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PREFACE 

Computer networks of increasing complexity and diversity are being 
built at a rapidly increasing rate. The exponential growth of computer 
networks that we are experiencing is being driven by two complementary 
technologies: very high speed local area and wide area communication 
links and incredibly powerful microprocessors. The computer industry is 
faced with the requirement to create networking technology that will per­
mit the construction of massively large computer networks on the scale 
of the global telephone network. Such networks are required to create 
the distributed computer applications that will be built in the 1990s. 

During the mid-1970s, several of the major computer manufactur­
ers perceived that a large part of their future market was to come from 
distributed data processing. A wide range of machines would be hooked 
together into all manners of configurations. A user or an application 
program at one machine would want to employ the facilities, data, or 
processing power of another machine, easily and inexpensively. For 
widely varying devices to be linked together, the hardware and software 
of those devices would have to be compatible; if compatibility was not 
achieved, complex interfaces would have to be built for meaningful 
communication to take place. To facilitate this compatibility, hardware 
manufacturers have developed network architectures that allow com­
plex networks to be built using diverse types of equipment. 

One of the most widely used of these manufacturers' architectures 
is Digital Equipment Corporation's Digital Network Architecture 
(DNA). DNA, which has evolved through a series of phases, is imple­
mented in the DECnet family of hardware and software networking 
products. This book presents a detailed explanation of the concepts, 
protocols, functions, and capabilities constituting Phase V of DNA and 
its DECnet implementations. 
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HOW TO READ THIS BOOK 

This book can be read from front to back, but it is likely that many 
readers will wish to skip around-at least at a first reading-and read 
those sections that appear to be of the most interest. This can be done, 
especially by those readers at least somewhat conversant with OSI con­
cepts. We recommend, however, that a reader not familiar with the OSI 
model read at least the chapters in the Prolog and in Part I before dip­
ping into the more technical chapters. 

A good way to get an initial feel for DNA Phase V is to skim 
through the book and look at the diagrams. We tried to include enough 
information in the diagrams so they are understandable on their own 
without the reader having to consult the text. 

The text of each chapter describes the technical details surrounding 
Phase V of DNA and DECnet. But this book also attempts to provide 
some insights behind the engineering tradeoffs the network architects 
made while the architecture was in development. The vehicles for these 
insights are the unnumbered boxes labeled "Network Architect." These 
boxes, rather than containing technical content, contain the opinions of 
those Digital staff members who were instrumental in the development 
of key parts of the architecture. 

The numbered boxes contain background information that can be 
skipped on a first reading, unless the reader is specifically interested in 
the technical content of a particular box. 

To take a good short path through the book, read Chapters 1, 2, 3, 
4, 9, 11, 12, 15, 16, and 17. 
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CHAPTER 1 

The Future of Networking 

The 1990s will be a decade of revolutionary change in computer net­
working. 

Revolutions occur frequently in the computer industry. The first in-· 
formation systems revolution occurred in the 1950s, when business dis­
covered the computer. What was at first viewed as a market that would 
require perhaps 10 large computers expanded overnight into a market 
for many thousands of these machines. 

Another revolution occurred in the 1960s, when we discovered that 
one computer could "speak" to another over telecommunications lines. 
Computers have been speaking to one another ever since. 

In the 1970s two parallel revolutions began. Microprocessors dra­
matically reduced the cost of computation, and computer manufacturers 
began developing comprehensive architectures for interconnecting their 
computers using communication facilities. One of these architectures is 
the Digital Network Architecture (DNA), which has evolved through 
five phases since the mid-1970s. Digital uses the term DECnet to refer to 
hardware and software implementations of this architecture. 

The visible revolution of the 1980s was the discovery by business of 
the personal computer and the technical workstation. By the end of the 
1980s, most knowledge workers had computers they could call their 
own. A less visible revolution of the 1980s was the development of opti­
cal fiber cables with bit rates of billions of bits per second. 

The revolution occurring in the 1990s is that the network architec­
tures we began developing in the 1970s are beginning to bear their fruit: 
we can now begin to hook together all the computers of the world. This 
will be the most wide-reaching revolution of them all. 

Computer networking really began in the 1970s, so we have had 
about two decades of experience with this technology. Those who have 
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A Computer on 
Every Desk 

Worldwide 
Standards 

PROLOG 

contributed heavily to computer networking, and to the technology de­
scribed in this book, feel that it will take about another decade to ac­
complish the task of interconnecting all the world's computers. The tech­
nology described in this book will help us achieve that end. 

It is clear now that there should be a computer on everyone's desk and 
that these machines should be able to access a vast diversity of informa­
tion resources. Every desktop computer should be able to communicate 
with every other computer, just as the telephone handsets of the world 
can intercommunicate. Machines running the processes of commerce, 
often without operators, should be able to communicate automatically 
with the corresponding machines of their trading partners. The world 
will become a vast mesh of computers interacting automatically with one 
another over high-speed networks. 

To create worldwide computer networks that interlink everybody's 
desks, we need standards-like the telephone network. Telephony stan­
dards, established by the International Telegraph and Telephone Consul­
tative Committee ( CCITT) are essential to the connectivity the telephone 
industry achieves. Standards for computer networking, set by the Inter­
national Organization for Standardization (ISO) working with the 
CCITT, are essential for connectivity in the computer industry.· Both 
CCITT and ISO are described in Chapter 2. 

Computer networking standards are highly complex. A reference 
model that guides the development of these standards is the Reference 
Model for Open Systems Connection, or OSI model. This seven-layer 
reference model is introduced in Chapter 3 and described in detail 
throughout this book. The OSI model is now accepted by all computer 
vendors, although some vendors, notably IBM, also use network archi­
tectures that date back to an era before the recognition that worldwide 
networking standards are essential. In inventing the protocols and algo­
rithms needed for networking millions of computers, Digital Equipment 

• Both CCITI and ISO are acronyms whose letters do not match up with their 
spelled-out names. This is because the acronyms are based on the "official" 
names of these organizations, which are in the French language. We are using 
the English translations of the French names as they appear in the documents 
published in the English language by CCITI and ISO. 
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Corporation has made vital contributions to the standards for the OSI 
model. Phase V of DNA and its DECnet hardware and software prod­
ucts represent innovative implementations of those standards. 

High-Speed Over the short history of data communication and computer network­
Communications ing, the speed with which computers communicate with one another has 

been steadily increasing. The first computers that exchanged streams of 
bits did so at a miserably low speed. When I wrote my first book on data 
communication, the standard transmission speed was 14.8 7-bit charac­
ters per second. As modems dropped in price, it became increasingly 
common to communicate at 1200 bits per second (bps), and then at 
2400 bps. Today it is commonplace for computers to communicate over 
ordinary telecommunications facilities at 9600 and 19,200 bps, using in­
expensive modems. 

Along with the increase in the speed with which data can be trans­
ferred over conventional telecommunications facilities was the explosive 
growth of local area networking (LAN) technology. In 1980 Digital, 
Intel, and Xerox published the Ethernet Speci"fication, which defined a 
low-cost method by which computers of all sizes could exchange data 
over relatively short distances (up to 2.8 kilometers) at a rate of 10 mil­
lion bps. Today thousands of inexpensive Ethernet networks are in daily 
use, connecting mainframes, minicomputers, personal computers, and 
workstations. Ethernet has been the high-speed communications 
medium of choice throughout the 1980s. The Fiber Distri{Juted Data In­
terface (FDDI) technology that is emerging in the 1990s will allow ma­
chines to exchange data at 100 million bps. Companies such as Digital 
and IBM have designed LAN protocols operating at a billion bits per sec­
ond for use during the second half of the 1990s. Still higher speeds will 
be needed and will become economically achievable. 

Today we are used to computers operating over Ethernet networks 
at 10 million bps within buildings, and we are beginning to operate 
FDDI LANs at 100 million bps. LAN usage is widespread. Most build­
ings have LANs; much software and hardware have been built for use on 
LANs. However, when we transmit beyond a building over wide area 
networks (WANs), we frequently throttle the transmission speed down, 
often to 9600 bps, which has resulted in islands of computing. Comput­
ers interact within a building differently from the way they interact over 
long distances. Within a building we can build distributed systems that 
give subsecond response times. When we interact with a faraway com­
puter, the increase in response time is often cripplingly frustrating. 
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One of the great needs of the 1990s is to remove the extreme speed 
differences between local area networks and wide area networks. A great 
opportunity is to extend LAN services nationwide and eventually world­
wide. WANs should be as fast as LANs. Optical fiber trunks make that 
possible and economically desirable. 

Standards have been created for metropolitan area networks 
(MANs), with the assumption that high·-capacity cabling can be built 
across a city, whereas it may not be economical over long distances. In 
practice, continent-wide optical fiber trunks have been built. LANs, 
MANs, and WANs need to be integrated, leading to an era of worldwide 
computer networking at today's LAN speeds and higher. 

Telecommunications common carriers are beginning to make wide­
band communication facilities available at a reasonable cost. Today the 
Tl facility allows communication at 1.544 million bps (Mbps) and is 
used in business as commonly as 9600-bps facilities were just a few years 
ago. T3 facilities, which provide a data rate of 45 Mbps, are starting to 
become commonplace in North America. By the end of the decade, 200 
Mbps will be as common as Tl is today, and 1 or 2 gigabits per second 
will be available as a premium service. 

The optical fiber was invented just in time for the computer indus­
try. The gigabit fibers of today will evolve into fibers that can transmit 
hundreds of billions and eventually trillions of bits per second. Major 
telecommunications highways will use mass-produced cables containing 
hundreds and eventually thousands of optical fibers. We are building 
prodigious transmission capacity. Most of today's optical-fiber trunks 
are grossly underutilized, especially in their transmission computer 
data. In some telephone companies demand has been increasing at 6 per­
cent per year, but the bit capacity of long-distance trunks has been in­
creasing at 100 percent per year, resulting in much unused transmission 
capacity, often referred to as "dark fiber." 

With the increases in speed in both local area networks and wide 
area networks, a question that comes to mind is how much bandwidth is 
enough. 

NETWORK ARCHITECT 

Gordon Bell sponsored a meeting a few years ago at which a number of com·· 

puter networking pioneers talked about the future of computer networking. 

One of their conclusions was that by the year 2000 it would be technically feasi­

ble to send somewhere around 1015 bits per second down a single cable. I think 
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this was a cable containing 100 optical fibers. It is interesting, however, that the 

observation was made at the meeting that the maximum bandwidth a person at 

a workstation would need is about a gigabit per second. This is the bandwidth 

you need to send high-resolution motion pictures. A human being simply can't 

absorb data any faster than that. 

An obvious question we might ask is that if a person's bandwidth is 
limited to a gigabit per second, do we really need networking technology 
that lets us send data at 1015 bps, which is roughly a million times faster 
than the human bandwidth limit. This question leads to a discussion of 
computing paradigms. 

A computing paradigm refers to a mindset that governs how we view the 
way computers are used. Two completely different computing paradigms 
have developed in parallel, leading to two divergent views of the world 
of computing and networking. The companies that grew up in the world 
of large, centralized processors tend to have one view of computing and 
networking, and the companies that grew up in the world of small, de­
centralized processors tend to have another view. 

Tim large, Centralized Paradigm 

The large, centralized paradigm tends to look at the world of computing 
and networking as having a hierarchical structure, with terminals and 
workstations at the bottom and large computers at the top. The com­
puter network exists to provide human users with access to computing 
power. Computing applications run on a relatively small number of 
large, centralized processors, and computing system users use terminals 
and workstations to access the computing applications. In this paradigm, 
when a centralized processor runs out of computing power, it is replaced 
with a bigger and faster model. The large, centralized paradigm leads to 
a model of computing in which the user submits a request or a job, the 
centralized processor computes a result, and the result is sent back to the 
user. 

With the large, centralized paradigm, it is difficult to envision a need 
for extremely high bandwidth communication, except to create high­
capacity trunks that are multiplexed to funnel traffic from large numbers 
of individual users into mainframe computer centers. 



8 

Digital's View of 
Networking 

PROLOG 

The Small, Decentralized Paradigm 

The small, decentralized paradigm tends to look at the world of computing 
and networking as being characterized by mesh-structured networks of 
computers, in which each computer is a peer of all the other computers. A 
computer network exists to allow computers to talk to each other. Com­
puting applications run on a large number of decentralized processors, and 
sometimes multiple processors cooperate to produce a single result. A peer­
to-peer networking environment is ideally suited to the creation of a dis­
tributed computing environment, where the computing power is spread 
over a large number of processors. In a distributed computing environ­
ment, when an application needs more computing power, the computing 
power often can be provided by plugging another processor into the net­
work rather than by replacing the processor with a bigger one. 

With such a paradigm, very high bandwidth communication is ex­
tremely important. There is essentially no limit to the communication 
bandwidth that can be used in such an environment. This is because the 
communication facilities are used not only by people talking to comput­
ers, they are also used by computers talking to computers. In such an en­
vironment, it might be necessary to send billions of bits from one ma­
chine to another very quickly, to satisfy the needs of a distributed 
computing application. 

In the past, IBM believed in the paradigm of large, centralized comput­
ing, while Digital subscribed to the paradigm of small, distributed com­
puting. Today both organizations know that an enterprise should have 
both centralized and decentralized computing. 

IBM's pioneering work in networking led to a hierarchical network­
ing model with mainframes at the top exercising much of the control. 
Digital's pioneering led to peer-to-peer networks with highly distributed 
control. Today computer manufacturers no longer are as divided into the 
two camps as they were in the 1970s. Everyone now agrees that peer-to­
peer networking will be a requirement in the future, and all computer 
manufacturers, including IBM, are moving their networking technology 
in that direction. 

Digital's vision of networking does not look on networks as primar­
ily a medium for communication but rather as a medium for computing. 
The communication facilities that a network provides are simply by­
products of a networked, distributed computing environment. Most of 
the communication that takes place in a distributed computing environ-
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ment has nothing to do with a person sitting at a terminal or worksta­
tion. Rather, communication consists of computers talking to other com­
puters. 

The enterprise of the future will use both centralized computing and net­
works of small computers. Both have essential roles to play. A major 
trend today is the consolidation of mainframe centers. A mainframe cen­
ter with its building, operating staff, and software is expensive. If net­
works are reliable and use high-capacity trunks, a large enterprise does 
not need 10 mainframe centers. It saves money to consolidate those cen­
ters into one (or possibly two, for disaster protection). A consolidated 
center can afford to have large computers that can solve large problems. 
Some computing centers will have supercomputers of immense power. 

The large enterprise of the late 1990s will also have a computer on 
everyone's desk, connected by LANs to a diversity of file servers, 
database servers, and the like, with wideband networks linking the indi­
vidual LANs and connecting them to a small number of corporate com­
puter centers with massive computing power. Notebook computers will 
link into this network, sometimes using cellular radio techniques, such as 
are used today to provide mobile telephone service. The computers 
within the corporation will interact directly with the computers of the 
corporation's trading partners, sending and receiving transactions and 
information. There will be direct links to many service organizations that 
provide information and all forms of specialized processing. 

Although Digital began as a minicomputer company, it is evolving into a 
computer networking company. This is a necessary by-product of the 
fact that in order to bring the power of many processors to bear on a 
large problem, those processors must be able to communicate effectively 
with one another. It is of strategic importance that Digital support the 
creation of a standardized, global computer networking infrastructure 
because this will substantially expand the market for Digital's products 
and services. Digital is essentially a high-volume company, and a high­
volume company must adopt one of two strategies: 

• Fragmentation. One strategy is to fragment the market and attempt to 
compete in that market by dominating more fragments than anyone else. 
This strategy is essentially a strategy of financial control, in which a com­
pany attempts to make a market relatively static by fragmenting it. 
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• Homogenization. The other strategy is to homogenize the market in 
order to expand and enlarge it. A company that adopts this strategy has 
to be the best at that part of the market it wants to participate in and it 
must have leadership products. 

Digital's approach has been to drive for the adoption of interna­
tional standards in an attempt to enlarge the market through homoge­
nization. This book describes how international standards have been in­
corporated into Digital's networking strategy at all levels. 

The goal that Digital is trying to achieve with its networking technology 
is nothing less than to provide the technical capability to create a global 
distributed computing environment. Such an environment would allow 
all of the world's computers to participate in a single, integrated network 
in much the same way as today's telephones are interconnected. We can 
divide the technology that is required to create such a distributed com­
puting environment into three categories: 

• network infrastructure 

• distributed computing services 

• distributed computing applications 

Network Infrastructure 

The network infrastructure consists, first, of physical things, such as ca­
bling, telecommunications facilities, modems, repeaters, and other com­
ponents that physically connect computers. On top of the physical things 
are the necessary software subsystems-such as operating systems and 
networking software-that turn a set of equipment into a logically co­
herent network that can be reliably used to move a string of bits from 
one computer in the network to any other computer. The chapters in 
Part I, Part II, and Part V are concerned with building the network in­
frastructure. 

A large problem in developing the network infrastructure that 
support a global network is scale. The networking technologies that have 
been used in the past reach their limits when a few tens of thousands of 
computers are hooked together. What is needed is the technology to cre­
ate a network infrastructure capable of supporting millions of computers 
so we can eventually have an infrastructure roughly on the scale of the 
global telephone network. 
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Distributed Computing Services 

If we are using a network infrastructure to create a true distributed com­
puting environment, then we must begin to view the entire network as a 
distributed operating system. 

An operating system that runs on a single computing system pro­
vides application programs with essential services, such as providing a 
means for giving an object a name, requesting the date and time of day, 
and allowing one procedure to invoke another procedure through a sub­
routine call facility. In a distributed computing environment, a comput­
ing application should be able to call on the services of the network to 
provide a similar set of services on a network-wide basis. For example, a 
distributed computing application should be able to access resources by 
name without needing to know where in the network those resources re­
side. An application should be able to request the date and time of day 
and not need to be concerned with how the clocks on all the processors 
in the network are synchronized. And a procedure running on one com­
puting system should be able to pass control to a procedure running on 
some other computing system in the same way it passes control to a local 
subroutine. 

Distributed computing services, described in Chapters 15 and 16, use 
the underlying network infrastructure to provide high-level services to 
distributed computing applications without requiring those applications 
to have detailed knowledge of the underlying network infrastructure. 

Distributed Computing Applications 

Distributed computing applications are applications that use distributed 
computing services and the underlying network infrastructure to do use­
ful work. These applications are introduced in Part III. If the network in­
frastructure exists and the distributed computing servkes provide the 
right kind of functions, it should be possible to create distributed com­
puting applications much easier than the distributed applications of the 
past. Of course, creating a distributed computing application will never 
be as easy as creating an application that runs on a single computing sys­
tem or one that uses simple data communication facilities. 

To achieve networking with a vast number of computers worldwide and 
in different enterprises, some difficult problems need to be solved. In cre­
ating Phase V of DNA, Digital has developed ingenious solutions to 
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many of these problems, and many of these solutions have found their 
way into international standards. 

Names and Addresses 

A complex addressing problem exists when a computer network is 
worldwide and links machines of many organizations. Worldwide ad­
dressing schemes have now been standardized, and support for these 
standards are included in DNA Phase V. Mechanisms that allow sym­
bolic names to be assigned to users and to network resources are also im­
portant. A comprehensive distributed naming service is an important 
component of DNA Phase V. Network addressing is described in Chap­
ter 7, and the DNA Phase V naming service is described in Chapter 16. 

Routing 

A DECnet network uses devices called routers to select the optimum 
path over which to transmit packets of data. The optimum route varies, 
depending on the current network topology and whether any circuits or 
nodes are out of action. On a very large network, with perhaps hundreds 
of thousands or millions of nodes, the routing problem is much more 
difficult to solve than on a small network. DNA Phase V defines a pow­
erful distributed routing algorithm that is effective on very large net­
works. This routing algorithm has been accepted by ISO as an interna­
tional standard and is described in Chapter 9. 

Congestion 

Associated with the routing problem is congestion control. Traffic jams 
can occur on a network just as they do in a city at rush hour. Drivers 
in a city listen to helicopter reports and try to avoid the worst conges­
tion. Congestion avoidance is important in a computer network as well. 
In a computer network there is no traffic helicopter, so ingenious tech­
niques are needed to prevent congestion from occurring, especially when 
networks are very large. When queues build up, it is desirable to stop 
pumping more traffic over an overloaded link. DNA Phase V includes in­
novative congestion avoidance mechanisms, which are described in 
Chapter 10. 
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Management 

As networks become larger, their control and management become com­
plex. It is essential that network management functions that were per­
formed by humans in earlier generations of networks be done automati­
cally in the future. A user should be able to simply plug a machine into 
the network and start using it-"plug and play." The network should 
automatically update its routing databases and other tables to reflect the 
existence of the new machine. In DNA Phase V, many mechanisms previ­
ously controlled by human network managers have been integrated into 
the underlying communication protocols. Digital's view of network man­
agement is that the network manager's main concern should be with set­
ting policy rather than with day-to-day operation of the network. Net­
work management is described in Chapter 17. 

By the mid 1980s, the personal computer and the technical workstation 
had become widespread in the world of business and government. Noth­
ing has been the same since. The ability to have one's own computer has 
freed millions of knowledge workers to use the computer in ways we 
could not have foreseen just a short time ago. 

The world will seem small from the viewpoint of a computer con­
nected to a worldwide computer network. You have probably seen Wall 
Street's or Chicago's trading rooms on television. These rooms where 
stock, bond, and futures traders work appear to be filled with human 
chaos, the traders frantically gesturing and shouting at one another. Such 
communication could be done better with the aid of a computer net­
work. Some trading rooms are being automated, and once they are, the 
traders need not be in one room in Chicago; they could be in Tokyo, 
Paris, Auckland, and Gaborone all linked together. Computer networks 
take a localized activity and make it worldwide. This globalization is 
happening at a furious rate in many different spheres of activity. 

Already money flashes around the world at the speed of light on op­
tical fibers. Hundreds of billions of dollars are moved daily over elec­
tronic funds transfer networks. Market crashes are worldwide and hap­
pen with computerized speed. Computerized stock markets will need to 
operate 24 hours a day. 

What American Airlines did with its Sabre airline reservation sys­
tem, Nippon Life can do in the insurance business-worldwide. New 
chains of commerce, like the Benneton clothing chain, can spread world-
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wide at high speed. Many corporations will seek strategic partners 
worldwide, their operations linked with computer-to-computer trans­
missions. When all the millions of computers used by these organizations 
are connected to each other and can easily communicate, the world of in­
formation systems will never be the same. More important, the world of 
commerce will never be the same again. 
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Network Architecture 

In the early days of computer networking, individual computer manu­
facturers produced communication products that worked only in con­
junction with their own computing equipment, and data communication 
links between equipment of different manufacturers were difficult to im­
plement. Today networks have increased in capability and complexity. 
In modern computer networks, the functions relating to data transmis­
sion are performed by complex hardware, firmware, and software oper­
ating in the various devices making up a network. To make it easier to 
manage this complexity, the functions performed in network devices are 
divided into independent functional layers, much like the skins of an 
onion. Each functional layer hides the complexities and the evolution of 
the lower layers from the layers above. It would be of great benefit to 
users of computing equipment for the computing industry to standard­
ize the interfaces between the layers and to define the rules governing the 
way in which complementary layers in different network machines ex­
change messages with one another. This standardization is one of the 
roles of modern computer network architectures. 

A network architecture is a comprehensive plan that governs the 
design of the hardware and software components making up a computer 
network. Before we discuss the nature of network architectures, we will 
introduce the functions of a computer network by using an analogy to 
describe the benefits of independent functional layers in complex sys­
tems. 

An analogy can be made between the communication functions per­
formed in a computer network and the functions performed in ordinary 
human communication. Figure 2.1 shows how we might divide the func-
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Layers of human communication. 
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tions performed during human communication into three independent 
layers. 

The Physical Layer 

In the Physical layer, the two parties must select and use a common com­
munication medium. A typical communication medium used in human 
communication might be sound waves in air. For example, Figure 2.2 
shows the physical medium used when two parties are involved in a face-
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to-face conversation. In human communication, it is important that both 
parties agree upon and use the same communication medium. For exam­
ple, if one party is speaking, but the other party is deaf and can only read 
written words, no communication takes place. 

The Language Layer 

Once a common physical medium has been chosen, each party involved 
in a conversation must use a language understood by the other. If one 
party speaks only French and the other only English, little communica­
tion will take place. Figure 2.3 shows the Language layer when two par­
ties are conducting a conversation using the English language. With no 
common language, there is no successful dialog, even though both par­
ties may have agreed to use the same communication medium. If I call a 
Tokyo hotel and get a clerk who does not speak English, I will not be 
able to book a room, even though I might have an excellent telephone 
connection. 

The Ideas Layer 

We might think of the highest layer in human communication as the 
Ideas layer. In this layer, each person involved in a conversation must 
have some idea of what the conversation is about and must understand 
the concepts being discussed. Figure 2.4 shows the Ideas layer when two 
parties are discussing horticulture. If an English-speaking gardener es-

Language layer: English. 
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Ideas layer: Horticulture. 
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tablishes a good telephone connection with another English-speaking 
person and begins a technical discussion on horticulture, little real com­
munication is likely to take place if the second party is a two-year-old 
child. 

Protocols 

In each layer in any communication system, a set of precisely defined 
rules must be agreed to and followed by both parties for communication 
to be successful. The rules governing communication at a given layer are 
called protocols. Each set of protocols can be thought of as a rule book 
that specifies a set of procedures governing communication. Each layer 
on one side communicates with a complementary layer on the other side 
using a protocol. Both parties must adhere exactly to the protocol; other­
wise, communication is not possible. 

Human Communication Protocols 

The protocols involved in the Physical layer of human communication are 
simple and involve mechanical procedures. When two parties agree to 
use a common communication medium, they must both observe the same 
rules in using that medium. For example, on some long-distance tele­
phone circuits, both people are not able to talk at the same time. If both 
people speak at once, no communication takes place. For the Language 
layer, the protocols involve procedures described by the rules of gram­
mar and syntax for the common language. When two parties agree to 
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use English, they agree to abide by the rules of grammar and syntax that 
govern the English language. For the Ideas layer, the protocols involve 
procedures described by the body of knowledge concerning the subject 
being discussed. If two parties are discussing horticulture, the protocols 
might involve technical details concerning botany and agriculture. 

Changing Protocols 

When people communicate, they can change the protocol for a given 
layer as long as both parties agree and change to the same new protocol. 
In effect, they agree to change the rule book for one of the layers. The 
protocols can be changed for one layer without requiring the protocols 
to be changed for the other layers. This makes the protocols used in each 
layer independent of the protocols used in the other layers. For example, 
in business people often begin a transaction by exchanging letters and 
then mutually decide a telephone conversation is needed. They may then 
decide a face-to-face meeting is required to continue the discussion. The 
rules, or protocols, governing the Ideas and Language layers remain the 
same each time the discussion is resumed, even though the protocol gov­
erning the Physical layer may change. Multilingual people might shift a 
conversation to a second language. As long as both parties agree to do 
so, the change in protocol for the Language layer does not necessitate 
changes in the Physical or Ideas layer. 

In human communication, a dialog between two communicating parties 
can be viewed as taking place via messages transmitted back and forth 
between the two parties (see Figure 2.5). For each message, there must be 
a sender and a receiver. On the sending end, an idea generates a message, 
which is transmitted to the second party via the agreed-upon communi­
cations medium. At the receiving end, the message is received and con­
verted back into the original idea. 

Functional Layers 

Messages sent from a sender to a receiver in a human dialog can be 
viewed as passing through a number of functional layers. Messages are 
processed by hardware and software residing in, or controlled by, the 
two communicating parties. For example, in a face-to-face conversation, 
the hardware consists of the nervous systems, the mouths, and the ears 
of the two people. The software consists of the thought processes, both 
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Message transmission. 

MESSAGE MESSAGE 

conscious and unconscious, used to conduct the conversation. There is 
an interface between each pair of layers, and each functional layer pro­
vides a set of services to the layer above it. A message passes down 
through the functional layers on the sending end, flows over a communi­
cations medium to the receiver, and moves up through corresponding 
functional layers on the receiving end. 

Some interfaces in communication systems are concrete and define 
the characteristics of cables, connectors, and signals; others are abstract 
and define the semantics of the services one layer provides to another. 
Concrete interfaces must be adhered to exactly to achieve portability 
from one implementation to another; abstract interfaces need not be as 
rigidly standardized. It does not matter if the layer boundaries are a little 
fuzzy in the two communicating systems, as long as concrete interfaces 
and protocols are rigidly adhered to. As we will see in later chapters, the 
emphasis in determining conformance to communication standards is on 
concrete interfaces and protocols and not on abstract layer interfaces. 
However, standard layer interfaces are important because they define the 
services a protocol must supply, and they allow a protocol operating in 
one layer to be changed without affecting the protocols operating in the 
other layers. 

Coming back to our human communication analogy, Figure 2.6 
shows how the sender uses a high-level set of functions operating in the 
Ideas layer to formulate a message. Another set of functions, operating 
in the Language layer, is used to place that message into words. Still an­
other function set, operating in the Physical layer, controls the mouth 
and the tongue in sending the message orally over the communications 
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Layers of software. 
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medium. The ear of the receiver is controlled by a low-level set of func­
tions, operating in the Physical layer, that detects the sound waves carry­
ing the message. A function set operating in the Language layer trans­
lates those sounds into words. A set of functions operating in the Ideas 
layer reconstructs the meaning of the original message from those words. 

Computer Network Functional Layers 

A computer network can be viewed on a number of different levels, just 
as can human communication. At each level, a functional layer-imple­
mented using hardware, firmware, or software-provides a useful set of 
functions. As with the model of human communication discussed earlier, 
each functional layer should be as independent as possible of the others. 
Independence of the layers gives a computer network great flexibility. 

Network architectures define the way in which communication functions 
are divided into functional layers. They also define the layer protocols, 
the concrete interfaces, and the abstract interfaces between the func­
tional layers. Protocols and interfaces make up the standards to which 
different machines and software modules must conform in order to effec­
tively communicate. When new products are created that conform to the 
architecture, they will be compatible and can be linked with other prod­
ucts that also conform to the architecture. The goals and standards of a 
network architecture are important to both the users of computer net-



24 

The Nature of 
Architecture 

PART I: THE DIGITAL NETWORK ARCHITECTURE 

works and the organizations that provide computer networking equip­
ment and services. A network architecture must provide users with a va­
riety of choices in the configuration of computer networks, and it must 
allow users to change a configuration with relative ease as their systems 
evolve. For the providers of networking products and services, architec­
tures permit the mass production of hardware and software building 
blocks that can be used in a variety of different systems. They also pro­
vide standards that allow development laboratories to create new ma­
chines and software that will be compatible with existing products. 
These new products can then be integrated into existing computer net­
works without the need for designing costly conversion mechanisms or 
making extensive software modifications. 

Although network architectures provide rules for the development of 
new products, these rules can change. This is because the term architec­
ture in the computer industry often implies an overall scheme or plan 
that may be evolving. The architecture defines an overall framework that 
allows the architecture to evolve and change to support new technolo­
gies. In Digital's view, an architecture also defines all the details needed 
to guide implementors in creating products that will fully conform to the 
architecture and, therefore, that will interoperate with all other imple­
mentations of the architecture. One of the DNA architects characterizes 
architecture in this way: 

NETWORK ARCHITECT 

An architecture must be always complete, but it is never finished. It must pro­

vide a framework that permits change. 

A good architecture ought to relate primarily to the needs of the end 
users rather than to enthusiasms for particular techniques. A well-archi­
tected house, for example, is one that reflects the desired lifestyle of its 
owners rather than one designed to exploit a building technique that is 
currently in vogue. Fred Brooks, author of The Mythical Man-Month 
[1], defined architecture in a way that makes a clear distinction between 
architecture and engineering: 

By the architecture of a system, I mean the complete and detailed specification 

of the user interface. For a computer this is the programming manual. For a 
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compiler it is the language manual .... For the entire system it is the union of 

the manuals the user must consult to do his entire job .... The architect of a 

system, like the architect of a building, is the user's agent. It is his job to bring 

professional and technical knowledge to bear in the unalloyed interest of the 

user, as opposed to the interests of the salesman, the fabricator, etc. 

The view of architecture that Digital engineers have is somewhat 
different from that of Fred Brooks. At Digital, architecture is not viewed 
as being associated only with the user. 

NETWORK ARCHITECT 

I think we would see architecture as being equally concerned with the needs of 

the user and with the needs of the fabricator. There's no point in having a won­

derful architecture that can't be implemented! In Digital, architecture is an inte­

gral part of the engineering process. 

Proprietary Network Architectures 

Network architectures can be based on either accepted standards or pro­
prietary standards developed by a particular organization, such as a 
computer manufacturer. Until recently, proprietary network architec­
tures have played a more important role in the computer industry than 
architectures based on widely accepted standards. This is because com­
puter manufacturers began providing advanced data communication ca­
pabilities long before today's standards were developed. Computer man­
ufacturers were forced to develop proprietary network architectures to 
give an overall cohesiveness to their product lines. In today's information 
systems environment, architectures based on accepted standards are, in 
the long run, more desirable from the point of view of computer users, 
since they give the user the widest possible range of choices in configur­
ing a network. Any vendor who implements the applicable standards can 
then be a candidate as a supplier. However, the standards underlying an 
architecture must be carefully chosen so they are likely to live a long 
time, provide for low-cost implementations, provide a broad range of 
functions, and are widely accepted. 

The two most commonly used proprietary network architectures 
today are Digital's Digital Network Architecture (DNA) and IBM's Sys­
tems Network Architecture (SNA). The first products that conformed to 
each of these architectures were released at about the same time, in the 
mid 1970s. In the past, a computer manufacturer's architecture was de-
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signed for computer networks built with the products of only that manu­
facturer. The early manufacturer's architectures often made it difficult to 
interconnect machines offered by competing vendors. Most computer 
manufacturers, including Digital and IBM, however, provided facilities 
that allowed connections between otherwise incompatible equipment. As 
we saw in Chapter 1, in the future much more extensive forms of inter­
networking will be required to allow the machines of many different 
vendors to be interconnected to form an integrated, global computer net­
work. It is a major goal of today's network architecture development to 
allow diverse equipment from many different vendors to be intercon­
nected using standard interfaces and protocols. Because of this, widely 
accepted standards are playing an increasingly important role in network 
architecture development. 

A number of organizations around the world are actively involved in de­
veloping standards and architectures for data communication and com­
puter networking. Three important standards organizations for the in­
formation systems and communication industries are ISO, IEC, and 
CCITT, all of which we discuss next. Other important standards organi­
zations are described briefly in Box 2.1. Some important terms making 
up the alphabet soup of information systems standardization are defined 
in Box 2.2. [2] 

International Organization for Standardization 

A prominent standards organization is the International Organization 
for Standardization (ISO), the largest standards organization in the 
world. ISO produces large numbers of standards on nearly every subject, 
from humane animal traps to screw threads. It is also the dominant in­
formation technology standardization organization in the world. The 
members of ISO are individual national standards organizations; only 
national positions-positions representing an entire country-are dis­
cussed in ISO. The ISO member organization from the United States is 
the American National Standards Institute (ANSI); all major industrial­
ized countries have a similar standards organization that represents its 
national interests in ISO. ISO technical meetings take place at various lo­
cations around the world. 

The secretariat of ISO, located in Geneva, Switzerland, is the orga­
nization charged with running the day-to-day affairs of ISO, including 
keeping track of its numerous Technical Committees (TCs) and publish-
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American National Standards Institute (ANSI) 

Virtually every country in the world has a national standards organi­
zation responsible for publishing standards to guide that nation's in­
dustries. In the United States, this organization is ANSI. ANSI is a 
non"profit organization that writes the rules for standards bodies to 
follow and publishes standards produced under its rules of consen­
sus. ANSI accredits standards committees to write standards in areas 
of their expertise. The major accredited standards committees (ASCs) 
in the information technology arena are: 

• JTC1 TAG. This is the U.S. technical advisory group (TAG) for the 
ISO/IEC JTC1. This group provides U.S. positions on JTC1 standards 
and is the single interface to ISO/IEC JTCl in the United States. 

• ASC X3. This committee produces approximately 90 percent of the 
standards for U.S. information technology and provides the technical 
expertise for a majority of U.S. technical advisory groups to the sub­
committees and working groups in ISO/IEC JTC1. 

• ASC TL This group is the voluntary standards-making body for the U.S. 
telecommunications industry and sets U.S .. national telecommunications 
standards. T1 helps the State Department with CCITT positions. 

• ASC X12. This group is responsible for standards relating to elec­
tronic data interchange (EDI) in the United States. It acts to set na­
tional positions for the United Nations EDIFACT group, which is es­
tablishing EDI standards worldwide. 

ANSI has a small secretariat located in New York City whose func­
tion is organizational and administrative rather than technical. ANSI 
is not a government organization; it is funded by its members and 
through the sale of standards. ANSI standards can be obtained di­
rectly from ANSI or from OMNICOM or Global Engineering Docu­
ments. 

National standards organizations from other countries include: 

" France. Association Francaise de Normalisation (AFNOR) 

" United Kingdom. British Standards Institute (BSI) 

" Canada. Canadian Standards Association (CSA) 

" Germany. Deutsches Institut fur Normung e.V. (DIN) 

" Japan. Japanese Industrial Standards Committee (JISC) 

These standards organizations have the same general role and organi­
zation as ANSI and provide a discussion forum for individuals. Some 
of those individuals then participate in international meetings and 
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represent the agreed views of their countries. It is the national bodies 
that vote in the formal approval process for standards. 

European Computer Manufacturers Association (ECMA) 

ECMA was originally formed by a group of European companies. 
Since then, its membership has grown to become international and in­
cludes representatives from such organizations as IBM, Digital, 
AT&T, British Telecom, and Toshiba. ECMA is considered a regional 
standards organization and develops information technology stan­
dards for the European region. ECMA standards are often forwarded 
to ISO/IEC JTCl for development as international standards. Such co­
operation between organizations can result in a faster standards devel­
opment process, since consensus has already been demonstrated. 
ECMA has a small secretariat in Geneva, and its members meet in var­
ious places throughout Europe. 

Comite European de Normalization (CEN) and Comite 
European de Normalisation dans le domain Electrique 
(CENELEC) 

CEN and its associated organization CENELEC have a relationship sim­
ilar to that between ISO and IEC. They are concerned with the adoption 
of standards by the countries of the European Economic Community 
(EEC) and other European countries. Standards adopted by CEN/CEN­
ELEC are called European Norms (ENs) and are binding for procure­
ment purposes on the CEN's member countries. CEN normally does not 
develop its own standards but instead relies heavily on standards devel­
oped by other organizations, especially ISO. Where there is no ISO or 
IEC standard, however, CEN will develop its own standard and forward 
it to ISO for development as an international standard. 

National Institute for Science and Technology (NIST) 

NIST (formerly known as the National Bureau of Standards) is a U.S. 
government organization. ISO standards often cover broad ranges of 
function and allow many choices to be made by individual implemen­
tors. The NIST has taken a leadership role in creating profiles that 
define preferred groups of choices from among the many options doc­
umented in ISO standards. Initially this was done in an informal work­
shop that developed implementors' agreements. As the importance of 
these profiles has increased and other organizations have started simi­
lar work internationally, the NIST workshop has become more for-
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mally organized. NIST is one of the three major international contrib­
utors to the development of Internationally Standardized Profiles 
(ISPs), which are the profiles formally ratified by ISO. 

European Workshop on Open Systems (EWOS) 

EWOS has the same role in Europe as the NIST workshop has in the 
United States. EWOS was started primarily by members of SPAG (see 
below) to ensure that Europe had a voice in the development df profiles. 
It also serves as the Technical Committee to support the technical activ­
ity of CEN. EWOS and NIST work closely together to achieve and 
maintain harmonization of their profiles. EWOS is located in Brussels. 

Promotion of OSI/ Asia and Oceania Workshop (POSI/ AOW) 

AOW is another organization that contributes to the international 
adoption of profiles. POSI is a Japanese organization concerned with 
promoting the adoption of ISO standards for the OSI model, while 
AOW is an open workshop that includes Australia and other Pacific 
countries as well as Japan. 

Corporation for Open Systems (COS) 

COS was initiated as a consortium of computer manufacturers and 
others to encourage the adoption of ISO information systems stan­
dards. It has initially directed its efforts toward the development of 
testing procedures to allow vendors to demonstrate conformance to 
ISO standards. COS operates as a non-profit organization funded by 
its members. It does not produce standards nor does it contribute to 
the development of standards. COS is located in McLean, VA. 

Standards Promotion and Application Group (SPAG) 

SP AG was initially a private consortium of European companies, set 
up with objectives similar to those of COS. Like COS, it has now di­
rected its efforts primarily toward the development of testing proce­
dures, and it cooperates closely with COS in that regard. Membership 
in SPAG is now open, and many U.S. companies are members. 

Electrical Industries Association (EIA) 

EIA is an association of companies involved in electrical and related indus­
tries. EIA undertakes some standardization projects and operates in that 
capacity as an accredited organization (AO) under the rules of consensus 
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standards formulated by ANSI. The standards developed by the EIA are 
concerned primarily with physical communication interfaces and electrical 
signaling. A well-known EIA standard is EIA-232-D, which documents 
the way in which a terminal or computer is attached to a modem. 

Institute of Electrical and Electronic Engineers (IEEE) 

IEEE is a professional society whose members are individual engineers 
rather than companies. Most of its activities are only peripherally related 
to information technology, but it became the focus for development of 
local area network standards under its project 802 (see Chapters 21 and 
22). The IEEE is also an AO, which operates under ANSI guidelines 
when it develops standards. Like the EIA, it rarely develops complex an­
ticipatory systems standards, such as those falling under the OSI model 
umbrella, but ordinarily concentrates instead on product standards. 

Conference of European PTTs (CEPT) 

CEPT was established by the European PTTs primarily to develop 
technical standards that could be used in Europe prior to the develop­
ment of corresponding CCITT standards. With the establishment of 
ETSI (see below), CEPT remains a closed forum that is concerned 
mainly with marketing and lobbying. 

European Telecommunications Standards Institute (ETSI) 

ETSI was established by the European Economic Commission to for­
malize many of the activities formerly undertaken by CEPT. Member­
ship is open to suppliers of telecommunications equipment and ser­
vices, PTTs, and other industrial organizations, with formal voting on 
a national basis. ETSI develops European telecommunications stan­
dards (ETSs). Some of these are intended as a basis for the provision of 
services and as a foundation for CCITT work, while others are ori­
ented toward permission to connect testing for the attachment of 
equipment to public networks. ETSI is based in Sophie Antipolis, 
France. It has its own permanent technical staff and depends on the 
participation of its members. 

Open Systems Foundation (OSF) 

OSF is a non-profit organization established by a number of computer 
manufacturers to develop a common foundation for open computing. 
It is not directly concerned with standards but rather with the develop-
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ment of an agreed collection of software around a UNIX-like operat­
ing system kernel. OSF has its own permanent technical staff and de­
pends on the participation of its members. 

X/Open 

X/Open was set up by European computer manufacturers to develop a 
consistent UNIX-like suite of application programming interfaces to 
permit application portability. Membership is open and worldwide. 
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ing the standards the Technical Committees produce. The Technical 
Committees, which not only create the standards but also determine 
what standards to produce, are composed of thousands of volunteers 
from computer manufacturers, suppliers of communication products, 
major computer users, governments, and consulting organizations. To 
participate, these delegates operate under the aegis of the national body. 
So a delegate from the United States not only brings technical expertise 
to the committee but also represents his or her sponsoring organization, 
ANSI, and the United States itself. A TC is ordinarily divided into Sub­
committees (SCs) and Working Groups (WGs), which write the stan­
dards. The standards then receive the approval of the Technical Commit­
tee as a whole before they finally become accepted as international 
standards. 

Closely associated with ISO is the International Electrotechnical 
Commission (IEC). IEC has a role similar to that of ISO but is restricted 
to electrical and electronic matters. There is an agreement between ISO 
and IEC to ensure that their work does not overlap. In the field of infor­
mation technology standards, IEC's role is limited to Physical layer as­
pects, such as electrical safety. ISO and IEC have recently merged their 
Technical Committees working on information technology into a single 
organization, called ISO/IEC Joint Technical Committee 1 (JTCl), to en­
sure and improve continued close cooperation. 

JTCl is the ISO/IEC Technical Committee responsible for a particu­
larly important framework for a computer network architecture called 
the Reference Model for Open Systems Interconnection, or the OSI 
model. The OSI model is introduced in Chapter 3 and forms the basis for 
the latest phase of Digital's own DNA. JTCl is also publishing a com­
prehensive set of standards for the various functional layers defined by 
the OSI model. Many of those standards are described in this book. 
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Manufacturing Automation Protocol (MAP) 

MAP is a project started in the United States by General Motors to de­
velop a single standard for communication between devices in a fac­
tory automation environment. Its work has been based on U.S. na­
tional and ISO standards and also defines additional standards specific 
to factory automation applications. 

Technical and Office Protocol (TOP) 

TOP is a complementary project to MAP started by Boeing to extend 
the applicability of MAP into other environments, such as office infor­
mation systems and computer-aided design. 

Government Open Systems Interconnection Profile (GOSIP) 

GOSIP is a name for procurement-oriented standard profiles specify­
ing how ISO standards will be used for U.S. government computing. 
The acronym GOSIP has been adopted by other countries to describe 
their own government procurement specifications. 

European Procurement Handbook for Open Systems (EPHOS) 

EPHOS is a project similar to GOSIP for government computing 
throughout Europe. 

Open Distributed Processing (ODP) 

ODP is a project started within ISO to develop standards for a hetero­
geneous distributed computing environment. It is defining an overall 
reference model for distributed computing that goes beyond the OSI 
model. 

PO SIX 

POSIX is a standard developed by IEEE under its project 1003 that 
defines a UNIX-like interface to basic operating system functions to 
provide application portability. 

There are four major steps in the standardization process. A stan­
dard begins its journey through the standardization process as a working 
document. After the working group or subcommittee agrees the working 
document should be developed into an international standard, it becomes 
a committee draft, at which time ISO/IEC assigns a unique number to it. 
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At this stage, the standard is referred to with the letters "CD," such as 
ISO CD 12345. (A committee draft was formerly called a draft proposal 
and was abbreviated DP.) After the subcommittee or working group 
agrees that the standard is close to being accepted as an international 
standard, it is given draft international standard status and is referred to 
using its number and the letters DIS, such as ISO DIS 12345. A standard 
may go through multiple revisions at both the committee draft and draft 
international standard phases. A standard that has made it all the way 
through the standardization process and has been accepted by ISO is 
called an international standard and is referred to only by its number, 
such as ISO 12345. ISO sometimes produces documents called technical 
reports when support cannot be obtained for the publication of a stan­
dard, when a subject is still under technical development, or when a Tech­
nical Committee has collected information of a different kind from that 
normally published as a standard. The identification number of a techni­
cal report is preceded by the letters TR, such as ISO TR 12345. 

ISO also produces amendments to international standards as 
changes to them are required. Like the international standards them­
selves, amendments go through four phases. An amendment to an inter­
national standard begins as a working draft and then progresses to a 
committee draft amendment (CDAM), goes on to become a draft 
amendment (DAM), and finally becomes an amendment (AM) when it is 
approved. Generally, amendments are eventually incorporated into the 
text of their associated standards after the amendment is accepted. 
Amendments were formerly called addenda (ADs), draft amendments 
were called draft addenda (DADs), and committee draft amendments 
were proposed draft addenda (PDADs). 

Most of the standards described in this book are accepted interna­
tional standards, but some are currently in draft status and a few exist in 
the form of committee drafts. However, because standards often change 
their status quickly from CD to DIS and from DIS to accepted interna­
tional standards, we will refer to standards using only their numbers, 
such as ISO 7498. Check with your country's national standards organi­
zation or with one of the many organizations that sell copies of interna­
tional standards of the actual status of any particular ISO standard. 
ISO/IEC standards documents and technical reports can be obtained in 
the United States from ANSI, Inc., 1430 Broadway, New York, NY 
10018. The following organizations also stock copies of ISO standards: 
OMNICOM, 501 Church Street, N.E., Vienna, VA 22180, (703) 281-
1135; and Global Engineering Documents, 2805 McGaw Avenue, 
Ervine, CA 92714, (800) 854-7179. 
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International Telegraph and Telephone Consultative Committee 

The International Telegraph and Telephone Consultative Committee 
(CCITT) has existed since around the turn of the century and is the lead­
ing organization involved in the development of standards relating to 
telephone and other telecommunications services. CCITT is a part of the 
International Telecommunications Union (ITU), which in turn is a body 
of the United Nations. The delegation to the ITU from the United States 
is the Department of State. In other countries, the ITU delegation is often 
the governmentally controlled Postal, Telephone, and Telegraph (PTT) 
organization. 

CCITT deals with standards for interconnecting the world's tele­
phone networks and for the signaling systems used by modems in send­
ing computer data over telephone lines. CCITT calls the standards it 
produces recommendations, which have such names as Recommenda­
tion X.25 and Recommendation X.400. It was a natural outgrowth of 
the data aspects of telephone service that CCITT should become in­
volved in information system standards, particularly those directly re­
lated to public data networks. In the last decade, CCITT has also been 
involved in a major effort to define standards for a worldwide Integrated 
Services Digital Network (ISDN) for providing unified public voice and 
data communication services. 

The principal contributors to CCITT are individuals representing 
the public and private telecommunications organizations, although non­
voting memberships are also open to industrial organizations. CCITT 
maintains a secretariat in Geneva, where most of the meetings take 
place. However, representation is international. As with ISO, all of the 
technical contribution comes from individual volunteers drawn primar­
ily from telephone companies and other companies that supply telecom­
munications products and services. Again, membership is limited to na­
tional body representation -it is the State Department, not U.S common 
carriers, that represents the U.S. national position. 

CCITT recommendations are published at four-year intervals, with 
the color of the covers changed with each new edition. Although the 
recommendations are newly published every four years, each new ver­
sion represents evolutionary change from the previous version; many of 
the recommendations change little from one version of the recommen­
dations to another. The color for the set of 1988 CCITT recommenda­
tions is blue, so that set of CCITT recommendations is called the Blue 
Book. The Blue Book contains new recommendations and all the revi­
sions to existing ones approved from 1985 through 1988. The Blue 
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Book was published a piece at a time beginning in 1989. The Blue Book 
recommendations will be in common use through about 1993, after 
which all revisions approved since 1989 will be incorporated into a new 
set of recommendations. Each set of CCITT recommendations is pub­
lished in the form of a series of volumes, each of which is divided into 
separately bound fascicles. Each fascicle can be ordered separately. 
CCITT recommendations can be obtained from the United States De­
partment of Commerce, National Technical Information Service, 5285 
Port Royal Road, Springfield, VA 22161. They can also be obtained 
from OMNICOM and Global Engineering Documents, whose ad­
dresses were given previously. 

ISO, IEC, and CCITT cooperate quite closely. ISO and CCITT, in 
particular, have a strong interest in aligning their standards and thus try 
not to duplicate work between them. (Unfortunately, duplication of ef­
fort still sometimes occurs.) Standards of mutual interest typically are de­
veloped in one organization and then published by both. For example, 
the OSI model was developed principally by a subcommittee of ISO and 
is documented in ISO 7498; CCITT also publishes the OSI model as Rec­
ommendation X.200. Similarly, CCITT has developed Recommendation 
X.400, which standardizes electronic mail facilities. Recommendation 
X.400 has been adopted by ISO, which publishes it as ISO 10021. The 
technical people participating in committees of ISO are very often the 
same people as on CCITT committees, and the technical development 
activities associated with information systems standardization are often 
undertaken jointly by ISO and CCITT. 

ISO's publication of the Reference Model for Open Systems Interconnec­
tion (the OSI model) was an extremely important development in the 
world of computer networking. The definition of international standards 
that fit into the OSI model framework is even more important. The OSI 
model and ISO's complete architecture for computer networking are in­
troduced in Chapter 3. 

1. Frederick P. Brooks, The Mythical Man-Month: Essays on Software 
Engineering, Addison-Wesley Publishing Company, Reading, MA, 
1975. 

2. Carl F. Cargill, Information Technology Standardization: Theory, 
Process, and Organizations, Digital Press, Bedford, MA, 1989. 



CHAPTER 3 

The OSI 
Reference Model 

Given the immense proliferation of intelligent computing devices now 
occurring, one of the activities most important to the future of informa­
tion technology is the setting of standards to enable machines of differ­
ent manufacturers to communicate. In 1984, as a start in the setting of 
such standards, ISO accepted as an international standard ISO 7498, 
Open Systems Interconnection-Basic Reference Model. ISO 7498 is a 
short document that describes the seven-layer Reference Model for 
Open Systems Interconnection that provides a common basis for the co­
ordination of standards development for the purpose of interconnecting 
open systems. The term open in this context means systems open to one 
another by virtue of their mutual use of applicable standards. The OSI 
model describes how machines can communicate with one another in a 
standardized and highly flexible way by defining the functional layers 
that should be incorporated into each communicating machine. The OSI 
model does not define the networking software itself, nor does. it define 
detailed standards for that software; it simply defines the broad cate­
gories of functions each layer should perform. 

OSI Model Layers The OSI model defines the seven independent functional layers shown in 
Figure 3.1. Each layer performs a different set of functions, and the in­
tent is to make each layer as independent as possible from all the others. 
However, complete layer independence is difficult to achieve. 

NETWORK ARCHITECT 

Each layer provides a defined set of services by building on the layers below it. 

It is impossible for them to be completely independent. But the mechanisms of 

each layer are always independent of the mechanisms of the adjacent layers. 
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OSI model functional layers. 
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Transport Layer 

Network Layer 

Data Link Layer 

Physical Layer 

The ISO working group responsible for defining the OSI model 
began by establishing a number of principles that guided the develop­
ment of the reference model. These principles are listed in Box 3.1. While 
it may be difficult to prove that the seven layers selected represent the 
best possible solution, the general principles listed in Box 3.1 guided the 
ISO working group in answering the questions of where a boundary 
should be placed and how many layers there should be. Organizations 
have now had much experience with developing network architectures 
based on the seven OSI model layers. For the most part, the layer divi­
sions of the OSI model have proven to be well thought out. But there is 
still some controversy. 

NETWORK ARCHITECT 

There is still a general tension in standardization. If you have a group of people 

who are very focused on a certain area-whether it's a certain technology, like 

FDDI, or a certain layer, like the Session layer-there's a great tendency for 

them to say, "Well, everything we have to do to make this work-not just work 

but to be really useful-we should do in our layer, because you can't trust those 

people who are working on the other layers." This leads to something that has 
been called the "49-layer model" because all of the functions that are put in the 

seven layers start reappearing in each of the seven layers. We have to guard 

against this because you end up with the problems being solved in each layer be­

coming as complex as the entire original problem. 

We next provide brief descriptions of each of the seven layers of the 
OSI model, beginning with the lowest layer. After we describe the seven 
OSI model layers, we will show how the OSI model relates to the com­
plete OSI architecture and introduce concepts important in the OSI envi-
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Principle 1. Collect similar functions in the same layer. 

Principle 2. Create separate layers to handle functions that are 
manifestly different in the process performed or the involved 
technology. 

Principle 3. Allow changes in functions or protocols to be made 
within a layer without affecting other layers. 

Principle 4. Create a layer of easily localized functions so the layer 
could be totally redesigned and its protocols changed in a major way 
to take advantage of new advances in architectural, hardware, or 
software technology without changing the expected services from and 
provided to the adjacent layers. 

Principle 5. Create a layer where there is a need for a different level 
of abstraction in the handling of data. 

Principle 6. Create for each layer boundaries with adjacent layers 
only. 

Principle 7. Select boundaries at a point that past experience has 
demonstrated to be successful. 

Principle 8. Create a boundary at a point where the description of 
services can be small and the number of interactions across the 
boundary minimized. 

Principle 9. Create a boundary where it may be useful at some time 
to have the corresponding interface standardized. 

Principle 10. Do not create so many layers as to make the system 
engineering task of describing and integrating the layers more difficult 
than necessary. 

ronment. Part II of this book examines each of the layers in detail, de­
scribes the ISO standards that apply to each, and shows how the DNA 
Phase V architecture incorporates the ISO standards. 

The Physical Layer 

The lowest layer of the OSI model is the Physical layer. It allows signals, 
such as electrical signals, optical signals, or radio signals, to be ex­
changed among communicating machines. The Physical layer, shown in 
Figure 3.2, typically consists of hardware permanently installed in the 
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The Physical layer is concerned with sending and receiving signals. 
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communicating devices. The Physical layer also addresses the cables, 
connectors, modems, and other devices used to connect machines. Mech­
anisms in each of the communicating machines control the generation 
and detection of signals that are interpreted as 0 bits and 1 bits. The 
Physical layer does not assign any significance to the bits. For example, it 
is not concerned with how many bits make up each unit of data, nor is it 
concerned with the meaning of the data being transmitted. In the Physi­
cal layer, the sender simply transmits a signal and the receiver detects it. 

The Data Link Layer 

Control mechanisms in the Data Link layer handle the transmission of 
data units over a physical circuit. Functions operating in the Data Link 
layer allow data to be transmitted, in a relatively error-free fashion, over 
a sometimes error-prone physical circuit (see Figure 3.3). This layer is 
concerned with how bits are grouped into collections and performs syn­
chronization functions with respect to failures occurring in the Physical 
layer. The Data Link layer implements error-detection mechanisms that 
identify transmission errors. With some types of data links, the Data 

The Data Link layer is responsible for the transmission of data units over a physical circuit. 
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Link layer may also perform procedures for flow control, for data unit 
sequencing, and for recovering when transmission errors occur. 

Some data links interconnect only two computers, such as with a 
point-to-point telecommunications facility. Other types of data links 
allow many computers to be interconnected, such as in a typical local 

.~ 

area network. When more than two computers are attached to a single 
data link, any computer can be viewed as being connected by a single link 
with any other computer attached to the data link, even though there may 
be devices, such as repeaters or bridges, between any two stations. 

The Network Layer 

We will refer to a device containing an instance of the Network layer and 
the Data Link and Physical layers below it as a node.* Nodes that act as 
the source or the final destination of data are called end nodes. Between 
any two end nodes may be nodes acting as intermediaries that perform 
routing and relaying functions. These are called intermediate nodes. The 
facilities provided by the Network layer supply a service that higher layers 
employ for moving bits from one end node to another, where the bits may 
flow through any number of intermediate nodes. End nodes generally im­
plement all seven layers of the OSI model, allowing application programs 
to exchange information with each other. It is possible for intermediate 
nodes performing only routing and relaying functions to implement only 
the bottom three layers of the OSI model, as shown in Figure 3.4.t Notice 
that the path between any two nodes may at one instant be via a number 
of data links. The application programs running in two end nodes that 
wish to communicate should not need to be concerned with the route 
data units take nor with how many data links they travel over. The Net­
work layer functions operating in end nodes and in intermediate nodes 
together handle these routing and relaying functions. Whereas the Data 
Link layer provides for data transmission between adjacent nodes across 

* OSI documentation uses the term system instead of node. However, we feel the 
term system is overused in information systems literature, and we prefer node to 
the more formal OSI term system. 

t In actual practice, for an intermediate node to communicate with network 
management mechanisms, all seven layers are required, although some of the 
upper layers may implement a minimum set of functions. The term skinny stack 
is sometimes used to refer to such an implementation of only a minimum set of 
functions in one or more of the upper layers. 
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F I G u R E 3 . 4 The Network layer allows communication across multiple data links. 
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a single data link, the Network layer provides for the much more complex 
task of transmitting data between any two nodes in the network, regard­
less of how many data links may need to be traversed. 

The Transport Layer 

The Transport layer builds on the services of the Network layer and the 
layers below it to form the uppermost layer of a reliable end-to-end data 
transport service. The Transport layer hides from the higher layers all the 
details concerning the actual moving of data from one computer to an­
other and shields network users from the complexities of network opera­
tion. The lowest three layers of the OSI model (see Figure 3.1) implement 
a common physical network many machines can share independently of 
one another, just as many independent users share the postal service. It is 
possible for the postal service to occasionally lose a letter. To detect 
the loss of a letter, two users of the postal service might apply their own 
end-to-end controls, such as sequentially numbering their letters. The 
functions performed in the Transport layer can include similar end-to­
end integrity controls to recover from lost, out-of-sequence, or duplicate 
messages. 

Transport layer functions handle addressing of the processes, such 
as application programs, that use the network for communication. The 
Transport layer can also control the rate at which messages flow through 
the network to prevent and control congestion. Whereas the Network 
layer is concerned with the interface between network nodes and oper­
ates in end nodes and intermediate nodes, the Transport layer provides 
an end-to-end service that programs can use for moving data back and 
forth between them. The Transport layer is the lowest layer required 
only in the computers running the programs that use the network for 
communication (see Figure 3.5). 
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The Transport layer is the lowest layer required only in the computers that are communicating. 
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The Session Layer 

There is a fundamental difference in orientation between the bottom 
four layers and the top three. The bottom four layers are concerned more 
with the network itself and provide a data transport service; the top 
three layers are more concerned with the application programs that use 
the network for communication. (See Figure 3.6.) 

The Session layer is the lowest of the layers associated with the appli­
cation programs and is responsible for organizing the dialog between two 
application programs and for managing the data exchanges between 
them. To do this, the Session layer imposes a structure on the interaction 
between two communicating programs. (See Figure 3.7.) The Session 
layer defines three types of dialogs: two-way simultaneous interaction, 
where both programs can send and receive concurrently; two-way alter­
nate interaction, where the programs take turns sending and receiving; 

The layers of the OSI model can be divided into those that provide a data transport service and 
those that supply application program services. 

Application { Application Layer 
Program Presentation Layer 

Services Session Layer 
'-------'-----' 

{ 

Transport Layer 

Data Network Layer 
Transport 1---------1 

Service Data Link Layer 

Physical Layer 
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The Session layer organizes the dialog between two application programs. 
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and one-way interaction, where one program sends and the other only re­
ceives.· In addition to organizing the dialog, Session layer services include 
establishing synchronization points within the dialog, allowing a dialog 
to be interrupted, and resuming a dialog from a synchronization point. 

The Presentation Layer 

The five layers below the Presentation layer are all concerned with the 
orderly movement of a string of bits from one program to another. The 
Presentation layer is the lowest layer interested in the meaning of those 
bits and deals with preserving the information content of data transmit­
ted over the network. (See Figure 3.8.) 

The Presentation layer is concerned with three types of data syn­
taxes that can be used for describing and representing data: 

• Abstract Syntax. An abstract syntax consists of a formal definition of the 
information content of the data two programs exchange. An abstract 
syntax is concerned only with information content and not with how 
that information content is represented in a computer or how it is en­
coded for transmission. For example, an abstract syntax might define a 
data type called AccountNumber, values of which consist of integers. 
ISO 8824 Abstract Syntax Notation One (ASN.1) defines an interna­
tional standard notation that is often used in practice to define abstract 
syntaxes in the OSI environment. 

* Although one-way interaction is defined in ISO 7498, no ISO protocol uses this 
type of dialog. 
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The Presentation layer is responsible for preserving the information content of the data 
transmitted over the network. 
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• Local Concrete Syntax. A local concrete syntax defines how the informa­
tion content of data is actually represented in a computing system. Two 
communicating systems might use different local concrete syntaxes. For 
example, one system might represent an integer as a binary number 
using 2's complement notation; another system might use a string of dec­
imal digits. ISO standards do not address the local concrete syntax, anc' 
programs are free to represent data in any desired way. 

• Transfer Syntax. A transfer syntax defines how the information content 
of data is encoded for transmission over the network. A value of the Ac­
countNumber type might be transferred over the network using some 
form of encoding scheme that identifies the value as being of the Ac­
countNumber type, specifies that it consists of an integer, and encodes 
that integer's value using a minimum number of bits. ISO 8825, 
Specification of Basic Encoding Rules for ASN.1, specifies one way in 
which the information content of data units defined using ASN.1 nota­
tion can be encoded for transmission. The basic encoding rules are often 
used in the OSI environment to produce transfer syntaxes. 

The OSI model defines two major functions for the Presentation layer. 
The first is for the two communicating Presentation entities to negotiate a 
common transfer syntax to be used to transfer the data units defined by a 
particular abstract syntax. The second is to ensure that one system does 
not need to care what local concrete syntax the other system is using. If the 
local concrete syntaxes in the two communicating systems are different, 
the Presentation layer is responsible for transforming from the local con­
crete syntax to the transfer syntax in the sending system and from the 
transfer syntax to the local concrete syntax in the receiving system. 
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The Application Layer 

The topmost layer, the one user processes plug into, is the Application 
layer. (See Figure 3.9.) The Application layer is concerned with high-level 
functions that provide support to the application programs using the net­
work for communication. The Application layer provides a means for 
application programs to access the system interconnection facilities to 
exchange information. It provides all functions related to communica­
tion between systems not provided by the lower layers. The Application 
layer is more open ended than the layers below. Due to the wide variety 
of applications that will ultimately use networks for communication, 
many standards for the Application layer are likely to be developed. 

The OSI Network Now that we have briefly described the functions of the seven layers of 
Architecture the OSI model, we will show how the OSI model relates to the complete 

OSI architecture ISO is defining and introduce the major concepts under­
lying the OSI architecture. 

There is widespread confusion between the OSI model and ISO's 
ultimate plan for a complete network architecture based on the OSI 
model. After the OSI model became accepted as an international stan­
dard, a major part of ISO's work in the area of information system stan­
dardization has been to develop and publish comprehensive standards 
for each of the seven OSI model layers. These standards provide de­
tailed descriptions of the services provided by each layer and the proto­
cols each layer employs for communication. The standards ISO is <level-

FI G u R E 3 . 9 The Application layer is the topmost layer into which user processes plug. 
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oping for the seven layers of the OSI model will ultimately define a fully 
standardized network architecture. At the time of this writing, many of 
the standards making up the OSI architecture are now accepted interna­
tional standards. Others exist as draft international standards and as 
draft proposals, so all work has not yet been fully completed for all 
seven layers. Appendix A lists many of the standards that make up the 
OSI architecture. Since the statuses of international standards change 
rapidly, all standards are shown using the ISO designation, even though 
some of them may be in committee draft (CD) or draft international 
standard (DIS) status. Consult your country's national standards orga­
nization or an organization such as OMNICOM or Global Engineering 
Documents (see Chapter 2) for the current status of each international 
standard. Even though some standards may not currently have full in­
ternational standard status, the standardization process is at a 
sufficiently advanced stage that full implementation of the OSI network 
architecture has been started by many organizations. The latest version 
of the Digital Network Architecture is based on many of the ISO stan­
dards that now exist for OSI architecture. 

There is no requirement on the part of any hardware or software 
vendor to adhere to the principles set forth in the documentation of the 
OSI model or to adopt the ISO standards that are emerging for the seven 
layers of the OSI model. However, there is a worldwide trend in the in­
formation technology industry toward acceptance of and conformance 
to the ISO standards that make up the OSI architecture. 

The OSI model is concerned with the interconnection of systems-the 
way in which they exchange information-and not the internal func­
tions performed by a given system. In OSI terminology, a system is 
defined as: 

A set of one or more computers, the associated software, peripherals, termi­

nals, human operators, physical processes, transfer means, etc., th,at forms 

an autonomous whole capable of performing information processing and/or 

information transfer. 

The OSI model provides a generalized view of a layered architec­
ture. With the broad definition given for a system, the architecture can 
apply to a very simple system, such as a point-to-point connection be­
tween two computers, or to a very complex system, such as the intercon­
nection of two entire computer networks. As we stated earlier, we will 
often use the term node in place of the ISO term system. 
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The ISO standards making up the complete OSI architecture define for 
each layer a single service definition and one or more protocol 
specifications. A service definition defines the specific services a layer 
provides to the layer above it but says nothing about how those services 
are to be provided. A protocol specification describes the formats of the 
data units exchanged and specifies the procedures a layer must perform 
in exchanging those data units in providing the services of that layer. The 
relationship between the services layer N provides and the protocol gov­
erning its operation are shown in Figure 3.10. As shown there, the layer 
N protocol uses the services of layer N-1 to provide a defined set of ser­
vices to layer N+l above it. 

The relationship between a layer's service definition and its protocol specification. 

Layer N Service 

Layer N 

Layer N - 1 Service 

Many earlier network architectures and network implementations 
did not make a clear distinction between the services a layer provides 
and the protocols it uses in supplying those services. This meant that if a 
protocol needed to be changed, perhaps to enhance network efficiency, 
the changes often directly affected users of the network. By clearly sepa­
rating services from protocols, such problems can be minimized. One of 
the underlying concepts in the standards making up the OSI architecture 
is that the service definition for a layer is always independent of protocol 
specifications. 

Service Definition Before we examine what is contained in the service definition for a layer, 
we must define the following two OSI terms: 
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• Entity. An entity is an active element within a layer. Two communicating en­
tities within the same layer but in different network nodes are called peer 
entities. Entities in the Application layer are called Application entities, enti­
ties in the Presentation layer are called Presentation entities, and so on. A 
particular layer provides services to entities running in the layer above. 

• Service-Access-Point (SAP). A service-access-point is the point at which 
the services of a layer are provided. Each layer provides service-access­
points at which entities in the layer above request the services of that 
layer. Each service-access-point has an SAP address, by which the partic­
ular entity that is employing a layer service can be differentiated from all 
other entities that might also be able to use that layer service. 

Abstract Interfaces 

Layer N is the service provider, and layer N+l operating above layer N is 
the service requester or service user. The service definition for layer N 
defines the services layer N provides to entities running in layer N+l via 
a service-access-point into layer N. The set of services provided by layer 
N defines the abstract interface between layer N and layer N+l. (See Fig­
ure 3.11.) There is an abstract interface between any two adjacent layers 
of the architecture. The service definitions for the various OSI model lay­
ers describe these abstract interfaces. An abstract interface describes the 
semantics of the interactions between two architectural layers. An ab­
stract interface does not specify implementation details, nor does it de­
scribe the syntax that must be used to implement the interface. The inter-

A service provider provides a defined set of services to a service requester via a service-access­
point. The set of services provided by layer N defines a abstract interlace between layer N and 
layer N + 1. 

Layer N 

Service 
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Service ································ ······································································ 
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actions between two adjacent layers are described only in terms of an ab­
stract set of services that layer N provides to layer N+l. 

Concrete Interfaces 

In addition to abstract interfaces, concrete interfaces are also important 
at some points in the architecture, especially in the Physical layer and at 
points where application programming interfaces (APis) must be 
specified. A concrete interface might describe a point in the architecture 
at which a physical connector is used, for example, to connect a physical 
device to a transmission medium. A concrete interface might provide 
specific electrical and mechanical specifications for the cables and con­
nectors that must be used for devices and cables to properly implement 
the architecture. A concrete interface might also define an application 
programming interface a programmer must adhere to in writing pro­
grams to request the services of a layer. 

Service Primitives 

The ISO service definition for a layer documents the services a layer pro­
vides to the layer above in terms of a set of service primitives, each of 
which has a defined set of parameters. The service primitives precisely 
define the abstract interface between a layer and the layer above it. The 
ISO standards define four general types of service primitive: 

• Request. Issued by a service requester to request that a particular service 
be performed by a service provider and to pass parameters needed to 
fully specify the requested service. 

· Indication. Issued by the service provider to notify a service requester 
that a significant event has occurred. 

· Response. Issued by the service requester to acknowledge or complete 
some procedure previously invoked by the service provider through an 
indication primitive. 

• Confirm. Issued by a service provider to notify the service requester of 
the results of one or more request primitives the service requester previ­
ously issued. 

A particular service typically uses two or more service primitives. 
Figure 3.12 shows two time-sequence diagrams that show the sequence 
in which service primitives might be issued using the ISO model of ser-
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FIGURE 3.12 Time-sequence diagrams for a nonconfirmed service and a confirmed service. 

Nonconfirmed Service Confirmed Service 

vice primitives. In a time-sequence diagram, service primitives are repre­
sented by arrows, and time flows down. The first diagram shows an ex­
ample of a nonconfirmed service, in which the service requester is not in­
formed of the completion of the service request. In the normal case, a 
request invoked at one end results in an indication being invoked at the 
other. The second service shown in Figure 3.12 is a confirmed service, in 
which the service requester is informed by the distant peer entity of the 
success or failure of the service request. 

Semantics versus Syntax 

A set of service primitives and their parameters together define the ab­
stract interface between two adjacent architectural layers. It is important 
to realize that an abstract interface defines only the semantics, or mean­
ing, of service primitives. The standard does not specify any particular 
method for invoking a particular service, nor does it define how a service 
is to be implemented. Implementation details are the responsibility of the 
vendors that build networking products. In Part II, when we examine 
each of the layers in detail, we describe the ISO service primitives for 
each layer and also introduce the way in which Digital defines the ab­
stract interfaces between layers in the DNA architecture. 

Service-Data-Units 

Some layer services are intended to be used to transmit units of data 
from a layer entity in one node to a peer layer entity in another node. A 
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layer does this by issuing a data transfer request service primitive to the 
layer below and passing the data unit to be transferred as a parameter of 
the request primitive. Data units passed from a service requester to a ser­
vice provider are called service-data-units (SDUs). The name of the SDU 
passed from a layer to the layer below begins with the name of the layer 
to which the SDU is passed. The SDUs passed to the Physical layer by the 
Data Link layer are called physical-service-data-units (PSDUs), the SDUs 
passed from the Network layer to the Data Link layer are called data­
/ink-service-data-units (DLSDUs), and so on. The SDU for a particular 
layer is an abstract definition. In an actual implementation, the data 
making up an SDU can be passed from a layer to the layer below in any 
desired way (for example, as parameters in a procedure call) and need 
not all be passed at the same time. 

Another principle of the OSI model is that when two network nodes are 
communicating with one another, an entity in each layer in the first node 
communicates with its peer entity in the second node using a protocol. 
Figure 3.13 illustrates protocols operating in each of the seven layers of 
the OSI model. The ISO standards for each of the OSI model layers docu­
ment one or more protocol specifications for the protocol(s) that control 
the operation of that layer. In some layers, ISO standards define more 
than one protocol that can be used to provide the services of that layer. 
For example, a number of separate protocol specifications describe the 
operation of the Network layer. Each Network layer protocol speci­
fication describes a different element of the Network layer's functions. 

A protocol specification describing the procedures layer N performs 
in supplying its services to layer N+l defines the following: 

• the formats of the data units exchanged between peer layer N entities 

A separate protocol controls the operation of each of the layers in the OSI model. 
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• the interactions that occur between peer layer N entities in exchanging 
data units 

• the way in which layer N and layer N+l interact in exchanging the ser­
vice primitives defined in the service definition for layer N 

• the way in which the layer N and layer N-1 interact in exchanging the 
service primitives defined in the service definition for layer N-1 

Protocol-Data-Units 

Data units sent from a layer entity in one node to a peer layer entity in 
another node are called protocol-data-units (PDUs). In many cases, a 
layer constructs a protocol-data-unit from the service-data-unit passed 
down from the layer above simply by adding protocol-control-informa­
tion (PCI) to it. (See Figure 3.14.) Some of the information making up 
the protocol information may be passed down from layer N+l to layer N 

FIGURE 3.14 A layer accepts a service-data-unit from the layer above and adds protocol-control-information 
to it to create a protocol-data-unit, which it sends to its peer entity. 
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in the form of service primitive parameters. The PCI is used to control 
the peer-to-peer protocol operating in a particular layer. Protocol­
control-information is carried in the form of a header (and, in the case of 
the Data Link layer, also a trailer) that are added to the SDU. The PDUs 
appear to flow from a layer N entity in the sending node to a layer N en­
tity in the receiving node using the layer N protocol. From this perspec­
tive, functions performed in layer N-1 and below are hidden from layer 
N. 

A layer N entity can also itself generate PDUs apart from the PDUs 
it creates from the SDUs it receives from layer N+l. Such generated 
PDUs are typically transmitted between peer layer N entities to control 
the operation of the layer N protocol. The layer N+l service requester is 
not directly aware of the existence of these PDUs, although the service 
requester might be aware of effects caused by them. 

Interface-Data-Units 

The OSI model precisely defines the way in which the SDU is actually 
passed across the interface between layer N+l and layer Nin the form 
of interface data and interface-control-information (ICI). A set of inter­
face data plus its associated ICI makes up an interface-data-unit (IDU). 
An interface-data-unit is defined as the data unit passed across the ab­
stract interface at the service-access-point in a single interaction. Figure 
3.15 shows how a single service-data-unit might be passed across the in­
terface in three pieces, each of which makes up a single interface-data­
unit. Layer N accepts the interface-data-units and extracts the interface­
control-information and the interface data from them to create the 
protocol-control-information and the service-data-unit. Once all the in­
terface-data-units have been passed across the interface, layer N uses 
the protocol-control-information and the service-data-unit to construct 
a protocol-data-unit for transmission to the peer entity. The service­
data-unit can be passed across the interface in the form of multiple in­
terface-data-units in the sending node, the receiving node, or both. The 
number of interface-data-units need not be the same in the sending and 
receiving nodes. 

Although ISO standards define the way in which information is 
passed across the interface between layer N+l and layer N, the reader 
must realize that ISO service definitions define abstract interfaces, and 
they are not meant to serve as implementation models. An abstract inter­
face can be implemented in any desired way, and it may not be possible 
in an actual implementation to identify the data units described above. 



54 

FIGURE 3.15 

PART I: THE DIGITAL NETWORK ARCHITECTURE 

Interface data together with interface-control-information (ICI) make up an interface-data-unit 
(IOU), which is defined as the data unit that is transferred across the abstract interlace in a 
single interaction. In this example, the service-data-unit is passed across the interlace using 
three interactions in the form of three separate IDUs. 

Layer N 

IOU IOU 
,-----A-----.. ,-----A-----.. 

l1c1l1nterface Data l l1c1l1nterface Data l 

~ 
PCI 

NSDU : 

ICI - intertace-control-intormation 
IOU - interface-data-unit 
SAP - service-access-point 
SOU - service-data-unit 
POU - protocol-data-unit 
PCI - protocol-controHnformation 

Segmentation and Concatenation 

A layer supporting a segmentation function may slice up an SDU into 
multiple segments. It then adds PCI to each segment to create multiple 
PDUs that it transmits separately. This is shown in Figure 3.16. A layer 
supporting a concatenation function may group multiple PDUs into a 
single block that it transmits as a single unit between peer layer entities. 
The layer N+l service requester is not aware of the operation of the seg­
mentation or concatenation functions when they are used. Note that the 
segmentation and blocking functions are completely separate from the 
notion of the SDU being possibly passed across the layer interface in 
multiple interface-data-units. The layer N+l service requester is not 
aware that the segmentation or blocking functions are taking place and 
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FIGURE 3.16 A layer protocol may support a segmentation capability that allows ii to break a service-data­
unil into pieces, each of which ii sends in the form of a separate protocol-data-unit. 
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perceives only the service-data-unit itself, which might be passed across 
the interface in multiple interface-data-units. 

Informal Protocol-Data-Unit Names 

Certain protocol-data-units handled by the lower layers have come to 
have informal names that are often used in networking literature. The 
data-link-protocol-data-units (DLPDUs) passed between peer Data Link 
layer entities are often called frames. The network-protocol-data-units 
(NPDUs) passed between Network layer entities are typically called 
packets. These informal names predate the OSI model and are often not 
used consistently. To avoid confusion, the committees responsible for 
creating the OSI model have assigned the new formal names to the data 
units. However, some networking experts find exclusive use of the for­
mal names for the data units a bit cumbersome: 

This language is often known as internationalbureaucratspeak. We will 
avoid it where possible in favor of more familiar nomenclature actually used 
by working scientists and engineers. [1] 
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The engineers who invented the terms feel less hostile toward them. 

NETWORK ARCHITECT 

OSI terminology is weird and wonderful. ISO doesn't use the same terms peo­
ple in the United States grew up with in computer networking. This is partly be­
cause some of the informal terms don't translate well-some of them are not 

neutral in other languages. So in order to be international, we invented these 
new terms that have now taken on important meanings. 

We will adopt a middle ground and use the internationalbureaucrat­
speak where necessary, but we will avoid it where using the more infor­
mal terms will not confuse matters. For example, in the chapters dis­
cussing the Network layer, we will typically use the informal term packet 
instead of NPDU. But in a world that is becoming increasingly oriented 
to OSI, it is necessary that we all become familiar with its "weird and 
wonderful" terminology. 

Conformance to Standards 

Unlike service-data-units, which can be physically implemented in any de­
sired way, protocol-data-units must be formatted exactly as they are 
defined in the ISO protocol specification. They are the basis for successful 
communication between network machines. As we have seen, the ISO ser­
vice definition for a particular layer defines the services that a layer must 
provide to the layer above it. However, the service definition does not 
provide implementation details, and the interfaces between the layers 
within an actual device or software system are often fuzzy. They are fuzzy 
sometimes because of past history and sometimes to satisfy specific imple­
mentation objectives, such as achieving good performance, conforming to 
packaging constraints, and accommodating non-OSI protocols. 

Conformance to ISO standards is not based on conformance to the 
abstract interfaces described in service definitions; it is based on confor­
mance to the protocol specification and to any concrete interfaces the 
standards may define. The protocol specification defining the procedures 
for a given layer must be adhered to precisely if two nodes are to inter­
operate properly. And the data units flowing between machines at a 
given layer must conform exactly, bit by bit, to the protocol-data-unit 
formats defined in the standard. While service-data-units are abstract, 
protocol-data-units are real. By employing appropriate test equipment, 
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we can actually see the PDUs flowing across the wires or other physical 
circuits that implement the network, and we can examine the various 
headers and see exactly how the bits are set. The protocol specification 
for a layer precisely defines each type of PDU peer entities in that layer 
can exchange and specifies the purpose of each bit in the headers. These 
bits must be set precisely as the protocol specification describes for two 
computers to communicate using an OSI protocol. Any concrete inter­
faces defined in a standard, such as the specification of signal characteris­
tics or for a plug or a connector, must also be adhered to exactly; other­
wise, a device attempting to implement the standards will not be 
plug-compatible with other devices conforming to the standards. 

The service definitions and protocol specifications for all layers above the 
Physical layer of the OSI model define both a connection-mode and a 
connectionless-mode style of operation. A given layer may provide a 
connection-mode service, a connectionless-mode service, or both to the 
layer above it. A connection-mode service provides a service similar to 
that provided by the telephone system. It consists of three distinct 
phases: 

1. connection establishment (we dial a call) 

2. data transfer (we talk over the connection) 

3. connection release (we hang up the phone) 

A connectionless-mode service works more like the postal system. 
The service accepts each data unit for transmission and tries its best to 
deliver it, just as the postal system accepts addressed letters and attempts 
to deliver them to their intended recipients. 

The OSI model, as described in ISO 7498, originally defined only a 
connection-mode style of operation. At any given layer, communication 
could originally take place only after a connection was established be­
tween two peer entities in a given layer. Soon after ISO 7498 was first 
published, it was realized that this dependence on the establishment of a 
connection at each layer limited the power and scope of the reference 
model by specifically excluding entire classes of technology that are in­
herently connectionless in nature. An ISO committee then developed an 
amendment to ISO 7498 specifying an alternative connectionless-mode 
style of operation for each layer above the Physical layer. The service 
definition for each layer now defines connection-mode services and con­
nectionless-mode services. Protocol specifications are also provided that 
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describe protocols to provide each type of service. Documentation of 
connectionless-mode services and protocols has often been added in the 
form of amendments to the original standards. Let us look at the charac­
teristics of connection-mode and connectionless-mode operation. 

Connection-Mode Operation 

With a connection-mode style of operation, communication takes place 
in the three phases described earlier: connection establishment, data 
transfer, and connection release. There must be a three-party agreement 
between the two communicating partners and the provider of the service 
before data transfer can take place. With a connection-mode service, 
data transfer always involves a pair of peer layer entities. If a layer entity 
wishes to transmit a PDU to two or more other peer layer entities, it 
must establish a separate connection with each, and it must transmit the 
PDU to each peer entity in a separate operation. With a connection­
mode service, the full address of the recipient need be specified only 
when the connection is established. Enough information must be pro­
vided with each data unit transferred only to identify the connection 
with which it is associated. A connection-mode service is often described 
as providing reliable and sequential data transfer. As long as the connec­
tion remains established, the sender can generally assume each data unit 
sent is successfully received and that the data units are received in the 
same order sent. If something goes wrong, the connection is either reset 
or released, and all parties are informed of the reset or release. The con­
nection can be reset or released at any time by either of the communicat­
ing parties or by the service provider. This is an inherent property of a 
connection-mode service because any of the three parties can indepen­
dently fail at any time. 

The mechanisms used in various layers to supply a connection-mode 
service must perform two functions related to error correction: sequence 
checking and message acknowledgement. If layer N is supplying a con­
nection-mode service to layer N+1, these two functions must be per­
formed either by the layer N protocol itself or by at least one of the pro­
tocols operating below layer N. To perform the sequence checking 
function, PDUs being sent are assigned sequence numbers. As PDUs are 
received, the sequence number of each incoming PDU is checked to en­
sure that PDUs have arrived in the sequence in which they were sent and 
that none have been sent twice. Periodically, the receiving layer entity 
sends an acknowledgement so the sending entity knows the PDUs have 
arrived successfully. If problems occur and the receiving entity informs 
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the sending entity that PDUs were not successfully received, the sending 
entity retransmits them. 

Connectionless-Mode Operation 

With a connectionless-mode style of operation, communication takes 
place in a single phase. The service requester hands an SDU to the service 
provider and gives the service provider the full address of the destination 
to which the SDU is to be sent. The service provider then packages the 
SDU in a PDU and attempts to deliver the PDU to its destination. Each 
PDU must contain the full address of its intended recipient and is han­
dled independently from all other PDUs. A connectionless-mode service 
may incur less protocol overhead than a connection-mode service, espe­
cially when small amounts of data must be transferred. The delay in­
volved in sending small amounts of data is also often less with a connec­
tionless-mode service because no time is spent in setting up a connection 
before the data are sent. With a connectionless-mode service, there is no 
need to establish a logical connection between the sending and the re­
ceiving entities, and each PDU is sent and processed independently of 
any other PDU. No sequence checking is done to ensure that data units 
are received in the same sequence in which they were sent, and the re­
ceiver sends no acknowledgement that it has received a PDU. No flow 
control or error recovery is provided as part of a connectionless-mode 
service. With a connectionless-mode service, PDUs can be sent to one 
destination or to several destinations using the same service request. 
When a connectionless-mode service is used at a given layer, any flow 
control and error recovery services required must be provided either in a 
higher layer or by the communicating application programs. 

A connectionless-mode service is typically described as providing a 
best-efforts delivery service. It is also sometimes called a datagram ser­
vice. The sender does not know for sure a data unit being sent will actu­
ally be received by its intended recipient. A connectionless-mode service 
is not a reliable service. It is important to point out here that the term re­
liable used in this context is perhaps not the best term that could be used. 
Reliable has a "good" connotation that does not apply here. For exam­
ple, a connection-mode service, although considered reliable, may pro­
vide a very poor service if frequent failures cause the connection to be 
constantly broken, thus requiring new connections to be established to 
continue data transfer. On the other hand, a connectionless service may 
deliver 999,999 data units out of every 1,000,000 sent. However, we 
cannot consider it reliable because we don't know for sure. 
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NETWORK ARCHITECT 

Take this thing of reliability and guarantee of delivery. A connection-oriented 

person would say: "A connectionless service does not provide reliable delivery." 

But a connection-oriented service, even though it is described as reliable, doesn't 

provide reliable delivery either. When they refer to the service as reliable, what 

they really mean is: "If we don't give it to you, we will usually tell you we're not 

giving it to you." I say "usually" here because even the failure detection can 

never be 100 percent guaranteed. It is also interesting to note that with a "reli­

able" connection-mode service, the breaking of connections also voids the deliv­

ery and sequencing guarantees, thus still requiring recovery procedures in the 

higher layers. We need new terminology. Instead of using the term "reliable," 

perhaps we should start saying "positive notification of failure" or something 

like that. 

Connectionless-Mode versus Connection-Mode Applications 

The OSI model makes a distinction between connectionless-mode appli­
cations and connection-mode applications. A connectionless-mode ap­
plication is one that simply sends data units into the network at the level 
of the Application layer and does not need the network to tell it whether 
the data unit was successfully received. Such an application may not care 
whether the data unit was received, or it might implement its own proce­
dures for implementing end-to-end controls. 

A connection-mode application is one that needs to establish a con­
nection with another application and to have the network itself perform 
the required end-to-end controls. Most of today's applications that use 
the facilities of a computer network are connection-mode applications 
that want the network to accept the burden of providing a connection­
mode, reliable data transfer service. However, there are some applica­
tions that require only a best-efforts datagram service, all the way up to 
the Application layer, and these may begin to increase in number over 
the years. 

A network might implement a connectionless service at each layer to 
support connectionless-mode applications and a connection-mode ser­
vice at each layer to support connection-mode applications. However, 
things often are not that straightforward. It is quite possible to provide a 
connection-mode service at one layer using a connectionless-mode ser­
vice at the layer below. It is also possible to provide a connectionless­
mode service at a particular layer by using a connection-mode service at 
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the layer below. Consistent with the definitions of each of the layers, the 
combinations of connectionless-mode and connection-mode service 
shown in Figure 3 .17 are possible within the context of the OSI model. 
The Physical layer provides a service that cannot be categorized as either 
a connectionless-mode or a connection-mode service. The Data Link 
layer can provide either a connection-mode or a connectionless-mode 
service. Likewise, the Network layer can provide either a connectionless­
mode or a connection-mode service on top of either form of Data Link 
service. And the Transport layer can provide either a connectionless­
mode or a connection-mode Transport service on top of either form of 
Network service. Above the Transport layer, conversions are not al­
lowed. The Session, Presentation, and Application layers must together 
provide a connectionless-mode service for connectionless-mode applica­
tions or a connection-mode service for connection-mode applications. 

At the level of the Data Link layer, there is generally little contro­
versy concerning whether a connection-mode or a connectionless-mode 
style of operation should be supported. Analyzing such factors as trans­
mission speed, average error rate, and cost determines whether a data 
link protocol should provide a connection-mode service or a connection­
less-mode service. In a wide-area networking environment, speed and 
throughput typically are relatively low and the cost and the error rate are 
relatively high. So most wide-area networking data link protocols pro­
vide a reliable data transfer service. In a local area networking environ-

A variety of combinations of connectionless-mode and connection-mode services are possible 
in the context of the OSI model. 
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ment, transmission speed is very high, and the error rate and the cost are 
typically low. Therefore, a connectionless-mode style of operation is 
more appropriate. The broadcast nature of the local area network trans­
mission medium also favors a connectionless approach. 

The protocols operating in the Network layer generally are designed 
to operate using both connection-mode and connectionless-mode Data 
Link services, depending on the types of data link employed. At the level 
of the Transport layer, there is also little controversy. The majority of 
today's network applications require a reliable Transport service, and lit­
tle use is made of a connectionless-mode Transport service. It is possible, 
however, that this may change in the future as connectionless-mode ap­
plications grow in number. 

The Network Layer Controversy 

Things are not as straightforward for the Network layer as they are for 
the other layers. There is great controversy in networking circles regard­
ing whether the Network layer should provide a connection-mode ser­
vice or whether a connectionless-mode Network service is sufficient. 
Digital is in the connectionless-mode camp and says only a datagram ser­
vice is required in the Network layer, although the DNA Phase V archi­
tecture provides a connection-mode Network service for those requiring 
it. Many of the operators of public data networks, on the other hand, 
want to provide a connection-mode Network service. IBM also tends to 
be in the connection-mode camp with its SNA architecture. We will have 
more to say about the differences between connection-mode and connec­
tionless-mode services in Part II, when we examine each of the OSI 
model layers in detail. 

The DNA Phase V architecture is an implementation of the OSI architec­
ture, and the ISO standards developed for the OSI architecture play im­
portant roles in the architecture. Chapter 4 introduces DNA Phase V and 
examines the way in which the DNA architecture has embraced ISO 
standards for the seven layers of the OSI model. 

1. Andrew S. Tanenbaum, Computer Networks-Second Edition, Pren­
tice Hall, Englewood Cliffs, NJ, 1988. 
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The Digital 

Network Architecture 

This chapter discusses Digital's approach to computer networking by in­
troducing the Digital Network Architecture (DNA). We will see that a 
primary thrust of the latest version of DNA is to incorporate into the 
DNA architecture the ISO standards for the OSI model introduced in 
Chapter 3. 

DNA and DECnet Many users of Digital equipment and software are familiar with the 
term DECnet, which is used in the names of Digital's networking prod­
ucts. We will begin our examination of the Digital Network Architec­
ture by discussing the relationship between DECnet and DNA. 

The Digital Network Architecture consists of an architectural 
overview document, a set of specifications for each layer, and descrip­
tions of each protocol that operates within each layer. These together 
constitute DNA. DNA, as a network architecture, is essentially a set of 
paper specifications, not a hardware or software product. All the com­
ponents of DNA described in this book, while controlled by Digital and 
copyrighted, are available to the public. It is not necessary to have a li­
cense with Digital to purchase the detailed functional specifications of 
DNA. Be forewarned, however, that the detailed specifications of DNA 
make up a stack of manuals about three feet high, and are not for the 
faint of heart. 

DECnet refers to a specific set of products that implement the Digi­
tal Network Architecture. The DECnet product line consists of hard­
ware products, software products, and documentation for those prod­
ucts. Examples of DECnet hardware products are routers that relay 
messages from node to node through the network and host computing 
systems. An example of a DECnet software product might be the DEC-
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net networking software that runs in a host computer. The DECnet 
products, unlike the architecture, are licensed products. They are paid 
for, and they have support policies associated with them, just like other 
Digital products. 

DNA Architectural The specifications that make up the Digital Network Architecture pre­
Specificalions cisely define the architecture. A list of the most important DNA Phase V 

architectural specifications is included in Appendix B. The architectural 
specifications are designed to guide Digital engineers in developing DEC­
net hardware and software products so they all adhere to the same set of 
standards, thus allowing the products to be easily interconnected to form 
networks. They can also be used by other vendors in creating hardware 
and software products that can participate in a DECnet network on an 
equal basis with Digital products. The various types of information con­
tained in the DNA architectural specifications are listed in Box 4.1. 

Architectural Digital has been involved in the development of network architectures 
Design Principles since the early 1970s. Since then, Digital network architects have devel­

oped a number of design principles that have been refined as architec­
tures have evolved. Some of the important design P\inciples that guided 
the development of DNA are listed below: · 

• Self-Stabilization. No matter what sort of failure occurs, algorithms and 
protocols should be constructed so the system always attains a correct, 
stable state when the failure is corrected or the failing component is re­
moved from the network. The best example of this principle is found in 
the routing algorithm. The Phase V routing algorithm stabilizes in finite 
time to "good routes," provided no continuous topological changes 
occur. 

• No Single Point of Failure. Algorithms and protocols should be designed, 
where feasible, so there will be no single component whose failure will 
cause the entire network to fail. It should be possible to add redundant 
equipment and software to the network and expect that higher reliability 
and availability will result. For example, in ro_l!ting, algorithms will al­
ways find a path if a physical path exists, and in naming, replication of 
directories allows for continued operation even if one or more name 
servers fail. 

· Locality. Individual parts of the system should self-stabilize even if con­
tinuous failures are occurring that affect the system on a global basis. 
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Protocols 

A protocol defines the way a layer entity in one node communicates 
with a peer entity in another node. A protocol defines the formats of 
the data units handled by a particular layer and the way in which infor­
mation is exchanged among computers in the network in that layer. 
Precise specification of protocols and accurate implementations of 
those protocols allow diverse network machines to communicate suc­
cessfully with one another across the network. The specifications for 
each architectural layer describe the protocols that apply to that layer. 

Abstract Service Interfaces 

An abstract service interface defines the way a layer in a node com­
municates with the layer above it in the same node. Descriptions of 
abstract service interface specifications constitute one of the fundamen­
tal characteristics of a layered architecture. Service interface specifica­
tions allow the complexities of a lower layer to be hidden from the lay­
ers above it. ISO standards define service interfaces in terms of abstract 
service primitives and parameters; DNA architectural specifications 
define abstract service interfaces in terms of a set of function and proce­
dure declarations written in the Modula 2+ programming language. 
The function and procedure declarations for an abstract service inter­
face precisely define the services a layer can request of the layer below 
it. Digital defines DNA service interfaces in terms of programming lan­
guage functions and procedures rather than English language state­
ments because a formal specification language allows a service interface 
to be defined with precision and without ambiguity. The use of a partic­
ular programming language to define a service interface, however, 
should not be taken to imply that implementations of the architecture 
must use this language or must even be constrained to using procedure 
calls. The architecture can be implemented in any desired way, for 
example, using hardware or software interrupts or mechanisms operat­
ing in integrated circuits instead of procedure calls. 

Concrete Interfaces 

In addition to abstract service interfaces, which are defined for all 
pairs of adjacent layers in the architecture, the architecture also defines 
concrete interfaces at key points. A concrete interface is defined at any 
point where it is necessary to describe the physical characteristics of a 
plug or a connector and the characteristics of the signals flowing over 
the interface. A concrete interface might also describe an application 
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programming interface (API) that defines how an application program 
requests network services. 

Configuration Mechanisms 

Configuration mechanisms are the means by which the network auto­
matically adapts to a changing environment. These include mecha­
nisms that allow the network to modify its operation in response to 
changing network topologies and to control adaptive algorithms to 
improve the performance of the network. For example, when a new 
computing system is connected to the network, the architecture 
specifies the mechanisms used to allow that system to become, auto­
matically, an active part of the network. 

Network Management Mechanisms 

Network management mechanisms describe the means by which a dis­
tributed network can be controlled and monitored. In Digital's view, 
network management constitutes all those elements of network opera­
tion that cannot be done automatically by the underlying network pro­
tocols. It also concerns the gathering of information for offline analysis 
and processing to measure the performance, reliability, and availability 
of the network. 

Again, the best example of this principle can be found in routing. The 
network should stabilize locally to good routes even if there are continu­
ous topology changes occurring elsewhere in the network. 

• Minimal Dependence on Network Management. The algorithms and 
protocols should depend as little as possible on explicit human network 
management actions. The system should be self-managing as much as 
possible, and network management should concentrate on the setting of 
policy rather than on day-to-day operation. Algorithms and protocols 
should be designed so components can be plugged into the network and 
become part of it with little or no human intervention. 

• Invariants in System Operation. The invariants of the system must be 
stated so the system is never permitted to enter an incorrect state. 

• Determinism. The state of the system must be determined only by the 
characteristics of the system itself and must not depend on history. The 
best example of this is in routing. The routes calculated must be a func-
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tion only of the network topology, not a function of past events that have 
occurred. This makes the operation of the network entirely predictable. 

• Scalability. Algorithms and protocols should be designed so they scale 
well to support very large networks. 

• Interoperability. Algorithms and protocols should be designed so they fa­
cilitate the interconnection of a variety of different types of network 
equipment. 

• No Cliffs. Algorithms and protocols should be designed so when param­
eters exceed their design limits, no catastrophic failure occurs as soon as 
the limit is exceeded. The effect of adding one to anything should be to 
make things slightly worse than they were before, but there should be no 
point where adding one will cause the entire network to fail. 

• Configurable Redundancy. It should be possible to configure a range of net­
work topologies to make tradeoffs among cost, performance, and availabil­
ity. For example, it should be possible to configure a network so a critical ap­
plication can continue to operate despite the failure of a node or a data link. 

Before we describe the actual architectural layers constituting the current 
version of the Digital Network Architecture, we w1ll discuss how DNA 
has evolved over the years. We will then see how the latest version of 
DNA has incorporated ISO standards into the architecture. The develop­
ment of DNA began in the early 1970s, when most of the major com­
puter vendors were beginning to discover the value of computer commu­
nication across networks. Digital published its first DNA specification at 
about the same time IBM announced its Systems Network Architecture 
(SNA). Since then, DNA has evolved through a series of five phases. 

DNA Phase I 

Phase I of DNA was introduced in 1974. DECnet implementations of 
Phase I of DNA included support only for PDP-11 computing systems 
running the RSX-11 operating system. These implementations provided 
the ability to communicate in a standardized manner over point-to-point 
links between pairs of processors. 

DNA Phase II 

DNA Phase II was introduced in 1976. A major enhancement over Phase 
I was that the architects guaranteed they would not make incompatible 
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changes from one version to the next. The Phase II architecture was also 
defined with sufficient precision that it was possible to have multiple, dif­
ferent implementations of the architecture that could interoperate with 
one another. DECnet implementations of Phase II of DNA were imple­
mented for many of the Digital operating systems commonly used in that 
era, such as RSTS, TOPS-10, and TOPS-20. Phase II still provided only 
for point-to-point communication between pairs of processors; no inter­
mediate node routing capabilities were included. 

DNA Phase Ill 

DNA Phase III was introduced in 1980 and provided the user with the 
ability to construct networks of up to 255 processors in any desired 
configuration. To handle such networks, this phase introduced an adap­
tive routing capability that allowed the computers themselves to deter­
mine the location of each node and to relay messages from one computer 
to any other computer, possibly through a number of intermediate 
nodes. An architecture for network management was also introduced in 
Phase III, and Digital developed gateways to other types of network, 
such those conforming to IBM's SNA standards and CCITT Recommen­
dation X.25. Recommendation X.25 defines the means by which a com­
puter is attached to a packet-switched data network. (The various roles 
that X.25 plays in the context of DNA are introduced in Chapters 7 and 
8 and are discussed in detail in Chapter 18.) 

DNA Phase IV 

Phase IV of DNA was introduced in 1982. Phase IV defined a 16-bit net­
work address that allowed users to construct networks theoretically con­
taining up to about 64,000 nodes. However, network management con­
straints limited the practical size of networks to networks somewhat 
smaller than this because it is difficult to use the 16-bit address space that 
densely. DNA Phase IV added support for high-speed communication 
over short distances by integrating into the architecture support for the 
Ethernet form of local area network (developed jointly by Digital, Intel, 
and Xerox). The support for local area networks made it easy to connect 
large numbers of devices to the network. Phase IV also expanded the 
adaptive routing capability to include support for hierarchical routing. 
Hierarchical routing is a technique that allows adaptive routing to oper­
ate efficiently in large networks by dividing the network into subdivi-
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sions called areas. Hierarchical routing is discussed in detail in Chapters 
7 and 9. 

The layers of the Phase IV architecture have much similarity to the 
layers of the OSI model, especially at the lower levels of the architecture. 
However, at the time DNA Phase IV was introduced, ISO standards for 
many of the protocols had not yet emerged; therefore, many of the DNA 
Phase IV protocols remained Digital's own. Figure 4.1 illustrates the 
functional layers of the DNA Phase IV architecture, and Box 4.2 con­
tains a brief description of each layer. 

DNA Phase V 

DNA Phase V, the subject of this book, was first introduced in 1987, and 
the first DECnet Phase V products to implement the architecture were 
brought to the market by Digital in 1991. The development of DNA 
Phase V took place over a number of years and was guided by the fol­
lowing five major objectives: 

• support for very large networks (1,000,000+ nodes) 

• integration of ISO standards into the architecture 

• definition of a new network management model 

• compatibility with DNA Phase IV 

• equal or better performance than Phase IV implementations 

The following sections discuss each of these five major objectives. 
Support for Very Large Networks DNA Phase V was specifically de­

signed to support very large networks. The theoretical maximum size of 
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The Physical Link Layer 

The DNA Phase IV Physical Link layer corresponds exactly with the 
Physical layer of the OSI model. It is concerned with the transmission 
of bits across a physical medium, such as a telephone connection or a 
local area network cable. The Phase IV architecture uses international 
standards for describing the operation of this layer. 

The Data Link Layer 

The Phase IV Data Link layer corresponds exactly to the Data Link 
layer of the OSI model. The Data Link layer supports the proprietary 
Digital Data Communication Message Protocol (DDCMP) for wide 
area networking and the Ethernet Specification for local area net­
working. 

The Routing Layer 

The Routing layer is analogous to the Network layer in the OSI 
model. The Routing layer uses the building blocks of nodes and links 
implemented by the Physical and Data Link layers to implement a net­
work of any desired configuration. The Routing layer allows a node to 
send data units to any other node in the network, independently of 
how many intermediate nodes the data units have to pass through to 
arrive at their destinations. The Phase IV Network layer provides a 
connectionless-mode datagram service. The addressing structure of 
DNA Phase IV allows for a theoretical maximum of about 64,000 
nodes. 

The End Communication Layer 

There is a close correspondence between the functions performed by 
the End Communication layer and the functions performed by the OSI 
Transport layer. A major purpose of the End Communication layer is 
to provide for reliable communication between programs using the 
underlying datagram Routing layer service. The Data Link layer itself 

a network conforming to the DNA Phase V architecture is essentially un­
limited; implementation considerations rather than architectural con­
straints limit the size of DECnet Phase V networks that can be built. The 
initial products supporting Phase V make it possible to build networks of 
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may in some cases provide an essentially error-free data communica­
tion service between a pair of network nodes. However, since the 
Routing layer provides a connectionless-mode datagram service, the 
End Communication layer must ensure packets are placed into their 
proper sequence, duplicate packets are eliminated, and retransmission 
is requested when packets are lost. 

The Session Control Layer 

The Session Control layer performs some of the functions specified for 
the three uppermost layers of the OSI model: the Session, Presentation, 
and Application layers. It deals with such things as assigning names to 
objects in the computing environment, controlling access to those ob­
jects, and requesting communication services. 

Higher Layers 

Above the Session Control layer in the Phase IV architecture are three 
more layers that each directly access Session Control layer services. All 
of these layers operate above the operating system interface and are 
perceived by the operating system as network applications: 

The Network Application Layer. The Network Application layer 
implements commonly used network facilities, such as transferring 
files from one computing system to another, providing facilities for 
logging onto a remote computing system, and electronic mail. 

The Network Management Layer. The Network Management layer 
uses the facilities of the network to exchange messages concerning the 
status of network nodes, communication links, and other network 
components. This layer implements a variety of user interfaces net­
work managers can use to monitor the status of the network and to 
gather statistics on network operation. 

Network User Layer. The Network User layer represents the actual 
users of the network. These are the people and the application pro­
grams that use the network to perform useful work. 
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up to a million or so nodes. In addition, internetworking capabilities are 
defined that allow a DECnet Phase V network to be interconnected with 
other DECnet networks and with any other network implementing the 
ISO standards for the OSI model, leading ultimately to a single global 
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data network. The very large OSI network addresses Phase V uses {up to 
20 octets· compared to 16 bits in Phase IV) allow for addresses on all 
networks to be globally unique. When networks begin to be intercon­
nected, the network addresses of the nodes will remain unique in a man­
ner similar to global telephone numbers. To support such large net­
works, the routing algorithm that handles the relaying of messages from 
a source node to a destination node has been improved over that in 
Phase IV so it performs well in a very large network. 

Integration of ISO Standards ISO standards for the OSI architecture 
have been integrated into DNA to allow computers from any vendor 
supporting the ISO standards to participate as a full partner in a DECnet 
Phase V network. The approach Digital has taken with respect to the in­
tegration of ISO standards and protocols is twofold: 

1. Where an ISO protocol exists that duplicates functions previously 
performed by a Digital protocol, Digital has replaced its own proto­
col with the appropriate ISO protocol. Where a Digital protocol has 
been replaced, Digital has also retained support for its own protocol 
for the purposes of compatibility with Phase IV. 

2. Where there is an ISO protocol that performs a similar function as a 
DNA protocol, but where the Digital protocol has some important 
advantage, such as higher performance, or a greater range of func­
tions, DNA supports both the ISO and the DNA protocols, allowing 
the user to employ either one. Automatic network mechanisms select 
the required protocols as needed. 

Digital's stated motivation for integrating the ISO standards directly 
into the DNA architecture is to provide support for multivendor net­
works. In Digital's view, the market for networking products has been 
constrained by the ability to interconnect equipment from various ven­
dors. Digital believes that by supporting multi-vendor connectivity, it 
will greatly expand its own market for networking products. 

• ISO standards and other documentation concerning the OSI model typically 
refer to a collection of 8 bits as an octet. Much of the DNA documentation also 
uses the term octet for a collection of 8 bits. Even though the term byte is today 
more common than octet, we will adopt the OSI terminology and use the term 
octet to refer to an arbitrary collection of 8 bits, such as when it is used to 
describe a networking protocol. But we will continue to use the term byte when 
referring to a collection of 8 bits in a storage system. 
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NETWORK ARCHITECT 

The only company that can bet its business on Digital's proprietary network 

architecture is Digital. So if you buy into this vision of very large networks, then, 

by definition, these large networks must be based on standards. The standards 

must be extremely good technically to solve these kinds of problems because they 

are very difficult problems to solve. The essential problem facing the industry, and 

the real challenge, is that we must have extremely well thought out standards that 

everyone agrees to and implements consistently. Digital's approach says that ISO 

standards should be an integral part of the network. This means that wherever 

there is a place ISO standards should play a role, then that is the place they get 

slotted in. In Digital's view, ISO standards are not a means just for interoperabil­

ity between DECnet networks and anyone else's network. Digital's goal is one of 

total interoperability with anyone who chooses to implement the ISO standards. 

We believe the computer industry cannot afford to have artificial bound­

aries between networks conforming to entirely different architectures-such as 

connecting an OSI network to one conforming to IBM's SNA-because this 

forces you into a gateway model. With gateways, you get the Union of the lia­

bilities and the Intersection of the capabilities of the two architectures being 

connected. If you are forced to use gateways to interconnect a group of incom­

patible networks, you will be too restricted. If you think of it strictly from a 

user-to-computer view, then there are all sorts of translation mechanisms you 

can get away with that really do not cost you very much. But in a computer-to­

computer environment, with very large numbers of nodes, these translation 

mechanisms would very seriously limit the kinds of networks you could build. 

New Network Management Model DNA Phase V defines a new network 
management model that allows for either centralized or decentralized 
management of both small and large networks. The new network man­
agement model promotes the distribution of function among various 
processors in the network but allows users to employ a single central 
focus for network management if they choose to do so. The network 
management model allows for continuous network operation. It is never 
necessary to shut a DECnet network down to perform network manage­
ment functions or to reconfigure portions of the network. The network 
management model was strongly influenced by early drafts of the ISO 
standards for network management, and Digital's work has also 
influenced the development of those standards. Digital feels it will be rel­
atively simple to provide support of OSI network management when it 
becomes accepted as an international standard. The characteristics of the 
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DNA Phase V network management model are introduced later in this 
chapter and are examined in detail in Chapter 17. 

Compatibility with Phase IV A network that conforms to DNA Phase V 
is fully capable of supporting equipment and software conforming to 
Phase IV of the architecture in order to provide an orderly transition 
from a Phase IV environment to a Phase V environment. A major reason 
for providing compatibility with Phase IV is that networks behave in 
many ways like living organisms. It is not possible with a large computer 
network simply to shut it down to install a new release of the networking 
software on all the computers. The transition to new software must be 
made in an orderly manner on one portion of the network at a time. 
During the transition period it must be possible for the network to con­
tinue in operation with some nodes running Phase V software and others 
continuing to run in a Phase IV environment. Another reason for provid­
ing backward compatibility is that many hardware and software imple­
mentations of DNA Phase V are more sophisticated and more complex 
and require more resources than those for Phase IV. Certain older imple­
mentations of DNA, running on older hardware, will not be converted 
to Phase V. To allow Digital customers to continue using such hardware, 
it is necessary to support those Phase IV implementations on a continu­
ing basis. The Phase V network management model discussed previously 
also provides for coexistence with nodes conforming to Phase IV of the 
architecture. From a network management perspective, it is not possible 
for a Phase IV node to manage Phase V nodes, but Phase V nodes do 
have the capability to manage Phase IV nodes. 

Performance A guiding principle in the design of the Phase V proto­
cols and mechanisms is that their implementations must be capable of 
providing performance at least equal to the performance provided by the 
Phase IV facilities they replace. In many cases, Phase V implementations 
provide better performance than their Phase IV counterparts. 

DNA Phase V The layer structure of the Phase V architecture is shown in Figure 4.2. In 
Functional Layers Phase V of DNA, the lowest four layers of the architecture conform ex­

actly to the OSI model and use the ISO standards defined for those layers. 
Above the Transport layer, the user can choose between Digital propri­
etary protocols and ISO standard protocols for the upper three layers of 
the OSI model. As stated earlier, the intent in DNA Phase Vis to use ISO 
standard protocols wherever possible. However, both ISO standard pro­
tocols and DNA proprietary protocols are supported in the lower layers 
for compatibility with earlier versions of the architecture. This view of the 
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architecture as supporting multiple protocol stacks is a key to the flexibil­
ity of the DNA Phase V architecture. DNA Phase V has been designed so 
other important protocol stacks, such as the Transmission Control Proto­
col/Internet Protocol (TCP/IP) suite, can be supported as needed. 

The Physical Layer 

The Physical layer of the Phase V architecture is similar in function to the 
Phase IV Physical Link layer. It is analogous to the Physical layer of the 
OSI model and includes architectural specifications that define three 
major forms of physical link: 

• Modem Connect. This specification defines support for international 
standards that govern the way a computer is connected to an analog or 
digital data transmission facility in a wide area networking environment. 

• CSMA/CD LAN. This specification covers both the Physical and Data 
Link layers and documents specifications for how a computer is at­
tached to a carrier sense multiple access with collision detection 
(CSMA/CD) form of local area network (LAN). The CSMA/CD LAN 
specification supports the CSMA/CD form of LAN defined by the IEEE 
802.2/802.3 and ISO 8802-2/8802-3 standards. Support is also pro­
vided for the Ethernet form of LAN, described by the Ethernet 
Speci-fi,cation jointly published by Digital, Intel, and Xerox. CSMA/CD 
and Ethernet LANs are compatible and support a data transmission rate 
of 10 megabits per second over a multiaccess transmission facility using 
various types of transmission media. Digital's implementations of the 
CSMA/CD and Ethernet LAN standards are described in Chapter 22. 
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• FDDI LAN. This specification describes both the Physical and Data Link 
layers and defines how a computer is attached to a Fiber Distributed 
Data Interface (FDDI) form of local area network. FDDI is described by 
the ANSI X3T9.5 standards and by ISO 9314. An FDDI LAN supports a 
data transmission rate of 100 megabits per second over a ring-structured 
network, typically using a fiber-optic transmission medium. Digital's im­
plementation of the FDDI form of LAN is described in Chapter 23. 

The architecture is designed so other forms of local area network, 
such as the IEEE/ISO token ring and token bus forms of LAN, can be ac­
commodated easily if needed. The main differences between Phase IV 
and Phase V in the Physical layer is that Phase V has added support for 
the IEEE/ISO CSMNCD and ISO FDDI forms of LAN. The Phase V 
Modem Connect specification also provides a network management in­
terface that is more explicit than the Phase IV equivalent of Modem 
Connect. Chapter 5 discusses the Physical layer in detail. 

The Data Link Layer 

The Data Link layer in the Phase V architecture is similar to the Data 
Link layer in the Phase IV architecture. It is analogous to the OSI model 
Data Link layer and includes architectural specifications for five forms of 
data links: 

• HDLC. The HDLC specification includes support for ISO's High Level 
Data Link Control (HDLC) protocol, defined by ISO 3309, 4335, 7809, 
and 8885. 

• LAPB. The LAPB specification defines a subset of the HDLC protocol 
used for compatibility with X.25 networks, defined by CCITT Recom­
mendation X.25 and ISO 7776. 

• CSMA/CD LAN. The Data Link layer portion of the CSMNCD LAN 
specification includes support for the CSMNCD and Ethernet forms of 
LAN, defined by IEEE 802.3, ISO 8802-3, and Version 2 of the Ethernet 
Specification. 

• FDDI LAN. The Data Link layer portion of the FDDI LAN specification 
includes support for the ISO FDDI forms of LAN, defined by the ANSI 
X3T9.5 standards and ISO 9314. 

• DDCMP. The DDCMP specification continues support for the Digital Data 
Communication Message Protocol (DDCMP) included in DNA Phase IV. 

The main differences between Phase IV and Phase V in the Data 
Link layer is that Phase V has added support for HDLC and for the 
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CSMNCD and FDDI forms of LAN. Chapter 6 discusses the Data Link 
layer in detail, and the chapters in Part V describe the various protocols 
supported by the DNA Data Link layer. 

The Network Layer 

The Network layer in the Phase V architecture is similar to the Routing 
layer in the Phase IV architecture. The Phase V Network layer is the 
same as the OSI model Network layer, and Network layer architectural 
specifications include support for the following ISO standards: 

• The normal mode of operation of the DNA Phase V Network layer is to 
provide the ISO connectionless-mode Network service (CLNS) described 
in ISO 8348 Amendment 1 using the network addressing structure 
defined in ISO 8348 Amendment 2. The CLNS is provided using the pro­
tocols described in ISO 8473, ISO 9542, and ISO 10589. 

• Optional support is also provided for the ISO connection-mode Net­
work service (CONS), described in ISO 8348, using the network ad­
dressing structure defined in ISO 8348 Amendment 2. The CONS is pro­
vided to allow for communication between a DNA Phase V node and a 
node on an X.25 network that supports only the CONS using the proto­
cols described in ISO 8878 and ISO 8208. 

The main thrust of the changes Digital has made in the Network 
layer is to accommodate very large networks, to support the attachment 
of devices from multiple vendors to a DECnet network, and to intercon­
nect the separate networks of different organizations. Key to this are the 
use of the ISO Network layer standards and the support of ISO network 
addressing standards that specify the use of globally unique addresses. 
DNA Phase V defines a unique distributed routing algorithm that sup­
ports very large networks. This routing algorithm has been accepted by 
ISO for standardization as a Network layer protocol described in ISO 
10589. The Network layer also includes support for the connection­
mode Network service to allow DNA Phase V nodes to communicate di­
rectly with other nodes on X.25 packet-switched data networks, but the 
strategic thrust of Phase V is to provide a datagram Network service. 
Chapters 7, 8, and 9 describe the Network layer in detail. 

The Transport Layer 

The Transport layer of the DNA Phase V architecture is similar to the 
End Communication layer of Phase IV. It provides support for the OSI 
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Transport protocol and also for Digital's own Transport protocol: 

• The Phase V Transport layer provides the OSI Transport service defined 
in ISO 8072 and implements classes 0, 2, and 4 of the OSI Transport 
protocol defined by ISO 8073. Class 4 Transport is the preferred operat­
ing mode. 

• A second protocol defined for the Transport layer is the DNA Network 
Services Protocol (NSP) implemented in the DNA Phase IV End Commu­
nication layer. Much of the experience Digital gained in building Digi­
tal's NSP Transport protocol was used by ISO in specifying the Class 4 
ISO Transport protocol. 

The main difference between the Phase IV and Phase V architectures 
in the Transport layer is that Digital has adopted the ISO standards for 
this layer. However, Digital's NSP protocol is still supported for compat­
ibility with Phase IV systems. Chapter 10 describes the Transport layer in 
detail. 

Higher Layers 

Above the Transport layer are two separate protocol stacks that provide 
support for two separate classes of application. Other protocol stacks 
are likely to be added as well to meet the needs of Digital's customers. 
The higher layers are where the networking and communication pieces 
of the DNA architecture are integrated with the rest of the computing 
environment, such as the operating system, the applications that run on 
it, and system management facilities. DNA Phase V is designed to sup­
port both proprietary DNA applications and applications conforming to 
ISO standards. 

• DNA Session Control Layer. DNA applications communicate with other 
DNA applications using the DNA Session Control layer. Even though the 
fifth layer of the OSI model is named the Session layer, it has little in 
common with the DNA Session Control layer. Chapter 11 examines the 
DNA Session Control layer. 

• OSI Higher Layers. OSI applications communicate with other OSI appli­
cations using the OSI Session, Presentation, and Application layers. Sup­
port for the three OSI upper layers is defined by the architectural 
specification for the OSI Upper Layer (OSUL) architecture. Chapter 12 
describes the OSUL architecture in detail. 

To send a message from one user process to another using the net­
work, a DNA application passes a user message to an implementation of 
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the DNA Session Control layer using an application programming inter­
face defined by the local operating system environment. An OSI applica­
tion passes a user message to an implementation of the OSUL architec­
ture. An application that needs to communicate with other DNA 
applications and with other OSI applications can use the facilities of 
both protocol stacks. It would then employ the interface appropriate for 
the partner with which it is communicating. 

The DNA Session Control layer or the OSI upper layers add proto­
col-control-information (PCI) to each user message in the form of head­
ers to create a transport-service-data-unit (TSDU), which it passes down 
to a Transport layer entity. The Transport layer is not concerned with 
whether the TSDU originated in the DNA protocol stack or in the OSI 
protocol stack. It simply knows the service-access-point address of the 
peer Transport entity to which the message is to be delivered. The Trans­
port entity operates using the ISO protocol for the Transport layer 
whether a message originated from a DNA Session Control layer entity 
or from an OSI Session layer entity. 

The support for both DNA applications and OSI applications using 
separate protocol stacks should not be viewed as a compromise that 
makes the DNA Phase V architecture somehow less than compliant with 
ISO standards. The support for both stacks reflects the real-world fact 
that there are currently more DNA applications running on DECnet net­
works than there are OSI applications. This is likely to be the case for 
some time to come. There would have been no advantage in attempting 
to merge the DNA Session Control layer with the three OSI upper layers. 
Digital's view is that as OSI applications continue to be developed and as 
they grow in capability, more use will begin to be made of the OSI upper 
layer stack by applications running on DECnet networks. Over time, the 
DNA proprietary upper-layer protocol stack will become less important. 

A growing problem in computer networking, especially with large net­
works, involves identifying, locating, and accessing network resources 
and the people that use them. Network resources include anything that 
can be accessed via the network, including devices, files, databases, and 
application programs. A computer network requires an easy-to-use di­
rectory service for locating resources by name. The DNA Phase V nam­

ing service provides such a directory facility. Conceptually, the function 
of the naming service is simple: a user provides the naming service with a 
name, and the naming service passes back the set of attributes associated 
with that name. The naming service can store attribute values for any 
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type of named object the user finds useful. An important attribute associ­
ated with a named object is the address of the node on which the object 
resides. Storing the address of a resource as an attribute of its name al­
lows the user to locate network resources by name alone without regard 
to where in the network they reside. 

The naming service allows network users to create a single name­
space containing the names of all the objects that can be referenced, any­
where in a possibly global network. For good performance and high 
availability, the naming service implements the namespace in the form of 
directories stored in a distributed database. The namespace directories 
can be both partitioned (different sets of directories are maintained by 
different nodes) and replicated (the same sets of directories can be main­
tained by multiple nodes). The naming service is central to the operation 
of a DECnet Phase V network, and each node in the network implements 
a naming service component called a clerk. Users employ a clerk to re­
quest naming service operations. Certain nodes in the network also im­
plement naming service components called name servers, each of which 
is responsible for maintaining a portion of the namespace. Clerks com­
municate with name servers to satisfy name lookup operations. Chapter 
16 describes the naming service in detail. 

The DNA Phase V approach to network management is based on an 
overall approach to the management of distributed systems, in which the 
communication network is viewed as only one aspect of the distributed 
system. Digital's overall approach to distributed system management is 
described by the enterprise management architecture (EMA). The enter­
prise management architecture defines a distributed system as a collec­
tion of individual computing systems tied together by a communication 
network for the purposes of sharing resources between the various com­
puting systems. The EMA can be viewed as a meta-architecture that en­
sures consistency among a family of management architectures in the 
same way an individual architecture ensures consistency among a family 
of implementations. The DNA Phase V network management architec­
ture is one of a series of management architectures that fall under the 
EMA umbrella. The DNA Phase V network management architecture 
describes how the components of a DNA Phase V communication net­
work are managed. Other management architectures describe how vari­
ous other components in the total distributed system are managed. 

Each major component of the DNA Phase V architecture, including 
each architectural layer, has interfaces with a network management com-
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ponent. DNA Phase V network management allows network managers 
to monitor the operation of a network component and to change its op­
erating characteristics. It allows parameter values to be specified that de­
scribe how various aspects of the network are to operate and also allows 
parameter values automatically set by DNA Phase V protocols to be fine­
tuned as necessary. DNA network management also allows network 
managers to start and stop network components as needed, to monitor 
the operation of the network, and to extract information relating to net­
work traffic and network performance characteristics. Chapter 17 de­
scribes the DNA network management architecture in detail. 

With DNA Phase V, Digital has solved a great many of the problems as­
sociated with building very large networks. These solutions include a so­
phisticated, distributed routing algorithm capable of scaling into the mil­
lions of nodes, a global naming service that allows users to access 
resources without having to know where they are located, and a network 
management scheme that allows automated monitoring and controlling 
of network resources in a global network. 

Chapter 5 begins Part II of this book, which examines in detail each 
of the functional layers making up the DNA Phase V architecture. Chap­
ter 5 discusses the lowest layer of the architecture, the Physical layer. 
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The Physical Layer 

The DNA Physical layer is responsible for the transmission of signals 
across a physical transmission medium connecting two or more devices. 
Some Physical layer implementations must also provide support for the 
establishment and release of calls, as over a switched telephone line. Typ­
ically the hardware associated with the Physical layer consists of electri­
cal cables, appropriate connectors, and two or more communicating de­
vices capable of both generating and detecting voltages or other types of 
signal, such as microwave transmissions or light flowing through an op­
tical fiber. The hardware might also include modems, transceivers, re­
peaters, concentrators, or other signaling devices. Hardware or firmware 
permanently installed in the communicating machines typically controls 
the generation and detection of these signals. A physical link might in­
volve the concatenation of a series of data circuits, such as in a typical 
long-distance telephone link. The Physical layer hides the complexity of 
such a concatenation of circuits from users of the Physical layer and 
makes the circuits appear to be a single physical circuit. A user of the 
Physical layer is typically an entity running in the Data Link layer, but 
the Network layer and network management entities also sometimes di­
rectly access the services of the Physical layer. 

The documentation of the OSI model (ISO 7498) and the DNA architec­
tural specifications list the following major functions of the Physical 
layer: 

• Circuit Establishment and Release. Allows a physical circuit to be dy­
namically established when it is required and released when the circuit is 
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no longer needed. This function is provided for a circuit implemented by 
a temporary facility, such as a dial-up line in the telephone network. 

• Bit synchronization. Establishes synchronization in a receiving device 
with a stream of bits coming in and clocks data in from the communica­
tion circuit at the correct rate. 

• Physical-Service-Data-Units. Defines the physical-service-data-unit 
(PSDU) passed down from a user of the Physical layer in the sending de­
vice and up from the Physical layer to its user in the receiving device. A 
PSDU typically consists of a single bit. 

• Data Transfer and Sequencing. Allows electrical signals to be exchanged 
over the circuit connecting two communicating devices and allows bits 
to be accepted by the receiving device in the same order in which they are 
delivered by the sending device. 

• Fault Condition Notification. Notifies the Physical layer user when fault 
conditions occur. 

• Network Management. Controls and monitors the operation of func­
tions operating in the Physical layer. Network management functions in­
clude setting the operating characteristics of the communication link, ac­
tivating and deactivating physical circuits, monitoring the status of 
physical links, and performing diagnostic procedures, such as loopback 
tests. 

• Medium Specific Control Functions. Provides control functions for 
specific forms of transmission medium, such as encoding/decoding, car­
rier sensing, collision detection, and collision announcement functions 
for CSMA/CD LAN data links, and detection of illegal cabling topolo­
gies for FDDI data links. 

The circuit used to connect communicating devices that the Physical 
layer addresses has several characteristics, including: 

• duplex or half-duplex transmission 

• point-to-point, multipoint, or multiaccess circuits 

• synchronous or asynchronous transmission 

Duplex or Half-Duplex Transmission 

Some types of physical circuits permit communication in both directions 
at the same time. These are called duplex, or full-duplex, circuits. Half­
duplex circuits allow communication in both directions but in only one 
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A point-to-point circuit using a direct cable connection. 
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direction at a time. A third form of circuit, called a simplex circuit, al­
lows communication in only one direction. Simplex circuits are not ordi­
narily used for data communication because even if information needs to 
be transmitted in one direction, control signals of some kind generally 
must flow in the opposite direction to control communication functions. 

Point-to-Point, Multipoint, or Multiaccess Circuits 

In the Physical layer three types of circuits can be used for interconnect­
ing devices in the network: point-to-point, multipoint, and multi-access. 

The simplest circuit consists of a point-to-point connection between 
a pair of devices. An example of a point-to-point circuit is shown in Fig­
ure 5.1, in which two devices are directly attached by a cable. A more 
complex type of point-to-point circuit might be implemented by a pair of 
modems and a telephone line, as shown in Figure 5 .2. Collections of 
point-to-point circuits can be used to create any desired network 
configuration. In a typical DECnet Phase V network, routers are usually 
connected to one another using point-to-point circuits to form a mesh 
structure. Certain types of local area network, such as FDDI, also use 
collections of point-to-point links to create ring structures. Examples of 
the mesh and ring configurations are shown in Figure 5.3. In most cases, 
point-to-point circuits are implemented by a direct electrical or optical 
connection between each pair of devices. But another type of point-to-

A point-to-point circuit using a telecommunications link. 
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Mesh and ring configurations using point-to-point circuits. 

= 

point connection can be implemented via a virtual circuit connecting a 
pair of computers that communicate using a packet-switched data net­
work, typically implementing CCITT Recommendation X.25. 

With a multipoint circuit, any number of devices are connected 
using a single physical connection, as shown in Figure 5.4. With a multi­
point circuit, one device acts as the master and is in control of the circuit, 
while the other devices act as slaves. Each slave receives all the transmis­
sions of the master, and the master receives the transmissions of all the 
slaves. The slaves cannot communicate directly with each other; they can 
communicate directly only with the master. In the Data Link layer, how­
ever, DNA models a multipoint physical circuit as a collection of sepa­
rate point-to-point links between the master and each of the slaves. 
Thus, the multipoint characteristics of the link are hidden from layers 
above the Data Link layer. 

A multipoint circuit. 

Slaves 

Master 
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A multiaccess circuit. 
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A multiaccess circuit has some similarities to a multipoint circuit in 
that any number of devices can be attached to a single physical circuit, as 
shown in Figure 5 .5. However, with a multiaccess circuit, all devices act 
as peers, and there is no master/slave relationship between devices. Each 
device on the multiaccess circuit receives all the transmissions of all the 
others. The CSMA/CD form of local area network uses a multiaccess cir­
cuit to attach all devices to a common bus- or tree-structured transmis­
sion medium. 

Synchronous versus Asynchronous Transmission 

Data can be transmitted over a physical link in either an asynchronous 
or a synchronous fashion. With asynchronous transmission, sometimes 
called start-stop, a small number of bits, such as the 8 bits representing a 
single character, are sent at a time. Relatively simple equipment can be 
used because the two devices must be in synchronization only for the 
time it takes to transmit and receive a single character. 

With synchronous transmission, bits are sent in a continuous 
stream. A block of perhaps hundreds or even thousands of bits can be 
sent at one time, and for the duration of the entire block the receiving 
device must stay in synchronization with the transmitting device. Box 
5 .1 provides brief descriptions of the characteristics of asynchronous and 
synchronous transmission. 

Work is being done in various standards bodies, with the Electronic In­
dustries Association (EIA) playing a leadership role, in developing archi­
tectures to govern the way in which electrical and optical cables should 
be installed in buildings to support flexible network topologies. 
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Asynchronous Transmission 

Asynchronous transmission is well suited for slow-speed transmission, 
for example, with keyboard devices that do not have a buffer and with 
which the operator sends characters along the line at more or less ran­
dom intervals. With asynchronous transmission, each transmitted 
character begins with a start bit and ends with one or more stop bits. 
The start bit indicates the beginning of a transmission, and there can 
be an indeterminate interval between transmitted characters. 
Characters are transmitted when the operator presses the keys. The 
receiving machine has a clocking device that starts when the start bit is 
detected and operates for as many bits as there are in a character. The 
receiving machine uses the clocking device to tell where each bit starts 
and ends. Asynchronous transmission often is used to communicate 
over short distances, for example, over the cable that attaches an inex­
pensive terminal to a terminal controller. Simple asynchronous trans­
mission techniques also are sometimes used in computer networks 
where a high bandwidth is not required. 

Synchronous Transmission 

When machines transmit to each other continuously and with regular 
timing, synchronous transmission can provide more efficient transmis­
sion. Here the bits are strung together and are transmitted in a continu­
ous stream. There are no start bits, stop bits, or pauses. The bit stream is 
divided into units called frames, and all the bits in the frame are trans­
mitted at equal time intervals. The transmitting and receiving machines 
must remain in synchronization during the time it takes to transmit a 
complete frame. Devices using synchronous transmission employ a wide 
variety of frame lengths. The frame size may vary from a few bits to 
thousands of bits. A period of time is taken up between the transmission 
of one frame and the next, so the larger the frame length, in general, the 
higher can be the overall speed of transmission. On the other hand, the 
larger the frame, the higher the probability that an error will occur dur­
ing transmission, which will require the frame to be retransmitted. A 
compromise between these two factors must be made. 

Wiring Environments 

The EIA technical report TR 48.1 describes one such standard that 
defines three different types of environment in which network cabling 
can be used: 
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• Work Area Environment. A work area environment consists of an open 
area within a building in which walls and cabling are not considered per­
manent. In any given work area, the distances spanned by cabling are 
relatively short and relatively few devices are installed. One type of work 
area might be a general office area in which typical network equipment 
consists of devices connected to some form of LAN and employed by end 
users. Typical devices installed in such a work area might be personal 
computers, file and print servers, and technical workstations. Another 
type of work area might be a computer room in which various types of 
host computer equipment are installed. 

• Building Environment. A building environment is a building, or a collec­
tion of floors in a building, in which the walls and the wiring are consid­
ered relatively permanent. In a building environment, the distances 
spanned by cable runs are moderate, and relatively large numbers of de­
vices are installed. 

• Campus Environment. A campus environment involves a number of 
buildings connected by cable segments making up what is often called a 
backbone network. In a campus environment, distances are relatively 
great and cables are often permanently installed in underground tunnels. 

Local area networks typically form the basis of network wiring in work 
area, building, and campus environments, with common carrier facilities 
most often linking multiple widely separated building and campus envi­
ronments. Most early local area networks were installed in work area 
environments, where a relatively small number of network devices were 
connected in an ad hoc manner. In today's environment, building and 
campus environments are increasingly important as organization-wide 
networks are being created to link together all parts of an organization. 
Careful planning is of the greatest importance in building and campus 
environments because of the relative permanence of the wiring and its 
greater cost relative to the wiring installed in a work area environment. 

Equipment Rooms 

The EIA cable plant architecture defines three types of equipment rooms, 
which are those physical places in the three environments at which cables 
are physically terminated (see Figure 5.6). An equipment room is a dedi­
cated space for facility wiring in which all types of wiring might be termi­
nated, including wiring for data, telephone, electrical power, security, and 
fire alarms. Network cabling is terminated in each type of equipment 
room using various types of patch panels that facilitate documentation, 
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Hierarchy of equipment rooms. 
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maintenance, and reconfiguration. Equipment rooms normally are kept 
locked and are accessed only by qualified service personnel. 

The equipment room at the top of the hierarchy is called the main 
cross connect equipment room. A campus of buildings has a single main 
cross connect equipment room used to terminate cabling running to each 
individual building or collection of building floors in the campus envi­
ronment. For each building or for each collection of floors making up an 
individual building environment, there is a single intermediate cross con­
nect equipment room that terminates the cabling running from the main 
cross connect equipment room. Cabling is run from the intermediate 
cross connect equipment room to as many telecommunications cross 
connect equipment rooms as are needed to serve the needs of the build­
ing environment. Cabling runs from a telecommunications cross connect 
equipment room to the individual work areas it serves. 

DNA Phase V supports a number of international standards that define 
the operation of the Physical layer. Standards are supported for the wide 
area networking environment as well as for the local area network envi­
ronment. This chapter concentrates on standards that define the opera­
tion of wide area networking circuits. Physical layer standards for local 
area networks are also introduced in this chapter, but Physical layer de­
tails for LANs are deferred to the chapters in Part V. Chapters 22 and 23 
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in Part V describe the two major forms of LAN technology currently 
supported by DNA Phase V. 

DTE-DCE Interface In the wide area networking environment, various international stan­
Standards <lards, all similar in function, define the way in which a computing device 

is attached to a signaling device, such as a modem. These standards 
define the concrete interface between a device in a class called data ter­
minal equipment (DTE) and a device in a complementary class called 
data circuit-terminating equipment (DCE). The communication adapters 
in terminals and computers are common examples of devices containing 
DTEs; modems are common examples of devices containing DCEs. The 
important DTE-DCE interface standards for the wide area networking 
environment include: 

EIA-232-D and 
Recommendation 
V.24 

• EIA-232-D 

• CCITT Recommendation V.24 

• EIA-422 

• EIA-423 

• EIA-449 

• CCITT Recommendation V.35 

The EIA publishes standards analogous to some published by CCITT. A 
common EIA standard for the Physical layer is EIA-232-D. The EIA-
232-D standard has CCITT counterparts-Recommendation V.24 and 
Recommendation V.28-that together are equivalent to the EIA-232-D 
standard. EIA-232-D defines 25 interchange circuits that carry positive 
and negative voltages ranging from about 5 to 15 volts to connect a com­
puting device (DTE) to a signaling device (DCE), such as a modem. Not 
all 25 circuits need be used. As few as 3 circuits can be used for commu­
nication between two devices and still be in conformance with the stan­
dard; however, many implementations use more than the minimum. 
CCITT Recommendation V.24 defines these same 25 circuits, and Rec­
ommendation V.28 defines the electrical characteristics of the signals. 
The standard defines the interface as suitable for serial transmission at 
speeds up to about 20,000 bits per second at a distance of typically 50 
feet or less. In practice, the EIA-232-D standard is often used over dis­
tances up to a few hundred feet. 
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EIA-232-D cable connector and circuits. 
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14 - SBA - Sec Transmitted Data 
15 - DB - Transmission Sig Elem liming 
16 - SBB - Sec Received Data 
17 -DD - Receiver Sig Elem liming 
18 - Unassigned 
19 - SCA - Sec Request to Send 
20 - CD - Data Terminal Ready 
21 - CG - Signal Quality Detector 
22 - CE - Ring Indicator 
23 - CH/Cl - Data Signal Rate Selector 
24 - DA - Transmit Sig Elem liming 
25 - Unassigned 

A 25-pin connector, such as that shown in Figure 5.7, is most often 
used for implementing an EIA-232-D connection. However, a 9-pin con­
nector is used in many implementations, including many serial commu­
nications adapters installed in personal computers. Figure 5. 7 also shows 
some of the commonly used functions of EIA-232-D circuits. 

Figure 5.8 illustrates a typical long-distance implementation of a 
physical circuit between two computers. In this case, the computer on 

Two computers connected by two modems and a telecommunications link. 

1111111111111111111 

m:mm:::mm c::::J 

1111111111111111111 

:::::m::::::::::: c::::J 



CHAPTER 5: THE PHYSICAL LAYER 95 

the left has circuitry that performs the functions of a DTE. It is con­
nected via a short cable that uses two 25-pin EIA-232-D connectors to a 
complementary device with circuitry that performs the functions of a 
DCE. The computer on the right also implements a DTE connected by 
another EIA-232-D cable to a DCE. The DCEs are connected to each 
other by a telephone line of arbitrary length. In this example, the two 
computers each implement a DTE in a communication adapter, and the 
two DCEs are implemented in a pair of compatible modems. 

Notice that there are three physical connections in this configuration. 
The DTE on the left is connected to its DCE by an EIA-232-D cable, the 
two DCEs are connected by a telephone line, and the DTE on the right is 
connected to its DCE by another EIA-232-D cable. The Physical layer is 
concerned only with the interface between the DTE and the DCE. The 
way in which the two DCEs (modems) exchange signals is governed by 
entirely different sets of international standards and is of no concern to 
DNA. As long as both modems use the same signaling scheme, the way in 
which they exchange signals is of no concern to the two DTEs. 

A null modem cable is sometimes used to directly connect two DTEs 
over short distances using only the data interchange circuits. A null 
modem is a special cable or connecting device that crosses circuits to 
simulate the presence of a pair of modems between the two communicat­
ing devices. Figure 5 .9 shows a possible null modem cable configuration 
for connecting two DTEs using the EIA-232-D standard. 

F 1 G u R E 5 . 9 Typical null-modem cable. 
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EIA-232-D is the most commonly used Physical layer standard for imple­
menting relatively low-speed wide area networking circuits. The EIA 
also defines specifications for higher-performance circuits, including the 
following: 
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• EIA-422-A. The EIA-422-A standard is entitled Electrical Characteristics 
of Balanced Voltage Digital Interface Circuits. It specifies an alternative 
method to EIA-232-D for connecting a DTE to a DCE. The EIA-422-A 
standard specifies a more electrically stable method for generating bal­
anced positive and negative voltages in the range of from 2 to 6 volts­
the voltage level normally used in integrated circuits. The standard states 
these techniques can be used to implement equipment capable of trans­
mitting and receiving data at up to 10 megabits per second. However, 
many implementations are limited to speeds much less than this. 

• EIA-423-A. The EIA-423-A standard, entitled Electrical Characteristics 
of Unbalanced Voltage Digital Interface Circuits, is similar to EIA-422-A 
but specifies the use of unbalanced rather than balanced signals. As with 
EIA-422-A, this standard states that these techniques can be used to im­
plement equipment capable of transmitting and receiving data at up to 
10 megabits per second. However, as with EIA-422-A, many implemen­
tations are limited to speeds much less than this. 

• EIA-449. The EIA-449 standard is entitled General Purpose 37-position 
and 9-position Interface for Data Terminal Equipment and Data Cir­
cuit-Terminating Equipment Employing Serial Binary Data Interchange. 
It defines signal characteristics, provides functional descriptions of inter­
change circuits, and specifies the characteristics of the physical connec­
tors used to implement the EIA-422-A and EIA-423-A standards. 

Modem Standards It is desirable that independent organizations be able to design and man­
ufacture modems and data processing equipment with modems inte­
grated into them. To permit this, various standards exist for modem de­
sign that permit modems of different manufacturers to communicate 
with one another. It is desirable that modem standards be internationally 
accepted and permit international transmission. To this end, CCITT has 
published a series of standards for modems in its V series of Recommen­
dations. In addition to the international standards for modems, ad hoc 
standards for modems have arisen simply because certain types of 
modem are, or have been, widely used. As long as a modem manufac­
turer conforms to a standard in designing a modem, modems of different 
manufacturers can communicate with one another over any type of ana­
log telecommunication link. Two types of standards are important for 
modems: 

• the signals used for transmitting data between two compatible modems 
over the physical circuit 
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• the command set used by the computer to control the operation of the 
modem 

Signaling System 
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As we have already introduced, the Physical layer is concerned only with 
the way in which a computer is attached to a modem and how the com­
puter communicates with it, so the modems can implement any desired 
form of signaling between them as long as both modems implement the 
same type of signaling. Some commonly used signaling system standards 
have been set by AT&T. An obsolete AT&T modem, the Model 212A 
Data Set, implemented two alternative signaling systems to support data 
transmission at either 300 bits per second or 1200 bits per second. 
Modems compatible with the two signaling systems of the Model 212A 
modem are in common use today. The signaling system most often used 
by the manufacturers of 2400 bps modems in the United States is de­
scribed by CCITT Recommendation V.26bis. Many manufacturers of 
high-speed modems for use over the switched telephone network con­
form to CCITT recommendation V.32, which specifies a data transmis­
sion rate of 9600 bits per second. 

Command Set 

A modem manufacturer can use any desired command set that the com­
puter must employ in controlling the modem. However, many manufac­
turers of modems use the command set first introduced by the Hayes 
Corporation for its Smartmodem family of modems for personal com­
puters. This command set, generally referred to as the AT command set, 
is now a de facto standard. The AT command set implements commands 
the computer can issue to perform such functions as setting the modem's 
data transmission rate, dialing the telephone number of the computer 
with which it would like to communicate, and controlling the modem's 
automatic answering features. 

Recommendations V.25 and V.25bis 

CCITT Recommendations V.25 and V.25bis are international standards 
for performing some of the functions implemented by the Hayes AT 
command set. These include dialing the telephone number of the modem 
with which a connection is desired and for controlling the automatic an­
swering .features of the modem. 
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The DNA Phase V Physical layer also supports the use of industry stan­
dard digital circuits for connecting communicating devices. In the United 
States, most common carriers provide digital circuits that support vari­
ous data rates. Other countries provide such telecommunications ser­
vices as well. When a digital circuit is used, modems are not required and 
devices called digital service units (DSUs) or line drivers provide the in­
terface between the communicating device and the digital circuit. (See 
Figure 5.10.) 

As introduced in Chapter 4, DNA Phase V includes three architectural 
specifications that define Physical layer capabilities. No proprietary pro­
tocols are included in the Physical layer; only accepted international 
standards are used. The three Physical layer specifications are: 

• Modem Connect 

• CSMA/CD LAN 

• FDDI LAN 

There is a separate architectural specification for each of the above, 
and each is augmented by documents describing the associated ISO stan­
dards each specification incorporates. The DNA architectural 
specifications and the ISO standards often combine descriptions of both 
the Physical layer and the Data Link layer for a particular type of data 
link. An actual implementation of the Physical layer is closely tied to an 
implementation of the Data Link layer for a particular form of transmis-

A digital circuit. 
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sion technology, and both are often implemented in hardware in the 
same device. The DNA specifications and ISO standards for the Physical 
layer typically contain information about service definitions, concrete in­
terfaces, and protocol specifications. 

Service Definitions 

A Physical layer service definition defines the abstract interface between a 
Physical layer entity and a user of the Physical layer entity. This abstract 
interface defines the services a Physical layer entity provides to its user. 

The international standards for local area networking technology 
(the IEEE 802/ISO 8802 family of standards) define the abstract interface 
between a Physical layer entity and its users in terms of service primitives. 
(Chapter 3 introduced the service primitives used in ISO standards to doc­
ument abstract interfaces.) DNA architectural specifications for Modem 
Connect and the two forms of LAN describe the abstract services the 
Physical layer provides to its users in terms of procedure declarations. 

Concrete Interfaces 

In addition to the abstract interfaces described by service definitions, 
standards for the Physical layer also define concrete interfaces. These in­
clude specifications for physical connectors and cables and the character­
istics of the various types of signals exchanged. They also define the 
characteristics of certain types of devices, such as the transceivers, con­
centrators, and repeaters used in constructing networks. 

Protocol Specifications 

A protocol specification for the Physical layer involves mechanical, elec­
trical, functional, and procedural means for activating and deactivating 
physical circuits and for transmitting signals across them. Protocol 
specifications for the Physical layer are contained in the architectural 
specifications for Modem Connect and the two forms of LAN supported 
by DNA Phase V. 

We continue by discussing each of the Physical layer architectural 
specifications that define the operation of the DNA Phase V Physical 
layer. This chapter includes details for Modem Connect. The two forms 
of LAN are introduced, but details concerning the Physical layer for 
CSMNCD LANs are in Chapter 22, and details concerning the Physical 
layer for FDDI LANs are in Chapter 23. 
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Modem Connect The Modem Connect specification defines how the DNA Phase V Physical 
layer operates over WAN telecommunication links. Modem Connect sup­
ports any type of modem or service unit for communication over a con­
ventional analog telecommunications link or over a digital data service. 
Figure 5.11 shows the Modem Connect architectural model when HDLC 
is used in the Data Link layer and the DNA Phase V Network layer is the 
user of the Data Link layer service. A user of Modem Connect accesses its 
services via a port. A port is a data structure employed by a particular 
Modem Connect user. A port is assigned to a user upon request and re­
mains associated with that user until it is explicitly released. Each user has 
its own port assigned, and many users can access the services of Modem 
Connect simultaneously, each through its own assigned port. 

FIGURE 5.11 

Modem Connect defines two types of ports: call control ports and 
data ports. The Network layer (and other Data Link service users) com­
municate directly with a Modem Connect entity through a call control 
port. A Data Link layer entity communicates with Modem Connect 
through a data port. 

The following sections introduce the important services and functions 
provided by Modem Connect through the call control and data ports. 

Call Control Port Services 

The services accessed via a call control port are used to control and mon­
itor the circuit establishment and circuit release functions for switched 
lines. A call control port allows higher layer entities to request the estab­
lishment of an outgoing call, such as over a dial-up line, to handle in­
coming calls, and to clear established calls. The call control services are 

Modem Connect architectural model. 

Data Link Layer 

Modem Connect Physical Layer 
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not used when a leased line is employed. The procedure declarations 
defining the Call Control services are listed in Box 5.2. 

The following function and procedure declarations define the 
abstract interface between the Physical layer and a user of the 
Physical layer in terms of the call control services a Modem Connect 
entity provides to its users. 

Port Control Functions 

• CcOpenPort. Assigns system resources for a call control port, which 
is a data structure that defines an access point to the switched line 
call control service. 

• CcEnablePort. Allows the user to gain access to a call control port 
that was previously disabled and then subsequently made available 
again th~ough a network management action. 

• CcClosePort. Frees up the system resources assigned to an existing 
call control port. 

Call Control Functions 

• CcCallConnectedPoll. Determines whether a call has come in on a 
switched line circuit. 

• CcHoldCall. Attaches a call control port to a call so other users of 
the Modem Connect entity are unable to clear the call. 

• CcClearCall. Requests that the call associated with the call control 
port be cleared. 

• CclnitiateCall. Allows the user to employ a call control port to make 
an outgoing call to establish a switched line circuit. 

• CcCallState. Returns the status of the call currently associated with a 
particular call control port. Possible status conditions include con­
necting, connected, disconnecting, disconnected, and disconnect 
pending. 

• CcDisconnectReason. Obtains information about the reason an 
established call was disconnected or that an outgoing call request 
failed to connect. 

Control Functions 

• PhCallConnectedPoll. Determines whether a call has come in on a 
switched line circuit. 
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• PhAttachToCall. Used only with switched lines to attach a data port 
to a connected switched line. 

• PhEnableTransmit. Enables the transmitter component of a Modem 
Connect entity and activates the modem's Request to Send inter­
change circuit. 

• PhEnableTransmitPoll. Determines whether an operation requested 
by the PhEnableTransmit function has been completed, either suc­
cessfully or unsuccessfully. 

• PhDisableTransmit. Disables the transmitter component of a Modem 
Connect entity and deactivates the modem's Request to Send inter­
change circuit. 

• PhDisableTransmitPoll. Determines whether an operation requested 
by the PhDisableTransmit function has been completed, either suc­
cessfully or unsuccessfully. 

• PhEnableReceieve. Enables the receiver component of a Modem 
Connect entity. 

• PhTestForLoopback. Used to perform a loopback test function. 

Data Port Services 

The services accessed via a data port allow a user of the Physical layer to 
transmit and receive data on either a leased or a switched circuit. They are 
also used to control line turnaround operations on half-duplex circuits. 
These services can be requested for both switched and nonswitched tele­
communications facilities. For example, an HDLC data link might request 
these services in order to transmit and receive individual bits over a physi­
cal circuit. The data transfer services Modem Connect supplies are inde­
pendent of characteristics of individual devices and physical circuits. The 
procedure calls defining the Data Transfer service are listed in Box 5.3. 

Polled Interfaces 

The procedure declarations that make up the service interface to Modem 
Connect, like all service interfaces defined for the layers of the DNA 
Phase V architecture, document a polled interface. To transmit data 
using a polled interface, the user makes a request to transmit and then 
follows that request with explicit requests to determine whether the op­
eration has been completed. Actual implementations of the service inter-
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The following function and procedure declarations define the 
abstract interface between the Physical layer and a user of the 
Physical layer in terms of the data transfer services a Modem 
Connect entity provides to its users. 

Port Control Functions 

• PhOpenPort. Reserves system resources for a data port, which is a 
data structure that defines an access point to the data transmission 
services for a modem connect line. 

• PhClosePort. Frees up the system resources assigned to an existing 
data port. 

• PhEnablePort. Allows the user to gain access to a data port that was 
previously disabled and then subsequently made available again 
through a network management action. 

Data Transfer Functions 

• PhTransmitBit. Issued by a user of the Physical layer entity to 
enqueue a single bit of data for physical transmission. 

• PhReceiveBit. Issued by a user of the Physical layer entity to read a 
single bit of the data received by a Modem Connect entity. 
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face, however, are much more likely to use interrupts rather than a 
polled interface. With interrupts, the user makes a request and then con­
tinues with other tasks. When the request has been satisfied, the user is 
notified with an interrupt. 

Service interfaces are defined in the DNA Phase V architecture using 
polled interfaces because a polled interface is easier to describe than an 
interface using interrupts. As discussed in Chapter 3, abstract interfaces 
are intended to convey only the semantics of the services they describe. 
They are not intended to restrict the implementation of that interface to 
any particular set of techniques. An implementor is free to choose any 
desired method to build an implementation of the services defined by an 
abstract service interface. 

Call References 

Modem Connect assigns unique identifiers, known as call references, to 
incoming and outgoing calls. Call references are assigned via a counter 



104 

FIGURE 5.12 

PART II: DNA FUNCTIONAL LAYERS 

maintained for each switched line. The counter is incremented for each 
incoming and outgoing call attempt made on a line, thus providing a 
unique call reference for each attempted call. Call references provide a 
means of tying together the call establishment and release phases with 
the data transfer phase. They also provide a means for correlating man­
agement information about the various phases of a call. 

Call Sharing 

The call sharing feature allows calls on a switched line to be accessed by 
more than one user of the Physical layer. For example, a network man­
agement entity and a DNA Network layer entity might share the same 
call and thus both use the same physical circuit. When the call sharing 
feature is used, the clearing of calls is coordinated by Modem Connect so 
that when one user requests that a call be cleared, the call will be re­
tained if it is currently in use by some other user. 

Modem Connect Operation 

A detailed architectural model that illustrates how a Modem Connect 
entity controls a single physical circuit is shown in Figure 5 .12. Requests 
made by a user of the Physical layer are handled by the line handler com­
ponent. At the lowest level of the architectural model, the interchange 
circuit interface component provides access to the DTE-DCE inter­
change circuits. These are the physical circuits implemented in the cable 

Modem Connect functional components. 

Interchange circuits 
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and connectors used to connect the DTE (computer) to the DCE (modem 
or other signalling device). The line handler uses the services of the trans­
mitter and receiver components in providing each service to a user of 
Modem Connect. Modem Connect provides a bit-stream interface to its 
users in which data pass across the interface in 1-bit units. 

A Modem Connect entity user sending data passes bits across the in­
terface, one at a time, to the line handler. The line handler passes them to 
the transmitter component, which adds them to the end of the transmit 
queue. The transmitter concurrently removes bits from the front of the 
transmit queue and clocks them onto the transmit interchange circuit. To 
service a user receiving data, the receiver component clocks bits from the 
receive interchange circuit and adds them to the end of the receive queue. 
A user receiving data issues a request to the line handler for each bit. For 
each request, the line handler asks for a bit from the receiver component, 
which then removes a bit from the front of the receive queue. Both the 
transmitter and the receiver components operate autonomously from the 
service interface. The transmit and receive queues act as a buffer between 
the line handler component and the transmitter and receiver components. 

One form of local area network supported by DNA Phase V is the 
CSMNCD form of data link. CSMNCD stands for carrier sense multi­
ple access with collision detection and refers to the way access to the 
communication medium is controlled. This is a LAN standard defined by 
the IEEE and is documented in IEEE 802.2 and IEEE 802.3. These stan­
dards are also published by ISO as ISO 8802-2 and ISO 8802-3. A 
CSMNCD LAN typically uses coaxial cable or twisted-wire pair cable 
for transmission at a rate of 10 megabits per second. The CSMNCD 
LAN data link also provides support for the Ethernet Speci-fication, 
which describes the local area networking scheme jointly developed by 
Digital, Intel, and Xerox and used in DECnet networks for many years. 
Ethernet was used as the model for the development of the IEEE/ISO 
CSMNCD standard. It is similar to IEEE/ISO CSMNCD but uses a 
slightly different frame format. Ethernet is defined in DNA Phase V 
mainly for compatibility with Phase IV of the architecture. The CSMNCD 
and Ethernet LAN data links are described in detail in Chapter 22. 

In a CSMNCD implementation of a local area network, a group of 
communicating devices are connected to a common cable, often using 
devices called medium access units (MAUs) (see Figure 5.13). A medium 
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CSMA/CD form of local area network. 
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access unit is sometimes called a transceiver. When one device sends 
data, all the other devices on the cable receive the data. Thus, a 
CSMA/CD LAN implements a multiaccess form of physical circuit. 
Physical layer standards for the CSMA/CD form of LAN specify the 
characteristics of the signals broadcast over the communication medium 
and define the type of hardware used to connect a device to the commu­
nication medium and to connect individual cable segments with one an­
other to form a bus- or tree-structured network. 

A CSMA/CD LAN can be implemented using many different types 
of transmission mediums, including: 

• original thick Ethernet cable 

• less expensive thin Ethernet cable 

• coaxial cable used for cable television distribution 

• fiber-optic cable 

• twisted-pair telephone cable 

All the forms of transmission medium supported by DNA Phase V 
are compatible with one another and all support a data rate of 10 
megabits per second. Additional information about the Physical layer for 
the IEEE/ISO CSMA/CD and Ethernet forms of local area network is 
provided in Chapter 22. 

Another form of local area networking DNA Phase V supports is Fiber 
Distributed Data Interface (FDDI). The FDDI standard was initially de­
veloped by a committee of ANSI and is now an accepted international 
standard described by ISO 9314. An FDDI LAN uses a series of fiber-
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A small FDDI network consisting of a dual ring of trees. 
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optic point-to-point circuits to form a logical ring configuration. The 
FDDI standard supports many configurations. A commonly used 
configuration is a dual ring of trees, in which devices called concentra­
tors are connected to form a dual ring structure with a primary ring and 
a secondary ring. Individual stations are then connected directly to the 
concentrators to form tree structures. (See Figure 5.14.) 

FDDI LANs support a data rate of 100 megabits per second and 
provide the ability to build very high speed backbone networks that can 
be used to interconnect slower CSMNCD networks. FDDI LANs can 
also be used to support powerful workstations that must communicate 
with one another using very high transmission rates. Additional informa­
tion about the Physical layer for the FDDI form of local area network is 
provided in Chapter 23. 

The Physical layer of the DNA architecture is structured in a modular 
fashion so that as support is required for new forms of circuit, additional 
Physical layer specifications can be added to accommodate them. Of par­
ticular interest in today's environment is the emerging technology of inte­
grated services digital networks (ISDN). Support can also easily be added 
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for other types of LANs, including the token bus technology-com­
monly used in the factory automation environment and based on IEEE 
802.4/ISO 8802-4-and the token ring standard, based on IEEE 
802.5/ISO 8802-5. 

The Physical layer implements the mechanisms required to provide cir­
cuits between network devices. But procedures must be provided that 
run on top of these circuits to allow them to be used for exchanging data 
in a reliable fashion. These procedures are implemented in the Data Link 
layer, the subject of Chapter 6. 
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The Data Link Layer 

The Data Link layer is responsible for handling data transmission from 
one network device to another and for shielding higher layers from any 
concerns about the physical transmission medium. The Data Link layer 
uses the point-to-point, multipoint, and multiaccess forms of physical 
circuit provided by the Physical layer to implement two fundamentally 
different types of data links: nonbroadcast links and broadcast links. A 
typical nonbroadcast link might be implemented by a simple point-to­
point telecommunications circuit between exactly two devices. A typical 
broadcast link might be implemented by a local area network connecting 
hundreds of devices. A broadcast link might be implemented by a multi­
access circuit, as in the case of a CSMA/CD LAN, or by a series of point­
to-point circuits, as in the case of FDDI. 

A critical function of the Data Link layer for all types of data links is 
to detect errors that occur during transmission, perhaps when a burst of 
noise obscures the signals representing one or more bits. Error detection 
is accomplished through the use of redundant data transmitted with each 
unit of data in the form of a frame check sequence (PCS) field. For 
broadcast data links to which many devices may be attached on a peer 
basis, the Data Link layer must perform additional functions, such as 
scheduling the use of the transmission medium and resolving contention. 

The Data Link layer must provide a set of basic services to a user of the 
Data Link layer service and perform certain general functions in provid­
ing those services. The OSI model and the DNA Phase V architecture list 
the following services and functions of the Data Link layer: 

• Data Link Connection Establishment and Release. Dynamically estab­
lishes, for a connection-mode Data Link service, a logical data link con-

10!1 
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nection between two users of the Data Link service (typically Network 
layer entities) and releases the connection when it is no longer required. 
These functions are not provided for a connectionless-mode Data Link 
service, in which connections are not established or released. (Later in 
this chapter we discuss in detail the differences between a connection­
mode Data Link service and a connectionless-mode Data Link service.) 

• Data-Link-Service-Data-Units. Defines the data-link-service-data-unit 
(DLSDU) passed down from the user of the Data Link layer service to a 
Data Link layer entity in the sending device and up from a Data Link layer 
entity to the user of the Data Link layer service in the receiving device. 

• Framing. Creates a single data-link-protocol-data-unit (DLPDU) from each 
DLSDU passed from a user of the Data Link layer service, marks the begin­
ning and the end of the DLPDU when sending, and determines the beginning 
and ending of frames when receiving. The informal name most often used 
for the DLPDU exchanged between peer Data Link layer entities is frame. 

• Data Transfer. Transfers frames over a physical circuit, extracts the 
DLSDU from each frame by removing the protocol-control-information 
(PCI), and passes DLSDUs up to the user of the Data Link layer service 
in the receiving device. 

• Frame Synchronization. Establishes and maintains synchronization be­
tween the sending device and the receiving device. This means the receiving 
device must be capable of determining where each frame begins and ends. 

• Frame Sequencing. Uses sequence numbers to ensure that frames are de­
livered in the same order in which they were transmitted (does not apply 
to a connectionless-mode Data Link service). 

• Error Detection. Detects transmission errors, frame format errors, and 
procedural errors on the data link connection using redundant bits car­
ried in the PCI in the frame. 

• Error Recovery. Recovers from errors detected on data links using con­
nection-mode operation (does not apply to a connectionless-mode Data 
Link service). 

• Identification and Parameter Exchange. Performs a set of identification 
and parameter exchange functions, typically prior to the exchange of 
frames carrying user data. Some types of Data Link services allow pa­
rameter values to be negotiated. 

• Flow Control. Controls the rate at which a user of a connection-mode 
Data Link layer service receives frames to prevent a user of the Data Link 
layer service from being overloaded (does not apply to a connectionless­
mode Data Link service). 
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• Physical Layer Services. Uses the services of the Physical layer to transmit 
and receive data and to control the operation of the physical communi­
cation link. 

• Network Management. Performs network management functions to 
control the operation of the Data Link layer. Management functions in­
clude setting data link layer protocol operating characteristics, enabling 
and disabling data link connections, monitoring the status of enabled 
connections, and performing a loopback test for testing the data link. 

A general architectural model of a Data Link layer entity is shown in Fig­
ure 6.1. This model shows how the Data Link layer uses the services of 
the Physical layer and how it provides services to a user of the Data Link 
layer service. Each specific type of Data Link layer service defines a 
somewhat different architectural model, but each is similar to that 
shown in Figure 6.1. A user of the Data Link layer service perceives both 
stations and ports: 

• Stations. In many types of data link, a station corresponds to a particular 
instance of a Data Link layer entity and corresponds to a single Physical 
layer entity." A station typically represents a physical point of attach-

~:· 

With an FDDI data link, a station can contain zero, one, or two Data Link layer 
entities, and a station can attach to either one or two full-duplex optical fiber 
cable segments. So an FDDI station is somewhat different from other types of 
data link station. The FDDI form of data link is described in Chapter 23. 

A typical Data Link layer architectural model. 

Data Link Data Link Data Link Data Link 
Service Service Service 

••• 

Transmission Medium 
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ment to the transmission medium. A particular node must implement at 
least one station to attach that node to the network. A station is identi­
fied by a station address that is unique among all the stations attached to 
the same data link. 

• Ports. A Data Link layer port consists of a data structure that represents 
a particular user of the Data Link layer service. Each user of the Data 
Link layer has a port that it uses to request Data Link layer services. A 
particular station can implement any number of ports, and a user can si­
multaneously employ more than one port. However, a port can service 
only a single user at a time. 

As introduced in Chapter 3, the ISO standards for the Data Link layer 
include both service definitions and protocol specifications. The relation­
ship between the services the Data Link layer provides and the protocol 
governing its operation is shown in Figure 6.2. As shown there in the 
context of the OSI model, the data link protocol uses the services of the 
Physical layer to provide a defined set of services to a user of the Data 
Link layer service above it. 

A user of the Data Link layer service in one node accesses the Data 
Link service via a data-link-service-access-point (DLSAP) and passes a 
DLSDU for delivery to the user of the Data Link layer service at the 

The relationship between the Data Link layer service definition and the Data Link layer protocol 
specification. 
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other end of the link. The Data Link layer entity adds PCI to the DLSDU 
in the form of a header and a trailer to create a data-link-protocol-data­
unit (DLPDU), or frame, and uses the services of the Physical layer to 
transmit the frame across the data link. The Data Link layer entity at the 
other end of the link removes the PCI and delivers the enclosed DLSDU 
to the user of the Data Link layer service there. This process is summa­
rized in Figure 6.3. 

The standards for the layers above the Data Link layer make a clear 
separation between the service definition and the protocol specification, 
and each is published by ISO in a separate document. The intent is to 
have a single ISO service definition and one or more protocol specifica­
tions for each layer. Because the Physical and the Data Link layers are so 
tightly integrated in actual implementations, it is common for a single 
ISO standard to describe service definitions and protocol specifications 
for both the Physical layer and the Data Link layer. Many local area net­
work standards documents take this approach. In the Data Link layer 
standards for protocols to support wide area network data links, there is 
often not a clear separation between the service definition and the proto­
col specification. The main reason for this is that many of the wide area 

The Data Link layer service. 
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networking data link protocols were developed before work was com­
pleted on the OSI model. 

As with the standards for all the OSI model layers, a Data Link layer ser­
vice definition describes an abstract set of services a user of the Data 
Link layer service can request. The service definition can be implemented 
in any desired way, and conformance to the standard is not based on any 
formal adherence to the service definition. However, it does define what 
types of service the Data Link layer must provide to users invoking its 
services. Many service definitions now exist for the Data Link layer. The 
discussion of the Network layer in Chapters 7, 8, and 9 shows how the 
Network layer makes use of widely differing types of Data Link technol­
ogy in providing a unified interface to the Transport layer. 

Local Area Network Data Links 

Data Link technology for local area networks implements a broadcast 
type of data link, in which many stations can be attached on a peer basis 
to a common transmission medium. All stations on the link receive the 
transmissions of all other stations, and mechanisms must be provided for 
determining when a station can transmit and which transmissions should 
be accepted. 

Service definitions for the local area networking environment are 
defined by the IEEE/ISO LAN architecture documented in the IEEE 
802/ISO 8802 family of LAN standards and by the standards for the 
FDDI form of data link. The IEEE/ISO LAN architecture and the ISO 
FDDI standard define a number of ways in which a local area network 
can be implemented (e.g., CSMA/CD bus, token bus, token ring, and 
FDDI timed token ring). 

Figure 6.4 shows how the layering structure of the two lowermost 
layers of the OSI model have been evolving as LAN technology has ma­
tured. To present a unified LAN interface to users of the Data Link layer 
service, the IEEE/ISO LAN architecture divides the Data Link layer into 
two sublayers: the Logical Link Control (LLC) sublayer and the Medium 
Access Control (MAC) sublayer. The FDDI form of LAN can also use 
the IEEE/ISO LLC sublayer. Since all forms of LANs can share a com­
mon LLC sublayer, they can all present a similar interface to users of the 
LLC sublayer. The protocols operating in the LLC sublayer are based on 
those defined for HDLC and so share a similar frame format with the 
protocols used in the wide area networking environment. The LLC ser-
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vice definition is documented in IEEE 802.2 and ISO 8808-2. The way in 
which DNA Phase V implements the LLC service definition is described 
in detail in Chapter 21. 

Differences in transmission technology are addressed in the MAC 
sublayer and in the Physical layer. Various forms of LAN also break the 
Physical layer into sublayers. For example, the FDDI form of local area 
networking defines a Physical Layer Protocol (PHY) sublayer and a 
Physical Layer Medium Dependent (PMD) sublayer. The FDDI standard 
also defines a Station Management (SMT) function that interfaces with 
the MAC, PHY, and PMD sublayers. The MAC sublayer and the Physi­
cal layer for the CSMNCD and FDDI forms of LAN are described in 
Chapters 22 and 23. 

LAN data links implement a broadcast form of data link, in which 
each station on the data link receives all frames transmitted by all the 
other stations. The broadcast data link can be implemented using a mul­
tiaccess circuit in which all stations immediately receive any frame trans­
mitted. A broadcast data link can also be implemented by a collection of 
point-to-point circuits forming a ring configuration. With a ring struc­
ture, each frame is repeated from station to station around the ring, thus 
ensuring that all stations receive each frame. With a broadcast data link, 
a station can send each frame to multiple stations on the data link. A 
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broadcast form of data link can provide a broad range of services that 
allow different types of users to employ simultaneously the services of 
the broadcast data link. Such services include the following: 

• Multiplexing. This service makes it possible for more than one type of 
user to simultaneously use the Data Link layer service. Different types of 
users of the Data Link service might include DNA Phase V Network 
layer entities, TCP/IP users, and local area transport (LAT) users. 

• Address Filtering. Each station on a broadcast data link receives the 
frames transmitted by all other stations on the data link. Each frame 
contains both a source and a destination station address. The address fil­
tering function allows a station to specify the destination address value 
or values it will accept as being addressed to it. 

• Protocol Filtering. This service allows a data link user to specify which 
types of frames it will accept based on data link addressing. For example, 
a user of the Data Link layer service might specify that it will accept only 
frames conforming to the Ethernet format and not those conforming to 
the IEEE/ISO CSMA/CD frame format. 

• Multicasting. This service allows a station to send a frame to multiple 
destination stations on the data link. 

The services associated with broadcast forms of data links are dis­
cussed further in Chapter 22 on the CSMA/CD form of local area data 
link and in Chapter 23 on FDDI. 

Wide Area Network Data Links 

Data link technology for wide area networking typically implements a 
nonbroadcast type of data link in which only two stations are attached 
using a point-to-point facility. Multipoint data links are also supported 
in some situations, although, as discussed in Chapter 5, a multipoint cir­
cuit is modeled in the Data Link layer as a collection of point-to-point 
links. The main data link protocol for the wide area networking environ­
ment is High-level Data Link Control (HDLC), which has its roots in 
IBM's Synchronous Data Link Control (SDLC), first described in the 
mid-1970s. HDLC predates the OSI model, and the ISO HDLC standard 
itself contains no separate service definition of the services the Data Link 
layer provides to the layer above. The reason for this is that the HDLC 
standard predates the OSI model and was standardized before there was 
such a clear distinction between a service definition and a protocol spec­
ification. The DNA Phase V documentation for HDLC does, however, 
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contain a precise definition of the service interface between the Data 
Link layer and the layer above. The documentation of the DDCMP data 
link protocol also contains a precise definition of the Data Link layer ser­
vice interface. 

In an attempt to unify the services and protocols defined for the Data 
Link layer, ISO has published ISO 8886, Data Link Service Definition. 
This service definition defines an abstract set of service primitives, each 
with a defined set of parameters, that defines the services a Data Link layer 
entity provides to a user of the Data Link layer service. The Data Link ser­
vice definition defines both a connectionless-mode service and a connec­
tion-mode service. These services are similar to those defined by the 
IEEE/ISO LAN architecture service definition, described in Chapter 21. 

The ISO Data Link service definition, however, is less useful than the 
service definitions defined for the other layers in the OSI architecture. 

NETWORK ARCHITECT 

The Data Link service is much more of an architectural abstraction than, say, 

the Network layer service. This is because, in reality, the service the Data Link 

layer supplies is very dependent on the type of data link used. Frankly, ISO 

8886 really exists only because of the feeling that every layer "ought to have" a 

single service definition. 

To give a feeling for the type of service the Data Link layer provides, 
we next describe the ISO 8886 Data Link layer service definition. How­
ever, the DNA Phase V architectural specifications describe separately 
the service that each type of data link supplies to a user of that data link. 
The types of data link supported by DNA Phase V are introduced later in 
this chapter and are described in detail in the chapters in Part V. 

We can think of a connectionless-mode Data Link service as a black box. 
The user of the Data Link layer service at one end of the data link inserts 
a DLSDU into the black box. If no error occurs during transmission to 
corrupt the data, an identical copy of the DLSDU emerges from the 
black box at the other end of the link, and the user of the Data Link layer 
service there accepts it. When a transmission error occurs, the Data Link 
service detects the error, discards the erroneous data, and nothing 
emerges from the other end of the black box. 
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The DL_UNITDATA Service 

A connectionless-mode Data Link service defines a single data transfer 
service with the two service primitives listed in Box 6.1. The time-se­
quence diagram in Figure 6.5 shows the way in which the two service 
primitives are issued in providing the connectionless-mode Data Link 
service. 

To send a DLSDU from one Data Link layer service user to another 
across a data link, the Data Link layer service user in the sending device 
issues a DL_UNITDATA.request primitive to a Data Link entity in the 
sending device. The Data Link entity transfers the DLSDU specified by 
the user_data parameter to the device defined by the destination_address 
parameter. The Data Link entity in the receiving device passes the 
DLSDU to the user of the Data Link layer service at the destination by is­
suing the DL_UNITDATA.indication service primitive. If something 
happens during frame transmission to corrupt the data in the DLSDU, 
the Data Link layer entity in the destination device detects this fact, dis­
cards the erroneous frame, and does not issue the DL_UNITDATA.indi­
cation primitive. Thus, when a transmission error occurs, the user of the 
Data Link layer service in the destination device has no knowledge that 
the delivery of a DLSDU was even attempted. Neither the source nor the 
destination station is aware that an error has occurred. 

Connection-Mode With a connection-mode Data Link service, a logical connection between 
Data Link Service the sending and the receiving stations must be established before data 

transfer can begin. The logical connection must be maintained while 

F 1 G u RE 6. 5 A lime-sequence diagram for the DL_UNITDATA service. 

DL_UNITDATA. 
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data transfer proceeds, and the connection is released after all data trans­
fer operations have been completed. With a connection-mode Data Link 
service, the user of the Data Link service at one end requests a connec­
tion, the Data Link service and the user at the other end agree, and the 
Data Link service establishes the connection. We can think of the con­
nection-mode Data Link service as a pair of pipes that connect two users 
of the Data Link layer service, one pipe for data flowing in each direc­
tion. A user of the Data Link layer service at one end inserts a DLSDU 
into the appropriate pipe, and an identical copy of the DLSDU emerges 
at the other end. The protocol that provides a connection-mode Data 
Link service attempts to correct any errors detected, most often by auto­
matically retransmitting frames found to be in error. With a connection­
mode Data Link service, an identical copy of each DLSDU emerges from 
the pipe for each DLSDU inserted, whether or not transmission errors 
occur. If an error occurs from which the Data Link service cannot re­
cover, it releases the connection and informs the two Data Link layer ser­
vice users of this fact. 

For the connection-mode service, the Data Link service definition 
defines four services, each of which involves a separate set of service 
primitives. The service primitives for the connection-mode Data Link 
service are listed in Box 6.2 and are described below: 
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• DL_CONNECT. The DL_CONNECT connection establishment service 
is used to establish a logical link connection between two users of the 
Data Link layer service. The DL_CONNECT service is a confirmed ser­
vice in which the service requester is informed of the success or failure of 
the attempt to establish a connection with a distant peer Data Link layer 
service user. The DL_CONNECT service is provided through the four 
DL_CONNECT service primitives. Figure 6.6 (page 122) includes time­
sequence diagrams that show how service primitives are issued to pro­
vide the DL_CONNECT service. 

• DL_DATA. The DL_DATA service is a data transfer service that can be 
used by two users of the Data Link layer service after a connection has 
been successfully established with the DL_CONNECT service. The 
DL_DATA service is provided by the two DL_DATA service primitives. 
Figure 6.7 (page 123) is a time-sequence diagram that shows the se­
quence in which the two DL_DATA data transfer service primitives are 
issued. Notice that the requester of the data transfer operation is not in­
formed of the success or failure of the data transfer operation. However, 
the connection-mode data transfer service is a guaranteed delivery ser­
vice because the Data Link layer service requester can assume delivery 
was accomplished as long as the connection is not released or reset. 

• DL_DISCONNECT. The DL_DISCONNECT service is used to discon­
nect a connection previously established by the DL_CONNECT service. 
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FIGURE 6.6 Time-sequence diagrams for the DL_CDNNECT service. 
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The DL_DISCONNECT service is provided through the two DL_DIS­
CONNECT service primitives. Figure 6.8 (page 124) includes time­
sequence diagrams that show ways in which a connection can be re­
leased using the DL_DISCONNECT service. 

• DL_RESET. The DL_RESET service can be used to reset a link connec­
tion to its initial state while data is being transferred. The reset operation 
can be issued by either user of the Data Link layer service or by the Data 
Link layer entity on either end of the link. The DL_RESET service is pro­
vided through the DL_RESET service primitives. Although the standard 
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A lime-sequence diagram for the DL_DATA service. 

defines a reset service, it is not implemented in any actual data link im­
plementation. 

Connectionless- At first glance it may appear that the connection-mode Data Link service 
Mode versus is to be preferred because of its ability to handle error correction. How-
Connection-Mode ever, each type of service has its own advantages and disadvantages, and 
Service both types of Data Link services are employed in DECnet Phase V net-

works. With local area network technology, the transmission medium is 
highly reliable, and the vast majority of transmitted frames do get 
through. Also, a local area network is a broadcast type of service in 
which any device on the network can communicate with any of the oth­
ers. Any two users typically stay in communication only for a small frac­
tion of a second due to the very high transmission speeds used. For these 
reasons most local area network implementations provide a connection­
less-mode Data Link service. Recovery from the rare transmission errors 
that occur is left to higher layers. 

When dial-up telecommunications facilities are used to connect two 
devices, however, the circuit is more error prone than a local area net­
work circuit, and a connection-mode Data Link service is most often em­
ployed to handle retransmission of erroneous frames in the Data Link 
layer to provide a reliable Data Link service. 

The two types of Data Link services are not incompatible and can co­
exist in the same network. In a complex network, a connectionless-mode 
Data Link service might be used in a part of the network implemented 
using a LAN, and a connection-mode Data Link service might be used in 
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FIGURE 6.8 Time-sequence diagrams for the DL_DISCONNECT service. 
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other parts of the network constructed using long-distance telecommuni­
cations facilities. Such a situation is illustrated in Figure 6.9. 

The Data Link service definition describes the services a Data Link entity 
provides to a user of the Data Link layer service above it. A protocol 
specification for the Data Link layer, on the other hand, precisely defines 
the formats of the data-link-protocol-data-units (DLPDUs), or frames, 
peer entities in the Data Link layer exchange with each other. It also 
specifies the rules that govern the exchanges of frames that take place in 
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supplying the Data Link service. The entity in each communicating de­
vice must employ exactly the same frame formats and must follow the 
same rules; otherwise, communication is not possible. Therefore, confor­
mance to the ISO standards for the Data Link layer is based on exact ad­
herence to a protocol specification. The interface between the Data Link 
layer and a user of the Data Link layer service defined in the service defi­
nition is abstract; it can be implemented in any desired way. But the 
frames that two peer Data Link layer entities exchange with each other 
are real; we can actually see the frames flowing over the wire if we use 
appropriate test equipment. 

Many protocol specifications currently exist that define frame for­
mats and procedures for exchanging frames in the Data Link layer. For 
example, the IEEE/ISO LAN standards documents describe protocol 
specifications for the local area networking environment; the documen­
tation of HDLC describes the protocol specification for HDLC links; the 
documentation of X.25 protocols describes the protocol specification for 
the Data Link layer in the X.25 packet-switched data network environ­
ment; and DNA architectural documentation defines the protocol speci­
fication for DDCMP links. These various protocol specifications are de­
scribed in the chapters in Part V. 

The next sections describe general protocol mechanisms used in im­
plementing the protocols the Data Link layer uses in controlling data 
link operation. When a connectionless-mode Data Link service is used, 
some of these protocol mechanisms may not be implemented in the Data 
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Link layer; instead, similar protocol mechanisms must be provided in 
higher layers to provide similar functions. 

Error Detection 

When a Data Link layer entity receives a DLSDU from a user of the Data 
Link layer service, it encapsulates the DLSDU in a frame. As part of the 
encapsulation process, the Data Link layer entity places the frame 
through an algorithm that calculates a cyclical redundancy check (CRC) 
value. This CRC value is then placed in the FCS field in the frame's 
trailer and transmitted over the Data Link as part of the frame. When the 
Data Link layer in a receiving station accepts a frame, it places the frame 
through an identical algorithm to calculate its own CRC value. If the cal­
culated FCS field value matches the received FCS field value, the Data 
Link layer accepts the frame and assumes it has not been corrupted dur­
ing transmission. It then extracts the DLSDU from the frame and passes 
the DLSDU up to the user of the Data Link layer service. If the values do 
not match, the Data Link layer assumes the frame has been corrupted, 
possibly through a transmission error, and discards it. Since this error 
detection mechanism is operating in the Data Link layer, the user of the 
Data Link layer service never receives the DLSDUs contained in cor­
rupted frames. 

Error Correction 

With a connectionless-mode Data Link service, error correction is left to 
a higher layer. The connection-mode Data Link service, however, imple­
ments a mechanism that causes the missing frames resulting from trans­
mission errors to be retransmitted. A sending station places a sequence 
number in each frame it sends. A receiving station checks the sequence 
numbers in the frames it receives to verify there are no missing frames. If 
the receiving station detects one or more missing frames, it notifies the 
sending station of that fact and the sending station retransmits the miss­
ing frame(s). 

Flow Control 

Flow control mechanisms control the flow of frames between a sender 
and a receiver to prevent the sender from transmitting frames faster than 
the receiver can accept them. One type of flow control mechanism uses a 
window to control the flow of frames. With this type of flow control, 
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there is a limit to the number of frames the sender can transmit before it 
must wait for an acknowledgement. This value is known as the window 
size. The window size value that sending and receiving Data Link entities 
maintain prevents a sending station from sending more frames than the 
receiving station is able to accept at a given time. With some protocols, 
Data Link entities exchange control frames during link initialization to 
exchange window size values. When a Data Link layer entity sends the 
number of frames specified by the window size without receiving an ac­
knowledgement, it stops sending until it receives an acknowledgement. 

The window size limits the number of frames the sending Data Link 
layer entity transmits and thus prevents the receiving Data Link layer en­
tity from being overloaded. If the Data Link layer entity in the receiving 
station waits for multiple frames to arrive, the number of frames allowed 
to accumulate before a response must be sent depends on the window 
size. The receiving Data Link layer entity can also use acknowledgements 
and control frames to control the rate at which it receives frames. In this 
way the receiving Data Link layer entity can ensure it does not receive 
more data than it has the resources to handle. 

DNA Phase V Data The Data Link layer in DNA Phase V includes support for several stan­
Links <lards for the Data Link layer to handle the different types of data links 

used to construct a computer network. The Data Link layer protocols 
defined in the DNA Phase V architecture include protocols suitable for 
implementing local area network data links and wide area network data 
links. 

Local Area Network Data Links 

Local area networking protocols are most often used when two or more 
network devices are located relatively close together (generally less than 
a mile or two). As discussed earlier, local area networks implement a 
broadcast form of data link implemented using either a bus- or a tree­
structured multiaccess circuit or a collection of point-to-point circuits 
forming a ring configuration. The LAN data links supported by DNA 
Phase V include the following: 

• CSMA/CD LAN. This is a LAN standard defined by the IEEE and docu­
mented in IEEE 802.2 and IEEE 802.3. These standards are also pub­
lished by ISO as ISO 8802-2 and ISO 8802-3. CSMNCD stands for car­
rier sense multiple access with collision detection and refers to the way 
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access to the communication medium is controlled. A CSMNCD LAN 
typically uses a coaxial cable for transmission at a rate of 10 megabits 
per second. The CSMA/CD LAN data link is described in detail in Chap­
ter 22. The CSMNCD LAN data link also provides support for the Eth­
ernet Specification, which describes the local area networking scheme 
jointly developed by Digital, Intel, and Xerox and which has been used 
in DECnet networks for many years. Ethernet was used as the model for 
the development of the IEEE/ISO CSMNCD standard. It is similar to 
IEEE/ISO CSMNCD but uses a slightly different frame format. Ethernet 
is defined in DNA Phase V mainly for compatibility with Phase IV of the 
architecture. The Ethernet Specification is also described in Chapter 22. 

• Fiber Distributed Data Interface (FDDI). The fiber distributed data inter­
face (FDDI) is a form of LAN that uses a series of point-to-point fiber­
optic circuits forming a ring configuration. An FDDI LAN supports a 
data transmission rate of 100 megabits per second. The FDDI standard 
was developed by a committee of ANSI and has now also been accepted 
by ISO as an international standard (ISO 9314). It shares the same spec­
ifications for the Logical Link Control (LLC) layer as IEEE 802.2/ISO 
8802-2 and so is compatible with the IEEE/ISO standards for local area 
networks. FDDI is described in detail in Chapter 23. 

Because the IEEE/ISO forms of local area network and FDDI can 
both use a common Logical Link Control sublayer and can present a 
similar interface to users of the Data Link layer service, the DNA Phase 
V architecture is capable of accommodating the other forms of local area 
network in common use, including the token bus form based on IEEE 
802.4/ISO 8802-4 and the token ring form based on ISO 802.5/ISO 
8802-5. 

Wide Area Networking Data Links 

Wide area networking protocols are most often used when two or more 
network devices must be connected using a relatively long-distance 
telecommunications facility, such as a leased telephone line or a private 
microwave or satellite circuit. Wide area networking protocols are used 
over distances ranging from a few miles to many thousands of miles. The 
wide area networking data links defined by DNA Phase V include the 
following: 

• High-level Data Link Control (HDLC). This is a data link protocol de­
scribed by international standards published by both CCITT and ISO. 
Many variations and modes of operation of HDLC have been defined. 
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DNA Phase V specifies the use of both the normal response mode 
(NRM) for data links operating in a half-duplex fashion and the asyn­
chronous balanced mode (ABM) for full-duplex links. Normal response 
mode is essentially equivalent to IBM's synchronous data link control 
(SDLC) protocol used in SNA networks; asynchronous balanced mode is 
the preferred operating mode in DNA Phase V. HDLC is described in de­
tail in Chapter 19. 

· Link Access Procedure-Balanced (LAPB). This is a variant of HDLC 
that describes the operation of the Data Link layer in a packet-switched 
data network that implements CCITT Recommendation X.25. The 
DNA Phase V architecture includes support for the LAPB specification 
for compatibility with X.25. CCITT Recommendation X.25 is described 
in Chapter 18. 

· Digital Data Communications Message Protocol (DDCMP). This is a 
Digital proprietary protocol that has been used in DECnet networks for 
many years. It is defined in DNA Phase V mainly for compatibility with 
Phase IV of the architecture. DDCMP is described in detail in Chapter 
20. 

In the DNA Phase V environment, a major user of the Data Link service 
is the Network layer. Whereas the Data Link layer is concerned only 
with transmitting data across a single data link between adjacent net­
work devices, the Network layer is concerned with carrying data be­
tween any two devices in the network. Chapter 7 introduces the Net­
work layer and describes the services it provides to the Transport layer 
above it; Chapter 8 describes the protocols the Network layer uses to 
supply the Network service; and Chapter 9 describes the protocols that 
control the way in which packets are routed through the network. 
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CHAPTER 7 

The Network Layer 

The purpose of the Network layer is to provide a means by which Trans­
port layer entities operating in any two computing systems in the net­
work can exchange data with one another as if they were directly con­
nected. From the perspective of the Network layer, a DECnet network is 
made up of a collection of general-purpose computing systems and spe­
cialized devices, such as routers and nameservers. We will call all such 
devices network nodes, or nodes, as we have been doing in earlier chap­
ters. As we introduced in Chapter 3, there are two types of node: end 
nodes are typically the source and the destination of user data, and in­
termediate nodes relay user data through the network when the two end 
nodes are not directly connected. Intermediate nodes are often called 
routers; this is the term we will often use in this book because it is more 
descriptive of their function. 

The nodes making up the network are interconnected by data links. 
Nodes and data links together form subnetworks, where a collection of 
nodes are attached to a single virtual transmission medium so that each 
node is one hop from any other node. A hop is defined as a traversal 
from one node to an adjacent node across a single data link.· A subnet­
work employing a broadcast form of data link technology, such as a 

• Traversing from one station to any other in a ring-structured LAN or in an 
extended LAN is viewed as a single hop, even though a data unit may be 
relayed many times from one device to another through the LAN. Relaying 
performed by stations, repeaters, or bridges in a LAN or extended LAN is a 
Data Link layer function and is hidden from the Network layer. 
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CSMNCD LAN, can contain two or more nodes; a subnetwork employ­
ing a point-to-point form of data link technology, such as an HDLC 
telecommunications link, has exactly two nodes. An X.25 packet­
switched data network (PSDN) is another example of a type of subnet­
work that contains two or more nodes. In an X.25 PSDN, the internal 
workings of the network are hidden from the individual computers at­
tached to the network, and an X.25 PSDN appears as a single virtual 
transmission medium, in which each node is a single hop from any other 
node attached to the network. 

As with other OSI model layers, ISO standards for the OSI architecture 
define the Network layer in terms of a service definition and a protocol 
specification. The relationship between the services the Network layer 
provides and the protocol governing its operation is shown in Figure 7.1. 
As shown there, a Network layer protocol uses the services of the Data 
Link layer to provide a defined set of services to the Transport layer 
above it. 

In a typical use of the Network layer service, illustrated in Figure 
7.2, a Transport layer entity in one node accesses the Network layer ser­
vice via a network-service-access-point (NSAP) and passes a network­
service-data-unit (NSDU) to the Network layer entity for delivery to the 
Transport layer entity at the destination node. The Network layer entity 
adds PCI to the NSDU in the form of a header to create a network-

The relationship between the Network layer service definition and the Network layer protocol 
specification. 

Network Layer Service -----~ 

Network Layer 

Network layer protocols use the 
Data Link layer service to___... 
provide the Network layer 
service to the Transport layer. 

Data Link Layer Service ---~t t~---

Network Layer Service 

Network Layer 
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FIGURE 7.2 The Network layer service. 

TPDU 

Network Layer 

NPDU (packet) NPDU (packet) 

NSAP - network-service-access-point 
NSDU - network-service-data-unit 
NPDU - network-protocol-data-unit 
TPDU - transport-protocol-data-unit 
PCI - protocol control information 

Routing 

protocol-data-unit (NPDU) and then passes the NPDU to the Data Link 
layer in the form of a DLSDU. * We will typically use the informal term 
packet in the chapters on the Network layer to mean an NPDU. If there 
are one or more routers between two communicating end nodes, Net­
work layer entities in the routers move the packet to the destination 
node. The Network layer entity in the destination node removes the PCI 
from the packet and delivers the enclosed NSDU to the Transport layer 
entity there. 

A major function of the Network layer is to determine the best path for 
moving each packet to its destination based on the current topology of 
the network. This is called the routing function. t The network might be 

* The Network layer supports a segmentation facility. If it is used, a single NSDU 
may be split into multiple pieces, each of which is carried in a separate NPDU 
with its own protocol control information. 

t ISO standards for the Network layer use the spelling "routeing," but we use the 
more common spelling, "routing," throughout this book, even in the titles of 
the standards themselves. 
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made up of a large number of nodes interconnected in various ways. It is 
also likely, especially in a large network, that the topology of the network 
is constantly changing as new nodes and links are added, as existing 
nodes and links are removed, and as failures occur. To determine the best 
path for a packet at any given instant, the DNA Phase V Network layer 
uses a distributed routing algorithm to determine the route over which 
each packet travels in reaching its destination. The operation of the DNA 
Phase V routing algorithm is described in Chapter 9, and specific details 
concerning how the routing algorithm operates need not concern us here. 
Routers also perform a relaying function in moving each packet from one 
node to the next over the route it travels through the network. 

Network Layer The Network layer service definition is described in the following inter-
Service Definition national standards: 

• ISO 8348, Network Service Definition 

• Amendment 1, Connectionless-mode Transmission 

• Amendment 2, Network Layer Addressing 

• Amendment 3, Additional Features of the Network Service 

With the Data Link layer, most experts agree there is a place for 
both a connectionless-mode and a connection-mode Data Link service. 
However, the world of computer networking has historically been di­
vided into two camps regarding the one type of Network service a com­
puter network should provide. 

NETWORK ARCHITECT 

The CLNS/CONS controversy was once a raging battle. Now it's more like an 

armed truce, since everyone realizes that nothing dramatic is going to happen 

very quickly. Everyone now is rather bored with it as well. It's kind of like 
North and South Korea. 

A computer network typically offers users either a connectionless­
mode Network service (CLNS) or a connection-mode Network service 
(CONS). Digital is in the CLNS camp, although it does provide support 
for the CONS. IBM and the telecommunications industry are mainly in 
the CONS camp. We shall have more to say about this division after we 
examine the characteristics of the two forms of Network service. 
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The connectionless-mode Network service makes routing decisions inde­
pendently for each packet, and each packet may flow over a different 
path through the network. A connectionless-mode Network service can 
be thought of as a black box. The Transport entity at one end inserts an 
NSDU into the black box. Then, if nothing goes wrong, an identical 
copy of the NSDU emerges from the black box at the other end and is re­
ceived by the Transport layer entity there. Three things can go wrong 
during the operation of a connectionless Network service: 

• Lost Packets. It is possible for the Network layer to lose a packet. For ex­
ample, a transmission error may occur when the Network layer trans­
mits, over a connectionless data link, a frame containing a packet. In 
such a case, the connectionless Data Link layer detects the error and dis­
cards the frame. When the Network service loses a packet, no NSDU 
emerges from the black box at the destination. The Transport entity is 
not explicitly notified of the error; the NSDU in the lost packet simply 
does not appear at the destination. 

• Out-of-Sequence Packets. Each packet may take a different amount of 
time to arrive at its destination. So, if the Transport layer entity at one 
end inserts a number of NSDUs into the black box, they may appear at 
the other end in a sequence different from the sequence in which they 
were sent. 

• Duplicate Packets. Duplicate packets can also be received. For example, 
a sending Transport entity uses a timer to help determine if an NSDU it 
has sent has been received. If the timer expires before the sending Trans­
port entity receives an acknowledgement, the Transport entity sends the 
NSDU again. In some cases, the timer may expire while an acknowledge­
ment is still in transit, thus causing duplicate NSDUs to arrive at the des­
tination. 

Because it is possible for some packets to be lost or to travel over 
· different paths and thus delivered in a sequence different from the se­
quence sent or delivered more than once, a connectionless-mode Net­
work service cannot be considered reliable. As we pointed out in Chap­
ter 3, the word reliable in this context does not have a "good" or "bad" 
connotation. It simply means that a higher layer-typically the Trans­
port layer-is responsible for detecting lost packets and requesting their 
retransmission, placing the packets into their proper sequence, and de­
tecting and discarding duplicate packets. 

A connectionless-mode Network service is often called a datagram 
service. 
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Box 7.1 lists the service primitives defined in ISO 8348, Network Service 
Definition, Amendment 1: Connectionless-Mode Transmission. Figure 
7.3 is a time-sequence diagram that shows the sequence in which the ser­
vice primitives are issued. A Transport layer entity in the source node is­
sues an N_UNITDATA.request primitive to the Network layer entity 
below it to hand an NSDU over to the Network layer. The Network 
layer entity encapsulates the NSDU in a packet for transmission through 
the network. The Network layer entities in the two end nodes and the 
Network layer entities in all the routers along the path the packet travels 
provide the Network layer service. They work together to transfer the 

N_UNITDATA.request 

N UNITDATA.indication 

source address 
destination address 
quality_of_service 
user data 

source address 
destination address 
quality_of_service 
user data 

A lime sequence diagram for the N_UNITDATA service. 

N_UNITDATA. 
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NSDU specified in the user_data parameter to the node whose network 
address is specified in the destination_address parameter at a quality of 
service described by the quality _of_service parameters. The Network 
layer entity in the destination node extracts the NSDU from the packet 
and passes it up to the Transport layer entity by issuing the N_UNIT, 
DATA.indication service primitive. 

CLNS Interface Procedure Declarations 

The DNA Phase V architecture also defines the abstract service interface 
between a Network layer entity and a Transport layer entity. The proce­
dure declarations that define the services the Network layer provides to 
its user (most often a Transport layer entity) in supplying the connection­
less-mode Network service are listed in Box 7.2. 

With the connection-mode Network service (CONS), a Network service 
user requests that a connection be established, the Network service and 
the user at the other end both agree, and the Network service establishes 
the connection, sometimes called a virtual circuit. 

We can think of the connection-mode Network service as two pipes 
between a pair of Transport layer entities, one pipe for data flowing in 
one direction and another for data flowing in the opposite direction. The 
Transport entity at one end inserts an NSDU into the appropriate pipe. 
When all goes well, an identical copy of the NSDU emerges at the other 
end. In a network providing the CONS, all the physical resources re­
quired to support the pipe are typically assigned when the connection is 
established, and all packets flowing through the pipe typically flow over 
the same physical path. Once a connection has been established, full ad­
dressing information does not have to be included in each packet flowing 
over the connection; all that is needed is a reference to the connection a 
packet is associated with. The NSDUs that the Transport layer sends into 
the network always arrive in the same sequence in which they were sent, 
and the CONS attempts to ensure that no packets are lost or duplicated. 
If an error occurs that prevents a packet from being delivered, the con­
nection is released and the two Transport layer entities are informed that 
the virtual circuit is no longer available. 

The connection-mode Network service is considered to be a reliable 
service; failures are automatically corrected, if necessary, to ensure that 
NSDUs inserted into the pipe at one end emerge intact and in the same 
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The following function and procedure declarations define the 
abstract interface between the Network layer and a user of the 
Network layer in terms of the services a Network layer entity pro­
vides to a user requesting the connectionless-mode Network service 
(CLNS). 

Port Control Functions 

• OpenPort. Allocates a port for use by a Network service user. A port 
is a data structure that maintains pointers to its users, identifies the 
network addresses associated with a port, and identifies the entity 
using the port. 

• ClosePort. Deallocates a port opened via the OpenPort function. 

Data Transfer Functions 

• Transmit. Causes an NSDU to be queued for transmission by the 
Network layer. 

• CheckTransmitBuffer. Checks the status of a previously enqueued 
transmit buffer. 

• SupplyReceiveBuffer. Provides a receive buffer for use by a Network 
layer entity. 

• CheckReceiveBuffer. Determines whether any buffer supplied with a 
SupplyReceiveBuffer function has been filled with received data and 
returns the contents of the buffer to the Network service user if it 
contains a packet. 

Miscellaneous Functions 

• ReadBlockSize. Determines the maximum packet size the Network 
layer entity can transmit without having to segment the packet. 

• GetAddresses. Determines the set of network addresses associated 
with a port. 
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sequence at the other end. As we pointed out in Chapter 3, the term reli­
able in this context does not necessarily have a "good" connotation. It 
simply means that appropriate error-recovery procedures are imple­
mented in the Network layer. As with the connection-mode Data Link 
service described in Chapter 6, failures can occur to cause the connection 
to be released. However, when a failure occurs, the Transport entities 
both ends are notified that the connection was released. Experts at D 
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tal, however, question whether the CONS, especially in a large and het­
erogeneous network, really does provide a reliable service. 

NETWORK ARCHITECT 

When connection-oriented X.25 networks began to be used, we quickly ob­

served that they didn't really work reliably and that you still had to treat an 

X.25 Network service as an unreliable service. The people who were trying to 

sell X.25 as a service wanted something they could standardize, in order to cre­

ate a bigger market for their services. So they put a whole bunch of things into 

X.25, which then evolved into the CONS. This myth of the CONS being reli­

able was started at that point because they were attempting to provide what 

they thought was a reliable service. As it turned out, they can't provide a reliable 

service because of congestion problems. Just as in the telephone service, a call 

gets disconnected every once in a while. But when people are talking on the tele­

phone and that happens, they can recover. The X.25 people forgot that people 

do recover on an end-to-end basis with their conversations. So that's how com­

puters should be programmed to operate. We don't have any problem with the 

concept of virtual circuits, providing the virtual circuits are provided by the 

Transport layer on an end-to-end basis between the two computers involved. 

But where the unreliability comes in is when you start stacking all the virtual 

circuits on top of each other, through all the intermediate machines, and end up 

having to trust the integrity of all those intermediate machines. 

We will discuss further this issue of reliability later in this chapter 
when we examine the CLNS versus CONS controversy. 

DNA Phase V and the CONS 

DNA Phase V incorporates support for both the CLNS and the CONS. 
However, this should not be taken to mean that when an organization im­
plements a DECnet Phase V network it can choose the style of Network 
service it prefers. A DECnet Phase V network always operates internally 
using a connectionless Network service. The Network layer in routers pro­
vides only the CLNS, and the DNA Phase V routing functions use only the 
CLNS in relaying user data through the network. The DNA Phase V rout­
ing algorithm is closely tied to the connectionless-mode Network service. It 
is interesting to note that, at the time of this writing, standards for routing 
exist only for connectionless-oriented routing. There are currently no stan­
dards-even de-facto ones-for connection-oriented routing. 
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The normal operating mode of the Network layer in an end node is 
also to use the CLNS. For example, a Transport entity in a DECnet 
Phase V node sends data to a Transport entity in another DECnet Phase 
V node via DECnet Phase V routers using the CLNS. The DNA Phase V 
Network layer in end nodes, however, does provide full support for the 
CONS as an alternative to the CLNS. But direct support for the CONS 
in the Network layer has a limited scope within the context of the DNA 
Phase V architecture. The CONS might be requested by a Transport en­
tity in a DNA Phase Vend node when it needs to communicate with a 
Transport entity in a non-DNA end node supporting only the CONS. 
This facility typically would be used when a DNA end node needs to 
communicate over an X.25 PSDN with an X.25 node supporting only 
the CONS. 

Connection-Mode Network Service Definition 

Box 7.3 lists the service primitives defined in ISO 8348, Network Service 
Definition, for the connection-mode Network service. The service primi­
tives listed in Box 7.3 are issued in a manner similar to that of the con­
nection-mode service primitives defined for the Data Link layer in Chap­
ter 6. We do not describe these further here, since the CONS has limited 
use in a DECnet Phase V network. 

CONS Interface Procedure Declarations 

The procedure declarations defining the abstract service interface be­
tween the Network layer and a user communicating with another user 
over a PSDN conforming to CCITT Recommendation X.25 are listed in 
Box 7.4 (page 142). 

The CLNS versus The proponents of the connection-mode Network service say the Net­
CONS Controversy work layer should provide a reliable service, and users should not have 

to worry about end-to-end controls above the Network layer; the net­
work should do this work for them. It permits a much simpler Transport 
layer protocol to be used, since the Transport layer does not have to 
check for lost, out-of-sequence, or duplicate packets. In the CONS camp 
fall the common carriers who are used to supplying network services and 
charging for them. 

The proponents of the connectionless-mode Network service, on the 
other hand, say the job of the Network layer is to move the bits from one 
end of the network to another and nothing else. This camp is represented 
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The N_CONNECT Service 

N_CONNECT.request 

N CONNECT.indication 

N_CONNECT.response 

N CONNECT.confirm 

The N_DATA Service 

N_DATA.request 

N DATA.indication 

called address 
calling_ address 
receipt_ confirmation_ selection 
expedited_data_selection 
quality_of_service, user data 

called address 
calling_ address 
receipt confirmation selection 
expedited_data_selection 
quality_of_service 
user data 

responding_ address 
receipt_confirmation_selection 
expedited_data_selection 
quality_of_service 
user data 

responding_ address 
receipt confirmation selection 
expedited_data_selection 
quality_of _service, user data 

user data 
confirmation_request 

user data 
confirmation_ request 
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The N_DATA_ACKNOWLEDGE Service 

N_DATA_ACKNOWLEDGE.request 

N DATA ACKNOWLEDGE.indication 

The N_EXPEDITED_DATA Service 

N_EXPEDITED_DATA.request 

N EXPEDITED DATA.indication 

The N_RESET Service 

N_RESET.request 

N RESET.indication 

N_RESET.response 

N RESET. confirm 

The N_DISCONNECT Service 

N_DISCONNECT.request 

N DISCONNECT.indication 

user data 

user data 

reason 

originator 
reason 

reason 
user data 
responding_ address 

originator 
reason 
user data 
responding_ address 
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The following function and procedure declarations define the 
abstract interface between the Network layer and a user of the 
Network layer in terms of the services a Network layer entity pro­
vides to a user requesting the connection-mode Network service 
(CONS). 

Port Control Functions 

• OpenPort. Allocates a port for use by a Network service user. A port 
is a data structure that can be used later to establish a Network con­
nection. 

• ClosePort. Deallocates a port opened via the OpenPort function. 

Connection Control Functions 

• MakeCall. Establishes a Network connection and associates it with a 
port opened previously with the OpenPort function. 

• ReadAccept. Obtains data about a connection established using the 
MakeCall function. 

• ListenForCall. Adds a filter to the list of filters the Network service 
user maintains that determine the criteria for accepting calls. 

• StopListeningFor. Removes a filter from the list of filters the Network 
service user maintains that determine the criteria for accepting calls. 

• Listen. Determines whether an inbound Network connection request 
has been received. 

• TakeCall. Indicates the Network service user intends to accept an 
inbound Network connection request. The connection request is then 
later accepted and bound to a port using the AcceptCall function. 

• CannotTakeCall. Refuses an inbound Network connection request. 

• AcceptCall. Accepts an incoming Network connection request and 
binds it to a port; issued after a TakeCall function. 

• ClearCall. Disconnects an established Network connection. 

Data Transfer Functions 

• TransmitData. Causes an NSDU to be queued for transmission over 
an established Network connection. 

• TransmitPoll. Checks for the completion of the transmission of a 
packet initiated by a previous TransmitData function. 
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ReceiveData. Provides the Network layer entity with a buffer to 
receive the NSDU in an incoming packet. Where a received data unit 

• is longer than the packet size established for the connection, the 
Network service user issues multiple ReceiveData functions and 
reassembles the original NSDU. 

ReceivePoll. Checks for the completion of the previous ReceiveData 
function. 

ShowPortStatus. Obtains information about a port and its associated 
Network connection. 

Reset. Acknowledges that the Network layer entity has reset a 
Network connection. The Network service user determines that a 

• Network connection reset has occurred by issuing the 
ShowPortStatus function. 
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by the Internet community, which has over 20 years of experience with a 
large, heterogeneous computer network. Digital falls into this camp as 
well, having much experience with DECnet networks, which have also 
always employed connectionless-mode Network service. 

NETWORK ARCHITECT 

The people who advocated the connection-mode form of Network service 

would just as soon have had no Transport layer. This controversy is, in a sense, 
the great religious divide. The champions of the connection-mode network ser­

vice have always been the people that make their living from selling the network 

as a service, so they want to provide a complete service within the network it­

self. The telephone people have this network they say the computer people need, 
and they want to charge for that. The original champions of the connectionless­

mode form of Network service, on the other hand, were those in the ARPANET 

world. They were people who were interested in using computers; they didn't 

care too much about how the service is provided. The problem is that the tele­

phone people and the computer people have very different viewpoints. 

Those in the connectionless camp say that experience has show 
that a Network layer service can never be regarded as completely rel 
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able, no matter what types of reliability features are built into it, espe­
cially in a large and heterogeneous network. The Transport layer is the 
lowest layer that is required only in the two machines that are communi­
cating. In a large network, there may be Network layer entities operating 
in many machines that are not under the control of the two communicat­
ing parties. 

Imagine that you are using a global network to implement what 
must be absolutely reliable data transmission. The network uses many 
forms of data link technology, and each packet must travel through 
many routers, over many types of communication facilities, in many dif­
ferent countries, to arrive at its destination. In such a situation, the 
mechanisms operating in the Network layer in all the various routers are 
not under your control. It would be entirely understandable if you were 
unwilling to trust the claims of the operators of individual subnetworks 
that they never lose packets. 

NETWORK ARCHITECT 

The situation I try to make people understand is that the Network layer is in­
herently a multiparty situation, where there are not just multiple machines, but 

multiple organizations involved. If you have a Transport protocol that does not 

have robust error detection and error correction facilities, what you are saying is 

that, when you transmit data from your computer in one location to your com­
puter in another location, you have total, absolute, and implicit trust in every 

organization that may touch those bits between your two computers. If you are 

a bank, or an insurance company, or anyone who cares anything about your 

data, you wouldn't make that assumption. You have to implement end-to-end 

controls in the Transport layer, because it is only there that you can place the 
mechanisms to recover from the failures of other people's equipment. The fun­

damental property of the Transport layer is that it's the lowest layer that needs 

to exists only in the two end systems that are communicating with one another. 

If you are the end system, then you've clearly got to trust the guy at the other 
end, because that's the guy whom you're communicating with. But it's the low­

est layer in which that's the only person you've got to trust. 

The main problem with depending on a reliable Network layer ser­
vice and not performing error recovery in higher layers is that in a large 
network there may be too many places where something can go wrong. 
Suppose we are trying to transfer a long file from one computer to an­
other over a complex network in which each packet must flow through a 
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great many routers in reaching its destination. If the network is imple­
mented using the CONS, a separate connection must be set up on each 
subnetwork over which the packets must travel. If any one of those con­
nections is broken while the file is being transferred and we are not doing 
error recovery in any of the layers above the Network layer, then we don't 
know what has been delivered and what has not, and so we have to start 
the file transfer over from the beginning. In a large network, in which the 
chances are relatively high that at least one failure will occur that will 
cause a connection to be released before the file is completely transferred, 
it may never be possible to complete the file transfer operation. 

In networks that use the CONS, it is useful to perform error recov­
ery in the Transport layer (Class 4 Transport), even though error recov­
ery processing is also being done in the Network layer. If we do this, then 
the two end systems keep track of what has been successfully transferred 
as the file transfer operation proceeds. If a particular Network layer con­
nection is broken, Class 4 Transport can ask that a new connection be 
established, and the file transfer operation can pick up where it left off 
using the new connection. The file transfer operation will complete even 
though Network layer connections are being released and new ones are 
being established as the file transfer operation proceeds. 

The main point here is that experience has shown that we must per­
form error recovery processing in the Transport layer whether or not we 
are doing it in the Network layer. If you are going to implement in the 
Transport layer all required end-to-end controls anyway, then a simple, 
datagram Network service is all that is required. It is difficult to justify 
the expense of providing a reliable Network service, especially in a large 
and heterogeneous computer network. Why place the reliability controls 
in both layers? This is exactly the point of view adopted by many in the 
connectionless camp, including Digital. 

Box 7.5 summarizes some of the advantages and disadvantages of 
both the CONS and the CLNS. Keep in mind that each disadvantage 
listed for each form of service can be addressed through the use of addi­
tional mechanisms performed in the Network layer, so it remains ex­
tremely difficult for individuals in the two camps to convince each other 
that their way is best. 

NETWORK ARCHITECT 

Both the CLNS and the CONS have their disadvantages. We think the advan­

tages of the connectionless Network service far outweigh the disadvantages. But 

there's no doubt they both have their disadvantages. What we really need is 
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Connection-Mode Network Service 

Advantages 

• The path through the network that data packets take is ordinarily 
fixed for the duration of the connection, so less overhead may be 
associated with forwarding packets. The difficult decisions are all 
made during the connection-establishment phase. 

• Router and data link resources to support a connection are reserved 
when the connection is established, so end nodes using the connec­
tion are less affected by other network traffic loads. 

• Because there are definite connection establishment and connection 
release phases, it is easy to create accounting schemes that charge for 
connect time. 

• Because errors are detected and corrected by Network layer proto­
cols, the protocols in the Transport layer may hot need to handle 
lost, duplicated, or out-of-sequence packets. 

Disadvantages 

• The connection establishment phase is quite complex, and the 
requirement for connection establishment may result in excessive 
overhead for applications that transmit only small bursts of data. 

• The path that data packets travel over a connection ordinarily 
remains fixed for the duration of the connection. If a router or data 
link associated with the path fails or becomes congested, the connec­
tion must be released even though an alternate path through the net­
work may exist. 

• After a connection is established, resources associated with that con­
nection remain allocated even when no data packets are being trans­
mitted. It may not be possible to assign those resources to other users 
of the Network service, thus possibly reducing the efficiency of 
resource utilization. 

• The establishment and maintenance of information concerning the 
connection and its associated resources, among many network com­
ponents, is inherently complex and may lead to difficulties due to 
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unforeseen situations or small errors or misjudgments in implemen­
tation details. 

• The error detection and correction property of the CONS may be 
only illusory. Therefore, if the higher layers assume that the reliabil­
ity attribute is real, they may experience failures; if the higher layers 
assume that the reliability guarantee is not real, they end up duplicat­
ing the work. 

Connectionless-Mode Network Service 

Advantages 

• Since there is no connection-establishment phase, initial data trans­
mission may begin more quickly than with the connection-mode 
Network service. 

• There is no fixed path over which data packets must travel. 
Therefore, the connectionless-mode Network service can be made 
more robust than the connection-mode Network service and can 
allow alternative paths to be used when routers or data links fail. 

• Because no router or data link resources need be reserved in advance 
and kept idle when not being used, network resources can be used 
more efficiently. 

Disadvantages 

• Because there is no fixed path for data packets, each router must 
determine the data link to use for the next hop independently for 
each data packet. 

• The Transport layer protocols must support adequate congestion­
avoidance procedures to avoid catastrophic failures when router 
and/or data link resources reach the saturation point. 

• Since it is not possible to charge for connect time, it is more difficult 
to implement accounting schemes for charging for network usage 
than with a connection-mode Network service. 

• Since the Network layer provides only a datagram service, the proto­
cols that operate in the Transport layer are complex and must handle 
lost, duplicated, and out-of-sequence packets. 

147 
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something that reduces the disadvantages of the connectionless service. The cur­

rent buzzwords for it are lightweight connections or flows. This is something 

where there is a very small amount of state information associated with the 

communication. It doesn't require end-to-end synchronization, and it shouldn't 

require the assignment of dedicated processing or memory resources beyond 

very small amounts. Such a service would avoid the major disadvantage of the 

CLNS-that of requiring every single packet to be routed completely indepen­

dently of all other packets. With the connectionless service, every packet has to 

carry around all the routing baggage, including full network addresses, and it 

has to carry that across every hop through the network. When you have a burst 

of several megabytes of these for a file that are following hard on each other's 

heels, you should be able to take advantage of that fact. 

It is our feeling that Digital and those in the connectionless camp are 
justified in preferring the connectionless-mode Network service. The real 
controversy involves only where to place the complexity: in the Network 
layer or in the Transport layer. It makes better sense to us to place the 
end-to-end controls in the two machines that are communicating, even if 
this makes the software running in the end nodes a bit more complex. 
From our point of view, a major advantage of the CLNS is that it can be 
made more robust than the CONS. Since each packet is routed indepen­
dently through the network, each can find its own optimal path, depend­
ing on network conditions, at the instant it is being transmitted. Since 
the connection-mode Network service generally establishes a fixed path 
for all packets flowing over a connection, it is possible that changing net­
work conditions can cause the chosen path to become less than optimal 
as time passes. Also, if a resource along the path fails, the connection 
must be broken, even though other paths may exist at that time between 
the source node and the destination. 

What is really unfortunate, however, is that the ISO committees 
were not able to agree on a single approach for the Network layer. In the 
Data Link layer it is appropriate to support both a connectionless-mode 
and a connection-mode style of operation, depending on the data link 
technology used. But the controversy that has caused support for both a 
connectionless-mode and a connection-mode service to be included in 
the Network layer has caused the OSI Network layer to be much too 
complex. The world of networking-both the connectionless and con­
nection-mode camps-would probably have been better served in the 
long run had ISO adopted only one of the approaches in the Network 
layer rather than both. But many at Digital disagree with this view. 
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NETWORK ARCHITECT 

If OSI had continued to define only the CONS, as in the original OSI model, 

OSI would have become the European networking standard, and the United 

States would have stayed with TCP/IP. Now what we were hoping to have was 

a single worldwide standard. We didn't want to have a U.S. standard and a Eu­

ropean standard. Having two standards that are geographically different is 

much worse than having two standards that coexist worldwide. I think the most 

likely outcome of all of this is that both the CLNS and the CONS will exist to 

the end of the century. But the CONS will be something that will be pushed in­

creasingly into a niche. It won't die; it will survive. But increasingly, migration 

to the CLNS will push the CONS more and more into the background. The ex­

plosion of TCP/IP usage, even in Europe, lends additional credence to this view. 

In some layers of the OSI model, the intent is to define a single interna­
tional standard protocol specification that defines how the services of 
that layer should be provided. This is not possible in the Network layer 
because the Network layer must be able to provide the Network service 
using a wide variety of subnetwork technologies and interconnection 
strategies. So there will remain a family of Network layer protocols that 
will be used to provide the Network layer service. These protocols are 
described in a number of ISO documents and in the DNA Phase V archi­
tectural specifications. 

There are five important ISO protocols the DNA Phase V architecture sup­
ports for the Network layer. Many Digital engineers played a major role in 
developing these international standards as members of ISO committees. 

Protocols for Supplying the CLNS 

Three ISO protocols work together to supply the connectionless-mode 
Network service: 

• ISO 8473, Protocol for Providing the Connectionless-mode Network 
Service. The ISO 8473 protocol is often called the ISO Internet Protocol. 
End nodes use the ISO Internet protocol for exchanging user data with 
each other in supplying the CLNS to two peer Transport layer entities. It 
is designed to handle data transmission between end nodes connected by 
an arbitrary number of subnetworks of various types. 
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• ISO 9542, End System to Intermediate System Routing Exchange Pro­
tocol for Providing the Connectionless-mode Network Service. The ISO 
ES-IS Routing Exchange Protocol, for short, defines the procedures that 
allow end nodes and routers to communicate with one another for the 
purposes of exchanging information to control the routing function. 
This protocol allows an end node to automatically configure itself into 
the network by exchanging configuration information with a router. 

• ISO 10589, Intermediate System to Intermediate System Intra-Domain 
Routing Exchange Protocol for Use in Conjunction with the Protocol 
for Providing the Connectionless-mode Network Service (ISO 8473). 
ISO 10589, often called the IS-IS Routing Protocol, is based on the dis­
tributed routing algorithm originally designed by Digital for DNA Phase 
V. Digital's routing protocol has been accepted by ISO for standardiza­
tion and at the time of this writing is a draft international standard. This 
protocol defines the procedures that control how data packets and pack­
ets containing routing information are relayed between routers. The IS­
IS routing protocol is examined in detail in Chapter 9. 

Protocols for Supplying the CONS 

Two protocols are used to supply the connection-mode Network service 
for communication with another node attached to an X.25 packet­
switched data network. However, these two protocols have a different 
relationship from that of the protocols for supplying the CLNS: 

• ISO 8208, X25 Packet-level Protocol for Data Terminal Equipment. This 
is the ISO version of CCITT Recommendation X.25. Recommendation 
X.25 and ISO 8208 define the interface between a computer and a packet­
switched data network. ISO 8208 is a protocol that predates the CONS 
and does not itself supply all the services required to provide the CONS. 

• ISO 8878, Use of X25 to Provide the OSI Connection-mode Network 
Service. ISO 8878 is a protocol that enhances the services provided by 
ISO 8208 to supply all the services required to provide the CONS. ISO 
8878 can be viewed as a sublayer running on top of ISO 8208 that 
defines how the CONS is provided using the underlying X.25 packets 
and procedures. 

The protocols for supplying the CLNS and the CONS are described 
further in Chapter 8. 

We next discuss in detail the characteristics of network nodes to see 
how the Network layer protocols are implemented in the various types 
of node that can make up a DECnet Phase V network. 
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The Network layer functions that a node is capable of performing de­
pend on the node's role in the network. As we described at the beginning 
of this chapter, two major types of nodes are defined by the DNA Phase 
V architecture: end nodes and routers. 

End Nodes 

End nodes are computing systems that originate packets for transmission 
to other end nodes and that receive packets originating in other end nodes. 
End nodes are not capable of performing the routing function and do not 
implement the ISO 10589 IS-IS routing protocol. In most cases, an end 
node is attached to a single data link, such as a single local area network or 
a single point-to-point data link. End nodes can, however, be attached to 
more than one data link to provide better protection from failures. Three 
types of end node can be attached to a DECnet Phase V network: 

• Phase V End Nodes. These end nodes support both the ISO 84 73 Inter­
net protocol and the ISO 9542 ES-IS protocol. This type of node can be 
attached to the network and will exchange the required information with 
the router to which it is connected to automatically configure itself into 
the network. A Phase V node also supports the CONS for communica­
tion with another end node supporting only the CONS. 

• Non-DNA End Nodes. These end nodes support the ISO 8473 Internet 
protocol but not the ISO 9542 ES-IS protocol. This type of node can ex­
change data packets with other end nodes but must first be manually 
configured into the network using network management procedures. 

• Phase IV End Nodes. These nodes implement the DNA Phase IV archi­
tecture and can communicate only with nodes whose network addresses 
map into the 16-bit network address space defined by the DNA Phase IV 
architecture. Support for such nodes is provided for backward compati­
bility with DNA Phase IV and for transition from a Phase IV to a Phase 
V environment. 

Routers 

Routers are devices that, in addition to being able to originate and serve 
as the final destination of packets, are able to perform the routing func­
tion and can relay packets from other source nodes to other destination 
nodes. Routers can be implemented in general-purpose computing sys­
tems, but they are more typically implemented as special-purpose devices 
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that perform only the routing function. Two types of routers can func­
tion in a DNA Phase V network: 

• Phase V Routers. These routers implement the ISO 84 73 Internet proto­
col, the ISO 9542 ES-IS routing exchange protocol, and the ISO 10589 
IS-IS routing protocol. Phase V routers also implement parts of the Phase 
IV routing algorithm to allow them to interoperate with Phase IV end 
nodes and routers. 

• Phase IV Routers. These routers use 16-bit network addresses and imple­
ment the DNA Phase IV routing algorithm. They can participate in a 
DNA Phase V network, with certain restrictions, since Phase V routers 
also support the DNA Phase IV routing algorithm. 

Phase V and Phase IV routers are classified as either level 1 routers 
or level 2 routers and use a hierarchical routing scheme designed to sup­
port large networks. The hierarchical routing scheme used by DNA 
Phase V is described next. 

An individual DECnet Phase V network, consisting of a collection of end 
nodes, routers, and data links operated by a single organization, is called 
an administrative domain. The boundaries of an administrative domain 
are determined only by a network management policy, and an administra­
tive domain is not an architecturally defined entity. An administrative do­
main can be subdivided into a number of routing domains. A routing do­
main is a set of end nodes and routers that share routing information, 
operate according to the same routing protocol, and are contained within 
a single administrative domain. Some routing domains in an administra­
tive domain may not be DNA domains and may run a routing algorithm 
other than the DNA Phase V routing algorithm. On the other hand, an 
administrative domain can also consist of a single routing domain. Like 
an administrative domain, the boundaries of a routing domain are also 
determined by policy and not by architectural specifications. 

To support very large routing domains, possibly containing a mil­
lion or more nodes, DNA Phase V routing domains are themselves hier­
archical. A large DNA routing domain can be partitioned into regions 
called areas, which are the largest subdivisions of a network defined by 
the architecture. Each node (end node or router) resides in exactly one 
area. The division of a large network into separate areas can improve 
network performance by reducing the amount of routing overhead com­
pared to using a single area of the same size. It also allows interarea 
traffic to be confined to a particular set of routers and data links. 
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Level 1 and Level 2 Routing 

Routing in a multiple-area routing domain is classified as either level 1 
routing or level 2 routing: 

• Level 1 Routing. Routing within an area is called level 1 routing and is 
handled by level 1 routers. A level 1 router routes network traffic directly 
toward destination nodes within its own area and toward a level 2 router 
when it determines a packet's destination node is in a different area. 

• Level 2 Routing. Routing of network traffic between areas is called level 
2 routing and is handled by level 2 routers. A level 2 router performs 
level 1 routing for traffic destined to nodes within its own area and level 
2 routing for traffic destined for other areas. Level 2 routing also in­
cludes interdomain routing for traffic destined to other routing domains 
and to other administrative domains. 

A routing domain divided into areas is shown in Figure 7.4. Keep in 
mind that the space limitations of the printed page make it necessary to 

A routing domain divided into four areas. 
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show an unrealistically small network. An actual network would typi­
cally be much larger than the network shown in Figure 7.4 before it 
would be advisable to divide the network into areas. Each end node in a 
routing domain that is divided into areas must be attached to either a 
level 1 or a level 2 router. If an end node originates a packet destined for 
a node in some other area, the end node transmits the packet to its 
router. If that router is a level 1 router, it sends the packet to the nearest 
level 2 router in its own area. That router then moves the packet to a 
level 2 router in the destination area. The level 2 router then transmits 
the packet via level 1 routing to the destination end node. 

lnterdomain Routing 

Routing can also take place between individual routing domains, thus al­
lowing individual DECnet routing domains and other types of networks 
to be interconnected to form even larger networks. Such interdomain 
traffic is handled using a technique called static routing, which uses ta­
bles of routing information maintained by level 2 routers using network 
management procedures. The level 2 routers at the boundaries between 
routing domains decide how traffic goes out to other routing domains 
and how it comes in from other routing domains. Because a routing do­
main administered by one organization can be connected to a routing 
domain administered by some other organization, it is important that the 
two networks do not merge when they are connected. The static routing 
technique used at the boundary between routing domains prevents this 
from happening. We will have more to say about this in Chapter 9 when 
we examine routing in detail. 

An individual organization can also set up multiple routing domains 
of its own, each of which functions as a separate DECnet network. These 
can also be connected using interdomain routing facilities. An organiza­
tion may choose to divide its own network into multiple routing do­
mains for a number of reasons: 

• Reduction of Routing Traffic. Only data traffic, and not routing traffic, 
is exchanged between the routing domains, thus reducing the amount of 
routing control traffic flowing through the network. 

• Very Large Networks. Theoretically, the number of areas a routing do­
main can contain is unlimited. In practice, however, there will be limits 
to the size of a routing domain due to router implementation considera­
tions. Networks of unlimited size can still be built by dividing the net­
work into multiple routing domains. 
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• Robustness. Routing domains are isolated from each other, and each 
routing domain is protected from failures that might occur in the other 
routing domains. This allows failures to have an impact only on the 
routing domains in which they occur. 

• Interoperability with Other Routing Algorithms. All the nodes in a rout­
ing domain must run the same routing algorithm. Constructing a net­
work having multiple routing domains allows collections of nodes run­
ning entirely different routing algorithms to coexist in the same network. 

The static routing information used to control interdomain routing 
consists of reachable addresses identified by lists of address pre-fixes. 
Lists of address prefixes are maintained, using network management 
procedures, by each level 2 router that communicates with another rout­
ing domain. Each reachable address in a level 2 router's address prefix 
list is associated with a circuit connecting that router to some other rout­
ing domain. If a level 2 router receives a packet having a destination ad­
dress that matches one of its address prefixes, the level 2 router relays the 
packet out of its domain over the circuit associated with that address 
prefix. The level 2 router in the destination routing domain is then re­
sponsible for determining an optimal route and for relaying the packet to 
the next node along the path to its final destination. The static routing 
information required to reach end nodes in other routing domains is au­
tomatically distributed around the level 2 domain by the routing algo­
rithm, just as all other routing information is distributed. 

We can make an analogy between the notion of address prefixes and 
the system of telephone number area codes used in the United States. All 
the telephone numbers in northern Wisconsin have an area code of 715. 
In a similar manner, if all the computers in northern Wisconsin were in 
the same routing domain, which might consist of one or more areas, 
their network addresses would all begin with the same address prefix, 
say 1234. All level 2 routers in other routing domains that are capable of 
reaching the computers in the northern Wisconsin routing domain 
would then have a reachable address of 1234 in their address prefix lists 
and would be capable of routing traffic via static routing to the northern 
Wisconsin routing domain. In actual practice, the telephone area code 
analogy is not exact because the boundaries of a routing domain are not 
necessarily determined by geographic location, as telephone area codes 
are, but are determined by the organization administering the routing 
domain. 

We next examine the format of the network addresses used to 
uniquely identify nodes in a network. 
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Access to Network layer services, as in other layers, is through a service­
access-point. Network-service-access-point (NSAP) addresses are the 
network addresses of end nodes and routers in a DECnet Phase V net­
work. Unlike the small 16-bit addresses used in DNA Phase IV, which 
the Digital network architects freely admit was a mistake because it 
placed severe limitations on the sizes of networks that could be built, the 
ISO standard NSAP addresses used in DNA Phase V are very large-up 
to 160 bits in length. There are two ways in which we can view the net­
work addresses that DNA Phase V uses. First, we can look at them from 
the viewpoint of a router that must interpret the NSAP address in mak­
ing routing decisions. Second, we can look at them from the viewpoint of 
the ISO Network layer addressing standards that concern addressing au­
thorities and network managers who must ensure that network ad­
dresses are assigned so each address is globally unique. 

A router interprets an NSAP address as shown in Figure 7.5. The entire 
NSAP address must be at least 10 octets in length and can be no longer 
than 20 octets. The format of the last 9 octets is defined by the DNA 
Phase V architecture, which conforms to the format specified in the ISO 
10589 routing protocol. 

Addressing Authority Dependent Octets 

The format of the initial octets of the NSAP address is defined by an ad­
dressing authority responsible for the assignment of the values for the 
initial octets of NSAP addresses for individual organizations. The assign­
ment of values to the initial octets of the address is the mechanism by 
which NSAP addresses are guaranteed to be globally unique. But the 
way in which this value is assigned is beyond the scope of the DNA 
Phase V architecture. The addressing authorities that assign address val­
ues are discussed later in this chapter. 

A router view of a DNA Phase V network address. 

Area Address 

Initial NSAP Address Octets } I LOG-AREA ID SEL 

1-11 octets 2 octets 6 octets 1 octet 
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The LOC-AREA Field 

The LOC-AREA field in the address is the first part of the NSAP address 
defined by the DNA Phase V architecture. It contains a 2-octet value 
set by the organization implementing the network. The value assigned to 
the initial octets of the address plus the LOC-AREA value (the entire ad­
dress minus the last 7 octets) define the bounds of an area and together 
are called the area address. Some subset of the initial octets of the ad­
dress plus the LOC-AREA field can be used to define address prefixes to 
group areas into routing domains. The actual lengths of address pre­
fixes and the way in which areas are grouped into routing domains are 
strictly a matter of policy determined by network managers. The DNA 
Phase V architecture places no restrictions on how address prefixes are 
administered. 

The large number of octets that can be used to uniquely define an 
area theoretically permits building an individual routing domain with an 
almost unlimited number of areas. But, as we have already stated, imple­
mentation considerations will typically limit the number of areas a rout­
ing domain can contain. However, a large network can still have an al­
most unlimited number of areas by dividing the network into multiple 
routing domains. 

The ID Field 

The ID field contains a 6-octet value that uniquely identifies a node 
within its area. The entire address, including a 1-byte SEL field value of 
binary 0, is called the network entity title (NET) of the node. The node's 
NET uniquely identifies the node in the OSI environment. The ISO 
10589 routing protocol requires only that ID field values be unique 
within an individual area. However, the DNA Phase V architectural 
specifications for the Network layer recommend that the ID field value 
for each node be chosen using the IEEE local area network addressing 
plan, in which case the ID field values themselves are guaranteed to be 
globally unique. Each DECnet node is assigned a nodeID value during 
manufacture chosen according to the IEEE addressing plan. A node's 
DECnet nodeID value is ordinarily used as the ID value in the node's net­
work address. The routing algorithm does not depend on a correspon­
dence between ID field values and nodeID values. However, if the IEEE 
local area network addressing plan is used to generate the ID field value 
of a nodes's address, the node can be plugged into an OSI network any­
where in the world and be guaranteed of having a unique NSAP address. 
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The SEL Field 

The SEL field is the last octet of the address. It contains a 1-octet value 
that acts as a selector to define the particular type of Transport layer en­
tity that is to receive the packet. The SEL field values are not architec­
turally defined and are set by the sending Transport layer entity. The fol­
lowing values are two possible SEL field values used by Transport layer 
entities to identify the Transport entity within the node to which a 
packet is destined: 

• 32. A packet whose PCI contains this SEL field value is a data or control 
packet sent to an ISO Transport layer entity in a DNA Phase V node. 

• 33. A packet whose PCI contains this SEL field value is a data or control 
packet sent to an NSP Transport layer entity. 

Other SEL field values are permitted to allow interoperation with 
nodes that do not follow the DNA Phase V addressing plan. The SEL 
field value is not required to uniquely identify a node. Thus, a node's 
NET is considered to contain a SEL field value of binary 0. 

The area addresses of a router must be set using an explicit network 
management function before the router is attached to the network. A 
network management action is required to set a value for a router's area 
address (the initial octets of the address plus the LOC-AREA field) be­
cause assignment of routers to routing domains and areas is inherently a 
policy matter that must be controlled by network managers. When an 
end node is attached to a DECnet Phase V router, the end node gets the 
value of its area address from the router to which it is attached, and it 
typically gets its ID field value from its own internal nodeID value. The 
SEL field value used in the address fields in a packet's PCI is assigned by 
the entity creating the packet. Thus, an end node is capable of generating 
its own complete NSAP address when it is attached to the network with­
out requiring human intervention. 

In some circumstances it may be desirable for an area (and hence any of 
the nodes within it) to have more than one area address. For example, if 
the area is attached to public data networks via multiple connections, it 
may be useful to have network addresses that correspond to each point 
of attachment. However, all the routers in an area must have at least one 
area address common to each node adjacent to it. During normal opera­
tion, all the routers in an area must have the same area address or the 
same set of area addresses. 
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ISO Network Layer 
Addressing 
Standards 

The structure of the NSAP addresses used in the DNA Phase V architec­
ture conforms to the international standard addressing scheme defined 
by ISO 8348, Network Service Definition, Amendment 2: Network 
Layer Addressing. This addressing scheme defines methods by which the 
initial octets of the network addresses can be assigned so all the network 
addresses an organization generates are globally unique. Although net­
work managers must be aware of the hierarchical structure of NSAP ad­
dresses as defined in ISO 8348, Amendment 2, this hierarchical structure 
is not known to routers. As discussed in the previous section, routers 
work only with area addresses, which are defined as the initial octets of 
the address plus the LOC-AREA field (the complete address minus the 
last seven octets.) 

FIGURE 7.6 

Amendment 2 to ISO 8348 makes clear distinctions among three 
concepts, illustrated in Figure 7.6, associated with describing the seman­
tics of a network address: 

• Abstract Syntax. The abstract syntax of network addresses is the means 
employed in ISO 8348, Amendment 2, to define the hierarchical struc­
ture of a network address and is used by addressing authorities to allo­
cate and assign network address values. An abstract syntax defines infor­
mation content without specifying how that information content is 
represented in a computer or encoded for transmission. The standard al­
lows the abstract syntax of a network address value to be expressed in ei­
ther decimal or binary form. 

• Encoding. Encoding refers to the way in which a network address value 
is represented in the protocol-control-information attached to a packet 
and conveyed between nodes during Network layer protocol operation. 
The way in which address values are encoded has no relation to the ab-
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stract syntax that defines how address values are allocated and assigned. 
For example, the abstract syntax might define an address value as con­
sisting of decimal digits. That address value might be encoded using a bi­
nary number to represent the decimal address value. Alternatively, some 
scheme might be used to individually encode each decimal digital of the 
address value. According to ISO 8348, Amendment 2, addresses can be 
encoded in any desired way, but the standard recommends certain pre­
ferred encoding methods. Other ISO standards for the OSI model and 
the DNA Phase V architecture specify that NSAP addresses be encoded 
using the ISO preferred binary encoding scheme, in which each digit of a 
decimal address is represented in a 4-bit semi-octet. 

• External Reference Syntax. This is the syntax of a network address as it 
might be displayed in human-readable form in a printed report or on a dis­
play screen. The way a network address is externally represented can be 
different from both the abstract syntax and the encoding method. For ex­
ample, the abstract syntax might define address values as being decimal, 
the encoding method might be the preferred binary encoding scheme, and 
the external reference syntax might use decimal numbers with punctuation 
added to separate the various fields of the address for ease of reading. 

ISO 8348, Amendment 2, is concerned only with the abstract syntax 
of network addresses and for allocating and assigning address values. 
The ISO standard addressing scheme defines a hierarchical address, with 
the top level of the hierarchy being a number of addressing domains, 
each of which is associated with an addressing authority. An addressing 
authority can then allocate addresses within its own domain, or it can 
further subdivide its domain and assign an authority to each subdomain 
it creates. This process can be continued to an arbitrary extent, limited 
only by the maximum network address length. The uniqueness of ad­
dresses within a particular addressing domain must be ensured by the 
authority responsible for allocating addresses in that domain. 

The addressing authority and network management view of a DNA 
Phase V NSAP address, which conforms to the ISO network addressing 
standard, is illustrated in Figure 7. 7. According to the ISO addressing stan­
dard, the NSAP address is divided into two major parts, the initial domain 
part (IDP) and the domain specific part (DSP). We have already described 
the low-order nine octets of the DSP for DNA Phase V addresses. 

The IDP makes up the beginning of an ISO network address and is 
further divided into an authority and format identifier (AFI) and an ini­
tial domain identifier (IDI). DNA Phase V supports any valid AFI and 
IDI. The abstract syntax of the IDP specifies that IDP values are allo-
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FIGURE 7.7 The addressing authority and network administration view of a DNA Phase V network address. 
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cated in the form of decimal digits. This does not indicate, however, that 
the IDP must be encoded as decimal digits. It only indicates that address­
ing authorities must allocate and assign IDP values in the form of deci­
mal digits. As indicated earlier, the DNA Phase V architecture specifies 
that AFI and IDI values are encoded using a 4-bit semi-octet to encode 
each decimal digit. 

Authority and Format Identifier (AFI) 

The AFI contains a two-digit decimal number that defines the addressing 
authority responsible for allocating IDI values, defines the format of the 
IDI, and specifies whether the abstract syntax of the domain specific part 
(DSP) of the address is binary or decimal. DSP address values can be al­
located and assigned using either values expressed as decimal numbers or 
values expressed as binary numbers. DSP values in DNA Phase V NSAP 
addresses use a binary abstract syntax, and DSP values are allocated and 
assigned in the form of strings of hexadecimal digits. 

The Initial Domain Identifier (IOI) 

Specific AFI values determine the format of the IDI. For example, AFI 
value 48 for a decimal DSP and AFI value 49 for a binary DSP specify 
that the IDI is a null value and 0 decimal digits in length. With this IDP 
value, the entire address is contained in the DSP. These are called local 
AFI values, and NSAP address values that are allocated using them can­
not be guaranteed to be globally unique. 

The other AFI values thus far defined can be divided into two cate­
gories: those associated with ISO-administered addressing plans and 
those associated with CCITT-administered addressing plans. 

ISO Address Administration 

With ISO address administration, each IDP value identifies a particular 
country or an international organization. An addressing authority in 
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each country assigns one or more unique values for the high-order DSP 
(HO-DSP) field of the DSP to each organization applying for them. That 
organization then ensures that the HO-DSP field of the DSP for each net­
work address it creates contains one of the values the addressing author­
ity assigned it. The organization must then guarantee the value of the re­
maining bits in the DSP is different within that HO-DSP value. In this 
way an individual organization is guaranteed that each of its network 
addresses is globally unique. 

For a DNA Phase V NSAP address using the ISO addressing 
scheme, an organization in the United States begins each of its NSAP ad­
dresses with the IDP value assigned to the United States and applies to an 
addressing authority in the United States for a value it can use for the 
HO-DSP field in the DSP. The organization then assigns a unique value 
to the LOC-AREA field of the address for each area it defines within that 
HO-DSP field value. 

Unique AFI values are assigned to each of the following ISO-admin­
istered addressing plans: 

• ISO 3166 DCC. With this scheme, the IDI consists of a three-digit code 
allocated according to ISO 3166. This is an ISO-defined geographically 
oriented addressing plan that assigns IDI values to countries and na­
tional areas independent of public data networks. This is the addressing 
scheme typically used to assign network addresses in DECnet Phase V 
networks. 

• ISO 6523 ICD. The IDI consists of a four-digit international code desig­
nator (ICD) allocated according to ISO 6523. This is an ISO-defined 
nongeographic addressing plan that assigns addresses to certain types of 
international organizations, such as the United Nations, the Red Cross, 
and certain maritime and avionics networks that are nongeographical or 
multinational in scope. 

CCITT Address Administration 

With CCITT address administration, the values contained in the IDP 
identify not an entire country but an individual subscriber, in a similar 
manner to a telephone number. 

Unique AFI values are assigned to each of the following CCITT-ad­
ministered addressing plans: 

• CCITT X.121. With this scheme, the IDI consists of a sequence of up to 
14 decimal digits defined by CCITT Recommendation X.121. This is a 
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CCITT-defined addressing plan that assigns addresses to individual 
DTEs in X.21 and X.25 networks. 

• CCITT F.69. The IDI consists of a sequence of up to 8 decimal digits 
defined by CCITT Recommendation F.69. This is the CCITT-defined ad­
dressing plan for the international telex network. 

• CCITT E.163. The IDI consists of a sequence of up to 12 decimal digits 
defined by CCITT Recommendation E.163. This is the CCITT-defined 
addressing plan for the global telephone network. 

• CCITT E.164. The IDI consists of a sequence of up to 15 decimal digits 
defined by CCITT Recommendation E.164. This is the CCITT-defined 
addressing plan for the global integrated services digital network 
(ISDN). 

This chapter has introduced the function of the Network layer in the 
DNA Phase V architecture. Chapter 8 further describes the operation of 
the Network layer protocols used to supply the connectionless-mode 
Network service and introduces the protocols used to supply the connec­
tion-mode Network service. 



Data Links and 
Subnetworks 

Broadcast Data 
Links 

164 

CHAPTER 8 

Network Layer Protocols 

In Chapter 7, we introduced the five important ISO protocols the DNA 
Phase V architecture supports for the Network layer. In this chapter, we 
examine in detail the two protocols used in both end systems and 
routers to provide the connectionless-mode Network service (CLNS), 
and we introduce the two protocols end systems and routers used to 
provide the connection-mode Network service (CONS). Chapter 9 de­
scribes the ISO 10589 routing protocol implemented only in routers. Be­
fore we describe the specific protocols used in end systems and routers 
to provide the Network service, we must examine the characteristics of 
the underlying data links and subnetworks used to provide the Network 
service. 

In Chapter 6, we saw that DNA Phase V permits the use of a wide vari­
ety of different types of data links to interconnect computing systems. 
Network layer entities must be able to use the services of all these differ­
ent types of links in providing the Network layer service of moving a 
packet from a source node to a destination node. As we introduced in 
Chapter 7, a network is generally made up of a number of subnetworks, 
each of which consists of a collection of nodes connected to one another 
by a particular form of data link technology. The various types of data 
links used to construct subnetworks can be divided into two categories: 
broadcast data links and nonbroadcast data links. We describe each of 
these next. 

A broadcast data link is one in which a given node's transmissions are 
received by all the other nodes attached to the link. Subnetworks imple­
mented by local area network equipment typically use a broadcast form 
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of data link technology. A broadcast data link can implement a subnet­
work that contains two or more nodes. An important feature of a broad­
cast data link is that it allows a multicast facility to be implemented, in 
which a node can send a data unit to a group of other nodes on the data 
link. For example, an end node or a router might want to send a data 
unit to all the other routers on the data link. With a broadcast data link, 
it can do so in a single operation. 

A broadcast data link supplies the IEEE 802.2/ISO 8802-2 Logical 
Link Control (LLC) sublayer service introduced in Chapter 6 and de­
scribed further in Chapter 21. An IEEE/ISO form of LAN can supply ei­
ther a connectionless-mode or a connection-mode Data Link service. 
With DNA Phase V, the Network layer makes use of only the IEEE/ISO 
connectionless-mode LLC sublayer service. 

The Network layer views nonbroadcast data links as networks that con­
tain exactly two nodes. Examples of nonbroadcast links are HDLC and 
DDCMP telecommunication links and the virtual circuits provided by an 
X.25 packet-switched data network. A reliable, connection-mode Data 
Link service is generally provided over nonbroadcast links, although the 
service requester may not perceive the connection establishment or con­
nection release phases of the service. There are three main types of non­
broadcast data link: permanent point-to-point links, dynamically estab­
lished point-to-point links, and multipoint links. 

Permanent Point-to-Point Links 

Examples of permanent point-to-point links are private communication 
facilities, leased telecommunication links, and permanent virtual circuits 
provided by X.25 PSDNs. These are links that stay connected at all times 
unless a failure occurs. For a permanent link, the connection establish­
ment and connection release phases of the connection-mode Data Link 
service are performed by network management; Network layer entities 
perceive only the data transfer phase of the service. 

Dynamically Established Point-to-Point Links 

With dynamically established point-to-point links, the data link is estab­
lished when it is needed and released when it is no longer required. Ex­
amples of dynamically established point-to-point data links are dial-up 
telecommunications links and point-to-point links implemented by 
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switched virtual circuits (SVCs) in X.25 PSDNs. The DNA Phase V Net­
work layer supports two types of dynamically established point-to-point 
data links; they differ in how the connection establishment and connec­
tion release phases of the connection-mode Data Link service are per­
formed. 

• Static Point-to-Point Links. With a static point-to-point link, the Net­
work layer entities work with the link as if it were a permanent point-to­
point link. The connection is established by a network management ac­
tion, and the connection typically remains established during network 
operation unless a failure occurs. 

• Dynamically Assigned Point-to-Point Links. With a dynamically as­
signed point-to-point data link, the Network layer entities using it are in­
volved in the connection establishment and connection release phases of 
the Data Link service. If a node receives a packet and then determines the 
packet must be sent over a dynamically assigned data link over which no 
connection currently exists, the Network layer entity establishes the con­
nection. This may require that a telephone number be dialed or that an 
X.25 switched virtual circuit be established. The protocol attempts to 
use an already existing connection for transmission whenever possible to 
minimize the connection establishment overhead. Once a connection has 
been established, it is retained until a certain period of time has elapsed 
during which no traffic has flowed over the connection. After the time in­
terval has elapsed, the connection is released. 

Multipoint Data Links 

With a multipoint data link, one of the nodes is designated as the pri­
mary node; all the other nodes are designated as secondary nodes. The 
primary node is in control of the link; a secondary node originates traffic 
only when the primary node grants it permission. The primary node can 
communicate with any of the secondary nodes, but a secondary node can 
communicate only with the primary node. Secondary nodes cannot ex­
change data directly with one another over the data link. DNA models a 
multipoint data link as a collection of point-to-point links, and so the 
multipoint characteristics of the link are hidden from Network layer en­
tities. Network layer entities view a multipoint data link as if it were a 
set of point-to-point subnetworks, each of which connects the primary 
node with one of the secondary nodes. 

Although the DNA Phase V architecture defines support for multi­
point data links, they are rarely used today in computer networks having 
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the primary goal of peer-to-peer communication among all nodes. They 
are often used, however, in other forms of network in which computers 
are connected to large numbers of simple terminals. 

Network Example An example of a network that implements a number of subnetworks em­
ploying both broadcast and nonbroadcast data links is shown in Figure 
8.1. To move a packet from node A, on the left, to node H, on the right, 
the packet must travel in the following manner: 

FIGURE 8.1 

1. The packet travels from node A to node B over the subnetwork im­
plemented by a local area network (a broadcast data link). 

A network employing broadcast and nonbroadcast data links. 
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2. The packet travels from node B to node F over the subnetworks im­
plemented by point-to-point data links. 

3. The packet travels from node F to node Gover an X.25 PSDN (an­
other point-to-point data link). 

4. The packet travels from node G to node H over the subnetwork im­
plemented by a LAN (another broadcast data link). 

To understand how various types of data link technologies are used 
to provide a unified Network service, it is necessary to understand how 
the Network layer is organized and how it accesses the services of the un­
derlying Data Link layer. 

Internal 
Organization of 
the Network Layer 

The Network layer has a somewhat more complex organization than 
many of the other layers. One reason for its complexity is that it is possi­
ble for a network to be constructed with different types of subnetworks. 
As we have seen, some subnetworks may provide only a connectionless­
mode Data Link service, others may provide only a connection-mode 
Data Link service, and some may provide both. In addition, many alter­
native forms of data link technology can be used to supply the Data Link 
service. All of these must together be used to provide a unified service to 
users of the Network layer. 

Network Sublayers 

The DNA Phase V architecture divides the Network layer into two sub­
layers: a subnetwork independent layer and a subnetwork dependent 
layer. An important reason for dividing the network layer into two sub­
layers is to make it possible to provide a consistent Network layer service 
using the facilities of a wide variety of different types of subnetworks 
using various types of data link. The following are the major functions of 
the two Network layer sublayers: 

• Subnetwork Independent Sublayer. The major function of the subnet­
work independent sublayer is to provide either the CLNS or the CONS 
on the request of a user of the Network layer service (typically a Trans­
port layer entity). 

• Subnetwork Dependent Sublayer. The major function of the subnetwork 
dependent layer is to access the underlying services of the Data Link 
layer on the request of the subnetwork independent sublayer. 
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Network Layer Protocol Roles 

ISO has described the way in which the Network layer is organized in 
ISO 8648, Internal Organization of the Network Layer. This interna­
tional standard describes three roles that a Network layer protocol can 
play in helping to provide the Network layer service. It is helpful to view 
the three protocol roles as operating within the two Network layer sub­
layers, as shown in Figure 8.2. Following are descriptions of the three 
Network layer protocol roles: 

• Subnetwork Independent Convergence Protocol Role (SNICP). A proto­
col operating in the SNICP role operates to provide the requested Net­
work service to a user of the Network layer service using a well-defined 
set of underlying capabilities. It interfaces directly with the Network 
layer service requester (typically the Transport layer) and is independent 
of the actual Data Link services used to provide the Network service. 

• Subnetwork Access Protocol Role (SNAcP). A protocol operating in the 
SNAcP role directly accesses the services of the Data Link layer in help-
ing to provide the requested Network service. . 

• Subnetwork Dependent Convergence Protocol Role (SNDCP). A proto­
col operating in the SNDCP role augments the functions provided by a 
protocol operating in the SNAcP role to provide the services the subnet­
work independent sublayer requires to provide the requested Network 
service. 

Network layer sublayers and protocol roles. 
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The SNICP role operates in the subnetwork independent sublayer, 
the SNAcP role operates in the subnetwork dependent sublayer, and the 
SNDCP role, when it is required, helps to interface between the two sub­
layers. A single protocol can provide one, two, or all three of the proto­
col roles. Generally the SNICP and SNAcP roles are always required, but 
the SNDCP role may be null in some cases. Let us look at some examples 
of how the three protocol roles work together to provide the Network 
layer service. 

Suppose the Transport layer requests the CLNS and the underlying 
subnetwork uses a broadcast form of data link that provides a connec­
tionless-mode Data Link service. In this case, a single protocol may play 
both the SNAcP role of accessing the underlying Data Link service and 
the SNICP role of providing the Network service to the Transport layer 
entity. Here, the Data Link service provides exactly the functions re­
quired to provide the CLNS, and the SNDCP role is null. 

In a more complex case, the Transport layer may request the CLNS, 
and the underlying Data Link service may provide only a connection­
mode service, possibly using an X.25 virtual circuit. In such a case, one 
protocol may play the SNAcP role of accessing the connection-mode 
Data Link service, and an entirely different protocol may play the SNICP 
role of providing the network service to the Transport layer. In that case, 
the characteristics of the underlying Data Link service are quite different 
from the Network service being requested. For example, the CLNS has 
no connection establishment and release phases. A third protocol (it may 
or may not be the same protocol operating in the SNICP role) is required 
operating in the SNDCP role. It defines the procedures for selecting an 
existing Data Link connection, establishing a new Data Link connection 
when required, transferring data over the connection, and determining 
when to release the Data Link connection when it is no longer required. 

As a packet moves through the network, different protocols, operat­
ing in the various roles, may be used for each hop the packet takes over a 
data link. The protocols used for each hop are those appropriate for the 
Network service requested and the data link technology used on that link. 

The remainder of this chapter describes the ISO protocols that oper­
ate in end systems and routers for providing both the CLNS and the 
CONS, beginning with protocols for providing the CLNS. 

The preferred operating mode of the DNA Phase V Network layer is to 
use the protocols that supply the CLNS. This is the Network layer ser­
vice requested by the Transport layer most often in a DECnet Phase V 
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network. The ISO 84 73 Internet protocol supplies the CLNS and works 
in conjunction with the ISO 9542 ES-IS routing protocol and the ISO 
10589 IS-IS routing protocol. (These three protocols were introduced in 
Chapter 7.) The next sections describe the ISO 8473 Internet protocol 
and the ISO 9542 ES-IS routing protocol; the ISO 10589 IS-IS routing 
protocol is described in Chapter 9. 

The ISO Internet protocol is described in ISO 8473, Protocol for Provid­
ing the Connectionless-mode Network Service. A major portion of ISO 
8473 concerns the SNICP role in the subnetwork independent sublayer 
and specifies the procedures that end nodes use for exchanging user data 
with each other in supplying the CLNS to users of the Network service. A 
part of the Internet protocol also operates in the subnetwork dependent 
layer and is concerned with accessing the underlying Data Link services. 

We will first discuss the functions of the ISO 84 73 Internet protocol 
that operate in the subnetwork dependent sublayer; then we will look at 
the ISO 84 73 functions performed in the subnetwork independent sub­
layer. 

The functions of the ISO 8473 protocol that operate in the subnetwork 
dependent layer are concerned mainly with the SNDCP role of augment­
ing the underlying Data Link service to provide the service expected by 
the subnetwork independent sublayer. The SNDCP role of the ISO 84 73 
protocol is concerned with how the subnetwork dependent sublayer per­
forms data link initialization, hop-by-hop segmentation over subnet­
works with small maximum frame sizes, and connection establishment 
and release for dynamically established data links. 

We will see that ISO 8473 defines specific SNDCP functions for ac­
cessing subnetworks .implemented by local area networks, X.25 virtual 
circuits, and point-to-point data links. 

The specification of the ISO 84 73 Internet protocol includes a service 
definition of the interface between the subnetwork dependent sublayer 
and the subnetwork independent layer. Unlike the interfaces between 
layers, this service interface is not standardized and appears in the ISO 
standard only for descriptive purposes. As with other service definitions, 
this interface is defined in terms of a set of service primitives and service 
primitive parameters. These are listed in Box 8.1. Figure 8.3 is a time-se-
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SN_UNITDATA.request 

SN UNITDATA.indication 

source address 
destination address 
quality_of_service 
user data 

source address 
destination address 
quality_of_service 
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quence diagram that shows the sequence in which the service primitives 
are issued to transmit a packet across a single data link. 

There is a difference between the service definition described here 
and the one presented in Chapter 7 that defines the services the Network 
layer provides to a user of the Network layer service. The service defini­
tion described in Chapter 7 defines the service the Network layer pro­
vides as a whole; the service definition described in Box 8.1 defines the 
service the subnetwork dependent sublayer provides to the subnetwork 
dependent sublayer. 

In a typical use of the Network layer service, a Transport layer en­
tity issues an N_UNITDATA.request primitive to hand an NSDU over to 

A time-sequence diagram for the SN·UNITDATA service. 

SN_UNITDATA. 
SN_UNITDATA. 



FIGURE 8.4 

CHAPTER 8: NETWORK LAYER PROTOCOLS 173 

a Network layer entity for transmission through the network. A Net­
work layer entity in the node at the final destination then issues an 
N_UNITDATA.indication primitive to pass the NSDU up to the destina­
tion Transport layer entity. With this service, the routing and relaying of 
packets between routers are hidden from the Transport layer entities. 
The roles of the subnetwork independent and subnetwork dependent 
sublayers in routing packets through the network is shown in Figure 8.4. 

After the subnetwork independent sublayer receives an NSDU from 
a Transport layer entity, it encapsulates the NSDU in a packet and issues 
an SN_UNITDATA.request primitive to the subnetwork dependent sub-

The roles of the subnetwork independent sublayer and the subnetwork dependent sublayer in 
routing data through different types of subnetworks. 
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layer below to transmit the packet over a single subnetwork. The sub­
network dependent sublayer entity provides the service of accessing a 
Data Link layer service to transfer the packet specified by the user_data 
parameter across a single data link. A subnetwork dependent entity in 
the receiving node then passes the packet up to the subnetwork inde­
pendent sublayer in that node by issuing the SN_UNITDATA.indication 
primitive. 

If the packet has reached a router and not the destination end node, 
the subnetwork independent sublayer in the router performs the routing 
function and issues another SN_UNITDATA.request primitive to relay 
the packet across the next subnetwork. This process continues until the 
packet reaches its final destination. The subnetwork independent sub­
layer in the destination node then extracts the NSDU from the packet 
and issues the N_UNITDATA.indication primitive to pass the NSDU up 
to the destination Transport entity. 

Like the interface between the Transport layer and the Network layer, 
the DNA Phase V architecture defines the interface between the subnet­
work independent sublayer and the subnetwork dependent sublayer. The 
architectural specification for the Network layer uses the terms circuit 
and adjacency in defining this service interface. A circuit is a generic term 
that includes any type of link, including a local area network broadcast 
link, a point-to-point link, an attachment to a node on a DDCMP multi­
point link, a dial-up link, or an X.25 virtual circuit. An adjacency repre­
sents the combination of a circuit and a node attached to that circuit. 

For example, a router attached to a LAN having 10 end nodes at­
tached to it and no other routers perceives one circuit with 10 adjacen­
cies. The procedure declarations that define the services a subnetwork 
dependent sublayer entity supplies to a subnetwork independent sub­
layer entity are listed in Box 8.2. 

As we have described, the subnetwork dependent sublayer provides the 
function of accessing a real Data Link layer service to provide the service 
of transmitting packets from one node to another. As we have seen, the 
subnetwork dependent sublayer is capable of working with many types 
of data links, some of which may offer a connectionless-mode and some 
of which may offer a connection-mode Data Link layer service. 

The ISO 84 73 Internet protocol functions running in the subnet­
work dependent sublayer operate in the SNDCP role and perform the 
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The following function and procedure declarations define the 
abstract interface between the subnetwork independent sublayer and 
the subnetwork dependent sublayer of the Network layer in terms of 
the services a subnetwork dependent sublayer entity provides to a 
subnetwork independent sublayer entity. 

Circuit Control Functions 

• CircuitStatus. Determines the status of a circuit. 

• Reinitialize. Resets a circuit so previously received messages are dis­
carded. 

• SupplyCircuitUpComplete. Informs the subnetwork dependent sub­
layer that the update process of the routing algorithm recognizes that 
a circuit is up. 

• SupplyCircuitDownComplete. Informs the subnetwork dependent 
sublayer that the update process of the routing algorithm recognizes 
that a circuit is down. 

Adjacency Control Functions 

• AdjacencyStatus. Determines the status of an adjacency. 

• SupplyBroadcastAdjacencyUpComplete. Informs the subnetwork 
dependent sublayer that the update process of the routing algorithm 
recognizes that an adjacency on a broadcast circuit is up. 

• SupplyBroadcastAdjacencyDownComplete. Informs the subnetwork 
dependent sublayer that the update process of the routing algorithm 
recognizes that an adjacency on a broadcast circuit is down. 

Data Transfer Functions 

• Transmit. Transmits the contents of a buffer containing an NSDU. 

• CheckTransmitBuffer. Checks the status of a buffer whose contents 
previously were sent as a result of the Transmit function. 

• SupplyReceiveBuffer. Provides a receive buffer for use by a subnet­
work dependent sublayer entity. 

• CheckReceiveBuffer. Determines whether any buffer supplied with a 
SupplyReceiveBuffer function has been filled with received data and 
returns the contents of the buffer to the subnetwork independent 
sublayer entity when a packet arrives. 

175 
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subnetwork dependent convergence functions required to offer a uni­
form interface to the subnetwork independent layer, no matter what the 
actual characteristics of the underlying Data Link layer service are. 

In some cases, the underlying Data Link layer service provides a 
connectionless-mode service. In such a case, the subnetwork dependent 
convergence function consists of a simple mapping to the Data Link ser­
vice required to implement the SN_UNITDATA.request primitive. In 
other cases, the underlying Data Link layer service may provide a con­
nection-mode service, such as that offered by an X.25 virtual circuit. In 
such a case, the subnetwork dependent convergence function consists of 
the specification of an actual protocol that uses an existing connection or 
establishes a new connection, if required, to relay the packet across the 
connection and then releases the connection at an appropriate time. 

Subnetwork Dependent Convergence General Model 

In general, when the subnetwork dependent sublayer receives a packet 
from the subnetwork independent sublayer as a result of an SN_UNIT­
DATA.request primitive, it attempts to determine what it needs to trans­
mit the packet to the next node along its path. It then transmits the 
packet to the appropriate node. If for any reason the subnetwork depen­
dent sublayer entity is unable to transmit the packet to an appropriate 
next node, it discards the packet and generates, if so requested, an Error 
Report packet to be returned to the source. 

ISO 8473 Subnetwork Dependent 
Convergence Functions 

The ISO 84 73 Internet protocol defines subnetwork dependent conver­
gence functions for three types of subnetworks: 

• Point-to-Point Subnetworks. These subnetworks are implemented by 
conventional wide area networking Data Link protocols. DNA Phase V 
supports both HDLC and DDCMP data links for point-to-point subnet­
works. With an HDLC or DDCMP point-to-point link, the SNDCP role 
of the Data Link protocol consists of a simple mapping function. 

• Broadcast Subnetworks. These subnetworks are implemented by local 
area networks that supply the Logical Link Control (LLC) service 
defined in IEEE 802.2/ISO 8802-2. The LLC service is exactly the service 
required to support the CLNS, so the SNDCP function consists of a sim­
ple mapping to the LLC service primitives. 
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• X.25 Virtual Circuits. These subnetworks supply a connection-mode 
Data Link service. An X.25 virtual circuit subnetwork is an example of a 
dynamically assigned point-to-point data link. The SNDCP function for 
X.25 virtual circuits specifies a protocol for choosing an existing connec­
tion, establishing a new connection when required, transferring data 
over a connection, and releasing the connection when appropriate. This 
protocol is augmented by additional policies and parameters described in 
the DNA Phase V architectural specification for the Network layer. 

We next describe the functions of the ISO 84 73 Internet protocol 
that operate in the subnetwork independent layer to provide the CLNS 
to a user of the Network layer. 

As we introduced earlier, the subnetwork independent sublayer is responsi­
ble for the transmission of packets between any two end nodes in the net­
work wishing to communicate with one another. The ISO 84 73 protocol 
functions operating in the subnetwork independent layer are not concerned 
with the type of service provided by the individual subnetworks over which 
packets must travel; they are independent of the Data Link layer. 

The functions of the ISO 8473 Internet protocol operating in the 
subnetwork independent sublayer play the SNICP role and supply the 
Network service directly to a user of the Network layer service. These 
protocol functions define the way in which two end nodes exchange 
packets with each other to provide the CLNS. 

ISO 8473 Packets 

The ISO 84 73 Internet protocol defines two network-protocol-data-units 
(NPDUs), or packets, that are used to control its operation. Following are 
brief descriptions of the two ISO 84 73 Internet protocol packet types: 

• Data Packet. Carries NSDUs between users of the Network layer service 
in the two end nodes that are communicating using the Network service. 

• Error Report Packet. Returned to the originating node when a Data 
packet is discarded because of a problem. It is generated by the node that 
discarded the packet if requested by the sender of the packet. 

Packet Format Figure 8.5 shows the general format of a Network 
layer packet. It begins with a protocol identifier field that identifies the 
packet as one associated with the ISO 84 73 Internet protocol. Following 
the identifier field is a length indicator, which contains a value indicating 
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The general format of a Network layer packet. 

Protocol Header 
Header 

Identifier 
Length 

Fixed Portion 
Variable Portion Data 

(optional) 

the length of the header portion of the message. After the length field is 
the fixed portion of the header, which has the same format for both Data 
and Error Report packets. Following the fixed portion of the header is an 
optional variable portion that contains additional parameters. Following 
the variable portion of the header is the data portion of the packet. In a 
Data packet, the data portion contains the NSDU passed from a user of 
the Network layer service for transmission by the Network service. 

Packet Header Fields Figure 8.6 shows the format of Data and Error 

Data packet and Error Report packet format. 
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Header variable portion parameter format. 

Parameter 
Code 

Length Parameter Value 
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Report packets. When a packet contains parameters in the variable por­
tion of the header, each parameter is structured as shown in Figure 8. 7. A 
parameter begins with a 1-octet code identifying the parameter's type, 
followed by a 1-octet field giving the parameter's length, and ending with 
one or more octets containing the parameter's value. The parameters 
that can be included in both the fixed and the variable portions of the 
header for Data and Error Report packets are listed in Box 8.3. 

ISO 8473 
Subnetwork 
Independent 
Protocol Functions 

The procedures performed by the subnetwork independent layer of the 
Network layer and the mechanisms used in implementing these proce­
dures are described in both ISO 8473 and the DNA architectural 
specification for the Network layer. The operation of the ISO 84 73 Inter­
net protocol is defined in terms of a set of protocol functions docu­
mented in ISO 8473. Not all functions need be supported by an imple­
mentation of ISO 8473. Box 8.4 (page 182) describes each protocol 
function described in the ISO 84 73 protocol specification. 

Protocol Function Subsets 

ISO 84 73 defines two subsets of the full protocol, each of which needs to 
implement only some of the protocol functions: 

• Inactive Network Layer Subset. This protocol subset consists of a limited 
number of protocol functions that can be used when it is known that 
both the source and the destination end nodes are in the subnetwork. 

• Nonsegmenting Subset. This protocol subset allows a simplified form of 
packet header to be used if it is known that it will not be necessary to 
segment packets over any of the subnetworks that connect the source 
and the destination nodes. 

DNA Phase V provides the full protocol. The inactive Network 
layer subset is provided for compatibility with the equipment of other 
vendors that does not support the full protocol. 
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Header Fixed Portion Fields 

• Network Layer Protocol Identifier. Contains the value 129 and 
identifies the packet as being associated with the ISO 8473 protocol. 

• Length Indicator. Contains a value giving the length of the header. 

• Version/Protocol ID Extension. Contains the value 1. 

• Lifetime. Contains a value specifying the remaining lifetime of the 
packet in units of 1/2 second. 

• Segmentation Permitted (SP). Contains the value 1 if segmentation is 
permitted. 

• More Segments (MR). Contains the value 1 if more segments follow 
this one. 

• Error Report (ER). Contains the value 1 to request the return of an 
Error Report packet should this packet be discarded. 

• Type. Contains the value 28 if the packet is a Data packet; contains 
the value 1 if the packet is an Error Report packet. 

• Segment Length. Contains a value giving the length of the entire 
packet, including the header. 

• Checksum. Used to contain a calculated checksum to detect corrup­
tion of the data in the packet's header. The use of this field is 
optional and is not recommended in DNA. When not used, both 
octets are set to values of 0. 

• Destination Address Length. Contains a value giving the length of 
the destination address field that follows. 

• Destination Address. Contains the network address of the node to 
which the packet is being sent. 

• Source Address Length. Contains a value giving the length of the 
source address field that follows. 

• Source Address. Contains the network address of the node originat­
ing the packet. 

• Data Unit Identifier. Contains a unique identifier generated by the 
source node (included only in packets having the Segmentation Per­
mitted field set to 1). 

• Segment Offset. Contains a value indicating the relative position 
within the original PDU of this segment (included only in packets 
having the Segmentation Permitted field set to 1). 
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• Total Length. Total length of the entire PDU before segmentation 
(included only in packets having the Segmentation Permitted field set 
to 1). 

Header Variable Portion Fields 

• Padding. Used to align the data portion of the PDU on some desired 
boundary. 

• Security. Used to contain implementation-defined security informa­
tion. 

• Source Routing. Used to contain information about the route the 
packet should take through the network. 

• Route Recording. Used to record information about the route the 
packet travels through the network. 

• Quality of Service. Used to contain values describing quality-of-ser­
vice parameters. This field contains the congestion experienced indi­
cator used to implement congestion avoidance procedures. 

• Priority. Used to contain a value specifying the relative priority of the 
packet. 

• Reason for Discard. Used in Error Report packets sent after a node 
discards a packet to indicate the reason a packet was discarded. 

Protocol Function Categories 
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The ISO 84 73 protocol specification divides the protocol functions into 
three categories: 

• Type 1. These are functions that all implementations of the full protocol 
must provide. 

• Type 2. An implementation may or may not provide these functions. If a 
node receives a packet that selects a type 2 function that the node does not 
provide, the node discards the PDU and generates an Error Report packet. 

• Type 3. An implementation may or may not provide these functions. If a 
node receives a packet that selects a type 3 function that the node does 
not provide, the node processes the packet as if the function had not 
been selected. 

Figure 8.8 (page 184) lists the protocol functions, indicates each 
function's type, indicates the functions that must be provided by the full 
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• PDU Composition. Constructs packets according to the rules gov­
erning the encoding of packets defined in the protocol specification. 

• PDU Decomposition. Removes protocol-control-information from 
packets. 

• Header Format Analysis. Analyzes information in the packet header 
and determines whether it is in the correct format. 

• PDU Lifetime Control. Used to enforce a maximum lifetime for a 
packet so no packet can circulate endlessly through the network. 

• Route PDU. Determines the node to which a packet should be for­
warded and the underlying service that must be used to move the 
packet to that node. 

• Forward PDU. Transmits a packet over a data link to the node deter­
mined as a result of the route PDU function. 

• Segmentation. Breaks up a large packet for transmission over a data 
link into two or more smaller packets. 

• Reassembly. Reassembles the original packet segmented using the 
segmentation function. 

• Discard PDU. Discards a packet that cannot be processed because of 
a lack of resources, a protocol violation, or an error that occurred 
during its transmission. 

• Error Reporting. Attempts to return an Error Report packet when 
the discard PDU function was used to discard a packet. 

• PDU Header Error Detection. Performs a checksum calculation on 
the protocol-control-information to ensure that it has not been cor­
rupted. 

• Padding Function. Allows space to be reserved in a packet header to 
allow the data portion to be aligned on a convenient boundary, such 
as a word boundary in a computer. 

• Security. Used to implement protection and data integrity controls. 
The standard does not specify how the protection is to be provided, 
only where in the packet header security information can be 
encoded. (This protocol function is not provided by DNA Phase V.) 

• Source Routing. Allows the source node to specify the path through 
the network a generated packet should take. (This protocol function 
is not provided by DNA Phase V.) 

• Record Route. Records the route traveled by a packet as it passes 
through each router on its way to the destination node. 
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• Quality-of-Service Maintenance. Provides information to routers 
that can be used in making routing decisions where those decisions 
affect the quality of service the Network service provides to a user of 
the Network layer service. 

• Priority. Allows a packet having a higher priority value in its header 
to be processed ahead of packets having lower priorities. (This pro­
tocol function is not provided by DNA Phase V.) 

• Congestion Notification. Sets an indicator in a packet's header to 
indicate that congestion was experienced in transmitting the packet 
over a data link. 
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protocol and the two protocol subsets, and summarizes the protocol 
functions that the DNA Phase V implementation of ISO 84 73 provides. 

The descriptions of the protocol functions in ISO 84 73 precisely docu­
ment all aspects of Network layer protocol operation for the CLNS. 
However, the descriptions are overly detailed for all but those who build 
products implementing the protocol. Full descriptions of the protocol 
functions used to provide the CLNS would fill a rather large book, so we 
cannot describe them here in detail. The following sections contain gen­
eral descriptions of the various types of protocol mechanisms used in the 
DNA Phase V Network layer to implement ISO 8473. Here we provide a 
high-level overview of some of the more interesting aspects of the opera­
tion of the ISO 8473 Internet protocol. 

Routing 

The routing function determines the path over which a packet flows 
from the source node to the destination no_de. The routing function in a 
router extracts and interprets routing PCI from the packets it receives, 
forwards packets based on the destination address in the PCI, and finds 
an alternative route when nodes or data links fail. The routing function 
also receives reports from the subnetwork dependent layer concerning 
changes in the availability of the routers and the end nodes to which it is 
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FIGURE 8.8 Network layer protocol function support 

Full Nonsegmenting Inactive Supported by 
Function Protocol Subset Subset DNAPhaseV 

PDU Composition Type 1 Type 1 Type 1 Yes 

PDU Decomposition Type 1 Type 1 Type 1 Yes 

Header Format Analysis Type 1 Type 1 Type 1 Yes 

PDU Lifetime Control Type 1 Type 1 n.a. Yes 

Route PDU Type 1 Type 1 n.a. Yes 

Forward PDU Type 1 Type 1 n.a. Yes 

Segmentation Type 1 n.a. n.a. Yes 

Reassembly Type 1 n.a. n.a. Yes 

Discard PDU Type 1 Type 1 n.a. Yes 

Error Reporting Type 1 Type 1 n.a. Yes 

PDU Header Error Detection Type 1 Type 1 n.a. Yes 

Security Type2 Type 2 n.a. No 

Complete Source Routing Type 2 Type2 n.a. No 

Complete Route Recording Type2 Type2 n.a. No 

Partial Source Routing Type3 Type3 n.a. No 

Partial Route Recording Type3 Type 3 n.a. Yes 

Quality of Service Maintenance Type3 Type3 n.a. No 

Priority 

Congestion Notification 

Padding Function 

Type3 Type3 n.a. No 

Type3 Type3 n.a. Yes 

Type3 Type3 n.a. Yes 

attached and returns error reports to the user of the Network layer ser­
vice when necessary. The ISO 84 73 Internet protocol describes a routing 
protocol function but does not specify the algorithm that is to be used to 
perform it. As we have already discussed, routing in a DNA Phase V net­
work is handled by the ISO 10589 IS-IS routing protocol, described in 
Chapter 9. 

Segmentation and Reassembly 

In some situations, packets may be too large to be transmitted by the 
Data Link layer in a single transmission frame, perhaps because devices 
having a limited frame buffer size are used to implement the data link. In 
such a case, a segmentation function breaks up the packet into smaller 
packets. Packets that are segmented remain so until they are received by 
the destination node. A reassembly function in the Network layer in the 
destination node reassembles the packet after receiving all the segments. 
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(Note that this function is different from the Transport layer function of 
breaking long messages into individual packets before passing them 
down to a Network layer entity in separate NSDUs.) 

POU Lifetime Control 

PDU lifetime control places a limit on the amount of time a packet can 
remain in the network and thus ensures that a packet does not circulate 
endlessly through the network. This function is important to the Trans­
port layer because the Transport layer requires that each packet is either 
delivered in a bounded amount of time or discarded. Packets that remain 
in the network too long can cause the Transport layer message sequence 
number mechanism to fail. 

Congestion Avoidance 

The congestion avoidance function keeps track of the available buffer re­
sources in each router. When the average number of packets in the queue 
for a given data link exceeds some predefined value, the router sets a 
congestion experienced indicator in the packets it forwards over that 
data link. This information is used by the Transport layer congestion 
avoidance functions described in Chapter 10. If the queue continues to 
grow, the router begins to discard packets to prevent deadlocks. The 
congestion control function regulates the ratio of traffic being relayed by 
a node to traffic originated by that node. 

We next examine the functions that are performed by the ISO 9542 
ES-IS routing protocol. 

ISO 9542 ES-IS The ISO ES-IS routing protocol is described in ISO 9542, End System to 
Routing Protocol Intermediate System Routing Exchange Protocol for Providing the Con­

nectionless-mode Network Service. This protocol allows end nodes and 
routers to communicate with one another for the purposes of exchanging 
information to control the routing function. This protocol defines how 
an end node exchanges routing control information with a router to au­
tomatically configure itself into the network. The 9542 ES-IS protocol 
works with two types of information: configuration information and 
route redirection information: 

• Configuration Information. Configuration information allows end nodes 
and routers to learn of each other's existence and to determine if they are 
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reachable. This information allows end nodes and routers to dynami­
cally learn of their availability, thus eliminating the need for explicit net­
work management actions when connecting a new end node to the net­
work or when disconnecting an end node or router. 

• Route Redirection Information. Route redirection information allows 
routers to inform end nodes of better routes to use when forwarding 
packets to a particular destination node. A better path could be another 
router on the same subnetwork as the source end node or the destination 
end node itself if it is on the same subnetwork as the source end node. 
Allowing the routers to inform end nodes of better routes minimizes the 
complexity of the routing decisions end nodes must make and allows end 
nodes to make use of more efficient routes when transmitting future 
packets. For example, a source end node need not check to see whether 
the destination end node is in its own subnetwork. The source end node 
simply sends the first packet to a router it knows about. If the router de­
termines that the destination end node is in the same subnetwork as the 
source end node, it informs the source end node of that fact. The source 
end node can then forward all subsequent packets directly to the destina­
tion end node. 

The following sections describe the formats of the packets defined 
by the ISO ES-IS protocol and list the procedures the protocol defines. 

ISO 9542 ES-IS Protocol Packet Types 

The ISO 9542 ES-IS protocol defines three packet types used to exchange 
routing information: 

• Redirect. This packet is generated by a router when it receives a Data 
packet from an end node and determines that the end node could have 
forwarded the packet directly to the node to which the router is about to 
forward the packet. The Redirect packets provide the end node that orig­
inally sent the Data packet with the subnetwork address of the node to 
which it should forward future packets for the specified destination. 

• End System Hello (ESH). This packet, called Endnode Hello in the DNA 
Phase V documentation, is generated periodically by each end node to 
inform all routers currently on the data link of the existence of the end 
node. 

• Intermediate System Hello (ISH). This packet, called Router Hello in the 
DNA Phase V documentation, is generated periodically by each router 
on a data link to inform all end nodes on that data link of the existence 
of the router. 
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ISO 9542 Protocol Functions 

The ISO 9542 protocol specification describes the operation of the ES-IS 
routing protocol in terms of a set of protocol functions. Not all functions 
need be supported by an implementation of ISO 9542. Box 8.5 describes 
each of the protocol functions defined in ISO 9542. 

The remainder of this chapter introduces the protocols used in sup­
plying the CONS. 

Two protocols are used to supply the CONS: ISO 8208 and ISO 8878. 
Together they provide the CONS, but not in the same way as ISO 8473, 
ISO 9542, and ISO 10589 supply the CLNS. As described in Chapter 7, 
DNA Phase V end nodes support the CONS for communication with 
other nodes attached to an X.25 PSDN. 

ISO 8208 X.25 Protocol 

The specification of the main protocol used to implement the X.25 inter­
face is described in ISO 8208, X.25 Packet-level Protocol for Data Ter­
minal Equipment. The ISO 8208 protocol is a subnetwork dependent 
sublayer protocol that operates in the SNAcP role to access the underly­
ing subnetwork service in an X.25 network. The ISO 8208 protocol is 
identical to the protocol described in the 1984 Red Book version of Rec­
ommendation X.25 published by CCITT. The 1984 version of X.25 
defines a protocol rich enough in function that it provides all required fa­
cilities to directly provide the CONS. However, the X.25 and the CONS 
are defined in different ways. 

The CONS, described by ISO 8348, Network Service Definition, is 
defined in terms of the following: 

• service primitives that define actions and events 

• service primitive parameters 

• the interrelationships among valid sequences of actions and events 

Recommendation X.25, on the other hand, is defined in terms of the 
following: 

• procedures for establishing and using virtual circuits 

• the formats of packets associated with virtual circuit procedures 

• procedures for optional user facilities 
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• Protocol Timers. Maintenance of timers used to trigger the execution 
of other protocol functions. 

• Report Configuration. Used by end nodes and routers to inform each 
other of their existence and of their network addresses. 

• Record Configuration. Used by a router to record configuration 
information obtained from end nodes and other routers to update 
the router's routing information database and by an end node to 
record the configuration of routers on a subnetwork. 

• Flush Old Configuration. Used by a router or an end node to flush 
old configuration information from the router's routing information 
database after the expiration of a timer. 

• Query Configuration. Issued to locate an end node when no router is 
currently reachable on the subnetwork. 

• Configuration Response. Issued in response to the query configura­
tion function. 

• Configuration Notification. Used by end nodes and routers to trans­
mit configuration information to a node that has become newly 
available. 

• Request Redirect. Used by routers to provide an end node with a bet­
ter path over which to forward Data packets. 

• Record Redirect. Used by end nodes to handle Redirect packets 
received from routers issuing the request redirect function. 

• Refresh Redirect. Used by end nodes to refresh redirection informa­
tion when packets are received in order to increase the length of time 
a redirection persists without allowing it to persist indefinitely. 

• Flush Old Redirect. Flushes redirection entries in the routing infor­
mation database after the expiration of a timer. 

• PDU Header Error Detection. Performs a checksum cakulation on 
the protocol-control-information to ensure that it has not been cor­
rupted. 

• Protocol Error Processing. Discards packets found to contain proto­
col errors. 

Because Recommendation X.25 was not originally designed for the 
purpose of supplying the CONS, it does not indicate exactly how X.25 
procedures and packets should be used to supply the Network service. 
To supplement the information in ISO 8208 and Recommendation X.25, 
ISO has published ISO 8878. 
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ISO 8878 Provision of CONS Using X.25 

The protocol defined in ISO 8878, Use of X.25 to Provide the OSI Con­
nection-mode Network Service, is a protocol operating in the subnet­
work independent sublayer. ISO 8878 operates in the SNICP and 
SNDCP roles and can be viewed as running in a thin layer on top of a 
lower sublayer in which the ISO 8208 protocol operates. The ISO 8878 
protocol defines how X.25 packets and procedures are used to supply 
the various services defined in the service definition for the CONS. 

ISO 8878 also defines a protocol operating in the SNDCP role that 
specifies how an older version of Recommendation X.25 can be used to 
supply the CONS. Many PSDNs are still operating using the procedures 
defined by the 1980 Yellow Book version of Recommendation X.25. The 
1980 version does not provide a sufficiently powerful protocol to furnish 
all the services required to supply the CONS. The protocol specified in 
ISO 8878 defines procedures by which information concerning certain 
elements of the protocol is carried in the headers of 1980 X.25 packets, 
and other information concerning the protocol is carried in the data por­
tion of special X.25 Data packets. The protocol generates these and 
transmits them along with Data packets that carry information passed 
down from the Transport layer. 

Chapter 7 introduced the functions of the Network layer, and this chap­
ter discussed the protocols that end nodes use to communicate with each 
other and to exchange information with routers. Another important 
Network layer protocol involves the procedures routers use in communi­
cating with each other in choosing routes and relaying user traffic 
through the network. The ISO 10589 routing protocol is the subject of 
Chapter 9. 
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CHAPTER 9 

Network Layer 
Routing 

The routing function in a computer network must determine the path 
over which each packet travels from a source node to a destination 
node. Routing in computer networks is a very difficult problem, to 
which there does not exist today a totally acceptable solution. There is 
no known algorithm that always relays packets, over optimal routes, to 
their correct destinations in the face of an arbitrary network topology, 
an arbitrary amount of network traffic, and an arbitrary set of failures. 
However, the routing problem can be partitioned into two parts: rout­
ing within a single routing domain and routing between administrative 
domains. 

As discussed in Chapter 7, an administrative domain includes all 
the end systems, routers, and subnetworks making up a network that is 
the responsibility of a single organization. The DNA Phase V routing 
algorithm solves the problem of routing within a single routing do­
main. The routing algorithm designed specifically for DNA Phase V has 
now been accepted as the basis for the international standard ISO 
10589-Intermediate System to Intermediate System Intra-Domain 
Routing Exchange Protocol for use in Conjunction with the Protocol 
for Providing the Connectionless-mode Network Service (ISO 8473). 
After we describe how the DNA Phase V routing algorithm handles in­
tradomain routing, we will discuss the more difficult problem of inter­
domain routing. 

In developing the routing algorithm for DNA Phase V, the DNA archi­
tects began by determining the desirable properties of a routing algo­
rithm. 
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NETWORK ARCHITECT 

First, the algorithm has to be robust; if a physical path exists between a source 

node and a destination node, then the routing algorithm should be able to find 

it. The algorithm must compute good routes; if there are multiple paths between 

two nodes, the system should use the one with the lowest cost. The algorithm 
must stabilize quickly; when changes occur in the network, new routes should 

be computed quickly, and the system should stabilize fast and should not oscil­

late. The algorithm has to be frugal; it should use minimum amounts of CPU 

cycles, memory, and network bandwidth. And the algorithm must be fault­

tolerant; it should be able to survive data corruption and failures of hardware 

and communication links. It is difficult, to say the least, to achieve all of these 

objectives simultaneously. 

We will next examine the types of routing algorithms that can be 
used in a computer network. 

The ISO Technical Report TR 9575, OSI Routing Framework, provides 
a general discussion of routing in an OSI network and identifies five 
forms of routing that can be employed in a computer network. These are 
summarized in Figure 9 .1 and are described in the following sections. 

Static Routing 

With static routing, all routing information for each node is precom­
puted and is provided to each router through a management action. 
Static routing has the advantage that sophisticated computational meth­
ods can be used for computing routes, since routes are not computed in 
real time. However, with static routing techniques, routing information 
must be recomputed and provided to the routers each time the network 
topology changes. Thus, static routing techniques are generally not well 
suited to large networks that may be constantly changing. 

Quasistatic Routing 

Quasistatic routing is similar to static routing except the routing infor­
mation that is computed and provided to each node includes information 
about alternative paths that can be used when certain types of failures 
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Characteristics of five types of routing algorithms. 

Collection Distribution Computation Adaptability 

Through network Through network Routes computed None in real time. 
management. management. offline. 

Through network Through network Routes computed Limited adaptibility to 
management. management. offline. failures. 

Routers report information Central facility distributes Routes computed by Can adapt to any changes 
about the local forwarding information to central facility. to the central facility, but 
environment to a central each router. routers have difficulty 
facility. finding the central facility. 

Routers report current Routers accept routing Routes computed Adapts to any changes 
routes to each neighbor information from neighbor individually by each router that are reported by 
router. routers and redistribute on receipt of information neighbors. 

their view of local that changes their routing 
neighborhood. decisions. 

Routers collect Routers globally distribute Routes computed individ- Adapts to any changes 
globally provided information about their ually by each router upon that are reported in the 
information to obtain a local environments to all receipt of information that link state information. 
map of the routing domain. other routers. changes their map of the 

routing domain. 

occur. Quasistatic routing techniques can handle certain types of topo­
logical changes, such as links becoming unavailable, but major changes 
to the network topology still require routing information to be recom­
puted offline for the routers. 

Centralized Routing 

With centralized routing, end nodes and routers report information 
about their local environments to a centralized facility. The centralized 
facility accumulates routing information from all the nodes in the net­
work, computes routes, and sends to each router the information it 
needs to handle routing decisions. In effect, only the centralized facility 
has complete knowledge of the network topology. Although, in theory, a 
centralized routing scheme can respond to topological changes, it has 
two major drawbacks. First, a way must be found for relaying the rout­
ing information to the centralized facility after a topological change oc­
curs. This is difficult because the routing information maintained by the 
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centralized facility cannot be reliably used for this purpose after the net­
work topology changes. Second, the delays inherent in propagating rout­
ing information to and from the centralized facility can cause the calcu­
lated routes to be different from the routes that should be used. 

Distributed Adaptive Routing 

With distributed adaptive routing, nodes dynamically sense their local 
environments and exchange this information with each other in a dis­
tributed fashion. Each node then periodically computes new routes for 
relaying packets from one node to the next. Distributed adaptive algo­
rithms are robust, and they can quickly adapt to changing network 
topologies. There are two main types of distributed adaptive routing: 
distance-vector routing and link state routing. Each of these is discussed 
next. 

Distance-Vector Routing With a distance-vector routing algorithm, 
also sometimes called a Bellman-Ford algorithm, each node in the net­
work learns about the network topology by exchanging routing informa­
tion packets with its neighbors. In effect, each node learns what its 
neighbors think the network looks like. Each node then constructs a new 
description of the network topology and communicates this new picture 
to its neighbors. The process is repeated and eventually stabilizes when 
all the nodes learn they have the same description of the network topol­
ogy. The routing algorithm defined by DNA Phase IV is a distance­
vector algorithm. 

A distance-vector algorithm is a relatively simple algorithm and is 
relatively easy to design and implement. A major problem with distance­
vector routing, however, is that the computational complexity of the al­
gorithm grows quite rapidly with the size of the network. It is well suited 
to networks having a maximum size of perhaps 64 areas with 1,000 
nodes per area, but it does not scale well much beyond this limit. An­
other problem is that under certain circumstances, the algorithm can 
take many iterations to converge after topology changes occur. In a net­
work containing routers having varying levels of performance, and links 
having varying bandwidths, the slowest routers in the network and the 
slowest links tend to become convergence bottlenecks. Problems that 
occur with distance-vector algorithms also tend to be difficult to diag­
nose because none of the routers see the actual original messages describ­
ing the topology of the network; they see only messages indicating what 
the network looks like to the router's neighbors. The information ex­
changed by routers consists basically only of distance information. Net-
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work management generally requires map and path information as well 
as distance information for effective troubleshooting. 

Link State Routing With a link state routing algorithm, which is the 
type of routing algorithm chosen for DNA Phase V, instead of a node 
learning about the topology of the network by asking its neighbors what 
they think it looks like, a router determines what its individual area of 
the network looks like and then broadcasts that information to all the 
other routers. With link state routing each router broadcasts information 
about its local environment, so it is eventually possible for all the routers 
to receive a complete description of the network topology. Each router 
then knows where all the other nodes are and what links interconnect 
them. In contrast with distance-vector routing, link state algorithms con­
verge in a single iteration after a topology change. A link state algorithm 
also provides the map and path information network management re­
quires for troubleshooting. 

NETWORK ARCHITECT 

We chose a link state algorithm mainly because it scales better and it converges 
faster. While a network's routing is unconverged, routing doesn't work, which 

means the network doesn't work. You want the network to stay out of the 

unconverged state as much as possible. Also, since every node has a map of the 

entire network topology, problems are easier to diagnose. You can look at any 

node's map of the network and determine if that map is the same as the maps 

maintained by other nodes. The main disadvantage of link state algorithms is 

that they are much more difficult to design and build than distance-vector 

algorithms. 

The basic function of a routing algorithm is to determine the paths over 
which packets travel through the network. A path is a particular se­
quence of connected nodes and links between the node originating a 
packet and the packet's destination node. The DNA Phase V routing al­
gorithm is a distributed algorithm, a component of which runs in every 
active router. 

The Pseudonode 

Special considerations must be given to broadcast links, such as those 
employed in local area networks. One way to implement the algorithm 
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for a broadcast link would be to model the broadcast link as a set of sep­
arate point-to-point links between each node on the broadcast link to all 
of the other nodes-a full mesh topology. This causes the number of log­
ical links to grow quadratically as the number of nodes grows, thus caus­
ing the computational complexity of the algorithm to grow much too 
quickly. This problem is solved by modeling the broadcast transmission 
medium itself as a node on the network (called the pseudonode). This 
converts the full mesh topology of the network into a logical star topol­
ogy having many fewer logical links, as shown in Figure 9.2. 

Routing Control Packets 

The information contained in the packet types exchanged by the routers 
provides considerable insight into the operation of the DNA Phase V 
routing algorithm. Box 9 .1 lists the packet types used to control the op­
eration of the routing algorithm. 

Link State Routing Processes 

The DNA Phase V link state routing algorithm consists of four major 
processes: 

• update 

• forward 

• decision 

• receive \ 

The pseudonode. 
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• LAN Level 1 Router-to-Router Hello. Broadcast over a local area 
network (LAN) subnetwork to discover the network addresses of all 
level 1 routers on that subnetwork. 

• LAN Level 2 Router-to-Router Hello. Broadcast over a LAN subnet­
work to discover the network addresses of all level 2 routers on that 
subnetwork. 

• Point-to-Point Router-to-Router Hello. Transmitted by a router on a 
nonbroadcast data link in response to a Router Hello packet from an 
adjacent router to determine whether the adjacent router is a level 1 
or a level 2 router. 

• Link State Packet, Level 1. Generated by level 1 and level 2 routers 
and propagated to all routers in an area. The contents of a level 1 
Link State packet describe the topology of the network in the imme­
diate neighborhood of the router that generates it. 

• Link State Packet, Level 2. Generated by level 2 routers and propa­
gated to all level 2 routers in a private subnetwork. The contents of a 
level 2 Link State packet describe the topology of the network with 
respect to the level 2 routers (in a private subnetwork) in the immedi­
ate neighborhood of the level 2 router that generates it. 

• Complete Sequence Numbers Packet, Level 1. Generated periodically 
by a designated level 1 router attached to a broadcast link. It pro­
vides adjacent routers with information about the designated router's 
LSP database. This information allows routers to ensure that their 
level 1 routing information is synchronized. 

• Complete Sequence Numbers Packet, Level 2. Generated by level 2 
routers in a manner similar to that of Complete Sequence Numbers 
packets, level 1. 

• Partial Sequence Numbers Packet, Level 1. Sent over point-to-point 
links by a level 1 router to acknowledge received LSPs. Also sent 
when a router determines that some other router has one or more 
level 1 LSPs that are more up-to-date than those in its LSP database 
and serves as a request for the more up-to-date LSPs. 

• Partial Sequence Numbers Packet, Level 2. Generated by level 2 
routers in a manner similar to that of Partial Sequence Numbers 
packets, level 1. 

• XID Message. Used for compatibility with DNA Phase IV in con­
junction with DDCMP data links. 
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Figure 9.3 shows how these four major processes relate to each 
other and to the routing information maintained by routers. The follow­
ing sections describe the operation of the four main functions of the 
routing algorithm. 

The update process is a distributed algorithm in which all routers in the 
network participate. Its operation is based on much research that has 
been done on routing algorithms over the years. [1, 2, 3, 4] In running 
the update process, each router in the network packages the adjacency 
information determined by the subnetwork dependent layer into a rout­
ing control packet called a Link State packet (LSP), which describes the 
router's local environment. The LSP contains information about the 
reachability and identity of the router's immediate neighbors. By "imme-

A functional model of DNA Phase V routing algorithm. 

Transport Layer 
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diate neighbors" we mean all those nodes currently reachable from the 
router over a single link. 

Link State Packets 

A router's LSP contains the following information: 

• Router Identification. Identifies the router that generated the LSP. 

• Sequence Number and Lifetime Indicator. Used to allow the update pro­
cess to determine the relative age of the LSP. 

• Checksum. Used to detect LSP corruption. 

• Link Entries. Includes a separate entry for each of the links attached to 
the router. Each entry contains the following information: 
-Link Status. Contains information about the status of the link. 
-Node Identification. Contains information about the identification of 

all the neighbor nodes that can be reached via the link. For a point-to­
point link this describes a single node. For a broadcast link, this de­
scribes all the nodes that can be reached via that link. 

-Link Cost. Contains a locally determined indication of the cost of 
using the link. 

Level 1 and Level The information contained in an LSP differs depending on whether the 
2 Routers LSP was generated by a level 1 router or a level 2 router. LSPs generated 

by level 1 routers list all that router's neighbors, both end nodes and 
other routers. LSPs generated by level 2 routers do not list end nodes­
they list neighbor nodes that are other level 2 routers and nodes in other 
routing domains reachable from that level 2 router. Information about 
reachable nodes in other routing domains consists of static routing infor­
mation that must be entered for level 2 routers using network manage­
ment procedures. Interdomain routing is discussed later in this chapter. 

Flooding 

The update process in each router is also responsible for propagating 
LSPs throughout the network using a technique called -flooding. Each 
router sends out its own LSP over each of its links so all its neighbor 
routers receive it. A router sends its LSP over a poinMo-point link only if 
there is another router at the ~ther end of the link. For a broadcast link, 
a router multicasts its LSP to all the routers on the link. Each router 
propagates its LSP both periodically and whenever there is a change in 
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any of that router's links. A level 1 router does not send LSPs outside its 
area, and a level 2 router propagates LSPs only to other level 2 routers in 
the routing domain. A level 2 router does not propagate LSPs outside its 
routing domain. 

When a router receives an LSP from another router, it determines if it 
has ever received an LSP from that router before. If not, it stores the LSP 
in its local link state database. It then propagates the received LSP using 
the same procedure it uses to propagate its own LSP, except that it does 
not send the LSP to the router from which it received the LSP. If a router 
receives an LSP identical to one it already has in its link state database, it 
acknowledges receipt of the LSP but does not propagate the LSP. 

Since LSPs are forwarded from router to router throughout the net­
work, it is possible for a router to receive an LSP older than one it al­
ready has in its link state database. When this occurs, the router does not 
forward the LSP it received (the older LSP). Instead, it sends a copy of 
the newer LSP (the one it is currently holding) to the router from which 
it received the older LSP. In the absence of topological changes, the algo­
rithm converges quickly. After convergence, each level 1 router contains 
a complete topological map of its area, and each level 2 router contains a 
topological map of the relationships among areas. Routers use these 
topological maps to compute least-cost routes from any source node to 
any destination node. 

Sequence Number Packets 

A key responsibility of the update process is to make sure that the latest 
LSPs eventually reach every router in the network. To ensure that the up­
date process is reliable, routers send control packets, called Sequence 
Number packets (SNPs), that inform adjacent routers of the current con­
tents of their LSP databases. There are two types of Sequence Number 
packets: Partial Sequence Number packets (PSNPs) and Complete Se­
quence Number packets (CSNPs). A router attached to a point-to-point 
link uses a PSNP to explicitly acknowledge each LSP it receives. The 
PSNP contains the router's node ID and information identifying the LSP 
that the PSNP acknowledges, including the LSP's sequence number. A 
router attached to a broadcast link does not individually acknowledge 
each LSP received. Instead, through an election process, one of the 
routers on each broadcast link is elected the designated router. The des­
ignated router on a broadcast link periodically multicasts over that link 
information about all the LSPs currently in its 'own LSP database. A 
router multicasts this information in the form of a set of CSNPs that in-
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dicate the sequence numbers of all the LSPs in the router's LSP database. 
The set of CSNPs a router multicasts contains enough information to 
allow routers receiving it to determine whether the receiving router's and 
sending router's LSP databases are synchronized. If a router determines 
that some other router has more up-to-date LSPs, it sends a PSNP to that 
router as a request for the more up-to-date LSPs. 

LSP Checksums 

An interesting part of the update process concerns the checksum values 
the update process places in the Link State packets it generates. The 
checksum values contained in LSPs are calculated only by the routers 
that initially generate the LSPs; they are not regenerated as the LSPs are 
flooded through the network. This makes it possible for any router to de­
tect an LSP that has been corrupted, by either a transmission error or a 
problem in one of the routers. In this way, no router can inadvertently 
change the information in an LSP without one of the other routers de­
tecting it. 

LSP Sequence Number Space 

Another interesting aspect of the update process is the system of sequence 
numbers used to sequentially number LSPs. In most protocols that de­
pend on a system of sequence numbers, a relatively small, circular se­
quence number space is used. The network architects determined that a 
small, circular sequence number space would not be suitable for LSPs. If 
the sequence numbers are allowed to wrap around, then the sequence 
number space must be large enough so an old LSP will time out before a 
new LSP having the same value as the previous one is generated. But a 
large, circular space causes problems when dealing with router failures. If 
a router fails, it does not know with which sequence number to begin 
numbering its LSPs, because it does not know what values are in the LSPs 
already in the network. This could be solved by having the router wait for 
a period of time equal to the LSP timeout value. But if the network is set 
up so LSPs time out after, say, 30 minutes, a failed router would have to 
wait 30 minutes before coming back up. There would then have to be a 
difficult tradeoff between how much bandwidth is consumed sending out 
new LSPs to keep them from dying out when the router is up and how 
long a router has to wait to come back up after a failure. 

The solution was to use a 32-bit, linear sequence number space that 
does not wrap around. A router continually increases the sequence num-
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ber value as it generates LSP values, and the value does not wrap around. 
Instead, if a router runs out of numbers, it shuts itself down. However, 
with a 32-bit sequence number, a router generating a new LSP every 20 
seconds would be able to stay in operation for over a thousand years be­
fore running out of numbers. 

With a linear sequence number space, a router that starts up, either 
initially or after a failure, always numbers its first LSP with a sequence 
number value of 0. Let us say router A fails, restarts, and sends out an 
LSP having a sequence number value of 0. Router B receives that LSP 
and determines it already has an LSP from router A. The sequence num­
ber in the LSP held by router B will have a sequence number higher than 
the one in the LSP just received from router A. This causes router B to 
send the LSP back to router A. In this way, router A learns the sequence 
number that was contained in the LSP it issued to everyone else before it 
failed. It can then add one to that number and go on from there. Theo­
retically there may be a problem if a router manages to stay up for a 
thousand years, but from an engineering perspective this is good enough. 

The decision process uses the link state database generated through oper­
ation of the update process to determine the least-cost path to each 
router in the routing domain. The decision process does this by running 
a shortest path first (SPF) graph minimization algorithm to find the best 
path through the network to any destination. [5] This information is 
used to create a forwarding database, from which the forward process 
can determine the least-cost next hop for each Data packet it receives. 
The SPF algorithm uses the link state database to construct a spanning 
tree of the network topology-a graph structure in which redundant 
paths and loops have been eliminated. The SPF algorithm essentially 
finds the shortest path to each destination node, starting with the router 
itself as the root of a shortest-path tree, and records the neighbors on the 
shortest path to each destination. It also computes an adjacency set for 
each destination node, which is a representation of all the equal-cost 
paths for the next hop to each destination. Adjacency sets allow traffic to 
be split across these equal-cost paths. 

The forward process decides for each Data packet received which link to 
forward that Data packet over. This process inspects the destination 
NSAP address of each Data packet it receives and uses the forwarding 
database generated by the decision process to determine the correct link 
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over which to forward the packet. It then queues the packet for trans­
mission over that link. If the forwarding database indicates there are 
multiple equal-cost paths to the destination, the forward process per­
forms a load-splitting function and transmits successive Data packets 
over different links to evenly distribute the traffic over the adjacency set. 

When the forward process is unable to deliver a Data packet, it dis­
cards the packet. If the discarded packet requested an error report in its 
protocol-control-information, the forward process returns an Error Re­
port packet to the source node. The Error Report packet specifies the 
node at which the error occurred and the nature of the error. 

When the forward process forwards the Data packet onto the same 
subnetwork from which it was received, it also sends a Redirect packet 
to the packet's source node to inform the source node that it could have 
sent the packet directly to the destination node. Subsequent Data packets 
generated by that node can then be sent directly to the node identified in 
the Redirect packet without further involvement of the router. 

Router Resource Shortages 

An interesting aspect of the forward process is the way in which the al­
gorithm is designed to handle situations where routers run out of re­
sources. Each router maintains an attribute called the hippity cost. 

NETWORK ARCHITECT 

The most significant cost associated with traversing a subnetwork is associated 

with the hops, or the cost of crossing a data link between two nodes. But there 

is a cost associated with the processing a node performs before making the next 

hop. So in going from node A to node B to node C, we say hippity-hop, hippity­

hop. So the hippity cost is the cost that applies to the node between two hops. 

The hippity cost is a routing metric that defines the relative cost of a 
packet traversing a router. The algorithm is carefully designed so when a 
router runs out of resources, it keeps running but sets its hippity cost at­
tribute to infinity and notifies rietwork management it has run out of re­
sources. Other routers then route traffic around that router if they can. 
This is useful because the worst-case memory requirements for a router 
can be much more than their average-case memory requirements. Tran­
sient conditions can occur in which the memory required is many times 
the average memory requirement. It is not practical to design a router to 
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handle the worst-case condition that may persist for only a few seconds, 
so the algorithm is designed to deal with these worst-case conditions. 

Router Failure Example 

As an example, let us suppose we have a broadcast subnetwork with 
1000 end nodes and several routers. The designated router, operating on 
behalf of the link's pseudonode, constructs a Link State packet that re­
ports a link to each of the nodes attached to the broadcast link. Thus, the 
designated router's LSP is very large-it contains entries for all 1000 end 
nodes and all the other routers. The designated router sends this LSP to 
the other routers, so they maintain this large LSP in their memory as 
well. With such a large number of nodes on the link, the routers might be 
tight on memory. 

Let us suppose now that the designated router fails. Through an 
election process, one of the other routers will become the new designated 
router. It will, on behalf of the pseudonode, build its own LSP reporting 
a link to each of the nodes on the data link. But since the original LSP 
will not yet have timed out, the router will have to store both the old one 
and the new one. If the router was already tight on memory, it will run 
out of memory. The algorithm is designed to handle such a situation. 
The router signals an out-of-memory condition and changes its hippity 
cost value to a value of infinity. This effectively causes the router to stop 
routing until the problem resolves itself. As soon as the original LSP 
times out, the router will discard it, thus making room for the new LSP. 
The router will then quickly go back into normal operation. 

The receive process analyzes the protocol-control-information accompa­
nying each packet to decide the action it should take for that packet. The 
receive process takes one of four actions for each packet it receives: 

• Pass the Packet to Transport. If the packet is a Data packet and the 
NSAP address indicates the packet is addressed to this node, the packet 
is passed up to a Transport layer entity. 

• Pass the Packet to the Forward Process. If the packet is a Data packet 
and the NSAP address indicates it is not addressed to this node, the 
packet is passed to the forward process, which forwards it over one of 
the router's data links. 

• Pass the Packet to the Update Process. If the packet is a Routing Control 
packet, the packet is passed to the update process. 
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• Discard the Packet. The packet is discarded if its PCI does not corre­
spond to any of the packet types handled by the routing algorithm, if the 
lifetime control process determines its lifetime is up, or if congestion has 
made it necessary to discard the Data packet. 

As we stated earlier in this chapter, the DNA Phase V routing algorithm 
is designed to provide an automated solution to the problem of intrado­
main routing. DNA Phase V now provides only a partial solution to the 
more complex problem of interdomain routing when the network may 
be made up of multiple administrative domains run by different organi­
zations. 

NETWORK ARCHITECT 

The problems of routing in the interdomain environment are very different from 

the problems of routing in the intradomain environment. Within a single rout­

ing domain, the routing problem is one of optimizing the communications that 
take place among the various nodes, and the routing problem can be described 

relatively simply. We just have to take an arbitrary set of nodes and subnet­

works and set things up so any node can reach any other node. And in the 

absence off ailure, we'd like the data to take an optimal path through the net­

work. When we connect together the networks of two or more different organi­

zations, the problem becomes one not of optimization but one of causing the 

networks to interact in a very controlled way. In such an environment, the 

problem of routing is to provide a means for controlling and restricting the 

traffic flows that occur between the networks. The concern becomes one of who 
can talk to who via who. Routing between administrative domains is more con­

cerned with implementing policy than it is with optimizing the routing. 

Policy Concerns 

A simple interdomain routing scenario provides an example of possible 
policy constraints. Figure 9.4 shows three administrative domains run by 
Waterloo University, the University of British Columbia (UBC), and the 
University of Wisconsin. A Canadian law states that data traffic flowing 
between two locations both physically in Canada cannot flow outside of 
Canada. Therefore, with the topology shown in Figure 9 .4, if the link be­
tween UBC and Waterloo fails, the routing algorithm must not allow 
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UBC to send traffic to Waterloo through the Wisconsin network. But if 
the link between UBC and Wisconsin fails, the routing algorithm can 
allow Wisconsin to send traffic to UBC through Waterloo. 

A routing algorithm designed to run in a single administrative do­
main typically would be designed to automatically respond to any link 
failure and to find an alternative route. A routing algorithm designed for 
routing between administrative domains must provide for policy deci­
sions to be made regarding which routes are legal and which are not. 

Private Policy Information 

A second source of complexity in routing between administrative do­
mains concerns the fact that the policies governing routing decisions may 
not themselves be public knowledge in the network. For example, each 
organization may want to keep its own policies private. So what is 
needed is a scheme in which only routes are disseminated and not the 
policies used to determine those routes. This can be done, but it makes 
the routing problem more difficult. Routing algorithms typically avoid 
creating loops, around which packets circulate endlessly, by having 
sufficient knowledge about the network topology to prevent loops from 
occurring. But if policies are not known throughout the network, indi­
vidual routers may not have enough information to detect loops. What i~ 
needed is a routing scheme capable of detecting loops without having 
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total topology information. Such a routing scheme eventually will be 
worked out, but this is still the subject of research and controversy. 

The DNA Phase V routing algorithm currently uses static routing 
information to control the flow of traffic from one administrative do­
main to another when interdomain routing is required. The problem 
with static routing is that it does not allow the network itself to suppress 
loops. Loops are, in effect, suppressed in the network administrator's 
head. 

The Network layer provides important services for choosing routes for 
user traffic and for relaying that traffic through the network. These ser­
vices are used by the Transport layer to provide a reliable end-to-end 
data transfer service that processes running in end nodes can use for 
communicating with one another. The functions performed by the 
Transport layer are the subject of Chapter 10. 
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CHAPTER 10 

The Transport Layer 

The main role of the Transport layer of the OSI model, and in the DNA 
Phase V architecture, is to handle the end-to-end exchange of data be­
tween two users of the Transport service. The Transport layer in DNA 
provides a reliable, sequential data transfer service between users. 
Again, "reliable" in this context means that the destination node either 
receives all messages sent or receives an indication that an error has oc­
curred. "Sequential" means that the Transport layer delivers messages to 
the receiver in the same sequence in which they are sent. Another func­
tion that the OSI Transport service provides is multiplexing, that is, a 
user can establish multiple concurrent connections to one or more other 
Transport service users. 

Users of the Transport layer service normally consist of either an 
OSI Session layer entity or a DNA Session Control layer entity, depend­
ing on which higher-layer protocol stack the two communicating users 
are employing. The Transport layer provides an end-to-end data trans­
mission service using protocols to enhance the inherent characteristics of 
the underlying Network service. The Transport layer is the lowest layer 
required only in the machines running user processes. This relationship 
is shown in Figure 10.1. Although not shown in Figure 10.1, the Trans­
port layer is also present in routers for use by network management. 

There are two architectural specifications for the Transport layer of 
the DNA Phase V architecture. The preferred form of transport is 
defined by the OSI Transport specification, which incorporates ISO 
standards for the Transport layer of the OSI model. The other Transport 
layer specification describes Digital's own proprietary network service 
protocol (NSP). The NSP transport protocol is provided mainly for 
compatibility with DNA Phase IV. Class 4 of the OSI transport protocol 
had its roots in Digital's NSP protocol, and there are a great many simi-
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The Transport layer is the lowest layer required only in the computers that are communicating. 
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larities between them. Class 4 of OSI transport is essentially an enhance­
ment and refinement of Digital's proprietary NSP protocol. The various 
OSI transport classes are described later in this chapter. 

As with other OSI model layers, the ISO standards that define the Trans­
port layer include both a service definition and a protocol specification. 
The relationship between the services the Transport layer provides and 
the protocol governing its operation is shown in Figure 10.2. As shown 
there, the Transport layer protocol uses the services of the Network layer 
to provide a defined set of services to a user of the Transport service. 

The relationship between the Transport layer service definition and the Transport layer protocol 
specification. 

Transport Layer Service-------~ ~--_____,_. Transport Layer Service 

Transport Layer 

The Transport layer protocol uses 
the Network layer service to 
provide the Transport layer service 
to a Transpo:i service user. 

Network Layer Service ----~t t~----

Transport Layer 

Network Layer Service 
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The Transport layer can use either the connectionless-mode Net­
work service (CLNS) or the connection-mode Network service (CONS) 
(described in Chapter 7). However, when the DNA Session Control layer 
uses the services of the Transport layer, only the CLNS is used; the 
CONS is supported only for the OSI upper-layer protocol stack. In a typ­
ical use of the Transport layer service, a Transport service user in one 
node accesses the Transport service via a transport-service-access-point 
(TSAP) and passes a transport-service-data-unit (TSDU) to the Transport 
layer entity for delivery to the Transport service user in the destination 
node. The transmitting Transport layer entity adds PCI to the TSDU in 
the form of a header to create a transport-protocol-data-unit (TPDU). 
The Transport layer then uses the services of the Network layer to trans­
mit the TPDU through the network to the destination node. The Trans­
port layer entity at the destination removes the PCI and delivers the en­
closed TSDU to the Transport service user there. This process is 
summarized in Figure 10.3. As we will discuss later, and which is not 
shown in Figure 10.3, a Transport layer entity can segment a TSDU for 
transmission in the form of multiple TPDUs, and it can also group multi­
ple TPDUs for transmission in the form of a single packet. 

The Transport layer service. 

'----v----' 
TPDU (message) 

'----v----' 
TPDU (message) 

TSAP - transport-service-access-point 
TSOU - transport-service-data-unit 
TPDU - transport-protocol-data-unit 
SPDU - session-protocol-data-unit 
PCI - protocol control information 
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As with other layers of the OSI model, the ISO standards for the Trans­
port layer define both a connection-mode Transport service and a con­
nectionless-mode Transport service. By far the greatest number of 
today's networking applications require a reliable Transport service, so 
the DNA Phase V architectural layers above the Network layer provide a 
connection-mode service. The connectionless-mode services defined in 
the ISO standards for the Transport, Session, Presentation, and Applica­
tion layers are not currently addressed by DNA Phase V, although sup­
port for connectionless-mode services could easily be added to the archi­
tecture should connectionless applications become more prevalent. 

The OSI transport protocol specification defines five classes of 
Transport layer protocols that can be used to supply the Transport ser­
vice: classes 0, 1, 2, 3, and 4. Box 10.1 describes the five classes of OSI 
transport protocols. DNA Phase V supports three of these: classes 0, 2, 
and 4. (Classes 1 and 3 are implemented very infrequently throughout 
the industry, and support for them is not included in DNA Phase V.) 
Classes 0 and 2 are designed to be run only over the connection-mode 
Network service (CONS); class 4 transport can be run over either the 
CONS or the connectionless-mode Network service (CLNS) and is the 
preferred transport protocol class. Class 4 transport is the only allowable 
class when the DNA Session Control layer uses the Transport service. 
Classes 0 and 2 are provided for use only by the OSI upper-layer proto­
col stack. 

NETWORK ARCHITECT 

The CLNS versus CONS controversy in the Network layer carries over into the 

Transport layer. What has happened is that the world is developing two distinct 

ways of doing the Transport service. One uses the connectionless Network ser­

vice and class 4 transport. Class 4 transport is designed to recover from any­

thing bad the Network layer is going to do to it, including loss, duplication, 
mis-sequencing, and so on. The other camp is designed around a connection-ori­

ented Network service together with a trivial transport protocol-class 0 or 

2-which do nothing other than a bit of addressing. 

Our feeling at Digital is that class 4 transport is the only one that really 
works in heterogeneous networks because class 4 is the only one that can deal 

with anything going wrong. Classes 0 and 2 basically assume that nothing goes 

wrong in the Network service. And classes 1 and 3 have kind of fallen by the 

wayside-no one uses them. None of the classes other than class 4 adds sub­

stantial value to the underlying Network service. Class 4 transport was really 
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• Class 0: Simple Class. This class was developed initially by CCITT 
for teletext applications. It is sometimes mandated for use with the 
CCITT X.400 messaging systems, although this is not technically 
necessary. Class 0 is the simplest form of transport protocol and 
assumes that most required protocol mechanisms for supplying a 
reliable Transport connection are supplied by the Network layer. 
Class 0 transport requires the connection-mode Network service 
(CONS). DNA Phase V supports class 0 transport. 

• Class 1: Basic Error Recovery Class. This class was also initially 
developed by CCITT and is designed for use with a Network service 
using the X.25 protocols for packet-switched data networks. The 
main difference between class 1 and class 0 is that class 1 employs 
sequence numbers so limited error recovery is possible; class 0 does 
not use sequence numbers. Class 1 transport operates only over the 
CONS. DNA Phase V does not support class 1 transport. 

• Class 2: Multiplexing Class. Class 2 is also an enhancement of class 
0 and permits multiple Transport connections to be created using a 
single Network connection. It also requires the CONS. DNA Phase 
V supports class 2 transport. 

• Class 3: Error Recovery and Multiplexing Class. This class effec­
tively combines the capabilities of class 1 and class 2. It also requires 
the CONS. DNA Phase V does not support class 3 transport. 

• Class 4: Error Detection and Recovery Class. This is the only trans­
port class that operates over the connectionless-mode Network ser­
vice (CLNS). It performs in the Transport layer all required protocol 
mechanisms to provide a reliable Transport connection running on 
top of either the CLNS or the CONS. Class 4 transport is the recom­
mended transport protocol and is expected to be the most widely 
used in a DECnet Phase V network. 

designed to run over the CONS, but it happens to have the property that it is 

also perfectly happy to run over the CLNS. This is different for all the other 

classes, which can't run over the CLNS at all. 
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So we spent a lot of effort getting the class 4 transport protocol to work 
efficiently, but we also included support for class 0 and class 2. For example, 

some publicX.400 messaging services mandate the use of class 0 transport. But 

our basic philosophy is that in the normal mode of operation, a DECnet Phase 

V network will use class 4 transport. 
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With the connection-mode Transport service, the user of the Trans­
port service at one end requests a connection, both the Transport service 
itself and the Transport service user at the other end agree, and the 
Transport service establishes the connection. We can then think of the 
Transport service as a set of two pipes connecting the two transport 
users-one pipe for messages flowing in one direction and the other for 
messages flowing in the opposite direction. The user at one end inserts a 
message into the appropriate pipe, and an identical copy of the message 
emerges at the other end. Messages inserted into the pipe emerge from 
the other end in the same sequence in which they were sent. The protocol 
providing the connection-mode Transport service corrects any errors de­
tected by automatically retransmitting frames that are either missing or 
found to be in error. With the connection"mode Transport service, either 
an identical copy of each message emerges from the pipe, in the proper 
sequence, for each message transmitted, or the connection is released and 
the two Transport layer users are informed of the failure. 

The Transport layer service definition for the connection-mode 
Transport layer service is described in ISO 8072, Transport Service 
Definition. This international standard defines a number of services, 
each of which involves a set of service primitives. The service primitives 
for the connection-mode Transport service are listed in Box 10.2 and are 
described in the following sections. 

The T_CONNECT Service 

T_CONNECT.request 

T CONNECT.indication 

called address 
calling_ address 
expedited_data_option 
quality_of_service 
user data 

called address 
calling_address 
expedited_data_option 
quality_of_service 
user data 
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T_CONNECT.response 

T CONNECT. confirm 

The T_DATA Service 

quality_of _service 
responding_ address 
expedited_data_option 
user data 

quality_of _service 
responding_ address 
expedited_data_option 
user data 

T_DATA.request 

T DATA.indication 

The T_EXPEDITED_DATA Service 

T_EXPEDITED_DATA.request 

T EXPEDITED DATA.indication 

The T _DISCONNECT Service 

T_DISCONNECT.request 

T DISCONNECT.indication 

user data 

user data 

user data 

user data 

user data 

disconnect reason 
user data 
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The T_CONNECT Service 

The T_CONNECT connection establishment service is used to establish 
a connection between two users of the Transport service. A Transport 
connection consists of a virtual circuit in the Transport layer between 
two users of the Transport service. A Transport connection must be es­
tablished before two Transport service users can exchange data. The pro­
cess of connection establishment allows the users of the Transport ser­
vice to negotiate mutually acceptable characteristics for the connection, 
such as selecting the class of protocol to be used and determining 
whether messages should carry checksums to detect errors that might 
otherwise be undetected by the underlying Network service. 

The T_CONNECT service is defined by four T_CONNECT service 
primitives. The T_CONNECT service is a confirmed service in which 
users of the Transport service are informed of the success or failure of the 
attempt to establish a Transport connection. Figure 10.4 contains time­
sequence diagrams that show how the four T_CONNECT service primi­
tives are issued in three situations: successful connection establishment, 
rejection of the connection request by the peer Transport service user, 
and rejection of the connection request by the Transport service itself. 

The T_DATA Service 

Once connection establishment has been successfully performed, the 
Transport connection enters the data transfer phase, which provides the 
two users of the Transport service with a full duplex path for the ex­
change of data. The two Transport service users employ the two T_DATA 
service primitives to exchange data units. Figure 10.5 is a time-sequence 
diagram that shows the sequence in which the two T_DATA data transfer 
service primitives are issued. Notice the T_DATA service is a noncon­
firmed service, and the requester of the Transport service data transfer op­
eration is not explicitly informed of its completion. However, the 
T _DATA service provides for reliable data transfer. If a data unit is deliv­
ered successfully, all previous data units will also have been delivered, in 
the order sent, without duplication or omission. Either a data transfer op­
eration is successful or transport informs the user of the failure by releas­
ing the connection. 
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FIGURE 10.4 Time-sequence diagrams for the T-CONNECT service. 

T_CONNECT. 

Successful Transport connection establishment 

T _DISCONNECT. 
T _DISCONNECT. 

Transport service user rejection of an attempt to 
establish a Transport connection 

Transport service rejection of an attempt to establish 
a Transport connection 

FIGURE 10.5 Time-sequence diagram for the T-OATA service. 
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The T_EXPEDITED_DATA Service 

OSI transport classes 2 and 4 provide an additional data transfer service 
called T_EXPEDITED_DATA. This service permits a single, short data 
message to be transmitted that will bypass any blockages in the normal 
flow of traffic over the Transport connection. However, an Expedited 
data message is not necessarily transferred any faster than normal data 
messages. Figure 10.6 is a time-sequence diagram showing the sequence 
in which the two T_EXPEDITED_DATA data transfer service primitives 
are issued. 

Time-sequence diagram for the T-EXPEDITED-DATA service. 

T_EXPEDITED_ 

The T_DISCONNECT Service 

The T_DISCONNECT service is used to release a connection previously 
established by the T_CONNECT service. The T_DISCONNECT service 
is provided through the two T _DISCONNECT service primitives. Either 
Transport service user can issue a T_DISCONNECT.request service 
primitive to request the release of a connection. The Transport service it­
self also can, for some internal reason, release a connection by issuing 
the T_DISCONNECT.indication primitive. Figure 10.7 includes time­
sequence diagrams that show ways in which a Transport connection can 
be released. If a connection is released by one user of the Transport ser­
vice, the Transport layer entity issues the T_DISCONNECT.indication 
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FIGURE 10.7 Time-sequence diagrams for the T-DISCONNECT service. 

T _DISCONNECT. 
T _DISCONNECT. 

Transport connection release requested by a 
Transport service user 

Transport connection release requested simultaneously 
by both Transport service users 

T _DISCONNECT. 

T _DISCONNECT. T _DISCONNECT. 

Transport connection release requested by the 
Transport service 

Transport connection release requested simultaneously 
by a Transport service user and the Transport service 

primitive to the other user. If both users simultaneously release the con­
nection, neither user may receive the indication. If the Transport layer 
entity itself releases the connection, both users receive the indication. If a 
transport user and the Transport service simultaneously release the con­
nection, the other user receives the indication. The reason parameter in 
the T_DISCONNECT.indication primitive contains values that describe 
the reason for the connection release and identify the entity that initiated 
the disconnect request. 
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The DNA Phase V architectural specification for OSI transport also 
defines the abstract interface between a Transport layer entity and a user 
of the Transport layer service. The procedure declarations defining the 
services a Transport layer entity provides to a Transport service user are 
listed in Box 10.3. 

The following function and procedure declarations define the 
abstract interface between the Transport layer and a user of the 
Transport layer in terms of the services a Transport layer entity pro­
vides to a user. 

Port Control Functions 

• Openlncoming. Allocates a port in the Transport layer used to 
accept an inbound request for a connection. 

• OpenOutgoing. Allocates a port in the Transport layer used later to 
establish an outbound connection. 

• Close. Deallocates a port allocated with either Openlncoming or 
Open Outgoing. 

Connection Control Functions 

• ConnectTransmit. Requests an outbound connection using a port 
allocated with OpenOutgoing. 

• OutgoingConnectPoll. Obtains the results of a previously issued 
Connect Transmit. 

• IncomingConnectPoll. Issued after Openlncoming to determine 
whether an inbound connection request was received. 

• Accept. Initiates the acceptance of an inbound Transport connection. 

• AcceptPoll. Checks for the completion of a previously issued Accept call. 

• DisconnectTransmit. Requests the disconnection of a Transport con­
nection. 

• DisconnectReceive. Determines whether the peer Transport layer 
entity has disconnected the Transport connection and obtains infor­
mation about the reason for the disconnection. 

Normal Data Transfer Functions 

• DataReceive. Associates a receive buffer with a port that can be used 
to accept a received normal (not expedited) Data message over the 
Transport connection. 
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• DataReceivePoll. Checks for the completion of a previously issued 
DataReceive call and returns a buffer containing a message if it has 
completed. 

• DataTransmit. Queues a transmit buffer for the transmission of a 
normal (not expedited) Data message over the Transport connection. 

• DataTransmitPoll. Retrieves a previously queued transmit buffer for 
which a Data Transmit operation has been completed. 

Expedited Data Transfer Functions 

• ExpeditedReceive. Associates a receive buffer with a port that can be 
used to accept a received Expedited data message over the Transport 
connection. 

• ExpeditedReceivePoll. Checks for the completion of a previously 
issued ExpeditedReceive call and returns a buffer containing an 
Expedited data message if it has completed. 

• ExpeditedTransmit. Queues a transmit buffer for the transmission of 
an Expedited data message over the Transport connection. 

• ExpeditedTransmitPoll. Retrieves a previously queued transmit buffer 
for which an ExpeditedTransmit operation has been completed. 

Miscellaneous Functions 

• Read.Address. Requests the Transport layer entity to supply a list of 
the network addresses currently being used to support the transport 
protocol. 

• State. Returns the status of a port. 

• Status. Determines the status of a specified protocol and obtains the 
minimum receive buffer size. 

NETWORK ARCHITECT 
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Both the ISO standards and the DNA specifications define the Transport layer 

service interface in terms of a single TSD U passed across the inter( ace as a unit. 
One way to implement the inter( ace is to pass the whole TSD U across the inter­

( ace in a single operation. But it is also possible to allow a user to pass the 

TSD U across the interface in pieces and to then pass a bit across the interface 

signalling when the last piece of the TSD U has been passed. One way to handle 

this in the receiver is to have the receiver ask for some number of octets to be 
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passed across the interface, rather than having to receive the whole TSD U in a 
single piece. This is a good example of how ingenuity can be applied to the 

implementation of a standard. A software designer does not have to blindly 

implement the standard in the most obvious way. The obvious thing to do is not 
always the best thing. 

The OSI transport protocol specification is documented in ISO 8073, 
Connection Oriented Transport Protocol Specification. As described ear­
lier, DNA Phase V supports classes 0, 2, and 4 of the OSI transport pro­
tocol, with class 4 being the recommended class. By supporting the OSI 
transport protocol, users of the Transport service running in computing 
systems that implement DECnet Phase V software can communicate not 
only with one another but with transport users running in any type of 
computing system implementing class 0, 2, or 4 of the OSI transport pro­
tocol and the appropriate lower layers. The DNA Transport layer inte­
grates the three supported classes of OSI transport protocol with the 
proprietary NSP protocol and offers a single, consistent service interface 
to the Transport service user. The choice of protocol to be used is made 
when the Transport layer receives a request for a Transport connection. 

The OSI transport protocol defines 10 different TPDUs to control the 
operation of the protocol. Unlike DLPDUs (generally called frames) and 
NSDUs (often called packets), there is no generally accepted informal 
name for TPDUs. Where no confusion will result, we will sometimes call 
TPDUs messages. 

TPDU Types 

All but one of the 10 TPDU types are used to support class 4 transport; 
classes 0 and 2 employ other subsets of the 10 TPDU types. Box 10.4 
gives brief descriptions of the 10 TPDU types defined by the OSI trans­
port protocol specification. 

TPDU Format 

Figure 10.8 shows the general format of an OSI transport TPDU. It be­
gins with a length field giving the length of the header portion of the 
message. Following the length field is the fixed portion of the header, 
which has a different format for each of the different types of TPDUs. 
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• Connection request (CR). Carries a request for a new Transport con­
nection to be established between a source Transport layer entity and 
a destination Transport layer entity. 

• Connection confirm (CC). Carries confirmation of acceptance of a 
request for the establishment of a Transport connection. 

• Data (DT). Carries normal user data between transport entities over 
a Transport connection. 

• Expedited data (ED). Carries expedited user data between transport 
entities over a Transport connection. 

• Acknowledgment (AK). Acknowledges the receipt of one or more 
data TPDUs and/or allocates credit to permit the transmission of ad­
ditional messages. (The concept of credit is described when we dis­
cuss the flow control procedures of the transport protocol.) 

• Expedited acknowledgment (EA). Acknowledges the receipt of an 
Expedited data TPDU. 

• Reject (RJ). Used only by transport classes 1 and 3 and so is not used 
by DNA Phase V. 

• Error (ER). Sent by a Transport layer entity receiving a message con­
stituting a protocol violation. 

• Disconnect request (DR). Carries a rejection of a request for Trans­
port connection establishment or a request that a Transport connec­
tion be released. 

• Disconnect confirm (DC). Acknowledges the receipt of a Disconnect 
request TPDU. 
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Following the fixed portion of the header for some types of TPDUs is a 

variable portion of the header optionally containing additional parame­
ters. Following the variable portion of the header is the data portion of 
the TPDU. In a Data TPDU, the data portion contains all or part of the 
TSDU passed to the Transport layer entity by the Transport service user 
for transmission over the Transport connection. 

General format of a Transport layer TPDU. 

Header 
Header 

Length Variable Portion Data 
Fixed Portion (optional) 
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Data TPDU format for class 4 transport 

Header TPDUCode J 
Destination Reference 

Length Indicator 0·1111· I 0·0000· 1 
j Send Sequence 

Number(NR) 

Header Variable Portion 
~ 

l ! Data 

TPDU Header Fields 

Figure 10.9 shows the format of a Data TPDU for class 4 transport. 
When a message contains parameters in the variable portion of the 
header, each parameter included is structured as shown in Figure 10.10. 
A parameter begins with a 1-octet code identifying the parameter's type, 
followed by a 1-octet field giving the parameter's length, and ending 
with one or more octets containing the parameter's value. The parame­
ters that can be included in both the fixed and the variable portions of 
the header are listed in Box 10.5 (pages 224-225). Each TPDU has a dif­
ferent header format, and not all the parameters are carried in all the 
TPDUs. The DNA Phase V architectural specifications and the ISO stan­
dards for the Transport layer contain detailed specifications of the for­
mat of the header for each individual TPDU. 

We next discuss the mechanisms that class 4 transport uses to create and 
support the connection between Transport layer entities. The specific 
protocol mechanisms the OSI transport protocol defines are called ele-

Header variable portion parameter format. 

Parameter 
Code 

Length Parameter Value 
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ments of procedure in the OSI transport protocol specification. The ele­
ments of procedure precisely document the Network layer service primi­
tives involved and the exchanges of TPDUs occurring during operation 
of the transport protocol. The OSI transport elements of procedure are 
augmented by additional documentation in the DNA Phase V architec­
tural specifications, where Digital has gone beyond what is required by 
the ISO standards in documenting the operation of the transport proto­
col. To fully understand how the DNA Phase V version of the OSI trans­
port protocol operates, read the OSI transport protocol specification in 
conjunction with the DNA Phase V documentation for the Transport 
layer. The elements of procedure defining the operation of the OSI trans­
port protocol are briefly described in Box 10.6 (pages 226-227). 

The following sections contain general descriptions of the various types 
of protocol mechanisms the OSI transport protocol uses. Here we pro­
vide a high-level overview of some of the more interesting aspects of OSI 
transport protocol operation. 

Connection Establishment 

Upon request of a Transport service user (typically an OSf Session layer 
entity or a DNA Session Control layer entity), the source OSI Transport 
layer entity transmits a Connection request (CR) message to the destina­
tion Transport layer entity to establish a connection. This begins a proce­
dure in which the class of protocol operation is chosen and other charac­
teristics of the connection are negotiated. The Connection request 
message indicates the preferred transport protocol class, any acceptable 
alternative classes, and various other characteristics of the desired con­
nection, such as the maximum message size. The destination Transport 
layer entity receiving the Connection request analyzes the information it 
contains and, if it determines it is able to comply with the connection re­
quest, responds with a Connection confirm (CC) message. The Connec­
tion confirm message specifies the protocol class that will actually be 
used and other characteristics of the connection. 

Normal Data Transfer 

The transport protocol implements a full duplex path between a pair 
of communicating Transport service users and uses Data TPDUs to 
transfer data from transmit buffers in one Transport layer entity to 
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TPDU Header Fixed Portion Parameters 

• Length Indicator. Length of the header in octets, excluding the length 
indicator field itself. 

• TPDU Code. Code identifying a message's TPDU type. 

• Credit. Credit allocation used to implement flow control procedures. 

• Source Reference. A value identifying the Transport connection 
within the source Transport layer entity's node. 

• Destination Reference. A value identifying the Transport connection 
within the destination Transport layer entity's node. 

• Class. A value used during Transport connection negotiation indicat­
ing which of the five transport classes is preferred. 

• Option. Specifies whether normal or extended flow control fields are 
used. Normal flow control fields use 7-bit sequence numbers and 4-
bit credit fields; extended flow control fields use 31-bit sequence 
numbers and 16-bit credit fields. A DECnet Phase V network nor­
mally uses extended flow control fields. 

• Reason. A value that describes the reason for requesting the 
release of a connection or for rejecting a request for connection 
establishment. 

• EOT. Indicates the last TPDU in a TSDU. 

• TPDU-NR. Send sequence number for a Data message. 

• EDTPDU-NR. Send sequence number for an Expedited data message. 

• YR-TU-NR. Send sequence number of the next normal Data mes­
sage the destination Transport layer entity expects to receive. 

• YR-EDTU-NR. Send sequence number of the next Expedited data 
message the destination Transport layer entity expects to receive. 

TPDU Header Variable Portion Parameters 

• Calling TSAP Identifier. Identifies the transport-service-access-point 
(TSAP) used by the source Transport service user. 

• Called TSAP Identifier. Identifies the transport-service-access-point 
used by the destination Transport service user. 

• TPDU Size. Maximum allowable TPDU size in octets. 
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• Version Number. Specifies the version number of the transport pro­
tocol being used. This parameter is provided in anticipation of 
future versions of the transport protocol being developed. 

• Security. A user-defined parameter that specifies information about 
security procedures. 

• Checksum. The result of passing the message through a checksum 
algorithm. Used only for class 4 transport. 

• Additional Option Selection. Used to select various options to be 
used during protocol operation. 

• Alternative Protocol Class. Indicates one or more alternative proto­
col classes that can be used if the destination Transport layer entity 
is not able to run the requested protocol class or elects to use some 
other protocol class. 

• Acknowledge Time. Provides an estimate of the amount of time a 
Transport layer entity will take to acknowledge a Data message. 

• Throughput. A set of values specifying the transport user's through­
put requirements in octets per second. 

• Residual Error Rate. A set of values specifying target and minimum 
rates of unreported user data loss. 

• Priority. A value indicating the priority of the Transport connection. 

• Transit Delay. A set of values indicating the target and the maximum 
values for the amount of time it should take to transmit a Data mes­
sage between transport entities. 

• Reassignment Time. A value indicating how long transport should 
wait for a response when trying to reassign the Transport connection 
to another Network connection. 

• Additional Information. Implementation-defined information related 
to releasing a Transport connection. 

• Subsequence Number. A sequence number assigned to an Acknowl­
edge message to ensure that Acknowledge messages are processed in 
the correct sequence. 

• Flow Control Confirmation. Used to echo the parameter values con­
tained in the last Acknowledge message received. 

• Invalid Message. Used to specify the bit pattern of a rejected message. 
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• Assignment of Network Connections. When the OSI transport pro­
tocol uses the connection-mode Network service (CONS) it either 
assigns the Transport connection to an existing Network connection 
or requests a new Network connection. 

• Transport-Protocol-Data-Unit Transfer. Used in all classes of OSI 
transport to carry messages between Transport entities. 

• Segmenting and Reassembling. Allows large TSDUs to be broken 
into multiple TPDUs for transmission. 

• Concatenation and Separation. Allows multiple TPDUs to be trans­
mitted in a single packet (NSDU). OSI transport allows TPDUs from 
different connections to be carried in a single packet. DNA Phase V 
does not concatenate TPDUs from different connections but does 
handle the receipt of packets containing concatenated TPDUs from 
different Transport connections. 

• Connection Establishment. Used to create a new Transport connection. 

• Connection Refusal. Used to refuse a request for the establishment of 
a Transport connection. 

• Normal Release. Used to release a Transport connection. 

• Error Release. Used only in transport classes 0 and 2 to release a 
Transport connection as a result of the release or reset of an underly­
ing Network connection. 

• Association of TPDUs with Transport Connections. Used to inter­
pret as TPDUs the NSDUs passed up from the Network layer entity 
in the destination node and to associate each one with the appropri­
ate Transport connection. 

• Data TPDU Numbering. Assigns a send sequence number to each' 
TPDU for the purposes of recovery, flow control, and resequencing 
functions. 

• Expedited Data Transfer. Used to transfer Expedited data TPDUs 
between Transport entities. 

• Reassignment After Failure. Defined by OSI transport for use with the 
CONS to attempt to recover from the release of a Network connection 
by establishing a new Network connection. This procedure is defined 
only for class 3 transport and so is not implemented by DNA Phase V. 
However, an alternative method for reestablishing Network connec-



BOX 10.6 

continued 

CHAPTER 10: THE TRANSPORT LAYER 

tions is provided when class 4 transport is run over the CONS. 

• Retention Until Acknowledgment of TPDUs. Copies of certain 
TPDUs are retained after transmission until they are acknowledged, 
to permit their retransmission should they fail to be delivered cor­
rectly. Supported by class 4 transport only. 

• Resynchronization. This element of procedure applies only to classes 
1 and 3 transport and so does not apply to DNA Phase V. 

• Multiplexing and Demultiplexing. Used only for Transport connec­
tions operating over the CONS to allow multiple Transport connec­
tions to share the same Network connection. 

• Explicit Flow Control. Used to regulate the flow of TPDUs over the 
Transport connection independent of the flow control mechanisms 
operating in other layers. 

• Checksum. Implements an algorithm to calculate the checksum used 
to detect corruption of TPDUs by the Network service provider, a 
lower layer, or a hardware failure. 

• Frozen References. Prevents the reuse of a connection reference while 
TPDUs associated with the old use of the connection reference may 
still exist in the network. 

• Retransmission on Timeout. Used with class 4 transport to detect 
TPDUs the Network service provider loses and does not inform the 
Transport layer entity of the loss. 

• Resequencing. Used with class 4 transport by a destination Trans­
port layer entity to place TPDUs into the sequence in which they 
were sent by the source Transport layer entity. 

• Inactivity Control. Used with class 4 transport operating over the 
CLNS to detect apparent loss of network connectivity between com­
municating nodes. 

• Treatment of Protocol Errors. Procedures for handling TPDUs that 
constitute protocol violations. 

• Splitting and Recombining. Used by class 4 transport to allow a 
Transport connection to concurrently use multiple Network connec­
tions. DNA Phase V does not support the splitting function for 
source nodes but does support the recombining function for destina­
tion nodes. 
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receive buffers in another Transport layer entity over an active Trans­
port connection. An underlying connectionless-mode Network service 
or connection-mode Network service is used to perform the data 
transfer. 

Expedited Data Transfer 

Classes 2 and 4 transport provide the expedited data transfer service, al­
lowing short data messages to be transmitted that bypass blockages 
caused by normal flow control procedures. Class 0 transport does not 
provide the expedited data transfer service. 

Error Detection and Retransmission 

The Transport layer provides detection and recovery from loss, duplica­
tion, corruption, and misordering of data units that might occur in 
lower layers. It employs send sequence numbers and an acknowledg­
ment mechanism to ensure that messages are delivered and an optional 
checksum capability to detect message corruption. The class 4 transport 
protocol also employs a retransmission timer to detect lost messages. 
The timer is started when a Data message is transmitted and is stopped 
when the message's acknowledgment is received. If the timer expires be­
fore the sending Transport layer entity receives the acknowledgment, 
the sending Transport layer entity assumes the message has been lost 
and retransmits it. 

NETWORK ARCHITECT 

The retransmission timer function is an example of where the ISO standard 

gives no direction. The standard says there must be a value for a time limit 

determining after what time interval a message will be retransmitted. But the 

standard says nothing about how this timer should be set. This timer value 

could be a network management parameter set by a network manager. The 

number could be set small for a small network to give better performance and 

bigger for a large network to ensure a message is retransmitted only if it is really 

lost. But we decided to develop an algorithm in the protocol itself that adjusts 

the timer automatically. 

We use an adaptive algorithm that maintains an average estimate of the 

round-trip delay on each Transport connection. This algorithm allows the 

Transport service to set the interval of the retransmission timer so it is short 
enough to ensure that lost messages are detected quickly but not so short that it 
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is likely for the message to still be in transit. The timer interval is thus automati­

cally adjusted depending on current conditions in the network rather than 

depending on manual assignment. 

This is an example of where we have gone beyond what is specified in the 

ISO standards to provide enhanced function. This goes along with the philo­

sophical attitude we have about network management-we feel that algorithms 

for optimizing network performance should run in the networking protocols 

themselves rather than in a network manager's head. 

Another area in which DNA improves on the ISO standard is the 
way in which acknowledgments are sent. According to the ISO stan­
dards, a user could send an individual acknowledgment for each message 
received. However, this would ordinarily result in inefficient use of band­
width. The DNA specification for the transport protocol allows trans­
port to delay the sending of acknowledgments as a way of reducing the 
amount of computation required in the end systems to operate the trans­
port protocol and to reduce the number of messages that have to be 
propagated through the network. For example, when an end system re­
ceives a packet that is not the last packet in a TSDU, transport might 
wait until all the packets have been received before sending an acknowl­
edgment rather than acknowledging each packet individually. 

Flow Control 

The transport protocol also uses acknowledgments to implement flow 
control procedures to balance the relative speeds of the sender and the 
receiver. The Transport service recovers from messages being lost or du­
plicated by lower layers and ensures that messages are passed to the re­
ceiving Transport service user in the same order in which they were 
transmitted. Classes 2 and 4 transport also assign send sequence num­
bers to Data messages in order to provide reliable, sequenced message 
delivery. As Data messages arrive at their destination, the destination 
Transport layer entity returns an acknowledgment message to the source 
Transport layer entity indicating the sequence number up to which Data 
messages have thus far been successfully received. Class 0 transport does 
not implement explicit flow control, nor does it number Data messages 
or send acknowledgments. Instead, procedures in the CONS are used to 
provide flow control facilities with class 0 transport. 

Although the OSI transport protocol defines a comprehensive 
scheme to provide end-to-end flow control and defines a number of rules 
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for correct behavior, it does not make entirely clear what each rule is 
meant to achieve within the overall flow control procedure. The DNA 
Phase V architectural specification for the Transport layer augments the 
ISO protocol specification by providing a detailed description of the flow 
control algorithm. It also presents a detailed example of a possible im­
plementation as an aid to implementors. The flow· control procedures 
defined by the DNA Phase V architecture go much further than simply 
implementing the ISO standard and thus are able to perform flow con­
trol in a highly efficient manner. 

The transport protocol implements flow control based on the con­
cept of credit. This means, in effect, that the destination Transport layer 
entity tells the source Transport layer entity how many messages it is pre­
pared to receive. The source transport is then able to transmit only that 
many messages, after which it must wait until it is granted additional 
credit. Flow control operates in conjunction with the sequence number­
ing scheme. The way in which credit is granted to a source Transport 
layer entity by a destination Transport layer entity is done in a carefully 
designed manner. It is not enough for the destination Transport layer en­
tity to say simply, "You can send me another eight messages." The Net­
work service may at any given time contain an unknown number of Data 
messages in transit. So the credit granting mechanism uses the Data mes­
sage sequence numbering scheme in granting credit. A destination Trans­
port layer entity grants credit based on the directive: "You can send all 
Data messages up to the message whose sequence number is n." Such a 
scheme leads to the concept of a flow control window that slides up the 
sequence numbering space and defines the range of Data messages a des­
tination Transport layer entity is prepared to receive. 

NETWORK ARCHITECT 

This idea of assigning credits in flow control is an example of where we take 

advantage of an ambiguity in the ISO protocol specification to achieve 

enhanced performance. The ISO scheme is very simple. It says we should send 

credits telling the other user how many messages it can send to us. But deciding 

how many credits to send is not covered in the standard. If we have only one 

buffer, and we implement the ISO flow control algorithm in a simple-minded 
manner, we might send the user ti single credit. That would allow the other user 

to send only one message before it must wait for another credit allowing it to 

send the next message. This might result in long delays if the two users are far 

apart. With our scheme, even if we have only one buff er, we might send the 

other user a lot of credits because we know we can process the data very fast. 
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This allows the other user to send a large number of messages, and as long as 
we're able to process them rapidly, we're OK. 
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The ffow control algorithms in our version of transport implement various 

dynamic schemes allowing us to determine how many credits we can send to the 

other side, independent of the buffer resources we have available. This is an 

example of where we have applied significant ingenuity to provide good perfor­

mance. 

Class 4 transport can use either normal flow control fields or ex­
tended flow control fields. Normal flow control fields specify the use of 
7-bit sequence numbers and 4-bit credit fields; extended flow control 
fields specify the use of 31-bit sequence numbers and 16-bit credit fields. 
A DECnet Phase V network normally uses extended flow control fields. 
This is because in a very high speed network, it is possible for a 7-bit se­
quence number space to wrap around before an old TPDU having a 
given sequence number has disappeared from the network. This can 
cause two different TPDUs to have the same sequence number value, 
thus violating one of the reliability guarantees of class 4 transport. 

Congestion Avoidance 

Congestion occurs when a network or part of a network is overloaded 
and has insufficient communication resources for the volume of traffic it 
is experiencing. A congested network exhibits all sorts of undesirable be­
havior, such as excessive transit delay. The goal in a computer network 
should be not only to recover after congestion occurs, but to stop con­
gestion from occurring in the first place. The DNA version of OSI trans­
port contains mechanisms designed to achieve this goal by attempting to 
reduce the load on the Network service to prevent congestion from oc­
curring. This idea of reducing the load to reduce or prevent congestion is 
an important characteristic of the DNA Phase V congestion avoidance 
scheme. 

NETWORK ARCHITECT 

It's important to point out that the scheme we picked for dealing with conges­

tion has the property of controlling congestion without introducing any addi­

tional traffic or load on the network. This is unlike many other congestion con­

trol schemes, which do absolutely the wrong thing. When the network becomes 
congested, many schemes-the one used in SNA being one example-cause 
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more traffic to be sent into the network to signal congestion is occurring. So 

when you're near the cliff, and you get congested, the congestion messages send 
you over the cliff. 

Class 4 transport implements two algorithms concerned with con­
gestion. One is a congestion avoidance algorithm that attempts to pre­
vent congestion from occurring; the other is a congestion recovery algo­
rithm designed to recover from congestion if the first algorithm fails. The 
changeover from one to the other occurs when transport determines the 
Network service has lost a message. As long as the Network service does 
not lose messages, transport assumes the first algorithm is working. 
Once the Network service begins to lose messages, transport assumes 
congestion is occurring and invokes the congestion recovery algorithm. 
Following are descriptions of the operations of these two algorithms: 

• Congestion Avoidance Algorithm. The congestion avoidance algorithm 
operates in conjunction with the Network service. It employs the conges­
tion experienced indicator the Network service sets in the PCI attached 
to packets when the traffic across a data link increases beyond a prede­
termined point. If during any sampling period the number of messages 
encountering congestion reaches a certain threshold, the Transport layer 
entity reduces the size of its flow control window, thus reducing the 
amount of traffic flowing over the Transport connection. This reduces 
the number of messages the Network service needs to handle and re­
duces the load on the network accordingly. When congestion abates, 
each Transport entity independently begins to gradually increase its flow 
control window size to increase the message flow. 

• Congestion Recovery Algorithm. The congestion recovery algorithm is 
invoked whenever a Transport layer entity determines that the Network 
service has lost a message. When this occurs, the Transport layer entity 
detecting the lost message assumes the Network service is experiencing 
congestion and dramatically reduces the flow of new Data messages into 
the network. It does this by initially setting its flow control window to a 
value of 1, permitting only the lost message to be retransmitted. The 
value of the window is then increased by 1 each time the number of Data 
messages for which acknowledgments have been received since the last 
change becomes greater than the current value of the local credit win­
dow. As long as no further messages are lost by the Network service, the 
local credit window gradually grows until it reaches the value originally 
assigned by the peer Transport layer entity. 
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Reassignment After Failure 

When the class 4 protocol operates over the CONS, DNA attempts to 
maintain the Transport connection even if the underlying Network con­
nection fails. The Transport service does this either by reassigning the 
Transport connection to some other appropriate existing Network con­
nection or by requesting the establishment of a new Network connection 
to support the Transport connection. The Transport service user is not 
aware of the reassignment operation. 

Segmentation and Reassembly 

OSI transport permits the OSI Session or DNA Session Control user to 
transmit extremely large messages. If the underlying Network service is 
unable to accept a single message of the desired size, the Transport layer 
entity divides that large TSDU into a number of smaller TPDUs for 
transmission. The receiving Transport layer entity reconstructs the orig­
inal TSDU after it has received the final segment and passes it to the des­
tination Transport service user. Note that the segmentation and re­
assembly function is different from the notion described earlier of 
passing a single TSDU across the interface to transport in multiple 
pieces. Here, the Transport layer itself is transmitting a single TSDU in 
multiple TPDUs. 

Multiplexing 

Classes 2 and 4 of transport implement a multiplexing function, intro­
duced earlier, allowing a user to set up any number of Transport connec­
tions between the same pair of users or between different pairs of users. 
Multiplexing allows multiple Transport connections to be assigned to a 
single Network connection. Each Transport connection in the network is 
independent of any other Transport connection. When a connection is 
established, the two Transport entities exchange 16-bit reference num­
bers that are assigned to the connection. These numbers are assigned so 
they are unique among all the Transport connections controlled by a 
given Transport layer entity. Messages carried over a given connection 
carry the reference number associated with the destination Transport 
layer entity. Some messages also carry the reference number associated 
with the source Transport layer entity as well. Each end of the connec­
tion has its own reference number, and these reference numbers are as­
signed independently. This is quite different from earlier protocols, such 
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as X.25, where the two ends agree on a single identifier. Using a single 
identifier leads to various protocol complexities, such as collisions in ref­
erence number assignment. 

Concatenation 

A Transport layer entity may group together TPDUs in order to pass them 
to the Network service in the form of a single packet for transmission 
through the network. Concatenation is sometimes called piggybacking 
and, especially with very small messages, can increase the efficiency of the 
Transport and Network services. The concatenation function is especially 
useful to group Data and Acknowledgment messages in a single packet 
when they are traveling in the same direction over the same connection. 

NETWORK ARCHITECT 

The architecture allows a Transport entity to receive messages from the same 

Transport connection or from different Transport connections that are grouped 

together in the same packet. However, DECnet implementations will use con­
catenation only to group TPDUs from the same Transport connection and 

won't attempt to group TPDUs from different Transport connections. The latter 

is simply much harder to do than it's worth. 

Connection Release 

As introduced earlier, a Transport connection can be released on the re­
quest of either transport user entity or the Transport service itself. A 
transport user can request the release of a connection at any time. How­
ever, if the user wants to ensure that all messages it has sent have arrived 
at their destination, the user is responsible for determining this before re­
leasing the Transport connection; the Transport layer does not provide 
this as a service. When the Transport service user requests the connection 
release, it must ensure that any messages in transit have been successfully 
received before requesting the connection release. For class 2 and class 4 
transport, a Transport layer entity releases the connection by transmit­
ting a Disconnect request (DR) message to its peer. The Transport layer 
entity receiving a Disconnect request message acknowledges its receipt 
by sending a Disconnect confirm (DC) message. With class 0 transport, a 
Transport layer entity releases the Transport connection by requesting 
the underlying CONS to release the Network connection. 
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The second architectural specification for the DNA Phase V Transport 
layer describes the Digital proprietary network services protocol (NSP). 
NSP was designed specifically for DNA and has been a part of DNA 
since its inception. It can be used for communication between two users 
of the NSP Transport service running DECnet Phase V software, but its 
main purpose is for backward compatibility with DNA Phase IV. The 
NSP transport protocol has many similarities to class 4 of OSI transport. 

The interface between a DNA Session Control layer entity and an NSP 
Transport layer entity is defined by essentially the same procedure decla­
rations listed in Box 10.3. The architectural specification for the NSP 
transport protocol documents any minor differences. 

Fourteen types of messages can flow over an NSP Transport connection 
to convey user data between two users of the NSP Transport service and 
to control the operation of the NSP transport protocol. These 14 types 
can be divided into three categories: Data messages, Control messages, 
and Acknowledgment messages. Box 10. 7 contains brief descriptions of 
the 14 NSP transport protocol messages. 

As with the OSI transport protocol, the NSP transport protocol involves 
a great many procedures, many of which are similar to those employed 
by OSI transport. A detailed understanding of the NSP transport proto­
col procedures is required only by those who build products that imple­
ment the NSP transport protocol. Complete descriptions of the proce­
dures are contained in the architectural specification for NSP Transport. 
The following sections provide a high-level overview of the more inter­
esting aspects of NSP transport protocol operation. We concentrate here 
on those aspects of the NSP transport protocol that are different from 
OSI transport. 

Connection Establishment 

NSP establishes, maintains, and releases NSP Transport connections by 
exchanging control messages with a peer NSP entity. An established con­
nection implements two separate data subchannels, each carrying mes­
sages in both directions: 
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Data Messages 

• Data Segment. Carries a message or a portion of a message passed 
down to an NSP Transport layer entity by a DNA Session Control 
layer entity. 

• Expedited. Carries urgent data originating in a higher DNA layer. 

• Data Request. Carries information used to control the NSP transport 
flow control algorithm. 

• Expedited Request. Carries expedited flow control information. 

Control Messages 

• Connect Initiate. Carries information about a request for the estab­
lishment of an NSP Transport connection. 

• Connect Confirm. Carries information about the acceptance of a re­
quest for the establishment of an NSP Transport connection. 

• Disconnect Initiate. Carries information about the rejection of a re­
quest for the establishment of NSP Transport connection or a re­
quest for the release of an established NSP Transport connection. 

• No Resources. Sent by an NSP Transport layer entity when it re­
ceives a Connect Initiate or Retransmitted Connect Initiate message 
and the entity has no resources available to establish a new port. 

• Disconnect Complete. Acknowledges the receipt of a Disconnect Ini­
tiate message. 

• No Link. Sent by an NSP Transport layer entity when it receives a 
message referring to a nonexistent NSP Transport connection. 

• No Operation. Has no function and is included for compatibility 
with a previous version of the NSP transport protocol. 

Acknowledgment Messages 

• Data Acknowledgment. Acknowledges receipt of one or more Data 
Segment messages or, optionally, Connect Confirm, Expedited, Data 
Request, or Expedited Request messages. 

• Other Data Acknowledge. Acknowledges receipt of one or more 
Connect Confirm, Expedited, Data Request, or Expedited Request 
messages. 

• Connect Acknowledgment. Acknowledges receipt of a Connect Initi­
ate message or a Retransmitted Connect Initiate message. 



CHAPTER 10: THE TRANSPORT LAYER 237 

· Normal-Data Subchannel. This subchannel carries normal Data mes­
sages between two NSP entities. 

• Other-Data Subchannel. This subchannel carries expedited Data mes­
sages and messages related to the NSP flow control algorithm. 

Data Transfer 

The DNA Session Control layer passes data units to an NSP Transport 
layer entity for transmission over an NSP Transport connection. User 
data units are transported between NSP entities in Data Segment mes­
sages. Like OSI transport, NSP can handle the transmission of very large 
messages between Transport layer entities. If NSP needs to handle a mes­
sage larger than the maximum packet size supported by the Network 
service, it breaks the message into segments and passes each segment to 
the Network service in the form of a separate Data Segment message. 
Each Data Segment message contains a message sequence number and 
other control information. The destination NSP entity uses Data Seg­
ment sequence numbers to reassemble the segments. NSP segments only 
normal data. Expedited data messages have a limited size that is always 
smaller than the packet size supported by the Network service. 

Flow Control 

The flow control mechanisms that NSP implements ensure that messages 
are not lost because of limited buffering capability at the destination 
NSP entity and that deadlocks do not occur. Flow control mechanisms 
operate independently over both the normal-data and the other-data 
subchannels. When an NSP Transport connection is established, each 
NSP Transport layer entity informs its peer entity of the method to be 
used for flow control for messages flowing to it. Two types of flow con­
trol are supported by NSP. With the first method, called on/off only, the 
destination NSP Transport layer entity explicitly tells the source NSP 
Transport layer entity when to stop and when to start sending data. With 
the second method, called segment with on/off, the destination NSP 
Transport layer entity sends the source NSP Transport layer entity a re­
quest count, which indicates the number of segments it can accept. In ad­
dition, the destination entity can always tell the source entity either to 
stop sending data unconditionally or to start sending data under the nor­
mal request count conditions. The receiver also controls the flow of mes­
sages over the other-data subchannel with an other-data request count. 
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Data Retransmission 

The NSP Transport entities at each end of a Transport connection posi­
tively acknowledge received Data messages. If a source NSP Transport 
layer entity fails to receive a positive acknowledgment within a prede­
termined time interval, it automatically retransmits the message. As 
with class 4 OSI transport, the time interval is adjusted dynamically 
based on the round-trip delay determined by the source NSP Transport 
layer entity. 

Congestion Avoidance 

While the flow control mechanisms protect against an NSP Transport 
layer entity having a shortage of buffer resources, they do not handle 
problems associated with resource shortages in other parts of the net­
work. NSP employs congestion avoidance mechanisms similar to those 
of OSI transport to adapt to changing traffic loads. A difference between 
NSP and OSI transport is that in NSP the congestion information is not 
used by the receiver to control credits. Instead, the information is for­
warded by the receiver to the transmitter in Acknowledgment messages. 
The transmitter then adjusts the maximum number of Data Segment 
messages sent but not acknowledged it is allowed to have outstanding. 
This reduces the number of Data Segment messages flowing across the 
NSP Transport connection, thus reducing the load on the network. 

Connection Release 

An NSP Transport connection can be released at any time. The connec­
tion can be released by either one of the communicating Transport ser­
vice users or by one of the peer NSP Transport entities. 

The Transport layer provides a general-purpose data transfer service that 
all types of users can employ for reliable communication. The layers 
above the Transport layer add value to this basic data Transport service. 
Chapter 11 introduces the DNA Session Control layer that forms one of 
the two major higher-layer protocol stacks the DNA Phase V architec­
ture provides above the Transport layer. 



FIGURE 11.1 

CHAPTER 11 

The DNA Phase V 
Session Control Layer 

The Session Control layer is the layer of one of the upper-layer protocol 
stacks of DNA that presents an interface to programs using a DECnet 
Phase V network. By programs, we mean all types of applications, in­
cluding those written by users and those supplied by Digital. Programs 
that implement components of DNA, such as those making up network 
management and the naming service, also use the services of the Session 
Control layer for communication. The Session Control layer provides 
services that allow programs to communicate with one another and re­
quests services of the Transport layer in providing its services. The rela­
tionship between the services the Session Control layer provides and the 
protocol governing its operation is shown in Figure 11.1. As shown 

The relationship between the Session Control layer service and the Session Control layer 
protocol. 

Session Control Layer Service -----~ ~-__,.- Session Control Layer Service 

The Session Control protocol 

Session Control Layer 
uses the Transport layer __ ._.. 
service to provide the Session Session Control Layer 
Control layer service to a pair 
of end users. 

Transport Layer Service ___ __.+ +...._ ____ Transport Layer Service 
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there in the context of the OSI model, the DNA Session Control layer 
protocol uses the services of the Transport layer to provide a defined set 
of services to a user of the Session Control layer. The DNA Session Con­
trol layer provides an alternative method to the three upper OSI layers­
the Session layer, the Presentation layer, and the Application layer-for 
accessing Transport layer facilities. 

The major purpose of the Session Control layer is to form a bridge 
between applications using a Transport connection for communication 
and the Transport layer itself. The Session Control layer provides a set of 
enhanced functions needed by an application program running under the 
control of an operating system. Many of the functions of the Session 
Control layer protocol consist of a relatively simple mapping to the basic 
communication services provided by the Transport layer. Among the 
functions the Session Control layer performs are: 

• matching each incoming Transport connection establishment request 
with the appropriate user of a Session Control layer entity 

• managing Transport connections on behalf of users of the Session Con­
trol layer entity 

• enforcing access control policies to restrict communication between 
users of the Session Control layer 

• using the naming service to maintain information about the protocols 
supported by the node on which a local object resides and the address of 
that node* 

• accessing the services of the naming service to perform a name lookup 
operation to retrieve information about the protocols supported by a re­
mote object and the address of the remote node 

• selecting sets of appropriate communications protocols supported in 
common between the two Session Control layer users attempting to 
communicate over a Transport connection 

• selecting the specific set of addresses and communication protocols to be 
used in an attempt to set up a Transport connection between the node in 
which the local object resides and the node in which the remote object 
resides 

·we use the term object to refer to anything the naming service can maintain a 
name for and store information about. A local object is one residing in the same 
node as the Session Control layer entity itself; a remote object is one residing in 
some other node. 
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Session Control 
Layer Components 

A Session Control layer entity implements three major components. The 
relationship among these functional components and their relationship 
with the naming service are shown in Figure 11.2. The arrows indicate 

FIGURE 11.2 

the flows of information between components. The lower components 
provide services to the components above them. Notice that the address 
resolution component of the Session Control layer also interfaces di­
rectly with the clerk component of the naming service. The functions of 
the naming service clerk are introduced in this chapter and are described 
in detail in Chapter 16. The major functions of the three Session Control 
layer components and the naming service clerk are as follows: 

• Naming Service Clerk. Provides the services of retrieving attribute infor­
mation associated with objects and maintaining attribute information 
associated with local objects. 

• Connection Control. Accesses Transport layer communication services 
on behalf of an object residing on the local node (such as a local applica­
tion program). Also accesses Transport layer services on behalf of the ad-

Session Control layer functional components. 
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dress selection component of Session Control and on behalf of the nam-
. . 
mg service. 

• Address Resolution. Accesses the naming service clerk to determine, 
given the name of an object (possibly residing in a remote node) all the 
various sets of communication protocols and associated addressing in­
formation that can be used to support communication between the local 
object and the remote object. 

• Address Selection. Determines, given the name of an object, the specific 
set of protocol and addressing information, from among all the possible 
sets found by the address resolution component, that may be used for 
communication. The selected set of protocols and addressing informa­
tion is used to attempt to establish a Transport connection. 

Notice that the user of the Session Control layer can access any of 
the three Session Control layer components, as well as the naming ser­
vice clerk itself. The specific component the user accesses depends on 
how much is known about the remote object with which the user wishes 
to communicate. The following sections discuss in detail the functions of 
each of the three components of the Session Control layer. 

The connection control component is concerned with functions related 
to establishing, maintaining, and releasing Transport connections. The 
connection control component also enforces access control policies 
defined by the installation. The services the connection control compo­
nent provides using the underlying Transport layer communication ser­
vices include the following: 

• requesting an outbound Transport connection to an object based on the 
communication protocols and associated addressing information 
specified in the request 

• receiving an incoming Transport connection request from the Transport 
layer 

• validating access control information 

• sending and receiving data 

• monitoring a Transport connection 

• releasing a Transport connection 

Each of the above connection control component functions is de­
scribed next. 
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Requesting a Connection by Destination Address 

To directly use the services of the connection control component, the 
user must already have access to all required information concerning the 
communication protocols and associated addressing information re­
quired to establish communication between the local object and a remote 
object. There are three possible users of the connection control compo­
nent: 

• A User of the Session Control Layer. When a user of the Session Control 
layer, such as a DNA application program, already knows the specific 
communication protocols and associated addressing information re­
quired for communicating with the remote object, the user can access the 
connection control component directly, thus bypassing the address selec­
tion and address resolution components of Session Control. 

• The Address Selection Component. The address selection component of 
the Session Control layer can access the connection control component 
to establish Transport connections on behalf of users of the Session Con­
trol layer. 

• The Clerk Component of the Naming Service. The naming service clerk 
may also need to access connection control to set up Transport connec­
tions it uses to communicate with nameserver components of the naming 
service. Nameservers are the components of the naming service that 
maintain attribute information for names. 

In performing its functions, the connection control component for­
mats the data associated with each request for the establishment of a 
Transport connection it receives, issues a connection establishment re­
quest to the Transport layer, and starts an outgoing connection timer if 
the user requested it. If the timer expires before the remote Transport 
layer entity accepts or rejects the connection establishment request, the 
Session Control layer entity releases the Transport connection. 

Receiving a Connect Request 

The Session Control layer provides a major value-added service over and 
above the basic communication services that the Transport layer pro­
vides. When the connection control component receives an incoming re­
quest from the Transport layer for the establishment of a Transport con­
nection, it begins by analyzing the information associated with the 
incoming connection to obtain descriptors of the source and destination 
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objects and access control information. It then validates the access con­
trol information it receives using functions determined by the specific 
system implementing the local node. That information can be either an 
explicit access control string (including a password) or a request to in­
voke a proxy on behalf of the requesting user. 

Proxy mapping is a mechanism by which a user on one node in the 
network can be given access to accounts on another node in the network 
without knowing the access control information of the target accounts. 
This is accomplished by setting up an association on the target node be­
tween the remote user and the proxy accounts on the local node. When 
the connection control component receives a request for connection es­
tablishment that references a proxy account name, it selects the appro­
priate proxy account and verifies that the user requesting access is per­
mitted to use that account. 

Once access control information has been validated, the connection 
control component next identifies, activates, or creates a destination ap­
plication context using an algorithm defined by the particular system im­
plementing the local node. This algorithm determines if an existing ap­
plication in that node corresponds to the destination application 
specified in an incoming request for a Transport connection. The algo­
rithm may include an interface to the local operating system that creates 
a new user context in which to run the application. Once the local appli­
cation context has been identified or created, the connection control 
component delivers the incoming connection establishment request to 
the appropriate application and starts an incoming timer. If the timer ex­
pires before the application accepts the connection establishment re­
quest, the Session Control layer entity issues a reject to the Transport 
layer. 

Sending and Receiving Data 

The sending and receiving of data are system-dependent functions that 
are passed directly to the Transport layer. The Session Control layer can 
handle requests by users of the Session Control layer to exchange data 
with each other in a number of different ways. The Session Control layer 
can handle two forms of buffering and three different data transfer inter­
faces. 

The two buffering techniques that the Session Control layer pro­
vides include one technique in which the end user handles buffering and 
one technique in which the Session Control layer itself performs the 
buffering function: 
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• End User Buffering. With this buffering technique, the sending end user 
passes entire buffers of data to the Session Control layer and then polls 
the Session Control layer to determine when transmission of the data in 
the buffer has been completed. In a similar manner, a receiving Session 
Control user passes an empty buffer to Session Control and then polls 
Session Control to determine when the buffer has been completely filled. 

• Session Control Buffering. With this buffering technique, a sending end 
user requests transmission of the data in a buffer. Session Control either 
accepts or rejects the request. If Session Control accepts the request, the 
end user can reuse the buffer immediately. When a receiving end user 
passes Session Control a buffer to be filled with received data, Session 
Control either replies with a no data indication or immediately com­
pletely fills the buffer with received data. 

The three data transfer interfaces the Session Control layer supports 
include techniques for working with messages, segments, and streams of 
data: 

• Message Interface. This interface allows end users of the Session Control 
layer service to send and receive individual messages of any desired size. 
Senders and receivers work with messages contained in buffers using ei­
ther the end user buffering or Session Control buffering technique. 

• Segment Interface. This interface allows end users of the Session Control 
layer service to send messages limited in size to the maximum allowable 
transport-protocol-data-unit (TPDU) size. Senders and receivers work 
with messages contained in buffers using either the end user buffering or 
Session Control buffering technique. 

• Stream Interface. This interface allows end users to view data as a con­
tinuous stream of octets, in which an occasional "end-of-message" 
marker may be inserted. The stream interface is similar to the segment 
interface, but the buffer size is not restricted by the maximum allowable 
TPDU size. The stream interface requires the use of the Session Control 
buffering technique. 

Monitoring a Transport Connection 

If requested by the user of the Session Control layer entity, the connec­
tion control component will monitor the Transport connection and will 
release the Transport connection if it detects the Transport layer has de­
tected a probable network disconnection between the two communicat­
ing nodes or when it detects a failure to respond to a request for the es­
tablishment of a Transport connection. 
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Disconnecting or Aborting a Transport Connection 

If an application requests the release of a Transport connection, the Ses­
sion Control layer waits until all previously transmitted messages have 
been acknowledged and then issues to the Transport layer entity a re­
quest for the release of the Transport connection. If an application issues 
a request for a Transport connection abort, the Session Control layer im­
mediately issues a disconnect request to the Transport layer. In such a 
case, previously transmitted but unacknowledged data may not be deliv­
ered to the remote application. Notification of a Transport layer connec­
tion release or abort initiated by the remote Transport layer entity is 
passed directly to the application along with any data associated with 
the request for the release or abort of the Transport connection. 

We next examine the functions performed by the address resolution 
component of the Session Control layer. 

The address resolution component of the Session Control layer performs 
three important functions. One function is associated with local objects 
(objects residing in the same node as the local Session Control layer en­
tity), the second is associated with remote objects (objects residing in 
other nodes in the network), and the third is associated with performance. 

Local Objects 

The Session Control layer accesses the services of a naming service clerk to 
determine information about communication protocols and associated ad­
dressing information associated with objects, such as application pro­
grams, accessible via the network. An important responsibility of the ad­
dress resolution component is to periodically update the protocol and 
addressing information stored in the naming service for local objects. Ob­
jects may move from one node to another and addresses may change. It is 
one responsibility of the address resolution component to ensure that the 
information stored in the naming service for local objects is up to date. 

Remote Objects 

A second important function of the address resolution component is to 
accept the name of the remote object with which a local object is at­
tempting to communicate and to retrieve protocol and addressing infor­
mation for that object. In doing this, the address resolution component 
uses the services of the naming service clerk to acquire information 
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about all the communication protocols and associated addressing infor­
mation through which it may be possible to communicate with the re­
mote object. The address resolution component then attempts to identify 
communication protocols mutually supported by both the local node 
and the remote node. 

Previous versions of Session Control (as in DECnet Phase IV net­
works) required tables maintained via explicit network management pro­
cedures that specified associations between node names and node ad­
dresses for those nodes with which local users might need to communicate. 
The size of the table, and consequently the number of node names known 
to a particular Session Control entity, was limited by the storage available 
in the local node. Furthermore, the information in the table was sometimes 
out of date, thus resulting in messages sometimes being delivered to the 
wrong destinations. With DNA Phase V, all Session Control layer entities 
have access to the naming service, which provides access to attribute infor­
mation for all objects known to the network. By using a global naming ser­
vice to maintain the association between object names and their addresses, 
the number of names to which a given node has access is no longer limited 
by the resources installed in the node itself. Since the address resolution 
component in each node is responsible for periodically updating the infor­
mation in the naming service concerning local objects, attribute informa­
tion stored for remote objects is more likely to be up to date. 

Caching 

A third function the address resolution component performs is related to 
performance. Whenever the address resolution component locates proto­
col and addressing information for a remote object, it stores that infor­
mation in a local cache for possible later reference. The protocol and ad­
dressing information for frequently accessed objects tends to remain in 
the cache, thus eliminating the need to access the naming service to re­
trieve attribute information for frequently accessed objects. 

The address resolution component performs its functions through 
the use of data structures called protocol towers, or simply towers. Tow­
ers are a unique feature of DNA Phase V, which we describe next. 

In previous versions of DNA, there was no choice of the protocol that op­
erated at each layer below the application itself, and each node had a single 
unique Network layer address. With DNA Phase V, a node can support 
multiple transport protocols (for example, both NSP and OSI transport) 



248 

FIGURE 11.3 

PART II: DNA FUNCTIONAL LAYERS 

and also may have multiple Network layer addresses. For applications 
to communicate, they must agree on the protocols both will employ and 
they must agree on a compatible set of operational parameters for those 
protocols. In addition, two communicating users must have informa­
tion about the addresses that indicate to each layer where to deliver data. 
This information is collected in a tower. A tower is a data structure, main­
tained in the naming service, which contains protocol and addressing in­
formation for each object that can be located via the network. An object's 
DNA$Towers attribute contains the object's tower data structure. 

A tower consists of a protocol sequence along with associated ad­
dress and protocol-specific information. A protocol sequence is an or­
dered list of protocol identifiers, each of which consists of an octet string 
naming a particular protocol. Some protocol identifiers are defined by 
Digital; others can be defined by network managers. 

Associated with each protocol identifier in a tower is a component 
of the address and other protocol-specific information applying to the 
specified protocol. The address information indicates the access point 
through which this layer provides service to the next higher layer proto­
col in the sequence. Other protocol-specific information may be included 
in this field. Figure 11.3 illustrates the structure of a tower. Typically, a 
tower will extend from the DNA Application layer to the Network layer. 
An object often will have multiple towers associated with it. 

Establishing Protocol Sequences for Communication 

We next walk through a typical use of the address resolution service in 
which an application program in one node wants to communicate with 
an application program in another node. The user of the address resolu-
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tion component-in this case, the address selection component of the 
Session Control layer-begins by passing to the address resolution com­
ponent the tower associated with the local application program and the 
name of the remote application program with which the local program is 
attempting to communicate. The address resolution component then 
searches the local cache to see if the tower associated with the remote 
program is currently available. If it is not, the address resolution compo­
nent accesses the naming service clerk and retrieves the DNA$Towers at­
tribute associated with the name of the remote program. 

After the address resolution component has access to the towers for 
both the local and the remote programs, it matches up the protocol se­
quences in the local and remote towers. A pair of protocol sequences are 
said to match if the protocol identifiers in one member of the pair are 
identical to, are in the same order as, and map one-to-one with those in 
the other member. The address resolution component passes to its user 
the results of this matching operation, which consists of the protocol se­
quences and associated addressing and protocol-specific information 
supported by both the local and the remote nodes. This constitutes infor­
mation about all the protocols through which it may be possible to es­
tablish communication between the two application programs. 

The algorithm matching up the two towers may result in no com­
mon protocol sequences, in which case communication is not possible 
between the two programs. Alternatively, it may result in a single match­
ing protocol sequence or in multiple matching protocol sequences. Each 
matching sequence found is returned to the address resolution compo­
nent user along with the address and other protocol-specific information 
from both the local and the remote towers. The user of the address reso­
lution component service may then select the specific protocols and ad­
dresses to be used in attempting to establish a Transport connection be­
tween the local program and the remote program. 

As we have already discussed, to improve performance, protocol se­
quences and address pairs are cached for future use. An application may 
request that the information cached about a name be discarded and new 
protocol sequences and address pairs generated. An application program 
might request this in the event a request for the establishment of a con­
nection fails. 

Maintenance of Towers 

Because each end node automatically generates its Network layer ad­
dress when it is attached to the network, the addresses associated with 
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protocols below the Session Control layer may change with time. For ex­
ample, if a node is disconnected from its router, moved to another part of 
the network, and plugged into some other router, its network address 
will automatically be changed as the node is reconfigured into the net­
work. The address resolution component includes a function an applica­
tion program can request to maintain the protocol and address informa­
tion stored in the naming service for local objects. 

Using information about the higher layers the application program 
passes to the Session Control layer and information about the lower lay­
ers the Session Control layer obtains from the underlying Transport layer 
entities, the address resolution component uses the naming service to up­
date the information stored in the DNA$Towers attribute for each local 
object, thus ensuring that the information stored in the tower for each 
object is up to date. 

We next examine the functions performed by the address selection 
component of the Session Control layer. 

The address selection component allows a local program to establish a 
Transport connection with a remote program based only on the name of 
the remote application program. By using the address selection compo­
nent, the local user is relieved of the responsibility for knowing the ad­
dresses associated with the remote object and about the protocols sup­
ported by the remote node. The address selection component accesses 
the services of the address resolution component to obtain the addresses 
and protocol sequences associated with a remote object. It also uses the 
services of the connection control component to establish a Transport 
connection with the remote application program once protocol and ad­
dress information has been obtained. 

For compatibility with DNA Phase IV, an application program 
can alternatively request the establishment of a Transport connection 
by specifying the name of the node on which the remote application 
program resides and information about higher layer protocols and ad­
dresses. For compatibility with existing applications, the address se­
lection component accepts a six-character node alias and converts it 
to the full DNA Phase V node name. The Session Control layer then 
uses the services of the address resolution component to locate infor­
mation about Transport and Network layer protocols and associated 
addressing information. 
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Ordering the Protocol Sequences 

As we discussed earlier, the address resolution component attempts to 
find the set of all protocol sequences and associated addressing informa­
tion mutually supported by both the local and the remote objects. The 
address selection component uses a system-specific algorithm to place 
the elements of this set into a specific sequence. It then uses the services 
of the connection control component to attempt to establish a Transport 
connection with the remote object using the first protocol sequence in 
the set. If the address resolution component fails to establish a Transport 
connection using the first element of the protocol sequence set, it tries 
again using the second element of the set. It continues to step through the 
protocol sequence set until one of the following situations occurs: 

• A Transport connection is successfully established. 

• The reason for the failure indicates that further attempts would be futile. 

• The protocol sequence set is exhausted. 

End User Interface The end user interface to the DNA Session Control layer is defined in a 
manner similar to that of the interfaces to the lower layers, in terms of a 
series of procedure declarations. These procedure declarations are listed 
in Box 11.1. Many of the calls request specific Session Control services, 
and others request services of the Transport layer. The Session Control 
layer passes requests for Transport layer services directly to the Trans­
port layer. Note that the procedure declarations listed in Box 11.1 in­
clude no procedures for performing data transfer functions over the un­
derlying Transport connection. As discussed earlier, the interface 
between end users and the Session Control layer is implementation de­
pendent. The Session Control layer supports end user and Session Con­
trol layer buffering techniques and the message, segment, and stream 
data transfer interfaces in an implementation-dependent manner. 

Conclusion The DNA Session Control layer provides users with an important point 
of entry into a DECnet Phase V network. Of increasing importance in 
the future will be the higher-layer protocol stack the DNA Phase V archi­
tecture provides as an alternative to the DNA Session Control layer: the 
OSI Application, Presentation, and Session layers. The OSI upper layer 
architecture defined by DNA Phase Vis introduced in Chapter 12. 
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The following function and procedure declarations define the 
abstract interface between the Session Control layer and a user of the 
Session Control layer in terms of the services a Session Control layer 
entity provides to its users. 

Name and Address Conversion Functions 

• NodeNameTolnternal. Passes a naming service external format node 
name to the naming service clerk for conversion to internal format. 
If the name is a node name synonym, the name is first converted to 
the node's full name before passing it to the naming service clerk. 

• NameToAddress. Maps the name of an object to a set of protocol 
sequences supported by both the local system and the remote system 
on which the named object resides and returns the addresses of the 
service-access-points identifying the sending and receiving entities. 

• KeepMeHere. Requests the DNA$Towers attribute of a named 
object to be periodically updated on an ongoing basis with current 
protocol and address information. 

• RemoveFromHere. Halts the updating of the DNA$Towers attribute 
for a named object. 

• EnumerateLocalTowers. Returns the set of local towers available at 
the end user interface to the Session Control layer. 

Transport Connection Functions 

• ConnectAddress. Requests a Transport connection by specifying 
explicit protocol and address information for both the source and 
the destination nodes. 

• ConnectNodeAddress. Requests a Transport connection by specify­
ing explicit protocol and address information for the destination 
node. 
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• ConnectObjectName. Requests a Transport connection by specifying 
the name of the remote object and protocol information for the Ses­
sion Control layer and above. 

• ConnectNodeName. Requests a Transport connection by specifying 
the DNA Phase IV node name of the node on which the remote 
object resides. This function is provided for compatibility with Phase 
IV of DNA. 

Port Control Functions 

• Openlncoming. Opens a port into the Session Control layer and 
waits for a matching incoming request for a connection. 

• IncomingPoll. Polls a Session Control layer port for incoming data. 

• VerifyNodeName. Verifies the remote node name for an incoming 
connect request if this function was deferred. 

• Accept. Accepts or rejects an incoming request for a connection. 

Transport Connection Release Functions 

• DisconnectTransmit. Requests that a Transport connection be 
released. 

• DisconnectReceive. Issued in response to the receipt of a Disconnect­
Transmit request to obtain disconnect data. 

Port Status Functions 

• PortStatus. Requests information concerning the services available at 
the indicated Session Control layer port. 

• TPModuleStatus. Requests information concerning the services 
available at the underlying Transport layer port. 
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The three upper layers of the OSI model provide an alternative means to 
the DNA Session Control layer that an application program can use to 
request communication services in a DECnet Phase V network. This 
chapter describes the functions of the three upper OSI model layers and 
describes how the DNA Phase V OSI upper-layer architecture imple­
ments them. 

The four lower layers of the OSI architecture handle the end-to-end 
transfer of streams of octets-raw data. The lower-layer infrastructure is 
concerned with the network machines and the communication links con­
necting them. The Transport layer and the layers beneath it together pro­
vide a reliable end-to-end data transfer service that application programs 
running in end nodes use for communication. In contrast, the services 
provided by the three upper layers of the OSI model are concerned with 
the· application programs themselves. They define how application pro­
grams transfer meaningful information using the services of the underly­
ing communication infrastructure. The intent of the developers of the 
upper three layers of the OSI model was to provide a rich set of applica­
tion-oriented services for creating distributed computing applications. 

The Application layer provides OSI communication support di­
rectly to distributed applications. Unlike the lower layers, many proto­
cols for the Application layer are specific to a particular distributed ap­
plication, and the functions performed in the Application layer are 
dependent on that application. The Presentation layer is concerned with 
the information content of the data units that application programs ex­
change and with how that information content is encoded for transmis­
sion through the network. The Session layer is responsible for organiz­
ing the dialog between two application programs and for managing the 
data exchanges between them. 
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DNA Phase V The DNA Phase V specifications for the three OSI upper layers are 
OSUL Architecture contained in a single document that describes the OSI upper-layer 

(OSUL) architecture. The OSUL architecture defines an implementa­
tion model for the OSI Application, Presentation, and Session layers. 
The delineation between the layers is not as clearly defined in the 
OSUL architecture as it is for the lower four layers in the DNA Phase V 
architecture. 

NETWORK ARCHITECT 

In the lower layers, you will find that our implementation tends to be structured 

very much like the reference model, with appropriate interfaces closely resem­

bling the service interfaces defined in the ISO standards. If you look at the 

upper layers, it is very difficult to build an efficient, practical implementation 

that accurately reflects the layering structure. The Application, Presentation, 

and Session layers turn out to be so closely related that the best thing to do is to 

have one big state machine for all three layers rather than implementing a sepa­

rate state machine for each. So, in the upper layers, we feel the layering struc­

ture of the OSI model is not quite right; I think you'll find very few people who 

disagree with that. Nevertheless, it's something we have to live with because we 

realize it would be impossible at this point to make radical changes to the OSI 

model. 

We now begin an examination of the three layers that make up the 
OSUL architecture in DNA Phase V, continuing to work from the bot­
tom up. 

The Session Layer The Session layer provides services to structure the interaction between 
two application programs. The standards for the Session layer define two 
types of dialogs: two-way, simultaneous interaction, where both pro­
grams can send and receive concurrently, and two-way, alternate interac­
tion, where the programs take turns sending and receiving. In addition to 
organizing the dialog, Session layer services include the establishment of 
synchronization points within the dialog, which allows a dialog to be in­
terrupted and to be resumed from a synchronization point. 

There is some controversy in the OSI community surrounding the 
services the Session layer provides. 
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NETWORK ARCHITECT 

The way the standards for the Session layer were created worked something like 

this. Say I call you in and say I'd like you to build me a workshop. And you say, 

sure, what are some things you want to do? And I say, how about metalwork­

ing; that would be really interesting. But then electronics would be interesting as 
well, and so would woodworking. In the end, I give you a blank check, and a 

year later you come back and say here's your workshop. 

I start out by going into it and try to make a table. I find this pile of wood, 

go to the lathe, and start building. But I find that I need a chisel, and there 
aren't any chisels. Then I decide to build a radio instead. I go to the electronics 

bench and start to build the radio but immediately discover that everything is 
there that I need, except for a soldering iron. 

This is what the Session layer is like. There are lots of useful, general mech­

anisms. But when you actually begin to use them, you sometimes find they don't 

do quite what you need them to do. Or, because of the Session layer's position 

in the layering structure, it really doesn't work the way you want it to work. 

What is essentially happening now is that we are working hard on the standards 

for the Application layer, and we are finding that most of the new protocols 

being developed simply don't use many of the features originally designed into 

the Session layer. If we were to start over again, we would probably not have a 

separate Session layer. Instead, we might define the Session synchronization ser­

vices in a separate Application layer standard. 

Services and Protocols 

As with the other OSI model layers, ISO standards for the Session layer 
include both a service definition and a protocol specification. The rela­
tionship between the services the Session layer provides and the protocol 
governing its operation is shown in Figure 12.1. The Session layer proto­
col uses the services of the Transport layer to provide a defined set of ser­
vices to a user of the Session layer service. Note, however, that even 
though the Presentation layer is above the Session layer in the OSI 
model, the actual user of Session layer services is an entity in the Appli­
cation layer. Each service the Session layer provides is mapped to a corre­
sponding service of the Presentation layer. The Presentation layer then 
adds value to some of these Session layer services and provides addi­
tional services of its own to an Application layer entity. 
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The relationship between the Session layer service definition and the Session layer protocol 
specification. 

Session Layer Service -----~ 

Session Layer 

The Session layer protocol uses 
the Transport layer service to 
provide the Session layer service 
to a Session service user. 

Session Layer Service 

Session Layer 

Transport Layer Service ---~t t~---- Transport Layer Service 

Session Layer Service Definition 
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The service definition for the Session layer is documented in ISO 8326, 
Session Service Definition. The functions provided by the Session layer 
are divided into a number of functional units. The functional units em­
ployed by a pair of users of the Session layer service are negotiated when 
the Session connection is established. Many of the services defined in 
functional units for the Session layer require the entity requesting the ser­
vice to own a token, which grants that entity the right to request that ser­
vice. Some of the services defined for the Session layer consist of request­
ing a particular token from the partner entity and passing a token to the 
partner upon request. Box 12.1 lists the services provided by all Session 
layer functional units. 

The following are brief descriptions of the functional units included 
in the Session layer, all of which are supported by the OSUL architecture: 

• Kernel. The kernel functional unit allows the use of basic session services 
that must be provided by any implementation of the Session layer. 

• Negotiated Release. This functional unit allows the use of services that 
restrict the release of the Session connection to the partner who owns the 
Release token. Also, it allows a partner Session layer entity to reject a re-
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Kernel Functional Unit 

• Session Connection Establishment. Requests the establishment of a 
Session connection. 

• Normal Data Transfer. Transfers data over a Session connection. 

• Session Connection Release. Requests the orderly release of a Session 
connection. 

• User Abort of a Session Connection. Issued by a Session service user 
to request the immediate release of a Session connection. 

• Provider Abort of a Session Connection. Issued by a Session layer 
entity to request the immediate release of a Session connection. 

Negotiated Release Functional Unit 

• Requesting an Orderly Negotiated Release. Requests a negotiated 
release of a Session connection in which the partner can either accept 
or reject the request. This service can be issued only by the partner 
who currently owns the Release token. 

• Requesting the Release Token. Requests the Release token from the 
partner who currently owns it. 

• Passing the Release Token. Passes the Release token to the other partner. 

Half-Duplex Functional Unit 

• Requesting the Data Token. Requests the Data token from the part­
ner who currently owns it. 

• Passing the Data Token. Passes the Data token to the other partner. 

Activity Management Functional Unit 

• Starting an Activity. The partner issuing this service must own the 
Major/Activity token. If the functional units concerning the Data 
token or the Synchronize-minor tokens are in effect, the partner 
must own these tokens as well. 

• Ending an Activity. The partner issuing this service must own the 
Major/Activity token. If the functional units concerning the Data 
token or the Synchronize-minor tokens are in effect, the partner 
must own these tokens as well. 

• Interrupting an Activity. The partner interrupting the activity may 
resume it later. The partner issuing this service must own the 
Major/Activity token. 

• Resuming an Interrupted Activity. The partner issuing this service 
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must own the Major/Activity token. If the functional units concern­
ing the Data token or the Synchronize-minor tokens are in effect, the 
partner must own these tokens as well. 

• Discarding an Activity. The partner issuing this service might discard 
an activity for any of a number of defined reasons. To discard an 
activity, the partner must own the Major/Activity token. 

• Requesting the Major/Activity Token. Requests the Major/Activity 
token from the partner who currently owns it. 

• Passing the Major/Activity Token. Passes the Major/Activity token 
to the other partner. 

• Passing Control to the Other Partner. This service might be issued by a 
partner who currently owns all tokens and wishes to pass ownership 
of them to the other partner. This service could be performed by using 
the services of passing tokens to the other partner and is included in 
the Session service for compatibility with an older Session protocol. 

Minor Synchronize Functional Unit 

• Establishing a Minor Synchronization Point. This service can be 
issued only by the partner entity currently owning the Synchronize­
minor token. 

• Requesting the Synchronize-Minor Token. Requests the Synchro­
nize-minor token from the partner who currently owns it. 

• Passing the Synchronize-Minor Token. Passes the Synchronize-minor 
token to the other partner. 

Major Synchronize Functional Unit 

• Establishing a Major Synchronization Point. This service can be issued 
only by the partner entity currently owning the Major/Activity token. 

• Requesting the Synchronize-Major Token. Requests the Synchronize­
major token from the partner who currently owns it. 

• Passing the Synchronize-Major Token. Passes the Synchronize-major 
token to the other partner. 

Exception Reporting Functional Unit 

• User Exception Reporting. Reporting of exceptional conditions by a 
Session layer user. 

• Provider Exception Reporting. Reporting of exceptional conditions 
by a Session layer entity. 
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quest for the release of a Session connection, in which case the Session 
connection remains established. 

• Half-Duplex. This functional unit allows two-way alternate interactions 
to take place over the Session connection. When the Half-duplex func­
tional unit is chosen, data can be sent over the Session connection only 
by the partner currently in possession of the Data token. The services 
defined for the Half-duplex functional unit are concerned with request­
ing and passing the Data token. Both the Half-duplex and Duplex func­
tional units cannot be in effect for the same Session connection. 

• Duplex. This functional unit allows two-way simultaneous interactions 
to take place over the Session connection. When the Duplex functional 
unit is in effect, data can be sent over the Session connection by either 
partner at any time, and possession of the Data token is not required. 
Both the Half-duplex and Duplex functional units cannot be in effect for 
the same Session connection. 

• Expedited Data. This functional unit allows the use of a single expedited 
data transfer service allowing a single short data unit to be sent over the 
Session connection. The expedited data transfer service allows blockages 
in the data transport service to be bypassed. 

• Typed Data. This functional unit allows the use of a single typed data 
transfer service allowing data to be exchanged outside the normal flow 
of data over the Session connection. When the half-duplex functional 
unit is in effect, an entity can send data using the typed data transfer ser­
vice even though it does not currently own the Data token. 

• Activity Management. This functional unit allows the use of application 
exchanges in which an activity is divided into a number of restartable di­
alogs, each of which can be divided into smaller restartable units using 
one or more checkpoints. 

• Minor Synchronize. This functional unit allows use of the dialog control 
services defined in the Session layer. Dialog control services consist of two 
types of synchronization points in the data stream flowing between two 
users of the Session layer service. A minor synchronization point marks a 
checkpoint within a dialog, and a. major synchronization point separates 
individual dialogs from one another. The Minor Synchronize functional 
unit consists of services for establishing checkpoints within a dialog. 

• Major Synchronize. This functional unit allows a dialog to be ended by 
establishing a major synchronization point. The Major Synchronize 
functional unit consists of services for establishing a major synchroniza­
tion point. 
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• Resynchronize. This functional unit allows the use of a single resynchro­
nize service requesting a dialog to be reset to a synchronization point. 

• Capability Data Exchange. This functional unit can be chosen only when 
the Activity Management functional unit has also been chosen. It allows 
the use of a single capability data exchange service for transferring data 
concerning the capabilities of application programs. 

• Exceptions. This functional unit allows the use of services for reporting 
exceptional conditions. 

Amendments to the ISO Session Layer Service Definition 

As of the time of this writing, ISO has published three amendments to 
ISO 8326, Basic Connection Oriented Session Service Definition: 

• Amendment 1, Session Symmetric Synchronization for the Session Ser­
vice. This amendment defines an optional Session Symmetric Synchro­
nization functional unit, which allows two full-duplex users of the Ses­
sion service to independently identify minor synchronization points on 
their sending data flows. It also allows users to resynchronize on one or 
both directions of flow. As of the time of this writing, the OSUL architec­
ture does not support session symmetric synchronization since there cur­
rently are no OSI applications that require this functional unit. 

• Amendment 2, Unlimited User Data. In ISO 8326, some session services 
limit user data to 512 octets, while others do not specify a user data pa­
rameter. This amendment defines a new version of the Session protocol 
that allows the use of an arbitrarily large user data parameter with all 
Session layer services. The OSUL architecture supports unlimited user 
data. 

• Amendment 3, Connectionless Mode Transmission. ISO 8326 defines a 
connection-mode Session layer service. This amendment defines a con­
nectionless-mode Session layer service. Support for this amendment is 
not included in the OSUL architecture. As of the time of this writing, the 
DNA Phase V architecture supports only connection-mode services in 
the Transport layer and above. 

Session Layer Protocol Specification 

The protocol specification for the Session layer is documented in ISO 
8327, Session Protocol Specification. The protocol mechanisms to sup­
ply the optional services defined in the amendments to 8326 are de­
scribed in the amendments to ISO 8327. Because of the many different 



262 PART 11: DNA FUNCTIONAL LAYERS 

types of services the Session layer provides, the protocol controlling its 
operation is relatively complex. However, the Session protocol accesses 
the underlying Transport layer services in a straightforward manner. 
Each Session layer service primitive causes one or more session-protocol­
data-units (SPDUs) to be generated. The Session layer uses a Transport 
connection to carry these SPDUs over the network. The ISO standards 
for the Session layer define three possible mappings between Session con­
nections and Transport connections: 

• One-to-One. With a one-to-one mapping, a Session connection causes a 
Transport connection to be established. The Transport connection is 
then released when the Session connection is released. 

• One-to-Many. With a one-to-many mapping, a single Session connection 
employs several Transport connections, one after the other. This capabil­
ity is useful if Session layer entities wish to be able to recover from the re­
lease of Transport connections, possibly due to network failures. 

• Many-to-One. With a many-to-one mapping, a single Transport connec­
tion is reused and supports two or more Session connections, one after 
the other. The OSUL architecture does not support this form of mapping 
and does not permit a Transport connection to be reused. 

The Session protocol supports segmentation and concatenation 
functions. To allow the use of unlimited user data parameters, a single 
session-service-data-unit (SSDU) can be segmented into multiple SPDUs, 
each of which is carried over the network in a separate transport-proto­
col-data-unit (TPDU). 

Multiple SPDUs can also be concatenated and carried in a single 
TPDU to reduce the number of network interactions required to support 
the Session protocol. For example, a Give Token SPDU can be concate­
nated with a Data Transfer SPDU, both of which can be carried together 
in a single TPDU. ISO 8326, Session Protocol Spedfication, specifies the 
types of SPDU that can be combined and defines both a basic and an ex­
tended form of concatenation. Basic concatenation is more restrictive 
than extended concatenation as to the types of SPDUs that can be com­
bined in the same TPDU. The OSUL architecture supports basic concate­
nation but not extended concatenation. 

NETWORK ARCHITECT 

We felt that supporting extended concatenation would complicate buffer handling 

and increase processing overhead while not significantly reducing network traffic. 
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We next examine the services the Presentation layer provides to an 
Application layer entity. 

In the OSI environment, an application program sends data to another 
application program in a distributed system by using a data transfer 
service provided by the Presentation layer. The Presentation layer also 
provides services for negotiating the way in which data elements are 
to be encoded for transmission through the network and services that 
allow its users to access the services provided by the underlying Ses­
sion layer. 

The unit of data the user of the Presentation layer service passes 
down to a Presentation layer entity is the presentation-service-data-unit 
(PSDU). A PSDU can contain one or more presentation-data-values 
(PDVs). A PDV can be a complex data structure, and in many cases a 
PSDU will consist of a single PDV. A PDV typically consists of an appli­
cation-protocol-data-unit (APDU) or a part of an APDU. An Application 
layer protocol defines the information content of the PDVs that the two 
communicating programs exchange with each other and the procedures 
governing the exchange of those PDVs. Consider a distributed personnel 
application: one of the PDVs exchanged by the programs in such a sys­
tem might be a particular type of record containing elements of informa­
tion about an employee. 

To the layers below the Presentation layer, the data units exchanged 
consist simply of strings of octets. The lower layers are concerned with 
ensuring that the string of octets received by a receiving entity is identical 
to the string of octets transmitted. The Presentation layer, on the other 
hand, is concerned with preserving the information content of the data 
contained in the PDVs exchanged by application programs. The aim of 
the OSI architecture is to allow information systems to be interconnected 
with a minimum of agreement outside the ISO standards for the OSI 
model themselves. 

One of the functions of the Presentation layer is to allow users of the 
Presentation layer service to unambiguously exchange PDVs with each 
other without requiring one open system to have knowledge of the form 
of data representation used by the other open system. A program run­
ning in open system A should be able to transmit numeric information 
over the network to a program running in open system B without having 
to know how open system B represents numeric values. To this end, the 
definition of a presentation-data-value is concerned only with the infor­
mation content of the PDV and not with the way the information it con-
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tains is represented in a computer or the way in which it is encoded for 
transmission over the network. 

As with the other OSI model layers, ISO standards for the Presenta­
tion layer include both a service definition and a protocol specification. 
The relationship between the services the Presentation layer provides and 
the protocol governing its operation is shown in Figure 12.2. The Presen­
tation layer protocol uses the services of the Session layer to provide a 
defined set of services to a user of the Presentation service. 

Data Syntax 

The Presentation layer is concerned with three data syntax types that can 
be used to describe and represent data (see Figure 12.3): 

• Abstract Syntax. An abstract syntax formally defines the information 
content of all the PDVs sent during the operation of a particular Appli­
cation layer protocol. An abstract syntax is concerned with information 
content only and not with how that information content is represented 
in a computer or how it is encoded for transmission. For example, an ab­
stract syntax might define a data type called CheckingBalance, values of 
which consist of integers. It does not specify whether a value of the 
CheckingBalance data type is represented by decimal digits, binary num­
bers, or any other form. 

• Local Concrete Syntax. A local concrete syntax defines how a particular 
PDV is represented in a computing system. The local concrete syntax used 

The relationship between the Presentation layer service definition and the Presentation layer 
protocol specification. 

Presentation 
Layer Service 

P sentation Layer 

The Presentation layer protocol 
uses the Session layer service to 
provide the Presentation layer 
service to a Presentation service 
user. 

Session Layer Service ---~+ 

Presentation 
Layer Service 

Presentation La er 

Session Layer Service 



FIGURE 12.3 

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE 265 

Converting from system A's local concrete syntax to transfer syntax and from transfer syntax to 
system B's local concrete syntax. 

Open System A Open System B 

Application-Entity 

Information Content Defined 
by Abstract Syntax 

Represented Using 
System A's Local 
Concrete Syntax 

Represented Using 
System B's Local 
Concrete Syntax 

Application-Entity 

Presentation-Entity 

~ Presentation 
Connection 

Presentation-Entity 

PSDU - presentation-service-data-unit 
PPDU - presentation-protocol-data-unit 
POV - presentation-data-value 

Encoded for Transmission Using 
a Common Transfer Syntax 

in the sending open system might be different from the local concrete syn­
tax used in the receiving open system. For example, one system might rep­
resent a value of the CheckingBalance type as a 32-bit binary number 
using 2's complement notation; another system might represent a Check­
ingBalance value as a string of decimal digits, where each decimal digit is 
represented by a 4-bit binary number (packed-decimal notation). 

• Transfer Syntax. A transfer syntax defines how a particular PDV is en­
coded for transmission over the network. For example, a value of the 
CheckingBalance type might be transferred over the network using some 
encoding scheme that identifies a particular value as being of the Check­
ingBalance type, specifies that it consists of an integer, and encodes that 
integer's value using a minimum number of bits. The two Presentation 
layer entities must agree on a particular transfer syntax to be used to 
transfer the PDVs defined by each abstract syntax employed by the two 
users of the Presentation layer service. 

Abstract Syntax A set of definitions of the information content of all 
the PDVs that can be exchanged during the operation of an Application 
layer protocol is called an abstract syntax. Each abstract syntax is as­
signed a name known to the two users of the Presentation layer service. 
For two Presentation layer users to communicate successfully, they must 
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agree on the names of one or more abstract syntaxes they intend to use. 
As the communication proceeds, the two Presentation layer service users 
can modify their agreement by adding the names of new abstract syntax 
definitions to the set of abstract syntaxes they intend to use, or they can 
delete the names of abstract syntax definitions from this set. In other 
words, they can change the set of PDVs they intend to exchange as com­
munication proceeds. 

Consider our hypothetical distributed personnel system. An abstract 
syntax would consist of formal definitions of the information content of 
the records exchanged between a pair of programs supporting the dis­
tributed personnel system. 

Abstract Syntax Notation An abstract syntax is defined with an ab­
stract syntax notation. An abstract syntax notation provides a means for 
defining data types without specifying how values of those data types 
will actually be represented internally in a computer or how they will be 
encoded for transmission through the network. 

Standards for the various layers of the OSI model do not require the 
use of any particular abstract syntax notation for describing data struc­
tures. In fact, ISO standards are specifically designed for great generality 
and allow an abstract syntax to be specified in any desired manner. How­
ever, there is an ISO standard that defines an abstract syntax notation 
commonly used in the OSI environment for defining abstract syntaxes: 
ISO 8824, Abstract Syntax Notation One (ASN.1). 

Abstract Syntax Notation One (ASN.1) 

ASN.1 is supported by the OSUL architecture for defining abstract syn­
taxes. ASN.1 can be used for two related purposes: to define data types 
and to express values of those data types. 

ASN.1 Data Type Assignments One use of ASN.1 is as a standard nota­
tion for describing the information content of the PDVs that two users of 
the Presentation layer service exchange with each other. ASN.1 defines a 
number of primitive data types that can be used to construct more com­
plex data structures. Examples of primitive types defined by ASN.1 follow: 

INTEGER 

BOOLEAN 

BIT STRING 

OCTET STRING 

SEQUENCE 

SET 

an integer of arbitrary length 

a data type containing a TRUE or FALSE value 

a list of 0 or more binary digits 

a list of 0 or more 8-bit octets 

an ordered list of other data types 

an unordered list of other data types 
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ASN.1 also includes a number of additional predefined types. For 
example, ASN.1 includes definitions of a number of data types that can 
contain characters from particular character sets. For example, the Print­
ableString type can contain characters that include the upper- and lower­
case letters, the 10 digits, space, and the 11 special characters()'+-.,/:=?. 

An example of a data type used to represent a simple employee 
record expressed in ASN.1 data type notation follows: 

Employee ::=SEQUENCE 

name PrintableString, 

empNumber INTEGER, 

salary INTEGER, 

hireYear INTEGER 

The above ASN. l code defines the Employee data type as an or­
dered list made up of a PrintableString data type called name followed 
by three integer data types called empNumber, salary, and hire Year. 
ASN.1 also allows default values to be assigned to values in a SET or SE­
QUENCE data type. A data value equal to the default value does not 
have to be transmitted. 

Tags Each data type defined as part of ASN.l (INTEGER, Printa­
bleString, etc.) has an identifying tag associated with it consisting of a 
number. Tags can also be explicitly assigned to defined types to differen­
tiate them from one another. We will see how the tags are used to distin­
guish one data type from another when we examine how a value of an 
ASN.1 data type is encoded. ASN.1 defines four different classes of tags: 

• UNIVERSAL. UNIVERSAL tags are those assigned to the simple data 
types defined in the ASN.1 specification. 

• APPLICATION. APPLICATION tags are meant to be assigned to data 
types defined in international standards and have universal meaning 
within a particular ASN.1 module. 

• PRIVATE. PRIVATE tags are assigned to data types defined by an individ­
ual enterprise and have universal meaning within that enterprise. Digital 
does not recommend the use of PRIVATE tags, since they must have univer­
sal meaning among all the abstract syntaxes defined by a given enterprise. 

• Context Specific. Context Specific tags are used to provide identification 
for the data types within some other data type. Digital recommends the 
use of Context Specific tags wherever possible to distinguish one data 
type from another within a data structure. 
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The ASN.1 specification defines the tags associated with the UNI­
VERSAL data types. For example, all SEQUENCE data types have a tag 
of 16, PrintableString data types have a tag of 19, and INTEGER data 
types have a tag of 2. In the Employee data type defined above, tags are 
assigned as follows: 

Employee tag 16 

name tag 19 

empNumber tag 2 

salary tag 2 

hire Year tag2 

When a value of a particular type is encoded for transmission, the 
value's class and tag value are encoded along with it. In this manner, a 
Presentation layer entity receiving an encoded value can determine its 
type by examining its tag. 

Tags can also be explicitly assigned to the data types in an ASN.1 
data type definition to distinguish one data type from another. For exam­
ple, suppose we change our Employee example to the following: 

Employee : : = SET 
{ 

name PrintableString, 
empNumber INTEGER, 
salary INTEGER, 
hireYear INTEGER 

By defining Employee as a SET data type, it would be possible for 
the four data types that make up the set to be arranged in any sequence. 
With the above definition it would be possible to distinguish a name 
value from values of any of the three integer types because the name data 
type is the only one in the set having a PrintableString tag. But it would 
not be possible to distinguish an empNumber value, say, from a salary 
value. We can solve this problem by assigning a different Context 
Specific tag to each of the three integer data types, as in the following 
example: 

Employee : : = SET 
{ 

name PrintableString, 
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empNumber [OJ INTEGER, 
salary [lJ INTEGER, 
hireYear [2J INTEGER 
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When values of any of the three integer types are now encoded, the 
value's Context Specific tag accompanies it, thus distinguishing each of 
the three integer types from the others. An empNumber value would 
have the Context Specific tag 0 included with it, a salary value would 
have the tag 1 included with it, and a hire Year value would have the tag 
2 included with it. 

With the above ASN.1 definition, empNumber, salary, and hire Year 
values would also include a UNIVERSAL tag of 2 to indicate that they 
are integer data types. When Context Specific tags are defined for a data 
type, it is often not necessary for the UNIVERSAL tag to be carried with 
encodings of those data types. This is because when the receiver sees a 
value of a data type including a Context Specific tag, the Context specific 
tag is all the receiver requires to determine the value's type. For example, 
if the Context Specific tag identifies a value as a salary value, the receiver 
implicitly knows from the ASN.1 abstract syntax definition that the 
salary value is an integer, and so the UNIVERSAL tag of 2 is redundant. 
The ASN.1 definition can specify that the UNIVERSAL tag be omitted 
from the encoding by including the IMPLICIT keyword. In the following 
example, the IMPLICIT keyword indicates that values of the empNum­
ber, salary, and hire Year types are implicitly of the integer type, as in the 
following example: 

Employee SET 

name PrintableString, 
empNurnber [OJ IMPLICIT INTEGER, 
salary [lJ IMPLICIT INTEGER, 
hire Year [2J IMPLICIT INTEGER 

With the above abstract syntax definition, only the Context Specific 
tags and not the UNIVERSAL tags are included in encodings of emp­
Number, salary, and hire Year values. 

ASN.1 Data Value Assignments Another way in which ASN.1 can be 
used is to express, in a human-readable manner, the value of a particular 
instance of a data type. A particular value of the Employee data type 
might be specified in ASN.1 value notation as: 
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jamesMartin employee 

} 

"James Martin", 
123456, 

72000, 

1972 

We next discuss ways in which PDVs defined by an abstract syntax 
are represented in a real open system and how they are encoded for 
transmission. 

Local Concrete Syntax 

As we have stated previously, definitions of the PDVs that users of the 
Presentation layer service exchange constitute an abstract syntax specify­
ing information content only. The way in which the information content 
of a PDV value is actually stored in a computer is called a local concrete 
syntax. The sending open system may use a local concrete syntax differ­
ent from the local concrete syntax used by the receiving open system to 
represent a particular PDV value. 

The following are just a few ways in which local concrete syntaxes 
can be different: 

• The sending system might represent a PrintableString data type using the 
EBCDIC character code; the receiving system might use ASCII. 

• The sending system might represent an INTEGER data type using a 
packed-decimal format in which each decimal digit is contained in a 
semi-octet with the final semi-octet representing the integer's sign; the re­
ceiving system might represent an INTEGER data type as a binary value 
stored in a 32-bit word. 

• The sending system might represent an INTEGER data type using 1 's 
complement notation; the receiving system might represent an INTE­
GER data type using 2's complement notation. 

• The sending system might represent a floating-point value using one for­
mat; the receiving system might use another. 

In addition to the above differences, which ordinarily can be han­
dled using straightforward conversions, two users of the Presentation 
layer service might exchange PDVs that contain complex data structures 
consisting of values of many different data types, some of which may be 
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optional in the data structure. The question then becomes one of how 
the Presentation layer entity in the receiving system parses the data struc­
tures contained in a PDV to determine the meaning of each data value 
contained in it. 

Transfer Syntax 

The information content of a PDV must be sent over the network in a 
way that preserves that information content. To do this, some method 
must be used for encoding the information content defined by a PDV 
into a string of octets that can be sent over the network. The receiving 
open system must then be able to decode the octet string it receives to 
completely recreate the information content of the original PDV. The set 
of rules used to encode and decode the information content of a PDV for 
transmission results in a transfer syntax. Each transfer syntax is given a 
name known to the two Presentation layer entities and to the two users 
of the Presentation layer service. 

To set up a Presentation connection, two users of the Presentation 
layer service must agree on the set of abstract syntaxes they intend to use 
during communication, and they must inform their associated Presenta­
tion layer entities of the names of those abstract syntaxes. The job of the 
Presentation layer in establishing a Presentation connection is to negoti­
ate a common transfer syntax for each abstract syntax the two commu­
nicating users of the Presentation layer service intend to use. The stan­
dards for .the Presentation layer do not specify any particular transfer 
syntax that must be used. In fact, a Presentation layer entity might be 
able to use any number of transfer syntaxes to transfer PDVs defined by 
a given abstract syntax. The two peer Presentation layer entities must 
agree on the one common transfer syntax they intend to use to transfer 
PDVs defined using each abstract syntax. 

ISO 8825, Specification of Basic Encoding Rules for ASN.1, defines 
a set of rules for encoding and decoding values of data types defined 
using ASN.1 notation. If a particular abstract syntax definition is ex­
pressed in ASN.1 notation, then application of the basic encoding rules 
(BER) produces a transfer syntax for a PDV defined by that abstract syn­
tax definition. In practice in the OSI environment, the basic encoding 
rules are typically used to produce transfer syntaxes. 

The basic encoding rules use a type/length/value (TLV) form of en­
coding. An empNumber value of 123456 from our hypothetical person­
nel record would be encoded using 5 octets, as shown in Figure 12.4. The 
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Basic encoding rules transfer syntax encoding of an empNumbervalue of 123456 in binary and 
hexadecimal. 

Length Value 

0 3 0 1 E 2 4 0 

~---TagO 

10:0:0:0:0:0:0: 111: 1: 1:0:0:0: 1:010: 1 :0:0:0:0:0:01 
3 Value Octets 

Final Octet of Length 

~--- Primitive Data Type 

Class 3 (Context Specific) 

first octet defines the value's type. The first two bits contain the binary 
value 11 (decimal 3), which indicates that the value is of a Context 
Specific data type; the 0 in the next bit indicates that the value is a primi­
tive data type and is not made up of other data types; and the final five 
bits contain a tag value of binary 00000 (decimal 0) indicating the data 
type's tag is 0, indicating an empNumber value. The second octet contains 
the number of octets used to contain the value, in this case, 00000010 
(decimal 3). The first bit position is used to indicate the final octet of the 
length field, thus allowing for an unlimited length value. A 0 in the first 
position of the length field indicates that no more length octets follow. A 
value is encoded using the minimum number of octets required to encode 
that value, in this case, 3. The third, fourth, and fifth octets contain the 
decimal value 123456 in binary using 2's complement notation. 

Presentation Contexts 

The association of the name of an abstract syntax with the name of a 
particular transfer syntax is called a presentation context. Each presenta­
tion context is given a name known to the two users of the Presentation 
layer service. The set of the names of all the presentation contexts, and 
thus all the abstract syntaxes, that can be used over a Presentation con­
nection is called the defined context set (DCS). Presentation layer ser­
vices are defined for modifying the defined context set by adding presen­
tation context names to it and deleting them from it. There is also a 
default context, which names a presentation context to use when the 
defined context set is empty. 
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Transformation to and from Transfer Syntax 

The OSI model specifies that a function of the Presentation layer is to 
transform each PDV being sent from the local concrete syntax to the trans­
fer syntax and to transform each PDV received from the transfer syntax to 
the local concrete syntax. However, these conversions are purely internal 
functions of the Presentation layer entity and have no effect on the opera­
tion of the Presentation layer protocol. The Presentation layer conversion 
function can, therefore, be implemented in any desired way. 

In some cases, no conversion is even necessary. For example, if two 
users of the Presentation layer service are running in similar computing 
systems using the same local concrete syntax, the transfer syntax might 
specify that the data units be exchanged as is, without any conversion to 
a different transfer syntax. In such a case, the Presentation layer would 
perform a null function in converting from local concrete syntax to 
transfer syntax in the sending system and from transfer syntax to local 
concrete syntax in the receiving system. 

Where conversion is required to and from the transfer syntax, the 
place in the layering structure where the conversion is performed can 
vary. When a Presentation connection is established, transfer syntaxes 
are negotiated and the two users of the Presentation layer service are 
given information about the defined context set. The defined context set 
provides each user with information about the transfer syntax to be used 
for each abstract syntax identified in the defined context set. Therefore, 
in a particular implementation of the OSI upper layers, the user of the 
Presentation layer service (in the Application layer) can be given the re­
sponsibility for encoding each PDV sent and for decoding each PDV re­
ceived. Since the encoding and decoding of PDVs is an internal function 
that has no effect on the Presentation layer protocol, it does not really 
matter where the conversion is performed. This, in fact, is how the DNA 
Phase V OSUL architecture implements the conversion function to and 
from transfer syntax. The user of the Presentation layer service is respon­
sible for encoding and decoding PDVs sent and received. The Presenta­
tion layer is responsible for encoding and decoding only its own proto­
col-control-information (PCI) and not user data. 

NETWORK ARCHITECT 

Standards for the OSI model define only abstract services and a protocol 

specification for each layer. It is important to realize that the OSI model is not 

necessarily an implementation model. Since the actual conversion process itself 
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doesn't have any effect .<;m the Presentation protocol, it doesn't really matter, 

from the viewpoint of conformance to the standards and whether two imple­

mentations will interoperate, where the conversion is performed. There are two 

primary reasons for making the conversion the responsibility of the application 

itself rather than the Presentation layer-efficiency and simplicity. It turns out 

that there is a real performance advantage to having the encoding and the 

decoding done by the application program rather than by the Presentation layer. 

This way, the encoding and decoding can be done directly between the applica­

tion memory and the message buffers, which is the way we have chosen to do it. 

By making the conversion the responsibility of the application, the conversion 
routines can also be more efficient than a general-purpose set of conversion rou­

tines. For example, some values can be preencoded at compile time, saving the 

encode/decode overhead. Requiring the application to handle the conversion is 

also a much more simple approach to the conversion. The OSUL interface 

treats the user data as a stream of octets held in a sequence of buffers. With this 

approach, there is no need for a complicated and general interface to return user 

data in local concrete syntax. 

Making the user of the Presentation layer service responsible for the 
encoding and decoding of PDVs seems at first glance to appear as if 
something has been left out of the Presentation layer. However, this is 
just one of those cases where the DNA Phase V architects have achieved 
performance advantages by interpreting and implementing the standards 
in a way that might not be immediately obvious. 

Presentation Layer Service Definition 

The service definition for the Presentation layer is documented in ISO 
8822, Presentation Service Definition. Like the Session layer, the Presen­
tation layer service definition divides services into functional units. The 
functional units themselves are grouped into two collections: Session 
functional units and Presentation functional units. Box 12.2 lists the ser­
vices provided by the Presentation functional units in DNA Phase V. 

Session Functional Units The Session functional units define the ser­
vices that the Presentation layer maps to services actually provided by the 
underlying Session layer (we described these earlier in this chapter). Each 
functional unit defined for the Session layer has a corresponding func­
tional unit in the Presentation layer. The Session services that the Presen­
tation layer can make available to a Presentation layer service user depend 
on which functional units are supported by the underlying Session layer. 
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Kernel Functional Unit 

• Connection Establishment. Establishes a Presentation connection. 

• Normal Data Transfer. Transfers data over a Presentation connection. 

• Connection Release. Requests the orderly release of a Presentation 
connection. 

• User Connection Abort. Issued by a Presentation service user to 
request the immediate release of a Presentation connection. 

• Provider Connection Abort. Issued by a Presentation layer entity to 
request the immediate release of a Presentation connection. 

Context Management Functional Unit 

• Alter Context. Adds or deletes the name of a presentation context in 
the defined context set. 

275 

Presentation Functional Units The service definition for the Presenta­
tion layer defines three Presentation functional units: 

• Kernel. If the use of the kernel functional unit is chosen during Presenta­
tion connection establishment, only the default presentation context and 
those presentation contexts in the defined context set negotiated when the 
Presentation connection was established can be used during the life of the 
Presentation connection. This means the Presentation layer must have 
knowledge, at the time the connection is established, of all the PDVs that 
will be exchanged during the life of the Presentation connection. The con­
tents of the defined context set cannot be modified during the life of the 
Presentation connection if only the kernel functional unit is chosen. 

• Context Management. If the context management functional unit is cho­
sen, the two entities are able to modify the defined context set during the 
life of the Presentation connection. Support for this functional unit 
means that users of the Presentation layer service can inform the Presen­
tation layer of additional abstract syntaxes used to define the PDVs ex­
changed over the Presentation connection while the connection is in op­
eration. When an abstract syntax is added, the two Presentation entities 
negotiate a common transfer syntax for that abstract syntax to add a 
new presentation context to the defined context set. 

~ Context Restoration. If the context restoration functional unit is chosen, 
the state of the defined context set can be restored after a resynchroniza-
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tion occurs in the Session layer. The DNA Phase V OSUL architecture 
does not support the context restoration functional unit. 

We feel that there are serious defects in the definition of context restoration in 

the existing ISO standards for the Presentation layer, making them unimple­

mentable. In any case, context restoration is not needed by applications and 

imposes unnecessary overhead. With activities that are interrupted but not ter­

minated, it is necessary to remember the defined context set for an arbitrary 

long time in case the activity is ever resumed. 

Presentation Layer Protocol Specification 

The protocol specification for the Presentation layer is documented in 
ISO 8823, Presentation Protocol Specification. Some of the mechanisms 
in the Presentation layer protocol are concerned with negotiating trans­
fer syntaxes during connection establishment and for maintaining the 
defined context set. Other mechanisms consist of a straightforward map­
ping to the services provided by the Session layer. These services map di­
rectly to an analogous service provided by the Session layer, with the ex­
ception of resynchronize. The Presentation protocol allows the defined 
context set to be modified when resynchronizing and hence defines 
specific presentation-protocol-data-units (PPDUs) for this service. Each 
service primitive requesting a Presentation layer service results in the 
generation of a specific PPDU that is passed down to the Session layer in 
the form of a session-service-data-unit (SSDU). 

The structure of the Application layer is quite complex, and a number of 
terms must be introduced to explain its organization. Thus far, we have 
been describing communication in the OSI environment as that taking 
place between application programs running in end systems. The ISO 
7498 definition of the OSI model is more abstract than this and describes 
communication between open systems in terms of interactions taking 
place between application-processes operating in open systems. 

Application-Processes 

An application-process represents a set of resources, including process­
ing resources, within an open system that can be used to perform infor-
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mation processing activities. An invocation of an application-process is a 
particular use of the resources defined by an application-process to per­
form a particular information processing activity. An application-process 
is identified by an application-process-title. An application-process-title 
must be unambiguous throughout the OSI environment, giving each ap­
plication-process a globally unique name. 

It is helpful to think of an application-process as an application pro­
gram and an application-process-invocation as one execution of that ap­
plication program. The purpose of the OSI model is to allow an applica­
tion-process-invocation in one open system to exchange information 
with an application-process-invocation running in another open system 
(see Figure 12.5). 

During the time since the OSI model was first defined in ISO 7498, 
additional work has been done on the Application layer, and this work is 
documented in another international standard, ISO 9545, Application 
Layer Structure. This international standard defines the following: 

• the nature of the standards for the Application layer and the relationship 
among those standards 

• the architectural framework in which individual standard protocols for 
the Application layer are developed 

• categories of identifiable Application layer elements necessary for the 
specification and operation of Application layer protocols 

• how distributed information processing activities are related to Applica­
tion layer standards 

Distributed applications are constructed of multiple application­
processes all cooperating to perform information processing activities. 
Cooperation between pairs of application-processes takes place via rela-

Communication between application processes running in open systems. 
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tionships established among invocations of those application-processes. 
Each invocation of an application-process is responsible for coordinating 
its interactions with other application-process-invocations. 

Application-Entities 

Application-processes normally represent resources associated with OSI 
communication and also resources not associated with communication. 
Therefore, part of an application-process can be viewed as residing in the 
OSI Application layer, and part of it is outside the scope of the OSI ar­
chitecture, as shown in Figure 12.6. The OSI model defines the term ap­
plication-entity (AE) to represent the part of an application-process that 
provides resources for OSI communication. Each application-entity de­
scribes a set of Application layer capabilities used for a specific purpose. 
Those parts of the application-process not associated with OSI commu­
nication may call on one or more application-entities in the application­
process for the purposes of communication. Like application-processes, 
application-entities have names, called application-entity-titles, that 
must be unambiguous in the OSI environment. An application-entity­
title is made up of its associated application-process-title plus an applica­
tion-entity-qualifier. 

Relationship between application processes and the IJSI model. 
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An application-process can include one or more application-entities, 
each representing a different set of resources used for OSI communication. 
An application-entity provides a particular component of a distributed ap­
plication with access to the OSI communication facilities it needs to com­
municate with another component of the distributed application. 

This notion of different types of application-entities is a distinguish­
ing feature between the Application layer and the other layers of the OSI 
model. In the lower layers, each layer can be viewed as implementing a 
single entity type. For example, the functions performed by the Presenta­
tion layer can be viewed as being performed by a single presentation-en­
tity type (see Figure 12. 7). Similarly, a single entity type is defined for all 
the other OSI model layers. 

Application-Service-Elements An application-entity can be further 
broken down into a collection of application-service-elements (ASEs), 
each of which provides a set of OSI communication functions for a par­
ticular purpose (see Figure 12.8). There are a number of international 
standard ASEs, each of which is defined by a service definition and a pro­
tocol specification. An ASE's service definition describes the abstract ser­
vices the ASE provides to its users; an ASE's protocol specification de­
scribes the formats of the application-protocol-data-units (APDUs) used 
by the ASE and specifies the rules by which these APDUs are exchanged. 

An ASE defines a particular set of functions associated with OSI 
communication capabilities. Those parts of an application-process not 
directly associated with OSI communication use the services of an appli­
cation-entity, which consists of one or more ASEs, to request OSI com­
munication functions. In performing its functions, an ASE can also call 
on the services of other ASEs in the application-entity. An ASE can also 
use the services provided by the Presentation layer in carrying out com­
munications functions. 

The Application layer and multiple application-entities. 

Application 
Layer 

Presentation 
Layer 
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An application-entity can comprise multiple application-service-elements. 

Application 
Layer 

The OSI model itself does not specify the types of ASEs that will be 
defined for the Application layer. This has deliberately been left open­
ended so the services provided by the Application layer can be extended 
indefinitely as new uses for OSI networking are developed. There is one 
ASE, however, that each application-entity must contain: the association 
control service element (ACSE). Support for ACSE is included in the 
DNA Phase V OSUL architecture. 

In addition to general-purpose ASEs, likely to be used in many ap­
plication-entities, many specific application-oriented ASEs will be 
defined. These are ASEs that support specific types of networking appli­
cations. An example of a standard for an application-oriented ASE is 
ISO 8571, File Transfer, Access, and Management (FTAM). FTAM is de­
scribed in Chapter 14. 

Since there is no layer above the Application layer in the OSI model, 
there can be no notion of connections between application-entities as 
there are between entities in the lower layers. However, for meaningful 
communication to take place, there must be a relationship formed be­
tween two application-entities. For an application-entity-invocation in 
one open system to exchange information with an application-entity­
invocation in another open system, there must be one or more applica­
tion-associations between them. An application-association is a logical 
binding between two application-entity-invocations, one of which is 
called the initiator and the other the responder. 
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In effect, the ACSE provides the service of binding an application 
program executing in one open system with an application program exe­
cuting in another open system for the purpose of exchanging informa­
tion between them. ACSEs are responsible for establishing and releasing 
application-associations. (See Figure 12.9.) 

Since no meaningful communication can take place in the OSI envi­
ronment unless an association is formed between a pair of application­
entity-invocations, support for ACSE must be included in each applica­
tion-entity defined. Support for only an ACSE is sufficient to allow for 
communication to take place. The two communicating application-en­
tity-invocations each use the services of an ACSE to establish an applica­
tion-association and then call on the services of the Presentation layer to 
transmit APDUs between them. This is shown in Figure 12.10. As we 
will see later in this chapter, the OSUL architecture provides services that 
application programs can use to communicate in this manner. 

Application-Contexts 

An application-context defines a common set of rules shared by a pair of 
communicating application-entity-invocations, each including a set of 
ASEs (possibly only an ACSE) and an association between them. An ap­
plication-context defines a particular set of communication capabilities 
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The ACSE is the only ASE necessary for OSI communications. 
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for two communicating application-entity-invocations. Each applica­
tion-association has only one application-context. 

Association-Control-Functions 

The Application layer structure standard defines association-control­
functions, which coordinate associations and ASEs. There are two types 
of association-control-functions: single-association-control-functions 
(SACFs) and multiple-association-control-functions (MACFs). An SACF 
is associated with a single association and thus a single application con­
text; an MACF is associated with an entire application-entity-invoca­
tion. Figure 12.11 shows an example of three application-entity invoca­
tions and four application-associations. The MACF maps each service 
the application-entity-invocation provides to one of the associations and 
coordinates the interactions taking place on these associations. 

ACSE Service Definition 

The ACSE defines four straightforward services other ASEs in the appli­
cation-entity and in the application-process itself can invoke for estab­
lishing and releasing application associations. The services defined in the 
ACSE service definition are listed in Box 12.3. 
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Three application-entities and four application-associations showing the single-application­
control-funclions (SACFs) and multiple-application-control-functions (MACFs). 
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The protocol specification for the ACSE describes the operation of the 
ASCE in providing the services just described and also specifies the for­
mats of the application-protocol-data-units (APDUs) exchanged in es-
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• Association Establishment. This service causes a new application­
association to be established between an initiator application-entity­
invocation and a responder application-entity-invocation. A great 
many parameters are associated with this service, but most are 
mapped to the Presentation layer and Session layer entities beneath 
ACSE. Each association established causes a connection to be estab­
lished by the Presentation layer; there is always a one-to-one rela­
tionship between an application-association and a Presentation layer 
connection. Parameters passed when this service is invoked also con­
tain information about the required underlying Session layer ser­
vices. This is a confirmed service, and the responder application­
entity-invocation can reply either negatively or positively to the 
request to establish an application-association. 

• Association Release. This service can be issued by either of the appli­
cation-entity-invocations to request the release of an existing appli­
cation-association. This is a confirmed service, and the responder 
application-entity-invocation can reply either negatively or positively 
to the request to release an application-association. This service pro­
vides for graceful association release without the loss of information 
in transit, whether the responder replies positively or negatively. 

• User Association Abort. This service can be issued by either of the 
application-entity-invocations to cause the abnormal release of an 
existing association. It is a nonconfirmed service and always causes 
the association to be released without requiring a response from the 
partner application-entity-invocation. Invoking this service may 
result in information in transit to be lost. 

• Provider Association Abort. This service is issued by ACSE itself to 
signal that the association has been released, possibly due to a failure 
in the network. Invoking this service may cause information in tran­
sit to be lost. 

tablishing and releasing associations. In general, a set of APDUs is 
defined for each of the four ACSE services described previously. Each of 
the service primitives included in the service definition has its own 
unique APDU defined for it, and the invocation of each service primitive 
causes a single APDU to flow to the partner application-entity. Box 12.4 
lists the APDUs used in providing the ACSE services listed in Box 12.3. 

There is a tight binding between the ACSE and the connection man­
agement services provided by the Presentation and Session layers. There 
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• A-Associate-Request. The A-Associate-Request (AARQ) APDU is 
sent to request the establishment of an application-association . 

• A-Associate-Response. The A-Associate-Response (AARE) APDU is 
used as a response to an AARQ APDU in performing the applica­
tion-association establishment service . 

• A-Release-Request. The A-Release-Request (RLRQ) APDU is sent to 
request the release of an application-association . 

• A-Associate-Response. The A-Release-Response (RLRE) APDU is 
used as a response to an RLRQ APDU in performing the applica­
tion-association release service. 

• A-Abort. The A-Abort (ABRT) APDU is sent to request the abort of 
an application-association. 
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is a one-to-one mapping between an application-association and a Pre­
sentation connection and a one-to-one mapping between a Presentation 
connection and a Session connection. Establishing an application-associ­
ation causes a Presentation connection to be established, which causes a 
Session connection to be established. Releasing an application-associa­
tion causes the Presentation connection to be released, which causes the 
Session connection to be released. 

The DNA Phase V OSUL architecture defines two abstract interfaces: 
an interface between OSUL and a user of OSUL services and an inter­
face between OSUL and the Transport layer service. The services the 
Transport layer provides to OSUL are described in Chapter 10; this 
chapter describes only the services OSUL provides to an application-en­
tity-invocation. 

As with the other layers in the DNA Phase V architecture, access to 
OSUL services are provided through a port. An OSUL port is a data 
structure that represents an actual or potential application-association. 
A port must be referenced in each request for an OSUL service. An appli­
cation-entity-invocation can open an OSUL port as either an initiator or 
as a responder: 

• Initiator. A port opened as an initiator allows an application-entity-invo­
cation to initiate the establishment of an application-association with an­
other application-process-invocation. 
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• Responder. A port opened as a responder tells OSUL that the applica­
tion-entity-invocation is prepared to receive a request for the establish­
ment of an application-association. 

Box 12.5 lists the procedure declarations documenting the services 
an application-entity-invocation can request of OSUL. The services are 
divided into four groups: 

• services provided by ACSE for the establishment and release of applica­
tion-associations 

• services provided by OSUL for the management of buffers used during 
data transfer operations 

services provided by the Presentation layer for presentation-context 
management and data transfer 

• services provided by the Presentation layer that map to services provided 
by the Session layer 

Note that the OSUL service interface procedures compare quite 
closely to the ACSE, Presentation, and Session services defined in the ISO 
standards 

The following procedure declarations define the abstract interface 
between OSUL and an application-entity-invocation in terms of the 
services OSUL provides to an application-entity-invocation. 

Port Management Functions 

• Openlnitiator. Allocates an OSUL port enabling the OSUL user to 
initiate the establishment of an association with another application­
entity-invocation. 

• OpenResponder. Allocates an OSUL port enabling the OSUL user to 
accept incoming requests for the establishment of an association 
with another application-entity-invocation. 

Buffer Management Functions 

• GetEvent. Prepares a port to receive an incoming request for an 
OSUL service. 

• GiveBuffers. Passes temporary ownership of a buffer to OSUL. 

• SendMore. Passes subsequent segments of user data to OSUL for an 
outbound service request. 



BOX 12.5 

continued 

CHAPTER 12: OSI UPPER-LAYER ARCHITECTURE 

ACSE Functions 

• Associate. Initiates the process of establishing an association with 
another application-entity-invocation and optionally passes one or 
more PDVs to the peer application-entity-invocation. 

• AssociateAccept. Accepts an incoming request from another applica­
tion-entity-invocation for the establishment of an association. 

• AssociateRefuse. Rejects an incoming request from another applica­
tion-entity-invocation for the establishment of an association . 

• ExceptionReport. Generates an exception report concerning events 
not serious enough to terminate an application-association. 

• Release. Requests the orderly termination of an association. 

• ReleaseReply. Replies to a request for the orderly termination of an 
association. 

• Abort. Requests the immediate termination of an association. 

Presentation Service Functions (Provided by Presentation 
Layer) 

• Data. Sends PDVs to the peer application-entity-invocation using a 
Transport connection over the normal flow. 

• TypedData. Sends PDVs to the peer application-entity-invocation in 
the form of Session service typed data. 

• ExpeditedData. Sends PDVs to the peer application-entity-invoca­
tion using a Transport connection over the expedited flow. 

• CapabilityData. Sends PDVs to the peer application-entity-invoca­
tion in the form of Session service capability data . 

• CapabilityDataReply. Sends PDVs to the peer application-entity-in­
vocation in the form of Session service capability reply data. 

• AlterContext. Sends to the peer application-entity-invocation lists of 
additions and deletions to be made to the Presentation service­
defined context set and, optionally, a set of PDVs. 

• AlterContextReply. Sends to the peer application-entity-invocation 
lists of accepted and rejected additions and deletions to the defined 
context set and, optionally, a set of PDVs. 

Presentation Service Functions (Provided by Session Layer) 

• ActivityStart. Requests the beginning of a Session service activity. 

• ActivityStartReply. Replies to a request for the beginning of an activity. 

• ActivityEnd. Requests the end of a Session service activity. 
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• Activitylnterrupt. Requests interruption of a specified Session service 
activity. 

• ActivitylnterruptReply. Replies to a request for the interruption of 
an activity. 

• ActivityResume. Requests resumption of a specified activity . 

• ActivityDiscard. Requests a specified activity to be discarded . 

• ActivityDiscardReply. Replies to a request to discard an activity . 

• TokenGive. Relinquishes control of the specified Session service to­
kens to the peer application-entity-invocation. 

• TokenPlease. Requests the peer application-entity-invocation to re­
linquish control of the specified Session service tokens. 

• GiveControl. Relinquishes control of all currently owned Session 
service tokens. 

• SynchMajor. Establishes a Session service major synchronization 
point. 

• SynchMajorReply. Replies to a request for the establishment of a 
major synchronization point. 

• SyncMinor. Establishes a Session service minor synchronization point. 

• SynchMinorReply. Replies to a request for the establishment of a 
minor synchronization point. 

• Resynchronize. Resets an application association to conditions asso­
ciated with the specified synchronization point. 

• ResynchronizeReply. Replies to a request for resynchronization. 

OSUL Interface Style 

The OSUL architecture does not restrict the number of simultaneous ap­
plication-associations that can be formed between application-entity­
invocations. OSUL achieves this by having no resources of its own that 
are specific to a particular application-association. Instead, an applica­
tion-entity-invocation passes to OSUL the resources-such as the buffer 
resources-required to establish an application-association. 

This style of interface makes it possible for an application-entity­
invocation to implement its own flow control procedures. An applica­
tion-entity-invocation passes temporary ownership of buffers to OSUL 
for the purposes of sending and receiving APDUs. An application-entity­
invocation can temporarily stop receiving APDUs by not providing 
OSUL with a buffer. 
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Unlimited User Data 

OSUL supports the use of unlimited user data fields in Presentation ser­
vice primitives through the use of a segmented interface. All inbound and 
outbound requests for data transfer services include a more flag. If a re­
quest for an outbound data transfer service includes a more flag that is 
false, OSUL knows there are no more segments of user data to transmit. 
When the operation completes, OSUL returns ownership of the buffer to 
the application-entity-invocation. When the more flag is true in a request 
for an outbound data transfer service, OSUL expects the application-en­
tity-invocation to pass subsequent segments of user data by issuing Send­
More functions. 

Inbound user data segments are handled through the use of a 
GetEvent function. GetEvent is used to receive each segment of inbound 
user data. If the more flag is false, the inbound service request is com­
plete. If the more flag is true, the next user data segment is received by 
the issuing of another GetEvent function. For efficiency reasons, user 
buffers are passed directly to the Transport layer entity for both inbound 
and outbound data. 

This chapter concludes our discussion of the functional layers that make 
up the DNA Phase V architecture. The two chapters in Part III introduce 
the uses to which a DECnet Phase V network can be put: Chapter 13 in­
troduces applications that employ the DNA Session Control layer for 
communication, and Chapter 14 introduces applications that use OSUL 
for communication. 
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DNA Applications 

The chapters in Part III discuss the applications to which a large hetero­
geneous computer network can be put. Distributed computing applica­
tions will become increasingly important in the 1990s as we bring the 
power of multiple computing systems to bear on a single problem. 
Client-server operations will be employed everywhere, with software in 
desktop computers interacting with software in larger server computers. 
Particularly important forms of distributed computing applications will 
involve the transmission of information to computers in other organiza­
tions-sometimes within the same enterprise, sometimes in a different 
enterprise. Direct communication between computers in separate enter­
prises is one of the primary ways to improve business efficiency. The 
term electronic data interchange (EDI) is used to describe such systems. 
This chapter begins by describing examples of the innovative applica­
tions that can be built using a sophisticated networking infrastructure. 

Goodyear has implemented a worldwide EDI system in which com­
puters in their supplier locations interact directly with the computers 
they use for planning production. Quality checks on supplier materials 
are performed at supplier sites before the materials are shipped, and the 
results are transmitted to the computer that schedules the manufacturing 
process. If the material is inadequate for the batches of work currently 
planned, it is not shipped. When the material is usable but of variable 
quality, the computer-to-computer interaction permits it to be appropri­
ately allocated to the production process. This computer-to-computer 
interaction saves money, gives Goodyear early warning of problems, and 
enables them to find alternate suppliers, usually without delaying the 
production schedule. Navistar cut its inventories by nearly $200 million 
by building computer-to-computer links to its suppliers and implement­
ing just-in-time inventory control. The General Motors EDI payment 
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system handles transactions totaling half a billion dollars in value every 
month. 

The chapters in Part III divide applications into two categories. We 
define DNA applications-described in this chapter-as those applica­
tions that request communication services using rhe DNA Session Con­
trol layer. OSI applications-described in Chapter 14-are those that 
request communication services using the three upper layers of the OSI 
model protocol stack (the OSUL architecture). 

Figure 13.1 shows the architectural layers of the DNA Phase Var­
chitecture and how DNA applications request networking services. DNA 
applications are provided by Digital, offered by many third-party ven­
dors specializing in developing application software for the Digital envi­
ronment, and written by end users themselves. Digital provides a wide 
range of networking applications, from general-purpose network-wide 
applications, such as file transfer programs, to highly specific distributed 
applications written to meet the needs of specific customers. 

The relationship of a DNA application program to the DNA Phase V architecture. 

DNA 
Application Program 

DNA Session Control 
Service Interface 

OSI Session\ Control Layer 

~. 
Transport Layer 

Network Layer 

Data Link Layer 

Physical Layer 

[. 

Appli1ation Layer 

I 



Digital DNA 
Applications 

CHAPTER 13: DNA APPLICATIONS 295 

Digital Field Service Application 

A distributed computing application that is being developed by the Dig­
ital field service organization is an example of the kind of distributed 
application that can be built when sophisticated networking mecha­
nisms are available to interconnect the computer networks of different 
organizations. 

In fixing a hardware problem at a customer's site, a field service rep­
resentative often must be dispatched twice: the first time to do the diag­
nosis and a second time to do the repair if the required part is not avail­
able on site. The goal of Digital's field service organization is to place a 
computer on each customer's computer network that constantly moni­
tors that customer's equipment. The monitoring computer will gather 
preventative maintenance data and transmit it to Digital's own computer 
network, where the data will be forwarded to one of a number of analy­
sis centers around the world. 

At these analysis centers, complex expert systems will analyze the 
preventative maintenance data and attempt to predict when field-re­
placeable devices are about to fail. The expert systems at the analysis 
centers will communicate with a distributed inventory system to locate 
the required field-replaceable parts. The distributed inventory applica­
tion will then communicate with a logistics application that will pull 
field-replaceable units from inventory and communicate with the net­
work of a shipping company to schedule the shipping of the items to the 
customer's site. When the logistics application on the Digital network re­
ceives confirmation from the shipper's network that the item has arrived 
at the customer's site, the logistics application will notify a field engineer­
ing scheduling application, which will handle the dispatching of a field 
engineer. 

This system will be driven entirely by computer-to-computer com­
munication. People are not involved until the very end of the process, 
when an engineer is actually dispatched to the customer's site to install 
the replacement part. The idea is that the entire distributed system is 
driven by machines and directed by computation. 

The remainder of this chapter describes four general-purpose network­
ing applications, provided by Digital, that use the DNA Session Control 
layer for communication: virtual terminal mechanisms, electronic mail, 
computer conferencing, and remote file access. These applications are 
used by a great many of Digital's customers. 
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Virtual Terminal Mechanisms 

The virtual terminal mechanisms in DNA Phase Vallow a terminal user 
to communicate with an application running on any host processor at­
tached to the network. These mechanisms define a client/server func­
tional model for communicating between a client node running an appli­
cation program and a server node to which a terminal is directly 
attached. 

Virtual Terminal Facilities The DNA Phase V virtual terminal mecha­
nisms provide the following facilities: 

• Distribution of terminal handling functions between the client node and 
the server node. 

• Support for heterogeneous client systems that may run different operat­
ing systems. The operating system running in the client node can manage 
a terminal in its own way, regardless of which operating system runs in 
the server node. 

• Functions operating at the operating system level to provide terminal 
input/output and management functions, including accepting input even 
if the program has not issued a read request (typeahead), taking action 
on certain characters immediately as keys are struck, recognizing ANSI 
standard escape sequences on input and output, and reading and setting 
terminal device characteristics. 

Virtual Terminal Protocols Virtual terminal mechanisms are provided 
through the use of two protocols: 

• Command Terminal (CTERM) Protocol. The Command Terminal 
(CTERM) protocol implements a model of a terminal that provides a 
common mode of access to command language processors such as the 
Digital Command Language (DCL). The CTERM protocol uses the ser­
vices of the Foundation protocol. 

• Foundation (FOUND) Protocol. The Foundation (FOUND) protocol 
provides a basic set of connection management facilities and a transpar­
ent data transport capability over which a number of terminal usage 
models can run. 

The goal of the CTERM and FOUND protocols is to allow a host­
based application to treat all terminals in exactly the same manner, 
whether they are directly attached to the host or communicate with the 
host over a DECnet network. 
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Electronic Mail 

Electronic mail systems are without a doubt among the most important 
networking applications in use today. Certainly the very large Digital in­
ternal network is used quite heavily by people for exchanging electronic 
messages. Almost everyone in the worldwide Digital organization now 
has access to a terminal or workstation connected to the internal net­
work and can send and receive electronic messages. Almost all of Digi­
tal's customers that have extensive DECnet networks installed use them 
at least partially for electronic messaging applications. 

Digital markets a wide range of products that provide electronic 
mail capabilities. Most of these products fall under the umbrella of the 
MAILbus family of products. The MAILbus product family provides fa­
cilities for the creation, transmission, reception, and management of 
electronic messages in a heterogeneous, distributed computing environ­
ment. In the MAILbus environment, a message can consist of a combina­
tion of text and data files of various types. The MAILbus product family 
consists of a number of products that together provide message handling 
services and directory services across a broad range of hardware and 
software systems. 

The VAX Message Router product is Digital's main software system 
for providing a basic network-wide, store-and-forward message trans­
port service and a descriptive directory service. The message transport 
service provides an application-independent mechanism for reliably re­
laying messages from an application on one computer system to an appli­
cation on another computing system without requiring a direct end-to­
end connection between the two. The message transport is accomplished 
by storing messages at one or more points along the path between the 
communicating applications. The Message Router supports both elec­
tronic mail and nonmail applications and provides an application pro­
gramming interface users can employ for developing user-written mes­
saging applications. 

The descriptive directory service provided by the Message Router 
provides access to directory entries that allow users to locate other users 
of the system given possibly incomplete descriptive information. The in­
formation contained in such directory entries includes users' names, or­
ganizations, locations, and electronic mail addresses. 

A variety of products can be used with the Message Router to allow 
messages to be exchanged between users in the following environments: 

• DECnet Phase IV networks 

• DECnet Phase V networks 
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• Messaging systems conforming to CCITT Recommendation X.400 

• IBM Professional Office Systems (PROFS) networks 

• IBM Systems Network Architecture Distribution Services (SNADS) net­
works 

The Message Router and its related products can be used with a 
number of software systems to provide end users with access to elec­
tronic mail applications. For example, Digital's ALL-IN-1 office automa­
tion application provides end users with access to electronic messaging 
facilities as well as other office automation functions. 

Computer Conferencing 

A DNA application called Notes allows users throughout a DNA net­
work to participate in round-table discussions using their terminals or 
workstations. Any number of Notes computer conferences can be estab­
lished in a network. Conference participants use the Notes client soft­
ware installed on their own nodes. The Notes client software communi­
cates with Notes server software using a DNA Application layer 
protocol allowing access to conferences located anywhere in the net­
work. Users employ Notes client software to read and write conference 
entries, called topics and replies. Any user can create a new topic. Other 
users can read the topics other users have created and can then post 
replies to them. New users joining a conference can view the existing 
notes and all the replies already posted to them. They can then reply to 
existing notes. Users can also create new topics of their own, to which all 
other conference members can post replies. 

The Notes software allows users to conduct meetings with people in 
different geographic locations in which not all the meeting participants 
need to be online at the same time. Participants can join in a discussion 
from their own terminals or workstations at times convenient to them. 
Notes also offers the advantage of keeping a detailed record of the pro­
ceedings of a meeting, which can be searched by a variety of criteria, 
such as the name of participant, a specific subject, or a keyword. Notes 
can be used for a variety of purposes, such as to create an electronic bul­
letin board, to support the collaborative writing of a document, or to 
conduct an internal seminar. Notes is particularly useful when a group of 
people need to discuss issues and make decisions when it is not possible 
for all the participants to meet face to face. 
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Ease-of-Use Features Users can request listings of topics posted by 
author, title, and date and the number of replies posted to each topic. 
Users can read notes either sequentially or at random and can request 
that only those notes and replies that the user has not already seen be 
displayed. The Notes software provides a number of facilities that make 
it easy for a user to access computer conferences: 

Notebook. Notes maintains a notebook for each user containing the 
user's own personal list of conferences of interest. Users can add or 
delete conferences from their notebooks. The notebook allows users to 
define personal names for conferences and allows remote conferences to 
be accessed without requiring the user to know on what node the confer­
ence is running. When a user accesses a conference, the notebook can 
optionally show whether new entries have been made since the last time 
the user accessed the conference. The notebook also keeps track of what 
notes and responses the user has already read and maintains a profile of 
user preferences, including personal name, editor choice, and default 
printer specifications. 

• Markers. Users can create user-defined names, called markers, that point 
to entries in a conference. Markers can be used as special reminders of 
things to do or to flag notes of special interest. 

· Keywords. Users can define keywords to group notes that are concerned 
with a particular subject or that do not have other attributes (such as 
title, author, or time of entry) in common. Keywords are useful for 
grouping notes that may not have the keyword in the note text or title 
but that do address the subject the keyword represents. 

• Imported Text. The Notes software allows notes and replies to be cre­
ated outside of Notes using any desired editor and later imported to the 
conference. 

Moderators A moderator is a person responsible for creating and 
managing one or more computer conferences. The Notes software sup­
ports both public and private conferences. For private conferences, the 
moderator can restrict access to a specific group of participants by speci­
fying names and network locations. Public conferences have no restric­
tions on who may participate. The moderator can send announcements 
of new conferences to participants and can also create special notices dis­
played for all participants each time the conference is accessed. The 
moderator of a conference has special capabilities for controlling the dis­
cussion, including the following: 
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• deleting or hiding notes the moderator deems inappropriate to the dis­
cussion or which require further clarification 

• changing the titles of topics or replies to topics to improve the organiza­
tion of a conference 

• creating keywords that can be associated with notes in the conference 

• designating additional conference moderators 

Remote File Access 

In most computer networks there is a requirement for providing pro­
grams with access to the files residing on other nodes in the network. For 
example, it might be necessary to transfer files from one computer sys­
tem to another when the computer systems involved in the file transfer 
operation may not conform to the same hardware architecture or run the 
same operating system. It also may be necessary to allow an application 
program to issue read and write requests for files residing on other nodes 
in the same manner as if the file resided on the user's own local node. 
Such file operations in a heterogeneous network environment are sup­
ported in the DNA Phase V environment by an architecture called the 
Data Access Protocol (DAP). Implementation of DAP provides the fol­
lowing functions and features: 

• supports heterogeneous file systems 

• retrieves a file from an input device, such as a disk file or a terminal 

• sends a file to an output device, such as a disk file, a magnetic tape file, or 
a printer 

• transfers files between systems in a heterogeneous environment 

• supports the creation, deletion, and renaming of files stored on remote 
computing systems 

• lists the directories of the file systems on remote computing systems 

• recovers from transient errors and reports fatal errors to the user 

• allows multiple data streams to be sent to the same remote file 

• allows users to submit and execute remote command files 

• permits sequential, random, and indexed access to records stored in the 
file systems of remote computer systems 

• supports wildcard file specification for sequential file retrieval, file dele­
tion, file renaming, and command file execution 

• permits the optional use of a file checksum facility to ensure file integrity 
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DAP is designed to minimize protocol overhead. For example, the 
file transfer mode eliminates the need for DAP Control messages after a 
file transfer operation has begun. Also, small file records can be blocked 
together and sent in one protocol message. When two cooperating pro­
cesses exchange DAP messages, one of the processes operates as the 
client and the other as the server. The input/output (I/O) commands is­
sued by the client are mapped into equivalent DAP messages and trans­
mitted via a Transport connection to the server at the remote system. 
The server interprets the DAP commands and performs the file I/O on 
behalf of the client. The server then returns status information and file 
data to the client. 

Implementations of DAP-such as in VAX VMS-typically allow 
users to employ the same programming statements (e.g., READ and 
WRITE) and operating system commands (e.g., COPY) to access local 
files and remote files. 

By the year 2000 the world will be laced with intercorporate networks, 
over which the computers in one corporation will interact directly with 
the computers in other corporations to form powerful distributed com­
puting applications. Many of the decisions of commerce will be made at 
computer speed, in an optimal fashion, on a worldwide basis. Once this 
electronic interaction becomes a basic infrastructure of commerce, exec­
utives will wonder how they ever managed without it. 

A great many such distributed computing applications exist and will 
be written using the DNA Session Control layer for communication. Of 
increasing importance in the world of networking, however, will be ap­
plications conforming to the architecture defined by the OSI upper lay­
ers: the Application, Presentation, and Session layers. Network applica­
tions that use the OSI upper layers for communication are the subject of 
Chapter 14. 
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OSI Applications 

As we discussed in Chapter 12, the Application layer is made up of a 
number of application-entities, each describing a particular set of OSI 
communication capabilities. An application-entity is in turn made up of 
a collection of application-service-elements (ASEs), each of which is 
defined by a service definition and a protocol specification. The service 
definition for an ASE describes the abstract services the ASE provides to 
its users, and an ASE's protocol specification describes the formats of the 
application-protocol-data-units (APDUs) used and specifies the rules by 
which they are exchanged by application entities in providing the ASE's 
services. 

An ASE defines a particular set of functions associated with OSI 
communication capabilities. Those parts of an application-process not 
directly associated with OSI communications use the services of an ap­
plication-entity, which consists of one or more ASEs, to request OSI 
communications functions. In performing its functions, an ASE can call 
on the services of other ASEs in the application-entity and can also use 
the services provided by the Presentation layer in providing communica­
tions functions. 

User-Written OSI Chapter 12 described the OSUL architecture, which defines how the 
Applications three upper layers of the OSI model are integrated into the DNA Phase 

V architecture. The OSUL architecture provides support for the associa­
tion control service element (ACSE). The OSUL architecture also in­
cludes support for the OSI Presentation and Session layers. User-written 
application programs gain access to the OSI environment by requesting 
the services provided by the service interface defined by the OSUL archi­
tecture. An implementation of the OSUL architecture provides an appli-
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cation programming interface (API) that implements the abstract inter­
face defined in the OSUL architecture. The OSUL abstract interface, 
defined through a series of procedure declarations, was described in 
Chapter 12. An application program uses the API defined by an imple­
mentation of the OSUL architecture to establish and release application­
associations using the functions provided by the ACSE. It also uses the 
API to request the data transfer and dialog management services pro­
vided by implementations of the OSI Presentation and Session layers. 
The relationship between a user-written OSUL application program and 
the DNA Phase V architecture is shown in Figure 14.1. 

As described in Chapter 12, there will be many international standards 
for the Application layer. As just described, each of these standards takes 
the form of an ASE. Some ASEs, such as the association control service el­
ement (ACSE), are general-purpose ASEs that provide services to other 
ASEs and to an application-process. Implementations of general-purpose 
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ASEs-such as ACSE-generally provide only application programming 
interfaces that allow other ASEs and application programs to request 
their services. They do not provide services directly to human users. 

There will also be many international standards developed for more 
application-specific ASEs designed to provide specific types of services, 
sometimes directly to human users. International standards for dis­
tributed computing applications that use the services of ASEs will also be 
developed. This chapter examines an application-specific ASE-often 
implemented in the OSI environment-for which Digital provides an 
implementation: File Transfer, Access, and Management (FTAM) for 
providing remote access to data files. It also examines an international 
standard for a distributed computing application: the X.400 Message 
Handling System for electronic mail applications. Another important in­
ternational standard for a distributed computing application is the 
X.500 Directory. The X.500 Directory provides naming services in the 
OSI environment and is introduced in Chapter 16. 

In the remainder of this chapter, we examine the characteristics of 
the FTAM ASE and the X.400 distributed computing application. 

File Transfer, Access, and Management (FTAM) is an international stan­
dard, documented in ISO 8571, that defines an ASE for the Application 
layer of the OSI model. The FTAM ASE defines the functions required to 
support a remote file system in the OSI environment. The broad aim in 
the standardization of a file service is to allow file users on open systems 
to be able to transfer, access, or manage information held on any type of 
system that behaves as if it stores data files. Such a system is called a vir­
tual -filestore in the FTAM environment. 

Master-Slave Relationship 

The actions supported by FTAM take the form of master-slave relation­
ships. Each activity is started by one of the two file service users having 
some objective to achieve. This user is called the initiator. The other user 
is the responder, which takes a passive role and reacts to requests made 
by the initiator. The act of transferring data from the file at the initiator 
to the file at the responder (either a record at a time or the entire file) can 
be viewed conceptually as being performed by a copying application 
having local access to one filestore and remote access to the other (see 
Figure 14.2). Whenever file data records are being transferred from one 
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FIGURE 14.2 A conceptual view of a file transfer operation using FTAM. 
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filestore to another, one of the users is the sender and the other is the re­
ceiver. An initiator or a responder can be either the sender or the receiver 
in any particular data transfer operation. 

The Virtual Filestore 

The virtual filestore in FTAM describes a conceptual model of a file 
service that might be implemented in any desired way in an open sys­
tem. The virtual filestore is an abstraction that can be emulated by the 
file service existing in a real computing system. A virtual filestore con­
sists of a collection of files, each of which has a unique name. A funda­
mental FTAM concept is that an FTAM user accesses a single file at a 
time, which is called the selected file. Each file in a filestore has two 
components: 

• Attributes. Attributes specify information about the file, such as the file's 
name, the actions permitted on the file, the file's size, and so on. 

• Contents. The contents make up the information stored in the file and 
any data describing the file's structuring (pointers, indexes, etc.). 
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Document Types 

Different types of files are defined in the FTAM standard to support dif­
ferent types of processing. These are described as document types. 
FTAM currently defines five document types: 

• FTAM-1. Unstructured text. 

• FTAM-2. Sequential text. 

• FTAM-3. Unstructured binary. 

• FTAM-4. Sequential binary. 

• FTAM-5. Simple hierarchical file. 

FTAM Functional Units 

FTAM defines a broad range of functions to support file operations. Not 
all implementations of FTAM will necessarily support all the functions 
defined in the international standard. The FTAM standard defines two 
ways in which subsets of these functions can be defined. At the most 
basic level, FTAM functions are grouped into functional units. To be in 
conformance with the standard, an FTAM implementation must support 
a functional unit either completely or not at all. 

FTAM Service Classes 

At a higher level, the standard defines a number of service classes, each 
of which supports broad categories of use. These classes are as follows: 

• Transfer Class. This service class allows for the transfer of files or parts 
of files between open systems using a relatively simple protocol. 

• Management Class. This service class allows control of the virtual file­
store, such as renaming and deleting files, but does not include file trans­
fer functions. 

• Transfer and Management Class. This service class combines all the 
functions included in the transfer class and the management class. 

• Access Class. This service class allows an initiating user to perform file 
access operations on individual units of data in the remote filestore, such 
as reading and writing individual records. 

• Unconstrained Class. This service class allows the designer to choose the 
functional units to be implemented. 
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The following sections describe the file operations that can be per­
formed for the transfer and management classes, the most commonly im­
plemented FTAM service classes. 

Transfer Class An open system implementing the transfer class and 
operating as the initiator can copy a file from a remote filestore residing 
on some other open system in the OSI environment to the local system or 
it can copy a file from the local system to a remote filestore. If the remote 
system also supports limited file management functions, the initiator can 
also move files in either direction. A move operation is different from a 
copy in that the original file is deleted after the operation is completed. 
An open system operating in the role of the responder can respond to re­
quests made by other systems for file copy and move operations. 

Management Class An open system implementing the management 
class and operating in the role of an initiator can create files, delete 
files, and read the attributes of files in a filestore on a remote system. If 
the remote system supports full file management operations, the system 
can also modify file attributes of files stored in a filestore on the remote 
system. As a responder, a system responds to requests made by a re­
mote system to create files, delete files, read file attributes, and modify 
file attributes. 

Services Used by FTAM 

FTAM uses three specific services in the OSI environment (see Figure 
14.3): 

• Association Control Service Element (ACSE). FTAM employs the ACSE 
to establish the application-associations required to establish communi­
cation between file service users to support file transfer and management 
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activities. At any instant, the file protocol operates so there is only one 
file activity in progress over a particular association; if more than one file 
activity is necessary, more than one association is established. 

• Presentation Layer Services. FTAM uses the services of the underlying 
Presentation layer to transfer data between Application layer entities to 
support file transfer and management operations. 

• Session Layer Services. The Session layer services that FTAM requests via 
the Presentation layer include the control of the dialog between the ini­
tiator and the responder and the creation of synchronization points to 
support file checkpointing and recovery operations. 

FTAM Implementations 

As an international standard for an ASE, FTAM is described in terms of 
a service definition and protocol specification in the same manner as for 
other ISO international standards for the OSI architecture. The FTAM 
service definition defines the semantics of FTAM services but does not 
specify any particular user or application programming interface that 
should be used to implement FTAM services. Therefore, it is likely that 
different implementations of FTAM may look very different to users and 
to application programs. However, if the protocol specification is ad­
hered to, different implementations of FTAM will interoperate in the 
OSI environment. 

The main objective of the X.400 message handling system is to allow 
users to exchange messages on a store-and-forward basis. X.400 defines 
a number of standard message handling services useful in creating sys­
tems that implement electronic mail services. Recommendation X.400 
does not specify information about how an electronic mail facility 
should be built, nor does it specify anything about what the user or ap­
plication programming interface to such a system should look like. 
Rather it concentrates on the specification of aspects of message han­
dling systems that allow one electronic mail system to interwork with 
other electronic mail systems conforming to the X.400 protocol 
specifications. 

Digital products provide electronic mail services through the MAIL­
bus family of products that run on various Digital processors. The 
MAILbus product family was initially introduced before the X.400 mes­
sage handling system was accepted as an international standard, and 
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MAILbus products do not currently use the X.400 standard for exchang­
ing messages among themselves. However, the MAILbus products fully 
conform with the X.400 in the way they interwork with other X.400 im­
plementations. 

Recommendation X.400 documents a service definition and a pro­
tocol specification. It uses the services of the ACSE and the services of the 
Presentation layer in performing communication functions. (See Figure 
14.4.) 

We next describe the major components of the X.400 message han­
dling system architectural model. 

User Agents 

Users of the message handling system access X.400 services through an 
intermediary called a user agent (UA). A user called an originator em­
ploys a user agent to send a message to one or more other users called re­
cipients. The user agents are in turn interconnected using facilities collec­
tively called the Message Transfer System (MTS). The architectural 
model defined by the X.400 standard is shown in Figure 14.5. 

Message Transfer Agents 

The message transfer system is itself composed of message trans{ er 
agents (MTAs) interconnected using OSI communication facilities, as 
shown in Figure 14.6. MTAs physically exchange messages with one an­
other using OSI Presentation layer facilities. 

A message originator creates messages using the assistance of a user 
agent. A user agent is an application-process that can communicate di-

Services used by X.400. 

Application 
Layer ---Presentation Layer 

Session Layer 



310 PART Ill: NETWORK APPLICATIONS 

FIGURE 14.5 OSI X.400 message handling system architectural model. 

Message Handling Environment 

reedy with a message transfer agent to submit messages on behalf of a 
single user. The message transfer system uses message transfer agents to 
deliver to one or more recipient user agents the messages submitted to it. 
The message transfer system can also return noti-fications to a message 
originator. A user agent can accept delivery of messages directly from the 
message transfer system, or it can use the capabilities of a message store 
to receive delivered messages for subsequent retrieval by a user agent. 

Message Stores 

According to the X.400 standard, a user agent accepting messages di­
rectly from a message transfer agent must be available at the time a 
message is delivered. However, it is possible to implement a user agent 
on a different computing system from the message transfer agent with 
which it interacts. For example, a user agent might be implemented in 
the user's own computing system-possibly a personal computer or 
workstation-in which case, the user agent may not be available at all 
times. In such a situation, it is likely that a particular user agent will be 
active for only a very short time each day, during which all message 
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FIGURE 14.6 Message transfer agents in the message transfer system. 
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traffic is exchanged. X.400 provides message stores (MSs) that handle 
the common situation where the user agent may not be attached to the 
message handling system when a message arrives. 

A message store acts on behalf of a user agent and provides a secure, 
continuously available storage medium a message transfer agent can use 
to store messages for later retrieval by a message agent. A message store 
is associated with a single user. When a message store is implemented, all 
messages destined for a particular user agent are delivered to the message 
store. If the user agent is active at the time a message is received, that 
user can receive an alert indicating a message has been received and has 
been placed into that user's message store. The message transfer system 
considers a message to have been delivered when it is accepted either by 
a user agent or by a message store. A user can direct his or her message 
store to forward received messages to some other destination in the mes­
sage handling system. 

A message store can be implemented in the same computer system 
implementing a user agent, it can be located in the same computer sys­
tem as a message transfer agent, or it can be implemented in a computer 
system different from either the user agent or the message transfer agent. 
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The most common configuration is to implement a user agent's message 
store in the same computer system as the message transfer agent serving 
that user agent. 

X.400 Messages 

A message in the X.400 environment can be viewed as being made up of 
an envelope and its contents. The envelope carries information accessed 
by message transfer agents as they are transmitting the message through 
the message transfer system. The message's content consists of the infor­
mation the originating user agent is using the message transfer system to 
deliver to one or more recipient user agents. Message transfer agents do 
not examine or modify the content of messages as they move messages 
through the message transfer system. 

Message Transfer System Operation 

The message transfer system implemented by a set of interconnected 
message transfer agents provides a general-purpose, store-and-forward 
message transfer service independent of any particular application. It 
provides the means by which user agents exchange messages with each 
other. 

Message Transfer System Interactions 

Two basic interactions can take place between message transfer agents 
and user agents or message stores: 

• Submission. The submission interaction provides the means by which an 
originating user agent passes a message to a message transfer agent. 

• Delivery. The delivery interaction provides the means by which a mes­
sage transfer agent moves a message to its destination(s). 

The originator's user agent uses the Submission interaction to pass a 
message to the message transfer agent serving that user agent. The origi­
nator's message transfer agent then uses the delivery interaction to trans­
fer the message from one message transfer agent to the next until the 
message reaches the message transfer agent serving the recipient's user 
agent. That message transfer agent then passes the message to the recipi­
ent's user agent or to the message store serving the recipient. 

Notifications The message transfer system can implement two types 
of notifications: delivery and nondelivery. When a message transfer agent 
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determines that a message cannot be delivered, it generates a nondelivery 
notification, which is sent back to the user agent originating the nonde­
liverable message. A message originator can also request a delivery 
notification, which serves as a positive acknowledgment of message 
delivery. 

This chapter and the previous one provided a brief introduction to the 
types of applications for which a DECnet Phase V network can be used. 
As computer networks become ubiquitous, the variety of networking ap­
plications will increase. The chapters in Part IV introduce an important 
set of related architectures and networking mechanisms that support the 
functional layers of the DNA Phase V architecture. Chapter 15 begins 
Part IV by examining the distributed computing services that are used by 
components of the DNA architecture and that can also be employed by 
users of a DECnet Phase V network. 
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CHAPTER 15 

Distributed Computing Services 

Applications that use the network for communication and various com­
ponents of the networking software itself require certain common ser­
vices. It is desirable that the network infrastructure provide these ser­
vices rather than each application and each component of the 
networking software being forced to provide them for itself. With re­
spect to these common services, the network infrastructure can in many 
ways be viewed as a distributed operating system. An operating system, 
typically running on a single computing system, provides the applicqtion 
programs it controls with a broad range of useful services, including, but 
not limited to: 

• providing the date and the time of day 

• providing security services 

• allowing one procedure to invoke the execution of some other procedure 

• assigning unique identifiers to objects such as programs and files 

• locating computing system objects, such as programs and files, based on 
names users have assigned to them 

DNA Phase V includes a collection of architectures that define how 
many of these same services can be supplied to users on a network-wide 
basis. This chapter examines architectures for an important set of dis­
tributed computing services: 

• Digital Time Service Architecture. This architecture defines services and 
algorithms for maintaining and providing, in all network nodes, a con­
sistent, correct date and time of day. 

• Distributed Authentication Security Service Architecture. This architec­
ture defines a subset of a comprehensive framework for security that 
Digital is developing. It is an architecture-related to DNA Phase Vas 
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well as to other architectures-that defines a comprehensive set of secu­
rity services that can be used in implementing distributed systems. 

• Remote Procedure Call Architecture. This architecture defines services 
by which a procedure executing in one computing system can pass con­
trol to a procedure residing in some other node of the network using a 
simple procedure call mechanism. 

• Unique Identifier Architecture. This architecture defines a service that 
distributed systems and the DECnet software itself can use to obtain an 
identifier guaranteed to be globally unique over space and time. 

Another important distributed computing service is provided by the 
DNA Phase V naming service. The naming service allows users to assign 
names to objects that mean the same thing anywhere in the network and 
to maintain a set of attribute values associated with each name, including 
the address of the node on which the object resides. The naming service 
accepts an object's name from a user and passes back the set of attributes 
associated with that name. The naming service is such an important part 
of DNA Phase V that we examine it separately in Chapter 16. 

The time service, the remote procedure call service, the unique 
identifier service, and the naming service can be viewed as running in a 
layer between the DNA Session Control layer and the application pro­
grams (both Digital-developed and user-developed) employing the net­
work for communication. This layer is sometimes called the Network 
Applications layer, as shown in Figure 15.1. These services are called by 
user applications and sometimes by each other as well. Some of the dis­
tributed computing services implement distributed algorithms, compo­
nents of which are executed in each node in the network. The various 
components of these distributed algorithms must communicate with 

Distributed computing services residing in a Network Applications layer. 

Network Applications 
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each other using protocols in performing their functions. This communi­
cation is handled through the use of DNA Session Control connections 
and/or Data Link layer services. 

We will examine each of the four distributed computing services in 
detail. 

The notion of time is taken for granted in most of today's centralized 
computer systems. However, the mechanisms used to provide time in 
these systems are inadequate when applied to distributed systems. Even 
if all the computers in the network have accurate clocks, we cannot ex­
pect a diverse group of computer operators to all set the clocks correctly 
on a large number of computers. So in the distributed environment, new 
mechanisms are required for consistently setting the clocks on all the 
computers and for maintaining their accuracy. A single, global notion of 
time is necessary to coordinate the operation of a sophisticated dis­
tributed system. There are three major uses for time values in a dis­
tributed computing environment: 

• Time Ordering of Events. Given two events occurring either at the same 
or at different places in the network, it is often useful to be able to deter­
mine which event took place first. 

• Measuring Time Intervals. Given two events occurring either at the same 
or at different places in the network, it is often useful to be able to deter­
mine the length of the time interval elapsed between the times the two 
events occurred. Accurate performance measurements in a distributed 
system require this ability. 

• Scheduling of Events. It is often useful to be able to specify that an 
event-or a set of distributed events-should take place either before or 
after a specified time. 

To be able to use time values for the above purposes, a time service 
must be available that allows users to obtain consistent time values no 
matter where they reside in the network. This is not possible if each node 
in the network is responsible for independently maintaining its own in­
ternal clock. The DNA Phase V time service is a distributed algorithm, a 
component of which runs in every network node, responsible for syn­
chronizing all the clocks in the network. Any user in the network can ob­
tain a time value by requesting it from the time service. A major goal of 
the time service is to provide a time value on request with a minimum 
probability of the time value being incorrect. This is a difficult goal to ac­
complish because, unlike other services where faults or errors can be de-
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• Correctness. The architecture is designed to minimize the probability 
of a user obtaining an incorrect time value. 

• C!ient-Server 1\!odel.. The :?!'chitect!!!'e co!lforms to the clie!!t-server 
model in which clients query servers for time values and in which the 
complexity of the architecture centers in the servers rather than in 
the clients. 

• Simplicity. The architecture provides a simple and conventional view 
of time values and uses a single generally accepted standard for rep­
resenting time. 

• Quality. A component of each time value consists of a value that 
places a bound on the possible inaccuracy associated with that time 
value. The actual inaccuracy that can be associated with a time value 
is not specified in the architecture. Inaccuracy depends on the accu­
racy of the physical components used to maintain time values and on 
the network resources available for synchronizing clocks in the net­
work. 

• Fault Tolerance. The architecture is designed to withstand and com­
pensate for a small number of servers that may be maintaining incor­
rect time values. 

• Scale. The architecture is designed to accommodate network growth 
and can function correctly in networks of any size. 

• Auto Configuration. The architecture allows clients and servers to be 
added to the network with little or no management intervention. In 
addition, clients and servers are able to initialize their clocks with no 
human intervention. 

• Performance. The architecture is designed so the algorithms used 
consume a minimum amount of network resources in performing 
their functions. 

• Monotonicity. The architecture is designed so that, except in dealing 
with extreme failures, clocks never run backward and forward ad­
justments in clock values are made gradually. 

tected immediately, faulty time values are difficult to detect. Moreover, in 
a distributed system, faulty time values may lead to undetected incorrect 
operation of other distributed algorithms, such as the naming service. 

In addition to providing time values with a minimum probability of 
providing the incorrect time, the time service has a number of other 
goals. These goals are listed in Box 15.1. 
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Time Values 

We begin our discussion of how the time service meets its goals by exam­
ining the types of time values the time service is designed to maintain. 
Historically, time values have been based on the rotation of the earth 
about its axis. A time value based on this standard is called Universal 
Time (UT) and is the basis of our international and civil time standards. 
Universal Time corresponds with Greenwich Mean Time (GMT), the 
time of day in Greenwich, England, when Greenwich is on standard 
time. With Universal Time, a second is defined as 1/86400 of a mean 
solar day. A problem with Universal Time is that the earth's rotation is 
gradually slowing. So for precise scientific work, in 1964, the Interna­
tional Congress on Weights and Measures redefined the second to be 
9,192,631,770 vibrations of the characteristic frequency of an atomic 
clock based on the cesium atom. Unlike the earth, the cesium atom is not 
gradually slowing and thus provides a much more precise measure of 
time. This time is called Coordinated Universal Time, often designated 
by the acronym UTC. Coordinated Universal Time is maintained by an 
international organization called the International Time Bureau. The 
DNA Phase V time service is based on Coordinated Universal Time. 

Since Universal Time is continually slowing with respect to the vi­
bration of the atomic clock used to maintain Coordinated Universal 
Time, the International Time Bureau periodically adjusts the atomic 
clock through the use of leap seconds to bring Coordinated Universal 
Time into coordination with Universal Time. The International Time Bu­
reau announces these adjustments in advance and always performs the 
adjustment during the last minute of the month in which the correction 
is necessary. When such adjustments are necessary, it is possible for the 
last minute of the month to contain 61 seconds instead of 60 seconds. 
(Actually, the rules for leap seconds also allow for removing one second; 
thus, theoretically, the last minute of a month might have only 59 sec­
onds. However, since the earth is slowing down and is not expected to 
speed up, it is unlikely that a minute of Coordinated Universal Time will 
ever have 59 seconds.) 

A value can be obtained for Coordinated Universal Time, via a tele­
phone call, radio, or satellite link in many parts of the world through 
various organizations. For example, in the United States the radio sta­
tions WWV in Colorado and WWVH in Hawaii broadcast values for 
Coordinated Universal Time throughout the day. 

Since Coordinated Universal Time corresponds to Greenwich Mean 
Time, it is often modified by a factor called the time differential factor 
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(TDF). A TDF value is added or subtracted from a UTC value to obtain 
a time representation corresponding to the local time in some other time 
zone. For example, to obtain the standard time in the Eastern time zone 
of the United States, we would subtract a TDF value of 5 hours from the 
l.JlC vaiue. 

Time Value Inaccuracy 

A characteristic inherent in the measurement of time is that a time value 
can never be said to be completely accurate. This is because no clock can 
be kept perfectly in synchronization with UTC. Four factors relate to 
how well a clock keeps time: 

• Inaccuracy. A clock's inaccuracy represents how far its time value devi­
ates from Coordinated Universal Time. The inaccuracy of a clock can 
never be known exactly, but it is possible to determine an upper bound 
for its inaccuracy. 

• Drift. The inaccuracy of a clock is not constant but increases over time. 
Drift is a measure of the rate at which the inaccuracy of a clock is in­
creasing. Like inaccuracy, drift can never be determined exactly, but we 
can place an upper bound on a clock's drift. 

• Skew. Skew is a measure of the difference between a clock's value and the 
value for UTC at any instant. The upper bound of a clock's skew is a fac­
tor of the upper bound on a clock's inaccuracy and the upper bound on 
the clock's drift. 

• Resolution. Clocks used in computer systems generally are digital and 
measure time in discrete ticks. A clock's resolution is a measure of the 
time interval between ticks. 

Since a clock can never represent time completely accurately, the 
value the time service provides includes both an estimated value for UTC 
and an inaccuracy value, which is an upper bound on how inaccurate 
that time value is. Therefore, it is possible to determine only that the 
exact value for UTC at any instant falls somewhere between the esti­
mated time value minus the inaccuracy and the estimated time value plus 
the inaccuracy (see Figure 15.2). When algorithms use the time values 
the time service provides-for example, in attempting to determine 
which of two events occurred first-the inaccuracy values the time ser­
vice returns must be taken into account in comparing the two time val­
ues. If the two events occurred relatively close together in time, it is pos­
sible for the time ranges representing the times at which they occurred to 
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A lime value, consisting of an estimated UTC value and an inaccuracy value. 
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intersect, as shown in Figure 15.3. When such a situation occurs, al­
though one of the events may have occurred earlier than the other, the 
order in which the two events occurred cannot be determined. 

Time Value Representation 

The time values that the time service works with and represents in inter­
faces and protocol messages consist of two types: binary absolute time 
and binary relative time. Binary absolute time contains an estimate of an 

If two events occur at the limes indicated by these lime values, the order in which the two 
events occurred cannot be determined. 
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actual UTC value; binary relative time contains an estimate of an elapsed 
time interval. These two types of time values are represented with identi­
cal formats. The four components that currently make up a time value in 
the time service architecture are shown in Figure 15.4 and described 
beiow: 

• Version. This field represents the version of the time service architecture 
being used. It must contain the value 1. 

• Time Differential Factor. This field can be used to modify the value in the 
Coordinated Universal Time Estimate field to convert that value to the 
time in some other time zone. This field is present in an expression of bi­
nary relative time, but, since a TDF value is meaningless in a relative 
time value, it must contain the value zero in an expression of a relative 
time value. 

• Inaccuracy Value. This field places an upper bound on the inaccuracy 
value inherent in the Coordinated Universal Time Estimate field. 

Coordinated Universal Time Estimate. This field estimates the time 
elapsed since midnight of October 15, 1582, the time at which the Gre­
gorian calendar was officially adopted. This number can be used to ob­
tain an estimate of the calendar date and an estimated value for UTC. 

The exact format of the time values the time service works with may 
change over time as certain international standards that are currently 
being developed mature. 

Time Service Architectural Model 

The two major components that implement the distributed algorithms 
defined by the architecture are time service clerks and time service 
servers. Some of the servers may have access to a time provider, a device 
that obtains an accurate value for UTC from a service using a telephone 
line, radio communication, or satellite link. Each network node imple­
menting the DNA Phase V architecture contains either a clerk or a server 
but not both. Both clerks and servers implement clocks that maintain 

Format of a Coordinated Universal Time (UTC) value. 

lime 
Version Differential 

Factor 
Inaccuracy Coordinated Universal lime Estimate 
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values for the date, Coordinated Universal Time, inaccuracy, and a TDF 
value. A user of the time service makes a request of the time service for a 
time value. If that user's node implements a time service server, the server 
provides the time value; if the node implements a time service clerk, the 
clerk provides it. The time service defines clerks and servers to minimize 
the amount of synchronization that must take place to maintain the cor­
rect time in all nodes. Most nodes implement clerks, and servers are im­
plemented in only some nodes. The complexity of synchronizing time 
values is handled mainly by the servers. 

A clerk keeps its clock in synchronization by obtaining time values 
from some minimum number of servers, defined by a management at­
tribute. The clerk then runs an algorithm that computes the intersection 
of all time values it obtains to calculate a "correct" time value. The algo­
rithm defined in the time service architecture is designed so the clerk ob­
tains the correct time even if somewhat fewer than half of the servers 
queried return incorrect time values.· The clerk then uses the time value 
it computes to adjust the time value it maintains in its own internal clock 
to improve its accuracy. The clerk adjusts its time value gradually so no 
user experiences discontinuities in the time values it obtains and so the 
clock never runs backward. However, the architecture has a provision 
for a clerk to make a step adjustment in the clock's value if the clerk de­
termines its clock is wildly out of synchronization with UTC. 

In an implementation of the time service, it is desirable that at least 
some of the time service servers have access to a time provider that pro­
vides an accurate value for UTC. To synchronize its clock, a server with 
access to a time provider periodically obtains an accurate time value 
from its time provider. Servers without access to a time provider periodi­
cally synchronize their clocks by obtaining the time from other servers in 
a manner similar to that of clerks. 

Local and Global Sets 

The time service assumes that in most networks most of the nodes are 
connected to local area networks having relatively short communication 
delays and that individual local area networks may be connected by 

* The function that determines how many time servers can be faulty is 
int((n-1)12). This means, for example, that 4 out of 9 or 4 out of 10, but not 5 
out of 10, servers can be faulty and the time service will still provide the correct 
time. 
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wide-area-networking links that may have a much longer communica­
tion delay. Each local area network implements a set of time servers 
known as the local set. It is possible for the local set to be empty for any 
given local area network. If there are enough servers in a given local set, 
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reducing communication delays and improving the accuracy of the time 
values maintained by the clerks. 

Even though there may be enough servers to satisfy the needs of all 
the clerks attached to a given local area network, it is possible that none 
of these servers implements a time provider. To handle this situation and 
also the situation where there are not enough servers available in the local 
set, another set of servers is designated as a global set. These servers are 
available throughout the network. It is desirable that one or more of the 
servers in the global set have access to a time provider that servers can use 
as a source of accurate Coordinated Universal Time. The time service can 
function, however, even if no server has access to a time provider. In the 
absence of a time provider, a network manager must from time to time 
mimic a time provider on at least some of the servers and must provide 
those servers with accurate values for UTC. Choosing the global set re­
quires a network management action. A server is made a part of the 
global set simply by registering its name with the naming service. 

When a local area network does not have a server with access to a 
time provider, one of the servers in the local set is designated as a courier 
server, whose responsibility it is to import an accurate time value from 
one of the global servers. The use of a courier reduces the message traffic 
so not all of the servers on the local set need to import the time from a 
global server. 

Advertisement and Solicitation Protocol 

Servers periodically announce themselves to other servers attached to the 
same data link by sending multicast messages. A server must advertise on 
all the data links to which it is connected. Servers receive these advertise­
ment messages and build lists of all the servers with which they can com­
municate. Clerks discover the servers in the local set by multicasting solic­
itation messages on all the data links to which the clerk is connected. (A 
server also does this when it first comes up.) A server replies to a solicita­
tion message from a clerk by sending back its list of local servers. This al­
lows a clerk to determine which servers are available to it. A server re­
sponds to a solicitation message not with a multicast message but with a 
message sent individually to the sender of the solicitation message. 
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Representative Inaccuracy Values 

As discussed earlier, the inaccuracy value maintained by a clock increases 
in value as time goes on. Specific goals for maximum inaccuracy values 
are not defined by the architecture, but an appendix to the architectural 
specification contains some calculations showing what kinds of inaccu­
racy values implementations should be capable of providing. Accuracy 
values maintained by a clerk are functions of the following: 

• the inherited inaccuracy in the time value a server provides 

• the communication delay over the data links used to synchronize time 
values with servers 

• the resolution of the clerk's clock 

• the maximum value for the drift of the clerk's clock 

The time service specification shows that for typical hardware the 
inherited inaccuracy of the time value provided by a server will be 10 ms, 
a typical computer system's clock has a resolution of 10 ms, a typical 
clock has a drift of one part in 10-4, and a typical communication delay 
across a local area network is 20 ms. With these figures, the initial inac­
curacy in the clerk's clock at the time of synchronization is 30 ms.'' In 15 
minutes after synchronization, the inaccuracy will be 120 ms; an hour 
after synchronization, the inaccuracy will be 390 ms. If the clerk must 
synchronize with a server across a wide area networking link with a 
delay of 500 ms, the initial inaccuracy will be 270 ms, the inaccuracy 15 
minutes after synchronization will be 360 ms, and the inaccuracy an 
hour after synchronization will be 630 ms. 

The specification then goes on to show that with optimized hard­
ware using inexpensive crystal clocks and high-speed local area network 
links, the inherited accuracy can be reduced to 2 ms, the clock resolution 
can be reduced to 1 ms, the clock's drift can be reduced to 1 part in 10-6 , 

and the communication delay can be reduced to 2 ms. With this kind of 
optimized hardware, the initial inaccuracy of a clerk's clock immediately 
after synchronization would be reduced to 4 ms. Fifteen minutes after 
synchronization, the inaccuracy would increase to only 5 ms, and a full 
hour after synchronization the inaccuracy would still be only 8 ms. 

" Since the communication delay contributes 20 ms to the width of the interval, it 
contributes only 10 ms to the inaccuracy; these examples, therefore, assume 
that the communication delay contributes only half its value to the inaccuracy. 
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Distributed At the time of this writing, a task force at Digital is developing a compre-
Authentication hensive plan for security in distributed systems called the Distributed 
Security Service System Security Architecture (DSSA). The intent of DSSA is to define a 
Arr;!'!itecture comp!'ehe!!sive sec~irity frame"'0!'k e:tn0 ~ st>t of protocol spi>cifirntions 

that will enable users and systems to interact with one another in a se­
cure fashion in a highly decentralized and distributed computing envi­
ronment. Unlike more specific architectures, such as DNA for network­
ing, a security architecture is much more pervasive and affects hardware, 
operating systems, networks, and both Digital-developed and user-devel­
oped applications. Therefore, DSSA will have effects on many architec­
tures outside the scope of DNA Phase V. 

DSSA Security Categories 

The DSSA framework breaks the broad topic of security in distributed 
systems into five major components, which are introduced in Box 15.2. 
As one step along the long-term journey toward completing the design of 
the overall DSSA security framework, the Distributed Authentication Se­
curity Service (DASS) defines an implementation model for most of the 
requirements of the authentication component of DSSA and also ad­
dresses a portion of the requirements for the delegation and secure chan­
nels components. 

Principals and Objects 

Digital's security architectures discuss security in terms of principals that 
access objects in a distributed system. A principal can be either a human 
user or a program, such as one running on a node or a server in a dis­
tributed system. Both principals and objects have names known through­
out the distributed system. As such, the security architectures depend on 
having access to a global directory service, such as that provided by the 
naming service described in Chapter 16. 

Network Login 

Many earlier security systems have been designed around a system of 
user accounts that individuals have on computer systems. A person that 
wants to access 10 computers would have to register a user account on 
each of them. Such a system on a large, possibly global, distributed sys-
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tern would be cumbersome at best. Instead of establishing accounts on in­
dividual computer systems, DASS defines the notions of global identity 
and network logins. Each principal has a name known globally and recog­
nized on every node in the network. This means a user can use the same 
authentication procedures to login to any node without having to first set 
up a new account on that node. It is important to note that a user is not 
necessarily able to access the resources of any node in the network. Each 
node recognizes users by their names and has a policy concerning which 
users are allowed to access its resources. 

Mutual, Strong Authentication 

The authentication scheme defined by DASS provides for authentication 
that is both mutual and strong. Mutual authentication means that each of 
two communicating parties can learn the other party's name. Not only is 
it necessary for a server to know who a client is, but the client must also 
know that it is talking to an authentic server. For example, users who are 
accessing a file server would like to know the server is authentic before en­
trusting it with their files. Strong authentication means that in the ex­
change of information taking place during the authentication, neither 
party obtains any information it might subsequently use to impersonate 
the other party to someone else. The requirement for mutual authentica­
tion is relatively easy to meet and simply calls for authentication proce­
dures to take place in both directions. But the requirement for strong au­
thentication is more difficult to satisfy. 

Cryptography 

Many forms of cryptography can be used to encipher data for transmission 
over a network to protect the data from eavesdropping. A system of cryp­
tography is often called a cryptosystem. Some cryptosystems depend on 
keeping secret the algorithms used to encipher and decipher messages. 
Such a system is of little use in computer systems because it is difficult to 
keep the algorithm secret. Once the system has been broken and the algo­
rithm divulged, all users of the algorithm are compromised, and all com­
puter systems using that algorithm have to be changed. Cryptosystems bet­
ter suited to computer applications use algorithms that are public and that 
depend on the use of a cryptographic key that is kept secret. Users might 
know the algorithm used to decipher a message but cannot decipher it un­
less they also have knowledge of the unique key required to decipher it. 
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• Authentication. Authentication is the process whereby one user 
(either a person or a node) verifies the identity of another user. The 
classic way in which authentication is accomplished in computer sys­
tems is through systems of user IDs and passwords. However, there 
are a number of disadvantages to passwords, and the authentication 
component of DSSA provides procedures that overcome those disad­
vantages and are easier to use than current methods. 

• Secure Channels. Because the network must be assumed to be an 
inherently public medium, data that must be kept private must be 
protected from eavesdropping while in transit. This is most often 
accomplished with cryptographic techniques in which messages are 
enciphered before transmission and deciphered after receipt. A chan­
nel using a cryptography mechanism is called a secure channel. Cryp­
tography also protects data integrity because an intruder cannot 
modify, replay, or suppress data in transit without the receiver detect­
ing it. 

• Installing and Loading. Software often will have to be downline 
loaded across the network from one computing system to another. A 
method of attacking the security of a network is to install a Trojan 
horse, typically a piece of software that is not easily detectable and 
that can have some desired effect. For example, an unauthorized 
party who desires to gain access to the files stored on a particular 
computing system might arrange to add a Trojan horse to the soft­
ware normally downline loaded to that computing system. The Tro­
jan horse might implement functions, such as storing away files the 
computing system has access to, allowing the unauthorized person 
access to those files. This part of DSSA defines procedures using 
cryptographic techniques to verify the correctness of the software 
downline loaded across the network and executed in network 
machines. 

• Access Control. The access control part of DSSA is related to, but 
different from, authentication. Authentication verifies the identity of 
a user; access control provides a means of specifying what that user 
is able to do after gaining access to the network. For example, a 
human user performs the authentication process once, at the begin­
ning of the session. Then access control functions determine what 
operations are valid for that user during the life of the session. Access 
control procedures are based on two types of principals: users and 
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systems. A user is an abstraction of the person who uses systems and 
resources and requests access to objects. A system is an abstraction 
of a computing system running a particular piece of software. A sys­
tem is usually a DECnet network node. Groups are names represent­
ing some collection of users and/or systems. The principal method 
for defining who can do what in a distributed system is based on 
access control lists that define access rights to defined objects. 

• Delegation. Delegation is the process by which one party authorizes 
a second party to act as its representative in the distributed system. 
For example, when a human user performs the authentication pro­
cess at a workstation, that user delegates to the workstation the right 
to act as a surrogate for that user in the distributed system. This dele­
gation might be expressed in the form of a certificate a user "signs" 
during the authentication procedure. The delegation certificate, in 
effect, tells the remote system that the user trusts the workstation to 
accurately reflect that user's requests. 

NETWORK ARCHITECT 
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Strong authentication can't be done with passwords alone. Mutual authentica­

tion can be done with passwords by having a sign and a countersign the two 

parties must say to assure one another of their identities. But whichever party 

speaks first reveals information that can be used by the second party to imper­

sonate it to a third party. Longer sequences (often seen in spy movies) cannot 

solve the problem in general. Further, anyone who can eavesdrop on the conver­

sation can impersonate either party in a subsequent conversation, unless pass­

words are used only once. Cryptography provides a means by which one party 

can prove the knowledge of a secret without having to reveal the secret to the 

other party. 

Symmetric Cryptography Algorithms Most cryptosystems in use at the 
time of this writing employ symmetric algorithms, in which both the 
sender and the receiver require knowledge of the key used to encipher the 
message. That same key is then used to decipher the message. With a sym­
metric crypto system, a sender enciphers a message by putting it through 
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an algorithm, using a particular cryptographic key value, to transform the 
message so it is unreadable by ordinary means. The enciphered message is 
then transmitted to the receiver. The receiver places the enciphered mes­
sage through a complementary algorithm, using the identical crypto­
graphic key value, to obtain a copy of the original message. 

A commonly used public cryptography algorithm was adopted in 
the United States in 1981 as ANSI X3.92-1981, American National 
Standard Data Encryption Algorithm (DES). The DES form of cryptog­
raphy enciphers data in 64-bit blocks using a 56-bit cryptographic key. 
The DES algorithm has proven over the years to be very secure and, to 
our knowledge, no one has yet been able to decipher a message enci­
phered with the DES algorithm without knowing the cryptographic key. 
The DES algorithm is widely used in the banking industry. DASS uses the 
DES algorithm for most of the cryptography it does, especially where 
large quantities of data are involved. The DES scheme is used because 
the algorithm is simple, and data can be enciphered using the DES algo­
rithm much more quickly than with other schemes. 

The DES algorithm has a number of disadvantages, however, forcer­
tain applications. With the very high speed computer systems that are 
today possible, it is becoming conceivable that a very fast computer-or 
a set of distributed systems working collectively-could break the code 
by searching through all possible 56-bit keys. Another disadvantage of 
the DES algorithm is that both the sender and the receiver must be in pos­
session of the same cryptographic key value, which must be kept secret. 

Symmetric algorithms do not provide adequate protection if there is 
a high probability that an intruder could learn the value of the crypto­
graphic key. In a large distributed computing environment, the require­
ment that every node know a secret key for every other node becomes 
unmanageable. Also, prior knowledge of keys does not work for applica­
tions such as electronic mail, where there is a requirement for sending 
mail securely to users all over the world. It would be desirable for the 
sender to change the cryptographic key often and to inform the receiver 
of the key value it is using. But how can cryptographic key values be sent 
over the network in a secure manner? An eavesdropper that obtains the 
cryptographic key will be able to decipher any message enciphered using 
that key. Until about the mid-1970s, the commonly used method for 
sending cryptographic keys over a network in a secure manner consisted 
of obtaining cryptographic key values from a trusted third party, with 
which both parties already share a key. But in 1978, three researchers 
named Rivest, Shamir, and Adleman developed a scheme that eliminated 
the need for relying on a trusted third party. 
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Asymmetric Cryptography Algorithms An asymmetric cryptography al­
gorithm is one in which the key used to decipher a message is different 
from the key used to encipher it. It must not be possible to derive the key 
that must be used to decipher the message from the key used to encipher 
it. Because the key used to encipher the message cannot be used to deci­
pher it, it does not matter who knows its value, and the value of such a 
key can be made public with no compromise of security. Cryptosystems 
using asymmetric algorithms are often called public key systems. The al­
gorithm described by Rivest, Shamir, and Adleman is generally called the 
RSA public key cryptography system. [1] Rivest, Shamir, and Adleman 
built on the preliminary work of Diffie and Hellman on public key cryp­
tography. [2] 

With the RSA public key cryptosystem, the cryptographic key used 
to encrypt a message can be sent over the network without compromis­
ing a message enciphered using that key. Such a crypto system can be 
made much more secure than one using a symmetric algorithm. In set­
ting up for the transmission of an enciphered message, the intended re­
ceiver generates two key values: a private key, which the receiver keeps 
secret, and a public key, which the receiver sends to the sender. The 
sender then enciphers the message using the public key and transmits the 
enciphered message to the receiver. The receiver then deciphers the mes­
sage using the private key it has kept secret. With such a system, know­
ing the value of the public key does an eavesdropper no good because it 
cannot be used to decipher the message. Deciphering the message re­
quires knowledge of the private key, which is not transmitted over the 
network. The system works in the opposite direction as well. A message 
enciphered with the private key can be deciphered with the public key. 

DASS Strong Authentication 

The facilities provided by the RSA public key crypto system are exactly 
what is needed to provide a strong authentication facility. Node A can 
prove to node B that it has knowledge of a secret without actually di­
vulging that secret to node B. Without such a facility a system of pass­
words is not secure. The DASS authentication scheme uses RSA public 
key cryptography. It is feasible to use RSA public key cryptography for 
authentication, even though it requires far more resources than the DES 
algorithm, because a relatively small amount of information is ex­
changed during the authentication procedure. 

A strong authentication system using RSA public key cryptography 
might work something like this: 
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1. Each node in the network chooses a public key/private key pair. It 
then keeps the private key value secret and publishes the public key 
value. 

2. Node A authenticates to node B by sending it a message containing 
an identifier both unenciphered and enciphered using its secret pri­
vate key. 

3. Node B obtains node /\s public key value. 

4. Node B deciphers the identifier it received from node A in enciphered 
form using node Ns public key value. 

5. If the deciphered identifier matches the identifier it received in unenci­
phered form, node B knows that node A is authentic because only the 
real node A knows the private cryptographic key that had to have 
been used to encipher the information. 

Mutual authentication can be accomplished with the above system 
by using the same procedure to authenticate node B to node A. The sys­
tem works, of course, only if each node can keep its own private crypto­
graphic key secret. But because private cryptographic key values never 
have to be transmitted over the network, methods can be devised for 
keeping them secure. The actual cryptographic techniques the DASS au­
thentication scheme uses are a good bit more complex than just de­
scribed in order to deal with a variety of problems and security threats. 
We discuss some of these next. 

Certificates 

A flaw in the strong authentication scheme described in the preceding 
section is that each node must have a way of determining another node's 
public cryptography key. A ubiquitous service, such as the naming ser­
vice, could be used to maintain public key values, but this would repre­
sent a point in the system that could be compromised. To avoid the ne­
cessity of one user requiring the other user's public key value, a system of 
certificates is used in DASS for authentication. With the DASS authenti­
cation scheme, each new principal must register its name with a 
certification authority (CA). A new node would go to the CA, present its 
public key value, and prove it has a particular name. The mechanism for 
this depends on the level of security to be provided. The CA then issues 
the node a certificate, which consists of a message containing an identifier 
and a public key value, both enciphered using the C!\s private key. Now, 
when node A authenticates to node B, node A includes its certificate in 
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the authentication message it sends to node B. Node B can determine 
node A's public key value by deciphering the certificate using the CA's 
public key value, which everyone knows. 

An important characteristic of certificates is that their use does not 
require the CA to be available at the time authentication takes place. The 
CA need be available only when a new principal requires a certificate, 
thus making it much easier to keep the CA safe from compromise. (One 
possible plan for keeping the CA safe is to implement it on a small com­
puter that could be locked away in a safe and taken out only when a prin­
cipal needs to apply for a certificate.) However, since a certificate issued 
by the CA is likely to be used by a principal for a relatively long period of 
time, perhaps months, the system must include procedures for revoking 
certificates should private key values fall into the wrong hands. The DASS 
specification discusses methods for handling certificate revocation. 

Timestamps 

The authentication scheme we have been discussing allows for positive 
authentication, but only if the message is accepted only once. If an eaves­
dropper were listening in on an authentication exchange between node A 
and node B, it could make a copy of the certificate and then use it to im­
personate node A to node B. To avoid the possibility of this happening, 
two additional requirements must be met. The authentication message 
(containing the certificate) that node A sends to node B must be accept­
able only to node B and not to any other principal. It is also necessary for 
node B to accept an authentication message only once. 

DASS solves the first problem by including in the authentication 
message not only a name that identifies node A but also a name that 
identifies node B. Node A enciphers both its own identifier and node B's 
identifier. Then when node B deciphers the authentication message, it 
will accept the message as authentic only if it sees its own name in it. 
This prevents an eavesdropper from using the authentication message to 
authenticate to some other node. An eavesdropper could still imperson­
ate node A to node B, however, by using an identical copy of the authen­
tication message. To prevent this from happening, the enciphered au­
thentication message also contains a timestamp indicating the time the 
authentication took place. Node B then keeps track of all authentication 
messages it receives over a short period of time, say five minutes. If it re­
ceives the same message twice over a five-minute period, it rejects the 
second one. Then once the five-minute period is up, it discards the me 
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sages it has been keeping and simply rejects any authentication messages 
it receives having a timestamp more than five minutes old. 

Delegation 

The scheme just described provides a means by which one principal can 
authenticate itself to another principal. In a distributed system, however, 
such one-to-one authentication is not enough. When a human user logs 
onto a distributed system, the user wants to use the distributed system to 
access resources on his or her behalf. This requires the user to give the 
node at which the desired service is performed the right to represent that 
user in the system for the purposes of gaining access to resources on be­
half of that user. For one principal to represent another principal, the 
first principal must provide the second principal with access to the RSA 
private key value to use in subsequent authentication procedures. DSSA 
provides mechanisms for allowing one principal to pass a secret to an­
other principal for a limited amount of time for the purposes of delega­
tion. Secrets passed over the network are always encrypted so eavesdrop­
pers cannot learn them. 

Authentication of Human Users 

As we have seen, the strong authentication system defined by DASS is 
based on RSA public key cryptography, which is computationally com­
plex. Since human users would find it difficult to perform cryptography 
calculations in their heads, it is not possible for a human to strongly au­
thenticate to the node at which he or she logs in. So the first link between 
the human user and the login node can represent a weak link in the au­
thentication chain. 

Smart Cards 

The use of smart cards to handle the initial login can allow strong au­
thentication procedures to be implemented on behalf of human users. A 
smart card is essentially a credit-card-sized computer a user carries 
around to handle the details of gaining access to a distributed system. Be­
cause smart cards currently are too expensive to be used in gene:ral-pur­
pose network authentication schemes, the DASS architecture accommo­
dates but does not require the use of smart cards for login. In the future, 
smart cards will become less expen~ive and will begin to play a more im­
portant role in providing secure access by human users to distributed 
systems. 
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Remote Procedure The idea behind providing a remote procedure call (RPC) facility in a 
Call Architecture network architecture is that procedure calls are a well-understood mech­

anism for transferring control and data from one procedure to another 
in a computer program. Almost all standard programming languages, 
such as FORTRAN, C, and COBOL, have such a mechanism, and proce­
dure call semantics for these languages are well defined. It is therefore of 
great utility to extend the procedure call mechanism from a set of proce­
dures in a single-computer environment to the distributed system envi­
ronment. An RPC mechanism provides an excellent tool for implement­
ing the client/server paradigm in a distributed system. 

NETWORK ARCHITECT 

The idea of the remote procedure call is of strategic importance to application 

developers in a distributed computing environment. Basically, it turns writing 

distributed applications from something akin to rocket science to something 

more like placing an overseas telephone call. 

Figure 15.5 shows the basic concept behind a procedure call mecha­
nism. Procedure A executes a CALL statement, possibly referencing 
some parameters, which passes control to procedure B. While procedure 
B executes, procedure A waits. When procedure B finishes its processing, 
it executes a RETURN statement. The RETURN statement causes con­
trol to be passed to the statement immediately after the CALL statement 
in procedure A. In most language/operating system environments, proce­
dure calls can be nested to any desired level, as where procedure A in 
Figure 15.5 calls procedure C, which in turn calls procedure D. 

The idea behind a remote procedure call facility is to allow the pro­
cedure call mechanism to work when the calling procedure and the 
called procedure reside in different computing systems connected by a 
communications network. Ideally this should be done so the calling pro­
cedure can call a remote procedure using exactly the same technique it 
would use to call a procedure residing on the same computing system. In 
other words, the mechanisms the RPC facility employs should be hidden 
from both the calling and the called procedures. The problems associated 
with creating an RPC facility lie in three major areas: 

• Locating the called procedure. The RPC facility must provide a means 
for locating the called procedure in the network. 
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Procedure call mechanism. 
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• Passing parameters. With the procedure call mechanism implemented in 
traditional language environments, communication between the two 
procedures is based on a shared address space. Parameter values are gen­
erally passed by reference, which means the calling procedure passes the 
called procedure pointers to the parameter values. When the two proce­
dures reside on different computing systems, there is no common address 
space. Therefore, an RPC facility must be able to handle the passing of 
parameters in both directions. 

• Binding the called procedure to the calling procedure. With a conven­
tional procedure call mechanism, many techniques can be used for bind­
ing. With early binding, a linking mechanism is used to construct a single 
program module containing both the calling and the called procedure. 
Both the calling and the called procedures are then loaded into storage at 
the same time. With late binding, the procedure call mechanism imple­
mented by the operating system may allow the called procedure to be dy­
namically loaded into computer storage at the time the CALL is executed. 
With a remote procedure call facility, binding is even more complex be­
cause it involves finding the server containing the desired procedure. 

Remote Procedure Call Functional Model 

A simplified functional model of an RPC facility is shown in Figure 15.6. 
The RPC facility serving the calling procedure may use a global naming 
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service to determine on which node in the network the called procedure 
resides. The server is found before the actual call executes. The process 
of finding the server's address is called importing. In this functional 
model, a calling procedure executes a procedure call in the same manner 
as if it were executing a procedure call to a local procedure. A module 
called a stub in the local node mimics the presence of the actual proce­
dure to which the calling procedure is attempting to pass control. There 
is a unique stub for each set of procedures using the RPC facility in the 
client. The stub in turn requests the services of the RPC facility. 

The RPC facility uses the services of the communication network to 
transmit parameter information, in the form of RPC-protocol-data-units 
(RPC-PDUs), to and from the RPC facility in the remote node. When the 
RPC facility in the remote system receives the RPC-PDUs generated as a 
result of the procedure call, it determines whether the requested called 

FIG u R E 1 5 . 6 RPC facility functional model. 
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procedure already resides in computer storage there. If it does not, a fa­
cility in the remote node loads the program module containing the re­
quested procedure and passes control to it, again using a stub unique to 
that procedure. The called procedure then passes parameter information 
back to the calling procedure and passes control back to it using a pro­
cess similar to that described for the calling procedure. 

The process of converting the parameter information in the local 
node into RPC-PDUs and performing the same process in the opposite 
direction is called marshalling. The marshalling process is straightfor­
ward if the two procedures represent parameter values using the same 
data representation. On Digital operating systems almost all program­
ming languages use the same data formats. But this may not be true in 
other computing environments. To be useful in a heterogeneous environ­
ment, it is necessary for an RPC facility to handle the situation where the 
calling procedure and the called procedure use different formats, so data 
conversion must be done by the marshalling routines. 

DNA Phase V RPC Architectural Model 

The architecture for the DNA Phase V remote procedure call facility pro­
vides support for a heterogeneous computing system environment. The 
architectural model for the DNA Phase V RPC facility is shown in Figure 
15.7. Like other distributed computing services, the RPC architecture 
uses a client/server model. The calling procedure is the client, and the 
procedure being called is the server. Both the client procedure and the 
server procedure execute as though they both resided in the same com­
puting system. 

Packages and Binding 

Server procedures are grouped together in units called interfaces. An in­
terface consists of the externally visible characteristics of a set of proce­
dures. An interface is defined using an inter( ace de-{inition language 
(IDL). The interface definition defines the procedures, parameters, and 
error conditions of the interface. Each interface is assigned a unique in­
terface identi-{ier. This interface identifier is known to both the client and 
the server stubs. The client uses the interface identifier to find a server 
supporting the desired interface. In many applications there will be more 
than one such server. 

To execute a remote procedure through the RPC facility, the RPC 
facility in the node executing the client procedure must learn what inter-
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DNA Phase V RPC architectural model. 
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face the desired procedure is a part of. The RPC facility in the node exe­
cuting the calling procedure then performs an address resolution, or im­
porting, procedure using the naming service to determine where in the 
network the package resides. After a successful importing procedure, the 
RPC facility performs a binding operation that sets up a communication 
path, using a DNA Session Control connection, between the RPC run­
time module serving the client procedure and the RPC runtime module 
in the server procedure's node. The binding operation takes place at the 
time the first call in the interface is executed using that interface. The 
RPC facilities in both nodes then use this connection for the purposes of 
requesting remote procedure invocation between the client procedure 
and the server procedure and transmitting the results of the invocation. 

The Unique Iden#fier (UID) architecture defines a service any user can 
employ to obtain an identifier that is unique over space and time. There 
is a very high probability that the identifier obtained through this service 
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is different from any other identifier assigned by the UID service operat­
ing anywhere in a possibly global network. The UID architecture is 
unique in that it is designed to provide its service without requiring the 
setting of any management information and without requiring any com­
munication between nodes in the distributed system. The algorithm pro­
viding the UID service in a given node is completely self-contained and 
requires no external communication. 

The UID service is designed to be used by other distributed comput­
ing services. For example, the naming service uses the UID service to ob­
tain unique identifiers it attaches to objects it stores attributes for. Net­
work management also uses unique identifiers to control its operation. 
User-written applications can use the UID service to obtain unique 
identifiers they can use to unambiguously label objects, processes, events, 
and entities. Once the UID service has assigned an identifier, the process 
requesting it is ensured that there is an extremely low (but not zero) 
probability that the same identifier will be assigned by some other invo­
cation of the UID service either in that node or in any other node in the 
network. Duplicate identifiers can occur only if the UID service is operat­
ing incorrectly, if node identifiers migrate, or if time runs backward on 
the clock in a node. 

The UID service assigns unique identifiers whose components are 
based on the node's node ID, a value for Coordinate Universal Time 
(UTC), and other values that are used to ensure that there is a very high 
probability of the identifiers being unique over both space and time. 
However, even though a value for UTC is currently a part of the 
identifier, identifiers assigned by the UID service must be used only to en­
sure uniqueness and not for the purpose of time ordering events. This is 
because future versions of the architecture may use means other than 
UTC values, such as large random numbers, to achieve uniqueness. 

UID Properties 

The following are the properties of the unique identifiers the UID service 
assigns: 

• Uniqueness. There is a very high probability that each UID value the 
UID service generates on any DNA Phase V node is different from any 
other UID value. 

• Immutability. A UID value, once assigned, is guaranteed never to be 
changed as long as it is manipulated only by the UID service. 
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• Lexical Ordering. There exists a specific lexical ordering of any set of 
UIDs. 

• Lack of Temporal Ordering. The architecture does not specify a means 
of placing a set of UIDs into the sequence in which they were created. 

um Service Operations 

The UID service allows users of the servtce to request three different 
types of operations: 

•creating a new UID 

• testing two UIDs for equality 

• sorting a set of UIDs based on their values 

Users of the UID service should perform operations on UIDs using 
only these three operations in order to preserve the immutability prop­
erty of UIDs. 

um Internal Structure 

We will examine the internal structure of a UID next to provide some in­
sight into the lengths to which the architecture goes to ensure that the 
probability of two UIDs being the same is extremely small. A unique 
identifier assigned by the UID service currently consists of the four com­
ponents shown in Figure 15.8 and described below: 

• Node ID. Each node in the network must be assigned at least one 48-bit 
node address assigned from the IEEE 802 address space. It is a require­
ment of the DNA Phase V architecture that each node must be assigned a 
48-bit node ID even if it does not have a local area network interface 
adapter. The node address field in a UID guarantees that the UIDs gener­
ated by one node will be different from UIDs generated by any other 
node, anywhere in the world. The remainder of the UID is used to guar­
antee that a single node never generates the same UID value twice. 

General format of a UID. 

Node ID Clock Sequence No. Version Adjusted Coordinated Universal Time 
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• Clock Sequence Value. It is possible for a node to have a clock that lacks 
the property of monotonicity, which means it is possible under some cir­
cumstances for a clock to run backward. For example, a system might 
fail, reboot, and reinitialize its clock to some value lower than the value 
it contained when the failure occurred. To provide a unique UlD value 
even when such an event occurs, the UID service maintains a clock se­
quence number it changes whenever the UID service detects that the 
clock has run backward or that it is possible the clock may have run 
backward. Also, if the UID service loses the current clock sequence num­
ber, for example, after a catastrophic system failure, it reinitializes the 
clock sequence number using a random number before assigning new 
UID values. 

• Version Number. This field identifies the version of the UID service archi­
tecture in effect at the time the UID was created. A version number is 
necessary because UIDs often are attached to objects having very long 
lifetimes. It is possible for a UID attached to an object to be processed in 
the future by a system implementing subsequent versions of the UID ar­
chitecture. To ensure correct operation, it is necessary for the UID service 
to determine that the UID was created using an implementation of a pre­
vious version of the architecture. 

• Adjusted Time Value. A UID contains a UTC value field. In most imple­
mentations of the UID service, this value is obtained using the time ser­
vice described earlier in this chapter, although the architecture allows a 
value for UTC to be obtained using any desired means. Because it is pos­
sible on a very fast processor for multiple users to request UIDs within 
the same system clock tick, the UID service adjusts the UTC time value it 
generates by adding a different value to it for each new UID it assigns 
within the same tick of the system clock. In this way, the UID service as­
signs a different time value for each UID it generates. 

Although we show the internal structure of the UID as it is defined 
by the version of the architecture current as of the time of this writing, 
the architectural specification warns that the means by which UIDs are 
generated and the internal structure of the UID may change in subse­
quent versions of the architecture. Changes may be necessary to bring 
the UID service into conformance with international standards now 
under development or to accommodate changes in requirements for the 
UID service. Therefore, users should regard the value the UID service as­
signs to a unique identifier as an opaque data structure whose internal 
structure is hidden. 
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CHAPTER 16 

The Naming Service 

Computer networks in many organizations are providing an ever grow­
ing and ever more sophisticated set of services to their users. To permit 
growing numbers of users to use these services effectively, they must be 
easy to locate and easy to use. A growing problem in computer network­
ing-especially with large networks-involves identifying, locating, and 
accessing network devices, the people who use them, and the application 
programs running on them. In some cases, the resources provided by 
computer networks are underutilized simply because the users of the net­
work are unaware of the facilities the network provides or are unable to 
find them. Many of the difficulties associated with locating network re­
sources arise from the lack of an easy-to-use directory service for naming 
resources and for locating them using their assigned names. The naming 
service in DNA Phase V is Digital's solution to the directory problem. 

NETWORK ARCHITECT 

In Phase II of DNA, each node had a node name. There was no routing, so you 

could only talk to your neighbor nodes. When we put routing in, we assigned an 

address to each node. The question then became one of how to map between 

node names and node addresses, because we didn't want to require users to 

work with node addresses. We looked at the problem of translating node names 

to node addresses in a reliable, robust fashion, and we quickly concluded that it 

was a very hard problem. We decided not to try to solve it in Phase III or even 

in Phase IV. We provided each node with its own database that it used to trans­

late node names into node addresses. That database simply consisted of a file 

that users updated and shipped around the network. In effect, the way we dealt 

with node name databases was outside the scope of the architecture. We couldn't 

deal with the naming problem in Phase III or Phase IV because it was simply 
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too hard a problem to solve given the resources we had available. It ended up 
taking us a long time and a lot of resources to adequately solve the naming prob­

lem, and we have included this solution in Phase V of the architecture. 

Conceptually the main function of the naming service is very simple: it 
accepts a name and passes back the set of attributes associated with that 
name (see Figure 16.1). The naming service can be used to store attribute 
values for any type of named object the user of the naming service finds 
useful, including network devices and application programs. An impor­
tant attribute that can be associated with a named object is the address 
of the node on which the object resides. An object's address consists of a 
set of towers that describe all the ways in which communication can be 
established with the named object. (Towers are described in Chapter 11.) 
The naming service allows network users to create a global namespace 
containing the names of all the objects that can be referenced, anywhere 
in a possibly global network. 

The naming service is an integral part of the infrastructure of a 
DECnet Phase V network and is central to the network's operation. The 
services provided by the naming service are available at all times to all 
nodes in the network. For this reason, the DNA Phase V architects built 
into the naming service a variety of features to make it a highly robust, 
highly available network facility. A key concern during the design of the 
naming service was scalability-the naming service had to serve the 
needs of very large networks. 

NETWORK ARCHITECT 

We went to tremendous lengths, even beyond what we did in routing, to make 

the naming service scale indefinitely. We recognized that users might want to 

carve networks up for the purposes of autonomy and to serve the varying needs 
of different organizations. But we also realized that from the viewpoint of nam-
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ing things, the boundaries between networks become highly artificial and incon­
venient. Organizations really need the ability to develop a single, global names­

pace in which anyone anywhere can name things in a consistent fashion. So we 

went to great lengths to make sure the naming service could provide that capa­

bility. Initial implementations of the naming service will be able to store enough 

names to serve the needs of networks as large as a million or so nodes. The 
architecture itself is scalable, so implementations will eventually be capable of 

storing hundreds of millions of names to give the naming service the capability 

of implementing something as large as a worldwide directory of computer net­

work resources. 

Naming Service 
Requirements and 
Design Goals 

The DNA Phase V naming service was designed to meet a number of 
technical goals to support the directory services required in modern com­
puter networks. The following are the most important of these require-
ments and design goals: 

• Homogeneity. The naming service should be available as a service on all 
DNA Phase V network nodes. 

• Compatibility. The naming service should be compatible with the nam­
ing services provided by DNA Phase IV. 

• Decentralizability. Management of the naming service should be done in 
a decentralized fashion to avoid the inefficiencies associated with central­
ized management of network resources. 

· Predictability. The naming service should be able to uniquely identify 
named objects in a large network so there is a very low probability of 
two objects having the same name. 

• Location Independence. The naming service should permit a named ob­
ject to be moved from one location to another in the network without re­
quiring its name to be changed. 

· Stability. The naming service should allow two isolated networks, each 
with its own private namespace, to be merged into a single network hav­
ing a single namespace without requiring names to be changed. 

• Simplicity. The naming service should be easy to understand, easy to use, 
easy to implement, and easy to manage. It must be able to adapt itself to 
changes that occur in the network to limit the amount of effort necessary 
to set up the naming service and to keep it running. 

• Extensibility. The naming service should allow new functions to be 
added without disrupting existing functions. 
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• Robustness. The naming service must be at least as reliable and available 
as any of the resources whose names it stores. The objective is that the 
inability to communicate with a resource should never be solely due to a 
fault in the naming service. 

• Efficiency. The process of looking up the attributes associated with a 
name must be fast and efficient so users are able to use the naming ser­
vice to locate resources without paying a performance penalty. 

• Flexibility. The naming service should be adaptable to naming a wide va­
riety of objects, including nodes, files, users, application programs, de­
vices, and the internal objects the naming service itself uses to maintain 
the namespace. 

• Security. The naming service should ensure the privacy and integrity of 
names by preventing unauthorized disclosure, modification, insertion, or 
deletion of the naming information it maintains. 

Before discussing the characteristics and features of the naming service, it 
will be helpful to describe the sorts of names a directory service might 
store. Basically four types of names can be used to identify resources in a 
computer network: addresses, routes, primitive names, and descriptive 
names. 

Addresses 

An address is a form of name that identifies a resource by its location 
in the network. Previous phases of DNA used this sort of name to iden­
tify resources. Although network resources in DNA Phase IV can be 
identified using an arbitrary string of characters, the use of a character 
string to identify a resource is really no more than a user conve­
nience-the character string simply stands for the resource's address. 
The node address is derived by using a simple table lookup procedure 
on the local node. As a network grows, the relationships between 
nodes and the resources residing on them become increasingly complex 
and arbitrary. There are problems associated with using addresses to 
name objects when the objects are replicated in the network and fre­
quently moved from one node to another. Names can become invali­
dated as resources are reconfigured and as new nodes are added and 
old nodes deleted. 



350 PART IV: RELATED ARCHITECTURES AND MECHANISMS 

Routes 

A route names a resource by enumerating the exact path that must be 
traversed from the user to the resource in question. Routes are even more 
problematic than addresses as a means of identifying network resources. 
Route names depend on who is accessing a resource as well as where that 
resource is located-different users will use different routes. What is 
even worse, network reconfiguration can cause the names of resources to 
change over time. 

Primitive Names 

A primitive name is a character string that uniquely identifies a resource. 
An important feature of primitive names is that they are unambiguous­
no two objects in the network can have the same primitive name. Primi­
tive names can be constructed in any desired manner, and there is no par­
ticular relationship between a primitive name and any of the attributes 
associated with the name. Primitive names are the types of names the 
naming service processes. In a DNA Phase V network, a user name might 
look something like ENG.NAC.DaveOran. If Dave Oran is on one node 
today and some other node tomorrow, the address attribute of his name 
can be changed, so that other users can still refer to him by the name 
ENG.NAC.DaveOran without having to be aware that his node address 
changed. 

Descriptive Names 

A descriptive name is a name that identifies an object by specifying infor­
mation about the attributes of that object. A descriptive name might 
refer to no objects, to a single object, or to more than one object. An ex­
ample of a descriptive name might be "the mailbox of the person with 
signatory responsibility for the engineering cost center." A descriptive 
name uniquely identifies an object only if enough attribute information is 
included to differentiate the named object from all other objects. The 
above descriptive name uniquely identifies a particular mailbox as long 
as there is one and only one person with signatory responsibility for the 

·engineering cost center. 
Directory services that manipulate descriptive names are potentially 

the most powerful; however, they are also the most demanding of com­
puting resources and are difficult to distribute among multiple computer 
systems. 
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CCITT Recommendation X.500, also called the OSI Directory, doc­
umented in ISO 9594-is an international standard for a naming service 
that has some descriptive naming capabilities. The OSI Directory is in­
troduced at the end of this chapter. Digital is developing products to pro­
vide the services of the OSI Directory using the DNA Phase V naming 
service as a base. 

In creating a naming service that stores and manipulates pnm1t1ve 
names, the namespace can be structured in a number of ways. The fol­
lowing are characteristics of some possible ways in which a namespace 
might be structured. 

Flat Structure 

The simplest namespace organization has a flat structure in which the 
names consist of arbitrary strings of symbols. A flat structure is easy for 
users to understand and places no restriction on the ways in which new 
names could be assigned (except possibly character set and length con­
straints). However, assigning unique names in a flat namespace becomes 
increasingly difficult as the size of the network, and hence the size of the 
namespace, mcreases. 

Tree Structure 

A tree is a graph structure in which each node has exactly one parent and 
any number of children. The bottommost nodes in the tree are called leaf 
nodes. A line connecting a parent node to a child node is called an arc of 
the graph. (See Figure 16.2.) Many existing computer file systems use a 
tree-structured naming system. Such file systems generally use a rooted 
tree structure; in which a single node is an ancestor of all other nodes. 

Trees permit the use of a decentralized approach to naming that 
provides a natural, hierarchical scheme for organizing the namespace. 
Each user or group of users is free to organize a given portion of the 
namespace in any desired manner. A problem with a tree-structured 
namespace is that each object is permitted to have only one name be­
cause each node under the root has only one parent. 

Directed Graph Structure 

A directed graph is similar to a tree, but a given node can have any num­
ber of parent nod,es (see Figure 16.3). A directed graph can be a rooted 
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Tree structure. 

-~Root Node 

directed graph, in which one node is the ancestor of all other nodes, or it 
can be unrooted, in which there is no such common ancestor. Computer 
file systems that permit alias names, in which a given file can have more 
than one name, often implement a rooted, directed graph structure. A 
problem with a namespace structured as a directed graph is that endless 
cycles are possible. A name containing an endless loop is of little use, so 
most naming systems employing a directed graph structure contain 
mechanisms to prevent cycles from occurring. The structure of such a 
namespace is termed an acyclic, rooted, directed graph. This is the type 
of namespace structure employed by the naming service. 

Acyclic, rooted, directed graph structure. 
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Simple Names and Full Names 

The underlying structure used to create the namespace is that of a tree. 
Each arc of the tree is assigned a simple name, which consists of a string 
of octets having no internal structure. A complete name, called a full 
name, consists of a concatenation of all the simple names assigned to a 
set of arcs that begins at the root of the tree and ends with the object in 
question. 

The underlying tree structure permits the use of simplified algo­
rithms for namespace maintenance. The tree structure is augmented by 
allowing a given node to have arcs from more than one parent node. 
These additional arcs allow a given object to have more than one name 
(i.e., there can be more than one collection of arcs from the root of the 
graph to a particular node). Allowing a node to have more than one par­
ent allows users to view the underlying tree structure as if it were a di­
rected graph. 

Characteristics of We next examine the characteristics of names. We discuss the concept of 
Names referential transparency and then examine the semantics and the syntax 

of the primitive names the naming service stores and manipulates. 

Referential Transparency 

An important property of the names maintained by the naming service is 
that of referential transparency. This means that a full name always 
refers to the same thing no matter which user provided the name, and 
that the name can be freely passed outside the naming service (for exam­
ple, on pieces of paper) from one user to another without the possibility 
of confusion. 

Name Semantics 

The naming service maintains full names. To the naming service, a full 
name consists of the concatenation of the simple names of a set of arcs 
beginning at the root of the namespace. Each full name in a namespace 
begins with a simple name containing a unique identifier called the 
namespace creation timestamp (NSCTS). The NSCTS is assigned to the 
namespace at the time the namespace is first created. This unique 
identifier ensures that each full name in the namespace is different from 
the full names stored in any other namespace. By assigning a unique 
identifier to each namespace, it is possible to merge together any collec-
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tion of namespaces without requiring changes to any of the names in 
those namespaces. The naming service provides facilities so users them­
selves do not have to supply the NSCTS value when working with the 
naming service. 

Name Syntax 

Two syntaxes are employed by the naming service for representing 
names: an external syntax and an internal syntax. The external syntax 
refers to names in human-readable form; the internal syntax refers to 
names passed across the application programming interface to the nam­
ing service and maintained internally in the namespace database. The ex­
ternal syntax is designed for readability, while the internal syntax is de­
signed to be convenient to encode in programs, protocols, and databases. 

External Names 

An external name consists of two parts: a namespace nickname and a 
concatenation of simple names. The namespace nickname is translated 
locally by the naming service into the NSCTS value uniquely identifying 
the namespace. If a namespace nickname is omitted from an external 
name, the naming service chooses a preselected NSCTS value. 

The namespace nickname and the concatenation of simple names 
making up a full name are an ordered list of strings of letters, digits, and 
certain punctuation characters from the ISO Latin-1 character set. The 
case of each string is preserved by the naming service: when retrieved, a 
name registered with a mix of upper- and lowercase characters will ap­
pear exactly as it was entered. Lookups, however, are case-insensitive. 
The strings "jamesmartin," "JAMESMARTIN," and "JamesMartin" all 
refer to the same simple name. 

The naming service also allows binary simple names to be used, in 
which the characters %x or %X are followed by a string of hexadecimal 
digits. Binary names allow users and application programs to work with 
names made up of data that cannot be expressed using the allowable 
character set. 

The simple names in a full name are separated by periods(.). For a 
period or any other punctuation mark to be used as part of a simple 
name, the simple name must be enclosed in double quotation marks. The 
following are examples of full names: 

• Parts.widgets.left-handed.SMOKESHIFTER 

• ENG.NAC.JarnesMartin 
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• Governm~nt:Treasury.Bills.CurrentSeries 

• ENG:Engineering.Networks.Arch.Specs 

• ENG.NAC.MARTIN.%xFA01E700FC 

• ULTRIX.Sources."OSITransport.c" 

Internal Names 

While users generally work with external names, the naming service it­
self works only with internal names. All names must be converted to in­
ternal form before being passed across the interface to the naming ser­
vice. This conversion generally is performed in software that directly 
interfaces with the naming service on behalf of an end user or an appli­
cation program. An internal name consists of an NSCTS value followed 
by a sequence of fields each containing a simple name. The NSCTS and 
simple name values are encoded using a scheme defined in the naming 
service architecture. All programs interfacing directly with the naming 
service treat internal names as opaque data structures and must process 
them using the procedures described in the naming service architecture. 

The naming service stores values for a set of attributes associated with 
each name in the namespace. Values can be stored for two types of at­
tributes: single-valued attributes and set-valued attributes. A single-val­
ued attribute can take on only one value at a time; a set-valued attribute 
can take on any number of values, including zero values (an empty set). 

Attribute Operations 

The operations that can be performed on attributes were carefully 
specified to permit efficient, relatively simple mechanisms to be designed 
to perform those operations in a highly distributed and replicated envi­
ronment. This is discussed further when we see how update operations 
are performed on the namespace database. 

Two operations are defined for single-valued attributes: 

• Read. Reads the attribute value. 

· Replace. Replaces the attribute value. 

Notice that no other update operation other than a complete re­
placement is defined. The distributed update mechanisms would have 
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been extremely difficult to design had an update operation been 
specified, for example, allowing a value to be added to or subtracted 
from an attribute containing a numeric value. 

Three operations are defined for set-valued attributes: 

• Full Lookup. Reads all existing values in the set. 

• Redundant Insert. Inserts a new value into the set. A value is added to 
the set only if that value does not already exist in the set. (A set-valued 
attribute is a true set and not a bag, which allows duplicate values.) 

• Redundant Delete. Deletes an existing value from the set. No error con­
dition is returned if the value does not exist in the set. 

Attribute Names 

Each different type of attribute that can be stored for a name itself has a 
name. Users of the naming service can assign attribute names to any type 
of attribute they wish to associate with a named object. However, the 
naming service architecture and other parts of the DNA Phase V archi­
tecture assign names for certain attributes useful for many types of ob­
jects. Attribute names assigned by Digital always have at least one $ 
character in them to distinguish them from names created by users. 

There are two general categories of attributes: global attributes and 
class-specific attributes. Global attributes are attributes defined by the 
naming service architecture itself. The meaning of a global attribute is 
defined by the architecture and is the same for any name with which it is 
associated. Class-speci"fic attributes are attributes whose definition de­
pends on the value assigned to the Class attribute, one of the global at­
tributes. 

We will defer a detailed discussion of the global attributes until after 
we have examined the objects the naming service uses to maintain the 
namespace graph structure. 

In the naming service, the nodes of the underlying tree structure of the 
directed graph represent directories, each having a unique name, which 
is itself maintained by the naming service. Each directory has a number 
of attributes associated with it, including certain of the global attributes 
defined by the architecture, and contains zero or more directory entries. 

Figure 16.4 shows a simple namespace in which each of the directo­
ries making up the namespace is represented by a circle. The entries 
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Directory structure of a simple namespace. 
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stored in a directory are shown at the bottom of the circle. The simple 
name of the arc leading to each directory is shown at the top of the cir­
cle. Each directory has a full name made up of a concatenation of the 
names of the arcs leading to it in the tree structure. The root directory 
stores the highest-level directory entries making up the namespace and is 
considered to be unnamed. There is a single root for the entire name­
space, and all the directories can be located under the root. The entries in 
the directories are linked together to form an acyclic, rooted, directed 
graph structure. 

Types of Directory Entries 

Each of the entries stored in a directory has a simple name and a set of 
attributes. Some of the attributes stored for directory entries consist of 
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the global attributes defined by the architecture. Entries for simple names 
stored in directories can be of three types: 

• Object Entries. These entries form the leaves of the underlying tree struc­
ture. Object entries can store global attributes and also attributes that 
users associate with named objects. For example, one of the attributes 
stored for an object entry is typically the DNA$Towers attribute repre­
senting the address of the object in the network. (The DNA$Towers at­
tribute is described in Chapter 11.) 

• Child Pointer Entries. These entries name the arcs of the underlying tree 
structure. One of the global attributes stored for a child pointer entry 
consists of a pointer to a child directory in the namespace tree. 

• Soft Link Entries. These entries name the arcs that augment the underly­
ing tree structure to form a directed graph. One of the global attributes 
stored for a soft link entry is a pointer used to implement alias names. 

Global Attributes 

As introduced earlier, the meanings of global attributes are defined by 
the architecture and are the same for all entries stored by the naming ser­
vice. Box 16.1 lists the global attributes assigned in the naming service 
architecture. Some of the global attributes are associated with directories 
and with all three types of directory entries; others apply only to directo­
ries, child pointer entries, soft link entries, or object entries. Most of 
them store values that the naming service uses to control its own opera­
tion. Therefore, the meanings of the global attributes give important in­
sights into how the naming service performs its functions. 

Directory Invariants 

As discussed earlier, the child pointers in the directories making up the 
namespace always form a tree structure. A tree of directories makes up 
the entire namespace. The namespace enforces two directory invari­
ants, conditions from which the directory structure is never permitted 
to deviate. 

• Directory Invariant 1. Each directory has exactly one parent. This invari­
ant guarantees that the namespace logical structure always forms a tree. 

• Directory Invariant 2. No directory is a child of any of its descendants. 
This invariant ensures that the namespace logical structure does not con­
tain any cycles. 
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In practice there is seldom a need for a given network to have more than 
one namespace. The implementation of a single logical namespace con­
taining the names of all network resources allows everyone in the net­
work to have access to any resource in the network. The naming service 
does, however, allow a network to implement multiple namespaces if an 
installation requires them. Multiple namespaces may be necessary in cer­
tain unusual cases for security purposes where an installation wishes to 
use the naming service in a compartmentalized environment that uses 
mandatory security controls. Support for multiple namespaces also helps 
when the namespaces for two isolated networks are about to be merged 
to form a single, integrated namespace. 

The function of mapping a name stored in a namespace into a set of at­
tributes is relatively simple in concept. If the naming service were imple­
mented in a centralized fashion, with the entire namespace contained in a 
single database stored on a single computing system, an existing file system 
could be used in a straightforward manner to implement the naming ser­
vice. However, in a large network it is infeasible to store all the names in a 
single central location. One reason for this is that the naming service would 
then constitute a single point of failure in the network. Since the naming 
service is employed by all users to locate resources, failure of the naming 
service would mean failure of the entire computer network. Another reason 
to avoid a centralized naming service is that it would suffer from poor per­
formance in a large network. The cost of accessing a centralized naming ser­
vice from distant points in the network would be high, and the naming ser­
vice would quickly become both a processing and a bandwidth bottleneck. 

A major challenge in designing the naming service was to make the 
service operate in a highly distributed fashion and to make it work 
efficiently in a large, possibly global network. To meet its design objec­
tives, the naming service must be highly available, highly robust, and 
highly distributed. To achieve the required performance and availability, 
the namespace is stored in a database that is both partitioned and par­
tially replicated. The term partitioned means pieces of the database are 
stored in different physical locations on separate computing systems. 
The term partially replicated means the same piece of the namespace can 
be stored on multiple computing systems. 

We next describe the major components that make up the naming 
service and examine the protocols by which naming service components 
communicate in carrying out naming operations. 
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Global Attributes Associated with Directories and All 
Directory Entries 

"' Creation Tin1estamp(Di~S$CTS). A si:ugle-valuc.:J attributt p.ttSt:1J.i: 

and non-null for every directory entry. It contains a value, unique in 
space and time, that is assigned when the entry is created and is 
never changed. It also serves as a timestamp marking the time the 
object was initially created. 

• Update Timestamp (DNS$UTS). A single-valued attribute present 
for every directory entry and non-null for every object that is up­
dated. For object entries, it provides a timestamp indicating the time 
at which the most recent update of an object's attribute values was 
made. 

• Access Control Set (DNS$ACS). A set-valued attribute containing 
a value for each access control element in the object's access con­
trol set. 

Global Attributes Associated with Directories 

• Replicas (DNS$Replicas). A set-valued attribute identifying all the 
clearinghouses storing a replica of this directory. 

• Convergence (DNS$Convergence). A single-valued attribute describ­
ing how persistent a directory should be in keeping its replicas up to 
date. It contains three possible values: LOW, MEDIUM, and HIGH. 
The value LOW indicates that the propagator function is not to be 
run when updates are made and that the skulker should be run at 
least once every 24 hours for a directory having pending updates. 
The value MEDIUM indicates that the propagator is to be run once 
for each update and that the skulker should be run at least once 
every 12 hours for a directory having pending updates. The value 
HIGH indicates that the propagator is to be run once for each up­
date and that a skulk should be scheduled for no more than 1 hour 
in the future for a directory having pending updates. 

• All Up To (DNS$AllUpTo). A single-valued attribute giving a maxi­
mum value for how out of date the replicas of the directory are. All 
replicas are guaranteed to have received all updates whose time 
stamps are earlier than this value. 

• Clearinghouse Name (DNS$CHName). A single-valued attribute 
containing a boolean variable used to enforce the clearinghouse in­
variants. 
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• Parent Pointer (DNS$ParentPointer). A set-valued attribute contain­
ing a set of pointers to each directory's parent in the namespace tree 
from the directory in question up to the root. This attribute is main­
tained by nameservers to keep the graph of the namespace properly 
connected. 

• Directory Version (DNS$DirectoryVersion). A single-valued attribute 
giving the current version of a directory. 

• Up Grade To (DNS$UpGradeTo). A single-valued attribute used to 
control the upgrading of a directory from one version of the naming 
service to another. 

Global Attribute Associated with Child Pointer Entries 

• Child Creation Timestamp (DNS$ChildCTS). A single-valued at­
tribute containing the creation timestamp of the child directory 
pointed to by this child pointer entry. 

Global Attribute Associated with Soft Link Entries 

• Link Target (DNS$LinkTarget). A single-valued attribute containing 
the full name of the entry the soft link entry points to. 

• Link Time Out (DNS$LinkTimeOut). A single-valued attribute indi­
cating the time after which the soft link is to be either checked or 
deleted. 

Global Attributes Associate with Object Entries 

• Class (DNS$Class). A single-valued attribute used to classify objects 
according to the type of object being named. 

• Class Version (DNS$ClassVersion). A single-valued attribute used to 
allow the definition of an object class to be evolved over time. 

• Object Unique Identifier (DNS$0bjectUID). A single-valued at­
tribute used to store a unique identifier for the object assigned ac­
cording to the rules of the Unique Identifier (UID) architecture de­
scribed in Chapter 15. 

• Node Address (DNS$Address). A single-valued attribute used only 
for compatibility with DNA Phase IV to store the address of the 
node on which the object resides. In a DNA Phase V network, the 
DNA$Towers attribute is used to store node address information. 
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The namespace database is implemented in the form of repositories 
called clearinghouses. The two major functional components of the 
naming service are clerks and nameservers. Users request naming service 
op~ratlon~ thr01Jgh ~ clerk 7 ':~rhich commi_!nicate "'.x.rith !!2.!!leservers ~!l 

behalf of users. Nameservers retrieve information from and update clear­
inghouses on behalf of the clerks. Clearinghouses, clerks, and name­
servers are distributed among the nodes in the network. 

A nameserver can control one or more clearinghouses, but each clear­
inghouse is controlled by one and only one nameserver. A clerk can com­
municate with any of the nameservers in the network. These relation­
ships are illustrated in Figure 16.5, which shows how a clerk might ac­
cess two nameservers and two clearinghouses in satisfying a request for a 
naming operation. 

Clearinghouses 

The unit of both partitioning and replication of the namespace is the in­
dividual directory. A collection of directories stored on a particular sys-

Each nameserver is responsible for one or more clearinghouses. A clerk accesses the 
nameserver responsible for the clearinghouse that the clerk determines is most likely to 
contain the directories required to satisfy its request. A clerk may access several nameservers 
in satisfying a request for a naming service. 

User Request for 
a Naming Service 

Operation 

Nameserver 

1 
Clearinghouse Clearinghouse Clearinghouse Clearinghouse 
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tern and accessible by a single nameserver is called a clearinghouse. 
Clearinghouses are either active or inactive. When at least one clearing­
house is active in a given system, the system is currently acting as a 
nameserver. Although a nameserver typically has access to a single clear­
inghouse, which contains all the directories the nameserver can directly 
access, it is possible for a nameserver to concurrently control and access 
multiple clearinghouses. This might happen when a nameserver fails and 
a clearinghouse has to be moved to a new nameserver. 

Clerks 

A clerk is the naming service component that implements the application 
programming interface to the naming service and that performs naming 
service operations on behalf of end users and application programs. All 
requests for naming operations that users make, either directly or indi­
rectly, are made of a naming service clerk. Each node in the network con­
tains an implementation of a clerk. Box 16.2 lists the functions a user of 
the naming service can ask a clerk to perform. 

Nameservers 

A nameserver is the naming service component that actually accesses the 
clearinghouses containing the directories making up the namespace. Not 
all nodes implement a nameserver component. A network should include 
enough nameservers to provide the performance, robustness, and avail­
ability required for a given size network. A nameserver can be imple­
mented in a general-purpose computing system performing other tasks 
as well as naming. However, in large networks it is likely that the name­
server function will be performed by specialized processors, just as the 
routing function is generally performed by specialized routers. 

A nameserver is composed of four major modules, as shown in Fig­
ure 16.6. The following are descriptions of the functions of the name­
server modules: 

• Control. The Control module of a nameserver coordinates the overall 
operation of the nameserver, such as turning it on and off and bringing 
clearinghouses online. The Control module is also responsible for peri­
odically advertising the availability of the nameserver. 

• Transaction Agent. The Transaction Agent module performs the opera­
tions requested by clerks. The transaction agent is responsible for accessing 
one or more clearinghouses and for communicating with other transaction 
agents to coordinate the creation, deletion, and modification of directories. 
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• EnumerateAttributes. Enumerates the attributes of an object entry, 
directory entry, soft link, or clearinghouse. 

• ReadAttribute. Returns the value(s) of the specified attribute. 

• ModifyAttribute. Modifies (or deletes) an attribute or attribute 
value. 

• TestAttribute. Tests for whether a value is a current attribute value. 

• CreateObject. Adds an object entry to the namespace. 

• EnumerateObject. Returns the names of object entries from the 
namespace. 

• DeleteObject. Removes an object entry from the namespace. 

• CreateDirectory. Creates a child directory under the specified parent 
directory. 

• AddReplica. Adds a clearinghouse from the replica set of a directory. 

• RemoveReplica. Removes a clearinghouse from the replica set of a 
directory. 

• DeleteDirectory. Removes the specified directory from the names­
pace. 

• EnumerateChildren. Returns information about child directories of 
the specified parent directory. 

• Skulk. Skulks a directory to force convergence of its replicas. 

• CreateLink. Creates a soft link entry. 

• DeleteLink. Deletes a soft link entry. 

• EnumerateLinks. Enumerates the soft link entries in a directory. 

• ResolveName. Follows a chain of soft links and returns the full name 
of the entry pointed to. Cycles are detected. 

• TestGroup. Tests for group membership, allowing for recursively 
defined groups and for detecting cycles. 

• Update Sender. The Update Sender module is responsible for spreading 
changes made to directories in the local clearinghouse to all other clear­
inghouses that contain copies of that directory. This process is described 
later when we discuss directory updating. 

• Update Listener. The Update Listener module receives directory updates 
from the update sender and records the changes in the appropriate clear­
inghouse. The update sender and the update listener are also responsible 
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for ensuring that clearinghouses can find each other when a new clear­
inghouse is created or when a clearinghouse is moved. 

Four protocols are used in implementing the distributed algorithms that 
the naming service uses to perform its functions, as shown in Figure 16.7 
and briefly described next: 

· Solicitation and Advertisement Protocol. The Solicitation and Advertise­
ment protocol (S.Protocol) is the means by which clerks learn about 
available nameservers. Nameservers periodically advertise their avail­
ability by multicasting advertisement messages. Clerks can also solicit 
advertisements from nameservers. 

Naming service protocols. 

Clerk 

S.Protocol C.Protocol 

M.Protocol 
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• Clerk-Server Protocol. The Clerk-Server protocol (C.Protocol) is the pro­
tocol a clerk uses to request naming information from a nameserver. 

• Directory Maintenance Protocol. The Directory Maintenance protocol 
(M.Protocol) is used by Transaction Agent modules to coordinate their 
activities in creating, deleting, and modifying directory entries in clear­
inghouses. 

• Update Propagation Protocol. The Update Propagation protocol (P.Pro­
tocol) is the protocol that Update Sender modules and Update Listener 
modules use to propagate directory updates from one clearinghouse to 
another. 

We next describe methods used for partitioning and replicating the 
namespace. After that we will walk through a typical naming operation 
to see how a naming operation is performed. 

Partitioning of the namespace is accomplished by deciding which clear­
inghouses will contain which directories. A particular clearinghouse 
need not contain all the directories that make up the underlying name­
space tree structure. However, it must be possible for a naming service 
clerk to always be able to access any directory in the namespace. 

As introduced earlier, a clerk must be able to find the root of the 
namespace by coming in from any clearinghouse, and the clerk must 
then be able to locate any directory once it has found the root. One way 
this could have been accomplished would be to require each clearing­
house to maintain a copy of the root directory. However, to enhance the 
scalability of the naming service, the architects of the naming service de­
cided not to require this restriction. Instead, clearinghouses are assigned 
names so the naming service itself can be used to locate clearinghouses in 
the network. The architecture enforces certain invariants on the assign­
ment of clearinghouse names to enable any clerk to locate any directory 
beginning in any clearinghouse. 

Clearinghouse Invariants 

Clearinghouse names are assigned according to a set of rules that ensure 
that a name lookup for a clearinghouse cannot fail because the clearing­
house in which a required directory is located cannot be found. These 
naming rules revolve around two clearinghouse invariants that are never 
violated during normal operation of the naming service: 
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• Clearinghouse Invariant 1. A clearinghouse must contain at least one di­
rectory whose name is closer to the root of the namespace than the name 
of the clearinghouse itself. This invariant guarantees that the root is al­
ways reachable by starting at any clearinghouse. 

• Clearinghouse Invariant 2. Every directory must be replicated in at least 
one clearinghouse whose name is closer to the root than the name of the 
directory itself. This invariant guarantees that every directory is reach­
able from the root without having to look up a clearinghouse, which 
would in turn require looking up the subject directory. 

Namespace replication is accomplished by storing a given directory in 
more than one clearinghouse. A copy of a directory stored in a particular 
clearinghouse is called a replica. There are three kinds of replicas: 

• Master Replicas. One and only one replica of a directory is designated 
the master replica. To simplify maintenance, certain types of update op­
erations are performed only on master replicas. For example, the master 
replica is the only replica in which a new directory can be created by 
adding a child pointer to a higher-level directory. 

• Secondary Replicas. Another type of replica is a secondary replica. New 
soft link or object entries can be added either to a master or a secondary 
replica, and existing directory entries can be updated in either master or 
secondary replicas. 

• Read-Only Replicas. A third kind of replica is a read-only replica. It can 
handle requests for name lookups but cannot service user requests for 
adding or updating directory entries. Read-only replicas are updated 
only by the naming service itself. 

We next walk through a typical naming service operation. We will 
see how the components of the naming service work together to access 
the partitioned and replicated namespace database in performing nam­
ing operations. 

Naming Operation A naming service user requests a naming operation by communicating 
with a clerk via the clerk-client interface. A typical naming operation 
might be to issue the ReadAttribute function to retrieve a particular at­
tribute in a directory entry. 
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To satisfy a retrieval request for a directory entry, a clerk begins by 
choosing a clearinghouse likely to have the requested directory entry and 
establishing communication with the nameserver responsible for that 
clearinghouse. In most cases, the clerk will do this using information 
from a parent directory it '1 lr.,;:iny h::is stort>cl in a cache. 

Assuming the clerk can locate the appropriate clearinghouse from 
information available to it, the clerk communicates with the nameserver 
responsible for that clearinghouse using the C.Protocol and requests the 
desired directory entry. It then passes the attributes associated with the 
directory entry to the user. 

Walking the Namespace Tree 

In some cases, the clerk will not know which clearinghouse contains the 
required directory, and it must walk the namespace tree to locate the 
clearinghouse containing the directory entry it is looking for. Even 
though a clerk may not have information about the clearinghouse that 
contains the information the clerk is searching for, it must have some in­
formation to get started. This may be a directory entry for some ancestor 
directory above the desired entry's parent. In the worst case, the clerk 
may have to begin in any clearinghouse whose address is available to it. 
In the absence of any cached directory entries, the clerk uses the address 
of a nameserver that has advertised its availability or an address in a stat­
ically configured list of nameservers available to the clerk. 

Depending on where it starts, the clerk may have to follow a number 
of pointers to reach the clearinghouse that contains the entry it is search­
ing for. If the clerk has already found a clearinghouse containing the root 
of the namespace, it can start at the root and follow pointers found in 
child directory entries until it reaches the desired directory entry. 

It is possible-especially when a clerk first becomes operational and 
has no cached directory entries-for the clerk to not yet have access to a 
clearinghouse that contains the root of the namespace. In such a case, 
one of the clearinghouse invariants described earlier guarantees that a 
clearinghouse not containing a replica of the root directory must contain 
a pointer to another clearinghouse closer to the root. The clerk can fol­
low these pointers from clearinghouse to clearinghouse, moving up at 
least one level each time, until it eventually reaches a clearinghouse that 
has a root directory replica. It can then follow child pointers until it finds 
the entry it is looking for. 

We next examine the way in which the naming service handles up­
date operations and how directory replicas are brought into convergence. 
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The updating algorithms defined by the naming service architecture are 
designed to operate efficiently and correctly in a highly distributed envi­
ronment. The updating algorithms operate so all updates are total, idem­
potent, and commutative:* 

• Total. Total means that an update can always be applied without regard 
to any of the updates made in the past. 

• Idempotent. Idempotent means that multiple applications of the same 
update to the database has the same effect as a single application of the 
update. 

· Commutative. Commutative means that a series of updates can be ap­
plied in any order with identical results. 

The total and idempotent aspects of attribute updating are facili­
tated through the limited types of allowed update operations. For exam­
ple, attribute values can only be completely replaced and cannot be in­
cremented or decremented. The commutative aspect of updating is 
handled via update timestamps. All updates made to the database imple­
menting the namespace are time stamped and are always applied so the 
update entering the network most recently always wins. 

Loose Consistency Guarantees 

A first look at the features provided by the naming service can give the 
impression that it has many of the features associated with a general­
purpose distributed database facility. However, the architectural 
specifications for the naming service specifically warn against using it for 
such general-purpose applications. 

NETWORK ARCHITECT 

Although the database used to maintain a namespace can be used to perform 

many of the functions a user might want in a distributed database system, the 

naming service has many characteristics making it ill suited for such uses. The 

naming service is intended to be used to store a small amount of information for 

a very large number of things, rather than a lot of information about a few 

things. Also, the level of replication the naming service supports is far beyond 

the level of replication typically associated with distributed databases. A typical 

* The operation to create a new attribute does not satisfy these properties. 
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distributed database might implement two, three, or four replicas, but beyond 

that the overhead ordinarily gets too great. The naming service is designed to 

support possibly 100 replicas of the same directory scattered around a world­

wide network. 

The naming service provides very loose consistency guarantees to 
allow the namespace to be partitioned and replicated to provide for high 
levels of availability and performance. Immediately after a change is 
made to one replica of a directory, a temporary situation may exist in 
which different users may get different answers when querying the nam-
. . 
mg service. 

Suppose I move from Boston to San Francisco. Before moving I up­
date the address attribute associated with the ENG.NAC.JamesMartin 
user name in the Boston clearinghouse. In a large organization, it is likely 
that the directory storing the object entry for ENG.NAC.JamesMartin is 
replicated in a great many clearinghouses maintained by different name­
servers. Immediately after I update the address attribute of my user 
name, those users that happen to be using the nameserver controlling the 
Boston clearinghouse will have immediate access to my new e-mail ad­
dress. However, if someone in London attempts to send me an e-mail 
message immediately after I change my address, it is possible that the 
clearinghouse used in London may not yet have been informed of the 
change, and the message may go to Boston instead of San Francisco. 

It is also possible for two users employing different clearinghouses 
to each attempt to register the same name in the naming service and both 
be allowed to do so. After the directories converge, only one of the 
names registered will be valid: To handle this type of situation, the nam­
ing service uses the notion of safe and unsafe names. 

NETWORK ARCHITECT 

One of the most unusual features of the naming service is this notion of loose 

consistency guarantees. If two people go to the naming service and both register 

the name Dave Oran, and they happen to go to two different nameservers, 

those two nameservers will both accept the name. Such a situation would be 

totally unacceptable in most distributed database applications. Instead of trying 

to do distributed synchronization with two-phase commits or trying to imple­

ment a quorum consensus algorithm, we implemented the notion of safe names 

and unsafe names. When you first register your name, it's unsafe. At any time 
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you can go in and ask the naming service: "Is my name safe yet? Is my name 

safe yet? Is my name safe yet?" And eventually either you will be told your 

name is safe, or you will be told someone else claimed that name before you did. 

In a well-managed, well-designed network, a name will become safe within min­

utes and often within seconds. And also, if the installation's naming conventions 

are well designed, name conflicts will occur very seldom, so the problems associ­

ated with unsafe names will be rare. But the architecture takes great pains to 

ensure that no matter what, at some point either a name becomes safe or you 

are notified that someone else claimed it first. The alternative was that we would 

have had to require a quorum of the nodes to be operational in order to be able 

to do an update. Many more people would be upset if they tried to give a name 

to something and they were told they couldn't do it than by allowing an opera­

tion to occasionally fail because the directories didn't converge immediately. 

Directory Update Convergence 

When an update is made to a replica of a directory, the nameserver con­
trolling that replica typically makes a one-time attempt to spread that 
change to all other clearinghouses containing replicas of that directory. 
This updating attempt is performed by a naming service function called 
the propagator. In most cases, the propagator causes convergence to take 
place relatively quickly. The function of the propagator as described in the 
naming service architecture is relatively simple and defines the function as 
being performed at the time each update is made. However, the architec­
tural description of the propagator suggests a series of optimizations of 
this function that actual implementations might employ, including: 

• running the propagator as a background thread, thus allowing responses 
to be returned to naming service clerks more rapidly than if propagation 
occurred synchronously 

• waiting for a short time before running the propagator function to allow 
updates to be batched, thus potentially reducing the number of required 
connections to the same clearinghouse 

• sequencing the transmission of updates by clearinghouse rather than by 
entry to make better use of network resources 

• caching connections to clearinghouses to potentially reduce the overhead 
associated with connection establishment and authentication operations 

• omiting the propagation function if an execution of the convergence al­
gorithm (described next) is scheduled soon 
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The Skulker 

A network manager can specify that the propagator should not be run 
for certain directories. Even if the propagator was executed, there may 
be situations where one or more clearinghouses were not available at the 
time the propagator function was run. There is another convergence al­
gorithm, called the skulker, that operates periodically for each directory 
in the namespace. It forces convergence for those updates the propagator 
was not able to fully propagate. 

NETWORK ARCHITECT 

During the design of the naming service architecture we gave the convergence 

algorithm the nickname "the midnight skulker," and it sort of stuck. You're let­

ting the system go on during the day, and then at night the skulker will skulk 

around through all the clearinghouses and fix everything up for you. The skulker 

is the background algorithm that runs around through the replicated directories, 

figures out what's different about them, and makes them all the same. 

Skulk Operation Execution of the convergence algorithm is called a 
skulk. Skulks operate independently on each directory in a namespace 
and can be done at intervals set individually by network managers for 
each directory. For each directory, the master replica is linked to the sec­
ondary replicas in a virtual ring structure. (A master replica that is not 
replicated simply points to itself.) The virtual ring keeps multiple skulks 
of a single directory from getting in each other's way. For a skulk opera­
tion to complete successfully, it is necessary for all clearinghouses con­
taining replicas of the directory being skulked to be online during the 
time the skulk is executed. 

The following is a simplified description of what the skulker does in 
bringing replicas of a directory into convergence: 

1. The skulker gathers up all updates made to the master replica and all 
updates made to secondary replicas and applies them to the clearing­
house in which the skulker is running. 

2. The skulker then spreads all the gathered updates to all other replicas 
of the directory so the master replica and all secondary replicas are 
brought into synchronization. 

3. Finally, the skulker informs all the replicas of the timestamp of the lat­
est update that all of them are guaranteed to have seen. This timestamp 
is maintained for each directory replica in the DNS$AllUpTo attribute. 
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The skulker is a distributed algorithm that can be started by any 
nameserver, and it is possible for skulks to be running concurrently in 
more than one replica of a given directory. The algorithm is designed so 
when this happens, resources may be wasted but the directory will not be 
corrupted and all replicas will still converge. To increase efficiency, a 
function of the skulker detects the operation of other skulkers in the 
same directory and terminates all the skulks except for the one most re­
cently started. Once the skulk process has completed successfully for a 
given directory, all replicas are guaranteed to be in convergence as of the 
time contained in the DNS$AllUpTo attribute. 

The more frequently skulks are run, the more up to date all the 
replicas of a directory will be. In a large network, skulks can be expen­
sive to execute, so network managers must make tradeoffs between the 
cost of the computing resources required to maintain convergence and 
the cost of being somewhat out of synchronization for a period of time. 
(What is the cost of not being able to locate ENG.NAC.JamesMartin for 
a while?) Network managers can control the frequency of skulks either 
by adjusting one of the global attributes associated with each directory 
or by manually initiating skulks. 

Skulk Operation Failure In a large, global network, it is possible for a 
skulk operation to fail. If the skulker repeatedly fails to complete suc­
cessfully, it is due to one of the following reasons: 

• One or more replicas of a directory are not available because one or 
more clearinghouses are currently offline. 

• The network has become partitioned, so communication with one or 
more clearinghouses is not possible. 

• A clearinghouse has been destroyed due to a hardware failure or a seri­
ous operator error. 

• The clocks in the network have gone out of synchronization to such an 
extent that updates to directories are being rejected. 

• The structure of the namespace has been corrupted. 

• A nameserver has a programming error causing it to operate incorrectly. 

• There is an error in the naming service architecture itself. 

If either of the first two situations occurs, the skulk operation will 
eventually complete successfully once the offline clearinghouses are 
placed online or after the required resources are made available to re­
cover from the network partitioning. The next four situations require 
more elaborate recovery procedures typically requiring network manage-
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ment intervention. The naming service architecture describes these recov­
ery procedures in detail. As for the last reason: 

NETWORK ARCHITECT 

We feel confident that we have addressed all seven reasons for a skulk operation 
failing. But the seventh type off ailure would be rather serious and the prospect 

of that happening sometimes keeps us up at night. 

X.500 and the OSI As introduced earlier, CCITT Recommendation X.500 and ISO 9594, 
Directory the OSI Directory, describe an international standard for a naming ser­

vice. The DNA Phase V naming service has some similarity to the OSI 
Directory. Both the naming service and an implementation of the OSI Di­
rectory allow a user to specify a name and get back either an indication 
that the name does not exist or the set of attributes associated with that 
name. There are, however, also a great many differences between the 
naming service and the OSI Directory. Perhaps the biggest difference is 
that the naming service operates only on primitive names, whereas the 
OSI Directory works with limited forms of descriptive names. 

Distinguished Attributes 

The OSI Directory stores sets of attribute names and attribute values. 
One type of attribute the OSI Directory stores is called a distinguished 
attribute, which functions as a name. Distinguished attributes can be 
used to provide a function similar to returning the set of attributes asso­
ciated with a name. (For example, what attributes are associated with 
ENG.NAC.JamesMartin?) 

Descriptive Searches 

Another major function provided by the OSI Directory, not provided by 
the naming service, is the search function. The search function allows a 
user to request a search based on an arbitrary set of attribute name/at­
tribute value pairs. These are called attribute value assertions (AVAs) in 
the terminology unique to X.500 and the OSI Directory. An example of 
an informally stated set of AVAs might be: "Give me information about 
all the users whose Group attribute has the value 'Network and Commu-
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nications' and whose Division attribute has the value 'Engineering'." 
The naming service does not provide such descriptive search capabilities. 

Differences Between the Naming Service and the DSI Directory 

The following is a list of the major differences between the naming ser­
vice and the OSI Directory: 

• The naming service maintains primitive names and allows only name­
to-attribute mapping; the OSI Directory maintains descriptive names 
and allows limited descriptive searches in addition to name-to-attribute 
mappmg. 

• In the naming service graph structure, the arcs of the graph do not have 
types associated with them; in the OSI Directory, all the arcs of the graph 
are typed. 

• In the naming service, there is no formal schema or enforced formal 
structure associated with a namespace. Users are able to structure a 
namespace in any desired manner. An OSI Directory namespace has a 
formal schema defining allowable data types and places constraints on 
the shape of the namespace graph structure. 

• The naming service defines detailed methods for allowing portions of the 
namespace to be replicated. The OSI Directory currently provides no in­
formation on how replication should be handled. The OSI Directory 
standard currently includes a general discussion of replication but leaves 
the details of how it is to be accomplished to individual implementors. 

• The naming service provides access control facilities for implementing 
security functions. The OSI Directory currently provides no access con­
trol facilities. 

NETWORK ARCHITECT 

To build an implementation of the OSI Directory today, you have to add a lot 

of things not discussed in the standard. This is a problem for interoperability. 

The things addressed in the standard will interoperate, but things that go 

beyond the standard may not. So if somebody implements replication, you can 

only replicate among nameservers of a given vendor. It is the intention of Digital 
to eventually merge the naming service with the OSI Directory. And when that 

is done, the user will get the best of both worlds. The real problem today is that 

the OSI Directory is not yet complete and won't be until about 1992. 
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The DNA Phase V naming service is a ubiquitous service, available on all 
network nodes, that users can employ to locate network resources. An­
other ubiquitous set of services pervading the entire DNA Phase V archi-
l.t:<..;i..Urt l.-UHLti1IS r1101iitoring ai1d cvutrol!ing the YU.Gt array af resources 
that make up a computer network. The network management aspects of 
the DNA Phase V architecture are described in Chapter 17. 
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Network Management 

DNA network management allows network managers to control and 
monitor the operation of a DECnet Phase V communication network. It 
allows parameter values to be specified that describe how various aspects 
of the network are to operate and allows parameter values automatically 
set by DNA Phase V protocols to be fine-tuned as necessary. DNA net­
work management allows network managers to start and stop network 
components as needed, to monitor the operation of the network, and to 
extract and analyze information relating to network traffic and network 
performance. Network management data is collected in real time and can 
be used to generate statistical and auditing information. 

Digital's philosophy is that network management should be limited 
to the setting of options related to matters of policy rather than those re­
lated to the normal operation of the network. For example, all network 
protocols-such as the protocol controlling the distributed routing algo­
rithm-have mechanisms built into them to control normal network op­
eration. These mechanisms are outside the scope of network management. 
They automatically set parameters to the proper values as link failures 
occur and as nodes come up and down. No network management inter­
vention is required to control the day-to-day operation of the network. 

DNA Phase V network management is based on the emerging interna­
tional standards for network management. The draft international stan­
dards for network management that ISO is developing divide manage­
ment functions into five specific management functional areas (SMFAs): 

• configuration management 

• fault management 
377 
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• performance management 

• security management 

• accounting management 

The current ISO draft internationai standards do not cover aii as­
pects of managing communication networks. In cases where standards 
are not currently being developed, DNA Phase V uses proprietary solu­
tions. Digital's intention is to migrate toward international standards 
when they become available. 

Network management has been a part of DNA since about 1978, when 
DNA Phase II was introduced. Until the development of the network 
management architecture included in DNA Phase V, DNA network man­
agement was defined in a single architectural specification defining the 
network management aspects of all components of DNA. Such a mono­
lithic approach to network management led to a number of problems, 
including a large and unwieldy network management document and 
difficulties in keeping the network management architectural 
specification synchronized with the architectural specifications for other 
components. 

In DNA Phase V, there is still a network management architectural 
specification. However, it describes only the general approach to net­
work management. The details concerning the management aspects of 
each individual architectural module are contained in the architectural 
specification for the module itself. Such an approach moves the responsi­
bility for the management aspects of an architectural module to the ar­
chitectural group responsible for that part of the architecture. For such 
an approach to work, provision must be made for guaranteeing consis­
tency in the management approach from one architectural module to an­
other, both within and outside the DNA Phase V architecture. This led to 
a requirement for an overall management architecture within which the 
DNA Phase V network management architecture would fit. 

While DNA Phase V was being developed, it became clear that with the 
advent of truly distributed systems, the distinction between the manage­
ment of a local computing system and the management of the network 
was beginning to break down. What was needed was a much more gen­
eral approach to management. This resulted in the development of the 
Enterprise Management Architecture (EMA), which defines a distributed 
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system as a collection of individual computing systems tied together by a 
communication network for the purposes of sharing resources. EMA is a 
meta-architecture that ensures consistency among a family of manage­
ment architectures in the same way an individual architecture ensures 
consistency among a family of implementations. EMA is based on ob­
ject-oriented design principles. Object-oriented design views data values 
as being embedded within an object. Data values are accessed through 
the object itself rather than directly from the outside. The DNA Phase V 
network management architecture is only one of a series of management 
architectures that will eventually fall under the EMA umbrella. The 
DNA Phase V network management architecture describes how the com­
ponents making up a DNA Phase V communication network are man­
aged. Other management architectures describe how various other com­
ponents in the total distributed system are managed. 

The Entity Model At the heart of the enterprise management architecture is the entity 
model. The entity model uses the term entity to refer to any type of object 
in a distributed system that must be managed. The concept of an entity 
closely corresponds to the concept of an object in object-oriented design. 
Management can be described as a feedback loop between a person (a 
manager) and a set of entities (the things that are managed) (see Figure 
17.1). The entity model defines two major classes of software components: 

FIGURE 17.1 

• Directors. A director is a software system that managers use to manage 
the various components of a distributed system. 

· Agents. An agent consists of a software component associated with the 
entity being managed. 

Monitor/control feedback loop. 

Monitor 

Network 
Manager 

Entities 

Control 
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FIGURE 17.2 
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Director, agent, and management protocol. 

Director 

Management Protocol 

Directors communicate with agents by means of a management pro­
tocol that handles the flow of information between the two. The rela­
tionship between directors, agents, and a management protocol is shown 
in Figure 17.2. 

The management information and operations that pass between di­
rectors and entities are described below: 

• Directives. Directives flow from a director to an agent, and responses to 
directives flow back from an agent to a director. Directives consist of 
commands a director issues to an entity, possibly as a result of a manager 
issuing a command to the director. Most management needs are satisfied 
by two directives: Show to read a value of interest to management and 
Set to change a value. The directives Add and Remove are also defined 
for management information consisting of a set of values. Directives for 
certain types of entities also include actions. Examples of actions apply­
ing to many types of entities are Enable and Disable, which allow an en­
tity to be turned on and off. Many other actions are specific to a particu­
lar type of entity. The detailed definitions of actions are entity specific. 

• Events. Events flow from an agent to a director. An event is generated 
when some specific normal or abnormal condition occurs that is of inter­
est to management. 

A distributed system is constructed from manageable components, and 
the more computing systems there are in the distributed system, the more 
manageable components there are. To allow effective management of dis­
tributed systems using very large networks, the components must be orga­
nized into a logical structure, and they must be named so managers can 
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deal with the complexity. EMA uses a hierarchical system for naming en­
tities in which parent entities can have child entities subordinate to them. 

Entity Classes 

While all entities, from a management perspective, share a common ar­
chitecture, they are far from similar in function. For example, a Trans­
port layer entity performs functions very different from those performed 
by a Network layer entity. However, entities can be grouped into classes; 
all entity instances that are members of the same class are similar. In gen­
eral, the architectural specification for a particular component-such as 
OSI transport-defines a specific entity class. 

Within a particular class of entity, there may be a number of child 
entities. For example, within the OSI transport entity class, there is a 
child entity class called OSI Transport Port. A port defines an end point 
of an OSI transport connection. There is an instance of the Port entity 
class within the OSI Transport entity instance for every OSI Transport 
connection currently in operation. (See Figure 17.3.) 

Entity hierarchical structure. 
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Instances of a class can vary slightly. For example, an OSI Transport 
Port entity instance requesting the establishment of a Transport connec­
tion is slightly different from an OSI Transport Port entity instance ac­
cepting a connection request. However, the differences are minor and 
both types of OSI Transport Port erni1y insrnnces are members uf the 
same entity class. 

Entity Attributes 

An entity has a set of internal variables defined for it. The variables that 
can be inspected or set by a management action are called attributes. The 
values of an entity's attributes represent all the information about the en­
tity that are of concern to management. Box 17 .1 describes the four 
types of attributes that can be associated with an entity instance. 

With respect to DNA Phase V network management, systems making up 
the network are defined as the highest-level components in the naming 
hierarchy. Each system (end node, router, name server, etc.) in the net­
work is represented to network management by an instance of the Node 
entity class. Each Node entity instance is assigned a globally unique 
name. The name of the Node entity instance is used as the highest-level 
identifier in the name assigned to each manageable entity within that 
node. Node entity instance names are registered with the naming service 
along with the attributes associated with that node, including the node's 
network-service-access-point (NSAP) address. 

Below the Node entity instance in the entity hierarchy are class 
names of Module entities. A module consists of a group of networking 
functions that together provide a particular service. For example, there is 
a Module entity class associated with each different type of entity that can 
run in each of the architectural layers. The Transport layer includes an 
NSP Transport Module entity class and an OSI Transport Module entity 
class. At the next level down in the hierarchy are entity classes subordi­
nate to the Module entity class. These are defined to allow individual 
management of some part of a module's functions. For example, the 
High-level Data Link Control (HDLC) module includes a child entity 
class named Link. Since there can be many links attached to the node over 
which the HDLC protocol can operate, there must be a separate Link en­
tity instance for each HDLC link attached to the node. The network man­
agement architecture allows any number of levels of child entity classes to 
be specified. In the HDLC example, the hierarchy has three levels: 
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• Identification. An identification attribute uniquely identifies an entity 
instance to management. 

• Characteristic. A characteristic attribute allows a manager to control 
the operating parameters of an entity. For example, the parameters 
that determine the DDCMP polling rate or the cost of a routing cir­
cuit are characteristic attributes. In general, characteristic attributes 
take default values when the entity is created, and their values can be 
changed only through a network management action. The values of 
characteristic attributes are not changed during normal distributed 
system operation. 

• Status. Status attributes allow a manager to inspect the current state 
of an entity. Unlike characteristic attributes, status attributes can 
change without management intervention. For example, the values 
of status attributes can change as a result of normal distributed sys­
tem operation. 

• Counter. A counter attribute indicates the number of times an opera­
tion has been performed by an entity or the number of times a par­
ticular condition has been detected. As with status attributes, 
counter attributes change in value as a result of normal distributed 
system operation. 

1. an instance of the Node entity class 

2. an instance of the HDLC Module entity class 

3. an instance of the Link entity class 

Entity Instance Names 
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The full name of an entity instance is made up by concatenating all the 
individual entity class and instance names in the hierarchy. Each entity 
name is made up of a global part and a local part. The global part con­
sists of the name of the Node entity class and instance; the local part is 
made up of all the child entity classes and instances, up to the level of the 
Node entity instance. For example, the name "Node NAC.Dept57 
HDLC Link DSV-0" might refer to HDLC link "DSV-0" attached to the 
computing system whose node name is NAC.Dept57. 

The global part of the name is used to establish a connection be­
tween the node in which the access module resides and the node contain­
ing the required agent. An agent in the node entity then uses the local 
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part of the entity name to identify the next level of child entity to which 
the directive is addressed. If there are multiple levels of child entities, the 
process is repeated by each child entity in the hierarchy until the destina­
tion agent is reached. 

Although a distributed system employs many different types of entities 
that have very different characteristics, from a management perspective 
all entities have a common architecture. As we have seen, one or more 
Module entities are associated with each of the layers of the DNA Phase 
V architecture. The architectural model of the OSI Transport layer entity, 
from a management perspective, is shown in Figure 17.4. All entities are 
made up of the following: 

• Name. Each entity has a name associated with it that uniquely identifies 
it in the distributed system. Global entity names-such as the names of 
instances of the Node entity class in DNA Phase V-are registered with 
the DNA Phase V naming service. 

• State Machine Definition. An entity's state machine definition defines a 
set of state variables whose values define the entity's state at any given in­
stant. For DNA Phase V entities, an entity's state machine definition is 
ordinarily a part of the entity's protocol specification and is not 
specifically related to network management. 

OSI Transport entity architectural model. 

c Q) 

Network ~ ~ 
Management.-..--__, ~ ~ 

Director ~ E 
::;;: 

OSI 
Transport 

User 

OSI 
Transport 

Client 



Director 
Architectural 
Model 

CHAPTER 17: NETWORK MANAGEMENT 385 

Interfaces. Interfaces to the entity define the operations that provide 
input to and output from the state machine. 

Interfaces 

A typical entity, such as the Transport layer entity shown in Figure 17.4, 
has three types of interfaces, only the first of which is directly associated 
with management: 

• Management Interface. The management interface defines the way in 
which a director access module issues directives to the agent and the way 
in which the agent sends information about events to the director access 
module. 

• Service Interface. The service interface defines how the entity provides 
services to other entities. For example, the OSI Transport layer entity ser­
vice interface defines the operations a user of the OSI Transport entity 
(such as the DNA Session Control layer) can request of the Transport 
layer entity. 

• Client Interface. The client interface defines the operations the entity can 
request of other entities. For example, the OSI Transport layer entity 
client interface defines the operations the OSI Transport layer entity can 
request of a Network layer entity. 

Managers use the software that makes up a director to control and mon­
itor a collection of entities. For example, to control and manage a com­
munication network, a network manager might use director software 
specifically designed to manage a DECnet Phase V communication net­
work. To control the operation of a distributed system, a distributed sys­
tem manager might use director software designed to handle all aspects 
of the distributed system, with management of the communication net­
work being only part of the management function. The director architec­
ture has been specifically designed to be extensible to allow for the man­
agement function to be expanded in a consistent manner over time. 

The director provides an interface between a manager and a collec­
tion of manageable objects, each represented by an entity. Directors are 
themselves manageable objects conforming to the entity model. Figure 
17.5 shows the architecture of the director. It consists of the following 
components: 

• Kernel. The kernel provides a set of services that support and integrate 
the other functions of the director. 
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Management Director architectural model. 
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• Management Information Repository. The management information 
repository is a database of management information about the entities 
being managed. 

• Application Programming Interfaces. A set of application programming 
interfaces (APis) define how the other three types of director components 
can be plugged into the director. The director APis allow the other three 
components to be implemented in a manner independent of the particu­
lar hardware or operating system on which the kernel and the manage­
ment information repository are run. 

• Presentation Modules. A presentation module consists of software that 
handles a particular style of user interface between a manager and a di­
rector. Any number of presentation modules can be plugged into the di­
rector to handle different user interface styles. Presentation modules are 
independent of the entities being managed and of the functions that can 
be applied to them. 

• Function Modules. A function module consists of software that handles 
a set of specific management applications. It implements a set of specific 
management actions that can be applied to a collection of entities. Fune-
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tion modules are independent of the entities being managed and of the 
user interface style a manager employs. 

• Access Modules. An access module consists of software that handles com­
munication with one or more of the entities being managed. Access mod­
ules are independent of the functions that can be applied to the entities and 
of the user interface style a manager employs. An access module operates as 
a sink that receives information about events the managed entities generate. 

The DNA Phase V network management architecture is designed to use 
many of the distributed computing services described in Chapters 15 and 
16. For example, network management uses the naming service to man­
age names and the time service to obtain date and time-of-day values. 
Network management also uses the services of the DNA Session Control 
layer to provide communication capabilities for management compo­
nents. The services of the Data Link layer are also sometimes used di­
rectly to handle some basic management operations, such as loading and 
dumping when not all Network protocols are operating, for example, 
during node initialization or after certain types of failures. 

A number of architectures support DNA Phase V network management 
and the entity model. The following sections provide overviews of these 
architectures. 

Common Management Information Protocol 

In most cases, the network management director software will reside in 
one or more nodes remote from the node in which the managed entity 
and its agent reside. Communication between the director and the agent 
is controlled by an Application layer protocol called the common man­
agement information protocol (CMIP). DNA Phase V CMIP is based on 
the emerging ISO standards for CMIP. The DNA Phase V version of 
CMIP is a combination of two protocols: 

• Management Information Control and Exchange. The management in­
formation control and exchange (MICE) protocol is used to send direc­
tives from a director to a node agent. 

• Management Event Notification. The management event noti'fication 
(MEN) protocol is used to send event reports from a node agent to a 
director. 
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DNA CMIP is a simple request-response protocol operating over a 
DNA Session Control connection. It provides operations to show and set 
management attribute values, to request the execution of management 
actions, and to report on events that occur. 

Network Control Language 

The network control language (NCL) defines a command line interface 
that network managers can use to communicate with a director. NCL is 
new to DNA Phase V and replaces the command interface to the net­
work control program (NCP) used to manage DNA Phase IV networks. 
NCL provides network managers with access to the directives defined for 
all DNA Phase V entities. NCL specifies general syntax rules defining 
how network management commands must be entered and how re­
sponses are displayed. An implementation of NCL accepts input from a 
terminal and issues directives to entities using MICE protocol messages. 

The NCL command syntax consists of a verb, an entity name, and a 
sequence of argument identifiers or identifier/value pairs. The following 
are examples of NCL commands: 

• Set node NAC.Littleton Routing Circuit 73 Cost 10 

• Show Node NAC.Littleton DDCMP Link 67 All Counters 

NCL allows wildcards to be specified at various points in an NCL 
command to allow a network manager to specify a management opera­
tion for a group of entity instances. The following is an example of an 
NCL command with a wildcard: 

• Show Node NAC.Littleton DDCMP Link * All Counters 

This command would cause all the DDCMP link entities m the 
NAC.Littleton node to return all their counter values. NCL also provides 
commands that request naming service operations, for example, to register 
the name of a new node in the naming service. Additionally, NCL supports 
DNA Phase IV network management commands and allows a network 
manager to manage a DNA Phase IV node from a DNA Phase V node. 

Event Logging 

DNA provides mechanisms that enable the information generated as a 
result of events that occur to be distributed to points in the network 
where the event information can be stored and analyzed. DNA Phase V 
event logging consists of the following components: 
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• Event Sources. An event source detects events and initiates the genera­
tion of event reports. 

• Event Sinks. An event sink accepts event reports from an event source 
and processes, stores, or displays them. Phase V event logging allows for 
an arbitrary number of event sinks, possibly with each providing differ­
ent features. 

• Event dispatchers. An event dispatcher serves as an intermediary be­
tween event sources and event sinks. 

Each entity in the network that reports events has an event dis­
patcher. Entities in a node post event reports to the local event dis­
patcher, which is responsible for buffering event reports and distributing 
them to event sinks using the management event notification protocol. 

Network management can be used to control the operation of event 
dispatchers. Event streams can be created defining the sinks for event in­
formation and event filters defining the types of event reports each event 
sink is to receive. An event sink can also perform further event filtering. 
Event filtering permits certain event sinks to process only certain types of 
events. For example, event filtering can be based on the types of events 
the event sink will accept or on the particular types of entities from 
which event reports will be accepted. 

Maintenance Operations Protocol 

Maintenance operations consist of simple functions that must be avail­
able in a node even when the services of the higher layers of the architec­
ture are not available. For example, certain functions must be available 
even when a node is in the process of initializing itself and is not yet fully 
operational. DNA Phase V defines a simple management protocol called 
the Maintenance Operations Protocol (MOP). MOP requires the "man­
aging" node to be on the same data link as the "managed" node. MOP 
uses the services of the Data Link layer directly and requires only mini­
mal Data Link layer protocol support. The MOP modules handle all 
message acknowledgment and retransmission functions and do not re­
quire the services of any of the layers above the Data Link layer. MOP 
defines the following maintenance functions: 

• Downline Load. The downline load function allows a node to request a 
memory image from an adjacent node on the data link. If the image is 
that of a program, the downline load function allows program execution 
to be started at a specified memory address following the load. On a 
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broadcast data link, a node can multicast its downline load request and 
obtain the memory image from the first node responding to the request. 

• Upline Dump. The upline dump function allows a node to send the con­
tents of its own memory to an adjacent node over a single data link. On 
a broadcast data link, a node can multicast its dump request and then 
send its memory dump to the first node that responds. 

• Link Loopback Test. The loopback test function can be issued to test a 
communication link by looping a test message at various points along 
the physical connection. By moving the loopback point and isolating 
components, a network manager can use this function to diagnose link 
problems and locate component failures. 

• System Console Control. The system console control function can be 
used to control remote, possibly unattended, nodes through emulation of 
a console terminal. This function also allows the remote node to be 
restarted. 

The network management provisions built into the DNA Phase V archi­
tecture provide an orderly means for the setting of network management 
policy and for monitoring and controlling the network. The final chapter 
in this part on related architectures and mechanisms concerns the role of 
packet-switched data networks (PSDNs) and CCITT Recommendation 
X.25 in a DNA Phase V network. 
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X.25 Access 

Many of today's public data networks use packet-switching techniques 
and conform to CCITT Recommendation X.25. Recommendation X.25 
defines how a computer is attached to a packet-switched data network 
(PSDN). We begin by describing the characteristics of X.25. We then de­
scribe the DNA Phase V X.25 Access architecture and examine the vari­
ous roles X.25 can play in a DECnet Phase V network. 

A computer that uses a PSDN conforming to X.25 for communica­
tion must implement a data terminal equipment (DTE) function; the net­
work device to which the DTE is connected implements a complementary 
data circuit-terminating equipment (DCE) function. Recommendation 
X.25 defines the interface between an X.25 DTE and an X.25 DCE. It is 
important to note that X.25 defines only this interface-the way a com­
puter plugs into the network and exchanges packets with it-and does 
not specify how the network is implemented internally. Recommendation 
X.25 contains specifications for the interface between a DTE and a DCE 
at three levels (see Figure 18.1): 

• X.25 Level 1. This interface defines the characteristics of the physical 
link between a DTE and a DCE. This part of Recommendation X.25 
corresponds to the Physical layer of the OSI model. X.25 defines level 1 
through reference to other standards, such as X.21, X.21bis, and the V 
series of modem standards. 

• X.25 Level 2. This interface defines the protocol used to reliably pass 
frames of data between a DTE and a DCE. It corresponds to the Data 
Link layer of the OSI model and is defined by the Link Access Proce­
dures-Balanced (LAPB) data link protocol. LAPB is a functional subset 
of the HDLC data link protocol described in Chapter 19. 
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Comparison of Recommendation X.25 with DNA and the OSI model. 
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• X.25 Level 3. This interface defines the format and meaning of the data 
portion of the frames defined in level 2 and is often called the X.25 
packet level. It corresponds to part of the Network layer of the OSI 
model and specifies the procedures by which X.25 packets are passed be­
tween a DTE and a DCE. This same interface is defined in ISO 8208, 
Packet-Level Protocol for Data Terminal Equipment. X.25 level 3 and 
ISO 8208 are essentially identical. 

A PSDN might be constructed using a great many DCEs and a num­
ber of intermediate routing nodes, called switches, to construct networks 
having a complex topology, as shown in Figure 18.2. However, an X.25 
DTE connected to an X.25 DCE perceives any other DTE on the net­
work as being only one hop away. In this respect, a PSDN can be viewed 
as a subnetwork in the same manner as an HDLC point-to-point data 
link. A PSDN providing the X.25 interface is often represented in dia­
grams as a cloud. The complexities of the PSDN implementation are hid­
den from the user, and an X.25 DTE at one end of the network perceives 
only a point-to-point virtual circuit between itself and an X.25 DTE at 
the other end. (See Figure 18.3.) 

The X.25 DTE/DCE packet-level interface consists of definitions of the 
formats of packets passed between a DTE and a DCE. Packets contain 
both user data and commands used to control the operation of the X.25 
protocol. Box 18.1 contains brief descriptions of some of the X.25 com­
mand packets. The control information in each packet is used by devices 
in the PSDN to determine how to relay the packet through the network. 
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FIGURE 18.2 A possible X.25 network implementation. 
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Routing functions in a PSDN are implementation dependent, and the al­
gorithms used for routing are not defined by Recommendation X.25. 

A PSDN conforming to X.25 typically offers to its users two major types 
of facilities: permanent virtual circuits (PVCs) and switched virtual cir­
cuits (SVCs). * These facilities are described in the following sections. 
Other features of X.25 are briefly described in Box 18.2. 

* The DNA architectural specifications use the term switched virtual circuit 
(SVC) for this type of facility, whereas CCITT Recommendation X.25 uses the 
term virtual call (VC). We will adopt the DNA Phase V terminology in this 
chapter and use the term switched virtual circuit. 
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X.25 virtual circuit. 

X.25 Network 

Permanent Virtual Circuits 

A user of a PSDN may wish to be permanently connected with another 
network user in much the same way as two users are connected using a 
leased telephone connection. A permanent virtual circuit provides this 
facility. The users are permanently connected to their respective X.25 
DCEs. They use the communication facilities of the network and con­
sume network resources only when they are actually transmitting data; 
however, they remain logically connected permanently as though an ac­
tual physical circuit exists between them. Typically the users of a perma­
nent virtual circuit pay a monthly connect charge plus a charge based on 
total data transmitted over the virtual circuit. 

Switched Virtual Circuits 

When an X.25 DTE requests the establishment of a switched virtual cir­
cuit, the network establishes a virtual circuit with another user, the two 
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• Call Request. A DTE sends a Call Request packet to request the es­
tablishment of a switched virtual circuit. 

• Incoming Call. A DCE accepts the Call Request packet and generates 
an Incoming Call packet, which it sends to the destination DTE. This 
asks the destination DTE if it can accept the request for the estab­
lishment of a switched virtual circuit. 

• Call Accepted. The destination DTE transmits a Call Accepted 
packet as a positive response to an Incoming Call packet. 

• Call Connected. The originating DTE accepts the Call Accepted 
packet and transmits a Call Connected packet as the final step in es­
tablishing a switched virtual circuit. 

• Clear Indication. A Clear Indication packet is transmitted when a 
destination DTE is not able to accept an Incoming Call packet. It 
gives the reason for refusing to accept the call. 

• Clear Request. A Clear Request packet is transmitted when a DTE 
wants to request the release of a switched virtual circuit. 

• Clear Confirmation. A DTE transmits a Clear Confirmation packet 
as a positive acknowledgment to a Clear Request packet as the final 
step in releasing a switched virtual circuit. 
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DTEs exchange messages for a time over the virtual circuit, and then one 
of the two DTEs requests disconnection of the virtual circuit. A DTE re­
quests an SVC by sending a Call Request packet to the DCE. When the 
DCE receives the Call Request packet from a DTE, it sends an Incoming 
Call packet across the network to the destination DTE. If the destination 
DTE accepts the call, the two DTEs can then begin exchanging Data 
packets with each other over the switched virtual circuit. 

Users employing SVCs are generally charged based on connect time, 
quantity of data transmitted, or both. In requesting an SVC, the user per­
ceives little difference between using a PSDN and using ordinary dial-up 
telephone facilities. All the complexities of routing through a packet­
switched data network are hidden from the two communicating DTEs. 

Support for X.25 in DNA Phase V is defined in the X.25 access specifi­
cation. This specification defines an architectural model consisting ol 
modules and interfaces. These modules and interfaces, and some ways in 
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• Logical Channels. A given DTE is allowed to concurrently establish 
up to 409 5 different logical channels to other DTEs attached to the 
network by assigning a different 12-bit virtual circuit number to each 
(specific implementations may limit a DTE to fewer than 4095 logi­
cal channels). For example, a DTE might be implemented in a com­
puting system supporting many users (people or application pro­
grams), many of whom may need to use the PSDN for communication 
at any given time. Virtual circuit numbers are assigned to both per­
manent virtual circuits and switched virtual circuits. Each SVC and 
PVC is assigned a separate logical channel with its own virtual circuit 
number. Each message a DTE transmits on behalf of a user contains 
the virtual circuit number to w~ich the message is associated to dis­
tinguish it from message traffic generated by other users. 

• Flow Control. An X.25 PSDN implements flow control mechanisms 
to control the rate at which it accepts packets from each DTE. Flow 
control is implemented independently in each direction on a logical 
channel through the use of a windowing mechanism. The window 
size represents the maximum number of sequentially numbered Data 
packets that may be outstanding at any given time. 

• Interrupt Packets. A DTE can use Interrupt packets to send data that 
bypasses the normal packet sequence. Interrupt packets can be deliv­
ered even when the destination DTE is not accepting normal Data 
packets. A DTE sending Interrupt packets receives an Interrupt Con­
firmation packet for every Interrupt packet it sends. A DTE must 
wait until it receives a confirmation before sending the next Interrupt 
packet. 

• Reset Packets. A DTE or the PSDN itself can send a Reset packet 
across the DTE/DCE interface to reinitialize a virtual circuit. A reset 
causes all Data and Interrupt packets in transit to be discarded. 

• Call Clearing. A DTE receives an Incoming Call packet from its DCE 
when some other DTE is requesting that a switched virtual circuit be 
established with it. When a DTE receives an Incoming Call packet, it 
has the option of accepting or rejecting the request. A DTE rejects a 
request for a virtual circuit by sending a Clear Request packet. Either 
of the DTEs connected by an SVC can release the SVC by issuing a 
Clear Request packet. The DCE responds by sending a Clear Indica­
tion packet to the opposite DTE. That DTE then responds by send­
ing a Clear Confirmation to its DCE. That DCE then sends a Clear 
Confirmation packet to the DTE originally requesting release of the 
SVC. 
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• Restart Facility. Either a DTE or a DCE can issue a Restart Indica­
tion packet to clear all virtual circuits at the DTE/DCE interface. A 
DTE sends a Restart Indication packet to the DCE as part of its ini­
tialization procedure. 

• Closed User Groups. This optional facility of X.25 allows network 
managers to form logical groups of X.25 DTEs. If a user requests the 
use of a closed user group and the destination DTE is in it, the desti­
nation DTE is informed that the user requested the closed user 
group. This provides a method for determining that the caller is a 
"friend" without the destination DTE needing to manage a list of 
DTE addresses. 

• Call Redirection. This optional facility of X.25 allows an incoming 
request for a virtual circuit to be redirected to some other DTE. Ca­
pabilities of this facility include specifying a list of alternative DTEs 
to try to specify a logical chain of DTEs for continued redirection. 

• Network User Identification. This optional facility of X.25 allows a 
DTE to provide information to the PSDN, on a per-call basis, for 
such purposes as security, network management, or billing. 

• Call Charging. This optional facility of X.25 includes mechanisms 
for determining who is charged for a virtual circuit and for providing 
information for calculating charges. 
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which they are related, are illustrated in Figure 18.4. Keep in mind that 
the modules defined in the X.25 access specification are architectural 
modules and not actual modules of executable code. However, in the fol­
lowing discussion we will refer to the architectural modules as if they 
were physical modules, in order to conceptually describe how implemen­
tations might combine the architectural modules to provide X.25 access 
facilities. 

X.25 Access Module 

The X.25 access module is the module that allows a user to request the 
services provided by the X.25 interface. This is the only module that has 
to be implemented because it is the only module that provides an appli­
cation programming interface to X.25 services. As we will show later, a 
user of the X.25 access module can be a DNA Network layer entity, a 



398 

FIGURE 18.4 

PART IV: RELATED ARCHITECTURES AND MECHANISMS 

X.25 access modules and interfaces. 
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DNA Transport layer entity, an application program issuing requests for 
X.25 services, or an X.25 server module. The X.25 access module pro­
vides an X.25 service interface that allows its users to request its services 
via ports into the X.25 access module. Ports are data structures used to 
represent X.25 virtual circuits. The procedure declarations documenting 
the functions of the X.25 service interface are listed in Box 18.3. Note 
that this is an abstract interface; an implementation of the X.25 access 
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The following function and procedure declarations define the ab­
stract interface between the X.25 access module and a user of the 
X.25 access module in terms of the services the X.25 access module 
provides to a user. 

• OpenPort. Opens a port into the X.25 access module. A port is a 
data structure that can be used for subsequent binding to an incom­
ing or outgoing switched virtual circuit via a TakeCall or MakeCall 
function. 

• ShowPortStatus. Reads the status of an X.25 access module port, 
which reflects the status of the virtual circuit with which it is bound. 

• ClosePort. Releases a port and any of the resources associated with it. 

• OpenPvc. Allocates a permanent virtual circuit for subsequent use 
and implicitly opens the port bound to the permanent virtual circuit. 

• AcknowledgeComsFailure. Acknowledges that a failure of the PSDN 
has been detected for a port bound to a permanent virtual circuit. 

• MakeCall. Establishes a switched virtual circuit and binds it to a 
specified port. 

• Read Accept. Reads the data provided by some PSDNs when the 
PSDN accepts an outgoing call. 

• ListenForCall. Adds a filter to the list of existing filters in the X.25 
access module. Each filter defines the criteria for matching an incom­
ing call to the listener defined when the function is invoked. 

• StopListeningFor. Deletes a filter from the list of existing filters in the 
X.25 access module. 

• Listen. Polls for an incoming call that satisfies any filter defined by a lis­
tener defined previously by an invocation of the ListenForCall function. 

• TakeCall. Binds an incoming call that matches a listener's filter to a 
specified X.25 access port. 

• CannotTakeCall. Indicates that the incoming call cannot be bound 
to the listener, even though it has matched one of the listener's filters. 

• AcceptCall. Accepts an incoming call already bound to a port as a 
result of a TakeCall function. 

• ClearCall. Clears an incoming or outgoing switched virtual circuit. 

• ReadClear. Reads the data generated when the PSDN clears a virtual 
circuit. 

399 
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• Reset. Resets a virtual circuit bound to a port or acknowledges that 
the PSDN has reset a virtual circuit. 

• ReadReset. Reads the data generated when the PSDN resets a virtual 
circuit. 

• TransmitData. Queues a transmit buffer containing a Data packet to 
be sent over a virtual circuit. 

• TransmitPoll. Polls a transmit buffer previously queued by a Trans­
mitData function to determine if it has been transmitted. 

• ReceiveData. Queues a receive buffer that can be used to receive a 
Data packet over a virtual circuit. 

• ReceivePoll. Polls a receive buffer previously queued by a Receive­
Data function to determine if it contains a Data packet. 

• lnterruptTransmit. Sends interrupt data over a virtual circuit. 

• lntcrruptPoll. Polls for an Interrupt Acknowledgment received as a 
result of a previously issued IntcrruptTransmit function. 

• InterruptReceive. Reads received interrupt data over a virtual circuit. 

• IntcrruptConfirm. Acknowledges interrupt data previously received 
using the InterruptReceive function. 

module must specify the actual application programming interface a pro­
gram would use to request X.25 services. 

The functions provided in the X.25 service interface are employed 
by users to request X.25 services, such as establishing SVCs and trans­
mitting data over them. A user makes an outgoing request for the estab­
lishment of an SVC by issuing an OpenPort function followed by a 
MakeCall function. Once the SVC has been established, the user sends 
and receives data over the SVC by issuing TransmitData, TransmitPoll, 
ReceiveData, and ReceivePoll functions. 

A user, called the listener, sets up a list of filters that indicates which in­
coming calls the local X.25 access module should inform the listener about. 
The listener maintains the filter list by issuing ListenForCall and StopListen­
ingFor functions. When an incoming call matches the call criteria specified 
in a filter, the X.25 access module notifies the listener. The listener then has 
the option of accepting the call or explicitly refusing to accept it. If one lis­
tener rejects a call, the X.25 access module restarts its matching procedure 
and attempts to find a listener who will accept the call. 
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The X.25 Protocol Module 

The X.25 protocol module performs the functions of the X.25 packet­
level protocol to gain access to a PSDN. The X.25 protocol module pro­
vides an X.25 protocol interface. This interface is accessed only by the 
X.25 access module and is substantially similar to the X.25 service inter­
face. An implementation of the X.25 protocol module performs the func­
tion of an X.25 DTE for the node in which it is implemented and com­
municates directly with an X.25 DCE in the PSDN. 

X.25 Client and Server Modules 

The X.25 client and X.25 server modules are necessary when the X.25 
access module and the X.25 protocol module are in different nodes. The 
X.25 access module uses the services of an X.25 client module, which in 
turn communicates with an X.25 server module in another node. The 
X.25 server module can then use the services of the X.25 protocol mod­
ule in that node to access the PSDN. The X.25 client module provides an 
X.25 client interface allowing the X.25 access module to request its ser­
vices. Like the X.25 level 3 protocol interface, this interface is similar to 
the X.25 service interface. 

The X.25 client and server modules communicate with one another 
using the gateway access protocol (GAP). The client and server modules 
each provide an X.25 gateway access interface allowing them to commu­
nicate using the GAP. The DNA Phase V X.25 access specification de­
fines the GAP messages that the X.25 gateway server and client must be 
able to accept. These are listed in Box 18.4. 

Although not shown in Figure 18.4, the X.25 client and server mod­
ules also implement an interface to the DNA Session Control layer al­
lowing the GAP to operate over a DNA Phase V Session Control layer 
connection. This is the same interface described in Chapter 11. 

Module Combinations 

The architectural modules that make up X.25 access can be combined in 
various ways to allow the X.25 interface to be used for three purposes: 

• Two Network layer entities in a pair of DECnet Phase V routers can use 
a virtual circuit as a point-to-point subnetwork to connect them. 

• A Transport layer entity in a DECnet Phase V node can access a local 
X.25 access module to exchange data with another Transport layer en­
tity using the ISO CONS, described in Chapter 8. 
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Messages Received by X.25 Gateway Server 

• Open. Requests the establishment of a permanent virtual circuit. 

• Outgoing Call. Requests an outgoing request for the estabiishment of 
a switched virtual circuit to the destination specified in the message. 

• Outgoing Accept. Accepts a previously received incoming request for 
the establishment of a switched virtual circuit. 

• Clear Request. Indicates that a user has issued a ClearCall function 
to the X.25 access module requesting that a virtual circuit be cleared. 

• Reset Request. Indicates that a user has issued a Reset function to 
the X.25 access module requesting that a virtual circuit be reset. 

• No Comm Seen. Indicates that a user has issued a AcknowledgeComs­
Failure function to the X.25 access module indicating it has detected a 
failure of the PSDN for a port bound to a permanent virtual circuit. 

Messages Received by X.25 Gateway Client 

• Open Accept. Accepts an incoming request for the establishment of a: 
permanent virtual circuit. 

• Open Reject. Rejects an incoming request for the establishment of a 
permanent virtual circuit. The message indicates the reason for the 
rejection. 

• Incoming Accept. Indicates to the Gateway Client acceptance of an 
outgoing request for the establishment of a switched virtual circuit. 

• Incoming Call. Indicates to the Gateway Client that there is an in­
coming requel)t for the .establishment of a switched virtual circuit. 

• Clear Indication. Indicates that the PSDN has issued a request to 
clear a switched virtual circuit. 

• Clear Confirm. Indicates that the PSDN has confirmed a request to 
clear a switched virtual circuit. 

• Reset Indication. Indicates that the PSDN has issued a request to 
reset a switched virtual circuit. 

• An application designed to communicate using X.25 protocols can com­
municate, through a local X.25 Access module, with another X.25 appli­
cation using the X.25 protocol. 

Each of these uses of X.25 is described next with examples of the 
X.25 architectural modules that are used in each case. 
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• No Com. Indicates that communication is currently impossible on 
the permanent virtual circuit. 

Messages Received by Both Client and Server 

• Connect. Establishes an association between an X.25 client module 
and an X.25 server module. 

• Accept. Sent in response to the receipt of a Connect message to accept 
the establishment of an association between a client and a server. 

• Reject. Sent in response to the receipt of a Connect message to reject 
the establishment of an association between a client and a server. 

• Call Reject. Rejects a previously received Outgoing Call or Incoming 
Call message. 

• Clear Expected. Indicates that a Clear Request or Clear Indication 
message is expected and that data should be discarded in order for 
the message to be read. 

• Reset Confirmation. Confirms a previous request for reset of a 
switched virtual circuit. 

• Reset Confirmation Marker. Indicates the point in the data at which 
a request for the reset of a switched virtual circuit occurred. 

• Data. Contains outbound or inbound data. 

• Interrupt Complete. Contains interrupt data completing an Interrupt 
message. 

• Interrupt Incomplete. Contains incomplete interrupt data that are 
part of an Interrupt message. 

• Interrupt Confirmation. Used for flow control to confirm receipt of 
an Interrupt message. 
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In this use of X.25, two routers can be connected using an X.25 virtual 
circuit as a data link. The virtual circuit is then used for the purpose of 
sending DNA network traffic between the two routers. When an X.25 
virtual circuit is used to interconnect routers, the virtual circuit is used to 
implement what appears to the routers to be a simple point-to-point 
link. The X.25 access module and X.25 protocol module are used to im­
plement such a use of an X.25 virtual circuit, as shown in Figure 18.5. 

The DNA Network layer in this case is the user of the X.25 access 
module, and the X.25 protocol module is used to perform the function 



404 

FIGURE 18.5 

Local 
Area 

Network 
Data 
Link 

PART IV: RELATED ARCHITECTURES AND MECHANISMS 

of an X.25 DTE in sending and receiving X.25 data packets and com­
mands. In this use of X.25, the application programs using the network 
for communication are not aware of the fact that X.25 virtual circuits 
are being used. When a PSDN is employed in this manner, the PSDN can 
be viewed as a subnetwork m which any DECnet router attached tu the 
PSDN is a single hop away from any other router attached to that PSDN. 

Use of an X.25 virtual circuit as a subnetwork in a DECnet Phase V network. 
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There are two ways routers can use an X.25 virtual circuit for carry­
ing network traffic: 

• Data Link Mapping. With data link mapping (OLM), an X.25 virtual 
circuit is set up by a network manager between two routers and remains 
available for use by those routers until a network manager releases it. 
Such a virtual circuit can be used without restriction-in the same man­
ner as any other point-to-point connection-to exchange data traffic 
and routing control packets between the two routers. 

• Dynamic Assignment. With dynamic assignment (DA), an X.25 SVC is 
set up when there is traffic requiring it. Dynamic assignment SVCs are 
used only to carry user data; they are not used to carry routing control 
information. Routing over DA SVCs is done using the static routing 
mechanisms for interdomain routing discussed in Chapter 9. 

As discussed in Chapters 7 and 8, the DNA Phase V Network layer also 
provides support for the connection mode Network service (CONS) for 
users who require the use of the CONS. This use of X.25 is illustrated in 
Figure 18.6. As with the previous use of X.25, only the X.25 access mod­
ule and the X.25 protocol module are required to provide the CONS. In 
this case, the user of the X.25 access module is the DNA Transport layer. 

Use of an X.25 virtual circuit to supply the CONS. 
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An implementation of the X.25 protocol module in a DECnet node at­
tached to the PSDN provides the function of an X.25 DTE. 

When X.25 is used to supply the CONS, one additional protocol is 
used: ISO 8878, Use of X.25 to Provide the OSI Connection-Mode Net­
work Service. X.25 level 3 and ISO 8208 define a protocol that is suffi­
ciently powerful to provide all the services needed to supply the CONS. 
However, because Recommendation X.25 predates the OSI model, it 
does not specifically provide information about how the X.25 protocol 
should be used to provide all the services specified in the CONS. ISO 
8878 can be viewed as operating in a sublayer on top of ISO 8208 (X.25 
level 3) defining how X.25 packets and procedures are used to supply all 
the services defined by the CONS. 

With this use of X.25, the X.25 access module can be used to allow an 
X.25 application running in a DECnet node to use the services of an 
X.25 protocol module in the same node or in some other node. A node 
implementing the X.25 access module to support either local or remote 
access by X.25 applications is called an X.25 gateway node. The services 
that X.25 applications request can be handled in various ways. 

Figure 18.7 shows the simplest possibility in which an X.25 applica­
tion, running in a DECnet node, is communicating with an X.25 applica­
tion in a system (which may or may not be a DECnet node) attached to a 
PSDN. In this case the X.25 Access module allows the X.25 application 

Use of an X.25 gateway node. 
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in the DECnet node to request X.25 services. The X.25 protocol module 
performs the function of the X.25 DTE and sends and receives X.25 con­
trol and data packets to communicate with the other X.25 application. 
In this example, implementations of the X.25 access module and the 
X.25 protocol module both reside in the same node and so no protocol is 
required for them to communicate with one another. 

It is not necessary, however, for an X.25 application to reside in the 
X.25 gateway node. The use of the X.25 client module and the X.25 
server module to support remote access to an X.25 gateway node is 
shown in Figure 18.8. Here, the X.25 application running in node A is 
the user of the X.25 access module in node A. It in turn uses the services 
of the X.25 client module to communicate with the X.25 server module 

Remote access to an X.25 gateway node using the X.25 client and X.25 server modules. 

Local 
Area 

Network 
Data 
Link 

Node A 

X.25 Protocol 

X.25Access 11111111111111 __ _ 
1------111111111111111 I 

X.25 Server 11111111111111µ::==:!1 

X.25 Gateway Node 



408 

Multiple Uses of 
X.25 

Conclusion 

PART IV: RELATED ARCHITECTURES AND MECHANISMS 

in node B. Implementations of the client and server modules use the gate­
way access protocol (GAP), running over a DNA Session Control con­
nection, to handle communication between them. The X.25 server mod­
ule in node B then uses another implementation of the X.25 access 
module in node B to request X.25 services. It in turn uses the X.25 pro­
tocol module, which performs the functions of an X.25 DTE to access 
the PSDN. 

Internetworking between DECnet Phase V nodes and DECnet Phase 
IV nodes is fully supported. A node implementing a Phase IV X.25 access 
module can request the services of a Phase V X.25 gateway node and 
vice versa. 

Implementations of the four X.25 architectural modules can be com­
bined to allow X.25 to be used in a variety of ways in the same network. 
A DECnet network can be constructed using X.25 virtual circuits to im­
plement some of the point-to-point connections between routers. At the 
same time X.25 Gateway nodes can operate as DTEs connected to one 
or more X.25 PSDNs. X.25 applications in DECnet nodes that do not 
implement X.25 DTEs can access the gateway nodes to request X.25 ser­
vices. In the same network, any DECnet node can use a PSDN to provide 
the ISO CONS. The CONS users can then exchange data over the CONS 
connection. 

This chapter, which concludes Part IV on related architectures and mech­
anisms, showed a variety of ways in which the virtual circuits provided 
by packet-switched data networks can be used in constructing a DECnet 
Phase V network. The final part of this book-Part V-examines the 
Data Link layer of the architecture in detail and discusses the various 
types of subnetworks the Network layer can use. Part V begins with 
Chapter 19 introducing High-level Data Link Control (HDLC), the main 
data link protocol used for point-to-point data links in the wide area net­
working environment. 
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HDLC, SDLC, and LAPB Data Links 

The types of data links described in this chapter and Chapter 20 are de­
signed to implement wide area networking data links using conventional 
telecommunications facilities. As mentioned in the chapters in Parts II 
and III, it is a goal of ISO to define a single service definition and one or 
more protocol specifications for each layer of the OSI model. Currently, 
a single ISO standard defines a Data Link layer protocol specification for 
the wide area networking environment. This is High-Level Data Link 
Control (HDLC), documented in the standards documents listed in Box 
19.1. Chapter 20 describes the Digital Data Communication Message 
Protocol (DDCMP), another protocol for wide area networking, pro­
vided in DNA Phase V mainly for compatibility with DNA Phase IV. 

The original specification of ISO HDLC permits operation only over 
a physical circuit that supports synchronous transmission. However, an 
amendment to ISO 3309 defines the changes that are required to HDLC 
to allow the protocol to be used over an asynchronous (start-stop) line. 
DNA Phase V HDLC supports both synchronous and asynchronous 
transmission. (See Chapter 5 for a discussion of the differences between 
synchronous and asynchronous transmission.) 

The HDLC protocol predates the OSI model, and the standards for HDLC 
do not separate the service definition from the protocol specification. The 
DNA Phase V documentation for HDLC, however, does specify a service 
definition in terms of procedure declarations the same as it does for the 
other layers of the architecture. We will examine these later when we look 
at the DNA Phase V architectural model for HDLC. 

An HDLC entity operates in the Data Link layer of the architecture. It 
provides a set of services to a user of the HDLC entity and requests the ser-
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• ISO 3309, HDLC Procedures-Frame Structure 

• ISO 4335, HDLC Elements of Procedures 

• ISO 7776, HDLC Procedures-X.25 LAPB-comjJaiible DTE Datu 
Link Procedures 

• ISO 7809, HDLC Procedures-Consolidation of Classes of Proce­
dures 

• ISO 8471, HDLC Data Link Address Resolution 

• ISO 8885, HDLC Procedures-General Purpose XID Frame Infor­
mation Field Content and Format 

vices of a modem connect entity operating below it in the Physical layer. 
The HDLC protocol specification precisely defines the formats of the 
frames exchanged during protocol operation and describes, in detail, the 
procedures controlling the exchange of frames. We continue this discus­
sion of the HDLC protocol by introducing some important terminology. 

Stations and Data Each device attached to a data link that handles data link protocol func­
Links tions is called a data station, or a station. Data links connecting stations 

can be either unbalanced or balanced. An unbalanced link connects two or 
more stations, with one of the stations designated as the primary station 
and all the others designated as secondary stations. Such a communication 
facility is sometimes used to connect a computer to one or more terminals. 
With computer networks, balanced facilities more often are used. A bal­
anced data link connects two stations only, with each station called a com­
bined station, either of which can originate message transmission. 

Commands and 
Responses 

HDLC Operating 
Modes 

On an unbalanced data link, messages that the primary station sends are 
called commands; messages that the secondary station sends in reply to 
commands are called responses. With a balanced facility, either station 
can originate a transmission by sending a command; the other station 
then replies with a response. 

The HDLC protocol specification defines three operational modes to 
support three types of protocol operations. Only two of these are in­
cluded in DNA Phase V HDLC. All three HDLC operational modes are 
described next. 
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Balanced Mode 

Balanced mode, referred to as asynchronous balanced mode (ABM) in 
the ISO HDLC standard, supports a balanced data link that connects 
two combined stations using a full-duplex physical circuit. Either station 
can initiate frame transmission, and frame transmission can take place in 
both directions at the same time. DNA Phase V HDLC supports bal­
anced mode, and this is the preferred operating mode of an HDLC data 
link in a DECnet Phase V network. 

Normal Mode 

Normal mode, referred to as normal response mode (NRM) in the ISO 
HDLC standard, is used to support unbalanced data links that connect 
two or more stations using a half-duplex physical circuit. One of the sta­
tions on the link is the primary station and the others are secondary sta­
tions. A secondary station cannot initiate transmission without first re­
ceiving permission from the primary station. DNA Phase V HDLC 
supports normal mode as an alternative to balanced mode. 

Asynchronous Response Mode 

The ISO HDLC standard also defines an asynchronous response mode 
(ARM), in which each station performs the function of both a primary 
and a secondary station. With ARM, the data link consists logically of 
two primary/secondary station pairs. In this mode either station can initi­
ate transmission, but one of the stations typically retains responsibility for 
the data link. In practice, asynchronous response mode was found to have 
a number of limitations and is today considered obsolete by most author­
ities. It has been superseded in most cases by balanced mode. The DNA 
Phase V architecture does not support asynchronous response mode. 

In addition to the three operational modes, there are three nonopera­
tional modes: 

• Asynchronous Disconnected Mode. The asynchronous disconnected 
mode (ADM) applies to a station on a balanced data link that is logically 
and/or physically disconnected from the link. 

• Normal Disconnected Mode. The normal disconnected mode (NDM) 
applies to a station on an unbalanced link that is logically and/or physi­
cally disconnected from the link. 
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• Initialization Mode. The initialization mode (IM) is intended to be the 
mode a station is in before it actually becomes operational. One sta­
tion can put another station into initialization mode when it is neces­
sary to perform some hardware-specific initialization procedure. DNA 
Phase V HDLC does not employ m1t1ahzat10n mode for station initiai­
ization or other types of maintenance procedures. Such functions are 
the responsibility of the DNA Maintenance Operation Protocol 
(MOP). The use of MOP is discussed later when we examine HDLC 
protocol operation. 

The HDLC protocol has its roots in the Synchronous Data Link Control 
(SDLC) protocol developed by IBM in the early 1970s for use in SNA. At 
the time IBM developed SDLC, the predominant data link configuration 
consisted of a single primary station (typically a host computer or com­
munications controller) connected to multiple secondary stations (typi­
cally terminals), using a multipoint, half-duplex physical circuit. IBM's 
SDLC is a functional subset of HDLC and is compatible with the normal 
mode of HDLC; a DNA Phase V station operating in normal mode can 
successfully communicate with a station conforming to IBM's SDLC 
specification. Normal mode requires one station to take the role of the 
primary station and the others to take the role of secondary stations. A 
management parameter must be set to designate one of the stations as 
the primary station for a link operating in normal mode. 

CCITT Recommendation X.25 (discussed in detail in Chapter 18) 
defines how a computer is attached to a packet-switched data network 
(PSDN). A portion of Recommendation X.25 defines the procedures that 
determine how frames of data are passed between the computer and the 
PSDN. This procedure is called Link Access Procedures-Balanced 
(LAPB) and is similar to the balanced mode of HDLC. An appendix on 
LAPB is included in the architectural specification for DNA Phase V 
HDLC. 

As discussed in Chapter 6, the data unit transmitted over a data link is a 
data-link-protocol-data-unit (DLPDU), more typically called a frame. 
Some frames are originated by mechanisms operating in the Data Link 
layer itself and are used to control the operation of the data link. Other 
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frames are used to carry the data-link-service-data-unit (DLSDU) 
passed down from an HDLC user for transmission over the data link. 
As shown in Figure 19.1, each frame is divided into three major parts: a 
header, a variable-length information field, and a trailer. Protocol­
control-information (PCI) is carried in the header and the trailer. 
Frames originated in the Data Link layer sometimes use the information 
field to carry control information. The following sections describe the 
fields in an HDLC frame. 

Beginning Flag Field 

Each frame begins with a flag field, which consists of a single octet con­
taining the unique bit configuration 0111 1110. A bit stuffing technique 
(described later) guarantees that only a flag field will contain six consec­
utive 1-bits. 

Address Field 

The field following the flag field is a single octet in length and is inter­
preted as the station address. The position of this field within the frame 
(the octet immediately following the beginning flag) defines this field as 
the address field. When a station originates a command, the command 
includes an address that identifies the station to which the frame is being 
sent. The address field value distinguishes whether a frame is a command 
or a response. A command always contains the station address of the re­
ceiving station; a response always contains the address of the sending 
station. The HDLC addressing scheme is an artifact of the multipoint 
data link orientation of the original SDLC specification, and, on a bal­
anced data link that connects only two stations, the station address 
serves no real purpose. However, the address field is present in all HDLC 
frames for consistency of format. 

HDLC transmission frame. 

Header 

Flag Address Control Information 

Trailer 

Frame Check 
Sequence (FCS) 

Flag 
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Control Field 

The control field is 1 or 2 octets in length. The control field determines 
the type of frame being transmitted, conveys information necessary for 
the proper sequencing of frames, and carries control information. The 
position of the control field within the frame (the fieid immediateiy after 
the address field) defines this field as the control field. 

Information Field 

A variable-length information field is used to carry the data portion of 
the frame. It consists of either control information or data passed down 
from a user of the HDLC entity. Some frames originating in the Data 
Link layer do not use an information field. The HDLC specification al­
lows the information field to be any number of bits in length. However, 
most implementations of HDLC require the information field to be some 
multiple of eight bits, as is the case with DNA Phase V HDLC. The size 
can be zero octets for some commands and responses. Although HDLC 
does not specifically define a maximum length for the information field, 
a particular HDLC implementation may set limits on the size of a frame 
based on the size of the available buffer. The receiving station knows 
where the first octet of the information field begins because it always im­
mediately follows the control field. 

Frame Check Sequence Field 

The frame check sequence (FCS) field contains either a 16-bit or a 32-bit 
cyclic redundancy check (CRC) value used for error detection. The pro­
cedures used to generate and process the CRC are described in Chapter 
6. Digital implementations of HDLC use a 32-bit CRC value but support 
a 16-bit CRC for communication with stations supporting only a 16-bit 
CRC. 

NETWORK ARCHITECT 

There is always a chance, no matter how small, that a frame will be damaged in 

such a way that the CRC value remains correct. We decided that, especially for 

high-speed links, 16-bit CRC values are inadequate for really good protection 

from errors. On a line operating at 10 megabits per second, a 16-bit CRC might 
allow an undetected error to get through about once per month. With a 32-bit 

CRC, there will be an undetected error about every 10 years. 
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The way in which stations determine whether to use a 16-bit or 32-
bit CRC is discussed later in this chapter. 

Ending Flag Field 

The end of a frame is marked by another flag field containing the same 
bit configuration as the beginning flag field (01111110). 

Frame and Control The three types of HDLC frames all share the same general format de­
Field Formats scribed previously. The following are brief descriptions of each frame 

type: 

• Information Frames. The primary function of Information frames (!­
frames) is to carry user data, although they sometimes also implicitly 
perform control functions, such as serving as positive acknowledgments 
to frames sent. 

• Supervisory Frames. Supervisory frames (S-frames) are used to control 
the transmission of I-frames and are exchanged only when the link is in a 
state where it is possible to transmit and receive I-frames. They carry in­
formation necessary for supervisory control functions, which include re­
questing transmission, requesting a temporary suspension of transmis­
sion, acknowledging the receipt of I-frames, and reporting on status. 
Normal, routine transmission over a data link involves only I-frames and 
S-frames. 

• Unnumbered Frames. Unnumbered frames (U-frames) are used to carry 
data and to perform control functions, such as performing initialization 
procedures, controlling the data link, and invoking diagnostic sequences. 

1-0ctet and 2-0ctet Control Fields 

I-frames and S-frames transmitted during HDLC operation can contain 
either 1-octet or 2-octet control fields; U-frames always contain 1-octet 
control fields. With DNA Phase V HDLC, a data link normally uses 2-
octet control fields in I-frames and S-frames and runs using modulo-128 
operation. This is the preferred operating mode because it increases link 
throughput, especially on circuits having long propagation delays, such 
as satellite circuits. If one or both of the stations support only 1-octet 
control fields, then modulo-8 operation is used with 1-octet control fields 
in I-frames and S-frames. 
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I-Frame Format 

FIGURE 19.2 
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· Modulo-8 Operation. When stations operate in single-octet control field 
mode, 3 bits are used for frame sequence numbers. Three-bit sequence 
number values allow frame sequence numbers to range from 0 through 
7. Modulo-8 operation allows a sending station to transmit up to seven 
frames in sequence befort it inu~L re:quest ail a.cknovv!cdgment. 

• Modulo-128 Operation. When stations operate in 2-octet control field 
mode, frame sequence numbers consist of 7-bit values, allowing values 
from 0 through 127. Modulo-128 operation allows a sending station to 
transmit up to 127 frames in sequence before an acknowledgment is re­
quired. 

The following sections describe the formats of I-frames, S-frames, 
and U-frames. 

Figure 19.2 illustrates the format of I-frames and shows how the con­
trol field bits are interpreted for 2-octet control fields. A 0 in bit posi­
tion 1 in the first control field octet identifies the frame as an I-frame. 
The remainder of the bits in the 2-octet I-frame control field are used to 
contain a send count [N(S)], a receive count [N(R)], and a poll/final 
(P/F) bit. The count fields are used to control frame sequencing. The 
poll/final bit is used to request acknowledgments. For an unbalanced 
data link, the poll/final bit is also used by the primary station to poll the 
secondary stations. 

I-frame format. 

Control Field 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 



CHAPTER 19: HDLC, SDLC, AND LAPB DATA LINKS 419 

S-Frame Format Figure 19.3 illustrates the frame format for S-frames, showing the con­
trol field layout for a 2-octet control field. The 2 bits provided for the 
function code allow up to four different S-frame commands and four dif­
ferent S-frame responses. S-frames do not carry information fields. When 
bit position 1 of the first control field octet is 1, bit position 2 further 
identifies the frame as being either an S-frame or a U-frame. A 10 in bit 
positions 1 and 2 identifies the frame as an S-frame. The remainder of 
the bits in the S-frame control octet are interpreted as containing a 2-bit 
function code, a receive count [N(R)], and a poll/final (P/F) bit. The func­
tion code bits identify the type of command or response the frame repre­
sents. Box 19.2 describes the three most commonly used S-frame com­
mands and responses. 

F 1 G u R E 1 9 . 3 S-frame format. 

P/F N(R) Count 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

U-Frame Format Figure 19.4 illustrates the format of U-frames, showing details for the 
control field. U-frames always have 1-octet control fields. Some U-frame 
commands and responses have information fields; others do not. An 11-
bit configuration in bit positions 1 and 2 of the first control field octet 
identifies the frame as a U-frame. The remainder of the bits are inter­
preted as a poll/final bit and function code bits. The function code bits in 
a U-frame identify the type of command the frame represents. The five 
function code bits allow for up to 32 different commands and 32 differ­
ent responses, only some of which are actually used in an implementa-
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U-frame format. 

2345678 

tion of HDLC. Box 19.3 (page 422) provides brief descriptions of the 
most commonly used U-frames. 

DNA Phase V HDLC uses Exchange Station Identification (XID) 
and Unnumbered Information (UI) frames to support a link initialization 
procedure and defines how the information fields of DI-frames are used 
to support a protocol multiplexing function. These aspects of DNA 
Phase V HDLC are described later in this chapter. 

Figure 19.5 illustrates the DNA Phase V HDLC architectural model and 
shows how the HDLC entity relates to its users and to the Physical layer. 
Other higher-level protocols, such as the DNA Maintenance Operations 
Protocol (MOP), can also concurrently use the services of an HDLC en­
tity over the same data link through the protocol multiplexing feature. A 

HDLC architectural model. 
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• Receiver Ready (RR). Command or response sent to indicate that the 
station is ready to receive another I-frame or to acknowledge previ­
ously received I-frames. 

• Receiver Not Ready (RNR). Command or response sent to indicate 
that the station is temporarily unable to accept additional I-frames. 

• Reject (REJ). Command or response sent to request the retransmis­
sion of one or more I-frames. 
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user of the HDLC entity accesses its services through a port. A port is the 
point in the HDLC entity at which the HDLC service interface is located. 
Any number of users in a node can open a port into an HDLC entity. 

The DNA Phase V architectural specification for HDLC defines the ab­
stract interface between an HDLC entity and a user of its services. The 
function and procedure declarations that define this abstract interface 
are listed in Box 19.4 (page 423). 

The ISO and DNA Phase V documentation for HDLC describe, in detail, 
the procedures controlling protocol operation. DNA Phase V HDLC 
supports all procedures required by a data link operating in either bal­
anced mode or normal mode. DNA Phase V also defines a number of 
procedures that go beyond the ISO HDLC standard while remaining in 
conformance with it. We first describe a number of procedures defined 
by ISO HDLC. 

Bit Stuffing and Synchronous Framing 

When HDLC operates over a circuit using synchronous transmission, the 
data stream consists of a series of frames, each of which consists of a 
continuous stream of bits. HDLC always operates in transparent mode, 
meaning that any desired bit configurations can be carried in the data in 
the frame's information field. A requirement for achieving transparency 
is to ensure that flag octets, which contain six consecutive 1-bits, are not 
transmitted in any part of the frame other than in the beginning and end­
ing flag field positions. If a flag field appeared anywhere else in the frame, 
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• Set Asynchronous Balanced Mode (SABM). Command issued to 
place the data link into balanced mode. 

• Set Asynchronous Balanced Mode Extended (SABME). Command 
issued to place the datalink into balanced mode using 2-octet con­
trol fields. This is the normal operating mode of HDLC data links in 
a DECnet Phase V network. 

• Set Normal Response Mode (SNRM). Command issued to place the 
data link into normal mode. 

• Set Normal Response Mode Extended (SNRME). Command issued 
to place the data link into normal mode using 2-octet control fields. 

• Unnumbered Information (UI). Used for transmitting unnumbered 
information frames between stations. DNA Phase V does not dis­
criminate between the command and response forms of the UI-frame. 
In DNA Phase V HDLC, DI-frames are used to implement a protocol 
multiplexing facility allowing a data link to be used concurrently by 
more than one user. 

• Disconnect (DISC). Command issued to terminate a previously set 
operational mode. On a dial-up line, the station receiving the DISC 
command also physically disconnects itself from the line. 

• Exchange Station Identification (XID). Commands or responses 
issued to exchange and negotiate configuration information. The 
DNA Phase V HDLC specification uses XID commands and 
responses to implement a station identification procedure used to 
negotiate operational parameters, such as the use of either a 16-bit or 
a 32-bit FCS field. 

• Unnumbered Acknowledgment (UA). Response issued to acknowl­
edge receipt and acceptance of SABM, SABME, SNRM, SNRME, 
and DISC commands. 

• Frame Reject (FRMR). Response issued to indicate abnormal con­
ditions. The command contains bits indicating the reason for the 
rejection, such as an invalid or unimplemented command function 
code, a frame with an information field that should not have one, 
or a frame with an information field too big for the station's 
buffer. 

• Disconnect Mode (DM). Response issued as a positive acknowledg­
ment to a DISC command to indicate that the receiving station is 
now in disconnect mode. 
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The following function and procedure declarations define the 
abstract interface between a DNA Phase V HDLC entity and a user 
of its services. 

Port Control Functions 

• OpenPort. Opens a port into an HDLC entity that can be used to 
request its services. A user can open only one port for exchanging 
I-frames and multiple ports for exchanging DI-frames. 

• ClosePort. Closes a port into an HDLC entity. 

Data Transfer Functions 

• Transmit. Transmits sequenced data using I-frames. 

• TransmitPoll. Polls for return of transmit buffers used to send 
I-frames. 

• TransmitUnsequenced. Transmits data using DI-frames. 

• TransmitPollUnsequenced. Polls for return of transmit buffers used 
to send DI-frames. 

• Receive. Queues an empty buffer to receive I-frame or DI-frame data. 

• ReceivePoll. Polls for received data and the status of the data. 

Control Functions 

• AttachToCall. Associates a call with a port. 

• InitializeLink. Starts operation of the I-frame service of the HDLC 
protocol on a link. 

• StopLink. Stops operation of the I-frame service on a link. 

• ShowLinkStatus. Shows the status of the HDLC protocol on the link. 
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stations would have no way of knowing where a frame begins and ends. 
If the protocol is to be transparent, however, frames must be capable of 
containing bit sequences of any desired bit configuration, including 
octets containing the flag configuration (01111110). When HDLC oper­
ates over a circuit that supports synchronous transmission, a technique 
called bit stuffing handles this apparent contradiction. 

In transmitting the data between a beginning and an ending flag, the 
transmitting station inserts an extra 0-bit into the data stream each time 
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it detects a sequence of five 1-bits. The transmitter turns off the bit­
stuffing mechanism when it transmits an actual beginning or ending flag. 
In this way, no consecutive sequence of six 1-bits is ever transmitted ex­
cept when an actual flag is sent over the link. A complementary tech­
nique is used by the receiver in removing tht: e:xtia 0-Lils. Whenever the 
receiver detects five 1-bits followed by a 0-bit, it discards the 0-bit, thus 
restoring the bit stream to its original value. The bit stuffing technique 
ensures that six 1-bits in a row will never occur except in a flag field. 
When the receiver detects six consecutive 1-bits, it knows it has received 
a genuine flag. 

At high bit rates, the time it takes to process each frame received 
may be greater than the minimum time between frames, which is defined 
by ISO HDLC as the time it takes to transmit a single flag sequence. To 
prevent a case where every other frame is lost on a high-speed link, DNA 
Phase V HDLC defines a procedure for informing the transmitter of the 
minimum acceptable time between frames. The transmitter uses this 
value to send additional flags between frames to provide the required 
delay. 

Octet Stuffing and Asynchronous Framing 

When HDLC operates over a circuit using asynchronous (start-stop) 
transmission, the data stream consists of a stream of octets. Octets are 
grouped into frames using a different procedure than that defined for 
synchronous HDLC. The ISO standard for asynchronous HDLC defines 
two octet values that are used to control the operation of the protocol: 
the fiag octet value and the control escape octet value. The actual values 
to be used for the flag and control escape octets must be agreed upon in 
advance between the two communicating stations. 

The transmitter begins a frame by sending a flag octet and ends a 
frame by sending another flag octet. The transmitter uses an octet 
stuffing procedure to ensure that no flag octets appear between the be­
ginning and ending flags. Between the transmission of the beginning and 
ending flags, the transmitter checks each octet's value to see if it is equal 
to either the flag or control escape value. If the transmitter detects either 
a flag or control escape octet, it complements the octet's sixth bit. It then 
transmits a control escape octet followed by the modified flag or control 
escape octet. When a receiver receives a flag octet, it knows that it has re­
ceived a genuine beginning or ending flag. When a receiver receives a 
control escape octet, it discards it and complements the sixth bit in the 
octet that follows, thus restoring the byte stream to its original value. 
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Pipelining and Acknowledgment 

One of the primary responsibilities of HDLC is to detect corrupted and 
lost frames and, when they are detected, to cause required frames to be 
retransmitted. To achieve this, transmitted frames require acknowledg­
ments from the receiving station indicating whether frames were received 
correctly. With HDLC, a technique called pipelining is used in which 
multiple I-frames can be sent before the sending station requires an ac­
knowledgment. As discussed earlier, with 2-octet control fields, up to 
127 I-frames can be transmitted between acknowledgments. 

To ensure that no frames are lost and that all frames are properly 
acknowledged, the sequence numbers contained in I-frames and S­
frames are employed to control I-frame transmission. All stations main­
tain counters that keep track of a send count value and a receive count 
value. These two counters are used to set the count fields in the control 
octets of the I-frames and S-frames the station transmits. The transmitter 
always keeps track of how many I-frames it has sent, and the receiver 
keeps track of how many I-frames it has received. When a station re­
ceives an acknowledgment, that acknowledgment contains the sequence 
number of the next I-frame the other station expects to receive. This im­
plicitly acknowledges all I-frames up to, but not including, the frame 
having the specified sequence number. In this way a frame can acknowl­
edge several previously transmitted I-frames. To ensure that acknowledg­
ments are received in a timely manner, the HDLC specification allows a 
limit to be set on the number of frames the Physical layer can queue up 
for transmission at any time. This allows the Physical layer to maintain 
continuous transmission while ensuring that an up-to-date acknowledg­
ment can be sent with minimum delay. 

Flow Control 

HDLC defines a simple flow control procedure that a station can use 
when it is temporarily unable to receive additional I-frames, possibly due 
to lack of buffers. A station indicates that the other station is to stop 
sending I-frames by transmitting a Receiver Not Ready (RNR) S-frame. 
This causes the opposite station to stop sending I-frames until it receives 
a Receiver Ready (RR) frame. 

In addition to the HDLC procedures to support balanced mode and nor­
mal mode, DNA Phase V HDLC defines additional procedures that go 
beyond the ISO standard. These are described in the following sections. 
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Link Initialization 

The DNA Phase V HDLC link initialization procedure ensures that two 
stations are able to establish, in an unambiguous manner, the initial state 
0f t:he li!lk 0!" !0 rest:::i.rt: a link ::ifti>r link f:lilnrP Tnfnrm::ition i~ exch:mgecl 
during the link initialization procedure using the information fields of 
XID frames. The link initialization procedure has three phases: 

1. Station Identification. In this phase, the stations exchange informa­
tion about their capabilities to determine the operational parameters 
that will be used to govern link operation. 

2. Disconnection. In this phase, each of the stations forces the link into 
one of the two disconnected modes by transmitting DISC U-frames. 

3. Link Establishment. In this phase, one of the stations transmits a U­
frame command to initialize the link. The U-frame command gener­
ally used is the Set Asynchronous Balanced Mode Extended (SABME) 
command. This places the link into balanced mode using 7-bit se­
quence numbers. The Set Asynchronous Balanced Mode (SABM) 
command is used if one or both of the stations supports only 3-bit se­
quence numbers. The Set Normal Response Mode (SNRM) com­
mand is used if the stations need to use normal mode, possibly for 
compatibility with IBM's SDLC. 

CRC Negotiation 

An important operational parameter negotiated during execution of the 
DNA Phase V link initialization procedure is whether 16-bit or 32-bit 
CRCs will be used. To determine this, an XID frame is sent during link 
initialization that carries a special 48-bit CRC sequence. This CRC se­
quence is produced using a polynomial designed so the last 16 bits of the 
48-bit CRC will pass the 16-bit CRC algorithm and the last 32 bits will 
pass the 32-bit CRC algorithm. In this manner, the frame is received cor­
rectly by a station supporting only a 16-bit CRC, only a 32-bit CRC, or 
either. The stations then negotiate whether a 16-bit or 32-bit CRC will 
be used during link operation. A 32-bit CRC is used if both stations sup­
port it; otherwise, a 16-bit CRC is used. 

Protocol Multiplexing 

The ISO HDLC specification does not specify procedures allowing more 
than one higher-level protocol to concurrently use the same data link. 
The DNA Phase V architecture defines a protocol multiplexing facility in 
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the Data Link layer, which, like the station identification procedure, goes 
beyond the ISO standard while remaining completely in conformance 
with it. DNA Phase V HDLC defines the way in which such multiplexing 
is handled through protocol identi-fiers that are assigned and registered 
by Digital. The DNA Phase V architecture assigns a protocol identifier to 
each protocol that can use the services of the Data Link layer. With 
HDLC, user data can be carried in I-frames by only one protocol at a 
time; thus, a user can open only one port into an HDLC data link for ex­
changing I-frames. The identifier of the protocol to be carried by !­
frames is determined during the station initialization procedure. Data for 
any number of other protocols can be carried using UI-frames. A user 
can, therefore, open any number of ports into an HDLC data link for ex­
changing UI-frames. The DNA Phase V architecture defines a protocol 
identifier to be carried in the information field of UI-frames. The proto­
col identifier is specified when a port is allocated, and DNA Phase Vim­
plementations of HDLC ensure that a port receives only the UI-frames 
having the appropriate protocol identifiers. 

Maintenance Functions 

The protocol multiplexing facility allows the DNA Phase V Network 
layer protocol and the Maintenance Operations Protocol to run concur­
rently over the same data link. The DNA Phase V HDLC architectural 
specification documents how stations can use the HDLC protocol to sup­
port the maintenance functions defined by MOP. MOP is a Data Link 
layer user and can use an HDLC data link to perform such functions as 
message loopback testing of the link, upline dumping of memory con­
tents, downline loading of initialization code, and console operations. 
MOP messages are carried in UI-frames. The protocol multiplexing facil­
ity allows these maintenance operations to be performed any time the 
link is operational without interfering with normal data transfer of !­
frames over the link. 

Protocol Error Detection 

Each station must be able to detect errors in the operation of the proto­
col. Errors that can occur during data link operation include receipt of 
invalid frames, including frames containing invalid sequence numbers, 
frames having invalid frame type identifiers, and frames that are too 
long. When a station detects a protocol error, it generates a network 
management event and transmits a Frame Reject (FRMR) U-frame com-



428 

Conclusion 

PART V: DATA LINK LAYER PROTOCOLS 

mand. When a station receives a FRMR command, it also generates a 
network management event and begins the link initialization procedure. 

This chapter introduced HULC, the main data link protocoi used to im­
plement point-to-point links in the wide area networking environment. 
DNA Phase V HDLC supports all procedures required by a data link op­
erating in either balanced mode or normal mode over both synchronous 
and asynchronous circuits and defines a number of procedures that go 
beyond the ISO standard. Chapter 20 examines DDCMP, a Digital pro­
prietary protocol that can be used as an alternative to HDLC for wide 
area networking data links. 
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DDCMP Data Links 

The Digital Data Communication Message Protocol (DDCMP) was de­
signed a number of years ago by Digital and is the primary wide area 
networking data link protocol in networks that conform to Phase IV and 
previous phases of DNA. It is an octet-oriented protocol but has many of 
the characteristics of bit-oriented protocols, such as HDLC, especially 
the characteristic of code transparency. DDCMP is concerned with the 
logical transmission of data grouped into physical blocks called mes­
sages. Even though we have been using the term frame to refer to the 
data unit exchanged in the Data Link layer, we will use the term message 
in this chapter to be consistent with the DDCMP documentation. Both 
the DDCMP service definition and protocol specification are described 
in the DDCMP architectural specification. The architectural specifica­
tion for DDCMP has not changed from DNA Phase IV and has not been 
rewritten. The structure of the DDCMP architectural specification is, 
therefore, somewhat different from the structure of the Phase V architec­
tural specifications. This chapter discusses some of the features of 
DDCMP, describes the DDCMP service interface, and examines the 
DDCMP protocol specification. 

DDCMP Features DDCMP is a versatile data link protocol that supports both point-to­
point links connecting a pair of communicating stations and multipoint 
links in which a single control station communicates with two or more 
tributary stations over the same data link. Like HDLC, DDCMP can be 
used over both synchronous and asynchronous (start-stop) links. The 
following are some of the features of DDCMP: 

• error detection using the 16-bit cyclic redundancy check (CRC) error de­
tection polynomial 
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• error correction by means of retransmitting lost and corrupted messages 

• message sequencing allowing up to 255 messages to be outstanding be-
fore an acknowledgment is required 

• op~rntion with a wide variety of communication hardware 

• positive startup procedure that synchronizes both ends of the link 

• simplicity of operation using a small number of message formats 

• a maintenance mode for diagnostic testing and bootstrapping functions 

• data transparency of any bit sequence using a length-field framing tech­
mque 

• operation over full-duplex, half-duplex, point-to-point, and multipoint 
circuits 

Like the HDLC protocol described in Chapter 19, a DDCMP entity op­
erates in the Data Link layer of the architecture. It provides a set of ser­
vices to a user of a DDCMP entity and requests the services of a modem 
connect entity operating below it in the Physical layer. 

DDCMP Service Interface Commands and Responses 

The DDCMP architectural specification describes the interface between 
a DDCMP entity and a user of its services in terms of a set of abstract 
commands a user can issue to a DDCMP entity and a set of responses the 
DDCMP entity can send back to the user. These commands and re­
sponses are listed in Box 20.1. 

DDCMP Protocol The DDCMP documentation contains a protocol specification that pre-
Specification cisely defines the formats of the messages exchanged during protocol op­

eration and describes in detail the procedures controlling the exchange of 
messages. The remainder of this chapter describes the DDCMP protocol 
specification. We begin with a look at the message formats defined in the 
protocol specification. 

DDCMP Message The DNA Phase V architectural specification for DDCMP refers to data­
Formats link-protocol-data-units (DLPDUs) as messages. Two types of messages 

can be transmitted over the data link when DDCMP is in operation: 
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Commands to DDCMP 

The following are commands a Data Link service user can issue to a 
DDCMP Data Link layer entity. 

• Initialize Link. Starts DDCMP operation over the data link. 

• Stop Link. Stops DDCMP operation over the data link. May discon­
nect the modem from the line by placing it "on hook" when the pro­
tocol is used with a dial-up link. 

• Transmit Message. Passes a Data message to DDCMP for transmis­
sion over the data link. 

• Receive Message. Provides one or more empty buffers to DDCMP 
for the receipt of Data messages. 

• Return Transmit Buffers. Optional command issued after halting 
DDCMP operation to return outstanding transmit buffers to the 
user. 

• Enter Maintenance Mode. Changes DDCMP operation to mainte­
nance mode. 

Responses from DDCMP 

The following are the responses a DDCMP entity issues to a user of 
the DDCMP service in response to the above commands. 

• Initialize on Other End. Issued when the station on the other end 
of the link has restarted or initialized. Protocol operation stops 
and must be restarted by issuing another Initialize Link command. 

• Initialization Complete. Optionally issued in response to an Initialize 
Link command. 

• Message Transmitted. Issued in response to a Transmit Message 
command after the message has been acknowledged by the other 
station. 

• Message Received. Issued in response to a Receive Message com­
m,and after a message has been successfully received. 

• Transient Error. Issued after an error threshold counter has over­
flowed. 

• Persistent Error. Issued in response to an error condition from which 
recovery might not be possible. 
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Data messages and Control messages. There are one Data message, five 
Control messages, and one Maintenance data message: 

• Data messages 

• Acknowiedge (ACK) messages 

• Negative Acknowledge (NAK) messages 

• Reply to Message Number (REP) messages 

• Start Message (STRT) messages 

• Start Acknowledge (STACK) messages 

• Maintenance data messages 

The following sections describe the formats of the seven types of 
DDCMP messages. 

Data Messages 

Data messages contain sequence numbers and are employed to carry user 
data over a DDCMP link. Figure 20.1 shows the format of a Data mes­
sage. A Data message contains the following fields: 

• Start of Header. A Start-of-Header (SOH) code (hex '81') indicating a 
Data message. 

• Byte Count. A 14-bit field containing a count of the number of octets in 
the Data field. 

• Flags. A 2-bit field containing two flags. The first bit is a Quick Sync 
flag, indicating that resynchronization should follow this message; the 
second bit is a Select flag, used to give the receiver permission to transmit 
over a half-duplex or multipoint link. 

• Response Number. Contains a number used to acknowledge correctly re­
ceived messages from the other station. 

• Transmit Number. Contains a number identifying this message. 

• Station Address. Contains the address of the station on a multipoint link 
to which the message is being sent or the address of the originating sta­
tion. Stations on point-to-point links use the address value hex '01'. 

DDCMP data message format. 

SOH 
X'81' 

Byte Count 
Response Transmit Station 

" Number Number Address 
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Data ( ......... l __ B_loc-'~-C-he_c_k 2__. 
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• Block Check 1. Contains a 16-bit Cyclic Redundancy Check (CRC) 
value calculated on the contents of the header fields from the SOH octet 
through the Station Address octet. 

• Data. Contains the data transmitted in this message. It must contain the 
number of octets specified in the Byte Count field. 

• Block Check 2. Contains a 16-bit CRC value calculated on the contents 
of the Data field. 

Control Messages 

A Control message is an unnumbered message that carries channel, 
transmission status, and initialization information over a DDCMP link. 
Figure 20.2 shows the format of a Control message. A Control message 
contains the following fields: 

• ENQ. An ENQ code (hex '05') indicating a Control message. 

• Type. An 8-bit code indicating the type of Control message. 

• Subtype or Reason. A 6-bit code containing either a Subtype or Reason 
code for some types of Control messages. The Subtype field typically is 
not used and normally contains six 0-bits. 

• Flags. Same as the Flags field for Data messages. 

• Receiver Field. Used to pass control information from the Data message 
receiver to the Data message sender. 

• Sender Field. Used to pass control information from the Data message 
sender to the Data message receiver. 

• Station Address. Same as the station address field for Data messages. 

• Block Check. Contains a 16-bit CRC value calculated on the contents of 
the fields from the ENQ octet through the Station Address octet. 

ACK and NAK Messages The Acknowledge (ACK) and Negative Ac­
knowledge (NAK) messages are used to provide positive and negative ac­
knowledgments to Data messages. Their formats are similar and are 
shown in Figure 20.3. 

DDCMP control message format. 

f 
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Acknowledge (ACK) and negative acknowledge (NAK) message formats. 

Acknowledge (ACK) 
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Negative Acknowledge (NAK) 

F 
ENO NAK 
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Fill 
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Station 
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.J. 

• ENQ. An ENQ code (hex '05') indicating that this is a form of Control 
message. 

• ACK Type or NAK Type. Contains the value hex '01' for an ACK and 
hex '02' for a NAK. 

• Subtype or Reason. In an ACK this is a Subtype field containing six O­
bits; in a NAK this is a Reason field indicating the reason for the nega­
tive acknowledgment. 

• Flags. Same as the Flags field for Data messages. 

• Response Number. Contains a number used to acknowledge correctly re-
ceived messages from the other station. 

• Fill. Contains the value hex '00'. 

• Station Address. Same as the station address field for Data messages. 

• Block Check. Contains a 16-bit CRC value calculated on the contents of 
the fields from the ENQ octet through the Station Address octet. 

REP, STRT, and STACK Messages The Reply to Message Number (REP), 
Start (STRT), and Start Acknowledge (STACK) messages all have similar 
formats and are illustrated in Figure 20.4. The Reply to Message Number 
(REP) message is used to request status information from the data re­
ceiver. It is generally sent when the message sender has sent a message and 
has not heard back from the message receiver before a time-out occurs. 
The Start (STRT) message is used to establish initial contact and to per­
form synchronization on the link. The Start Acknowledge (STACK) mes­
sage is used to respond to a STRT message after the station has completed 
its initialization. The fields contained in these messages are as follows: 

• ENQ. An ENQ code (hex '05') indicating that this is a form of Control 
message. 
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Reply to message number (REP), start (STRT), and start acknowledge (STACK) message 
formals. 

Reply to Message Number (REP) 
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• REP Type, STRT Type, or STACK Type. Contains the value hex '03' for 
REP, hex '06' for STRT, or hex '07' for STACK. 

• Subtype. Contains six 0-bits. 

• Flags. Same as the Flags field for Data messages. 

• Fill. Contains the value hex '00'. 

• Message Number or Fill. For REP, contains the number of the last se­
quential Data message (not including retransmissions) sent by the mes­
sage sender. For STRT and STACK, contains the value hex '00'. 

• Station Address. Same as the station address field for Data messages. 

• Block Check. Contains a 16-bit CRC value calculated on the contents of 
the fields from the ENQ octet through the Station Address octet. 

Maintenance Data Messages DDCMP operates in either online mode, 
which is the normal operating mode, or in maintenance mode. The 
Maintenance data message format is used when the link is operating in 
maintenance mode. Maintenance data messages are used for such func­
tions as downline loading of program code and upline dumping opera­
tions. As shown in Figure 20.5, the Maintenance data message is similar 
in format to the Data message. Its fields are as follows: 

• Data Link Escape. A Data Link Escape (DLE) code (hex '90') indicates 
that this is a Maintenance data message. 
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FIGURE 20.5 Maintenance data message format. 
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Byte Count. A 14-bit field containing a count of the number of octets in 
the Data field of the message. 

Flags. Contains the value binary '11' for Maintenance data messages. 

Fill. Contains the value hex '00'. 

Fill. Contains the value hex '00'. 

Station Address. Same as the station address field for Data messages. 

Block Check 1. Contains a 16-bit CRC value calculated on the contents 
of the header fields from the DLE octet through the Station Address 
octet. 

Data. Contains the data transmitted in this message. It must contain the 
number of octets specified in the Byte Count field. 

Block Check 2. Contains a 16-bit CRC value calculated on the contents 
of the Data field. 

The procedures used during protocol operation that govern the exchange 
of messages over a DDCMP data link can be divided into three major 
categories: 

• framing procedures 

• link management procedures 

• message exchange procedures 

Framing Procedures 

Framing procedures concern both byte framing and message framing. 
The process of byte framing properly groups bits in the incoming bit 
stream into 8-bit octets. The protocol defines different byte framing pro­
cedures that can be used over asynchronous (start-stop) links and syn­
chronous links. When the protocol operates over an asynchronous link, 
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byte framing is inherent in the operation of the physical link. With a syn­
chronous link, the sender begins transmission by sending four or more 
SYN patterns (binary 1001 0110). The receiver searches the incoming bit 
stream for two consecutive SYN patterns. Once it has located them, the 
receiver knows each successive group of 8 bits makes up an octet in the 
incoming bit stream. The receiver then ignores any subsequent SYN pat­
terns and searches for the first octet containing a non-SYN pattern. 

After it has achieved octet synchronization by using the appropri­
ate byte framing procedure, the protocol achieves message framing by 
searching for one of the three starting message octets-SOH, ENQ, or 
DLE-in the incoming bit stream. One of these octets must appear im­
mediately after the byte framing sequence or immediately after the final 
octet of the previous message. If one of these octets is not found in the 
proper location, the receiver assumes byte framing has been lost. The 
message framing procedures provide for a totally transparent data field; 
once a starting octet has been found, no more searching for a particular 
bit configuration is performed. The length field contained in each Data 
or Maintenance data message is used to tell the receiver where it will 
find the last octet of the message. Since Control messages have a fixed 
length, the receiver implicitly knows the location of the last octet of a 
Control message. 

Link Management Procedures 

Link management procedures coordinate the sending and receiving of 
data over half-duplex links in which data can be transmitted in only one 
direction at a time. They also coordinate transmission on a multipoint 
link, which contains one control station and two or more tributary sta­
tions. Transmission over a half-duplex circuit and over a multipoint link 
is controlled through the use of the Select flag in the header of each mes­
sage. The transmitting station indicates that it is finished transmitting by 
setting the Select flag to 1 in its last message. Receipt of a message in 
which the Select flag is set to 1 gives the receiving station permission to 
begin transmitting. On a multipoint link, the control station identifies 
the tributary station to which a message is destined by including a sta­
tion address in the header of each message. A tributary station receives 
all transmissions from the control station but ignores all messages except 
those whose station address values match its own station address. Mes­
sages from a tributary station are ignored by all the other tributaries and 
are processed only by the control station. 
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Message Exchange Procedures 

The procedures governing the way in which messages are exchanged 
over the link ensure that messages are received in the order sent, that no 
duph:~te m.ess:iges 2re receivl:'cl, ::incl that messages containing transmis­
sion errors are detected and eventually retransmitted. Transmission er­
rors are detected using a CRC procedure in which the transmitter calcu­
lates 16-bit CRC values and includes them in the frames it transmits. The 
receiver calculates CRC values and compares them with the CRC values 
contained in the frames it receives. If a calculated CRC value does not 
match the corresponding received CRC value, the receiver discards the 
frame containing the erroneous CRC value. 

Each frame contains an 8-bit message sequence number used by a 
receiving station to detect discarded frames and to request their retrans­
mission. A receiver sends positive acknowledgments to indicate that it 
has received frames correctly. The 8-bit message sequence numbers are 
used by a pipelining procedure in which up to 255 frames can be sent be­
fore a positive acknowledgment is required. A time-out procedure de­
tects errors signalled by the absence of a required positive acknowledg­
ment. If messages are transmitted in both directions, a Data message can 
serve as a positive acknowledgment, thus eliminating the need for the 
transmission of a separate Control message. Since time-out values often 
are relatively long, provision is made for the immediate transmission of 
explicit negative acknowledgements to indicate certain types of error sit­
uations, such as CRC value mismatches. 

This chapter and the previous one introduced the two data link proto­
cols used to implement data links in the wide area networking environ­
ment. Both HDLC and DDCMP support both synchronous and asyn­
chronous transmission over a wide variety of telecommunications 
circuits. HDLC is the preferred data link protocol in a DECnet Phase V 
network, with DDCMP provided primarily for compatibility with Phase 
IV of DNA. The remaining chapters in this book examine protocols that 
operate over local area network data links. 
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The HDLC and DDCMP protocols discussed in Chapters 19 and 20 are 
designed to support the form of data link technology used with conven­
tional, long-distance telecommunication facilities. This chapter and the 
next two examine a different class of protocol used to implement local 
area networks (LANs). The characteristics of the form of data link pro­
vided in the wide area networking (WAN) environment are very different 
from the characteristics of a LAN data link. Box 21.1 (page 441) sum­
marizes some of the differences between the technology used to construct 
conventional telecommunications data links and the technology used to 
construct LAN data links. 

A great many hardware and software systems are available for imple­
menting local area networks. All share the general characteristics de­
scribed in Box 21.1, but all are implemented in different ways. The fol­
lowing is a discussion of four ways in which local area networks are 
commonly classified: 

• Network Topology. The network topology relates to the logical way in 
which devices attached to LAN are interconnected. The three major 
topologies are the bus, the star, and the ring, as illustrated in Figure 21.1. 
In many cases, a specific LAN implementation might use combinations 
of the three basic topologies to create hybrid configurations. We examine 
bus and ring topologies further in Chapters 22 and 23. 

• Transmission Medium. The second criterion by which LANs can be 
classified is by the type of transmission medium used to interconnect pro­
cessors. Most LANs use twisted-wire pairs, coaxial cable, or fiber-optic 
cable, although some LANs use radio transmission or infrared signaling. 
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Three LAN topologies. 
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• Transmission Technique. The third criterion for classifying LANs is ac­
cording to the method used for transmitting signals over the transmission 
medium. There are basically· two methods: baseband and broadband. 
With baseband signaling, information is carried over the transmission 
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Characteristics of Conventional Data Link Technology 

• Performance. Transmission speeds are generally low, typically 9600 
bits per second or lower, with moderately high error rates. Some 
telecommunication links operate at higher speeds, such as 56,000 or 
1.544 million bits per second (Tl carrier), with relatively low error 
rates. 

• Distance. Data communication can take place over any desired dis­
tance given the availability of the appropriate communication 
facilities. 

• Transmission Medium. Public communication facilities, such as tele­
phone circuits, are typically used for data communication. 

• Cost. Cost for data transmission is relatively high due to common 
carrier tariffs. 

• Connectivity. Conventional data link technology is most often used 
to connect pairs of communicating devices. 

Characteristics of LAN Data Link Technology 

• Performance. Transmission speeds are very high, typically in the mil­
lions of bits per second, with typically very low error rates. 

• Distance. A LAN is designed primarily to support communication 
over a limited geographical area, for example, within a building or a 
group of related buildings (although extended LANs can span great 
distances). 

• Transmission Medium. A LAN typically uses private, user-installed 
wiring as the communication medium. 

• Cost. The cost for data transmission is relatively low because data 
are carried over privately owned transmission media having only a 
one-time installation cost. 

• Connectivity. A LAN connects large numbers of devices, each of 
which can communicate with any other device attached to the LAN. 
The broadcast nature of a LAN also allows a station to multicast 
messages to groups of other stations. 
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medium in digital form; with broadband signaling, a data signal is super­
imposed on a carrier signal using some type of modulation technique. 

• Access Protocol. A fourth way in which LANs can be classified is accord­
ing to the rules governing the way individual LAN devices gain access to 
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the transmission medium. Any number of access protocols can be de­
vised, but two major forms of access protocol dominate the LAN mar­
ketplace. With the Carrier Sense Multi-Access with Collision Detection 
(CSMA/CD) form of access protocol (described in detail in Chapter 22), 
a device first listens to the medium and then transmits if the medium is 
quiet. Procedures are provided to recover when the transmissions of two 
or more devices collide. With a token passing form of access protocol 
(described in detail in Chapter 23), access to the transmission medium is 
controlled through a special frame called the token that is passed from 
device to device. 

An important set of standards for local area networks has been pub­
lished by the Institute of Electrical and Electronics Engineers (IEEE) (see 
Chapter 2) describing several ways for implementing LANs. These same 
standards have now also been accepted by ISO as international stan­
dards and are published by ISO as well. The DNA Phase V LAN data 
links include support for applicable IEEE/ISO LAN standards. In addi­
tion, the specifications for the DNA Phase V LAN data links define com­
patible extensions to the IEEE/ISO LAN standards to provide enhanced 
local area network services. 

IEEE/ISO LAN Architecture 

. The IEEE/ISO LAN standards address the Physical and Data Link layers 
of the OSI model. As shown in Figure 21.2, the Data Link layer is di­
vided into two sublayers to allow different forms of medium access con­
trol to be accommodated in the architecture. The following are descrip­
tions of the layers and sublayers addressed by the IEEE/ISO LAN 
standards: 

• Physical Layer. The Physical layer-the lowest layer in the IEEE/ISO 
LAN model-is concerned with the physical transmission of signals 
across a transmission medium. This layer defines procedures for estab­
lishing physical connections to the transmission medium and for trans­
mitting and receiving signals over it. It includes specifications for the 
types of cabling to be used, plugs and connectors, and the characteristics 
of the signals that are exchanged. The Physical layer provides services to 
the Medium Access Control sublayer. 
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Comparison of the layers of the OSI model with those of the IEEE/ISO LAN architecture. 
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• Medium Access Control Sublayer. The Medium Access Control (MAC) 
sublayer of the Data Link layer is concerned with the medium access 
control method. It defines procedures for managing access to the trans­
mission medium, describes addressing techniques, and specifies error de­
tection and recovery procedures. The MAC sublayer provides services to 
the Logical Link Control sublayer. 

• Logical Link Control Sublayer. The Logical Link Control (LLC) sublayer 
of the Data Link layer is responsible for medium-independent data link 
functions. It allows a user of the LLC sublayer to access the services of 
the LAN without regard to what form of medium access control is used. 
The LLC sublayer provides services to a user of the OSI Data Link layer, 
such as a Network layer entity. 

IEEE/ISO LAN Standards 

The IEEE/ISO LAN standards describe various ways in which local area 
networks can be implemented. These standards include: 

• IEEE 802.ld/ISO 10039. IEEE 802.1 is a multipart standard that covers 
a wide range of topics. Of special interest in the DNA Phase V environ­
ment is the 802.1d standard that addresses bridges used to interconnect 
individual LANs to create extended LANS. ISO 10039 describes the ISO 
version of the standard for bridges. The DNA Phase V bridge and ex­
tended LAN architecture is described in Chapter 24. 
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• IEEE 802.2/ISO 8802-2 Logical Link Control. This standard describes 
the functions of the LLC sublayer of the IEEE LAN architectures. It de­
scribes the function of the LLC sublayer for all three forms of medium 
access coritrril clf'finf'd hy the IEEE/ISO LAN architecture and can be 
used with Fiber Distributed Data Interface (FDDI) as well. The IEEE/ISO 
LLC standard is described in this chapter. 

• IEEE 802.3/ISO 8802-3 CSMA/CD. This standard and a group of sup­
plements to it describe the MAC sublayer and Physical layer functions 
for a bus- or tree-structured network using CSMA/CD as an access pro­
tocol. This standard has its roots in the Ethernet form of LAN, jointly 
developed by Digital, Xerox, and Intel, and used for many years in DEC­
net networks. Both IEEE/ISO CSMNCD and Ethernet are supported by 
DNA Phase V. The DNA Phase V CSMA/CD LAN data link is described 
in Chapter 22. 

• IEEE 802.3/ISO 8802-3 CSMA/CD. This standard and a group of IEEE 
802.4/ISO 8802-4 Token Bus. This standard describes the MAC sublayer 
and Physical layer functions for a bus-structured LAN using token pass­
ing as an access protocol. This form of LAN was designed to meet the 
needs of factory automation applications. 

• IEEE 802.3/ISO 8802-3 CSMA/CD. This standard and a group of IEEE 
802.5/ISO 8802-5 Token Ring. This standard describes the MAC sub­
layer and Physical layer functions for a ring-structured network using a 
token passing access protocol. This standard is an outgrowth of the 
token ring form of LAN developed by IBM. 

• ISO 9314 Fiber Distributed Data Interface (FDDI). This standard defines 
a very high speed form of LAN that was developed by a subcommittee of 
the American National Standards Institute (ANSI) and that has been ac­
cepted as an international standard by ISO. FDDI uses a logical ring­
structured topology using a timed token-passing access protocol that is 
quite different from the token-passing protocol defined in the IEEE/ISO 
token ring standard. The DNA Phase V FDDI LAN data link is the sub­
ject of Chapter 23. 

The standard for the LLC sublayer (IEEE 802.2/ISO 8802-2) is the 
basis for all the various LAN standards that are part of the IEEE/ISO 
LAN architecture and can be used in conjunction with FDDI as well. It 
allows all the various forms of LANs to present a common interface to a 
user of the local area network, such as the DNA Phase V Network layer. 

At the time of this writing, DNA Phase V illcludes support for the 
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CSMNCD and Ethernet forms of LAN and for FDDI. Because of the 
support for the IEEE/ISO LLC standard, it would be relatively easy to 
also accommodate products conforming to the IEEE/ISO token bus and 
token ring standards within the architecture. 

We next describe the service definition and protocol specification for 
the IEEE/ISO LLC sublayer. After that, we will examine the features of 
the DNA Phase V LLC sublayer that go beyond the international stan­
dard while remaining in conformance with it. 

Local area network data links implement a broadcast form of subnetwork 
in which each device attached to the data link receives all frames trans­
mitted by all other devices. The broadcast data link can be implemented 
using either a multiaccess bus-structured circuit or a collection of point­
to-point circuits forming a ring configuration. With a broadcast data link, 
a device can send each frame to multiple devices on the link. A broadcast 
form of data link can provide a broad range of services that allow differ­
ent types of users to simultaneously employ the services of the link. 

The IEEE/ISO standard for the LLC sublayer defines both a service 
definition for the LLC sublayer and a protocol specification. Although 
they are described in the same document, the service definition and the 
protocol specification are independent of each other, in keeping with 
other ISO standards for the OSI model. The service definition for the 
IEEE/ISO LLC sublayer describes the services an LLC sublayer entity 
provides to its users. These services are defined in the IEEE/ISO docu­
mentation in terms of service primitives and service primitive parame­
ters. The relationship between the services the LLC layer provides to an 
LLC sublayer user and the protocol that governs its operation are shown 
in Figure 21.3. As shown there, the LLC sublayer protocol uses the ser­
vices of the MAC sublayer to provide a defined set of services to a user of 
an LLC sublayer entity. 

Figure 21.4 summarizes how a user of the LLC sublayer service (the 
Network layer in the diagram) transmits data from one node to another. 
An LLC sublayer user requests a data transfer service of the LLC sub­
layer and passes a logical-link-control-service-data-unit (LLC-SDU) to 
the LLC sublayer entity. The LLC sublayer entity adds PCI to the LLC­
SDU in the form of a header to create a logical-link-control-protocol­
data-unit (LLC-PDU). The LLC sublayer uses the services of the MAC 
sublayer to transmit the LLC-PDU over the transmission medium to its 
destination. The LLC sublayer entity in the destination device removes 
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FIGURE 21.3 Relationship between the LLC sublayer service definition and the LLC sublayer protocol 
specification. 
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the PCI and delivers the enclosed LLC-SDU to the LLC sublayer user 
there. 

To transmit an LLC-PDU over the network, an LLC sublayer entity 
passes the LLC-PDU down to a MAC sublayer entity in the form of a 
medium-access-control-service-data-unit (MAC-SDU). The MAC sub­
layer entity encapsulates the MAC-SDU with additional PCI, which 
takes the form of a header and a trailer, to create a medium-access­
control-protocol-data-unit (MAC-PDU), or MAC frame. This procedure 
is shown in Figure 21.5. The format of the MAC frame varies, depending 
on the form of LAN used. MAC frame formats are examined in Chap­
ters 22 and 23 for the CSMNCD, Ethernet, and FDDI forms of LAN. 

The IEEE/ISO LAN architecture provides for two levels of addressing: 
station addressing and service-access-point (SAP) addressing. A station 
address uniquely identifies each individual device attached to the LAN, 
and a SAP address identifies a particular type of LAN user. (The term sta-
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tion is defined more precisely for each individual type of LAN in Chap­
ters 22 and 23.) The definition of service-access-points allows many dif­
ferent types of users to share the same LAN. 

The LLC sublayer is concerned only with the SAP address and not 
with the station address; the station address is the concern of the MAC 
sublayer. Even though the LLC sublayer does not examine or manipulate 
the station address, we describe it here to introduce the addressing 
scheme defined by the IEEE/ISO LAN architecture. 

Station Addresses 

A MAC-PDU contains destination and source station address fields. The 
destination address indicates the intended recipient (or recipients) of the 
frame. The destination address can refer to an individual station or to a 
group of stations. The source address refers to the station that transmit­
ted the frame and always refers to an individual station. According to the 
IEEE/ISO LAN standards, station addresses can be either 16 bits or 48 
bits in length. However, the DNA Phase V architecture mandates the use 
of 48-bit station addresses. The first bit of a source station address is al­
ways 0. If the first bit of a destination station address is 0, the address 
identifies an individual station. If the first bit is 1, the address refers to a 
group of stations. An address of all 1-bits is the broadcast address and 
refers to all the stations on the LAN. 

The IEEE/ISO LAN standards define two forms of addressing that 
can be used for LAN implementations: locally administered and globally 
administered. All 16-bit addresses are locally administered. For 48-bit 
addressing, if the second bit is 0, addressing is globally administered; if 
the second bit is 1, addressing is locally administered. 

• Locally Administered Addressing. When locally administered address­
ing is used, it is the responsibility of the organization installing the net­
work to assign addresses to network devices. 

• Globally Administered Addressing. With globally administered address­
ing, addresses must be 48 bits in length, giving 46 bits for individual 
MAC addresses. Each LAN manufacturer assigns a unique address to 
each LAN adapter it builds, thus guaranteeing that no two LAN 
adapters in the world have the same address. Digital strongly encourages 
the use of globally administered addresses in a DECnet Phase V network, 
and all current Digital LAN products are given a globally unique address 
during manufacture. 
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NETWORK ARCHITECT 

A 46-bit address space gives over 70,368 billion unique addresses-so many 

that every device manufactured anywhere in the world can be assigned a unique 

address by its manufacturer. This guarantees that there will be no duplication of 

addresses when devices are added to a network or when networks are inter­

linked. Before Ethernet, users basically set network addresses with DIP 

switches. With Ethernet, we wanted to avoid addressing problems by providing 

a unique address for every device. The address is permanently set in the device 

at the factory. When we were developing the Ethernet specification, we origi­

nally thought a 32-bit address would be adequate (4 billion addresses), but we 

decided that administering so small an address space would prove impractical in 

practice, so we expanded the address to 48 bits. One proposal for generating an 

Ethernet address was to toss a coin 48 times, one toss for each bit. This actually 
would be adequate for up to 224 different devices. But for more than 224 you 

would tend to generate too many duplicates. Another proposal was to read the 

serial number from a dollar bill and to then tear up the dollar bill. That turned 

out to be illegal. The end result was to partition the 48-bit address space into 

blocks of 224 different addresses that could be assigned to individual manuf ac­

turers. For a modest fee, you get a block of 224 addresses. If you need more, you 

pay a fee for another block. The administration process of assigning Ethernet 

addresses has now been turned over to the IEEE. The idea behind a unique 

address for each individual device is that you can just plug any number of these 

devices together and not have to worry about address conflicts. 

The IEEE assigns a value for the high-order 24 bits of the station ad­
dress to any organization requesting one. The organization is then re­
sponsible for guaranteeing that a different address value is placed in the 
low-order 24 bits of the address for each device it manufactures. For ex­
ample, one of the address block values assigned to Digital for station ad­
dresses is hexadecimal '08-00-2B'. When assigning a station address to a 
device, Digital places the value hex '08-00-2B' in the high-order three 
octets of the address and then assigns a value to the remaining 24 bits of 
the address so no two devices it manufactures have the same value in the 
last 24 bits. 

SAP Addresses and User Multiplexing 

A local area network can be used by an organization for many purposes. 
One collection of users might all be communicating using the ISO 84 73 
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Internet protocol in the Network layer. Other users might be DNA Phase 
IV users employing Ethernet frames. Still other users might be employing 
some other architecture entirely, such as AppleTalk or Novell NetWare. 
These different types of users can all operate concurrently and can all use 
the LLC services on a station. They can all coexist on the same local area 
network without interfering with one another. The LLC SAP addresses, 
SNAP protocol identifiers, and Ethernet protocol types provide user-type 
multiplexing to achieve this concurrency. The SNAP protocol identifier 
and Ethernet protocol type multiplexing are described later in this chapter. 

There are two types of SAP addresses. An individual address 
identifies a single type of LLC sublayer user, and a group address 
identifies groups of LLC sublayer user types. If the first bit of a SAP ad­
dress contains a 0, the address is an individual address; if the first bit 
contains a 1, the SAP address is a group address. 

LLC Sublayer The current version of the LLC sublayer standard defines two types of 
Service Definition LLC sublayer services: 

• connectionless-mode service 

• connection-mode service 

Conformance to the IEEE/ISO LLC standard requires the provision 
of only the connectionless-mode service, but a particular LAN imple­
mentation of the IEEE/ISO LLC standard might provide the connection­
mode service as well. The DNA Phase V architecture uses only the con­
nectionless-mode service for LANs, so we describe only the service 
primitives for the connectionless-mode service here. DNA implementa­
tions of the LLC sublayer also provide a user-supplied LLC service that 
can be used to implement a protocol to provide any desired LLC sub­
layer service, including the connection-mode LLC service, for those users 
requiring something other than the connectionless-mode service. 

The Connectionless-Mode LLC Service 

With the connectionless-mode LLC sublayer service, there is no need to 
establish a logical connection between the sending and the receiving LLC 
sublayer entities, and each LLC-PDU is sent and processed indepen­
dently of any other LLC-PDUs. No sequence checking is done to ensure 
that data units are received in the same sequence in which they were sent, 
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and the receiving LLC sublayer entity sends no acknowledgment that it 
has received an LLC-PDU. No flow control or error recovery procedures 
are provided as part of the connectionless service. With the connection­
less service, data units can be sent to individual stations, to defined 
groups of stations, or to all stations on the LAN. Connectionless service 
is sometimes referred to as a datagram service. When the connectionless­
mode service is used, all necessary flow control and error recovery ser­
vices must be provided in the layers above the LLC sublayer, often in the 
Transport layer. 

The DL_UNITDATA Data Transfer Service 

A single DL_UNITDATA data transfer service is defined for the connec­
tionless-mode service. Box 21.2 describes the service primitives for the 
DL_UNITDATA service. Figure 21.6 is a time-sequence diagram showing 
the sequence in which the two service primitives are issued in providing 
the DL_UNITDATA data transfer service. The DL_UNITDATA service is 
a nonconfirmed service in which the user of the LLC sublayer service is 
not informed of the success or failure of the data transfer operation. 

The IEEE/ISO documentation of the LLC sublayer and the DNA Phase V 
documentation together provide a protocol specification for the LLC 
sublayer. The LLC sublayer protocol specification precisely defines the 
formats of the LLC-PDUs exchanged during protocol operation and de-

Time-sequence diagram for the DL_UNITDATA service. 

DL_UNITDATA. 
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scribes in detail the procedures controlling the exchange of LLC-PDUs. 
We begin the discussion of the LLC sublayer protocol specification by 
examining the format of LLC-PDUs. 

LLC-PDU Formats 

An LLC-PDU conforms to the format shown in Figure 21.7. LLC-PDUs 
use a header format similar to that defined for the transmission frames in 
the HDLC standard (see Chapter 19). The following are descriptions of 
the fields in the LLC-PDU: 

• Source and Destination Service-Access-Point Addresses. Each LLC-PDU 
begins with a 1-octet destination-service-access-point (DSAP) address 
and a 1-octet source-service-access point (SSAP) address. These fields 
identify the source and destination users of the LLC sublayer service. 
The uses of the SSAP and DSAP address fields are described later in this 
chapter. 

• Control Field. Following the DSAP and SSAP address fields is a 1-octet 
or 2-octet control field that describes the PDU's type and contains control 
information. 

• Information Field. After the control field is a variable-length information 
field. 
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Logical-link-control-protocol-data-unit (LLC-PDU) format. 

~-o_s_A_P~~s_s_A_P~~~-C-on-tr_o1_F_ie_ld~~~~l-nt_o_rm_a_tio_n~~~~ 
1 byte 1 byte 1 or 2 bytes 0 · n bytes 

Commands and Responses 

An LLC-PDU can take the form of either a command or a response. A 
command is sent by an LLC sublayer entity initiating a data transfer op­
eration; a response is sent by the opposite LLC sublayer entity in reply to 
a command. The low-order bit of the SSAP address indicates whether the 
PDU is a command or a response: 0 indicates a command and 1 indicates 
a response. 

LLC-PDU Types 

There are three types of LLC-PDUs, only one of which is used by the 
protocol supplying the connectionless-mode LLC sublayer service. All 
three are described here for completeness: 

• Unnumbered PDUs. Unnumbered PDUs (U-PDUs) are used by the pro­
tocol supplying the connectionless-mode LLC sublayer service to carry 
user data. They are also used to perform initialization procedures and to 
invoke diagnostic sequences. 

• Information PDUs. Information PDUs (1-PDUs) are used by the proto­
col supplying the connection-mode LLC sublayer service to carry user 
data. 

• Supervisory PDUs. Supervisory PDUs (S-PDUs) are used by the protocol 
supplying the connection-mode LLC sublayer service to carry informa­
tion necessary to control the operation of the protocol. 

U-PDUs carry 1-octet control fields; 1-PDUs and S-PDUs carry 2-
octet control fields. Since only U-PDUs are used in supplying the connec­
tionless-mode LLC sublayer service, we examine only that format. 

U-PDU Format 

Figure 21.8 illustrates the format of U-PDUs, showing details for the 
control field. Some U-PDU commands and responses have information 
fields; others do not. An 11-bit configuration in bit positions 1 and 2 of 
the first control field octet identifies the PDU as a U-PDU and indicates 
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U-format LLC-PDU. 

that the control field is only 1 octet in length. The remainder of the bits 
are interpreted as a poll/final bit and function code bits. The function 
code bits in a U-PDU identify the type of command or response the PDU 
represents. 

Three U-format PDUs are used to support Type 1 operation. Each 
LLC-PDU has a full name and a mnemonic. The following descriptions 
of the three LLC-PDUs used for Type 1 operation give the full name of 
each LLC-PDU followed by the mnemonic in parentheses: 

• Unnumbered Information (UI). Used to convey user data between a pair 
of LLC entities. 

• Exchange Identification (XID). Used to exchange information about the 
types of service the LLC entities support. 

• Test (TEST). Used to conduct a loopback test of the transmission path 
between two LLC entities. 

LLC Operational Modes 

The two operational modes that the IEEE/ISO LLC sublayer standard 
defines correspond to the two forms of service described earlier. 

• Type 1 Operation. Supports the connectionless-mode service. 

• Type 2 Operation. Supports the connection-mode service. 

The IEEE/ISO LLC standard defines two classes of LLC protocol 
support: 

• Class I LLC. Supports Type 1 operation only. 

• Class II LLC. Supports both Type 1 and Type 2 operations. 

The DNA Phase V architecture requires the use of only Class I LLC. 
As described earlier, the user-supplied LLC service can be used to build 
an implementation of Class II LLC if a user requires it. 
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The protocol mechanisms operating in the LLC sublayer to support Type 
1 operation are simple. No sequence checking, retransmission, or flow 
control procedures are defined. Error detection is, however, implemented 
by the MAC sublayer. If a MAC sublayer entity detects a corrupted 
frame, it discards the frame. Since this error detection mechanism is op­
erating at the level of the MAC sublayer, the LLC sublayer never receives 
frames affected by transmission errors. 

Data Transfer 

The LLC sublayer carries out a request for a data transfer operation by 
encapsulating each received LLC-SDU in an Unnumbered Information 
(UI) PDU and then uses the MAC sublayer service to transmit it over the 
transmission medium. An LLC sublayer entity receiving a UI PDU does 
not acknowledge its receipt. In addition to handling the receipt of user 
data in UI PDUs, all implementations of the LLC sublayer standard must 
also be capable of correctly responding to Exchange Identification (XID) 
PDUs and Test (TEST) PDUs. 

Exchanging XID LLC-PDUs 

When an LLC sublayer entity receives an XID LLC-PDU command, it 
generates an XID LLC-PDU response specifying the class of service it can 
support. The response XID PDU indicates that it can support either 
Class LLC I (connectionless-mode service only) or Class II LLC (connec­
tionless-mode and connection-mode service). Possible other uses for the 
XID LLC-PDU include determining if a particular station is available on 
the network, determining the stations assigned to a particular group ad­
dress, checking for duplicate addresses, and announcing the presence of 
a station on the network. 

Exchanging TEST LLC-PDUs 

When an LLC sublayer entity receives a TEST LLC-PDU command, it gen­
erates a TEST LLC-PDU response. An exchange of TEST PD Us is used to 
perform a basic test of the presence of a transmission path between LLC 
sublayer entities. The source LLC sublayer entity sends a TEST command 
to a destination LLC sublayer entity, and the destination LLC sublayer 
entity replies by sending a TEST response back to the source LLC sublayer 
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entity. An optional information field can be included in the TEST com­
mand. If one is included, the TEST response must echo it back. 

We have now examined the service definition and the protocol 
specification for the IEEE/ISO LLC sublayer standard. The remainder of 
this chapter discusses the DNA Phase V LLC sublayer, concentrating on 
those LLC sublayer features that go beyond the international standards. 

Each of the two major forms of local area network supported in the 
DNA Phase V environment defines its own architectural model. The ar­
chitectural models for the CSMNCD and FDDI forms of LAN are de­
scribed in Chapters 22 and 23. Although these two architectural models 
are different in the MAC sublayer and the Physical layer, both models in­
clude an LLC sublayer and define the same method for allowing a user to 
access LLC sublayer services. This is shown in Figure 21.9. 

With both the CSMNCD and FDDI forms of LAN, a LLC sublayer 
entity resides in a station. A station represents a physical point of attach­
ment to the LAN transmission medium. A user requests the services of 
the LLC sublayer through a port. An LLC sublayer port is a data struc­
ture representing a particular user of an LLC sublayer entity. Each user 
of the LLC sublayer has its own port that it uses to request LLC sublayer 
services. A particular station can implement any number of ports, and a 
user can employ more than one port simultaneously. However, a port 
can service only a single user at a time. 

Local area network architectural model. 

Data Link Data Link Data Link 
Service Service Service 
User A User B User C 

••• 

Transmission Medium 

Data Link 
Service 
User n 
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DNA Phase V LLC The LLC sublayer in the DNA Phase V architecture provides a number 
Sublayer Services of services, many of which go beyond the IEEE/ISO specification for the 

LLC sublayer. The services provided by the DNA Phase V LLC sublayer 
include the following: 

LLC Sublayer 
Service Interface 
Procedure 
Declarations 

• Class 1 Service. With this service, the LLC sublayer handles all aspects of 
the LLC sublayer protocol to provide the service specified in the 
IEEE/ISO standard for the Type 1 connectionless-mode operation, in­
cluding responses to XID and TEST frames. 

• Multiplexing. This service makes it possible for more than one type of 
user to simultaneously use the Data Link layer service. Different types of 
users of the Data Link service might include DNA Phase V Network 
layer entities, Local Area Transport (LAT) users, and Maintenance Oper­
ations Protocol (MOP) users. 

• Address Filtering. Each station on a broadcast data link receives the 
frames transmitted by all other stations on the data link. Each frame 
contains both a source and a destination station address. The address 
filtering function allows a station to specify the destination address value 
or values it will accept as being addressed to it. 

• Multicasting. This service allows a station to send a frame to multiple 
destination stations on the data link. 

• User-Supplied Service. With this service, the LLC sublayer provides all 
the preceding services except for processing of the LLC-PDU control 
field and the aspects of the LLC protocol associated with the control 
field. A user can employ the user-supplied service to implement any de­
sired LLC sublayer protocol, including one to supply the LLC Type 2 
connection-mode service. 

The DNA Phase V architectural specification for the LLC sublayer 
defines the abstract interface between an LLC sublayer entity and its 
users. The function and procedure declarations defining this abstract in­
terface are listed in Box 21.3. Services are provided that match the ser­
vice primitives for the IEEE/ISO Type 1 operation and also provide the 
additional facilities that the DNA Phase V LLC sublayer provides over 
and above IEEE/ISO Type 1 operation. 
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The following function and procedure declarations define the 
abstract interface between the LLC sublayer and its users in 
terms of the services an LLC sublayer entity provides to a user. 

Port Control Functions 

• OpenPort. Opens a port into an LLC entity allowing an LLC user to 
transmit and receive LLC-SDUs. A port is a data structure that rep­
resents a particular LLC user's service-access-point and contains 
information needed by the LLC entity to service that user's requests. 

• Close. Deallocates a port that was allocated with the OpenPort function. 

Data Transfer Functions 

• Transmit. Passes an LLC-SDU to the LLC sublayei: for transmission. 

• TransmitPoll. Checks for completion of a Transmit request. 

• TransmitAbort. Aborts all outstanding Transmit requests for a port. 

• Receive. Provides a receive buffer for use by an LLC sublayer entity. 

• ReceivePoll. Checks for the completion of a Receive request. 

• ReceiveAbort. Aborts all incomplete receive requests for a port. 

Control Functions 

• EnablePromiscuous. Indicates that a port is to receive LLC-PDUs 
having any destination station address value. 

• DisablePromiscuous. Indicates that a port is no longer to receive 
LLC-PDUs having any destination station address value. 

• EnableProtocolType. Adds an Ethernet frame protocol type value to 
the list of Ethernet frame protocol types a port maintains and begins 
receiving Ethernet frames having that protocol type value. 

• DisableProtocolType. Removes an Ethernet frame protocol type 
value from the list of Ethernet frame protocol types a port maintains 
and stops receiving Ethernet frames having that protocol type value. 

• EnableProtocolldentifier. Adds a SNAP frame protocol identifier value 
to the list of SNAP frame protocol identifiers a port maintains and 
begins receiving SNAP frames having that protocol identifier value. 

• DisableProtocolldentifier. Removes a SNAP frame protocol identifier 
value from the list of SNAP frame protocol identifiers a port main­
tains and stops receiving SNAP frames having that protocol 
identifier value. 
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• EnableLLCSap. Adds a group or individual SAP address value to the 
list of SAP address values a port maintains and begins receiving 
frames having that DSAP address value. 

• DisableLLCSap. Removes a group or individual SAP address value 
from the list of SAP address values a port maintains and indicates 
that the port can no longer send or receive frames having that SAP 
address value. 

• EnableMACAddress. Adds a group or individual MAC station 
address value to the list of MAC address values a port maintains and 
begins receiving frames having that destination MAC station address 
value. 

• DisableMACAddress. Removes a group or individual MAC station 
address value from the list of MAC address values a port maintains 
and stops receiving frames having that destination MAC station 
address value. 

• GetLinkAttributes. Reads the attributes of the data link 
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All DNA Phase V LAN implementations are designed to accept frames 
and PDUs of different formats. Figure 21.10 shows the various formats 
of LLC-PDU that DNA Phase V nodes can accept. As described earlier, 
the DNA Phase V LLC sublayer provides services that each LLC sub­
layer user can request to specify the LLC-PDUs it would like to accept. 
The DNA Phase V LLC sublayer service then filters out all the other 
PDUs, so each LLC sublayer user receives only those it requested. The 
following are descriptions of the types of LLC-PDU the DNA Phase V 
LLC sublayer can process. 

Network Layer LLC-PDUs 

When the LLC sublayer user is a Network layer entity conforming to an 
ISO standard, the SSAP address identifies the protocol run by the Net­
work layer entity that generated the frame, and the DSAP address 
identifies the protocol of the Network layer entity that is to receive the 
frame. For example, among the SAP address values defined by the IEEE 
is the value hex 'FE', which indicates the use of the ISO 84 73 Internet 
protocol. A Network layer entity running the ISO 84 73 Internet protocol 
to support the connectionless-mode Network service (CLNS) employs an 
SSAP value and DSAP value of hex 'FE' in the PD Us it sends. 
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DNA Phase V LLC-PDU formats. 
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LLC sublayer users employing a protocol other than one defined by an in­
ternational standard use Subnetwork Access Protocol (SNAP) LLC-PDUs. 
SNAP LLC-PDUs carry SSAP and DSAP values of hex 'AN. Like SAP ad­
dressing, the SNAP protocol provides multiplexing of different user types. 
The SNAP protocol is an additional layer of multiplexing above that pro­
vided by SAP addressing. Data units generated by Digital proprietary pro­
tocols, such as those used to implement the naming service, are carried in 
SNAP LLC-PDUs. Data units generated by non-Digital protocols can also 
be carried in SNAP LLC-PDUs. SNAP LLC-PDUs are always U-format 
LLC-PDUs. The first 5 octets of the LLC-PDU's information field define 
the protocol that generated the SNAP PDU. The first 3 octets of the proto­
col identifier contain a value assigned to a vendor for station address val­
ues to distinguish each vendor's protocols. (As described earlier, hex '08-
00-2B' is one such value assigned to Digital.) The remaining 2 octets 
identify the specific vendor protocol. For example, Digital's naming service 
uses the protocol ID value hex '08-00-2B-80-3C' in a SNAP LLC-PDU to 
advertise the availability of a name server on the LAN. 
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Ethernet LLC-PDUs 

The Ethernet Spedfication does not make a clear distinction between 
the LLC sublayer and the MAC sublayer. Therefore, there is no notion 
of the LLC-PDU defined for Ethernet frames. As we will discuss in 
Chapter 22, the first 2 octets of the data portion of an Ethernet frame 
contain a protocol type field identifying the LLC-PDU as originating 
from Ethernet equipment. The way in which Digital LAN equipment 
identifies an Ethernet frame is discussed in Chapter 22. The Ethernet 
protocol type identifies the type of the user entity of the LLC service 
for Ethernet just as the SNAP protocol identifier does for the SNAP 
protocol. 

This chapter examined the Logical Link Control sublayer of the Data 
Link layer-the sublayer shared by all the various forms of local area 
networks that can be used to construct a DECnet Phase V network. The 
next two chapters introduce the two major forms of LAN technology 
supported by DNA Phase V. Chapter 22 introduces the bus-structured 
Carrier Sense Multiple Access with Collision Detection (CSMA/CD) and 
Ethernet forms of LAN data link. Chapter 23 examines the ring-struc­
tured fiber distributed data interface (FDDI) LAN data link. 
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IEEE CSMA/CD and Ethernet 

Beginning in about 1972, the Palo Alto Research Center (PARC) of 
Xerox Corporation began developing a local area network (LAN) sys­
tem that ran at 3 megabits per second (Mbps), which became known as 
Research Ethernet. Later, Digital, Intel, and Xerox jointly developed 
a substantially new design for a 10 Mbps Ethernet network that was 
documented in Version 1 of the Ethernet Specification. This design was 
later revised and is now documented in Version 2 of the Ethernet 
Specification. Digital has been one of the largest supporters of the Ether­
net form of LAN, and LANs conforming to Version 2 of the Ethernet 
Specification are an integral part of DECnet Phase IV networks. DNA 
Phase V continues to support Version 2 of the Ethernet Specification. 

The work done by Digital, Intel, and Xerox on Ethernet con­
tributed substantially to the IEEE 802.3, Carrier Sense Multiple Access 
with Collision Detection (CSMA/CD), standard. The IEEE 802.3 stan­
dard is similar to Version 2 of the Ethernet Specification. IEEE 802.3 has 
been accepted by ISO as an international standard and is also published 
as ISO 8802-3. The IEEE/ISO CSMA/CD standard has been incorpo­
rated into the DNA Phase V architecture, and all DECnet Phase V LAN 
products support both the IEEE/ISO CSMA/CD standard and the Ether­
net Specification. This chapter describes the DNA Phase V CSMA/CD 
specification, which goes beyond the IEEE/ISO CSMA/CD standard but 
is in complete conformance with it. 

A CSMA/CD LAN uses building blocks of individual cable segments 
to which stations are attached in a bus-structured topology. A cable seg­
ment has a limited length, and devices called repeaters can be used to cre­
ate a branching, nonrooted tree topology, as shown in Figure 22.1. A 
CSMA/CD LAN implements a multiaccess form of data link in which all 
stations in the network receive the transmissions of all other stations. 
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Simple CSMA/CD network using repeaters. 
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The DNA Phase V specifications for the CSMNCD form of data link 
defines an architectural model describing the organization of the Data 
Link layer and the Physical layer. This architectural model defines the 
components shown in Figure 22.2. 

As described in Chapter 21, with a local area network data link, the 
Data Link layer is divided into a Logical Link Control (LLC) sublayer 
and a Medium Access Control (MAC) sublayer. 

Logical Link Control Sublayer 

The Logical Link Control (LLC) sublayer of the Data Link layer is re­
sponsible for medium-independent Data Link layer functions. It allows a 
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DNA Phase V CSMA/CD architectural model. 
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user of the LLC sublayer to access the services of the LAN without re­
gard to what form of transmission medium is used and what method is 
used to control access to it. The LLC sublayer provides services to a user 
of the OSI Data Link layer, such as a Network layer entity. The functions 
of the LLC sublayer are described in detail in Chapter 21. 

Medium Access Control Sublayer 

The Medium Access Control (MAC) sublayer of the Data Link layer is 
concerned with the method used to control access to the transmission 
medium. The medium access control method defines procedures for 
managing access to the transmission medium, describes addressing tech­
niques, and specifies error detection procedures. The MAC sublayer pro­
vides services to the LLC sublayer. 

The interface between the LLC sublayer and the MAC sublayer (the 
LLC-MAC interface) is an abstract interface defining the set of services 
that a MAC sublayer entity supplies to an LLC sublayer entity above it. 
The relationship between the services the MAC sublayer provides to the 
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The relationship between the MAC sublayer service and the MAC sublayer protocol. 
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LLC sublayer and the protocol governing its operation are shown in Fig­
ure 22.3. As shown there, the MAC sublayer protocol uses the services 
of the Physical layer to provide a defined set of services to an LLC sub­
layer entity above it. 

The architectural components for the Physical layer address issues such 
as the physical characteristics of the transmission medium and the me­
chanical connection of devices to the transmission medium. The 
CSMA/CD Physical layer is divided into a Physical Signaling (PLS) sub­
layer and a Physical Medium Attachment (PMA) sublayer. 

The Physical Signaling Sublayer 

The Physical Signaling (PLS) sublayer provides a well-defined set of ser­
vices to the MAC sublayer and enables the local MAC sublayer entity to 
exchange MAC frames with MAC sublayer entities in other stations. The 
interface between the MAC sublayer and the PLS sublayer (the MAC­
PLS interface) is an abstract interface defining the services that a PLS 
sublayer entity supplies to a MAC sublayer entity. 

The PLS sublayer is responsible for encoding the data passed down 
from the MAC sublayer in a transmitting station. The data encoding 
function is responsible for translating the bits being transmitted into the 



466 

FIGURE 22.4 

PART V: DATA LINK LAYER PROTOCOLS 

proper electrical signals that are then broadcast over the transmission 
medium. The PLS sublayer is also responsible for decoding the signal it 
receives. The decoding function translates received signals into the bit 
stream those signals represent and passes the resulting data up to the 
MAC sublayer. 

With CSMNCD, Manchester encoding is used to encode the bit 
stream into electrical signals. Manchester encoding has the desirable 
property that signal transitions occur on the transmission medium with 
predictable regularity. The Manchester encoding scheme used with an 
implementation of CSMNCD is illustrated in Figure 22.4. With Man­
chester encoding, the signal state always changes at the midpoint of each 
bit time. For a 1 bit, the signal changes from low to high; for a 0 bit, it 
changes from high to low. This type of signaling allows data and clock­
ing signals to be combined into a single transmission, since the receiving 
station can use the state change that occurs during each bit time for syn­
chronization purposes. 

The PLS sublayer is also responsible for listening to the transmission 
medium and for notifying medium access management whether the car­
rier is free or busy and whether a collision has been detected. Collisions, 
which occur when two or more stations attempt to transmit at the same 
time, are discussed later when we describe the operation of the 
CSMNCD protocol. 

Physical Medium Attachment Sublayer 

The Physical Medium Attachment (PMA) sublayer provides services to 
the PLS sublayer. It performs a translation function between the PLS sub­
layer and the transmission medium itself and defines the characteristics 
of a particular type of transmission medium. The interface between the 
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MAC sublayer and the PLS sublayer (the PLS-PMA interface) defines the 
services that a PMA sublayer entity supplies to a PLS sublayer entity. 

The CSMNCD standard allows the PLS and PMA sublayers to be 
implemented in the same device or in separate devices, as shown in Fig­
ure 22.5. A device implementing both the PLS and PMA sublayers is at­
tached directly to the transmission medium. In such a device, the PLS­
PMA interface is an abstract interface that defines services only. A device 
implementing only the PLS sublayer must use a separate device, called a 
Medium Attachment Unit (MAU), to implement the PMA sublayer. The 
function of the MAU is described later when we examine the devices that 
can implement the various architectural components. 

Attachment Unit Interface 

When a separate MAU is used to implement the PMA sublayer, the PLS­
PMA interface consists of a concrete interface called the Attachment Unit 
Interface (AUi). The AUi defines the cable and the connectors used to con­
nect the MAU to the device implementing the PLS sublayer. The AUi also 
specifies the characteristics of the signals exchanged across the interface. 

The PLS and PMA sublayers can be implemented in the same device or in different devices. 
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Transmission Medium 

The transmission medium consists of the portion of the physical commu­
nication channel to which two or more PMA sublayer entities are con-
nected. The interface betc.,-a:.reen the P~~1...A ... sub!ayer 2nd the transmission 
medium (the PMA-Medium interface) is a concrete interface called the 
Medium Dependent Interface (MDI). The MDI for a particular form of 
transmission medium defines the characteristics of cable segments (some­
times called the trunk cable), connectors for joining cable segments, and 
terminators used at the ends of cable segments. Although the transmis­
sion medium ordinarily consists of a physical cable, such as coaxial 
cable, twisted-pair cable, or fiber-optic cable, it can also consist of a mi­
crowave link in some implementations. 

CSMA/CD Medium Notation 

A shorthand notation is used to describe a particular form of CSMNCD 
transmission medium in which the data rate, signaling type, maximum 
cable segment length, and medium type are combined. An example of 
this notation is 10BASE5coax. The 10 refers to 10 Mbps (all current 
DECnet Phase V CSMNCD implementations use a data rate of 10 
Mbps), BASE refers to baseband signaling, 5 refers to a maximum of 
500 meters, and coax indicates coaxial cable. If the medium type is 
omitted, coaxial cable is assumed, so 1 OBASE5 is equivalent to 
10BASE5coax. 

Digital CSMA/CD Transmission Media 

The following forms of transmission media are supported by Digital im­
plementations of CSMNCD: 

1. 10BASE5. The 10BASE5 form of transmission medium is based on 
the original Ethernet Specification and uses baseband transmission 
over the original, thick (10 mm) form of 50-ohm Ethernet coaxial 
cable. This type of cable is often referred to as thick Ethernet cable. A 
10BASE5 cable segment can be up to 500 meters in length. 

2. 10BASE2. The 10BASE2 form of transmission medium uses base­
band signaling over 50-ohm coaxial cable, approximately 5 mm 
thick. This form of transmission medium is often called Thin Wire 
cable or Thinnet cable. A 10BASE2 cable segment can be up to 185 
meters in length. 
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3. 10BASE-T. The lOBASE-T form of transmission medium uses base­
band signaling over unshielded twisted-pair telephone wiring. The 
specification is designed for a typical distance of up to about 100 me­
ters of 24 AWG twisted-pair cable. 

4. 10BROAD36. The 10BROAD36 form of transmission medium uses 
broadband signaling over the type of coaxial cable typically used in 
cable television. 10BROAD36 cable segments can be up to 1800 me­
ters in length for a round trip distance of up to 3600 meters using a 
dual cable configuration. 

5. FOIRL. The FOIRL form of transmission medium uses baseband sig­
naling over a fiber-optic cable to implement a point-to-point connec­
tion between repeaters. Fiber-optic inter-repeater link cable segments 
can be up to 1000 meters in length. Repeaters and inter-repeater links 
are described later in this chapter. 

The components defined in the CSMNCD architectural model can be 
combined to form three different types of devices: stations, medium at­
tachment units (MAUs), and repeaters. Collections of those three types 
of devices can be combined in various ways to construct CSMNCD 
LANs. 

Stations 

A station is a collection of hardware and software that appears to other 
stations as a single functional and addressable unit on the LAN. A sta­
tion is a device that uses a CSMNCD LAN for communication with 
other stations. A station is identified by a station address, which must be 
unique among all the stations attached to the LAN. Station addresses are 
described in Chapter 21. 

Two types of stations can be attached to a CSMNCD LAN, as 
shown in Figure 22.6. The first type of station-shown on the left in Fig­
ure 22.6-is one attached directly to the transmission medium. It imple­
ments the LLC, MAC, PLS, and PMA components and also the MDI 
concrete interface for attaching the station to a cable segment. The sec­
ond type of station-shown on the right-is one that uses a separate 
medium attachment unit to implement the PMA sublayer functions. Hy­
brid stations are also possible that implement an internal MAU and also 
provide the MDI concrete interface for connecting to an external MAU 
to provide for alternative methods of connection to a cable segment. For 
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FIGURE 22.6 A station can implement an internal MAU or connect to an external MAU. 
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example, a station might implement the AUI for connecting the station 
to an external MAU for attachment to a 10BASE5 cable segment and an 
internal MAU for direct connection to a 10BASE2 or 10BASET cable 
segment. 

Medium Attachment Units 

The CSMA/CD standard anticipates that in many implementations the 
station will be located a short distance away from the transmission 
medium, which must often be installed behind a wall or in a ceiling. So, 
as described earlier, the CSMA/CD standard allows the physical medium 
attachment (PMA) component to be implemented in a separate device 
called a Medium Attachment Unit (MAU), also sometimes called a 
transceiver. An attachment unit interface (AUI) defines the interface be­
tween a station and the MAU. The AUi is a concrete interface that 
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defines specifications for the cable and the connectors used to attach the 
station to the transceiver. The AUi also defines the characteristics of the 
electrical signals exchanged across the interface. An MAU provides the 
physical and electrical interface between a cable segment and a 
CSMA/CD station. The cable that connects the device implementing the 
PLS sublayer to the MAU is called the AU! cable. 

The MAU handles all functions that depend on the specific trans­
mission medium being used. By having an MAU separate from the sta­
tion itself, the same station can be used with different transmission 
media simply by changing the MAU. The most common form of station 
that attaches to a 10BASE5 cable segment uses a separate MAU for at­
taching to the cable segment. The MAU typically has a contact that 
pierces the thick Ethernet coaxial cable shielding and makes appropriate 
contact with both the shielding and the central conductor. This is shown 
in Figure 22.7. 

In most implementations of the 10BASE2 medium specification, the 
transmission medium is brought directly to the LAN adapter, and the 
PMA sublayer is implemented by the LAN adapter itself. A standard T­
type BNC connector is used to attach the cable segment directly to the 
LAN adapter, and stations are connected together in a daisy-chain fash­
ion, as shown in Figure 22.8. The 10BASE2 medium specification, how­
ever, does not preclude the use of a separate MAU. 

A station that does not use a separate MAU and implements the 
PMA sublayer within the station is said to implement an internal MAU. 

Typical 1DBASE5 implementation. 

r LAN Adapter 

11111111111 
·--11111•• 

11111111• !-~· 
,-E="1, Medium Attachment 
L-,--J- Unit (MAU) 

(~J~~-1o_B_AS_E_sc_®_le_S~eg~m_en_t~~~~~~~) 



472 

FIGURE 22.8 

FIGURE 22.9 

PART V: DATA LINK LAYER PROTOCOLS 

Typical 10BASE2 implementation. 

Therefore, the term Medium Attachment Unit can be used to refer to any 
point of physical attachment to a cable segment, whether or not a sepa­
rate MAU is used to attach a station to the LAN. 

Repeaters 

As described earlier, a CSMA/CD cable segment is of limited length. A 
repeater can be used to relay signals from one cable segment to another, 
thus extending the reach of a LAN beyond that allowed by a single cable 
segment. Repeaters can be used to construct a network having a branch­
ing, nonrooted tree topology. A repeater's primary function is to relay all 
data units it receives from one cable segment to all other cable segments 
to which it is attached. The architectural model for a repeater is shown 
in Figure 22.9. It consists of a single repeater function and two or more 
ports. Each port consists of a PLS sublayer entity or the combination of a 
PLS sublayer entity and a PMA sublayer entity. 

Like a station, a repeater port can have the PMA sublayer integrated 
into it, in which case the port is attached directly to the transmission 
medium. Alternatively, a repeater port can implement the AUi, which is 
a concrete interface, and can use a separate MAU for attachment to a 
cable segment. Both types of ports can be implemented in the same re­
peater. 

Repeater architectural model. 

Port • • 
Repeater Function 

Port • Port • • 
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A repeater can implement ports that allow attachment to different 
types of transmission medias or different types of MAUs, as long as all 
support the same data rate. For example, the same repeater might allow 
data units to be relayed between 10BASE5 cable segments, 10BASE2 
cable segments, and lOBASE-T cable segments. 

CSMA/CD Network Stations, MAUs, repeaters, and cable segments can be combined in a va­
riety of ways to create networks that have a variety of topologies. Figure 
22.10 shows a typical CSMNCD network that suggests various ways in 

F I G u R E 2 2 . 1 0 Typical CSMA/CD network. 
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which components can be combined. The topology of a CSMNCD net­
work must always form a nonrooted, branching tree in which there is 
only one physical path between any two stations and in which the net­
work can be extended or connected at any point. 

Cable Segments 

Two types of cable segments are defined in the DNA Phase V CSMNCD 
specification: point-to-point and multiaccess. A point-to-point cable seg­
ment allows only two connections and is used to connect the MAUs of a 
pair of repeaters. A point-to-point cable segment is called an inter­
repeater link (IRL). A multiaccess cable segment allows more than two 
connections and can be used to attach the MAUs of stations and re­
peaters to the LAN. 

Station and Cable Segment Limits 

An individual CSMNCD network can contain up to 1024 stations. Cer­
tain additional limits must be placed on the network configurations that 
can be built based on signal propagation times. The following four types 
of transmission media are used most often today for constructing 
CSMNCD LANs: 

• 10BASE5 Multiaccess Cable Segments. A 10BASE5 cable segment nor­
mally functions as a multiaccess cable segment. It can be up to 500 me­
ters in length and can have a maximum of 100 MAUs attached to it. 

• 10BASE2 Multiaccess Cable Segments. A 10BASE2 cable segment can 
also function as a multiaccess cable segment. It can be up to 185 meters 
in length and can have a maximum of 30 MAUs attached to it. 

• 10BASE-T Multiaccess Cable Segments. A 10BASE-T cable segment can 
also be used as a multiaccess cable segment. The length of a 10BASE-T 
cable segment and the number of stations that can be attached to a single 
twisted-pair cable segment is implementation dependent. A maximum 
length of 100 meters is typical. 

• FOIRL Inter-Repeater Links. A FOIRL cable segment can be used as an 
inter-repeater link and can be up to 1000 meters in length. 

Between any two stations on the LAN, there can be a maximum of 
five cable segments, up to three of which can be multiaccess cable seg­
ments. There can be a maximum of 1000 meters of inter-repeater link 
cable segments between any two stations. Figure 22.11 shows a network 
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Maximum span between two CSMA/CD stations with 1DBASE5 multiaccess cable segments and 
FOIRL inter-repeater links. 
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with the maximum span between station A and station B. This network 
uses three 500-meter multiaccess cable segments and two inter-repeater 
link cable segments totaling 1000 meters. Repeaters implementing inter­
repeater links normally use internal MAUs for connection to a fiber-optic 
inter-repeater link (although the DNA Phase V CSMNCD specification 
does not require this). Therefore, the total distance between any two sta­
tions is limited to 2800 meters. This includes 1500 meters of multiaccess 
cable segment, 1000 meters of inter-repeater link, and 300 meters for 6 
AUi cables to external MAUs. 

Interconnecting 10BASE2, 10BASE5, 
and 1 OBASE-T Segments 

It is common to construct networks that use combinations of 10BASE2, 
10BASE5, and lOBASE-T multiaccess cable segments. A possible combi­
nation is shown in Figure 22.12, in which a 10BASE5 network is used as 
a backbone for a number of smaller 10BASE2 and lOBASE-T cable seg­
ments. It is generally recommended that a 10BASE2 or lOBASE-T cable 
segment not be used between two 10BASE5 cable segments. This is be­
cause 10BASE2 and lOBASE-T cable segments are not as resistant to 
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FIGURE 22.12 Interconnecting 10BASE2 and 10BASE-T cable segments using a 10BASE5 backbone. 
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noise as a 10BASE5 cable segment, and a segment used as a backbone 
should be at least as resistant to noise as the segments it connects. 

Star-Structured Networks 

In the past, the CSMA/CD and Ethernet forms of local area networking 
have sometimes been criticized because of the difficulty of prewiring a 
building using a bus-structured network topology. This criticism is no 
longer valid because repeaters implementing multiple ports, sometimes 
called multiport repeaters, can be used to create star-structured networks 
that are often better suited to building wiring schemes than bus-struc­
tured networks. In many cases, the best solution to local area network 
wiring is to use a system of satellite equipment rooms. All the satellite 
equipment rooms in a building might be interconnected, and each net­
work station then directly connected to the nearest satellite equipment 
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room. Digital has long advocated the use of satellite equipment rooms to 
create a star-structured wiring scheme, as shown in Figure 22.13. The 
bus, in effect, operates as a high-quality backbone to which all the net­
work stations can be connected. Multiport repeaters installed in the 
satellite equipment rooms allow a separate cable to connect each net­
work station to the satellite equipment room. 

Extended LANs 

Devices called bridges can be used to interconnect individual CSMNCD 
networks to create an extended LAN. Bridges can also be used to inter­
connect CSMNCD networks with networks conforming to other stan-

Star-wired topology using satellite equipment rooms. 
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dards, such as FDDI. Bridges perform a Data Link layer relay function 
and are used to extend the LAN without affecting the basic services it 
provides. Bridges can be used to increase the maximum number of sta­
tions allowed, the maximum distance between pairs of stations, and the 
Luial available bctndvvidth. Bridges aud extended L.l\~Js are discu5:~ed in 
Chapter 24. 

The remainder of this chapter describes the CSMNCD service 
definition and protocol specification and examines the format of the data 
units exchanged by CSMNCD MAC sublayer entities during local area 
network operation. 

As with other ISO standards, the IEEE/ISO CSMA/CD documentation 
includes a service definition that defines the services the MAC sublayer 
provides to the LLC sublayer. The service definition is specified in terms 
of service primitives and service primitive parameters. The service defini­
tion describes a single, unconfirmed data transfer service. The service 
primitives that define the MAC sublayer service are shown in Box 22.1. 
Figure 22.14 is a time-sequence diagram showing the sequence in which 
the two service primitives are issued during normal frame transmission. 

The DNA Phase V CSMNCD architectural specification also defines the 
abstract interface between the MAC sublayer and a user of the MAC 
sublayer (often an LLC sublayer entity). As with other DNA Phase Vin­
terfaces, this abstract interface is defined using a set of function and pro­
cedure declarations, which are listed in Box 22.2. 

Time-sequence diagram for the MA_UNITDATA service. 
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MA_UNITDATA.request 

MA UNITDATA.indication 
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The MAC sublayer Carrier Sense Multiple Access with Collision Detec­
tion (CSMNCD) protocol uses a distributed contention resolution tech­
nique to decide which station transmits next. The remainder of this chap­
ter describes, in a nontechnical fashion, how the distributed contention 
resolution technique evolved and how the CSMNCD protocol operates. 

The ALOHA Protocol 

The CSMNCD protocol had its roots in an early multiaccess protocol 
used in an experimental packet radio system called ALOHA, developed at 
the University of Hawaii in the early 1970s. The protocol developed for 
the ALOHA system uses a free-for-all technique, in which any station hav­
ing a frame to send simply transmits it. The station then waits for a period 
of time equal to twice the round-trip propagation delay-the length of 
time it takes a signal to reach the far end of the network. Twice the round­
trip propagation delay is called the slot time of the network. Since signals 
are propagated at the speed of light, the slot time is typically very short. 

If the sending station hears an acknowledgment to its frame within 
the slot time, the sending station knows the frame was received correctly. 
If the sending station times out, it retransmits the frame. After repeated 
retransmissions, the sending station gives up (perhaps the receiving sta­
tion is turned off). 

If a second station attempts to transmit a frame while the first sta­
tion is already transmitting, the two transmissions interfere, thus creat-
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The following function and procedure declarations define the abstract 
interface between the MAC sublayer and a user of the MAC sublayer 
in terms of the services a MAC sublayer entity provides to a user. 

Control Functions 

• Enable. Starts the operation of the services provided by the MAC 
sublayer and the Physical layer. 

• Disable. Stops operation of the MAC sublayer entity and the Physi­
cal layer entity. 

• EnableReceiveAddress. Adds a MAC station address value to the list 
of addresses of those frames the station wishes to receive. Only 
frames having the MAC station addresses in the current list are 
passed up to the LLC sublayer entity. 

• DisableReceiveAddress. Removes a MAC station address value from 
the list of addresses of those frames the station wishes to receive. 

• ReadAttributes. Allows the LLC sublayer entity to determine the 
values of the MAC sublayer entity parameters and state variables. 

Data Transfer Functions 

• TransmitFrame. Transmits a frame over the physical transmission 
medium. Control is not returned until either the frame has been suc­
cessfully transmitted or the function fails. 

• ReceiveFrame. Accepts an incoming frame. Control is not returned 
until either the frame has been received or the function fails. 

ing a condition called a collision. When collisions occur, frames are dam­
aged, the errors are detected through an error detection mechanism, and 
receiving stations ignore the corrupted frames. Both stations then later 
attempt to retransmit. The protocol is simple but inefficient with high 
utilization of the channel capacity. It can be shown mathematically that 
the maximum utilization of the available bandwidth with the pure 
ALOHA protocol is less than 18 percent. 

The CSMA Protocol 

A problem with the ALOHA protocol is that collisions often occur when 
a station begins transmitting a frame after some other station has already 
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begun transmitting. If each station would simply listen to the transmis­
sion medium before sending its own frame and then send only if the 
medium were quiet, many collisions could be avoided. This is the tech­
nique of Carrier Sense Multiple Access (CSMA). Each station senses the 
condition of the transmission medium and transmits only when no signal 
is being transmitted. 

However, even with the CSMA technique, it can happen that two or 
more stations all listen at exactly the same time and then transmit simul­
taneously. Therefore, collisions can still occur. With the CSMA scheme, 
when frame transmission times are long compared to the propagation 
delay, a significant portion of channel capacity can be lost due to colli­
sions because each station transmits its entire frame before discovering 
that a collision has occurred. 

The CSMA/CD Protocol 

The final refinement to the CSMA technique is to add the Collision De­
tection (CD) function, resulting in CSMA/CD. In addition to listening to 
the transmission system before transmitting, a sending station continues 
to listen as the frame is propagated throughout the network. If two or 
more stations have begun transmitting within a sufficiently short time in­
terval, a collision occurs. When this happens, the transmitting stations 
immediately detect the collision, cease transmitting data, and all send out 
a short jamming signal. The jamming signal ensures that all stations on 
the network detect the collision. All stations that have been transmitting 
then stop transmitting, wait for a random period of time, and if the car­
rier is free, transmit their frames again. A station must listen while it is 
transmitting to ensure that a collision has not taken place. 

Deference Process 

The process of monitoring the state of the transmission medium and de­
termining when to begin transmission is called the deference process. 
The deference process determines when the station can begin transmit­
ting after it has detected that a transition between medium busy and 
medium idle has occurred. For example, when a collision occurs, all sta­
tions that have been transmitting stop, wait a period of time, and then if 
the carrier is free, start transmitting again. If all stations waited the same 
length of time before checking the carrier and starting transmission, then 
another collision would occur. The deference process avoids this. In exe­
cuting the deference process, each station generates a random number 
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that determines the length of time it must wait before testing the carrier. 
This time period is known as the station's backoff delay. Backoff delay is 
calculated in multiples of slot time, which is 51.2 microseconds on a 
CSMA/CD network. 

Each station generates a random number that fails within a spt:cified 
range of values. It then waits that number of slot times before attempting 
retransmission. The smaller the range of values from which the random 
number is selected, the greater the likelihood that two stations will select 
the same number and have another collision. However, if the range of 
numbers is large, all the stations may wait for several slot times before 
any station transmits, causing transmission time to be wasted. 

Truncated Binary Exponential Backoff 

To achieve a balance between these two considerations, the CSMA/CD 
protocol uses an approach called truncated binary exponential backoff. 
The range of numbers (r) is defined as 0 :'.'!: r < 2 k, where k reflects the num­
ber of transmission attempts the station has made. For the first attempt the 
range is 0 to 1; for the second attempt, 0 to 3; for the third, 0 to 7 and so 
on. If repeated collisions occur, the range continues to expand until k 
reaches 10 (with r ranging from 0 to 1023), after which the value fork 
stays at 10. If a station is unsuccessful in transmitting after 16 attempts, 
the MAC sublayer entity reports an excessive collisions error condition. 

Binary exponential backoff results in minimum delays before re­
transmission when traffic on the network is light. When traffic is high, 
repeated collisions cause the range of numbers to increase, thus lessening 
the chance of further collisions. Of course, when the traffic is extremely 
high, repeated collisions can still begin to cause excessive collisions error 
conditions to be generated. However, this technique results in network 
utilizations that are extremely high, generally better than 90 percent. 

Collision Detection 

A station knows that a collision has occurred when the signal level on 
the cable equals or exceeds a predefined threshold. As a signal travels 
along the cable, it gradually attenuates, or weakens. If the signal is al­
lowed to attenuate too much, a station's signal might not be recognized 
as a collision when it combines with the signal from another transmitter. 
This is one of the reasons that repeaters must be used at least every 500 
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meters to regenerate the signal to its optimal level (1000 meters over an 
inter-repeater link). 

Figure 22.15 illustrates, in a simplified manner, worst-case collision 
detection for a network of maximum size. Stations 1 and 2 are the maxi­
mum distance apart. Station 1 begins transmitting, and just before its 
signal reaches station 2, station 2 also begins transmitting. The collision 
occurs near station 2, causing a signal that must travel back the full 
length of the network to reach station 1. The frame station 1 is transmit­
ting must be large enough to ensure that station 1 is still transmitting 
when it detects the collision with station 2's transmission. Otherwise, it 
will assume its frame got through without a collision. 

The maximum time it takes to detect a collision is equal to the slot 
time, twice the propagation time for the maximum cable length. This 
represents the time it takes station 1 's signal to reach the far end plus the 
time it takes the collision signal to travel back the length of the network 
to reach station 1. The worst-case collision detection time on a valid 
CSMNCD network of maximum size is less than 51.2 microseconds. 

CSMA/CD Protocol It is interesting to note that many of the design decisions made during the 
Design Decisions development of the Ethernet Specification (which led to the CSMNCD 

standard) were based on real-world engineering considerations and rep­
resented difficult tradeoffs between cost and performance. Box 22.3 
gives a list o~ the design decisions that were made. Keep in mind that 
these decisions were made in 1980. We list the decisions in the order the 

FIG u RE 2 2 . 1 5 Worst-case collision detection. 
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1. The 10 megabits per second (Mbps) data rate was the first design 
decision. Given the scaling of semiconductor technology, the 
design team felt it would be feasible to put the logic to implement 
CSMNCD at 10 Mbps on a single chip by about 1985, which 
would lead to LAN adapters that could be marketed at a reason­
able cost. 

2. The next design decision was that the total span of a CSMNCD 
LAN needed to be at least a couple of kilometers in extent. This 
figure was based on the need to wire buildings from floor to floor 
and the requirement for wiring a campus of buildings. 

3. The maximum length of 500 meters for a single multiaccess cable 
segment was decided next. This figure was based on a tradeoff 
between jitter increasing as the cable gets longer and the cost asso­
ciated with building a transceiver increasing as the jitter increases. 

4. The next design parameter was to allow a maximum of 50 meters 
for the AUi cable from the transceiver attached to the cable seg­
ment to the station itself. This figure was kept relatively small so 
the AUi cable could be implemented cheaply. 

5. The next decision was to specify a maximum of two repeaters 
between any two stations and a maximum of 1000 meters of 
point-to-point link between any two stations. In the Ethernet 
Specification, a repeater could consist of two half-repeaters con­
nected by a point-to-point link. This is the same as the present 
DNA Phase V CSMNCD specification, which allows five cable 
segments, two of which must be inter-repeater links. These param­
eters were chosen to permit a maximum distance between any two 
stations of 2800 meters (three 500 meter multiaccess cable seg­
ments, 1000 meters of point-to-point link, and six 50-meter AUi 
cables to MAUs). 

6. The above five design decisions led directly to the CSMNCD slot 
time of 51.2 microseconds. 

7. The slot time dictates the minimum frame size requiring at least 46 
octets in the data field of a frame. 

8. The maximum packet size of 1500 octets in the data field of a 
frame was then chosen based on a tradeoff between reducing 
latency and maximizing transmission efficiency. As the frame size 
gets longer, the probability increases that two or more other sta­
tions will have frames to send when the first station finishes send­
ing its frame and that a collision will occur. Keeping the maximum 
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frame size relatively small lowers this probability and increases 
channel efficiency. 

9. The decision to use Manchester encoding was based on the fact 
that it is relatively simple and inexpensive to implement and that it 
has frequent, predictable transitions making synchronization easy 
to achieve. 

10. The final design decision was to allow for a minimum of 9.6 
microseconds between transmitted frames (interpacket gap). This 
decision was based on an analysis of the processing that had to be 
performed after each packet was received and on an estimate of 
the amount of time it would require to perform that processing 
based on the technology of the time. 

485 

Ethernet design team made them and give the key considerations that 
led to each decision. 

In using the data transfer service provided by the MAC sublayer, an LLC 
entity in the source station passes a medium-access-control-service-data­
unit (MAC-SDU) to the MAC sublayer entity in that station. The MAC 
sublayer entity adds PCI to the MAC-SDU in the form of a header and a 
trailer to create a medium-access-control-protocol-data-unit (MAC­
PDU)-also called a MAC frame-and passes it to the Physical layer. 
The Physical layer attaches additional PCI to the MAC frame to create a 
physical-protocol-data-unit (PPDU). The DNA Phase V CSMNCD 
specification calls a PPDU a packet.· The Physical layer then transmits 
the packet over the transmission medium. When a station receives a 
packet, the Physical layer entity in the receiving station extracts the 
MAC frame from the packet and passes it up to the MAC sublayer en­
tity. The MAC sublayer then extracts the LLC-PDU from the MAC 
frame and passes it up to the LLC sublayer. This process is summarized 
in Figure 22.16. 

• This is an unfortunate choice of terminology, since the term packet is also 
frequently used in networking literature to refer to the NPDUs that are 
exchanged by Network layer entities. The Physical layer packet is not the same 
as the Network layer packet. 
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FIGURE 22.16 Providing the Medium Access Control sublayer data transfer service. 
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PPDU physical-protocol-data-unit 
PCI protocol-control-information 

The general formats of a packet and a MAC frame are shown in Fig­
ure 22.17. The MAC frame is contained within a Physical layer packet 
and consists of destination and source address fields, a length/type field, 
a data field, and a frame check sequence field. The Physical layer creates 
a packet by adding a preamble, start frame delimiter, and end frame de­
limiter to the MAC frame. The following are descriptions of the fields 
that make up a MAC frame and a Physical layer packet: 

• Preamble. A sequence of 56 bits having alternating 1- and 0-values that 
the Physical layer transmits prior to the beginning of a MAC frame to 
synchronize the transmitter and the receivers. 

• Start Frame Delimiter. A sequence of 8 bits having the bit configuration 
10101011 that the Physical layer transmits to indicate the beginning of a 
MAC frame. 

• Station Addresses. Station addresses, described in Chapter 21, are often 
called MAC addresses. Address fields are 48 bits in length. The source 
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FIGURE 22.17 DNA Phase V MAC frame and packet formats. 
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address field always refers to an individual station, the station that trans­
mitted the frame. The destination address field identifies the station or 
stations to receive the frame. The destination address can be either an in­
dividual address or a group address. An address referring to a group of 
stations is called a multicast address. The address referring to all stations 
on the network is called the broadcast address. 

• Length/Type Field. The value contained in this field indicates whether 
the frame conforms to the IEEE/ISO CSMA/CD format or to the format 
defined by the Ethernet Specification. For an IEEE/ISO CSMA/CD 
frame, this field contains a count of the number of octets contained in the 
data field. For an Ethernet frame, this field contains a value used to iden­
tify the protocol employed by the Data Link layer user. Later in this 
chapter we discuss how the length/type field is used to distinguish be­
tween IEEE/ISO CSMA/CD and Ethernet frames. 

• Data Field. Contains the MAC-SDU passed to the MAC sublayer by a user 
of the MAC sublayer. The data field can contain from 0 to 1500 octets. 
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• Pad Field. To properly detect collisions, there must be at least 46 octets 
of data between the length/type field and the frame check sequence field. 
If the data field is not at least 46 octets in length, Pad octets are added to 
bring the size of the data field plus the Pad field up to 46 octets. 

• Frame Check Sequence (FCS). When the sending station assembles a 
frame, it performs a cyclical redundancy check (CRC) calculation on the 
bits in the frame. The specific algorithm used is documented in the 
IEEE/ISO CSMNCD standard and is also described in the DNA Phase V 
CSMNCD specification. The algorithm always results in a 32-bit value. 
The sending station stores this value in the frame check sequence (FCS) 
field and then transmits the frame. When the receiving station receives 
the frame, it performs an identical CRC calculation and compares the re­
sults with the value in the FCS field of the received frame. If the two val­
ues do not match, the receiving station assumes that a transmission error 
has occurred and discards the frame; thus, the user of the MAC sublayer 
service does not receive corrupted frames. It is the responsibility of 
higher layers to detect lost frames and to request their retransmission. 

Ethernet Frames 

A DECnet Phase V CSMNCD LAN device distinguishes between an 
Ethernet frame and an IEEE/ISO CSMNCD frame by examining the 2-
octet length/type field. The maximum frame size restriction specifies that 
the length of the data field must be within the range of 0 to 1500 octets; 
therefore, the length field value in an IEEE/ISO CSMNCD frame must 
be less than 1500. Since no Ethernet protocol identifier values are less 
than 1500, the LLC layer knows that if the length field value is 1500 or 
less, the frame is an IEEE/ISO CSMNCD frame. If the length field value 
is larger than 1500, it is an Ethernet frame. 

Digital's DECnet Phase V LAN devices are designed to normally 
transmit IEEE/ISO CSMNCD frames but to accept incoming frames in 
either the IEEE/ISO CSMNCD or the Ethernet format. When a Phase V 
CSMNCD device receives an Ethernet frame from a station, it replies to 
that station with Ethernet frames. 

Ethernet Frames with Padding 

Although not defined by either the ISO/IEEE CSMNCD standard or the 
Ethernet Specification, the DNA Phase V architecture defines a special 
Ethernet frame format that makes it possible to avoid the requirement 
for a data field to be at least 46 octets in length. It carries a 2-octet length 
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field after the protocol identifier field. The remainder of the user data 
portion of the frame is then padded. The header portion of the frame 
does not distinguish between the padded and nonpadded variants. It is 
up to the two LAN users to agree on which format to use. 

The CSMNCD form of local area network data link and its Ethernet 
predecessor will be widely used in DECnet Phase V networks as easy-to­
use methods for interconnecting host computers, workstations, personal 
computers, and terminals within a relatively small geographic area. 
Chapter 23 describes the Fiber Distributed Data Interface (FDDI) stan­
dard that defines a higher-speed LAN than CSMNCD that will be im­
portant in the 1990s for high-performance networking applications. 
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CHAPTER 23 

Fiber Distributed 
Data Inter{ ace 

Like a CSMNCD local area network, a Fiber Distributed Data Interface 
(FDDI) local area network implements a broadcast form of data link in 
which all stations in the LAN receive the transmissions of all other sta -
tions. However, instead of using a multiaccess circuit to implement the 
LAN, FDDI uses full-duplex, point-to-point fiber-optic physical links be­
tween stations to form a logical ring-structured network. A special data 
unit called the token circulates around the ring. A station can transmit 
frames only when it is in possession of the token. An FDDI LAN operates 
at a data rate of 100 Mbps, 10 times that of a CSMNCD network. 

The FDDI standard is designed to meet requirements for both high­
performance individual networks and high-speed connections between 
networks. The FDDI standard was developed by the Accredited Stan­
dards Committee (ASC) X3T9 .5 of the American National Standards 
Institute (ANSI). It has also been accepted by ISO as an international 
standard and is published in ISO 9314. The DNA Phase V FDDI 
specification defines an implementation model that can be used to build 
FDDI LAN equipment that will successfully interoperate with any im­
plementation of the ANSI FDDI specification. Like the CSMNCD 
specification, the DNA Phase V FDDI specification defines many ser­
vices that go beyond those described in the ANSI standard while remain­
ing fully conformant with it. 

The FDDI standard addresses the requirements associated with 
three types of networks: backend local networks, high-speed office net­
works, and backbone local networks. 

• Backend Local Networks. Backend local networks are used to intercon­
nect mainframe computers and large data storage devices where there is 
a need for a high-volume data transfer rate. Typically, in a backend local 
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network there will be a small number of devices to be connected, and 
they will be close together. This was the original use for which FDDI was 
intended, but FDDI LANs will probably be used much more extensively 
for the following two uses. 

• High-Speed Office Networks. The need for high-speed office networks 
has arisen from the increased use of image and graphics processing de­
vices in the office environment. The use of graphics and images can in­
crease the amount of information that needs to be transmitted on a net­
work by orders of magnitude. A typical data processing transaction may 
involve 500 bits, while a document page image may require the transmis­
sion of half a million bits or more. 

• Backbone Local Networks. Backbone local networks are used to provide 
a high-capacity network that can be used to interconnect lower-capacity 
LANs. 

In the DNA Phase V environment, an important use of an FDDI 
LAN will be to serve as a high-speed backbone for connecting lower­
speed CSMNCD and Ethernet LANs. To this end, the DNA Phase V 
FDDI specification includes a mapped Ethernet service for allowing Eth­
ernet stations to communicate with FDDI stations and for allowing an 
FDDI LAN to transmit traffic between Ethernet LANs. 

The DNA Phase V specification for the FDDI form of data link defines an 
architectural model describing the organization of the Data Link and 
Physical layers of the OSI architecture. This architectural model is illus­
trated in Figure 23.1. The components in the architectural model can be 
divided among those components associated with the Data Link layer, 
those associated with the Physical layer, and those associated with the sta­
tion management (SMT) function. An FDDI station is defined as a device 
that implements a single instance of the SMT component and the compo­
nents SMT controls. A station has exactly one SMT component; zero, 
one, or two link components; and one or more PHY port components. 

Data Link Layer Components 

As described in Chapter 21, with a LAN data link, the Data Link layer is 
divided into a Logical Link Control (LLC) sublayer and a Medium Ac­
cess Control (MAC) sublayer. An instance of an LLC sublayer entity and 
a MAC sublayer entity in the FDDI model is called a link. A station can 
implement zero, one, or two links, depending on the use to which the 
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DNA Phase V FDDI architectural model. 
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station is put. Different types of FDDI stations are described later in this 
chapter. 

Logical Link Control Sublayer 

The Logical Link Control (LLC) sublayer of the Data Link layer is re­
sponsible for medium-independent Data Link layer functions. It allows a 
user of the LLC sublayer to access the services of the local area network 
without regard to what form of transmission medium is used and what 
method is used to control access to it. The LLC sublayer provides ser-
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vices to a user of the OSI Data Link layer through an LLC port, as de­
scribed in Chapter 21. The functions of the FDDI LLC sublayer are ef­
fectively the same as those described in Chapter 21. In addition to pro­
viding the IEEE/ISO Class I service, the DNA Phase V FDDI LLC 
sublayer provides the following services: 

• multiplexing and demultiplexing for multiple users employing the ser­
vice-access-point (SAP) address and subnetwork access protocol (SNAP) 
protocol identifiers 

• address filtering 

• XID and Test frame procedures 

• a mapped Ethernet service to allow Ethernet and FDDI networks to in­
teroperate in the same extended LAN 

The DNA Phase V FDDI architectural specification defines the inter­
face to the FDDI LLC sublayer in terms of function and procedure calls. 
These function and procedure calls are essentially the same as those 
specified in Chapter 21 (Box 21.3) and are not repeated here. 

Medium Access Control Sublayer 

The Medium Access Control (MAC) sublayer of the Data Link layer is 
concerned with the protocol used to handle the transmission of tokens 
and data frames around the logical ring. The interface between the LLC 
sublayer and the MAC sublayer is an abstract interface defining the set 
of services that a MAC sublayer entity supplies to an LLC sublayer entity 
above it. The relationship between the services the MAC sublayer pro­
vides to the LLC sublayer and the protocol governing its operation are 
shown in Figure 23.2. As shown there, the MAC sublayer protocol uses 
the services of the Physical layer to provide a defined set of services to an 
LLC sublayer entity above it. 

The DNA Phase V FDDI MAC sublayer performs the following 
functions in supplying its services: 

• ring initialization 

• providing fair and deterministic access to the transmission medium 

• address recognition and address filtering 

• generation and verification of frame check sequence (PCS) fields 

• frame transmission and reception 

• frame repeating and frame stripping (removal of frames from the ring) 
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The relationship between the MAC sublayer service and the MAC sublayer protocol. 
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The architectural components for the Physical layer address issues such 
as the physical characteristics of the transmission medium and the me­
chanical connection of stations to the transmission medium. The FDDI 
Physical layer is divided into a Configuration Switching sublayer, a Phys­
ical Layer Protocol (PHY) sublayer and a Physical Layer Medium De­
pendent (PMD) sublayer. A single instance of a PHY sublayer entity and 
a PMD sublayer entity within a station is called a PHY port. A station 
can implement one or more PHY ports. 

Configuration Switching Sublayer 

The Configuration Switching sublayer allows the PHY ports in a station 
to be interconnected in various ways. This allows the station configura­
tion to be changed to determine the local topology of the network and 
any link or PHY port to be enabled or disabled as a result of a network 
management action. The Configuration Switching sublayer can deter­
mine the path that information takes through the station when new con­
nections become available or when connections are removed. 

The Physical Layer Protocol Sublayer 

The Physical Layer Protocol (PHY) sublayer provides a well-defined set 
of services to a MAC sublayer entity and enables the local MAC entity 
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to exchange MAC frames with MAC sublayer entities in other stations. 
The interface between the MAC sublayer and the PHY sublayer is an 
abstract interface defining the services that a PHY sublayer entity sup­
plies to a MAC sublayer entity. The PHY sublayer performs the follow­
ing functions: 

• encoding and decoding data and control information 

• transmitting data received from the MAC sublayer 

• performing clock synchronization and recovering the data coming in 
from the PMD sublayer 

• transmitting and receiving groups of code bits, called line states, that are 
used to initialize and condition the transmission medium 

Symbol Coding 

The encoding system used by FDDI is designed to provide ease of syn­
chronization as well as data transmission. Data and control information 
is carried on the transmission medium in the form of code bits. A code 
bit is the smallest signalling entity and is represented using Nonreturn to 
Zero Inverted (NRZI) encoding. With NRZI, a 1 code bit is represented 
by a transition in the signal and a 0 code bit by no transition. A code 
group is a consecutive sequence of 5 code bits that is used to represent a 
symbol on the transmission medium. A 4b/5b code is used to assign in­
terpretations to the various code groups, as shown in Figure 23.3. Each 
5-bit data symbol corresponds to a 4-bit binary data value. The code 
groups used to represent data symbols were chosen so there are never 
more than three consecutive 0-bits and thus no more than three bit times 
without a transition. An additional 8 symbols are used for control pur­
poses. Other possible 5-bit values are invalid. 

Physical Layer Medium Dependent Sublayer 

The Physical Layer Medium Dependent (PMD) sublayer provides ser­
vices to the PHY sublayer. The interface between the PHY sublayer and 
the PMD sublayer is an abstract interface defining the services that a 
PMD sublayer entity supplies to a PHY sublayer entity. The functions 
performed by the PMD sublayer include: 

• Providing the services required to transport an encoded digital bit stream 
from one station to the next over a point-to-point transmission medium. 
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FDDI symbol coding. 
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• Defining the Medium Interface Connector (MIC) and the keying of vari­
ous types of MIC receptacles for different types of MIC connections. The 
MIC is a fully specified concrete interface described in the FDDI stan­
dard. There are four types of MIC connectors defined: A, B, M, and S. 
The functions of the four types of connectors are discussed when we de­
scribe various types of FDDI stations. 

• Specifying the characteristics of fiber-optic drivers and receivers, fiber­
optic transmission media, connectors, power budgets, and other physi­
cal, hardware-related characteristics. 

Another function performed by the PMD sublayer is the Signal De­
tect function, which determines when an actual signal is being received 
by a receiver. This function is particularly important in determining 
when there is an active PHY port at the other end of a transmission 
medium segment. 
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NETWORK ARCHITECT 

With a metallic interface, the cable is either not connected or it's connected. 

With fiber, the unconnected fiber starts out dark. Then, as the fiber moves closer 

to the LED transmitter, the fiber gradually gets lighter. As the fiber approaches 

the transmitter, the signal starts to get through, but with a very high bit error 

rate at first. This process of connection could take maybe 100 milliseconds or so 

when a transmission medium segment is plugged into a station. That may seem 

fast, but 100 milliseconds at 100 megabits represents a lot of bits. Now given 

that stations are all in series, you don't want to put a physical link into the net­

work that has an error rate of 10-3 or 10-2, when everything else is running at 

an error rate of 10-10. So because of that, FDDI uses a protocol to initialize a 

physical link. It runs a bit error rate test on a physical link before it is incorpo­

rated into the ring to make sure there are no bad physical links in the ring. A 

bad physical link in the ring, with a physical link that has a bit error rate of 10-5 

or 1 o-6, means you'll be losing a token every few seconds. This protocol is 

something that Digital was involved in developing. 

The transmission medium consists of the portion of the physical communi­
cation channel to which two or more PMD sublayer entities are connected. 
Each transmission medium segment implements a full-duplex transmission 
path, typically using a fiber-optic medium. Each segment ordinarily imple­
ments two optical fibers, one for transmission in each direction. Although 
an implementation of FDDI typically uses a fiber-optic transmission 
medium, it is interesting to note that the DNA Phase V FDDI architectural 
specification does not require fiber optics to be used. Implementations of 
FDDI that interoperate with all layers above the PMD sublayer could be 
built using transmission media other than optical fibers. 

The station management (SMT) component is responsible for monitor­
ing the operation of the station and for controlling the various manage­
ment-oriented attributes of other station components. The ANSI FDDI 
standard contains detailed specifications for the SMT function, and the 
DNA Phase V FDDI specification is fully conformant with the ANSI 
FDDI specification. However, the DNA Phase V FDDI specification goes 
further than the ANSI SMT specification in many areas to provide en­
hanced network management functions. The SMT component imple­
ments the following functions: 
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• Link Management. Monitors and controls the link components in a 
station. 

• SMT Frame Based Management. Monitors and controls functions asso­
ciated with the transmission of SMT PDUs used by SMT components in 
communicating with each other over the network. 

• Ring Management. Monitors and controls functions associated with en­
suring the proper operation of the logical ring, such as identifying when 
a break in the logical ring has occurred. 

• SMT Connection Management. Monitors and controls the operation of 
the various PHY Ports implemented in a station. 

As described earlier, a station is defined as a single instance of the SMT 
component and the components SMT controls. Different types of sta­
tions can be implemented that contain the other architectural compo­
nents in various combinations. We will examine three types of stations 
that will be commonly implemented and show how these stations can be 
interconnected to create various types of network topologies. The three 
station types we describe here are the single-attachment station (SAS), 
the dual-attachment station (DAS), and the dual-attachment concentra­
tor (DAC). 

Single-Attachment Station 

A single-attachment station (SAS) implements a single link component 
and a single PHY port. This type of station is attached to one end of a 
single full-duplex, point-to-point transmission medium segment. An ar­
chitectural model of the single-attachment station is shown in Figure 
23.4. A single-attachment station can be connected to another single-at­
tachment station using a single transmission medium segment, thus 
forming a ring consisting of a single pair of stations. Such a configura­
tion, shown in Figure 23.5, represents the simplest possible FDDI net­
work. Such a configuration is not very useful since it does not allow for a 
third station to be connected. 

A single-attachment station implements a single Medium Interface 
Connector (MIC) of type S (short for slave). As we will see after we 
examine the architectural model for a concentrator, a single-attach­
ment station is typically connected, via a single transmission medium 
segment, to a concentrator implementing a MIC connector of type M 
(for master). 
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FOOi single-attachment station (SAS). 

Link 

I LLC I 

jMACj 

SMT 
PHY Port 

IPHYI 

IPMDI 

Full-Duplex 
Fiber Optic Link .___,. 

Dual-Attachment Station 

A dual-attachment station (DAS) is designed to connect to two separate 
full-duplex transmission medium segments. A dual-attachment station 
can implement either one or two link components and contains exactly 
two PHY ports. An architectural model of the dual-attachment station is 
shown in Figure 23.6. A configuration switch component is used to form 
data paths between the two PHY ports and the links to control the flow 
of data through the station. 

Dual Counter-Rotating Rings 

Each of the PHY ports is associated with its own MIC. A dual-attach­
ment station implements one MIC of type A and one MIC of type B. Fig­
ure 23.7 shows a simple FDDI network consisting of 4 dual attachment 
stations. The network is formed by connecting the A MIC of one station 
to the B MIC of the next station with a single transmission medium seg-

Simplest FOOi network topology. 
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FDDI dual-attachment station (DAS). 
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ment. When all the MICs are properly connected to the end of a trans­
mission medium segment, a dual counter-rotating ring structure is 
formed. For a set of dual-attachment stations, each MIC type A must be 
connected to a MIC type B for a primary ring and a secondary ring to be 
formed. The type A and type B MICs are defined as follows: 

• MIC Type A. A MIC of type A is defined to be the input of a physical 
link that forms part of the path for the primary ring. 

• MIC Type B. A MIC of type B is defined to be the output for a physical 
link that forms part of the path for the primary ring. 

Simple ring of dual-attachment stations. 
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Dual-Attachment Concentrator 

A dual-attachment concentrator (DAC) is a station that has three or 
more PHY ports, each associated with its own MIC. The concentrator 
implements one MIC of type A, one of type B, and at least one of type 
M. Typical concentrator implementations will contain from 4 to 16 
MICs, although the ANSI standard and the DNA Phase V FDDI 
specification permit many more than that. An architectural model of the 
dual-attachment concentrator is shown in Figure 23.8. A dual-attach­
ment concentrator can implement zero, one, or two link components. If 
a station performs a concentrator function only, it is likely to implement 
no link components, because the concentrator will not be the source or 
the final destination of any frames. 

A dual-attachment concentrator is used to create a network topol­
ogy called a dual ring of trees, in which tree structures branch off the 
dual counter-rotating ring. A simple concentrator network is shown in 
Figure 23.9. Notice that the type A and type B MICs are interconnected 
in exactly the same way as in the example in Figure 23.8, which con­
sisted of four dual-attachment stations. Each of the type M MI Cs is con­
nected via a single full-duplex, point-to-point physical link to a single at­
tachment station implementing a type S MIC. 

FDDI dual-attachment concentrator (DAC). 
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A simple concentrator network showing token flow on the primary ring. Boldface numbers 
indicate when a MAC entity in each station receives the token. (This example assumes that 
each concentrator implements one link and, thus, one MAC entity.) 

-- Primart Ring 

Secondary Ring 

1 DAS 1 12 DAS 4 

SAS SAS SAS SAS 

3 5 8 10 

Token Path 

Before any single-attachment stations are connected to the concentra­
tors, the primary and secondary rings are identical to those shown in Fig­
ure 23.7. As each single-attachment station is attached to its concentra­
tor, the SMT component in the concentrator sets the configuration 
switch appropriately to add that station to the logical ring. The numbers 
next to the stations in Figure 23.9 show the path the token takes as it 
travels from station to station around the primary ring. In this example, 
we are assuming that each concentrator implements a single link compo­
nent and, thus, contains a single MAC entity. 

The ANSI FDDI standard does not specify how the primary and sec­
ondary rings are to be used. This is left to the implementors. In the DNA 
Phase V FDDI implementation, the primary ring is used to carry data; 
the secondary ring may be idle and is used to recover from physical link 
and station failures. 
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Physical Link Failure 

If a physical link failure occurs, stations perform procedures to detect the 
failure and set their configuration switches to use the secondary ring to 
bypass the failure. This is shown in Figure 23.10. The redundant physi­
cal links that implement the secondary ring are used to bypass the miss­
ing physical link, thus reconfiguring the primary ring. The numbers in 
the diagram show the sequence in which the token flows around the ring 
both before and after the failure. 

Station Failure 

The secondary ring can also be used to bypass a station that either fails 
or is disconnected from the ring. This is shown in Figure 23 .11. Stations 
on either side of the physical link reconfigure using the secondary ring. 
Again, numbers show the sequence in which the token flows around the 
ring both before and after the failure. 

Interconnecting FDDI and CSMA/CD LANs 

Bridges can be used to interconnect individual FDDI networks with 
CSMNCD networks to create an extended LAN. Bridges perform a 

Reconfiguration after physical link failure. 

Token Order on Primary Ring 
Before Physical Link Failure--~ 1 

Token Order After Physical Link 
Failure (Boldface numbers indicate 

when a MAC entity in each--~ 
station receives the token.) 

1 

3 

2 3 4 

2 5 4 

6 
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Reconfiguration after station failure. 

Token Order on Primary Ring 
Before Station Failure--- 1 2 3 4 

Token Order After Station 
Failure {Boldface numbers indicate 1 

when a MAC entity in each ---+ 
station receives the token.) 

2 4 
3 

Data Link layer relay function and are used to extend the LAN without 
affecting the basic services it provides. Bridges and extended LANs are 
discussed in Chapter 24. 

The remainder of this chapter describes the FDDI service definition 
and protocol specification and examines the format of the data units ex­
changed by FDDI MAC and PHY sublayer entities during local area net­
work operation. 

The ANSI FDDI specification for the MAC sublayer follows the ISO 
model and includes a service definition that describes the services the 
MAC sublayer provides to the LLC sublayer. The DNA Phase V FDDI 
architectural specification does not define this interface in terms of func­
tion and procedure calls as in the CSMNCD architectural specification. 
It simply references the ANSI MAC standard. 

The service definition is specified in terms of service primitives and 
service primitive parameters. The service definition describes an uncon­
firmed data transfer service and a token request service. The service 
primitives defining the MAC sublayer services are shown in Box 23.1. 
Figure 23.12 contains time-sequence diagrams showing the sequence in 
which the service primitives are issued. 
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Time-sequence diagrams for FDDI MAC sublayer service primitives. 

MA_UNITDATA service MA_ TOKEN service 

FDDI MAC 
Sublayer Protocol 
Specification 

The MA_UNITDATA Data Transfer Service 

The data transfer service uses three pnm1tives. A single MA_UNIT­
DATA.request primitive can include multiple sets of parameters, one for 
each MAC-SOU that is to be transmitted. Thus, a single service request can 
cause multiple MAC-SDUs to be sent. The MA_UNITDATA_STATUS.in­
dication primitive is returned by the MAC sublayer to the LLC sublayer in 
the sending station to indicate the success or failure of an attempt to trans­
mit a frame. It does not indicate whether the frame was successfully re­
ceived by the destination station. As with the MAC sublayer service for the 
CSMNCD type of LAN, the FDDI MAC sublayer data transfer service is 
an unconfirmed service in which data transfer is not guaranteed. 

The MA_ TOKEN Token Request Service 

This is an optional service, not used in the DNA Phase V FDDI 
specification, that can be used by the LLC sublayer to request the capture 
of the next token. The ANSI FDDI standard states that it is to be used only 
in certain special cases when time-critical data must be transmitted. Its use 
can minimize the effects of ring latency and can reduce the waiting time for 
the next token but at the expense of reducing transmission capacity. 

The FDDI MAC sublayer uses a timed-token ring access protocol that 
governs the way in which a MAC sublayer entity gains access to the ring 
to transmit data. The IEEE/ISO standards include the token ring form of 
local area network described by IEEE 802.5 and ISO 8802-5. However, 
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MA_UNITDATA.request 

( 

MA UNITDATA.indication 

( 

MA UNITDATA STATUS.indication 

MA_TOKEN.request 

FC_value(l), 
destination_address(l), 
M_SDU(l), 
requested_service_class(l), 
stream ( 1) , 

FC_value(2), 
destination_address(2), 
M_SDU (2), 
requested_service_class(2), 
stream(2), 

FC _value (n) , 
destination_address(n), 
M_SDU(n), 
requested_service_class(n), 
stream(n) 

FC_value, 
destination_address, 
source_address, 
M_SDU, 
reception_status, 
stream (n) 

number_of_SDUs, 
transmission_status, 
provided_service_class 

requested_Token class 
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the IEEE/ISO token ring access protocol is quite different from the 
timed-token ring access protocol used by FDDI. 

NETWORK ARCHITECT 

Some presentations that I have seen give the impression that FDDI is based on 
IEEE 802.5 Token Ring and has evolved from it. The fact that the word token 

and the word ring appear in the description of FDDI is leading people to believe 

that FDDI has something to do with IBM. But this is not the case. The essence 

of this is that when the two competing LAN standards were Ethernet and 802.5 
Token Ring, the world divided, and we had the Ethernet camp and the 802.5 

Token Ring camp. What we have now is FDDI versus nothing. FDDI is the only 

100-megabit-per-second LAN, and everybody wants to claim heritage. FDDI 

uses a dual timed-token ring access protocol that is not based on the IEEE 802.5 

protocol. It is actually more closely related to the protocol defined in the IEEE 
802.4 Token Bus standard than it is to the 802.5 protocol. FDDI uses a dis­

tributed algorithm instead of a centralized algorithm. FDDI's algorithm is more 

robust than the one used in 802.5. Another difference between FDDI and 802.5 

Token Ring is that FDDI reclocks the signal on each physical link as opposed to 
having a single clock for the whole network. As a result it doesn't have prob­

lems with the accumulation of jitter in the clock that the 802.5 protocol has. 

This allows FDDI to scale up to a much larger number of nodes on the ring. 

The FDDI timed-token ring access control protocol passes a special 
data unit, called the token, around the logical ring from one link entity 
to the next. When the token arrives at a PHY port associated with a link 
component, the token is passed up to the MAC entity in that link com­
ponent, and the MAC entity is allowed to transmit data frames. If the 
MAC entity has frames to send, it holds the token and uses its PHY port 
to transmit as many frames as desired onto the ring until a predefined 
time limit is reached. When the MAC entity either has no more frames to 
send or reaches the time limit, it transmits the token. When a frame cir­
culates all the way around the ring and returns to the MAC entity origi­
nating it, that MAC entity is responsible for stripping the frame from the 
ring by not repeating it. As MAC entities repeat frames around the ring, 
they set status bits in the frames indicating whether errors have been de­
tected, addresses recognized, or frames copied for processing. 

Since the token is transmitted as soon as a MAC entity is finished 
transmitting frames, it is possible for a MAC entity to transmit new 
frames while frames transmitted by other MAC entities are still circulat-
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ing around the ring. Thus, it is possible for there to be multiple frames, 
from multiple stations, on the network at any given time. The FDDI 
token passing procedure is illustrated in Figure 23.13. 

FDDI token-passing protocol. 

1. Station 1 waits for 
the token to arrive from 
Station 4. 

2. Station 1 removes 
the token from the ring 
and transmits Frame 1. 

3. Station 1 transmits 
the token. 

4. Frame 1 is 
addressed to Station 3, 
so Station 3 copies 
Frame 1 from the ring. 

5. While Station 3 continues 
copying Frame 1 and Frame 1 
proceeds around the ring, 
Station 2 removes the token 
from the ring and begins 
transmitting Frame 2. 

6. Station 2 transmits the 
token, Station 4 copies Frame 
2, which is addressed to it, 
and Station 1 removes Frame 
1 from the ring. 

7. Station 1 removes Frame 1 
from the ring but repeats 
Frame 2 and the token. 

8. Station 2 repeats the 
token. 
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All stations on the ring participate in distributed algorithms that monitor 
the operation of the ring to check for invalid conditions that require the 
ring to be reinitialized. An example of an invalid condition is a ring that 
currently has no token circulating. To detect the absence of a circulating 
token, each station maintains a token rotation timer (TRT), which it re­
sets each time it receives the token. If the timer expires twice before the 
station next receives the token, the station assumes the token has been 
lost and begins the ring initialization procedure. Other types of incorrect 
activities can also cause a station to begin the station initialization proce­
dure. A station begins the ring-initialization process by performing a 
claim token procedure. 

Claim Token Procedure 

In performing the claim token procedure, a station bids for the right to 
initialize the ring. The station begins the claim token procedure by issu­
ing a continuous stream of control frames called Claim frames. Each 
Claim frame contains a suggested Target Token Rotation Time (TTRT) 
value. If a station sending Claim frames receives a Claim frame from an­
other station, it compares TTRT values. If its TTRT value is lower, it 
keeps transmitting Claim frames. If the TTR T value in a claim frame a 
station receives is lower than its own TTRT value, it passes on the re­
ceived Claim frame instead of its own. If the values are the same, the 
MAC addresses are used to determine which station takes precedence. 
Eventually, the Claim frame with the lowest TTRT value will be passed 
on by other stations and will return to the station that sent it. At this 
point the sending station recognizes itself as the winner in the claim 
token procedure. That station has won the right to initialize the ring and 
continues by performing the ring initialization procedure. As a result of 
the claim token procedure, all stations now have the TTRT value to be 
used in subsequent ring operation because all stations have seen the 
TTRT value in the Claim frame sent by the winning station. 

The claim token procedure sounds complex and time consuming, 
but it takes only a millisecond or two to complete, even on a large ring. 

Ring Initialization 

The station winning the claim token procedure sets its own token rotation 
timer (TR T) to the negotiated TTR T and transmits a token onto the ring. 
Each station that receives the token then sets its own TTRT to the negoti-
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ated value and transmits the token. No frames are transmitted until the 
token has passed once around the ring. The purpose of the initial token 
rotation is to align TTRT values and TRT times in all stations on the ring. 

Beacon Process 

When a serious failure occurs, such as a break in the ring, stations use a 
beacon process to locate the failure. The SMT component in a station 
can also cause the station to initiate the beacon process. When a station 
that has been sending Claim frames recognizes that a defined time period 
has elapsed without the claim token process being resolved, it begins the 
beacon process by transmitting a continuous stream of Beacon frames. If 
a station receives a Beacon frame from another station, it stops sending 
its Beacon frames and passes on the Beacon frames it has received. Even­
tually, Beacon frames from the station immediately following the break 
will be propagated through the network. Some process external to the 
MAC entity must then be invoked to diagnose the problem and to 
reconfigure the ring to bypass the failure. If during the beacon process a 
station receives its own Beacon frames, it assumes the ring has been re­
stored and initiates the claim token procedure. 

The ANSI FDDI standard specifies optional mechanisms that implement 
a capacity allocation scheme. This scheme is designed to support a mix­
ture of stream and burst transmissions and transmissions involving di­
alogs between pairs of stations. Two types of frames are defined by the 
ANSI FDDI standard: asynchronous frames and synchronous frames.* In 
normal FDDI protocol operation, only asynchronous frames are trans­
mitted. The use of synchronous frames is optional, and an FDDI imple­
mentation need not support them. The DNA Phase V FDDI specification 
currently supports only asynchronous frames and does not include the 
optional synchronous frame service. 

ANSI FDDI also provides an optional mechanism for implementing 
multiframe dialogs between pairs of stations. When a station needs to 
enter into a dialog with another station, it can do so using its asyn­
chronous transmission capacity. After the station transmits the first 
frame in the dialog, it transmits a restricted token. Only the station re-

* Note that the terms asynchronous and synchronous have meanings here very 
different from those in Chapter 5. 
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ceiving the first frame is allowed to use the restricted token for transmit­
ting asynchronous frames. The DNA Phase V implementation of FDDI 
does not include support for the restricted token for multiframe dialogs. 

In using the data transfer service provided by the MAC sublayer, an LLC 
entity in the source station passes a medium-access-control-service-data­
unit (MAC-SDU) to the MAC sublayer entity in that station. The MAC 
sublayer entity adds PCI to the MAC-SDU in the form of a header and a 
trailer to create a medium-access-control-protocol-data-unit (MAC­
PDU)-also called a MAC frame-and passes it to the Physical layer. 
The Physical layer attaches additional PCI to the MAC frame to create a 
physical-protocol-data-unit (PPDU). The DNA Phase V FDDI specifi­
cation calls a PPDU a packet.* The Physical layer then transmits the 
packet over the transmission medium. When a station receives a packet, 
the Physical layer entity in the receiving station extracts the MAC frame 
from the packet and passes it up to the MAC sublayer entity. The MAC 
sublayer then extracts the LLC-PDU from the MAC frame and passes it 
up to the LLC sublayer. This process is summarized in Figure 23.14. 

The general formats of a packet and a MAC frame are shown in Fig­
ure 23.15. The MAC frame is contained within a Physical layer packet 
and consists of a frame control field, destination and source address fields, 
a data field, and a frame check sequence field. The Physical layer creates a 
packet by adding a preamble, starting delimiter, ending delimiter, and 
frame status field to the MAC frame. The following are descriptions of 
the fields that make up a MAC frame and a Physical layer packet: 

• Preamble. The preamble is used to synchronize each station's clock. 

• Starting Delimiter. The starting delimiter is a unique signal pattern that 
identifies the beginning of a frame. 

• Frame Control. The frame control field identifies the frame's type. It has 
the bit format CLFFZZZZ, where C identifies this as a synchronous or 
asynchronous frame, L specifies whether 16 or 48 bit addresses are used, 
FF indicates whether this is an LLC or a MAC frame, and ZZZZ pro­
vides control information for MAC frames. The DNA Phase V FDDI 
specification allows for only asynchronous frames and 48-bit addresses. 

As mentioned in Chapter 22, this is an unfortunate choice of terminology since 
the term packet is also often used in networking literature to refer to the 
NPDUs that are exchanged by Network layer entities. The Physical layer packet 
is not the same as the Network layer packet. 
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FIGURE 23.14 Providing the Medium Access Control (MAC) sublayer data transfer service. 

MAC-POU (MAC Frame) 

Physical Layer 

PSOU 

PSOU 

PPOU (Packet) 

LLC-PDU logical-link-control-protocol-data-unit 
MAC-SDU medium-access-control-service-data-unit 
MAC-PDU medium-access-control-protocol-data-unit 
PSDU physical-service-data-unit 
PPDU physical-protocol-data-unit 
PCI protocol-control-information 

MAC Frame 

MAC-POU (MAC Frame) 

Physical Layer 

Packet 

PPOU (Packet) 

Transmission Medium 

• Destination and Source Addresses. The DNA Phase V FDDI specification 
requires the use of 48-bit addresses. The destination address can be an 
individual address, a group address, or a broadcast address. The source 
address always identifies an individual station. 

FIGURE 23.15 FDDI packet and frame format. 

Destin-
Frame alien Source 
Control Address Address 

8 octets 1 octets 1 octet 6 octets 6 octets 

MACSDU FCS 

a - 4478 octets 4 octets 

Ending 
Delimiter 

.5 octet 1.5 octets 
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• Data Field. The data field can contain data passed from the LLC layer or 
control information supplied by the MAC layer. The maximum length of 
the data field is 4478 octets. 

• Frame Check Sequence. The frame check sequence contains a 32-bit 
cyclic redundancy check value. The value is calculated based on the con­
tents of the frame control field, destination address, source address, and 
information field. The receiving station performs the same calculation. If 
the received value does not match the calculated value, the frame is con­
sidered to be in error. 

• Ending Delimiter. The ending delimiter identifies the end of the frame. 

• Frame Status Field. The frame status field contains information about 
the status of a frame, including whether an error was detected, the ad­
dress recognized, and the frame copied. 

Frame Types 

The frame control field contains bits that indicate a frame's type. The 
DNA Phase V FDDI specification defines seven types of frames: 

• Void Frame. Used by DNA Phase V enhancements to the ANSI MAC 
protocol, such as the frame stripping algorithm and ring purging algo­
rithm discussed later. 

• Token. Indicates the data unit is a token and not a data frame. 

• SMT Frame. Frames sent by station management components to control 
their operation. 

• MAC Frame. Frames used to control the operation of the MAC proto­
col, including the Claim and Beacon frames. 

• LLC Frames. Frames containing data passed down from the LLC sublayer. 

• Implementor Frame. Frames reserved for the implementor. DNA Phase V 
FDDI does not define any Implementor frames. 

• Reserved. Reserved frames are intended for use by future versions of the 
standard. 

Token Frame Format 

A special frame format, illustrated in Figure 23.16, is used for the token, 
consisting only of a preamble, starting delimiter, frame control field, and 
ending delimiter. 
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FDDI token format. 

Mapped Ethernet Frames 

Frame Ending 
Control Delimiter 

1 octet 1 octet 

As discussed in Chapter 22, on a CSMA/CD LAN, frames conforming to 
the IEEE/ISO CSMA/CD format and frames conforming to the Ethernet 
format can coexist on the same LAN. The LLC sublayer multiplexes and 
demultiplexes the two frame types by using the length/type field that is 
part of the CSMNCD MAC frame header. The FDDI MAC frame does 
not contain a length/type field. To allow an extended LAN to be con­
structed of both CSMNCD and FDDI local area networks, the DNA 
Phase V FDDI specification includes support for a mapped Ethernet 
frame type. On an FDDI LAN, an Ethernet frame is contained within an 
IEEE/ISO SNAP PDU, which is then encapsulated within an FDDI MAC 
frame. The DNA Phase V FDDI mapped Ethernet service allows an Eth­
ernet application to use the services of an FDDI LAN in communicating 
with another Ethernet application across an extended LAN. 

The following sections describe two enhancements to the FDDI 
standard that the DNA Phase V version of FDDI implements that deal 
with removing frames from the ring. 

Frame Stripping The ANSI FDDI standard specifies a single method for removing frames 
from the ring, a process called frame stripping. As described above, a 
MAC entity that transmits a frame onto the ring has the responsibility of 
removing it when the frame has circulated all the way around the ring 
and returns to the originating MAC entity. A MAC entity does this by 
recognizing the source address in a frame it receives as being equal to its 
own MAC address. This method for stripping frames from the ring is ad­
equate when a transmitting MAC entity transmits only frames having its 
own MAC address as the source address. However, in an extended LAN 
that implements bridges, a MAC entity in a bridge may transmit frames 
onto a ring that have originated in a station on some other local area net­
work. In such a case, a MAC entity in a bridge may transmit frames onto 
the ring with source addresses different from the bridge's own MAC ad-
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dress. A MAC entity in a bridge must implement an additional frame 
stripping algorithm, allowing it to strip frames from the ring that have a 
source address different from the MAC entity's own MAC address. 

Frame Content Independent Stripping 

The DNA Phase V FDDI specification defines a Frame Content Inde­
pendent Stripping (FCIS) algorithm that FDDI MAC entities use to re­
move frames from the ring. To implement this algorithm, each MAC en­
tity maintains a local count of the frames it has transmitted onto the ring 
but has not yet stripped since the last time it received the token. The sta­
tion also transmits a special delimiter frame, called a Void frame, after it 
finishes transmitting a set of frames onto the ring. Stations that do not 
implement the FCIS algorithm do not copy Void frames but simply re­
peat them. The MAC entity transmitting the Void frame sets the Void 
frame's source address field equal to the MAC entity's own MAC ad­
dress. The MAC entity then strips from the ring any frame it receives­
even if the frame's source address field value is not equal to its own MAC 
address-and reduces its transmitted frame count by one for each error­
free frame it strips. The MAC entity continues stripping the frames it re­
ceives until one of three termination conditions occurs: 

• The station's transmitted frame count reaches 0. 

• It receives a token. 

• It receives its own error-free Void frame, a Claim frame, or a Beacon 
frame. 

NETWORK ARCHITECT 

The frame stripping algorithm we designed works because of an important 

invariant on a properly operating FDDI token ring: the frames a station 

receives first after it has transmitted the token will always be the frames that it 

transmitted. Frames generated by stations downstream on the ring must always 

follow the frames the station itself transmitted onto the ring. The three termi­

nation conditions ensure stable operation of the algorithm. They guarantee 

that there is a low probability of overstripping (stripping too many frames 

from the ring) and a very low probability of understripping (not stripping 

enough frames) even when one or more frames are affected by errors as they 

circulate around the ring. 
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One of the properties of a local area network that uses a ring topology 
and a token passing access protocol is that it is possible for a frame to 
circulate indefinitely. A frame that is not removed after its first traversal 
of the ring is called a no-owner frame. The FDDI standard does not spec­
ify a guaranteed method of removing no-owner frames. 

The DNA Phase V version of FDDI includes a simple, robust algo­
rithm, called the ring purger algorithm, that reliably removes no-owner 
frames from the ring. The ring purger algorithms consist of two parts: 

• Election Algorithm. An election algorithm is used to choose, in a dis­
tributed manner, one of the stations on the ring to be the ring purger. 
The primary purpose of the ring purger election algorithm is to ensure 
that there is one and only one ring purger operating in the ring. It recov­
ers from ring initializations and from failure of the station acting as the 
nng purger. 

• Purging Algorithm. The station designated as the ring purger runs the 
purging algorithm to remove no-owner frames and frame fragments 
from the ring. 

Election Algorithm 

Each time the ring is initialized, a station becomes the ring purger if it is 
the winner of the claim token procedure or if it was the ring purger prior 
to ring initialization. A ring purger periodically announces its presence 
on the ring by transmitting a Purger Hello frame. 

If there is no ring purger after ring initialization or at any time dur­
ing the operation of the ring, a new ring purger is elected using a broad­
cast election protocol. The election algorithm is designed to elect one 
and only one station to be the ring purger. The overhead of the purger 
election algorithm is negligible, with the ring purger periodically {ap­
proximately every 10 seconds) sending a short frame to the other sta­
tions on the ring. 

Purging Algorithm 

In running the purging algorithm, the station designated as the ring 
purger waits for a token. Once that station captures a token, if it has 
frames to transmit, it transmits them. After the ring purger's transmis­
sions are completed, it transmits two Void frames. The Void frames 
mark the end of transmission of the ring purger's frames. 
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When the ring is operating normally, the ring purger should receive 
only the frames it sent, followed by its own Void frames. The ring purger 
strips from the ring all frames and frame fragments that it receives until 
it receives its Void frames. It then strips the two Void frames and ceases 
stripping frames from the ring. If there are no owner frames circulating 
on the ring, the ring purger will strip these from the ring while stripping 
the frames that precede its Void frames. The ring purger does not begin 
another purging operation until it receives the token. The ring purger 
also stops the purging algorithm if it receives a Beacon frame or a Claim 
frame. 

With a ring purger active on the ring, no frame will circulate as a 
no-owner frame for more than one traversal around the ring. These 
frames will therefore be received at most only twice by any destination 
station. 

The Fiber Distributed Data Interface standard defines a 100-Mbps local 
area network using a timed-token ring access control protocol. FDDI 
LANs will be extremely important in the 1990s to provide high-band­
width connections between individual lower-performance local area net­
works and as a high-speed broadcast data link to serve the needs of host 
computers and high-performance workstations. The final chapter in this 
book describes bridges that can be used to interconnect LANs of various 
types to create extended LANs. 
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CHAPTER 24 

Bridge and Extended 
LAN Architecture 

DNA Phase V provides facilities that allow collections of local area net­
works to be combined using devices called bridges to form an extended 
LAN. A bridge is a device whose main functions operate in the Logical 
Link Control (LLC) sublayer. Each bridge in an extended LAN is attached 
to two or more local area networks and acts as a link between them. The 
bridge architecture is defined in the DNA Phase V Bridge and Extended 
LAN Architecture specification. This architecture is based on the IEEE 
802.ld, MAC Bridges, standard, which is also described in ISO 10038. 

A bridge is only one type of device that can be used to interconnect 
network segments to form a complete DECnet Phase V network. Other 
types of devices, some of which have already been described in other 
chapters, are repeaters, routers, gateways, and portals. Box 24.1 de­
scribes the five types of devices that can be used to interconnect net­
works and network segments. 

A bridge is a device that is attached to two or more local area networks. The 
extended LAN created by interconnecting local area networks using bridges 
does not have to be made up of LANs of the same type. A bridge can be de­
signed to connect LANs using different protocols in the Physical layer and in 
the Medium Access Control sublayer, as long as they use a common proto­
col in the Logical Link Control sublayer. For example, an extended LAN 
can be constructed of CSMA/CD LANs connected to an FDDI LAN. Figure 
24.1 shows how an FDDI LAN can be used as a high-speed backbone to in­
terconnect a number of CSMA/CD LANs using bridges. 

A bridge can also be designed to connect a local area network to a 
wide area network data link instead of to another LAN. For example, 
two local area networks could be connected via bridges to a full-duplex, 
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Bridges connecting two CSMA/CD LANs and an FDDI LAN. 
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point-to-point telecommunications facility, as shown in Figure 24.2 
(page 522). When two bridges are connected using such a telecommuni­
cations facility, the distance limitation inherent in the LAN architecture 
can be overcome, and the extended LAN can span any desired distance. 
A station in a network at one end of the full-duplex communication fa­
cility can communicate with a station at the other end of the link as if 
they were attached to the same local area network. 

Bridge Operation The DNA Phase V bridge and extended LAN architecture describes a 
form of bridge often called a transparent bridge, because ordinary sta­
tions on the LAN communicate with one another in an identical manner 
whether or not one or more bridges lie in the path between them. The 
fact that the local area network consists of an extended LAN having 
bridges is hidden from ordinary stations. 
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• Repeaters. The simplest facility used for network interconnection is 
the repeater. Repeaters are used in bus-structured local area networks 
to connect individual cable segments to form a larger local area net­
work. In ring-structured local area networks, every station p;:;rforms 
the function of a repeater. In a local area network there is generally a 
limit on the length of any single cable segment. This limit is based on 
the physical medium and the transmission technique used. A repeater 
operates in the Physical layer and its use is hidden from any of the lay­
ers above. The function of a repeater is to receive a signal from one 
cable segment and to retransmit it over one or more other cable seg­
ments, thus regenerating the signal at its original strength. The number 
of repeaters that can be used in tandem on a bus-structured local area 
network is generally limited by the LAN architecture. Stations con­
nected by repeaters can use different Physical layer procedures but 
must share a common protocol in the medium access control sublayer. 

• Bridges. A bridge is used to join together two separate local area net­
works to create an extended LAN. It operates in the Logical Link 
Control sublayer. A bridge can be designed to join networks using 
different protocols in the Physical layer and in the Medium Access 
Control sublayer, as long as they use a common protocol in the Logi­
cal Link Control sublayer. 

• Routers. Routers provide the ability to route packets from one end 
node to another where there may be multiple paths between them. 
The routers participate in a distributed algorithm to decide on the 
optimal path each packet should travel from the source end node to 
the destination end node. The router function operates in the Net­
work layer. When routers are used to interconnect local area net­
works, all the stations on the LANs being interconnected must ordi­
narily use the same Network layer protocols. However, it is possible 
to construct multiple-protocol routers that can route traffic conform­
ing to two different architectures, such as DNA Phase V and TCP/IP. 
Stations connected using routers can use different protocols operat­
ing in the Physical and Data Link layers but must share common 
protocols in the Network layer and above. 

• Gateways. A gateway can be used when an application running on a 
node in a DECnet Phase V network must be able to communicate 
with an application running in a node conforming to a different net­
work architecture. For example, the X.25 gateway facility allows a 
DECnet Phase V node to communicate over a PSDN with a node 
conforming to CCITT Recommendation X.25. (See Chapter 18.) 
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Gateways can also be used to allow a DECnet Phase V node to com­
municate with nodes conforming to the TCP/IP architecture or to 
IBM's Systems Network Architecture (SNA). The function of a gate­
way is to convert the protocols of one network architecture to the 
protocols of the other network architecture. A gateway replaces the 
control information from one network with control information 
required to perform comparable functions in the other network. Sta­
tions connected using gateways can run different protocols in any of 
the layers in the protocol stack. 

• Portals. A portal provides a method for allowing nodes conforming 
to some other network architecture to use a DECnet Phase V net­
work for communication. Unlike a gateway, a portal does not per­
form protocol conversion. Instead, a portal encapsulates the foreign 
protocol messages within DNA Phase V protocol messages for trans­
mission through the DECnet Phase V network. An example of such a 
device includes Digital's Internet Portal. The Internet protocol allows 
a node conforming to the TCP/IP architecture to use a DECnet Phase 
V network for communication with another node that also conforms 
to the TCP/IP architecture. The TCP/IP node at one end of the DEC­
net Phase V network generates protocol messages conforming to the 
TCP/IP architecture. The portal encapsulates these messages within 
DECnet Phase V packets and then forwards these packets through 
the network to the portal at the opposite end. The portal there 
removes the original TCP/IP messages from the DECnet Phase V 
packets and hands them to the destination TCP/IP node. A pair of 
portals is sometimes said to implement a facility called a tunnel, with 
each portal providing an opening into a tunnel through a network 
conforming to a foreign network architecture. 

A bridge performs three basic functions: 

• frame forwarding 

• learning the addresses of stations on the LANs to which it is attached 

• converting an arbitrary extended LAN physical topology to a spanning tree 

Frame Forwarding 

A bridge receives all frames on each LAN to which it is attached. Each 
bridge maintains a filtering database in which it maintains the MAC ad­
dresses of all the stations on those LANs and identifies which physical 
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FIGURE 24.2 
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Bridges connecting two LANs using a lull-duplex, point-to-point data link. 
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port in the bridge can be used to communicate with each station. The 
bridge then takes one of the following actions for each frame it receives: 

• When a station receives a frame having a multicast destination address, 
it forwards the frame over all its physical ports except the one from 
which it received the frame. 

• When a bridge receives a frame having an individual MAC station ad­
dress, it looks up the destination MAC address in its filtering database. If 
it finds the address and determines that it can reach the destination sta­
tion using the same physical port as the one through which it received 
the frame, the bridge discards that frame. 

• If the bridge determines the destination station is reached using a differ­
ent physical port than the one through which it was received, it forwards 
the frame using the appropriate physical port. 
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• If the bridge does not find the address in its filtering database, it forwards 
the frame over all its physical ports except the one from which it received 
the frame. 

In this manner, a bridge forwards traffic for unknown destinations 
and multicast traffic over the entire spanning tree. This guarantees that it 
will be seen by the destination station wherever that station may be, if 
the destination station is in the extended LAN. However, if the bridge 
knows the location of the destination station, it avoids unnecessarily for­
warding traffic over those local area networks that do not contain the 
destination station. 

Learning Addresses 

When a bridge first comes up, its filtering database is empty. A bridge 
builds up its filtering database by examining the source MAC address 
fields in all the frames it receives. If a bridge receives a frame having a 
MAC address not currently in its filtering database, it adds the address to 
its filtering database along with an indication of which physical port was 
used to receive the frame. The bridge then knows which physical port to 
use to forward traffic when it next receives a frame having that destina­
tion MAC address. When traffic arrives from the same port as a known 
destination station, the bridge does not have to forward that traffic. 

If the bridge receives a frame from a station already in the database, 
it updates the database entry for that station. This handles the situation 
where a station is moved from one local area network to another. Entries 
are maintained in the filtering database only for a predetermined period 
of time. If no new frames are received from a particular station, the entry 
for that station is eventually removed from the filtering database. This 
handles the situation where a station is powered down for a long period 
of time or is removed from the network. 

Creating a Spanning Tree 

Individual local area networks can be connected in any desired way using 
bridges. For example, networks can be physically interconnected, if de­
sired, in an arbitrary mesh topology such that there is more than one path 
between any two stations. However, during the operation of the extended 
LAN, the bridges ensure that there is no more than one active path used 
to carry traffic between any two stations. The bridges convert the physical 
topology of the extended LAN into a logical topology that always con­
sists of a spanning tree. A spanning tree is a graph structure that includes 
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all the bridges and stations on the extended LAN but in which there is 
never more than one active path connecting any two stations. 

To create the spanning tree, bridges run a distributed algorithm in 
which each bridge periodically multicasts Hello messages called bridge­
protocol-data-units (BPDUs) to all other bridges on the extended LAN. 
The BPDUs each bridge receives are used by that bridge to calculate the 
spanning tree. Redundant links not part of the spanning tree are treated 
as spares and are used only if some other link fails. After a link failure, 
the BPDUs the bridges periodically transmit allow them to quickly calcu­
late a new spanning tree, possibly using redundant links. 

IEEE Project 802 is currently in the process of defining an optional en­
hancement to the 802. ld bridge specification called source routing. With 
source routing, each station on the extended LAN is expected to know 
the route over which to send each frame it transmits. If a station does not 
know the route, or if a previously known route is no longer active, the 
station sends out route discovery frames. Each bridge along the eventual 
path to the destination station adds routing information to the route dis­
covery frame. The destination station then sends a response back to the 
source station indicating the route that should be used to reach that des­
tination station. A source routing technique is often used with IEEE/ISO 
Token Ring LANs. 

A major disadvantage of the source routing technique is that the op­
eration of bridges is not hidden from ordinary stations on the LAN. Indi­
vidual stations must participate in the routing of traffic through the ex­
tended LAN. The DNA Phase V bridge and extended LAN architecture 
does not currently specify the use of source routing. 

At first glance, it appears that an extended LAN, using bridges and 
point-to-point telecommunications facilities to connect multiple LANs, 
provides a function similar to that of a system of interconnected routers. 
However, bridges and routers each have different roles to play in the de­
sign of a geographically dispersed network. 

Bridges must be used, instead of routers, to interconnect LANs 
when traffic from protocols that expects to flow over a single local area 
network must flow between stations on two different LANs. An example 
of such a protocol is Digital's Local Area Transport (LAT) protocol. 
Routers, on the other hand, can make better use of the topology, since 
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the logical topology of the network created using routers is not confined 
to a single spanning tree. Routers also separate the individual local area 
networks they connect in the sense that the multicast traffic that is sent 
over each LAN can be confined to those LANs. Multicast traffic is not 
relayed from one local area network to another by routers. Routers also 
provide enhanced network management capabilities. The most efficient 
design for any large DECnet Phase V network will usually involve a 
combination of strategically placed repeaters, bridges, routers, gateways, 
and portals. 

This concludes this book on Phase V of the Digital Network Architec­
ture. Following this chapter are two appendices. Appendix A lists the 
ISO standards that DNA incorporates, and Appendix B is a list of the ar­
chitectural specifications that make up DNA Phase V. 





APPENDIX A 

ISO Standards for the 
OSI Model 

Wide Area Networking Data Link Network Layer Standards 
Layer Standards 

ISO 8208, X.25 Packet Level Protocol 
ISO 8886, Data Link Service Depnition ISO 8348, Network Service Depnition 
ISO 3309, HDLC Frame Structure ISO 8473, Protocol for Providing the 
ISO 4335, HDLC Control Elements of Connectionless-Mode Network 

Procedures Service and Provision of the 
ISO 7776, HDLC Procedures-X.25 LAPB Underlying Service 

DTE ISO 8648, Internal Organization of the 
ISO 7809, HDLC Procedures- Network Layer 

Consolidation of Classes of ISO 8878, Use of X.25 to Provide the OSI 
Procedures Connection-Mode Network 

ISO 8885, HDLC XID Frames Service 
ISO 8880-1, Protocol Combinations to 

Local Area Network Data Link Layer Standards Provide and Support the OSI 

ISO 8802-2, LAN Logical Link Control 
Network Service-General 
Principles 

ISO 8802-3, LANCSMA/CD 
ISO 8880-2, Protocol Combinations to 

ISO 8802-4, LAN Token Bus 
Provide and Support the OSI 

ISO 8802-5, LAN Token Ring 
Network Service-Provision and 

ISO 9314-1, Fiber Distributed Data Interface 
Support of the Connection-Mode 

{FDDI)-Part 1: Physical Layer 
Network Service 

Protocol {PHY) 
ISO 8880-3, Protocol Combinations to 

ISO 9314-2, Fiber Distributed Data Interface 
Provide and Support the OSI 

{FDDI)-Part 2: Media Access 
Network Service-Provision and 

Control {MAC) 
Support of the Connectionless-

ISO 9314-3, Fiber Distributed Data Interface 
Mode Network Service 

{FDDI)-Part 3: Physical Layer 
ISO 8881, Use of X.25 over Local Area 

Medium Dependent {P MD) 
Networks to Provide the OSI 

ISO 10038, LAN MAC Sublayer 
Connection-Mode Network 

Interconnection {MAC bridging) 
Service 
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ISO 9542, End System to Intermediate 
System Routing Exchange 
Protocol for Use with the 
Protocol for Defining the 
Connecttonless-Mode Network 
Service 

ISO 10589, Intermediate System to 
Intermediate System Intra­
Domain Routing Exchange 
Protocol for Use in Conjunction 
with the Protocol for Providing 
the Connectionless-mode 

TR 9575, 
TR 9577, 

Network Service (ISO 8473) 
OSI Routing Framework 
Protocol Identification in the 
Network Layer 

Transport Layer Standards 

ISO 8072, 
ISO 8073, 

ISO 8602, 

Transport Service Definition 
Connection Oriented Transport 
Protocol Specification 
Protocol for Providing the 
Connectionless-Mode Transport 
Service 

Session Layer Standards 

ISO 8326, 
ISO 8327, 

Session Service Definition 
Session Protocol Specification 

Presentation Layer Standards 

ISO 8822, 
ISO 8823, 

ISO 8824, 

ISO 8825, 

Presentation Service Definition 
Presentation Protocol 
Specification 
Specification of Abstract Syntax 
Notation One (ASN.1) 
Specification of Basic Encoding 
Rules for ASN.1 

Application Layer Standards 

ISO 8571, 

ISO 8649, 

ISO 8650, 

ISO 9040, 

ISO 9545, 

File Trans{ er, Access, and 
Management (FTAM) 
Service Definition-Association 
Control Service Element (ACSE) 
Protocol Specification­
Association Control Service 
Element (ACSE) 
Virtual Terminal Service: Basic 
Class 
Application Layer Structure 
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DNA Phase V 

Architectural Specifications 

Bridge and Extended LAN Architecture 
Common Management Information Protocol 

(CMIP) Specification 
CSMNCD Data Link Functional Specification 
CSMNCD (Ethernet) Local Area Network 

Specification 
Data Access Protocol (DAP) Functional 

S pecifica ti on 
DDCMP Functional Specification 
DDCMP Network Management Specification 
Distributed Authentication Security Service 

(DASS) 
Distributed System Management Entity Model 
Distributed System Security Architecture 

Preliminary Design 
DNA Naming Service Functional Specification 
DNA Phase V General Description 
Engineering Requirements for the DEC RPC 

Architecture 
Enterprise Management Architecture-General 

Description 
Event Logging Functional Specification 
Foundation Services Specification 
HDLC Specification 
Local Area Transport Architecture 
Maintenance Operations Functional 

Specification 

Making the Transition from Phase IV 
Modem Connect Functional Specification 
Network Control Language (NCL) 

Specification 
Network Interconnect (NI) Node Product 

Architecture Specification 
Network Management Architecture 
Network Routing Layer Functional 

Specification 
NI Node Product Architecture Specification 
NSP Functional Specification 
OSI Transport Protocol Functional 

Specification 
OSI Upper Layer (OSUL) Architecture 
Representation of Time for Information 

Interchange 
Session Control Layer Functional Specification 
Terminal Software Architecture Foundation 

Services Specification 
Terminal Software Architecture Network 

Command Terminal Specification 
Time Service Functional Specification 
Unique Identifier Functional Specification 
X.21 Functional Specification 
X.25 Access Specification 
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Glossary 

10BASE2 An IEEE/ISO CSMA/CD transmission 
medium specification that uses baseband sig­
naling over 50-ohm coaxial cable, approxi­
mately 5 mm thick. This form of transmis­
sion medium is often called Thin Wire cable 
or thinnet cable. A 10BASE2 cable segment 
can be up to 185 meters in length. 

10BASE5 An IEEE/ISO CSMA/CD transmission 
medium specification based on the original 
Ethernet Specification. 10BASE5 specifies 
baseband transmission over the original, 
thick (10 mm) form of 50-ohm Ethernet 
coaxial cable. This type of cable is often 
referred to as thick Ethernet cable. A 
10BASE5 cable segment can be up to 500 
meters in length. 

10BASE·T An IEEE/ISO CSMA/CD transmission 
medium specification that specifies baseband 
signaling over unshielded twisted-pair tele­
phone wiring. The specification is designed 
for a typical distance of up to about 100 
meters of 24 AWG twisted-pair cable. 

10BROA036 An IEEE/ISO CSMA/CD transmis­
sion medium specification that specifies 
broadband signaling over the type of coaxial 
cable used in cable television. 10BROAD36 
cable segments can be up to 1800 meters in 
length for a round-trip distance of up to 3600 
meters using a dual cable configuration. 

abstract interface A description of the semantics 
of a set of services that an entity in a func-

tional layer of the OSI model provides to a 
user of that layer's services. An abstract 
interface does not specify implementation 
details, nor does it describe the syntax that 
must be used to implement the interface. 

abstract syntax Definition, using some form of 
formal notation, of the information content 
of a set of data types. An abstract syntax 
specifies nothing about how values of those 
data types are represented in a computer or 
encoded for transmission. 

abstract syntax notation (ASN) A notation used to 
define abstract syntaxes. See abstract syntax 
and Abstract Syntax Notation One. 

Abstract Syntax Notation One (ASN.1) International 
standard notation, defined in ISO 8824, 
widely used in the OSI environment to 
define abstract syntaxes. See abstract 
syntax. 

Accredited Standards Commillee (ASC) An organiza­
tion, accredited by ANSI, that develops stan­
dards in the United States. 

address resolution component of DNA Session Control 
The component that accesses the naming 
service clerk to determine, given the name of 
an object (possibly residing in a remote 
node), all the various sets of communication 
protocols and associated addressing infor­
mation that can be used to support commu­
nication between the local object and the 
remote object. 

!'i:l1 
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address selection component of DNA Session Control 
The component that takes the set of towers 
that could support communication-as 
computed by the address resolution compo­
nent-orders the1n in so1ne 111cu111c1; and 
tries each in turn until either a connection is 
successfully established or it becomes clear 
that further attempts would be futile. 

addressing authority An organization responsible 
for allocating the initial octets of NSAP 
addresses such that the network entity title 
an organization assigns to each end node 
and router in the administrative domains it 
creates is globally unique. 

adjacency The combination of a circuit and a 
node attached to that circuit. 

adjacent nodes Network nodes that are reachable 
by a single hop over a subnetwork to which 
a given node is attached. 

adjacent systems See adjacent nodes. 
administrative domain An individual DECnet 

Phase V network-consisting of a collection 
of end nodes, routers, and data links-oper­
ated by a single organization. An adminis­
trative domain is not an architecturally 
defined entity; thus, the boundaries of an 
administrative domain are determined by 
network management policy. 

advertisement A protocol message that makes the 
presence of a service known to all the nodes 
on a broadcast form of data link. 

AM Amendment. 
Amendment (AM) A document, published by ISO, 

that makes an accepted modification to an 
international standard. A modification to an 
international standard begins as a Commit­
tee Draft Amendment (CDAM), progresses 
to a Draft Amendment (DAM), and finally 
becomes an Amendment when it is accepted 
by ISO as an official part of an international 
standard. 

American National Standards Institute (ANSI) The 
standards organization in the United States 
that serves as the U.S. member organization 

in the International Organization for Stan­
dardization (ISO). ANSI is a nonprofit orga­
nization that writes the rules for standards 
bodies to follow and publishes standards 
produced under it~ rules of consensus. ANSI 
accredits standards committees to write 
standards in areas of their expertise. 

ANSI American National Standards Institute. 
APDU application-protocol-data-unit. 
API Application programming interface and 

application-process-invocation. 
application-association A logical binding between 

two application-entity-invocations, one of 
which is called the initiator and the other 
the responder. 

application-context Definition of a common set of 
rules shared between a pair of communicat­
ing application-entity-invocations, each 
including a set of ASEs (possibly only ACSE) 
and an association between them. An appli­
cation-context defines a particular set of 
communication capabilities for two commu­
nicating application-entity-invocations. Each 
application-association has only one appli­
cation-context. 

application-entity The part of an application­
process that provides resources for OSI com­
munication and describes a set of Application 
layer capabilities used for a specific purpose. 

application-entity-invocation A particular use of the 
resources defined by an application-entity to 
perform a particular OSI communication 
activity. 

application-entity-title A unique identifier, unam­
biguous in the OSI environment, that is 
assigned to an application-entity. 

Application layer The functional layer that pro­
vides a means for application processes to 
access the system interconnection facilities in 
order to exchange information. The Appli­
cation layer provides services used to estab­
lish and terminate associations between 
application processes and to monitor and 
manage the processes being interconnected 
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and the various resources they employ. 
application-process A set of resources, including 

processing resources, within an open system 
that can be used to perform information 
processing activities. 

application-process-invocation A particular use of 
the resources defined by an application-pro­
cess to perform a particular information 
processing activity. 

application-process-title A unique identifier, unam­
biguous in the OSI environment, assigned to 
an application-process. 

application programming interface (API) A form of 
concrete interface that defines how an appli­
cation program invokes a set of services. 

application-protocol-data-unit (APDU) The protocol­
data-unit exchanged between peer Applica­
tion layer entities. 

application-service-element (ASE) An element 
within an application-entity that provides a 
set of OSI communication functions for a 
particular purpose. 

architecture The term used in the information 
technology industry to refer to an overall 
scheme or plan that may be evolving 
together with the details needed to guide 
implementors in creating products that will 
interoperate with other implementations of 
the architecture. 

area The largest subdivision of a network 
defined by the DNA Phase V architecture. 
Each node (end node or router) resides in 
exactly one area. Routing in a multiple-area 
routing domain is classified as either level 1 
routing or level 2 routing. 

ASC Accredited Standards Committee. 
ASE application-service-element. 
ASN abstract syntax notation. 
ASN.1 Abstract Syntax Notation One. 
Association Control Service Element (ACSE) The 

application-service-element, defined by inter­
national standards ISO 8649 and ISO 8650, 
responsible for establishing and releasing 
application-associations. An application-
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association binds an application program 
executing in one open system with an appli­
cation program executing in another open 
system for the purposes of exchanging infor­
mation between them. 

asymmetric cryptography algorithm A cryptography 
algorithm in which the key used to decipher 
a message is different from the key used to 
encipher it. 

asynchronous transmission A form of data commu­
nication, sometimes called start-stop trans­
mission, in which a small number of bits, 
such as the 8 bits representing a single char­
acter, is sent at a time. Two devices using 
asynchronous transmission must be in syn­
chronization only for the time it takes to 
transmit and receive a single character. 

authentication The process of verifying the iden­
tity of a person, program, or service. See 
also authorization. 

authorization The process of determining whether 
a person, program, or service is allowed to 
perform a particular process. See also 
authentication. 

balanced data link In HDLC, a data link connect­
ing two stations only. Each station is called a 
combined station, and either station can ini­
tiate message transmission. See High-level 
Data Link Control. 

Basic Encoding Rules (BER) The international stan­
dard, defined in ISO 8825, specifying a set 
of encoding rules that define how the infor­
mation content of ASN.1 values are encoded 
for transmission over the network. BER is a 
commonly used method for producing trans­
fer syntaxes in the OSI environment. 

Bellman-Ford routing algorithm See distance-vector 
routing algorithm. 

BER Basic Encoding Rules. 
bridge A device operating in the Logical Link 

Control sublayer and used to join together 
two separate local area networks to create 
an extended LAN. A bridge is attached to 
two or more local area networks and selec-
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tively copies frames from one local area net­
work to another. A bridge can be designed 
to join together stations using different pro­
tocols in the Physical layer and in the 
Medium Access Control sublayer, as long as 
they use a common protocol in the Logical 
Link Control sublayer. 

broadcast data link A data link that can connect 
two or more stations and in which the data 
units a station sends are seen by all the other 
stations attached to the data link. On a 
broadcast data link, a station can send a 
data unit to an individual station or multi­
cast a data unit to any number of other sta­
tions attached to the data link. 

byte A collection of 8 bits in a storage system. 
call sharing A feature of the DNA Phase V 

Modem Connect specification that allows 
calls on a switched line to be accessed con­
currently by more than one user of the Phys­
ical layer. 

Carrier Sense Multiple Access with Collision Detection 
(CSMA/CD) An IEEE/ISO local area network 
standard, defined in IEEE 802.3 and IEEE 
8802-3, that describes the Medium Access 
Control sublayer and Physical layer func­
tions for a bus-structured network using a 
distributed contention resolution mecha­
nism. The CSMNCD standard has its roots 
in version 2 of the Ethernet Specification, 
jointly developed by Digital, Xerox, and 
Intel. 

CCITT International Telegraph and Telephone 
Consultative Committee. 

CD Committee Draft. 
CDAM Committee Draft Amendment. 
centralized routing A routing technique in which 

end nodes and routers report information 
about their local environments to a central­
ized facility. The centralized facility accumu­
lates routing information from all the nodes 
in the network, computes routes, and sends 
to each router the information it needs to 
handle routing decisions. 

circuit A DNA Phase V generic term used in 
routing that includes any type of data link, 
including a local area network broadcast 
link, a point-to-point link, an attachment to 
a node on a DDCMP multipoint link, a 
dial-up link, or an X.25 virtual circuit. See 
subnetwork. 

clearinghouse A naming service repository for a 
portion of the namespace. 

CLNS connectionless-mode network service. 
collision A condition that occurs on an 

IEEE/ISO CSMNCD or Ethernet data link 
when two or more stations attempt to trans­
mit at the same time. 

Committee Draft (CD) A proposed international 
standard in an early stage of ISO's standard­
ization process. An international standard 
begins as a working draft and is assigned an 
ISO number when it becomes a Committee 
Draft. It then progresses to a Draft Interna­
tional Standard (DIS) and finally to an 
accepted international standard. Formerly a 
Draft Proposal (DP). 

Committee Draft Amendment (CDAM) A document 
constituting a preliminary modification to 
an international standard in the first stage 
prior to its formal acceptance by ISO. A 
modification to an international standard 
begins as a Committee Draft Amendment, 
progresses to a Draft Amendment (DAM), 
and finally becomes an Amendment (AM) 
when it is accepted by ISO as an official part 
of an international standard. Formerly Pro­
posed Draft Addendum (PDAD). 

concatenation A protocol function in which mul­
tiple protocol-data-units are combined into 
a single block for transmission through the 
network as a single unit. 

concentrator In FDDI, a component that has one 
or more ports used to connect single­
attached stations, dual-attached stations, 
and other concentrators in a physical tree 
configuration. See Fiber Distributed Data 
Interface, dual-attachment station, dual-
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attachment concentrator, and single-attach­
ment station. 

concrete interface A point in an architecture at 
which a physical connector is used or at 
which an application programming interface 
is defined. 

confirm A service primitive in an ISO service 
definition issued by a service provider to 
notify the service requester of the results of 
one or more request primitives that the ser­
vice requester previously issued. 

confirmed service A service in an ISO service 
definition in which the service requester is 
informed by the distant peer entity of the 
success or failure of the service request. 

Connection Control component of DNA Session Control 
The component that accesses Transport 
layer communication services on behalf of 
an object residing on the local node, the 
address selection component of Session Con­
trol, or the naming service. 

connection-mode Network service (CONS). A reliable 
Network layer service in which a Network 
service user requests that a connection be 
established, the Network service and the 
user at the other end both agree, and the 
Network service establishes the connection. 
Data units can then be reliably exchanged 
over the connection. 

connection-mode service. A reliable, sequenced 
service performed by a layer entity consist­
ing of three phases: connection establish­
ment, data transfer, and connection release. 

connectionless-mode Network service (CLNS) A best­
efforts, datagram Network layer service in 
which routing decisions are made indepen­
dently for each data unit. Delivery is not 
guaranteed, and error detection and recov­
ery procedures, if they are required, must be 
implemented by higher layers or by the 
application itself. 

connectionless-mode service An unreliable, best­
efforts service in which the service accepts 
each data unit for transmission and attempts 

535 

to deliver it to its intended recipient or recip­
ients. A connectionless-mode service is 
sometimes called a datagram service. 

CONS connection-mode network service. 
CSMAJCD Carrier Sense Multiple Access with 

Collision Detection. 
DAC dual attachment concentrator. 
DAD Draft Addendum. 
DAM Draft Amendment. 
DAS dual attachment station. 
data circuit-terminating equipment (DCE) Circuitry 

implemented in a signaling device, such as a 
modem or line driver, that allows a comput­
ing device, such as a computer or terminal, 
to be attached to it. 

data link Combination of a physical circuit and a 
data link protocol that defines how data can 
be transmitted over the data link in an error­
free fashion. 

Data Link layer The functional layer responsible 
for providing data transmission from one 
system to another and for shielding higher 
layers from any concerns about the physical 
transmission medium. 

data link protocol Procedures operating in the 
Data Link layer that define how two adja­
cent nodes transmit data over a physical cir­
cuit. 

data-link-protocol-data-unit (DLPDU) The protocol­
data-unit exchanged between peer Data 
Link layer entities. An informal name for the 
DLPDU is frame. 

data-link-service-access-point (DLSAP) Service­
access-point to the Data Link layer, the 
point at which a user accesses the services of 
a Data Link layer entity. 

data-link-service-data-unit (DLSDU) The service­
data-unit passed to a Data Link layer entity 
by a user of the Data Link layer service. 

data terminal equipment (DTE) Circuitry imple­
mented in a computing device, such as a 
computer or a terminal, that allows the 
computing device to be attached to a signal­
ing device, such as a modem or line driver. 
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datagram service See connectionless-mode 
service. 

DCE data circuit-terminating equipment. 
DDCMP Digital Data Communication Message 

Protocol. 
DECnet Term used in the names of Digital hard­

ware and software products that conform to 
the Digital Network Architecture. 

default context A presentation context known to 
two communicating Presentation layer enti­
ties that can be used when the defined con­
text set is empty. See presentation context 
and defined context set. 

deference process The process in an IEEE/ISO 
CSMNCD or Ethernet data link of monitor­
ing the state of the transmission medium 
and determining when to begin transmis­
sion. 

defined context set A set of presentation contexts 
that are negotiated by two peer Presentation 
layer entities. See presentation context. 

descriptive name A name that identifies an object 
by specifying information about the 
attributes of that object. 

designated router A router attached to a broad­
cast data link that is selected using an elec­
tion process and that periodically multicasts 
to other routers information about that data 
link. 

Digital Data Communication Message Protocol (DDCMP) 
A Digital proprietary protocol for the Data 
Link layer, included in DNA Phase V mainly 
for compatibility with DNA Phase IV. 

Digital Network Architecture (DNA) Digital propri­
etary network architecture, first defined in 
the mid-1970s, that has evolved through a 
series of phases. DNA Phase V, the current 
phase of the architecture, is based on inter­
national standards for the OSI model. DEC­
net hardware and software products are 
implementations of the Digital Network 
Architecture. 

Digital time service architecture The architecture 
that defines services and algorithms for 

maintaining and providing in all network 
nodes a consistent, correct date and time of 
day. 

distance-vector routing algorithm A routing algo-
rithrn in -which each Iivde in the ner ... vork 
learns about the network topology by 
exchanging routing information packets 
with its neighbors. Each router learns from 
its neighbor routers the distances between 
those neighbors and the other nodes. From 
these measurements it computes the distance 
between itself and the other nodes. The pro­
cess is repeated and eventually stabilizes 
when all the nodes learn they have the same 
description of the network topology. Also 
sometimes called a Bellman-Ford algorithm. 
The routing algorithm defined by DNA 
Phase IV is a distance-vector algorithm. 

distributed adaptive routing A routing technique in 
which nodes dynamically sense their local 
environments and exchange this information 
with each other-and compute routes 
accordingly-in a distributed fashion. 

Distributed Authentication Security Service (DASS) 
Architecture An architecture that defines a 
comprehensive set of security services that 
can be used in implementing distributed sys­
tems. 

DLSAP data -link-service-access-point. 
DLSDU data-link-service-data-unit. 
DLPDU data-link-protocol-data-unit. 
DNA Digital Network Architecture. 
DP Draft Proposal. 
Draft Addendum (DAD) Obsolete ISO term for 

Draft Amendment (DAM). 
Draft Amendment (DAM) A document constituting 

a preliminary modification to an interna­
tional standard in the final stage prior to its 
formal acceptance by ISO. A modification to 
an international standard begins as a Com­
mittee Draft Amendment (CDAM), pro­
gresses to a Draft Amendment, and finally 
becomes an Amendment (AM) when it is 
accepted by ISO as an official part of an 
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international standard. Formerly Draft 
Addendum (DAD). 

Draft International Standard (DIS) A proposed inter­
national standard in the final stage of ISO's 
standardization process. An international 
standard begins as a Committee Draft (CD), 
progresses to a Draft International 
Standard, and finally is accepted by ISO as 
an international standard. 

Draft Proposal (DP) Obsolete ISO term for Com­
mittee Draft (CD). 

DTE data terminal equipment. 
dual-attachment concentrator (DAC) On an FDDI 

data link, a station having three or more 
PHY ports and 0, 1, or 2 link components. 
The concentrator implements one MIC of 
type A, one of type B, and one or more of 
type M. Used to connect single-attached sta­
tions, dual-attached stations, and other con­
centrators in a physical tree configuration. 
See dual-attachment station and single­
attachment station. 

dual-attachment station (DAS) On an FDDI data 
link, a station designed to connect to two 
separate full-duplex transmission medium 
segments. A dual-attachment station can 
implement either one or two link compo­
nents and contains exactly two PHY ports. 

duplex A form of communication in which 
information can be transmitted in both 
directions simultaneously. Also called full­
duplex. Contrast with half-duplex. 

EIA-232-D A commonly implemented Physical 
layer standard defining 25 interchange cir­
cuits, carrying positive and negative voltages 
in the range of from about 5 to 15 volts, 
used to connect a computing device (DTE) 
to a signaling device (DCE). EIA-232-D is 
the successor to the RS-232-C standard. See 
data terminal equipment and data circuit­
terminating equipment. 

element of procedure Description in an ISO proto­
col specification of a protocol mechanism. 

EMA Enterprise Management Architecture. 
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end node A term used in the DNA Phase V 
architecture to refer to a node that can act 
only as the source or the final destination of 
user data and that does not perform the 
routing and relaying functions of routers. 
Contrast with router. 

end system See end node. 
Enterprise Management Architecture (EMA) A Digi­

tal architecture that defines a general 
approach to the management of dis­
tributed systems. EMA characterizes a dis­
tributed system as a collection of individ­
ual computing systems tied together by a 
communication network for the purposes 
of sharing resources. 

entity model A model of distributed system man­
agement, used to organize objects in a dis­
tributed system that must be managed, their 
attributes, and management operations, into 
a consistent structure. 

entity An OSI term that refers to an active ele­
ment within a layer. Also a term used in con­
junction with the entity model to refer to an 
object in a distributed system that must be 
managed. 

Ethernet A network conforming to the Ethernet 
Specification. Also sometimes used generi­
cally to refer to a local area network con­
forming either to the Ethernet Specification 
or to the IEEE/ISO CSMA/CD standard. 

Ethernet Specification A local area network stan­
dard, jointly developed by Digital, Intel, and 
Xerox, on which the current IEEE/ISO 
CSMA/CD standard is based. See Carrier 
Sense Multiple Access with Collision Detec­
tion. 

FDDI Fiber Distributed Data Interface. 
Fiber Distributed Data Interface (FDDI) A local area 

network standard, developed by the Accred­
ited Standards Committee (ASC) X3T9.5 of 
ANSI and also published in ISO 9314, that 
uses a ring topology and supports a data 
rate of 100 megabits per second over a fiber­
optic transmission medium. 
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File Transfer, Access, and Management (FTAM) An 
international standard, defined in ISO 8571, 
for an application-service-element that 
defines a standardized way for accessing and 
transferring data files between open systems 
in a heterogeneous network environment. 

flooding Process in a link-state routing algorithm 
in which a router propagates routing control 
packets throughout the network. 

FOIRL An IEEE/ISO CSMA/CD transmission 
medium specification that specifies baseband 
signaling over a fiber-optic cable to imple­
ment a point-to-point connection between 
repeaters. Fiber-optic inter-repeater link 
cable segments can be up to 1000 meters in 
length. 

frame Informal name for the data-link-protocol­
data-unit (DLPDU) that is exchanged by 
peer Data Link layer entities. 

FTAM File Transfer, Access, and Management. 
full name A complete name maintained by the 

naming service that consists of a concatena­
tion of all the simple names assigned to a set 
of arcs that begins at the root of the tree and 
ends with the object in question. 

full-duplex See duplex. 
gateway A device used to connect networks that 

conform to different network architectures. 
The function of a gateway is to convert the 
protocols of one network architecture to the 
protocols of the other network architecture. 
A gateway replaces the control information 
from one network with control information 
required to perform comparable functions in 
the other network. Nodes connected using 
gateways can run different protocols in any 
of the layers in the protocol stack. 

hall-duplex A form of communication in which 
data units can be transmitted in both direc­
tions over a connection but in only one 
direction at a time. Contrast with duplex. 

HDLC High-level Data Link Control. 
High-level Data Link Control (HDLC) An international 

standard protocol of the Data Link layer, 

included in DNA Phase V, used to imple­
ment telecommunications data links in the 
wide area networking environment. 

hop Term used in routing to refer to a traversal 
froin one node to an adjacent node across a 
single data link. 

IEEE Institute of Electrical and Electronics Engi­
neers. 

indication A service primitive in an ISO service 
definition issued by the service provider to 
notify a service requester that a significant 
event has occurred. 

Institute of Electrical and Electronic Engineers (IEEE) A 
professional society, whose members are 
individual engineers, that is engaged in 
information technology standardization. 
The IEEE became the focus for development 
of local area network standards under its 
Project 802. 

Integrated Services Digital Network (ISDN) Interna­
tional standards that describe the provision 
of unified public voice and data communica­
tion services. 

interface data The data portion of the data unit 
that is passed in a single interaction across 
the abstract interface between two layer 
entities at the service-access-point. 

interface-control-information (ICI) The control infor­
mation portion of the data unit that is 
passed in a single interaction across the 
abstract interface between two layer entities 
at the service-access-point. 

interface-data-unit (IDU) The data unit, consisting 
of inter( ace data and inter( ace-control-infor­
mation (ICI), that is passed in a single inter­
action across the abstract interface between 
two layer entities at the service-access-point. 

intermediate node The term used in the DNA 
Phase V architecture to refer to a system 
that functions as a router in moving data 
units through the network from a source 
end node to a destination end node. See end 
node. 

intermediate system See intermediate node. 
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International Electrotechnical Commission (IEC) A 
standards organization whose role in the 
field of information technology standards is 
generally limited to Physical layer considera­
tions, such as electrical safety. ISO and IEC 
have merged their technical committees 
working on information technology into a 
single organization, called ISO/IEC Joint 
Technical Committee 1 (JTC1). 

International Organization for Standardization (ISO) The 
world's dominant standardization organiza­
tion, which creates standards of all types and 
plays an important role in creating standards 
for the information technology industry. The 
members of ISO are individual national stan­
dards organizations that represent national 
positions. The ISO member organization 
from the United States is the American 
National Standards Institute (ANSI). 

International Telegraph and Telephone Consultative 
Committee (CCITT) The world's leading organi­
zation involved in the development of stan­
dards relating to telephone and other tele­
communications services. CCITT is a part of 
the International Telecommunications Union 
(ITU), a body of the United Nations. 

ISDN Integrated Services Digital Network. 
ISO International Organization for Standardiza­

tion. 
Joint Technical Committee 1 (JTC1) A combination of 

ISO and IEC technical conimittees working 
on information technology standardization. 

JTC1 ISO/IEC Joint Technical Committee 1. 
LAN local area network. 
LAPB Link Access Procedures-Balanced. 
level 1 router A router that performs the level 1 

routing function. 
level 1 routing Routing within an area. A level 1 

router routes network traffic directly toward 
destination nodes within its own area and 
toward a level 2 router when it determines a 
packet's destination node is in a different 
area. 

level 2 router A router that performs both the 
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level 1 and level 2 routing functions. 
level 2 routing Routing of network traffic 

between areas. Level 2 routing also includes 
interdomain routing for traffic destined to 
other routing domains and to other adminis­
trative domains. Such interdomain traffic is 
handled using static routing techniques. 

Link Access Procedures-Balanced (LAPB) A subset 
of High-level Data Link Control used in 
conjunction with CCITT Recommendation 
X.25. (See X.25 and High-level Data Link 
Control.) 

link state routing algorithm A routing technique in 
which a router determines what its individ­
ual area of the network looks like and then 
broadcasts that information to all the other 
routers. 

LLC Logical Link Control. 
LLC-PDU logical-link-control-protocol-data-unit. 
LLC-SDU logical-link-control-service-data-unit. 
local area network (LAN) A form of subnetwork 

that meets the needs for high-speed, rela­
tively short-distance communication among 

, intelligent devices. Local area networks are 
. normally constrained to being within a sin­

gle building or within a "campus" of build-
ings. They do not ordinarily cross public 
thoroughfares and normally operate over 
private cabling. 

local concrete syntax The definition of how the 
information content of presentation-data­
values is represented in a computing system. 

Logical Link Control (LLC) sublayer The upper sub­
layer of the Data Link layer in the IEEE/ISO 
LAN architecture. The LLC sublayer, 
described in IEEE 802.2 and ISO 8802-2, is 
responsible for medium-independent data 
link functions. It allows a user of the LLC 
sublayer service to access the local area net­
work without regard to the form of medium 
access control used. The LLC sublayer 
requests services of the Medium Access Con­
trol sublayer. See Medium Access Control 
sublayer. 
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logical-link-control-protocol-data-unit (LLC-PDU) The 
protocol-data-unit exchanged by peer Logi­
cal Link Control sublayer entities. 

logical-link-control-service-data-unit (LLC-SDU) The 
service-data-unit passed to a Logical Link 
Control sublayer entity by a user of the Log­
ical Link Control sublayer service. 

MAC Medium Access Control. 
MAC-POU medium-access-control-protocol-data­

unit. 
MAC-SOU medium-access-control-service-data· 

unit. 
MACF multiple-association-control-function. 
MAN metropolitan area network. 
Manchester encoding Encoding scheme used with 

an IEEE/ISO CSMA/CD and Ethernet data 
link to encode the bit stream into electrical 
signals. Manchester encoding has the desir­
able property of signal transitions occurring 
on the transmission medium with pre­
dictable regularity. 

Medium Access Control (MAC) sublayer The bottom 
sublayer of the Data Link layer in the 
IEEE/ISO LAN architecture. The MAC sub­
layer is responsible for performing the pro­
cedures that manage use of the physical 
transmission medium. The MAC sublayer 
provides services to the Logical Link Con­
trol sublayer. See Logical Link Control sub­
layer. 

medium-access-control-protocol-data-unit (MAC-POU) 
The protocol-data-unit exchanged by peer 
Medium Access Control sublayer entities. 

medium-access-control-service-data-unit (MAC-SOU) 
The service-data-unit passed to a Medium 
Access Control sublayer entity by a user of 
the MAC sublayer service. 

message interface to DNA Session Control An inter­
face that allows end users of the Session 
Control layer service to send and receive 
individual messages of any desired size. 
Senders and receivers work with messages 
contained in buffers. 

message transfer agent (MTA) In Recommendation 

X.400, the component that delivers mes­
sages that have been submitted from users to 
one or more recipients. See X.400. 

metropolitan area network (MAN) A form of subnet­
work that supports relatively high-speed 
communication over a geographic area 
roughly the size of a large city. 

Modem Connect A DNA Phase V specification 
that defines how the DNA Phase V Physical 
layer operates over wide area network 
telecommunications links. Modem Connect 
supports any type of modem or service unit 
for communication over a conventional ana­
log telecommunications link or over a digital 
data service. 

MTA message transfer agent. 
multicast facility Facility implemented by a 

broadcast form of data link in which a sta­
tion can send a single transmission to a 
number of other stations on the data link. 

multiple-association-control-function (MACF) An 
Application layer control function that is 
associated with an entire application-entity­
invocation and that maps each service the 
application-entity-invocation provides to one 
of the associations and coordinates the inter­
actions taking place on these associations. 

nameserver A component of the naming service 
that, on behalf of naming service clerks, 
retrieves information from and updates 
clearinghouses containing the directories 
making up the namespace. 

namespace A logical collection of the names of 
all the objects that can be referenced, any­
where in a possibly global network. 

naming service A service that allows users to 
assign names to objects that mean the same 
thing anywhere in the network and to main­
tain a set of attribute values associated with 
each name, including the address of the 
node on which the object resides. The nam­
ing service accepts an object's name from a 
user and passes back the set of attributes 
associated with that name. 
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naming service clerk The component of the nam­
ing service that implements the application 
programming interface to the naming service 
and that performs naming service operations 
on behalf of end users and application pro­
grams. Clerks communicate with name­
servers. 

NET network entity title. 
network architecture A comprehensive plan and 

set of rules that govern the design and oper­
ation of the hardware and software compo­
nents used to create computer networks. 

network entity title (NET) The entire NSAP address 
of a node, including a zero selector field 
value. A node's network entity title must be 
unambiguous within the OSI environment. 

Network layer The functional layer concerned 
with routing data from one open system to 
another. The facilities provided by the Net­
work layer supply a service employed by 
higher layers to move bits from a source end 
node to a destination end node, where the 
bits may flow through any number of 
routers. See end node and router. 

network-protocol-data-unit (NPDU) The protocol­
data-unit exchanged by peer Network layer 
entities. An informal name for the NPDU is 
packet. 

network-service-access-point (NSAP) Service-access­
point to the Network layer, the point at 
which a user accesses the services of a Net­
work layer entity. The NSAP address forms 
the network address of an end node or 
router. 

network-service-data-unit (NSDU) The service-data­
unit passed to a Network layer entity by a 
user of the Network layer service. 

Network Service Protocol (NSP) A Digital propri­
etary Transport layer protocol included in 
DNA Phase V mainly for compatibility with 
DNA Phase IV. 

node A term used in DNA to refer to a device 
containing at least an instance of the Net­
work layer and the Data Link and Physical 

layers below it. Synonymous with the OSI 
term system or open system. 
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nonbroadcast data link A data link implemented 
using a point-to-point connection between 
exactly two stations. 

nonconfirmed service A service in an ISO service 
definition in which the service requester is 
not informed of the completion of the ser­
vice request. 

NPDU network-protocol-data-unit. 
NSAP network-service-access-point. 
NSDU network-service-data-unit. 
NSP Network Service Protocol. 
null modem An EIA-232-D cable or connector 

that crosses the appropriate conductors to 
allow two DTEs to be connected to simulate 
the presence of a pair of DCEs between the 
two communicating devices. See EIA-232-
D, DTE, and DCE. 

octet OSI term for a collection of 8 bits. 
open system The representation within the OSI 

model of those aspects of a computing sys­
tem that are pertinent to OSI communica­
tion. Systems are said to be open to each 
other because of their mutual adherence to a 
set of applicable standards. 

OSI architecture The network architecture that 
the International Organization for Standard­
ization (ISO) is developing based on interna­
tional standards. Together, the standards 
developed around the OSI model framework 
make up the OSI architecture. See Reference 
Model for Open Systems Interconnection. 

OSI Directory See X.500 Directory. 
OSI Model See Reference Model for Open Sys­

tems Interconnection. 
OSI Upper Layer (OSUL) architecture The DNA 

Phase V architecture that describes the Digi­
tal implementation of the OSI Session, Pre­
sentation, and Application layers. 

packet An informal name for the network-pro­
tocol-data-unit (NPDU). 

PCI protocol-control-information. 
PDAD Proposed Draft Addendum. 
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POU protocol-data-unit. 
POV presentation-data-value. 
peer entities Two communicating entities, associ­

ated with the same layer but existing in dif-
ferent nodes, that communicate using the 
services of the layer below them. 

permanent virtual circuit A facility provided by a 
packet-switched data network that provides 
the appearance of a permanent point-to­
point connection between two DTEs.The 
two DTEs use the communication facilities 
of the network and consume network 
resources only when they are actually trans­
mitting data; however, they remain logically 
connected permanently as though an actual 
physical circuit always exists between them. 

Physical layer The functional layer responsible 
for the transmission of bit streams across a 
physical transmission medium. It involves a 
connection between two machines that 
allows electrical or other types of signals to 
be exchanged between them. 

physical-protocol-data-unit (PPOU) The protocol­
data-unit exchanged between peer Physical 
layer entities. 

physical-service-access-point (PSAP) The service­
access-point to the Physical layer, the point 
at which a user accesses the services of a 
Physical layer entity. 

physical-service-data-unit (PSOU) The service-data­
unit passed to a Physical layer entity by a 
user of the Physical layer service. 

point·to·point data link A data link that imple­
ments a connection between exactly two 
nodes. 

port A data structure, defined by the DNA 
Phase V architecture and implemented in a 
layer entity, providing access to the services 
of that entity. Typically, a port is assigned to 
a user upon request and remains associated 
with that user until it is explicitly released. 
Each user generally has its own port 
assigned; and many users may be able to 
access the services of a layer entity, each 

through its own assigned port. 
portal A facility for allowing nodes that con­

form to some other network architecture to 
use a network for communication. Unlike a 
gateway, a DNA Phase V portal does not 
perform protocol conversion. Instead, a por­
tal encapsulates the foreign protocol mes­
sages within DNA Phase V protocol mes­
sages for transmission through the DECnet 
Phase V network. A pair of portals is some­
times said to implement a facility called a 
tunnel, with each portal providing an open­
ing into a tunnel through a network con­
forming to a foreign network architecture. 

PPOU Physical-protocol-data-unit or presenta­
tion-protocol-data-unit. 

presentation context In the OSI Presentation layer, 
the association of the name of an abstract 
syntax with the name of a particular transfer 
syntax used to transfer the information con­
tent defined by that abstract syntax. 

presentation·data·value (POV) Definition of the 
information content of an application-proto­
col-data-unit (APDU) or a part of an APDU. 

Presentation layer The functional layer concerned 
with preserving the information content of 
user data and with the way in which it is 
represented and encoded for transmission 
through the network. 

presentation·protocol·data·unit (PPOU) The protocol­
.data-unit exchanged between peer Presenta­
tion layer entities. 

presentation-service-access-point (PSAP) The ser­
vice-access-point to the Presentation layer, 
the point at which a user accesses the ser­
vices of a Presentation layer entity. 

presentation-service-data-unit (PSOU) The service­
data-unit passed to a Presentation layer entity 
by a user of the Presentation layer service. 

primitive name A character string that uniquely 
identifies a resource. 

propagator A function of the DNA Phase V nam­
ing service that attempts to propagate 
updates made to the namespace to all repli-
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cas of a directory at the time the update is 
made. 

Proposed Draft Addendum (PDAD) Obsolete ISO 
term for Committee Draft Amendment 
(CDAM). 

protocol A set of data units and the procedures 
that define how the data units are exchanged 
between peer entities. A layer entity in one 
node communicates with a complementary 
layer entity in another node using a proto­
col. 

protocol-control-information (PCI) Information a 
layer adds to the data from one or more of 
its service-data-units to produce a protocol­
data-unit. 

protocol-data-unit (POU) Data units that are sent 
from a layer entity in one node to a peer 
layer entity in another node. 

protocol specification ISO standard defining the 
formats of the data units that are exchanged 
between two peer layer entities and the pro­
cedures by which those data units are 
exchanged. 

proxy mapping A mechanism of the DNA Session 
Control layer through which a user on one 
node in the network can be given access to 
accounts on another node in the network 
without knowing the access control infor­
mation associated with the target accounts. 

pseudonode An imaginary node used with a link­
state routing algorithm to model a broadcast 
data link as a logical star structure in which 
the pseudonode represents the transmission 
medium itself. All nodes are viewed as 
being connected to the pseudonode with a 
separate point-to-point logical link. 

public key cryptography system See asymmetric 
cryptography algorithm. 

quasi-static routing A routing technique similar to 
static routing except the routing information 
that is computed and provided to each node 
includes information about alternative paths 
that can be used when certain types of fail­
ures occur. See static routing. 
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Reference Model of Open Systems Interconnection (OSI 
model) An international standard, described 
in ISO 7498, that documents a generalized 
model of system interconnection. The pri­
mary purpose of the OSI model is to provide 
a basis for coordinating the development of 
international standards relating to the flexi­
ble interconnection of systems using data 
communication facilities. 

referential transparency A property of a name 
maintained by the naming service that guar­
antees that a full name always refers to the 
same thing no matter which user provided 
the name, and that these names can be freely 
passed outside the naming service from one 
user to another without the possibility of 
confusion. 

relaying The function of a router in moving a 
packet from one node to the next over the 
route it travels through the network. 

remote procedure call (RPC) architecture The archi­
tecture that defines services by which a pro­
cedure executing in one computing system 
can pass control to a procedure residing in 
some other computing system attached to 
the network using a conventional procedure 
call mechanism. 

repeater A device used to relay signals from one 
cable segment to another in a local area net­
work. A repeater operates in the Physical 
layer, and its use is hidden from any of the 
layers above. The function of a repeater is to 
receive a signal from one cable segment and 
to retransmit it over one or more other cable 
segments, thus regenerating the signal at its 
original strength. Repeaters are used in bus­
structured local area networks to connect 
individual cable segments to form a larger 
local area network. In ring-structured local 
area networks, every station performs the 
function of a repeater. 

replica A copy of a naming service directory 
stored in a particular clearinghouse. See 
clearinghouse. 
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request A service primitive in an ISO service 
definition issued by a service requester to 
request that a particular service be per­
formed by a service provider and to pass 
parameters needed tu fully specify the 
requested service. 

response A service primitive in an ISO service 
definition issued by the service requester to 
acknowledge or complete some procedure 
previously invoked by the service provider 
through an indication primitive. 

router The informal name for intermediate sys­
tem or intermediate node. A router provides 
the ability to route packets from one end 
node to another where there may be multi­
ple paths between them. The routers partic­
ipate in a distributed algorithm to decide on 
the optimal path each packet should travel 
from the source end node to the destination 
end node. The router function operates in 
the Network layer. 

routing The function of the Network layer that 
determines the best path for moving each 
packet to its destination based on the cur­
rent topology of the network. 

routing domain A set of end nodes and routers 
that share routing information, operate 
according to the same routing protocol, and 
are contained within a single administrative 
domain. The definition of a routing domain 
is associated with a network policy, since a 
routing domain is not an architecturally 
defined entity. See administrative domain. 

RPC remote procedure call. 
RS-232-C See EIA-232-D. 
SACF single-association-control-function. 
SAP service-access-point. 
SAS single-attachment station. 
SDLC Synchronous Data Link Control. 
SDU service-data-unit. 
segment interlace to DNA Session Control The inter­

face that allows end users of the Session 
Control layer service to send messages lim­
ited in size to the maximum allowable trans-

port-protocol-data-unit (TPDU) size. 
Senders and receivers work with messages 
contained in buffers. 

segmentation function A protocol function in 
vvhich a service-data-unit is divided into seg-
ments, each of which is transmitted in a sep­
arate protocol-data-unit. 

service-access-point (SAP) The point at which the 
services of a layer are provided. A service­
access-point is identified by an SAP address. 

service-data-unit (SDU) A data unit passed from a 
higher-layer entity that is requesting a ser­
vice down to a lower-layer entity that is pro­
viding the service. 

service definition An ISO standard that defines 
the services that one layer of the OSI model 
provides to a user of that layer's services 
without specifying how those services are to 
be provided. 

service primitive A description of the semantics 
of a particular service that an entity in a 
functional layer of the OSI model provides 
to a user of that layer's services. 

Session layer The functional layer that provides 
services used to organize and synchronize 
the dialog between application programs 
and to manage the data exchanges between 
them. 

session-protocol-data-unit (SPDU) The protocol­
data-unit exchanged between peer Session 
layer entities. 

session-service-access-point (SSAP) The service­
access-point to the Session layer, the point at 
which a user accesses the services of a Ses­
sion layer entity. 

session-service-data-unit (SSDU) The service-data­
unit passed to a Session layer entity by a 
user of the Session layer service. 

simple name In the naming service, a string of 
octets having no internal structure. Simple 
names are concatenated with periods to 
form full names. See full name. 

simplex A form of communication in which 
information flows in only one direction. 
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single-association-control-function (SACF) An Appli­
cation layer control function that is associ­
ated with a single association and thus a sin­
gle application context. 

single-attachment station (SAS) In FD DI, a station 
that implements a single link component 
and a single PHY Port. This type of station 
is attached to a concentrator using a single 
full-duplex, point-to-point transmission 
medium segment. See concentrator and 
dual-attachment concentrator. 

skulk Execution of the skulker convergence 
algorithm. See skulker. 

skulker The naming service convergence algo­
rithm that forces convergence for those 
updates the propagator was not able to fully 
propagate. 

slot time On an IEEE/ISO CSMNCD or Ether­
net data link, twice the maximum round-trip 
propagation delay. 

SNA Systems Network Architecture. 
SNAcP Subnetwork Access Protocol Role. 
SNDCP Subnetwork Dependent Convergence 

Protocol Role. 
SNICP Subnetwork Independent Convergence 

Protocol Role. 
SPDU session-protocol-data-unit. 
SSAP session-service-access-point. 
SSDU session-service-data-unit. 
static routing A routing technique in which all 

routing information for each node is pre­
computed and is provided to each router 
through a management action. 

station With most types of data links, a station 
corresponds to a particular instance of a Data 
Link layer and a Physical layer entity and cor­
responds to a single point of attachment to a 
transmission medium segment. A particular 
node must implement at least one station in 
order to attach that node to the network. 
With an FDDI data link, a station can con­
tain zero, one, or two Data Link layer enti­
ties, and a station can attach to either one or 
two full-duplex optical-fiber cable segments. 
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stream interface to DNA Session Control An interface 
that allows end users to view data as a con­
tinuous stream of octets, in which an occa­
sional "end-of-message" marker may be 
inserted. The stream interface is similar to 
the segment interface, but the buffer size is 
not restricted by the maximum allowable 
TPDU size. See segment interface to DNA 
Session Control. 

subnetwork A collection of nodes that are 
attached to a single virtual transmission 
medium. 

Subnetwork Access Protocol Role (SNAcP) The Net­
work layer protocol role of directly accessing 
the services of the Data Link layer in helping 
to provide the requested Network service. 

Subnetwork Dependent Convergence Protocol Role 
(SNDCP) The Network layer protocol role of 
augmenting the functions provided by a pro­
tocol operating in the SNAcP role to provide 
the services the subnetwork independent 
sublayer requires to provide the requested 
Network service. See subnetwork access 
protocol role. 

subnetwork dependent layer The lower of the two 
sublayers of the Network layer whose major 
function is to access the underlying services 
of the Data Link layer upon request of the 
subnetwork independent sublayer. See sub­
network independent layer. 

Subnetwork Independent Convergence Protocol Role 
(SNICP) The Network layer protocol role of 
providing the requested Network service to 
a user of the Network layer service using a 
well-defined set of underlying capabilities. It 
interfaces directly with the Network layer 
service user and is independent of the Data 
Link layer services used to provide the Net­
work service. 

subnetwork independent layer The upper of the two 
sublayers of the Network layer whose func­
tion is to provide either the connectionless­
mode network service (CLNS) or the con­
nection-mode network service (CONS) upon 
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request of a user of the Network layer ser­
vice. See subnetwork independent layer, 
connectionless-mode network service, and 
connection-mode network service. 

SVC switched virtual circuit. 
switched virtual circuit {SVC) A facility provided by 

a packet-switched data network that pro­
vides the appearance of a point-to-point 
connection between two DTEs. It is estab­
lished upon request of either of the two 
DTEs and is released when the connection is 
no longer required. Sometimes called a vir­
tual call (VC). 

Synchronous Data Link Control (SDLC) A data link 
protocol, defined by IBM, that is· a func­
tional subset of the international standard 
High-Level Data Link Control (HDLC) data 
link protocol defined by ISO. SDLC 
includes only the normal response mode of 
HDLC, in which one station is designated 
the primary station and is in control of the 
data link while one or more other stations 
are designated secondary stations. 

synchronous transmission A form of data commu­
nication in which bits are sent in a continu­
ous stream and in which the receiving device 
must stay in synchronization with the trans­
mitting device for the transmission of an 
entire block of information. 

system A set of one or more computers, the 
associated software, peripherals, terminals, 
human operators, physical processes, trans­
fer means, and so forth, that forms an 
autonomous whole capable of performing 
information processing and/or information 
transfer. Often referred to in DNA Phase V 
as a node. 

Systems Network Architecture {SNA) IBM's network 
architecture, widely used in the IBM large­
system environment. 

TCP/IP Transmission Control Protocol/Internet 
Protocol. 

Technical Report {TR) An ISO publication that 
covers subject matter for which support can-

not be obtained for the development of an 
international standard, when a subject is still 
under technical development, or when a 
technical committee has collected data dif-
ferent frun1 data normally published as a. 
standard. 

time-sequence diagram A diagram in an ISO ser­
vice definition in which service primitives are 
represented by arrows and in which time 
flows down. A time-sequence diagram shows 
the sequence in which service primitives are 
issued in performing a particular service. 

token bus LAN A standard for local area net­
works, defined by IEEE 802.4 and ISO 
8802-4, that describes the Medium Access 
Control sublayer and Physical layer func­
tions for a bus-structured LAN using a 
token passing access protocol. 

token passing access protocol A local area network 
procedure in which access to the physical 
transmission medium is controlled through 
possession of a special data unit called the 
token, which is passed from device to 
device. 

token ring LAN A standard for local area net­
works, defined by IEEE 802.5 and ISO 
8802-5, that describes the Medium Access 
Control sublayer and Physical layer func­
tions for a ring-structured LAN using a 
token passing access protocol. 

tower A data structure, maintained in the nam­
ing service, that contains protocol and 
addressing information for an object that 
can be located via the network. 

TPDU transport-protocol-data-unit. 
TR Technical Report. 
transfer syntax A definition of how the informa­

tion content of data is encoded for transmis­
sion over a network. See local concrete syn­
tax and abstract syntax. 

Transmission Control Protocol/Internet Protocol {TCP/IP) 
A network architecture and protocol suite, 
typically used in conjunction with the UNIX 
operating system, used for communication 
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in an internet made up of interconnected 
subnetworks of various types. 

Transport layer The functional layer responsible 
for providing an end-to-end data transfer 
service between any two end systems at an 
agreed-upon level of quality. The Transport 
layer builds on the services of the Network 
layer and the layers below it to form the 
uppermost layer of an end-to-end data 
transport service. The Transport layer 
shields higher layers from any concern with 
the actual moving of data from one com­
puter to another and shields the users of the 
data transport service from the complexities 
of the layers below. 

transport-protocol-data-unit (TPOU) The protocol­
data-unit exchanged between peer Transport 
layer entities. 

transport-service-access-point (TSAP) The service­
access-point to the Transport layer, the point 
at which a user accesses the services of a 
Transport layer entity. 

Transport-service-data-unit (TSOU) The service-data­
unit passed to a Transport layer entity by a 
user of the Transport layer service. 

TSAP transport-service-access-point. 
TSOU transport-service-data-unit. 
tunnel A facility, consisting of a pair of portals, 

that allows nodes conforming to some other 
network architecture to use a network for 
communication. See portal. 

UA user agent. 
UID unique identifier. 
unbalanced data link A data link that connects 

two or more stations, with one of the sta­
tions designated the primary station and all 
the others designated as secondary stations. 

unique identifier (UID) An identifier, globally unique 
over space and time, created through use of 
the DNA Phase V unique identifier architec­
ture. See unique identifier architecture. 

unique identifier architecture The architecture that 
defines a service that distributed systems and 
the DECnet software itself use to obtain an 
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identifier guaranteed to be globally unique 
over space and time. 

user agent In X.400, the component that allows 
individual users of the system to submit 
messages to the system for delivery to one or 
more recipients and to receive and view mes­
sages that have been sent by other users. 

VC virtual call. 
virtual call (VC) See switched virtual circuit. 
virtual circuit A facility, implemented via a 

packet-switched data network, that gives the 
appearance of a point-to-point connection 
between two nodes. See switched virtual 
circuit and permanent virtual circuit. 

virtual filestore In FTAM, a conceptual model of 
a file service that can be implemented in any 
desired way in an open system. The virtual 
filestore is an abstraction that can be emu­
lated by the file service existing in a real 
computing system. 

WAN wide area network. 
wide area network (WAN) A network constructed 

using public telecommunications facilities 
that extends over large geographic areas. 

window mechanism A mechanism, often used in 
flow control procedures, to control the rate 
at which protocol-data-units are sent 
between the transmitter and the receiver. A 
window mechanism is used to limit the 
number of frames a transmitter can send 
before it must wait for an acknowledgement 
from the receiver. 

X.25 Interface The recommendation of the 
CCITT that defines how a computer is 
attached to a packet-switched data network 
(PSDN). 

X.400 Message Handling System The recommenda­
tion of the CCITT for a message handling 
system that defines standard methods for 
transferring electronic mail messages among 
users of heterogeneous computing systems. 

X.500 Directory The international standard for a 
descriptive naming service in the OSI envi­
ronment. Also called the OSI Directory. 





IND EX 

10BASE2 cable segments, 475-476 
10BASE5 cable segments, 475-476 
lOBASE-T cable segments, 475-476 

ABM, 129, 413 
Abstract interfaces, 22, 48-49, 99, 101 

CLNS, 135, 137 
DNA architectural specifications and, 65 
interface-data-units and, 53 
Network layer, 175 
service primitives for, 49, 50 
Transport layer, 218, 220 

Abstract syntax, 43, 44 
context management functional unit and, 275 
of network addresses, 159-160 
Presentation layer, 264, 265-270 

Abstract Syntax Notation One (ASN.1), 266-270 
Access 

class, FT AM, 306 
control, DSSA, 331 
control information, Session Control layer and, 

244 
modules, director architectural model, 387 
protocol, local area network, 441-44 2 

Acknowledge (ACK) messages, 433-434 
Acknowledgment, 229, 235, 236, 352, 425 
ACSE. See Association control service element 

(ACSE) 
Activity Management functional unit, 258, 260 
Addendum (AD), 33 
Address, 12, 155, 349 

administration, 161-163, 448-449 
conversion functions, 252 
filtering, 116, 457 

group, 450 
HDLC,415 
individual, 450 
learning of, by bridges, 523 
MAC, 486-487 

Addressing, 156-163, 447-450 
Addressing authority, 157, 160 
Address resolution component of DNA Session 

Control, 242, 246-250, 341 
Address selection component of DNA Session 

Control, 242, 243, 250-251 
Adjacency, 174, 175, 201 
Adjusted time value, 344 
Adleman, L., 332, 333 
ADM, HDLC, 413 
Administrative domain, 152, 190 
Advertisement and solicitation protocol, 326, 365 
AE, 278-281, 302 
AFI, 160-163 
Agents, 379-380 
Alias names, 352 
ALOHA protocol, 4 79-480 
Amendment (AM), to international standards, 33 
American National Standards Institute (ANSI), 26-28 

ANSI FDDI standard, 490, 497, 504, 506, 
510-511, 514 

ANSI X3.92-1981, Data Encryption Algorithm 
(DES), 332 

AOW,29 
APDU, 263, 279, 283-285, 302 
API, 66, 302-303, 386 
Application-association, 280-281 
Application-context, 281-282 
Application-entity (AE), 278-281, 302 



550 IND EX 

Application-entity-invocation, 280-281, 285-286 
Application-entity-qualifier, 278 
Application-entity-title, 278 
Application layer, 254, 276-280 

connection/connectionless modes and, 61 
OSI model, 45 
standards, 528 

Application-process, 276-279 
Application-process-invocation, 277, 280 
Application-process-title, 277, 278 
Application programming interface (API), 66, 

302-303, 386 
Application programs, 276 
Application-protocol-data-unit (APDU), 263, 279, 

283-285, 302 
Application-service-element (ASE), 279-280, 302-308 
APPLICATION tags, 267 
Architecture, 3, 24-26, 64-67. See also Network 

architecture 
Area,69, 152-154, 157, 158 
ARM,413 
ASC T1, 27 
ASCX12, 27 
ASCX3, 27 
ASE, 279-280, 302-308 
Asia and Oceania Workshop (AOW), 29 
ASN.1, 266-270 
Association-control-functions, 282 
Association control service element (ACSE), 280-285 

FTAM and, 307-308 
international standards, 303-304 
OSUL service and, 288 
protocol definition, 283-285 
service definition, 282-283 

Association establishment, ASCE protocol 
specification, 284 

Association release, ASCE protocol specification, 284 
Asymmetric cryptography algorithms, 333 
Asynchronous balanced mode (ABM), 129, 413 
Asynchronous disconnected mode (ADM), 413 
Asynchronous frames, 424, 510-511 
Asynchronous response mode (ARM), 413 
Asynchronous transmission, 89, 90 
AT&T, modem standards, 97 
AT command set, 97 
Attachment Unit Interface (AUI), 467, 470-471 
Attributes, 305, 355-361, 374, 382, 383 
Attribute value assertion (AVA), 374-375 

AUI, 467, 470-471 
Authentication, 329-331, 335-336 
Authority and format identifier (AFI), 160-163 

Backbone local network, 91, 491 
Backend local netv,10rksJ 490-491 
Backoff delay, 482 
Balanced data links, HDLC, 412-413 
Bandwidth, 6-8 
Baseband signaling, 440-441 
Basic concatenation, 262 
Beacon frames, 515, 517 
Beacon process, 510 
Beginning flag field, 415 
Bell, Gordon, 6 
Bellman-Ford routing algorithm, 193-194 
Best-efforts delivery, 59 
Binary absolute time, 323-324 
Binary relative time, 323-324 
Binding, 338, 341 
Bit stuffing, 415, 422-424 
Bit synchronization, 85-86 
Blocking functions, 54 
Blue Book, 34-35 
BPDU, 524 
Bridge-protocol-data-unit (BPDU), 524 
Bridges, 477-478, 503-504, 518-525 
Broadband signaling, 440-441 
Broadcast data links, 109, 115-116, 164-165, 445 
Broadcast subnetworks, 176 
Brooks, Fred, 24-25 
Buffering, 244-245, 288 
Bus topology, 439 
Byte, defined, 72n 
Byte framing, 436-437 

CA, DASS, 334-335 
Cable segments, specification, 474-476 
Cabling, 89-92 
Caching, 24 7 
Call clearing, X.25, 396 
Call control, 100-103 
Called procedure, 337-338 
Calling procedure, 337-338 
Call references, 101-102 
Call sharing, 102-103 
Campus environments, cabling, 91 
Capability Data Exchange functional unit, Session 

layer, 261 



INDEX 

Carrier Sense Multiple Access (CSMA), 481 
Carrier Sense Multiple Access with Collision 

Detection (CSMNCD), 105-106, 476-477 
access protocol, 442 
architecture, 98, 463-478 
circuits, 89 
Data Link layer components, 463-465 
data links, 127-128 
extended LANs, 477-478 
IEEE/ISO LAN standards, 444 
interconnecting 10BASE2, 10BASE5, and 

lOBASE-T segments, 475-476 
LAN specification, 75, 76 
MAC sublayer, 478-489 
networks, 468-478 
Physical layer components, 465-469 
protocol, 480-481, 483-485 
service definition, 478-489 
standards, 462 
star-structured networks, 4 7 6-4 77 
station and cable segment limits, 474-475 
transmission medium, 468-469 

CCITT, 4, 26, 34-35 
address administration, 162-163 
E.163, 163 
E.164, 163 
F.69, 163 
modem standards, 96-97 
Recommendation V.24, 93-95 
Recommendation V.25, 97 
Recommendation V.25bis, 97 
Recommendation V.28, 93 
Recommendation V.32, 97 
Recommendation X.121, 162-163 
Recommendation X.25, 68, 391 
Recommendation X.400, 308-309 
Recommendation X.500, 351 

CC message, 223 
CDAM,33 
CD (Collision Detection), 481 
CD (Committee Draft), 33 
CEN,28 
CENELEC,28 
Centralized computing, 7, 8 
Centralized routing, 192-193 
CEPT, 30 
Certification authority (CA), DASS, 334-335 
Characteristic attributes, 383 

Checkpoints, in Session layer, 260 
Checksum, in Link State packets, 198, 200 
Child pointer entries, 358 
Circuits 

control functions, 17 5 
defined, 174 
digital, 98 
establishment and release, 85-86 
interchange, 9 3 
multiaccess, 115 
multipoint, 116 
point-to-point, 115 
types of, 86-89 
virtual, 136 

Claim frames, 509, 515, 517 
Claim token procedure, 509 
Class, entity, 381-382 
Class-specific attributes, 356 
Clearinghouse, 362-363, 366-368 
Clerk, 80, 324-325,363, 364 
Clerk-Server protocol, naming service, 366 
CLNS. See Connectionless-mode Network service 

(CLNS) 
Clock, 319-327, 343-344 
CMIP, 387-388 
Code bits, 495 
Collision detection, 466, 480-483 
Collisions, 480-482 
Combined stations, HDLC, 412 

551 

Comite European de Normalisation clans le domain 
Electrique (CENELEC), 28 

Comite European de Normalisation (CEN), 28 
Command Terminal (CTERM) protocol, 296 
Committee Draft Amendment (CDAM), 33 
Committee Draft (CD), 32-33 
Common management information protocol (CMIP), 

387-388 
Complete Sequence Number packet (CSNP), 199-200 
Computer conferencing, 298-300 
Computing paradigms, 7-8 
Concatenation, 54, 234, 262, 354 
Concentrators, 107 
Concrete interfaces, 22, 49, 65-66, 99 
Conference of European PTTs (CEPT), 30 
Configurable redundancy, 67 
Configuration, 66, 185-186 
Configuration Switching sublayer, 494 
Confirmed services, 49-50 



552 

Congestion avoidance 
algorithm, 232 

INDEX 

ISO 8473 Internet protocol, 185 
NSP transport, 238 
OSI transport; 231-232. 

worldwide computing and, 12 
Congestion recovery algorithm, 232 
Connection Confirm (CC) message, 223 
Connection Control component of Session Control, 

142-143, 220, 241-246 
Connection establishment, 223, 235-237 
Connectionless-mode Data Link service, 110, 

117-118, 123-124 
Connectionless-mode LLC service, 450-451 
Connectionless-mode Network service (CLNS), 77 

CLNS/CONS controversy, 60-62, 139-149, 
210-211 

Digital and, 148 
disadvantages of, 147 
DNA Phase V and, 138-139 
interface procedure declarations, 135, 137 
Network layer and, 61-62, 133-136 
protocols, 149-150, 164, 170-187 
reliability of, 134, 143-145 
service primitives, 135-136 
Transport layer and, 209-211 

Connectionless-mode service, 57-62 
vs. connection-mode service, 60-62 
defined,57 
ISO, 77 
operation of, 59 
reliability of, 59, 60 

Connectionless-mode Session layer service, ISO 8326 
and,261 

Connection-mode Data Link service, 109-110, 
118-124 

Connection-mode LLC service, 450 
Connection-mode Network service (CONS), 77 

advantages of, 146 
CLNS/CONS controversy, 60-62, 139-149, 

210-211 
connection control functions, 14 2-14 3 
data transfer functions, 143 
disadvantages of, 146-14 7 
DNA Phase V and, 138-139 
interface procedure declarations, 139, 142-143 
ISO 8208 X.25 protocol for supplying, 187-188 
ISO 8878 X.25 protocol for supplying, 189 

Network layer and, 61-62, 133, 136-149 
port control functions, 14 2 
protocols, 150, 164, 170, 187-189 
reliability of, 136-138 
service primitives, 139-141 
Transport layer and, 209-211 
using X.25 to supply, 405-406 

Connection-mode service, 57-62, 77 
vs. connectionless-mode service, 60-62 
message acknowledgment and, 58 
operation of, 58-59 
reliability of, 5 8-60 
sequence checking and, 58 

Connection-mode Session layer service, ISO 8326 
and,261 

Connection release, 234, 238 
Connection Request (CR) message, 223 
Connectivity, multi-vendor, 72 
Connect request, Session Control layer and, 243-244 
CONS. See Connection-mode Network service 
Context management functional unit, 2 7 5 
Context restoration functional unit, 275-276 
Context Specific tags, 267-269 
Control escape octet value, 424 
Control field, HDLC, 416 
Control functions 

DNA Physical layer and, 86 
HDLC,423 
LLC, 458-459 
MAC sublayer, 480 
Modem Connect, 103-104 

Control messages, 235, 236, 430-435 
Control module, of nameserver, 363 
Control stations, 437 
Coordinated Universal Time (UTC), 321-326 
Corporation for Open Systems (COS), 29 
Counter attributes, 383 
Courier servers, 326 
C.Protocol, naming service, 366 
CRC negotiation, HDLC, 426 
CRC values, 126, 416-417, 438, 488 
Credits, flow control and, 230-231 
CR message, 223 
Cryptography, 329-334 
CSMA,481 
CSMNCD. See Carrier Sense Multiple Access with 

Collision Detection ( CSMNCD) 
CSNP, 199-200 



IND EX 

CTERM protocol, 296 
Cyclical redundancy check (CRC) values, 126, 

416-417, 426, 438, 488 

DA, 405 
DAC, 498, 501 
DAD, 33 
DAM,33 
DAP, 300-301 
Dark fiber, 6 
DAS, 498, 499 
DASS, 317-318, 328-336, 498, 499 
Data Access Protocol (DAP), 300-301 
Data circuit-terminating equipment (DCE), 93 

X.25 and, 391 
Data communication, 5-7, 17-21 
Data Encryption Algorithm (DES) algorithm, 332 
Datagram service, 59, 60, 62, 134, 451. See also 

Connectionless-mode Network service (CLNS) 
Data Link layer 

architectural model, 111-112 
connectionless-mode Data Link service, 61-62, 

117-118, 123-124 
connection-mode Data Link service, 61-62, 

109-110, 118-124 
CSMNCD, 463-465 
DL_UNITDATA service, 118 
DNA Phase IV, 70 
DNA Phase V, 76-77, 109-129 
in FDDI architectural model, 491-493 
functions of, 109 
ISO 8886 Data Link Service Definition, 117 
LAN data links, 114-116, 127-128 
LLC sublayer, 114-115 
MAC sublayer, 114-115 
Network layer and, 129, 131 
OSI model, 39-40 
PMD sublayer of, 115 
PHY sublayer of, 115 
protocol specifications, 112-114, 124-127 
service definitions, 112-124 
services, 109-111 
WAN data links, 116-117, 128-129 

Data link mapping (DLM), 405 
Data-link-protocol-data-unit (DLPDU), 54, 124, 414. 

See also Frames; Messages 
Data Link layer and, 110, 113 
messages and, 430 

Data links, 130, 164-168 
balanced, 412 
broadcast, 109, 115-116, 164-165 
connection establishment and release, 109-110 
conventional vs. LAN technologies, 440 
dynamically assigned point-to-point, 166 
dynamically established point-to-point, 165-166 
multipoint, 166-167 
nonbroadcast, 109, 165-167 
permanent point-to-point, 165 
static point-to-point, 165 
unbalanced, 412 

Data-link-service-access-point (DLSAP), 112 
Data-link-service-data-unit (DLSDU), 51, 126 

connectionless-mode Data Link service and, 
117-118 

connection-mode Data Link service and, 119 
Data Link layer and, 110, 112-113 

Data Link Service Definition (ISO 8886), 117 
Data messages, 235-236, 430-433, 435-436 
Data packets, 177-179, 201-202 
Data ports, 100, 101 
Data retransmission, 238 
Data Segment messages, 237, 238 
Data stations, 412 
Data syntax, 43-44, 264-274 
Data terminal equipment (DTE), 93-96, 104, 

391-392 
Data token, 258, 260 
Data TPDU, 219, 222 
Data transfer 

CLNS, 137 
CONS, 143 
Data Link layer and, 39-40, 110 
error detection and, 39-40 
expedited, 220-221, 228 
HDLC,423 
information content and, 43-44 
interfaces, Session Control layer, 244, 245 
LLC sublayer, 455, 458 
MAC sublayer, 480 
Modem Connect, 104 
normal, 220-221, 223, 228 
NSP transport, 23 7 
OSI transport, 220-221, 223, 228 
and sequencing, DNA Physical layer and, 86 
Session Control layer and, 244-245 
subnetwork dependent sublayer interface, 175 

553 



554 INDEX 

Data type assignments, ASN.1, 266-267 
Data value assignments, ASN.1, 269-270 
DCE, 93, 391 
DC message, 234 
DCS,272 
DDCMP. See Digital Data Communication Message 

Protocol (DDCMP) 
Decentralized computing, 7, 8 
Decision, link state routing, 195, 201 
DECnet, 3, 12, 63-64, 70-73 
Default context, 272 
Deference process, 481-482 
Defined context set (DCS), 272 
Delegation, 331, 336 
Delivery interaction, 312 
Delivery notification, 312-313 
DES algorithm, 332 
Descriptive names, 350-351 
Designated router, 199 
Desktop computers, 4, 9 
Destination address, 243, 512 
Destination-service-access-point (DSAP) address, 

452 
Determinism, 66-67 
Dialog, 42, 43, 255, 260 
Diffie, Whitfield, 333 
Digital 

CLNS/CONS controversy and, 62, 133, 148, 210-
211 

CSMA/CD transmission media, 468-469 
DNA applications, 294-301 
networking and, 8-10, 66 
standards and, 4-5, 72-73 

Digital circuits, 98 
Digital Data Communication Message Protocol 

(DDCMP), 76, 129, 429-438 
data links, 429-438 
features of, 429-430 
framing procedures, 436-437 
functions of, 429 
link management procedures, 437 
maintenance mode, 435-436 
message exchange procedures, 438 
message formats, 430-436 
online mode, 435 
protocol operation, 436-438 
protocol specification, 430-438 
service definition, 430 

service interface commands and responses, 430, 
431 

specification, DNA Phase V, 76 
Digital Network Architecture (DNA), 3, 25, 63-81 

applications, 293-301 
CMIP, 387 
Data Link layer, 88, 98 
DECnet and, 63-64 
Network Services Protocol (NSP), 78 
OSI architecture and, 46 
Phase I, 67 
Phase II, 67-68, 346 
Phase ill, 68 
Phase IV, 68-69 

compatibility with Phase V, 74, 250 
end nodes, 151 
functional layers in, 69-71 
network addressing, 156 
routers, 152 

Phase V, 11-13, 69-74 
addressing, 12 
architecture, 62, 64-66, 77, 294, 529 
Bridge and Extended LAN Architecture specifi-

cation, 518 
compatibility with Phase IV, 74, 250 
congestion avoidance, 12 
connection/connectionless modes and, 62, 77, 

138-139 
CSMA/CD specification, 462 
Data Link layer, 76-77, 109-129 
end nodes, 151 
FDDI specification, 490, 497, 510-511 
functional layers, 74-79, 85-289 
HDLC, 422, 425-428 
higherlayers, 77-78 
ISO protocols and standards, 72-73, 79 
large network support, 69-72 
LLC architectural model, 456-457 
naming service, 12, 79-80, 348-376 
network addressing, 156 
Network layer, 77, 130-163 
network management, 73-74, 80-81 
Physical layer, 75-76, 85-108 
RPC facility, 340 
routers, 152 
routing algorithm, 12 
Session Control layer, 78, 79, 207, 239-253 
Transport layer, 77-78 



IN DEX 

very large network support by, 69-72 
virtual terminal mechanisms, 296 

Digital service unit (DSU), 98 
Digital time service architecture, 317, 318, 319-327 
Directed graph structure, 32-35 
Directives, in entity network management model, 380 
Directories, 356-358 
Directors, 379-380, 385-387 
Directory Maintenance protocol, 366 
Directory replication, 367 
Directory update convergence, 371 
Disconnect Confirm (DC) message, 234 
Disconnection, 426 
Disconnect Request (DR) message, 234 
DIS (Draft International Standard), 33 
Distance-vector routing algortithm, 193-194 
Distinguished attributes, 374 
Distributed adaptive routing, 193-194 
Distributed Authentication Security Service (DASS) 

Architecture, 317-318, 328-336, 498, 499 
Distributed computing services, 10-11, 317-345 

applications, 11, 293, 295 
bandwidth and, 8 
Digital time service architecture, 317, 318, 

319-327 
DASS architecture, 317-318, 328-336 
DNA Phase V naming service, 318 
remote procedure call, 318, 337-341 
unique identifier architecture, 318, 341-344 

Distributed routing algorithm, 133 
Distributed System Security Architecture (DSSA), 

328, 330-331 
DL_CONNECT, 120 
DL_DATA, 120-121 
DL_DISCONNECT, 121-122 
DLM,405 
DLPDU. See Data-link-protocol-data-unit (DLPDU) 
DL_RESET, 122-123 
DLSAP, 112 
DLSDU. See Data-link-service-data-unit (DLSDU) 
DL_UNITDATA service, 118, 119, 451 
DNA. See Digital Network Architecture (DNA) 
Domains, 152-155 
Domain specific part (DSP), 160, 162 
Downline load function, 389-390 
DP (Draft Proposal), 33 
Draft Addendum (DAD), 33 
Draft Amendment (DAM), 33 

Draft International Standard (DIS), 33 
Draft Proposal (DP), 33 
Drift, of clocks, 322 
DR message, 234 
DSAP address, 452 
DSP,160,162 
DSSA, 328, 330-331 
DSU, 98 
DTE, 93, 391-392 
DTE-DCE interface, 93-96, 104, 391 
Dual-attachment concentrator (DAC), 498, 501 
Dual-attachment station (DAS), 498, 499 
Dual counter-rotating ring, 499-500 
Dual ring of trees, 107, 501 
Duplex circuits, 86-87 
Duplex functional unit, 258, 260 
Duplicate packets, 134 
Dynamically assigned point-to-point links, 166 
Dynamically established point-to-point links, 

165-166 
Dynamic assignment (DA), 405 

E.163, CCITT, 163 
E.164, CCITT, 163 
ECMA,28 
EDI,293 
EIA. See Electronic Industries Association (EIA) 
Election algorithm, 516 

555 

Electrical Characteristics of Balanced Voltage Digital 
Interface Circuits, 96 

Electrical Characteristics of Unbalanced Voltage 
Digital Interface Circuits, 96 

Electrical Industries Association (EIA), 29-30 
Electronic data interchange (EDI), 293 
Electronic Industries Association (EIA), 29-30, 89-92 

EIA-232-D, 30, 93-95 
EIA-422-A, 96 
EIA-423-A, 96 
EIA-449, 96 

Electronic mail systems, 297-298 
Elements of procedure, 221-223, 226-227 
EMA, 80-81, 378-379 
Encapsulation, 521 
Encoding, of network addresses, 159-160 
End Communication layer, DNA Phase N, 70-71 
Ending delimiter, 513 
Ending flag field, HD LC, 416-417 
Endnode Hello, 186 



556 INDEX 

End nodes, 41, 130, 151. See also Nodes 
automatic configuration of, 158 
CLNS and, 139 
ISO Internet Protocol and, 149 

End System Hello (ESH), 186 
End-to-end data transport, 41 
End use buffering, Session Control layer, 245 
End user interface, Session Control layer, 251-253 
Enterprise Management Architecture (EMA), 80-81, 

378-379 
Entities 

attributes, 382, 383 
defined, 48, 379 
instance names, 383-384 
interfaces, 385 
models, 379-382, 384-385 
names, 384 
network management, 382-384 
peer, 48 
state machine definition, 384 

Envelopes, in X.400 Message Handling System, 312 
EPHOS,32 
Equipment rooms, cabling, 91-92 
Error detection 

by MAC sublayer, 455 
Data Link layer and, 109, 110, 126 
data transmission and, 39-40 
OSI transport, 228 
protocol, 427-428 

Error recovery, 110, 126, 145 
Error Report packets, 177-179, 202 
ESH, 186 
Ethernet, 5, 462-489 

addressing, 449, 450 
frames, 488-489 
LLC-PDUs, 461 

Ethernet Specification, 5, 75, 76 
CSMA/CD LANs and, 105 
design decisions, 483-485 
Version 2, 462 

ETSI, 30 
European Computer Manufacturers Association 

(ECMA),28 
European Procurement Handbook for Open Systems 

(EPHOS), 32 
European Telecommunications Standards Institute 

(ETSI), 30 
European Workshop on Open Systems (EWOS), 29 

Event dispatchers, 389 
Event logging, 388-389 
Events, 319, 380 
Event sinks, 389 
Event sources, 389 
EWOS,29 
Exception Reporting functional unit, Session layer, 

259,260 
Excessive collisions, 482 
Exchange Identification (XID) PDUs, 455 
Exchange station identification (XID-frames) frames, 

HDLC,420 
Expedited Data functional unit, 260 
Expedited data transfer, 220-221, 228 
Extended concatenation, 262 
Extended flow control fields, 231 
Extended LANs, 477-478, 518-525 

bridges and, 503-504, 519-524 
vs. routers, 524-525 
source routing, 524 

External names, 355 
External reference syntax, 160 

F.69, CCITT, 163 
Fault condition notification, DNA Physical layer and, 

86 
FCIS algorithm, 515 
FCS field. See Frame check sequence (FCS) field 
Fiber Distributed Data Interface (FDDI), 5, 106-107, 

490-517 
architecture, 98, 491-493 
circuits, 8 7 
Data Link layer components, 491-492 
data links, 111n, 114-115, 128 
frame stripping, 514-515 
IEEE/ISO LAN standards, 444 
MAC frame and packet format, 511-514 
MAC sublayer, 504-508, 510-514 
network types, 490-491 
Physical layer components, 494-497 
physical link and station failure, 502-504 
ring monitoring functions, 509-510 
ring purging, 516-517 
specification, DNA Phase V, 76 
standards, 490, 497, 510-511, 514-515 
station management (SMT), 497-498 
stations, 491, 498-502 
token passing procedure, 507-508 



IND EX 

transmission medium, 497 
Field service application, 295 
File Transfer, Access, and Management (FTAM), 

280, 304-308 
ACSE and, 307-308 
Management class, 306, 307 
Presentation layer services, 308 
service classes, 306-307 
Session layer services, 308 
Transfer class, 306, 307 
virtual filestores, 304-305 

Filtering, 457, 459 
Flag octet value, 424 
Flat structure, for namespace, 351 
Flooding, Link state database, 199 
Flow control 

Data Link layer and, 110, 126-127 
HDLC,425 
NSP transport, 237 
OSI transport, 229-231 
X.25, 396 

Forward, in link state routing process, 195, 201-203 
Forwarding database, 201 
Foundation (FOUND) protocol, 296 
Fragmentation, as networking strategy, 9 
Frame, synchronization, 110 
Frame check sequence (FCS) field, 109, 126, 

416-417, 488, 512 
Frame Content Independent Stripping (FCIS) 

algorithm, 515 
Frame control, 511-512 
Frame forwarding, bridges and, 521-522 
Frame Reject (FRMR) U-frames, 427-428 
Frames, 54, 90, 110. See also Messages 

asynchronous, 510-511 
claim,509 
Data Link layer and, 113 
Ethernet, 488-489 
flow control and, 126-127 
HDLC, 413-421 
MAC, 484-488 
messages and, 429 
pipelining and acknowledgment of, 425 
sequencing, 110 
status field, 513 
stripping, 514-515 
synchronous, 510-511 
types, 513 

Framing, 110, 436-437 
FRMR U-frames, 427-428 

557 

FTAM. See File Transfer, Access, and Management 
(FTAM) 

Full-duplex circuits, 86-87 
Full names, 353, 354-355 
Functional layers, 17. See also specific layers 

DNA Phase IV, 69-71 
DNA Phase V, 74-79, 85-289 
Ideas layer, 19-20 
Language layer, 19 
message transmission and, 21-23 
of networks, 23 
OSI model, 36-45 
Physical layer, 18-19 
protocols, 20-21 

Function modules, director architectural model, 
386-387 

Gateway, 73, 520 
Gateway Access protocol (GAP), 399-400, 402-403, 

408 
General Motors, 293-294 
GetEvent function, 287 
GMT,321 
Global attributes, 356, 358, 360-361 
Global identity, security and, 329 
Globally administered addressing, 448-449 
Global sets, of time servers, 326 
Goodyear, 293 
Government Open Systems Interconnection Profile 

(GOSIP), 32 
Greenwich Mean Time (GMT), 321 

Half-duplex 
circuits, 86-87 
functional unit, 258, 260 
links, 437 

Hayes AT command set, 97 
Hayes Corp., 97 
HDLC. See High-level Data Link Control (HDLC) 
Hellman, Martin, 333 
Hierarchical routing, 68-69, 152-155 
High-level Data Link Control (HDLC), 128-129, 

411-428 
acknowledgment, 425 
architectural model, 420-422 
asynchronous,413,424 



558 IND EX 

bit stuffing, 422-424 
CRC negotiation, 426 
DNA Phase V, 76, 425-428 
entities, 411-412 
flow control, 425 
frames, 413-421 
initialization mode, 414 
link initialization procedure, 426 
maintenance functions, 427 
octet stuffing, 424 
operating modes, 412-413 
pipelining, 425 
protocol, 76, 414 
protocol error detection, 427-428 
protocol multiplexing, 426-427 
protocol operation, 422-425 
protocol specification, 411-413 
SDLC and, 414 
service definition, 411-412 
service interface procedure declarations, 422, 423 
standard, 116 
synchronous framing, 422-424 

High-order DSP (HO-DSP), 162 
High-speed communications, 5-7, 491 
Hippity cost, 203 
HO-DSP, 162 
Homogenization, as networking strategy, 10 
Hops, 130, 202 
Host computing systems, 63 
Human users, authentication of, 336 

IBM, 4, 8, 25, 62, 133 
ICD, 162 
ICI, 53 
Ideas layer, of human communication, 19-20, 22, 23 
Identification attributes, 383 
Identification and parameter exchange, 110 
Identifiers, 341-344 
ID field, 157 
IDI, 160-163 
IDL,340,341 
IDP, 160-161, 162 
IDU, 53-54 
IEC, 26, 31-33, 35 
IEEE. See Institute of Electrical and Electronic 

Engineers (IEEE) 
I-frames, 417-420, 425, 427 
IM, HDLC, 414 

Implementors' agreements, 28 
Imported text, in Notes computer conferencing, 299 
Importing, RPC facility, 339 
Inaccuracy values, clocks, 322, 324, 327 
Inactive Network layer subset, of subnetwork 

independent protocol functions, 179 
Indication service primitive, 49 
Information field, in HDLC frames, 416 
Information frames (I-frames), HDLC, 417-420, 425, 

427 
Information PDU (1-PDU), 453 
Initial domain identifier (IDI), 160-163 
Initial domain part (IDP), 160-161, 162 
Initialization mode (IM), HDLC, 414 
Initiators, 280, 308-309 
Initiators, OSUL ports, 285 
Institute of Electrical and Electronic Engineers 

(IEEE), 30 
IEEE 802.2, 105 
IEEE 802.2/ISO 8802-2, LLC sublayer service, 165 
IEEE 802.3, 105, 462 
IEEE/ISO LAN architecture, 114 
IEEE/ISO LAN standards, 442-445, 448-450 
IEEE/ISO token ring access protocol, 506-507 
LAN standards, 442-445 

Integrated Services Digital Network (ISDN), 34, 107 
Intel, 5 
Interchange circuits, 93, 104 
Interdomain routing, 154-155, 204-206 
Interface 

abstract, 22, 48-49, 53, 65, 99, 101 
concrete, 22, 49, 65-66, 99 
entity, 385 
identifiers, 341 
message transmission and, 22 
network architectures and, 23 
polled, 101 
RPC facility and, 340-341 
standards, DTE-DCE, 93-96 

Interface-control-information (ICI), 53 
Interface data, 53 
Interface-data-unit (IDU), 53-54 
Interface definition language (IDL), 340, 341 
Interface procedure declarations, LLC sublayer, 

457-459 
Intermediate cross connect equipment rooms, 92 
Intermediate nodes, 40, 130. See also Routers 
Intermediate System Hello (ISH), 186 



INDEX 

Internal names, 355 
Internationalbureaucratspeak, 54-55 
International code designator (ICD), 162 
International Electrotechnical Commission (IEC), 26, 

31-33, 35 
Internationally Standardized Profile (ISP), 29 
International Organization for Standardization (ISO), 

4, 12, 26, 31-33, 35, 56-57 
standards 

address administration, 161-162 
CLNS. See Connectionless-mode Network Service 
CONS. See Connection-mode Network Service 
Data Link layer, 113 
Digital and, 72, 73 
DNA Phase V and, 72-73, 79 
FDDI, 114 
HDLC, 411, 422, 425-428 
Network layer addressing, 159-163 
for OSI model, 45-46, 527-528 
protocols, integration into DNA Phase V, 72-73 
service definitions and, 5 6 
Session layer, 256 
Transport layer, 210 

standards for OSI model 
ISO 3166 DCC, 162 
ISO 3309, amendment to, 411 
ISO 6523 ICD, 162 
ISO 7498 (OSI model), 276, 277 
ISO 8072, Transport Service Definition, 212 
ISO 8073, Connection Oriented Transport 

Protocol Specification, 218 
ISO 8208, X.25 Packet-level Protocol, 150, 

187-188, 392 
ISO 8326, Session Service Definition, 257, 261 
ISO 8327, Session Protocol Specification, 

261-262 
ISO 8348, Network Service Definition, 135, 

159-160 
ISO 8473 Internet protocol, 149, 171-185 
ISO 8571, File Transfer, Access, and 

Management (FTAM), 280, 304 
ISO 8648, Internal Organization of the Network 

Layer, 169 
ISO 8802-3, LAN CSMA/CD, 105, 462 
ISO 8822, Presentation Service Definition, 274 
ISO 8823, Presentation Protocol Specification, 

276 
ISO 8824, Specification of Abstract Syntax 

Notation One (ASN.1), 266-270 
ISO 8825, Specification for Basic Encoding 

Rules for ASN.1, 271 

559 

ISO 8878, Use of X.25 to Provide OSI 
Connection-mode Network Service, 150, 189, 
406 

ISO 8886, Data Link Service Definition, 117 
ISO 9314, FDDI standard, 490 
ISO 9542, ES-IS routing protocol, 150, 185-187 
ISO 9545, Application Layer Structure, 277 
ISO 9594, OSI Directory, 351, 374-375 
ISO 10589 IS-IS routing protocol, 150, 157, 190 

International Telecommunications Union (ITU), 34 
International Telegraph and Telephone Consultative 

Committee (CCITT), 4, 26, 34-35. See also 

CCITT 
International Time Bureau, 321 
Internet Protocol, 149, 171-185 
Internetworking, 408 
Interoperability, 67, 154 
Interrupt packets, X.25, 396 
Interrupts, 101 
lntradomain routing, 190 
Invariants in system operation, 66 
Invocation, of application-processes, 277, 280 
1-PDUs, 453 
ISDN, 34, 107 
ISH, 186 
ISO/IEC Joint Technical Committee 1 (JTC1), 31 
ISP, 29 
ITU, 34 

Jamming signals, 481 
Joint Technical Committee 1 (JTC1), 31 

JTC1TAG,27 

Kernel, 257, 258, 275, 385 
Keywords, 299 

LAN data links, Data Link layer, 114-116, 127-128 
LANs. See Local area networks (LANs) 
LAPB. See Link Access Procedures-Balanced 

(LAPB) 
LAT protocol, 524 
Layering, principles of, 38 
Leaf nodes, in namespace structure, 351 
Length/type field, 487, 488 
Level 1 routing, 152-155, 198-201 



560 INDEX 

Level 2 routing, 152-155, 198-201 
Lifetime indicator, in Link State packets, 198 
Lightweight connections, 148 
Line drivers, 9 8 
Line handler, Modem Connect, 104 
Line states, 495 
Link Access Procedures-Balanced (LAPB), 76, 129, 

391,414 
Links 

cost, 198 
entries, 198 
establishment, 426 
FDDI architectural model, 491 
initialization, 4 26 
loopback test function, 390 
management procedures, DDCMP, 437 
station management and, 498 
status, 198 

Link State packets (LSP), 197-201 
checksum values in, 200 
router failure and, 203 
sequence number space, 200-201 

Link state routing, 194-204 
Listeners, X.25 access module and, 399 
LLC frames, 513 
LLC-MAC interface, 464-465, 493 
LLC-PDU. See Logical-link-control-protocol-data-

unit (LLC-PDU) 
LLC ports, in FDDI architectural model, 493 
LLC-SDUs, 445-447 
LLC sublayer. See Logical Link Control (LLC) 

sublayer 
Local area networking, DLL standards, 527 
Local area networks (LANs), 439-461. See also 

CSMAfCD; Extended LANs; Fiber Distributed 
Data Interface (FDDI) 

access protocol, 441-44 2 
addressing, 447-450 
circuits, 87, 89 
classifying, 439-442 
connection/connectionless modes and, 61-62 
conventional vs. LAN data link technology, 440 
CSMAfCD, 75, 76, 105-106 
data links, 114-116, 127-128, 439-461 
DNA Phase V LLC architectural model, 456-457 
extended, 477-478 
FDDI, 76, 106-107 
growth in, 5 

hops and, 130n 
LLC sublayer, 450-461 
network topology, 439 
standards for, 442-445, 527 
time service architecture and, 325-326 
token bus, 108 
token ring, 506-510 
transmission, 5-6, 439-441 

Local Area Transport (LAT) protocol, 524 
Local concrete syntax, 44, 270-271 
Locality, principle of, 64, 66 
Local objects, 240n, 246 
Local sets, of time servers, 326 
LOC-AREA field, 157 
Logical channels, X.25, 396 
Logical Link Control (LLC) sublayer, 114-115, 165, 

176, 445-461 
architectural model, 456-457 
connectionless-mode LLC service, 450-451 
connection-mode LLC service, 450 
CSMNCD architectural model, 483-484 
data transfer, 455 
DL_UNITDATA data transfer service, 451 
DNA Phase V LLC architectural model, 456-457 
exchanging TEST LLC-PDUs, 456 
exchanging XID LLC-PDUs, 455 
in FDDI architectural model, 491-492 
filtering, 458-461 
globally administered addressing, 448-449 
IEEE/ISO LAN standards, 443-445 
interface procedure declarations, 457-459 
LLC-PDU formats and, 452-453 
LLC-PDU types and, 453 
local area networks, 445-447 
operational modes, 454-455 
protocol mechanisms, 455-456 
protocol specification, 451-456 
service, 165, 176 
service definition, 450-451 
service interface procedure declarations, 457-458 
U-PDU format and, 454 
user multiplexing, 460-461 

Logical-link-control-protocol-data-unit (LLC-PDU), 
445-447 

commands, 453 
formats, 452-453 
Network layer, 459-460 
responses, 453 



INDEX 

types, 453 
Logical-link-control-service-data-unit (LLC-SDU), 

445-447 
Loopback test function, 390 
Loose consistency guarantees, 369-371 
Lost packets, 134 
LSP, 197-201, 203 

MAC addresses, 486-487 
MACF,282 
MAC frame (MAC-PDU), 447, 484-488, 511-514 
MAC-PDU, 447, 484, 511. See also MAC frame 
MAC-SDU, 447, 448, 484, 511 
MAC sublayer. See Medium Access Control (MAC) 

sublayer 
MAILbus product family, 297, 308-309 
Main cross connect equipment rooms, 92 
Mainframes, 7-9 
Maintenance data message, 435-436 
Maintenance functions, HDLC, 427 
Maintenance Operations Protocol (MOP), 389-390, 

414,420,427 
Major Synchronize functional unit, Session layer, 

259,260 
MAN,6 
Management class, FTAM, 306, 307 
Management event notification (MEN), 387 
Management information control and exchange 

protocol (MICE), 387 
Management information repository, 386 
Manchester encoding, 466 
Manufacturing Automation Protocol (MSP), 32 
Many-to-one mapping, 262 
MAP,32 
Mapped Ethernet frames, 515 
Mapping, 262 
Markers, 299 
Marshalling, RPC facility, 340 
MA_TOKEN token request service, 506 
MAU (medium access unit), 105-106 
MAU (Medium Attachment Unit), 467, 470-472 
MA_UNITDATA data transfer service, 506 
MDI,468 
Medium Access Control (MAC) sublayer, 114-115 

addresses, 486-487 
CSMAICD architectural model, 484-485 
error detection by, 455 
FDDI architectural model, 491-493 

frame and packet format, 484-489, 511-514 
IEEE/ISO LAN standards, 442-443 
protocol specification, 479-483, 506-508 
service definition, 478, 504-506 
service interface functions and procedures, 478, 

480 
service primitives, 505-506 

Medium-access-control-protocol-data-unit 
(MAC-PDU), 447, 484, 511 

Medium-access-control-service-data-unit 
(MAC-SDU), 447, 448, 484, 511 

Medium access unit (MAU), 105-106 
Medium Attachment Unit (MAU), 467, 470-472 
Medium Dependent Interface (MDI), 468 
Medium Interface Connector (MIC), 496, 498-501 
Medium specific control functions, 86 
MEN,387 
Message acknowledgment, 58. See also 

Acknowledgment 
Message exchange procedures, DDCMP, 438 
Message framing, 436-437 
Message interface to DNA, Session Control layer, 

245 
Message Router, 297-298 
Messages, 21-23, 219. See also Frames; 

Transport-protocol-data-unit (TPDU) 
control, 430-435 
data, 430-433, 435-436 
DDCMP, 429, 430-436 
in X.400 Message Handling System, 312 

Message stores, 310-312 
Message transfer agent (MTA), 309-310 
Meta-architecture, 80, 379 
Metropolitan area network (MAN), 6 
MIC, 496, 498-501 
MICE, 387 
Minor Synchronize functional unit, 259, 260 
Modem Connect 

architectural specifications, 98 
call control, 102-104 
call sharing, 102-103 
control functions, 102-104 
data transfer functions, 104 
operation, 103-105 
port control functions, 102, 104 
specification, 75, 100-105 

Modems, 5, 34-35, 94-97 
Modules entities, 382-383 

561 



562 IND EX 

Modulo-8 operation, 417-418 
Modulo-128 operation, 417-418 
Monotonicity, 343-344 
MOP, 389-390, 414, 420, 427 
More flag, OSUL and, 280-281 
M.Protocol, naming service, 366 
MSP,32 
MTA, 309-310 
Multiaccess circuits, 89, 115 
Multicasting, 116, 165, 326, 457 
Multiframe dialogs, 510 
Multiple-area addresses, 158 
Multiple-association-control-function (MACF), 282 
Multiple namespaces, 359 
Multiplexing, 207 

broadcast data link and, 116 
DNA Phase V LLC sublayer service, 457 
OSI transport, 233-234 
protocol, 420 
user, 460-461 

Multipoint circuits, 88-89, 116 
Multipoint data links, 116, 166-167, 437 
Multiport repeaters, 476-477 
Multi-vendor connectivity, 72 
Mutual authentication, 329 
Mythical Man-Month, The, 24 

NAK messages, 433-434 
Names 

addresses, 349 
characteristics of, 353-355 
conversion functions, 252 
descriptive, 350-351 
entity, 384 
external, 354-355 
full, 353, 354-355 
internal, 355 
primitive, 350 
referential transparency in, 353 
routes, 350 
semantics, 353-354 
simple, 353 
symbolic, 12 
syntax, 354 
types of, 349-351 
worldwide computing and, 12 

Nameserver, 80, 363-365, 371 
Namespace, 80 

directed graph structure for, 351-352 
directories, 80 
flat structure for, 351 
implementation, 359 
logical structures for, 351-353 
multiple, 359 
naming service and, 347 
nicknames, 354 
partially replicated database, 359 
partitioned database, 359 
partitioning, 366-367 
replication, 367 
tree, walking the, 368 
tree structure for, 3 51 
updating, 369-374 

Namespace creation timestamp (NSCTS), 353-355 
Naming service, 79-80, 318, 346-376 

attributes, 355-356 
clearinghouse, 362-363 
clerks, 241, 243, 363, 364 
components, 362-365 
design goals, 348-349 
directories, 356-358 
directory entries, 356-358 
global attributes, 356, 358, 360-361 
nameserver, 363-365 
naming operation, 367-368 
OSI Directory and, 375 
protocols, 365-366 
requirements of, 348-349 
scalability and, 347-348 

National Bureau of Standards, 28-29 
National Institute for Science and Technology 

(NIST), 28-29 
Navistar, electronic data interchange (EDI), 293 
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in OSI model, 46 
primary, 166 
secondary, 166 

Nonbroadcast data links, 109, 165-167 
Nonconfirmed services, 50 
Nondelivery notification, 312-313 
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NPDU, 54, 131-132. See also Packets 
N_RESET service, 141 
NRM, 129, 413 
NRZI encoding, 495 
NSAP, 131, 156-163 
NSCTS, 353-355 
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service interface procedure declarations, 218, 220 
specification, 207-20 8 
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Redirect packets, 186, 202 
Reference, passing parameters by, 338 
Reference Model for Open Systems Interconnection 

(OSI model), 4-5, 31, 35-62. See also OSI 
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Session layer 

connection/connectionless modes and, 61 
functional units in, 257-261 
ISO standards for, 256 
OSI model, 42-43 
OSUL service and, 289 
protocol, 256, 261-262 
services, 254, 255-256, 308 
services definition, 257-261 
standards, 256, 528 
tokens in, 257 

Session-protocol-data-unit (SPDU), 262 
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Smart cards, DASS, 336 
Smartmodems, 97 
SMT. See Station management (SMT) 
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SNDCP, 169-170, 176-177 
SNICP, 169-170, 171 
SNPs, 199-200 
SNRM command, 426 
S_UNITDATA request primitive, 173-174, 176 
Soft link entries, 35 8 
Solicitation and Advertisement protocol, 326, 365 
Source address, 512 
Source routing, 524 
Source-service-access-point (SSAP) address, 452 
SPAG, 29 
Spanning trees, 201, 523-524 
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T_DISCONNECT service, 216-217 
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