TEX and METAFONT

New Directions in Typesetting

Donald E. Knuth

D

TEX and METAFONT

New Directions in Typesetting

TEX and METAFONT

New Directions in Typesetting

Donald E.Knuth

Digital Press

American Mathematical Society

Copyright © 1979 by the American Mathematical Society

TEX and METAFONT, New Directions in Typesetting is published
jointly by the American Mathematical Society and Digital Press.

All rights reserved. Reproduction of this book, in whole or in part, is
strictly prohibited. For copy information, contact Digital Press,
Educational Services, Digital Equipment Corporation, Bedford,
Massachusetts 01730.

Printed in U.S.A.

1st Printing, December 1979
Documentation Number EY-BX003-DP-001

Knuth, Donald E
TgX and METAFONT, new directions in typesetting

Includes index.

1. Computerized typesetting. I. Title.
Z253.3.K57 686.2'2544 79-25891
ISBN 0-932376-02-9

Cover illustration: the letter ““S” as constructed by the Italian
calligrapher Giovanbattista Palatino, circa 1550.

Foreword

Don Knuth’s Tau Epsilon Chi (TEX) is potentially the most significant
invention in typesetting in this century. It introduces a standard language for
computer typography and in terms of importance could rank near the intro-
duction of the Gutenberg press. The TEX system:

e understands typography from individual characters to page design;

® permits any typewriter, word processing system, computer-based editor,
or TEX system editor to be used as an input device with a standard
language;

e can typeset various formats and languages;

e is structured to be user-extendable to virtually all applications.

These improvements are benchmarks in typesetting and text creation. To
date, computer-based typesetting systems have simply facilitated typesetting.
Moreover, the proliferation of word processing systems makes possible the
widespread direct transmission of text to typesetting without the intervening
typesetting process—provided we use the standard language that TEX offers.

A direct link between text input and typesetting will permit a drastic
restructuring of the journal- and book-publishing industry, allowing it to be
oriented substantially more toward the author. Until now, even authors with
word processing equipment have been unable to participate in the representa-
tion of their message in print. Prior to Gutenberg’s invention, manuscripts
were conceived and designed simultaneously, and often the author’s hand
shaped the entire final product. The results were beautiful and varied, in
contrast to the manufacture of most modern books, which vary only in cover
design. With TgX, moreover, not only can the author influence his own format
and representation, but he also can produce more accurate material that can
be rapidly mass-produced, shortening the time between idea and dissemina-
tion.

TEX is 51gn1ﬁqant a8 a standard language because of the: way it under-
stands typography using a framework of boxes and glue in a hierarchical
fashion so that any font, page layout, or other typesetting parameter can be
set. This is in striking contrast to most typesetting systems, which are built

with no generality. Finally, the input form is user-defined by means of a
macroprocessor so that virtually any text can be input and can control the
typography part of the program. It is this generality and segmentation of
function that makes TgX significant.

This book is about much more than just the TgX system. The Gibbs Lecture
presents the twin themes of how typography can help mathematics and how
mathematics can help typography, and the material on METAFONT is intrigu-
ing and useful in its description of the use of mathematics in type design.

While the emphasis of TEX is on mathematics, the system is equally appli-
cable to and will no doubt be used in many other domains. Don Knuth, in fact,
shows us precisely how the system can humanize basic communications.

At Digital, we hope to use TEX immediately. I urge others to adopt and use
it so that the language standard can be established.

C. Gordon Bell .
Vice President of Engineering
Digital Equipment Corporation

vi .

Preface

Leonardo da Vinci made a sweeping statement in his notebooks: “Let no
one who is not a mathematician read my works.” In fact, he said it twice, so he
probably meant it.

Fortunately, a lot of people failed to heed his injunetion. It turns out that
non-mathematicians are quite capable of dealing with mathematical concepts,
when the description isn’t beclouded with too much jargon. So I would like to
reverse Leonardo’s dictum and say, “Let everyone who is not a mathematician
read my works.” (Furthermore, mathematicians are invited too.)

Of course, every author likes to be read; but I have quoted Leonardo as a
sort of apology for the fact that the first part of this book is the text of a talk
that was addressed specifically to professional mathematicians. Two years ago
I was deeply honored by an invitation to give the 1978 Gibbs Lecture, a lecture
about applied mathematics that is delivered annually to the members of the
American Mathematical Society. Since such prominent mathematicians as
G.H.Hardy, Albert Einstein, and John von Neumann had previously been Gibbs
lecturers, I wanted to say something that wasn’t completely trivial, so I threw
in some mathematics that was at least slightly sophisticated. The main point I
wished to make, however, was that mathematical ideas need not be confined to
the traditional areas of application and that I had found it especially exciting
to bring mathematics to bear on the field of typography. I hope some of my
excitement and the reasons for it will be understood by everybody concerned
with written communication and the making of books of high quality.

This book is in three parts, each of which is intended to be reasonably
self-contained. First comes the Gibbs Lecture, which gives an overview of the
typographic research I have been doing. Then comes a complete deseription of
the TEX typesetting system, a new system that seems to incorporate the
“right” fundamental principles for computer-based composition in its notions
of horizontal and vertical lists of boxes and glue. The last part is a similar
description of METAFONT, a system for device-independent design of charac-
ter shapes. Since the three parts are independent, each has separate page
numbers, and the TEX and METAFONT descriptions have separate indexes.

My research on typography began only in 1977, so I can’t claim that TEX
and METAFONT are the best solutions to the problems they deal with. All I
can say is that they have been applied to a great variety of typographic

vii

applications, and that the results look extremely promising. These initial suc-
cesses have made it desirable to publish the present book as an interim report.
In this way a larger community of people will be able to experiment with and
criticize the ideas, even thoughTEX and METAFONT are in their infancy, and
even though there hasn’t yet been time for me to advance past the first draft of
my designs for the fonts used or to typeset the material on a high-resolution
phototypesetter.
I have been helped by so many people it is impossible to thank them all, so
I must simply hit the highlights. In the first place, I want to thank the people
-at Digital Press for their encouragement to prepare this book and for the care
with which they produced it. Second, I want to thank the American Mathemat-
ical Society for its unexpectedly strong endorsement of this work, and for the
benefit of the experience and wisdom of several members of its editorial staff.
Third, I wish to thank the National Science Foundation, the Office of Naval
Research, and the IBM Corporation for supporting my research at Stanford.
Fourth, I owe an enormous debt of gratitude to Leo Guibas and his associates
at Xerox Research, who miraculously produced the camera-ready copy for
Parts 2 and 3 of this book on experimental printing equipment. Fifth, I want to
thank the hundreds of TEX users who have given me the benefit of their
experiences. And above all, I wish to thank my wife, Jill, for her support and
guidance. ~

D.EK.
Stanford, California
August, 1979

viii

Acknowledgments

D. E. Knuth: “Mathematical Typography.” Copyright © 1979 by the American
Mathematical Society. Reprinted with permission from the Bulletin (New
Series) of the American Mathematical Society, March 1979, Vol. 1, No. 2, pp.
337-372. Josiah Willard Gibbs Lecture, given under the auspices of the
American Mathematical Society, January 4, 1978; received by the editors
February 10, 1978. This research was supported in part by the National
Science Foundation grant MCS72-03752 A03, and by the Office of Naval
Research contract N0014-76-C-0330.

D. E. Knuth: TgX, a system for technical text. Copyright © 1979 by the Amer-
ican Mathematical Society. Reprinted with permission. Originally pub-
lished in June 1979 by the American Mathematical Society as a manual by
the same title. The version that appears here is based on Stanford Arti-
ficial Intelligence Laboratory Memo AIM-317.3/ Computer Science De-
partment Report No. STAN-CS-78-675, September 1979. This research was
supported in part by the National Science Foundation grant MCS72-03752
A03, and by the Office of Naval Research contract N0014-76-C-0330. The
author wishes to thank the many individuals who made helpful comments
on the first drafts of the manual.

D. E. Knuth: METAFONT, a system for alphabet design. Copyright © 1979 by
the American Mathematical Society. The version that appears here is
based on Stanford Artificial Intelligence Laboratory Memo AIM-332/
Computer Science Department Report No. STAN-CS-79-762, September
1979. This research was supported in part by the National Science Foun-
dation grant MCS72-03752 A03, and by the Office of Naval Research con-
tract N0014-76-C-0330. The author wishes to thank the many 1nd1v1duals
who made detailed comments on pre-preliminary drafts.

Digital Press gratefully acknowledges the support and cooperation of the
American Mathematical Society.

ix

Table of Contents

Part 1 Mathematical Typography
Part 2 TEX, a system for technical text
Part 3 METAFONT, a system for alphabet design

Xi

PART 1

Mathematical Typography

Mathematical Typography

Dedicated to George Pélya on his 90th birthday

ABSTRACT. Mathematics books and journals do not look as beautiful
as they used to. It is not that their mathematical content is unsatis-
factory, rather that the old and well-developed traditions of typeset-
ting have become too expensive. Fortunately, it now appears that
mathematics itself can be used to solve this problem.

A first step in the solution is to devise a method for unambigu-
ously specifying mathematical manuscripts in such a way that they
can easily be manipulated by machines. Such languages, when prop-
erly designed, can be learned quickly by authors and their typists, yet
manuscripts in this form will lead directly to high quality plates for
the printer with little or no human intervention.

A second step in the solution makes use of classical mathematics
to design the shapes of the letters and symbols themselves. It is
possible to give a rigorous definition of the exact shape of the letter
“a”, for example, in such a way that infinitely many styles (bold,
extended, sans-serif, italic, etc.) are obtained from a single definition
by changing only a few parameters. When the same is done for the
other letters and symbols, we obtain a mathematical definition of type
fonts, a definition that can be used on all machines both now and in
the future. The main significance of this approach is that new symbols
can readily be added in such a way that they are automatically con-
sistent with the old ones.

Of course it is necessary that the mathematically-defined letters
be beautiful according to traditional notions of aesthetics. Given a
sequence of points in the plane, what is the most pleasing curve that
connects them? This question leads to interesting mathematies, and
one solution based on a novel family of spline curves has produced
excellent fonts of type in the author’s preliminary experiments. We
may conclude that a mathematical approach to the design of al-
phabets does not eliminate the artists who have been doing the job for
s0 many years; on the contrary, it gives them an exciting new medium
to work with.

2 Mathematical Typography

I will be speaking today about work in progress, instead of completed
research; this was not my original intention when I chose the subject of this
lecture, but the fact is I couldn’t get my computer programs working in time.
Fortunately it is just as well that I don’t have a finished product to describe to
you today, because research in mathematics is generally much more interest-
ing while you’re doing it than after it’s all done. I will try therefore to convey in
this lecture why I am so excited about the project on which I am currently
working.

My talk will be in two parts, based on two different meanings of its title.
First I will speak about mathematical typography in the sense of typography
as the servant of mathematics: the goal here is to communicate mathematics
effectively by making it possible to publish mathematical papers and books of
high quality, without excessive cost. Then I will speak about mathematical
typography in the sense of mathematics as the servant of typography: in this
case we will see that mathematical ideas can make advances in the art of
printing.

Preliminary examples. To set the stage for this discussion I would like to
show you some examples by which you can “educate your eyes” to see mathe-
matics as a printer might see it. These examples are taken from the Transac-
tions of the American Mathematical Society, which began publication in 1900;
by now over 230 volumes have been published. I took these volumes from the
library shelves and divided them into equivalence classes based on what I
could perceive to be different styles of printing: two volumes were placed into
the same class if and only if they appeared to be printed in the same style. It
turns out that twelve different styles can be distinguished, and it will be
helpful for us to look at them briefly.

The first example (Figure 1a) comes from p. 2 of Transactions volume 1; I
have shown only a small part of the page in order to encourage you to look at
the individual letters and their positions rather than to read the mathematics.
This typeface has an old-fashioned appearance, primarily because the upper
case letters and the taller lower case ones like ‘%’ and ‘k’ are nearly twice as tall
as the other lower case letters, and this is rarely seen nowadays. Notice the
style of the italic letter ‘a’, the two strokes having a common segment in the
middle. The subseripts and superscripts are set in rather small type.

This style was used in volumes 1 to 12 of the T'ransactions, and also in the
first 21 pages of volume 13. Then page 22 of volume 13 introduced a more
modern typeface (Figure 1b). In this example the subscripts are still in a very
small font, and unfortunately the Greek a here is almost indistinguishable
from an italic ‘a’. Notice also that the printer has inserted more space before

Mathematical Typography 3
(2) h=% VI8 = % Vi@d) wd| (b)
(3) Pa (21, T2y ooy T Y1, Yo, o0,
there correspond two quadric forns each contain| . hich th 1 alsi
rameters. So much HiLserT states. In ordert ;‘n w ‘1; ch the <p..3re go ¥ normla siny 1{’?/2 » Tl
as known systems it will be convenient to use : as been Con:s ! er.e . rec_cnt y by W. D. Ma
mental cubie, due to HESSE.* usual algebraic elimination theory to the pi
, 2SSE.
Referred to an inflexional triangle, the equati @ (21, x2, -+, ¥n:ya) would be found fo
$(0,0, -+, 0:y,) would be, say, of degree p.
3) @ =9} + 2} + 2] + 6mx2;| theorem to ® (&1, Za, *++, Zm : ¥a), therefore,
All conic polars accordingly have the form : flegree 4 w.ould.appear. This is not m general t
.) 5 is sought in this paper, as may readily be sho
) a,@; = (y21 + v + y2%) + 2m(yaes | The polynomials ¢, may have roots for which
(c) I call this ineffective part of x, “funocuous” six planes y;+yi = 0, cach counted thr‘e ¢ tim (d)
validate the fundamental proposition type y1 ¥ — ¥s s = 0, each counted twice.
We have seen that any point on the line ¥, +
() = f(x0)] =(x, image in (X) the whole line X; + X, = 0, X;
in () meets the line in one point, its image s3 co
which was proved above (P. 4) for effective val| the system sp has also the three lines of this ty).
ineffective part of , is innocuous is clear: it, as 12. Algebraic procedure. The plane cor
that the variation of x, does not take place in it and the vertex (1, 0, 0, 0) has the cquation
D. 3. But this consideration leads to the defin s 2 - pas 5 - pag 2
of x. By this I mean the collection of values wt Pas &3 7T Iz %31 Pes 4
i. e, Since (y) and (y') both satisfy this equation we
(e) | of systems of division algebras. The next syst: z=620 = (929, ...,0"20), 0<60<2m, (f)

of order p%? over F with the basal units %%k (
with an irreducible equation of degree pg, three
rational functions 8(¢) and ¥(z) with coefficic
iterative 0?(1') of 6(7) is ¢, and likewise Y?(i) =i
by

6 [y ()] =y [6*()] " g1
The complete multiplication table of the un
associative law from

(=01, - -

i1=g, kP=vy , ki=ajk , ji=

< C" is called a Reinhardt circular set if along w
)e E also the set

{zllz] ==}

bounded closed subset of C”, unisolvent with respect
. The function b(z) being defined and lower semic

k

B = (A, .),

Vo = Cv*n—l.n—l

FIGURE 1. A sequence of typographical

styles

in the AMS Transactions: (a) vol 1 (1900), p. 2; (b)
vol 13 (1912), p. 135; (c¢) vol 23 (1922), p. 216; (d) vol
25 (1923), p. 10; (e) vol 28 (1926), p. 207; (f) vol 105

(1962), p. 340;

4 Mathematical Typography

and after parentheses than we are now accustomed to. During the next few
years the spacing within formulas evolved gradually but the typefaces re-
mained essentially the same up through volume 24: with one exception.

The exception was volume 23 in 1922 (Figure 1c), which in my opinion has
the most pleasing appearance of all the Transactions volumes. This modern
typeface is less condensed, making it more pleasant to read. The italic letters
have changed in style too, not quite so happily—notice the ‘x’, for example,
which is not as nice as before—but by and large one has a favorable impression
when paging through this volume. Such quality was not without its cost,
however; according to a contemporary report in the AMS Bulletin [45, p. 100],
the Transactions came out 18 months late at the time! Perhaps this is why the
Society decided to seek yet another printer.

In order to appreciate the next change, let’s look quickly at two excerpts
from the Bulletin relating to the very first Gibbs Lecture (Figure 2). The
preliminary announcement in 1923 appeared in the modern typeface used
during that year, but the letter shapes in the report of the first lecture in 1924
were very cramped and stilted. The upper case letters in the title are about the
same, but the lower case letters in the text are completely different.

This same style appeared in volume 25 of the Transactions (Figure 1d),
which incidentally was set in Germany in order to reduce the cost of printing.
Note that the boldface letters and the italic letters in this example are actually
quite beautiful—and we’re back to the good old style of ‘¢’ again—so the
mathematical formulas looked great while the accompanying text was
crowded. Fortunately only three volumes were published in this style.

A new era for the Transactions began in 1926, when its printing was taken
over by the Collegiate Press in Menasha, Wisconsin. Volumes 28 through 104
were all done in the same style, covering 36 years from 1926 to 1961, inclusive,
and this style (Figure 1e) was used also in the American Mathematical Monthly.
In general the typefaces were quite satisfactory, but there was also a curious
anomaly: Italic letters used in subscripts and superseripts of mathematical
formulas were in a different style from those used on the main line! For
example, notice the two k’s in the first displayed formula of Figure le: the
larger one has a loop, so it is topologically different from the smaller one.
Similarly you can see that the p in k? is quite different from the p in p2. There
are no «’s in this example, but if you look at other pages you will find that the
style of x that I like best appears only in subscripts and superscripts. I can’t
understand why this discrepancy was allowed to persist for so many years.

Another period of typographic turmoil for the Transactions began with
volume 105 in 1962. This volume, which was typeset in Israel, introduced a
switch to the Times Roman typeface (Figure 1f); an easy way to recognize the

®

®

(k)

Mathematical Typography

k-1
0= rhx(z:riai) - (Z".‘ﬂi)xrk = Z t

i=1

This element is of lower length. It follows there
i=1,-.--,k Hence, (a).yields that r;= \r, N
Now 7, # 0, by the minimality of k, and 3 _\ic
which we deduce that > \ia; = 0. But the o; a
which is impossible since in particular A; = 1.

THEOREM 7. Let R be a dense ring of linear t.
F be a maximal commutative subfield D. If Ry
tion of finite rank over F, then R contains als

The set N, is nowhere dense in Z, and thus N=p
For each { € Y— N we must prove that f; satisfi
be the unique projection in {P, | d € D} such that
the algebra (E<ZE)-P, is finite and homogeneot
onal abelian projections Ej, E,, ..., E, such that
(1 £, k= n) be partial isometric operators in (EsZ.
(1) UpUpp=28,;Uy, where 8 is the Kronecker d¢
(2) Uji=Uy; and
(3) U=E,
forall 1 =j,k,I,msn. For each 4 in (E&ZE)-Pg, t
in Z,P, such that

The algebra P is nearly simple if and only if the
(2) N is spanned by a, .-, a"— k- L [’l’ .o
Lj=1,--, k
(b) Either n =k =char F with k evenor n

Proof. By Theorem 5.5, there are elements
ayeer,a®k=l
’ ’ ’ l’ b
for all i, j where each ai')‘ii is in F. Fromt
space of the space spanned by a"~%-1, byseee,y

» b,. Furthermore, ab, =

Assume P is nearly simple. Then there is
show that each b, is in M. To do this, it is nec

stions in GL(W) and h.g, @, B € I as coordinate
ined by the respective bases chosen above. If a,
nction of AP is the minor of |g;| determined by
columns B(1), ..., B(p).- The coordinate ring of
1,5 together with 1/det|h,g|, while that of GL(W)
dsgether with 1/det|g;|. The coordinate functions
, 5o to show A’ is a morphism it suffices to show
mnial in g; and 1/det|g;|. For this, the following

P

haracter of GL(W) is an integral power of the

f Q, ie.
)=0 forevery x €4 for which x(Q) = 0}.

or m, is equivalent to the one induced by the

{lx(z)l: x €4, Ixl<1 and x(w) = 0}

:present the open unit disk in the complex plane, C,
t polydisk in #-dimensional complex space C*. 7"
soundary of D", i.e.

:onverges pathwise to X*, and uniformly for ¢ €
* for which X; is the (last) minimum of Y2, let };",
ilues of Y*, and T the interjump times for Y]
st an i such that }ji = T;* = . Notice that YQ" i3
1d thatase — 0, Yé‘ converges to I Ao inf,X:\. Le
ts of (—o0, o0). Then, for example, if i > 1

4 EBY} - Y} ECT) € DN>Q>i)

€EATNEBY, - K €CTL EDN>Q

FIGURE 1 [continued]: (g) vol 114 (1965), p. 216;
(h) vol 125 (1966), p. 38; (i) vol 169 (1972), p. 232; (§)
vol 179 (1973), p. 314; (k) vol 199 (1974), p. 370; (1)
vol 225 (1977), p. 372.

(h)

6)

)

Mathematical Typography

THE JOSIAH WILLARD GIBBS LECTURESHIP

The Council of the Society has sanctioned the establishment
of an honorary lectureship to be known as the Josiah Willard
Gibbs Lectureship. The lectures are to be of a popular nature
on topics in mathematics or its applications, and are to be
given by invitation under the auspices of the Society. They
will be held annually or at such intervals as the Council may
dircct. It is expected that the first lecture will be delivered
in New York City during the winter of 1923-24, and a com-
mittee has been authorized to inaugurate the lectures by
choosing the first speaker and making the necessary arrange-
ments.

R. G. D. Ricuarbpsox,
Secretary.

THE FIRST JOSIAH WILLARD GIBBS LECTURE

The first Josiah Willard Gibbs Lecture was delivered
under the auspices of this Society on February 29, 1924,
by Professor M. I. Pupin, of Columbia University, in the
auditorium of the Engincering Societies’ Building, New York
City. A large and distinguished audience was present,
inclnding, besides members of the Society, many physicists,
chemists, and engineers who had been invited to attend.

In introducing the speaker, President Veblen spoke as
follows:

“In instituting the Willard Gibbs Lectures, the American
Mathematical Society has recognized the dual character of
mathematics. On the one hand, mathematics is one of the
essential emanations of the human spirit,—a thing to be
valued in and for itself, like art or poetry. Gibbs made

FIGURE 2. A time of transition. (Excerpts from
the AMS Bulletin 29 (1923), p. 385; 30 (1924), p.

289.)

Mathematical Typography 7

difference quickly is to look at the shading on the letter “o0”, since it now is
somewhat slanted; in the previously used fonts this letter always was more
symmetrical, as if it were drawn with a pen held horizontally, but in Times
Roman it clearly has an oblique stress as if it were drawn by a right-handed
penman. Note that the three k’s are topologically the same in the displayed
equation here; but for some reason the two subseript k’s are of different sizes.
Many of the Times Italic letters have a somewhat different style than readers
of the Transactions had been accustomed to, and I personally think that this
font tends to make formulas look more crowded. Actually the changeover to
Times Roman and Times Italic wasn’t complete; the italic letter g still had its
familiar shape, perhaps because the new shape looked too strange to mathe-
maticians.)

Volumes 105 through 124 were all done in this style, except for a brief
interruption: In volumes 114, 115, and 116 the shading on the o’s was symmetri-
cal and the k’s had loops (Figure 1g). Another style was used for volumes
125-168 (Figure 1h): again Times Roman was the rule, even in the ¢’s, except
for subseripts and superseripts which were in the style I prefer; for example,
compare the j’s and k’s. (These latter volumes were typeset in Great Britain.)

A greatly increased volume of publication, together with the rising
salaries of skilled personnel, was making it prohibitively expensive to use
traditional methods of typesetting, and the Society eventually had to resort to
a fancy form of typewriter composition that could simply be photographed for
printing. This unfortunate circumstance made volumes 169-198 of the Trans-
actions look like Figure 1i, except for volumes 179, 185, 189, 192, 194, and 198,
which were done in a far better (yet not wholly satisfactory) style that can be
distinguished from Figure 1f by the italic ¢’s. Figure 1j was composed on a
computer using a system developed by Lowell Hawkinson and Richard McQuil-
lin; this was one of the fruits of an AMS research project supported by the
National Science Foundation [2], [3], [4], [5], [6].

Computer typesetting of mathematics was still somewhat premature at
the time, however, and another kind of “cold copy” made its appearance in
volumes 199 through 224—an “IBM Composer” was used, except for volumes
208 and 211 which reverted to the Varityper style of Figure 1i. The new
alphabet was rather cramped in appearance, and some words were even more
crowded than the others (see Figure 1k). At this point I regretfully stopped
submitting papers to the American Mathematical Society, since the finished
product was just too painful for me to look at. Similar fluctuations of typo-
graphical quality have appeared recently in all technical fields, especially in
physics where the situation has gotten even worse. (The history of publication

8 Mathematical Typography

at the American Society of Civil Engineers has been discussed in an interest-
ing and informative article by Paul A. Parisi [44].)

Fortunately things are now improving. Beginning with volume 225, which
was published last year, the Transactions now looks like Figure 11; like Figure
1j, it is computer composed, and the Times Roman typeface is now somewhat
larger. I still don’t care for this particular style of italic letters, and there are
some bugs needing to be ironed out such as the overlap between lines shown in
this example; but it is clear that the situation is getting better, and perhaps
some day we will once again be able to approach the quality of volumes 23 and
24,

Computer-assisted composition. Perhaps the main reason that the situa-
tion is improving is the fact that computers are able to manipulate text and
convert it into a form suitable for printing. Experimental systems of this kind
have been in use since the early 1960s (cf. the book by Barnett [10]), and now
they are beginning to come of age. Within another ten years or so, I expect that
the typical typewriter will be replaced by a television screen attached to a
keyboard and to a small computer. It will be easy to make changes to a
manuscript, to replace all occurrences of one phrase by another and so on, and
to transmit the manuscript either to the television screen, or to a printing
device, or to another computer. Such systems are already in use by most
newspapers, and new experimental systems for business offices actually will
display the text in a variety of fonts [26]. It won’t be long before these ma-
chines change the traditional methods of manuscript preparation in univer-
sities and technical laboratories.

Mathematical typesetting adds an extra level of complication, of course.
Printers refer to mathematics as “penalty copy”, and one of America’s
foremost typographers T. L. De Vinne wrote that “[even] under the most
favorable conditions algebra will be troublesome.” [17, p. 171.] The problem used
to be that the two-dimensional formulas required complicated positioning of
individual metal pieces of type; but now this problem reduces to a much
simpler one, namely that two-dimensional formulas need to be represented as
a one-dimensional sequence of instructions for transmission to the computer.

One-dimensional languages for mathematical formulas are now familiar in
programming languages such as FORTRAN, but a somewhat different ap-
proach is needed when all the complexities of typesetting are considered. In
order to show you the flavor of languages for mathematical typesetting, I will
briefly describe the three reasonably successful systems known to me. The
first, which I will call Type C, is typical of the commercially available systems
now used to typeset mathematical journals (cf. [12]). The second, which I will

Mathematical Typography 9

Formula Type C Type B Type T
1 .
7 $f1$s2%t 1 over 2 1 \over 2
&*
*gq"2 theta sup 2 \thetat2

V 7{()(‘:) $ri(x'i)$t sqri{f(x sub i)} \sqrt{f (x¢i)}

FIGURE 3. Three ways to describe a formula.

call Type B, was developed at Bell Telephone Laboratories and has been used
to prepare several books and articles including the article that introduced the
system [27]. The third, which I will call Type T, is the one I am presently
developing as part of the system I call TgX [29].*

Figure 3 shows how three simple formulas would be expressed in these
three languages. The Type C language uses $f. . . $s. . . $t for fractions, *g
for “the next character is Greek”, ¢ for the Greek letter theta, ” for
superscripts, $r . . . $t for square roots and ’ for subscripts. The Type B
language is more mnemonie, using “over”, “theta”, “sup”, “sqrt”, and “sub”
together with braces for grouping when necessary. The Type T language is
similar but it does not make use of “reserved words”; a special character \ is
used before any nonstandard text. This means that spaces can be ignored,
while they need to be inserted in just the right places in the Type B language;
for example, the space after the “i” is important in the example shown, oth-
erwise f(x;) would become f(x; according to the Type B rules. Another reason
for the \ delimiter in Type T is that it becomes unnecessary to match each
text item against a stored dictionary, and it is possible to use “sup” to mean
supremum instead of superscript. The special symbols \ {} 1 | in Type T can
be changed to any other characters if desired; although these five symbols
don’t appear on conventional typewriters, they are common on computer ter-
minal keyboards.

1This has no connection with a similarly-named system recently announced by Honeywell
Information Systems, or with another one developed by Digital Research. In my language, the T,
E, and X are Greek letters and TEX is pronounced “tech”, following the Greek words for art and
technology.

10 Mathematical Typography

Incidentally, computer typesetting brings us some good news: It is now
quite easy to represent square roots in the traditional manner with radical
signs and vincula, so we won’t have to write «¥> when we don’t want to.2

None of these languages makes it possible to read complex formulas as
easily as in the two-dimensional form, but experience shows that it is not
difficult for untrained personnel to learn how to type them. According to [12],
“Within a few hours (a few days at most) a typist with no math or typesetting
background can be taught to input even the most complex equations.” And the
Type B authors [27] report that “the learning time is short. A few minutes
gives the general flavor, and typing a page or two of a paper generally uncov-
ers most of the misconceptions about how it works.” Thus it will be feasible for
both typists and mathematicians to prepare papers in such a language, with-
out investing a great deal of effort in learning the system. The only real
difficulties arise when preparing tables that involve tricky alignments.

Once such systems become widespread, authors will be able to prepare
their papers and see exactly how they will look when printed. Everyone who
writes mathematical papers knows that his intentions are often misun-
derstood by the printer, and corrections to the galley proofs have a nontrivial
probability of introducing further errors. Thus, in the words of three early
users of the Bell Labs’ system, “the moral seems clear. If you let others do your
typesetting, then there will be errors beyond your control; if you do your own,
then you have only yourself to blame.” [1] Personally, I can’t adequately
describe how wonderful it feels when I now make a change to the manuscript
of my book, as it is stored in the Stanford computer, since I know that the
change is immediately in effect; it never will go through any middlemen who
might misunderstand my intention.

Perhaps some day a typesetting language will become standardized to the
point where papers can be submitted to the American Mathematical Society
from computer to computer via telephone lines. Galley proofs will not be
necessary, but referees and/or copy editors could send suggested changes to
the author, and he could insert these into the manuscript, again via telephone.

Of course I am hoping that if any language becomes standard it will be my
TEX language. Well . . . perhaps I am biased, and I know that TEX provides
only small refinements over what is available in other systems. Yet several
dozen small refinements add up to something that is important to me, and 1
think such refinements might prove important to other people as well. There-
fore I'd like to spend the next few minutes explaining more about TEX.

2 (ADDED IN PROOF). I was pleased to find that this announcement was greeted with an
enthusiastic round of applause when I delivered the lecture.

Mathematical Typography 11

The TEX input language. TEX must deal with “ordinary” text as well as
mathematies, and it is designed as a unified system in which the mathematical
features blend in with the word-processing routines instead of being “tacked
on” to a conventional typesetting language. The main idea of TEX is to con-
struct what I call boxes. A character of type by itself is a box, as is a solid black
rectangle; and we use such “atoms” to construct more complex boxes analo-.
gous to “molecules”, by forming horizontal or vertical lists of boxes. The final
pages of text are boxes made out of lists of boxes made out of lists of boxes, and
so on down to the individual characters and black rectangles, which are not
decomposed further. For example, a typical page of a book is a box formed from
vertical lists of boxes representing lines of type, and these lines of type are
boxes formed from a horizontal list of boxes representing individual letters. A
mathematical formula breaks down into boxes in a natural way; for example,
the numerator and denominator of a fraction are boxes, and so is the bar line
between them (since it is a thin but solid black rectangle). The elements of a
rectangular matrix are boxes, and so on.

The individual boxes of a horizontal list or a vertical list are separated by a
special kind of elastic mortar that T call “glue”. The glue between two boxes
has three component parts (x, ¥, z) expressed in units of length:

the space component, x, is the ideal or normal space desired between
these boxes;

the stretch component, i, is the amount of extra space that is tolerable;

the shrink component, z, is the amount of space that may be removed if
necessary.

Suppose the list contains n + 1 boxes B, B,, . . ., B, separated by n globs of glue
having specifications (x,, ¥y, 2)), . - . , &, ¥a 2,). When this list is made into a
box, we set the glue according to the desired final size of the box. If the final size
is to be larger than we would obtain with the normal spacing «, + : - - + x,, we
increase the space proportional to the y’s so that the actual space between
boxes is

x1+ty1,...,90,,+ty"

for some appropriate ¢ > 0. On the other hand if the desired final size must be
smaller, we decrease the space to

Ly — tzl’ ey ®p — tzn;

in proportion to the individual shrinkages z,. In the latter case t is not allowed
to become greater than 1; the glue will never be smaller than x — z, although it

12 . Mathematical Typography

might occasionally become greater than x + y. Once the glue has been set, the
box is rigid and never changes its size again.

Consider, for example, a normal line of text, which is a list of individual
character boxes. The glue between letters of a word will havex =y =2z = 0, say,
meaning that this word always has the letters butting against each other; but
the glue between words might have x equal to the width of the letter ‘e’, and
y = «, and z = }x, meaning that the space between words might expand or
shrink. The spaces after punctuation marks like periods and commas might be
allowed to stretch at a faster rate but to shrink more slowly.

An important special case of this glue concept occurs when we have “in-
finite” stretchability. Suppose the x and z components are zero, but the y
component is extremely large, say y is one mile long. If such an element of glue
is placed at the left of a list of boxes, the effect will be to put essentially all of
the expansion at the left, therefore the boxes will be right-justified so that the
right edge will be flush with the margin. Similarly if we place such infinitely
stretchable glue at both ends of the list, the effect will be to center the line.
These common typographic operations therefore turn out to be simple special
cases of the general idea of variable glue, and the computer can do its job more
elegantly since it is dealing with fewer primitives. Incidentally you will notice
from this example that glue is allowed to appear at the ends of a list, not just
between boxes; actually it is also possible to have glue next to glue, and boxes
next to boxes, so that a list of boxes really is a list of boxes and glue mixed in
any fashion whatever. I didn’t mention this before, because for some reason it
seems easier to explain the idea first in the case when boxes alternate with
glue.

The same principles apply to vertical lists. For example, the glue that
appears above and below a displayed equation will tend to be stretchable and
shrinkable, but the glue between lines of text will be calculated so that adja-
cent base lines will be uniformly spaced when possible. You can imagine how
the concept of glue allows you to do special tricks like backspacing (by letting x
be negative), in a natural manner.

Line division. One of the more interesting things a system like TEX has to
do is to divide up a paragraph into individual lines so that each line is about the
right length. The traditional way to do this, which is still used on today’s
computer typesetting systems, is to make the best possible line division you
can whenever you come to the right margin, but once this line has been output
you never reconsider it—you start the next line with no memory of what has
come before. Actually it often happens that one could do better by moving a
short word down from one line to the next, but the problem is that you don’t

Mathematical Typography 13

know what the rest of the paragraph will be like when you have only looked at
one line’s worth.

The TEX system will introduce a new approach to the problem of line
division, in which the end of a paragraph does influence the way the first lines
are broken; this will result in more even spacing and fewer hyphenated words.
Here is how it works: First we convert the line division problem to a precisely-
defined mathematical problem by using TEX’s glue to introduce the concept of
“badness”. When a horizontal list of boxes has a certain natural width w (based
on the width of its boxes and the space components of its glue), and a certain
stretchability ¥ (the sum of the stretch components) and a certain shrinkabil-
ity z (the sum of the shrinkages), the badness of setting the glue to make a box
~ of width W is defined to be 1 + 100¢3 in our previous notation; more precisely, it

is

1, W =w,
— 3

1+100(—W-—w), iEW > w,
- 3

1+100(“’—ZW—), ifw—2z=<=W<uw,

infinite, ITW<w- =

Thus if the desired width W is near the natural width w, or if there is a lot of
stretchability and shrinkability, the badness rating is very small; but if W is
much greater than w and there isn’t much ability to stretch, we have a lot of
badness. Furthermore we add penalty points to the badness rating if the line
ends at a comparatively undesirable place; for example, when a word needs to
be hyphenated, the badness goes up by 50, and an even worse penalty is paid if
we have to break up mathematical formulas.

The line division problem may now be stated as follows. “Given the text of
a paragraph and the set of all allowable places to break it between lines, find
breakpoints that minimize the sum of the squares of the badnesses of the
resulting lines.” This definition is quite arbitrary, of course, but it seems to
work. Preliminary experiments show that the same choice of breakpoints is
almost always found when simply minimizing the sum of the individual bad-
nesses rather than the sum of their squares, but it seems wise to minimize the
sum of squares as a precautionary measure since this will also tend to mini-
mize the maximum badness.

Just stating the line division problem in mathematical terms doesn’t solve
it, of course; we need to have a good way to find the desired breakpoints. If

14 Mathematical Typography

there are n permissible places to break (including all spaces between words
and all possible hyphenations), there are 2" possible ways to divide up the
paragraph, and we would never have time to look at them all. Fortunately
there is a technique that can be used to reduce the number of computational
steps to order n?instead of 2% this is a special case of what Richard Bellman
calls “dynamic programming.” Let f(j) be the minimum sum of badness
squares for all ways to divide the initial text of the paragraph up to breakpoint
7, including a break at j, and let b(i, j) be the badness of a line that runs from
breakpoint ¢ to breakpoint j. Let breakpoint 0 denote the beginning of the
paragraph; and let breakpoint n + 1 be the end of the paragraph, with
infinitely expandable glue inserted just before this final breakpoint. Then

f0) = 0;
f() = min (f@) + bG,5)), forl=j=n+1
. 0=i<j

The computation of f(1),...,f(n + 1) can be done in order n? steps, and f(n + 1)
will be the minimum possible sum of badnesses squared. By remembering the
values of 7 at which the minima occurred for each 7, we can find breakpoints
that give the best line divisions, as desired.

In practice we need not test extremely unlikely breakpoints; for example,
there is rarely any reason to hyphenate the very first word of a paragraph.
Thus it turns out that this dynamic programming method can be further
improved to an algorithm whose running time is almost always of order n
instead of n% and comparatively few hyphenations will need to be tried. Inci-
dentally, the problem of hyphenation itself leads to some interesting mathe-
matical questions, but I don’t have time to discuss them today. (Cf.[41] and the
references in that paper.)

The idea of badness ratings applies in the vertical dimension as well as in
the horizontal; in this case we want to avoid breaking columns or pages in a
bad manner. For example, penalty points are given for splitting a paragraph
between pages after a hyphenation, or for dividing it in such a way that only
one of its lines—a so-called “widow” line—appears on a page. The placement of
illustrations, tables, and footnotes is also facilitated by formulating appropri-
ate rules of placement in terms of badness.

There is more toTEX, including for example some facilities for handling the
rather intricate layouts often needed to typeset tables without having to
calculate column widths; but I think I have described the most important
principles of its organization. During the next few months I plan to write the
computer programs for TEX in such a way that each algorithm is clearly

Mathematical Typography 15

explained and so that the system can be implemented on many different
computers without great difficulty; then I intend to publish the programs in a
book so that everyone who wants to can use them.

Entr’acte. I said at the beginning that this talk would be in two parts,
discussing both the ways that typography can help mathematics and that
mathematics can help typography. So far we have seen a little of both, but the
mathematics has been comparatively trivial. In the remainder of my lecture 1
would like to discuss what I believe is a much more significant application of
mathematics to typography, namely to the specification of the letter shapes
themselves. A more accurate way to describe the two parts of my lecture would
be to say that the first part was about TgX, a system that takes manusecripts
and converts them into specifications about where to put each character on
each page; and the second part will be about another system I'm working on
called METAFONT, which generates the characters themselves, for use in the
inkier parts of the printing business.

Before I get into the second part of my lecture I need to discuss recent
developments in printing technology. The most reliable way to print mathe-
matics books of high quality during the past several decades has been to use
the monotype process?, which casts characters in hot lead, together with hand
operations for complex built-up formulas. When I watched this process being
applied to my own books several years ago, I was surprised to learn that the
lead type was used to print only one copy; the master copy was then photo-
graphed, and the real printing took place from the photographic plates. This
somewhat awkward sequence of steps was justified because it was the best
way known to give good results. During the 1960s, however, hot lead type was
replaced for many purposes by devices like the Photon machine used to pre-
pare the printed programs for today’s lecture; in this case the process is entirely
photographical, since the letter shapes are stored as small negatives on a
rotating disk, and the plates needed for printing are obtained by exposing the
film after transforming the characters into the proper size and position with
mirrors and lenses (cf. [10]). Such machines are limited by slow speed and the
difficulties of adding new characters.

“Third-generation” typesetting equipment. More recent machines, such as
the one used to prepare the current volumes of the Transactions, have re-
placed these “analog” processes by a “digital” one. The new idea is to divide
the page or the photographic negative into millions of tiny rectangles, like a
piece of graph paper or like a television screen but with a much higher resolu-

3 Actually the Monotype Corporation now manufactures digital photosetting equipment as
well as the traditional ‘monotype’ machines.

16 Mathematical Typography

tion of about 1000 lines per inch. For each of the tiny “pixels” in such a raster
pattern—there are about a million square pixels in every square inch—the
typesetting machine decides whether it is to be black or white, and the black
ones are exposed on the photographic plate by using a very precisely controlled -
electron beam or laser beam. Since these machines have few moving parts and
require little or no mechanical motion, they can operate at very high speeds
even though they are exposing only a tiny bit of the film at any time.

Stating this another way, the new printing equipment essentially treats
each page of a book as a huge matrix of 0’s and 1’s, with ink to be placed in the
positions that are 1 while the 0 positions are to be left blank. It’s like the
-flashecards at a football stadium, although on a much grander scale. The total
job of a system like TEX now becomes one of converting an author’s manuscript
into a gigantic matrix of binary digits or “bits.”

The first question we must ask, of course, is, “What happens to the qual-
ity?” Clearly a television picture is no match for a photograph, and the digital
typesetting machines would be quite unsatisfactory if their output looked
inferior to the results obtained with metal type. In matters like this, I have to
confess being somewhat of a stickler and a perfectionist; for example, I refuse
to eat margarine instead of butter, and I have never heard an electronic organ
that sounds even remotely as beautiful as a pipe organ. Therefore I was quite
skeptical about digital typography, until I saw an actual sample of what was
done on a high quality machine and held it under a magnifying glass: It was
impossible to tell that the letters were generated with a discrete raster! The
reason for this is not that our eyes can’t distinguish more than 1000 points per
inch; in appropriate circumstances they can. The reason is that particles of ink
can’t distinguish such fine details—you can’t print the edge of an ink line that
zigzags 1000 times on the diagonal of a square inch, the ink will round off the
edges. In fact the critical number seems to be more like 500 than 1000. Thus the
physical properties of ink cause it to appear as if there were no raster at all.

It now seems clear that discrete raster-based printing devices will soon
make the other machines obsolete for nearly all publishing activity. Thus in
future days the fact that Gutenberg and others invented movable type will not
be especially relevant; it will merely be a curious historical fact that influenced
history for only about 500 years. The ultimately relevant thing will be mathe-
maties: the mathematics of matrices of 0’s and 1’s!

Semiphilosophical remarks. I have to tell the next part of the story from my
personal point of view. As a combinatorial mathematician, I really identify
with matrices of 0’s and 1’s, so when I learned last spring about such printing
machines it was impossible for me to continue what I was doing; I just had to

Mathematical Typography 17

take time off to explore the possibilities of the new equipment. My motivation
was also increased by the degradation of quality I had been observing in
technical journals; and furthermore the publishers of my books on computer
programming had tried valiantly but unsuccessfully to produce the second
edition of volume 2 in the style of the first edition without using the rapidly-
disappearing hot lead process. It appeared that my books would soon have to
look as bad as the journals! When I saw that these problems could all be solved
by appropriate computer programming, I couldn’t resist trying to find a solu-
tion by myself.

One of the most important factors in my motivation was the knowledge
that the problem would be solved once and for all, if I could find a purely
mathematical way to define the letter shapes and convert them to discrete
raster patterns. Even though new printing methods are bound to be devised in
the future, possibly even before I finish volume seven of the books I'm writing,
any new machines are almost certain to be based on a high precision raster;
and although the precision of the raster may change, the letter shapes can
stay the same forever, once they are defined in a machine-independent form.
My goal was therefore to give a precise description of the shapes of all the
symbols I would need.

I looked at the way fonts of type are being digitized at several places in
different parts of the world; it is basically done by taking existing fonts and
copying them using sophisticated camera equipment and computer programs,
together with manual editing. But this seemed instinctively wrong to me,
partly because the sophisticated equipment wasn’t readily available in our
laboratory at Stanford, and partly because the copying of copyrighted fonts is
of questionable legality, but mostly because I felt that the whole idea of
making a copy was not penetrating to the heart of the problem. It reminded me
of the anecdote I had once heard about slide rules in Japan. According to this
story, the first slide rule ever brought to the Orient had a black speck of dirt on
it; so for many years all Japanese slide rules had a useless black spot in the
same position! The story is probably apocryphal, but the point is that we
should copy the substance rather than the form. I felt that the right question
to ask would not be “How should this font of type be copied?” but rather: “If
the great type designers of the past were alive today, how would they design
fonts for the new equipment?” I didn’t expect to be capable of finding the exact
answer to this question, of course, but I did feel that it would lead me in the
right direction, so I began to read about the history of type design.

Well, this is a most fascinating subject, but I ecan’t talk much about it in a
limited time. Two of the first things I read were autobiographical notes by two

18 Mathematical Typography

well-known 20th century type designers, Hermann Zapf [51] and Frederic W.
Goudy [20], and I was especially interested by some of Zapf’s remarks:

With the beginning of the ’sixties . . . I was stimulated by this new
field [photocomposing] . . . The type-designer—or better, let us start
calling him the alphabet designer—will have to see his task and his
responsibility more than before in the coordination of the tradition in
the development of letterforms with the practical purpose and the
needs of the advanced equipment of today The new photocom-
posing systems using cathode-ray tubes (CRT) or digital storage for
the alphabet bring with them some absolutely new technical prob-
lems, many more than did the past . . . [51, p. 71].

I have the impression that Goudy would not have been so sympathetic to
the new-fangled equipment, yet his book also gave helpful ideas.

Mathematical type design. Fortunately the Stanford Library has a wonder-
ful collection of books about printing, and I had the chance to read many
rather rare source materials. I learned to my surprise that the idea of defining
letters mathematically is by no means new, it goes back to the fifteenth
century and it became rather highly developed in the early part of the six-
teenth. This was the time when there were Renaissance men who combined
mathematics with the real world, and in particular there was an interest in
constructing capital letters with ruler and compass. The first person to do this
was apparently Felice Feliciano, about 1460, whose handwritten manuscript in
the Vatican Library was published 500 years later [19]. Feliciano was an
excellent calligrapher who wanted to put the principles of calligraphy on a
sound mathematical foundation. Several other fifteen-century authors made
similar experiments ([8] gives a critical summary of these early developments),
but the most notable work of this kind appeared in the early sixteenth century.

The Italian mathematician Luca Pacioli, who had previously written the
most influential book on algebra at the time (one of the first algebra books ever
published), included an appendix on alphabets in his De Divina Proportione, a
book about geometry and the “golden section” that appeared in 1509. An-

other notable Italian work on the subject was published by Francesco Tor-
niello in 1517 [48], [33]; Figure 4 illustrates the letter B as constructed by
Pacioli, Torniello, and by Giovanbattista Palatino [43]. Palatino was one of the
best calligraphers of the century, and he did this work about 1650. Similar work
appeared in Germany and France; the German book was probably the most
famous and influential, it was Albrecht Durer’s Underweysung der Messung
[18], a manual of instruction in geometry for Renaissance painters. The French
book was also rather popular, it was Champ Fleury by Geofroy Tory [49], the

Mathematical Typography 19

HO
WS

(a) (b)

(©

FIGURE 4. Sixteenth century ruler-and-com-
pass constructions for the letter B by (a) Pacioli
[42], (b) Torniello [48], and (¢) Palatino [43].

first royal printer of France and the man who introduced accented letters into
French typography. Figure 5 shows Tory’s two suggestions for the letter B. Of
all these books I much prefer Torniello’s, since he was the only one who stated
the constructions clearly and unambiguously.

Apparently nobody carried this work further to lower case letters, numer-
als, or italic letters and other symbols, until more than 100 years later when
Joseph Moxon made a detailed study of some beautiful letters designed in
Holland [38]. The ultimate in refinement of this mathematical approach took
place shortly afterwards when Louis XIV of France commissioned the creation
of a Royal Alphabet. A commission of artists and typographers worked on
Louis’s project for more than ten years beginning about 1690, and they made
elaborate constructions such as those shown in Figure 6 [24].

20 Mathematical Typography

(a) (b)

FIGURE 5. Two more B’s, by Tory [49].

Thus it is clear that the mathematical definition of letter forms has a long
history. However, I must also report near-universal agreement among today’s
~ scholars of typography that those efforts were a failure. At worst, the ruler-
and-compass letters have been called “ugly” and at best they are said to be
“deprived of calligraphic grace” [8]. The French designs were not really fol-
lowed faithfully by Phillipe Grandjean who actually cut Louis XIV’s type, nor
by anybody else to date, and F. W. Goudy’s reaction to this was: “God be
praised!” [20, p. 139]. Such strictly geometric letter forms were in fact criticized
already in the sixteenth century by Giovan Cresci, a noted scribe at the
Vatican Library and the Sistine Chapel. Here is what Cresci wrote in 1560:

I have come to the conclusion that if Euclid, the prince of geometry,
returned to this world of ours, he would never find that the curves of
the letters could be constructed by means of circles made with ecom-
passes. [16].

Well, Cresci was right, But fortunately there have been a few advances in
mathematics during the last 400 years, and we now have some other tricks up
our sleeves besides straight lines and circles. In fact, it is now possible to
prescribe formulas that match the nuances of the best type designers; and

Mathematical Typography 21

NP ——

Grands Quarrez |
chacan Tviee. |

Aubidiriee:
en 0. aulyes.

Letit quaree! divnee:
onrgg autres

T)
T |w,,uzwmﬁmwml_‘m&” ;. ‘;{|
i
L

T G e

Conatruction dela lettre. B. .

F.J\“'
Crands Rhombuides
chacun duwse en 56,
| peats Rhonbes
e/) chague peti rhomd,

g

Construction de la lettrer B

ol i

FIGURE 6. Roman and italic letters designed
for Louis XIV of France [24].

22 Mathematical Typography

perhaps a talented designer working with appropriate mathematical tools will
be able to produce something even better than we now have.

Defining good curves. Let’s consider the following mathematical problem:
Given n points 2y, 25, . . . , 2, in the plane, what is the most pleasing closed
curve that goes through them in the specified order z,, z,, . . . , 2, and then
returns to z,? To avoid degenerate situations we may assume that n is equal to
4 or more. This problem is essentially like the dot-to-dot puzzles that we give to
young children.

Of course it is not a well-posed mathematical problem, since I didn’t say
what it means for a curve to be ‘“most pleasing”. Let’s first postulate some
axioms that the most pleasing curve should satisfy.

PROPERTY 1 (INVARIANCE). If the given points are rotated, translated, or
expanded, the most pleasing curve will be rotated, translated, or expanded in
the same way. [In symbols: MPC(az, + b,. . . ,az, + b) =aMPC(zy,. . . ,2,) +
b.]

PROPERTY 2 (SYMMETRY). Cyclic permutation of the given points does not
change the solution. [MPC(zy, 25, . . . , 2) = MPC(25, . . . , 2, 21).]

PROPERTY 3 (EXTENSIONALITY). Adding a new point that is already on the
most pleasing curve does not change the solution. [If z is between 2, and z;,, on
MPC(zyy. . . ,2)thenMPC(zy,. o« ;212 2k31y - « + 20 =MPC@Zy,. « « 24y 2531,

-5 2]

These properties are rather easy to justify on intuitive grounds. For ex-
ample, the extensionality property says that additional information won’t lead
to a poorer solution.

The next property is not so immediately apparent, but I believe it is
important for the application I have in mind.

PROPERTY 4 (LOCALITY). Each segment of the most pleasing curve be-
tween two of the given points depends only on those points and the ones
immediately preceding and following. [MPC(z,, 22, . . . , 2) is composed of
MPC(z,, 24, 22, 23) from z, to 2z, then MPC(z,, 25, 23, 2, from z,to z3, . . . , then
MPC(z,_y, 24, 21, 22) from z, to z,.] According to the locality property, changes to
one part of a pattern won’t affect the other parts. This simplifies our search for
the most pleasing curve, because we need only solve the problem in the case of
four given points; and experience shows that it is also a great simplification
when letters are being designed, since individual portions of strokes can be
dealt with separately. Incidentally, Property 4 implies Property 2 (cyclic sym-
metry).

One way to satisfy all four of these properties is simply to let the most
pleasing curve consist of straight line segments. But this doesn’t seem ade-
quately pleasing, so we add another postulate:

Mathematical Typography 23

PROPERTY 5 (SMOOTHNESS). There are no sharp corners in the most pleas-
ing curve. [MPC(z,, . . . , z,) is differentiable, under some parameterization.]

In other words, there is a unique tangent at every point of the curve.

The extensionality, locality, and smoothness properties taken together
imply, in fact, that the direction of the tangent at z, depends only on z;_,, z).and
Zr+1- For this tangent appears in two curves, the one from z,._, to z, and the one
from z, to z,,, hence we know that it depends only on (z,s, 2x_y, 2k, 2x+0) and that
it depends only on (2, 2%, Zr+1, 21+2)- By the extensionality property, we can
assume thatn is at least 5, so z),_, is different from z,,, and the tangent must be
independent of them both. We have actually used only a very weak form of
extensionality in this argument.

If we apply the full strength of the extensionality postulate, we obtain a
much stronger consequence, which is quite unfortunate: There is no good way
to satisfy Properties 1-5! For example, suppose we add one more axiom, which
is almost necessary in any reasonable definition of pleasing curves:

PROPERTY 6 (ROUNDNESS). If z,, z,, 23, 2, are consecutive points of a circle,
the most pleasing curve through them is that circle.

This property together with our previous observation about the tangent
depending only on three points completely determines the tangent at each of
our given points; namely, the tangent at z, is the tangent to the circle that
passes through z._,, 2, and z,,,. (Let’s ignore for the moment the possibility
that these three points lie on a straight line.) Now the extensionality property
says that if z is any point between 2, and z, on the most pleasing curve for z,,

., 2, We know the tangent direction at z, as long as z is not on the line from
2, to z,. But there is a unique curve starting at any z off this line and having the
specified tangents at each of its points, namely the arc of the circle from z to 2,
passing through z;: No matter where you start, off the straight line, there is
only one curve having the correct tangents. It follows that the tangent at 2,
depends only on z,, z,, and the tangent at z,, and this is impossible.

The above argument proves that there is no way to satisfy Properties 3, 4,
5, and 6. A similar argument would show the impossibility for any reasonable
replacement for Property 6, since the tangents determined for all z between z,
and 2, will define a vector field in which there are unique curves through
essentially all of the points z, yet a two-parameter family of curves is required
between z, and z,in order to allow sufficient flexibility in the derivatives there.

So we have to give up one of these properties. The locality property is the
most suspicious one, but I mentioned before that I didn’t want to give it up;
therefore the extensionality property has to go. This means that if we take the
most pleasing curve through 2, . . . , 2, and if we specify a further point z
actually on this curve between z,_, and z,, where the tangent at z is not the

24 Mathematical Typography

same as the tangent to the circle from z,_, to 2z to z,, then the “most pleasing”
curve through these n + 1 points will be different. A possible virtue is that we
are encouraged not to specify too many points; a possible drawback is that we
may not be able to get the curves we want.

A practical approximation. Returning to the question of type design, our
goal is to specify a few points z, and to have a mathematical formula that
defines a pleasant curve through these points; such curves will be used to
define the shape of the character we are designing. Ideally it should also be
easy to compute the curves. I decided to use cubic equations

2(t) = ag + agt + ast? + agt®

where a, a;, @,, a; are complex numbers and ¢ is a real parameter. The curves I
am dealing with are cubic splines, namely piecewise cubic equations, since a
different cubic will be used in each interval between two of the given points;
however, the way I am determining the coefficients of these cubics is dif-
ferent from any of the methods known to me, in my limited experience with
the vast literature about splines. Perhaps my way to choose the coefficients is
more awkward than the usual ones; but I have obtained good results with it, so
I'm not ashamed to reveal the curious way I proceeded.

In the first place, I decided that the cubic equation between 2, and z,
should be determined completely by z, and z, and the directions of the tangents
at z, and z,. We have already seen that these tangents are essentially prede-
termined if Properties 4, 5, and 6 are to be valid, and I have also found frequent
occasion in type design when it was desirable to specify that a certain tangent
was to be made horizontal or vertical. Thus, my method of computing a nice
curve through a given sequence of points is first to compute the tangent
directions at each point, then to compute the cubics in each interval based
solely on the endpoints of that interval and on the desired tangents there. By
rotation and translation and scaling, according to Property 1, we can assume
that the problem is to go in the complex plane from 0 to 1, with given directions
at the endpoints. The most general cubic equation that does this is

2(t) = 3t* — 2¢% + re®t(1 — 1)? — se~t¥1 - t),

and it remains to determine positive numbers r and s as appropriate functions
of 0 and . .

In the second place, I realized that it was impossible to satisfy Property 6
with cubic splines, because you can’t draw a circle as a cubic function of t. But I
wanted to be able to get curves that were as near to being circles as possible,
whenever four consecutive data points lay on a circle; the curves should

Mathematical Typography 25

preferably be indistinguishable from circles as far as the human eye is con-
cerned. Therefore when 6 = ¢ I decided to choose » = s in such a way that 2(3)
was precisely on the relevant circle, hoping that the curve between 0 and # and
between } and 1 wouldn’t veer too far away. Well, this turned out to work
extremely well: A little caleculation, done with the help of a computer,* showed
that the maximum deviation from a true circle occurs at the point ¢t = (3 +
V3)/6, and the relative error is negligibly small. For example, if we take four
points equally spaced at distance 1 from some center, the spline curve defined
by these points in the above manner stays between distance 1 and distance
71/54 — 2v2/9 < 1.00055 from the center, an error of less than one part in a
thousand. If there are 8 points, the maximum error is less than 4 parts per
million; and if there are n points, the maximum error goes to zero as 1/nS.
(Changing the notation slightly, let

2) = 1+ (¥ — (3t* — 247 + dit(1 —)1 — ¢ — e""t)(sin %) / (1 + cos %)

and f(t) = [2¢)]*. Then

0 cos i -1
fi) = s(sinz—) —%-_ ¢ — Dt (2t — 1)(6t2 — 6t + 1)
cos— +1
2
and
3-VF s oo
= = “+ s
max ()] |z(3)| 1+ 55396 " Toetesazo T

while ming..<,|2(t)| = 2(0) = 2(}) = 2(1) = 1. The “two-point circle” has max [z¢)| =
V28/27 = 1.01835, while the three-point circle has max |2(f)] = V325/324 =
1.001542, and the eight-point circle has max |z(t)| = 1.0000042455.)

Another case when a natural way to choose r and s suggests itself is when
0 + ¢ = 90° then the curve 2(t) should be nearly the same as an ellipse having
the endpoints on its axes. (This boils down to requiring that (3t — 2t +
(ricos G¥t(1 — £)?)2 + (3t2 — 2t2 — (s/cos ¢)t*(1 — t) — 1)* be approximately equal to
1.) So far therefore I knew that I wanted

4 Thanks are due to the developers of the computer algebra system called MACSYMA at
MIT, and to the ARPA network which makes this system available for research work.

26 Mathematical Typography

2 ‘ 2
= §=—" when 6 = ¢;
" T T¥coso’ 1+ cose ¢
2 cos 6 2cos ¢
= = hen 6 + ¢ = 90°.
" (1 + cos 45°)(cos 45°)’ ¢ (1 + cos 45°)(cos 45°) whent T e
So I tried the formulas
r= afcosﬂ - , s = 0200590 ’
o o) for 5] (PP REY:
(cos 5 cos 5 1+ cos 2 cos 3

which fit both cases. However, this didn’t give satisfactory results, especially
when 6 + ¢ approached 180°. My second attempt was
;= 2 sin ¢ s = 2 sin 60
= , =
(1+coso+‘°) sing-;“’ (1+c050;¢) sinez‘p

and this has worked very well. Figure 7 shows the spline curves that result
from the above approach when ¢ = 60° and when 6 varies from 0° to 120° in 5°
steps.

It can be proved that if 8 and ¢ are nonnegative and less than 180°, the
cubic curve 2(¢) I have defined will never cross the straight lines at angles 8 and
¢ that meet the endpoints 0 and 1 respectively. This is a valuable property in
type design, since it can be used to guarantee that the curve won’t get out of
bounds. However, I found that it also led to unsatisfactory curves when one of
0 or ¢ was very small and the other was not, since this meant that the curve z(t)
would be very close to a straight line yet it would enter that line from outside
at a rather sharp angle. In fact, the angle 6 is not infrequently zero, and this
forces a straight line and a sharp corner at the right endpoint. Therefore I
changed the formulas by making sure that both » and s are always } or greater
unless special exceptions are made; furthermore I never let » or s exceed 4.
Figure 8 shows the spline curves obtained under the same conditions as Figure
7, but with s set to # if the above formula calls for any smaller value.

Using these techniques we obtain a system for drawing reasonably nice
curves, if not the most pleasing ones, and it is especially good at circles. If the
method gives the wrong tangent direction at some point, you can control this
by specifying the correct direction explicitly.

Mathematical Typography 27

é = 60°.

FIGURE 8. Same as Figure 7 but adjusted so
that »' = max@, r), s’ = max(@, s).

Application to type design. Now let’s take a closer look at what can be
drawn with a mathematical system like this. I suppose the natural thing to
show you would be the letters A to Z; but since this is a mathematical talk, let’s
consider the digits 0 to 9 instead. (See Figure 9.) Incidentally, the way I have

0123456789

FIGURE 9. Digits 0 to 9 drawn by the prototype
METAFONT programs. (Further refinements to
these characters will be made before the font
has its final form.)

arranged these numerals illustrates a fundamental distinction between a
mathematician and a printer: the mathematician puts 0 next to the 1, but the
printer always puts it next to the 9.

Most of these digits are drawn by using another idea taken from the
history of typography, namely to imitate the calligrapher who uses pen and
ink. Consider first the numeral ‘3’, for example. The computer program that

‘78 Mathematical Typography

drew this symbol in Figure 9 can be paraphrased as follows. “First draw a dot
whose left boundary is 4 of the way from the left edge to the right edge of the
type and whose bottom boundary is § of the way from the top to the bottom of
the desired final shape. Then take a hairline pen and, starting at the left of the
dot, draw the upward arc of an ellipse; after reaching the top, the pen begins to
grow in width, and it proceeds downward in another ellipse in such a way that
the maximum width occurs on the axis of the ellipse, with the right edge of the
pen § of the way from the left edge to the right edge of the type. Then the pen
width begins to decrease to its original size again as the pen traverses another
ellipse taking it down to a position 48% of the way from the top to the bottom of
the desired final shape. . . .’ ,

Notice that instead of describing the boundary of the character, as the
renaissance geometers did, my METAFONT system describes the curve
traveled by the center of the pen, and the shape of this pen is allowed to vary as
the pen moves. The main advantage of this approach is that the same defini-
tion readily yields a family of infinitely many related fonts of type, each font
being internally consistent. The change in pen size is governed by cubic splines
in a manner analogous to the motion of the pen’s center. In order to define the
20 or so different type fonts used in various places in my books, I need for the
most part to use only three kinds of pens, namely (i) a circular pen, used for
example to draw dots and at the base of the numeral ‘7’; (ii) a horizontal pen,
whose shape is an ellipse, the width being variable but the height being
constantly equal to the height of a hairline pen—such a pen is used most of the
time, and in particular to draw all of the numeral ‘3’ except for the dots; (iii) a
vertical pen, analogous to the horizontal one, used for example to draw the
strokes at the bottom of the ‘2’ and at the top of the ‘5’ and the ‘7. For the fonts
I am using, it was not necessary to use an oblique pen (i.e., an ellipse that is
tilted on its side) except to make the tilde accent for Spanish n’s; but to produce
fonts of type analogous to Times Roman, an oblique pen would of course be
used. If this system were to be extended to Chinese and Japanese characters, 1
think it might be best to add another degree of freedom to the pen’s motion,

~ allowing an elliptical pen shape to rotate as well as to change its width.

The digit ‘4’ shows another aspect of the METAFONT system. Although
this character is fairly simple, consisting entirely of straight lines, notice that
the thick line has to be cut off at an angle at the top. In order to do this, there
are erasers as well as pens. First the computer draws a thick line all the way
from top to bottom, like the upper case letter ‘T’, then it takes an eraser that
erases everything to its left and comes down the diagonal stroke, then it takes

Mathematical Typography 29

a hairline pen and finishes the diagonal stroke. Such an eraser is used also at
the top of the ‘I’ and the bottom of the ‘2’, etc.

Sometimes a simple spline seems to be inadequate to describe the proper
growth of pen width, so in a few cases I had to resort to deseribing the left and
right edges of the pen as separate curves, to be filled in afterwards. This occurs
for example in the main stroke of the numeral ‘2’, whose edges are defined by
two splines having a specified tangent at the bottom and having vertical slope
at the right of the curve.

DABCDEFGHIJKLMN
OPQRSTUVWXYZ[“]-—
‘abedefghijklmno
parstuvwxyzffifififi =lface/ABLAGE

0123456789:;<<=2>7 Seacvoa e
" cC%& () -/ AGAENTDY R

FIGURE 10. A font of 128 characters defined by
METAFONT with standard pen settings. (The
accent characters will be appropriately raised
and centered over other letters when used by

TEX)

With these technfques I found that it was possible to define a decent-look-
ing complete font, containing a total of 128 characters, in about two months,
although it will still be necessary of course to do fine tuning when more trial
pages are typeset. (See Figure 10.) The most difficult symbol by far, at least for
me, was the letter S (and the numeral 8, which uses the same procedure); in
fact I spent three days and nights without sleep, trying to make the S look
right, before I got it. At one point I even felt it would be easier to rewrite all my
books without using any S’s! After the first day of discouraging trials, I
showed the meager results I had to my wife, and she said, “Why don’t you
make it S-shaped?”

30 Mathematical Typography
N :)\l)
” i AN
\ N
I
[1
(a) (b)
- e d ! s b
t;\/ 2 ‘\\ Jl_,‘.if‘ N i.
N / \ I -
Vi / 4 -
/ :: / :
./ i g : o, 4 e ' — =
N 1 £ . i \MHHUIIWL[!IUMUIHHHi!iﬂtJMJﬂﬁﬂh!UJIJIUHEx’!IMIMMHUHJIIHHUIIIMIW{:w
/\ 'z l Corustruction de la lettre S . |"
[T — | !
© (d)

FIGURE 11. The letter S as defined by (a) Pacioli
[42]; (b) Torniello [48]; (¢) Palatino [43]; (d) .
French commission under Jaugeon [24].

Mathematical Typography 31

Figure 11 shows how this problem was solved by Pacioli, Torniello,
Palatino, and the French academicians; but the letter doesn’t look like a
modern S. Furthermore I think the engraver of the French S cheated a little in
rounding off some lines near the middle—perhaps he used a French curve.
With my wife’s assistance, I finally came up with a satisfactory solution,
somewhat like those used in the sixteenth century but generalized to ellipses.
Each boundary of each arc of my S curve is composed of an ellipse and a
straight line, determined by (i) the locations of the beginning and ending
points, (ii) the slope of the straight line, and (iii) the desired left extremity of
the curve. It took me three hours to derive the necessary formulas, and I think
Newton and Leibniz would have enjoyed working on this problem. Figure 12
shows various trial S’s drawn by this scheme with different slopes; I hope you
prefer the middle one, since it is the one I am actually using.

SSSSSSS

FIGURE 12. Different S’s obtained by varying
the slope in the middle. (This shows 4,%,4, 1,4, 3,
and 2 times the ‘“correct” slope.)

‘Families of fonts. To extend the METAFONT system, one essentially
writes a computer program for the description of each character, in a special
language intended for describing pen and eraser strokes. My colleague R. W.
Gosper has observed that this is the opposite of Sesame Street: Instead of “This
program was brought to you by the letter S” we have “This letter S was
brought to you by a program.” There are about 20 parameters to the program,
telling how big a hairline pen is, how wide it should be when drawing straight
or curved stem lines, and specifying the sizes and proportions of various parts
of the letters (the x-height, the heights of ascenders and descenders, the set
width, the length of serifs, and so forth). By changing these parameters, we
obtain infinitely many different styles of type, yet all of them are related and
they seem to blend harmoniously with each other.

For example, Figure 13 shows some of the possibilities. In Figure 13a we
have a conventional “modern” font in the tradition of Bodoni and Bell and
“Scotch Roman”. Then Figure 13b shows a corresponding boldface, in which
the hairlines are slightly larger and the stem lines are substantially wider. By

32 Mathematical Typography
@ Mathematical Mathematical ®
Typography Typography
© @
Mathematical Mathematical
Typography Typography
© ()
Mathematical Mathematical
Typography Typography
(2) (h)
MATHEMATICAL MATHematieal
TyroGRAPHY TYPOgraphy
()
Mathamatioal

Typogrgphy

FIGURE 13. Different styles of type obtained by
varying the parameters to METAFONT: (a)
Computer modern roman; (b) Computer modern
bold; (¢) Computer modern sans serif; (d) Com-
puter modern sans serif bold; (e) Computer mod-
ern typewriter; (f) Computer modern slanted
roman; (g) Computer modern roman with small
caps; (h) Computer modern roman with small
caps and “small lower case”; (i) Computer mod-
ern funny.

Mathematical Typography 33

making the hairlines and stem lines both the same size, and setting the serif
length to zero, we obtain a sans-serif font as shown in Figure 13c. All of these
examples are produced with the same programs defining the letter shapes;
only the parameters are being varied. Actually the particular font shown in
Figure 13c will have a different style of g, because the descenders are espe-
cially short in this font, but I have shown this “g” in order to illustrate the
parametric variations. Figure 13d shows a boldface sans-serif style in which
the pen has an oval shape wider than it is tall; I find this style especially
pleasing, particularly because it came out by accident—I designed the pro-
grams only so that two or three different fonts would look right, all the others
are free bonuses, and I had no idea that this one would be so nice.

With a suitable setting of the parameters, we can even imitate a type-
writer with its fixed width letters, as shown in Figure 13e. There is also a
provision to slant the letters as in Figure 13f; here the pen position is varied,
but the actual shape of the pen is not being slanted, so circles remain circles.

Another setting of the parameters leads to caps and small caps as shown in
Figure 13g; small caps are drawn with the pens and heights ordinarily used for
lower case letters, but controlled by the programs for upper case letters.
Figure 13h shows something printers have never seen before: that is what
happens when you draw lower case letters in the small caps style, and we
might call it “small lower case”. It actually turns out to be one of the most
pleasing fonts of all, except that the dots are too large.

Finally, Figure 13i illustrates the variations you can get by giving weirder
settings to the parameters.

When I was an assistant professor at Caltech, the math department sec-
retaries used to send occasional “crank” visitors to my office, and I recall one
time when a man came to ask if anybody had calculated the value of = “out to
the end” yet. I tried to explain to him that = had been proved irrational, but
this didn’t seem to sink in, so finally I showed him a table of = to 100,000
decimals and told him that the expansion hadn’t ended yet. I wish I could have
" had my typography system ready at that time, so that I could have shown him
Figure 14!

3 . 14159265358979: -

FIGURE 14. Variation in height, width, and pen
size.

34 Mathematical Typography

Figure 14 illustrates another principle of type design, namely that differ-
ent sizes of type in the same style are not simply obtained from each other by
optical transformations. The heights and widths and pen stroke sizes change
at different rates, and a good typographer will design each size of type individ-
ually. I'm not claiming that Figure 14 shows the best way for the proportions to
vary; it will take further experimentation before I have a good idea of what is
desirable. The point I wish to make is that the alteration of type sizes for
subscripts and so on is not as simple as it might seem at first, but a system like
METAFONT will be able to vary the parameters quite readily; and visual
experiments on different parameter settings can be carried out quickly. It
used to take months for a type designer to make his drawings and have them
converted to metal molds before he could see any proofs. One of the results was
that there simply wasn’t time to give proper attention to all the mathematical
symbols and Greek letters, ete., as well as to the more common symbols, so a
printer of mathematics had to make do with a hodge-podge of available charac-
ters in different sizes. (For example, he was often obliged to use different styles
of letters in subscript positions, as we have seen.) Under the approach I am
recommending, we automatically get consistency of all the symbols whenever
the parameters change.

tH
i
iz

[isssssngntl
% 1
il

FIGURE 15. Lettering equivalent to this raster
pattern appears in a Norwegian tapestry from
Gildeskaal old church, woven about 1500 [22, p.
116].

From continuous to discrete. The METAFONT system must not only define
the characters in the continuum on the plane, it must also express them in
terms of a discrete raster. Such squaring off of letters on graph paper has a
long history, going back far before the invention of computers or television; for
example, we all can remember seeing cross-stitch embroidery samplers from
the nineteenth century. The same idea on a finer scale has been used in
tapestries for many centuries: In our own home library, my wife found the

Mathematical Typography 35

example of Figure 15 which was woven in the northern part of Norway about
1500; this shows the name of St. Thomas in a style imitating contemporary
calligraphy. Examples that antedate the printing press can surely be found
elsewhere. '

mathematics
mathematics
mathematies
mathematios
mathematios

FIGURE 16. Adjusting the letters to coarser
rasters.

Figure 16 shows how METAFONT might produce the same letters from
the same parameters but with different degrees of resolution in the raster.
This digitization process itself is considerably more difficult than it may seem
at first, and some nontrivial mathematical concepts were needed before I could
obtain satisfactory results. In the first place, it is not sufficient merely to draw
or to imagine drawing the character with infinite precision and then to
“round” it by blacking in all the squares on graph paper that are sufficiently
dark in the true image. One of the reasons this fails is that the three stem lines
of the m, for instance, might be located in different relative positions with
respect to the grid, so that the first stroke might round to three units wide
(say) and the second might round to four. This would be quite unsatisfactory,
as the eye quickly picks up such a variation in thickness, but it is avoided by
METAFONT since the pen itself is first digitized and then the same digitized
pen is used for all three strokes. Another problem is that those three strokes
should be equally spaced; it would look bad if there were seven units between
the first two and eight units between the last two, so the program for ‘m’ needs
to round its points in such a way that this doesn’t happen.

The process of digitizing the pen is not trivial either. Suppose, for example,
we want a circular pen that is 2 raster units wide; the appropriate pen is

36 Mathematical Typography

clearly a 2 X 2 square, which is the closest to a circle that we can come at this
low degree of resolution. Now notice that we can’t center a 2 X 2 square on any
particular square, since none of the four squares is at its center; the same
problem arises whenever we have to deal with a pen having even dimensions.
One way to resolve this, would be to insist on working only with odd numbers,
but this would be far too limiting; so METAFONT uses a special rounding rule
for the position of the pen’s center. In general, suppose the pen is an ellipse of
integer width w and integer height &; then if the pen is to be positioned at the
real coordinates (x, y), its actual position on the discrete grid is taken to be

(Lx —dw)d, Ly — 8(h)]1)

where Lzl denotes the greatest integer less than or equal to «, and 8(even) = %,
8(odd) = 0. The pen itself, if positioned at the origin, would consist of all
integers (x, y) that satisfy

(2(00 ; ‘(i(w»)2 + (2(1/ _h &(h))

)2 =1+ max (_2_51_5)"0_), —2-6;&-)2

This formula—which incidentally is not the first one I tried—ensures that the
discrete pen will indeed be w units wide and h units high, when w and & are
positive integers. Figure 17 shows the pens obtained for small w and k.

FIGURE 17. Discrete “elliptical” pens of small
integer width and height.

Mathematical Typography 37

Still another problem appears when we want curved lines to look right,
Figure 18(a) shows a semicircle of radius 10 units, drawn with a pen of height 1
and width 3, when the right boundary of the pen falls exactly at an integer
point; the pen sticks out terribly in one place. On the other hand if this right
boundary falls just shy of an integer point, we get the curve in Figure 18(b),
which looks too flat. The ideal oceurs in Figure 18(c), when the right boundary
occurs exactly midway between integers. Therefore the METAFONT pro-
grams adjust the location of curves to the raster before actually drawing the
curves, forcing the favorable situation of Figure 18(c); the actual shape of each
letter changes slightly in order to adapt that letter to the desired raster size in
a pleasant way.

@) ® ©

FIGﬁRE 18. Difficulties of rounding an arc
properly. (Three circles of radius 10 drawn with
al X 3 pen))

There is yet another problem, which arises when the pen is growing in
such a way that the edges of the curve it traces would be monotonic if the pen
were drawn to infinite precision, yet the independent rounding of pen location
and pen width causes this monotonicity to disappear. The problem arises only
rarely, but when it does happen the eye immediately not'ices it. Consider, for
example, the completely linear situation in Figure 19, where each decrease by
one unit in y is accompanied by an increase of .3 units in « and an increase of .2
units in the pen width w; the intended pen height is constant and very small,
but in the discrete case the pen height is taken to be 1. The lightly shaded
portion of Figure 19 shows the true shape intended, but the darker squares
show that the digitized form yields a nonmonotonic left boundary. META-
FONT compensates for this sort of problem by keeping track of the desired
boundaries when the pen width is varying, plotting the two boundaries inde-
pendently. In other words, the idea of rounding the pen location and the width

38 Mathematical Typography

Pen width Rounded width
and location and location

(35, 05105) (3, 0,10) §
(3.7,08,95) (3,0,9
(39, 11,85 (3 1, 8)
(4.1, 1.4, 7.5) (4,
(4.3, 1.7, 65) (4,
(4.5, 2.0, 5.5) (4,
(4.7, 2.3, 45) (4,
(4.9, 26, 35) (4,
(5.1, 2.9, 25) (5,
(5.3, 32, 1.5) (5,
(55, 35, 05) (5,

o O1 D ~3
=

N
~

WWNON == O
— W
—

=
=

FIGURE 19. Failure of monotonicity due to in-
dependent rounding. (Rounding takes (w, x, y)
into (Lwl, Le — 8(Lwd)d, LyJ).)

independently is sometimes effectively abandoned.

The final digitization problem that I needed to resolve was to make the left
half of an “0” look like the mirror image of its right half, to make a left
parenthesis look like the mirror image of a right parenthesis, and so on. This
was done by having the METAFONT programs in such cases choose a center
point that was either exactly at an integer or an integer plus %, and to intro-
duce rounding rules depending on pen motion in such a way that symmetry is
guaranteed.

Alternative approaches. As I have said, I believe the METAFONT system is
successful as a way to define letters and other symbols, but probably even
better procedures can be devised with further research. Some of the lim-
itations of my cubic splines are indicated in Figure 20. Part (a) of that illustra-
tion shows a five-pointed star and the word “mathematics” in an approxima-
tion to my own handwriting, done with straight line segments so that you can
see exactly what the data points are that I fed to my spline routine. Part (b)
shows the way my handwriting might look when I get older; it was obtained by
simply setting» =s = 2in all the spline segments, therefore making clear what
tangent angles are prescribed by the system. Part (c) is somewhat more disci-
plined, it was obtained by putting » = s = } everywhere. Figure 20(d) is like
Figure 20(c) but drawn with a combined pen-and-eraser. Such a combination
can lead to interesting effects, and the star here is my belated contribution to
America’s bicentennial.

When the general formulas for cubic splines are used as I explained above,
we get Figure 20(e) in which the star has become a very good approximation to

Mathematical Typography 39

a circle (as I said it would). In this illustration the pen is thicker and has a
slightly oblique stress. Although my handwriting is inherently unbeautiful,
there are still some kinks in Figure 20(e) that could probably be ironed out if a
different approach were taken.

Womalhsmitica
(it ssatiio.

@%’%7%@%(7/42} _
o Upmalhematics -
o Opathomatiio

FIGURE 20. Examples of the cubic splines
applied to sloppy handwriting.

The most interesting alternative from a mathematical standpoint seems
to be to find a curve of given length that minimizes the integral of the square of
the curvature with respect to arc length. This integral is proportional to the
strain energy in a mechanical spline (in other words, a thin slat or beam) of the
given length, going through the given points, so it seems to be an appropriate
quantity to minimize. E. H. Lee and G. E. Forsythe [31] have reviewed early
work on this variational problem, and shown that it is equivalent to having the
spline at equilibrium with forces applied only at the given points of support.
The Norwegian mathematician Even Mehlum [36] has shown that if we specify
a fixed arc length between consecutive points, the optimum curve will have
linearly changing curvature of the form ax + by + ¢ at point (x, y), and he has
suggested choosing the constants by taking b/a = (y, — y)/(x, — x,) between
(x4,) and (x5, ¥2), and requiring that slope and curvature be continuous across
endpoints. Such an approach seems to require considerably more computation

40 Mathematical Typography

than the cubic splines recommended here, but it may lead to better curves, e.g.
satisfying the extensionality property.

Another interesting approach to curve-drawing, which may be especially
useful for simulating handwriting, is a “filtering” method suggested to me
recently by Michael S. Paterson of the University of Warwick (unpublished). To
get a smooth curve passing through points z,, assuming that these points are
about equally spaced on the desired curve, one simply writes

a0 = 3 Vs -k [30~k
k k

where f(t) is an odd function of order ¢! as ¢ — 0, decreasing rapidly away from
zero; e.g.,

ft) =cseht =2/(e! —e™).

I have not had time yet to experiment with Paterson’s method or to attempt to
harness it for the drawing of letters. It is easy to see that the derivativez’(z;) =

FD(Zpr1 — zk—1) — f@Nzp4s — 2k-2) + -+ - lies approximately in the direction of
Zk+1 — Rp-1e

mathematics
mathematics
mathematics
mathematics
mathematies
mathematics
mathematies
mathemafics
mathemat jcs
mathematice
mathematics
mathematies

FIGURE 21. Increasingly random pen positions;
c=01....

Mathematical Typography 41

Randomization. In conclusion, I’d like to report on a little experiment that I
did with random numbers. One might complain that the letters I have de-
signed are too perfect, too much like a computer, so they lack “character.” In
order to counteract this, we can build a certain amount of randomness into the
choices of where to put the pen when drawing each letter, and Figure 21 shows
what happens. The coordinates of key pen positions were chosen indepen-
dently with a normal distribution and with increasing standard deviation, so
that the third example has twice as much standard deviation as the second,
the fourth has three times as much, and so on. Note that the two m’s on each
line (except the first) are different, and so are the a’s and the t’s, since each
letter is randomly drawn.

After the deviation gets sufficiently large the results become somewhat
ludicrous; and I don’t want people to say that I ended this lecture by making a
travesty of mathematics. So let us conclude by looking at Figure 22, which
shows what is obtained in various fonts when the degree of randomness is
somewhat controlled. I think it can be said that the letters in this final example
have a warmth and charm which makes it hard to believe that they were really
generated by a computer following strict mathematical rules. Perhaps the
reason that the printing of mathematics looked so nice in the good old days was
that the fonts of type were imperfect and inconsistent.

mathematics

mathematics
mathematics

mathoematioeg

FIGURE 22. A bit of randomness introduced
into various styles of type.

Summary. I'd like to summarize now by pointing out the moral of this long
story. My experiences during the last few months vividly illustrate the fact
that there are plenty of good mathematical problems still waiting to be solved,
almost everywhere you look—especially in areas of life where mathematics has
rarely been applied before. Mathematicians can provide solutions to these
problems, receiving a double payoff—namely the pleasure of working out the
mathematics, together with words of appreciation from the people who can use
the solutions. So let’s go forth and apply mathematics in new ways.

42 Mathematical Typography

Acknowledgments. I would like to thank my wife Jill for the many impor-
tant suggestions she made to me during critical stages of this research; also
Leo Guibas and Lyle Ramshaw for the help they provided in making illustra- -
tions at Xerox Palo Alto Research Laboratories; also Lester Earnest, Michael
Fischer, Frank Liang, Tom Lyche, Albert Meyer, Michael Paterson, Michael
Plass, Bob Sproull, Jean E. Taylor, and Hans Wolf, for helpful ideas and
stimulating discussions and correspondence about this topic; also Gordon L.
Walker, for verifying my conjectures about the printing history of the Trans-
actions and for providing me with additional background information; also
Professor Dirk Siefkes for his help in acquiring Figures 4(¢) and 11(c), and the
Kunstbibliothek Berlin der Staatlichen Museen Preussischer Kulturbesitz for
permission to publish them; and to André Jammes for permission to publish
Figures 6 and 11(d).

Bibliography. The references below include several articles not referenced
in the main text, namely a discussion of publishing at the American Institute
of Physics [37]; some experiments in typesetting physics journals with the Bell
Labs system [32], [7]; computer aids for technical magazine layout and editing,
together with a brief proposal for a standard typesetting language [11]; reports
about early computer programs for character generation and mathematics
composition [23], [30], [34], [35], [40], [46]; a description of the mathematics a
traditional printer needs to know [9]; three standard references on the
typesetting of mathematics [14], [47], [50]; some fonts of type and special
characters designed by the American Mathematical Society [39]; a recent and
highly significant approach to mathematical definition of traditional type
faces based on conic sections and on one-dimensional splines [15]; a proposal for
a new way to control the spacing between letters based on somewhat mathe-
matical principles [28]; and two purely mathematical papers inspired by typog-
raphy [13], [21].

I recently learned of another paper about the problem of drawing “most
pleasing curves” subject to the locality property: R. C. Johnson, Interpolation
by Local Space Curves, Journal of Computational and Applied Math. 3 (1977)
pp. 79-84. Johnson uses quintie splines in order to obtain continuous curvature
at the transition points.

Mathematical Typography 43

REFERENCES

1. A. V. Aho, S. C. Johnson, and J. D. Ullman, Typesetting by ACM considered
harmful, Communications of the ACM 18 (1975), 740.

2. American Mathematical Society, Development of the Photon for efficient math-
ematical composition, Final report (May 10, 1965), National Science Foundation grant
G-21913; NTIS number PB168627.

3. American Mathematical Society, Development of computer aids for tape-control
of photocomposing machines, Report No. 2 (July 1967), Extension of the system of
preparing a computer-processed tape to include the setting of multiple line equations,
National Science Foundation grant GN-533; NTIS number PB175939.

4. American Mathematical Society, Development of computer aids for tape-control
of photocomposing machines, Final report, Section B (August 1968), A system for
computer-processed tape composition to include the setting of multiple line equations,
National Science Foundation grant GN-533; NTIS number PB179418.

5. American Mathematical Society, Development of computer aids for tape-control
of photocomposing machines, Final report, Section C (January 1969), Implementation,
hardware, and other systems, National Science Foundation grant GN-533; NTIS num-
ber PB182088.

6. American Mathematical Society, To complete the study of computer aids for
tape-control of composing machines by developing an operating system, Final report,
no. AMATHS-CAIDS-71-0 (April 1971), National Science Foundation grant GN-690;
NTIS number PB200892.

7. American Physical Society, APS tests computer system for publishing opera-
tions, Physies Today 30, 12 (December 1977), 75.

8. Donald M. Anderson, Cresci and his capital alphabets, Visible Language 4
(1971), 331-352. :

9. J. Woodard Auble, Arithmetic for printers, second ed., Peoria, Ill., Bennett,
1954. -

10. Michael P. Barnett, Computer typesetting: Experiments and prospects, Cam-
bridge, Mass., M.I.T. Press, 1965.

11. Robert W. Bemer and A. Richard Shriver, Integrating computer text process-
ing with photocomposition, IEEE Trans. on Prof. Commun. PC-16 (1973), 92-96. This
article is reprinted with another typeface and page layout in Robert W. Bemer, The
role of a computer in the publication of a primary journal, Proc. AFIPS Nat. Comput.
Conf. 42, Part II (1973), M16-M20.

12. Peter J. Boehm, Software and hardware considerations for a technical typeset-
ting system, IEEE Trans. on Prof. Commun. PC-19 (1976), 15-19.

13. J. A. Bondy, The ‘graph theory’ of the Greek alphabet, Graph Theory and
Applications, Y. Alavi et al., eds., Berlin, Springer-Verlag, 1972, pp. 43-54.

14. Theodore William Chaundy, Percy Reginald Barrett, and Charles Batey, The
printing of mathematics, Oxford, Oxford Univ. Press, 1954.

15. P. J. M. Coueignoux, Generation of roman printed fonts, Ph.D. thesis, Dept. of
Electrical Engineering, M.I.T., June, 1975.

16. Giovanni Francesco Cresci Milanese, Essemplare de piv sorti lettere, Rome,
1560. Also edited and translated by Arthur Sidney Osley, London, 1968.

17. T. L. De Vinne, The practice of typography: Modern methods of book composi-
tion, New York, Oswald, 1914.

44 Mathematical Typography

18. Albrecht Diirer, Underweysung der Messung mit dem Zirckel und Richtscheyt,
Nuremberg, 1525. An’ English translation of the -section on alphabets has been pub-
lished as Albrecht Diirer, Of the just shaping of letters, R. T. Nichol, trans., Dover,
1965.

19. Felice Feliciano Veronese. Alphabetum romanum, Giovanni Mardersteig, ed.,
Verona, Officina Bodoni, 1960.

20. Frederic W. Goudy, Typologia: Studies in type design and type making with
comments on the invention of typography, the first types, legibility and fine printing,
Berkeley, Calif.,, Univ. of California Press, 1940.

21. F. Harary, Typographs, Visible Language 7 (1973), 199-208.

22. Roar Hauglid, Randi Asker, Helen Engelstad, and Gunvor Traetteberg, Na-
tive art of Norway, Oslo, Dreyer, 1965.

23. A. V. Hershey, Calligraphy for computers, NWL Report No. 2101, Dahlgren,
Va., U. S. Naval Weapons Laboratory, August 1967; NTIS number AD662398.

24, André Jammes, La réforme de la typographie royale sous Louis XIV, Paris,
Paul Jammes, 1961.

25. Paul E. Justus, There is more to typesetting than setting type, IEEE Trans. on
Prof. Commun. PC-15 (1972), 13-16.

26. Alan C. Kay, Microelectronics and the personal computer, Scientific American
237, 3, September 1977, 230-244.)

27. Brian W, Kernighan and Lorinda L. Cherry, A system for typesetting mathe-
matics, Communications of the ACM 18 (1975), 151-157.

28. David Kindersley, Optical letter spacing for new printing systems, London,
Wynkyn de Worde Society, 1976.

29. Donald E. Knuth, Tau Epsilon Chi, a system for technical text, Stanford
Computer Science report CS675, September, 1978. [Reprinted with corrections as Part
2 of the present book.]

30. Dorothy K. Korbuly, A new approach to coding displayed mathematics for
photocomposition, IEEE Trans. on Prof. Commun. PC-18 (1975), 283-287.

31. E. H. Lee and G. E. Forsythe, Variational study of nonlinear splines, SIAM
Rev. 15 (1973), 120-133.

32. M. E. Lesk and B. W. Kernighan, Computer typesetting of technical journals
on UNIX, Computing Science Tech. Report 44, Murray Hill, N. J., Bell Laboratories,
June, 1976.

33. Giovanni Mardersteig, The alphabet of Francesco Torniello (1517) da Novara,
Verona, Officina Bodoni, 1971,

34. M. V. Mathews and Joan E. Miller, Computer editing, typesetting, and image
generation, Proc. AFIPS Fall Joint Computer Conf. 27 (1965), 389-398.

35. M. V. Mathews, Carol Lochbaum and Judith A. Moss, Three fonts of computer
drawn letters, Communications of the ACM 10 (1967), 627-630.

36. Even Mehlum, Nonlinear splines, Computer Aided Geometric Design, Robert
E. Barnhill and Richard F. Riesenfeld, eds., New York, Academic Press, 1974, pp.
173-2017.

37. A. W. Kenneth Metzner, Multiple use and other benefits of computerized pub-
lishing, IEEE Trans. on Prof. Commun. PC-18 (1975), 274-278.

38. Joseph Moxon, Regulae trium ordinum literarum typographicarum, or the
rules of the three orders of print letters: viz. the (roman, italick, english) capitals and

Mathematical Typography 45

small; Shewing how they are compounded of Geometrick Figures, and mostly made by
Rule and Compass, London, Joseph Moxon, 1676.

39. Phoebe J. Murdock, New alphabets and symbols for typesetting mathematics,
Scholarly Publishing 8 (1976), 44-53. Reprinted in Notices Amer. Math. Soc. 24 (1977),
63-67.

40. Nicholas Negroponte, Raster scan approaches to computer graphics, Comput-
ers and Graphics 2 (1977), 179-193.

41. Wolfgang A. Ocker, A program to hyphenate English words, IEEE Trans. on
Prof. Commun. PC-18 (1975), 78-84.

42. Luca Pacioli, Divina Proportione, Opem a tuttt glingegni perspicaci e curiost
necessaria Ove ciascun studioso di Philosophia, Propectiva, Pictura, Sculptura: Ar-
chitecturo: Musice: altre Mathematice: suavissima: sottile: e admirable et doctrina
consequira: e delectarassi: con varie questione de secretissima scientia (Venice, 1509).

43. Giovanbattista Palatino Cittadino Romano, Libro primo del le lettere maius-
cole antiche romane (unpublished), Berlin Kunstbibliothek, MS. 0S5280. Some of the
individual pages are dated 1543, 1546, 1549, 1574, or 1575. See James Wardrop, Civis
romanus sum: Giovanbattista Palatino and his circle, Signature, n.s. 14 (1952), 3-39.

44. Paul A. Parisi, Composition innovations of the American Society of Civil
Engineers, IEEE Trans. on Prof. Commun. PC-18 (1975), 244-273.

45. R. G. D. Richardson, The twenty-ninth annual meeting of the Society, Bull.
Amer. Math. Soe. 29 (1923), 97-116. (See also vol. 28 (1922) pp. 234-235, 378 for com-
ments on the special Transactions volume, and pp. 2-3 of vol. 28 for discussion of
deficits due to increased cost of printing.)

46. Glenn E. Roudabush, Charles R. T. Bacon, R. Bruce Briggs, James A. Fierst,
Dale W. Isner and Hiroshi A. Noguni, The left hand of scholarship: Computer experi-
ments with recorded text as a communication media, Proc. AFIPS Fall Joint Computer
Conf. 27 (1965), 399-411.

47. Ellen E. Swanson, Mathematics into type, Amer. Math. Soc., Providence, R. 1.,
1971.

48. Francesco Torniello, Opera del modo de fare le littere maiuscuole antique,
Milan, Italy, 1517.

49. Geofroy Tory, Champ fleury, Paris, 1529. Also translated into English and
annotated by George B. Ives, New York, Grolier Club, 1927.

50. Karel Wick, Rules for typesetting mathematics, translated by V. Boublik and
M. Hejlova, The Hague, Mouton, 1965.

51. Hermann Zapf, About alphabets: some marginal notes on type design, Cam-
bridge, Mass. M.I.T. Press, 1970.

PART 2

!

TEX

a system for technical text

TAU EPSILON CHI

a system for technical text

GENTLE READER: This is a handbook about TEX, a new typesetting system

intended for the creation of beautiful books—and especially for books that
contain a lot of mathematics. By preparing a manuscript in TEX format, you will
be telling a computer exactly how the manuscript is to be transformed into pages
whose typographic quality is comparable to that of the world’s finest printers;
yet you won’t need to do much more work than would be involved if you were
simply typing the manuscript on an ordinary typewriter. In fact, your total work
will probably be significantly less, if you consider the time it ordinarily takes to
revise a typewritten manuscript, since computer text files are so easy to change
and to reprocess. (If such claims sound too good to be true, keep in mind that
they were made by TEX’s designer, on a day when TEX happened to be working,
so the statements may be biased; but read on anyway.)

This manual is intended for people who have never used TEX before, as well
as for experienced TEX hackers. In other words, it’s the only manual there is.
Everything you need to know about TEX is explained here somewhere, and so are
a lot of things that most users don’t need to know. If you are preparing a simple
manuscript, you won’t need to know much about TEX at all; on the other hand,
some things that go into the printing of technical books are inherently difficult,
and if you wish to achieve more complex effects you will want to penetrate into
some of TEX's darker corners. In order to make it possible for many types of users

1

2 Preface

to read tHis manual effectively, a special symbol is used to designate material
that is for wizards only: When the symbol

?

appears at the beginning of a paragraph, it warns of a “dangerous bend” in
the train of thought; don’t read the paragraph unless you need to. Brave and
experienced drivers at the controls of TEX will gradually enter more and more of
these hazardous areas, but for most applications the details won’t matter.

All that you really need to know before reading on is how to get a file of text
into your computer using a standard editing program; this manual explains what
that file ought to look like so that TEX will understand it, but basic computer
usage is not explained here. Some previous experience with technical typing will
be quite helpful if you plan to do heavily mathematical work with TEX, although
it is not absolutely necessary. TEX will do most of the necessary formatting of
equations automatically; but users with more experience will be able to obtain
better results, since there are so many ways to deal with formulas.

Computer system manuals usually make dull reading, but take heart: This
one contains JOKEs every once in a while, so you might actually enjoy reading it.
(However, most of the jokes can only be appreciated properly if you understand
a technical point that is being made—so read carefully.)

Another somewhat unique characteristic of this manual is that it doesn’t
always tell the truth. When informally introducing certain TEX concepts, general
rules will be stated, but later you will find that they aren’t strictly true. The
author feels that this technique of deliberate lying will actually make it easier
for you to learn the concepts; once you learn a simple but false rule, it will not
be hard to supplement that rule with its exceptions.

In order to help you internalize what you're reading, occasional EXERCISES are
_ sprinkled through this manual. It is generally intended that every reader should
try every exercise, except for exercises that appear in the “dangerous bend” areas.
If you can’t solve a problem, you can always look at the answers at the end of
the manual. But please, try first to solve it by yourself; then you’ll learn more
and you'll learn faster. Furthermore, if you think you do know the answer to an
exercise, you should turn to Appendix A and check it out just to make sure.

Table of Contents

Q0 =3 O Ot W N =

. The name of the game
. Book printing versus ordinary typing

. Controlling TEX ;
. Fonts of type
. Grouping
. Running TEX
. How TEX reads what you type
. The characters you type
. TEX’s standard roman fonts
. Dimensions
. Boxes
. Glue
. Modes :
. How TEX breaks paragraphs into lines
. How TEX makes lists of lines into pages
. Typing math formulas
. More about math
. Fine points of mathematics typing
. Displayed equations
. Definitions (also called macros)
. Making boxes
. Alignment
. Output routines
. Summary of vertical mode
. Summary of horizontal mode
. Summary of math mode
. Recovery from errors
. Answers to all the exercises
. Basic TEX format
. Example of a book format
. Font tables
. Hyphenation

CONTENTS

Index

. Special notes about using TEX at Stanford-
. Recent extensions to TEX

12
15
18
28
33
36
40
41
45
50
52
57
60
64
71
91
96
99
104
109
114
121
130
138
148
151
154
168
180
187
198
199

4 - Chapter 1

<1> The name of the game

English words like “technology” stem from a Greek root beginning with the letters
TeX ...; and this same Greek word means art as well as technology. Hence the
name TEX, which is an upper-case form of 7ey.

Insiders pronounce the x of TEX as a Greek chi, not as an “x”, so that TEX
rhymes with the word blecchhh. It’s the “ch” sound in Scottish words like loch
or German words like ach; it’s a Spanish “j” and a Russian “kh”. When you say
it properly to your computer, the terminal may become slightly moist.

The purpose of this pronunciation exercise is to remind you that TEX is
primarily concerned with high-quality technical manuscripts: its emphasis is on
art and technology, as in the underlying Greek word. If you merely want to
produce passably good quality—something acceptable and basically readable but
not really beautiful—a simpler system will usually suffice. With TEX the goal is to
produce the finest quality; this requires more attention to detail, but fortunately
it is not that much harder to go this extra distance, and you can take special
pride in the finished product.

On the other hand you might find it more comfortable to pronounce TEX as
a Texan would and to shrug off all this high-falutin’ nonsense about beauty and
quality. Go ahead and do what you want, the computer won’t mind.

<2> Book printing versus ordinary typing

When you first started using a computer terminal, you probably had to adjust
to the difference between the digit “1” and the lower case letter “I”. When you
take the next step to the level of typography that is common in book publishing,
a few more adjustments of the same kind need to be made.

In the first place, there are two kinds of quotation marks in books, but only
one kind on the typewriter. Even on your computer terminal, which has more
characters than an ordinary typewriter, you probably have only a non-oriented
double-quote mark (), because the standard “ascii” code for computers was not
invented with book publishing in mind. However, your terminal probably does
have two flavors of single-quote marks, namely ¢ and ’, which you can get by
typing - and -. The second of these is useful also as an apostrophe.

To produce double-quote marks with TEX, you simply type two single-quote

Book printing versus ordinary typing 5

marks of the appropriate kind. For example, to produce an output like
“I understand.”
(including the quotation marks) you would type
**1 understand. "~

on your terminal.

A typewriter-like style of type will be used throughout this manual to indi-
cate TEX constructions you might type on your terminal, so that the symbols
actually typed are readily distinguishable from the output TEX would produce
and from the comments in the manual itself. Here are the symbols to be used in

the examples:
ABCDEFGHI JKLMNOPQRSTUVWXYZ

abcdefghi jklmnopqrstuvwxyz
0123456789 #3$%&Q@*+-=, .:; 7!
O<OL2[1{Y "+1ie\ | /8%

If these are not all on your computer terminal, do not despair; TgX can make do
with the ones you have. One additional symbol

u

is also used to stand for a blank space, in case it is important to emphasize that
a blank space is typed; without such a symbol you would have difficulty seeing
the invisible parts of certain examples.

Another important distinction between book printing and ordinary typing is
the use of dashes, hyphens, and minus signs. In good math books, these symbols
are all different; in fact there are usually at least four different symbols in use:

a hyphen (-);

an en-dash (-);
an em-dash (—);
a minus sign (—).

Hyphens are used for compound words like “daughter-in-law” and “X-rated”.
En-dashes are used for number ranges like “pages 13-34” and also in contexts

6 ‘ Chapter 2

like “exercise 1.2.6-52”. Em-dashes are used for punctuation in sentences—they
are what we often call simply dashes. And minus signs are used in formulas. A
conscientious user of TEX will be careful to distinguish these four usages, and
here is how to do it:

for a hyphen, type a hyphen (-);

for an en-dash, type two hyphens (—-);

for an em-dash, type three hyphens (——-);

for a minus sign, type a hyphen in mathematics mode ($-$).

(Mathematics mode occurs between dollar signs; it is discussed later, so you
needn’t worry about it now.)

If you look closely at most well-printed books, you will find that certain
combinations of letters are treated as a unit. For example, this is true of the “f”
and the “i” of “find”. Such combinations are called ligatures, and professional
typesetters have traditionally been trained to watch for letter pairs such as ff,
fi, f1, ffi, and ffl. (It’s somewhat surprising how often these combinations
appear.) Fortunately you do not have to concern yourself with ligatures, since
TEX is perfectly capable of handling such things by itself. In fact, TEX will also
look for combinations of adjacent letters (like “A” next to “v”) that ought to be
moved closer together for better appearance; this is called kerning.

To summarize this chapter: When using TEX for straight copy, you type
the copy as on an ordinary typewriter, except that you need to be careful about
quotation marks, the number 1, and various kinds of hyphens/dashes. TEX will
take care of other niceties like ligatures and kerning.

In case you need to type quotes within quotes, for example a single quote followed

by a double quote, you can’t simply type -~ - because TEX will interpret this as "’
(namely, double-quote followed by single-quote). If you have already read Chapter 5,
you might expect that the solution will be to use grouping—namely, to type something
like {"> - ~. But it turns out that this doesn’t produce the desired result, because there
is usually more space following a double quote than there is following a single quote:
What you get is ™, which is indeed a single quote followed by a double quote (if you
look at it closely enough), but it looks almost like three equally-spaced single quotes.
On the other hand, you certainly won’t want to type -1~ -, because this space is much
too large—just as large as the space between words—and TEX might even start a new
line at such a space when making up a paragraph! There are at least two ways to solve

Controlling TEX 7

the problem, both of which involve more complicated features of TEX that we shall
study later. First, if you have a definition such as

\def\2{\hbox to 2pt{}}

in the format of your manuscript, you can type “\2°-. This definition puts 2 points
of blank space between the quotes, so the result is '”; you could, of course, vary the
amount of space, or define another control sequence besides \2 for this purpose. Second,
you could use the idea of “thin space” in math formulas: namely, if you type “$\,$"~

the result will be '”.

@ »Exercise 2.1: OK, now you know how to produce "’ and ’"; how do you get “*
and *“?

<3> Controlling TEX

Your keyboard has very few keys compared to the large number of symbols you
may want to specify. In order to make a limited keyboard sufficiently versatile,
one of the characters you can type is reserved for special use, and it is called
the escape character. Whenever you want to type something that controls the
format of your manuscript, or something that doesn’'t use the keyboard in the
ordinary way, you type the escape character followed by an indication of what
you want to do.

You get to choose your own escape character. It can be any typeable symbol,
preferably some character found in a reasonably convenient location on your .
keyboard, yet it should be a symbol that is rarely (if ever) used in the manuscript
you are typing. For our purposes in this manual, the “backslash” character “\”
will be used as the escape in all the examples. You may wish to adopt backslash
as your personal escape symbol, but TEX doesn’t have any character built in for
this purpose. In fact, TEX always takes the first nonblank character you give it
and assumes that it is to be your escape character.

Note: Some computer terminals have a key marked “ESC”, but that is not
your escape character! It is a key that sends a special message to the operating
system, so don’t confuse it with what this manual calls “escape”.

Immediately after typing “\” (i.e., immediately after an escape character)
you type a coded command telling TEX what you have in mind. Such commands

8 Chapter 3

are called control sequences. For example, you might type
\input ms

which (as we will see later) causes TEX to begin reading a file called “ms.TEX”;
the string of characters “\input” is a control sequence. Here’s another example:

George P\-olya and Gabor Szeg\"o.

TEX converts this to “George Pélya and Gabor Szego.” There are two control
sequences, \~ and \", in this example, and they are used to indicate the special
accents. '

Control sequences come in two flavors. The first kind, like \input, consists
of the escape character followed by one or more letters, followed by a space or by
something besides a letter. {TEX has to know where the control sequence ends,
so you have to put a space after a control sequence if the following character is a
letter; for example, if you type “\inputms”, TEX will interpret this as a control
sequence with seven letters.) The second variety of control sequence, like \,
consists of the escape character followed by a single nonletter. In this case you
don’t need a space to separate the control sequence from a letter that follows,
since control sequences of the second kind always have a single symbol after the
escape. :

When a space comes after a control sequence (of either kind), it is ignored
by TEX; i.e., it is not considered to be a “real” space belonging to the manuscript
being typeset. Thus, the example above could have been typed as '

George P\~ olya and Gabor Szeg\" o.

TEX will treat both examples the same way; it always discards spaces after control
sequences.

So the question arises, what do you do if you actually want a space to appear
after a control sequence? We will see later that TEX treats two or more consecutive
spaces as a single space, so the answer is not going to be “type two spaces.” The
correct answer is to type “escape space”, namely

Controlling TEX 9

(the escape character followed by a blank space); TEX will treat this as a space not
to be ignored. Note that escape-space is a control sequence of the second kind,
since there is a single nonletter (L1) following the escape character. According to
the rules, further spaces immediately following \Ui will be ignored, but if you want
to enter, say, three consecutive spaces into a manuscript you can type “\UALNL”.
Incidentally, typists are often taught to put two spaces at the ends of sentences;
but we will see later that TEX has its own way to produce extra space in such
cases. Thus you needn’t be consistent in the number of spaces you type.

It is usually unnecessary for you to use “escape space”, since control sequences
aren’t often needed at the ends of words. But here’s an example that might shed
some light on the matter: This manual itself has been typeset by TEX, and one
of the things that occurs fairly often is the tricky logo “TEX”, which requires
backspacing and lowering the E. We will see below that it is possible for any user
to define new control sequences to stand as abbreviations of commonly occurring
constructions; and at the beginning of this manual, a special definition was made
so that the control sequence

\TEX

would produce the instructions necessary to typeset “TEX”. When a phrase like
“TEX ignores spaces after control sequences.” is to be typeset, the manuscript
renders it as follows:

\TEX\ ignores spaces after control sequences.

Notice the extra \ following \TEX; this produces the escape-space that is neces-
sary because TEX ignores spaces after control sequences. Without this extra \,
the result would have been

TEXignores spaces after control sequences.
Consider also what happens if \TEX is not followed by a space, as in
the logo “~\TEX"".

It would be permissible to put a blank space after the X, but not an escape
character; if the manuscript were changed to read

the logo “~\TEX\~~

10 Chapter 3

the result would be curious indeed—can you guess it? Answer: The \ ~ would be
a control sequence denoting an acute accent, as in our P\ “olya example above;
the effect would therefore be to put an accent over the next nonblank character,
which as it happens is a single-quote mark. In other words, the result would be

the logo “’I‘EX;

because the ligature that changes -~ into ” is not recognized.

»Exercise 3.1: State two ways to specify the French word “mathématique”. Can
you guess how the word “centimétre” should be specified?

TEX understands almost 300 control sequences as part of its standard built-in
vocabulary, and all of these are explained in this manual somewhere. Fortunately
you won’t have too much trouble learning them, since the vast majority are simply
the names of special characters used in mathematical formulas. For example,
the control sequences \Ascr, \Bscr, ..., \Zscr stand for the upper case script
letters A, B, ..., &; and you can type “\aleph” to get X, “\doteq” to get =,
“\oplus” to get P, “\«” to get <, etc.

As mentioned above, TEX can be taught to understand other control sequences
besides those in its primitive vocabulary. For example, “\TEX” is not one of
the standard control sequences; it had to be defined specially for producing this
manual. In general there will be special control sequences that define the style
of a book or a series of books: they will be used at the beginning of chapters,
or to handle special formats such as might be used in a bibliography, etc. Such
style-defining control sequences are usually defined once and for all by TgXperts
skilled in the lore of control-sequence definition, and novice TEX users don’t have
to worry about the job of defining any new control sequences; the only problem
is to learn how to use somebody else’s definitions. (The person who designs a
TEX style is obliged to write a supplement to this manual explaining how to use
his or her control sequences.)

In this manual we shall frequently refer to a so-called “basic TEX style”
consisting of the definitions in Appendix B, since these basic definitions have
proved to be useful for common one-shot jobs; and since they probably also will
be included as a part of more elaborate styles. Appendix E contains an example
of a more elaborate style, namely the definitions used to typeset D. E. Knuth’s
series of books on The Art of Computer Programming. There’s no need for you
to look at these appendices now, they are included only for reference purposes.

Controlling TEX 11

The main point of these remarks, as far as novice TEX users are concerned,
is that it is indeed possible to define nonstandard TEX control sequences, but it
can be tricky. You can safely rely on the standard control sequences, and on
the basic extensions defined in Appendix B (which will be explained later in this
manual), until you become an experienced TEXnical typist.

Those of you who wish to define control sequences should know that TEX has further

rules about them, namely that many different spellings of the same control sequence
may be possible. This fact allows TEX to handle control sequences quite efficiently; and
TEX's usefulness is not seriously affected, because new control sequences aren’t needed
very often. A control sequence of the first kind (i.e., one consisting of letters only)
may involve both upper case and lower case letters, but the distinction between cases
is ignored after the first letter. Thus \TEX could also be typed “\TEx” or “\TeX" or
“\Tex"—each of these four has the same meaning and the same effect. But “\tex”
would not be the same, because there is a case distinction on the first letter. (Typing
“\gamma” results in 4, but “\Gamma” or “\GAMMA” results in I'.)

Another rule takes over when there are seven or more letters after the escape: all

letters after the seventh are replaced by “x”, and then groups of eight letters are
removed if necessary until at most 14 letters are left. Thus \underline is the same
as \underlixx; and it is also the same as \underlinedsymbols or any other control
sequence that starts with \u followed by n or N, then d or D, then e or E, then r or R,
then 1 or L, then i or I, then 2 or 10 or 18 or 26 or - - - letters. But \underline is not
the same as \underlines, because these two control sequences don't have the same
length modulo 8. ' '

@ As a consequence of these rules, there are 128 essentially distinct control sequences
of length two—namely, escape followed by any 7-bit character, whether a letter or
not. There are 52 X 26 essentially distinct control sequences of length three, because
there are 26 4 26 = 52 choices for the first letter following the escape and 26 different
choices for the second letter; there are 52 X 26 X 26 essentially distinct control sequences
of length four, 52 X 26 X 26 X 26 of length five, 52 X 26 X 26 X 26 X 26 of length six,
52X 26 X 26 X 26 X 26 X 26 of length seven. There are 52 X 26 X 26 X 26 X 26 X 26 X 26
essentially distinct control sequences of length 8 plus a multiple of 8, and the same
number holds for length 9 plus a multiple of 8, ..., length 15 plus a multiple of 8. Thus
the total number of distinct control sequences available is exactly

128 + 52 - 26 -+ 52 - 262 4 52 - 263 + 52 . 264 - 52- 265 + 8 . 52 - 265 = 129151507704;

that should be enough. Even though TEX accepts alternative spellings, you should be
consistent in each manuscript, since some implementations of TEX may not be exactly
the same in this respect.

12 Chapter 3

Nonprinting control characters like (carriage-return) might follow an escape charac-

ter, and these lead to distinct control sequences according to the rules. Initially
TEX is set up to treat \(tab) and \(line-feed) and \(vertical-tab) and \({form-feed) and
\(carriage-return) the same as \U (escape space); it is recommended that none of these
six control sequences be redefined. -

<<4> Fonts of type

Occasionally you will want to change from one typeface to another, for example
if you wish to be bold or to emphasize something. TEX deals with sets of 128
characters called “fonts” of type, and the control sequence \: is used to select
a particular font. If, for example, fonts n, b, and s have been predefined to
represent normal, bold, and slanted styles of type, you might specify the last few
words of the first sentence of this paragraph in the following way:

to be \:b bold \:n or to \:s emphasize \:n something.

(Blank spaces after font codes like b are ignored by TgX just like the spaces after
control sequences; furthermore, since a font code is always of length 1, you don’t
need a space after it. Thus, \: bbold would be treated the same as \ : LibL.t Ibold.
It is probably best to type a space after the font codes; even though you don’t
really need one, for the sake of readability.)

You probably will never* use the \: sequence yourself, since the predesigned
format you are using usually includes special control sequences that give symbolic
names to the fonts. For example, the “basic TEX format” in Appendix B defines
three control sequences for this purpose.

\rm switches to the normal “Roman” typeface: Roman
\s1 switches to a slanted typeface: Slanted
\bf switches to a boldface style: Bold

With such a system, you can type the above example as

to be \bf bold \rm or to \sl emphasize \rm something.

*Well..., hardly ever.

Fonts of type 13

The advantage of such control sequences is that you can use the same abbrevia-
tions \rm, \s1, \bf in any size of type, although different font codes are actually
used for different sizes. For example, fonts a, n, g might be the normal, slanted,
and bold fonts in a standard “10-point” size of type, while ¢, p, s might be the
corresponding fonts in a smaller “8-point” size. It would be difficult to remember
how the codes change in different sizes. So the Art of Computer Programming
book design in Appendix E allows you to say

\tenpoint

whenever you are beginning to type material that belongs in 10-point size, after
which \rm will be equivalent to \:a, and \sl will be equivalent to \:n, etc.
Now if you switch to 8-point size (in a footnote, say) the instruction

\eightpoint

(which appears in the \footnote format) will cause \s1 to be equivalent to \ : p.
All you need to remember is the abbreviations \rm, \s1, and \bf regardless of
what type size you are using.

There actually is a better way yet to handle the above example, using TEX’s
“grouping” feature, which we shall discuss in the next chapter. With this feature
you would type

to be {\bf bold} or to {\sl emphasize} something.

As we will see, switching fonts within { and } does not affect the fonts outside,
so you don’t need to say explicitly that you are returning to \rm in this scheme.
Thus, you can pretty much forget about the other ways we have been discussing
for font switching; it’s best to use grouping.

When you do use the \: instruction to change fonts, here are the rules you need
to know. TgX can handle up to 32 different fonts in any particular job (counting
different sizes of the same style). These 32 fonts are distinguished by the least significant
five bits of the 7-bit ascii character code you type following “\ :”; if you don't understand

14 Chapter 4

what this means, use the following code names for your fonts:

Internal TEX Internal TEX Internal TeX Internal TEX

font font font - font font font font font
number code number code. number code number code
1 @or " 9 Hor h 17 Porp 25 X or x
2 Aor a 10 Iori 18 Qorgq 26 Yory
3 Borb 11 Jor j 19 Rorr 27 Zorz
4 Corc 12 K or k 20 Sors 28 [or;
5 Dord 13 Lorl 21 Tort 29 <org
6 Eore 14 Mor m 22 Uoru 30 Jor=
7 Forf 15 Norn 23 Vorv 31 >or T
8 Gorg 16 Doro 24 Worw 32 ?or+

You never refer to a font by its number, always by its code. Code A is treated the
same as a, etc.; but a wise typist will consistently use the same codes in any particular
manuscript, because later TEXs may allow more than 32 fonts.

Of course TEX can make use of hundreds of different fonts in different jobs. The

32-font restriction applies only within a particular job, because TEX doesn’t want
to keep the details about more than 32 X 128 = 4096 characters in its memory at once;
there isn’t enough room. Thus the internal font codes will refer, in general, to different
“real” fonts. The first time you use a font code, you must define it by giving the full
name of the font in the system’s collection. For example, when the basic TEX format
in Appendix B says

\:a=emri0

this selects font code a and defines it to be the system’s font “cmrl0”, an abbreviation
for “Computer Modern Roman 10 point”. The rule for defining a font is that the font
code (a in this example) must be followed immediately by “=" or “<" (not a space)
when it first appears, and this must be followed immediately by the system name of
the font file; then comes a blank space to denote the end of the font file name.

Once a font code is defined, it can never be redefined again. Thus if you type, say,

“N:a=cmr10” when font code a has already been defined, the characters “=cmr10”
will be treated as part of your manuscript, and they will dutifully be set into type (in
font a). It's best to define all your fonts in format specifications at the very beginning
of your input.

When you change fonts within a line, TEX will line the letters up according
to their “baselines.” For example, suppose that font codes a, b, ¢, d, e, f refer

Grouping 15

respectively to 10-point, 9-point, 8-point, 7-point, 6-point, and 5-point roman
fonts; then if you type

\:a smaller \:b and smaller \:c and smaller
\:d and smaller \:e and smaller \:f and smaller \:a

the result is smaller and smaller and smaller and smaller and smaller and smaer. Of course
this is something authors don’t do very often at the moment, because printers
can’t do such things easily with traditional lead types. Perhaps poets who wish to
speak in a s sman voice Will cause future books to make use of frequent font variations,
but nowadays it’s only an occasional font freak (ike the author of this manuay Who likes
it. One should not get too carried away by the prospect of font switching unless
there is good reason.

»Exercise 4.1: Explain how to type the bibliographic reference “Ulrich Dieter,
Journal fiir die reine und angewandte Mathematik 201 (1959), 37-70.”

<5> Grouping

Every once in a while it is necessary to treat part of a manuscript as a unit, so
you need to indicate in some fashion where that part begins and ends. For this
purpose TEX gives special interpretation to two “grouping characters” (just as it
treats the escape character in a special way). We shall assume in this manual
that { and } are the grouping characters, although any other typeable characters
may be reserved for this function.

We saw one example of grouping in the previous chapter, where it was pointed
out that font changes inside a group do not affect the fonts in force outside.
This gives the effect of what computer scientists call “block structure.” Another
example of grouping occurs when you are using certain control sequences; for
example, if you want to center something on a line you can type

\ctrline{This information will be centered.}

using the control sequence \ctrline defined in basic TEX format (Appendix B).

Grouping is used in quite a few of TEX’s more complex instructions, although
it is largely unnecessary in simple manuscripts. Here’s an example of a slightly
more complex case, the definition of a new control sequence \rm as mentioned

16 Chapter 5

in the previous chapter:
\def\rm{\:a}

This means that control sequence \rm is henceforth to be replaced in the input by
the control sequence \: followed by a. One can also have groups within groups,
eg., '

\def\tenpoint{\def\rm{\:a}\def\sl{\:n}\def\bf{\:q}}

which means that the control sequence \tenpoint is henceforth to be replaced
in the input by

\def\rm{\:a}\def\sl{\:n}\def\bf{\:q}

and these, in turn, describe replacements for the control sequences \rm, \s1, and
\bf. If you are a novice TEX user, you will probably not be using \def yourself
to define control sequences; the point of this example is merely to demonstrate
that groups can indeed arise within groups.

Groups within groups will happen only in rather complicated situations, but in
such cases it is extremely important that you don’t leave out a { or a ¥, lest TEX
get hopelessly confused. For example, the \output routine in Appendix E has as many
as five levels of groups within groups within ...; although each level is fairly simple by
itself, the total cumulative effect can boggle the mind, so the author had to try three
times before getting the {’s and }’s right. In such situations there is a handy rule for
figuring out which { goes with which }, and whether or not you have forgotten any
~braces. Start with a mental count of zero, and go from left to right in your TEX input.
When you get to a {, add one to the count, and write the resulting number lightly above
the {. When you get to a }, write the current count lightly above it and then subtract
one from the count. For example,

Currentcount: 0 1 2 1 2 3 2 3 2 1 2 1 0

If the input is properly grouped, your count will return to zero, and it will never become
less than zero. The { corresponding to any particular } is the nearest preceding { having
the same number as the }. (You need not apply this procedure to the entire input
manuscript, just to any part that is supposed to be understood as a unit. For example,
you can apply this procedure to the right-hand side of any definition that uses \def.)

Grouping 17

Suppose that you had typed
\ctrline{This information will be {\sl cente:;ed}.}

Then you would have gotten
This information will be centered.

Now suppose that you type

\ctrline{This information will be {centered}.}

What do you think will happen? Answer: you will get

This information will be centered.

The result looks just as if those innermost braces had not appeared at all, because
you haven’t used the grouping to change fonts or anything. TEX doesn’t mind if
you want to waste your time making groups for no reason.

Actually there is a reason why you might want to use grouping without font
changes, etc., namely when you want to make sure that spacing comes out right.
In Chapter 3 we discussed the control sequence \TEX that the author of this
manual has used to get the logo “TEX", and we observed that the space after \TEX
is ignored since \TEX is a control sequence. Thus it was apparently necessary to
type “\TEX\U” when there was supposed to be a space following “TEX”, but it
was a mistake to type “\TEX\” when the next character was to be a punctuation
mark or something else besides a space. Well, in all cases it would be correct to
type

{\TEX}
whether or not the following character is a space, because the } stops TEX from
looking for the optional space after \TEX. This might come in handy when you’re
using a text editor (e.g., when replacing all occurrences of a particular word by
a control sequence). Another thing you could do is type

\TEX{}

using an empty group for the same purpose: the {3 here is a group of no charac-
ters, so it produces no output, but it does have the effect of shutting off TEX's
scan for blanks.

»Exercise 5.1: Suppose you want to specify two hyphens in a row; you can’t type
“——" because TEX will read that as an en-dash, so what can you do?

18 Chapter 5

When TEX starts any job, all characters are alike; there is no escape character,

and there are no grouping characters. TEX automatically makes the first nonblank
input character the escape, but if a manuscript is going to use grouping, the grouping
characters must be “turned on.” The basic format in Appendix B does this, and you can
do it yourself in the following way: Type “\chcode{(number)«1” for the left delimiter
and “\chcode(number)+2" for the right delimiter, where (number) is the numeric value
of the 7-bit code for the desired character. For example, “{” and “}" have the respective
codes “173 and ‘176 at Stanford—this is a local deviation from some ascii codes at
other places—so the instructions

\chcode“173+1 \chcode 176«2

appear among the basic format definitions in Appendix B. (Numbers beginning with
* are in octal notation, cf. Chapter 8.) It is possible to have several characters simul-
taneously serving as group delimiters, simply by using \chcode to specify each of
them.

Font changes are not the only things that “stay inside” a group without affecting the

text outside. This same localization applies to any control sequences defined within
the group (except those using \gdef in place of \def); to glue-spacing parameters such
as those set by \baselineskip and \tabskip; to TEX control parameters such as those
set by \trace and \jpar; and to the character interpretations set by \chcode. But
localization does not apply to definitions of \output routines, or to the size parameters
set by \hsize, \vsize, \parindent, \maxdepth, and \topbasel ine. Furthermore,
if you type “{\:a=cmr10}”, the “cmr10” part of this font definition still is irrevocably
tied to code a.

»Exercise 5.2: Would \def\'rm{{\:a}} have the same effect as the definition
\def\rm{\:a}? (The only difference is an extra level of grouping.)

@ »Exercise 5.3: Suppose \chcode“74+1 \chcode"76+2 appears near the begin-
ning of a group that begins with {; these specifications instruct TEX to treat < and
> as group delimiters. According to the rules above, the characters < and > will revert
to their previous meaning when the group ends; but should the group end with » or
with >?

<<6> Running TEX

The best way to learn how to do something is to do it, and the best way to
learn how to use TEX is to use it. Thus, it’s high time for you to sit down at a

Running TEX 19

computer terminal and interact with the TEX system, trying things out to see
what happens. Here are some small but complete examples suggested for your
first encounter. The examples are presented in terms of the Stanford WAITS
system; slightly different conventions may be in use at other installations.

Caution: This chapter is rather a long one. Why don’t you stop reading now,
and come back to this tomorrow?

OK, let’s suppose that you're rested and excited about having a trial run of
TEX. Step-by-step instructions for using it appear in this chapter. First do this:
Go to the lab where the graphic output device is, since you will be wanting to
see the output that you get—it won’t really be satisfactory to generate new copy
with TEX from a remote location. Then log in; and when the operating system

@

types “.” at you, type back
r tex

(followed by {carriage-return)). This causes TEX to start up, and when it is ready

“_ o ”»

it will type “x”. Now type
\input basic

and (carriage-return); this causes the basic TEX format of Appendix B to be read
into the system. TEX will type

(basic.TEX 1 2 3 4)

on your terminal as it is processing this material, meaning that it has read pages
1, 2, 3, and 4 of this file. Then it types “*”, waiting for more input. At this point
the \rm font has been selected, which is the “normal” cmrl0 font, and TgX is
ready to accept an input manuscript using the basic conventions.

Now type several more lines, each followed by (carriage-return):

\hsize 2 in

\vskip 1 in

\ctrline{MY STORY}

\vskip 36 pt

\ctrline{\sl by A. U. Thor}

20 Chapter 6

\vskip 2.54 cm

Once upon a time, in a distant
galaxy called \error \"O\"o\c c,
there lived a computer

named R. J. Drofnats. \par

Mr. Drofnats——-or “~R. J., " as
he preferred to be called-——-
was lousy at typesetting, but he
had other nice qualities. For
example, he gave error messages
when a typist forgot to end a paragraph
properly. \end

\par\vfill\end

This example is a bit long, and more than a bit silly, but it’s no trick for a good
typist like you and it will give you some worthwhile experience, so please do it.
For your own good. :

Incidentally, the example introduces a few more features that you might as
well learn as you are typing, so it’s probably best for you to type a line, then
read the explanation that appears below, then type the next line and so on.

The instruction “\hsize 2 in” says that rather narrow lines will be set,
only 2 inches wide. (On a low-resolution device like the XGP currently used at
Stanford, “2 in” really means about 2.6 inches, because TEX expects that its
output on such devices will be used only for proofreading, or that the output will
be reduced to about 77% of its physical size before actual printing. The 10-point
type cmrl0 will actually appear to be essentially the same size as 13-point type
in books; in other words, you should expect to see output “larger than life.”)

The instruction “\vskip 1 in” means a vertical skip of one inch. (Really
1.3 inches, on an XGP or VERSATEC, but from now on we won’t mention
this expansion.) Then the instruction “\ctrline{MY STORY}” causes a line
of type that says “MY STORY” to be centered in the 2-inch column. (Recall
from Chapter 5 that TgX’s basic formats, which we loaded by typing “\input
basic”, include this \ctrline and grouping facility for centering things.)

The instruction “\vskip 36 pt” is another vertical skip, this time by the
amount 36 points—which is a printer’s measure slightly less than half an inch.
Book measurements have traditionally been specified in units of picas and points,

Running TEX 21

and TgX does not want to shake printers up too badly, so it allows a variety of
different units of length to be specified.

The instruction “\ctrline{\sl by A. U. Thor}” makes another cen-
tered line, this time in the slanted 10-point font (because of the \s1). This \s1
is inside a group, so it doesn’t affect the type style being used elsewhere.

You can probably guess what “\vskip 2.54 cm” means; or aren’t you
ready for the metric system yet? It turns out that 2.54 centimeters is exactly one
inch.

The next line begins the straight text, which is what you will be typing most
of the time; don’t be dismayed by the messy spacing instructions like \vskip
that you have been typing so far. Something messy like that is expected at the
beginning of a manuscript, but it doesn’t last long. When TEX begins to read the
words

Once upon a time, in a distant

it starts up a new paragraph. Now comes the good news, if you haven’t used
computer typesetting before: You don’t have to worry about where to break lines
in the paragraph, TEX will do that for you. You can type long lines or short
lines, it doesn’t matter; every time you hit (carriage-return) it is essentially the
same as typing a space. When TEX has read the entire paragraph, it will try to
break up the text so that each line of output, except the last, contains about the
same amount of copy; and it will hyphenate words if necessary (but only as a
last resort).
After you type in the next input line,

galaxy called \error \"O\"o\c ¢,

something new will happen: TEX will type back an error message, saying

! Undefined control sequence.
(x) galaxy called \error

\"0\"o\¢c ¢,
T

What does this mean? It means, as you might guess, that an undefined control
sequence was found in the input. TEX shows how far it has read your input by
displaying it in two lines; the first line shows what has been read before the error

22 Chapter 6

was detected (namely “galaxylicalledi\erroril”) and the next line shows
what TEX hasn't looked at yet but will see next. So it is plain that “\error”
is the culprit; it is a control sequence that hasn’t been defined. After an error
message, all is not lost, you have several options: ’

(1) Type (line-feed). This will cause future error messages to be printed on
your terminal as usual, but TEX will always proceed immediately without waiting
for your response. It is a fast, but somewhat dangerous, way to proceed.

(2) Type “x” or “X”. This will cause TEX to stop right then and there, but
you will be able to print any pages that have been completed.

(3) Type “e” or “E”. This will terminate TEX and activate the system editor,
allowing you to edit the input file that TgX is currently reading. (Don’t do this
unless there is such a file.)

(4) Type “i” or “I1”. This will cause TEX to prompt you (with “x”) for text
to be inserted at the current place in the input; TEX will go on to read this new
text before looking at what it ordinarily would have read next. You can often
use this option to fix up the error. For example, if you have misspelled a control
sequence, you can simply insert the correct spelling. (The (carriage-return) that
you type after an insertion does not count as a space in the inserted text.)

(5) Type (carriage-return). This is what you should do now. It causes TEX
to resume its processing.

(6) Type a number (1 to 9). TEX will delete this many tokens from the input
that it ordinarily would have read next, and then it will come back asking you to
choose one of these options again. (A “token” is a single character or a control
sequence. In certain rare circumstances TgX will not carry out the deletions, but
you probably will never run into such cases.)

(7) Type “?” or anything else. Then TEX will refresh your memory about
options (1) to (6), and will wait again for you to exercise one of these options.

“a 9

If you respond by (carriage-return) or {line-feed) or “i” or “I1”, TEX tries to
recover from the error as best it can before carrying on. For example, TEX simply
ignores an undefined control sequence like \error. If the error message is

| Missing } inserted.

TgX has inserted a } which it has reason to believe was missing. Chapter 27
discusses error messages and appropriate recovery procedures in further detail.

Running TEX ' 23

OK, you were supposed to type this line containing an \error so that you
could experience the way TEX sometimes complains at you. Similar incidents
will probably happen again, since TEX is constantly on the lookout for mistakes.
The program tries to be a helpful and constructive critic, to catch errors before
they lead to catastrophes. But sometimes, like all programs, it really doesn’t
understand what’s going on, so you have to humor it a bit.

On the remainder of the \error line you will note the strange concoction

\"O\"o\c ¢

and you already know that \" stands for an umlaut accent. The \c¢ stands for
a “cedilla” accent, so you will get

66(;
as the name of that distant galaxy.

The next two lines are very simple, except that we haven’t encountered \par
before. This is one of the ways to end a paragraph. (Another way is to have
a completely blank line. A third way is to come to the end of a file-page in an
input file.)

The following lines of the example are also quite straightforward; they provide
areview of the conventions we discussed long ago for dashes and quotation marks.

But when you type “\end” in the position shown, you will get another error

message. The \end instruction is the normal way to stop TgX, but it has to occur
at a proper time: not in mid-paragraph. The error message you get this time is

! You can’t do that in horizontal mode.

As we will see later, TEX gets into various “modes,” and it is in “horizontal mode”
when it is making a paragraph. If you try to do something that is incompatible
with the current mode, you will get this sort of error message. The proper response
here is, once again, to hit (carriage-return); TEX will resume and forget that you
said \end when you shouldn’t.

The final line of the example séys \par (to end the paragraph and get you
out of horizontal mode), then it says

\vfill

24 Chaypter 6

(which means vertical fill—it will insert as much space as necessary to fill up the
current page), then it says
\end

and now TEX will end its processing gracefully. An “xspool” command will
appear on your terminal; just hit {carriage-return) and the XGP will print your
output. (At least, this is what will happen if you are at Stanford using the WAITS
system.) '

The output corresponding to the above example will not be shown in this
manual; you’ll have to do the experiment personally in order to see what happens.

At this point you might also like to look at the file called ERRORS.TMP on
your area, since it records the error messages that TEX typed back at you. Say
“type errors.tmp” to the operating system.

»Exercise 6.1: If you had typed the second line of the story as
galaxy called \"0O\"o\cc,

TEX would have issued an error message saying that the control sequence \cc is
undefined. What is the best way to recover from this error?

That was Experiment Number 1, and you're ready for Experiment Num-
ber 2—after which you will be nearly ready to go on to the preparation of large
manuscripts.

For Experiment 2, prepare a file called STORY . TEX that contains all the lines
of the above example from “\vskip 1 in” to “\par\vfill\end” inclusive;
but change the last line to ‘

\par\vfill\eject

instead. (The \eject instruction is something like \end; it ends a page, but
not the whole job.) Note that the line that specifies \hsize is to be omitted
from your STORY file; the reason is that we are going to try typesetting the same
story with a variety of column widths. _ ,

Start TEX again (r tex), and \input basic again. But now type

\hsize 4 in
\input story

Running TeX 25

and see what happens. Guess what: TEX is now going to set 4-inch columns, and
it is going to read your STORY . TEX file.

Again it is going to hiccup on the undefined control sequence \error. This
time try typing “e”, so you can see how to get right to the system file editor
from TEX in case your file is messed up. Delete the offending \error from the
file, then start TEX off from scratch again.

Now try typing several instructions on the same line:

\input basic\hsize 4in\input story

If you don’t put a blank space after the ¢ of basic here, you'll get an error
message (a file name should be followed by a blank space), but in this case it’s safe
to hit (carriage-return) and continue. (TEX is just warning you that something
may have been amiss; the rule is that a space should be there, but it will be
inserted if you proceed. From now on, always leave a space after file names, to
avoid any hassle.) ‘

Soon TEX will be reading your story file again—and it will hang up on the
\end error. Instead of removing this error, just type (line-feed) since you know
it is harmless to bypass this error.

When TEX asks for more input, type the following lines, one at a time:

\hsize 3in \input story
\hsize 1.5in \input story
\jpar 1000 \input story
\ragged 1000 \input story
\hsize 1 in \input story
\end

The results will be somewhat interesting, so try it!

If you have followed instructions, your output will consist of six pages; the
first page has MY STORY set 4 inches wide, the next has it set 3 inches wide,
then come three pages where it is set 11 inches wide, and a final page where
TEX tries to make l-inch columns. Since l-inch columns of 10-point type allow
only about 15 characters per line, the last four pages put quite a strain on TEX’s
ability to break paragraphs up into attractive lines.

When TEX fails to find a good way to handle a paragraph, there usually is no
good way (except that TEX doesn’t know how to hyphenate all words). In such
cases the symptom is that TEX reports an “overfull box,” and lines that are too

26 Chapter 6

long will appear in the output. You probably noticed such a complaint about
overfull boxes when TEX was first trying to set the story with 1.5 inch columns.
(If you didn’t notice it on your terminal, look at errors.tmp to refresh your
memory.) Several lines on page 3 of your output will be more than 1.5 inches
long—they are “overfull” and stick out like sore thumbs.

There are two remedies for overfull boxes: You can either rewrite the text of
the manuscript to avoid the problem (in fact, careful authors often do just that),
or you can tell TEX to consider larger spaces acceptable. The instruction \ jpar
1000 essentially makes TEX look for more ways to break the paragraph, including
those with larger spaces; so the fourth page of the output shows a solution of the
problem without any overfull boxes.

The expandability of spaces is defined by the font, not by TEX. Standard TEX fonts

like cmrl0 have fairly tight restrictions on spacing, in accordance with the recom-
mendations of contemporary typographers. These strict standards are appropriate for
books, but not for newspapers, when more tolerance is needed. If you are setting a lot
of material with narrow margins, it would be better to use a font with more variability
in its spacing than to use a high setting of \ jpar, since TgX has to work harder when
\jpar is large (it considers more possibilities). Chapter 14 explains more about \ jpar.

The instruction \ragged 1000 causes paragraphs to be set with a “ragged right
margin”"—i.e., the lines are broken as usual, but spaces between words don’t stretch
or shrink very much. Chapter 14 tells more about \raggedness.

When \hsize was one inch in the above experiment, TEX again came up with an

overfull box, even when \jpar was quite large. The reason is that TEX doesn’t
know how to hyphenate “Drofnats”, the second word of the second paragraph. To
remedy this, replace “Drofnats” by “Drof\-nats” in both places where it occurs in
your story file, and try setting the story with

\hsize 1 in \jpar 1000 \ragged 0

You'll see that the output is now quite reasonable, considering the extremely narrow
column width. The control sequence \- means a discretionary hyphen, namely a legal
place to hyphenate the word if TgX needs to.

At this point you might want to play around with TEX a bit before you read
further. Try different stories, different measurements, and so on. One experiment
particularly recommended is to type

\ctrline{MY \ERROR STORY}

Running TEX 27

after basic has been \input. This produces a somewhat more elaborate error
message with which you should become acquainted, namely:

! Undefined control sequence.

<argument> MY \Error

STORY
plusi000cm minusiO00cm #1
\hskip Opt plusi000cm minu...
(*) \ctrline{MY \ERROR STORY}

The reason for all this is that \ctrline is not a built-in TEX instruction, it is
a control sequence defined in the basic format. Thus TEX did not detect any
mistake when it read “{MY \ERROR STORY2}”, it simply absorbed this group
and passéd the text “MY \ERROR STORY” as an argument to the \ctrline
definition. According to Appendix B, \ctrline gets expanded into the text

\hbox to size{\hskipOpt plusi000cm minusi1000cm
#1\hskipOpt plus1000cm minus1000cm}

where the argument gets inserted in place of the “41”. (You don’t have to un-
derstand exactly what this means, just believe that it is a way to center something
on a line.) A fragment of this expansion is shown in the error message, preceded
and followed by “...” to indicate that there was more to the expansion TEX
was reading. The error message shows that TEX had read the expansion up to
the point “#1”, because \hskip etc. appears on the next line. Furthermore the
error message shows that TEX was reading the argument, and the last thing it
read was the control sequence “\Error”. (You actually typed “\ERROR”, but
upper case and lower case are not distinguished by TEX after the first letter of a
control sequence.)

The point is that when you make an error within a routine controlled by a
defined control sequence like \ctrline, the error message will show everything
TEX knows about what it was reading; the display occurs in groups of two lines
per level of reading, where the first line shows what TEX has read at this level
and the second line shows what is yet to be read. Somewhere in there you should
be able to spot the problem, the thing TEX wasn’t expecting.

Careful study of the 1.5-inch example shows that TEX does not automatically break

lines just before a dash, although it does do so just after one. Some printers will
start new lines with dashes; if you really want to do this you can type “\penalty 0"
just before each dash. For example, “Drofnats\penalty 0--—-".

28 : Chapter 7

<7> How TgX reads what you type

While studying the example in the previous chapter, we observed that an input
manuscript is expressed in terms of “lines” ending with {carriage-return)s, but
these lines of input are essentially independent of the lines of output that will
appear on the finished pages. Thus you can stop typing a line of input at any
convenient place. A few other related rules have also been mentioned:

e A (carriage-return) is like a space.
e Two spaces in a row count as one space.
e A blank line denotes end of paragraph.

Strictly speaking, these rules are contradictory: A blank line is obtained by typing
(carriage-return) twice in a row, and this is different from typing two spaces in
a row. So now let’s see what the real rules are. The purpose of this chapter is to
study the very first stage in the transition from input to output.

In the first place, it’s wise to have a precise idea of what your keyboard sends
to the machine. There are 128 characters that TEX might encounter at each step
in a file or in a line of text typed directly on your terminal. These 128 characters
are classified into 13 categories numbered 0 to 12: .

Category code Meaning

0 Escape character (\ in this manual)
1 Beginning of group ({ in this manual)
2 End of group (¥ in this manual)
3 Begin or end math ($ in this manual)
4 Alignment tab (® in this manual)
5 End of line ({carriage-return) and % in this manual)
6 Parameter (# in this manual)
7 Superscript (* in this manual)
8 Subscript (4 in this manual)
9 Ignored character
10 Space
11 Letter (A,...,Zand a, ..., z)
12 Other character

It’s not necessary for you to learn these code numbers; the point is only that
TEX responds to 13 different types of characters. At first this manual led you to

How TEX reads what you type 29

believe that there were just two types—the escape character and the others—
and more recently you were told about two more types, the grouping symbols
like { and }. Now you know that there are really 13. This is the whole truth of
the matter; no more types remain to be revealed.

Actually no characters are defined to be of types 0 to 8 when TEX begins,
except that (carriage-return) and (form-feed) are type 5. But if you are using a
predefined format (like almost everybody does) you will be told which characters
have special significance. For example, if you are using the basic package of
Appendix B you need to know that the nine characters

AN { Y $ ¢ % # 1T 1

cannot be used as ordinary characters in your text; they have special meaning.
(If you really need any of these symbols as part of what you're typing, e.g., if you
need a $ to represent dollars, there is a way out-—this will be explained later. A
list of control sequences for special symbols appears in Appendix F.)

When TEX is reading a line of text from a ﬁle, or a line of text that you
_entered directly on your terminal, it is in one of three “states”:

State N Beginning a new line
State M Middle of a line
State S Skipping blanks

At the beginning it’s in state N, but most of the time it’s in state M, and after
a control sequence or a space it's in state S. Incidentally, “states” are different
from the “modes” mentioned in Chapter 6; the current state refers to TEX's eyes
and mouth as they take in characters of new text, but the current mode refers
to the condition of TEX’s gastro-intestinal tract. Modes are discussed further in
Chapter 13.

You hardly ever need to worry about what state TgX is in, but you may
want to understand the rules just in case TEX does something unexpected to your
input file. In general, it is nice to understand who you are talking to.

Furthermore, if you faithfully carried out the experiment in the previous
chapter you will probably have noticed that there was an unwanted space after
the dash in “called——-"; the {carriage-return) after this dash got changed into
a space that doesn’t belong there. This error was purposely put into the example

30 Chapter 7

because the author of this manual feels that we learn best by making mistakes.
But now let’s look-closely into TEX’s reading rules so that such mistakes will be
unlearned in the future.

Fortunately the rules are not complicated or surprising; you could probably
write them down yourself:

If in state N (new line) and TEX sees

a) an escape character (type 0), TEX scans the entire control sequence, then
digests it (i.e., sends the control sequence to the guts of TEX where it will be
processed appropriately) and goes to state S.

b) an end-of-line character (type 5), TEX throws away any other information
that might remain on the current line, then digests a “\par” instruction
(paragraph end) and remains in state N.

¢) an ignored character or a space (types 9,10), TEX passes it by, remaining in
state N.

d) anything else (types 1,2,3,4,6,7,8,11,12), TEX digests it and goes to state M.
In summary, when TEX is beginning a line, it skips blanks, and if it gets to the
end of the line without seeing anything it considers that a paragraph has ended.
If in state M (middle of line) and TEX sees

a) an escape character (type 0), TEX scans the entire control sequence, then
digests it and goes to state S.

b) an end-of-line character (type 5), TEX throws away any other information
that might remain on the current line, then digests a blank space and goes
to state N.

¢) an ignored character (type 9), TEX passes it by, remaining in state M.
d) a space (type 10), TEX digests a blank space and goes to state S.

e) anything else (types 1,2,3,4,6,7,8,11,12), TgX digests it and remains in state
M.

In summary, when TgX is in the middle of a line, it digests what it sees, but
converts one or more blank spaces into a single blank space, and also treats the
end of line as a blank space.

How TEX reads what you type 31

If in state S (skipping blanks) and TEX sees

a) an escape character (type 0), TEX scans the entire control sequence, then.
digests it, remaining in state S.

b) an end-of-line character (type 5), TEX throws away any other information
that might remain on the current line, then switches to state N.

¢) an ignored character or a space (types 9,10), TEX passes it by, remaining in
state S.

d) anything else (types 1,2,3,4,6,7,8,11,12), TgX digests it and goes to state M.

In summary, when TgX is skipping blanks, it ignores blanks and doesn’t treat
the end of a line as a blank space.

So those are the rules. Only three major consequences deserve special em-
phasis here: -

First, a (carriage-return) always counts as a space, even when it follows a
hyphen. If you want to end a line with a (carriage-return) but no space, you can
do this by typing the control sequence “\!” just before the (carriage-return).
For example, the Tth-last line of MY STORY in Chapter 6 should really have
been typed as follows:

he preferred to be called——-\!

A second consequence of the rules, if you are using the basic format of
Appendix B, is that the % sign is treated as an end-of-line mark equivalent to a
(carriage-return). This is useful for putting comments into the manuscript. For -
example, you might include a copyright notice for legal protection; or you might
say

% Figure 5 belongs here;
or you might say

% This ¥ is supposed to match the { of “"\ctrline{".

Anything that you might want to remember but not to print can be included
after a %, because TEX will never look at the rest of the line.

32 Chapter 7

A third consequence of the rules is that you should indicate the end of a
paragraph either explicitly, by using the control sequence \par; or implicitly, by
having an entirely blank line. (The end of a file page also counts as a blank line,
because of the way files of text are conventionally represented in the computer.)
In the latter case, TEX has always read a space before it came to the end of the
paragraph, because it digested a space at the end of the line before the blank
line. In the former case, you may or may not have typed a space before you
typed “\par”. Fortunately, there’s nothing to worry about; the result is the
same in either case, because TEX’s paragraph processor discards the final item of
a paragraph when it is a space.

If you have several blank lines in a row, TEX digests a “\par” instruction for
each one, according to the rules. But this doesn’t show up in the output, because
empty paragraphs are discarded.

»Exercise 7.1: If a line isn’t entirely blank, but the first nonblank character on
the line is %, does this signify end-of-paragraph?

When TgX first starts up, the 128 possible characters are initially interpreted as

follows. Characters “A” to “Z” (ascii codes “101 to “132) and “a” to “z” (ascii
codes "141 to “172) are type 11 (letters). The characters (null), (line-feed), (vertical-tab),
(alt-mode), and {delete) (ascii codes 0, 12, ‘13, "175, and “177 at Stanford) are type
9 (ignored). The characters (tab) and () (ascii codes “11 and “40) are type 10 (spaces).
The characters (form-feed) and (carriage-return) (ascii codes ‘14 and ‘15) are type 5
(end of line). All other characters are type 12 (other). The first non-space input by
TgX is defined to be the escape character used in error messages, and it is set to type
0 (escape). You can use \chcode to change the type code of any character, and it is
possible to have several characters each defined to be of type 0 or any other type. The
instruction

\chcode(number;)«(numbers)

(where (number;) is between 0 and 127 and (numbers) is between 0 and 12) causes
the character whose 7-bit code is (number;) to be regarded as type (number) for the
duration of the current group, unless its type is changed again by another \chcode.
For example, if for some reason you want TgX to treat the letter “a” as a non-letter,
you could say

\chcode 141+12

But this would probably not be useful because, e.g., “\par” would no longer be a control
sequence; it would be read as “\p” followed by “a” followed by “r”.

The characters you type 33

We will see later that spaces are sometimes ignored after other things besides
control sequences, since there are various TEX constructions that look better if
" spaces or end-of-line follow them. For convenient reference, here is a list of all
cases in which TEX will ignore a space, even though most of these constructions
haven’t been explained yet in the manual:

e After a space or end-of-line character.
e After a control sequence.

e After the > that ends a \def or \if or \ifeven or \else or \noalign
or \output or \mark.

o Between $ signs, when TgX is in math mode.
o After the $$ that ends a display.

e After a file name or an already-defined font code or a unit of measure or
the words “to” or “par” or “size” in box specifications.

e Before or after a (number) or the sign preceding a (number).

e After a paragraph, or in general whenever TEX is in vertical mode or
restricted vertical mode. '

TEX goes into reading state S only as shown in the detailed reading rules above.

When it ignores spaces at other times, e.g. after a unit of measure, the spaces
it ignores are actually “digested” spaces; the processing routine calls on TEX's input
mechanism to continue reading until a non-space is digested. This is a fine point, because
it hardly ever makes a difference; but here is a case where it matters: Suppose you make
the definition “\def\space{1}". Then if you type “\space\space”, TEX will digest
two spaces; these spaces would not be ignored after a space or end of line or control
sequence, because of TEX's reading rules, but they would be ignored in the other cases
listed above, because of TEX's digestive processes. On the other hand \LI (control space)
is treated differently: it always means an explicit space and it is never ignored in any of
the above cases except the last (in vertical mode). Sometimes TX will ignore only one
digested space, but at other times it will ignore as many as are fed to it; if you really
need to know which cases fall into each category, you can find out by experiment.

<8> The characters you type

A lot of different keyboards are used with TEX, but few keyboards can produce
128 different symbols. Furthermore, as we have seen, some of the characters that

34 Chapter 8

you can type on your keyboard are reserved for special purposes like escaping
and grouping. Yet when we studied fonts it was pointed out that there are 128
characters per font. So how can you refer to the characters that aren’t on your
keyboard, or that have been pre-empted for formatting?

One answer is to use control sequences. For example, the basic format of
Appendix B, which defines % to be an end-of-line symbol so that you can use it
for comments, also defines the control sequence \% to mean a per-cent sign.

To get access to any character whatsoever, you can type

\char{number)

where (number) is any number from 0 to 127 (optionally followed by a space),
and you will get the corresponding character from the current font. For example,
the letter “b” is character number 98, so you could typeset the word bubble by
typing

\char98u\char98\charg8le

if the b-key on your typewriter is out of order. (Of course you need the \, c, h,
a, and r keys to type “\char”, so let’s hope they are always working.)
Character numbers are usually given in octal notation in reference books
(i.e., using the radix-8 number system). A (number) in TEX’s language can be
preceded by a -, in which case it is understood as octal. For example, the octal
code for “b” is 142*, so
\char-142

is equivalent to \char98. In octal notation, character numbers run from -0 to
“177.

Formally speaking, a (number) in a TEX manuscript is any number of spaces fol-

lowed by an optional “*” followed by any number of digits followed by an optional
space. Or it can be any number of spaces followed by “\count(digit)” followed by an
optional space; in the latter case the specified counter is-used (cf. Chapter 23).

You can’t use \char in the middle of a control sequence, though. If you
type
\\char-142

*The author of this manual likes to use italic digits to denote octal numbers, instead of using
the * symbol, when octal numbers appear in printed books.

The characters you type ' 35

TEX reads this as the control sequence \\ followed by ¢, h, a, etc., not as the
control sequence \b.

Actually you will hardly ever have to use \char yourself, since the characters
you want will probably be available as predefined control sequences; \char is
just a last resort in case you really need it (and it is also indispensible for the
designers of book formats).

Since TEX is intended to be useful on many different kinds of keyboards, it
does not assume that you can type very many of the exotic characters. For ex-
ample, if your keyboard has an a on it (Greek lower case alpha)—this is character
code 2 at Stanford—you will be able to type “a” in a math formula and get an
alpha. But if you don’t have a on your keyboard, TEX understands the control
sequence \alpha just as well.

Character code 2 in TEX’s font cmrl0 is not really an alpha; it is actually
O, an upper case Greek theta! TEX doesn’t want you to type “a” except in math
formulas. When you are typing straight text with TEX’s special fonts like cmrl0,
you should confine yourself to the symbols usually found on a typewriter and a
few more that are listed in the next chapter. In fact, every font you use might
have a different way of assigning its symbols to the numbers 0 to 127. Whoever
designed the font should tell you what this encoding is. It’s not even guaranteed
that an “a” will yield an “a”. Your keyboard converts what you type into codes
between 0 and 127, and these codes will select the corresponding characters of
the current font, but a font designer can put whatever symbol he or she wants
into each position.

Furthermore, different fonts might also have different ligatures. It isn’t true
that —— will give you a dash in all fonts with TEX, nor that =~ will become “, nor
that ££1 will become fi. Each font designer decides what ligature combinations
will appear in his or her font, and this person should tell you what they are. The
seven ligatures

T 7T e = ff fi f1 ffi ff1l
described in Chapter 2 are available in all the “standard” TEX roman and slanted
fonts, but you should not assume that they are present in all fonts:
Similarly, accents like \~ and \" can’t be used with all fonts; the accent
characters have to be in certain positions within the font, and not all fonts have
them.

36 Chapter 8

If you want to use an accent on a nonstandard font (e.g., if you need a new accent

for some newly discovered African dialect), suppose you have a font that includes
this accent as character number “20. Then you can type “\accent"20a” to get this
accent over an “a”, etc. In general, type

\accent{number)(char)
to get an accent over a character in the same font, or
\accent{number)\ : {font){char)

to get an accent over a character in a different font. You're not allowed to say things
like “{\:b\accent’20}a”, however; the character to be accented must immediately
follow the accent except for font changes.

<<9> TEX’s standard roman fonts

When you are using a standard roman font {like cmr10, ¢cmb10, ¢cmsl10, or cmss10,
which stand respectively for Computer Modern Roman, Bold, Slanted, or Sans-
Serif, 10 points high), you need to know the information in this chapter.

These fonts are intended to contain nearly every symbol you will need for
non-math text, including accents and special characters for use with foreign lan-
guages. When you are using such fonts you should confine yourself to typing the
following symbols only:

the letters A to Z and a to z
the digits 0 to 9
the standard punctuationmarks , : ; ' 2 () []J &~ - = %/

You can also type + = < > and you will get the corresponding symbols, but this
is not recommended because these symbols should be used only in mathematics
mode (explained later). The result will look better in mathematics mode, because
TEX will insert proper spacing. When you use the “~” and “/” it should not be
for mathematics; do hyphens and slashes outside of math mode, but don’t do
subtractions and divisions.

TEX’s standard roman jonts 37

Conspicuously absent from this list are the following symbols found on many
keyboards:

\N{}X#s$%1TL" @

Resist the temptation to type them. Also resist the temptation to type mathe-
matical symbols like

| — a B ¢ N 7V 3 o

and so on, if your keyboard has them. Like + and =, they should be reserved for
mathematics mode; but unlike + and =, they don’t give the results you might
expect, except in mathematics mode.

By using control sequences you can obtain the following special symbols
needed in foreign languages:

Type to get

\ss B (German letter ss)

\ae & (Latin and Scandinavian ligature ae)
\AE A (Latin and Scandinavian ligature AE)
\oe e (French ligature oe)

\QOE @& (French ligature OE)

\o ¢ (Scandinavian slashed o)

\O @ (Scandinavian slashed O)

For example, if you want to specify “AEsop’s (Euvres en frangais” you could type
" \AE sop“s \OE uvres en fran\c cais

(Note the spaces after these control sequences. Another way to separate them
from the surrounding text would be -

{\AE}sop“s {\OE}uvres en fran{\c clrais ;

this looks a little nicer, perhaps, in the computer file, but it’s harder to type.)

38 Chapter 9

The following accents are available in standard roman fonts, shown here with
the letter “o”:

Type to get

\“o 0 (accent grave)

\"o 6 (accent aigu, acute accent)

\A o 6 (accent circonflexe, circumflex or “hat” accent)
\v o 6 (Slavic hatek accent, inverted circumflex)
\u o 6 (breve, short vowel)

\=o0 & (macron or bar, long vowel)

\"o 6 (umlaut or double dot)

\H o & (long Hungarian umlaut)

\b o 6 (vector accent—used in mathematics)

\s o & (tilde or squiggle)

\t oo 60 (ties two letters together)

\a a 4 (Scandinavian a with circle)

\1 1 I (Polish crossed 1)

\¢c ¢ ¢ (cedilla accent)

The last three of these examples are shown with other letters instead of “o”
because they are somewhat special; the Scandinavian accent is shown over an
“a” since “4” isn’t a Scandinavian letter. Similarly, the \1 accent is specifically
designed for the letter “I”. Cedillas are usually associated with the letter “c”
(although it is true that “¢” appears in Navajo).

Spaces are obligatory where shown in these examples. But the space can
be omitted after the accent codes \~, \ 7, \=, and \", since they don’t involve
letters.

Within a font, accents are designed to appear at the right height for letters
like “0”; but TEX will raise an accent if it is applied to a tall letter. For example,
the result of “\"0” is “O”. This simple rule almost always works all right, but
sometimes it fails; for example, an upper case A with the circle accent tradition-
ally has the circle touching the A (A), at least in Scandinavian books, while “\a
A” yields “Ar. (Both of these forms are used by modern American printers to
denote angstrom units, but A is preferable.) The \1 doesn’t work with a capital
L either; “\1 L” yields “L”. An even more conspicuous failure of TEX’s rule
occurs if you try to put a cedilla on an upper case “C” by typing “\c¢ C”; TEX

TEX’s standard roman jonis 39

will raise the cedilla to give “C”! (See below for how to handle these anomalous
cases.)

When the letters “i” and “j” are accented, it is traditional to omit the dots
they contain. Therefore standard roman fonts contain the dotless letters

1 and]

which you can obtain by typing “\i” and “\j”, respectively. For example, to
obtain “miniis” you would type “m\=\i n\u us”.

»Exercise 9.1: Explain what to type in order to get the sentence
Commentarii Academa Petropolitanz is now Doklady Akademiia Nauk SSSR.

»Exercise 9.2: How would you specify the names @ystein Ore, [Uri [Anov, Ja‘far
al-Khowirizmi, and Wiadyislaw StiBman?
The character to be accented must immediately follow the accent, except for the
fact that you are allowed to change fonts in between; see the remarks at the close
of the previous chapter. TEX adjusts for the slantedness of characters when placing
accents, including the possibility that the accent comes from a font with a different
slant than the character being accented. For example, if you type

\“e \"E \sl\“e \"E \rm\"\sl e \rm\"\sl E \"\rm e \sl\“\rm E
using basic format, the result will be
¢EEEGEGE.
The fonts are designed so that the anomalous cases of “bad accents” mentioned

above can be handled as follows, using the \spose (superpose) control sequence of
basic format: To get

A CL
type respectively
\spose{\raise 1.667pt\hbox{\char’27}}A
\spose{\char'30}C
\spose{\raise 2.5pt\hbox{\char’31}}L

(This is for 10-point sizes; the amounts to raise the accents must be adjusted propor-
tionately when working with other sizes. For example, “\raise 1.667pt"” would
become “\raise 1.5pt” in 9-point type.)

A complete list of the 128 symbols in TEX’s standard roman fonts appears

in Appendix F. But everything a typist needs to know about them has already
been explained; it’s not necessary for you to know the numeric character codes.

40 Chapter 10

<<10> Dimensions

The example program used in the trial runs of Chapter 6 involved mysterious
TEX instructions like “\vskip 2.54cm”. Now it is time to reveal part of this
mystery, by explaining what units of measure TEX understands.

“Points” and “picas” are printers’ traditional basic units of measure, so TEX
understands points and picas. TEX also understands inches and certain metric
units, but it converts everything internally to points. Each unit of measure is
given a two-letter abbreviation; here is a complete list of the units TEX knows
about:

pt point

pc pica (one pica equals 12 points)

in inch (one point equals 0.01383700 inches)

cm centimeter (one inch equals 2.5400 centimeters)

mm millimeter (one centimeter equals 10 millimeters)

dd Didot point (one centimeter equals 26.600 Didot points)
em One “quad” of space in the current font (see Chapter 18)

When you want to express some physical dimension to TEX, type it as
(optional sign)(number){unit of measure)

or
(optional sign)(number). (number)(unit of measure)

(and in the second case your {(number)s had better not be in octal notation or
TEX will get confused). An (optional sign) is either a “+” or a “~” or nothing at
all.

For example, here are some typical lengths:

3 in

29 pc
-0.013837in
+ 42.1 dd
O mm

A plus sign is redundant, but some people like occasional redundancy.

Bozxes ' 41

Spaces are optional before and after numbers and after the units of measure,
but you should not put spaces within a number or between the two letters in the
unit of measure.

In a manual like this it is convenient to use “angle brackets” in abbreviations
for various constructions like (number) and (optional sign). Henceforth in this
manual we will use the term (dimen) to stand for any dimension expressed in the
above form. For example,

\hsize(dimen)

will be the general way to define the page width TEX is supposed to use.
When a dimension is zero, you have to specify a unit of measure even though
it is redundant. Don’t just say “0”, say “Opt” or “Oin” or something.

Chapter 6 mentions that units of measure may be inflated artificially on some
output devices. The following “rulers” have been typeset by TEX so that you can
calibrate the output device used to produce the copy of the manual you are reading;:

L AL R B B S I B T T T "7 |4in
| T T T T l T T T T I T T T T l T T T T I T T T T , T T T T I300pt
T 7T 17 17 17 7T 77T 7T TT T 1l0cm

»Exercise 10.1: (To be worked after you know about boxes and glue and have read
Chapter 21.) Explain how to typeset a 10 cm ruler like this using TEX.

<<11> Boxes

TEX makes complicated pages by starting with simple individual characters and
putting them together in larger units, and putting these together in still larger
units, and so on. Conceptually, it’s a big paste-up job. The TEXnical terms used
to describe such page construction are boxes and glue.

Boxes in TEX are two-dimensional things with a rectangular shape, having
three associated measurements called height, width, and depth. Here is a picture

42 Chapter 11

of a typical box, showing its so-called reference point and baseline:

height

. Baseline
Reference point

depth
¥

<«—width—

From TEX’s viewpoint, a single character from a font is a box, one of the
simplest kinds of boxes. The font designer has decided what the height, width,
and depth of the character are, and what the symbol will look like when it is in
the box; TEX just uses these dimensions to paste boxes together, and ultimately
to determine the locations of the reference points for all characters on a page.
In the cmrl0 font, for example, the letter “h” has a height of 6.9444 points, a
width of 5.5556 points, and a depth of zero; the letter “g” has a height of 4.4444
points, a width of 5 points, and a depth of 1.9444 points. Only certain special
characters like parentheses have height plus depth actually equal to 10 points,
although cmrl0 is said to be a “10 point” font. The typist doesn’t have to know
these measurements, of course, but it is helpful for TEX’s users to be aware of
the sort of information TEX deals with.

The character shape need not fit inside the boundaries of the box. For ex-
ample, some characters that are used to build up larger symbols like square-root
signs intentionally protrude a little bit, so that they overlap properly with the
rest of the symbol. Slanted letters frequently extend a little to the right of the
box, as if the box were skewed right at the top and left at the bottom, keeping its

[Ty]

baseline fixed. For example, compare the letter “q” in cmrl0 and cms10 fonts:

In both cases TEX thinks the box is 5 points wide, so both letters get exactly the
same treatment. TEX doesn’t know exactly where the ink will go—only the font

Bozxes 43

designer knows this. But the slanted letters will be spaced properly in spite of
TEX’s lack of knowledge, because the baselines will match up.

Actually the font designer also tells TEX one other thing, the so-called italic
correction: A number is specified for each character, telling roughly how far that
character extends to the right of its box boundary. For example, the italic cor-
rection for “q” in cmrl0 is zero, but in c¢msl0 it is 0.2083 points. If you type the
control sequence

\/

following a character, TEX will effectively increase the width of that character
by the italic correction. It's a good idea to use \/ when shifting from slanted to
unslanted fonts without intervening spaces, for example when a slanted word is
immediately followed by an unslanted right parenthesis or semicolon. The author
typed

the so-called {\sl italic correction\/}:

when specifying the first sentence of the paragraph you are now reading. Of
course, there’s no need to make the italic correction when a slanted letter is
followed by an unslanted period or comma.

Another simple kind of box TEX deals with might be called a “black box,”
a rectangle like “§” that is to be entirely filled with ink at printing time. You
can specify any height, width, and depth you like for such boxes—but they had
better not have too much area or the printer might get upset. (Printers generally
prefer white space to black space.)

Usually these black boxes are made very skinny, so that they appear as
horizontal lines or vertical lines. Printers traditionally call such lines “horizontal
rules” and “vertical rules,” so the terms TEX uses to stand for black boxes are
\hrule and \vrule. We will discuss the use of rule boxes in greater detail later.

Everything on a page that has been typeset by TEX is made up of simple
character boxes or rule boxes, pasted together in combination. TEX pastes boxes
together in two ways, either horizontally or vertically. When TgEX builds a horizon-
tal list of boxes, it lines them up so that their reference points appear in the same
horizontal row; therefore the baselines of adjacent characters will match up as
they should. Similarly, when TEX builds a vertical list of boxes, it lines them up
so that their reference points appear in the same vertical column.

There is also a provision for lowering or raising the reference points of in-
dividual boxes in a horizontal list. This has been used, for example, to lower the

44 Chapter 11

“E” in “TgX”. Similarly, there is a way to move the reference points of boxes to
the left or to the right in a vertical list. This is used, for example, when centering
an accent over a letter, since an accented letter like E is essentially a box made
from a vertical list containing the two character boxes “*” and “E”.

When a big box has been made from a horizontal list of smaller boxes, the baseline

of the big box is the common baseline of the smaller boxes. (More precisely, it’s the
common baseline they would share if they hadn't been raised or lowered.) The height
and depth of the big box are determined by the maximum distances that the smaller
boxes reach above and below the baseline, respectively; any raising and lowering of the
smaller boxes is taken into account during this calculation. The width of the big box
is determined by whatever TEX operation was used to create that box, as explained in
the next chapter.

When a big box has been made from a vertical list of smaller boxes, its reference

point is the reference point of the last (lowest) box in the list (but ignoring left
or right shifts). The depth of the big box is therefore equal to the depth of this last
smaller box. The width of the big box is determined by the maximum distance that
the smaller boxes reach to the right of the reference point; any left or right shifting of
the smaller boxes is taken into account during this calculation. (Note that if any of
the smaller boxes have been shifted left, they will protrude past the left boundary of
the big box.) The height of the big box is determined by whatever TEX operation was
used to create that box, as explained in the next chapter.

A page of text like the one you’re reading is itself a box, in TEX’s view: It
is a largish box made from a vertical list of smaller boxes representing the lines
of text. Each line of text, in turn, is a box made from a horizontal list of boxes
representing the individual characters. In more complicated situations, involving
mathematical formulas and/or complex tables, you can have boxes within boxes
within boxes ... to any level. But even these complicated situations arise from
horizontal or vertical lists of boxes pasted together in a simple way, so all that
you and TEX have to worry about is one list of boxes at a time. In fact, when
you’re typing straight text, you hardly have to think about boxes at all, since
TEX will automatically take responsibility for assembling the character boxes into
words and the words into lines and the lines into pages. You only need to be
aware of the box concept when you want to do something out of the ordinary,
like centering a heading or providing extra space, etc.

The height, width, or depth of a box might be negative, in which case it is a
“shadow box” that is somewhat hard to draw. You might be able to think of some

Glue 45

tricky things to do with such boxes; TEX just lines things up and adds up dimensions
as if everything were positive or zero. Thus, for example, if a font designer specified a
character with negative width, it would act like a backspace. When forming a box from
a horizontal list, however, TEX sets the height and depth to zero if they turn out to be
negative, so only the width can be negative. Similarly, only the height and depth of a
box formed from a vertical list can be negative. Negative dimensions are not allowed
in rule boxes.

<12> Glue

But there’s more to the story than just boxes: there’s also some magic mortar
called glue that TEX uses to paste boxes together. For example, there is a little
space between the lines of text in this manual; it has been calculated so that
the baselines of consecutive lines within a paragraph are exactly 12 points apart.
And there is space between words too; such space is not an “empty” box, it is
part of the glue between boxes. This glue can stretch or shrink so that the right
margin of each page comes out looking straight.

When TEX makes a large box from a horizontal or vertical list of smaller
boxes, there often is glue between the smaller boxes. Glue has three attributes,
namely its natural space, its ability to stretch, and its ability to shrink.

In order to understand how this works, consider the following example of
four boxes in a horizontal list separated by three globs of glue:

width 3
width §
width 6 width 8
PECRRI NS A S
N — [- NN] ~NO O
Qoo V.o -
32 E 3 2E 82
FE= 2= L=
Iz -] R
-— width 52

The first glue element has 9 units of space, 3 of stretch, and 1 of shrink; the next
one also has 9 units of space, but 6 units of stretch and 2 of shrink; the last one

46 Chapter 12

has 12 units of space, but it is unable to stretch or to shrink, so it will remain
12 units of space no matter what.

The total width of boxes and glue in this example, considering only the space
components of the glue, is 54+9 46 49+ 3 + 12 + 8 = 52 units. This is
called the natural width of the horizontal list; it’s the preferred way to paste the
boxes together. ‘Suppose, however, that TEX is told to make the horizontal list
into a box that is 58 units wide; then the glue has to stretch by 6 units. Well,
there are 3 + 6 4+ 0 = 9 units of stretchability present, so TEX multiplies each
unit of stretchability by 6/9 in order to obtain the extra 6 units needed. Thus,
the first glob of glue becomes 9 4 (6/9) X 3 = 11 units wide, the next becomes
94 (6/9) X 6 = 13 units wide, the last remains 12 units wide, and we obtain
the desired box looking like this:

............

-~ width 58

On the other hand, if TEX is supposed to make a box 51 units wide from the
given list, it is necessary for the glue to shrink by a total of one unit. There are
three units of shrinkability present, so the first glob of glue would shrink by 1/3
and the second by 2/3.

The process of determining glue thickness when a box is being made from
a horizontal or vertical list is called setting the glue. Once glue has been set,
it becomes rigid—it won’t stretch or shrink any more, and the resulting box is
essentially indecomposable.

Glue will never shrink more than its stated shrinkability. The first glob of
glue above, for example, will never be allowed to become narrower than 8 units
wide, and TEX will never shrink the given horizontal list to make its total width
less than 49 units. But glue is allowed to stretch arbitrarily far, whenever it has
a positive stretch component.

Glue 47

»Exercise 12.1: How wide would the glue globs be if the horizontal list in the
illustrations were to be made 100 units wide?

TEX is somewhat reluctant to stretch glue more than its stated stretchability, as we

shall see later when we discuss the “badness” of particular glue settings. Therefore
if you are trying to decide how big to make each aspect of the glue in some layout, the
rules are: (a) The natural glue space should be the amount of space that looks best.
(b) The glue stretch should be the maximum amount of space that can be added to the
natural spacing before the layout begins to look bad. (c) The glue shrink should be the
maximum amount of space that can be subtracted from the natural spacing before the
layout begins to look bad.

In most cases the designer of a book layout will have specified all the kinds
of glue that are to be used, so a typist will not need to decide how big any glue
attributes should be. For example, the Art of Computer Programming layout in
Appendix E includes the definition of three control sequences \xskip, \yskip,
and \yyskip. A typist for those books will insert \xskip within a paragraph
in certain places where a little extra stretchability is appropriate; and \yskip
is inserted between paragraphs when the paragraphs discuss somewhat different
topics. Even more space is inserted before and after theorems and algorithms,
etc.; this is called \yyskip because it is twice as much glue as \yskip. (The
same three control sequences have been used when preparing this manual. For
example, -“\xskip” appears in the paragraph preceding this one, just before
“(a)”, ”(b)”, and “(c)”; and “\yyskip” is used before and after every “dangerous
bend” paragraph like the next one.)

To specify glue in a horizontal list of boxes, without using a predefined format like

\xskip, type “\hskip(dimen) plus{dimen) minus{dimen)”. The “plus(dimen)”
and “minus(dimen)” specify stretch and shrink components. They are optional; and
if left out, the corresponding glue component has length zero. The space component,
however, must always be given, even when it is zero; and if zero, you must remember to
type “Opt”, not just “0”. If you are omitting the shrink component, the next characters
of your text had better not be “minus”. If you are omitting both stretch and shrink
components, the next characters of your text had better not be “plus”. Similar remarks
apply to the specification of glue in vertical lists; the only difference is that you type
“\vskip” instead of “\hskip”.

There is one aspect of glue that a careful typist will want to be aware of,
namely that TEX automatically increases the stretchability (and decreases the

48 Chapter 12

shrinkability) after punctuation marks. The reason for this is that it’s usually
better to put more space after a period than between two ordinary words, when
spreading a line out to reach the desired margins. Consider, for example, the
following sentences from a classic kindergarten pre-primer:

**0h, oh!~” cried Baby Sally. Dick and Jane laughed.
If TEX sets this at its natural width, all the spaces will be the same:
“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

But if the line needs to be expanded by 5 points, 10 points, 15 points, or more,
TEX will set it as

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.
“Oh, oh!” cried Baby Sally. Dick and Jane laughed.
“Oh, oh!” cried Baby Sally. Dick and Jane laughed.
“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

and so on. There is no glue between adjacent letters, so individual words will
always look the same. The glue after the comma stretches at 1.25 times the rate
of the glue between adjacent words; the glue after the period and after the ! -~
stretches at 3 times the rate. Furthermore if TEX had to shrink this line to its
minimum width, the result would be ‘

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

The glue after a comma shrinks only 80 per cent as much as ordinary inter-word
glue, and after a period or exclamation point it shrinks by only one third as much.

The exact rule TEX uses at a space is this: Each font tells TEX what glue to use

for spaces when that font is active. When starting to process a horizontal list, TeX
sets an internal variable called the “space factor” to 1. When appending a character to
a horizontal list, the space factor is changed to 3 if the character is a period, question
mark, or exclamation point (as determined by its ascii code); it is changed to 2 if the
character is a colon, to 1.5 if a semicolon, to 1.25 if a comma. The space factor is left
unchanged if the character being appended isa) or Jor ' or ”; and it is reset to 1 whenever
any other character or math formula or non-character box is appended. Furthermore,
the space factor remains unchanged when appending a character immediately following
an upper case letter. (The reason for this is to avoid treating the period specially when
it merely follows an initial, like the periods in “P. A. M. Dirac”.) When a space is
encountered, the glue space is taken from the current font glue space specification; the
stretch and shrink are obtained by respectively multiplying and dividing the font glue
- stretch and shrink specifications by the space factor.

Glue 49

The only trouble with this rule is that it fails when a period isn’t really a
period . .. like when it is used (as in this sentence) to make an “ellipsis” of three
dots, or when it is used after abbreviations. If, for example, you are typing a
bibliographic reference to Proc. Amer. Math. Soc., you don’t want the glue after
these periods to be any different from the ordinary inter-word glue. The best way
to handle this is to use “escape space” after a non-sentence-ending period, e.g.,
to type

Proc.\ Amer.\ Math.\ Soc.

This works because the space in “\L1” always has the unmodified inter-word glue
of the current font. Granted that this input looks a bit ugly, it does give the best-
looking output. It’s one of those things we occasionally have to do when dealing
with a computer that tries to be smart.

»Exercise 12.2: How can you defeat the rule the other way, for sentences like “...
launched by NASA.”?

Incidentally, if you try to specify “...” by typing three periods in a row,
you get “...”—the dots are too close together. The best way to handle this is to
go into mathematics mode, using the \1dots control sequence defined in basic
TEX format. For example, if you type

Hmmm $\1dots.$ I wonder why?

the result is “Hmmm ... I wonder why?” The reason this works is that math
formulas are exempt from normal text spacing rules. Chapter 17 has more to say
about \ldots and related topics.

One of the interesting things that happens when glue stretches and shrinks at
different rates is that there might be glue with essentially infinite stretchability.
For example, consider again the four boxes we had above, with the same glue as
before except that the glue in the middle has stretchability 999997 (nearly one
million) instead of 6. Now the total stretchability is one million; and when the
line has to grow, almost all of the additional space will get put into the middle
glue. If, for example, a box of width 58 is desired, the first glue expands from 9
to 9.000018 units, the middle glue from 9 to 14.999982 units, and of course the
last glue remains exaétly 12 units thick. For all practical purposes, the spacing
has gone from 9,9, 12 to 9,15, 12.

50 ' Chapter 12

If such infinitely stretchable glue is placed at the left of a row of boxes, the
effect is to right justify them, i.e., to move them over to the rightmost boundary
of the constructed box. And if you take two globs of infinitely stretchable glue,
putting one at the left and one at the right, the effect is to center the list of
boxes within a larger box. This in fact is how the \ctrline instruction works:
it places infinite glue at both ends, then makes a box of width \hsize. [Actually
the stretchability is 1000 cm, namely 10 meters (about 33 feet); that isn’t infinite,
but it’s close enough.]

The glue actually used in the definition of \ctrline is\hskip Opt plus 1000cm

minus 1000cm; in other words, both stretch and shrink components are essentially
infinite. The reason is that if you try to center something that is bigger than the actual
\hsize, it will be centered but will extend into the margins; the glue at left and right
will shrink from 0 to something negative. Like box dimensions, glue components can
be negative, and this is occasionally useful for things like backspacing.

@ “Infinite” glue can be specified in a horizontal list by typing “\hfi11”, or in a
vertical list by typing “\vfil1”. An \hfill instruction is equivalent to \hskip
Opt plus 10000000000pt (that’s ten billion points), and \vfill is equivalent to
\vskipping by the same amounts. We have already seen a typical use of \vfill in
the example of Chapter 6.

<<13> Modes
Just as people get into different moods, TEX gets into different “modes.” (Except
that TEX is more predictable than people.) There are six modes:
e Vertical mode. [Building the vertical list used to make the pages of
output.] .
¢ Restricted vertical mode. [Building a vertical list for a box within a
page.]
¢ Horizontal mode. [Building the horizontal list used to make the next
paragraph for the output pages.]
e Restricted horizontal mode. [Building a horizontal list for a box within
a page.]
e Math mode. [Building a mathematical formula to be placed in a
horizontal list.]

Modes 51

o Display math mode. [Building a mathematical formula to be placed
on a line by itself, temporarily interrupting the current paragraph.]

In simple situations, you don’t need to be aware of what mode TEX is in, because
it just does the right thing. But when you get an error message that says “You
can’t do that in horizontal mode”, a knowledge of modes helps explain
why TEX thinks you goofed.

Basically TEX is in one of the vertical modes when it is preparing a list of
boxes and glue that will be placed vertically on top of one another; it’s in one
of the horizontal modes when it is preparing a list of boxes and glue that will be
strung out horizontally next to each other with baselines aligned; and it’s in one
of the math modes when it is reading a math formula.

A play-by-play account of a typical TEX job should make the mode idea
clear: At the beginning, TEX is in vertical mode, ready to construct pages. If
you specify glue or a box when TEX is in vertical mode, the glue or the box gets
placed on the current page below what has already been specified. For example,
the \vskip instructions in the sample run we discussed in Chapter 6 contributed
vertical glue to the page; and the \ctrline{MY STORYJ} instruction contributed
a box to the page. While building the \ctrline box, TEX went temporarily into
restricted horizontal mode, but returned to vertical mode after setting the glue
in that box.

Continuing with the example of Chapter 6, TEX switched into horizontal
mode as soon as it read the “0” of “Once upon a time”. Horizontal mode is
the mode for making paragraphs. The entire paragraph up to the \par was input
in horizontal mode; then it was divided into lines of the appropriate length, these
lines were appended to the page (with appropriate glue between them), and TEX
was back in vertical mode.

In general when TEX is in vertical mode, the first character of a new paragraph
changes the mode to horizontal for the duration of a paragraph. If a begin-
math character ($) appears when in horizontal mode, TgX plunges into math
mode, processes the formula up until the closing $, then adds the text of this
formula to the current paragraph and returns to horizontal mode. (Thus, in the
“I wonder why?” example of the previous chapter, TgX would go into math mode
temporarily while processing \1ldots, treating the dots as a formula.)

However, if two consecutive begin-math characters appear in a paragraph
($%), TEX interrupts the paragraph where it is, contributes the paragraph-so-far to
the page, then processes a math formula in display math mode, then contributes

52 Chapter 18

this formula to the current page, then returns to horizontal mode for more of the
paragraph. (The formula to be displayed should end with $$.) For example, if
you type

the number $$\pi \approx 3.1415926536$%$$% is important ,

TEX goes into display math mode between the $$’s, and the output you get states
that the number
T~ 3.1415926536

is important.

TEX gets into restricted vertical mode when you ask it to construct a box from

a vertical list of boxes (using \vbox or \valign) or when you do \topinsert
or \botinsert. It gets into restricted horizontal mode when you ask it to construct
a box from a horizontal list of boxes (using \hbox or \halign). Box construction is
discussed in Chapter 21. Restricted modes are like the corresponding unrestricted ones -
except that you can’t do certain things. For example, you can’t say $$ in restricted
horizontal mode, because you’re not making a paragraph. You can’t begin a paragraph
in restricted vertical mode, etc. All the rules about what you can do in various modes
are summarized in Chapters 24-26.

When handling simple manuscripts, TEX spends almost all of its time in
horizontal mode (making paragraphs), with brief excursions into vertical mode
(between paragraphs).

At the end of a job, you type “\end” at some point when TEX is in vertical
mode; this causes TEX to finish any unfinished pages and stop. (Actually it is
better to type “\vfill\end” in most cases, since \vfill inserts enough space
to fill up the last page properly. Without the \vfill, TEX attempts to stretch
out the lines it has accumulated for the last page, with the bottom line appearing
at the bottom of the page; you probably don’t want this.)

<<14> How TEX breaks paragraphs into lines

When the end of a paragraph is encountered, TEX determines the “best” way
to break it into lines. In this respect, TEX gives better results than most other
typesetting systems, which produce each separate line of output before beginning
the next, because the final words of a TEX paragraph can influence how the lines

How TEX breaks paragraphs into lines 53

at the beginning are broken. TEX's new approach to this problem (based on
“sophisticated computer science techniques”—whew!) requires only a little more
computation than the traditional methods, and leads to significantly fewer cases
in which words need to be hyphenated.

TEX does try to hyphenate words, but it uses a hyphenation only when there
is no better alternative. The complete rules by which TEX hyphenates words are
given in Appendix H. They are sufficiently simple that you could memorize them
and apply them by hand if you wanted to, but there probably isn’t any need for
you to know them in detail. Basically TEX’s approach to hyphenation is one of
extreme caution: instead of trying to find all legitimate places where a hyphen
could occur, TEX sticks to hyphenations that appear to be quite safe.

In view of TEX's improved line-breaking methods, this cautious approach to
hyphenation is usually satisfactory; but every once in a while, like all automatic
approaches to language processing, it fails. The reason for failure is generally that
a rather long nonstandard word has occurred: TEX refuses to apply automatic
hyphenation to a sequence of boxes unless that sequence

a) consists entirely of lower case letters belonging to a single font; and
b) is preceded immediately by glue (e.g., a space); and

c) is followed immediately by glue or by a punctuation mark (something that
doesn’t set the “space factor” to 1, ¢f. Chapter 12).

One consequence of these conditions is that proper names and words containing
accented letters will not be hyphenated; but such words tend to disobey the
normal hyphenation rules anyway. Another consequence is that TEX won’t mess
around with words for which you have explicitly prescribed the hyphenation.
And already-hyphenated compound words won’t be broken up any further.

In spite of these apparently severe restrictions, experience shows that TEX
works amazingly well in practice, except when the margins are extremely close
together (small \hsize); and nothing works very well in that case. (A large
dictionary, combined with TEX’s line-breaking method, would do the best con-
ceivable job; but for normal books and journals it isn’t worthwhile for the com-
puter to waste time referring to a large dictionary. TEX’s program and tables for
hyphenation require only about 3000 words of computer memory, so they place
little burden on the overall processing.) When proofreading the output of TEX,
the amount of additional work needed to correct missed hyphenations is quite
negligible compared to the amount of work that proofreading already involves.

54 Chapter 14

When you do find a word that TEX should have hyphenated but didn'’t, or
when you find one of the extremely rare cases in which TEX inserts a hyphen
in the wrong place, the remedy is to revise the manuscript, telling TEX how to
hyphenate the offending word by inserting discretionary hyphens. The control
sequence “\-" indicates a discretionary hyphen, namely a place where a word
may be hyphenated if there is no better alternative.

For example, if you run into a situation where the French word mathématique
must be hyphenated, you can type it as

math\-\"e\-ma\-tique

Another word TEX has trouble with is “onomatopoeia”; if necessary, type it in
as

on\-o\-mat\-o\-poeia

(Or you could use the fancy “e” ligature, cf. Chapter 9.) But don’t bother to
insert any discretionary hyphens until after TgX has failed to find a good way to
break lines in some paragraph.

Before describing TEX's neat method for breaking a paragraph up into lines, we
should discuss the rules for all legal breaks in a paragraph. Here they are: Outside
of math formulas, you can break a paragraph

a) at glue, provided that the glue is immediately preceded by a character box or a
constructed box (but not a rule box), or by the end of a math formula, or by a
discretionary hyphen, or by an insertion (\topinsert or \botinsert, which are
explained in Chapter 15).

b) where a \penalty has been specified in horizontal mode (see below), provided that
the penalty is less than 1000.

c) at a discretionary hyphenation (with the hyphen included in the text, taken from
the font that was current at the time the \- appeared), paying a penalty of 50.

d) where \eject has been specified (see below—this is a way to end a page at a
particular place within a paragraph).

“_n

e) after or any ligature that ends with “~” (thus, in standard roman fonts this

means after , Y==", or “——=

Inside math formulas, you can break

How TEX breaks paragraphs into lines 55

a) after a binary operation like “+” (paying a penalty of 95), or after a relation like
“=" (paying a penalty of 50).

b) where a \penalty has been specified {see below), provided that the penalty is less
than 1000.

c) at a “discretionary math hyphen” specified by “*” (this inserts a multiplication
sign X into the formula), paying a penalty of 50.

d) where \eject has been specified.

Note that some breaks are “free” but others have an associated penalty. Penalties
are used to indicate the relative desirability of certain breaks. Breaks at \eject are
compulsory; all other breaks are optional. When a break occurs at glue or just before
glue, this glue disappears.

TEX's procedure for line breaking is based on the notion of the “badness” of glue

setting. This is a technical concept defined by a formula that assigns a badness of
100 to a box in which glue had to stretch or shrink to its total amount of stretchability or
shrinkability, while the badness is near zero if the glue’s stretchability or shrinkability is
not very fully utilized. Furthermore the badness increases rapidly when glue is stretched
to more than its stated limit; for example, the badness is 800 if the glue is stretched by
twice its stretchability. Here is a precise way to calculate the badness, given that the
total amount of glue stretch and shrink are y and 2, respectively, and given that the
box is supposed to grow by an amount z more than its natural width when the glue is
set: Case 1, z > 0 (stretching). If y << 104, replace y by 10—*. Then the badness
is 100(z/y)3. Case 2, z < 0 (shrinking). If z << 10—, replace z by 10—%. Then the
badness is 100|z/z|? if |z| < z, otherwise it is oo (infinitely bad).

When breaking lines of a paragraph, TEX essentially considers all ways to break

the lines so that no line will have badness B exceeding 200. Such breaks are called
“feasible.” Subject to this feasibility condition, TEX finds the best overall way to break,
in the sense that the minimum total number of demerits occurs, where the demerits for
each line of output are calculated as follows: If the penalty P for breaking at the end
of this line is > 0, the number of demerits is (B + P + 1)% if P < 0, the number is
(B+1)2— P2 Furthermore an additional 3000 demerits are charged if two consecutive
lines are being hyphenated or if the second-last line of the paragraph is hyphenated.
A “dynamic programming” technique is used to find the breaks that lead to fewest
total demerits. An attempt is made to hyphenate all words that meet the requirements
mentioned earlier, whenever such words would straddle the end of line following some
feasible break. The hyphenation algorithm of Appendix H is used to insert discretionary
hyphens in all permissible places in such words. In practice the computation is quite
fast, and only a few hyphenations need to be attempted, except in long paragraphs.

56 Chapter 14

The current value of \hsize at the close of the paragraph is used to govern the width

of each line, unless you specify “hanging” indentation. If you type “\hangindent
(dimen) for (number)”, the specified dimension is supplied as an extra indentation on
the first n lines of the paragraph, where n is the specified number. (That’s how the
second line of the paragraph you're reading was indented.) If you type “\hangindent
{dimen) after (number)”, the specified dimension is supplied as an extra indentation
on all but the first n lines of the paragraph. If you type just “\hangindent{dimen)”,
then “after 1” is assumed. If the specified dimension is negative, indentation occurs
at the right margin instead of at the left.

TEX indents the first line of each paragraph by inserting an empty box of width
\parindent at the beginning, unless you start the paragraph by typing the control
sequence \noindent.

The number 200 used to determine feasibility can be changed to 100n for any

integer n > 1 by typing “\jpar(number)”, where n is the specified number. A
large value of n will cause TEX to run more slowly, but it makes more line breaks feasible
in cases where lines are so narrow that n = 2 finds no solutions.

The instruction \ragged(number) specifies a degree of “raggedness” for the right-

hand margins. If this number is 7, the line width changes towards its natural width
by the ratio #/(100 +). Thus, \ragged 0 (the normal setting) gives no raggedness;
\ragged 100 causes the width of each line to be midway between \hsize and its
natural width;.and \ragged 1000000 almost completely suppresses any stretching or
shrinking of the glue. Some people like to use this “ragged right margin” feature in
order to make the output look less formal, as if it hadn’t actually been typeset by
an inhuman computer. (Some people also think that “ragged right” typesetting saves
money. On traditional typesetting equipment, this was true, but computer typesetting
has changed the situation completely: the most expensive part of the computation is
now the breaking of lines, while the setting of glue costs almost nothing.)

The numbers 50, 3000, 95, and 50 used in the above rules for hyphenation penalties,

consecutive-hyphenation demerits, binary-operation-break penalties, and relation-
break penalties, can be changed by typing \chpar2«{number), \chpar3«(number),
\chpar6«(number), and \chpar7+(number), respectively. Hyphenation penalties in
force at the end of a paragraph are used throughout that paragraph; relation and
operator penalties in force at the opening $ of a math formula are used throughout that
formula.

To insert a penalty at a specified point in a paragraph, simply type “\penalty
(number)”. Any penalty > 1000 is equivalent to a penalty of co (a non-permissible

How TEX makes lists of lines into pages 57

place to break); any penalty < 1000 implies that a break at the current place is per-
missible. The penalty may be zero or even negative, to indicate an especially desirable
break location.

The control sequence \eject forces a break at the position where \eject occurs,

and also causes TEX to begin the next line on a new page. This gives you a way to
remake page 100, say, without changing page 101, provided that it is possible to end
the new page 100 at the same place where page 101 begins. Note that \eject will make
the last line of the paragraph-so-far reach to the right-hand margin (if feasible); this
is what some printers call a “quad middle” operation. It is quite different from what
you would get if you simply typed “\par” at the spot that the revised page should
end. TEX's linebreaking algorithm is especially advantageous when handling \eject,
because it has an apparent ability to “look ahead.”

Additional vertical glue specified by \parskip is inserted just before each para-
graph. This glue gets added to the normal interline glue.

<15> How TEX makes lists of lines into péges

TEX attempts to choose desirable places to stop making up one page and start
another, and its technique for doing this usually works pretty well. But if you
don’t like the way a page is broken, you can force a page break in your favorite
place by typing “\eject”. An \eject command can occur in vertical mode
(e.g., between paragraphs) or in horizontal mode (within a paragraph) or even in
math mode; but you won’t need to make much use of it.
TEX groups things into pages in much the same way as it makes up paragraphs,
except for the lookahead feature. Badness ratings and penalties are used to find
the best place to break, but each page break is made once and for all when this “best”
place is found—otherwise TEX would have to remember the contents of so many pages,
it would run out of memory space. Legal breaks between pages can occur
a) at glue, provided that the glue is immediately preceded by a constructed box (but
not a rule box). This includes the glue routinely inserted between lines, as explained
below. .
b) where a \penalty has been specified in vertical mode, provided that the penalty
is less than 1000. (Cf. Chapter 14.)
c) after an insertion (arising from \topinsert or \botinsert, see below).
d) where \eject is specified.
Breaks at \eject are compulsory; all other breaks are optional. When a break occurs
at glue or just before glue, this glue disappears.

58 Chapter 15

When boxes are appended to any vertical list (in particular, when they are ap-

pended to the current page), glue is automatically placed between them so that
the distance between adjacent baselines tends to be the same. For example, the lines of
9-point text you are now reading have baselines 11 points apart. This implies that the
glue between lines is not always the same, because more glue space is inserted under a
line whose characters all stay above the baseline than under a line having characters
that descend below it. Such interline glue is appended just before each box even when
you have explicitly inserted glue yourself with \vskip or \vfill; any glue you specify
is in addition to the interline glue.

Here is how interline glue gets figured: The book designer has specified two kinds

of glue by using the operations \baselineskip (glue) and \lineskip (glue).
Suppose the baselineskip glue has = units of space, y units of stretch, and z units of
shrink. (In this paragraph TiX is using z = 11 points, y = z = 0, but y and z need
not be zero.) Suppose we are appending a box of height h to a vertical list in which
the previous box (ignoring glue) had depth d. Then the interline glue inserted just
above the new box will have £ — h — d units of space, y units of stretch, and z units
of shrink, whenever z —h —d > 0; but if z —h —d << 0, the interline glue will be the
glue specified by \1ineskip. For example, the basic TEX format in Appendix B says
“\baselineskip 12 pt \lineskip 1 pt”;this means that baselines will normally
be 12 points apart, but when this is impossible a space of 1 point will be inserted between
adjacent boxes of a vertical list. Exception: Interline glue is not inserted before or after
rule boxes, nor is it inserted before the first box or after the last box of a vertical list.

Contributions are made to the current page until the accumulated page height

minus the accumulated glue shrinkability first exceeds the specified page size. (Page
size is specified by the book designer using \vsize, see below.) At this point the break
is made at whatever legal break in the page-so-far results in fewest badness-plus-penalty
points B + P, where the badness B is defined as in Chapter 14 (except using vertical
glue), and where the penalty P is zero unless explicitly specified or included by the
paragraphing routine. The paragraphing routine inserts a penalty of 80 points just
after the first line and just after the penultimate line of a multi-line paragraph, with
an additional penalty of 50 points just after a line that ends with a hyphenation. This
tends to avoid so-called “widows” (i.e., breaks that leave only one line of a paragraph
on a page); for example, TEX breaks a four-line paragraph without 80 points of penalty
only by breaking it into 2 +- 2 lines. A penalty of 500 points is charged for breaking
pages just before a displayed equation. Furthermore there is a penalty of 80 for breaking
after the first line of text that follows a display, unless the paragraph ends with such
a line. (There is no penalty for breaking before the last line of text that precedes a
display, since such a line is not considered to be a “widow.”) Once the best break

How TEX makes lists of lines into pages 59

has been identified, the page is output, glue at the break is deleted, and everything
remaining is contributed to the following page. (To change the numbers 80, 50, and
500 relating to widow-line, broken-line, and display-break penalties, you can use the
\chpar instruction as explained in Chapter 24.)

The height of a page is the value of \vsize, and the depth in most cases is the depth

of the bottom line on that page. Thus, if one page has 10-point type and the next
has 9-point type, the baselines at the bottoms of both pages will be at the same place
even though the descenders of 10-point letters go slightly further below the baseline than
the descenders of 9-point letters do. However, the bottom line on a page is sometimes a
constructed box whose depth is very large, and in such a case we want the baseline to
be higher. TEX deals with the problem as follows: Whenever a box having depth greater
than \maxdepth is contributed to the current page (where “\maxdepth(dimen)” has
been specified by the book designer), the depth of the page-so-far is artificially decreased
to \maxdepth, and the height of the page-so-far is correspondingly increased. (Interline
glue calculation is not affected by this artificial adjustment, except possibly afterwards
when the page is being dealt with as a completed box.) There is also another design
parameter, “\topbasel ine(dimen)”, which is used to insert glue at the top of the page
so that the baseline of the first box will be at least this distance from the top (if it isn't
a rule box). All other glue is normally deleted at the top of each page; to put glue there,
simply insert a \null box first. If several different values of \vsize, \maxdepth, or
\topbaseline occur in the same TEX job, each page is governed by the values in force
when the first item was contributed to that page.

A “floating-insertion” capability is built into TEX so that, among other things,

illustrations can be placed at the top of the first subsequent page on which they fit,
and footnotes can be placed at the bottom of the page on which the footnote reference ap-
pears. Here's how it works: You type “\topinsert{{vlist}}” or “\botinsert{(vlist)}",
where (vlist) is a sequence of instructions that specifies a vertical list of boxes and glue.
If such an insertion is made when TEX is in vertical mode, the specified vertical list
will be contributed to the first page on which there is room for it. If such an insertion
is made when TEX is in horizontal mode, the specified vertical list will be contributed
to the same page on which the line containing the insertion appears. A \topinsert
is contributed at the top, a \botinsert at the bottom. Glue specified by \topskip
(glue) will be placed just below every \topinsert; glue specified by \botskip(glue)
will be placed just above every \botinsert.

You may be wondering how things like page numbers get attached to pages. Actually
TEX has two levels of control: when a complete page has been built, this page
is packaged as a box and another section of TEX input code comes into action. The
designer has specified this other piece of code by writing “\output{...}", and we will

60 Chapter 15

discuss the details of \output routines in Chapter 23. For now, it should suffice to give
just a small taste of what an \output routine looks like:

\output{\baselineskip 20pt
\page\ctrline{\:a\countO}\advcount0}

This routine (which appears in Appendix B) takes the current page number, typeset in
font a, and centers it on a new line below the contents of the current page; “\page”
means the current page, “\count0” means the current page number, and “\advcounto0”
advances this number by 1. The baseline of the page number will be 20 points below
the baseline of the page—assuming that \maxdepth has been set small enough that
this is always possible. This setting of \baselineskip will be retracted at the end of
the \output routine, according to the normal conventions of grouping; thus there will
be no effect on TEX's page-building operations (which go on asynchronously).

<<16> Typing math formulas

TEX was designed to handle complex mathematical formulas in such a way that
most of them are easy to input. The basic idea is that a complicated formula is
composed of less complicated formulas put together in a simple way, and these
less complicated formulas are in turn made up of simple combinations of formulas
that are even less complicated, and so on. Stating this another way, if you know
how to type simple formulas and how to combine formulas into larger ones, you
will be able to handle virtually any formula at all. So let’s start with simple ones
and work our way up.

The simplest formula is a single letter, like “z”, or a single number, like “2”.
In order to enter these into a TEX text, you type “x” and “2”, respectively.
Note that all mathematical formulas are enclosed in special math brackets, and
we are using $ as the math bracket in this manual, in accord with the basic TEX
format defined in Appendix B. Note further that when you type “x” the “z”
comes out in italic type, but when you type “2” the “2” comes out normally.
In general, all characters on your keyboard have a special interpretation in math
formulas, according to the normal conventions of mathematics printing. Letters
now denote italic letters, while digits and punctuation denote roman digits and
punctuation; a hyphen (-) now denotes a minus sign {—), which is almost the
same as an em-dash but not quite (see Chapter 2). So if you forget one $ or type
one $ too many, TEX will probably become thoroughly confused and you will
probably get some sort of error message.

Typing math formulas 61

Formulas that have been typeset by a printer who is unaccustomed to doing
mathematics usually look quite wrong to a mathematician, because a novice
printer usually gets the spacing all wrong. In order to alleviate this problem, TEX
does most of its own spacing in math formulas; and it ignores any spaces you
type between $’s. For example, you can type “$ x$” and “$ 2 $” and they
will mean the same thing as “x” and “$2%$”; you can type “$(x + y)/(x -
y)$” or “$(x+y) / (x-y)$", but both will result in “(z 4 y)/(z — y)”. Thus,
you are free to use blank spaces in any way you like. Of course, spaces are still
used in the normal way to mark the end of control sequences, as explained in
Chapter 7. In most circumstances TEX's spacing will be what a mathematician
is accustomed to; but we will see in Chapter 18 that there are control sequences
by which.you can override TEX’s spacing rules if you want.

One of the things mathematicians like to do is make their formulas look like
Greek to the uninitiated. In TEX language you can type “$$\alpha, \beta,
\gamma, \delta;$$"” and you will get the first four Greek letters

a,,7,6;

furthermore there are upper case Greek letters like “I'”, which you can get by
typing either “¢6\Gamma$” or “$\GAMMA$”. A few of the Greek letters deserve spe-
cial attention: For example, lower case epsilon {¢) is quite different from the symbol
used to denote membership in a set (€); type “ϵ” for ¢ and “\in”
for €. Furthermore, three of the lower case Greek letters have variant forms
on TEX’s standard italic fonts; “$ (\phi,\theta, \omega)$” yields “(¢,6,w)"
while “$ (\varphi,\vartheta, \varomega)$” yields “(p, ¥, w)".

Besides Greek letters, there are a lot of funny symbols like “~" (which you
get by typing “\approx”) and “~+” (which you get by typing “\mapsto”).
A complete list of these control sequences and the characters they correspond to
appears in Appendix F. The list even includes some non-mathematical symbols
like

§ 1191 0© 58 £
which you can get by typing “\section”, “\dag”, “\ddag”, “\P”,
“\copyright”, “$\$$”, and “\sterling”, respectively; nearly all of the
special symbols that you’ll ever want are available in this way. Such control
sequences are allowed only in math mode, i.e., between $’s, even when the cor-
responding symbols aren’t traditionally considered to be mathematical, because
they appear in the math fonts.

62

Chapter 16

Now let’s see how more complex formulas get built up from simple ones. In
the first place, you can get superscripts and subscripts by using “T” and “4”:

Type

$x12%

$x12%

$21Tx$
$xT2y12%$

$x T 2y T 2%
$xi2yLi2$
$12FL3%

and you get

72

)
21

222
z2y?
Y

oF3

Note that T and L apply only to the next single character. If you want several
things to be subscripted or superscripted, just enclose them in braces:

$xt{2y}$
$21{2Txxr$
$21{21{2Tx}}$
$xl{yl2}$
$xi{yT2}$

z2Y

92
92"

Ty,

$y2

It is illegal to type “xtyTz” or “xiylz” (TEX will complain of a “double
superscript” or “double subscript”); you must type “xt{yTz}” or “{xTy}*tz" or
“xT{yz}" in order to make your intention clear. (Some commonly-used languages
for math typesetting treat xty Tz as xt{y Tz} and others treat it as {xTy>Tz or
xT{yz}; the ambiguous construction isn’t needed much anyway, so TEX disallows

it.)

A subscript or superscript following nothing (as in the “42FL13” example
above, where the 12 follows nothing) is taken to mean a subscript or superscript
of an empty box. A subscript or superscript following a character applies to
that character only, but when following a box it applies to that whole box; for

example,

$((xT2) T3) T4%

$LLxT2) > T3) 3148

(=)

(Can}

Tuyping math formulas 63

In the first formula the T3 and T4 are superscripts on the right parentheses, but
in the second formula they are superscripts on the formulas enclosed in braces.

You can have simultaneous subscripts and superscripts, and you can specify
them in any order:

$xT213% 2
$x13728$ 2
$xT{31415}1{92}+\pi$ 45 4 g
$xi{yTalb}T{zlcTd}$ x;‘:

Note that simultaneous sub/superscripts are positioned over each other, aligned
at the left.

The control sequence \prime stands for the character “/’, which is used
mostly in superscripts. Here’s a typical example:
11

$ytit\prime+yi2T{\prime\prime\prime}$ v+ 4

Another way to get complex formulas from simple ones is to use the control
sequences \sqrt, \underline, or \overline. These operations apply to the
character or group that follows them:

$\sqrt2$ V2
$\sqrt{x+2}$ 4+ 2
$\underline4$ 4
$\underline{\underline4}$ é
$xT{\underline n}$ z2

$\overline{xT3+\sqrt3}$ B4+3

If you need cube roots (or nth roots), TeX has no built-in mechanism for this. But
you can insert a 3 (or n) over a square root sign by using Appendix B’s control
sequence \spose for superposition. Type

\spose{\raise(dimen)\hbox{\hskip(dimen)$\scriptscriptstyle(root)$}}

followed by \sqrt..., where you can figure out appropriate dimensions by fiddling
around until the position looks right. (These dimensions depend on the size of the
formula, the current size of type, and the size of the square root sign.) For example,

“¥/5" can be set with TEX’s normal 10-point fonts by typing
$\spose{\raise5pt\hbox{\hskip2.5pt$\scriptscriptstyle3s$}>\sqrt5$

64 Chapter 16

Accents in math mode work something like \overline; you can accent a single
character or a formula. (But the formula had better be short, since a tiny accent
will be centered over the whole thing.) For example,

$\=x+\overline x+\b x+\A x+\s x+\s{\s x}+\A{x+y}+eT{\=x}$

produces 2+Z+z+2+Z+ %+ 2+ y-+ et
»Exercise 16.1: What would you type to get the following formulas?

gntl (n+41)2 Vi—z2 wFz p¢ o, hy(2)
»Exercise 16.2: What’s wrong with typing the following?
If$ x = y$, then x is equal to $y.$
»Exercise 16.3: Explain how to type the following sentence:

Deleting an element from an n-tuple leaves an (n — 1)-tuple.

<17> More about math

Another thing mathematicians like to do is make fractions—and they also like
to build up symbols on top of each other, as in

3
% and n _: 1 and [n _: 1] and Z Zn
n=1

You can get these four formulas by typing “$$1\over 2$$” and “$$n+1\over
3$$” and “$$n+1\comb[]13$$” and “$$\sumi{n=1}13 Zin$$”; we shall study
the simple rules for such constructions in this chapter.

First let’s look at fractions, which use the “\over” notation. The control
sequence \over applies to everything in the formula unless you enclose \over

More about math 65

in a { } group; in the latter case it applies to everything in that group.

Type and you get
z+y°
$$x+yT2\over k+1$$ P
2
$$x+{yT2\over k}+1%$$ 4+ % +1
2
$$x+{yT2\over k+1}$$ z+ P :_ 1
$$x+yT{2\over k+1}$$ z 4y

You aren’t allowed to use \over twice in the same group; instead of typing a
formula like “a \over b \over 2", you must specify what goes over what:

$${a\over b}\over 2%$

$$a\over{b\over 2}$$

N | oowr

Note that the letters get smaller when they are fractions-within-fractions,
just as they get smaller when they are used as exponents. It’s about time that
we studied how TEX does this. Actually TEX has eight different styles in which
it can treat formulas, namely

display style (for formulas displayed on lines by themselves)
text style (for formulas embedded in the text)
script style (for formulas used as superscripts or subscripts)

scriptscript style (for second-order superscripts or subscripts)

and four other styles that are almost the same except that exponents aren’t raised
quite so much. For brevity we shall refer to the eight styles as

D, T, S, 85D, TS, SS,

66 Chapter 17

so that T is text style, D' is modified display style, etc. TEX also uses three sizes
of type for mathematics, called text size, script size, and scriptscript size (¢, s,
and ss).

The normal way to typeset a formula with TEX is to enclose it in dollar signs
$...$, which yields the formula in text style (style T), or to enclose it in double
dollar signs $$. .. $$, which displays the formula in display style (style D). Once
you know the style, you can determine the size of type TEX will use:

If a letter is in style then it will be set in size

D,T,D,T t
S,5 s
58,85 8s

There is no “SSS” style or “sss” size; such tiny symbols would be even less
readable than the ss ones. Therefore TEX stays with ss as its minimum size, as
shown in the following chart:

In a formula the superscript and the subscript
of style style is style is
D, T N s
S,8S SS Ss’
DT i s
S, 588 Ss’ Ss’

For example, if xT{alb} is in style D, then {alb} is in style S, and b is in style
SS'. :

So far we haven’t seen any difference between styles D and T. Actually there
is a slight difference in the positioning of exponents: you get z2 in D style and
z2 in T style and z2 in D’ or T’ style—do you see the difference? But there is a
big distinction between D style and T style when it comes to fractions:

In-a formula the style of the and the style of the
a\over B of style numerator a is denominator g is
D T T
T S s
S,8S SS Ss’
D yid T
T s’ S’

s, 8s' s’ Ss'

More about math 67

Thus if you type “$1\over2$” (in a text) you get %, namely style S over style
S’; but if you type “$$1\over2$$” you get

1
2

(a displayed formula), which is style T over style 7".

When a fraction like $x+y\over z$ is put into the text of a paragraph, the

z+y
z

letters are rather small and hard to read: . So it is usually better to type
the fraction in the mathematically equivalent way “$(x+y)/=z$”, which comes
out “(z + y)/2”. In other words, \over is useful mostly for displayed formulas
or for numeric fractions.

While we're at it, we might as well finish the style rules: \underline does not
change the style; \sqrt and \overline both change Dto D, T to T/, S to S’, SS
to SS’, and leave IV, T/, S’, S5’ unchanged.

There’s another operation “\atop”, which is like \over except that it leaves
out the fraction line:

z

y+2

The basic math definitions in Appendix B also define “\choose”, which is like
\atop but it encloses the result in parentheses:

$$x\atop y+2%$

$$n\choose k$$ » (:)

This is a common notation for the so-called “binomial coefficient” that tells how
many ways there are to choose k things out of n things; that’s why the control
sequence is called \choose.

You can’t mix \over and \atop and \choose with each other. For example,
“$$n \choose k \over 2%$$” is illegal; you must use grouping, to get either
“$${n \choose k} \over 2$$” or “$$n \choose {k \over 2}$%",i.e.,

7o ()

68 Chapter 17

The latter formula, incidentally, would look better as “$$n \choose k/2$$”
or “$$n \choose {1\over2}k$$”, yielding

(k72) °’ (&)

Suppose you don't like the style TEX selvects by its automatic style rules.
Then you can specify the style you want by typing

\dispstyle or \textstyle or \scriptstyle or \scriptscriptstyle.

For example, if you want the (}) to be larger in the formula $${n\choose
k}\over 2%$$, just type “$$\dispstyle{n\choose k}\over 2$$”; you will

2

because the numerator of the formula is now “\dispstyle{n\choose k}".
Here’s another example (admittedly a rather silly one): $$n+\scriptstyle n
+\scriptscriptstyle n$$ gives

n +n+n

Note that the plus signs get smaller too, as the style changes; and there’s no
space around - signs in script style.

»Exercise 17.1: Explain how to specify the displayed formula
P\, 2,p—2 — 1 1
(2)2: v 1—z1—22

There are two other variants of \over, \atop, etc. First is “\above(dimen)”,
which is just like \over but the stated dimension specifies the exact thickness of
the line rule. For example,

$$\dispsty1¢‘a{x\over' yX\above 1pt\dispstyle{w\over z}$$

More about math 69

will produce

wiglein

this sort of thing was once customary in arithmetic textbooks, but nowadays it is rare
(at least in pure mathematics). The second variant is a generalization of \choose: You
can write “\comb(delim){delim)”, specifying any of the delimiters listed in Chapter 18;
“\choose” is the same as “\comb()”, and one of the examples at the beginning of this
section used “\comb(]".

When you use \over, \atop, etc., the numerator and denominator are centered

over each other. If you prefer to have the numerator or denominator at the left,
follow it by “\hf111”; if you prefer to have it at the right, precede it by “\nfil1”.
For example, the specification

$$1+{1\hfill\over\dispstyle ali+{i\hfill\over\dispstyle
al2+{1\hfill\over\dispstyle al3+{i\over al4}}}}$$

yields
1
14 I
a1 + 1
a2 + 1
as + -
a4
while without the \hfills you get
14 !]
a +
az+
a3+ —
a4

Mathematicians often use the sign), to stand for “summation” and the sign
f to stand for “integration.” If you’re a typist but not a mathematician, all you
need to remember is that \sum stands for 3_ and \int for f; these abbreviations
appear in Appendix F together with all the other symbols, in case you forget.

70 Chapter 17

Symbols like 5~ and [(and a few others like |J and [] and § and), all listed
in Appendix F) are called large operators, and you type them just as you type
ordinary symbols or letters. The difference is that TEX will choose a larger large
operator in display style than it will in text style. For example,

$\sum xin$ yields Yz, (T style)
$$\sum xin$$ yields Exn (D style).

Usually Y occurs with “limits,” i.e., with formulas that are to appear below
it or to the right. You type limits just the same as superscripts and subscripts:
for example, if you want

n=1

you type either “$$\sumi{n=1}Tm$$” or “$$\sumtmi{n=13$$". According to
the normal conventions of mathematics, TEX will change this to “Y_* " if in
text style rather than display style.

Integrations are slightly different from summations, in that the limits get set
at the right even in display style:

$\intl{-w}T{+0}$ vields [T (T style)
_ >,
$$\intli{-0}T{+0}$$ yields / (D style).
—00

Note further that the subscript is not directly below the superscript, in either
style; again, this is a mathematical convention that TEX follows automatically
(based on information stored with the fonts). :

@ Some printers prefer to set limits above and below [signs; similarly, some prefer
to set limits to the right of 2 signs. You can change TEX's convention by simply
typing “\limitswitch” after the large operator. For example,
o0
$$\int\1imitswitchi{-w}T{+0}$$ yields /

—00

$$\sum\1imitswitchi{n=1}Tm$$ yields Y

n==]

Fine points of mathematics typing 71

If you have to put two or more rows of limits under a large operator, you can do
this by using “\atop”. For example, if you want the displayed formula

> P9
0<i<m
o<<j<n

the correct way to type it is
$$\sumi{\scriptstyleo<i<m\atop\scriptstyle0<j<n}P(i, j) $$

(perhaps with a few more spaces to make it look nicer in the manuscript file). Note that
the instruction “\scriptstyle” was necessary here, twice—otherwise “0 < 7 < m”
and “0 < j < n” would have been in scriptscript size, which is too small. This is one
of the rare cases where TEX's automatic style rules need to be overruled.

p g T
»Exercise 17.2: How would you type the displayed formula E 2 Z a;bjkcki ?
i=1j==1k=1

@ »Exercise 17.3: And how about E aisbjkcki ?

1<i<p
1<j<gq
1Zk<Zr

<18> Fine points of mathematics typing '
We have discussed most of the facilities needed to construct math formulas, but
there are several more things a good mathematical typist will want to watch for.

1. Punctuation. When a formula is followed by a period, comma, semicolon,
colon, question mark, exclamation point, etc., put the punctuation after the $,
when the formula is in the text; but put the punctuation before the $$ when the
formula is displayed. For example,

If $x<0%, we have shown that $$y=f (x).$$

The reason is that TEX’s spacing rules within paragraphs work best when the
punctuation marks are not considered part of the formulas.

72 Chapter 18

Similarly, don’t type something like this:
for $x = a, b$, or c.
It should be
for $x = a$, b, or c.

The reason is that TEX will always put a “thin space” between the comma and
the bin $x = a, b$. This space will probably not be the same as the space TEX
puts after the comma after the b, since the second comma is outside the formula;
and such unequal spacing would look bad. When you type it right, the spacing
will look good. Another reason for not typing “$x = a, b$” is that it inhibits
the possibilities for breaking lines in a paragraph: TgX will never break at the
space between the comma and the b because breaks after commas in formulas
are usually wrong. For example, in the equation “$x = f(a, b)$” we certainly
don’t want to put “c = f(a,” on one line and “b)” on the next.

Thus, when typing formulas in the text of a paragraph, keep the math
properly segregated: Don’t take operators like — and = outside of the $’s, and
keep commas inside the formula if they are truly part of the formula. But if a
comma or period or other punctuation mark belongs linguistically to the sentence
rather than to the formula, leave it outside the $'s.

2. Roman letters in formulas. The names of algebraic variables in formulas
are usually italic or Greek letters, but common mathematical operators like “log”
are always set in roman type. The best way to deal with such operators is to
make use of the following control sequences (all of which are defined in the basic
format of Appendix B):

\cos \exp \lim \log \sec
\cot \ged \liminf \max \sin
\csc \inf \limsup \min \sup
\det \lg \1ln \Pr \tan

The following examples show that such control sequences lead to roman type as
desired:

Fine points of mathematics typing 73

Type and you get
$\sin2\theta=2\sin\theta\cos\theta$ sin 20 = 2sinf-cosf
$0(n\log n\log\log n)$ O(nlog nloglog n)
$\exp (-xT2)$ exp(—z?)
$$\maxi{1<n<m}\1ogl2Pin$$ max log, P,
1I<n<m
) . . sinz
$$\1imi{x+0}r{\sin x\over x}=1%$ lm}) — =1
r—

In the second example, note that O is an upper case letter “oh”, not a zero; a
formula should usually have “0” instead of “0” when a left parenthesis follows.
The fourth-and fifth examples show that some of the special control sequences
are treated by TEX as “large operators” with limits just like ; compare the
different treatment of subscripts applied to \max and to \log.

Another way to get roman type into mathematical formulas is to include constructed
boxes (cf. Chapter 21); such boxes are treated the same as single characters or
subformulas. For example,

$\exp(x+\hbox{constant})$ yields exp(z + constant)

The fonts used inside such boxes are the same as the fonts used outside of the math
brackets $...$; the characters do not change size when the style changes.

@ »Exercise 18.1: Explain how to type the phrase “nth root”, where “nth” is treated
as a mathematical formula with a superscript. The letters “th” should be in font
d.

There is, of course, a way to specify characters that do change size with changing

styles; you can do it with the \char command. We studied \char in Chapter
8, but \char works a little differently in math mode because math mode deals with
up to ten fonts instead of just one font. TEX keeps three fonts for text size, three for
script size, and three for scriptscript size, plus one font for oversize and variable-size
characters. The three fonts of changing size are called rm, it, and sy fonts—short for
roman, italic, and symbols, according to TEX's normal way of using these fonts; and the
oversize font is called the ex font. (The rm and it fonts are essentially normal fonts
like all other fonts TEX deals with, but each sy and ex font must have special control
information stored with it, telling TEX how to do proper spacing of math formulas.

74 Chapter 18

Thus, TEX is able to do math typesetting on virtually any style of font, provided that
the font designer includes these parameters.) To specify which fonts you are using for
mathematics, you type

\mathrm (font)({font)(font)

\mathit (font)(font)(font)

\mathsy (font)(font)(font)

\mathex (font)

before getting into math mode, where the rm, it, and sy fonts are specified in the order
text size, script size, scriptscript size. For example, by typing “\mathit tpk” you are
saying that TEX should use font t as the it font in text size math, font p as the it font
in script size math, font k in scriptscript size math. If you don’t use scriptscript size in
your formulas, you must still specify a font, but you could say “\mathit tpp” or even
“\mathit ttt”. (When you specify a font letter for the first time you must follow it
with the font file name, as described in Chapter 4; e.g., “\mathit tecmil0 pecmi7
p” would work. But it's best to declare all your fonts first, before specifying the ones
to be used for math.) Now... about that “\char” operation in math mode: Although
\char selects up to 128 characters in non-math modes, it selects up to 512 characters
in math mode. Characters ‘000 to “177 are in the rm font of the current size, “200
to 377 are in the it font of the current size, 400 to 577 are in the sy font of the
current size, and "600 to “777 are in the ex font. For example, the “dangerous bend”
road symbol is in the ex font being used to typeset this user manual, and it is actually
character number ‘177 in this font, so it is referred to by typing “$\char-777$”. The
symbol oo is character number ‘61 in TEX's standard symbol fonts; in math mode you
can refer to it either as “\infty” or as “\char“461”, or simply as “o” if you happen
to have this key on your keyboard.

@ TEX fonts used for variables (“it” fonts) have spacing appropriate for math for-
mulas but not for italic text. You should use a different font for “italicized words”
in the text. For example:

This sentence is in font cmil0, which is intended for formulas, not text.
This sentence is in font cmitil0, which is intended for tezt, not formulas.

3. Large parentheses and other delimiters. Since mathematical formulascan
get horribly large, TEX has to have some way to make ever-larger symbols. For
example, if you type

$$\sqrt{1+\sqrt{i+\sqrt{1+
\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x3}}3}1}3}$$

Fine points of mathematics typing 75

the result shows a variety of available square-root signs:

1+ 1+J1+\/1+\ﬂ+\/1+\/175

The three largest signs here are all essentially the same, except for a vertical
segment “ |” that gets repeated as often as necessary to reach the desired size;
but the smaller signs are distinct characters found in TEX’s math fonts.

A similar thing happens with parentheses and other so-called “delimiter”
symbols. For example, here are the different sizes of parentheses that TEX might

use in formulas:
((((((((« >>))))))>)

The three largest pairs are made with repeatable extensions, so they can become
as large as necessary.

TEX chooses the correct size of square root sign by simply using the smal-
lest size that will enclose the formula being \sqrted, but it does not use large
parentheses or other delimiters unless you ask it to. If you want to enclose a
formula in variable-size delimiters, type

\left(delim;) (formula) \right(delimg)

where each (delim) is one of the following:

. blank () | vertical line (|)

(left parenthesis (() \| double vertical line (||)

) right parenthesis ()) \langle or < left angle bracket (()

[left bracket ([) \rangle or > right angle bracket {))

1 right bracket (]) \1floor left floor bracket (|)
\{ left brace ({) \rfloor right floor bracket (|)
\} right brace (}) \lceil left ceiling bracket ([)

/ slash (/) \rceil right ceiling bracket (])

76 _ Chapter 18

For example, if you type “$$1+ \left(1\overi-xT2 \right) T3$$” you

will get
1 3
t+(r22)

Notice from this example that \l1eft and \right have the effect of grouping
just as { and } do: The “\over” operation does not apply to the “1+” or to
the “r3”, and the “t3” applies to the entire formula enclosed by \left (and
\right).

When you use \1eft and \right they must match each other, nesting like
braces do in groups. You can’t have \1eft in one formula and \right in another,
nor can you type things like “\left (...{...\right)...}”. This restriction
makes sense, of course, but it is worth explicit mention here because you do not
have to match parentheses and brackets, etc., when you are not using \left
and \right: TEX will not complain if you input a formula like “$[0,1)$” or
even “$) ($”. (And it’s a good thing TEX doesn’t, for such unbalanced formulas
occur surprisingly often in mathematics papers.) Even when you are using \left
and \right, TEX doesn’t look closely at the particular delimiters you happen to
choose; thus, you can type strange things like “\l1eft)” and/or “\right (" if
you know what you’re doing. Or even if you don't.

If you type “\left.” or “\right.”, the corresponding delimiter is blank—
not there. Why on earth would anybody want that, you may ask. Well, there
are at least two reasons. One is to take care of situations like this:

le| = z, ifz>0;
—z, ifz<<0.

The formula in this case could be typed as follows:

$$1xI=\left\{ ... \right.$$

where “...” stands for a TEX box containing the text
T, ifz>0;
—z, if z <0,

Later in this chapter we shall discuss how you might specify such a box; just now
we are simply trying to discuss the use of a blank delimiter.

Fine points of mathematics typing 77

The second example of a blank delimiter occurs when you want a variable-
size slash; type either “\left/ ... \right.” or "\left. ... \right/”,
whichever will make the correct size slash (i.e., a slash that is just big enough for
the formula enclosed between \1eft and \right). For example, if you want to

get the formula
a1 /c +1

b d

you can type either “$$\left. a+1 \over b \right/ {c+1il\over d}$$”
or “¢${a+1\over b} \left/ c+1i \over d \right.$$".

A third example, which occurs less often, is the problem of getting three large
delimjters of the same size, as in a formula of the form “[a |8]" where a and 8
are large formulas and, say, a is bigger than 8. You can type

\left.\left[a\right| f \right]

to handle this. Note that a construction like “\l1eft (\left(... \right)\right)”
will always produce double parentheses of the same size.

The size chosen by TEX when you use \left and \right is usually ap-
propriate, but there is an important exception: When the \left and \right
enclose a displayed 3" or [], etc., with upper and/or lower limits, TEX will often
make the delimiters much too large. For example, if you type

$$\left (\sumli{i=1}Tn ALi \right) t2$$

the result is

>4

i=]

(rather shocking). The reason is that TEX adds extra blank space above and below
the limits so that they don’t interfere with surrounding formulas; usually this is
the right thing to do, except when large delimiters are involved. In fact, most
math compositors prefer to let the limits on }_’s protrude above or below any
enclosing parentheses, so \left and \right aren’t really the proper things to
type anyway. What you should do is use control sequences such as \bigglp and

78 Chapter 18

\biggrp, which are defined in the basic TgX format (Appendix B). When the
above example is retyped in the form

$$\bigglp \sumli{i=1}Tn Ali \biggrpT2$3$

it will come out right:

(Er)

i==1

Incidentally, basic format also defines two other useful sizes of parentheses,
for those occasions when you wish to control the size by yourself in a convenient
manner: \biglp and \bigrp produce parentheses that are just a little bit bigger
than normal ones, while \biggglp and \bigggrp produce really big ones. Here
is a typical example of a formula that uses \biglp and \bigrp:

(z — s(2))(y — s(v))-

»Exercise 18.2: 'Explain exactly how to type this formula so that TEX would
typeset it as shown.

Instead of using “bigg” delimiters, there is another way to get TEX to choose a

more reasonable size with respect to displayed 3 _'s with limits, namely to fool TEX
into thinking that the formulas aren't as big as they really are. Using Appendix B, type
“\chop to (dimen){(formula)}” to produce a box containing the specified formula in
display style but with the depth of the box artificially assumed to be the specified
dimension. The (dimen) must-be in points (pt). For example,

\sqrt{\chop to 9pt{\sumi{iLk<n}Alk}}

V2 A
1<k<n

yields

Fine points of mathematics typing 79

You can also access other delimiters that might be present in your fonts by using

the versatile \char command. We saw above that \char has an extended meaning
in math mode; its meaning is even further extended when used to specify delimiters.
Besides the options listed above, any (delim) can be “\char “c;c2” where ¢; and ¢; are
three-digit octal codes; ¢; is the code for this delimiter in its smaller sizes (rm, it, or
sy fonts) and ¢; is the code for this delimiter in the ex font. For example, it turns out
that the left brace delimiter can be specified as \char 546610, since a normal size left
brace is character ‘146 in the sy font, and since all oversize left braces are reachable
starting at character ‘010 in the ex font. (Characters in an ex font are internally linked
together in order of increasing size.) You should let ¢; or ¢; equal 000 if there is no
corresponding character. TEX handles variable-size delimiters in the following way: If
c1 3% 000, the first step is to look at math character ‘c; in the current size, then in
any larger. sizes. (For example, in script style TgX looks first at script size character
“¢), then at the corresponding character in text size.) If c2 7% 000, the next step is to
look at all characters linked together in the ex font, starting at “c,, in increasing order
of size. (This linked list might end with an extensible character.) The first character
TEX sees that is large enough (i.e., > the desired size) is chosen. Special note to those
who have read this far: Standard ex fonts for TEX often contain the “left pretzel” and
“right pretzel” delimiters that you can get by typing

\left\char 000656 and \right\char- 000657,

respectively. Startle your friends by using these instead of parentheses around your
big matrices, or try typing “$$\left\char-656\quad\vcenter{\hbox par 250pt{
. several sentences of text ... }}\quad\right\char 6573%$".

4. Spacing. Chapter 16 says that TEX does automatic spacing of math for-
mulas so that they look right, and this is almost true, but occasionally you must
give TEX some help. The number of possible math formulas is vast, and TgX’s
spacing rules are rather simple, so it is natural that exceptions should arise.
Furthermore there are occasions when you need to specify the proper spacing
between two formulas. Perhaps the most common example of this is a display
containing a main formula and side conditions, like

Fo=Fo 1+ Fay n22

You need to tell TEX how much space to put after the comma.

80 Chapter 18

The traditional hot-metal technology for printing has led to some ingrained
standards for situations like this, based on what printers call a “quad” of space.
Since these standards seem to work well in practice, TEX makes it easy for you
to continue the tradition. When you type “\quad”, TEX converts this into an
amount of space equal to a printer’s quad, approximately the width of a capital
M. (The em-dash discussed in Chapter 2 is usually one quad wide; and one quad
in 10-point type is usually equal to 10 points. This is where the name “quad”
comes from; it once meant a square piece of blank type. But of course a font
designer is free to specify any sizes that he or she wants for the widths of quads,
em-dashes, and M’s.)

The abbreviation “\qquad” is defined in Appendix B to be the same as
“\quad\quad”, and this is the normal spacing for situations like the F}, example
above. Thus, the recommended procedure is to type

$$ Fin = Fi{n-1} + Fl{n-2}, \qquad n > 2. 3

It is perhaps worth reiterating that TEX ignores all the spaces in math mode
(except, of course, the space after “\qquad”, which is needed to distinguish
“\qquad n” from “\qquadn”); so the same result would be obtained if you were
to type

$$FLin=Fi{n-1}+Fi{n-2},\qquad n22.$$

Thus, all spacing that differs from the normal conventions has to be specified
explicitly by control sequences such as \quad and \qquad.

Of course, \quad and \qquad are big chunks of space, more than the space
between words in a sentence, so it is desirable to have much finer units. The basic
elements of space that TEX deals with in math formulas are often called a “thin
space” and a “thick space”, defined respectively to be { of a quad and % of a
quad. In order to get a feeling for these units, let’s take a look at the F, example
again: thick spaces occur just before and after the = sign, and also before and
after the > sign. A thin space is slightly smaller, yet quite noticeable; it’s a thin
space that makes the difference between “loglog” and “loglog”.

TEX has variable glue, as we discussed in Chapter 12, so spaces in TEX’s
math formulas actually can get a little thicker or thinner when a line is being
stretched or squeezed. Here is a precise chart telling about all the different kinds
of spaces that you can specify in math formulas:

Fine points of mathematics typing 81

Control Name Spacing in Spacing in styles

sequence styles D, T, D', T' S,88,5', 85!
\, Thin space (1/e, 0, 0 (1/6,0,0)
\u Control space (2/9, 179, 2/9) (1/6,0,0)
\> Op space (279, 179, 2/9) (0,0,0)
\; Thick space (5/18, 5/18, 0 (0,00
\quad Quad space (1, 0, 0) (1,0,0)
\2 Conditional thin space (1/6, 0, 0) 0,0,0)
\! Negative thin space (—1/8, 0, 0) (-—1/6,0,0)
\? Negative thick space (—5/18, —5/18, 0 0,0,0)
\< Negative op space (—2/9, —1/9,—2/9) (0,0,0)
\< Negative \> (—1/8, 0, 0) (0,0,0)

(Don’t try to memorize this chart, just plan to use it for reference in case of
need.) The spacing is given in units of quads; thus, for example, the entry
“(5/18,5/18,0)” for a thick space in D style means that a thick space in displayed
formulas is 3 of a quad wide, with a stretchability of 7% quad and a shrinkability
of zero. Note that spacing is different in subscript or superscript styles: thick
spaces disappear while thin spaces stay the same. This reflects the fact that no
space surrounds = signs in subscripts, but there still remains a space in “logiog”
when you type “\log\log” in a script style.

The control sequences in this table are allowed only in math mode, except
that \quad is allowed also in horizontal mode. Actually \l and \! are used
in horizontal mode too, but with a different meaning explained earlier. It is
permissible to use \hskip explicitly in math mode, if you want to specify any
nonstandard glue.

As mentioned earlier, you will probably not be using any of these spaces very
much. You can probably get by with only an occasional \quad (or \qquad) and
an occasional thin space.

In fact, there are probably only three occasions on which you should always
remember to insert a thin space (“\,”):

a) Before the dz or dy or dwhatever in formulas involving calculus. For example,
type “$\intlOTweTx\, dx$” to get “f(;’o e*dz”; type “$dx\,dy=r\,dr\,
d\theta$” to get “dzdy = rdrdf”. (But type “dy/dx".)

b) After square roots that happen to come too close to the following symbol.
For example, “$0\biglp 1/\sqrt n\bigrp$”’ comes out as “O(l/\/ﬁ)”,

82 Chapter 18

but “$0\biglp 1/\sqrt n\,\bigrp$” yields “O(1/+/n)". And it some-
times looks better to put a thin space after a square root to separate it
visually from a symbol that follows: “v/2z” is preferable to “v/2z”, so type
“$\sqrt2\, x$” instead of “$\sqrt2 x$”.

c) After an exclamation point (which stands for the “factorial” operation in
a formula) when it is followed by a letter or number or left delimiter. For
example, “$(2n) !\over n!\, (n+1)!$".

Other than this, you can usually rely on TEX’s spacing until after you look at
what comes out, and it shouldn’t be necessary to insert optical spacing corrections
except in rather rare circumstances. (One of these circumstances is a formula
like “log n (loglog n)?”, where a thin space has been inserted just before the left
parenthesis; TEX inserts no space before this parenthesis, because similar formulas
like “log f(z)” want no space there. Another case is a formula like “n/logn”,
where a negative thin space has been inserted after the slash.)

Here are the rules TiEX uses to govern spacing: The styles and sizes of all portions

of a formula are determined as explained in Chapter 17. We may assume that the
formula doesn’t have the form “a\over 8" (or “a\atop 3", etc.), since numerators and
denominators of such formulas are treated separately. We may also assume that all
subformulas have been processed already (using the same rules) and replaced by boxes.
(Subformulas include anything enclosed in { ... }, possibly combined with \sqrt,
\underline, \overline, or \accent; subformulas also include anything enclosed in
\left(delim;} ... \right(delimz), unless this turns out to be the entire formula.
Subscripts and superscripts are attached to the appropriate boxes, and so any given
formula can be reduced to a list of boxes to be placed next to each other; all that remains
is to insert the appropriate spacing. The boxes are divided into seven categories:

e Ord box; e.g., an ordinary variable like x, or a subformula like \sqrt{x+y} that
has already been converted into a box.

e Op box; e.g., a Z sign (together with its limits, if any), or an operator like \log
that has already been converted into a box.

e Bin box; e.g., a binary operator like + or — or \times (but not /, which is treated
as “Ord").

e Rel box; e.g., an = sign or a < sign or a «.
e Open box; e.g., a left parenthesis or \1eft(delim).
e Close box; e.g., a right parenthesis or \right{delim).

e Punct box; a comma or semicolon (but not a period, which is treated as “Ord").

Fine points of mathematics typing 83

Every Bin box must be preceded by an Ord box or a Close box, and followed by an
Ord or Op or Open box, otherwise Bins are reclassified as Ords, from left to right. (For
example, in “—w<x+y<+w”, only the + of “x+y” is a Bin box; the < signs are Rel boxes,
and all other symbols are Ord boxes.) The following table now determines the spacing
between pairs of adjacent boxes:
Right box type
Ord Op Bin Rel Open Close Punct

Ord 0 \, \> \; 0 0 0
Op \, \, * \; 0 0 0
Left Bin \> \> * * \> * *
box Rel \; \; 0 \; 0 0
type Open 0 0 * 0 0 0 0
Close 0 \, \> \; 0 0 0

Punct \> \> * \; \2> \> \2

Here “0” means no space is inserted; “\,” is a thin space; and so on. Table entries
marked “x” are never needed, because of the definition of Bin boxes.

@ For example, consider the displayed formula

$$x+y=\max\{x, y\}+\min\{x, y\}$$,
which is transformed into the sequence of boxes
cHp=mx{c,uiEHDd{a.20
of respective types ' '
Ord,Bin,Ord,Rel,Op,Open,Ord,Punct,Ord,Close,Bin,Op,Open,Ord,Punct,Ord,Close.
Inserting the appropriate spaces according to the table gives

Ord\>Bin\>0rd\ ;Rel\ ; Op Open Ord Punct\>Ord Close
\>Bin\>Op Open Ord Punct\>Ord Close

and the resulting formula is

o @ = mxfllz, if BB minle, o)

z + y = max{z,y} + min{z, y}

84 Chapter 18

This example doesn’t involve subscripts or superscripts; but subscripts and superscripts
merely get attached to boxes without changing the type of box. If you have inserted
any spacing yourself by means of \quad or \, or \hskip or whatever, TEX's automatic
spacing gets included in addition to what you specified. Similarly, if you have included
\penalty or \eject or \x in a math formula, this specification is ignored for purposes
of calculating the automatic glue between components of formulas. For example, if you
type “‘$... =\penalty100 x ...$", there is a Rel box (=) followed by a penalty
specification (which tends to avoid breaking lines here) followed by an Ord box (z), so
TEX inserts “\;” glue between the penalty and the Ord box.

You can make TEX think that a character or formula is Op or Bin or --: or

Punct by typing one of the instructions \mathop{atom) or \mathbin{atom) or
\mathrel(atom) or \mathopen(atom) or \mathclose(atom) or \mathpunct(atom),
where (atom) is either a single character (like x), or a control sequence denoting a math-
ematics character (like \gamma or \approx), or “\char(number)”, or “{(formula)}”.
For example, “\mathopen |” denotes a vertical line (absolute value bracket) treated as
an Open box; and :

\mathop{\char-155\char-141\char 170}

stands for the roman letters “max” in a size that varies with the math style. Control
sequences like \mathop are used mostly in definitions of other control sequences for
common idioms; for example, “\max” is defined in Appendix B to be precisely the
above sequence of symbols. Note that there’s no special control sequence to make a box
“ordinary”; you get an Ord box simply by enclosing a formula in braces. For example, if
you type “{+}" in a formula, the plus sign will be treated as an ordinary character like x
for purposes of spacing. Another way to get the effect of “{+}" is to type “\char-53",
since characters entered with \char are considered ordinary.

5. Line breaking. When you have formulas in a paragraph, TEX may have to
break them between lines; it’s something like hyphenation, a necessary evil that
is avoided unless the alternative is worse. Generally TEX will break a formula
after a relation symbol like = or << or «~, or after a binary operation symbol
like + or — or X, if these are on the “outer level” of the formula (not enclosed
in {.. .} and not part of an “\over” construction). For example, if you type

$f(x,y) = xT2-y1T2 = (x+y) (x-y)$

in mid-paragraph, there’s a chance that TgX will break after either of the = signs
(it prefers this) or after the — or + or - (in an emergency). Note that there won’t

Fine points of mathematics typing 85

be a break after the comma in any case—commas after which breaks are desirable
shouldn’t ever appear between $’s. If you don’t want to permit breaking in this
example except after the = signs, you could type

$r(x,y) = {xT2-y12} = {(x+y) (x-y) }$.

But it isn’t necessary to bother worrying about such things unless TEX actually
does break a formula badly, since the chances of this are pretty slim.

There's a “discretionary hyphen” allowed in formulas, but it means multiplication:

If you type “$(x+y) \x (x-y)$", TEX will treat the * something like the way it
treats \—; namely, a line break will be allowed at that place, with the hyphenation
penalty. However, instead of inserting a hyphen, TEX will insert a X sign in the current
size.

The penalty for breaking after a Rel box is 50, and the penalty for breaking after a
Bin box is 95. These penalties can be changed either by typing “\penal ty(number)”
immediately after the box in question (thus changing the penalty in a particular case)
or by using \chpar as explained in Chapter 14 (thus changing the penalties applied at
all subsequent Rel and/or Bin boxes of math formulas enclosed in the current group).

6. Ellipses (“three dots”). Mathematical copy looks much nicer if you are
careful about how “three dots” are typed in formulas and text. Although it
looks fine to type “...” on a typewriter with fixed spacing, the result looks too
crowded when you're using a printer’s fonts:

4 e2]

“$x...y$" results in z..y",

and such close spacing is undesirable except in subscripts or superscripts.

Furthermore there are two kinds of dots that can be used, one higher than the
other; the best mathematical traditions distinguish between these. It is generally
correct to produce formulas like

zi+--+z, and (Z1,...,2Z.),

but wrong to produce formula_s like

zi+...+z, and (z1,---,2n)

86 Chapter 18

When using TEX with the basic control sequences in Appendix B, you can
solve the “three dots” problem in a simple way, and everyone will be envious of
the beautiful formulas you produce. There are five main control sequences:

\ldots three low dots (...);

\cdots three center dots (---);

\ldotss three low dots followed by a thin space;

\cdotss three center dots followed by a thin space;

\ldotsm three low dots preceded and followed by thin spaces.

Of these, “\cdots” and “\ldotss” are the most commonly used, as we shall
see.

In general, it is best to use center dots between 4+ and — signs, and also
between = signs or < signs or + signs or other similar relational operations.
Lower dots are used between commas and when things are juxtaposed with no
signs at all. Here are the recommended rules for using the above control sequences:

a) Use \cdots between signs inside of a formula; use \cdotss just before
punctuation at the end of a formula. Examples: “$xi1=\cdots=xin=0%$";
“the infinite sum $yli+yl2+\cdotss$.”. (The extra thin space in
\cdotss will make the second example look better than if \cdots had
simply been used.)

b) Use \1dotss before commas. Example:

The vector $(xi1, \ldotss, xin)$ is composed
of the components $xi1$, \ldotss, xin.

This example deserves careful study. Note that the commas in the “vector”
are part of the formula, but in the list of the components they are part of the
sentence. Note also that you must be in math mode when using \ldotss.

c) Use \ldotsm in “multiplicative” contexts, i.e., when three dots are used
with no surrounding operator sign. Examples:

$xi1xi2\1dotsm xin$; $(1-x) (1-xT2)\1ldotsm(1-xTk) $.

Exception: Type “$xTixT2\ldotss xTn$”, because this formula when
typeset (z'z2...2") already has a “hole” at the baseline after z2.

Fine points of mathematics typing 87

d) Use \ldots in those comparatively rare cases where you want three lower
dots without a thin space before or after them. Example: “$(\1dots)$”.

e) Use \cdotss between integral signs. Example:

$$\intl0T1\cdotss\intiOT1
f(x41,\ldotss,xin)\,dxii\ldotsm dxin.$$

f) Use “$\1dotss\,$.” when a sentence ends with three lower dots. Example:
“The periodic sequence O, 1, O, 1, O, 1, $\ldotss\,$.”

7. Handling vertical lines. Besides the “idioms” represented by \cdots and
\ldotss, there are a few other situations that can be typeset more beautifully
with a little care. A vertical line “|” and a double vertical line “||” are used for
several different purposes in math formulas, and TEX will sometimes do a better
job if you tell it what kind of a vertical line is meant. The following control
sequences will help you in this task:

\leftv vertical line used as a left parenthesis;
\rightv vertical line used as a right parenthesis;
\relv vertical line used as a relation.

For example, “$$\leftv +x \rightv = \leftv —-x \rightvs” specifies
the displayed equation

|2l = ||

If this equation had been typed “$$|+x!=1-x|$$" the spacing would have been
quite wrong, namely

| +zl=|—12| ,

~ because the |’s get the same spacing as ordinary variables like x when you haven't
specified them to be \leftv or \rightv or \relv. Compare also the following

two formulas:
$albs$ alpb ;
$a\relv b3 alb

There are three more control sequences:'\leftvv, \rightvv, and \relvv, which
do the same for double vertical lines.

88 Chapter 18

Appendix B defines two control sequences of use when specifying formulas
like
{z|z=5}

The best way to type this is “$$\leftset x \relv x>5 \rightset$$”, be-
cause \leftset and \rightset introduce braces with spacing to match the
spaces surrounding the \relv.

8. Number theory. To specify a formula like “z = y + 1 (mod p?)”, type
“$x\eqv y+1\mod{pT2}$”, using the control sequences \eqv and \mod defined
in Appendix B. Note that you don’t type the parentheses in this case; the control
sequence provides them for you, with proper spacing and line-breaking conven-
tions. (There is also a control sequence “\neqv” that produces the inequivalence
symbol “=£".) To specify the formula

ged(m, n) = ged(nmod m, m)

type “$$\gcd (m,n)=\gcd (n\modop m, m)3”, using the control sequences
\gcd and \modop. (Actually this latter formula would look slightly better if
“\,” were inserted after the second comma.)

9. Matrices. Now comes the fun part. Many different kinds of matrices are
used in mathematics, and you can handle them in TEX by using the general
alignment procedures we shall be studying in a later chapter. For now, let’s

" consider only simple cases. Suppose you want to specify the formula

r— A\ 1 0
A= 0 z—2\ 1 ;
0 0 z—A

here’s how to do it:

$$A=\1left (\vcenter{
\halign{$\ctr{#}$\quad
®$\ctr{#}$\quad
@$\ctr{#}$\cr
x-\1lambda®1®0\cr
08x-\lambda®i\cr
0®0@x-\1lambda\cr}>\right) $$

Fine points of mathematics typing 89

Explanation: We already know about “\left(” and “\right)”, which make
the big parentheses that go around the matrix. The \vcenter control sequence
forms a box in restricted vertical mode, and centers that box vertically so that
the middle of the box is the same height as a minus sign. The \halign con-
trol sequence is one of the things you can do in restricted vertical mode; it is a
general operator for producing aligned tables. After “\halign{” and up to the
first “\cr” is a mysterious ritual for specifying three columns of a matrix. (We
will learn the rules of this later, let’s take it on faith just now.) Then comes
a specification of the three matrix rows, with tab marks “®” between columns,
and with pseudo-carriage-returns “\cr” at the end of each row. (Here @ is one
of the special characters mentioned in Chapter 8, it is not the (tab) key on
your keyboard; similarly, \cr is a control sequence, it is not (carriage-return).
Furthermore \cr need not come at the end of a line; you can type several rows
of a matrix on a single line of your TEX input manuscript.) After the final \cr
comes the “}” to end “\halign{”; then comes the “}” to end “\vcenter{".
Finally the “\right)” finishes off the formula.

If there were five columns instead of three, the \halign specification would
be about the same, only longer; namely,

\halign{$\ctr{#}$\quad
@$\ctr{#¥$\quad
@3\ ctr{4#}$\quad
8$\ctr{¥}$\quad
@$\ctr{#r$\cr

followed by the individual rows. Here \ctr means that the corresponding column
is to be centered; if you change it to \1ft or \rt, the entries in the corresponding
column will be set flush left or flush right, if they have different widths. When
all matrix entries are numbers, it is usually better to use \rt than \ctr.

The \quads in the \halign ritual are used to specify the space between
columns. If you want twice as much space you can replace \quad by \qquad.

Another way to specify the matrix equation in the above example is to use the
\cpile control sequence of Appendix B for each column:

$$A=\1left (\cpile{x—-\lambda\ecr O\cr O\cr}\quad
\cpile{i\cr x-\lambdalcr O\cr}\quad
\cpile{O\cr 1\cr x-\lambdal\cr}\right)s

90 Chapter 18

However, this use of \cpile is not recommended, because it doesn’'t work in general:
Each column is being typeset independently as a separate \cpile, so the rows won’t
line up properly if some matrix entries are taller than others. It’s best to use \halign
as suggested above—those funny-looking column format specifications are scary only
the first few times you encounter them; afterwards they are quite simple to use. On the
other hand \cpile (and its cousins \1pile and \rpile, which produce left-justified

and right-justified columns of formulas just as \cpile produces centered columns) can
be handy in simple cases.

How about matrices involving \1dots? The following example should help you
answer this question. Suppose you want to specify the matrix

a1l a2 ... Qin
az21 a22 ... Q2n

amil @m2 « .« Omn
One way to do it, using the “\vdots” control sequence of Appendix B, is

$$\left (\vcenter{\halign{$\ctr{#}\;$\!
es\ctr{#}\;$83\ctr{#>\;$8$\ctr{#}$\cr
al{11}®al{12}8\1ldots®al{in}\cr
al{21}@al{22}®\1dots®al{2n}\cr
\vdots®\vdots® ®\vdots\cr
al{mir®al{m2r8\ldots@al{mn}\crr>\right) $$

Long ago in this chapter you were promised a solution to the problem of typing a
displayed equation such as

2| = z, ifz >0
|-z, if z<<0.

Here it is, using \vcenter and \halign; see if you can understand it now:

$$\leftv x \rightv = \left\{\vcenter{
\halign{\1ft{$#$, }\qquad
®if \1ft{$#$X>\cr
x8x20;\cr —-x8x<0.\cr}}\right.$$

Note that the commas and ifs are generated by the \hal1ign specification; this trick isn’t
necessary, but it saves some typing. Another solution could be devised using \1pile,
but (as in the discussion of matrices above) it is not recommended.

Displayed equations 91

»Exercise 18.3: Explain how to type

(Zsm it))+ ot)dt

»Exercise 18.4: Also explain how to type
(i +np =+ 4+ nm) =(n1+nq)(nl+n2+n3)m(n1-|—n/2+--~+nm)‘

nlng!...n,! ng ng Nm
Y1
@ »Exercise 18.5: How can you get TEX to typeset the colum