in the header of each message. A tributary station receives
all transmissions from the control station but ignores all messages except
those whose station address values match its own station address. Mes­
sages from a tributary station are ignored by all the other tributaries and
are processed only by the control station.

438

Conclusion

PART V: DATA LINK LAYER PROTOCOLS

Message Exchange Procedures

The procedures governing the way in which messages are exchanged
over the link ensure that messages are received in the order sent, that no
duph:~te m.ess:iges 2re receivl:'cl, ::incl that messages containing transmis­
sion errors are detected and eventually retransmitted. Transmission er­
rors are detected using a CRC procedure in which the transmitter calcu­
lates 16-bit CRC values and includes them in the frames it transmits. The
receiver calculates CRC values and compares them with the CRC values
contained in the frames it receives. If a calculated CRC value does not
match the corresponding received CRC value, the receiver discards the
frame containing the erroneous CRC value.

Each frame contains an 8-bit message sequence number used by a
receiving station to detect discarded frames and to request their retrans­
mission. A receiver sends positive acknowledgments to indicate that it
has received frames correctly. The 8-bit message sequence numbers are
used by a pipelining procedure in which up to 255 frames can be sent be­
fore a positive acknowledgment is required. A time-out procedure de­
tects errors signalled by the absence of a required positive acknowledg­
ment. If messages are transmitted in both directions, a Data message can
serve as a positive acknowledgment, thus eliminating the need for the
transmission of a separate Control message. Since time-out values often
are relatively long, provision is made for the immediate transmission of
explicit negative acknowledgements to indicate certain types of error sit­
uations, such as CRC value mismatches.

This chapter and the previous one introduced the two data link proto­
cols used to implement data links in the wide area networking environ­
ment. Both HDLC and DDCMP support both synchronous and asyn­
chronous transmission over a wide variety of telecommunications
circuits. HDLC is the preferred data link protocol in a DECnet Phase V
network, with DDCMP provided primarily for compatibility with Phase
IV of DNA. The remaining chapters in this book examine protocols that
operate over local area network data links.

Classifying Local
Area Networks

CHAPTER 21

Local Area Network
Data Links

The HDLC and DDCMP protocols discussed in Chapters 19 and 20 are
designed to support the form of data link technology used with conven­
tional, long-distance telecommunication facilities. This chapter and the
next two examine a different class of protocol used to implement local
area networks (LANs). The characteristics of the form of data link pro­
vided in the wide area networking (WAN) environment are very different
from the characteristics of a LAN data link. Box 21.1 (page 441) sum­
marizes some of the differences between the technology used to construct
conventional telecommunications data links and the technology used to
construct LAN data links.

A great many hardware and software systems are available for imple­
menting local area networks. All share the general characteristics de­
scribed in Box 21.1, but all are implemented in different ways. The fol­
lowing is a discussion of four ways in which local area networks are
commonly classified:

• Network Topology. The network topology relates to the logical way in
which devices attached to LAN are interconnected. The three major
topologies are the bus, the star, and the ring, as illustrated in Figure 21.1.
In many cases, a specific LAN implementation might use combinations
of the three basic topologies to create hybrid configurations. We examine
bus and ring topologies further in Chapters 22 and 23.

• Transmission Medium. The second criterion by which LANs can be
classified is by the type of transmission medium used to interconnect pro­
cessors. Most LANs use twisted-wire pairs, coaxial cable, or fiber-optic
cable, although some LANs use radio transmission or infrared signaling.

439

440

FIGURE 21.1

PART V: DATA LINK LAYER PROTOCOLS

Three LAN topologies.

I ---.--1111111111111111111

::::::::::::::::::: c:::J

Bus Topology

II . "'-'""'09"''11'rXo~08<Kb>=~<"oo''"°°"''"' .

Star Topology

1111111111111111111

:m::::m::m::: c:::J

Ring Topology

• Transmission Technique. The third criterion for classifying LANs is ac­
cording to the method used for transmitting signals over the transmission
medium. There are basically· two methods: baseband and broadband.
With baseband signaling, information is carried over the transmission

BOX21.1

Comparison of
Data Link
Technologies

CHAPTER 21: LOCAL AREA NETWORK DATA LINKS

Characteristics of Conventional Data Link Technology

• Performance. Transmission speeds are generally low, typically 9600
bits per second or lower, with moderately high error rates. Some
telecommunication links operate at higher speeds, such as 56,000 or
1.544 million bits per second (Tl carrier), with relatively low error
rates.

• Distance. Data communication can take place over any desired dis­
tance given the availability of the appropriate communication
facilities.

• Transmission Medium. Public communication facilities, such as tele­
phone circuits, are typically used for data communication.

• Cost. Cost for data transmission is relatively high due to common
carrier tariffs.

• Connectivity. Conventional data link technology is most often used
to connect pairs of communicating devices.

Characteristics of LAN Data Link Technology

• Performance. Transmission speeds are very high, typically in the mil­
lions of bits per second, with typically very low error rates.

• Distance. A LAN is designed primarily to support communication
over a limited geographical area, for example, within a building or a
group of related buildings (although extended LANs can span great
distances).

• Transmission Medium. A LAN typically uses private, user-installed
wiring as the communication medium.

• Cost. The cost for data transmission is relatively low because data
are carried over privately owned transmission media having only a
one-time installation cost.

• Connectivity. A LAN connects large numbers of devices, each of
which can communicate with any other device attached to the LAN.
The broadcast nature of a LAN also allows a station to multicast
messages to groups of other stations.

441

medium in digital form; with broadband signaling, a data signal is super­
imposed on a carrier signal using some type of modulation technique.

• Access Protocol. A fourth way in which LANs can be classified is accord­
ing to the rules governing the way individual LAN devices gain access to

442

International
Standards for
LANS

PART V: DATA LINK LAYER PROTOCOLS

the transmission medium. Any number of access protocols can be de­
vised, but two major forms of access protocol dominate the LAN mar­
ketplace. With the Carrier Sense Multi-Access with Collision Detection
(CSMA/CD) form of access protocol (described in detail in Chapter 22),
a device first listens to the medium and then transmits if the medium is
quiet. Procedures are provided to recover when the transmissions of two
or more devices collide. With a token passing form of access protocol
(described in detail in Chapter 23), access to the transmission medium is
controlled through a special frame called the token that is passed from
device to device.

An important set of standards for local area networks has been pub­
lished by the Institute of Electrical and Electronics Engineers (IEEE) (see
Chapter 2) describing several ways for implementing LANs. These same
standards have now also been accepted by ISO as international stan­
dards and are published by ISO as well. The DNA Phase V LAN data
links include support for applicable IEEE/ISO LAN standards. In addi­
tion, the specifications for the DNA Phase V LAN data links define com­
patible extensions to the IEEE/ISO LAN standards to provide enhanced
local area network services.

IEEE/ISO LAN Architecture

. The IEEE/ISO LAN standards address the Physical and Data Link layers
of the OSI model. As shown in Figure 21.2, the Data Link layer is di­
vided into two sublayers to allow different forms of medium access con­
trol to be accommodated in the architecture. The following are descrip­
tions of the layers and sublayers addressed by the IEEE/ISO LAN
standards:

• Physical Layer. The Physical layer-the lowest layer in the IEEE/ISO
LAN model-is concerned with the physical transmission of signals
across a transmission medium. This layer defines procedures for estab­
lishing physical connections to the transmission medium and for trans­
mitting and receiving signals over it. It includes specifications for the
types of cabling to be used, plugs and connectors, and the characteristics
of the signals that are exchanged. The Physical layer provides services to
the Medium Access Control sublayer.

FIGURE 21.2

CHAPTER 21: LOCAL AREA NETWORK DATA LINKS 443

Comparison of the layers of the OSI model with those of the IEEE/ISO LAN architecture.

Application

Presentation

Session

Transport

Network

Data Link

.................... .----...,.........,.......,.....,...,....,,,.-....,...-----.
.......... ~£9!~~!.~!-~~-9-~!!!~~!

Medium Access Control ·······-----·--···-1----------------t
Physical Physical

-·--···----·-----··"--------------'
OSI Model IEEE/ISO LAN Architecture

• Medium Access Control Sublayer. The Medium Access Control (MAC)
sublayer of the Data Link layer is concerned with the medium access
control method. It defines procedures for managing access to the trans­
mission medium, describes addressing techniques, and specifies error de­
tection and recovery procedures. The MAC sublayer provides services to
the Logical Link Control sublayer.

• Logical Link Control Sublayer. The Logical Link Control (LLC) sublayer
of the Data Link layer is responsible for medium-independent data link
functions. It allows a user of the LLC sublayer to access the services of
the LAN without regard to what form of medium access control is used.
The LLC sublayer provides services to a user of the OSI Data Link layer,
such as a Network layer entity.

IEEE/ISO LAN Standards

The IEEE/ISO LAN standards describe various ways in which local area
networks can be implemented. These standards include:

• IEEE 802.ld/ISO 10039. IEEE 802.1 is a multipart standard that covers
a wide range of topics. Of special interest in the DNA Phase V environ­
ment is the 802.1d standard that addresses bridges used to interconnect
individual LANs to create extended LANS. ISO 10039 describes the ISO
version of the standard for bridges. The DNA Phase V bridge and ex­
tended LAN architecture is described in Chapter 24.

444 PART V: DATA LINK LAYER PROTOCOLS

• IEEE 802.2/ISO 8802-2 Logical Link Control. This standard describes
the functions of the LLC sublayer of the IEEE LAN architectures. It de­
scribes the function of the LLC sublayer for all three forms of medium
access coritrril clf'finf'd hy the IEEE/ISO LAN architecture and can be
used with Fiber Distributed Data Interface (FDDI) as well. The IEEE/ISO
LLC standard is described in this chapter.

• IEEE 802.3/ISO 8802-3 CSMA/CD. This standard and a group of sup­
plements to it describe the MAC sublayer and Physical layer functions
for a bus- or tree-structured network using CSMA/CD as an access pro­
tocol. This standard has its roots in the Ethernet form of LAN, jointly
developed by Digital, Xerox, and Intel, and used for many years in DEC­
net networks. Both IEEE/ISO CSMNCD and Ethernet are supported by
DNA Phase V. The DNA Phase V CSMA/CD LAN data link is described
in Chapter 22.

• IEEE 802.3/ISO 8802-3 CSMA/CD. This standard and a group of IEEE
802.4/ISO 8802-4 Token Bus. This standard describes the MAC sublayer
and Physical layer functions for a bus-structured LAN using token pass­
ing as an access protocol. This form of LAN was designed to meet the
needs of factory automation applications.

• IEEE 802.3/ISO 8802-3 CSMA/CD. This standard and a group of IEEE
802.5/ISO 8802-5 Token Ring. This standard describes the MAC sub­
layer and Physical layer functions for a ring-structured network using a
token passing access protocol. This standard is an outgrowth of the
token ring form of LAN developed by IBM.

• ISO 9314 Fiber Distributed Data Interface (FDDI). This standard defines
a very high speed form of LAN that was developed by a subcommittee of
the American National Standards Institute (ANSI) and that has been ac­
cepted as an international standard by ISO. FDDI uses a logical ring­
structured topology using a timed token-passing access protocol that is
quite different from the token-passing protocol defined in the IEEE/ISO
token ring standard. The DNA Phase V FDDI LAN data link is the sub­
ject of Chapter 23.

The standard for the LLC sublayer (IEEE 802.2/ISO 8802-2) is the
basis for all the various LAN standards that are part of the IEEE/ISO
LAN architecture and can be used in conjunction with FDDI as well. It
allows all the various forms of LANs to present a common interface to a
user of the local area network, such as the DNA Phase V Network layer.

At the time of this writing, DNA Phase V illcludes support for the

The Logical Link
Control Sublayer

CHAPTER 21: LOCAL AREA NETWORK DATA LINKS 445

CSMNCD and Ethernet forms of LAN and for FDDI. Because of the
support for the IEEE/ISO LLC standard, it would be relatively easy to
also accommodate products conforming to the IEEE/ISO token bus and
token ring standards within the architecture.

We next describe the service definition and protocol specification for
the IEEE/ISO LLC sublayer. After that, we will examine the features of
the DNA Phase V LLC sublayer that go beyond the international stan­
dard while remaining in conformance with it.

Local area network data links implement a broadcast form of subnetwork
in which each device attached to the data link receives all frames trans­
mitted by all other devices. The broadcast data link can be implemented
using either a multiaccess bus-structured circuit or a collection of point­
to-point circuits forming a ring configuration. With a broadcast data link,
a device can send each frame to multiple devices on the link. A broadcast
form of data link can provide a broad range of services that allow differ­
ent types of users to simultaneously employ the services of the link.

The IEEE/ISO standard for the LLC sublayer defines both a service
definition for the LLC sublayer and a protocol specification. Although
they are described in the same document, the service definition and the
protocol specification are independent of each other, in keeping with
other ISO standards for the OSI model. The service definition for the
IEEE/ISO LLC sublayer describes the services an LLC sublayer entity
provides to its users. These services are defined in the IEEE/ISO docu­
mentation in terms of service primitives and service primitive parame­
ters. The relationship between the services the LLC layer provides to an
LLC sublayer user and the protocol that governs its operation are shown
in Figure 21.3. As shown there, the LLC sublayer protocol uses the ser­
vices of the MAC sublayer to provide a defined set of services to a user of
an LLC sublayer entity.

Figure 21.4 summarizes how a user of the LLC sublayer service (the
Network layer in the diagram) transmits data from one node to another.
An LLC sublayer user requests a data transfer service of the LLC sub­
layer and passes a logical-link-control-service-data-unit (LLC-SDU) to
the LLC sublayer entity. The LLC sublayer entity adds PCI to the LLC­
SDU in the form of a header to create a logical-link-control-protocol­
data-unit (LLC-PDU). The LLC sublayer uses the services of the MAC
sublayer to transmit the LLC-PDU over the transmission medium to its
destination. The LLC sublayer entity in the destination device removes

446 PART V: DATA LINK LAYER PROTOCOLS

FIGURE 21.3 Relationship between the LLC sublayer service definition and the LLC sublayer protocol
specification.

Other Protocol
Stacks

LLC Sublayer Service

Logical Link
Control Sublayer

The LLC sublayer protocol uses
the MAC sublayer service to
provide the LLC sublayer
service to an LLC sublayer user.

Other Protocol
Stacks

LLC Sublayer Service

Logical Link
Control Sublayer

MAC Sublayer Service ----~t t~----- MAC Sublayer Service

FIGURE 21.4 Providing the Logical Link Control sublayer service.

LLC-PDU

LLC-SAP - logical-link-control-service-access-point
LLC-SDU - logical-link-control-service-data-unit
LLC-PDU - logical-link-control-protocol-data-unit
NPDU - network-protocol-data-unit
PCI - protocol-control-infonnation

LLC-PDU

Local Area
Networking
Addressing

FIGURE 21.5

CHAPTER 21: LOCAL AREA NETWORK DATA LINKS 447

the PCI and delivers the enclosed LLC-SDU to the LLC sublayer user
there.

To transmit an LLC-PDU over the network, an LLC sublayer entity
passes the LLC-PDU down to a MAC sublayer entity in the form of a
medium-access-control-service-data-unit (MAC-SDU). The MAC sub­
layer entity encapsulates the MAC-SDU with additional PCI, which
takes the form of a header and a trailer, to create a medium-access­
control-protocol-data-unit (MAC-PDU), or MAC frame. This procedure
is shown in Figure 21.5. The format of the MAC frame varies, depending
on the form of LAN used. MAC frame formats are examined in Chap­
ters 22 and 23 for the CSMNCD, Ethernet, and FDDI forms of LAN.

The IEEE/ISO LAN architecture provides for two levels of addressing:
station addressing and service-access-point (SAP) addressing. A station
address uniquely identifies each individual device attached to the LAN,
and a SAP address identifies a particular type of LAN user. (The term sta-

Providing the Medium Access Control sublayer service.

MAC-PDU

MAC-PDU (MAC frame) MAC-PDU (MAC frame)

MAC-SAP - medium-access-control-service-access-point
MAC-SOU - medium-access-control-service-data-unit
MAC-POU - medium-access-cqntrol-protocol-data-unit
LLC-PDU - logical-link-control-protocol-data-unit
PCI - protocol-control-information

Transmission Medium

448 PART V: DATA LINK LAYER PROTOCOLS

tion is defined more precisely for each individual type of LAN in Chap­
ters 22 and 23.) The definition of service-access-points allows many dif­
ferent types of users to share the same LAN.

The LLC sublayer is concerned only with the SAP address and not
with the station address; the station address is the concern of the MAC
sublayer. Even though the LLC sublayer does not examine or manipulate
the station address, we describe it here to introduce the addressing
scheme defined by the IEEE/ISO LAN architecture.

Station Addresses

A MAC-PDU contains destination and source station address fields. The
destination address indicates the intended recipient (or recipients) of the
frame. The destination address can refer to an individual station or to a
group of stations. The source address refers to the station that transmit­
ted the frame and always refers to an individual station. According to the
IEEE/ISO LAN standards, station addresses can be either 16 bits or 48
bits in length. However, the DNA Phase V architecture mandates the use
of 48-bit station addresses. The first bit of a source station address is al­
ways 0. If the first bit of a destination station address is 0, the address
identifies an individual station. If the first bit is 1, the address refers to a
group of stations. An address of all 1-bits is the broadcast address and
refers to all the stations on the LAN.

The IEEE/ISO LAN standards define two forms of addressing that
can be used for LAN implementations: locally administered and globally
administered. All 16-bit addresses are locally administered. For 48-bit
addressing, if the second bit is 0, addressing is globally administered; if
the second bit is 1, addressing is locally administered.

• Locally Administered Addressing. When locally administered address­
ing is used, it is the responsibility of the organization installing the net­
work to assign addresses to network devices.

• Globally Administered Addressing. With globally administered address­
ing, addresses must be 48 bits in length, giving 46 bits for individual
MAC addresses. Each LAN manufacturer assigns a unique address to
each LAN adapter it builds, thus guaranteeing that no two LAN
adapters in the world have the same address. Digital strongly encourages
the use of globally administered addresses in a DECnet Phase V network,
and all current Digital LAN products are given a globally unique address
during manufacture.

CHAPTER 21: LOCAL AREA NETWORK DATA LINKS 449

NETWORK ARCHITECT

A 46-bit address space gives over 70,368 billion unique addresses-so many

that every device manufactured anywhere in the world can be assigned a unique

address by its manufacturer. This guarantees that there will be no duplication of

addresses when devices are added to a network or when networks are inter­

linked. Before Ethernet, users basically set network addresses with DIP

switches. With Ethernet, we wanted to avoid addressing problems by providing

a unique address for every device. The address is permanently set in the device

at the factory. When we were developing the Ethernet specification, we origi­

nally thought a 32-bit address would be adequate (4 billion addresses), but we

decided that administering so small an address space would prove impractical in

practice, so we expanded the address to 48 bits. One proposal for generating an

Ethernet address was to toss a coin 48 times, one toss for each bit. This actually
would be adequate for up to 224 different devices. But for more than 224 you

would tend to generate too many duplicates. Another proposal was to read the

serial number from a dollar bill and to then tear up the dollar bill. That turned

out to be illegal. The end result was to partition the 48-bit address space into

blocks of 224 different addresses that could be assigned to individual manuf ac­

turers. For a modest fee, you get a block of 224 addresses. If you need more, you

pay a fee for another block. The administration process of assigning Ethernet

addresses has now been turned over to the IEEE. The idea behind a unique

address for each individual device is that you can just plug any number of these

devices together and not have to worry about address conflicts.

The IEEE assigns a value for the high-order 24 bits of the station ad­
dress to any organization requesting one. The organization is then re­
sponsible for guaranteeing that a different address value is placed in the
low-order 24 bits of the address for each device it manufactures. For ex­
ample, one of the address block values assigned to Digital for station ad­
dresses is hexadecimal '08-00-2B'. When assigning a station address to a
device, Digital places the value hex '08-00-2B' in the high-order three
octets of the address and then assigns a value to the remaining 24 bits of
the address so no two devices it manufactures have the same value in the
last 24 bits.

SAP Addresses and User Multiplexing

A local area network can be used by an organization for many purposes.
One collection of users might all be communicating using the ISO 84 73

450 PART V: DATA LINK LAYER PRDTDCDLS

Internet protocol in the Network layer. Other users might be DNA Phase
IV users employing Ethernet frames. Still other users might be employing
some other architecture entirely, such as AppleTalk or Novell NetWare.
These different types of users can all operate concurrently and can all use
the LLC services on a station. They can all coexist on the same local area
network without interfering with one another. The LLC SAP addresses,
SNAP protocol identifiers, and Ethernet protocol types provide user-type
multiplexing to achieve this concurrency. The SNAP protocol identifier
and Ethernet protocol type multiplexing are described later in this chapter.

There are two types of SAP addresses. An individual address
identifies a single type of LLC sublayer user, and a group address
identifies groups of LLC sublayer user types. If the first bit of a SAP ad­
dress contains a 0, the address is an individual address; if the first bit
contains a 1, the SAP address is a group address.

LLC Sublayer The current version of the LLC sublayer standard defines two types of
Service Definition LLC sublayer services:

• connectionless-mode service

• connection-mode service

Conformance to the IEEE/ISO LLC standard requires the provision
of only the connectionless-mode service, but a particular LAN imple­
mentation of the IEEE/ISO LLC standard might provide the connection­
mode service as well. The DNA Phase V architecture uses only the con­
nectionless-mode service for LANs, so we describe only the service
primitives for the connectionless-mode service here. DNA implementa­
tions of the LLC sublayer also provide a user-supplied LLC service that
can be used to implement a protocol to provide any desired LLC sub­
layer service, including the connection-mode LLC service, for those users
requiring something other than the connectionless-mode service.

The Connectionless-Mode LLC Service

With the connectionless-mode LLC sublayer service, there is no need to
establish a logical connection between the sending and the receiving LLC
sublayer entities, and each LLC-PDU is sent and processed indepen­
dently of any other LLC-PDUs. No sequence checking is done to ensure
that data units are received in the same sequence in which they were sent,

LLC Sublayer
Protocol
Specification

FIGURE 21.6

CHAPTER 21: LOCAL AREA NETWORK DATA LINKS 451

and the receiving LLC sublayer entity sends no acknowledgment that it
has received an LLC-PDU. No flow control or error recovery procedures
are provided as part of the connectionless service. With the connection­
less service, data units can be sent to individual stations, to defined
groups of stations, or to all stations on the LAN. Connectionless service
is sometimes referred to as a datagram service. When the connectionless­
mode service is used, all necessary flow control and error recovery ser­
vices must be provided in the layers above the LLC sublayer, often in the
Transport layer.

The DL_UNITDATA Data Transfer Service

A single DL_UNITDATA data transfer service is defined for the connec­
tionless-mode service. Box 21.2 describes the service primitives for the
DL_UNITDATA service. Figure 21.6 is a time-sequence diagram showing
the sequence in which the two service primitives are issued in providing
the DL_UNITDATA data transfer service. The DL_UNITDATA service is
a nonconfirmed service in which the user of the LLC sublayer service is
not informed of the success or failure of the data transfer operation.

The IEEE/ISO documentation of the LLC sublayer and the DNA Phase V
documentation together provide a protocol specification for the LLC
sublayer. The LLC sublayer protocol specification precisely defines the
formats of the LLC-PDUs exchanged during protocol operation and de-

Time-sequence diagram for the DL_UNITDATA service.

DL_UNITDATA.

452

BOX21.2

Service Primitives
for LLC

Mode Service

PART V: DATA LINK LAYER PROTOCOLS

DL_UNITDATA.request

DL UNITDATA.indication

source address
destination address
data
priority

source address
destination address
data
priority

scribes in detail the procedures controlling the exchange of LLC-PDUs.
We begin the discussion of the LLC sublayer protocol specification by
examining the format of LLC-PDUs.

LLC-PDU Formats

An LLC-PDU conforms to the format shown in Figure 21.7. LLC-PDUs
use a header format similar to that defined for the transmission frames in
the HDLC standard (see Chapter 19). The following are descriptions of
the fields in the LLC-PDU:

• Source and Destination Service-Access-Point Addresses. Each LLC-PDU
begins with a 1-octet destination-service-access-point (DSAP) address
and a 1-octet source-service-access point (SSAP) address. These fields
identify the source and destination users of the LLC sublayer service.
The uses of the SSAP and DSAP address fields are described later in this
chapter.

• Control Field. Following the DSAP and SSAP address fields is a 1-octet
or 2-octet control field that describes the PDU's type and contains control
information.

• Information Field. After the control field is a variable-length information
field.

FIGURE 21.7

CHAPTER 21: LOCAL AREA NETWORK DATA LINKS 453

Logical-link-control-protocol-data-unit (LLC-PDU) format.

~-o_s_A_P~~s_s_A_P~~~-C-on-tr_o1_F_ie_ld~~~~l-nt_o_rm_a_tio_n~~~~
1 byte 1 byte 1 or 2 bytes 0 · n bytes

Commands and Responses

An LLC-PDU can take the form of either a command or a response. A
command is sent by an LLC sublayer entity initiating a data transfer op­
eration; a response is sent by the opposite LLC sublayer entity in reply to
a command. The low-order bit of the SSAP address indicates whether the
PDU is a command or a response: 0 indicates a command and 1 indicates
a response.

LLC-PDU Types

There are three types of LLC-PDUs, only one of which is used by the
protocol supplying the connectionless-mode LLC sublayer service. All
three are described here for completeness:

• Unnumbered PDUs. Unnumbered PDUs (U-PDUs) are used by the pro­
tocol supplying the connectionless-mode LLC sublayer service to carry
user data. They are also used to perform initialization procedures and to
invoke diagnostic sequences.

• Information PDUs. Information PDUs (1-PDUs) are used by the proto­
col supplying the connection-mode LLC sublayer service to carry user
data.

• Supervisory PDUs. Supervisory PDUs (S-PDUs) are used by the protocol
supplying the connection-mode LLC sublayer service to carry informa­
tion necessary to control the operation of the protocol.

U-PDUs carry 1-octet control fields; 1-PDUs and S-PDUs carry 2-
octet control fields. Since only U-PDUs are used in supplying the connec­
tionless-mode LLC sublayer service, we examine only that format.

U-PDU Format

Figure 21.8 illustrates the format of U-PDUs, showing details for the
control field. Some U-PDU commands and responses have information
fields; others do not. An 11-bit configuration in bit positions 1 and 2 of
the first control field octet identifies the PDU as a U-PDU and indicates

454

FIGURE 21.8

PART V: DATA LINK LAYER PROTOCOLS

U-format LLC-PDU.

that the control field is only 1 octet in length. The remainder of the bits
are interpreted as a poll/final bit and function code bits. The function
code bits in a U-PDU identify the type of command or response the PDU
represents.

Three U-format PDUs are used to support Type 1 operation. Each
LLC-PDU has a full name and a mnemonic. The following descriptions
of the three LLC-PDUs used for Type 1 operation give the full name of
each LLC-PDU followed by the mnemonic in parentheses:

• Unnumbered Information (UI). Used to convey user data between a pair
of LLC entities.

• Exchange Identification (XID). Used to exchange information about the
types of service the LLC entities support.

• Test (TEST). Used to conduct a loopback test of the transmission path
between two LLC entities.

LLC Operational Modes

The two operational modes that the IEEE/ISO LLC sublayer standard
defines correspond to the two forms of service described earlier.

• Type 1 Operation. Supports the connectionless-mode service.

• Type 2 Operation. Supports the connection-mode service.

The IEEE/ISO LLC standard defines two classes of LLC protocol
support:

• Class I LLC. Supports Type 1 operation only.

• Class II LLC. Supports both Type 1 and Type 2 operations.

The DNA Phase V architecture requires the use of only Class I LLC.
As described earlier, the user-supplied LLC service can be used to build
an implementation of Class II LLC if a user requires it.

LLC Sublayer
Protocol
Mechanisms

CHAPTER 21: LOCAL AREA NETWORK DATA LINKS 455

The protocol mechanisms operating in the LLC sublayer to support Type
1 operation are simple. No sequence checking, retransmission, or flow
control procedures are defined. Error detection is, however, implemented
by the MAC sublayer. If a MAC sublayer entity detects a corrupted
frame, it discards the frame. Since this error detection mechanism is op­
erating at the level of the MAC sublayer, the LLC sublayer never receives
frames affected by transmission errors.

Data Transfer

The LLC sublayer carries out a request for a data transfer operation by
encapsulating each received LLC-SDU in an Unnumbered Information
(UI) PDU and then uses the MAC sublayer service to transmit it over the
transmission medium. An LLC sublayer entity receiving a UI PDU does
not acknowledge its receipt. In addition to handling the receipt of user
data in UI PDUs, all implementations of the LLC sublayer standard must
also be capable of correctly responding to Exchange Identification (XID)
PDUs and Test (TEST) PDUs.

Exchanging XID LLC-PDUs

When an LLC sublayer entity receives an XID LLC-PDU command, it
generates an XID LLC-PDU response specifying the class of service it can
support. The response XID PDU indicates that it can support either
Class LLC I (connectionless-mode service only) or Class II LLC (connec­
tionless-mode and connection-mode service). Possible other uses for the
XID LLC-PDU include determining if a particular station is available on
the network, determining the stations assigned to a particular group ad­
dress, checking for duplicate addresses, and announcing the presence of
a station on the network.

Exchanging TEST LLC-PDUs

When an LLC sublayer entity receives a TEST LLC-PDU command, it gen­
erates a TEST LLC-PDU response. An exchange of TEST PD Us is used to
perform a basic test of the presence of a transmission path between LLC
sublayer entities. The source LLC sublayer entity sends a TEST command
to a destination LLC sublayer entity, and the destination LLC sublayer
entity replies by sending a TEST response back to the source LLC sublayer

456

DNA Phase V LLC
Architectural
Model

FIGURE 21.9

PART V: DATA LINK LAYER PROTOCOLS

entity. An optional information field can be included in the TEST com­
mand. If one is included, the TEST response must echo it back.

We have now examined the service definition and the protocol
specification for the IEEE/ISO LLC sublayer standard. The remainder of
this chapter discusses the DNA Phase V LLC sublayer, concentrating on
those LLC sublayer features that go beyond the international standards.

Each of the two major forms of local area network supported in the
DNA Phase V environment defines its own architectural model. The ar­
chitectural models for the CSMNCD and FDDI forms of LAN are de­
scribed in Chapters 22 and 23. Although these two architectural models
are different in the MAC sublayer and the Physical layer, both models in­
clude an LLC sublayer and define the same method for allowing a user to
access LLC sublayer services. This is shown in Figure 21.9.

With both the CSMNCD and FDDI forms of LAN, a LLC sublayer
entity resides in a station. A station represents a physical point of attach­
ment to the LAN transmission medium. A user requests the services of
the LLC sublayer through a port. An LLC sublayer port is a data struc­
ture representing a particular user of an LLC sublayer entity. Each user
of the LLC sublayer has its own port that it uses to request LLC sublayer
services. A particular station can implement any number of ports, and a
user can employ more than one port simultaneously. However, a port
can service only a single user at a time.

Local area network architectural model.

Data Link Data Link Data Link
Service Service Service
User A User B User C

•••

Transmission Medium

Data Link
Service
User n

CHAPTER 21: LOCAL AREA NETWORK DATA LINKS 457

DNA Phase V LLC The LLC sublayer in the DNA Phase V architecture provides a number
Sublayer Services of services, many of which go beyond the IEEE/ISO specification for the

LLC sublayer. The services provided by the DNA Phase V LLC sublayer
include the following:

LLC Sublayer
Service Interface
Procedure
Declarations

• Class 1 Service. With this service, the LLC sublayer handles all aspects of
the LLC sublayer protocol to provide the service specified in the
IEEE/ISO standard for the Type 1 connectionless-mode operation, in­
cluding responses to XID and TEST frames.

• Multiplexing. This service makes it possible for more than one type of
user to simultaneously use the Data Link layer service. Different types of
users of the Data Link service might include DNA Phase V Network
layer entities, Local Area Transport (LAT) users, and Maintenance Oper­
ations Protocol (MOP) users.

• Address Filtering. Each station on a broadcast data link receives the
frames transmitted by all other stations on the data link. Each frame
contains both a source and a destination station address. The address
filtering function allows a station to specify the destination address value
or values it will accept as being addressed to it.

• Multicasting. This service allows a station to send a frame to multiple
destination stations on the data link.

• User-Supplied Service. With this service, the LLC sublayer provides all
the preceding services except for processing of the LLC-PDU control
field and the aspects of the LLC protocol associated with the control
field. A user can employ the user-supplied service to implement any de­
sired LLC sublayer protocol, including one to supply the LLC Type 2
connection-mode service.

The DNA Phase V architectural specification for the LLC sublayer
defines the abstract interface between an LLC sublayer entity and its
users. The function and procedure declarations defining this abstract in­
terface are listed in Box 21.3. Services are provided that match the ser­
vice primitives for the IEEE/ISO Type 1 operation and also provide the
additional facilities that the DNA Phase V LLC sublayer provides over
and above IEEE/ISO Type 1 operation.

458

BOX21.3

LLC Service
Interface
Procedure
Declarations

PART V: DATA LINK LAYER PROTOCOLS

The following function and procedure declarations define the
abstract interface between the LLC sublayer and its users in
terms of the services an LLC sublayer entity provides to a user.

Port Control Functions

• OpenPort. Opens a port into an LLC entity allowing an LLC user to
transmit and receive LLC-SDUs. A port is a data structure that rep­
resents a particular LLC user's service-access-point and contains
information needed by the LLC entity to service that user's requests.

• Close. Deallocates a port that was allocated with the OpenPort function.

Data Transfer Functions

• Transmit. Passes an LLC-SDU to the LLC sublayei: for transmission.

• TransmitPoll. Checks for completion of a Transmit request.

• TransmitAbort. Aborts all outstanding Transmit requests for a port.

• Receive. Provides a receive buffer for use by an LLC sublayer entity.

• ReceivePoll. Checks for the completion of a Receive request.

• ReceiveAbort. Aborts all incomplete receive requests for a port.

Control Functions

• EnablePromiscuous. Indicates that a port is to receive LLC-PDUs
having any destination station address value.

• DisablePromiscuous. Indicates that a port is no longer to receive
LLC-PDUs having any destination station address value.

• EnableProtocolType. Adds an Ethernet frame protocol type value to
the list of Ethernet frame protocol types a port maintains and begins
receiving Ethernet frames having that protocol type value.

• DisableProtocolType. Removes an Ethernet frame protocol type
value from the list of Ethernet frame protocol types a port maintains
and stops receiving Ethernet frames having that protocol type value.

• EnableProtocolldentifier. Adds a SNAP frame protocol identifier value
to the list of SNAP frame protocol identifiers a port maintains and
begins receiving SNAP frames having that protocol identifier value.

• DisableProtocolldentifier. Removes a SNAP frame protocol identifier
value from the list of SNAP frame protocol identifiers a port main­
tains and stops receiving SNAP frames having that protocol
identifier value.

BOX 21.3

continued

LLC Sublayer User
Multiplexing and
Filtering

CHAPTER 21: LOCAL AREA NETWORK OATA LINKS

• EnableLLCSap. Adds a group or individual SAP address value to the
list of SAP address values a port maintains and begins receiving
frames having that DSAP address value.

• DisableLLCSap. Removes a group or individual SAP address value
from the list of SAP address values a port maintains and indicates
that the port can no longer send or receive frames having that SAP
address value.

• EnableMACAddress. Adds a group or individual MAC station
address value to the list of MAC address values a port maintains and
begins receiving frames having that destination MAC station address
value.

• DisableMACAddress. Removes a group or individual MAC station
address value from the list of MAC address values a port maintains
and stops receiving frames having that destination MAC station
address value.

• GetLinkAttributes. Reads the attributes of the data link

459

All DNA Phase V LAN implementations are designed to accept frames
and PDUs of different formats. Figure 21.10 shows the various formats
of LLC-PDU that DNA Phase V nodes can accept. As described earlier,
the DNA Phase V LLC sublayer provides services that each LLC sub­
layer user can request to specify the LLC-PDUs it would like to accept.
The DNA Phase V LLC sublayer service then filters out all the other
PDUs, so each LLC sublayer user receives only those it requested. The
following are descriptions of the types of LLC-PDU the DNA Phase V
LLC sublayer can process.

Network Layer LLC-PDUs

When the LLC sublayer user is a Network layer entity conforming to an
ISO standard, the SSAP address identifies the protocol run by the Net­
work layer entity that generated the frame, and the DSAP address
identifies the protocol of the Network layer entity that is to receive the
frame. For example, among the SAP address values defined by the IEEE
is the value hex 'FE', which indicates the use of the ISO 84 73 Internet
protocol. A Network layer entity running the ISO 84 73 Internet protocol
to support the connectionless-mode Network service (CLNS) employs an
SSAP value and DSAP value of hex 'FE' in the PD Us it sends.

460

FIGURE 21.10

PART V: DATA LINK LAYER PROTOCOLS

DNA Phase V LLC-PDU formats.

DSAP SSAP Control Information 8
X'FE' X'FE' UI
~~­

i oyte 1 oyte i oy1e u- nOy1es

Network Layer ISO 8073 Internet Protocol LLC-PDU

DSAP
X'AA'

1 byte

SSAP
X'AA'

t byte

Control
UI

1 byte

Protocol
Identifier

5 bytes

SNAP LLC-PDU

Information D
0-nbytes

.__~~~~~~1-nf_o_rm_a_tio_n~~~~~~~~
46-1500 bytes

Ethernet LLC-PDU

SNAP PDUs

LLC sublayer users employing a protocol other than one defined by an in­
ternational standard use Subnetwork Access Protocol (SNAP) LLC-PDUs.
SNAP LLC-PDUs carry SSAP and DSAP values of hex 'AN. Like SAP ad­
dressing, the SNAP protocol provides multiplexing of different user types.
The SNAP protocol is an additional layer of multiplexing above that pro­
vided by SAP addressing. Data units generated by Digital proprietary pro­
tocols, such as those used to implement the naming service, are carried in
SNAP LLC-PDUs. Data units generated by non-Digital protocols can also
be carried in SNAP LLC-PDUs. SNAP LLC-PDUs are always U-format
LLC-PDUs. The first 5 octets of the LLC-PDU's information field define
the protocol that generated the SNAP PDU. The first 3 octets of the proto­
col identifier contain a value assigned to a vendor for station address val­
ues to distinguish each vendor's protocols. (As described earlier, hex '08-
00-2B' is one such value assigned to Digital.) The remaining 2 octets
identify the specific vendor protocol. For example, Digital's naming service
uses the protocol ID value hex '08-00-2B-80-3C' in a SNAP LLC-PDU to
advertise the availability of a name server on the LAN.

Conclusion

CHAPTER 21: LOCAL AREA NETWORK DATA LINKS 461

Ethernet LLC-PDUs

The Ethernet Spedfication does not make a clear distinction between
the LLC sublayer and the MAC sublayer. Therefore, there is no notion
of the LLC-PDU defined for Ethernet frames. As we will discuss in
Chapter 22, the first 2 octets of the data portion of an Ethernet frame
contain a protocol type field identifying the LLC-PDU as originating
from Ethernet equipment. The way in which Digital LAN equipment
identifies an Ethernet frame is discussed in Chapter 22. The Ethernet
protocol type identifies the type of the user entity of the LLC service
for Ethernet just as the SNAP protocol identifier does for the SNAP
protocol.

This chapter examined the Logical Link Control sublayer of the Data
Link layer-the sublayer shared by all the various forms of local area
networks that can be used to construct a DECnet Phase V network. The
next two chapters introduce the two major forms of LAN technology
supported by DNA Phase V. Chapter 22 introduces the bus-structured
Carrier Sense Multiple Access with Collision Detection (CSMA/CD) and
Ethernet forms of LAN data link. Chapter 23 examines the ring-struc­
tured fiber distributed data interface (FDDI) LAN data link.

462

CHAPTER 22

IEEE CSMA/CD and Ethernet

Beginning in about 1972, the Palo Alto Research Center (PARC) of
Xerox Corporation began developing a local area network (LAN) sys­
tem that ran at 3 megabits per second (Mbps), which became known as
Research Ethernet. Later, Digital, Intel, and Xerox jointly developed
a substantially new design for a 10 Mbps Ethernet network that was
documented in Version 1 of the Ethernet Specification. This design was
later revised and is now documented in Version 2 of the Ethernet
Specification. Digital has been one of the largest supporters of the Ether­
net form of LAN, and LANs conforming to Version 2 of the Ethernet
Specification are an integral part of DECnet Phase IV networks. DNA
Phase V continues to support Version 2 of the Ethernet Specification.

The work done by Digital, Intel, and Xerox on Ethernet con­
tributed substantially to the IEEE 802.3, Carrier Sense Multiple Access
with Collision Detection (CSMA/CD), standard. The IEEE 802.3 stan­
dard is similar to Version 2 of the Ethernet Specification. IEEE 802.3 has
been accepted by ISO as an international standard and is also published
as ISO 8802-3. The IEEE/ISO CSMA/CD standard has been incorpo­
rated into the DNA Phase V architecture, and all DECnet Phase V LAN
products support both the IEEE/ISO CSMA/CD standard and the Ether­
net Specification. This chapter describes the DNA Phase V CSMA/CD
specification, which goes beyond the IEEE/ISO CSMA/CD standard but
is in complete conformance with it.

A CSMA/CD LAN uses building blocks of individual cable segments
to which stations are attached in a bus-structured topology. A cable seg­
ment has a limited length, and devices called repeaters can be used to cre­
ate a branching, nonrooted tree topology, as shown in Figure 22.1. A
CSMA/CD LAN implements a multiaccess form of data link in which all
stations in the network receive the transmissions of all other stations.

FIGURE 22.1

The CSMA/CD
Architectural
Model

Data Link Layer
Components

CHAPTER 22: IEEE CSMA/CD AND ETHERNET 463

Simple CSMA/CD network using repeaters.

1111111111111111111

::::::::::::::::::: c:=::J I Repeater I

• . . I Rep~ater f w u .. >rn•

j

Ill
The DNA Phase V specifications for the CSMNCD form of data link
defines an architectural model describing the organization of the Data
Link layer and the Physical layer. This architectural model defines the
components shown in Figure 22.2.

As described in Chapter 21, with a local area network data link, the
Data Link layer is divided into a Logical Link Control (LLC) sublayer
and a Medium Access Control (MAC) sublayer.

Logical Link Control Sublayer

The Logical Link Control (LLC) sublayer of the Data Link layer is re­
sponsible for medium-independent Data Link layer functions. It allows a

464

FIGURE 22.2

PART V: DATA LINK LAYER PROTOCOLS

DNA Phase V CSMA/CD architectural model.

-r
Data Link

+------ Data Link
....-----~-----. Client Interface

+------ LLC-MAC
....-----------. Abstract Interface

Medium Access
Control (MAC) Sublayer

+------ MAC-PLS
~--------~ Abstract Interface

Physical Signaling
Sublayer (PLS)

T
T

Physical PLS-PMA
L Abstract Interface
ajyer Physical Medium

Attachment (PMA) Sublayer
Medium Dependent

~+------Interface (MDI)
[~)~~~~~T-ra_n_s_m=is=si=on=M~e-d-iu-m~~~~~

user of the LLC sublayer to access the services of the LAN without re­
gard to what form of transmission medium is used and what method is
used to control access to it. The LLC sublayer provides services to a user
of the OSI Data Link layer, such as a Network layer entity. The functions
of the LLC sublayer are described in detail in Chapter 21.

Medium Access Control Sublayer

The Medium Access Control (MAC) sublayer of the Data Link layer is
concerned with the method used to control access to the transmission
medium. The medium access control method defines procedures for
managing access to the transmission medium, describes addressing tech­
niques, and specifies error detection procedures. The MAC sublayer pro­
vides services to the LLC sublayer.

The interface between the LLC sublayer and the MAC sublayer (the
LLC-MAC interface) is an abstract interface defining the set of services
that a MAC sublayer entity supplies to an LLC sublayer entity above it.
The relationship between the services the MAC sublayer provides to the

FIGURE 22.3

Physical Layer
Components

CHAPTER 22: IEEE CSMA/CD AND ETHERNET

The relationship between the MAC sublayer service and the MAC sublayer protocol.

MAC Sublayer Service ------~

Medium Access
Control Sublayer

The MAC sublayer protocol
uses the Physical layer service __ ~
to provide the MAC sublayer
service to the LLC sublayer.

MAC Sublayer Service

Medium Access
Control Sublayer

Physical Layer Service ---~t t~---- Physical Layer Service

Transmission Medium

465

LLC sublayer and the protocol governing its operation are shown in Fig­
ure 22.3. As shown there, the MAC sublayer protocol uses the services
of the Physical layer to provide a defined set of services to an LLC sub­
layer entity above it.

The architectural components for the Physical layer address issues such
as the physical characteristics of the transmission medium and the me­
chanical connection of devices to the transmission medium. The
CSMA/CD Physical layer is divided into a Physical Signaling (PLS) sub­
layer and a Physical Medium Attachment (PMA) sublayer.

The Physical Signaling Sublayer

The Physical Signaling (PLS) sublayer provides a well-defined set of ser­
vices to the MAC sublayer and enables the local MAC sublayer entity to
exchange MAC frames with MAC sublayer entities in other stations. The
interface between the MAC sublayer and the PLS sublayer (the MAC­
PLS interface) is an abstract interface defining the services that a PLS
sublayer entity supplies to a MAC sublayer entity.

The PLS sublayer is responsible for encoding the data passed down
from the MAC sublayer in a transmitting station. The data encoding
function is responsible for translating the bits being transmitted into the

466

FIGURE 22.4

PART V: DATA LINK LAYER PROTOCOLS

proper electrical signals that are then broadcast over the transmission
medium. The PLS sublayer is also responsible for decoding the signal it
receives. The decoding function translates received signals into the bit
stream those signals represent and passes the resulting data up to the
MAC sublayer.

With CSMNCD, Manchester encoding is used to encode the bit
stream into electrical signals. Manchester encoding has the desirable
property that signal transitions occur on the transmission medium with
predictable regularity. The Manchester encoding scheme used with an
implementation of CSMNCD is illustrated in Figure 22.4. With Man­
chester encoding, the signal state always changes at the midpoint of each
bit time. For a 1 bit, the signal changes from low to high; for a 0 bit, it
changes from high to low. This type of signaling allows data and clock­
ing signals to be combined into a single transmission, since the receiving
station can use the state change that occurs during each bit time for syn­
chronization purposes.

The PLS sublayer is also responsible for listening to the transmission
medium and for notifying medium access management whether the car­
rier is free or busy and whether a collision has been detected. Collisions,
which occur when two or more stations attempt to transmit at the same
time, are discussed later when we describe the operation of the
CSMNCD protocol.

Physical Medium Attachment Sublayer

The Physical Medium Attachment (PMA) sublayer provides services to
the PLS sublayer. It performs a translation function between the PLS sub­
layer and the transmission medium itself and defines the characteristics
of a particular type of transmission medium. The interface between the

Manchester encoding for CSMA/CD.

~OneBit

/. Time

1 0 0 1 1

FIGURE 22.5

CHAPTER 22: IEEE CSMA/CD AND ETHERNET 467

MAC sublayer and the PLS sublayer (the PLS-PMA interface) defines the
services that a PMA sublayer entity supplies to a PLS sublayer entity.

The CSMNCD standard allows the PLS and PMA sublayers to be
implemented in the same device or in separate devices, as shown in Fig­
ure 22.5. A device implementing both the PLS and PMA sublayers is at­
tached directly to the transmission medium. In such a device, the PLS­
PMA interface is an abstract interface that defines services only. A device
implementing only the PLS sublayer must use a separate device, called a
Medium Attachment Unit (MAU), to implement the PMA sublayer. The
function of the MAU is described later when we examine the devices that
can implement the various architectural components.

Attachment Unit Interface

When a separate MAU is used to implement the PMA sublayer, the PLS­
PMA interface consists of a concrete interface called the Attachment Unit
Interface (AUi). The AUi defines the cable and the connectors used to con­
nect the MAU to the device implementing the PLS sublayer. The AUi also
specifies the characteristics of the signals exchanged across the interface.

The PLS and PMA sublayers can be implemented in the same device or in different devices.

Logical Link
Control (LLC) Sublayer

Logical Link
Control (LLC) Sublayer

Medium Access
Control (MAC) Sublayer

Physical Signaling
(PLS) Sublayer

Physical Medium
Attachment (PMA) Sublayer

Transmission Medium

Medium Access
Control (MAC) Sublayer

Physical Signaling
(PLS) Sublayer

•.·:·::····~~ .. •·.-·•.-.:-··----Attachment

Physical Medium
Attachment (PMA) Sublayer

Unit
Interface

Medium
r.;;:;71 Dependent

·····L~+------ Interface

468 PART V: DATA LINK LAYER PROTOCOLS

Transmission Medium

The transmission medium consists of the portion of the physical commu­
nication channel to which two or more PMA sublayer entities are con-
nected. The interface betc.,-a:.reen the P~~1...A ... sub!ayer 2nd the transmission
medium (the PMA-Medium interface) is a concrete interface called the
Medium Dependent Interface (MDI). The MDI for a particular form of
transmission medium defines the characteristics of cable segments (some­
times called the trunk cable), connectors for joining cable segments, and
terminators used at the ends of cable segments. Although the transmis­
sion medium ordinarily consists of a physical cable, such as coaxial
cable, twisted-pair cable, or fiber-optic cable, it can also consist of a mi­
crowave link in some implementations.

CSMA/CD Medium Notation

A shorthand notation is used to describe a particular form of CSMNCD
transmission medium in which the data rate, signaling type, maximum
cable segment length, and medium type are combined. An example of
this notation is 10BASE5coax. The 10 refers to 10 Mbps (all current
DECnet Phase V CSMNCD implementations use a data rate of 10
Mbps), BASE refers to baseband signaling, 5 refers to a maximum of
500 meters, and coax indicates coaxial cable. If the medium type is
omitted, coaxial cable is assumed, so 1 OBASE5 is equivalent to
10BASE5coax.

Digital CSMA/CD Transmission Media

The following forms of transmission media are supported by Digital im­
plementations of CSMNCD:

1. 10BASE5. The 10BASE5 form of transmission medium is based on
the original Ethernet Specification and uses baseband transmission
over the original, thick (10 mm) form of 50-ohm Ethernet coaxial
cable. This type of cable is often referred to as thick Ethernet cable. A
10BASE5 cable segment can be up to 500 meters in length.

2. 10BASE2. The 10BASE2 form of transmission medium uses base­
band signaling over 50-ohm coaxial cable, approximately 5 mm
thick. This form of transmission medium is often called Thin Wire
cable or Thinnet cable. A 10BASE2 cable segment can be up to 185
meters in length.

Network
Components

CHAPTER 22: IEEE CSMA/CD AND ETHERNET 469

3. 10BASE-T. The lOBASE-T form of transmission medium uses base­
band signaling over unshielded twisted-pair telephone wiring. The
specification is designed for a typical distance of up to about 100 me­
ters of 24 AWG twisted-pair cable.

4. 10BROAD36. The 10BROAD36 form of transmission medium uses
broadband signaling over the type of coaxial cable typically used in
cable television. 10BROAD36 cable segments can be up to 1800 me­
ters in length for a round trip distance of up to 3600 meters using a
dual cable configuration.

5. FOIRL. The FOIRL form of transmission medium uses baseband sig­
naling over a fiber-optic cable to implement a point-to-point connec­
tion between repeaters. Fiber-optic inter-repeater link cable segments
can be up to 1000 meters in length. Repeaters and inter-repeater links
are described later in this chapter.

The components defined in the CSMNCD architectural model can be
combined to form three different types of devices: stations, medium at­
tachment units (MAUs), and repeaters. Collections of those three types
of devices can be combined in various ways to construct CSMNCD
LANs.

Stations

A station is a collection of hardware and software that appears to other
stations as a single functional and addressable unit on the LAN. A sta­
tion is a device that uses a CSMNCD LAN for communication with
other stations. A station is identified by a station address, which must be
unique among all the stations attached to the LAN. Station addresses are
described in Chapter 21.

Two types of stations can be attached to a CSMNCD LAN, as
shown in Figure 22.6. The first type of station-shown on the left in Fig­
ure 22.6-is one attached directly to the transmission medium. It imple­
ments the LLC, MAC, PLS, and PMA components and also the MDI
concrete interface for attaching the station to a cable segment. The sec­
ond type of station-shown on the right-is one that uses a separate
medium attachment unit to implement the PMA sublayer functions. Hy­
brid stations are also possible that implement an internal MAU and also
provide the MDI concrete interface for connecting to an external MAU
to provide for alternative methods of connection to a cable segment. For

470 PART V: DATA LINK LAYER PROTOCOLS

FIGURE 22.6 A station can implement an internal MAU or connect to an external MAU.

Station with an
Internal MAU

Station Using an
External MAU

CSMA/CD Station

CSMA/CD Station

~===~- Attachment

Medium Attachment Unit (MAU)
Unit
Interface

Transmission Medium

Medium
Dependent

•+------ Interface

example, a station might implement the AUI for connecting the station
to an external MAU for attachment to a 10BASE5 cable segment and an
internal MAU for direct connection to a 10BASE2 or 10BASET cable
segment.

Medium Attachment Units

The CSMA/CD standard anticipates that in many implementations the
station will be located a short distance away from the transmission
medium, which must often be installed behind a wall or in a ceiling. So,
as described earlier, the CSMA/CD standard allows the physical medium
attachment (PMA) component to be implemented in a separate device
called a Medium Attachment Unit (MAU), also sometimes called a
transceiver. An attachment unit interface (AUI) defines the interface be­
tween a station and the MAU. The AUi is a concrete interface that

FIGURE 22.7

CHAPTER 22: IEEE CSMA/CD AND ETHERNET 471

defines specifications for the cable and the connectors used to attach the
station to the transceiver. The AUi also defines the characteristics of the
electrical signals exchanged across the interface. An MAU provides the
physical and electrical interface between a cable segment and a
CSMA/CD station. The cable that connects the device implementing the
PLS sublayer to the MAU is called the AU! cable.

The MAU handles all functions that depend on the specific trans­
mission medium being used. By having an MAU separate from the sta­
tion itself, the same station can be used with different transmission
media simply by changing the MAU. The most common form of station
that attaches to a 10BASE5 cable segment uses a separate MAU for at­
taching to the cable segment. The MAU typically has a contact that
pierces the thick Ethernet coaxial cable shielding and makes appropriate
contact with both the shielding and the central conductor. This is shown
in Figure 22.7.

In most implementations of the 10BASE2 medium specification, the
transmission medium is brought directly to the LAN adapter, and the
PMA sublayer is implemented by the LAN adapter itself. A standard T­
type BNC connector is used to attach the cable segment directly to the
LAN adapter, and stations are connected together in a daisy-chain fash­
ion, as shown in Figure 22.8. The 10BASE2 medium specification, how­
ever, does not preclude the use of a separate MAU.

A station that does not use a separate MAU and implements the
PMA sublayer within the station is said to implement an internal MAU.

Typical 1DBASE5 implementation.

r LAN Adapter

11111111111
·--11111••

11111111• !-~·
,-E="1, Medium Attachment
L-,--J- Unit (MAU)

(~J~~-1o_B_AS_E_sc_®_le_S~eg~m_en_t~~~~~~~)

472

FIGURE 22.8

FIGURE 22.9

PART V: DATA LINK LAYER PROTOCOLS

Typical 10BASE2 implementation.

Therefore, the term Medium Attachment Unit can be used to refer to any
point of physical attachment to a cable segment, whether or not a sepa­
rate MAU is used to attach a station to the LAN.

Repeaters

As described earlier, a CSMA/CD cable segment is of limited length. A
repeater can be used to relay signals from one cable segment to another,
thus extending the reach of a LAN beyond that allowed by a single cable
segment. Repeaters can be used to construct a network having a branch­
ing, nonrooted tree topology. A repeater's primary function is to relay all
data units it receives from one cable segment to all other cable segments
to which it is attached. The architectural model for a repeater is shown
in Figure 22.9. It consists of a single repeater function and two or more
ports. Each port consists of a PLS sublayer entity or the combination of a
PLS sublayer entity and a PMA sublayer entity.

Like a station, a repeater port can have the PMA sublayer integrated
into it, in which case the port is attached directly to the transmission
medium. Alternatively, a repeater port can implement the AUi, which is
a concrete interface, and can use a separate MAU for attachment to a
cable segment. Both types of ports can be implemented in the same re­
peater.

Repeater architectural model.

Port • •
Repeater Function

Port • Port • •

CHAPTER 22: IEEE CSMA/CD AND ETHERNET 473

A repeater can implement ports that allow attachment to different
types of transmission medias or different types of MAUs, as long as all
support the same data rate. For example, the same repeater might allow
data units to be relayed between 10BASE5 cable segments, 10BASE2
cable segments, and lOBASE-T cable segments.

CSMA/CD Network Stations, MAUs, repeaters, and cable segments can be combined in a va­
riety of ways to create networks that have a variety of topologies. Figure
22.10 shows a typical CSMNCD network that suggests various ways in

F I G u R E 2 2 . 1 0 Typical CSMA/CD network.

MediumAtt~
Unit (MAU)

I/

I Rep~ater I"·····~·····

1 OBASE5 Segment

FOIRL
Segment--~

1111111111111111111

:::::::::::::mm c:::::::J

<o'o>!.<c,,_,_,,

.

'5.;~~""o9k .

o'"' '~'"

-10BASE5
Cable
Terminator

474 PART V: DATA LINK LAYER PROTOCOLS

which components can be combined. The topology of a CSMNCD net­
work must always form a nonrooted, branching tree in which there is
only one physical path between any two stations and in which the net­
work can be extended or connected at any point.

Cable Segments

Two types of cable segments are defined in the DNA Phase V CSMNCD
specification: point-to-point and multiaccess. A point-to-point cable seg­
ment allows only two connections and is used to connect the MAUs of a
pair of repeaters. A point-to-point cable segment is called an inter­
repeater link (IRL). A multiaccess cable segment allows more than two
connections and can be used to attach the MAUs of stations and re­
peaters to the LAN.

Station and Cable Segment Limits

An individual CSMNCD network can contain up to 1024 stations. Cer­
tain additional limits must be placed on the network configurations that
can be built based on signal propagation times. The following four types
of transmission media are used most often today for constructing
CSMNCD LANs:

• 10BASE5 Multiaccess Cable Segments. A 10BASE5 cable segment nor­
mally functions as a multiaccess cable segment. It can be up to 500 me­
ters in length and can have a maximum of 100 MAUs attached to it.

• 10BASE2 Multiaccess Cable Segments. A 10BASE2 cable segment can
also function as a multiaccess cable segment. It can be up to 185 meters
in length and can have a maximum of 30 MAUs attached to it.

• 10BASE-T Multiaccess Cable Segments. A 10BASE-T cable segment can
also be used as a multiaccess cable segment. The length of a 10BASE-T
cable segment and the number of stations that can be attached to a single
twisted-pair cable segment is implementation dependent. A maximum
length of 100 meters is typical.

• FOIRL Inter-Repeater Links. A FOIRL cable segment can be used as an
inter-repeater link and can be up to 1000 meters in length.

Between any two stations on the LAN, there can be a maximum of
five cable segments, up to three of which can be multiaccess cable seg­
ments. There can be a maximum of 1000 meters of inter-repeater link
cable segments between any two stations. Figure 22.11 shows a network

FIGURE 22.11

CHAPTER 22: IEEE CSMA/CD AND ETHERNET 475

Maximum span between two CSMA/CD stations with 1DBASE5 multiaccess cable segments and
FOIRL inter-repeater links.

+--- 500 Meters ~

t
50 Meters

==.-----. i 1111111111111111111

::::::::::::::::::: c:::::J Repeater

1
750 Meters

l
Repeater

t
50 Meters

"'

+--- 500 Meters ~

t
50 Meters

"' Repeater

t
250 Meters

t
Repeater

+--- 500 Meters --+

with the maximum span between station A and station B. This network
uses three 500-meter multiaccess cable segments and two inter-repeater
link cable segments totaling 1000 meters. Repeaters implementing inter­
repeater links normally use internal MAUs for connection to a fiber-optic
inter-repeater link (although the DNA Phase V CSMNCD specification
does not require this). Therefore, the total distance between any two sta­
tions is limited to 2800 meters. This includes 1500 meters of multiaccess
cable segment, 1000 meters of inter-repeater link, and 300 meters for 6
AUi cables to external MAUs.

Interconnecting 10BASE2, 10BASE5,
and 1 OBASE-T Segments

It is common to construct networks that use combinations of 10BASE2,
10BASE5, and lOBASE-T multiaccess cable segments. A possible combi­
nation is shown in Figure 22.12, in which a 10BASE5 network is used as
a backbone for a number of smaller 10BASE2 and lOBASE-T cable seg­
ments. It is generally recommended that a 10BASE2 or lOBASE-T cable
segment not be used between two 10BASE5 cable segments. This is be­
cause 10BASE2 and lOBASE-T cable segments are not as resistant to

476 PART V: DATA LINK LAYER PROTOCOLS

FIGURE 22.12 Interconnecting 10BASE2 and 10BASE-T cable segments using a 10BASE5 backbone.

10BASE2 Cable +----Medium
Attachment
Unit

10BASE-T Cable

11111111111111111111

1 OBASE5 Cable ~ :::::::::::::::::::: c:=:::J

noise as a 10BASE5 cable segment, and a segment used as a backbone
should be at least as resistant to noise as the segments it connects.

Star-Structured Networks

In the past, the CSMA/CD and Ethernet forms of local area networking
have sometimes been criticized because of the difficulty of prewiring a
building using a bus-structured network topology. This criticism is no
longer valid because repeaters implementing multiple ports, sometimes
called multiport repeaters, can be used to create star-structured networks
that are often better suited to building wiring schemes than bus-struc­
tured networks. In many cases, the best solution to local area network
wiring is to use a system of satellite equipment rooms. All the satellite
equipment rooms in a building might be interconnected, and each net­
work station then directly connected to the nearest satellite equipment

FIGURE 22.13

CHAPTER 22: IEEE CSMA/CD AND ETHERNET 477

room. Digital has long advocated the use of satellite equipment rooms to
create a star-structured wiring scheme, as shown in Figure 22.13. The
bus, in effect, operates as a high-quality backbone to which all the net­
work stations can be connected. Multiport repeaters installed in the
satellite equipment rooms allow a separate cable to connect each net­
work station to the satellite equipment room.

Extended LANs

Devices called bridges can be used to interconnect individual CSMNCD
networks to create an extended LAN. Bridges can also be used to inter­
connect CSMNCD networks with networks conforming to other stan-

Star-wired topology using satellite equipment rooms.

Satellite
Equipment

Room

llHllllllllUllllll

:mm::::::::::::: c:::::::i

Satellite
Equipment

Room

478

CSMA/CD MAC
Sublayer Service
Definition

MAC Sublayer
Service Interface
Procedure
Declarations

FIGURE 22.14

PART V: DATA LINK LAYER PROTOCOLS

dards, such as FDDI. Bridges perform a Data Link layer relay function
and are used to extend the LAN without affecting the basic services it
provides. Bridges can be used to increase the maximum number of sta­
tions allowed, the maximum distance between pairs of stations, and the
Luial available bctndvvidth. Bridges aud extended L.l\~Js are discu5:~ed in
Chapter 24.

The remainder of this chapter describes the CSMNCD service
definition and protocol specification and examines the format of the data
units exchanged by CSMNCD MAC sublayer entities during local area
network operation.

As with other ISO standards, the IEEE/ISO CSMA/CD documentation
includes a service definition that defines the services the MAC sublayer
provides to the LLC sublayer. The service definition is specified in terms
of service primitives and service primitive parameters. The service defini­
tion describes a single, unconfirmed data transfer service. The service
primitives that define the MAC sublayer service are shown in Box 22.1.
Figure 22.14 is a time-sequence diagram showing the sequence in which
the two service primitives are issued during normal frame transmission.

The DNA Phase V CSMNCD architectural specification also defines the
abstract interface between the MAC sublayer and a user of the MAC
sublayer (often an LLC sublayer entity). As with other DNA Phase Vin­
terfaces, this abstract interface is defined using a set of function and pro­
cedure declarations, which are listed in Box 22.2.

Time-sequence diagram for the MA_UNITDATA service.

BOX 22.1

MAC Sublayer
Service Primitives

CSMA/CD MAC
Sublayer Protocol
Specification

CHAPTER 22: IEEE CSMA/CO ANO ETHERNET

MA_UNITDATA.request

MA UNITDATA.indication

destination_address,

user_data,
service class

destination_address,
source_address,
user_data,
reception_status

479

The MAC sublayer Carrier Sense Multiple Access with Collision Detec­
tion (CSMNCD) protocol uses a distributed contention resolution tech­
nique to decide which station transmits next. The remainder of this chap­
ter describes, in a nontechnical fashion, how the distributed contention
resolution technique evolved and how the CSMNCD protocol operates.

The ALOHA Protocol

The CSMNCD protocol had its roots in an early multiaccess protocol
used in an experimental packet radio system called ALOHA, developed at
the University of Hawaii in the early 1970s. The protocol developed for
the ALOHA system uses a free-for-all technique, in which any station hav­
ing a frame to send simply transmits it. The station then waits for a period
of time equal to twice the round-trip propagation delay-the length of
time it takes a signal to reach the far end of the network. Twice the round­
trip propagation delay is called the slot time of the network. Since signals
are propagated at the speed of light, the slot time is typically very short.

If the sending station hears an acknowledgment to its frame within
the slot time, the sending station knows the frame was received correctly.
If the sending station times out, it retransmits the frame. After repeated
retransmissions, the sending station gives up (perhaps the receiving sta­
tion is turned off).

If a second station attempts to transmit a frame while the first sta­
tion is already transmitting, the two transmissions interfere, thus creat-

480

BOX 22.2

MAC Sublayer
Service Interface
i:~111r.Um1s ::inrl
Procedures

PART V: DATA LINK LAYER PROTOCOLS

The following function and procedure declarations define the abstract
interface between the MAC sublayer and a user of the MAC sublayer
in terms of the services a MAC sublayer entity provides to a user.

Control Functions

• Enable. Starts the operation of the services provided by the MAC
sublayer and the Physical layer.

• Disable. Stops operation of the MAC sublayer entity and the Physi­
cal layer entity.

• EnableReceiveAddress. Adds a MAC station address value to the list
of addresses of those frames the station wishes to receive. Only
frames having the MAC station addresses in the current list are
passed up to the LLC sublayer entity.

• DisableReceiveAddress. Removes a MAC station address value from
the list of addresses of those frames the station wishes to receive.

• ReadAttributes. Allows the LLC sublayer entity to determine the
values of the MAC sublayer entity parameters and state variables.

Data Transfer Functions

• TransmitFrame. Transmits a frame over the physical transmission
medium. Control is not returned until either the frame has been suc­
cessfully transmitted or the function fails.

• ReceiveFrame. Accepts an incoming frame. Control is not returned
until either the frame has been received or the function fails.

ing a condition called a collision. When collisions occur, frames are dam­
aged, the errors are detected through an error detection mechanism, and
receiving stations ignore the corrupted frames. Both stations then later
attempt to retransmit. The protocol is simple but inefficient with high
utilization of the channel capacity. It can be shown mathematically that
the maximum utilization of the available bandwidth with the pure
ALOHA protocol is less than 18 percent.

The CSMA Protocol

A problem with the ALOHA protocol is that collisions often occur when
a station begins transmitting a frame after some other station has already

CHAPTER 22: IEEE CSMA/CD AND ETHERNET 481

begun transmitting. If each station would simply listen to the transmis­
sion medium before sending its own frame and then send only if the
medium were quiet, many collisions could be avoided. This is the tech­
nique of Carrier Sense Multiple Access (CSMA). Each station senses the
condition of the transmission medium and transmits only when no signal
is being transmitted.

However, even with the CSMA technique, it can happen that two or
more stations all listen at exactly the same time and then transmit simul­
taneously. Therefore, collisions can still occur. With the CSMA scheme,
when frame transmission times are long compared to the propagation
delay, a significant portion of channel capacity can be lost due to colli­
sions because each station transmits its entire frame before discovering
that a collision has occurred.

The CSMA/CD Protocol

The final refinement to the CSMA technique is to add the Collision De­
tection (CD) function, resulting in CSMA/CD. In addition to listening to
the transmission system before transmitting, a sending station continues
to listen as the frame is propagated throughout the network. If two or
more stations have begun transmitting within a sufficiently short time in­
terval, a collision occurs. When this happens, the transmitting stations
immediately detect the collision, cease transmitting data, and all send out
a short jamming signal. The jamming signal ensures that all stations on
the network detect the collision. All stations that have been transmitting
then stop transmitting, wait for a random period of time, and if the car­
rier is free, transmit their frames again. A station must listen while it is
transmitting to ensure that a collision has not taken place.

Deference Process

The process of monitoring the state of the transmission medium and de­
termining when to begin transmission is called the deference process.
The deference process determines when the station can begin transmit­
ting after it has detected that a transition between medium busy and
medium idle has occurred. For example, when a collision occurs, all sta­
tions that have been transmitting stop, wait a period of time, and then if
the carrier is free, start transmitting again. If all stations waited the same
length of time before checking the carrier and starting transmission, then
another collision would occur. The deference process avoids this. In exe­
cuting the deference process, each station generates a random number

482 PART V: DATA LINK LAYER PROTOCOLS

that determines the length of time it must wait before testing the carrier.
This time period is known as the station's backoff delay. Backoff delay is
calculated in multiples of slot time, which is 51.2 microseconds on a
CSMA/CD network.

Each station generates a random number that fails within a spt:cified
range of values. It then waits that number of slot times before attempting
retransmission. The smaller the range of values from which the random
number is selected, the greater the likelihood that two stations will select
the same number and have another collision. However, if the range of
numbers is large, all the stations may wait for several slot times before
any station transmits, causing transmission time to be wasted.

Truncated Binary Exponential Backoff

To achieve a balance between these two considerations, the CSMA/CD
protocol uses an approach called truncated binary exponential backoff.
The range of numbers (r) is defined as 0 :'.'!: r < 2 k, where k reflects the num­
ber of transmission attempts the station has made. For the first attempt the
range is 0 to 1; for the second attempt, 0 to 3; for the third, 0 to 7 and so
on. If repeated collisions occur, the range continues to expand until k
reaches 10 (with r ranging from 0 to 1023), after which the value fork
stays at 10. If a station is unsuccessful in transmitting after 16 attempts,
the MAC sublayer entity reports an excessive collisions error condition.

Binary exponential backoff results in minimum delays before re­
transmission when traffic on the network is light. When traffic is high,
repeated collisions cause the range of numbers to increase, thus lessening
the chance of further collisions. Of course, when the traffic is extremely
high, repeated collisions can still begin to cause excessive collisions error
conditions to be generated. However, this technique results in network
utilizations that are extremely high, generally better than 90 percent.

Collision Detection

A station knows that a collision has occurred when the signal level on
the cable equals or exceeds a predefined threshold. As a signal travels
along the cable, it gradually attenuates, or weakens. If the signal is al­
lowed to attenuate too much, a station's signal might not be recognized
as a collision when it combines with the signal from another transmitter.
This is one of the reasons that repeaters must be used at least every 500

CHAPTER 22: IEEE CSMA/CD AND ETHERNET 483

meters to regenerate the signal to its optimal level (1000 meters over an
inter-repeater link).

Figure 22.15 illustrates, in a simplified manner, worst-case collision
detection for a network of maximum size. Stations 1 and 2 are the maxi­
mum distance apart. Station 1 begins transmitting, and just before its
signal reaches station 2, station 2 also begins transmitting. The collision
occurs near station 2, causing a signal that must travel back the full
length of the network to reach station 1. The frame station 1 is transmit­
ting must be large enough to ensure that station 1 is still transmitting
when it detects the collision with station 2's transmission. Otherwise, it
will assume its frame got through without a collision.

The maximum time it takes to detect a collision is equal to the slot
time, twice the propagation time for the maximum cable length. This
represents the time it takes station 1 's signal to reach the far end plus the
time it takes the collision signal to travel back the length of the network
to reach station 1. The worst-case collision detection time on a valid
CSMNCD network of maximum size is less than 51.2 microseconds.

CSMA/CD Protocol It is interesting to note that many of the design decisions made during the
Design Decisions development of the Ethernet Specification (which led to the CSMNCD

standard) were based on real-world engineering considerations and rep­
resented difficult tradeoffs between cost and performance. Box 22.3
gives a list o~ the design decisions that were made. Keep in mind that
these decisions were made in 1980. We list the decisions in the order the

FIG u RE 2 2 . 1 5 Worst-case collision detection.

Transmission from
Station 1 ------------------------+

~IL
/i'

Collision__/ +- Tra~smission from

+--------------------------------9-C?J!ll?l'?n.R~l~£~.Ql)_)?y_§!~!i.Q!J..1..................................... Station 2

Maximum Size Netwo;.:;rk ________ .)

11111111111111111111 11111111111111111111

:::::::::::::::::::: c:::::::J :::::::::::::::::::: c:::::::J

484

BOX 22.3

Ethernet Design
Decisions

PART V: DATA LINK LAYER PROTOCOLS

1. The 10 megabits per second (Mbps) data rate was the first design
decision. Given the scaling of semiconductor technology, the
design team felt it would be feasible to put the logic to implement
CSMNCD at 10 Mbps on a single chip by about 1985, which
would lead to LAN adapters that could be marketed at a reason­
able cost.

2. The next design decision was that the total span of a CSMNCD
LAN needed to be at least a couple of kilometers in extent. This
figure was based on the need to wire buildings from floor to floor
and the requirement for wiring a campus of buildings.

3. The maximum length of 500 meters for a single multiaccess cable
segment was decided next. This figure was based on a tradeoff
between jitter increasing as the cable gets longer and the cost asso­
ciated with building a transceiver increasing as the jitter increases.

4. The next design parameter was to allow a maximum of 50 meters
for the AUi cable from the transceiver attached to the cable seg­
ment to the station itself. This figure was kept relatively small so
the AUi cable could be implemented cheaply.

5. The next decision was to specify a maximum of two repeaters
between any two stations and a maximum of 1000 meters of
point-to-point link between any two stations. In the Ethernet
Specification, a repeater could consist of two half-repeaters con­
nected by a point-to-point link. This is the same as the present
DNA Phase V CSMNCD specification, which allows five cable
segments, two of which must be inter-repeater links. These param­
eters were chosen to permit a maximum distance between any two
stations of 2800 meters (three 500 meter multiaccess cable seg­
ments, 1000 meters of point-to-point link, and six 50-meter AUi
cables to MAUs).

6. The above five design decisions led directly to the CSMNCD slot
time of 51.2 microseconds.

7. The slot time dictates the minimum frame size requiring at least 46
octets in the data field of a frame.

8. The maximum packet size of 1500 octets in the data field of a
frame was then chosen based on a tradeoff between reducing
latency and maximizing transmission efficiency. As the frame size
gets longer, the probability increases that two or more other sta­
tions will have frames to send when the first station finishes send­
ing its frame and that a collision will occur. Keeping the maximum

BOX 22.3

continued

MAC Frame and
Packet Format

CHAPTER 22: IEEE CSMA/CD AND ETHERNET

frame size relatively small lowers this probability and increases
channel efficiency.

9. The decision to use Manchester encoding was based on the fact
that it is relatively simple and inexpensive to implement and that it
has frequent, predictable transitions making synchronization easy
to achieve.

10. The final design decision was to allow for a minimum of 9.6
microseconds between transmitted frames (interpacket gap). This
decision was based on an analysis of the processing that had to be
performed after each packet was received and on an estimate of
the amount of time it would require to perform that processing
based on the technology of the time.

485

Ethernet design team made them and give the key considerations that
led to each decision.

In using the data transfer service provided by the MAC sublayer, an LLC
entity in the source station passes a medium-access-control-service-data­
unit (MAC-SDU) to the MAC sublayer entity in that station. The MAC
sublayer entity adds PCI to the MAC-SDU in the form of a header and a
trailer to create a medium-access-control-protocol-data-unit (MAC­
PDU)-also called a MAC frame-and passes it to the Physical layer.
The Physical layer attaches additional PCI to the MAC frame to create a
physical-protocol-data-unit (PPDU). The DNA Phase V CSMNCD
specification calls a PPDU a packet.· The Physical layer then transmits
the packet over the transmission medium. When a station receives a
packet, the Physical layer entity in the receiving station extracts the
MAC frame from the packet and passes it up to the MAC sublayer en­
tity. The MAC sublayer then extracts the LLC-PDU from the MAC
frame and passes it up to the LLC sublayer. This process is summarized
in Figure 22.16.

• This is an unfortunate choice of terminology, since the term packet is also
frequently used in networking literature to refer to the NPDUs that are
exchanged by Network layer entities. The Physical layer packet is not the same
as the Network layer packet.

486 PART V: DATA LINK LAYER PROTOCOLS

FIGURE 22.16 Providing the Medium Access Control sublayer data transfer service.

MAC Frame

MAC-POU (MAC Frame) MAC-PDU (MAC Frame)

Physical Layer Physical Layer

PSDU

PSDU Packet

PPDU (Packet) PPDU (Packet)

Transmission Medium
LLC-PDU logical-link-control-protocol-data-unit
MAC-SOU medium-access-control-service-data-unit
MAC-POU medium-access-control-protocol-data-unit
PSDU physical-service-data-unit
PPDU physical-protocol-data-unit
PCI protocol-control-information

The general formats of a packet and a MAC frame are shown in Fig­
ure 22.17. The MAC frame is contained within a Physical layer packet
and consists of destination and source address fields, a length/type field,
a data field, and a frame check sequence field. The Physical layer creates
a packet by adding a preamble, start frame delimiter, and end frame de­
limiter to the MAC frame. The following are descriptions of the fields
that make up a MAC frame and a Physical layer packet:

• Preamble. A sequence of 56 bits having alternating 1- and 0-values that
the Physical layer transmits prior to the beginning of a MAC frame to
synchronize the transmitter and the receivers.

• Start Frame Delimiter. A sequence of 8 bits having the bit configuration
10101011 that the Physical layer transmits to indicate the beginning of a
MAC frame.

• Station Addresses. Station addresses, described in Chapter 21, are often
called MAC addresses. Address fields are 48 bits in length. The source

CHAPTER 22: IEEE CSMA/CD AND ETHERNET 487

FIGURE 22.17 DNA Phase V MAC frame and packet formats.

1---------------- Physical-Protocol-Data-Unit (Packet)------------

--------- Medium-Access-Control-Protocol-Data-Unit (MAC Frame) --------

Dest. Source
Address Address Length

7 bytes 1 byte 6 bytes 6 bytes 2 bytes

IEEE/ISO CSMA/CD Frame

Dest. Source
Address Address

Type

7 bytes 1 byte 6 bytes 6 bytes 2 bytes

Ethernet Frame

Dest. Source
Address Address

Type Length

7 bytes 1 byte 6 bytes 6 bytes 2 bytes 2 bytes

Ethernet Frame with Padding

MACSDU

o - 1500 bytes

Information

46-1500 bytes

Information

0-1498 bytes

Pad
Bytes

FCS

O - 46 bytes 4 bytes 1 byte

Pad
Bytes

FCS

O - 44 bytes 4 bytes 1 byte

address field always refers to an individual station, the station that trans­
mitted the frame. The destination address field identifies the station or
stations to receive the frame. The destination address can be either an in­
dividual address or a group address. An address referring to a group of
stations is called a multicast address. The address referring to all stations
on the network is called the broadcast address.

• Length/Type Field. The value contained in this field indicates whether
the frame conforms to the IEEE/ISO CSMA/CD format or to the format
defined by the Ethernet Specification. For an IEEE/ISO CSMA/CD
frame, this field contains a count of the number of octets contained in the
data field. For an Ethernet frame, this field contains a value used to iden­
tify the protocol employed by the Data Link layer user. Later in this
chapter we discuss how the length/type field is used to distinguish be­
tween IEEE/ISO CSMA/CD and Ethernet frames.

• Data Field. Contains the MAC-SDU passed to the MAC sublayer by a user
of the MAC sublayer. The data field can contain from 0 to 1500 octets.

488 PART V: DATA LINK LAYER PROTOCOLS

• Pad Field. To properly detect collisions, there must be at least 46 octets
of data between the length/type field and the frame check sequence field.
If the data field is not at least 46 octets in length, Pad octets are added to
bring the size of the data field plus the Pad field up to 46 octets.

• Frame Check Sequence (FCS). When the sending station assembles a
frame, it performs a cyclical redundancy check (CRC) calculation on the
bits in the frame. The specific algorithm used is documented in the
IEEE/ISO CSMNCD standard and is also described in the DNA Phase V
CSMNCD specification. The algorithm always results in a 32-bit value.
The sending station stores this value in the frame check sequence (FCS)
field and then transmits the frame. When the receiving station receives
the frame, it performs an identical CRC calculation and compares the re­
sults with the value in the FCS field of the received frame. If the two val­
ues do not match, the receiving station assumes that a transmission error
has occurred and discards the frame; thus, the user of the MAC sublayer
service does not receive corrupted frames. It is the responsibility of
higher layers to detect lost frames and to request their retransmission.

Ethernet Frames

A DECnet Phase V CSMNCD LAN device distinguishes between an
Ethernet frame and an IEEE/ISO CSMNCD frame by examining the 2-
octet length/type field. The maximum frame size restriction specifies that
the length of the data field must be within the range of 0 to 1500 octets;
therefore, the length field value in an IEEE/ISO CSMNCD frame must
be less than 1500. Since no Ethernet protocol identifier values are less
than 1500, the LLC layer knows that if the length field value is 1500 or
less, the frame is an IEEE/ISO CSMNCD frame. If the length field value
is larger than 1500, it is an Ethernet frame.

Digital's DECnet Phase V LAN devices are designed to normally
transmit IEEE/ISO CSMNCD frames but to accept incoming frames in
either the IEEE/ISO CSMNCD or the Ethernet format. When a Phase V
CSMNCD device receives an Ethernet frame from a station, it replies to
that station with Ethernet frames.

Ethernet Frames with Padding

Although not defined by either the ISO/IEEE CSMNCD standard or the
Ethernet Specification, the DNA Phase V architecture defines a special
Ethernet frame format that makes it possible to avoid the requirement
for a data field to be at least 46 octets in length. It carries a 2-octet length

Conclusion

CHAPTER 22: IEEE CSMA/CO ANO ETHERNET 489

field after the protocol identifier field. The remainder of the user data
portion of the frame is then padded. The header portion of the frame
does not distinguish between the padded and nonpadded variants. It is
up to the two LAN users to agree on which format to use.

The CSMNCD form of local area network data link and its Ethernet
predecessor will be widely used in DECnet Phase V networks as easy-to­
use methods for interconnecting host computers, workstations, personal
computers, and terminals within a relatively small geographic area.
Chapter 23 describes the Fiber Distributed Data Interface (FDDI) stan­
dard that defines a higher-speed LAN than CSMNCD that will be im­
portant in the 1990s for high-performance networking applications.

490

CHAPTER 23

Fiber Distributed
Data Inter{ ace

Like a CSMNCD local area network, a Fiber Distributed Data Interface
(FDDI) local area network implements a broadcast form of data link in
which all stations in the LAN receive the transmissions of all other sta -
tions. However, instead of using a multiaccess circuit to implement the
LAN, FDDI uses full-duplex, point-to-point fiber-optic physical links be­
tween stations to form a logical ring-structured network. A special data
unit called the token circulates around the ring. A station can transmit
frames only when it is in possession of the token. An FDDI LAN operates
at a data rate of 100 Mbps, 10 times that of a CSMNCD network.

The FDDI standard is designed to meet requirements for both high­
performance individual networks and high-speed connections between
networks. The FDDI standard was developed by the Accredited Stan­
dards Committee (ASC) X3T9 .5 of the American National Standards
Institute (ANSI). It has also been accepted by ISO as an international
standard and is published in ISO 9314. The DNA Phase V FDDI
specification defines an implementation model that can be used to build
FDDI LAN equipment that will successfully interoperate with any im­
plementation of the ANSI FDDI specification. Like the CSMNCD
specification, the DNA Phase V FDDI specification defines many ser­
vices that go beyond those described in the ANSI standard while remain­
ing fully conformant with it.

The FDDI standard addresses the requirements associated with
three types of networks: backend local networks, high-speed office net­
works, and backbone local networks.

• Backend Local Networks. Backend local networks are used to intercon­
nect mainframe computers and large data storage devices where there is
a need for a high-volume data transfer rate. Typically, in a backend local

The FDDI
Architectural
Model

CHAPTER 23: FIBER DISTRIBUTED DATA INTERFACE 491

network there will be a small number of devices to be connected, and
they will be close together. This was the original use for which FDDI was
intended, but FDDI LANs will probably be used much more extensively
for the following two uses.

• High-Speed Office Networks. The need for high-speed office networks
has arisen from the increased use of image and graphics processing de­
vices in the office environment. The use of graphics and images can in­
crease the amount of information that needs to be transmitted on a net­
work by orders of magnitude. A typical data processing transaction may
involve 500 bits, while a document page image may require the transmis­
sion of half a million bits or more.

• Backbone Local Networks. Backbone local networks are used to provide
a high-capacity network that can be used to interconnect lower-capacity
LANs.

In the DNA Phase V environment, an important use of an FDDI
LAN will be to serve as a high-speed backbone for connecting lower­
speed CSMNCD and Ethernet LANs. To this end, the DNA Phase V
FDDI specification includes a mapped Ethernet service for allowing Eth­
ernet stations to communicate with FDDI stations and for allowing an
FDDI LAN to transmit traffic between Ethernet LANs.

The DNA Phase V specification for the FDDI form of data link defines an
architectural model describing the organization of the Data Link and
Physical layers of the OSI architecture. This architectural model is illus­
trated in Figure 23.1. The components in the architectural model can be
divided among those components associated with the Data Link layer,
those associated with the Physical layer, and those associated with the sta­
tion management (SMT) function. An FDDI station is defined as a device
that implements a single instance of the SMT component and the compo­
nents SMT controls. A station has exactly one SMT component; zero,
one, or two link components; and one or more PHY port components.

Data Link Layer Components

As described in Chapter 21, with a LAN data link, the Data Link layer is
divided into a Logical Link Control (LLC) sublayer and a Medium Ac­
cess Control (MAC) sublayer. An instance of an LLC sublayer entity and
a MAC sublayer entity in the FDDI model is called a link. A station can
implement zero, one, or two links, depending on the use to which the

492

FIGURE 23.1

I
Data Link

Layer

j

Physical
Layer

PART V: DATA LINK LAYER PROTOCOLS

DNA Phase V FDDI architectural model.

Station

Link

Logical Link Station

Control (LLC) Sublayer Management
(SMT)

Medium Access Link
Control (MAC) Sublayer Management

SMTFrame
Configuration Based

Switching Sublayer Management

PHY Port Ring
Management

Physical Layer
(PHY) Protocol

Connection
Management

Physical Layer Medium
Dependent (PMD)

Medium Interface_/
Connector (MIC)

concrete interface

Full-Duplex Point-to-Point
Fiber-Optic Link

station is put. Different types of FDDI stations are described later in this
chapter.

Logical Link Control Sublayer

The Logical Link Control (LLC) sublayer of the Data Link layer is re­
sponsible for medium-independent Data Link layer functions. It allows a
user of the LLC sublayer to access the services of the local area network
without regard to what form of transmission medium is used and what
method is used to control access to it. The LLC sublayer provides ser-

CHAPTER 23: FIBER DISTRIBUTED DATA INTERFACE 493

vices to a user of the OSI Data Link layer through an LLC port, as de­
scribed in Chapter 21. The functions of the FDDI LLC sublayer are ef­
fectively the same as those described in Chapter 21. In addition to pro­
viding the IEEE/ISO Class I service, the DNA Phase V FDDI LLC
sublayer provides the following services:

• multiplexing and demultiplexing for multiple users employing the ser­
vice-access-point (SAP) address and subnetwork access protocol (SNAP)
protocol identifiers

• address filtering

• XID and Test frame procedures

• a mapped Ethernet service to allow Ethernet and FDDI networks to in­
teroperate in the same extended LAN

The DNA Phase V FDDI architectural specification defines the inter­
face to the FDDI LLC sublayer in terms of function and procedure calls.
These function and procedure calls are essentially the same as those
specified in Chapter 21 (Box 21.3) and are not repeated here.

Medium Access Control Sublayer

The Medium Access Control (MAC) sublayer of the Data Link layer is
concerned with the protocol used to handle the transmission of tokens
and data frames around the logical ring. The interface between the LLC
sublayer and the MAC sublayer is an abstract interface defining the set
of services that a MAC sublayer entity supplies to an LLC sublayer entity
above it. The relationship between the services the MAC sublayer pro­
vides to the LLC sublayer and the protocol governing its operation are
shown in Figure 23.2. As shown there, the MAC sublayer protocol uses
the services of the Physical layer to provide a defined set of services to an
LLC sublayer entity above it.

The DNA Phase V FDDI MAC sublayer performs the following
functions in supplying its services:

• ring initialization

• providing fair and deterministic access to the transmission medium

• address recognition and address filtering

• generation and verification of frame check sequence (PCS) fields

• frame transmission and reception

• frame repeating and frame stripping (removal of frames from the ring)

494

FIGURE 23.2

Physical Layer
Components

PART V: DATA LINK LAYER PROTOCOLS

The relationship between the MAC sublayer service and the MAC sublayer protocol.

Logical Link
Control Sublayer

t
Logical Link

Control Sublayer

f
MAC Sublayer Service ~---~ ~--____,- MAC Sublayer Service

Medium Access
Control (MAC)

Sublayer

The MAC sublayer protocol
uses the Physical layer service
to provide the MAC sublayer
service to the LLC sublayer.

Medium Access
Control (MAC)

Sublayer

Physical Layer Service ____ t t~--- Physical Layer Service

Physical Layer Physical Layer

Transmission Medium

The architectural components for the Physical layer address issues such
as the physical characteristics of the transmission medium and the me­
chanical connection of stations to the transmission medium. The FDDI
Physical layer is divided into a Configuration Switching sublayer, a Phys­
ical Layer Protocol (PHY) sublayer and a Physical Layer Medium De­
pendent (PMD) sublayer. A single instance of a PHY sublayer entity and
a PMD sublayer entity within a station is called a PHY port. A station
can implement one or more PHY ports.

Configuration Switching Sublayer

The Configuration Switching sublayer allows the PHY ports in a station
to be interconnected in various ways. This allows the station configura­
tion to be changed to determine the local topology of the network and
any link or PHY port to be enabled or disabled as a result of a network
management action. The Configuration Switching sublayer can deter­
mine the path that information takes through the station when new con­
nections become available or when connections are removed.

The Physical Layer Protocol Sublayer

The Physical Layer Protocol (PHY) sublayer provides a well-defined set
of services to a MAC sublayer entity and enables the local MAC entity

CHAPTER 23: FIBER DISTRIBUTED DATA INTERFACE 495

to exchange MAC frames with MAC sublayer entities in other stations.
The interface between the MAC sublayer and the PHY sublayer is an
abstract interface defining the services that a PHY sublayer entity sup­
plies to a MAC sublayer entity. The PHY sublayer performs the follow­
ing functions:

• encoding and decoding data and control information

• transmitting data received from the MAC sublayer

• performing clock synchronization and recovering the data coming in
from the PMD sublayer

• transmitting and receiving groups of code bits, called line states, that are
used to initialize and condition the transmission medium

Symbol Coding

The encoding system used by FDDI is designed to provide ease of syn­
chronization as well as data transmission. Data and control information
is carried on the transmission medium in the form of code bits. A code
bit is the smallest signalling entity and is represented using Nonreturn to
Zero Inverted (NRZI) encoding. With NRZI, a 1 code bit is represented
by a transition in the signal and a 0 code bit by no transition. A code
group is a consecutive sequence of 5 code bits that is used to represent a
symbol on the transmission medium. A 4b/5b code is used to assign in­
terpretations to the various code groups, as shown in Figure 23.3. Each
5-bit data symbol corresponds to a 4-bit binary data value. The code
groups used to represent data symbols were chosen so there are never
more than three consecutive 0-bits and thus no more than three bit times
without a transition. An additional 8 symbols are used for control pur­
poses. Other possible 5-bit values are invalid.

Physical Layer Medium Dependent Sublayer

The Physical Layer Medium Dependent (PMD) sublayer provides ser­
vices to the PHY sublayer. The interface between the PHY sublayer and
the PMD sublayer is an abstract interface defining the services that a
PMD sublayer entity supplies to a PHY sublayer entity. The functions
performed by the PMD sublayer include:

• Providing the services required to transport an encoded digital bit stream
from one station to the next over a point-to-point transmission medium.

496

FIGURE 23.3

PART V: DATA LINK LAYER PROTOCOLS

FDDI symbol coding.

Code
Group Symbol Interpretation

Data

11110 0 hex O
01001 1 hex 1
10100 2 hex 2
10101 3 hex 3
01010 4 hex 4
01011 5 hex 5
01110 6 hex 6
01111 7 hex 7
10010 8 hex 8
10011 9 hex 9
10110 A hex A
10111 B hex B
11010 c hex C
11011 D hex D
11100 E hex E
11101 F hex F

Control

00000 Q Quiet

11111 I Idle

00100 H Halt
11000 J Starting Delimiter (1st symbol)

10001 K Starting Delimiter (2nd symbol)

01101 T Ending Delimiter

00111 R Reset

11001 s Set

• Defining the Medium Interface Connector (MIC) and the keying of vari­
ous types of MIC receptacles for different types of MIC connections. The
MIC is a fully specified concrete interface described in the FDDI stan­
dard. There are four types of MIC connectors defined: A, B, M, and S.
The functions of the four types of connectors are discussed when we de­
scribe various types of FDDI stations.

• Specifying the characteristics of fiber-optic drivers and receivers, fiber­
optic transmission media, connectors, power budgets, and other physi­
cal, hardware-related characteristics.

Another function performed by the PMD sublayer is the Signal De­
tect function, which determines when an actual signal is being received
by a receiver. This function is particularly important in determining
when there is an active PHY port at the other end of a transmission
medium segment.

FDDI
Transmission
Medium

Station
Management

CHAPTER 23: FIBER DISTRIBUTED DATA INTERFACE 497

NETWORK ARCHITECT

With a metallic interface, the cable is either not connected or it's connected.

With fiber, the unconnected fiber starts out dark. Then, as the fiber moves closer

to the LED transmitter, the fiber gradually gets lighter. As the fiber approaches

the transmitter, the signal starts to get through, but with a very high bit error

rate at first. This process of connection could take maybe 100 milliseconds or so

when a transmission medium segment is plugged into a station. That may seem

fast, but 100 milliseconds at 100 megabits represents a lot of bits. Now given

that stations are all in series, you don't want to put a physical link into the net­

work that has an error rate of 10-3 or 10-2, when everything else is running at

an error rate of 10-10. So because of that, FDDI uses a protocol to initialize a

physical link. It runs a bit error rate test on a physical link before it is incorpo­

rated into the ring to make sure there are no bad physical links in the ring. A

bad physical link in the ring, with a physical link that has a bit error rate of 10-5

or 1 o-6, means you'll be losing a token every few seconds. This protocol is

something that Digital was involved in developing.

The transmission medium consists of the portion of the physical communi­
cation channel to which two or more PMD sublayer entities are connected.
Each transmission medium segment implements a full-duplex transmission
path, typically using a fiber-optic medium. Each segment ordinarily imple­
ments two optical fibers, one for transmission in each direction. Although
an implementation of FDDI typically uses a fiber-optic transmission
medium, it is interesting to note that the DNA Phase V FDDI architectural
specification does not require fiber optics to be used. Implementations of
FDDI that interoperate with all layers above the PMD sublayer could be
built using transmission media other than optical fibers.

The station management (SMT) component is responsible for monitor­
ing the operation of the station and for controlling the various manage­
ment-oriented attributes of other station components. The ANSI FDDI
standard contains detailed specifications for the SMT function, and the
DNA Phase V FDDI specification is fully conformant with the ANSI
FDDI specification. However, the DNA Phase V FDDI specification goes
further than the ANSI SMT specification in many areas to provide en­
hanced network management functions. The SMT component imple­
ments the following functions:

498

Station Types

PART V: DATA LINK LAYER PROTOCOLS

• Link Management. Monitors and controls the link components in a
station.

• SMT Frame Based Management. Monitors and controls functions asso­
ciated with the transmission of SMT PDUs used by SMT components in
communicating with each other over the network.

• Ring Management. Monitors and controls functions associated with en­
suring the proper operation of the logical ring, such as identifying when
a break in the logical ring has occurred.

• SMT Connection Management. Monitors and controls the operation of
the various PHY Ports implemented in a station.

As described earlier, a station is defined as a single instance of the SMT
component and the components SMT controls. Different types of sta­
tions can be implemented that contain the other architectural compo­
nents in various combinations. We will examine three types of stations
that will be commonly implemented and show how these stations can be
interconnected to create various types of network topologies. The three
station types we describe here are the single-attachment station (SAS),
the dual-attachment station (DAS), and the dual-attachment concentra­
tor (DAC).

Single-Attachment Station

A single-attachment station (SAS) implements a single link component
and a single PHY port. This type of station is attached to one end of a
single full-duplex, point-to-point transmission medium segment. An ar­
chitectural model of the single-attachment station is shown in Figure
23.4. A single-attachment station can be connected to another single-at­
tachment station using a single transmission medium segment, thus
forming a ring consisting of a single pair of stations. Such a configura­
tion, shown in Figure 23.5, represents the simplest possible FDDI net­
work. Such a configuration is not very useful since it does not allow for a
third station to be connected.

A single-attachment station implements a single Medium Interface
Connector (MIC) of type S (short for slave). As we will see after we
examine the architectural model for a concentrator, a single-attach­
ment station is typically connected, via a single transmission medium
segment, to a concentrator implementing a MIC connector of type M
(for master).

FIGURE 23.4

FIGURE 23.5

CHAPTER 23: FIBER DISTRIBUTED DATA INTERFACE 499

FOOi single-attachment station (SAS).

Link

I LLC I

jMACj

SMT
PHY Port

IPHYI

IPMDI

Full-Duplex
Fiber Optic Link .___,.

Dual-Attachment Station

A dual-attachment station (DAS) is designed to connect to two separate
full-duplex transmission medium segments. A dual-attachment station
can implement either one or two link components and contains exactly
two PHY ports. An architectural model of the dual-attachment station is
shown in Figure 23.6. A configuration switch component is used to form
data paths between the two PHY ports and the links to control the flow
of data through the station.

Dual Counter-Rotating Rings

Each of the PHY ports is associated with its own MIC. A dual-attach­
ment station implements one MIC of type A and one MIC of type B. Fig­
ure 23.7 shows a simple FDDI network consisting of 4 dual attachment
stations. The network is formed by connecting the A MIC of one station
to the B MIC of the next station with a single transmission medium seg-

Simplest FOOi network topology.

500

FIGURE 23.6

FIGURE 23.7

PART V: DATA LINK LAYER PROTOCOLS

FDDI dual-attachment station (DAS).

Optional (Either 1 or 2 link
components are valid.)

ment. When all the MICs are properly connected to the end of a trans­
mission medium segment, a dual counter-rotating ring structure is
formed. For a set of dual-attachment stations, each MIC type A must be
connected to a MIC type B for a primary ring and a secondary ring to be
formed. The type A and type B MICs are defined as follows:

• MIC Type A. A MIC of type A is defined to be the input of a physical
link that forms part of the path for the primary ring.

• MIC Type B. A MIC of type B is defined to be the output for a physical
link that forms part of the path for the primary ring.

Simple ring of dual-attachment stations.

DAS1

Primary Ring

Secondary Ring

DAS2 DAS3 DAS4

FIGURE 23.8

CHAPTER 23: FIBER DISTRIBUTED DATA INTERFACE 501

Dual-Attachment Concentrator

A dual-attachment concentrator (DAC) is a station that has three or
more PHY ports, each associated with its own MIC. The concentrator
implements one MIC of type A, one of type B, and at least one of type
M. Typical concentrator implementations will contain from 4 to 16
MICs, although the ANSI standard and the DNA Phase V FDDI
specification permit many more than that. An architectural model of the
dual-attachment concentrator is shown in Figure 23.8. A dual-attach­
ment concentrator can implement zero, one, or two link components. If
a station performs a concentrator function only, it is likely to implement
no link components, because the concentrator will not be the source or
the final destination of any frames.

A dual-attachment concentrator is used to create a network topol­
ogy called a dual ring of trees, in which tree structures branch off the
dual counter-rotating ring. A simple concentrator network is shown in
Figure 23.9. Notice that the type A and type B MICs are interconnected
in exactly the same way as in the example in Figure 23.8, which con­
sisted of four dual-attachment stations. Each of the type M MI Cs is con­
nected via a single full-duplex, point-to-point physical link to a single at­
tachment station implementing a type S MIC.

FDDI dual-attachment concentrator (DAC).

502

FIGURE 23.9

Physical Link and
Station Failures

PART V: DATA LINK LAYER PROTOCOLS

A simple concentrator network showing token flow on the primary ring. Boldface numbers
indicate when a MAC entity in each station receives the token. (This example assumes that
each concentrator implements one link and, thus, one MAC entity.)

-- Primart Ring

Secondary Ring

1 DAS 1 12 DAS 4

SAS SAS SAS SAS

3 5 8 10

Token Path

Before any single-attachment stations are connected to the concentra­
tors, the primary and secondary rings are identical to those shown in Fig­
ure 23.7. As each single-attachment station is attached to its concentra­
tor, the SMT component in the concentrator sets the configuration
switch appropriately to add that station to the logical ring. The numbers
next to the stations in Figure 23.9 show the path the token takes as it
travels from station to station around the primary ring. In this example,
we are assuming that each concentrator implements a single link compo­
nent and, thus, contains a single MAC entity.

The ANSI FDDI standard does not specify how the primary and sec­
ondary rings are to be used. This is left to the implementors. In the DNA
Phase V FDDI implementation, the primary ring is used to carry data;
the secondary ring may be idle and is used to recover from physical link
and station failures.

FIGURE 23.10

CHAPTER 23: FIBER DISTRIBUTED DATA INTERFACE 503

Physical Link Failure

If a physical link failure occurs, stations perform procedures to detect the
failure and set their configuration switches to use the secondary ring to
bypass the failure. This is shown in Figure 23.10. The redundant physi­
cal links that implement the secondary ring are used to bypass the miss­
ing physical link, thus reconfiguring the primary ring. The numbers in
the diagram show the sequence in which the token flows around the ring
both before and after the failure.

Station Failure

The secondary ring can also be used to bypass a station that either fails
or is disconnected from the ring. This is shown in Figure 23 .11. Stations
on either side of the physical link reconfigure using the secondary ring.
Again, numbers show the sequence in which the token flows around the
ring both before and after the failure.

Interconnecting FDDI and CSMA/CD LANs

Bridges can be used to interconnect individual FDDI networks with
CSMNCD networks to create an extended LAN. Bridges perform a

Reconfiguration after physical link failure.

Token Order on Primary Ring
Before Physical Link Failure--~ 1

Token Order After Physical Link
Failure (Boldface numbers indicate

when a MAC entity in each--~
station receives the token.)

1

3

2 3 4

2 5 4

6

504

FIGURE 23.11

FDDI MAC
Sublayer Service
Definition

PART V: DATA LINK LAYER PROTOCOLS

Reconfiguration after station failure.

Token Order on Primary Ring
Before Station Failure--- 1 2 3 4

Token Order After Station
Failure {Boldface numbers indicate 1

when a MAC entity in each ---+
station receives the token.)

2 4
3

Data Link layer relay function and are used to extend the LAN without
affecting the basic services it provides. Bridges and extended LANs are
discussed in Chapter 24.

The remainder of this chapter describes the FDDI service definition
and protocol specification and examines the format of the data units ex­
changed by FDDI MAC and PHY sublayer entities during local area net­
work operation.

The ANSI FDDI specification for the MAC sublayer follows the ISO
model and includes a service definition that describes the services the
MAC sublayer provides to the LLC sublayer. The DNA Phase V FDDI
architectural specification does not define this interface in terms of func­
tion and procedure calls as in the CSMNCD architectural specification.
It simply references the ANSI MAC standard.

The service definition is specified in terms of service primitives and
service primitive parameters. The service definition describes an uncon­
firmed data transfer service and a token request service. The service
primitives defining the MAC sublayer services are shown in Box 23.1.
Figure 23.12 contains time-sequence diagrams showing the sequence in
which the service primitives are issued.

FIGURE 23.12

MA_UNITDATA_
STATUS.indication

CHAPTER 23: FIBER DISTRIBUTED DATA INTERFACE 505

Time-sequence diagrams for FDDI MAC sublayer service primitives.

MA_UNITDATA service MA_ TOKEN service

FDDI MAC
Sublayer Protocol
Specification

The MA_UNITDATA Data Transfer Service

The data transfer service uses three pnm1tives. A single MA_UNIT­
DATA.request primitive can include multiple sets of parameters, one for
each MAC-SOU that is to be transmitted. Thus, a single service request can
cause multiple MAC-SDUs to be sent. The MA_UNITDATA_STATUS.in­
dication primitive is returned by the MAC sublayer to the LLC sublayer in
the sending station to indicate the success or failure of an attempt to trans­
mit a frame. It does not indicate whether the frame was successfully re­
ceived by the destination station. As with the MAC sublayer service for the
CSMNCD type of LAN, the FDDI MAC sublayer data transfer service is
an unconfirmed service in which data transfer is not guaranteed.

The MA_ TOKEN Token Request Service

This is an optional service, not used in the DNA Phase V FDDI
specification, that can be used by the LLC sublayer to request the capture
of the next token. The ANSI FDDI standard states that it is to be used only
in certain special cases when time-critical data must be transmitted. Its use
can minimize the effects of ring latency and can reduce the waiting time for
the next token but at the expense of reducing transmission capacity.

The FDDI MAC sublayer uses a timed-token ring access protocol that
governs the way in which a MAC sublayer entity gains access to the ring
to transmit data. The IEEE/ISO standards include the token ring form of
local area network described by IEEE 802.5 and ISO 8802-5. However,

506

BOX 23.1

MAC Sublayer
Service Primitives

PART V: DATA LINK LAYER PROTOCOLS

MA_UNITDATA.request

(

MA UNITDATA.indication

(

MA UNITDATA STATUS.indication

MA_TOKEN.request

FC_value(l),
destination_address(l),
M_SDU(l),
requested_service_class(l),
stream (1) ,

FC_value(2),
destination_address(2),
M_SDU (2),
requested_service_class(2),
stream(2),

FC _value (n) ,
destination_address(n),
M_SDU(n),
requested_service_class(n),
stream(n)

FC_value,
destination_address,
source_address,
M_SDU,
reception_status,
stream (n)

number_of_SDUs,
transmission_status,
provided_service_class

requested_Token class

CHAPTER 23: FIBER DISTRIBUTED DATA INTERFACE 507

the IEEE/ISO token ring access protocol is quite different from the
timed-token ring access protocol used by FDDI.

NETWORK ARCHITECT

Some presentations that I have seen give the impression that FDDI is based on
IEEE 802.5 Token Ring and has evolved from it. The fact that the word token

and the word ring appear in the description of FDDI is leading people to believe

that FDDI has something to do with IBM. But this is not the case. The essence

of this is that when the two competing LAN standards were Ethernet and 802.5
Token Ring, the world divided, and we had the Ethernet camp and the 802.5

Token Ring camp. What we have now is FDDI versus nothing. FDDI is the only

100-megabit-per-second LAN, and everybody wants to claim heritage. FDDI

uses a dual timed-token ring access protocol that is not based on the IEEE 802.5

protocol. It is actually more closely related to the protocol defined in the IEEE
802.4 Token Bus standard than it is to the 802.5 protocol. FDDI uses a dis­

tributed algorithm instead of a centralized algorithm. FDDI's algorithm is more

robust than the one used in 802.5. Another difference between FDDI and 802.5

Token Ring is that FDDI reclocks the signal on each physical link as opposed to
having a single clock for the whole network. As a result it doesn't have prob­

lems with the accumulation of jitter in the clock that the 802.5 protocol has.

This allows FDDI to scale up to a much larger number of nodes on the ring.

The FDDI timed-token ring access control protocol passes a special
data unit, called the token, around the logical ring from one link entity
to the next. When the token arrives at a PHY port associated with a link
component, the token is passed up to the MAC entity in that link com­
ponent, and the MAC entity is allowed to transmit data frames. If the
MAC entity has frames to send, it holds the token and uses its PHY port
to transmit as many frames as desired onto the ring until a predefined
time limit is reached. When the MAC entity either has no more frames to
send or reaches the time limit, it transmits the token. When a frame cir­
culates all the way around the ring and returns to the MAC entity origi­
nating it, that MAC entity is responsible for stripping the frame from the
ring by not repeating it. As MAC entities repeat frames around the ring,
they set status bits in the frames indicating whether errors have been de­
tected, addresses recognized, or frames copied for processing.

Since the token is transmitted as soon as a MAC entity is finished
transmitting frames, it is possible for a MAC entity to transmit new
frames while frames transmitted by other MAC entities are still circulat-

508

FIGURE 23.13

PART V: DATA LINK LAYER PROTOCOLS

ing around the ring. Thus, it is possible for there to be multiple frames,
from multiple stations, on the network at any given time. The FDDI
token passing procedure is illustrated in Figure 23.13.

FDDI token-passing protocol.

1. Station 1 waits for
the token to arrive from
Station 4.

2. Station 1 removes
the token from the ring
and transmits Frame 1.

3. Station 1 transmits
the token.

4. Frame 1 is
addressed to Station 3,
so Station 3 copies
Frame 1 from the ring.

5. While Station 3 continues
copying Frame 1 and Frame 1
proceeds around the ring,
Station 2 removes the token
from the ring and begins
transmitting Frame 2.

6. Station 2 transmits the
token, Station 4 copies Frame
2, which is addressed to it,
and Station 1 removes Frame
1 from the ring.

7. Station 1 removes Frame 1
from the ring but repeats
Frame 2 and the token.

8. Station 2 repeats the
token.

Ring Monitoring
Functions

CHAPTER 23: FIBER DISTRIBUTED DATA INTERFACE 509

All stations on the ring participate in distributed algorithms that monitor
the operation of the ring to check for invalid conditions that require the
ring to be reinitialized. An example of an invalid condition is a ring that
currently has no token circulating. To detect the absence of a circulating
token, each station maintains a token rotation timer (TRT), which it re­
sets each time it receives the token. If the timer expires twice before the
station next receives the token, the station assumes the token has been
lost and begins the ring initialization procedure. Other types of incorrect
activities can also cause a station to begin the station initialization proce­
dure. A station begins the ring-initialization process by performing a
claim token procedure.

Claim Token Procedure

In performing the claim token procedure, a station bids for the right to
initialize the ring. The station begins the claim token procedure by issu­
ing a continuous stream of control frames called Claim frames. Each
Claim frame contains a suggested Target Token Rotation Time (TTRT)
value. If a station sending Claim frames receives a Claim frame from an­
other station, it compares TTRT values. If its TTRT value is lower, it
keeps transmitting Claim frames. If the TTR T value in a claim frame a
station receives is lower than its own TTRT value, it passes on the re­
ceived Claim frame instead of its own. If the values are the same, the
MAC addresses are used to determine which station takes precedence.
Eventually, the Claim frame with the lowest TTRT value will be passed
on by other stations and will return to the station that sent it. At this
point the sending station recognizes itself as the winner in the claim
token procedure. That station has won the right to initialize the ring and
continues by performing the ring initialization procedure. As a result of
the claim token procedure, all stations now have the TTRT value to be
used in subsequent ring operation because all stations have seen the
TTRT value in the Claim frame sent by the winning station.

The claim token procedure sounds complex and time consuming,
but it takes only a millisecond or two to complete, even on a large ring.

Ring Initialization

The station winning the claim token procedure sets its own token rotation
timer (TR T) to the negotiated TTR T and transmits a token onto the ring.
Each station that receives the token then sets its own TTRT to the negoti-

510

Optional FDDI
MAC Protocol
Features

PART V: DATA LINK LAYER PROTOCOLS

ated value and transmits the token. No frames are transmitted until the
token has passed once around the ring. The purpose of the initial token
rotation is to align TTRT values and TRT times in all stations on the ring.

Beacon Process

When a serious failure occurs, such as a break in the ring, stations use a
beacon process to locate the failure. The SMT component in a station
can also cause the station to initiate the beacon process. When a station
that has been sending Claim frames recognizes that a defined time period
has elapsed without the claim token process being resolved, it begins the
beacon process by transmitting a continuous stream of Beacon frames. If
a station receives a Beacon frame from another station, it stops sending
its Beacon frames and passes on the Beacon frames it has received. Even­
tually, Beacon frames from the station immediately following the break
will be propagated through the network. Some process external to the
MAC entity must then be invoked to diagnose the problem and to
reconfigure the ring to bypass the failure. If during the beacon process a
station receives its own Beacon frames, it assumes the ring has been re­
stored and initiates the claim token procedure.

The ANSI FDDI standard specifies optional mechanisms that implement
a capacity allocation scheme. This scheme is designed to support a mix­
ture of stream and burst transmissions and transmissions involving di­
alogs between pairs of stations. Two types of frames are defined by the
ANSI FDDI standard: asynchronous frames and synchronous frames.* In
normal FDDI protocol operation, only asynchronous frames are trans­
mitted. The use of synchronous frames is optional, and an FDDI imple­
mentation need not support them. The DNA Phase V FDDI specification
currently supports only asynchronous frames and does not include the
optional synchronous frame service.

ANSI FDDI also provides an optional mechanism for implementing
multiframe dialogs between pairs of stations. When a station needs to
enter into a dialog with another station, it can do so using its asyn­
chronous transmission capacity. After the station transmits the first
frame in the dialog, it transmits a restricted token. Only the station re-

* Note that the terms asynchronous and synchronous have meanings here very
different from those in Chapter 5.

MAC Frame and
Packet Format

CHAPTER 23: FIBER DISTRIBUTED DATA INTERFACE 511

ceiving the first frame is allowed to use the restricted token for transmit­
ting asynchronous frames. The DNA Phase V implementation of FDDI
does not include support for the restricted token for multiframe dialogs.

In using the data transfer service provided by the MAC sublayer, an LLC
entity in the source station passes a medium-access-control-service-data­
unit (MAC-SDU) to the MAC sublayer entity in that station. The MAC
sublayer entity adds PCI to the MAC-SDU in the form of a header and a
trailer to create a medium-access-control-protocol-data-unit (MAC­
PDU)-also called a MAC frame-and passes it to the Physical layer.
The Physical layer attaches additional PCI to the MAC frame to create a
physical-protocol-data-unit (PPDU). The DNA Phase V FDDI specifi­
cation calls a PPDU a packet.* The Physical layer then transmits the
packet over the transmission medium. When a station receives a packet,
the Physical layer entity in the receiving station extracts the MAC frame
from the packet and passes it up to the MAC sublayer entity. The MAC
sublayer then extracts the LLC-PDU from the MAC frame and passes it
up to the LLC sublayer. This process is summarized in Figure 23.14.

The general formats of a packet and a MAC frame are shown in Fig­
ure 23.15. The MAC frame is contained within a Physical layer packet
and consists of a frame control field, destination and source address fields,
a data field, and a frame check sequence field. The Physical layer creates a
packet by adding a preamble, starting delimiter, ending delimiter, and
frame status field to the MAC frame. The following are descriptions of
the fields that make up a MAC frame and a Physical layer packet:

• Preamble. The preamble is used to synchronize each station's clock.

• Starting Delimiter. The starting delimiter is a unique signal pattern that
identifies the beginning of a frame.

• Frame Control. The frame control field identifies the frame's type. It has
the bit format CLFFZZZZ, where C identifies this as a synchronous or
asynchronous frame, L specifies whether 16 or 48 bit addresses are used,
FF indicates whether this is an LLC or a MAC frame, and ZZZZ pro­
vides control information for MAC frames. The DNA Phase V FDDI
specification allows for only asynchronous frames and 48-bit addresses.

As mentioned in Chapter 22, this is an unfortunate choice of terminology since
the term packet is also often used in networking literature to refer to the
NPDUs that are exchanged by Network layer entities. The Physical layer packet
is not the same as the Network layer packet.

512 PART V: DATA LINK LAYER PROTOCOLS

FIGURE 23.14 Providing the Medium Access Control (MAC) sublayer data transfer service.

MAC-POU (MAC Frame)

Physical Layer

PSOU

PSOU

PPOU (Packet)

LLC-PDU logical-link-control-protocol-data-unit
MAC-SDU medium-access-control-service-data-unit
MAC-PDU medium-access-control-protocol-data-unit
PSDU physical-service-data-unit
PPDU physical-protocol-data-unit
PCI protocol-control-information

MAC Frame

MAC-POU (MAC Frame)

Physical Layer

Packet

PPOU (Packet)

Transmission Medium

• Destination and Source Addresses. The DNA Phase V FDDI specification
requires the use of 48-bit addresses. The destination address can be an
individual address, a group address, or a broadcast address. The source
address always identifies an individual station.

FIGURE 23.15 FDDI packet and frame format.

Destin-
Frame alien Source
Control Address Address

8 octets 1 octets 1 octet 6 octets 6 octets

MACSDU FCS

a - 4478 octets 4 octets

Ending
Delimiter

.5 octet 1.5 octets

CHAPTER 23: FIBER DISTRIBUTED DATA INTERFACE 513

• Data Field. The data field can contain data passed from the LLC layer or
control information supplied by the MAC layer. The maximum length of
the data field is 4478 octets.

• Frame Check Sequence. The frame check sequence contains a 32-bit
cyclic redundancy check value. The value is calculated based on the con­
tents of the frame control field, destination address, source address, and
information field. The receiving station performs the same calculation. If
the received value does not match the calculated value, the frame is con­
sidered to be in error.

• Ending Delimiter. The ending delimiter identifies the end of the frame.

• Frame Status Field. The frame status field contains information about
the status of a frame, including whether an error was detected, the ad­
dress recognized, and the frame copied.

Frame Types

The frame control field contains bits that indicate a frame's type. The
DNA Phase V FDDI specification defines seven types of frames:

• Void Frame. Used by DNA Phase V enhancements to the ANSI MAC
protocol, such as the frame stripping algorithm and ring purging algo­
rithm discussed later.

• Token. Indicates the data unit is a token and not a data frame.

• SMT Frame. Frames sent by station management components to control
their operation.

• MAC Frame. Frames used to control the operation of the MAC proto­
col, including the Claim and Beacon frames.

• LLC Frames. Frames containing data passed down from the LLC sublayer.

• Implementor Frame. Frames reserved for the implementor. DNA Phase V
FDDI does not define any Implementor frames.

• Reserved. Reserved frames are intended for use by future versions of the
standard.

Token Frame Format

A special frame format, illustrated in Figure 23.16, is used for the token,
consisting only of a preamble, starting delimiter, frame control field, and
ending delimiter.

514

FIGURE 23.16

PART V: DATA LINK LAYER PROTOCOLS

FDDI token format.

Mapped Ethernet Frames

Frame Ending
Control Delimiter

1 octet 1 octet

As discussed in Chapter 22, on a CSMA/CD LAN, frames conforming to
the IEEE/ISO CSMA/CD format and frames conforming to the Ethernet
format can coexist on the same LAN. The LLC sublayer multiplexes and
demultiplexes the two frame types by using the length/type field that is
part of the CSMNCD MAC frame header. The FDDI MAC frame does
not contain a length/type field. To allow an extended LAN to be con­
structed of both CSMNCD and FDDI local area networks, the DNA
Phase V FDDI specification includes support for a mapped Ethernet
frame type. On an FDDI LAN, an Ethernet frame is contained within an
IEEE/ISO SNAP PDU, which is then encapsulated within an FDDI MAC
frame. The DNA Phase V FDDI mapped Ethernet service allows an Eth­
ernet application to use the services of an FDDI LAN in communicating
with another Ethernet application across an extended LAN.

The following sections describe two enhancements to the FDDI
standard that the DNA Phase V version of FDDI implements that deal
with removing frames from the ring.

Frame Stripping The ANSI FDDI standard specifies a single method for removing frames
from the ring, a process called frame stripping. As described above, a
MAC entity that transmits a frame onto the ring has the responsibility of
removing it when the frame has circulated all the way around the ring
and returns to the originating MAC entity. A MAC entity does this by
recognizing the source address in a frame it receives as being equal to its
own MAC address. This method for stripping frames from the ring is ad­
equate when a transmitting MAC entity transmits only frames having its
own MAC address as the source address. However, in an extended LAN
that implements bridges, a MAC entity in a bridge may transmit frames
onto a ring that have originated in a station on some other local area net­
work. In such a case, a MAC entity in a bridge may transmit frames onto
the ring with source addresses different from the bridge's own MAC ad-

CHAPTER 23: FIBER DISTRIBUTED DATA INTERFACE 515

dress. A MAC entity in a bridge must implement an additional frame
stripping algorithm, allowing it to strip frames from the ring that have a
source address different from the MAC entity's own MAC address.

Frame Content Independent Stripping

The DNA Phase V FDDI specification defines a Frame Content Inde­
pendent Stripping (FCIS) algorithm that FDDI MAC entities use to re­
move frames from the ring. To implement this algorithm, each MAC en­
tity maintains a local count of the frames it has transmitted onto the ring
but has not yet stripped since the last time it received the token. The sta­
tion also transmits a special delimiter frame, called a Void frame, after it
finishes transmitting a set of frames onto the ring. Stations that do not
implement the FCIS algorithm do not copy Void frames but simply re­
peat them. The MAC entity transmitting the Void frame sets the Void
frame's source address field equal to the MAC entity's own MAC ad­
dress. The MAC entity then strips from the ring any frame it receives­
even if the frame's source address field value is not equal to its own MAC
address-and reduces its transmitted frame count by one for each error­
free frame it strips. The MAC entity continues stripping the frames it re­
ceives until one of three termination conditions occurs:

• The station's transmitted frame count reaches 0.

• It receives a token.

• It receives its own error-free Void frame, a Claim frame, or a Beacon
frame.

NETWORK ARCHITECT

The frame stripping algorithm we designed works because of an important

invariant on a properly operating FDDI token ring: the frames a station

receives first after it has transmitted the token will always be the frames that it

transmitted. Frames generated by stations downstream on the ring must always

follow the frames the station itself transmitted onto the ring. The three termi­

nation conditions ensure stable operation of the algorithm. They guarantee

that there is a low probability of overstripping (stripping too many frames

from the ring) and a very low probability of understripping (not stripping

enough frames) even when one or more frames are affected by errors as they

circulate around the ring.

516

Ring Purging

PART V: DATA LINK LAYER PROTOCOLS

One of the properties of a local area network that uses a ring topology
and a token passing access protocol is that it is possible for a frame to
circulate indefinitely. A frame that is not removed after its first traversal
of the ring is called a no-owner frame. The FDDI standard does not spec­
ify a guaranteed method of removing no-owner frames.

The DNA Phase V version of FDDI includes a simple, robust algo­
rithm, called the ring purger algorithm, that reliably removes no-owner
frames from the ring. The ring purger algorithms consist of two parts:

• Election Algorithm. An election algorithm is used to choose, in a dis­
tributed manner, one of the stations on the ring to be the ring purger.
The primary purpose of the ring purger election algorithm is to ensure
that there is one and only one ring purger operating in the ring. It recov­
ers from ring initializations and from failure of the station acting as the
nng purger.

• Purging Algorithm. The station designated as the ring purger runs the
purging algorithm to remove no-owner frames and frame fragments
from the ring.

Election Algorithm

Each time the ring is initialized, a station becomes the ring purger if it is
the winner of the claim token procedure or if it was the ring purger prior
to ring initialization. A ring purger periodically announces its presence
on the ring by transmitting a Purger Hello frame.

If there is no ring purger after ring initialization or at any time dur­
ing the operation of the ring, a new ring purger is elected using a broad­
cast election protocol. The election algorithm is designed to elect one
and only one station to be the ring purger. The overhead of the purger
election algorithm is negligible, with the ring purger periodically {ap­
proximately every 10 seconds) sending a short frame to the other sta­
tions on the ring.

Purging Algorithm

In running the purging algorithm, the station designated as the ring
purger waits for a token. Once that station captures a token, if it has
frames to transmit, it transmits them. After the ring purger's transmis­
sions are completed, it transmits two Void frames. The Void frames
mark the end of transmission of the ring purger's frames.

Conclusion

CHAPTER 23: FIBER DISTRIBUTED DATA INTERFACE 517

When the ring is operating normally, the ring purger should receive
only the frames it sent, followed by its own Void frames. The ring purger
strips from the ring all frames and frame fragments that it receives until
it receives its Void frames. It then strips the two Void frames and ceases
stripping frames from the ring. If there are no owner frames circulating
on the ring, the ring purger will strip these from the ring while stripping
the frames that precede its Void frames. The ring purger does not begin
another purging operation until it receives the token. The ring purger
also stops the purging algorithm if it receives a Beacon frame or a Claim
frame.

With a ring purger active on the ring, no frame will circulate as a
no-owner frame for more than one traversal around the ring. These
frames will therefore be received at most only twice by any destination
station.

The Fiber Distributed Data Interface standard defines a 100-Mbps local
area network using a timed-token ring access control protocol. FDDI
LANs will be extremely important in the 1990s to provide high-band­
width connections between individual lower-performance local area net­
works and as a high-speed broadcast data link to serve the needs of host
computers and high-performance workstations. The final chapter in this
book describes bridges that can be used to interconnect LANs of various
types to create extended LANs.

Extended LANs

518

CHAPTER 24

Bridge and Extended
LAN Architecture

DNA Phase V provides facilities that allow collections of local area net­
works to be combined using devices called bridges to form an extended
LAN. A bridge is a device whose main functions operate in the Logical
Link Control (LLC) sublayer. Each bridge in an extended LAN is attached
to two or more local area networks and acts as a link between them. The
bridge architecture is defined in the DNA Phase V Bridge and Extended
LAN Architecture specification. This architecture is based on the IEEE
802.ld, MAC Bridges, standard, which is also described in ISO 10038.

A bridge is only one type of device that can be used to interconnect
network segments to form a complete DECnet Phase V network. Other
types of devices, some of which have already been described in other
chapters, are repeaters, routers, gateways, and portals. Box 24.1 de­
scribes the five types of devices that can be used to interconnect net­
works and network segments.

A bridge is a device that is attached to two or more local area networks. The
extended LAN created by interconnecting local area networks using bridges
does not have to be made up of LANs of the same type. A bridge can be de­
signed to connect LANs using different protocols in the Physical layer and in
the Medium Access Control sublayer, as long as they use a common proto­
col in the Logical Link Control sublayer. For example, an extended LAN
can be constructed of CSMA/CD LANs connected to an FDDI LAN. Figure
24.1 shows how an FDDI LAN can be used as a high-speed backbone to in­
terconnect a number of CSMA/CD LANs using bridges.

A bridge can also be designed to connect a local area network to a
wide area network data link instead of to another LAN. For example,
two local area networks could be connected via bridges to a full-duplex,

FIGURE 24.1

I

C H A P TE R 2 4 : B R I D G E A N D E X T E N D E D LA N A R C H I TE C T U R E 519

Bridges connecting two CSMA/CD LANs and an FDDI LAN.

1111111111111111111

::::::::::::::::::: c::=J

CSMA/CD LAN CSMA/CD LAN

j
L-""""¢~"""0'""''"'

111111111111111

Bridge
FDDI LAN

111111111111111

Bridge

point-to-point telecommunications facility, as shown in Figure 24.2
(page 522). When two bridges are connected using such a telecommuni­
cations facility, the distance limitation inherent in the LAN architecture
can be overcome, and the extended LAN can span any desired distance.
A station in a network at one end of the full-duplex communication fa­
cility can communicate with a station at the other end of the link as if
they were attached to the same local area network.

Bridge Operation The DNA Phase V bridge and extended LAN architecture describes a
form of bridge often called a transparent bridge, because ordinary sta­
tions on the LAN communicate with one another in an identical manner
whether or not one or more bridges lie in the path between them. The
fact that the local area network consists of an extended LAN having
bridges is hidden from ordinary stations.

520

BOX 24.1

Network
Interconnection

PART V: DATA LINK LAYER PROTOCOLS

• Repeaters. The simplest facility used for network interconnection is
the repeater. Repeaters are used in bus-structured local area networks
to connect individual cable segments to form a larger local area net­
work. In ring-structured local area networks, every station p;:;rforms
the function of a repeater. In a local area network there is generally a
limit on the length of any single cable segment. This limit is based on
the physical medium and the transmission technique used. A repeater
operates in the Physical layer and its use is hidden from any of the lay­
ers above. The function of a repeater is to receive a signal from one
cable segment and to retransmit it over one or more other cable seg­
ments, thus regenerating the signal at its original strength. The number
of repeaters that can be used in tandem on a bus-structured local area
network is generally limited by the LAN architecture. Stations con­
nected by repeaters can use different Physical layer procedures but
must share a common protocol in the medium access control sublayer.

• Bridges. A bridge is used to join together two separate local area net­
works to create an extended LAN. It operates in the Logical Link
Control sublayer. A bridge can be designed to join networks using
different protocols in the Physical layer and in the Medium Access
Control sublayer, as long as they use a common protocol in the Logi­
cal Link Control sublayer.

• Routers. Routers provide the ability to route packets from one end
node to another where there may be multiple paths between them.
The routers participate in a distributed algorithm to decide on the
optimal path each packet should travel from the source end node to
the destination end node. The router function operates in the Net­
work layer. When routers are used to interconnect local area net­
works, all the stations on the LANs being interconnected must ordi­
narily use the same Network layer protocols. However, it is possible
to construct multiple-protocol routers that can route traffic conform­
ing to two different architectures, such as DNA Phase V and TCP/IP.
Stations connected using routers can use different protocols operat­
ing in the Physical and Data Link layers but must share common
protocols in the Network layer and above.

• Gateways. A gateway can be used when an application running on a
node in a DECnet Phase V network must be able to communicate
with an application running in a node conforming to a different net­
work architecture. For example, the X.25 gateway facility allows a
DECnet Phase V node to communicate over a PSDN with a node
conforming to CCITT Recommendation X.25. (See Chapter 18.)

BOX24.1

continued

CHAPTER 24: BRIDGE AND EXTENDED LAN ARCHITECTURE 521

Gateways can also be used to allow a DECnet Phase V node to com­
municate with nodes conforming to the TCP/IP architecture or to
IBM's Systems Network Architecture (SNA). The function of a gate­
way is to convert the protocols of one network architecture to the
protocols of the other network architecture. A gateway replaces the
control information from one network with control information
required to perform comparable functions in the other network. Sta­
tions connected using gateways can run different protocols in any of
the layers in the protocol stack.

• Portals. A portal provides a method for allowing nodes conforming
to some other network architecture to use a DECnet Phase V net­
work for communication. Unlike a gateway, a portal does not per­
form protocol conversion. Instead, a portal encapsulates the foreign
protocol messages within DNA Phase V protocol messages for trans­
mission through the DECnet Phase V network. An example of such a
device includes Digital's Internet Portal. The Internet protocol allows
a node conforming to the TCP/IP architecture to use a DECnet Phase
V network for communication with another node that also conforms
to the TCP/IP architecture. The TCP/IP node at one end of the DEC­
net Phase V network generates protocol messages conforming to the
TCP/IP architecture. The portal encapsulates these messages within
DECnet Phase V packets and then forwards these packets through
the network to the portal at the opposite end. The portal there
removes the original TCP/IP messages from the DECnet Phase V
packets and hands them to the destination TCP/IP node. A pair of
portals is sometimes said to implement a facility called a tunnel, with
each portal providing an opening into a tunnel through a network
conforming to a foreign network architecture.

A bridge performs three basic functions:

• frame forwarding

• learning the addresses of stations on the LANs to which it is attached

• converting an arbitrary extended LAN physical topology to a spanning tree

Frame Forwarding

A bridge receives all frames on each LAN to which it is attached. Each
bridge maintains a filtering database in which it maintains the MAC ad­
dresses of all the stations on those LANs and identifies which physical

522

FIGURE 24.2

PART V: DATA LINK LAYER PROTOCOLS

Bridges connecting two LANs using a lull-duplex, point-to-point data link.

Full-Duplex,
Point-to-Point
Telecommunications
Data Link ----~

.I
~=

1111111111111111111

::::mm::::::::: c::::J

port in the bridge can be used to communicate with each station. The
bridge then takes one of the following actions for each frame it receives:

• When a station receives a frame having a multicast destination address,
it forwards the frame over all its physical ports except the one from
which it received the frame.

• When a bridge receives a frame having an individual MAC station ad­
dress, it looks up the destination MAC address in its filtering database. If
it finds the address and determines that it can reach the destination sta­
tion using the same physical port as the one through which it received
the frame, the bridge discards that frame.

• If the bridge determines the destination station is reached using a differ­
ent physical port than the one through which it was received, it forwards
the frame using the appropriate physical port.

CHAPTER 24: BRIDGE AND EXTENDED LAN ARCHITECTURE 523

• If the bridge does not find the address in its filtering database, it forwards
the frame over all its physical ports except the one from which it received
the frame.

In this manner, a bridge forwards traffic for unknown destinations
and multicast traffic over the entire spanning tree. This guarantees that it
will be seen by the destination station wherever that station may be, if
the destination station is in the extended LAN. However, if the bridge
knows the location of the destination station, it avoids unnecessarily for­
warding traffic over those local area networks that do not contain the
destination station.

Learning Addresses

When a bridge first comes up, its filtering database is empty. A bridge
builds up its filtering database by examining the source MAC address
fields in all the frames it receives. If a bridge receives a frame having a
MAC address not currently in its filtering database, it adds the address to
its filtering database along with an indication of which physical port was
used to receive the frame. The bridge then knows which physical port to
use to forward traffic when it next receives a frame having that destina­
tion MAC address. When traffic arrives from the same port as a known
destination station, the bridge does not have to forward that traffic.

If the bridge receives a frame from a station already in the database,
it updates the database entry for that station. This handles the situation
where a station is moved from one local area network to another. Entries
are maintained in the filtering database only for a predetermined period
of time. If no new frames are received from a particular station, the entry
for that station is eventually removed from the filtering database. This
handles the situation where a station is powered down for a long period
of time or is removed from the network.

Creating a Spanning Tree

Individual local area networks can be connected in any desired way using
bridges. For example, networks can be physically interconnected, if de­
sired, in an arbitrary mesh topology such that there is more than one path
between any two stations. However, during the operation of the extended
LAN, the bridges ensure that there is no more than one active path used
to carry traffic between any two stations. The bridges convert the physical
topology of the extended LAN into a logical topology that always con­
sists of a spanning tree. A spanning tree is a graph structure that includes

524

Source Routing

Extended LANs
versus Routers

PART V: DATA LINK LAYER PROTOCOLS

all the bridges and stations on the extended LAN but in which there is
never more than one active path connecting any two stations.

To create the spanning tree, bridges run a distributed algorithm in
which each bridge periodically multicasts Hello messages called bridge­
protocol-data-units (BPDUs) to all other bridges on the extended LAN.
The BPDUs each bridge receives are used by that bridge to calculate the
spanning tree. Redundant links not part of the spanning tree are treated
as spares and are used only if some other link fails. After a link failure,
the BPDUs the bridges periodically transmit allow them to quickly calcu­
late a new spanning tree, possibly using redundant links.

IEEE Project 802 is currently in the process of defining an optional en­
hancement to the 802. ld bridge specification called source routing. With
source routing, each station on the extended LAN is expected to know
the route over which to send each frame it transmits. If a station does not
know the route, or if a previously known route is no longer active, the
station sends out route discovery frames. Each bridge along the eventual
path to the destination station adds routing information to the route dis­
covery frame. The destination station then sends a response back to the
source station indicating the route that should be used to reach that des­
tination station. A source routing technique is often used with IEEE/ISO
Token Ring LANs.

A major disadvantage of the source routing technique is that the op­
eration of bridges is not hidden from ordinary stations on the LAN. Indi­
vidual stations must participate in the routing of traffic through the ex­
tended LAN. The DNA Phase V bridge and extended LAN architecture
does not currently specify the use of source routing.

At first glance, it appears that an extended LAN, using bridges and
point-to-point telecommunications facilities to connect multiple LANs,
provides a function similar to that of a system of interconnected routers.
However, bridges and routers each have different roles to play in the de­
sign of a geographically dispersed network.

Bridges must be used, instead of routers, to interconnect LANs
when traffic from protocols that expects to flow over a single local area
network must flow between stations on two different LANs. An example
of such a protocol is Digital's Local Area Transport (LAT) protocol.
Routers, on the other hand, can make better use of the topology, since

Conclusion

C H A P TE R 2 4 : B R I 0 G E A N 0 E X TE N D E D L A N A R C H I TE C T U R E 525

the logical topology of the network created using routers is not confined
to a single spanning tree. Routers also separate the individual local area
networks they connect in the sense that the multicast traffic that is sent
over each LAN can be confined to those LANs. Multicast traffic is not
relayed from one local area network to another by routers. Routers also
provide enhanced network management capabilities. The most efficient
design for any large DECnet Phase V network will usually involve a
combination of strategically placed repeaters, bridges, routers, gateways,
and portals.

This concludes this book on Phase V of the Digital Network Architec­
ture. Following this chapter are two appendices. Appendix A lists the
ISO standards that DNA incorporates, and Appendix B is a list of the ar­
chitectural specifications that make up DNA Phase V.

APPENDIX A

ISO Standards for the
OSI Model

Wide Area Networking Data Link Network Layer Standards
Layer Standards

ISO 8208, X.25 Packet Level Protocol
ISO 8886, Data Link Service Depnition ISO 8348, Network Service Depnition
ISO 3309, HDLC Frame Structure ISO 8473, Protocol for Providing the
ISO 4335, HDLC Control Elements of Connectionless-Mode Network

Procedures Service and Provision of the
ISO 7776, HDLC Procedures-X.25 LAPB Underlying Service

DTE ISO 8648, Internal Organization of the
ISO 7809, HDLC Procedures- Network Layer

Consolidation of Classes of ISO 8878, Use of X.25 to Provide the OSI
Procedures Connection-Mode Network

ISO 8885, HDLC XID Frames Service
ISO 8880-1, Protocol Combinations to

Local Area Network Data Link Layer Standards Provide and Support the OSI

ISO 8802-2, LAN Logical Link Control
Network Service-General
Principles

ISO 8802-3, LANCSMA/CD
ISO 8880-2, Protocol Combinations to

ISO 8802-4, LAN Token Bus
Provide and Support the OSI

ISO 8802-5, LAN Token Ring
Network Service-Provision and

ISO 9314-1, Fiber Distributed Data Interface
Support of the Connection-Mode

{FDDI)-Part 1: Physical Layer
Network Service

Protocol {PHY)
ISO 8880-3, Protocol Combinations to

ISO 9314-2, Fiber Distributed Data Interface
Provide and Support the OSI

{FDDI)-Part 2: Media Access
Network Service-Provision and

Control {MAC)
Support of the Connectionless-

ISO 9314-3, Fiber Distributed Data Interface
Mode Network Service

{FDDI)-Part 3: Physical Layer
ISO 8881, Use of X.25 over Local Area

Medium Dependent {P MD)
Networks to Provide the OSI

ISO 10038, LAN MAC Sublayer
Connection-Mode Network

Interconnection {MAC bridging)
Service

527

528 APPENDIX A

ISO 9542, End System to Intermediate
System Routing Exchange
Protocol for Use with the
Protocol for Defining the
Connecttonless-Mode Network
Service

ISO 10589, Intermediate System to
Intermediate System Intra­
Domain Routing Exchange
Protocol for Use in Conjunction
with the Protocol for Providing
the Connectionless-mode

TR 9575,
TR 9577,

Network Service (ISO 8473)
OSI Routing Framework
Protocol Identification in the
Network Layer

Transport Layer Standards

ISO 8072,
ISO 8073,

ISO 8602,

Transport Service Definition
Connection Oriented Transport
Protocol Specification
Protocol for Providing the
Connectionless-Mode Transport
Service

Session Layer Standards

ISO 8326,
ISO 8327,

Session Service Definition
Session Protocol Specification

Presentation Layer Standards

ISO 8822,
ISO 8823,

ISO 8824,

ISO 8825,

Presentation Service Definition
Presentation Protocol
Specification
Specification of Abstract Syntax
Notation One (ASN.1)
Specification of Basic Encoding
Rules for ASN.1

Application Layer Standards

ISO 8571,

ISO 8649,

ISO 8650,

ISO 9040,

ISO 9545,

File Trans{ er, Access, and
Management (FTAM)
Service Definition-Association
Control Service Element (ACSE)
Protocol Specification­
Association Control Service
Element (ACSE)
Virtual Terminal Service: Basic
Class
Application Layer Structure

APPENDIX B

DNA Phase V

Architectural Specifications

Bridge and Extended LAN Architecture
Common Management Information Protocol

(CMIP) Specification
CSMNCD Data Link Functional Specification
CSMNCD (Ethernet) Local Area Network

Specification
Data Access Protocol (DAP) Functional

S pecifica ti on
DDCMP Functional Specification
DDCMP Network Management Specification
Distributed Authentication Security Service

(DASS)
Distributed System Management Entity Model
Distributed System Security Architecture

Preliminary Design
DNA Naming Service Functional Specification
DNA Phase V General Description
Engineering Requirements for the DEC RPC

Architecture
Enterprise Management Architecture-General

Description
Event Logging Functional Specification
Foundation Services Specification
HDLC Specification
Local Area Transport Architecture
Maintenance Operations Functional

Specification

Making the Transition from Phase IV
Modem Connect Functional Specification
Network Control Language (NCL)

Specification
Network Interconnect (NI) Node Product

Architecture Specification
Network Management Architecture
Network Routing Layer Functional

Specification
NI Node Product Architecture Specification
NSP Functional Specification
OSI Transport Protocol Functional

Specification
OSI Upper Layer (OSUL) Architecture
Representation of Time for Information

Interchange
Session Control Layer Functional Specification
Terminal Software Architecture Foundation

Services Specification
Terminal Software Architecture Network

Command Terminal Specification
Time Service Functional Specification
Unique Identifier Functional Specification
X.21 Functional Specification
X.25 Access Specification

529

Glossary

10BASE2 An IEEE/ISO CSMA/CD transmission
medium specification that uses baseband sig­
naling over 50-ohm coaxial cable, approxi­
mately 5 mm thick. This form of transmis­
sion medium is often called Thin Wire cable
or thinnet cable. A 10BASE2 cable segment
can be up to 185 meters in length.

10BASE5 An IEEE/ISO CSMA/CD transmission
medium specification based on the original
Ethernet Specification. 10BASE5 specifies
baseband transmission over the original,
thick (10 mm) form of 50-ohm Ethernet
coaxial cable. This type of cable is often
referred to as thick Ethernet cable. A
10BASE5 cable segment can be up to 500
meters in length.

10BASE·T An IEEE/ISO CSMA/CD transmission
medium specification that specifies baseband
signaling over unshielded twisted-pair tele­
phone wiring. The specification is designed
for a typical distance of up to about 100
meters of 24 AWG twisted-pair cable.

10BROA036 An IEEE/ISO CSMA/CD transmis­
sion medium specification that specifies
broadband signaling over the type of coaxial
cable used in cable television. 10BROAD36
cable segments can be up to 1800 meters in
length for a round-trip distance of up to 3600
meters using a dual cable configuration.

abstract interface A description of the semantics
of a set of services that an entity in a func-

tional layer of the OSI model provides to a
user of that layer's services. An abstract
interface does not specify implementation
details, nor does it describe the syntax that
must be used to implement the interface.

abstract syntax Definition, using some form of
formal notation, of the information content
of a set of data types. An abstract syntax
specifies nothing about how values of those
data types are represented in a computer or
encoded for transmission.

abstract syntax notation (ASN) A notation used to
define abstract syntaxes. See abstract syntax
and Abstract Syntax Notation One.

Abstract Syntax Notation One (ASN.1) International
standard notation, defined in ISO 8824,
widely used in the OSI environment to
define abstract syntaxes. See abstract
syntax.

Accredited Standards Commillee (ASC) An organiza­
tion, accredited by ANSI, that develops stan­
dards in the United States.

address resolution component of DNA Session Control
The component that accesses the naming
service clerk to determine, given the name of
an object (possibly residing in a remote
node), all the various sets of communication
protocols and associated addressing infor­
mation that can be used to support commu­
nication between the local object and the
remote object.

!'i:l1

532 GLOSSARY

address selection component of DNA Session Control
The component that takes the set of towers
that could support communication-as
computed by the address resolution compo­
nent-orders the1n in so1ne 111cu111c1; and
tries each in turn until either a connection is
successfully established or it becomes clear
that further attempts would be futile.

addressing authority An organization responsible
for allocating the initial octets of NSAP
addresses such that the network entity title
an organization assigns to each end node
and router in the administrative domains it
creates is globally unique.

adjacency The combination of a circuit and a
node attached to that circuit.

adjacent nodes Network nodes that are reachable
by a single hop over a subnetwork to which
a given node is attached.

adjacent systems See adjacent nodes.
administrative domain An individual DECnet

Phase V network-consisting of a collection
of end nodes, routers, and data links-oper­
ated by a single organization. An adminis­
trative domain is not an architecturally
defined entity; thus, the boundaries of an
administrative domain are determined by
network management policy.

advertisement A protocol message that makes the
presence of a service known to all the nodes
on a broadcast form of data link.

AM Amendment.
Amendment (AM) A document, published by ISO,

that makes an accepted modification to an
international standard. A modification to an
international standard begins as a Commit­
tee Draft Amendment (CDAM), progresses
to a Draft Amendment (DAM), and finally
becomes an Amendment when it is accepted
by ISO as an official part of an international
standard.

American National Standards Institute (ANSI) The
standards organization in the United States
that serves as the U.S. member organization

in the International Organization for Stan­
dardization (ISO). ANSI is a nonprofit orga­
nization that writes the rules for standards
bodies to follow and publishes standards
produced under it~ rules of consensus. ANSI
accredits standards committees to write
standards in areas of their expertise.

ANSI American National Standards Institute.
APDU application-protocol-data-unit.
API Application programming interface and

application-process-invocation.
application-association A logical binding between

two application-entity-invocations, one of
which is called the initiator and the other
the responder.

application-context Definition of a common set of
rules shared between a pair of communicat­
ing application-entity-invocations, each
including a set of ASEs (possibly only ACSE)
and an association between them. An appli­
cation-context defines a particular set of
communication capabilities for two commu­
nicating application-entity-invocations. Each
application-association has only one appli­
cation-context.

application-entity The part of an application­
process that provides resources for OSI com­
munication and describes a set of Application
layer capabilities used for a specific purpose.

application-entity-invocation A particular use of the
resources defined by an application-entity to
perform a particular OSI communication
activity.

application-entity-title A unique identifier, unam­
biguous in the OSI environment, that is
assigned to an application-entity.

Application layer The functional layer that pro­
vides a means for application processes to
access the system interconnection facilities in
order to exchange information. The Appli­
cation layer provides services used to estab­
lish and terminate associations between
application processes and to monitor and
manage the processes being interconnected

GLOSSARY

and the various resources they employ.
application-process A set of resources, including

processing resources, within an open system
that can be used to perform information
processing activities.

application-process-invocation A particular use of
the resources defined by an application-pro­
cess to perform a particular information
processing activity.

application-process-title A unique identifier, unam­
biguous in the OSI environment, assigned to
an application-process.

application programming interface (API) A form of
concrete interface that defines how an appli­
cation program invokes a set of services.

application-protocol-data-unit (APDU) The protocol­
data-unit exchanged between peer Applica­
tion layer entities.

application-service-element (ASE) An element
within an application-entity that provides a
set of OSI communication functions for a
particular purpose.

architecture The term used in the information
technology industry to refer to an overall
scheme or plan that may be evolving
together with the details needed to guide
implementors in creating products that will
interoperate with other implementations of
the architecture.

area The largest subdivision of a network
defined by the DNA Phase V architecture.
Each node (end node or router) resides in
exactly one area. Routing in a multiple-area
routing domain is classified as either level 1
routing or level 2 routing.

ASC Accredited Standards Committee.
ASE application-service-element.
ASN abstract syntax notation.
ASN.1 Abstract Syntax Notation One.
Association Control Service Element (ACSE) The

application-service-element, defined by inter­
national standards ISO 8649 and ISO 8650,
responsible for establishing and releasing
application-associations. An application-

533

association binds an application program
executing in one open system with an appli­
cation program executing in another open
system for the purposes of exchanging infor­
mation between them.

asymmetric cryptography algorithm A cryptography
algorithm in which the key used to decipher
a message is different from the key used to
encipher it.

asynchronous transmission A form of data commu­
nication, sometimes called start-stop trans­
mission, in which a small number of bits,
such as the 8 bits representing a single char­
acter, is sent at a time. Two devices using
asynchronous transmission must be in syn­
chronization only for the time it takes to
transmit and receive a single character.

authentication The process of verifying the iden­
tity of a person, program, or service. See
also authorization.

authorization The process of determining whether
a person, program, or service is allowed to
perform a particular process. See also
authentication.

balanced data link In HDLC, a data link connect­
ing two stations only. Each station is called a
combined station, and either station can ini­
tiate message transmission. See High-level
Data Link Control.

Basic Encoding Rules (BER) The international stan­
dard, defined in ISO 8825, specifying a set
of encoding rules that define how the infor­
mation content of ASN.1 values are encoded
for transmission over the network. BER is a
commonly used method for producing trans­
fer syntaxes in the OSI environment.

Bellman-Ford routing algorithm See distance-vector
routing algorithm.

BER Basic Encoding Rules.
bridge A device operating in the Logical Link

Control sublayer and used to join together
two separate local area networks to create
an extended LAN. A bridge is attached to
two or more local area networks and selec-

534 GLOSSARY

tively copies frames from one local area net­
work to another. A bridge can be designed
to join together stations using different pro­
tocols in the Physical layer and in the
Medium Access Control sublayer, as long as
they use a common protocol in the Logical
Link Control sublayer.

broadcast data link A data link that can connect
two or more stations and in which the data
units a station sends are seen by all the other
stations attached to the data link. On a
broadcast data link, a station can send a
data unit to an individual station or multi­
cast a data unit to any number of other sta­
tions attached to the data link.

byte A collection of 8 bits in a storage system.
call sharing A feature of the DNA Phase V

Modem Connect specification that allows
calls on a switched line to be accessed con­
currently by more than one user of the Phys­
ical layer.

Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) An IEEE/ISO local area network
standard, defined in IEEE 802.3 and IEEE
8802-3, that describes the Medium Access
Control sublayer and Physical layer func­
tions for a bus-structured network using a
distributed contention resolution mecha­
nism. The CSMNCD standard has its roots
in version 2 of the Ethernet Specification,
jointly developed by Digital, Xerox, and
Intel.

CCITT International Telegraph and Telephone
Consultative Committee.

CD Committee Draft.
CDAM Committee Draft Amendment.
centralized routing A routing technique in which

end nodes and routers report information
about their local environments to a central­
ized facility. The centralized facility accumu­
lates routing information from all the nodes
in the network, computes routes, and sends
to each router the information it needs to
handle routing decisions.

circuit A DNA Phase V generic term used in
routing that includes any type of data link,
including a local area network broadcast
link, a point-to-point link, an attachment to
a node on a DDCMP multipoint link, a
dial-up link, or an X.25 virtual circuit. See
subnetwork.

clearinghouse A naming service repository for a
portion of the namespace.

CLNS connectionless-mode network service.
collision A condition that occurs on an

IEEE/ISO CSMNCD or Ethernet data link
when two or more stations attempt to trans­
mit at the same time.

Committee Draft (CD) A proposed international
standard in an early stage of ISO's standard­
ization process. An international standard
begins as a working draft and is assigned an
ISO number when it becomes a Committee
Draft. It then progresses to a Draft Interna­
tional Standard (DIS) and finally to an
accepted international standard. Formerly a
Draft Proposal (DP).

Committee Draft Amendment (CDAM) A document
constituting a preliminary modification to
an international standard in the first stage
prior to its formal acceptance by ISO. A
modification to an international standard
begins as a Committee Draft Amendment,
progresses to a Draft Amendment (DAM),
and finally becomes an Amendment (AM)
when it is accepted by ISO as an official part
of an international standard. Formerly Pro­
posed Draft Addendum (PDAD).

concatenation A protocol function in which mul­
tiple protocol-data-units are combined into
a single block for transmission through the
network as a single unit.

concentrator In FDDI, a component that has one
or more ports used to connect single­
attached stations, dual-attached stations,
and other concentrators in a physical tree
configuration. See Fiber Distributed Data
Interface, dual-attachment station, dual-

GLOSSARY

attachment concentrator, and single-attach­
ment station.

concrete interface A point in an architecture at
which a physical connector is used or at
which an application programming interface
is defined.

confirm A service primitive in an ISO service
definition issued by a service provider to
notify the service requester of the results of
one or more request primitives that the ser­
vice requester previously issued.

confirmed service A service in an ISO service
definition in which the service requester is
informed by the distant peer entity of the
success or failure of the service request.

Connection Control component of DNA Session Control
The component that accesses Transport
layer communication services on behalf of
an object residing on the local node, the
address selection component of Session Con­
trol, or the naming service.

connection-mode Network service (CONS). A reliable
Network layer service in which a Network
service user requests that a connection be
established, the Network service and the
user at the other end both agree, and the
Network service establishes the connection.
Data units can then be reliably exchanged
over the connection.

connection-mode service. A reliable, sequenced
service performed by a layer entity consist­
ing of three phases: connection establish­
ment, data transfer, and connection release.

connectionless-mode Network service (CLNS) A best­
efforts, datagram Network layer service in
which routing decisions are made indepen­
dently for each data unit. Delivery is not
guaranteed, and error detection and recov­
ery procedures, if they are required, must be
implemented by higher layers or by the
application itself.

connectionless-mode service An unreliable, best­
efforts service in which the service accepts
each data unit for transmission and attempts

535

to deliver it to its intended recipient or recip­
ients. A connectionless-mode service is
sometimes called a datagram service.

CONS connection-mode network service.
CSMAJCD Carrier Sense Multiple Access with

Collision Detection.
DAC dual attachment concentrator.
DAD Draft Addendum.
DAM Draft Amendment.
DAS dual attachment station.
data circuit-terminating equipment (DCE) Circuitry

implemented in a signaling device, such as a
modem or line driver, that allows a comput­
ing device, such as a computer or terminal,
to be attached to it.

data link Combination of a physical circuit and a
data link protocol that defines how data can
be transmitted over the data link in an error­
free fashion.

Data Link layer The functional layer responsible
for providing data transmission from one
system to another and for shielding higher
layers from any concerns about the physical
transmission medium.

data link protocol Procedures operating in the
Data Link layer that define how two adja­
cent nodes transmit data over a physical cir­
cuit.

data-link-protocol-data-unit (DLPDU) The protocol­
data-unit exchanged between peer Data
Link layer entities. An informal name for the
DLPDU is frame.

data-link-service-access-point (DLSAP) Service­
access-point to the Data Link layer, the
point at which a user accesses the services of
a Data Link layer entity.

data-link-service-data-unit (DLSDU) The service­
data-unit passed to a Data Link layer entity
by a user of the Data Link layer service.

data terminal equipment (DTE) Circuitry imple­
mented in a computing device, such as a
computer or a terminal, that allows the
computing device to be attached to a signal­
ing device, such as a modem or line driver.

536 GLOSSARY

datagram service See connectionless-mode
service.

DCE data circuit-terminating equipment.
DDCMP Digital Data Communication Message

Protocol.
DECnet Term used in the names of Digital hard­

ware and software products that conform to
the Digital Network Architecture.

default context A presentation context known to
two communicating Presentation layer enti­
ties that can be used when the defined con­
text set is empty. See presentation context
and defined context set.

deference process The process in an IEEE/ISO
CSMNCD or Ethernet data link of monitor­
ing the state of the transmission medium
and determining when to begin transmis­
sion.

defined context set A set of presentation contexts
that are negotiated by two peer Presentation
layer entities. See presentation context.

descriptive name A name that identifies an object
by specifying information about the
attributes of that object.

designated router A router attached to a broad­
cast data link that is selected using an elec­
tion process and that periodically multicasts
to other routers information about that data
link.

Digital Data Communication Message Protocol (DDCMP)
A Digital proprietary protocol for the Data
Link layer, included in DNA Phase V mainly
for compatibility with DNA Phase IV.

Digital Network Architecture (DNA) Digital propri­
etary network architecture, first defined in
the mid-1970s, that has evolved through a
series of phases. DNA Phase V, the current
phase of the architecture, is based on inter­
national standards for the OSI model. DEC­
net hardware and software products are
implementations of the Digital Network
Architecture.

Digital time service architecture The architecture
that defines services and algorithms for

maintaining and providing in all network
nodes a consistent, correct date and time of
day.

distance-vector routing algorithm A routing algo-
rithrn in -which each Iivde in the ner ... vork
learns about the network topology by
exchanging routing information packets
with its neighbors. Each router learns from
its neighbor routers the distances between
those neighbors and the other nodes. From
these measurements it computes the distance
between itself and the other nodes. The pro­
cess is repeated and eventually stabilizes
when all the nodes learn they have the same
description of the network topology. Also
sometimes called a Bellman-Ford algorithm.
The routing algorithm defined by DNA
Phase IV is a distance-vector algorithm.

distributed adaptive routing A routing technique in
which nodes dynamically sense their local
environments and exchange this information
with each other-and compute routes
accordingly-in a distributed fashion.

Distributed Authentication Security Service (DASS)
Architecture An architecture that defines a
comprehensive set of security services that
can be used in implementing distributed sys­
tems.

DLSAP data -link-service-access-point.
DLSDU data-link-service-data-unit.
DLPDU data-link-protocol-data-unit.
DNA Digital Network Architecture.
DP Draft Proposal.
Draft Addendum (DAD) Obsolete ISO term for

Draft Amendment (DAM).
Draft Amendment (DAM) A document constituting

a preliminary modification to an interna­
tional standard in the final stage prior to its
formal acceptance by ISO. A modification to
an international standard begins as a Com­
mittee Draft Amendment (CDAM), pro­
gresses to a Draft Amendment, and finally
becomes an Amendment (AM) when it is
accepted by ISO as an official part of an

GLOSSARY

international standard. Formerly Draft
Addendum (DAD).

Draft International Standard (DIS) A proposed inter­
national standard in the final stage of ISO's
standardization process. An international
standard begins as a Committee Draft (CD),
progresses to a Draft International
Standard, and finally is accepted by ISO as
an international standard.

Draft Proposal (DP) Obsolete ISO term for Com­
mittee Draft (CD).

DTE data terminal equipment.
dual-attachment concentrator (DAC) On an FDDI

data link, a station having three or more
PHY ports and 0, 1, or 2 link components.
The concentrator implements one MIC of
type A, one of type B, and one or more of
type M. Used to connect single-attached sta­
tions, dual-attached stations, and other con­
centrators in a physical tree configuration.
See dual-attachment station and single­
attachment station.

dual-attachment station (DAS) On an FDDI data
link, a station designed to connect to two
separate full-duplex transmission medium
segments. A dual-attachment station can
implement either one or two link compo­
nents and contains exactly two PHY ports.

duplex A form of communication in which
information can be transmitted in both
directions simultaneously. Also called full­
duplex. Contrast with half-duplex.

EIA-232-D A commonly implemented Physical
layer standard defining 25 interchange cir­
cuits, carrying positive and negative voltages
in the range of from about 5 to 15 volts,
used to connect a computing device (DTE)
to a signaling device (DCE). EIA-232-D is
the successor to the RS-232-C standard. See
data terminal equipment and data circuit­
terminating equipment.

element of procedure Description in an ISO proto­
col specification of a protocol mechanism.

EMA Enterprise Management Architecture.

537

end node A term used in the DNA Phase V
architecture to refer to a node that can act
only as the source or the final destination of
user data and that does not perform the
routing and relaying functions of routers.
Contrast with router.

end system See end node.
Enterprise Management Architecture (EMA) A Digi­

tal architecture that defines a general
approach to the management of dis­
tributed systems. EMA characterizes a dis­
tributed system as a collection of individ­
ual computing systems tied together by a
communication network for the purposes
of sharing resources.

entity model A model of distributed system man­
agement, used to organize objects in a dis­
tributed system that must be managed, their
attributes, and management operations, into
a consistent structure.

entity An OSI term that refers to an active ele­
ment within a layer. Also a term used in con­
junction with the entity model to refer to an
object in a distributed system that must be
managed.

Ethernet A network conforming to the Ethernet
Specification. Also sometimes used generi­
cally to refer to a local area network con­
forming either to the Ethernet Specification
or to the IEEE/ISO CSMA/CD standard.

Ethernet Specification A local area network stan­
dard, jointly developed by Digital, Intel, and
Xerox, on which the current IEEE/ISO
CSMA/CD standard is based. See Carrier
Sense Multiple Access with Collision Detec­
tion.

FDDI Fiber Distributed Data Interface.
Fiber Distributed Data Interface (FDDI) A local area

network standard, developed by the Accred­
ited Standards Committee (ASC) X3T9.5 of
ANSI and also published in ISO 9314, that
uses a ring topology and supports a data
rate of 100 megabits per second over a fiber­
optic transmission medium.

538 GLOSSARY

File Transfer, Access, and Management (FTAM) An
international standard, defined in ISO 8571,
for an application-service-element that
defines a standardized way for accessing and
transferring data files between open systems
in a heterogeneous network environment.

flooding Process in a link-state routing algorithm
in which a router propagates routing control
packets throughout the network.

FOIRL An IEEE/ISO CSMA/CD transmission
medium specification that specifies baseband
signaling over a fiber-optic cable to imple­
ment a point-to-point connection between
repeaters. Fiber-optic inter-repeater link
cable segments can be up to 1000 meters in
length.

frame Informal name for the data-link-protocol­
data-unit (DLPDU) that is exchanged by
peer Data Link layer entities.

FTAM File Transfer, Access, and Management.
full name A complete name maintained by the

naming service that consists of a concatena­
tion of all the simple names assigned to a set
of arcs that begins at the root of the tree and
ends with the object in question.

full-duplex See duplex.
gateway A device used to connect networks that

conform to different network architectures.
The function of a gateway is to convert the
protocols of one network architecture to the
protocols of the other network architecture.
A gateway replaces the control information
from one network with control information
required to perform comparable functions in
the other network. Nodes connected using
gateways can run different protocols in any
of the layers in the protocol stack.

hall-duplex A form of communication in which
data units can be transmitted in both direc­
tions over a connection but in only one
direction at a time. Contrast with duplex.

HDLC High-level Data Link Control.
High-level Data Link Control (HDLC) An international

standard protocol of the Data Link layer,

included in DNA Phase V, used to imple­
ment telecommunications data links in the
wide area networking environment.

hop Term used in routing to refer to a traversal
froin one node to an adjacent node across a
single data link.

IEEE Institute of Electrical and Electronics Engi­
neers.

indication A service primitive in an ISO service
definition issued by the service provider to
notify a service requester that a significant
event has occurred.

Institute of Electrical and Electronic Engineers (IEEE) A
professional society, whose members are
individual engineers, that is engaged in
information technology standardization.
The IEEE became the focus for development
of local area network standards under its
Project 802.

Integrated Services Digital Network (ISDN) Interna­
tional standards that describe the provision
of unified public voice and data communica­
tion services.

interface data The data portion of the data unit
that is passed in a single interaction across
the abstract interface between two layer
entities at the service-access-point.

interface-control-information (ICI) The control infor­
mation portion of the data unit that is
passed in a single interaction across the
abstract interface between two layer entities
at the service-access-point.

interface-data-unit (IDU) The data unit, consisting
of inter(ace data and inter(ace-control-infor­
mation (ICI), that is passed in a single inter­
action across the abstract interface between
two layer entities at the service-access-point.

intermediate node The term used in the DNA
Phase V architecture to refer to a system
that functions as a router in moving data
units through the network from a source
end node to a destination end node. See end
node.

intermediate system See intermediate node.

GLOSSARY

International Electrotechnical Commission (IEC) A
standards organization whose role in the
field of information technology standards is
generally limited to Physical layer considera­
tions, such as electrical safety. ISO and IEC
have merged their technical committees
working on information technology into a
single organization, called ISO/IEC Joint
Technical Committee 1 (JTC1).

International Organization for Standardization (ISO) The
world's dominant standardization organiza­
tion, which creates standards of all types and
plays an important role in creating standards
for the information technology industry. The
members of ISO are individual national stan­
dards organizations that represent national
positions. The ISO member organization
from the United States is the American
National Standards Institute (ANSI).

International Telegraph and Telephone Consultative
Committee (CCITT) The world's leading organi­
zation involved in the development of stan­
dards relating to telephone and other tele­
communications services. CCITT is a part of
the International Telecommunications Union
(ITU), a body of the United Nations.

ISDN Integrated Services Digital Network.
ISO International Organization for Standardiza­

tion.
Joint Technical Committee 1 (JTC1) A combination of

ISO and IEC technical conimittees working
on information technology standardization.

JTC1 ISO/IEC Joint Technical Committee 1.
LAN local area network.
LAPB Link Access Procedures-Balanced.
level 1 router A router that performs the level 1

routing function.
level 1 routing Routing within an area. A level 1

router routes network traffic directly toward
destination nodes within its own area and
toward a level 2 router when it determines a
packet's destination node is in a different
area.

level 2 router A router that performs both the

539

level 1 and level 2 routing functions.
level 2 routing Routing of network traffic

between areas. Level 2 routing also includes
interdomain routing for traffic destined to
other routing domains and to other adminis­
trative domains. Such interdomain traffic is
handled using static routing techniques.

Link Access Procedures-Balanced (LAPB) A subset
of High-level Data Link Control used in
conjunction with CCITT Recommendation
X.25. (See X.25 and High-level Data Link
Control.)

link state routing algorithm A routing technique in
which a router determines what its individ­
ual area of the network looks like and then
broadcasts that information to all the other
routers.

LLC Logical Link Control.
LLC-PDU logical-link-control-protocol-data-unit.
LLC-SDU logical-link-control-service-data-unit.
local area network (LAN) A form of subnetwork

that meets the needs for high-speed, rela­
tively short-distance communication among

, intelligent devices. Local area networks are
. normally constrained to being within a sin­

gle building or within a "campus" of build-
ings. They do not ordinarily cross public
thoroughfares and normally operate over
private cabling.

local concrete syntax The definition of how the
information content of presentation-data­
values is represented in a computing system.

Logical Link Control (LLC) sublayer The upper sub­
layer of the Data Link layer in the IEEE/ISO
LAN architecture. The LLC sublayer,
described in IEEE 802.2 and ISO 8802-2, is
responsible for medium-independent data
link functions. It allows a user of the LLC
sublayer service to access the local area net­
work without regard to the form of medium
access control used. The LLC sublayer
requests services of the Medium Access Con­
trol sublayer. See Medium Access Control
sublayer.

540 GLOSSARY

logical-link-control-protocol-data-unit (LLC-PDU) The
protocol-data-unit exchanged by peer Logi­
cal Link Control sublayer entities.

logical-link-control-service-data-unit (LLC-SDU) The
service-data-unit passed to a Logical Link
Control sublayer entity by a user of the Log­
ical Link Control sublayer service.

MAC Medium Access Control.
MAC-POU medium-access-control-protocol-data­

unit.
MAC-SOU medium-access-control-service-data·

unit.
MACF multiple-association-control-function.
MAN metropolitan area network.
Manchester encoding Encoding scheme used with

an IEEE/ISO CSMA/CD and Ethernet data
link to encode the bit stream into electrical
signals. Manchester encoding has the desir­
able property of signal transitions occurring
on the transmission medium with pre­
dictable regularity.

Medium Access Control (MAC) sublayer The bottom
sublayer of the Data Link layer in the
IEEE/ISO LAN architecture. The MAC sub­
layer is responsible for performing the pro­
cedures that manage use of the physical
transmission medium. The MAC sublayer
provides services to the Logical Link Con­
trol sublayer. See Logical Link Control sub­
layer.

medium-access-control-protocol-data-unit (MAC-POU)
The protocol-data-unit exchanged by peer
Medium Access Control sublayer entities.

medium-access-control-service-data-unit (MAC-SOU)
The service-data-unit passed to a Medium
Access Control sublayer entity by a user of
the MAC sublayer service.

message interface to DNA Session Control An inter­
face that allows end users of the Session
Control layer service to send and receive
individual messages of any desired size.
Senders and receivers work with messages
contained in buffers.

message transfer agent (MTA) In Recommendation

X.400, the component that delivers mes­
sages that have been submitted from users to
one or more recipients. See X.400.

metropolitan area network (MAN) A form of subnet­
work that supports relatively high-speed
communication over a geographic area
roughly the size of a large city.

Modem Connect A DNA Phase V specification
that defines how the DNA Phase V Physical
layer operates over wide area network
telecommunications links. Modem Connect
supports any type of modem or service unit
for communication over a conventional ana­
log telecommunications link or over a digital
data service.

MTA message transfer agent.
multicast facility Facility implemented by a

broadcast form of data link in which a sta­
tion can send a single transmission to a
number of other stations on the data link.

multiple-association-control-function (MACF) An
Application layer control function that is
associated with an entire application-entity­
invocation and that maps each service the
application-entity-invocation provides to one
of the associations and coordinates the inter­
actions taking place on these associations.

nameserver A component of the naming service
that, on behalf of naming service clerks,
retrieves information from and updates
clearinghouses containing the directories
making up the namespace.

namespace A logical collection of the names of
all the objects that can be referenced, any­
where in a possibly global network.

naming service A service that allows users to
assign names to objects that mean the same
thing anywhere in the network and to main­
tain a set of attribute values associated with
each name, including the address of the
node on which the object resides. The nam­
ing service accepts an object's name from a
user and passes back the set of attributes
associated with that name.

GLOSSARY

naming service clerk The component of the nam­
ing service that implements the application
programming interface to the naming service
and that performs naming service operations
on behalf of end users and application pro­
grams. Clerks communicate with name­
servers.

NET network entity title.
network architecture A comprehensive plan and

set of rules that govern the design and oper­
ation of the hardware and software compo­
nents used to create computer networks.

network entity title (NET) The entire NSAP address
of a node, including a zero selector field
value. A node's network entity title must be
unambiguous within the OSI environment.

Network layer The functional layer concerned
with routing data from one open system to
another. The facilities provided by the Net­
work layer supply a service employed by
higher layers to move bits from a source end
node to a destination end node, where the
bits may flow through any number of
routers. See end node and router.

network-protocol-data-unit (NPDU) The protocol­
data-unit exchanged by peer Network layer
entities. An informal name for the NPDU is
packet.

network-service-access-point (NSAP) Service-access­
point to the Network layer, the point at
which a user accesses the services of a Net­
work layer entity. The NSAP address forms
the network address of an end node or
router.

network-service-data-unit (NSDU) The service-data­
unit passed to a Network layer entity by a
user of the Network layer service.

Network Service Protocol (NSP) A Digital propri­
etary Transport layer protocol included in
DNA Phase V mainly for compatibility with
DNA Phase IV.

node A term used in DNA to refer to a device
containing at least an instance of the Net­
work layer and the Data Link and Physical

layers below it. Synonymous with the OSI
term system or open system.

541

nonbroadcast data link A data link implemented
using a point-to-point connection between
exactly two stations.

nonconfirmed service A service in an ISO service
definition in which the service requester is
not informed of the completion of the ser­
vice request.

NPDU network-protocol-data-unit.
NSAP network-service-access-point.
NSDU network-service-data-unit.
NSP Network Service Protocol.
null modem An EIA-232-D cable or connector

that crosses the appropriate conductors to
allow two DTEs to be connected to simulate
the presence of a pair of DCEs between the
two communicating devices. See EIA-232-
D, DTE, and DCE.

octet OSI term for a collection of 8 bits.
open system The representation within the OSI

model of those aspects of a computing sys­
tem that are pertinent to OSI communica­
tion. Systems are said to be open to each
other because of their mutual adherence to a
set of applicable standards.

OSI architecture The network architecture that
the International Organization for Standard­
ization (ISO) is developing based on interna­
tional standards. Together, the standards
developed around the OSI model framework
make up the OSI architecture. See Reference
Model for Open Systems Interconnection.

OSI Directory See X.500 Directory.
OSI Model See Reference Model for Open Sys­

tems Interconnection.
OSI Upper Layer (OSUL) architecture The DNA

Phase V architecture that describes the Digi­
tal implementation of the OSI Session, Pre­
sentation, and Application layers.

packet An informal name for the network-pro­
tocol-data-unit (NPDU).

PCI protocol-control-information.
PDAD Proposed Draft Addendum.

542 GLOSSARY

POU protocol-data-unit.
POV presentation-data-value.
peer entities Two communicating entities, associ­

ated with the same layer but existing in dif-
ferent nodes, that communicate using the
services of the layer below them.

permanent virtual circuit A facility provided by a
packet-switched data network that provides
the appearance of a permanent point-to­
point connection between two DTEs.The
two DTEs use the communication facilities
of the network and consume network
resources only when they are actually trans­
mitting data; however, they remain logically
connected permanently as though an actual
physical circuit always exists between them.

Physical layer The functional layer responsible
for the transmission of bit streams across a
physical transmission medium. It involves a
connection between two machines that
allows electrical or other types of signals to
be exchanged between them.

physical-protocol-data-unit (PPOU) The protocol­
data-unit exchanged between peer Physical
layer entities.

physical-service-access-point (PSAP) The service­
access-point to the Physical layer, the point
at which a user accesses the services of a
Physical layer entity.

physical-service-data-unit (PSOU) The service-data­
unit passed to a Physical layer entity by a
user of the Physical layer service.

point·to·point data link A data link that imple­
ments a connection between exactly two
nodes.

port A data structure, defined by the DNA
Phase V architecture and implemented in a
layer entity, providing access to the services
of that entity. Typically, a port is assigned to
a user upon request and remains associated
with that user until it is explicitly released.
Each user generally has its own port
assigned; and many users may be able to
access the services of a layer entity, each

through its own assigned port.
portal A facility for allowing nodes that con­

form to some other network architecture to
use a network for communication. Unlike a
gateway, a DNA Phase V portal does not
perform protocol conversion. Instead, a por­
tal encapsulates the foreign protocol mes­
sages within DNA Phase V protocol mes­
sages for transmission through the DECnet
Phase V network. A pair of portals is some­
times said to implement a facility called a
tunnel, with each portal providing an open­
ing into a tunnel through a network con­
forming to a foreign network architecture.

PPOU Physical-protocol-data-unit or presenta­
tion-protocol-data-unit.

presentation context In the OSI Presentation layer,
the association of the name of an abstract
syntax with the name of a particular transfer
syntax used to transfer the information con­
tent defined by that abstract syntax.

presentation·data·value (POV) Definition of the
information content of an application-proto­
col-data-unit (APDU) or a part of an APDU.

Presentation layer The functional layer concerned
with preserving the information content of
user data and with the way in which it is
represented and encoded for transmission
through the network.

presentation·protocol·data·unit (PPOU) The protocol­
.data-unit exchanged between peer Presenta­
tion layer entities.

presentation-service-access-point (PSAP) The ser­
vice-access-point to the Presentation layer,
the point at which a user accesses the ser­
vices of a Presentation layer entity.

presentation-service-data-unit (PSOU) The service­
data-unit passed to a Presentation layer entity
by a user of the Presentation layer service.

primitive name A character string that uniquely
identifies a resource.

propagator A function of the DNA Phase V nam­
ing service that attempts to propagate
updates made to the namespace to all repli-

GLOSSARY

cas of a directory at the time the update is
made.

Proposed Draft Addendum (PDAD) Obsolete ISO
term for Committee Draft Amendment
(CDAM).

protocol A set of data units and the procedures
that define how the data units are exchanged
between peer entities. A layer entity in one
node communicates with a complementary
layer entity in another node using a proto­
col.

protocol-control-information (PCI) Information a
layer adds to the data from one or more of
its service-data-units to produce a protocol­
data-unit.

protocol-data-unit (POU) Data units that are sent
from a layer entity in one node to a peer
layer entity in another node.

protocol specification ISO standard defining the
formats of the data units that are exchanged
between two peer layer entities and the pro­
cedures by which those data units are
exchanged.

proxy mapping A mechanism of the DNA Session
Control layer through which a user on one
node in the network can be given access to
accounts on another node in the network
without knowing the access control infor­
mation associated with the target accounts.

pseudonode An imaginary node used with a link­
state routing algorithm to model a broadcast
data link as a logical star structure in which
the pseudonode represents the transmission
medium itself. All nodes are viewed as
being connected to the pseudonode with a
separate point-to-point logical link.

public key cryptography system See asymmetric
cryptography algorithm.

quasi-static routing A routing technique similar to
static routing except the routing information
that is computed and provided to each node
includes information about alternative paths
that can be used when certain types of fail­
ures occur. See static routing.

543

Reference Model of Open Systems Interconnection (OSI
model) An international standard, described
in ISO 7498, that documents a generalized
model of system interconnection. The pri­
mary purpose of the OSI model is to provide
a basis for coordinating the development of
international standards relating to the flexi­
ble interconnection of systems using data
communication facilities.

referential transparency A property of a name
maintained by the naming service that guar­
antees that a full name always refers to the
same thing no matter which user provided
the name, and that these names can be freely
passed outside the naming service from one
user to another without the possibility of
confusion.

relaying The function of a router in moving a
packet from one node to the next over the
route it travels through the network.

remote procedure call (RPC) architecture The archi­
tecture that defines services by which a pro­
cedure executing in one computing system
can pass control to a procedure residing in
some other computing system attached to
the network using a conventional procedure
call mechanism.

repeater A device used to relay signals from one
cable segment to another in a local area net­
work. A repeater operates in the Physical
layer, and its use is hidden from any of the
layers above. The function of a repeater is to
receive a signal from one cable segment and
to retransmit it over one or more other cable
segments, thus regenerating the signal at its
original strength. Repeaters are used in bus­
structured local area networks to connect
individual cable segments to form a larger
local area network. In ring-structured local
area networks, every station performs the
function of a repeater.

replica A copy of a naming service directory
stored in a particular clearinghouse. See
clearinghouse.

544 GLOSSARY

request A service primitive in an ISO service
definition issued by a service requester to
request that a particular service be per­
formed by a service provider and to pass
parameters needed tu fully specify the
requested service.

response A service primitive in an ISO service
definition issued by the service requester to
acknowledge or complete some procedure
previously invoked by the service provider
through an indication primitive.

router The informal name for intermediate sys­
tem or intermediate node. A router provides
the ability to route packets from one end
node to another where there may be multi­
ple paths between them. The routers partic­
ipate in a distributed algorithm to decide on
the optimal path each packet should travel
from the source end node to the destination
end node. The router function operates in
the Network layer.

routing The function of the Network layer that
determines the best path for moving each
packet to its destination based on the cur­
rent topology of the network.

routing domain A set of end nodes and routers
that share routing information, operate
according to the same routing protocol, and
are contained within a single administrative
domain. The definition of a routing domain
is associated with a network policy, since a
routing domain is not an architecturally
defined entity. See administrative domain.

RPC remote procedure call.
RS-232-C See EIA-232-D.
SACF single-association-control-function.
SAP service-access-point.
SAS single-attachment station.
SDLC Synchronous Data Link Control.
SDU service-data-unit.
segment interlace to DNA Session Control The inter­

face that allows end users of the Session
Control layer service to send messages lim­
ited in size to the maximum allowable trans-

port-protocol-data-unit (TPDU) size.
Senders and receivers work with messages
contained in buffers.

segmentation function A protocol function in
vvhich a service-data-unit is divided into seg-
ments, each of which is transmitted in a sep­
arate protocol-data-unit.

service-access-point (SAP) The point at which the
services of a layer are provided. A service­
access-point is identified by an SAP address.

service-data-unit (SDU) A data unit passed from a
higher-layer entity that is requesting a ser­
vice down to a lower-layer entity that is pro­
viding the service.

service definition An ISO standard that defines
the services that one layer of the OSI model
provides to a user of that layer's services
without specifying how those services are to
be provided.

service primitive A description of the semantics
of a particular service that an entity in a
functional layer of the OSI model provides
to a user of that layer's services.

Session layer The functional layer that provides
services used to organize and synchronize
the dialog between application programs
and to manage the data exchanges between
them.

session-protocol-data-unit (SPDU) The protocol­
data-unit exchanged between peer Session
layer entities.

session-service-access-point (SSAP) The service­
access-point to the Session layer, the point at
which a user accesses the services of a Ses­
sion layer entity.

session-service-data-unit (SSDU) The service-data­
unit passed to a Session layer entity by a
user of the Session layer service.

simple name In the naming service, a string of
octets having no internal structure. Simple
names are concatenated with periods to
form full names. See full name.

simplex A form of communication in which
information flows in only one direction.

GLOSSARY

single-association-control-function (SACF) An Appli­
cation layer control function that is associ­
ated with a single association and thus a sin­
gle application context.

single-attachment station (SAS) In FD DI, a station
that implements a single link component
and a single PHY Port. This type of station
is attached to a concentrator using a single
full-duplex, point-to-point transmission
medium segment. See concentrator and
dual-attachment concentrator.

skulk Execution of the skulker convergence
algorithm. See skulker.

skulker The naming service convergence algo­
rithm that forces convergence for those
updates the propagator was not able to fully
propagate.

slot time On an IEEE/ISO CSMNCD or Ether­
net data link, twice the maximum round-trip
propagation delay.

SNA Systems Network Architecture.
SNAcP Subnetwork Access Protocol Role.
SNDCP Subnetwork Dependent Convergence

Protocol Role.
SNICP Subnetwork Independent Convergence

Protocol Role.
SPDU session-protocol-data-unit.
SSAP session-service-access-point.
SSDU session-service-data-unit.
static routing A routing technique in which all

routing information for each node is pre­
computed and is provided to each router
through a management action.

station With most types of data links, a station
corresponds to a particular instance of a Data
Link layer and a Physical layer entity and cor­
responds to a single point of attachment to a
transmission medium segment. A particular
node must implement at least one station in
order to attach that node to the network.
With an FDDI data link, a station can con­
tain zero, one, or two Data Link layer enti­
ties, and a station can attach to either one or
two full-duplex optical-fiber cable segments.

545

stream interface to DNA Session Control An interface
that allows end users to view data as a con­
tinuous stream of octets, in which an occa­
sional "end-of-message" marker may be
inserted. The stream interface is similar to
the segment interface, but the buffer size is
not restricted by the maximum allowable
TPDU size. See segment interface to DNA
Session Control.

subnetwork A collection of nodes that are
attached to a single virtual transmission
medium.

Subnetwork Access Protocol Role (SNAcP) The Net­
work layer protocol role of directly accessing
the services of the Data Link layer in helping
to provide the requested Network service.

Subnetwork Dependent Convergence Protocol Role
(SNDCP) The Network layer protocol role of
augmenting the functions provided by a pro­
tocol operating in the SNAcP role to provide
the services the subnetwork independent
sublayer requires to provide the requested
Network service. See subnetwork access
protocol role.

subnetwork dependent layer The lower of the two
sublayers of the Network layer whose major
function is to access the underlying services
of the Data Link layer upon request of the
subnetwork independent sublayer. See sub­
network independent layer.

Subnetwork Independent Convergence Protocol Role
(SNICP) The Network layer protocol role of
providing the requested Network service to
a user of the Network layer service using a
well-defined set of underlying capabilities. It
interfaces directly with the Network layer
service user and is independent of the Data
Link layer services used to provide the Net­
work service.

subnetwork independent layer The upper of the two
sublayers of the Network layer whose func­
tion is to provide either the connectionless­
mode network service (CLNS) or the con­
nection-mode network service (CONS) upon

546 GLOSSARY

request of a user of the Network layer ser­
vice. See subnetwork independent layer,
connectionless-mode network service, and
connection-mode network service.

SVC switched virtual circuit.
switched virtual circuit {SVC) A facility provided by

a packet-switched data network that pro­
vides the appearance of a point-to-point
connection between two DTEs. It is estab­
lished upon request of either of the two
DTEs and is released when the connection is
no longer required. Sometimes called a vir­
tual call (VC).

Synchronous Data Link Control (SDLC) A data link
protocol, defined by IBM, that is· a func­
tional subset of the international standard
High-Level Data Link Control (HDLC) data
link protocol defined by ISO. SDLC
includes only the normal response mode of
HDLC, in which one station is designated
the primary station and is in control of the
data link while one or more other stations
are designated secondary stations.

synchronous transmission A form of data commu­
nication in which bits are sent in a continu­
ous stream and in which the receiving device
must stay in synchronization with the trans­
mitting device for the transmission of an
entire block of information.

system A set of one or more computers, the
associated software, peripherals, terminals,
human operators, physical processes, trans­
fer means, and so forth, that forms an
autonomous whole capable of performing
information processing and/or information
transfer. Often referred to in DNA Phase V
as a node.

Systems Network Architecture {SNA) IBM's network
architecture, widely used in the IBM large­
system environment.

TCP/IP Transmission Control Protocol/Internet
Protocol.

Technical Report {TR) An ISO publication that
covers subject matter for which support can-

not be obtained for the development of an
international standard, when a subject is still
under technical development, or when a
technical committee has collected data dif-
ferent frun1 data normally published as a.
standard.

time-sequence diagram A diagram in an ISO ser­
vice definition in which service primitives are
represented by arrows and in which time
flows down. A time-sequence diagram shows
the sequence in which service primitives are
issued in performing a particular service.

token bus LAN A standard for local area net­
works, defined by IEEE 802.4 and ISO
8802-4, that describes the Medium Access
Control sublayer and Physical layer func­
tions for a bus-structured LAN using a
token passing access protocol.

token passing access protocol A local area network
procedure in which access to the physical
transmission medium is controlled through
possession of a special data unit called the
token, which is passed from device to
device.

token ring LAN A standard for local area net­
works, defined by IEEE 802.5 and ISO
8802-5, that describes the Medium Access
Control sublayer and Physical layer func­
tions for a ring-structured LAN using a
token passing access protocol.

tower A data structure, maintained in the nam­
ing service, that contains protocol and
addressing information for an object that
can be located via the network.

TPDU transport-protocol-data-unit.
TR Technical Report.
transfer syntax A definition of how the informa­

tion content of data is encoded for transmis­
sion over a network. See local concrete syn­
tax and abstract syntax.

Transmission Control Protocol/Internet Protocol {TCP/IP)
A network architecture and protocol suite,
typically used in conjunction with the UNIX
operating system, used for communication

GLOSSARY

in an internet made up of interconnected
subnetworks of various types.

Transport layer The functional layer responsible
for providing an end-to-end data transfer
service between any two end systems at an
agreed-upon level of quality. The Transport
layer builds on the services of the Network
layer and the layers below it to form the
uppermost layer of an end-to-end data
transport service. The Transport layer
shields higher layers from any concern with
the actual moving of data from one com­
puter to another and shields the users of the
data transport service from the complexities
of the layers below.

transport-protocol-data-unit (TPOU) The protocol­
data-unit exchanged between peer Transport
layer entities.

transport-service-access-point (TSAP) The service­
access-point to the Transport layer, the point
at which a user accesses the services of a
Transport layer entity.

Transport-service-data-unit (TSOU) The service-data­
unit passed to a Transport layer entity by a
user of the Transport layer service.

TSAP transport-service-access-point.
TSOU transport-service-data-unit.
tunnel A facility, consisting of a pair of portals,

that allows nodes conforming to some other
network architecture to use a network for
communication. See portal.

UA user agent.
UID unique identifier.
unbalanced data link A data link that connects

two or more stations, with one of the sta­
tions designated the primary station and all
the others designated as secondary stations.

unique identifier (UID) An identifier, globally unique
over space and time, created through use of
the DNA Phase V unique identifier architec­
ture. See unique identifier architecture.

unique identifier architecture The architecture that
defines a service that distributed systems and
the DECnet software itself use to obtain an

547

identifier guaranteed to be globally unique
over space and time.

user agent In X.400, the component that allows
individual users of the system to submit
messages to the system for delivery to one or
more recipients and to receive and view mes­
sages that have been sent by other users.

VC virtual call.
virtual call (VC) See switched virtual circuit.
virtual circuit A facility, implemented via a

packet-switched data network, that gives the
appearance of a point-to-point connection
between two nodes. See switched virtual
circuit and permanent virtual circuit.

virtual filestore In FTAM, a conceptual model of
a file service that can be implemented in any
desired way in an open system. The virtual
filestore is an abstraction that can be emu­
lated by the file service existing in a real
computing system.

WAN wide area network.
wide area network (WAN) A network constructed

using public telecommunications facilities
that extends over large geographic areas.

window mechanism A mechanism, often used in
flow control procedures, to control the rate
at which protocol-data-units are sent
between the transmitter and the receiver. A
window mechanism is used to limit the
number of frames a transmitter can send
before it must wait for an acknowledgement
from the receiver.

X.25 Interface The recommendation of the
CCITT that defines how a computer is
attached to a packet-switched data network
(PSDN).

X.400 Message Handling System The recommenda­
tion of the CCITT for a message handling
system that defines standard methods for
transferring electronic mail messages among
users of heterogeneous computing systems.

X.500 Directory The international standard for a
descriptive naming service in the OSI envi­
ronment. Also called the OSI Directory.

IND EX

10BASE2 cable segments, 475-476
10BASE5 cable segments, 475-476
lOBASE-T cable segments, 475-476

ABM, 129, 413
Abstract interfaces, 22, 48-49, 99, 101

CLNS, 135, 137
DNA architectural specifications and, 65
interface-data-units and, 53
Network layer, 175
service primitives for, 49, 50
Transport layer, 218, 220

Abstract syntax, 43, 44
context management functional unit and, 275
of network addresses, 159-160
Presentation layer, 264, 265-270

Abstract Syntax Notation One (ASN.1), 266-270
Access

class, FT AM, 306
control, DSSA, 331
control information, Session Control layer and,

244
modules, director architectural model, 387
protocol, local area network, 441-44 2

Acknowledge (ACK) messages, 433-434
Acknowledgment, 229, 235, 236, 352, 425
ACSE. See Association control service element

(ACSE)
Activity Management functional unit, 258, 260
Addendum (AD), 33
Address, 12, 155, 349

administration, 161-163, 448-449
conversion functions, 252
filtering, 116, 457

group, 450
HDLC,415
individual, 450
learning of, by bridges, 523
MAC, 486-487

Addressing, 156-163, 447-450
Addressing authority, 157, 160
Address resolution component of DNA Session

Control, 242, 246-250, 341
Address selection component of DNA Session

Control, 242, 243, 250-251
Adjacency, 174, 175, 201
Adjusted time value, 344
Adleman, L., 332, 333
ADM, HDLC, 413
Administrative domain, 152, 190
Advertisement and solicitation protocol, 326, 365
AE, 278-281, 302
AFI, 160-163
Agents, 379-380
Alias names, 352
ALOHA protocol, 4 79-480
Amendment (AM), to international standards, 33
American National Standards Institute (ANSI), 26-28

ANSI FDDI standard, 490, 497, 504, 506,
510-511, 514

ANSI X3.92-1981, Data Encryption Algorithm
(DES), 332

AOW,29
APDU, 263, 279, 283-285, 302
API, 66, 302-303, 386
Application-association, 280-281
Application-context, 281-282
Application-entity (AE), 278-281, 302

550 IND EX

Application-entity-invocation, 280-281, 285-286
Application-entity-qualifier, 278
Application-entity-title, 278
Application layer, 254, 276-280

connection/connectionless modes and, 61
OSI model, 45
standards, 528

Application-process, 276-279
Application-process-invocation, 277, 280
Application-process-title, 277, 278
Application programming interface (API), 66,

302-303, 386
Application programs, 276
Application-protocol-data-unit (APDU), 263, 279,

283-285, 302
Application-service-element (ASE), 279-280, 302-308
APPLICATION tags, 267
Architecture, 3, 24-26, 64-67. See also Network

architecture
Area,69, 152-154, 157, 158
ARM,413
ASC T1, 27
ASCX12, 27
ASCX3, 27
ASE, 279-280, 302-308
Asia and Oceania Workshop (AOW), 29
ASN.1, 266-270
Association-control-functions, 282
Association control service element (ACSE), 280-285

FTAM and, 307-308
international standards, 303-304
OSUL service and, 288
protocol definition, 283-285
service definition, 282-283

Association establishment, ASCE protocol
specification, 284

Association release, ASCE protocol specification, 284
Asymmetric cryptography algorithms, 333
Asynchronous balanced mode (ABM), 129, 413
Asynchronous disconnected mode (ADM), 413
Asynchronous frames, 424, 510-511
Asynchronous response mode (ARM), 413
Asynchronous transmission, 89, 90
AT&T, modem standards, 97
AT command set, 97
Attachment Unit Interface (AUI), 467, 470-471
Attributes, 305, 355-361, 374, 382, 383
Attribute value assertion (AVA), 374-375

AUI, 467, 470-471
Authentication, 329-331, 335-336
Authority and format identifier (AFI), 160-163

Backbone local network, 91, 491
Backend local netv,10rksJ 490-491
Backoff delay, 482
Balanced data links, HDLC, 412-413
Bandwidth, 6-8
Baseband signaling, 440-441
Basic concatenation, 262
Beacon frames, 515, 517
Beacon process, 510
Beginning flag field, 415
Bell, Gordon, 6
Bellman-Ford routing algorithm, 193-194
Best-efforts delivery, 59
Binary absolute time, 323-324
Binary relative time, 323-324
Binding, 338, 341
Bit stuffing, 415, 422-424
Bit synchronization, 85-86
Blocking functions, 54
Blue Book, 34-35
BPDU, 524
Bridge-protocol-data-unit (BPDU), 524
Bridges, 477-478, 503-504, 518-525
Broadband signaling, 440-441
Broadcast data links, 109, 115-116, 164-165, 445
Broadcast subnetworks, 176
Brooks, Fred, 24-25
Buffering, 244-245, 288
Bus topology, 439
Byte, defined, 72n
Byte framing, 436-437

CA, DASS, 334-335
Cable segments, specification, 474-476
Cabling, 89-92
Caching, 24 7
Call clearing, X.25, 396
Call control, 100-103
Called procedure, 337-338
Calling procedure, 337-338
Call references, 101-102
Call sharing, 102-103
Campus environments, cabling, 91
Capability Data Exchange functional unit, Session

layer, 261

INDEX

Carrier Sense Multiple Access (CSMA), 481
Carrier Sense Multiple Access with Collision

Detection (CSMNCD), 105-106, 476-477
access protocol, 442
architecture, 98, 463-478
circuits, 89
Data Link layer components, 463-465
data links, 127-128
extended LANs, 477-478
IEEE/ISO LAN standards, 444
interconnecting 10BASE2, 10BASE5, and

lOBASE-T segments, 475-476
LAN specification, 75, 76
MAC sublayer, 478-489
networks, 468-478
Physical layer components, 465-469
protocol, 480-481, 483-485
service definition, 478-489
standards, 462
star-structured networks, 4 7 6-4 77
station and cable segment limits, 474-475
transmission medium, 468-469

CCITT, 4, 26, 34-35
address administration, 162-163
E.163, 163
E.164, 163
F.69, 163
modem standards, 96-97
Recommendation V.24, 93-95
Recommendation V.25, 97
Recommendation V.25bis, 97
Recommendation V.28, 93
Recommendation V.32, 97
Recommendation X.121, 162-163
Recommendation X.25, 68, 391
Recommendation X.400, 308-309
Recommendation X.500, 351

CC message, 223
CDAM,33
CD (Collision Detection), 481
CD (Committee Draft), 33
CEN,28
CENELEC,28
Centralized computing, 7, 8
Centralized routing, 192-193
CEPT, 30
Certification authority (CA), DASS, 334-335
Characteristic attributes, 383

Checkpoints, in Session layer, 260
Checksum, in Link State packets, 198, 200
Child pointer entries, 358
Circuits

control functions, 17 5
defined, 174
digital, 98
establishment and release, 85-86
interchange, 9 3
multiaccess, 115
multipoint, 116
point-to-point, 115
types of, 86-89
virtual, 136

Claim frames, 509, 515, 517
Claim token procedure, 509
Class, entity, 381-382
Class-specific attributes, 356
Clearinghouse, 362-363, 366-368
Clerk, 80, 324-325,363, 364
Clerk-Server protocol, naming service, 366
CLNS. See Connectionless-mode Network service

(CLNS)
Clock, 319-327, 343-344
CMIP, 387-388
Code bits, 495
Collision detection, 466, 480-483
Collisions, 480-482
Combined stations, HDLC, 412

551

Comite European de Normalisation clans le domain
Electrique (CENELEC), 28

Comite European de Normalisation (CEN), 28
Command Terminal (CTERM) protocol, 296
Committee Draft Amendment (CDAM), 33
Committee Draft (CD), 32-33
Common management information protocol (CMIP),

387-388
Complete Sequence Number packet (CSNP), 199-200
Computer conferencing, 298-300
Computing paradigms, 7-8
Concatenation, 54, 234, 262, 354
Concentrators, 107
Concrete interfaces, 22, 49, 65-66, 99
Conference of European PTTs (CEPT), 30
Configurable redundancy, 67
Configuration, 66, 185-186
Configuration Switching sublayer, 494
Confirmed services, 49-50

552

Congestion avoidance
algorithm, 232

INDEX

ISO 8473 Internet protocol, 185
NSP transport, 238
OSI transport; 231-232.

worldwide computing and, 12
Congestion recovery algorithm, 232
Connection Confirm (CC) message, 223
Connection Control component of Session Control,

142-143, 220, 241-246
Connection establishment, 223, 235-237
Connectionless-mode Data Link service, 110,

117-118, 123-124
Connectionless-mode LLC service, 450-451
Connectionless-mode Network service (CLNS), 77

CLNS/CONS controversy, 60-62, 139-149,
210-211

Digital and, 148
disadvantages of, 147
DNA Phase V and, 138-139
interface procedure declarations, 135, 137
Network layer and, 61-62, 133-136
protocols, 149-150, 164, 170-187
reliability of, 134, 143-145
service primitives, 135-136
Transport layer and, 209-211

Connectionless-mode service, 57-62
vs. connection-mode service, 60-62
defined,57
ISO, 77
operation of, 59
reliability of, 59, 60

Connectionless-mode Session layer service, ISO 8326
and,261

Connection-mode Data Link service, 109-110,
118-124

Connection-mode LLC service, 450
Connection-mode Network service (CONS), 77

advantages of, 146
CLNS/CONS controversy, 60-62, 139-149,

210-211
connection control functions, 14 2-14 3
data transfer functions, 143
disadvantages of, 146-14 7
DNA Phase V and, 138-139
interface procedure declarations, 139, 142-143
ISO 8208 X.25 protocol for supplying, 187-188
ISO 8878 X.25 protocol for supplying, 189

Network layer and, 61-62, 133, 136-149
port control functions, 14 2
protocols, 150, 164, 170, 187-189
reliability of, 136-138
service primitives, 139-141
Transport layer and, 209-211
using X.25 to supply, 405-406

Connection-mode service, 57-62, 77
vs. connectionless-mode service, 60-62
message acknowledgment and, 58
operation of, 58-59
reliability of, 5 8-60
sequence checking and, 58

Connection-mode Session layer service, ISO 8326
and,261

Connection release, 234, 238
Connection Request (CR) message, 223
Connectivity, multi-vendor, 72
Connect request, Session Control layer and, 243-244
CONS. See Connection-mode Network service
Context management functional unit, 2 7 5
Context restoration functional unit, 275-276
Context Specific tags, 267-269
Control escape octet value, 424
Control field, HDLC, 416
Control functions

DNA Physical layer and, 86
HDLC,423
LLC, 458-459
MAC sublayer, 480
Modem Connect, 103-104

Control messages, 235, 236, 430-435
Control module, of nameserver, 363
Control stations, 437
Coordinated Universal Time (UTC), 321-326
Corporation for Open Systems (COS), 29
Counter attributes, 383
Courier servers, 326
C.Protocol, naming service, 366
CRC negotiation, HDLC, 426
CRC values, 126, 416-417, 438, 488
Credits, flow control and, 230-231
CR message, 223
Cryptography, 329-334
CSMA,481
CSMNCD. See Carrier Sense Multiple Access with

Collision Detection (CSMNCD)
CSNP, 199-200

IND EX

CTERM protocol, 296
Cyclical redundancy check (CRC) values, 126,

416-417, 426, 438, 488

DA, 405
DAC, 498, 501
DAD, 33
DAM,33
DAP, 300-301
Dark fiber, 6
DAS, 498, 499
DASS, 317-318, 328-336, 498, 499
Data Access Protocol (DAP), 300-301
Data circuit-terminating equipment (DCE), 93

X.25 and, 391
Data communication, 5-7, 17-21
Data Encryption Algorithm (DES) algorithm, 332
Datagram service, 59, 60, 62, 134, 451. See also

Connectionless-mode Network service (CLNS)
Data Link layer

architectural model, 111-112
connectionless-mode Data Link service, 61-62,

117-118, 123-124
connection-mode Data Link service, 61-62,

109-110, 118-124
CSMNCD, 463-465
DL_UNITDATA service, 118
DNA Phase IV, 70
DNA Phase V, 76-77, 109-129
in FDDI architectural model, 491-493
functions of, 109
ISO 8886 Data Link Service Definition, 117
LAN data links, 114-116, 127-128
LLC sublayer, 114-115
MAC sublayer, 114-115
Network layer and, 129, 131
OSI model, 39-40
PMD sublayer of, 115
PHY sublayer of, 115
protocol specifications, 112-114, 124-127
service definitions, 112-124
services, 109-111
WAN data links, 116-117, 128-129

Data link mapping (DLM), 405
Data-link-protocol-data-unit (DLPDU), 54, 124, 414.

See also Frames; Messages
Data Link layer and, 110, 113
messages and, 430

Data links, 130, 164-168
balanced, 412
broadcast, 109, 115-116, 164-165
connection establishment and release, 109-110
conventional vs. LAN technologies, 440
dynamically assigned point-to-point, 166
dynamically established point-to-point, 165-166
multipoint, 166-167
nonbroadcast, 109, 165-167
permanent point-to-point, 165
static point-to-point, 165
unbalanced, 412

Data-link-service-access-point (DLSAP), 112
Data-link-service-data-unit (DLSDU), 51, 126

connectionless-mode Data Link service and,
117-118

connection-mode Data Link service and, 119
Data Link layer and, 110, 112-113

Data Link Service Definition (ISO 8886), 117
Data messages, 235-236, 430-433, 435-436
Data packets, 177-179, 201-202
Data ports, 100, 101
Data retransmission, 238
Data Segment messages, 237, 238
Data stations, 412
Data syntax, 43-44, 264-274
Data terminal equipment (DTE), 93-96, 104,

391-392
Data token, 258, 260
Data TPDU, 219, 222
Data transfer

CLNS, 137
CONS, 143
Data Link layer and, 39-40, 110
error detection and, 39-40
expedited, 220-221, 228
HDLC,423
information content and, 43-44
interfaces, Session Control layer, 244, 245
LLC sublayer, 455, 458
MAC sublayer, 480
Modem Connect, 104
normal, 220-221, 223, 228
NSP transport, 23 7
OSI transport, 220-221, 223, 228
and sequencing, DNA Physical layer and, 86
Session Control layer and, 244-245
subnetwork dependent sublayer interface, 175

553

554 INDEX

Data type assignments, ASN.1, 266-267
Data value assignments, ASN.1, 269-270
DCE, 93, 391
DC message, 234
DCS,272
DDCMP. See Digital Data Communication Message

Protocol (DDCMP)
Decentralized computing, 7, 8
Decision, link state routing, 195, 201
DECnet, 3, 12, 63-64, 70-73
Default context, 272
Deference process, 481-482
Defined context set (DCS), 272
Delegation, 331, 336
Delivery interaction, 312
Delivery notification, 312-313
DES algorithm, 332
Descriptive names, 350-351
Designated router, 199
Desktop computers, 4, 9
Destination address, 243, 512
Destination-service-access-point (DSAP) address,

452
Determinism, 66-67
Dialog, 42, 43, 255, 260
Diffie, Whitfield, 333
Digital

CLNS/CONS controversy and, 62, 133, 148, 210-
211

CSMA/CD transmission media, 468-469
DNA applications, 294-301
networking and, 8-10, 66
standards and, 4-5, 72-73

Digital circuits, 98
Digital Data Communication Message Protocol

(DDCMP), 76, 129, 429-438
data links, 429-438
features of, 429-430
framing procedures, 436-437
functions of, 429
link management procedures, 437
maintenance mode, 435-436
message exchange procedures, 438
message formats, 430-436
online mode, 435
protocol operation, 436-438
protocol specification, 430-438
service definition, 430

service interface commands and responses, 430,
431

specification, DNA Phase V, 76
Digital Network Architecture (DNA), 3, 25, 63-81

applications, 293-301
CMIP, 387
Data Link layer, 88, 98
DECnet and, 63-64
Network Services Protocol (NSP), 78
OSI architecture and, 46
Phase I, 67
Phase II, 67-68, 346
Phase ill, 68
Phase IV, 68-69

compatibility with Phase V, 74, 250
end nodes, 151
functional layers in, 69-71
network addressing, 156
routers, 152

Phase V, 11-13, 69-74
addressing, 12
architecture, 62, 64-66, 77, 294, 529
Bridge and Extended LAN Architecture specifi-

cation, 518
compatibility with Phase IV, 74, 250
congestion avoidance, 12
connection/connectionless modes and, 62, 77,

138-139
CSMA/CD specification, 462
Data Link layer, 76-77, 109-129
end nodes, 151
FDDI specification, 490, 497, 510-511
functional layers, 74-79, 85-289
HDLC, 422, 425-428
higherlayers, 77-78
ISO protocols and standards, 72-73, 79
large network support, 69-72
LLC architectural model, 456-457
naming service, 12, 79-80, 348-376
network addressing, 156
Network layer, 77, 130-163
network management, 73-74, 80-81
Physical layer, 75-76, 85-108
RPC facility, 340
routers, 152
routing algorithm, 12
Session Control layer, 78, 79, 207, 239-253
Transport layer, 77-78

IN DEX

very large network support by, 69-72
virtual terminal mechanisms, 296

Digital service unit (DSU), 98
Digital time service architecture, 317, 318, 319-327
Directed graph structure, 32-35
Directives, in entity network management model, 380
Directories, 356-358
Directors, 379-380, 385-387
Directory Maintenance protocol, 366
Directory replication, 367
Directory update convergence, 371
Disconnect Confirm (DC) message, 234
Disconnection, 426
Disconnect Request (DR) message, 234
DIS (Draft International Standard), 33
Distance-vector routing algortithm, 193-194
Distinguished attributes, 374
Distributed adaptive routing, 193-194
Distributed Authentication Security Service (DASS)

Architecture, 317-318, 328-336, 498, 499
Distributed computing services, 10-11, 317-345

applications, 11, 293, 295
bandwidth and, 8
Digital time service architecture, 317, 318,

319-327
DASS architecture, 317-318, 328-336
DNA Phase V naming service, 318
remote procedure call, 318, 337-341
unique identifier architecture, 318, 341-344

Distributed routing algorithm, 133
Distributed System Security Architecture (DSSA),

328, 330-331
DL_CONNECT, 120
DL_DATA, 120-121
DL_DISCONNECT, 121-122
DLM,405
DLPDU. See Data-link-protocol-data-unit (DLPDU)
DL_RESET, 122-123
DLSAP, 112
DLSDU. See Data-link-service-data-unit (DLSDU)
DL_UNITDATA service, 118, 119, 451
DNA. See Digital Network Architecture (DNA)
Domains, 152-155
Domain specific part (DSP), 160, 162
Downline load function, 389-390
DP (Draft Proposal), 33
Draft Addendum (DAD), 33
Draft Amendment (DAM), 33

Draft International Standard (DIS), 33
Draft Proposal (DP), 33
Drift, of clocks, 322
DR message, 234
DSAP address, 452
DSP,160,162
DSSA, 328, 330-331
DSU, 98
DTE, 93, 391-392
DTE-DCE interface, 93-96, 104, 391
Dual-attachment concentrator (DAC), 498, 501
Dual-attachment station (DAS), 498, 499
Dual counter-rotating ring, 499-500
Dual ring of trees, 107, 501
Duplex circuits, 86-87
Duplex functional unit, 258, 260
Duplicate packets, 134
Dynamically assigned point-to-point links, 166
Dynamically established point-to-point links,

165-166
Dynamic assignment (DA), 405

E.163, CCITT, 163
E.164, CCITT, 163
ECMA,28
EDI,293
EIA. See Electronic Industries Association (EIA)
Election algorithm, 516

555

Electrical Characteristics of Balanced Voltage Digital
Interface Circuits, 96

Electrical Characteristics of Unbalanced Voltage
Digital Interface Circuits, 96

Electrical Industries Association (EIA), 29-30
Electronic data interchange (EDI), 293
Electronic Industries Association (EIA), 29-30, 89-92

EIA-232-D, 30, 93-95
EIA-422-A, 96
EIA-423-A, 96
EIA-449, 96

Electronic mail systems, 297-298
Elements of procedure, 221-223, 226-227
EMA, 80-81, 378-379
Encapsulation, 521
Encoding, of network addresses, 159-160
End Communication layer, DNA Phase N, 70-71
Ending delimiter, 513
Ending flag field, HD LC, 416-417
Endnode Hello, 186

556 INDEX

End nodes, 41, 130, 151. See also Nodes
automatic configuration of, 158
CLNS and, 139
ISO Internet Protocol and, 149

End System Hello (ESH), 186
End-to-end data transport, 41
End use buffering, Session Control layer, 245
End user interface, Session Control layer, 251-253
Enterprise Management Architecture (EMA), 80-81,

378-379
Entities

attributes, 382, 383
defined, 48, 379
instance names, 383-384
interfaces, 385
models, 379-382, 384-385
names, 384
network management, 382-384
peer, 48
state machine definition, 384

Envelopes, in X.400 Message Handling System, 312
EPHOS,32
Equipment rooms, cabling, 91-92
Error detection

by MAC sublayer, 455
Data Link layer and, 109, 110, 126
data transmission and, 39-40
OSI transport, 228
protocol, 427-428

Error recovery, 110, 126, 145
Error Report packets, 177-179, 202
ESH, 186
Ethernet, 5, 462-489

addressing, 449, 450
frames, 488-489
LLC-PDUs, 461

Ethernet Specification, 5, 75, 76
CSMA/CD LANs and, 105
design decisions, 483-485
Version 2, 462

ETSI, 30
European Computer Manufacturers Association

(ECMA),28
European Procurement Handbook for Open Systems

(EPHOS), 32
European Telecommunications Standards Institute

(ETSI), 30
European Workshop on Open Systems (EWOS), 29

Event dispatchers, 389
Event logging, 388-389
Events, 319, 380
Event sinks, 389
Event sources, 389
EWOS,29
Exception Reporting functional unit, Session layer,

259,260
Excessive collisions, 482
Exchange Identification (XID) PDUs, 455
Exchange station identification (XID-frames) frames,

HDLC,420
Expedited Data functional unit, 260
Expedited data transfer, 220-221, 228
Extended concatenation, 262
Extended flow control fields, 231
Extended LANs, 477-478, 518-525

bridges and, 503-504, 519-524
vs. routers, 524-525
source routing, 524

External names, 355
External reference syntax, 160

F.69, CCITT, 163
Fault condition notification, DNA Physical layer and,

86
FCIS algorithm, 515
FCS field. See Frame check sequence (FCS) field
Fiber Distributed Data Interface (FDDI), 5, 106-107,

490-517
architecture, 98, 491-493
circuits, 8 7
Data Link layer components, 491-492
data links, 111n, 114-115, 128
frame stripping, 514-515
IEEE/ISO LAN standards, 444
MAC frame and packet format, 511-514
MAC sublayer, 504-508, 510-514
network types, 490-491
Physical layer components, 494-497
physical link and station failure, 502-504
ring monitoring functions, 509-510
ring purging, 516-517
specification, DNA Phase V, 76
standards, 490, 497, 510-511, 514-515
station management (SMT), 497-498
stations, 491, 498-502
token passing procedure, 507-508

IND EX

transmission medium, 497
Field service application, 295
File Transfer, Access, and Management (FTAM),

280, 304-308
ACSE and, 307-308
Management class, 306, 307
Presentation layer services, 308
service classes, 306-307
Session layer services, 308
Transfer class, 306, 307
virtual filestores, 304-305

Filtering, 457, 459
Flag octet value, 424
Flat structure, for namespace, 351
Flooding, Link state database, 199
Flow control

Data Link layer and, 110, 126-127
HDLC,425
NSP transport, 237
OSI transport, 229-231
X.25, 396

Forward, in link state routing process, 195, 201-203
Forwarding database, 201
Foundation (FOUND) protocol, 296
Fragmentation, as networking strategy, 9
Frame, synchronization, 110
Frame check sequence (FCS) field, 109, 126,

416-417, 488, 512
Frame Content Independent Stripping (FCIS)

algorithm, 515
Frame control, 511-512
Frame forwarding, bridges and, 521-522
Frame Reject (FRMR) U-frames, 427-428
Frames, 54, 90, 110. See also Messages

asynchronous, 510-511
claim,509
Data Link layer and, 113
Ethernet, 488-489
flow control and, 126-127
HDLC, 413-421
MAC, 484-488
messages and, 429
pipelining and acknowledgment of, 425
sequencing, 110
status field, 513
stripping, 514-515
synchronous, 510-511
types, 513

Framing, 110, 436-437
FRMR U-frames, 427-428

557

FTAM. See File Transfer, Access, and Management
(FTAM)

Full-duplex circuits, 86-87
Full names, 353, 354-355
Functional layers, 17. See also specific layers

DNA Phase IV, 69-71
DNA Phase V, 74-79, 85-289
Ideas layer, 19-20
Language layer, 19
message transmission and, 21-23
of networks, 23
OSI model, 36-45
Physical layer, 18-19
protocols, 20-21

Function modules, director architectural model,
386-387

Gateway, 73, 520
Gateway Access protocol (GAP), 399-400, 402-403,

408
General Motors, 293-294
GetEvent function, 287
GMT,321
Global attributes, 356, 358, 360-361
Global identity, security and, 329
Globally administered addressing, 448-449
Global sets, of time servers, 326
Goodyear, 293
Government Open Systems Interconnection Profile

(GOSIP), 32
Greenwich Mean Time (GMT), 321

Half-duplex
circuits, 86-87
functional unit, 258, 260
links, 437

Hayes AT command set, 97
Hayes Corp., 97
HDLC. See High-level Data Link Control (HDLC)
Hellman, Martin, 333
Hierarchical routing, 68-69, 152-155
High-level Data Link Control (HDLC), 128-129,

411-428
acknowledgment, 425
architectural model, 420-422
asynchronous,413,424

558 IND EX

bit stuffing, 422-424
CRC negotiation, 426
DNA Phase V, 76, 425-428
entities, 411-412
flow control, 425
frames, 413-421
initialization mode, 414
link initialization procedure, 426
maintenance functions, 427
octet stuffing, 424
operating modes, 412-413
pipelining, 425
protocol, 76, 414
protocol error detection, 427-428
protocol multiplexing, 426-427
protocol operation, 422-425
protocol specification, 411-413
SDLC and, 414
service definition, 411-412
service interface procedure declarations, 422, 423
standard, 116
synchronous framing, 422-424

High-order DSP (HO-DSP), 162
High-speed communications, 5-7, 491
Hippity cost, 203
HO-DSP, 162
Homogenization, as networking strategy, 10
Hops, 130, 202
Host computing systems, 63
Human users, authentication of, 336

IBM, 4, 8, 25, 62, 133
ICD, 162
ICI, 53
Ideas layer, of human communication, 19-20, 22, 23
Identification attributes, 383
Identification and parameter exchange, 110
Identifiers, 341-344
ID field, 157
IDI, 160-163
IDL,340,341
IDP, 160-161, 162
IDU, 53-54
IEC, 26, 31-33, 35
IEEE. See Institute of Electrical and Electronic

Engineers (IEEE)
I-frames, 417-420, 425, 427
IM, HDLC, 414

Implementors' agreements, 28
Imported text, in Notes computer conferencing, 299
Importing, RPC facility, 339
Inaccuracy values, clocks, 322, 324, 327
Inactive Network layer subset, of subnetwork

independent protocol functions, 179
Indication service primitive, 49
Information field, in HDLC frames, 416
Information frames (I-frames), HDLC, 417-420, 425,

427
Information PDU (1-PDU), 453
Initial domain identifier (IDI), 160-163
Initial domain part (IDP), 160-161, 162
Initialization mode (IM), HDLC, 414
Initiators, 280, 308-309
Initiators, OSUL ports, 285
Institute of Electrical and Electronic Engineers

(IEEE), 30
IEEE 802.2, 105
IEEE 802.2/ISO 8802-2, LLC sublayer service, 165
IEEE 802.3, 105, 462
IEEE/ISO LAN architecture, 114
IEEE/ISO LAN standards, 442-445, 448-450
IEEE/ISO token ring access protocol, 506-507
LAN standards, 442-445

Integrated Services Digital Network (ISDN), 34, 107
Intel, 5
Interchange circuits, 93, 104
Interdomain routing, 154-155, 204-206
Interface

abstract, 22, 48-49, 53, 65, 99, 101
concrete, 22, 49, 65-66, 99
entity, 385
identifiers, 341
message transmission and, 22
network architectures and, 23
polled, 101
RPC facility and, 340-341
standards, DTE-DCE, 93-96

Interface-control-information (ICI), 53
Interface data, 53
Interface-data-unit (IDU), 53-54
Interface definition language (IDL), 340, 341
Interface procedure declarations, LLC sublayer,

457-459
Intermediate cross connect equipment rooms, 92
Intermediate nodes, 40, 130. See also Routers
Intermediate System Hello (ISH), 186

INDEX

Internal names, 355
Internationalbureaucratspeak, 54-55
International code designator (ICD), 162
International Electrotechnical Commission (IEC), 26,

31-33, 35
Internationally Standardized Profile (ISP), 29
International Organization for Standardization (ISO),

4, 12, 26, 31-33, 35, 56-57
standards

address administration, 161-162
CLNS. See Connectionless-mode Network Service
CONS. See Connection-mode Network Service
Data Link layer, 113
Digital and, 72, 73
DNA Phase V and, 72-73, 79
FDDI, 114
HDLC, 411, 422, 425-428
Network layer addressing, 159-163
for OSI model, 45-46, 527-528
protocols, integration into DNA Phase V, 72-73
service definitions and, 5 6
Session layer, 256
Transport layer, 210

standards for OSI model
ISO 3166 DCC, 162
ISO 3309, amendment to, 411
ISO 6523 ICD, 162
ISO 7498 (OSI model), 276, 277
ISO 8072, Transport Service Definition, 212
ISO 8073, Connection Oriented Transport

Protocol Specification, 218
ISO 8208, X.25 Packet-level Protocol, 150,

187-188, 392
ISO 8326, Session Service Definition, 257, 261
ISO 8327, Session Protocol Specification,

261-262
ISO 8348, Network Service Definition, 135,

159-160
ISO 8473 Internet protocol, 149, 171-185
ISO 8571, File Transfer, Access, and

Management (FTAM), 280, 304
ISO 8648, Internal Organization of the Network

Layer, 169
ISO 8802-3, LAN CSMA/CD, 105, 462
ISO 8822, Presentation Service Definition, 274
ISO 8823, Presentation Protocol Specification,

276
ISO 8824, Specification of Abstract Syntax

Notation One (ASN.1), 266-270
ISO 8825, Specification for Basic Encoding

Rules for ASN.1, 271

559

ISO 8878, Use of X.25 to Provide OSI
Connection-mode Network Service, 150, 189,
406

ISO 8886, Data Link Service Definition, 117
ISO 9314, FDDI standard, 490
ISO 9542, ES-IS routing protocol, 150, 185-187
ISO 9545, Application Layer Structure, 277
ISO 9594, OSI Directory, 351, 374-375
ISO 10589 IS-IS routing protocol, 150, 157, 190

International Telecommunications Union (ITU), 34
International Telegraph and Telephone Consultative

Committee (CCITT), 4, 26, 34-35. See also

CCITT
International Time Bureau, 321
Internet Protocol, 149, 171-185
Internetworking, 408
Interoperability, 67, 154
Interrupt packets, X.25, 396
Interrupts, 101
lntradomain routing, 190
Invariants in system operation, 66
Invocation, of application-processes, 277, 280
1-PDUs, 453
ISDN, 34, 107
ISH, 186
ISO/IEC Joint Technical Committee 1 (JTC1), 31
ISP, 29
ITU, 34

Jamming signals, 481
Joint Technical Committee 1 (JTC1), 31

JTC1TAG,27

Kernel, 257, 258, 275, 385
Keywords, 299

LAN data links, Data Link layer, 114-116, 127-128
LANs. See Local area networks (LANs)
LAPB. See Link Access Procedures-Balanced

(LAPB)
LAT protocol, 524
Layering, principles of, 38
Leaf nodes, in namespace structure, 351
Length/type field, 487, 488
Level 1 routing, 152-155, 198-201

560 INDEX

Level 2 routing, 152-155, 198-201
Lifetime indicator, in Link State packets, 198
Lightweight connections, 148
Line drivers, 9 8
Line handler, Modem Connect, 104
Line states, 495
Link Access Procedures-Balanced (LAPB), 76, 129,

391,414
Links

cost, 198
entries, 198
establishment, 426
FDDI architectural model, 491
initialization, 4 26
loopback test function, 390
management procedures, DDCMP, 437
station management and, 498
status, 198

Link State packets (LSP), 197-201
checksum values in, 200
router failure and, 203
sequence number space, 200-201

Link state routing, 194-204
Listeners, X.25 access module and, 399
LLC frames, 513
LLC-MAC interface, 464-465, 493
LLC-PDU. See Logical-link-control-protocol-data-

unit (LLC-PDU)
LLC ports, in FDDI architectural model, 493
LLC-SDUs, 445-447
LLC sublayer. See Logical Link Control (LLC)

sublayer
Local area networking, DLL standards, 527
Local area networks (LANs), 439-461. See also

CSMAfCD; Extended LANs; Fiber Distributed
Data Interface (FDDI)

access protocol, 441-44 2
addressing, 447-450
circuits, 87, 89
classifying, 439-442
connection/connectionless modes and, 61-62
conventional vs. LAN data link technology, 440
CSMAfCD, 75, 76, 105-106
data links, 114-116, 127-128, 439-461
DNA Phase V LLC architectural model, 456-457
extended, 477-478
FDDI, 76, 106-107
growth in, 5

hops and, 130n
LLC sublayer, 450-461
network topology, 439
standards for, 442-445, 527
time service architecture and, 325-326
token bus, 108
token ring, 506-510
transmission, 5-6, 439-441

Local Area Transport (LAT) protocol, 524
Local concrete syntax, 44, 270-271
Locality, principle of, 64, 66
Local objects, 240n, 246
Local sets, of time servers, 326
LOC-AREA field, 157
Logical channels, X.25, 396
Logical Link Control (LLC) sublayer, 114-115, 165,

176, 445-461
architectural model, 456-457
connectionless-mode LLC service, 450-451
connection-mode LLC service, 450
CSMNCD architectural model, 483-484
data transfer, 455
DL_UNITDATA data transfer service, 451
DNA Phase V LLC architectural model, 456-457
exchanging TEST LLC-PDUs, 456
exchanging XID LLC-PDUs, 455
in FDDI architectural model, 491-492
filtering, 458-461
globally administered addressing, 448-449
IEEE/ISO LAN standards, 443-445
interface procedure declarations, 457-459
LLC-PDU formats and, 452-453
LLC-PDU types and, 453
local area networks, 445-447
operational modes, 454-455
protocol mechanisms, 455-456
protocol specification, 451-456
service, 165, 176
service definition, 450-451
service interface procedure declarations, 457-458
U-PDU format and, 454
user multiplexing, 460-461

Logical-link-control-protocol-data-unit (LLC-PDU),
445-447

commands, 453
formats, 452-453
Network layer, 459-460
responses, 453

INDEX

types, 453
Logical-link-control-service-data-unit (LLC-SDU),

445-447
Loopback test function, 390
Loose consistency guarantees, 369-371
Lost packets, 134
LSP, 197-201, 203

MAC addresses, 486-487
MACF,282
MAC frame (MAC-PDU), 447, 484-488, 511-514
MAC-PDU, 447, 484, 511. See also MAC frame
MAC-SDU, 447, 448, 484, 511
MAC sublayer. See Medium Access Control (MAC)

sublayer
MAILbus product family, 297, 308-309
Main cross connect equipment rooms, 92
Mainframes, 7-9
Maintenance data message, 435-436
Maintenance functions, HDLC, 427
Maintenance Operations Protocol (MOP), 389-390,

414,420,427
Major Synchronize functional unit, Session layer,

259,260
MAN,6
Management class, FTAM, 306, 307
Management event notification (MEN), 387
Management information control and exchange

protocol (MICE), 387
Management information repository, 386
Manchester encoding, 466
Manufacturing Automation Protocol (MSP), 32
Many-to-one mapping, 262
MAP,32
Mapped Ethernet frames, 515
Mapping, 262
Markers, 299
Marshalling, RPC facility, 340
MA_TOKEN token request service, 506
MAU (medium access unit), 105-106
MAU (Medium Attachment Unit), 467, 470-472
MA_UNITDATA data transfer service, 506
MDI,468
Medium Access Control (MAC) sublayer, 114-115

addresses, 486-487
CSMAICD architectural model, 484-485
error detection by, 455
FDDI architectural model, 491-493

frame and packet format, 484-489, 511-514
IEEE/ISO LAN standards, 442-443
protocol specification, 479-483, 506-508
service definition, 478, 504-506
service interface functions and procedures, 478,

480
service primitives, 505-506

Medium-access-control-protocol-data-unit
(MAC-PDU), 447, 484, 511

Medium-access-control-service-data-unit
(MAC-SDU), 447, 448, 484, 511

Medium access unit (MAU), 105-106
Medium Attachment Unit (MAU), 467, 470-472
Medium Dependent Interface (MDI), 468
Medium Interface Connector (MIC), 496, 498-501
Medium specific control functions, 86
MEN,387
Message acknowledgment, 58. See also

Acknowledgment
Message exchange procedures, DDCMP, 438
Message framing, 436-437
Message interface to DNA, Session Control layer,

245
Message Router, 297-298
Messages, 21-23, 219. See also Frames;

Transport-protocol-data-unit (TPDU)
control, 430-435
data, 430-433, 435-436
DDCMP, 429, 430-436
in X.400 Message Handling System, 312

Message stores, 310-312
Message transfer agent (MTA), 309-310
Meta-architecture, 80, 379
Metropolitan area network (MAN), 6
MIC, 496, 498-501
MICE, 387
Minor Synchronize functional unit, 259, 260
Modem Connect

architectural specifications, 98
call control, 102-104
call sharing, 102-103
control functions, 102-104
data transfer functions, 104
operation, 103-105
port control functions, 102, 104
specification, 75, 100-105

Modems, 5, 34-35, 94-97
Modules entities, 382-383

561

562 IND EX

Modulo-8 operation, 417-418
Modulo-128 operation, 417-418
Monotonicity, 343-344
MOP, 389-390, 414, 420, 427
More flag, OSUL and, 280-281
M.Protocol, naming service, 366
MSP,32
MTA, 309-310
Multiaccess circuits, 89, 115
Multicasting, 116, 165, 326, 457
Multiframe dialogs, 510
Multiple-area addresses, 158
Multiple-association-control-function (MACF), 282
Multiple namespaces, 359
Multiplexing, 207

broadcast data link and, 116
DNA Phase V LLC sublayer service, 457
OSI transport, 233-234
protocol, 420
user, 460-461

Multipoint circuits, 88-89, 116
Multipoint data links, 116, 166-167, 437
Multiport repeaters, 476-477
Multi-vendor connectivity, 72
Mutual authentication, 329
Mythical Man-Month, The, 24

NAK messages, 433-434
Names

addresses, 349
characteristics of, 353-355
conversion functions, 252
descriptive, 350-351
entity, 384
external, 354-355
full, 353, 354-355
internal, 355
primitive, 350
referential transparency in, 353
routes, 350
semantics, 353-354
simple, 353
symbolic, 12
syntax, 354
types of, 349-351
worldwide computing and, 12

Nameserver, 80, 363-365, 371
Namespace, 80

directed graph structure for, 351-352
directories, 80
flat structure for, 351
implementation, 359
logical structures for, 351-353
multiple, 359
naming service and, 347
nicknames, 354
partially replicated database, 359
partitioned database, 359
partitioning, 366-367
replication, 367
tree, walking the, 368
tree structure for, 3 51
updating, 369-374

Namespace creation timestamp (NSCTS), 353-355
Naming service, 79-80, 318, 346-376

attributes, 355-356
clearinghouse, 362-363
clerks, 241, 243, 363, 364
components, 362-365
design goals, 348-349
directories, 356-358
directory entries, 356-358
global attributes, 356, 358, 360-361
nameserver, 363-365
naming operation, 367-368
OSI Directory and, 375
protocols, 365-366
requirements of, 348-349
scalability and, 347-348

National Bureau of Standards, 28-29
National Institute for Science and Technology

(NIST), 28-29
Navistar, electronic data interchange (EDI), 293
NCL, 388
N_CONNECTservice, 140
N_DATA_ACKNOWLEDGE service, 141
N_DATA service, 140
N_DISCONNECT service, 141
NDM, HDLC, 413
Negative Acknowledge (NAK) messages, 433-434
Negotiated Release functional unit, 257, 258, 260
NET, 157, 158
Network addresses, 156-160
Network addressing, 156-163
Network Application layer

DNA Phase IV, 71

INDEX

DNA Phase V, 318
Network architecture, 17-35

defined, 17, 23-25
design principles, 64-67
DNA specifications, 64
function of, 23-24
human communication analogy, 17-21
message transmission, 21-23
nature of, 24-26
OSI model, 45-46
proprietary, 25-26
standards organizations, 26-35

Network control language (NCL), 388
Network entity title (NET), 157, 158
Network layer

addressing standards, 159-163
connectionless-mode Network service (CLNS),

61-62, 133-136, 139-149
connection-mode Network service (CONS), 61-62,

133, 136-149
Data Link layer and, 129
DNA Phase V, 77, 130-163
end node configuration, 158
hierarchical routing, 152-155
internal organization of, 168-170
LLC-PDUs, 459-460
multiple-area addresses, 158
network addressing, 156
node types, 151-152
OSI model, 40-41
packets, format of, 177-179
protocols, 131-132, 149-150, 164-189
router address interpretation, 156-158
routing, 132-133, 190-206
service definition, 133
services, 131-132
standards, 527-528
sublayers, 168
subnetworks, 130-131
Transport layer and, 130

Network logins, security and, 329
Network management, 13, 377-390

Data Link layer and, 111
director architectural model, 385-387
DNA architectural specifications and, 66
DNA Phase V, 80-81, 387-390
DNA Physical layer and, 86
EMA, 378-379

entity model, 379-385
minimal dependence on, 66
model, DNA Phase V, 73-74
operation, 387
standards, 377-378

563

Network Management layer, DNA Phase IV, 71
Network nodes, 130. See also Nodes
Network-protocol-data-unit (NPDU), 54, 131-132.

See also Packets
Networks, 3-14, 490-491. See also Local area

networks (LANs); Wide area networks (WANs)
congestion avoidance and, 232
Digital and, 8-10
functional layers, 1 7, 23
infrastructure, scale and, 10
interconnecting, 518, 520-521
interdomain routing and, 154
peer-to-peer, 8
resources, identifying, 79-80
topology, 439
very large, 69-72, 77, 154
worldwide, 3-4, 10-14

Network-service-access-point (NSAP), 131, 156-163
Network-service-data-unit (NSDU), 131-132, 135,

136
Network-service-protocol-unit (NSPU), 131-132
Network services protocol (NSP) Transport, 78,

207-208, 235-238
Network User layer, DNA Phase IV, 71
N_EXPEDITED_DATA service, 140
9-pin connectors, 94
NIST, 28-29
Node ID, 157, 343
Nodes, 40-41, 130, 151-152. See also End nodes

addresses, 349
end,41
entity instances, 382-383
identification, 157, 198, 343
intermediate, 40
names, 346
network entity title (NET), 157, 158
in OSI model, 46
primary, 166
secondary, 166

Nonbroadcast data links, 109, 165-167
Nonconfirmed services, 50
Nondelivery notification, 312-313
Non-DNA end nodes, 151

564 IND EX

Nonreturn to Zero Inverted (NRZI) encoding, 495
Nonsegmenting subset, 179
Non-SYN patterns, 437
No-owner frames, 516-517
Normal-data subchannel. 237
Normal data transfer, 220-221, 223, 228
Normal disconnected mode (NDM), HDLC, 413
Normal flow control fields, 231
Normal response mode (NRM), 129, 413
Notebook, 299
Notes, 298-300
Notifications, X.400 Message Handling System, 310,

312-313
NPDU, 54, 131-132. See also Packets
N_RESET service, 141
NRM, 129, 413
NRZI encoding, 495
NSAP, 131, 156-163
NSCTS, 353-355
NSDU, 131-132, 135, 136
NSP Transport, 78, 207-208, 235-238
NSPU, 131-132
Null modems, 95
N_UNITDATArequestprimitive, 135, 136, 172-174

Objects, 240n
entries, 358
local, 240n, 246
remote, 240n, 246-247
in security architecture, 328

Octets, 72n, 156-158, 417-418, 424, 487, 488
ODP, 32
One-to-many mapping, 262
One-to-one mapping, 262
On/off only flow control, 237
Open Distributed Processing (ODP), 32
Open systems, 36
Open Systems Foundation (OSF), 30-31
Open Systems Interconnection-Basic Reference

Model, 36
Optical fibers, 6, 497
OSF, 30-31
OSI Directory, 351, 374-375
OSI model, 4-5, 31, 35, 36-62

Application layer, 45
applications, 294, 302-313
application-service-elements and, 2 79
concepts, 46

CONS/CLNS controversy and, 57-62, 148-149
Data Link layer, 39-40
functional layers, 36-45
global networks and, 71-72
ISO standards for, 527-528
layers, 36-45, 78-79
Network layer, 40-41
network management, DNA Phase V and, 73
OSI network architecture and, 45-46
Physical layer, 38-39
Presentation layer, 43-44
protocol, 47, 51-57
service definition, 47-51
services, 4 7
Session layer, 42-43
Session layer entity, 207
systems in, 46
transfer syntax and, 273-274
Transport layer, 41
upper layers, 78-79, 254-289

OSI transport, 208-234
elements of procedure, 221-223, 226-227
protocol, classes of, 210, 211
protocol, 208, 218-221, 223-228
service definition, 208, 210-217
service interface procedure declarations, 218, 220
specification, 207-20 8

OSUL (OSI Upper-Layer) architecture, 78-79,
254-289

interfaces, 285-287, 303
ACSE functions, 288
buffer management functions, 288
port management functions, 288
presentation service functions, 288-289
procedure declarations, 288-289

OSI applications and, 302-303
ports, 286-287
transfer syntax and, 273

Other-data request count, 237
Other-data subchannel, 237
Out-of-sequence packets, 134

Packets, 54. See also X.25 packets
End System Hello (ESH), 186
Intermediate System Hello (ISH), 186
lost, 134
Network layer and, 132
out-of-sequence, 134

INDEX

Physical layer, format of, 484-488
Physical layer vs. Network layer, 485n, 511n
PPDU, 485
Redirect, 186
routing control, 195, 196

Packet-switched data networks (PSDNs), 391, 404
Padding, Ethernet frames, 488-489
Pad field, 488
Palo Alto Research Center (PARC), 462
Parameters, 49, 338-340

passing, in RPC facility, 338, 339-340
Partially replicated databases, namespace

implementation and, 359
Partial Sequence Number packet (PSNP), 199-200
Partitioned databases, namespace implementation

and, 359
Partitioning, namespace, 80, 366-367
Passwords, security and, 330
PCI, 52-53, 79, 110
PDAD, 33
PDU. See Protocol-data-unit (PDU)
PDV. See Presentation-data-value (PDV)
Peer entities, 48
Peer-to-peer networking, 8
Peer-to-peer protocol, 53
Permanent point-to-point links, 165
Permanent virtual circuit (PVC), X.25, 393-395
PHY ports, 494, 499, 501, 507
Physical layer

cable plant considerations, 89-92
concrete interfaces and, 49
connection/connectionless modes and, 61
CSMAJCD, 105-106, 465-469
Data Link layer and, 111
digital circuits, 98
DNA Phase V, 75-76, 85-108
FDDI, 106-107, 494-497
IEEE/ISO LAN standards, 442-444
LLC-PDU and, 452, 453
LLC sublayer service definition, 450
Modem Connect specification, 100-105
modem standards, 96-97
OSI model, 38-39
standards, 92-108
station addressing and, 448
transmission alternatives, 86-89
U-PDU format and, 454

Physical Layer Medium Dependent (PMD) sublayer,

115, 494-496
Physical Layer Protocol (PHY) sublayer, 115,

494-495
Physical link failure, 502-504
Physical Link layer, DNA Phase IV, 70
Physical Medium Attachment (PMA) sublayer,

466-468

565

Physical-protocol-data-unit (PPDU), 5, 276, 511. See

also Packets
Physical-service-data-unit (PSDU), 51, 86
Physical Signaling (PLS) sublayer, 465-467
PHY sublayer, 115, 494-495
Piggybacking, 234
Pipelining, 425, 438
PLS-PMA interface, 467
PLS sublayer, 465-466
PMA-Medium interface, 468
PMA sublayer, 466-467
PMD sublayer, 115
Point-to-point circuits, 87-88, 115
Point-to-point subnetworks, 176
Polled interfaces, 101
Portals, 520
Port control functions

CLNS, 137
CONS, 142
DNA Session Control layer end user interface

procedures, 253
HDLC service interface procedure declarations,

423
LLC service interface procedure declarations, 458
Modem Connect, 102, 104
OSI transport, 220
OSUL service and, 288

Ports
call control, 100-101
data, 100, 101
DataLinklayer, 111-112
DNA Phase V LLC architectural model, 457
HDLC,420
Modem Connect and, 100
OSUL, 286-287
repeater, 4 72-4 73
status functions, 25 3
X.25 access module, 398

POSI, 29
POSIX, 32
PPDU (physical-protocol-data-unit), 5, 276, 511

566 INDEX

PPDU (presentation-protocol-data-unit), 276
P.Protocol, naming service, 366
Preamble, 485, 511
Presentation contexts, 272
Presentation-data-value (PDV), 261, 271

context management functional unit and, 2 7 5
kernel functional unit and, 2 7 5
transfer syntax and, 271
transformation of, 273

Presentation functional units, 274-276
Presentation layer, 44, 263-276

abstract syntax, 264, 265-270
connection/connectionless modes and, 61
data syntax, 263-273
local concrete syntax, 270-271
OSI model, 43-44
OSUL service and, 288-289
presentation contexts, 2 72
protocol specification, 263, 276
service definition, 263, 274-276
services, 254, 263-264, 308
Session layer and, 256
standards, 528
transfer syntax, 271-273

Presentation module, 386
Presentation-protocol-data-unit (PPDU), 276
Presentation-service-data-unit (PSDU), 263
Presentation service functions, 288-289
Primary nodes, 166
Primary rings, 502-503
Primary stations, 412
Primitive names, 350
Principals, in security architecture, 328
Private cryptographic keys, 334
Private policy information, interdomain routing and,

205-206
PRIVATE tags, 267
Profiles, 28
Promotion of OSI (POSI), 29
Propagation delay, 479
Propagator, 371
Proposed Draft Addendum (PDAD), 33
Proprietary network architecture, 25-26
Protocol

changing, 21
DDCMP, 436-438
defined, 20, 51
DNA architectural specifications and, 65

error detection, 427-428
filtering, 116
HDLC, 422-425
identifiers, 248, 427
ISO, integration into DNA Phase V, 72
messages, NSP Transport, 235
multiplexing, 420, 426-427
naming service, 365-366
network architectures and, 23
Network layer, 131, 149-150, 164-189
NSP transport mechanisms, 235-238
OSI transport mechanisms, 223-228
roles, Network layer, 169-170
scalability of, 67
sequences, 248-249, 251
Session layer, 256
subnetwork independent functions, 179-182
subnetwork independent sublayer mechanisms,

182-185
for supplying CONS, 187-189

Protocol-control-information (PCI), 52-53, 79, 110
Protocol-data-unit (PDU), 52

concatenation of, 54
connectionless-mode operation and, 59
connection-mode operation and, 58-59
informal names, 54-55
ISO standards and, 56
lifetime control, 185
PCI and, 53

Protocol specification
connectionless-mode service and, 57
connection-mode service and, 57
Data Link layer, 112-114, 124-127
DDCMP, 430-438
DNA Physical layer, 99
HDLC, 411-413
LLC sublayer, 451-454
network layer, 149
OSI model, 47, 51-57
Presentation layer, 263, 276
Session layer, 261-262

Protocol towers, 249
Provider Association Abort, 284
Proxy mapping, 244
PSDN, 391, 404
PSDU (physical-service-data-unit), 51, 86
PSDU (presentation-service-data-unit), 263
Pseudonode, 194-195

INDEX

PSNP, 199-200
Public key cryptosystems, 333-334
Public policy, interdomain routing and, 204-205
Purging, 516-517
PVCs, X.25, 393-395

Quasi-static routing, 191-192

Reachable address, 155
Reassembly, 184-185, 233
Reassignment after failure, 233
Receive

count value counters, 425
in link state routing process, 195, 203-204
queues, Modem Connect, 104-105

Receiver, 21, 104
Receiver Not Ready (RNR) S-frames, 425
Receiver Ready (RR) frames, 425
Recommendations, CCITT. See CCITT
Redirect packets, 186, 202
Reference, passing parameters by, 338
Reference Model for Open Systems Interconnection

(OSI model), 4-5, 31, 35-62. See also OSI
model

Referential transparency, 353
Relaying, 133
Release token, 257, 258
Reliability

CLNS and, 58-60, 134, 143-145
CONS and, 48-60, 136-138
Transport layer and, 207

Remote file access, 300-301
Remote objects, 240n, 246-247
Remote procedure call (RPC) facility, 337-341

architecture, 318, 337-341
binding in, 338, 341
DNA Phase V architectural model, 340
functional model, 338-340
locating called procedure in, 337-338
packagesin,340-341
passing parameters in, 338

REP, messages, 434-435
Repeaters, 482-483

CSMNCD, 462, 472-473
multiport, 476-477
operation of, 520
ports, 4 72-4 73

Replication, 80, 367

Replies, 298
Reply to Message Number (REP), 434-435
Request count, NSP Transport, 237
Request service primitive, 49
Research Ethernet, 462
Reserved frames, 513
Reset packets, X.25, 396
Resolution, clocks, 322
Responders, 280, 285-286, 308-309
Responses, 412, 453
Response service primitive, 49
Restricted tokens, 510-511
Resynchronize functional unit, 261
Retransmission, 228-229, 238
Ring

initialization, 509-510
management, station management and, 498
monitoring functions, 509-510
primary, 502-503
purging, 516-517
secondary, 502-503
topology, 439

Rivest, R. L., 332, 333
RNR frames, 425
Robustness, interdomain routing and, 154
Root directory, naming service, 357
Rooted directed graph structure, 351-352
Rooted tree structure, 351
Route

direction information, 185, 186
discovery frame, 524
for identifying network resources, 350

Routeing, 132n
Router Hello, 186
Routers, 12, 63, 130

address interpretation, 156
designated, 199
vs. extended LANs, 524-525
failure, 203
identification, in Link State packets, 198
level 1, 152-155, 198-201
level 2, 152-155, 198-201
operation of, 520
resource shortages, hippity cost and, 202-203
types of, 151-152

Routing
centralized, 192-193
connectionless-oriented, 13 8

567

568 IND EX

connection-oriented, 138
control packets, 195, 196
determinism and, 66-67
distance-vector, 193-194
distributed adaptive, 193-194
domains, 152-155
hierarchical, 68-69, 152-155
interdomain, 154-155, 204-206
ISO ES-IS Routing Exchange Protocol and, 150,

185-187
ISO Internet protocol and, 183-184
ISO IS-IS Routing Protocol and, 150
link state, 194-198
Network layer, 132-133, 190-206
quasi-static, 191-192
static, 154-155, 191, 206
traffic, reduction of, 154
worldwide computing and, 12

Routing algorithms
distributed, 133
locality principle in, 66
no single point of failure in, 64
properties of, 190-191
self-stabilization of, 64
support for very large networks and, 77
types of, 190-194

Routing layer, DNA Phase IV, 70
RPC facility. See Remote procedure call (RPC)

facility
RR frames, 425
RSA public key cryptography systems, 333-334

SABME command, 426
SACF, 282
SAP addressing, 48, 447-450
SAS, 498
Satellite equipment rooms, 476-477
Scale, 10, 67, 347-348
Scheduling events, time service architecture and, 319
SDLC, 129, 414
SDU. See Service-data-unit (SDU)
Search function, OSI Directory, 374-375
Secondary nodes, 166
Secondary rings, 502-503
Secondary stations, 412
Secure channels, 330
Security

DASS architecture, 328-336

DSSA categories, 328, 330-331
global identity, 329
network logins, 329

Segmentation function, 54, 132n, 184-185, 233
Segment interface to DNA Session Control, 245
Segment with on/off flow control, 237
Selected files, FT AM, 305
Select flag, 4 3 7
SEL field, 15 8
Self-stabilization, 64
Send count value counters, 425
Senders, 21
Sequence checking, 58
Sequence number, 198
Sequence Number packets (SNPs), 199-200
Sequence number space, 200-201
Sequential data transfer service, 207
Servers, time service, 324-325, 326
Service-access-point (SAP), addressing, 48, 447-450
Service-data-unit (SDU), 51, 56

connectionless-mode operation and, 59
ISO standards and, 5 6
PCI and, 53
segmentation of, 54

Service definitions
conformance to standards and, 56
connectionless-mode service and, 57
connection-mode service and, 57
CSMA/CD, 478-489
Data Link layer, 112-124
DDCMP,430
HDLC, 411-412
LLC sublayer, 450-451
Network layer, 133
OSI model, 47-51
Physical layer, 99
Presentation layer, 263, 274-276
Transport layer, 212-217

Service interface, 65, 235
Service primitives, 49-50, 99

abstract interfaces for, 49, 50
CLNS, 135-136
connection-mode Data Link service, 120-123
connection-mode Network service (CONS),

139-141
time-sequence diagrams for, 49-50
Transport layer service definition, 212-217

Service provider, 48

Service requester, 48
Services

confirmed, 50

INDEX

message transmission and, 22
Network layer, 131-132
nonconfirmed, 50

Service user, 48
Session Control buffering, 245
Session Control layer

address resolution component, 242, 243, 246-247,
248-249

address selection component, 242, 243, 250-251
components, 241-242
connection control component, 241-246
DNA Phase IV, 71
DNA Phase V, 239-253
end user interface, 251-25 3
naming service clerk, 241
services of, 239-240
towers, 247-250
Transport layer and, 240

Session functional units, 274-276
Session layer

connection/connectionless modes and, 61
functional units in, 257-261
ISO standards for, 256
OSI model, 42-43
OSUL service and, 289
protocol, 256, 261-262
services, 254, 255-256, 308
services definition, 257-261
standards, 256, 528
tokens in, 257

Session-protocol-data-unit (SPDU), 262
Session-service-data-unit (SSDU), 262, 276
Session Symmetric Synchronization functional unit,

Session layer, 261
Set asynchronous balanced mode extended (SABME),

command, 426
Set normal response mode (SNRM) command, 426
S-frames, 417-420, 425
Shamir, A., 332, 333
Shortest path first (SPF) graph minimization

algorithm, 201
Signal Detect function, 496
Simple names, 353, 354
Single-association-control-function (SACF), 282
Single-attachment station (SAS), 498

Skew, clocks, 322
Skulker, naming service, 372-374
Slot time, 4 79
Smart cards, DASS, 336
Smartmodems, 97
SMT. See Station management (SMT)
SNA, 25, 62
SNAcP, 169-170
SNAP, 450
SNAP LLC-PDUs, 460-461
SNDCP, 169-170, 176-177
SNICP, 169-170, 171
SNPs, 199-200
SNRM command, 426
S_UNITDATA request primitive, 173-174, 176
Soft link entries, 35 8
Solicitation and Advertisement protocol, 326, 365
Source address, 512
Source routing, 524
Source-service-access-point (SSAP) address, 452
SPAG, 29
Spanning trees, 201, 523-524
S-PDU, 453
SPDU, 262
SPF algorithm, 201
S.Protocol, naming service, 365
SSAP address, 452
SSDU, 262, 276
STACK messages, 434-435
Standards, 527-528

conformance to, 58-59
data transmission speeds, 5
DNA Physical layer, 92-108
duplication of, 35
ISO, integration into DNA Phase V, 72-73
modems, 96-97
networking, 4-5
organizations, 26-35
process, 32-33

569

Standards Promotion and Application Group (SPAG),
29

Start Acknowledge (STACK) messages, 434-435
Start frame delimiter, 485
Starting delimiter, 511
Star topology, 439
Start-stop transmission, 89
Start (STRT) messages, 434-435
State machine definition, entity, 384

570 INDEX

Static point-to-point links, 166
Static routing, 154-155, 191, 206
Station addresses, 44 7-449

address field for, 415
CS},.LA'"-/CD architectural model, 469
Data Link layer, 112
MAC frame, 486-487

Station management (SMT), 491
connection management, 498
FDDI, 115, 497-498
frame-based management, station management

and, 498 ~"'

frames, 513
Stations

CSMAJCD, 469-470, 474-475
Data Link layer, 111-112
DNA Phase V LLC architectural model, 456-457
failure, 502-504
FDDI, 491, 498-502
HDLC,412
identification, 426
link management procedures and, 437

Status attributes, 383
Stream interface, 245
Strong authentication, 329
STRT messages, 434-435
Stubs, in RPC facility, 339
Subcommittee (SC), ISO, 31
Submission interactions, 312
Subnetwork Access Protocol Role (SNAcP), 169-170
Subnetwork Access Protocol (SNAP), 450, 460-461
Subnetwork Dependent Convergence Protocol Role

(SNDCP), 169-170, 176-177
Subnetwork dependent sublayer, 168-170, 174-176
Subnetwork Independent Convergence Protocol Role

(SNICP), 169-170, 171
Subnetwork independent sublayer, 168, 177-185
Subnetworks, 130-131

broadcast, 176
broadcast data links and, 164-165
nonbroadcast data links and, 165-167
point-to-point, 17 6
X.25 network as, 403-405

Subsequent Data packet, 202
Supervisory frames (S-frames), 417-420, 425
Supervisory PDUs (S-PDUs), 453
Switched virtual circuits (SVCs), 393-395, 399, 405
Switches, PSDNs and, 392

Symbol coding, 495
Symbolic names, 12
Symmetric cryptography algorithms, 331-332
Synchronization, clock inaccuracy values and, 327
Synchronization points, 255, 260, 261
Synchronous Data Link Control (SDLC), 129, 414
Synchronous frames, 422-424, 510
Synchronous transmission, 89, 90
SYN patterns, 437
System console control function, 390
Systems, OSI definition of, 46
Systems Network Architecture (SNA), 25, 62

Tl facilities, 6
T3 facilities, 6
Tags, ASN.1, 267-268
Target Token Rotation Time (TTRT), 508-509
TC, 26, 31
TCP/IP, 75
T_CONNECT service, 212-213
T_DATA service, 213-214
TDF values, 321-322, 324
T_DISCONNECT service, 216-217
Technical Committee (TC), ISO, 26, 31
Technical and Office Protocol (TOP), 32
Technical Report (TR), ISO, 33
Telephone standards, 4, 34-35
TEST LLC-PDUs, exchanging, 456
TEST PDUs, 455, 456
T_EXPEDITED_DATA service, 215
Ticks, clock resolution and, 322
Time differential factor (TDF) values, 321-322, 324
Timed-token ring access protocol, FDDI, 506-507
Time intervals, measuring, 319
Time ordering of events, 319
Time providers, 324-325
Time-sequence diagrams, 49-50
Time service architecture, 317, 318, 319-327

advertisement protocol, 326
global sets, 326
local sets, 325-326
model, 324-325
representative inaccuracy values, 32 7
solicitation protocol, 326
time values, 321-327

Time service clerks, 324-325
Time service servers, 324-326
Timestamps, DASS, 335-336

Time values, 321-327
Token bus LANs, 108
Token path, 502

INDEX

Token ring LANs, 506-510
Token rotation timer (TRT), 509-510
Tokens, 490

Data, 258, 260
FDDI passing procedure, 507-508
FDDI timed-token ring access control protocol,

507
frame format, 514
Release, 257, 258
restricted, 510-511
in Session layer, 257

TOP, 32
Topics, 298
Towers, 247-250
TPDU. See Transport-protocol-data-unit (TPDU)
TR,33
Transaction agent, 363
Transceivers, 106, 470
Transfer agents, 309-310
Transfer class, FTAM, 306, 307
Transfer and management class, FT AM, 306
Transfer syntax, 44, 271-273
Transmission

DNA Physical layer and, 86-89
medium, 467-469
speeds, 5-7
synchronous vs. asynchronous, 89, 90
techniques, 440-441

Transmission Control Protocol/Internet Protocol
(TCP/IP) suite, 75

TransmitPoll function, 143
Transmit queues, Modem Connect, 104-105
Transmitter, Modem Connect, 104
Transparent bridges, 519
Transparent mode, HDLC, 422-423
Transport connection, 245-246, 250-253
Transport connection release, 253
Transport layer, 207-238

connection/connectionless modes and, 61, 62,
134-135, 136, 144

DNA Phase V, 77-78, 79
entities, 134-136
error recovery in, 14 5
ISO standards, 210
Network layer and, 130

OSI model, 41
PDU lifetime control and, 185
reliability and, 144, 207
service definition, 212-217
Session Control layer and, 240, 242, 243
standards, 528

571

Transport mode, 209-211
Transport-protocol-data-unit (TPDU), 209, 218-227,

245,262
format, 219
header fields, 219-220
header parameters, 224-225
segmentation and reassembly, 233

Transport-service-access-point (TSAP), 209
Transport-service-data-unit (TSDU), 79, 209, 218,

233
Trees, 107, 351, 501, 523-524
Tributary stations, 437
Trojan horse software, 330-331
TRT, 509-510
Truncated binary exponential backoff, 482
Trunk cable, 468
TSAP,209
TSDU, 79, 209, 218, 233
TTRT, 508-509
Tunnels, 521
25-pin connectors, 94
Typed Data functional unit, Session layer, 260

UA, 309
U-frames, 417-421
urn, 318, 341-344
DI-frames, 420, 427
Unbalanced data links, 412
Unconstrained class, 306
Unique identifier (UID) service, 318, 341-344
UNIVERSAL tags, 267-268
Universal Time (UT), 321
Unlimited user data, Session layer, 261
Unnumbered frames (U-frames), 417-421
Unnumbered information frames (DI-frames), 420,

427
Unnumbered PDUs (U-PDUs), 453-454
Unrooted directed graph structure, 351-352
Update listener, 364-365
Update Propagation protocol, 366
Update sender, 364
Updating, 195, 197-201, 369-374

572 INDEX

U-PDU, 453-454
Upline dump function, 390
User account, security and, 328-329
User agent (UA), 309
User ... A"'"ssociation .l\.bort, 284
User multiplexing, 449-450, 460-461
User-supplied LLC service, 450, 457
UT, 321
UTC, 321-326

V.24, CCITT Recommendation, 93-95
V.25, CCITT Recommendation, 97
V.25bis, CCITT Recommendation, 97
V.28, CCITT Recommendation, 93
V.32, CCITT Recommendation, 97
VAX Message Router, 297-298
VCs, 393n
Version number, in UID service, 343-344
Very large networks, 69-72, 77, 154, 347-348
Virtual calls (VCs), 393n
Virtual circuits, 88, 136, 177, 393-396, 399, 403-405
Virtual filestores, 304-305
Virtual terminals, 296
Void frames, 513, 515-517

Wide Area Networking Data Link Layer, standards,
527

Wide area networks (WANs)
connection/connectionless modes and, 61
data links, 116-117, 128-129
Modem Connect specification and, 100
transmission speeds, 5-6

Wideband communication facilities, 6
Window mechanism, 126-127, 230
Wiring environments, cabling, 90-91
Work area environments, cabling, 91
Working documents, of standards, 32
Working drafts, of amendments to standards, 33

Working Group (WG), ISO, 31
Worldwide networks, 3-4, 10-14

addressing schemes, 12
applications, 293, 301
DNA Phase V and, 71-72

X.25, CCITT Recommendation, 68, 391
X.25 interface, 393-396

access, 391-408
call clearing, 3 96
for CONS, 405-406
DTE/DCE packet-level interface, 391-392
flow control, 396
function and procedure declarations, 400-401
gateway, 402-403, 406-408
HDLC support for, 414
interface levels, 391-392
interrupt packets, 396
ISO 8208 protocol, 150, 187-188
ISO 8878 protocol, 150, 189
logical channels, 3 96
networks reliability, 138
packets, 392-393, 395
PSDN, 131
PVCs, 393-395
protocol module, 399, 403, 406-408
reset packets, 396
server module, 399-400, 407-408
SVCs, 393-395
virtual circuits, 177, 393-395

X.400, CCITT Recommendation, 308-309
X.400 Message Handling System, 304, 308-313
X.500, CCITT Recommendation, 351
X.500 (OSI) Directory, 304, 374-375
Xerox, 5, 462
XID-frames, HDLC, 420
XID LLC-PDU, 455
X/Open, 31

