Developing
International

Software

dijgitiall

Digital Guide to
Developing International Software

Digital Guide to
Developing International Software

Corporate User Publications Group / Digital Equipment Corporation

Eﬂﬂﬂﬂﬂm Digital Press

© 1991 Digital Equipment Corporation.

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written
permission of the publisher.

987654321
Printed in the United States of America.

Order Number EY-F577E-DP
ISBN 1-55558-063-7

Author: Cynthia Hartman Kennelly

Editor: Jacqueline Unch

[lustrator: Andrea Thurber

Compositor: Corporate User Publications (CUP/ASG)
Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, DDIF, DEC, DECforms, DECmail, DECnet, DECwindows,
DECwrite, EDT, TCP/IP, ULTRIX, VAX, VAX C, VAXcluster,

VAX Document, VAX GKS/0b, VAX MACRO, VAX PHIGS, VAX RALLY,
VAX Rdb/VMS, VAX RMS, VAX SCAN, VAX TEAMDATA, VMS, VT,
WPS-PLUS, XUI, and the DIGITAL logo.

AT and Personal Systen/2 are registered trademarks of International
Business Machines Corporation. Macintosh is a registered trademark of Apple
Computer, Inc. PostScrier is a registered trademark of Adobe Systems,

Inc. UNIX is a registered trademark of American Telephone & Telegraph
Company. X Window System is a trademark of Massachusetts Institute of
Technology. X/OPEN is a trademark of X’OPEN Company Ltd.

This document was prepared with VAX DOCUMENT, Version 1.2.

Contents

FOREWORD xvii
PREFACE xix
CHAPTER 1 THE CONCEPT OF INTERNATIONALIZATION 1
1.1 INTERNATIONAL SOFTWARE 1
CHAPTER 2 DIGITAL'S INTERNATIONAL PRODUCT MODEL 5
21 COMPONENTS IN DIGITAL'S INTERNATIONAL PRODUCT MODEL 6

211 The International Base Component 6

2.1.2 The User Interface Component 7

213 The Market-Specific Component 8

21.4 The Country-Specific Information Component 8

2.2 APPLYING THE MODEL TO SOFTWARE DEVELOPMENT 9

221 Applying the Model to Asian Software 10

222 DECwrite Software: A Sample Product 1

223 The Independent Aspects of International Software 12

23 THE IMPORTANCE OF MARKET-SPECIFIC COMPONENTS 14
CHAPTER 3 INTERNATIONAL TEXT PROCESSING 17
3.1 CHARACTER SETS 17

3.2 GUIDELINES FOR CODING MULTILINGUAL DATA 22

3.3 TEXT PROCESSING REQUIREMENTS 25

34 COLLATING SEQUENCES 27
3.4.1 Complicating Factors in Collating Sequences 28
34.2 Collating ASCII Characters 29
3.4.3 Digital’s Multinational Collating Sequence 30
34.4 Collating Arabic Characters 32
3.4.5 Collating Hebrew Characters 32
3.4.6 Collating Ideographic Characters 33
CHAPTER 4 DESIGNING LOCALIZABLE SOFTWARE 35
4.1 APPLICATION AND USER PROFILES 36
411 Defining Attributes of Profiles 37
41.2 Implementing Profiles 40
4.2 DEVELOPING AN INTERNATIONAL USER INTERFACE a1
4.21 Analyzing User Input 42
4.2.2 Displaying User Output 44
43 LOCAL DATA CONVENTIONS 47
44 LOCAL DEVICES 55
45 PROGRAMMING AND COMMAND LANGUAGES 59
4.6 LOCALIZING SOURCE CODE: AN EXAMPLE 61
4.6.1 Sample Program Before Internationalization 61
4.6.2 Removing Embedded User-Visible Text 64
4.6.3 Allowing Message File Definition at Run Time 67
4.6.4 Changing the Command Table Definition 69
: 4.6.4.1 Moving the Functions into a Separate
Shareable Image ¢+ 72
46.4.2 Creating the Shareable Image « 73
4.6.4.3 Adding Code to Resolve the Address of
Prompt Message * 73
46.4.4 Tying Together the Command Language
Definition File and the Code + 73
4645 Activating the Command Language Interface
Image « 74
4.6.5 Selecting Command Tables During Execution 76

vi

CHAPTER 5 DESIGNING MULTILINGUAL SOFTWARE 79
5.1 MULTILINGUAL SOFTWARE 79
5.2 MULTILINGUAL PRODUCTS VERSUS LOCALIZABLE PRODUCTS 82
5.3 PLANNING MULTILINGUAL APPLICATIONS 83

5.3.1 Concurrent Multilingual Usage on a System 83

5.3.2 Concurrent Multilingual Usage Within the Same
Application 85

5.33 Concurrent Multilingual Usage on an Integrated,
Internationally Distributed Network 87
5.34 Communication Between Multilingual Applications 88
5.4 DESIGNING MULTILINGUAL SOFTWARE PRODUCTS 89
5.4.1 Storing Data for Use by Multilingual Applications 90
5.4.2 Sorting Data Used by Multilingual Applications 90

CHAPTER 6 USING THE DECWINDOWS INTERFACE 91

6.1 INTERNATIONAL DECWINDOWS USER INTERFACES 92
6.1.1 Object-Oriented User Interfaces 92
6.1.2 User Interface Language 94
6.1.3 DECwindows Toolkit Widgets 100
6.1.3.1 Making DECwindows Toolkit Widgets
Translatable + 101
6.1.3.2 Positioning Objects with DECwindows
Widgets « 105
6.1.3.3 Using Icons + 105
6.2 INTERNATIONAL APPLICATION RESOURCE DATABASES 105
6.3 LOCAL CONVENTIONS 107
6.4 INTERNATIONAL TEXT PROCESSING 107
6.4.1 Indicating Character Sets 107
6.4.2 Compound Strings 108
6.4.3 Collating Sequences and Conversion Functions 109

vii

6.5 LOCAL DEVICES 109
6.6 DECWINDOWS INTERFACE: LOCALIZABLE SOFTWARE EXAMPLE 112
CHAPTER 7 USING THE VMS OPERATING SYSTEM 123
7.1 DECFORMS USER INTERFACE 124
7.2 MESSAGES IN VMS 126
7.21 Using Message Pointers 126
7.2.2 Using Logical Names to Switch Message Files 128
723 Using $FAO to Reorder Message Parameters 130
7.24 Using $FAO for Conditional Messaging 132
7.3 LOCAL CONVENTIONS 133
7.3.1 Formatting Dates and Times 133
7.3.1.1 Specifying Language and Date and Time
Formats « 133
7.3.1.2 Defining Date and Time Formats » 134
7.3.13 Using Date and Time Formats « 135
7.3.2 Formatting Number and Currency Values 136
7.33 International Collating Sequences 137
734 Using Sort/Merge Routines 141
7.3.5 Using Conversion Functions 142
74 COMMAND LANGUAGE LOCALIZATION 145
75 THE TERMINAL FALLBACK FACILITY 146
7.6 VMS OPERATING SYSTEM: MULTILINGUAL SOFTWARE EXAMPLE 147
7.6.1 Sample Application and User Profiles 148
7.6.2 Sample Source Code 150

viii

CHAPTER 8 USING THE ULTRIX OPERATING SYSTEM

8.1

8.2

8.3

8.4

8.5

8.6

8.7

INTERNATIONAL KEYBOARD SUPPORT

THE MESSAGE CATALOG SYSTEM

8.2.1
8.2.2
8.2.3

8.24
8.25

8.2.6

Creating a Message Catalog

String Extraction

Format of the Message Text Source File
8.2.3.1 Set and Message Numbers + 184
8.2.3.2 Mnemonics « 186

Using the gencat Program

Library Routines

8.25.1 Using the catopen Routine « 191
8.2.5.2 Using the catgets Routine « 192
Using the trans Translation Tool

CREATING LOCALIZED PROGRAMS

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6

The Announcement Mechanism
Announcement Categories
Setting the Program Locale
Setting a Specific Category
Setting All Categories
Supported Locales

LOCAL CONVENTIONS

INTERNATIONAL TEXT PROCESSING

IDATE: A SAMPLE ULTRIX PROGRAM

LANGUAGE SUPPORT DATABASES

8.7.1
8.7.2
8.7.3
8.7.4
8.7.5

The Codeset Definition
The Property Table
The Collation Table
The String Table

The Conversion Tables

179

180

181
181
182
184

188
189

193

194
196
197
198
198
199
200

200

202

203

205
206
208
210
212
214

CHAPTER 9 SUPPORTING MULTI-BYTE CHARACTERS 217
9.1 INPUT OF MULTI-BYTE CHARACTERS 218
9.11 Terminators and Delimiters 218

9.1.2 Queue Input/Output 218

9.2 CHARACTER OUTPUT 219
9.2.1 Character Wrapping 219

9.2.2 Formatted Output 220

9.3 EDITING 220
9.3.1 Moving the Cursor 220

9.3.2 Deleting and Replacing Characters 221

9.3.3 Overstriking Characters 221

9.3.4 Cutting and Pasting 222

94 CHARACTER CASING 222
9.5 CHARACTER SEARCHING 223
9.6 CHARACTER SORTING 224
9.6.1 Collating Sequences 224

9.6.2 Variable Length Data 225
CHAPTER 10 SUPPORTING LOCALIZATION 227
10.1 TRANSLATION MARKUP 229
10.1.1 Objectives and Advantages of Markup 229

10.1.2 Guidelines for Markup 230

10.1.3 Markup of VMS Message Files (.MSG) 230

10.1.4 Markup of ULTRIX Files 233

10.1.5 Files Not Requiring Markup 234

10.2 TRANSLATION ESTIMATES 235
10.3 LOCALIZATION KIT 236
10.3.1 Source Software Modules 236

10.3.2 Modular Build Procedures

237

10.3.3 Installable Baselevel 237
10.3.4 Baselevel Notes 237
10.3.5 Test Procedures 237
10.3.6 Internals Documentation 238
10.3.7 Tools and Utilities 238
10.4 DIGITAL'S LOCALIZATION PLATFORM 239
APPENDIX A DIGITAL'S ASIAN PRODUCTS 241
A1 HARDWARE PLATFORM 241
A.2 SOFTWARE PLATFORM 242
A3 CHINESE AND KOREAN VMS COMPONENTS 246
A4 JAPANESE VMS OPERATING SYSTEM'S COMPONENTS 248
A.5 JAPANESE ULTRIX COMPONENTS 250
A.6 JAPANESE DECWINDOWS 251
A7 JAPANESE MULTI-BYTE RUN-TIME LIBRARY 253
A.8 CHINESE AND KOREAN MULTI-BYTE RUN-TIME LIBRARY 253
A9 JAPANESE SCREEN MANAGEMENT RUN-TIME LIBRARY
(JSY$SMGSHR) 254
APPENDIX B DIGITAL’S INTERNATIONAL MARKET 255

xi

APPENDIX C LANGUAGE-SPECIFIC COLLATING SEQUENCES 259
APPENDIX D LOCAL DATA FORMATS 265
APPENDIX E CREATING A BIDIRECTIONAL TEXT EDITOR 321
E.1 BIDIRECTIONAL EDITING 324
E.2 HEBREW TEXT ENTRY AND EDITING 326
APPENDIX F DATABASE SOURCE LANGUAGE SYNTAX DESCRIPTION 329
F.1 RULES FOR BUILDING IDENTIFIERS 329
F.2 RULES FOR BUILDING STRINGS 329
F.3 RULES FOR BUILDING CONSTANTS 330

F.4 RULES FOR SEPARATING TOKENS, SPECIFYING COMMENTS, AND
USING DIRECTIVES 330
F.5 EBNF DESCRIPTION 331
APPENDIX G EXAMPLE SOURCE LANGUAGE FILE 335
APPENDIX H 1SO STANDARDS 341

Xii

APPENDIX | ADDRESSES OF STANDARDS ORGANIZATIONS 343

APPENDIX J ADDITIONAL READING 349
GLOSSARY 353
INDEX Index-—1
EXAMPLES
4-1 EXAMPLE.C 62
4-2 COMMANDS.CLD 63
4-3 MESSAGE.MSG File Contents 65
4-4 LONGMESSAGES.MSG File Contents 67
4-5 NEW_COMMANDS.CLD File Contents 70
6-1 A Translatable DECwindows File Selection Widget 101
6-2 Declaration of Constants for the File Selection Widget 103
6-3 A Bad Application Resource. Database 106
64 A Corrected Application Resource Database 106
6-5 Support for Redefinable Keyboards in DECwindows 110
6-6 KEYBINDING_EXAMPLE.UIL 112
6-7 A Translatable UIL Specification File: XLAT_EXAMPLE.UIL 114
6-8 Declaration of Text Strings as Constants 117
6-9 Declaration of Position and Size Values as Constants 118
6-10 Declaration of Nontranslatable Values as Constants 120
7-1 Command File for Switching Message Files 130
7-2 Comparing Two Strings 139
7-3 C Program for Comparing Strings 140
7-4 C Program for Case Conversions 144
7-5 Application Profile 148
7-6 French User Profile 149
7-7 OES Source Code 151
7-8 Samples from ORD_ENTRY.IFDL 163
8-1 idate.c 203

8-2 Header File Contents 204

xiii

8-3 Message File: idate.msf 205
8-4 Sample Language Database Source File 206
101 Translation Comments in a VMS Message File 231
10-2 Translation Comments in an ULTRIX File 233
10-3 Date Conventions in an ULTRIX File 234
104 Text File—No Markup Required 235
10-5 Help File—No Markup Required 235
F-1 EBNF Description of the Database Source Language 331
G-1 Example of a Language Support Database Source File 335
FIGURES
2-1 The International Product Model 9
2-2 Applying the Product Model to Asian Software 11
2-3 International Software Model 13
5-1 Multilingual Software Model 80
5-2 French Product Variant 80
5-3 English/German Product Variant 81
5-4 Installation Path for a Product Variant 81
5-5 Installation Path for a Multidialect Product 82
5-6 Central Host, Concurrent Multilingual User Interfaces 84
5-7 Multilingual Functionality Within an Application 86
5-8 Multilingual, Integrated, Internationally Distributed Application 87
6-1 Dialog Box in English 93
6-2 Dialog Box in Japanese 93
6-3 XLAT_EXAMPLE.UIL Main Window 113
7-1 Creating and Using a Message Pointer File 129
7-2 Terminal Fallback Facility 146
8-1 Creating a Message Catalog 190
9-1 Case Conversion of Alphabetic Characters 223
9-2 Sample Specification of the Sort Key 225
E-1 Mirror Symmetry for a Simple Text Editor 322
E-2 Editing Vertical Writing with the Symmetric Editor 323
E-3 Left-to-Right Document Direction 325
E-4 Right-to-Left Document Direction 326

Xiv

TABLES
2-1
31
3-2
3-3
4-1
4-2
4-3
6-1
7-1
7-2
7-3
7-4
7-5
7-6
7-7
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
10-1
A-1
A-2
A-3
A-4
A-5
B-1
c-1
c-2
c-3
c-4

D-1

Sample User Interface Components

Asian Character Set Standards Summary

Text Processing Requirements

Character Set Standards Used in Digital Engineering
Sample International Audience of Users

Possible Application and User Profile Attributes
Length of Character Strings in Day and Month Name
UIL-Supported Character Sets

Date and Time Run-Time Format Mnhemonics
Predefined Date and Time Formats

Run-Time Library Date/Time Routines

NCS Routines Using Collating Sequences

Sort/Merge Routines

Conversion Function Tables in the NCS Library

NCS Routines Using Conversion Functions
Internationalization Tools to Create Message Catalogs
Escape Sequences Recognized by the gencat Program
Substitution Fields

Control Key Sequences

ULTRIX Language Support Databases

C Routines Supporting the Use of Local Conventions
C Routines Supporting International Text Processing
Properties and Character Classification

Mandatory Strings in the String Table

Page and Screen Counts

Available Asian Terminals

Available Asian Printers

Digital’s Asian Software Platform

JSYSHR Routines

HSYSHR Routines

Countries and Languages

Collating Sequences Used by Different Countries
Danish, English, Finnish, and French Collating Sequences
German, Greek, Icelandic, and Italian Collating Sequences

Norwegian, Portuguese, Spanish, and Swedish Collating
Sequences

Countries and Their Major Business Languages

21

25

26

37

38

50
107
135
135
136
138
141
142
143
182
185
191
194
200
201
202
209
213
236
242
242
243
253
254
256
260
262
263

264
266

XV

XVi

D-2

D4
D-5

D-7
D-8
D-9
D-10
D-11

J-1

Abbreviations of Weekdays
Abbreviations of Months

Dates

Yesterday, Today, Tomorrow

Personal Titles and Forms of Address
Addresses

Currency

Expressions of Time

Ordinal Numbers

Telephone Numbers

ISO Standards

How to Order Documentation from Digital

267
269
273
276
277
285
298
309
313
317
341
352

Foreword

With new opportunities in an open world, it is now more evident than
ever that the freedom of exchange between countries provides for a uni-
fied and profitable international market. And with the communication
capabilities provided by modern-day technology, such as satellite earth
station networks and plans for undersea fiber-optic cables to China,

it is time to design with the world in mind. Competition is fierce in
foreign markets. Products sold internationally will not be successful
unless they meet the needs of local users.

Digital is an international company with worldwide commitments.
Our international products are accepted in world markets because
they support local languages, conventions, and cultures. The revenue
Digital generates outside of the United States has reached 56 percent
and is growing significantly. We have invested significant resources
in understanding how to create globally competitive products, which
are sought-after locally in the countries where we do business. To
maximize the return on an engineering investment, it is important to
take advantage of this knowledge.

This guide demonstrates how companies today can ship products that
support local languages and customs. To do otherwise is to run the
risk of alienating international consumers. Users prefer products that
provide information in their local languages and according to their
local customs. Creating international products can be complicated.
The Digital Guide to Developing International Software simplifies this
process by describing the strategies, guidelines, and the product model
that Digital considers when designing new software products to sell in
strategic markets.

xvii

xviii

This guide includes information on standards such as the International
Organization for Standardization (ISO) alphabets, which provide a
framework that designers can use to create products of uniform quality
and usability. It includes data formats for 18 countries, from Austria to
the United States. It explains how you can create software that sells
abroad successfully and design it right the first time.

David L. Stone
Vice President, Software Product Group
Digital Equipment Corporation

Preface

Competition in today’s global computer industry demands the shortest
possible time to market for software products. The delays usually
associated with the redesigning of software for international release are
no longer acceptable. For an international product to obtain optimum
market share, the delay between its release at home and its release
abroad must be minimal.

Although no definitive standards exist for the design of international
software products, teams within Digital have developed strategies for
producing software so that it can be efficiently adapted for particular
markets. The guidelines offered here can help companies to make the
right design decisions early in the software development cycle and
thereby reduce costs.

This guide deals primarily with the early design decisions that deter-
mine whether efforts to develop international software variations are
simple and efficient or complex and time-consuming. It offers a prod-
uct model that allows designers to isolate components that don’t need
to be adapted from those that do. Developing software that is truly
international also requires attention to a special requirement of Asian
~ processing environments: multi-byte character sets. This guide points
out the differences between single-byte and multi-byte environments
and explains how to support and manipulate multi-byte data.

Developing guidelines for internationalization is an ongoing and diffi-
cult task. The guidelines included here present procedures that work
for creating products at Digital Equipment Corporation. If these guide-
lines cannot be adopted directly for use in your company, perhaps they
can be adapted to suit your business needs.

Xix

XX

The second guide in a series, The Digital Guide to Developing
International Software is intended for anyone involved in designing
or developing software for an international market. This audience
includes product managers, software designers and engineers, doc-
umentation writers and project leaders, editors, illustrators, course
developers, human factors analysts, and quality assurance managers.
It is also of interest to the consumers of international products and
students of international business and engineering.

This guide is organized in two parts: Chapters 1 through 10 offer
general guidelines for various aspects of the internationalization
process; Appendixes A through J provide specific reference information
for creating international software. Special terms, which appear in
italic type when first introduced, are explained in the Glossary.

Writing this guide about the development of international software
was itself an international effort. Thanks to Digital’s communication
system, manuscript reviews were transmitted over the network from
many countries, allowing us to bring together the most up-to-date
information about Digital’s international software development efforts.
The following reviewers made substantial contributions to this process:
Dee Anderson, Jiirgen Bettels, Michael Collins, Bob Dray, Pierre
Gillespie-Kerr, René Haentjens, Ian Johnston, Scott Jones, Yoshi
Kiyokane, Neil Keefe, Lilian Lai, Daniel Ostergren, Claude Pesquet,
Wendy Rannenberg, Barbara Russell, Yoichi Suehiro, Robert Tedford,
Bill Thomas, Clement Yeung, and Michael Yau.

Chapter 1
The Concept of Internationalization

To succeed in international markets, a software product must be
adapted, or localized, to the different languages, customs, and product
requirements of another locale. The term locale includes several
aspects of the environment in which a product is used:

¢ Language

* Dialect

* Keyboard layout

¢ Data input and display conventions
¢ Collating sequences

These aspects and others affect the way users in various locales inter-
act with the product. The boundaries for a locale do not necessarily
match country borders: a single country might include several different
locales; a single locale might include more than one country.

Given enough time, engineering expertise, and resources, any product
can be localized. But a product that requires reengineering or a time-
consuming translation effort will be more difficult and more costly. By
choosing wisely from among several seemingly equal design alterna-
tives, software designers can create an international product that keeps
the localization process simple.

1.1 International Software

A truly international software product is one that can be localized
easily and cost-effectively to suit a number of international markets.

The Concept of Internationalization 1

At Digital, the success of an internationalization effort is measured
according to two criteria:

¢ . How many markets can the product serve?

* How much does it cost to localize the product to serve those mar-
kets?

The cost of localization depends not only on how many local variants
are created, but also on how easily changes can be made to the original
product. When the user interface and associated text can be translated
or modified easily, software can be localized easily. Likewise, when
software functions can be modified or extended to meet specific require-
ments of the market and culture, localizing the product becomes easier
and more cost-effective.

Digital uses these criteria to determine where a software product falls
on a scale of adaptability. At the bottom of the scale is a completely
local product that must be reengineered for international markets at
considerable cost in time and effort. At the top of the scale is a global
software product that, without modification, meets all international
needs. In between are the two types of software products for which
Digital has developed general design guidelines: localizable software
and multilingual software.

As its name suggests, localizable software minimizes the cost of local-
ization. Modular in design, this software isolates all code that must
be changed to suit other markets. As a result, core functionality need
not be recoded. Functions that are not appropriate for a market can
be eliminated, and appropriate functions can be substituted. In this
type of software, all user-visible text is separated from the source code.
Thus, only the text displayed by the user interface need be translated.
Digital’s DECwrite software provides an example of a localizable soft-
ware product (see Chapter 2). Guidelines for designing localizable
software are presented in Chapter 4.

Multilingual software allows the user to select from a number of inter-
face and functionality options. For example, a user may interact with
the software in more than one language, moving from one language to
another during program execution. Multilingual capability allows two
users of the same software on the same system to use different inter-
faces. These interface and functionality options may be bundled with
the software or ordered for installation at a later time. Digital’s ALL-
IN-1 software provides an example of a multilingual software product.
General guidelines for creating multilingual software, or localized
software that can become multilingual, are presented in Chapter 5.

2 The Concept of Internationalization

Whether to produce localizable software or multilingual software
depends on the needs of the user. For instance, if the application

is to be used in an office in Geneva, where different users interact
with the software in different languages, multilingual software is the
answer. Of course, making software localizable is the first step to
making it multilingual. Multilingual software is an extended form of
localizable software. Section 6.6 provides an example of localizable
software created using the DECwindows interface. Section 7.6 presents
an example of a multilingual software product based on the VMS
operating system.

In addressing the task of designing localizable or multilingual software,
Digital applies an international product model. This model enables

all groups involved in developing an international product to share a
common understanding of the product components. This conceptual
framework provides several benefits. The model separates the product
into modules, which, as we’ve seen, makes it easier to develop local
variants. This modular approach also reduces development costs by
reducing the need for reengineering. The model also makes ordering
and packaging of the product more flexible. Chapter 2 explains Digital’s
international product model.

Digital provides various interfaces and operating systems offering
features that assist in developing international software. Chapter 6,
Chapter 7, and Chapter 8 provide information on developing interna-
tional software using Digital’s DECwindows interface, VMS operating
system, and ULTRIX operating system.

Designing a software product for Asian markets requires special steps
to deal with the Asian character formats. Asian languages such as
Chinese, Korean, and Japanese require complex ideographic characters
and very large character sets. The size of the character sets ranges
from 6,000 characters for simplified Chinese, Korean, and Japanese
to more than 30,000 characters for traditional Chinese. Products
destined for Asian markets must allow for multi-byte processing since
the character set for Asian languages far exceeds the 256 characters
addressed by the single-byte character format used in the standard
ASCII computing environment of European and English-speaking
countries.

This guide discusses the internationalization of software in both single-
byte and multi-byte environments. Chapter 9 focuses on input, output,
and editing of Asian ideographic characters. Chapter 3 discusses the
different levels of natural language text processing support required
in international products. Chapter 10 describes how Digital’s central

The Concept of Internationalization 3

engineering groups work with engineering groups located in other
countries in their effort to produce international software.

The appendixes of this manual provide reference information on spe-
cific topics, including Digital’s Asian localization products, collating
sequences, national data formats, and symmetric programming tech-
niques.

4 The Concept of Internationalization

Chapter 2

Digital’s International Product Model

The international product model used at Digital enables all groups in-
volved in internationalization to share a common understanding of the
components that make up an international product. This conceptual
framework provides a number of benefits:

Ease of localization

Separating a product into modules makes it easier to develop local
variants: country teams can focus on only those modules that must
be adapted for their locale.

Common terminology
The model and its components provide a common terminology for

different groups involved in creating products for the international
market.

Metric for modular software

The model stresses the need to modularize software and serves as a
metric for proper design.

Reduced costs

The model separates the product into modules, which helps to

reduce the cost of developing product variants by reducing the need
for reengineering.

Flexibility in packaging
The model provides for flexible ordering and packaging of the

product for worldwide delivery, which in turn helps to increase
sales.

Digital's International Product Model 5

2.1 Components in Digital’s International Product Model

Digital’s international product model! consists of the following four
components:

¢ International base component

* User interface component

* Market-specific component

¢ Country-specific information component

2.1.1 The International Base Component

The international base component is the part of a product that is

sold worldwide without modification. While the international base
component is itself invariant, it can feature built-in variants that are
selected by a user, perhaps by switch selection in the case of hardware,
or by a parameter setting in the case of software. For a product in the
Asian market, this base component must support characters of at least
16 bits (2 bytes) for multi-byte processing.

The international base component contains an application’s basic
functional code: the procedures responsible for processing information
and performing computations. This globally applicable code may
include user-selected variants, or may be externally conditioned by
other components to provide the variations required for a particular
locale. The code in this component can be supplemented by shared data
as long as the shared data is not going to be translated.

This component could contain:

e Executable images
e Internal data files
e Command procedures without text

1 For ease of reference, Digital often uses the letters A, B, C, and D to refer to the model’s components and
calls the entire model the ABCD model.

6 Digital's International Product Model

2.1.2 The User Interface Component

The user interface component is the language and text processing
component. It is language-specific and must be localized to meet the
linguistic and cultural requirements of a specific group of users. The
user interface component typically contains the user interface code
including messages, text and language processing routines, format
specifications, online help, and documentation. When a local variation
of a software product is created, all files in this component are trans-
lated, replaced, and sometimes deleted. Additional files may also be
created. This component could contain:

e Message files

¢ Forms and menus

e Command procedures with text
¢ Data structures

The data structures can take several forms:

e Natural language text displayed by the user interface code. When
the language of the target locale is other than the language of the
original locale, this text is typically translated.

¢ Text used to interpret user input, such as Yes and No responses.
Such input must be recognized by the system in its translated form.

¢ Text used in command and programming languages.

Two examples of products that Digital currently supports with various
user interface components are shown in Table 2-1.

Table 2-1. Sample User Interface Components
Product Available User Interface Languages

DECwrite Chinese (traditional and simplified), Danish, Dutch,
English, Finnish, French, German, Italian, Japanese,
Korean, Norwegian, and Swedish

ALL-IN-1 Chinese (traditional and simplified), Danish, Dutch,
English, Finnish, French, German, Hebrew, Icelandic,
Italian, Japanese, Korean, Norwegian, Portuguese, Spanish,
and Swedish

Digital’'s International Product Model 7

2.1.3 The Market-Specific Component

The market-specific component is added to meet special requirements of
a specific region or business that shares a language and set of cultural
conventions, such as the Netherlands and Dutch East Indies. The
market-specific component adds specialized functions to the interna-
tional base component, extending it without changing it.

Like the contents of the user interface component, some files in this
component may be translated, replaced, and sometimes deleted when a
local product variant is created. Additional files may also be created.

This component is most often used to solve implementation problems
unique to a particular dialect, market, or country. The creation of the
component usually involves independent design and implementation
efforts for each market, leading to significant amounts of special coding.
In some cases, a capability present in the base version of the product
must be removed for a specific local market. This requirement may

be due to an export restriction in the originating country, or to a
prohibition or custom in the local market.

The following types of information are included in this component:

¢ Keyboard maps

¢ Telecommunications controls
* Printer controls

* Natural language lexicons

2.1.4 The Country-Specific Information Component

The country-specific information component is the set of required
documentation produced to meet all the regulations for selling the
product in a specific country: This component contains no software.
This component does not include special functions or code supporting a
country’s unique requirements. These functions would be included in
the market-specific component.

Examples of information included in this component are:

¢ License certificates

* Service and ordering information
¢ Warranty information

* Product descriptions

8 Digital's International Product Model

¢ VDE postcards (cards used in Germany for registering high-
frequency equipment with the telecommunications authority)

2.2 Applying the Model to Software Development

In the development of software products, Digital’s international product
model provides a framework for modular design. Figure 2—1 illustrates
the structure of an international product developed according to this
model.

Figure 2-1. The International Product Model

DELIVERABLE PRODUCT

I
I ‘
Country-Specific Information
Component

Market-Specific Component | —

User Interface Component -

International Base Component

SOFTWARE PRODUCT

P o - —— - - - - -y

Figure 2-1 shows that the international base component is the foun-
dation of the software, with the user interface and market-specific
components added in layers as appropriate. The country-specific in-
formation component is a part of the product as a whole, but is not
included in the software portion of the product.

Digital's International Product Model 9

To apply the model, application developers must define:
¢ The contents of each component

All user-visible text should be eliminated from the international
base component and placed in the user interface component of
the international product. If there is any functionality that is
appropriate for one market only, it should be placed in the market-
specific component.

¢ Interfaces between components

The international product must include interfaces between the dif-
ferent components. For example, the international base component
must include interfaces to the text and data in the user interface

component, as well as interfaces to the market-specific component.

¢ Installation requirements
The installation procedure must allow the different components to
be installed in different combinations.

¢ Testing requirements
There may be special testing requirements. For example, if the
software supports multiple user interfaces, the test procedures

must allow for testing of multilingual operation. Refer to Chapter 5
for information on multilingual software.

2.2.1 Applying the Model to Asian Software

For the Asian market, multi-byte processing capabilities are needed
and should be included in the international base component, as shown
in Figure 2-2.

Since two or more bytes are required to represent a single Asian
character, this multi-byte processing capability must signal the sys-
tem software when a multi-byte Asian character is being entered
or displayed, instead of two or more ASCII or 8-bit characters (see
Chapter 9).

When you include the multi-byte processing capabilities in the inter-
national base component, the other components of the product model
remain unchanged. The user interface component for an Asian market
could contain information geared for users in Taiwan, Korea, Japan, or
the People’s Republic of China (PRC). The market-specific component
would contain support features for the appropriate user interfaces. The

10 Digital’s International Product Model

country-specific information component would contain any warranty,
packaging, or licensing information required specifically for release in
Asian countries.

Figure 2-2. Applying the Product Model to Asian Software

DELIVERABLE PRODUCT

[
I l '
Country-Specific Information
Component
o e T e e e e e e ———)
I ; 1
] I 1
| J |
: Market-Specific Component | | :
1 |
i 1
| [| |
| |
: User Interface Component | | :
| t
! 1
: International Base Component :
| Multi-Byte Character Support '
| |
| SOFTWARE PRODUCT 1
L I ——— F]

2.2.2 DECwrite Software: A Sample Product

The international product model was used in the design of Digital’s
DECwrite software. Available on both VMS and ULTRIX operating
systems, DECwrite is an application that allows users to create and
format documents that contain text, graphics, images, and supported
application data.

DECwrite software combines several desktop publishing capabilities:

* Word processing
¢ Graphics creation

Digital's international Product Model 11

* Data-driven charting
¢ Image integration
e Live links to supported application data

The international base component of DECwrite software consists of
the invariant base code. This code does not change, whether it is
distributed in Tokyo, Japan or Pittsburgh, Pennsylvania, USA. Because
the international base component does allow for rhulti-byte processing
capabilities, DECwrite software can be localized for Asian markets.
The base component contains executable images, internal data files,
and any command procedures that do not contain text.

The user interface component consists of the code that determines
the screens, messages, and online help. This component contains all
of the application’s message files, all of the forms and menus, any
command procedures that do contain text, as well as symbols, icons,
and documentation. When a user presses the Help key, an overview of
the application is displayed on the screen along with additional topics
for which help is available. All of this information is coded in the user
interface component of the product.

The market-specific component consists of the information added to
DECwrite software to meet the special requirements of a specific
market, such as natural language lexicons and keyboard maps. The
market-specific component contains the necessary printer controls to
print DECwrite output on the appropriate printer, whether it is a
Japanese LNO3 or an English LNO3. ’

. The country-specific information component does not contain any
software; rather it includes the product delivery document, which states
where the package is to be shipped. This component also contains the
software bill of materials shipped with each software package and the
DECwrite software product description, as well as the warranty and
licensing information.

2.2.3 The Independent Aspects of International Software

In designing localizable and potentially multilingual software products,
it is important to avoid coupling one localizable feature with another.
For example, Digital does not assume that a French user interface
implies that the French layout keyboard will be used, or that the user
will want the date and time formats that are preferred in France, or

12 Digital's International Product Model

even that the French user is actually located in France. Each of the
following aspects of a software product should be treated independently:
¢ Language

¢ Data formats

¢ Keyboard mapping

* Conversion functions

¢ Character sets

¢ User interface

* (Collating sequences

To achieve this flexibility, developers should use a table-driven design,
with externally modifiable control and text. It is easier to couple
components after design to meet packaging and support goals than it is
to redesign software that has made invalid coupling assumptions in the
first place.

Figure 2-3 shows an international product that uses two market-
specific components. Depending on the language, country, and market
requirements of the locales where the international product will be
sold, the product may use any number of market-specific components,
or none at all.

Figure 2-3. International Software Model

Functional Data

Interfaces Interfaces
Market-Specific
Component (1)

.

Internationat
Base
Component

User Interface
Component

Market-Specific
Component (2)

Digital’s International Product Model 13

2.3 The Importance of Market-Specific Components

At Digital, decisions about what to include in the market-specific
component rather than the international base component are made
at the beginning of the design phase. Market-specific components are
generally used to solve three types of implementation problems:

1.

Problems related to natural language

User interface text sometimes requires slight modifications to
reflect differences between the dialects of a single language. For ex-
ample, differences between French, Canadian French, and Belgian
French might require modifications to the French version of a prod-
uct before it can be sold in Canada or Belgium. For a localizable
software product, the base French version of the product could

be modified by market-specific components to produce Canadian
and Belgian versions. For a multilingual software product, using

a market-specific component in this way is not always the best
solution. See Section 5.1 for details.

Languages such as Chinese, Japanese, and Korean are charac-
terized by complex ideographic fonts and large character sets
presenting different implementation problems. Because these
languages are all based on Chinese ideograms, a common archi-
tecture will address all of the Asian market requirements. Even
though the use of Chinese ideograms varies a great deal in the
three languages, certain rules generally apply to the ideograms
themselves:

— Root radicals are combined with other characters and strokes to
form complex characters

— There are no uppercase or lowercase characters

— Blank spaces are not used to delineate words

Problems related to market requirements

The problems addressed in the market-specific component often
stem from the special requirements of a particular market. For
example, the market for CAD/CAM products in Europe or Asia has
established practices and preferences that must be supported by
any product that is to be competitive in that market.

14 Digital’s International Product Model

Linguistic aids for local languages provide another example. The
following features are often located in the market-specific compo-
nent:

— Spell-checking

— Hyphenation and word wrapping

— Grammar and style analysis

— Voice recognition

— Speech synthesis

The market-specific component for a compound document editor,

for example, can provide spell-checking tools and hyphenation
algorithms in the language of the target market.

Problems related to country requirements

Because legal requirements and accounting practices vary from
country to country, a product may need to be modified to conform
to the regulations of the country in which it will be sold. In this
case, local field support groups in other countries can report these
requirements to the corporate engineering groups, who can provide
the facilities that will allow future additions to local versions of the
product.

Country-specific requirements affect primarily

— Financial and accounting functions

— Communications

— Security

Legal requirements might also necessitate the omission of certain
kinds of information from a product. For example, the United
States Department of State requires licenses for the export of
software that contains certain encryption algorithms or other
security provisions. Such encryption functions should be placed in

market-specific components so that they can be easily removed from
the product.

Digital's International Product Model 15

Chapter 3
International Text Processing

Different levels of natural language text processing support are re-
quired depending on the type of application being designed. A tradi-
tional data processing application may require only one monospaced
font and support for the input of simple one-dimensional text strings,
such as names, addresses, and phone numbers. The application may
use this text to annotate forms and reports.

Similarly, a graphical application such as a CAD/CAM system may
only need to support input of simple text and annotation of graphical
diagrams with that text. Basic word processors must support a more
complicated level of natural language text processing. Electronic
publishing and language analysis systems must provide full text
processing support, supplying many fonts, sophisticated typeset-quality
output, formatters, linguistic aids, and so on.

This chapter provides background information on the character sets
and collating sequences used to support the various languages.

3.1 Character Sets

There are many different character sets in existence. Normally, a
character set covers only one language or group of languages, such as
Arabic or the languages based on the Latin alphabet. To date, there is
no universally accepted character set that holds all the characters used
in all languages.

International Text Processing 17

18

The following list gives brief descriptions of the most widely used
character sets.

¢ ASCII (American Standard Code for Information Interchange)
character set

The ASCII character set uses seven bits to code a character. It
includes the standard 26 letters of the English alphabet but none of
the national characters used by non-English-speaking countries.

* NRC (National Replacement Character) Set

A National Replacement Character set is a 7-bit character set
that is built on the national-use rules of ISO Standard 646. This
standard specifies a basic character set that is almost the same as
ASCII, but allows the less commonly used symbols, such as [, @,
and \ to be replaced with characters used by non-English-speaking
countries. Different countries use different variants of the basic
character set. For example, Germany replaces \ with O, while
France replaces the same character with ¢.

e DEC MCS (Digital’s Multinational Character Set)

DEC MCS is an 8-bit character set. It includes most of the charac-
ters required by Western European languages. However, it does not
include the additional characters used by Iceland, or any characters
not based on the Latin alphabet.

¢ ISO (International Organization for Standardization) Latin alpha-
bet character sets

The ISO Latin-1 character set was developed by the International
Organization for Standardization as the standard character set
for Western European languages. It will eventually supersede
DEC MCS. Other ISO character sets cover European languages
that are also based on the Latin alphabet, but use characters not
included in ISO Latin-1. They cover Eastern Europe (ISO 8859-2),
Southern Europe (ISO 8859-3), the Northern European Countries
(ISO 8859-4), and Turkey (ISO 8859-9).

® Arabic character sets

There are a number of Arabic character sets, some of which use 7
bits per character and some of which use 8 bits. The most common
Arabic sets are ASMO0-449 and ASMO-662 (defined by the Arabic
Standards and Metrology Organization) and ECMA-114 (defined by
the European Computer Manufacturers Association). ISO Latin-
Arabic (ISO 8859-6 and ECMA 114) is the standard character set
for mixed Latin and Arabic text.

International Text Processing

For computerized text processing, 8-bit coding is adequate, but the
font and formatting requirements are unique. Each character has
four different shapes depending on its position within a word.

Hebrew character sets

The Hebrew language is written and read from right to left, except
for numbers, which are written from left to right. The Hebrew
alphabet consists of 27 letters. Numbers in Hebrew are written as
Arabic numerals (as in English). Hebrew is a single-case language;
that is, all characters are in one case and cannot be changed.

Although Hebrew is a right-to-left language, Hebrew documents
usually contain some left-to-right portions. The simplest case would
be a number included in a Hebrew sentence. More complicated
cases might be quotations from a left-to-right language or even a
number of left-to-right paragraphs embedded within the document.

All Hebrew character sets have their own collating sequences. In
general, the Latin portion is collated according to the rules of the
parent character set. The Hebrew portion is collated in order of the
numeric value of the character.

Three Hebrew character sets are currently in use:
— DEC Hebrew 7-bit character set

The DEC Hebrew 7-bit character set, based on ASCII, was cre-
ated by replacing character positions 96-122 with the Hebrew
alphabet. This character set is equivalent to Israeli Standards
Institute Standard 960. The character set has a DEC prefix
because Digital standardized it before it became internationally
standardized.

— DEC Hebrew 8-bit character set

The DEC Hebrew 8-bit character set is based on DEC MCS; it
was created by removing characters from positions 192-223 and
251-256 and placing the Hebrew alphabet in positions 224-250.

At Digital, as a result of a migration to the ISO Latin-Hebrew
character set, new applications and DECwindows environments
do not support the DEC Hebrew 8-bit character set. Only
traditional applications that need to operate in both character
cell-oriented and DECwindows environments require DEC
Hebrew 8-bit and ISO Latin-Hebrew support.

International Text Processing 19

20

— IS0 Latin-Hebrew

The ISO Latin-Hebrew character set is a member of the family
of ISO 8-bit character sets; some characters were removed or
relocated, and Hebrew characters were placed in positions 224—
250. This character set is defined in ISO 8859-8 and Standard
SIT 1311 of the Israeli Standards Institute.

Greek character sets

For the monotoniko form of writing, now widely used in Greece and
Cyprus, Digital has defined DEC-Greek, an 8-bit character coding
set. Since then, an ISO Latin-Greek character set has been defined
(ISO 8859-7) and has been taken over as standard by the European
Computer Manufacturer’s Association (ECMA) and the Hellenic
Organization for Standardization (ELOT). The polytonic form of
writing requires more than 8 bits for coding all characters; these
characters will most probably be included in the future ISO 10646.

Cyrillic character sets

Digital is evaluating the feasibility of supporting the ISO Latin-
Cyrillic character set, ISO 8859-5.

Ideographic character sets

Asian languages such as Japanese, Chinese, and Korean use
ideographic characters. Ideographic characters symbolize a specific
thought or idea without actually expressing the name of the thing
they represent. They generally consist of many elements, some
contain over 30 strokes of the pen or brush.

Because so many characters must be represented in these lan-
guages, a 2-byte character set is normally used.

— People’s Republic of China

The People’s Republic of China (PRC) National Standard Code
of Chinese Graphic Character Set for Information Interchange
(GB2312-80) is a 2-byte character set standard that specifies
7,445 characters and symbols, of which 6,763 are Chinese
characters (2,435 are simplified Chinese characters). Over
14,000 additional characters have also been defined, but not yet
published.

— Taiwan

The existing Taiwan Standard Interchange Code for generally
used Chinese Characters CNS 11643 (in Taiwan) has 141,376
possible characters, which is more than the 17,672 available in

International Text Processing

the Digital mixed 1-byte/2-byte encoding; thus, 4-byte encoding
for the additional characters is provided.
Korea

The Korean Industrial Standard (KS C 5601-1987) consists of
over 8,224 characters and symbols. There are 7,238 ideographic
characters defined, consisting of 2,350 Hangul (Korean) and
4,888 Hanja (Korean Chinese). Korean Hangul consists of 10
vowel and 14 consonant symbols that account for 40 phonetie
variations. Hangul characters are clusters of symbols that
define the pronunciation of the cluster, and are modeled after
Chinege characters.

Japan

The Japan Industrial Standard (JIS) X0208 Levels I and IT
Kanji character set defines 6,877 characters and symbols, of
which 6,353 are Kanji characters and 524 are Kana (Japanese
phonetic characters) letters and symbols. At the end of 1988,
7,000 additional Kanji characters were also announced.
Thailand

The Thailand Industrial Standard TIS 620-2529 (1986) defines
87 characters, 69 of which are Thai letters for building Thai
characters.

Table 3—1 summarizes the ideographic character sets and their stan-

dards.

Table 3-1. Asian Character Set Standards Summary

Ideographic

Country Standard Characters Total Characters

PRC

Taiwan

Korea
Japan

GB2312-80: 6,763 7,445

CNS 11643 13,051 13,735
SICGCC-1986

KS C 5601-1987 7,238 8,224
JIS X0208 6,353 6,877

Thailand TIS 620-2529 (1986) N/A 87

Currently, national and international standards committees are work-
ing together to produce a single, multi-byte code that will contain all
characters used in all languages. Some 90,000 characters have already

International Text Processing 21

been identified. These include the characters for the ideographic lan-
guages and the sets of special symbols for technical and publishing
use. In order to represent all of these characters, a code of at least 3
bytes (24 bits) will be needed. Digital is contributing to the different
standards committees, with the goal of adopting this universal code.

3.2 Guidelines for Coding Multilingual Data

22

Digital’s architectural foundation for the coding of multilingual data
streams is the Digital Data Interchange Syntax (DDIS). DDIS is
Digital’s internal version of the ISO Abstract Syntax Notation One
(ASN.1), which provides a means for Type-Length-Value (TLV) encoding
of structured data. DDIS is a collection of notation and encoding rules
for data, with a standard data type notation (analogous to C structure
declaration), a standard data value notation (analogous to a C initial-
ization statement), and standard data value encoding rules (analogous
to CPU data representation). An author of a standard based on DDIS
uses the type notation to define data types, and uses the value notation
to provide examples. Application developers use the DDIS access rou-
tines: create-and-put routines to store data, and open-and-get routines
to read data.

The Digital Document Interchange Format (DDIF) is a syntax based
on DDIS that serves as a document interchange format and conversion
hub that is application- and system-independent. DDIF can express
most known document semantics and combinations of text, graphics,
images, and data.

DDIF data access routines call DDIS access routines to read and write
compound documents. The access routines provide for:

* Separating device control instructions for line feeds, carriage
returns, backspacing, and tabs from character data. This rule helps
accommodate Hebrew, Arabic, and Asian requirements.

e Identifying a character set from a large and growing set of stan-
dards specifying 1-byte and 2-byte character sets and the forthcom-
ing ISO multiple-octet character set.

¢ Identifying language.

¢ Identifying fonts.

* Separately specifying presentation attributes, including writing
direction and emphasis.

International Text Processing

Guidelines

At Digital, the following guidelines are used to standardize the coding
of multilingual data streams.

Build ISO Latin-1 character set support into all new applications.

Migrate existing applications that support DEC MCS toward ISO
Latin-1.

Accept ISO Latin-1 characters in data, including string literals in
programming and command languages.

Support either the ISO Latin-1 character set or the DEC MCS if
migration to ISO Latin-1 cannot be considered.

This support means accepting ISO Latin-1 or DEC MCS alphabetic
characters in identifiers such as names of files, documents, folders,
fields, records, variables, and procedures.

Command and programming languages cannot be expected to meet
this requirement unless the international or national standard
defining the language also reflects this requirement. Languages
can be designed so that the support required for this feature is
minimal.

If the product is destined for the Asian market, provide interim
support for the Digital mixed single-byte and multi-byte text

data stream, which supports ideographic characters for Japanese,
Chinese, and Korean (requiring 2 bytes) and also includes the 7-bit
ASCII set. Digital’s terminals and printers use this mixed data
stream for multi-byte character sets.

Use DDIS and DDIF for encoding simple and complex structured
text. This practice allows the language, character set, font, writing
direction and other presentation attributes to be identified inde-
pendently for each unit of text, even to the level of single character
units. Applications should be able to accept input and produce
output in ISO Latin-1 or DEC MCS if they are not operating in a
DECwindows environment. But applications should do conversions
and internal processing in ISO Latin-1 since DDIS does not support
DEC MCS.

Use generalized table-driven routines for all text conversions

and comparisons. Allow for the recognition of character set and
selection of appropriate conversion function and collating sequence
tables based on DDIF and DDIS encoding.

Select linguistic aids such as spell-checking or hyphénation for
formatting based on the language attribute of DDIF segments.

International Text Processing 23

* Use standard converters to transform text to and from external
and internal text processing environments. For example, transform
input text from the 7-bit NRC environment used in France to
ISO Latin-1 for internal processing; transform it back to the NRC
environment for display.

* Identify character set, language, writing direction, and font in-
dependently. DDIF includes text attributes that provide this
information for each text segment, which can be as small as a
single character of information.

* Provide natural language-sensitive editors that recognize the mixed
input requirements of multilingual environments.

* Use the recommended workarounds listed below for the alphabet-
ical sorting problems until databases and indexed files support
customized collating,

— Do not make sorting dependent on the order of indexed keys in
Indexed Sequential Access Method (ISAM) files or on database
products that do not allow customized collation. Sort or select
the keys in the application using National Character Set (NCS)
routines controlled by collating sequence or an equivalent
algorithm for comparison.

— Add functions that can sort Asian text in a market-specific
component.

— Construct an invisible key from an artificial character set that
has a binary value order yielding the desired collating sequence.
On input, transform the original ISO Latin-1 or DEC MCS key
into this artificial key used as the Record Management Screen
(RMS) or relational database (Rdb) key. On output, transform
the artificial key back to the original key. If storage space
is not a problem, the original key can also be stored in the
file or database relation. The transformations to and from
the artificial key should be table-driven so that they can be
customized.

* Remove diacritical marks and convert characters to uppercase and
lowercase. All conversion techniques should be table-driven and
not computed by formula as was frequently done in 7-bit ASCII
processing. In the VMS environment, Digital recommends NCS
routines with conversion function tables for this purpose.

* Design for a common architecture, and identify Asian symbols that
are common to Japanese, Chinese, and Korean. Designing the
product for a generic character set will facilitate migration to all
Asian markets.

24 International Text Processing

3.3 Text Processing Requirements

A common text processing function could be designed to support the
requirements for each language group. For example, formal (tra-
ditional) writing of Japanese and Chinese is vertical. Until now, it
has been acceptable to support only a left-to-right, horizontal writing
style for computerized text processing and data processing applica-
tions. However, to be successful, an electronic publishing system for
Japanese or Chinese must also support the traditional writing style.
Table 3—2 summarizes international text processing requirements. The
devices and peripherals associated with these languages are listed in
Appendix A and Appendix B.

Table 3-2. Text Processing Requirements

Writing Bits/’ Input
Language Group Direction Seript Char Method
Western Europe Left to right Latin 8 Direct
The Americas
Eastern Europe
Southern Europe
Northern Europe
Arabie Right to left Arabic 8 Direct
Hebrew Right to left Hebrew 7 8 Direct
(LK201AT)
Japanese Left to right Kanji 16 Phonetic
Right to left Kana (LK201AJ)
(LK201AY)
Chinese Left to right Simplified 16 Phonetic

Right to left Traditional 16/32 Radical

Korean Left to right Hanja 16 Phonetic
Hangul Composed

The preferred phonetic methods for Japanese are based on the 52-
character Kana phonetic alphabets. Katakana requires the Ad key-
board; Hiragana requires the AY keyboard.

International Text Processing 25

Table 3-3 lists the character set standards planned for use in Digital
hardware and software engineering development.

Table 3-3. Character Set Standards Used in Digital Engineering

No. of
Language Character Standard No. Characters
Group Set Name Number of Bits Defined
English and DEC MCS ISO 8859-1 8 94 + 96 [96]
W. Europe ISO Latin-1
E. Europe ISO Latin-2 ISO 8859-2 8 94 + [96]
S. Europe ISO Latin-3 ISO 8859-3 8 94 + [96]
N. Europe ISO Latin-4 ISO 8859-4 8 94 + [96]
Hebrew ISO Latin-Hebrew ISO 8859/8 8 94 + 58 [96]
Arabic ASMO-Arabic-8 ASMO-662 8 94 + 51 [96]
Arabic/Latin ASMO0-708-85 8 94 + 51 [96]
Arabic/Latin ECMA-114 8 94 + 51 [96]
ISO Latin-Arabic ISO 8859-6 8 94 + 51 [96]
Simplified Chinese = DEC Hanzi GB 2312 7/16 7,445
(PRC)
Traditional Chinese DEC Hanyu CNS 11643 7/16/32 13,735
(Taiwan)
Japanese DEC Kanji JIS X0208 7/16 6,877
Korean DEC Korean KS C 5601 7/16 8,224

26 International Text Processing

3.4 Collating Sequences

The sequence in which characters are collated is one area of soft-
ware functionality that varies among different languages. Developers
creating products for the international market need to be aware of
the different country requirements and of the need to allow for these
requirements in their products.

Whenever characters need to be sorted with respect to other characters
to produce an alphabetic or alphanumeric list, they are sorted according
to a collating sequence. The collating sequence defines the value and
position of each character relative to other characters. Characters to be
sorted include:

e Letters
e Numbers

¢ Punctuation characters
e Additional symbols, such as #, &, *, @

Software routines often use collating sequences as a basis for organiz-
ing characters into alphabetic or alphanumeric lists. The following are
some examples of alphanumeric lists:

¢ A directory listing of filenames at operating system level
¢ The output from a sort utility
* An index produced by a text processing application

¢ The lists output by a database product, such as lists of names,
addresses, or components

When designing software products that contain sorting functions,

developers need to design their products so that they are flexible

enough to allow for the use of individual country-specific collating
sequences.

To achieve this flexibility, developers should avoid hard-coding collating
sequences into the software. Instead, the software should refer to

a table containing the collating sequences. The table to which the
software refers can then be varied, depending on the country in which
the application is being used.

The National Character Set (NCS) Utility available in Digital’s VMS
Version 5.0 Run-Time Library assists developers writing software that
uses collating sequences. This utility, which supports the ISO Latin-1

International Text Processing 27

character set, allows specific collating sequences to be defined and then
stored in an NCS library (see Chapter 7).

3.4.1 Complicating Factors in Collating Sequences

Although the task of specifying the sequence in which letters should
be ordered within an alphabetical list seems to be straightforward and
unambiguous, a number of factors can complicate this process:

*» Numerous character sets can be used; it can be difficult to decide
which set of characters a collating routine will need to handle.

» TFor languages based on the Latin alphabet, there may be specific
collating requirements that are unfamiliar to English-speaking
people, such as:

— To treat character variants as equivalent, such as ¢ ¢ in French

— 'To provide for additional letters, such as i between n and o in
Spanish

— 'To treat character combinations as one letter, such as ¢k in
Spanish

Sophisticated and flexible processing is necessary to proeess multi-
national characters correctly.

» Numbers, punctuation, and additional symbols can be treated in a
variety of ways when preducing ordered lists. It may be a require-
ment to allow for different ways of treating them if the software is
to be used in different application domains. For example, a space
between characters is ignored for some applications but ebserved
for others. If the space is ignored, the resulting list would be

Daniels
Da Silva
Dauxois
However, if the space is not ignored, the resulting list would be
Da Bilva
Daniels
Dauxois

» Different countries may treat the same character differently. For
example, the character A is treated as a variant of A in Germany
and is sorted as equivalent to A. However, in Sweden, A is treated
as a distinct character and is sorted after Z. Thus, different collat-
ing sequences must be used for different countries.

28 International Text Processing

* Languages not based on the Latin alphabet have their own special
requirements for collating, which vary from language to language.
For example, with Asian languages, users must define additional
characters outside the standard character set. This means that
software must be able to collate text that contains both standard
and user-defined characters.

» 1If software must collate multilingual text eontaining words or
names from more than one language, more than one country-
specific collating sequence must be applied to the text.

3.4.2 Collating ASCHl Characters

The ASCII collating sequence, which is based on the ASCII character
set, orders characters according to their numeric code value. This
method of collating characters provides unsatisfactory results where
text must be organized in alphabetical order, according to dictionary
rules. :

Each character within a character set has a unique numeric code.
The value of this numeric code depends on where the character is
positioned within the code table. For example, within the ASCII code
table, uppercase A has a decimal value of 65. Lowercase a comes later
in the table and has a decimal value of 97.

When the ASCII collating sequence is used, characters are collated in
the following sequence:

1. Numbers
2. Uppercase letters
3. Lowercase letters

The ASCII character set does not contain national characters, that is,
characters with diacritical marks and additional characters, such as
Z. However, some applications that use the ASCII collating sequence
accept national characters. In this case, the national characters are
sorted at the end of the sequence.

The following list shows a series of words sorted by the VMS SORT
utility that uses the ASCII collating sequence:

Aegean
Column
Colén
Flute
FluBpferd

International Text Processing 29

Noél
Zero
aegean
chasse
column
fliissig
Zero
zutréglich
zéro
asna
étude
ode

Note that all words that begin with lowercase letters appear after

the words that begin with uppercase letters; words that begin with
national characters are sorted after the lowercase z. To produce correct
alphabetical output, a more sophisticated method of processing should
be used.

3.4.3 Digital’s Multinational Collating Sequence

30

For characters to be organized in a fully alphabetical list, a more
complex series of comparisons needs to be performed on the characters.

The principles by which characters are collated in the DEC
Multinational Collating Sequence (DEC MCS) are as follows:

¢ The alphabetic characters within DEC Multinational Collating
Sequence are viewed as being grouped into sets of characters. Each
set consists of all the variants of a basic alphabetic character. For
example, all the forms of e comprise one set. All variants of a
character have the same basic collating value.

® When alphabetic characters are collated, all members of one partic-
ular set are positioned in the same position relative to other sets.
This means that all forms of C are sorted as if they are a C relative
to other letters of the alphabet.

e Within any particular set, the variants are ordered in a specified
way. The lowercase letters are always collated by numeric code
value, and each uppercase letter immediately follows the corre-
sponding lowercase letter. For example, the character ¢ comes after
the lowercase ¢ in the code table and has a higher numeric code
value. Therefore, within the set of C’s, the order of the letters is ¢,
C, ¢, and C.

International Text Processing

e The characters &, Z, ¢, 0, 4, A, fi, N form an exception to these
general rules. They are treated as separate characters, not as
variants of A, O, or N. The characters @, Z, 4, @, &, and A are
collated in that order after Z. The characters 7 and N are collated
after N and before O.

DEC Multinational Collating Sequence solves many problems associ-
ated with collating multinational characters correctly. For example, if
the series of words listed in the previous section was sorted by using
the Multinational Collating Sequence, the resulting list would be as
follows:

aegean
Aegean
chasse
Col6n
column
Column
étude
fliissig
FluBipferd
Flute
Noel

ode

Zero

Zero

zéro
zutraglich

o

asna

However, even with these rules, it is still not possible to provide a
single, standard collating sequence for all Western European languages.
Each country has different rules for sorting. The rules are to be used
in contexts where alphabetization is required and the user does not, or
cannot, specify the language in which the text is written.

For the Multinational Collating Sequence to be used successfully,
additional rules must be applied for different countries. For example,
the same character may need to be sorted at a different position in the
sequence, depending on the language. The character A or d is sorted
as equivalent to A or a for the German language, but for Swedish and
Finnish the character is treated as distinct from A or a, and must
appear after Z in the collating sequence.

International Text Processing 31

3.4.4 Collating Arabic Characters

Arabic is a single-case language, so the problems of collating uppercase
and lowercase characters do not occur. The following guidelines apply
to the Arabic collating sequence:

¢ The Arabic connecting character, the fatweel has no significance in
a word and should be excluded during collation.

¢ Words are first sorted in code order with the Arabic vowels charac-
ters excluded.

* Groups of words having the same consonants are then sorted in
code order including the vowel characters. '

¢ In the common Arabic codesets, all ligatures such as lam-alef are
represented as the character codes of their component letters so
they present no special problems for sorting.

* Further guidelines for Arabic sorting are included in the text of the
ASMO-449 character set standard.

3.4.5 Collating Hebrew Characters

32

Hebrew is also a single-case language, so the problems of collating
uppercase and lowercase letters do not occur. However, all three
Hebrew character sets contain both Latin and Hebrew characters. This
means that collating rules must exist for both types of characters.

Latin characters are collated according to the rules of the parent
character set. For example, Latin characters within the DEC Hebrew
7-bit set are collated according to the ASCII sequence, whereas Latin
characters within the DEC Hebrew 8-bit set are collated according to
the DEC Multinational collating sequence.

In each Hebrew character set, Hebrew characters are collated in
alphabetical order. This order is the same as their numeric code order,
since Hebrew characters are listed in alphabetical order in the different
Hebrew character sets. Hebrew characters always appear after Latin
characters in the collating sequence.

International Text Processing

3.4.6 Collating Ideographic Characters

Collating ideographic characters is more complex than collating Latin
characters. The Chinese Hanzi version of the VMS SORT/MERGE
utility supports three different methods of collating:

¢ By radicals

Radicals are the root forms of a character that give the character
its basic meaning. The radical collating sequence sorts according to
the radicals that make up the character. If there is more than one
character with the same radical, then these similar characters are
further sorted by the number of strokes that make up the character.

¢ By number of strokes

Characters are sorted by the number of strokes that make up the
character. If more than one character has the same number of
strokes, these characters are further sorted by radicals.

¢ By phonetic sequence

Characters are sorted according to the sequence in which they
appear in a phonetic alphabet. In this phonetic alphabet, the
characters are organized according to their romanized (western)
spelling.

Within the Chinese Hanyu version of VMS, which is used in Taiwan,
the situation is even more complicated, since the Hanyu SORT/MERGE
utility must handle characters with different lengths (one, two, and
four bytes).

The Japanese Kanji VMS SORT/MERGE utility supports radical and
stroke collating sequences, plus additional sequences, such as those
based on phonetic alphabets. Dictionaries give the collating value for
each Kanji character. If the user wishes to use user-defined characters,
which is a very common requirement, the user has to modify the
dictionary. To date, no systematic solution for dealing with user-defined
characters exists.

International Text Processing 33

Chapter 4

Designing Localizable Software

The primary goal in designing international software is to isolate any

functional code, text, or control that must be modified for different in-

ternational markets. The following guidelines provide specific methods
for accomplishing this separation.

Guidelines

Design the code for flexibility by using table-driven algorithms and
modular replacement techniques.

Separate all user-interface text, together with its position and
size control, from the code that presents it. In this way, the text
can be easily accessed for translation. Include the text used for
comparison against user input, as well as the text displayed by the
user interface.

Use standardized coding procedures for all processing and storage
of text and data. It is best to use standardized data formats, such
as registered data types or standards developed by the following

groups:

¢ The American National Standards Institute (ANSI)

® . The International Organization for Standardization (ISO)

¢ The Institute of Electrical and Electronics Engineers (IEEE)

* The Consultative Committee of the International Telegraph and
Telephone (CCITT)

Data interchange formats based on DDIF and DDIS, which are
important parts of the Digital Compound Document Architecture
(CDA) strategy, are recommended since many converters from
DDIF to external standard formats are being developed.

Designing Localizable Software 35

* Transform stored data from its internal form to a user-viewable
display at the latest possible time, for example, at run time. Supply
the language- and locale-sensitive parts of the display This ap-
proach allows two users on the same system to view different
versions of the same internal data.

¢ Do all processing, storage, and interchange in the internal encoding
format, using standardized processing algorithms.

¢ Use standardized encoding to handle any user-supplied text that
will become a part of the metadata exchanged between applica-
tions. Never store such metadata in natural language text in the
interchange format.

¢ Design your product so that it ean be localized, packaged, and or-
dered in accordance with the international product model deseribed
in Chapter 2.

¢ Design for consistency across the various operating systems on
which distributed software will be used.

4.1 Application and User Profiles

A user interface can be tailored to a locale by adding specialized data
structures that condition underlying function and user interface ser-
vices. Digital recommends two such data structures, or profiles. A
profile is a data structure that defines parameters to localize and oth-
erwise condition the execution of the application. A profile establishes,
selects, or points to all locale-specific text that is required to execute
the application.

¢ Application profile

The application profile is a data structure that establishes values
for application attributes that are the same regardless of the locale
the application is being used in. Some examples are the character
set and collating sequence for shared text databases, default display
formats, and default messages.

¢ User profile

A user profile is a data structure that defines or selects the locale-
specific attributes characterizing an interaction with the software.
The user profile can characterize an interaction with the application
that does not require a human user; that is, it can describe a call
from one program or process to another (a usage interaction).

36 Designing Localizable Software

Taken as a whole, an application profile and a single user profile can
define the attributes needed for a single locale-specific application;
and an application profile and a set of user profiles can describe a
multilingual, integrated, internationally distributed application. Such
distributed applications can span multilingual, multinational, and
multivendor environments. For example, an international banking
application might be designed to accept an international audience of
users as described in Table 4-1.

Table 4-1. Sample International Audience of Users
User Interface User’s

User Language Country Keyboard
Data Entry French Switzerland Swiss/French
Operator

Data Entry English USA North American
Operator

Teller German Germany German

Data Base French, English, USA North American
Administrator and German

4.1.1 Defining Attributes of Profiles

A major difficulty in defining application and user profiles is deciding
what attribute goes where, and when an attribute is allowed to change.
User requirements for an application should dictate what needs to be in
the profiles. Thus, the major uses of the application must be recognized
before the profiles are defined. Many application-specific questions do
arise in defining the user requirements. Often these questions do not
have simple answers, and indicate the need for additional research.

These are some of the international usage questions that must be
answered when defining the profiles:

* Is the character set for all text data fixed application-wide, or must
it vary in order to handle the mixed multilingual requirements?

* Are the fonts available to print and display the text data encoded
by the character sets?

* Is the collating sequence considered a property of the language,
country, character set, database, or field? Is it allowed to vary only
on a database-wide basis or on an individual key-by-key basis?
Can the collating sequence in the user profile be changed by the

Designing Localizable Software 37

user? Performance characteristics of the application may determine
whether an attribute is specified in the application profile and set
only once or specified in the user profile and highly variable.

e Are date and time formats allowed to vary on a field-by-field basis
in the user interface, or are they specified once throughout an
application? What about currency and number formats? What
about applications used to convert to and from different formats
and which thus must refer to multiple definitions of collating
sequence, format, and so on?

Digital’s experience in developing international products has provided
information about both the international requirements for certain
applications and the characteristics of the users of such products. From
this experience, Digital recommends developing general guidelines that
answer the following questions:

e What application-specific features are required and need to be
placed under profile control?

¢ What attributes should be included in the application and user
profile data structures?

e How often and when are the attributes allowed to change?

Table 4-2 lists possible attributes for user and application profiles.

Table 4-2. Possible Application and User Profile Attributes

Language:!
Alphabet (minimal character set and fonts)
Primary writing direction!
Month/day names and abbreviations
Ordinal abbreviations (rule or table)
Spell-checking, hyphenation, other linguistic aids
Writing direction!

Common text processing function:2

Language determines many other aspects of the locale. Because writing direction may
vary independently of language, it is convenient to have a separate attribute for writing
direction.

2Conversion functions and collating sequence tables to be used by NCS routines are
assumed here for illustration purposes.

(Table 4-2 continues on next page)

38 Designing Localizable Software

Table 4-2. Possible Application and User Profile Attributes (cont.)

Character sets and associated fonts?

Conversion functions:?
Upper/lowercase, diacritical/accent removal
between character sets (for example, between NRC
and MCS)

Collating sequence?®

User interface (dialog) text and control:
Error/help/dialog/prompt/tutorial text, flow control
Artificial language/command parsing tables

Recognition logic for commands, replays, searches (depends on
language and character set)

Country: (controls some market-specific functions)

Keyboard control:
Key sequence-to-function mapping*
Driver (character set) mapping (for example, NRC
to/from MCS)

Other device control:
Print control mapping
Timeouts, other external control sequences, and so on

Time transformation:
Calendar (Gregorian or Julian) offset from A
Greenwich Mean Time
Zone name, zone abbreviation
Daylight savings time

Currency transformation: (exchange rates)

2Conversion functions and collating sequence tables to be used by NCS routines are
assumed here for illustration purposes.

3Collating sequences can have multiple definitions in a multilingual distributed applica-
tion. The collating sequence for shared data should be set only once.

“Key (or multi-key sequence) mappings to the internal meaning, or software inter-

pretation of the function. Digital’'s VMS and ULTRIX operating systems use special
TERMCAP files for this purpose and allow you to define a virtual keyboard.

(Table 4-2 continues on next page)

Designing Localizable Software 39

Table 4-2. Possible Application and User Profile Attributes (cont.)

Local display formats/conventions:
Currency symbol (international, local)
Negative currency indicator
Fraction separator
Three-digit group (thousands) separator
List separator
Default formats for:?
Time, date, currency, phone number, and addresses

5An application often requires multiple data formats for both input and output.

4.1.2

Implementing Profiles

Profiles can be implemented in a wide variety of ways. Digital’s VAX
RALLY software supplies examples of most of them. It uses the follow-
ing techniques:

* An application profile, which is a global block of the AFILE that
defines the application, contains default data formats, collating
sequence, and other application-wide parameters.

e Defined logical names point to the keyboard mapping desired,
application-specific error and help messages.

¢ The command definition for the RALLY command is provided in
Command Language Definition (CLD) format.

* The product makes various database references.

The profile should be easily accessible to the software designer at run
time and at application build time for easy modification. The message
file is an acceptable place to collect this information, which may be
employed at startup time to define logicals, open files for initializing
control, and so on.

Once an application or user profile is standardized—that is, encoded,
named, and registered—it can call out attributes such as collating
sequence by name. References to other sites, such as the library
containing all collating sequence tables for the system, provide more
detailed definition of attributes. The necessary standardization for
collating sequence and conversion function tables and name tables for
months and days began with VMS Version 5.0 and ULTRIX Version
3.0.

40 Designing Localizable Software

4.2 Developing an International User Interface

In order to localize a product effectively, the user interface presentation
services should accommodate user interface text that changes in length
and positioning when it is translated.

Text Expansion

Input text such as names and addresses may require more field space
when translated for other markets. User interface services should
provide for flexible sizing of fields through the external control of
locale-specific data. Although vertical and horizontal scrolling have
been used to manage text expansion, horizontal scrolling may not be
acceptable for all markets. Vertical scrolling, in a help window, for
example, is acceptable. Abbreviations and icons can be used when
appropriate and when tested by the target market.

Text Positioning

Text positioning should not be hard-coded. User interface presentation
services should provide for flexible, externally-controlled positioning of
labels and fields.

Depending on the user interface tools you choose, planning for extra
space initially may not be necessary. For example, DECwindows
software provides user interface widgets that can automatically adjust
for text expansion. See Chapter 6 for information on DECwindows
software.

Guidelines

At Digital, the following guidelines are used in developing user inter-
face presentation services:

¢ Where possible, use a form system such as Digital’s DECforms
software to provide the user interface services and as much editing,
formatting, validation, and conditional field branching as possible.

¢ Use screen formatters that can automatically rebuild menus and
forms after translation and optimally position the expanded text.
Form editors are useful for final manual adjustments to user
interfaces. Such editors enable translators to view the text and
fields just as they will appear during use of the software.

¢ At run time, allow for dynamic mapping to the modifiable locale-
specific data structures stored in the user interface component.

Designing Localizable Software 41

e Plan for the text positioning changes that result from translating
the original language into many target languages. Allow space for
text to expand 100 percent in data fields and in single lines of text,
50 percent in a full screen, and 30-40 percent in text files. For
text presented in tables, leave five spaces between table columns to
provide for expansion.

¢ When text requires a particular format:

— Allow the translator to reformat the text with a word processor.
For example, if a Help screen is right-justified, do not store
each line as a separate text string that must be justified by
hand.

— Use a utility that reformats the text automatically at either
compile or run time. If a line is to be centered, the program
should center it correctly. Use relative positioning rather than
absolute positioning when possible.

— Use table-driven formatting routines that do not require code
changes for localization.

— Document the method used.

— Give some consideration to text positioning alternatives. Don’t
make the engineering groups in other countries manually
count spaces to reposition text. If you cannot avoid manual
repositioning, store the coordinates to be changed with the text,
apart from the procedural code.

¢ Provide a mechanism to allow for the presentation of more text
than appears in the original version. For example, allow for hori-
zontal scrolling of single lines, or a “Press any key for more” routine
for vertical scrolling.

¢ Ensure that the software does not depend on string length. Avoid
arbitrary restrictions on the length or positioning of output text.
Document unavoidable restrictions for translators.

¢ Allow the translator to easily change the order of alphabetically
arranged options. This guideline ensures that the order after
translation remains the same as the order the program expects.

4.2.1 Analyzing User Input

International software products must provide text that the application
can use to interpret user input. When an application requests input
from the user, the user’s response, often a Yes or No, must be recognized
in the translated form.

42 Designing Localizable Software

Guidelines

The following guidelines are used at Digital in determining how user
input will be analyzed.

Let generalized table-lookup and recognition algorithms analyze
user responses, command names, qualifier names, qualifier values,
and so forth. When a typed-in keyword, menu selection, or com-
mand is allowed, be prepared to match it under all of the following
conditions:

— Exact match.

— Match that ignores diacritical marks. Remove diacritical marks
before matching.

— Match that ignores case. Use uppercase text.

— Match that ignores diacritical marks and case. Remove diacriti-
cal marks and use uppercase text before matching.

Do not assume that a one-character response always differentiates
between responses in different languages.

Do not require menu options to begin with a single letter. It may
n