
D GITAL GUIDE TO
Developing
International
Software

••

Digital Guide to
Developing International Software

Digital Guide to
Developing International Software

Corporate User Publications Group / Digital Equipment Corporation

Digital Press

© 1991 Digital Equipment Corporation.

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written
permission of the publisher.

987654321

Printed in the United States of America.

Order Number EY-F577E-DP
ISBN 1-55558-063-7

Author: Cynthia Hartman Kennelly
Editor: Jacqueline Unch
Illustrator: Andrea Thurber
Compositor: Corporate User Publications (CUP/ASG)

Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation:

ALL-IN-I, DDIF, DEC, DECforms, DECmail, DECnet, DECwindows,
DECwrite, EDT, TCP/IP, ULTRIX, VAX, VAX C, VAXc1uster,
VAX Document, VAX GKS/Ob, VAX MACRO, VAX PHIGS, VAX RALL~

VAX RdbNMS, VAX RMS, VAX SCAN, VAX TEAMDATA, VMS, VT,
WPS-PLUS, XUI, and the DIGITAL logo.

AT and Personal System/2 are registered trademarks of International
Business Machines Corporation. Macintosh is a registered trademark of Apple
Computer, Inc. POSTSCRIPT is a registered trademark of Adobe Systems,
Inc. UNIX is a registered trademark of American Telephone & Telegraph
Company. X Window System is a trademark of Massachusetts Institute of
Technology. XlOPEN is a trademark of XlOPEN Company Ltd.

This document was prepared with VAX DOCUMENT, Version 1.2.

FOREWORD

PREFACE

CHAPTER 1 THE CONCEPT OF INTERNATIONALIZATION

Contents

xvii

xix

1

1.1 INTERNATIONAL SOFTWARE 1

CHAPTER 2 DIGITAL'S INTERNATIONAL PRODUCT MODEL 5

2.1

2.2

2.3

COMPONENTS IN DIGITAL'S INTERNATIONAL PRODUCT MODEL
2.1.1 The International Base Component
2.1.2 The User Interface Component
2.1.3 The Market-Specific Component
2.1.4 The Country-Specific Information Component

APPLYING THE MODEL TO SOFTWARE DEVELOPMENT
2.2.1 Applying the Model to Asian Software
2.2.2 DECwrite Software: A Sample Product
2.2.3 The Independent Aspects of International Software

THE IMPORTANCE OF MARKET-SPECIFIC COMPONENTS

6
6
7
8
8

9
10
11
12

14

CHAPTER 3 INTERNATIONAL TEXT PROCESSING 17

3.1

3.2

3.3

CHARACTER SETS

GUIDELINES FOR CODING MULTILINGUAL DATA

TEXT PROCESSING REQUIREMENTS

17

22

25

v

3.4 COLLATING SEQUENCES
3.4.1 Complicating Factors in Collating Sequences
3.4.2 Collating ASCII Characters
3.4.3 Digital's Multinational Collating Sequence
3.4.4 Collating Arabic Characters
3.4.5 Collating Hebrew Characters
3.4.6 Collating Ideographic Characters

27
28
29
30
32
32
33

CHAPTER 4 DESIGNING LOCALIZABLE SOFTWARE 35

vi

4.1

4.2

4.3

4.4

4.5

4.6

APPLICATION AND USER PROFILES
4.1.1 Defining Attributes of Profiles
4.1.2 Implementing Profiles

DEVELOPING AN INTERNATIONAL USER INTERFACE
4.2.1 Analyzing User Input
4.2.2 Displaying User Output

LOCAL DATA CONVENTIONS

LOCAL DEVICES

PROGRAMMING AND COMMAND LANGUAGES

LOCALIZING SOURCE CODE: AN EXAMPLE
4.6.1 Sample Program Before Internationalization
4.6.2 Removing Embedded User-Visible Text
4.6.3 Allowing Message File Definition at Run Time
4.6.4 Changing the Command Table Definition

4.6.4.1 Moving the Functions into a Separate
Shareable Image • 72

4.6.4.2 Creating the Shareable Image • 73
4.6.4.3 Adding Code to Resolve the Address of

Prompt Message • 73
4.6.4.4 Tying Together the Command Language

Definition File and the Code • 73
4.6.4.5 Activating the Command Language Interface

Image • 74
4.6.5 Selecting Command Tables During Execution

36
37
40

41
42
44

47

55

59

61
61
64
67
69

76

CHAPTER 5 DESIGNING MULTILINGUAL SOFTWARE 79

5.1 MULTILINGUAL SOFTWARE 79

5.2 MULTILINGUAL PRODUCTS VERSUS LOCALIZABLE PRODUCTS 82

5.3 PLANNING MULTILINGUAL APPLICATIONS 83
5.3.1 Concurrent Multilingual Usage on a System 83
5.3.2 Concurrent MUltilingual Usage Within the Same

Application 85
5.3.3 Concurrent MUltilingual Usage on an Integrated,

Internationally Distributed Network 87
5.3.4 Communication Between Multilingual Applications 88

5.4 DESIGNING MULTILINGUAL SOFTWARE PRODUCTS 89
5.4.1 Storing Data for Use by Multilingual Applications 90
5.4.2 Sorting Data Used by Multilingual Applications 90

CHAPTER 6 USING THE DECWINDOWS INTERFACE 91

6.1

6.2

6.3

6.4

INTERNATIONAL DECWINDOWS USER INTERFACES
6.1.1 Object-Oriented User Interfaces
6.1.2 User Interface Language
6.1.3 DECwindows Toolkit Widgets

6.1.3.1 Making DECwindows Toolkit Widgets
Translatable • 101

6.1.3.2 Positioning Objects with DECwindows
Widgets • 105

6.1.3.3 Using Icons • 105

INTERNATIONAL APPLICATION RESOURCE DATABASES

LOCAL CONVENTIONS

INTERNATIONAL TEXT PROCESSING
6.4.1 Indicating Character Sets
6.4.2 Compound Strings
6.4.3 Collating Sequences and Conversion Functions

92
92
94

100

105

107

107
107
108
109

vii

6.5

6.6

LOCAL DEVICES

DECWINDOWS INTERFACE: LOCALIZABLE SOFTWARE EXAMPLE

109

112

CHAPTER 7 USING THE VMS OPERATING SYSTEM 123

7.3.2
7.3.3
7.3.4
7.3.5

viii

7.1

7.2

7.3

7.4

7.5

7.6

DECFORMS USER INTERFACE

MESSAGES IN VMS
7.2.1 Using Message Pointers
7.2.2 Using Logical Names to Switch Message Files
7.2.3 Using $FAO to Reorder Message Parameters
7.2.4 Using $FAO for Conditional Messaging

LOCAL CONVENTIONS
7.3.1 Formatting Dates and Times

7.3.1.1 Specifying Language and Date and Time
Formats • 133

7.3.1.2 Defining Date and Time Formats • 134
7.3.1 .3 Using Date and Time Formats • 135
Formatting Number and Currency Values
International Collating Sequences
Using Sort/Merge ~o~tines

Using Conv~rsion F~nctions

COMMAND LANGUAGE LOCALIZATION

THE TERMINAL FALLBACK FACILITY

VMS OPERATING SYSTEM: MULTILINGUAL SOFTWARE EXAMPLE
7.6.1 Sample Application and User Profiles
7.6.2 Sample Source Code

124

126
126
128
130
132

133
133

136
137
141
142

145

146

147
148
150

CHAPTER 8 USING THE ULTRIX OPERATING SYSTEM 179

8.1 INTERNATIONAL KEYBOARD SUPPORT 180

8.2 THE MESSAGE CATALOG SYSTEM 181
8.2.1 Creating a Message Catalog 181
8.2.2 String Extraction 182
8.2.3 Format of the Message Text Source File 184

8.2.3.1 Set and Message Numbers • 184
8.2.3.2 Mnemonics • 186

8.2.4 Using the gencat Program 188
8.2.5 Library Routines 189

8.2.5.1 Using the catopen Routine • 191
8.2.5.2 Using the catgets Routine • 192

8.2.6 Using the trans Translation Tool 193

8.3 CREATING LOCALIZED PROGRAMS 194
8.3.1 The Announcement Mechanism 196
8.3.2 Announcement Categories 197
8.3.3 Setting the Program Locale 198
8.3.4 Setting a Specific Category 198
8.3.5 Setting All Categories 199
8.3.6 Supported Locales 200

8.4 LOCAL CONVENTIONS 200

8.5 INTERNATIONAL TEXT PROCESSING 202

8.6 IDATE: A SAMPLE ULTRIX PROGRAM 203

8.7 LANGUAGE SUPPORT DATABASES 205
8.7.1 The Codeset Definition 206
8.7.2 The Property Table 208
8.7.3 The Collation Table 210
8.7.4 The String Table 212
8.7.5 The Conversion Tables 214

ix

CHAPTER 9 SUPPORTING MULTI-BYTE CHARACTERS 2~7

9.1 INPUT OF MULTI-BYTE CHARACTERS 218
9.1.1 Terminators and Delimiters 218
9.1.2 Queue Input/Output 218

9.2 CHARACTER OUTPUT 219
9.2.1 Character Wrapping 219
9.2.2 Formatted Output 220

9.3 EDITING 220
9.3.1 Moving the Cursor 220
9.3.2 Deleting and Replacing Characters 221
9.3.3 Overstriking Characters 221
9.3.4 Cutting and Pasting 222

9.4 CHARACTER CASING 222

9.5 CHARACTER SEARCHING 223

9.6 CHARACTER SORTING 224
9.6.1 Collating Sequences 224
9.6.2 Variable Length Data 225

CHAPTER 10 SUPPORTING LOCALIZATION

10.1 TRANSLATION MARKUP
10.1.1 Objectives and Advantages of Markup
10.1.2 Guidelines for Markup
10.1.3 Markup of VMS Message Files (.MSG)
10.1.4 Markup of ULTRIX Files
10.1.5 Files Not Requiring Markup

10.2 TRANSLATION ESTIMATES

10.3 LOCALIZATION KIT
10.3.1 Source Software Modules

x

227

229
229
230
230
233
234

235

236
236

10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7

Modular Build Procedures
Installable Baselevel
Baselevel Notes
Test Procedures
Internals Documentation
Tools and Utilities

237
237
237
237
238
238

10.4 DIGITAL'S LOCALIZATION PLATFORM 239

APPENDIX A DIGITAL'S ASIAN PRODUCTS 241

A.1 HARDWARE PLATFORM 241

A.2 SOFTWARE PLATFORM 242

A.3 CHINESE AND KOREAN VMS COMPONENTS 246

A.4 JAPANESE VMS OPERATING SYSTEM'S COMPONENTS 248

A.5 JAPANESE ULTRIX COMPONENTS 250

A.6 JAPANESE DECWINDOWS 251

A.7 JAPANESE MULTI-BYTE RUN-TIME LIBRARY 253

A.8 CHINESE AND KOREAN MULTI-BYTE RUN-TIME LIBRARY 253

A.9 JAPANESE SCREEN MANAGEMENT RUN-TIME LIBRARY
(JSY$SMGSHR) 254

APPENDIX B DIGITAL'S INTERNATIONAL MARKET 255

xi

APPENDIX C LANGUAGE-SPECIFIC COLLATING SEQUENCES

APPENDIX D LOCAL DATA FORMATS

APPENDIX E CREATING A BIDIRECTIONAL TEXT EDITOR

259

265

321

E.1

E.2

BIDIRECTIONAL EDITING

HEBREW TEXT ENTRY AND EDITING

324

326

APPENDIX F DATABASE SOURCE LANGUAGE SYNTAX DESCRIPTION 329

F.1 RULES FOR BUILDING IDENTIFIERS 329

F.2 RULES FOR BUILDING STRINGS 329

F.3 RULES FOR BUILDING CONSTANTS 330

F.4 RULES FOR SEPARATING TOKENS, SPECIFYING COMMENTS, AND
USING DIRECTIVES 330

F.5 EBNF DESCRIPTION 331

APPENDIX G EXAMPLE SOURCE LANGUAGE FILE

APPENDIX H ISO STANDARDS

xii

335

341

APPENDIX I ADDRESSES OF STANDARDS ORGANIZATIONS

APPENDIX J ADDITIONAL READING

GLOSSARY

INDEX

343

349

353

Index-1

EXAMPLES
4-1
4-2
4-3

4-4

4-5
6-1
6-2
6-3
6-4

6-5
6-6
6-7
6-8

6-9
6-10
7-1

7-2
7-3

7-4

7-5

7-6
7-7
7-8
8..;..1

8-2

EXAMPLE.C

COMMANDS.CLD

MESSAGE.MSG File Contents

LONGMESSAGES.MSG File Contents

NEW_COMMANDS.CLD File Contents

A Translatable DECwindows File Selection Widget

Declaration of Constants for the File Selection Widget

A Bad Application Resource Database

A Corrected Application Resource Database

Support for Redefinable Keyboards in DECwindows

KEYBINDING_EXAMPLE.UIL

A Translatable UIL Specification File: XLAT_EXAMPLE.UIL

Declaration of Text Strings as Constants

Declaration of Position and Size Values as Constants

Declaration of Nontranslatable Values as Constants

Command File for Switching Message Files

Comparing Two Strings

C Program for Comparing Strings

C Program for Case Conversions

Application Profile

French User Profile

OES Source Code

Samples from ORD_ENTRY.lFDL

idate.c

Header File Contents

62
63
65

67
70

101

103
106
106
110

112
114
117

118
120
130

139
140
144
148
149
151

163
203
204

xiii

8-3
8-4
10-1
10-2
10-3
10-4
10-5
F-1

G-1

FIGURES
2-1
2-2
2-3
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
6-1
6-2
6-3
7-1
7-2
8-1

9-1
9-2
E-1
E-2
E-3
E-4

xiv

Message File: idate.msf

Sample Language Database Source File

Translation Comments in a VMS Message File

Translation Comments in an ULTRIX File

Date Conventions in an ULTRIX File

Text File-No Markup Required

Help File-No Markup Required

EBNF Description of the Database Source Language

Example of a Language Support Database Source File

The International Product Model

Applying the Product Model to Asian Software

International Software Model

Multilingual Software Model

French Product Variant

English/German Product Variant

Installation Path for a Product Variant

Installation Path for a Multidialect Product

Central Host, Concurrent Multilingual User Interfaces

Multilingual Functionality Within an Application

Multilingual, Integrated, Internationally Distributed Application

Dialog Box in English

Dialog Box in Japanese

XLAT_EXAMPLE.UIL Main Window

Creating and Using a Message Pointer File

Terminal Fallback Facility

Creating a Message Catalog

Case Conversion of Alphabetic Characters

Sample Specification of the Sort Key

Mirror Symmetry for a Simple Text Editor

Editing Vertical Writing with the Symmetric Editor

Left-to-Right Document Direction

Right-to-Left Document Direction

205
206
231
233
234
235
235
331
335

9

11

13
80
80
81

81

82

84
86
87

93
93

113
129
146
190
223
225
322
323
325
326

TABLES
2-1

3-1
3-2
3-3
4-1

4-2
4-3
6-1
7-1
7-2
7-3

7-4
7-5
7-6
7-7

8-1
8-2

8-3
8-4

8-5
8-6
8-7
8-8

8-9
10-1

A-1

A-2

A-3

A-4
A-5

B-1

C-1

C-2

C-3

C-4

D-1

Sample User Interface Components

Asian Character Set Standards Summary

Text Processing Requirements

Character Set Standards Used in Digital Engineering

Sample International Audience of Users

Possible Application and User Profile Attributes

Length of Character Strings in Day and Month Name

UIL-Supported Character Sets

Date and Time Run-Time Format Mnemonics

Predefined Date and Time Formats

Run-Time Library DatelTime Routines

NCS Routines Using Collating Sequences

Sort/Merge Routines

Conversion Function Tables in the NCS Library

NCS Routines Using Conversion Functions

Internationalization Tools to Create Message Catalogs

Escape Sequences Recognized by the gencat Program

Substitution Fields

Control Key Sequences

ULTRIX Language Support Databases

C Routines Supporting the Use of Local Conventions

C Routines Supporting International Text Processing

Properties and Character Classification

Mandatory Strings in the String Table

Page and Screen Counts

Available Asian Terminals

Available Asian Printers

Digital's Asian Software Platform

JSYSHR Routines

HSYSHR Routines

Countries and Languages

Collating Sequences Used by Different Countries

Danish, English, Finnish, and French Collating Sequences

German, Greek, Icelandic, and Italian Collating Sequences

Norwegian, Portuguese, Spanish, and Swedish Collating
Sequences

Countries and Their Major Business Languages

7

21

25
26
37
38
50

107
135
135
136
138
141
142
143
182

185
191

194
200
201
202
209
213
236
242
242
243
253
254
256
260
262
263

264
266

xv

xvi

0-2

0-3
0-4

0-5
0-6

0-7

0-8

0-9

0-10

0-11

H-1

J-1

Abbreviations of Weekdays

Abbreviations of Months

Dates

Yesterday, Today, Tomorrow

Personal Titles and Forms of Address

Addresses

Currency

Expressions of Time

Ordinal Numbers

Telephone Numbers

ISO Standards

How to Order Documentation from Digital

267
269
273
276
277
285
298
309
313
317
341
352

Foreword

With new opportunities in an open world, it is now more evident than
ever that the freedom of exchange between countries provides for a uni­
fied and profitable international market. And with the communication
capabilities provided by modern-day technology, such as satellite earth
station networks and plans for undersea fiber-optic cables to China,
it is time to design with the world in mind. Competition is fierce in
foreign markets. Products sold internationally will not be successful
unless they meet the needs of local users.

Digital is an international company with worldwide commitments.
Our international products are accepted in world markets because
they support local languages, conventions, and cultures. The revenue
Digital generates outside of the United States has reached 56 percent
and is growing significantly. We have invested significant resources
in understanding how to create globally competitive products, which
are sought-after locally in the countries where we do business. To
maximize the return on an engineering investment, it is important to
take advantage of this knowledge.

This guide demonstrates how companies today can ship products that
support local languages and customs. To do otherwise is to run the
risk of alienating international consumers. Users prefer products that
provide information in their local languages and according to their
local customs. Creating international products can be complicated.
The Digital Guide to Developing International Software simplifies this
process by describing the strategies, guidelines, and the product model
that Digital considers when designing new software prod\lcts to sell in
strategic markets.

xvii

xviii

This guide includes information on standards such as the International
Organization for Standardization (ISO) alphabets, which provide a
framework that designers can use to create products of uniform quality
and usability. It includes data formats for 18 countries, from Austria to
the United States. It explains how you can create software that sells
abroad successfully and design it right the first time.

David L. Stone
Vice President~ Software Product Group
Digital Equipment Corporation

Preface

Competition in today's global computer industry demands the shortest
possible time to market for software products. The delays usually
associated with the redesigning of software for international release are
no longer acceptable. For an international product to obtain optimum
market share, the delay between its release at home and its release
abroad must be minimal.

Although no definitive standards exist for the design of international
software products, teams within Digital have developed strategies for
producing software so that it can be efficiently adapted for particular
markets. The guidelines offered here can help companies to make the
right design decisions early in the software development cycle and
thereby reduce costs.

This guide deals primarily with the early design decisions that deter­
mine whether efforts to develop international software variations are
simple and efficient or complex and time-consuming. It offers a prod­
uct model that allows designers to isolate components that don't need
to be adapted from those that do. Developing software that is truly
international also requires attention to a special requirement of Asian
processing environments: multi-byte character sets. This guide points
out the differences between single-byte and multi-byte environments
and explains how to support and manipulate multi-byte data.

Developing guidelines for internationalization is an ongoing and diffi­
cult task. The guidelines included here present procedures that work
for creating products at Digital Equipment Corporation. If these guide­
lines cannot be adopted directly for use in your company, perhaps they
can be adapted to suit your business needs.

xix

xx

The second guide in a series, The Digital Guide to Developing
International Software is intended for anyone involved in designing
or developing software for an international market. This audience
includes product managers, software designers and engineers, doc­
umentation writers and project leaders, editors, illustrators, course
developers, human factors analysts, and quality assurance managers.
It is also of interest to the consumers of international products and
students of international business and engineering.

This guide is organized in two parts: Chapters 1 through 10 offer
general guidelines for various aspects of the internationalization
process; Appendixes A through J provide specific reference information
for creating international software. Special terms, which appear in
italic type when first introduced, are explained in the Glossary.

Writing this guide about the development of international software
was itself an international effort. Thanks to Digital's communication
system, manuscript reviews were transmitted over the network from
many countries, allowing us to bring together the most up-to-date
information about Digital's international software development efforts.
The following reviewers made substantial contributions to this process:
Dee Anderson, J iirgen Bettels, Michael Collins, Bob Dray, Pierre
Gillespie-Kerr, Rene Haentjens, Ian Johnston, Scott Jones, Yoshi
Kiyokane, Neil Keefe, Lilian Lai, Daniel Ostergren, Claude Pesquet,
Wendy Rannenberg, Barbara Russell, Yoichi Suehiro, Robert Tedford,
Bill Thomas, Clement Yeung, and Michael Yau.

Chapter 1

The Concept of Internationalization

To succeed in international markets, a software product must be
adapted, or localized, to the different languages, customs, and product
requirements of another locale. The term locale includes several
aspects of the environment in which a product is used:

• Language

• Dialect

• Keyboard layout

• Data input and display conventions

• Collating sequences

These aspects and others affect the way users in various locales inter­
act with the product. The boundaries for a locale do not necessarily
match country borders: a single country might include several different
locales; a single locale might include more than one country.

Given enough time, engineering expertise, and resources, any product
can be localized. But a product that requires reengineering or a time­
consuming translation effort will be more difficult and more costly. By
choosing wisely from among several seemingly equal design alterna­
tives, software designers can create an international product that keeps
the localization process simple.

1.1 International Software

A truly international software product is one that can be localized
easily and cost-effectively to suit a number of international markets.

The Concept of Internationalization 1

At Digital, the success of an internationalization effort is measured
according to two criteria:

• How many markets can the product serve?
• How much does it cost to localize the product to serve those mar­

kets?

The cost of localization depends not only on how many local variants
are created, but also on how easily changes can be made to the original
product. When the user interface and associated text can be translated
or modified easily, software can be localized easily. Likewise, when
software functions can be modified or extended to meet specific require­
ments of the market and culture, localizing the product becomes easier
and more cost-effective.

Digital uses these criteria to determine where a software product falls
on a scale of adaptability. At the bottom of the scale is a completely
local product that must be reengineered for international markets at
considerable cost in time and effort. At the top of the scale is a global
software product that, without modification, meets all international
needs. In between are the two types of software products for which
Digital has developed general design guidelines: localizable software
and multilingual software.

As its name suggests, localizable software minimizes the cost of local­
ization. Modular in design, this software isolates all code that must
be changed to suit other markets. As a result, core functionality need
not be recoded. Functions that are not appropriate for a market can
be eliminated, and appropriate functions can be substituted. In this
type of software, all user-visible text is separated from the source code.
Thus, only the text displayed by the user interface need be translated.
Digital's DECwrite software provides an example of a localizable soft­
ware· product (see Chapter 2). Guidelines for designing localizable
software are presented in Chapter 4.

Multilingual software allows the user to select from a number of inter­
face and functionality options. For example, a user may interact with
the software in more than one language, moving from one language to
another during program execution. Multilingual capability allows two
users of the same software on the same system to use different inter­
faces. These interface and functionality options may be bundled with
the software or ordered for installation at a later time. Digital's ALL­
IN-I software provides an example of a multilingual software product.
General guidelines for creating multilingual software, or localized
software that can become multilingual, are presented in Chapter 5.

2 The Concept of Internationalization

Whether to produce localizable software or multilingual software
depends on the needs of the user. For instance, if the application
is to be used in an office in Geneva, where different users interact
with the software in different languages, multilingual software is the
answer. Of course, making software localizable is the first step to
making it multilingual. Multilingual software is an extended form of
localizable software. Section 6.6 provides an example of localizable
software created using the DECwindows interface. Section 7.6 presents
an example of a multilingual software product based on the VMS
operating system.

In addressing the task of designing localizable or multilingual software,
Digital applies an international product model. This model enables
all groups involved in developing an international product to share a
common understanding of the product components. This conceptual
framework provides several benefits. The model separates the product
into modules, which, as we've seen, makes it easier to develop local
variants. This modular approach also reduces development costs by
reducing the need for reengineering. The model also makes ordering
and packaging of the product more flexible. Chapter 2 explains Digital's
international product model.

Digital provides various interfaces and operating systems offering
features that assist in developing international software. Chapter 6,
Chapter 7, and Chapter 8 provide information on developing interna­
tional software using Digital's DECwindows interface, VMS operating
system, and ULTRIX operating system.

Designing a software product for Asian markets requires special steps
to deal with the Asian character formats. Asian languages such as
Chinese, Korean, and Japanese require complex ideographic characters
and very large character sets. The size of the character sets ranges
from 6,000 characters for simplified Chinese, Korean, and Japanese
to more than 30,000 characters for traditional Chinese. Products
destined for Asian markets must allow for multi-byte processing since
the character set for Asian languages far exceeds the 256 characters
addressed by the single-byte character format used in the standard
ASCII computing environment of European and English-speaking
countries.

This guide discusses the internationalization of software in both single­
byte and multi-byte environments. Chapter 9 focuses on input, output,
and editing of Asian ideographic characters. Chapter 3 discusses the
different levels of natural language text processing support required
in international products. Chapter 10 describes how Digital's central

The Concept of Internationalization 3

engineering groups work with engineering groups located in other
countries in their effort to produce international software.

The appendixes of this manual provide reference information on spe­
cific topics, including Digital's Asian localization products, collating
sequences, national data formats, and symmetric programming tech­
niques.

4 The Concept of Internationalization

Chapter 2

Digital's International Product Model

The international product model used at Digital enables all groups in­
volved in internationalization to share a common understanding of the
components that make up an international product. This conceptual
framework provides a number of benefits:

• Ease of localization

Separating a product into modules makes it easier to develop local
variants: country teams can focus on only those modules that must
be adapted for their locale.

• Common terminology

The model and its components provide a common terminology for
different groups involved in creating products for the international
market.

• Metric for modular software

The model stresses the need to modularize software and serves as a
metric for proper design.

• Reduced costs

The model sep&rates the product into modules, which helps to
reduce the cost of developing product variants by reducing the need
for reengineering.

• Flexibility in packaging

The model provides for flexible ordering and packaging of the
product for worldwide delivery, which in turn helps to increase
sales.

Digital's International Product Model 5

2.1 Components in Digital's International Product Model

Digital's international product model1 consists of the following four
components:

• International base component

• User interface component

• Market-specific component
• Country-specific information component

2.1.1 The International Base Component

The international base component is the part of a product that is
sold worldwide without modification. While the international base
component is itself invariant, it can feature built-in variants that are
selected by a user, perhaps by switch selection in the case of hardware,
or by a parameter setting in the case of software. For a product in the
Asian market, this base component must support characters of at least
16 bits (2 bytes) for multi-byte processing.

The international base component contains an application's basic
functional code: the procedures responsible for processing information
and performing computations. This globally applicable code may
include user-selected variants, or may be externally conditioned by
other components to provide the variations required for a particular
locale. The code in this component can be supplemented by shared data
as long as the shared data is not going to be translated.

This component could contain:

• Executable images

• Internal data files
• Command procedures without text

1 For ease of reference, Digital often uses the letters A, B, C, and D to refer to the model's components and
calls the entire model the ABCD model.

6 Digital's International Product Model

2.1.2 The User Interface Component

The user interface component is the language and text processing
component. It is language-specific and must be localized to meet the
linguistic and cultural requirements of a specific group of users. The
user interface component typically contains the user interface code
including messages, text and language processing routines, format
specifications, online help, and documentation. When a local variation
of a software product is created, all files in this component are trans­
lated, replaced, and sometimes deleted. Additional files may also be
created. This component could contain:

• Message files

• Forms and menus

• Command procedures with text

• Data structures

The data structures can take several forms:

• Natural language text displayed by the user interface code. When
the language of the target locale is other than the language of the
original locale, this text is typically translated.

• Text used to interpret user input, such as Yes and No responses.
Such input must be recognized by the system in its translated form.

• Text used in command and programming languages.

Two examples of products that Digital currently supports with various
user interface components are shown in Table 2-1.

Table 2-1. Sample User Interface Components
Product Available User Interface Languages

DECwrite

ALL-IN-l

Chinese (traditional and simplified), Danish, Dutch,
English, Finnish, French, German, Italian, Japanese,
Korean, Norwegian, and Swedish

Chinese (traditional and simplified), Danish, Dutch,
English, Finnish, French, German, Hebrew, Icelandic,
Italian, Japanese, Korean, Norwegian, Portuguese, Spanish,
and Swedish

Digital's International Product Model 7

2.1.3 The Market-Specific Component

The market-specific component is added to meet special requirements of
a specific region or business that shares a language and set of cultural
conventions, such as the Netherlands and Dutch East Indies. The
market-specific component adds specialized functions to the interna­
tional base component, extending it without changing it.

Like the contents of the user interface component, some files in this
component may be translated, replaced, and sometimes deleted when a
local product variant is created. Additional files may also be created.

This component is most often used to solve implementation problems
unique to a particular dialect, market, or country. The creation of the
component usually involves independent design and implementation
efforts for each market, leading to significant amounts of special coding.
In some cases, a capability present in the base version of the product
must be removed for a specific local market. This requirement may
be due to an export restriction in the originating country, or to a
prohibition or custom in the local market.

The following types of information are included in this component:

• Keyboard maps

• Telecommunications controls

• Printer controls

• Natural language lexicons

2.1.4 The Country-Specific Information Component

The country-specific information component is the set of required
documentation produced to meet all the regulations for selling the
product in a specific country; This component contains no software.
This component does not include special functions or code supporting a
country's unique requirements. These functions would be included in
the market-specific component.

Examples of information included in this component are:

• License certificates

• Service and ordering information

• Warranty information

• Product descriptions

8 Digital's International Product Model

• VDE postcards (cards used in Germany for registering high­
frequency equipment with the telecommunications authority)

2.2 Applying the Model to Software Development

In the development of software products, Digital's international product
model provides a framework for modular design. Figure 2-1 illustrates
the structure of an international product developed according to this
model.

Figure 2-1. The International Product Model

DELIVERABLE PRODUCT

Country-Specific Information
Component

r- --------------------,

Market-Specific Component

User Interface Component

International Base Component

SOFTWARE PRODUCT

Figure 2-1 shows that the international base component is the foun­
dation of the software, with the user interface and market-specific
components added in layers as appropriate. The country-specific in­
formation component is a part of the product as a whole, but is not
included in the software portion of the product.

Digital's International Product Model 9

To apply the model, application developers must define:

• The contents of each component

All user-visible text should be eliminated from the international
base component and placed in the user interface component of
the international product. If there is any functionality that is
appropriate for one market only, it should be placed in the market­
specific component.

• Interfaces between components

The international product must include interfaces between the dif­
ferent components. For example, the international base component
must include interfaces to the text and data in the user interface
component, as well as interfaces to the market-specific component.

• Installation requirements

The installation procedure must allow the different components to
be installed in different combinations.

• Testing requirements

There may be special testing requirements. For example, if the
software supports multiple user interfaces, the test procedures
must allow for testing of multilingual operation. Refer to Chapter 5
for information on multilingual software.

2.2.1 Applying the Model to Asian Software

For the Asian market, multi-byte processing capabilities are needed
and should be included in the international base component, as shown
in Figure 2-2.

Since two or more bytes are required to represent a single Asian
character, this multi-byte processing capability must signal the sys­
tem software when a multi-byte Asian character is being entered
or displayed, instead of two or more ASCII or 8-bit characters (see
Chapter 9).

When you include the multi-byte processing capabilities in the inter­
national base component, the other components of the product model
remain unchanged. The user interface component for an Asian market
could contain information geared for users in Taiwan, Korea, Japan, or
the People's Republic of China (PRC). The market-specific component
would contain support features for the appropriate user interfaces. The

10 Digital's International Product Model

country-specific information component would contain any warranty,
packaging, or licensing information required specifically for release in
Asian countries.

Figure 2-2. Applying the Product Model to Asian Software

DELIVERABLE PRODUCT

Country-Specific Information
Component

r- --------------------,

Market-Specific Component

User Interface Component

International Base Component
Multi-Byte Character Support

SOFTWARE PRODUCT

2.2.2 DECwrite Software: A Sample Product

The international product model was used in the design of Digital's
DECwrite software. Available on both VMS and ULTRIX operating
systems, DECwrite is an application that allows users to create and
format documents that contain text, graphics, images, and supported
application data.

DECwrite software combines several desktop publishing capabilities:

• Word processing

• Graphics creation

Digital's International Product Model 11

• Data-driven charting

• Image integration
• Live links to supported application data

The international base component of DECwrite software consists of
the invariant base code. This code does not change, whether it is
distributed in Tokyo, Japan or Pittsburgh, Pennsylvania, USA. Because
the international base component does allow for multi-byte processing
capabilities, DECwrite software can be localized for Asian markets.
The base component contains executable images, internal data files,
and any command procedures that do not contain text.

The user interface component consists of the code that determines
the screens, messages, and online help. This component contains all
of the application's message files, all of the forms and menus, any
command procedures that do contain text, as well as sYmbols, icons,
and documentation. When a user presses the Help key, an overview of
the application is displayed on the screen along with additional topics
for which help is available. All of this information is coded in the user
interface component of the product.

The market-specific component consists of the information added to
DECwrite software to meet the special requirements of a specific
market, such as natural language lexicons and keyboard maps. The
market-specific component contains the necessary printer controls to
print DECwrite output on the appropriate printer, whether it is a
Japanese LN03 or an English LN03. '

. The country-specific information component does not contain any
software; rather it includes the product delivery document, which states
where the package is to be shipped. This component also contains the
software bill of materials shipped with· each software package and the
DECwrite software product description, as well as the warranty and
licensing information.

2.2.3 The Independent Aspects of International Software

In designing localizable and potentially multilingual software products,
it is important to avoid coupling one localizable feature with another.
For example, Digital does not assume that a French user interface
implies that the French layout keyboard will be used, or that the user
will want the date and time formats that are preferred in France, or

12 Digital's International Product Model

even that the French user is actually located in France. Each of the
following aspects of a software product should be treated independently:

• Language
• Data formats
• Keyboard mapping

• Conversion functions

• Character sets
• User interface

• Collating sequences

To achieve this flexibilitY1 developers should use a table-driven design~

with externally modifiable control and text. It is easier to couple
components after design to meet packaging and support goals than it is
to redesign software that has made invalid coupling assumptions in the
first place.

Figure 2-3 shows an international product that uses two market­
specific components. Depending on the language, countrY1 and market
requirements of the locales where the international product will he
sold1the product may use any number of market-specific components,
or none at all.

Figure 2-3. International Software Model

Functional
Interfaces

Market-Specific
Component (1)

International
Base

Component

Market-Specific
Component (2)

Data
Interfaces

-

-
User Interface

Component

Digital's International Product Model, 13

2.3 The Importance of Market-Specific Components

At Digital, decisions about what to include in the market-specific
component rather than the international base component are made
at the beginning of the design phase. Market-specific components are
generally used to solve three types of implementation problems:

1. Problems related to natural language

User interface text sometimes requires slight modifications to
reflect differences between the dialects of a single language. For ex­
ample, differences between French, Canadian French, and Belgian
French might require modifications to the French version of a prod­
uct before it can be sold in Canada or Belgium. For a localizable
software product, the base French version of the product could
be modified by market-specific components to produce Canadian
and Belgian versions. For a multilingual software product, using
a market-specific component in this way is not always the best
solution. See Section 5.1 for details.

Languages such as Chinese, Japanese, and Korean are charac­
terized by complex ideographic fonts and large character sets
presenting different implementation problems. Because these
languages are all based on Chinese ideograms, a common archi­
tecture will address all of the Asian market requirements. Even
though the use of Chinese ideograms varies a great deal in the
three languages, certain rules generally apply to the ideograms
themselves:

Root radicals are combined with other characters and strokes to
form complex characters

There are no uppercase or lowercase characters

Blank spaces are not used to delineate words
2. Problems related to market requirements

The problems addressed in the market-specific component often
stem from the special requirements of a particular market. For
example, the market for CAD/CAM products in Europe or Asia has
established practices and preferences that must be supported by
any product that is to be competitive in that market.

14 Digital's International Product Model

Linguistic aids for local languages provide another example. The
following features are often located in the market-specific compo­
nent:

Spell-checking

Hyphenation and word wrapping

Grammar and style analysis

Voice recognition

Speech synthesis

The market-specific component for a compound document editor,
for example, can provide spell-checking tools and hyphenation
algorithms in the language of the target market.

3. Problems related to country requirements

Because legal requirements and accounting practices vary from
country to country, a product may need to be modified to conform
to the regulations of the country in which it will be sold. In this
case, local field support groups in other countries can report these
requirements to the corporate engineering groups, who can provide
the facilities that will allow future additions to local versions of the
product.

Country-specific requirements affect primarily

Financial and accounting functions

Communications

Security

Legal requirements might also necessitate the omission of certain
kinds of information from a product. For example, the United
States Department of State requires licenses for the export of
software that contains certain encryption algorithms or other
security provisions. Such encryption functions should be placed in
market-specific components so that they can be easily removed from
the product.

Digital's International Product Model 15

I

I
I

I
I

I

I
I

I
I

I

I

I

I

I

I

I

I

I

I
I

I
I

I
I

I

I

I

I

I

I
I

I
I

I
I

I

I

I

Chapter 3

International Text Processing

Different levels of natural language text processing support are re­
quired depending on the type of application being designed. A tradi­
tional data processing application may require only one monospaced
font and support for the input· of simple one-dimensional text strings,
such as names, addresses, and phone numbers. The application may
use this text to annotate forms and reports.

Similarly, a graphical application such as a CAD/CAM system may
only need to support input of simple text and annotation of graphical
diagrams with that text. Basic word processors must support a more
complicated level of natural langu'age text processing. Electronic
publishing and language analysis systems must provide full text
processing support, supplying many fonts, sophisticated typeset-quality
output, formatters, linguistic aids, and so on.

This chapter provides background information on the character sets
and collating sequences used to support the various languages.

3.1 Character Sets

There are many different character sets in existence. Normally, a
character set covers only one language or group of languages, such as
Arabic or the languages based on the Latin alphabet. To date, there is
no universally accepted character set that holds all the characters used
in all languages.

International Text Processing 17

The following list gives brief descriptions of the most widely used
character sets.

• ASCII (American Standard Code for Information Interchange)
character set

The ASCII character set uses seven bits to code a character. It
includes the standard 26 letters of the English alphabet but none of
the national characters used by non-English-speaking countries.

• NRC (National Replacement Character) Set

A National Replacement Character set is a 7-bit character set
that is built on the national-use rules of ISO Standard 646. This
standard specifies a basic character set that is almost the same as
ASCII, but allows the less commonly used symbols, such as [, @,

and \ to be replaced with characters used by non-English-speaking
countries. Different countries use different variants of the basic
character set. For example, Germany replaces \ with 0, while
France replaces the same character with r;.

• DEC MCS (Digital's Multinational Character Set)

DEC MCS is an 8-bit character set. It includes most of the charac­
ters required by Western European languages. However, it does not
include the additional characters used by Iceland, or any characters
not based on the Latin alphabet.

• ISO (International Organization for Standardization) Latin alpha­
bet character sets

The ISO Latin-1 character set was developed by the International
Organization for Standardization as the standard character set
for Western European languages. It will eventually supersede
DEC MCS. Other ISO character sets cover European languages
that are also based on the Latin alphabet, but use characters not
included in ISO Latin-I. They cover Eastern Europe (ISO 8859-2),
Southern Europe (ISO 8859-3), the Northern European Countries
(ISO 8859-4), and Turkey (ISO 8859-9).

• Arabic character sets

There are a number of Arabic character sets, some of which use 7
bits per character and some of which use 8 bits. The most common
Arabic sets are ASMO-449 and ASMO-662 (defined by the Arabic
Standards and Metrology Organization) and ECMA-114 (defined by
the European Computer Manufacturers Association). ISO Latin­
Arabic (ISO 8859-6 and ECMA 114) is the standard character set
for mixed Latin and Arabic text.

18 International Text Processing

For computerized text processing, 8-bit coding is adequate, but the
font and formatting requirements are unique. Each character has
four different shapes depending on its position within a word.

• Hebrew character sets

The Hebrew language is written and read from right to left, except
for numbers, which are written from left to right. The Hebrew
alphabet consists of 27 letters. Numbers in Hebrew are written as
Arabic numerals (as in English). Hebrew is a single-case language;
that is, all characters are in one case and cannot be changed.

Although Hebrew is a right-to-left language, Hebrew documents
usually contain some left-to-right portions. The simplest case would
be a number included in a Hebrew sentence. More complicated
cases might be quotations from a left-to-right language or even a
number of left-to-right paragraphs embedded within the document.

All Hebrew character sets have their own collating sequences. In
general, the Latin portion is collated according to the rules of the
parent character set. The Hebrew portion is collated in order of the
numeric value of the character.

Three Hebrew character sets are currently in use:

DEC Hebrew 7-bit character set

The DEC Hebrew 7-bit character set, based on ASCII, was cre­
ated by replacing character positions 96-122 with the Hebrew
alphabet. This character set is equivalent to Israeli Standards
Institute Standard 960. The character set has a DEC prefix
because Digital standardized it before it became internationally
standardized.

DEC Hebrew 8-bit character set

The DEC Hebrew 8-bit character set is based on DEC MCS; it
was created by removing characters from positions 192-223 and
251-256 and placing the Hebrew alphabet in positions 224-250.

At Digital, as a result of a migration to the ISO Latin-Hebrew
character set, new applications and DECwindows environments
do not support the DEC Hebrew 8-bit character set. Only
traditional applications that need to operate in both character
cell-oriented and DECwindows environments require DEC
Hebrew 8-bit and ISO Latin-Hebrew support.

International Text Processing 19

ISO Latin-Hebrew

The ISO Latin-Hebrew character set is a member of the family
of ISO 8-bit character sets; some characters were removed or
relocated, and Hebrew characters were placed in positions 224­
250. This character set is defined in ISO 8859-8 and Standard
SIl 1311 of the Israeli Standards Institute.

• Greek character sets

For the monotoniko form of writing, now widely used in Greece and
Cyprus, Digital has defined DEC-Greek, an 8-bit character coding
set. Since then, an ISO Latin-Greek character set has been defined
(ISO 8859-7) and has been taken over as standard by the European
Computer Manufacturer's Association (ECMA) and the Hellenic
Organization for Standardization (ELOT). The polytonic form of
writing requires more than 8 bits for coding all characters; these
characters will most probably be included in the future ISO 10646.

• Cyrillic character sets

Digital is evaluating the feasibility of supporting the ISO Latin­
Cyrillic character set, ISO 8859-5.

• Ideographic character sets

Asian languages such as Japanese, Chinese, and Korean use
ideographic characters. Ideographic characters symbolize a specific
thought or idea without actually expressing the name of the thing
they represent. They generally consist of many elements, some
contain over 30 strokes of the pen or brush.

Because so many characters must be represented in these lan­
guages, a 2-byte character set is normally used.

People's Republic of China

The People's Republic of China (PRC) National Standard Code
of Chinese Graphic Character Set for Information Interchange
(GB2312-80) is a 2-byte character set standard that specifies
7,445 characters and symbols, of which 6,763 are Chinese
characters (2,435 are simplified Chinese characters). Over
14,000 additional characters have also been defined, but not yet
published.

Taiwan

The existing Taiwan Standard Interchange Code for generally
used Chinese Characters CNS 11643 (in Taiwan) has 141,376
possible characters, which is more than the 17,672 available in

20 International Text Processing

the Digital mixed]-byte/2-byte~encoding; thus, 4-byte encoding
for the additional characters is Iilrovid.ecL

Kore'a

The Korean Ind.ustrial Standard. (KS C' 56:01-1981) C'():ttsists ()f
over 8,224 characters and symbor]s;.< Th,ere are 7,238 ideographic
characters, defined" consisti.ng of 2,350 Hangul CKo.rean) and
4,888, Ranja (Korean Chinese)). Korean Hangul consists: of 10'
vowe'1 and 14 consonant symbolS' that acconnt for 40 phonetic
variatl()ns. Hangul characters are clusters of symbols that
define: the pronunciation ()f tl'te' duster;. and are modeled after
Chinese characters.

Ja]:lan

The Japan Industrial Standard (JIS} X0208 Levels: 1 and II
Kanji character set defi:nes fi,S17 characters and symbolS',. of
whieh 6,353 are Kanji characters and 524 are' Kana (Japanese
phonetic characters~ Ie'tters and symbols., At the end of 1988,
7,000 additional Kanj.i characters were' also: announced.
Thailand

The Thailand Inal:IstriaI Standard TIS 620:.2529 (198B,) defines
8'7 characters" 69 ofwhich are Thai letters; (()r building Thai
characters:.

TaJ)Ie 3~1 summarizes the ideographic character sets, and their stan­
dards.

Ts'bfe 3-1'.< Asian Character Set Standa:rds Summary
Ideographic

Country Staudard Characters Total Characters

PRe

Korea

Jap,arr

Thailand

G:823·12·8@

eNS 11643
SIGaCC-1986

KS C 5601-1Sl87

JIS:, X0208

TIS 620~2529 (l986~

6',7'63

13,051

7,238

6,353

N/A

7,445

13,735

8,224

6,877

87

Currently" m:ational and international standards committees are work­
ing together to produce a single,. multi·byte code that wiH contain all
characters used :in all languages,. Some 90,000 eharacters have already

been identified. These include the characters for the ideographic lan­
guages and the sets of special symbols for technical and publishing
use. In order to represent all of these characters, a code of at least 3
bytes (24 bits) will be needed. Digital is contributing to the different
standards committees, with the goal of adopting this universal code.

3.2 Guidelines for Coding Multilingual Data

Digital's architectural foundation for the coding of multilingual data
streams is the Digital Data Interchange Syntax (DDIS). DDIS is
Digital's internal version of the ISO Abstract Syntax Notation One
(ASN.I), which provides a means for Type-Length-Value (TLV) encoding
of structured data. DDIS is a collection of notation and encoding rules
for data, with a standard data type notation (analogous to C structure
declaration), a standard data value notation (analogous to a C initial­
ization statement), and standard data value encoding rules (analogous
to CPU data representation). An author of a standard based on DDIS
uses the type notation to define data types, and uses the value notation
to provide examples. Application developers use the DDIS access rou­
tines: create-and-put routines to store data, and open-and-get routines
to read data.

The Digital Document Interchange Format (DDIF) is a syntax based
on DDIS that serves as a document interchange format and conversion
hub that is application- and system-independent. DDIF can express
most known document semantics and combinations of text, ~aphics,
images, and data.

DDIF data access routines call DDIS access routines to read and write
compound documents. The access routines provide for:

• Separating device control instructions for line feeds, carriage
returns, backspacing, and tabs from character data. This rule helps
accommodate Hebrew, Arabic, and Asian requirements.

• Identifying a character set from a large and growing set of stan­
dards specifying I-byte and 2-byte character sets and the forthcom­
ing ISO multiple-octet character set.

• Identifying language.

• Identifying fonts.
• Separately specifying presentation attributes, including writing

direction and emphasis.

22 International Text Processing

Guidelines

At Digital, the following guidelines are used to standardize the coding
of multilingual data streams.

• Build ISO Latin-l character set support into all new applications.

• Migrate existing applications that support DEC MCS toward ISO
Latin-I.

• Accept ISO Latin-l characters in data, including string literals in
programming and command languages.

• Support either the ISO Latin-l character set or the DEC MCS if
migration to ISO Latin-l cannot be considered.

This support means accepting ISO Latin-lor DEC MCS alphabetic
characters in identifiers such as names of files, documents, folders,
fields, records, variables, and procedures.

Command and programming languages cannot be expected to meet
this requirement unless the international or national standard
defining the language also reflects this requirement. Languages
can be designed so that the support required for this feature is
minimal.

• If the product is destined for the Asian market, provide interim
support for the Digital mixed single-byte and multi-byte text
data stream, which supports ideographic characters for Japanese,
Chinese, and Korean (requiring 2 bytes) and also includes the 7-bit
ASCII set. Digital's terminals and printers use this mixed data
stream for multi-byte character sets.

• Use DDIS and DDIF for encoding simple and complex structured
text. This practice allows the language, character set, font, writing
direction and other presentation attributes to be identified inde­
pendently for each unit of text, even to the level of single character
units. Applications should be able to accept input and produce
output in ISO Latin-lor DEC MCS if they are not operating in a
DECwindows environment. But applications should do conversions
and internal processing in ISO Latin-l since DDIS does not support
DEC MCS.

• Use generalized table-driven routines for all text conversions
and comparisons. Allow for the recognition of character set and
selection of appropriate conversion function and collating sequence
tables based on DDIF and DDIS encoding.

• Select linguistic aids such as spell-checking or hyphenation for
formatting based on the language attribute of DDIF segments.

International Text Processing 23

• Use standard converters to transform text to and from external
and internal text processing environments. For example, transform
input text from the 7-bit NRC environment used in France to
ISO Latin-l for internal processing; transform it back to the NRC
environment for display.

• Identify character set, language, writing direction, and font in­
dependently. DDIF includes text attributes that provide this
information for each text segment, which can be as small as a
single character of information.

• Provide natural language-sensitive editors that recognize the mixed
input requirements of multilingual environments.

• Use the recommended workarounds listed below for the alphabet­
ical sorting problems until databases and indexed files support
customized collating.

Do not make sorting dependent on the order of indexed keys in
Indexed Sequential Access Method (lSAM) files or on database
products that do not allow customized collation. Sort or select
the keys in the application using National Character Set (NCS)
routines controlled by collating sequence or an equivalent
algorithm for comparison.
Add functions that can sort Asian text in a market-specific
component.
Construct an invisible key from an artificial character set that
has a binary value order yielding the desired collating sequence.
On input, transform the original ISO Latin-lor DEC MCS key
into this artificial key used as the Record Management Screen
(RMS) or relational database (Rdb) key. On output, transform
the artificial key back to the original key. If storage space
is not a problem, the original key can also be stored in the
file or database relation. The transformations to and from
the artificial key should be table-driven so that they can be
customized.

• Remove diacritical marks and convert characters to uppercase and
lowercase. All conversion techniques should be table-driven and
not computed by formula as was frequently done in 7-bit ASCII
processing. In the VMS environment, Digital recommends NCS
routines with conversion function tables for this purpose.

• Design for a common architecture, and identify Asian symbols that
are common to Japanese, Chinese, and Korean. Designing the
product for a generic character set will facilitate migration to all
Asian markets.

24 International Text Processing

3.3 Text Processing Requireme'nts

A common text processing function could be designed to support the
requirements for each language group. For' example" formal (tra­
ditional) writing of Japanese and Chinese is vertical. Until now, it
has been acceptable to support only a left-to-right, horizontal writing
style for computerized text p'rocessing and data processing applica­
tions. However, to be successful, an electronic publishing system for
Japanese or Chinese must also support the traditional writing style.
Table 3-2 summarizes international text processing requirements .. The
devices and peripherals associated with these languages are listed in
Appendix A and Appendix B.

Table 3-2. Text Processing Requirements
Writing

Language Grou.p Direction Script
Bits!
Char

Inpu.t
Method

Western Europe
The Americas
Eastern Europe
Southern Europe
Northern Europe

Arabic

Hebrew

Japanese'

Chinese

Korean

Left to right

Right to left

Right to left

Left to right
Right to left

Left to right
Right to left

Left to right

Latin

Arabic

Hebrew

Kanji
Kana

Simplified
Traditional

Hanja
Hangul

8

8

8

16

16­
16/32

16

Direct

Direct

Direct
(LK201AT)

Phonetic
(LK201AJ)
(LK201AY)

Phonetic
Radical

Phonetic
Composed

The p'referred phonetic methods for Japanese are~ based on the 52­
character Kana phonetic alphabets.. Katakana r~'qt:lires, the' AJ key­
board; Hiragana requires the AY keyboard.

Table 3-3 lists the character set standards planned for use in Digital
hardware and software engineering development.

Table 3-3. Character Set Standards Used in Digital Engineering
No. of

Language Character Standard No. Characters
Group Set Name Number of Bits Defined

English and DEC MCS ISO 8859-1 8 94 + 96 [96]
w. Europe ISO Latin-1

E. Europe ISO Latin-2 ISO 8859-2 8 94 + [96]

S. Europe ISO Latin-3 ISO 8859-3 8 94 + [96]

N. Europe ISO Latin-4 ISO 8859-4 8 94 + [96]

Hebrew ISO Latin-Hebrew ISO 8859/8 8 94 + 58 [96]

Arabic ASMO-Arabic-8 ASMO-662 8 94 + 51 [96]
ArabiclLatin ASMO-708-85 8 94 + 51 [96]
ArabiclLatin ECMA-114 8 94 + 51 [96]
ISO Latin-Arabic ISO 8859-6 8 94 + 51 [96]

Simplified Chinese DEC Hanzi GB 2312 7/16 7,445
(PRC)

Traditional Chinese DEC Hanyu CNS 11643 7/16/32 13,735
(Taiwan)

Japanese DEC Kanji JIS X0208 7/16 6,877

Korean DEC Korean KS C 5601 7/16 8,224

26 International Text Processing

3.4 Collating Sequences

The sequence in which characters are collated is one area of soft­
ware functionality that varies among different languages. Developers
creating products for the international market need to be aware of
the different country requirements and of the need to allow for these
requirements in their products.

Whenever characters need to be sorted with respect to other characters
to produce an alphabetic or alphanumeric list, they are sorted according
to a collating sequence. The collating sequence defines the value and
position of each character relative to other characters. Characters to be
sorted include:

• Letters

• Numbers

• Punctuation characters

• Additional symbols, such as #, &, *, @

Software routines often use collating sequences as a basis for organiz­
ing characters into alphabetic or alphanumeric lists. The following are
some examples of alphanumeric lists:

• A directory listing of filenames at operating system level

• The output from a sort utility

• An index produced by a text processing application

• The lists output by a database product, such as lists of names,
addresses, or components

When designing software products that contain sorting functions,
developers need to design their products so that they are flexible
enough to allow for the use of individual country-specific collating
sequences.

To achieve this flexibility, developers should avoid hard-coding collating
sequences into the software. Instead, the software should refer to
a table containing the collating sequences. The table to which the
software refers can then be varied, depending on the country in which
the application is being used.

The National Character Set (NCS) Utility available in Digital's VMS
Version 5.0 Run-Time Library assists developers writing software that
uses collating sequences. This utility, which supports the ISO Latin-l

International Text Processing 27

',cnaraeterset, all-ows spe.cine,coUating :se.quences tQ be defined and then
:stored in anNeS libraryr (see Chapter '7).

Altho~gh the task (of sp:ecll'ying thes.equeneeinwhieh letters :should
he ovdevedwttninan :alphabetieallistseems to be straightfolW,ard and
unambig1.1Qus, :a number of facWrs can complicate thisp.roces:s:

'·NuJnevous eh:ar;aetersets can be used:; it ,can be difficult to cO,ecide
which set ()f char:aeters ,acoUatin;gr.ontine win need to handle.

• For languages based on the Latin alphabet, therema:Y be ,specific
·collatingr:equirem,ents that .are unfamiliar to Engllsn-speaking
p.eopie,snehas.:

'riO treat character varia-nisas ,equi'V":ale.nt, :such as ..~ ,em French

'Toprovidce for additional letter.s, such ,asn between n and 0 in
Sp,anish
To tre;at icnaracter -combinations as one letter, such as eh in
Spanish

Sophisticated ,and flexible processing is necessary to process multi­
national ,characters icorr,ectly.

• Number,s,punctuation, :and additional~ymools ,can he treated in a
v:arietyofways when prodneing ordered .lists. Itma;y be a require·
ment to :aUowlor ,differentw,ays of treating them if the software is
to he used in :d:ifferentapplication domains~ Forexample,a space
between char,acter.s is ignQred for .some applications hut observed
for others. If the space is ignored, the resulting list would be

D,aniels
DaSilva
Dau.xois

Howev.er, if the :sp.aee is not ignored, theresultin;g list would be

Da Silva
D:aniels
Dauxois

• Differenteountrie£ltnay treat thesameeharacter differently. For
example, the (character A is treated as ,a varianto!A in Germany
,and is sorted as equivalent to .A~However.,in Sweden, A is treated
as a distinct character and is sorted after Z.Thus, differenteoUat·
ing se.quencesmustbeused for different oountries~

-Languages nothased on the Latin alphabet have their own special
requirements for collating, which vary from language to language.
For example, with Asian languages, users must define additional
characters outside the standard character set. This means that
software must be able to collate text that contains both standard
and user-defined icharacters..

• If ,software must collate multilingual text containing words or
names from more than one language, more than one country­
sp.ecific collating .sequence must be applied to the text.

3.4..2CoUatingASCJlCharaeters

The ASCII collating sequence, which is based on the ASCII character
set, orders characters according to their numeric code value. This
method of collating characters provides unsatisfactory results where
text must be organized in alphabetical order, according to dictionary
rules. '

Each character within a character set has a unique numeric code.
The value of this numeric code depends on where the character is
positioned within the code table. For example, within the ASCII code
table, uppercase A has a decimal value of 65. Lowercase a comes later
in the table and has a decimal value of 97.

When the ASCII collating sequence is used, icharacters are collated in
the following sequence:

1. Number.s

2.. Uppercase letters

3. Lowercase letters

The ASCII character set does not contain national characters, that is,
characters with diacritical marks and additional characters, such as
lEA However, some applications that use the ASCII collating sequence
accept national characters. In this case, the national characters are
sorted at the end of the sequence.

The following list shows a series of words sorted by the VMS SORT
utility that uses the ASCII collating sequence:

Aegean
Column
ColOn
Flute
FluBpferd

International Text Processing 29

Noel
Zero
aegean
chasse
column
flu.ssig
zero
zutraglich
zero
asna
etude
ode

Note that all words that begin with lowercase letters appear after
the words that begin with uppercase letters; words that begin with
national characters are sorted after the lowercase z. To produce correct
alphabetical output, a more sophisticated method of processing should
be used.

3.4.3 Digital's Multinational Collating Sequence

For characters to be organized in a fully alphabetical list, a more
complex series of comparisons needs to be performed on the characters.

The principles by which characters are collated in the DEC
Multinational Collating Sequence (DEC MCS) are as follows:

• The alphabetic characters within DEC Multinational Collating
Sequence are viewed as being grouped into sets of characters. Each
set consists of all the variants of a basic alphabetic character. For
example, all the forms of e comprise one set. All variants of a
character have the same basic collating value.

• When alphabetic characters are collated, all members of one partic­
ular set are positioned in the same position relative to other sets.
This means that all forms of C are sorted as if they are a C relative
to other letters of the alphabet.

• Within any particular set, the variants are ordered in a specified
way. The lowercase letters are always collated by numeric code
value, and each uppercase letter immediately follows the corre­
sponding lowercase letter. For example, the character r; comes after
the lowercase c in the code table and has a higher numeric code
value. Therefore, within the set of C's, the order of the letters is c,
C, r;, and 9.

30 International Text Processing

• The characters ce, IE, fIJ, 0, d, A, ii, N form an exception to these
general rules. They are treated as separate characters, not as
variants of A, 0, or N. The characters ce, IE, fIJ,0, d, and A are
collated in that order after Z. The characters ii and N are collated
after N and before o.

DEC Multinational Collating Sequence solves many problems associ­
ated with collating multinational characters correctly. For example, if
the series of words listed in the previous section was sorted by using
the Multinational Collating Sequence, the resulting list would be as
follows:

aegean
Aegean
chasse
Colon
column
Column
etude
fliissig
FluBpferd
Flute
Noel
ode
zero
Zero
zero
zutraglich
asna

However, even with these rules, it is still not possible to provide a
single, standard collating sequence for all Western European languages.
Each country has different rules for sorting. The rules are to be used
in contexts where alphabetization is required and the user does not, or
cannot, specify the language in which the text is written.

For the Multinational Collating Sequence to be used successfully,
additional rules must be applied for different countries. For example,
the same character may need to be sorted at a different position in the
sequence, depending on the language. The character A or a is sorted
as equivalent to A or a for the German language, but for Swedish and
Finnish the character is treated as distinct from A or a, and must
appear after Z in the collating sequence.

International Text Processing 31

3.4.4 Collating Arabic Characters

Arabic is a single-case language, so the problems of collating uppercase
and lowercase characters do not occur. The following guidelines apply
to the Arabic collating sequence:

• The Arabic connecting character, the tatweel has no significance in
a word and should be excluded during collation.

• Words are first sorted in code order with the Arabic vowels charac­
ters excluded.

• Groups of words having the same consonants are then sorted in
code order including the vowel characters. .

• In the common Arabic codesets, all ligatures such as lam-alef are
represented as the character codes of their component letters so
they present no special problems for sorting.

• Further guidelines for Arabic sorting are included in the text of the
ASMO-449 character set standard.

3.4.5 Collating Hebrew Characters

Hebrew is also a single-case language, so the problems of collating
uppercase and lowercase letters do not occur. However, all three
Hebrew character sets contain both Latin and Hebrew characters. This
means that collating rules must exist for both types of characters.

Latin characters are collated according to the rules of the parent
character set. For example, Latin characters within the DEC Hebrew
7-bit set are collated according to the ASCII sequence, whereas Latin
characters within the DEC Hebrew 8-bit set are collated according to
the DEC Multinational collating sequence.

In each Hebrew character set, Hebrew characters are collated in
alphabetical order. This order is the same as their numeric code order,
since Hebrew characters are listed in alphabetical order in the different
Hebrew character sets. Hebrew characters always appear after Latin
characters in the collating sequence.

32 International Text Processing

3.4.6 Collating Ideographic Characters

Collating ideographic characters is more complex than collating Latin
characters. The Chinese Hanzi version of the VMS SORT/MERGE
utility supports three different methods of collating:

• By radicals

Radicals are the root forms of a character that give the character
its basic meaning. The radical collating sequence sorts according to
the radicals that make up the character. If there is more than one
character with the same radical, then these similar characters are
further sorted by the number of strokes that make up the character.

• By number of strokes

Characters are sorted by the number of strokes that make up the
character. If more than one character has the same number of
strokes, these characters are further sorted by radicals.

• By phonetic sequence

Characters are sorted according to the sequence in which they
appear in a phonetic alphabet. In this phonetic alphabet, the
characters are organized according to their romanized (western)
spelling.

Within the Chinese Hanyu version of VMS, which is used in Taiwan,
the situation is even more complicated, since the Hanyu SORT/MERGE
utility must handle characters with different lengths (one, two, and
four bytes).

The Japanese Kanji VMS SORT/MERGE utility supports radical and
stroke collating sequences, plus additional sequences, such as those
based on phonetic alphabets. Dictionaries give the collating value for
each Kanji character. If the user wishes to use user-defined characters,
which is a very common requirement, the user has to modify the
dictionary. To date, no systematic solution for dealing with user-defined
characters exists.

International Text Processing 33

Chapter 4

Designing Localizable Software

The primary goal in designing international software is to isolate any
functional code, text, or control that must be modified for different in­
ternational markets. The following guidelines provide specific methods
for accomplishing this separation.

Guidelines

• Design the code for flexibility by using table-driven algorithms and
modular replacement techniques.

• Separate all user-interface text, together with its position and
size control, from the code that presents it. In this way, the text
can be easily accessed for translation. Include the text used for
comparison against user input, as well as the text displayed by the
user interface.

• Use standardized coding procedures for all processing and storage
of text and data. It is best to use standardized data formats, such
as registered data types or standards developed by the following
groups:

• The American National Standards Institute (ANSI)
• The International Organization for Standardization (ISO)

• The Institute of Electrical and Electronics EItgineers (IEEE)

• The Consultative Committee of the International Telegraph and
Telephone (CCITT)

Data interchange formats based on DDIF and DDIS, which are
important parts of the Digital Compound Document Architecture
(CDA) strategy, are recommended since many converters from
DDIF to external standard formats are being developed.

Designing Localizable Software 35

• Thansfo·rm ston:~d data fram its: internal farm to a uS'e'r-viewahle
display at the latest possible time, for examp;]e·, at run time. Supply
the language-· and locale-sensitive p;atts: of the display.. This ap­
proach allows; two users on the same system to view different
versions: of the same internal data.

• Do aU processing, storage', ana interchange· in the internal encoding
format, using standardized prueessing algorithms:.

• Use standardized encoding to handle- any user-suppJ]]ed text that
will become' a part of the metadata exchanged between applica,.
tians:. Never store such metadatta in natural language text in the
interchange format,.

• Design your product so that it c'an be local!ized" packaged,: and or'"'
dered in accordance with the: international product model described
in Chapter 2.,

• Design for consistency acrogs the various operating systems, on
which distributed software wiU be used.

A user interface can be tailored t€l a locale: by adding speeiaIized data
structures that condition underlying function and user interlace: ser~

vices. Digital recommends, two such data structures, or profiles.. A
profile is a data structure that defines, parameters to localize and. oth­
erwise condition the execution of the application.. At. profile establIshes,.
selects,. or points to all locale-specific text that is required to, execute
the application.

• Application profile

The application profile is a data structure that estab~ishesvalues
for application attributes that are the same regardless of the local!e:
the application is being used in.. Some examples' are' the character
set and collating sequence for shared text databases, default display'
formats,. and default messages.

• User profile

A user profile is a data structure that, defines or selects the Focale-'
specific attributes characterizing an interactIon with the software.
The user profile can characterize an interaction with the applIcation
that does not require a human user; that is, it can describe a can
from one program or pTocess to: another (a usage interaction):.,

36 Designing Localizable: Software

Taken as a whole, an application profile and a single user profile can
define the attributes needed for a single locale-specific application;
and an application profile and a set of user profiles can describe a
multilingual, integrated, internationally distributed application. Such
distributed applications can span multilingual, multinational, and
multivendor environments. For example, an international banking
application might be designed to accept an international audience of
users as described in Table 4-1.

Table 4-1. Sample International Audience of Users
User Interface User's

User Language Country Keyboard

Data Entry French Switzerland SwisslFrench
Operator

Data Entry English USA North American
Operator

Teller German Germany German

Data Base French, English, USA North American
Administrator and German

4.1.1 Defining Attributes of Profiles

A major difficulty in defining application and user profiles is deciding
what attribute goes where, and when an attribute is allowed to change.
User requirements for an application should dictate what needs to be in
the profiles. Th~.ls, the major uses of the application must be recognized
before the profiles are defined. Many application-specific questions do
arise in defining the user requirements. Often these questions do not
have simple answers, and indicate the need for additional research.

These are some of the international usage questions that must be
answered when defining the profiles:

• Is the character set for all text data fixed application-wide, or must
it vary in order to handle the mixed multilingual requirements?

• Are the fonts available to print and display the text data encoded
by the character sets?

• Is the collating sequence considered a property of the language,
country, character set, database, or field? Is it allowed to vary only
on a database-wide basis or on an individual key-by-key basis?
Can the collating sequence in the user profile be changed by the

Designing Localizable Software 37

user? Performance characteristics of the application may determine
whether an attribute is specified in the application profile and set
only once or specified in the user profile and highly variable.

• Are date and time formats allowed to vary on a field-by-field basis
in the user interface, or are they specified once throughout an
application? What about currency and number formats? What
about applications used to convert to and from different formats
and which thus must refer to multiple definitions of collating
sequence, format, and so on?

Digital's experience in developing international products has provided
information about both the international requirements for certain
applications and the characteristics of the users of such products. From
this experience, Digital recommends developing general guidelines that
answer the following questions:

• What application-specific features are required and need to be
placed under profile control?

• What attributes should be included in the application and user
profile data structures?

• How often and when are the attributes allowed to change?

Table 4-2 lists possible attributes for user and application pro.files.

Table 4-2. Possible Application and User Profile Attributes

Language: l

Alphabet (minimal character set and fonts)

Primary writing direction1

Month/day names and abbreviations

Ordinal abbreviations (rule or table)

Spell-checking, hyphenation, other linguistic aids

Writing directionl

Common text processing function:2

1Language determines many other aspects of the locale. Because writing direction may
vary independently of language, it is convenient to have a separate attribute for writing
direction.
2Conversion functions and collating sequence tables to be used by NCS routines are
assumed here for illustration purposes.

(Table 4-2 continues on next page)

38 Designing Localizable Software

Table 4-2. Possible Application and User Profile Attributes (cont.)

Character sets and associated fonts2

Conversion functions:2

Upper/lowercase, diacritical/accent removal
between character sets (for example, between NRC
and MCS)

Collating sequence3

User interface (dialog) text and control:

Error/help/dialog/prompt/tutorial text, flow control

Artificial language/command parsing tables

Recognition logic for commands, replays, searches (depends on
language and character set)

Country: (controls some market-specific functions)

Keyboard control:
Key sequence-to-function mapping!
Driver (character set) mapping (for example, NRC
to/from MCS)

Other device control:
Print control mapping
Timeouts, other external control sequences, and so on

Time transformation:
Calendar (Gregorian or Julian) offset from "

Greenwich Mean Time
Zone name, zone abbreviation
Daylight savings time

Currency transformation: (exchange rates)

2Conversion functions and collating sequence tables to be used by NCS routines are
assumed here for illustration purposes.
3Collating sequences can have multiple definitions in a multilingual distributed applica­
tion. The collating sequence for shared data should be set only once.
4Key (or multi-key sequence) mappings to the internal meaning, or software inter­
pretation of the function. Digital's VMS and ULTRIX operating systems use special
TERMCAP files for this purpose and allow you to define a virtual keyboard.

(Table 4-2 continues on next page)

Designing Localizable Software 39

Table 4-2. Possible Application and User Profile Attributes (cont.)

Local display formats/conventions:
Currency symbol (international, local)
Negative currency indicator
Fraction separator
Three-digit group (thousands) separator
List separator
Default formats for:5

Time, date, currency, phone number, and addresses

5An application often requires multiple data formats for both input and output.

4.1.2 Implementing Profiles

Profiles can be implemented in a wide variety of ways. Digital's VAX
RALLY software supplies examples of most of them. It uses the follow­
ing techniques:

• An application profile, which is a global block of the AFILE that
defines the application, contains default data formats, collating
sequence, and other application-wide parameters.

• Defined logical names point to the keyboard mapping desired,
application-specific error and help messages.

• The command definition for the RALLY command is provided in
Command Language Definition (CLD) format.

• The product makes various database references.

The profile should be easily accessible to the software designer at run
time and at application build time for easy modification. The message
file is an acceptable place to collect this information, which may be .
employed at startup time to define logicals, open files for initializing
control, and so on.

Once an application or user profile is standardized-that is, encoded,
named, and registered-it can call out attributes such as collating
sequence by name. References to other sites, such as the library
containing all collating sequence tables for the system, provide more
detailed definition of attributes. The necessary standardization for
collating sequence and conversion function tables and name tables for
months and days began with VMS Version 5.0 and ULTRIX Version
3.0.

40 Designing Localizable Software

4.2 Developing an International User Interface

In order to localize a product effectively, the user interface presentation
services should accommodate user interface text that changes in length
and positioning when it is translated.

Text Expansion

Input text such as names and addresses may require more field space
when translated for other markets. User interface services should
provide for flexible sizing of fields through the external control of
locale-specific data. Although vertical and horizontal scrolling have
been used to manage text expansion, horizontal scrolling may not be
acceptable for all markets. Vertical scrolling, in a help window, for
example, is acceptable. Abbreviations and icons can be used when
appropriate and when tested by the target market.

Text Positioning

Text positioning should not be hard-coded. User interface presentation
services should provide for flexible, externally-controlled positioning of
labels and fields.

Depending on the user interface tools you choose, planning for extra
space initially may not be necessary. For example, DECwindows
software provides user interface widgets that can automatically adjust
for text expansion. See Chapter 6 for information on DECwindows
software.

Guidelines

At Digital, the following guidelines are used in developing user inter­
face presentation services:

• Where possible, use a form system such as Digital's DECforms
software to provide the user interface services and as much editing,
formatting, validation, and conditional field branching as possible.

• Use screen formatters that can automatically rebuild menus and
forms after translation and optimally position the expanded text.
Form editors are useful for final manual adjustments to user
interfaces. Such editors enable translators to view the text and
fields just as they will appear during use of the software.

• At run time, allow for dynamic mapping to the modifiable locale­
specific data structures stored in the user interface component.

Designing Localizable Software 41

• Plan for the text positioning changes that result from translating
the original language into many target languages. Allow space for
text to expand 100 percent in data fields and in single lines of text,
50 percent in a full screen, and 30-40 percent in text files. For
text presented in tables, leave five spaces between table columns to
provide for expansion.

• When text requires a particular format:

Allow the translator to reformat the text with a word processor.
For example, if a Help screen is right-justified, do not store
each line as a separate text string that must be justified by
hand.

Use a utility that reformats the text automatically at either
compile or run time. If a line is to be centered, the program
should center it correctly. Use relative positioning rather than
absolute positioning when possible.

Use table-driven formatting routines that do not require code
changes for localization.

Document the method used.

Give some consideration to text positioning alternatives. Don't
make the engineering groups in other countries manually
count spaces to reposition text. If you cannot avoid manual
repositioning, store the coordinates to be changed with the text,
apart from the procedural code.

• Provide a mechanism to allow for the presentation of more text
than appears in the original version. For example, allow for hori­
zontal scrolling of single lines, or a "Press any key for more" routine
for vertical scrolling.

• Ensure that the software does not depend on string length. Avoid
arbitrary restrictions on the length or positioning of output text.
Document unavoidable restrictions for translators.

• Allow the translator to easily change the order of alphabetically
arranged options. This guideline ensures that the order after
translation remains the same as the order the program expects.

4.2.1 Analyzing User Input

International software products must provide text that the application
can use to interpret user input. When an application requests input
from the user, the user's response, often a les or No, must be recognized
in the translated form.

42 Designing Localizable Software

Guidelines

The following guidelines are used at Digital in determining how user
input will be analyzed.

• Let generalized table-lookup and recognition algorithms analyze
user responses, command names, qualifier names, qualifier values,
and so forth. When a typed-in keyword, menu selection, or com­
mand is allowed, be prepared to match it under all of the following
conditions:

Exact match.

Match that ignores diacritical marks. Remove diacritical marks
before matching.

Match that ignores case. Use uppercase text.

Match that ignores diacritical marks and case. Remove diacriti­
cal marks and use uppercase text before matching.

• Do not assume that a one-character response always differentiates
between responses in different languages.

• Do not require menu options to begin with a single letter. It may
not be possible to find translations in the target language that
begin with different letters.

• Do not assume that your product will use only ISO Latin-I, or
anyone character set exclusively. Design the product to handle all
supported character sets.

• Do not assume that one byte represents one character when han­
dling user input. Asian character sets use multiple bytes to rep­
resent a character. The example below shows a line of input text
in English (one byte, ISO Latin-I character set) in response to a
computer prompt:

Enter

The next example shows a line of input text in Japanese (two bytes
per character, DEC Kanji character set) in response to a computer
prompt:

• Do not make assumptions about word delimiters when handling
user input; delimiters may not be used between words.

Designing Localizable Software 43

• Avoid using letters as mnemonics for an option. If this approach is
unavoidable, allow the translator to change mnemonics easily. For
example, if a product used df as a mnemonic in English for Delete
a file, the German version would need to use dl as the mnemonic
for Datei lOschen. Document the meaning of all mnemonics for the
translator.

• Consider enabling the use of one or more of the following techniques
to choose a menu entry:

Position the cursor or mouse pointer on the choice and click.
Choose a numbered menu choice.

Choose an indicated letter, or letters, of the menu choice.

When using letter matching, check the letter against a table of
valid commands; do not hard code it. Allow the translator to
change the letters to be selected.

4.2.2 Displaying User Output

An international product must provide the text used in all user output
displays. How you store text and later prepare it for display directly
affects the translatability of that text. Text should be stored so that it
can be modified by someone with no technical knowledge of the product
function or its supporting code. Digital recommends, for example, that
this text be entered and edited with a text editor.

In Digital applications, the text is placed in one or more of the following
places:

• DEGwindows User Interface files

• ULTRIX Message Catalogs
• Message files maintained by the VMS Message Utility

• Source files for DECforms IFDL files

• Text libraries maintained by the VMS Librarian

Syntax Differences

Message parameters may need to occur in a different order when they
are translated from English to another language. For example:

English: Found "abc" when expecting "xyz"

French: "xyz" attendu; "abc" recu

44 Designing Localizable Software

Spelling Differences

English nouns do not indicate gender (masculine or feminine). In many
languages, however, noun gender can influence the spelling of the other
words in a sentence. For example, consider the following messages:

The file is locked

The printer is locked

In English, only the noun changes; it is therefore possible to design the
output of error messages by inserting the appropriate noun into the
message at the time the message is needed.

In French, a change in the gender of the noun affects the spelling of
other words. When the preceding messages are translated into French,
the word uerrouille changes when the masculine noun is replaced with
a feminine noun.

Le fichier est verrouille

L'imprimante est verrouilIee

As this example demonstrates, an error message assembled from
parts at run time may work in English, but it may not be possible to
assemble the message in the same way in other languages.

Pluralization Differences

Developers sometimes use facilities to add an s to a word in a message
if a message parameter is not equal to one. This can cause difficulties
because many languages do not form a plural by adding an s to the
noun, as the following table shows.

In English:

oblocks deleted
1 block deleted
3 blocks deleted

In German:

oBlocke geloscht
1 Block gelOscht
3 Blocke geloscht

Messages that use English-language pluralization facilities may be
difficult or impossible to translate by the same algorithm.

Designing Localizable Software 45

Guidelines

Digital recommends the following guidelines for writing all natural
language text that the user sees on line.

Organize and structure all user output, including text for menus,
prompts, error messages, and online help in the following ways:

• Do not construct messages from text segments. This practice may
save space, but causes many difficulties in translation because
languages may have widely varying syntactic structures. This
rule may necessarily be ignored when space is at a premium, for
example, when messages are in ROM for firmware controllers.

• In general, avoid or minimize the use of parameters in messages.
For example, the following message may present difficulty in
translation because of the varying syntactic structures of tar­
geted languages and the often limited capabilities of the message
presentation services.

Expected parameter1 found parameter2

Break the message into two separate messages with one parameter
each, such as the following:

Expected: parameter1
Found: parameter2

• Do not use natural language text strings as message parameters.
Artificial language text strings, such as identifiers for files, printer
queues, and folders may be used as parameters. These strings
are not translated and do not share the syntactic properties of the
natural language message parts.

• Do not use a pluralizing feature such as the VMS Formatted ASCII
Output ($FAO) directive that adds an s to base text whenever a
parameter of the message is other than 1. Instead, explicitly test
for and provide different messages for various situations such as
equal to zero or equal to one. In VMS Version 5.2 and later, you can
use $FAO directives to produce conditionalized messages using a
single message string. See Section 7.2.3 for more information about
the VMS $FAO facility.

• Provide comments in the text to clarify the state and function of
the software at the time the text appears. This translation markup
is needed because the translator may not have the working product
to verify the state. This is especially critical for highly technical
information. See Chapter 10 for more information about translation
markup.

46 Designing Localizable Software

• Give the translator the full context of a message. Where a word
has more than one meaning, indicate which meaning is required.
For example, cabinet full may refer to a physical cabinet or a disk
structure.

4.3 Local Data Conventions

Conventions for the following types of data and data format vary widely
from country to country:

• Thousands separators

• Decimal separators

• Grouping separators

• Paragraph numbering

• Positive and negative values

• Currency

• Dates

• Time
• Telephone numbers

• Addresses
• Proper names and titles

See Appendix C and Appendix D for lists of specific data formats by
country.

Any data format used should be modifiable and independent of any
other. Do not cluster attributes based on assumptions about country
or language. For example, do not link the French currency with the
language French. French Canadians, for example, would use the
Canadian dollar. Also, individuals or corporations may deviate from
national standards or customs.

Guidelines

Digital recommends the following guidelines for writing code to format
data:

• Use a single internal format for storage and active processing,
regardless of the display or input format.

Designing Localizable Software 47

• Use the same default format for user input and display. However, a
product might allow just one output format, while accepting several
input formats. For example, a menu may show a date in the format
that is customary (for example, 15-AUG-1990), but the product may
accept dates input as 15-Aug-1990 or 1990-8-15, or may even accept
the word today.

• Make any format modifiable. Do not impose arbitrary formats.

• Do not tie the formats to any other feature.
• When separators are used in formats, they should be modifiable

independently.

• The default format for all numbers, currencies, and dates should be
modifiable by the translator or installer to suit the user's needs.

Guidelines

The following sections offer guidelines for handling specific types of
data formatting issues:

Separators

• Make the thousands separator user-definable, or design for the
following formats:

2,143,526 2'143'526
2.143.526 2143526
2143526

• Allow for the decimal separator to be user-definable, or design for
the following formats:

3.141 3 141
3,141 3 141
3

• Allow digits to be grouped in alternative ways, as follows:

100,000.00
10,0000.00

Positive and Negative Values

Positive and negative indicators differ in various countries. When
writing code for positive and negative values, observe the following
guidelines:

• The symbols + and -, when used to express a positive or negative
number, must be valid either before or after the number.

48 Designing Localizable Software

• In accounting applications, allow negative amounts to be repre­
sented as a number enclosed in parentheses.

Currency

When formatting currencies, allow

• The comma, period, colon, and currency symbol as valid se'parators

• The currency symbol to be placed before or after the numerical
value, or to be used as a decimal separator

• The currency separators to be modified independently of separators
used for other values

For example, 1,251. 76, expressed as a currency value might be BF
1.251,76.

• Currency symbol switching, and related change of space require­
ments, from one to four characters long. Examples are $, £, Ptas,
orDM.

• A space or no space between the currency symbol and the amount

For example, design for all of the following formats:

F 134,50
134,50F
134F50
Kr 25.75
F25,75

SFr 1.­
75 c
1200 Pts
25F75

An ISO standard (ISO 4217 Codes for the Representation of Currency
and Funds) establishes the formats for all international currencies, but
earlier country abbreviations are still in use. In some instances, the
European Economic Community (EEC) symbol is different from the ISO
and the local symbols.

Dates

When coding for date formats, observe the following guidelines:

• Allow alternative characters to separate the day, month, and year.
Date separators should include at least the hyphen, comma, period,
space, and slash.

• For products that display the name of a day or month with letters,
allow sufficient storage and display space to accommodate these
names in other languages. Table 4-3 shows the maximum number
of characters required for storage and display for French, German,
Dutch, Portuguese, and Greek. These can be used as typical values
for other languages.

Designing Localizable Software 49

Table 4-3. Length of Character Strings in Day and Month Name
Number of Characters

Language Longest Day Longest Month

French

German

Dutch

Portuguese

Greek

8

10

9

13

9

9

9

9

9

12

• Allow for the use of non-Gregorian calendars.

• Allow the position of each component in a date to vary, or allow the
component to be omitted. The date components are listed below:

Year

Allow two or four digits (two digits are frequently used).
Month number

Allow numbers ranging from 1 to 12.

Month name

Allow enough space for the full name of the month. Do not
assume the use of abbreviations. In French, a three-letter
abbreviation of month names results in confusion between juin
and juillet.

Ordinal number of days

Allow for the day number to be ordinal. For example:

1st 2nd (English)
1er 2me (French)
1. 2. (German)

Ordinal numbers as words

Allow for the day number as an ordinal in words. For example:

first, second (English)
premier, deuxieme (French)
den ersten, den zweiten (German)

Article

For example: the, Ie, der

50 Designing Localizable Software

European

Usage:

French

ISO Standard

ISO 8601

ISO 8601

USA

Day name

Allow for the name for each weekday:

Sunday through Saturday (English)
Dimanche through Samedi (French)
Sonntag through Samstag (German)

Day number

Allow numbers 1 through 3l.

Date separators

In date formats, various characters are used to separate the
day, month, and year. Date separators must include at least the
hyphen, comma, period, space, and slash.

Design for any of the following formats:

Date:

lundi, premier mars 1990

14/12/90

90.11.17

1990-11-17

1999-W14-5

6/27/90

March 1990

Thursday 3rd March

1.2.'90 Iceland

900102 Swedish Standard

• Allow for changeable date formats

If the product displays the date in a figures-only format, allow the
month and day fields to be reversed, so that, for example, the fifth
of December 1990, can be displayed as either 5/12/90 or 12/5/90.
Ensure that the format for entering the date can be changed to
match the display format.

• Allow for variation in punctuation, including the comma, colon,
slash, hyphen, and space. Design for the following formats:

10/7/90
10:7:1990
10 juillet, 1990
7/10/90

JulIO, 1990
1990-7-10
10 July 1990
10-7-90

Designing Localizable Software 51

Alternatively, prompt for each field of the date separately. Allow
the separators to be changed, and allow for the use of different
separators in the same date. Other possible separators are the
slash, colon, backslash, hyphen, and period.

Times

• Characters used to separate hours, minutes, and seconds values
must include at least the colon, period, and blank space. The letter
h must be valid for use between hours and minutes.

• For 24-hour notation, in the 4-digit format only, allow the use of
a separator or no separator. For example, for five o'clock in the
afternoon, permit either 17:00 or 1700.

In the following example, an asterisk is used to represent any
separator:

12-hour notation: h*mm*ss S h*mm S
24-hour notation: hh*mm*ss hh*mm

h represents numeric hours, one or two digits in 12-hour
notation, two digits in 24-hour notation

m represents minutes, two digits

s represents seconds, two digits
S represents the symbol A.M. or P.M., and is normally sepa­
rated by a space from the time

• Allow for the use of a variable separator.
• Design for arbitrary formats. For example:

9.15 am
0915
0915
9.15 pm
2115
2115

09:15
09:15:25
21:15
09h15
2:04:03.50
23.15.30,75

On their own, hundredths of seconds are normally displayed in the
form OO.nn. Keep in mind, however, that a comma may also be used
as a decimal fraction separator. Used with the other components of
time formats, hundredths of seconds follow the seconds component,
separated by a variable separator. For example, four minutes and three
and a half seconds past 2:00 may be displayed as 2:04:03.50.

52 Designing Localizable Software

Time Zones

• In German, at least four characters are needed to denote the time
zone. For example, the Central European Daylight Saving Time in
Germany is Mitteleuropaische Sommerzeit, abbreviated MESZ.

• Allow for the time zone variations to be in fractions: they are not
always an integer number of hours from Greenwich Mean Time
(GMT).

For example, Newfoundland is three and a half hours behind GMT
and Central Australia is nine and a half hours ahead of GMT.

Telephone Numbers

The format for telephone numbers varies, ranging from 5 to 21 digits
arranged in groups. Not all telephone numbers are the same length,
nor do they have the same format, even within the same country.

Telephone numbers often include special characters to separate dif­
ferent components. Also, the same number could be represented in
different ways, depending on whether it is for national or international
use.

For example:

National number: (089) 9591-2323

International number: + 49 89 9591 2323

• For international numbers, the plus sign (+) is frequently used in
Europe to indicate that a number is a country code. There can also
be a period (.) or a hyphen (-) between the domestic parts of an
international phone number.

• For national numbers, any separator can occur. It is common but
not universal to put the city code or area code in parentheses.
Slashes, dashes, and periods are common separators.

• A blank space, hyphen, period, and comma must all be valid
separators. Avoid invalidating any characters for use in a phone
number field. The dash, plus sign, asterisk, pound sign, and other
characters might be needed in some formats.

• Design for arbitrary formats. For example:

1-617-897-9111
(617) 897-5111
(1) 617 897 5111

49 89 9591 2323
1-800-DIGITAL
617-897-5111

(0734)-868711
081-337 8195
(34)-3-123456

Designing Localizable Software 53

Lexical Formats

In different countries, names and addresses are formatted using dif­
ferent conventions. For example, the order of elements in an address
differs from country to country. When writing code for these lexical
formats, observe the following guidelines:

• Allow sufficient space for different address layouts.

• Allow nonalphabetic characters, accented characters, apostrophes,
hyphens, and spaces to appear in proper names and title fields.
This practice allows for names such as de la Bassetiere, D'Agostino,
and Torres-Ferrer.

• Minimally, design for all of the following examples:

United States

Patricia L. Blickstein Jr.
Customer Service
American Computers, Inc.
654 Commercial Boulevard
Maynard, Massachusetts 01754

United Kingdom

Mr. L. M. Turner
55, High Street
Grantham
Lincolnshire, GR1 OBT
England

Germany

Ingrid Boderke
Stolbergerstrasse 90
D-2000 Hamburg 95
Germany

France

Madame Dupont Claudette
17, rue Louis Guerin
Thoue
F-38560 Le Versoud
France

54 Designing Localizable Software

[name]
[department]
[company name]
[number] [street name]
[town name] [state name] [postal code]

[title] [initials] [surname]
[number] or [house name] [street name]
[postal town]
[county], [postal code]
[country]

[name] [surname] [degrees]
[street name] [number]
[country code] [postal code] [postal town]
[country]

[title] [surname] [first name]
[number] [street]
[town]
[country code] [postal code] [postal town]
[country]

Not all postal codes are completely numeric. For-example, the U.K.
uses this form: RG2 OSU. For more examples of specific data formats,
see Appendix D.

4.4 Local Devices

Devices used to provide user input and output vary from country to
country. Therefore, international software products should be adaptable
for different devices. Device adaptation can be done in numerous ways
depending on the windowing system, the operating system device
driver support, or other interposed virtual device definition such as
that provided by a forms system.

Guidelines

Digital follows these guidelines for writing software that can be
adapted to various devices:

• Support 7-bit ASCIIINRC terminals like the VT200, where feasi­
ble within the functional requirements of the product, using the
Terminal Fallback Facility (TFF). This external-table-driven driver
can be used to convert from NRC input to DEC MCS or ISO Latin-l
for internal processing, and from DEC MCS to NRC for output.

• Use keyboard key-to-function relationships that are completely
redefinable. In other words, use a completely soft or virtual key­
board. Be aware that legends on keys may be translated too. Thus
the function may need to be moved to a different alphabetical or
nonalphabetical key.

• Remember that the software may be used with non-Digital devices
such as IBM AT, IBM PS/2, and Apple Macintosh computers and
with non-Digital terminals and printers. Each of these cases
requires special study and may require testing for things like
interface conformance and utilities for building control tables.

• Use a virtual device interface such as the one provided by Screen
Management (SMG) from the VMS Run-Time Library instead of
direct terminal input and output for character-cell terminals.

The following sections provide more specific recommendations for
localizing applications used in an international network and with
different terminals, keyboards, printers, and telecommunications
services.

Designing Localizable Software 55

Networks

An individual computer system in an international network can have
links (such as DECnet, TCPIIP, and token ring links) to other computer
systems running user interfaces in different languages. Many products,
such as Digital's DECmail and network management, display text
strings within error and status messages. A user may try to use a
French MAIL program to send a message to someone on a German
node and receive a German error message.

This type of problem can be reduced by designing network applications
to use numeric codes, instead of text strings, within network messages
and translating the codes to text on the local system.

Terminals

Digital's VT200- and VT300-series terminals are used in all countries
where Digital does business. Variants of these terminals are used
in Japan (VT282), the Middle East, Greece, and Yugoslavia, where
languages are not based on the Latin alphabet. In countries such as
China and Korea, software is used with terminals supplied by outside
vendors.

VT300 series terminals support both DEC MCS and the ISO Latin-l
character set and keyboards.

Escape Sequences

Different terminals use different device identification reports. If a prod­
uct is localized to support terminals other than the VT200 series termi­
nals, the terminal-identifYing escape sequences should also be modified.
Therefore, the recognition of, and action taken on, terminal-identifying
escape sequences should occur in the locale-specific, customizable
portions of the product.

Start and End of Area

For languages that are read from right to left, the top of the screen
is the top right, and the bottom of the screen is the bottom left. The
beginning of the line is at the right, and the end of the line is at the
left. Customers in the Arabic countries and in Israel use a variety of
terminals. Some markets use a left-to-right terminal and allow the
software to reverse the direction of text. In others, the terminal is a
right-to-left terminal, which also has a left-to-right mode for insertion
of Latin-based text and numbers. The terminal type determines the
localization required for escape sequences. However, the following
guideline always applies: Do not hard code escape sequences to position
or delete text.

56 Designing Localizable Software

See Chapter 3 for more information about languages that use the
right-to-Ieft writing direction.

Do not associate a keyboard with any specific language. International
products should be designed without making assumptions that link a
localizable feature of the software with another product feature.

Keyboards

Keyboard layouts vary throughout the world. The layout used in
the United States is called QWERTY, which refers to the first six
alphabetic keys in the upper-left corner of the keyboard. Germany uses
a QWERTZ, and France uses an AZERTY keyboard.

The various Digital LK201 keyboards differ only in the engravings
on the keys. Internally, all the keyboards work the same way. The
keyboard sends a scan code indicating which key is pressed. The scan
code is converted to a character code by software or firmware inside
the terminal or computer. For the software to recognize the keyboard,
the user must indicate the variant. The software then stores this
information.

Keyboard Selection

The user selects a keyboard from a menu of possible choices at initial
startup. The choice is recorded, and the user need not repeat the
selection at each start. However, a method of allowing the user to
reselect a keyboard should be provided.

Design Issues

When designing software that interacts with Digital keyboards, con­
sider the following keyboard characteristics:

• Keyboard usage mode

Some keys on the LK201 have three or four characters inscribed.
The selection of the appropriate character is governed by whether
the terminal is in typewriter or data processing mode. Applications
should allow for certain characters not being available, depending
on the user's configuration of the keyboard. All Level 3 and higher
terminals allow the keyboard usage mode to be changed from the
host system.

• Keyboard character set

The terminal is capable of generating characters coded in different
character sets depending on the state of the keyboard usage mode
and two other values: the National Replacement Character mode
(7-bit or 8-bit characters), and the User Preference Supplemental

Designing Localizable Software 57

(UPS) set. The combination of these three values controls which
characters may be generated by the keyboard and how they will be
coded by the terminal, as shown in the following table:

Keyboard
Usage Mode

Typewriter

Data Processing

Typewriter or
Data Processing

NRC
Mode

7-bit

7-bit

8-bit

Keyboard Character Set

NRC set based on keyboard variant

ASCII

ASCII + UPS set
DECMCS
ISO Latin-lor locale-specific set
(for example, ISO Latin-Hebrew)

Applications should recognize the keyboard character set in use so
that data is properly interpreted.

• Compose mechanisms

Digital defines two compose mechanisms that allow terminals sup­
porting DEC MCS, ISO Latin-I, or both, to produce any character
in that set, even if the character is not directly available from the
keyboard. The two methods are:

Explicit or three-key compose: Every character that is not
available on all the keyboards has one or more two-character
compose sequences associated with it. For example, the com­
pose sequence for e is 0 D or D 0. To start a three-key
compose sequence, the user presses the Compose key and the
two characters of the compose sequence. The composed charac­
ter is sent to the program. This compose method is similar for
all LK20I keyboards on systems supporting DEC MeS.

Implicit or two-key compose: On certain keyboards some keys,
such as the apostrophe, circumflex, and quotation mark are
dead keys. When the key is pressed, the character is not sent
to the program, but a compose sequence is started. If the next
character completes a valid compose sequence, the composed
character is sent. This method, which is only available with
certain keyboard languages, mirrors the actions of typewriters
in those languages.

At present, DECwindows does not support a Compose key, but uses
the Alt key and space bar for this purpose. The LK40I keyboard
has separate Alt and Compose keys.

58 Designing Localizable Software

• Gold keys

Digital produces eight national versions of the LK201-Bx gold key
keyboard, seven versions of the LK201-Px, and one version of the
LK201-Fx keyboard.

• Shift lock and capitals lock

French and Italian versions of the LK201 keyboard have the
numeric characters in the shifted position and alphabetic or other
characters in the unshifted position. Users with these systems
expect the lock key to produce the same character as the shift key.
In other systems the lock key is expected to act as a capitals lock
and only operate on the alphabetic characters.

• Kana lock

On the Japanese version of the LK201 keyboard, the alphabet
keys have both Latin and Kana characters (Japanese phonetic
characters) inscribed. The Compose key and the compose indicator
are labeled "Kana" (in Japanese). Pressing the Kana key puts the
terminal in Kana lock mode and causes the Kana indicator light
to go on. The terminal is then ready to produce one-byte Kana
characters.

Telecommunications Devices

Telecommunications is highly regulated in the international market. If
a software product controls a modem or interfaces with public telecom­
munications lines, specific national regulations apply. Many products
require certification by the various telecommunications authorities.
Certification of the complete product, including both the hardware and
the software that drives it, is usually required. Both hardware and
software must be tested for compliance with internal standards before
any attempt is made to have a system certified.

4.5 Programming and Command Languages

The majority of programming languages, although derived from
English, are established artificial languages and are not localized to
reflect other natural languages. ·The few languages that are localized,
such as some variants of BASIC, LOGO, PASCAL, and COBOL, tend to
translate keywords only, leaving the syntactic structure constant.

Designing Localizable Software 59

A command language, however, is recognized across the industry as a
special case. When designing a command language for an application or
an operating system, do not rule out a possible translation. The more
the language resembles a natural language, the more steps should be
taken to allow for an accurate translation.

For example, a database interrogation language based on natural use of
English should be designed so that the verb-object order can be altered
for another language.

For example, in English:

Find all parts with cost greater than $20

In German:

Finde alle Teile, die mehr als $20 kosten
Find all parts that more than $20 cost

Both the verb and object change position. The sentence structure
changes when the sentence is translated and the various concepts are
reordered.

As international character sets are defined, language standards organi­
zations are beginning to adopt them. Software developers should plan
to migrate to systems that can handle these character sets.

Artificial language processors should provide a flexible table-driven syn­
tactic and semantic analysis. Because such languages are standardized
and because of the training and investment in their use, translation of
artificial language keywords is not often necessary. However, a good
design should allow for this possibility.

Guidelines

Digital observes the following guidelines in developing artificial lan­
guage processors:

• Command languages, programming languages, and expressions
such as arithmetic expressions of a spreadsheet, should be compiled
or interpreted by generalized, table-driven lexical scanners and
parsers. These techniques should allow:

Substitution of translated keywords and function or procedure
identifiers

Substitution of operator symbols, since some special characters
may not be available in local keyboard layouts

60 Designing Localizable Software

Full support of DEC MCS or ISO Latin-l characters in key­
words and identifiers

Full support of all DEC MCS characters in string literals

Alternate formats for numeric literals and date/time literals

• Where the language provides string processing semantics, do any
conversions and comparisons using routines controlled by collating
sequence tables, or by equivalent algorithms. For example, the
record selection expression of a database query language might
provide selection based on a string value range for a particular field
in a particular relation. Such a record selection expression might
state, "retrieve all records between string-literal-l and string­
literal-2" and "ignore underscores, hyphen-minus, and blank spaces
in comparisons." The table-driven NCS routines or equivalent
algorithms should be used to provide such locally correct semantics.

• Where the language processor or its supporting utilities provide
a list of named objects, such as a list of all variables used in the
program, follow the guidelines for sorting lists of names provided in
Section 4.2.2.

• Free-form input from the user must also be translatable. Follow
the guidelines presented in Section 4.2.1.

4.6 Localizing Source Code: An Example

The following example shows how to use Digital's Command Language
Interface Utilities to create a program for an international product.
Listed is a three-step process by which a program can be revised to suit
the international market:

1. Remove embedded user-visible text.

2. Allow command table definition at run time.

3. Allow message file definition at run time.

4.6.1 Sample Program Before Internationalization

The program shown in Example 4-1 is written in VAX-C and called
EXAMPLE.C. It is important to note that this example describes
one approach and should not be construed as a recommendation for
coding techniques. The command definition file, COMMANDS.CLD in
Example 4-2, contains the definitions of the verbs send, search, and
exit. Each verb invokes a routine in the sample program EXAMPLE.C.

Designing Localizable Software 61

Example 4-1. EXAMPLE.C

#include stdio /*** VAXC System definitions */
#include descrip
#include climsgdef

globalvalue commandtable; /*** external value assigned by SET COMMAND*/

unsigned int cli$dclparse(), cli$dispatch(), /*** External routines */
cli$get_value(), cli$present(), lib$get_input(), SYS$EXIT();

$DESCRIPTOR(prompt, "command>"); /*** Static String Descriptor setups*/
$DESCRIPTOR(edit, "edit");
$DESCRIPTOR(filespec, "filespec");
$DESCRIPTOR(search_string ,"search_string");

#define $DYNAMIC_D(name) struct dsc$descriptor_d name = \
{ 0, DSCK_DTYPE_T, DSCK_CLASS_D, NULL };

$DYNAMIC_D (file_value);
$DYNAMIC_D (search_value); /*** Dynamic String Descriptor setups. */

int sendcommand() /*** Action routine for SEND */
{

printf(" send command\n");

if (cli$present(&edit) & 1)
printf(" /edit is present\n");

if (cli$present(&filespec) & 1)
{

cli$get value(&filespec, &file value);
printf(~ filespec = %*.s\n", file value.dsc$w length,

file_~alue.dsc$a_pointer);

search command\n");

}

int searchcommand()
{

printf("

/*** Action routine for SEARCH */

if (cli$present(&search string) & 1)
{

cli$get value(&search string, &search value);
printf(~ search string = %*.s\n", s~arch_value.dsc$w_length,

search_value.dsc$a_pointer);

}

int exitcommand()
{

SYS$EXIT (l) ;

}

main()
{

for (;;)

62 Designing Localizable Software

/*** Action routine for EXIT */

/*** Main entry point */

/*** loop until user types EXIT */

(Example 4-1 continues on next page)

Example 4-1 (Cont.). EXAMPLE.C

/*** do another command */

break;
else

cli$dispatch () ;

{

if (! (cli$dcl_parse (0, commandtable, lib$get_input,
lib$get_input, &prompt) & 1))

/*** del_parse failed, so quit */

Example 4-2. COMMANDS.CLD

Module CommandTable

Define verb send
routine sendcommand
parameter pI, label filespec
qualifier edit

define verb search
routine searchcommand
parameter pI, label search_string

define verb exit
routine exitcommand

The following DCL commands build the sample program, EXAMPLE.C.

$ cc example
$ set command commands.cld /obj
$ link example,commands,sys$input/opt
sys$share:vaxcrtl.exe/shareAZ

/notrace

The commands to execute the EXAMPLE.EXE command file are shown
in boldface type in the following example.

$ run EXAMPLE
Command> search

search command
Command> search filename

search command
search string = FILENAME

Command> send/edit filename
send command

/edit is present.
filespec = FILENAME
Command> exit

Designing Localizable Software 63

4.6.2 Removing Embedded User-Visible Text

It would be difficult for a localization team to translate this program,
as written, to make it a local language version. Ideally, the translation
team should need only to translate a set of text strings in a separate
file, not to recompile source code.

Use the following procedure to remove embedded text strings:

1. Search the source code for printfl statements to find lines that
contain text.

2. Move the text associated with the printf statements to a message
file.

3. Replace printf statements with calls to lib$sys_getmsg to get the
text, then print out this text.

Removing One Text String

Here is the original print command:

printf(nsend command\nn);

To remove this line from the source code, create a new message in a
message file:

sendcmd < send command >
! Output by the search command to show current routine

The old source code would then be modified to look like this:

text_only = 1;
lib$sys getmsg(&msg sendcmd ,0, &message value, &text only
printf(-;;-%*.s\nn, mes;age value.dsc$w length, -

message_value.dsc$a_pointer);

The call to lib$sys~etmsg extracts the text associated with the
sendcmd message, and places it into the string message_value.
The printf statement then prints out the new string. The text_only
variable is used so that lib$sys_$getmsg retrieves only the message
text and ignores items such as the facility name and severity level.

Example 4-3 shows the complete file MESSAGE.MSG, which replaces
all printf lines that appear in EXAMPLE.C.

1 Lowercase C terms appear in boldface type in the text of this chapter.

64 Designing Localizable Software

Example 4-3. MESSAGE.MSG File Contents

.Facility example,l/prefix=msg_

. Ident 'Version xl.O'

. Severity informational

sendcmd < send command >
! Output by the send command to show current routine

editpresent </edit is present. >
! Output by the send command to indicate that the
! edit qualifier was given on the command line
sendfile <filespec = !AS >
! Output by the send command to show
! the value of the filespec parameter on the command line
! The !AS will be replaced by the actual run-time value.

searchcmd < search command >
! Output by the send command to show current routine

search_string < search string = !AS >
! Output by the search command to show the value of
! the search_string parameter in the command line.
! The !AS will be replaced by the actual run-time value .

. end

Using LIB$SIGNAL

Another approach would be to use LIB$SIGNAL to signal the sendcmd
message:

LIB$SIGNAL(msg_sendcmd);

This would generate a VMS signal that looks like this:

%EXAMPLE-I-SENDCMD, , send command '

In a real product LIB$SIGNAL would likely be the desirable means of
signaling the user.

Including String Descriptors in the Signaled Text

The following example shows how to place a string descriptor into a
string that is fetched from the message file. The sendfile message was
defined with a !AS in the text of the message. This FAO parameter
tells VMS that a string descriptor will be inserted here.

cli$get_value(&filespec, &file_value);
lib$sys getmsg(&msg sendfile , 0, &file value, &text only);
lib$sys=fao(&sendflle_txt, 0, &full_sendfile_txt, &flle_value);
printf(" %*.s\n", full file value.dsc$w length,

- full file_value.dsc$a_pointer);

Designing Localizable Software 65

In this section of code, the user's filename is stored in file_value. The
message text, with FAD directive is stored in sendfile_txt. LIB$SYS_
FAD then parses file_value into the message text, and copies this new
string into full_sendfile_txt. This last string can then be printed as
before. The output from this example is identical to the output in the
first example, but now the internationalization team need only change
the message file, not the source code.

Removing Remaining Text Strings

The source code contains four additional text strings that might need
translation:

• edit

• filespec

• search_string

• Command

However, only the last string is ever seen by the user, and should thus
be translated. In fact, translating the first three strings would break
the program, because they provide links between the parameters and
qualifiers specified in the .CLD file and the program itself.

To remove Command, add a new message to MESSAGES.MSG:

prompt "Command>"
! string used as the command prompt

This string is retrieved as above.

Another DCL statement is now needed to build the new
EXAMPLE.EXE, as shown.

$ cc example
$ set command commands.cld /obj
$ message messages /obj
$ link example,commands,sys$input/opt /notrace
sys$share:vaxcrtl.exe/shareAZ
$

The program output is the same as before; the only difference is in the
internal structure of the program.

66 Designing Localizable Software

4.6.3 Allowing Message File Definition at Run Time

Example 4-4 shows how the program's messages can be changed
without changing the source code; however, relinking the program is
still required. The original .EXE file can be used if a logical name is
used to bind the program to an external shareable image of message
text. It is sometimes useful to create a set of detailed messages for new
system users and a set of more concise messages for users familiar with
the system. Example 4-4 shows the detailed messages.

Example 4-4. LONGMESSAGES.MSG File Contents

!+
! The file contains the message for the "example" program.
!--
.Facility example,l/prefix=msg_
. Ident 'Version xl.O'
. Severity informational

prompt "I await your command> "
string used as the command prompt

sendcmd < I am performing the send command routine !/>
! Output by the send command to show current routine
! The !/ inserts a new line

editpresent < The Edit qualifier was provided.!/
Edit does nothing.>

Output by the send command to indicate that the
edit qualifier was given on the command line
you can not split messages across lines

sendfile < !AS should be sent, but will not be. >
! Output by the send command to show
! the value of the filespec parameter on the command line
! The !AS will be replaced by the actual run-time value.

searchcmd < I am performing the search command routine !/ >
! Output by the send command to show current routine
! The !/ inserts a new line

searchstring < I am too tired to look for !AS >
Output by the search command to show the value of

! the search_string parameter in the command line.
! The !AS will be replaced by the actual run-time value .

. end

Designing Localizable Software 67

The additional DCL commands that are required to build the example
are:

$ cc example
$ set command commands.cld /obj
$ message messages

/file_name=example$msg - ! Logical name to a shareable image
/object=messages.obj ! Note that this command is only done once

$ message messages /nosymbols /obj=short msg
$ message long messages /nosymbols /obj=long msg
$ link/shareable-long msg.obj ! Link into sha~eable image
$ link/shareable short msg.obj ! Link into shareable image
$ link example,commands,sys$input/opt /notrace
sys$share:vaxcrtl.exe/shareAZ
$

The resulting image contains the program, its command table, and
message pointers. However, the message text is external to the pro­
gram.

Sample Session

EXAMPLE$MSG is the shareable image that contains the message
text. Before running the program, you must define the logical name
EXAMPLE$MSG to point to the appropriate shareable image of
message text. In the sample terminal session that follows, the DCL
DEFINE command causes messages from the long_messages message
file to be selected as the user-visible text.

$ define EXAMPLE$MSG example$directory:lonq_msq
$ run example
I await your command> search
I am performing the search command routine
I await your command> search file_name
I am performing the search command routine
I am too tired to look for file name
I await your command> send/edit file_name
I am performing the send command routine
The Edit qualifier was provided.
Edit does nothing.
file_name should be sent, but will not be.
I await your command> exit
$

Thus, shareable images that contain message text can be switched by a
logical name switch.

68 Designing Localizable Software

4.6.4 Changing the Command Table Definition

The translation team must also modify the commands that activate
the program. This requires an added level of indirection in the way
the program references the information in the .CLD file. To change the
command table definitions:

1. Write a new .CLD file.

2. Add a level of indirection to a specified qualifier.

3. Define a logical name that points to the correct shareable image of
message text.

4. Rebuild the program.

Writing a New .CLD File

In Example 4-5, the verbs search, send, and exit are replaced by look_
for, throw, and bye, respectively. In Example 4-1, edit is the qualifier
for send and is embedded in the code at line 20. To switch the qualifier
edit to change, rewrite the .CLD file and the program, substituting the
word change where edit originally appeared. A means for switching
from the qualifier edit to change without modifying EXAMPLE.C is
needed. . .

Adding a Level of Indirection

Add a level of indirection to a qualifier specified in a .CLD file by using
the label = construct. The old .CLD file is:

qualifier edit

This is now written as:

qualifier change, label = edit

The program can then search for the qualifier with the label edit
without worrying about the qualifier's actual name.

Example 4-5 shows the NEW_COMMANDS.CLD file with new logical
name definitions.

Designing Localizable Software 69

Inotrace

Example 4-5. NEW_COMMANDS.CLD File Contents

!+
! File: newcommands.cld

The Command Language Definition file
!-
Module command table

Define verb throw ! replaces send
routine send command
parameter pI, $ filespec
qualifier change, label = edit

Define verb look_for ! replaces search
routine searchcommand
parameter pI, label = search_string

Define verb bye ! replaces exit
routine exit command

The DCL commands needed to rebuild EXAMPLE.EXE are:

$ set command new commands.cld lobj
$ link example, n~w commands,sys$input/opt
sys$share:vaxcrtl.exe!shareAZ
$

Sample Session

Make sure that you have defined the logical name EXAMPLE$MSG to
point to the correct shareable image of message text as in this sample
terminal session. Then run the program.

$ define EXAMPLE$MSG example$directory:short_msg
$ run example
Command> look for file name- -search command
search string = file name
Command> throw /chanqe file_name
send command
ledit is present.
filespec = file_name
Command> bye
$

Selecting the Command Table Definition at Run Time

The translation team can select different command line text, but this
change requires relinking. A more flexible solution is to allow the
user to change a logical name to determine which CLI is used at run
time. Switching CLls by changing a logical name requires a different
mechanism.

70 Designing Localizable Software

It is easiest to put all the command tables into the same image.
However, the CDU allows no more than one module in a file. Create a
separate file for each language.

With all the command tables in the same image, command definition
tables can be selected at run time. The first step is to define different
module names. In the previous command language definition file in
Example 4-2, the same name was overlaid at image activation. The
new_commands.CLD file must now have its own module name. The
line that read:

Module command table

is changed to:

Module new command table- -

Now that the two command language definition files have different
module names, they can be placed into the same image. Two tables de­
fine the verbs and qualifiers, and retain the label = labelname compat­
ibility with the program code. A new logical, EXAMPLE$COMMAND
contains the values NEW or OLD to tell the VAXC program which mod­
ule to use. The program is rewritten with a case statement to choose
between the two possible command language definition files. The ex­
ample has two command language definition files. A case statement
can be used for the more general case of multiple command language
definition files.

Replacing the code at line number 2 in the original program,
EXAMPLE.C in Example 4-1, and for simplicity, ignoring the error­
return code, the new code would be:

lib$sys_trnlog (&command_logical , 0, &command_value)

if (strneq("NEW", command_value.dsc$a_pointer,
command_value.dsc$w_length))

result = cli$dcl_parse (0, newcommandtable, lib$get_input,
lib$get_input, &prompt);

else result = cli$dcl_parse (0, commandtable, lib$get_input,
lib$get_input, &prompt);

if (result & 1)
cli$dispatch () ;
else break;

The DCL commands to build EXAMPLE.EXE are:

$ cc example
$ set command commands.cld /obj
$ set command new_commands.cld /obj
$ link example, commands, new commands, sys$input/opt /notrace
sys$share:vaxcrtl.exe/shareAZ -
$

Designing Localizable Software 71

Typically, the logical name EXAMPLE$COMMAND is first defined to
point to the correct message shareable image. EXAMPLE.EXE is then
executed.

$ define EXAMPLE $ COMMAND "NEW"
$ run example
Command> look for file name

- -
search command
search string = file_name

Command> throw /change file_name
send command

/edit is present.
filespec = file_name
Command> bye
$

Switching Command Table Definitions Without Relinking

Any number of command language definition files can be linked to­
gether as long as their names are unique, but the program still has to
be relinked.

In the following pages, a set of transfer routines is used to resolve the
verb routine address. The steps are as follows:

1. Move the functions into a separate shareable image.

2. Create the shareable image.
3. Add code to resolve the address of the prompt message.

4. Tie together the command language definition file and the code.

5. Activate the command language interface image.

4.6.4.1 Moving the Functions into a Separate Shareable Image

Move the functions into a separate shareable image called FUNCTION.

This step is not required for this example, but is a common engineering
practice and makes the example easier to understand. EXAMPLE.C
is separated into two parts: EXAMPLE.C and FUNCTION.C.
FUNCTION.C contains the send_command, search_command,
and exit_command routines. The message pointer file is also included
in the shareable image.

72 Designing Localizable Software

4.6.4.2 Creating the Shareable Image

Creating a shareable image requires using a linker options file and
making the routine names universal:

!+
! File: function. opt

Linker Options file to create a shareable image

function, messages
universal=send command
universal=search command
universal=exit command
universal=msg_prompt
sys$share:vaxcrtl.exe/share

The msg_prompt routine (from the message file) is made universal
because EXAMPLE.EXE must locate the prompt text before it can pass
control to the command language interface routines.

The following DCL commands create the shareable image:

$ cc function
$ link function /opt /shareable

4.6.4.3 Adding Code to Resolve the Address of Prompt Message

Add the following code to EXAMPLE.C, so that the address of the
prompt message can be resolved:

&example_shr_log ,
&msg_prompt_log,
&msg_prompt);

In this example, example_shr_log contains the name of the logical
pointing towards the shareable image and msg_prompt_log contains
the name of the logical pointing toward the entry point to the image.
The msg_prompt routine receives the value of the image symbol so
that the shareable image can be called.

4.6.4.4 Tying Together the Command Language Definition File and the Code

The technique for tying the command language definition file to the
code is to point the verb addresses in the shareable image containing
the command table to a set of transfer routines. The transfer routines
resolve the address and transfer control to the proper code in the
example. There is one transfer routine for each verb in the command
table, and the set of these transfer routines is in a new file,
CLI_TRANSFER.C.

Designing Localizable Software 73

In this example, lib$find_image_symbol and lib$callg locate the
address of the proper routine in EXAMPLE$SHR and transfer control
to it. An example of the code for the transfer of control by the transfer
routine to send_routine follows:

send_routine ()
{

int status = 0;

$DESCRIPTOR(example_shr log, "EXAMPLE$SHR");
/* logical name of the shared image */

$DESCRIPTOR(entry point, "send command");
- /* from the universal = */

status = lib$find_image_symbol (&example_shr_log,
&entry_point,
&sendaddress);

status = lib$callg(0, &send_address);
}

Similar routines in CLI_TRANSFER.C would be written for search and
exit.

An options file is needed to build the CLI shareable image as follows:

File: commands.opt

commands,cli_transfer
universal=Command Table

The DCL commands needed to build these new pieces are:

$ cc cli transfer
$ set command commands.cld /obj
$ set command new_commands.cld /obj
$ link commands /shareable /opt
$ link new commands /shareable /opt

4.6.4.5 Activating the Command Language Interface Image

When EXAMPLE.C starts up, it finds the command table. This ex­
ample has two CLI shareable images, but there could be several. The
following code is added to the EXAMPLE.C program to activate the
correct command language interface image based on the logical name
EXAMPLE$CLI:

$DESCRIPTOR(cli_shr_log, "EXAMPLE$SHR");
/* logical name of the correct CLI image */

$DESCRIPTOR(entry_pcint, "command table");
/* module n~me in the CLD file */

status = lib$find_image_symbol (&cli_shr_log,
&entry_point,
&command_table);

74 Designing Localizable Software

The special code for selecting between command language definition
files is no longer needed. The selection now takes place outside the
EXAMPLE.C program. Control is passed to the command table as
originally done in Example 4-1.

Because EXAMPLE.EXE performs delayed image activation of the nec­
essary modules, the DCL commands needed to build EXAMPLE.EXE
are now these:

$ cc example
$ link example,sys$input/opt Inotrace
sys$share:vaxcrtl.exe/shareAZ
$

In summary, at run time, EXAMPLE.EXE looks at the logical name
EXAMPLE$SHR and calls the lib$find_image_symbol routine to get
the message address for the command promptCs). The logical name
EXAMPLE$MSG provides the connection between the message pointer
file in the shareable image and the actual message text to be used.

A call to the $getmsg routine results in the prompt text. Then
EXAMPLE.EXE looks at the logical name EXAMPLE$CLI and calls
the lib$find_image_symbol routine to get the address for the com­
mand table module. The transfer functions inside COMMANDS.EXE
provide the interface between the functions in EXAMPLE$SHR and the
CLI shareable image. These functions are the same whenever a new
image is built. EXAMPLE.EXE uses the command language routines,
cli$dcl_parse and cli$dispatch to perform the command line prompt
and execute loop. The output of the new program would be:

$ define EXAMPLE$COMMAND "OLD"
$ define EXAMPLE$SHR example$directory:function
$ define EXAMPLE$MSG example$directory:short_msg
$ run example
Command> search file name

search command
search string = file_name

Command> send ledit file_name
send command
ledit is present.
filespec = file_name

Command> Exit
$

Designing Localizable Software 75

4.6.5 Selecting Command Tables During Execution

Multiple command tables and multiple language message files can be
built to allow switching while the image executes, 'but this makes the
program significantly more complex.

Changing the logical name EXAMPLE$CLI and putting a check in the
dcl$parse loop causes problems because

• The lib$find_image_symbol routine knows when the logical has
been processed before and therefore has already mapped the image.

• Using a logical name means that the logical name cannot be
translated and the file_name passed to lib$find_image_symbol.

However, it is possible to use a technique that has two levels of log­
ical name translation, so that one logical name in the program actu­
ally maps to more than one name for lib$find_image_symbol. The
lib$find_image_symbol routine can then switch between alternate
command interfaces or message files, because it is given different
logical names for each instance. For example:

1. Define two CLI logical names to point to the two command files.
2. Define a new, second-level logical to point to one of them:

$ define EXAMPLE$CLl1
$ define EXAMPLE$CLI2
$ define EXAMPLE$CLI

example$dir:commands
example$dir:new_commands

EXAMPLE$CLl1

status = lib$find_image_symbol

EXAMPLE.C now contains the following code:

$DESCRIPTOR(cli shr log, "EXAMPLE$SHR");
- 7* logical name of the correct CLI image */

$DYNAMIC(cli true log);
- - /* receives the true logical name after running

cli shr log through sys trn log(). */
$DESCRIPTOR(entry_point~"command_table"); - -

/* module name in the CLD file */
lib$sys_trnlog (&cli_shr_log, 0, &cli_true_log);

&cli_true_log,
&entry_point,
&command_table);

for (;;) /*** loop until user types EXIT */
{

if (! (cli$dcl_parse (0, commandtable, lib$get_input,
lib$get input, &prompt) & 1))

break; /*** dcl=parse failed, so quit */
else

cli$dispatch(); /*** do another command */

76 Designing Localizable Software

In that code, a logical name translation function retrieves the address
that the lib$find_image_symbol routine uses to locate the command
table. To simplify this example, a new command which explicitly
asks to change command tables is not added. Instead, to demonstrate
that the switch occurs during execution, the send_command used
in FUNCTION.C to change the logical EXAMPLE$CLI to the value
specified on the command line is modified. The following code is added
to send__command:

lib$setlogical (&cli shr_log, &filespec);

The output of the final version of the example follows:

example$dir:commands
example$dir:new_commands

EXAMPLE$CLIl
example$directory:function
example$directory:short_msg

EXAMPLE$CLIl
EXAMPLE$CLI2
EXAMPLE$CLI
EXAMPLE$SHR
EXAMPLE$MSG

define
define
define
define
define

$
$
$
$
$
$
$ run example
Command> search filename
search command
search string = FILENAME
Command> send /edit example$cli2
send command
/edit is present.
filespec = EXAMPLE$CLI2
Command> look for filename
search command
search string = FILENAME
Command> bye
$

Designing Localizable Software 77

Chapter 5

Designing Multilingual Software

A multilingual software product allows users to interact with the
product using more than one language. The language options of mul­
tilingual software can be bundled into the product, or made available
by order, to be installed separately at a later time. Multilingual soft­
ware allows two users of the same software on the same system to use
different user interfaces for that software.

Software designers must solve three primary problems when imple­
menting multilingual software products:

• How can the components of the product be distributed on the
system to facilitate switching?

• How can the switching of user interface components be imple­
mented?

• How should the switching of culture-specific software function be
implemented?

5.1 Multilingual Software

The software product model shown in Figure 5-1 expands on the inter­
national product model described in Chapter 2 and introduces a new
concept: software that supports more than one locale, or multilingual
software.

Designing Multilingual Software 79

Figure 5-1. Multilingual Software Model

Functional Data
Interfaces International Interfaces English

Market-Specific Base User Interface
Component (1) Component - Component

(1)

French
Market-Specific User Interface
Component (2) Component

(2)

German
Market-Specific Multi-Byte User Interface
Component (3) Character Component

Support (3)

In the model shown in Figure 5-1, the software supports multilingual
user interfaces supplied using multiple user interface components, and
multilingual functionality supplied by three market-specific compo­
nents. In this example, the software allows users to switch between
English, French, and German user interface components.

A French language product variant could consist of the components
shown in Figure 5-2.

Figure 5-2. French Product Variant

International
Base

Component +
French

User Interface
Component

+ Market-Specific
Component

French
Product
Variant

80 Designing Multilingual Software

A multilingual product featuring functionality for English and German
markets could consist of the components shown in Figure 5-3.

Figure 5-3. English/German Product Variant

International
Base

Component

User Interface
Components

+ +
IEnglish IIGennanl

Market-Specific
Component

English/German
Product Variant

A customer can obtain a multilingual software product by adding a
user interface component and optional market-specific components to
an already installed product. With the addition of each user interface
or market-specific component, new options are added to the product.
This approach to assembling multilingual software products carries
with it design ramifications, particularly for products that must support
multiple dialects of the same language.

It is possible to support a dialect of a language by installing the user
interface component for the primary version of that language, for
example, French, and then installing a market-specific component that
tailors that user interface component to suit the dialect, for example,
Canadian French. The installation path for assembling such a product
is shown in Figure 5-4.

Figure 5-4. Installation Path for a Product Variant

International
Base

Component
+

User Interface
Component

+
Market-Specific

Component

B
Product Variant

for Dialect

Using the market-specific component to modify the user interface
component in this way means that the product can support only one
dialect at a time. For example, the product created in the above
example cannot support both a French interface and a Canadian

Designing Multilingual Software 81

French interface because the first is lost when the second is created.
To support the multilingual goal, each user interface component should
provide all of the culture-specific data necessary to create a unique
user interface component for one language or dialect. If each dialect is
supported by its own user interface component, the installation path
for a multidialect product looks like the one in Figure 5-5.

Figure 5-5. Installation Path for a Multidialect Product

International
Base

Component +
User Interface

Component

+
User Interface Market-Specific

Component Component

B + B"'---·--.1
O· ItO· I t IIPrimaryl

la ec la ec II Lang.

Multilingual
Product

5.2 Multilingual Products Versus Localizable Products

Multilingual software products differ from localizable products in two
principal ways:

• Multilingual user interfaces

Users can interact with the software in more than one language
and can switch from one language interface to another while using
the product. Two users on the same system are able to work with
the same application functionality simultaneously, but use two
different language interfaces to that functionality. By contrast,
localized software products support a single language that must be
used by everyone.

• Multilingual functionality

Users can access functionality that supports the requirements
of more than one language or locale. Multilingual functionality
products allow users to edit text and data, use linguistic aids,
such as spelling and hyphenation checkers in multiple languages.
Because it allows multiple collating sequences, users can store and
retrieve text in several languages. Users may perform any of these
tasks in any of the languages supported by the product, regardless
of the interface they selected.

82 Designing Multilingual Software

Multilingual functionality also allows users to quickly switch
between languages during an editing session. Languages such as
Hebrew and English, or Japanese and English, are often linked
because of market demands. A multilingual product lets a user
press a shift key to toggle between languages and the corresponding
language environment, including character set, collating sequences,
spelling and hyphenation checkers, font type, as well as writing
direction. Users of localized products are limited to the language of
the interface and cannot switch languages in a single session.

5.3 Planning Multilingual Applications

Applications can provide several kinds of multilingual support:

• Concurrent multilingual usage on a system

• Concurrent multilingual usage within the same application

• Concurrent multilingual usage on an integrated, internationally
distributed network

5.3.1 Concurrent Multilingual Usage on a System

All software products to be adapted for several locales should be
designed for concurrent usage in different languages on the same
system. In the past, Digital customer systems have frequently been
single CPUs. Today they are more likely to be part of an extended
system such as a VMS cluster or a Local Area Network (LAN).

Figure 5-6 illustrates a central host supporting a software product that
supplies concurrent multilingual user interfaces. In this scenario, a
user at Terminal 1 specifies the French user interface. At Terminal
2, the user selects the Italian interface. The application uses French
culture-specific data to handle interaction with the user at Terminal 1,
and Italian culture-specific data to handle interaction with the user at
Terminal 2.. The application would use German culture-specific data to
serve a user at Terminal 3, and English culture-specific data for a user
at Terminal 4. All four persons use the application concurrently and
each gets a different locale-specific view of the same data.

Designing Multilingual Software 83

Figure 5-6. Central Host, Concurrent Multilingual User Interfaces

French
User Interface

Component

French User Profile

Italian
User Interface

Component

International
Base Component

Server Running
Multilingual

Software Product

English
User Interface

Component

English User Profile

German
User Interface

Component

Italian User Profile

Italian
User

Terminal #2

German User Profile

With the type of multilingual product shown in Figure 5-6, the user
can change the interface only when the software is activated. The user
is given a choice to override the current default language display. For
example:

SYSTEM PROMPT> MY_PRODUCT/LANGUAGE=SVENSK

Mter this command is entered, the Swedish user interface supersedes
the previous default. It is important that the default be definable to a
language other than English.

84 Designing Multilingual Software

A method for dynamic switching of the user interface could also be
available after the software is activated. For example, a software
product could have two subsystems to maintain user accounts. The first
subsystem allows the user to perform limited, nontechnical changes to
the user profile, such as changing their phone number. The second
subsystem allows a privileged user to modify another user's system
privileges. Because this second subsystem is a function typically
intended for a system manager, it may not need to be translated from
English.

5.3.2 Concurrent Multilingual Usage Within the Same Application

Concurrent multilingual operation within an application is a require­
ment for many products. In such products, the user must be able
to switch language functionality and in some instances switch user
interfaces while using the product.

The user must be able to switch language-specific functionality without
also switching user interface, and vice versa. An example of such a
product might be an editing station for language translators, allowing
side-by-side editing of two language versions of the same text.

Concurrent multilingual operation is not a generic requirement for
all international software products. However, the ability to switch
easily by pressing a function key, for example, between language­
specific functionalities is useful with frequently intermixed languages.
Figure 5-7 illustrates the "multilingual within application" case.

At startup time, the user profile specifies a French user interface and
French linguistic aids. At a later time, the user explicitly changes the
linguistic aids attribute to English, thus selecting English functionality.
Note that, while the market-specific component (with the linguistic
aids attribute) has changed to English, the user interface component
has remained in French. In this case, the two aspects of multilingual
software (multilingual user interfaces and multilingual functionality)
can be switched independently of one another.

Designing Multilingual Software 85

Figure 5-7. Multilingual Functionality Within an Application

English International French
User Interface Base Component User Interface

Component Component

Server Running
Multilingual

French Software Product English
Market-Specific Market-Specific

Component Component

6At Startup Time After Switching

~
Multilingual

User
Terminal/Workstation

A product may require that the language-specific functions or proce­
dures be switched within the same program. For example:

• Using a grammar checker for one language while editing in another
language

The user may be editing or creating a document in one language
and wish to verify the spelling in another.

• Language switching during data entry

A more complex problem arises if you are typing a mail message
in Hebrew, where data is entered from right to left, and in that
message you need to enter "Digital Equipment Corporation in
1990," which must be entered from left to right. Both the writing
direction and character set must be changed, and then changed
back after the English language string is entered.

Both of these situations require that user-defined function keys be
made available, to either perform the language switch or to prompt the
user to select a language.

86 Designing Multilingual Software

5.3.3 Concurrent MUltilingual Usage on an Integrated, Internationally
Distributed Network

A multilingual, integrated, internationally distributed application is
illustrated in Figure 5-8.

Figure 5-8. Multilingual, Integrated, Internationally Distributed
Application

English
User Interface

Component

French
User Interface

Component

English
Market-Specific

Component

French
Market-Specific

Component

French
Spell-Checker

Application X
System 1

DECnet

Application X
System 2

DECnet

French
User Interface

Component

English
User Interface

Component

French
Market-Specific

Component

English
Market-Specific

Component

English
Spell-Checker

LAN or WAN

DatalText
Interchange

An English user running Application X on System 1 prepares a French
message using an English user interface to the mail editor, but doing
spell-checking with a French dictionary. The French spell-checker is
provided by the French market-specific component.

The English user then sends the message to a French user who is
running Application X on System 2 somewhere on the network. The
French user, using a French user interface, reads the message, prints
it for reading again later, prepares a reply in English using an English
spell-checker, and sends it to the English user on System 1 who reads

Designing Multilingual Software 87

and prints it. The English spell-checker is supplied by the English
market-specific component.

5.3.4 Communication Between Multilingual Applications

Applications are seldom written to operate in isolation. Increasingly,
an application must be capable of linking and exchanging data with
other applications to fulfill tasks for the user. A notable example is a
text processing application that lets the user link with spreadsheet and
graphics applications for data to be included as images in a document.
In many cases, the data passed to the calling application must be
stored and manipulated by the calling application as well.

Interapplication communication becomes somewhat more complex in a
multilingual environment, where different applications can use differ­
ent character sets, writing directions, collating sequences, and so on. In
this context, using standard mechanisms for exchanging multilingual
data between applications becomes extremely important. To that end,
Digital has invested considerable effort in developing Digital Document
Interchange Format (DDIF), Digital Table Interchange Format (DTIF),
and compound strings (see Chapter 6) to facilitate the exchange of
multilingual data.

Applications must ensure that the text passed to other applications
contains information that the receiving application can use to derive
context, such as character set and writing direction, as well as content.
Applications must be capable of passing and receiving text in mixed
character sets, including single-byte and multi-byte sets, and mixed
writing directions.

To address these issues, developers at Digital design an application's
interfaces to other applications in ways that anticipate multilingual
data: applications for Digital platforms can exchange data in the form
of compound strings or DDIF or DTIF definitions. Applications that
do so are capable of supporting character sets and writing directions
other than those supported by ISO Latin-I. If your applications do
not exchange data in this way, then any attempts to provide multilin­
gual language support in one application will have a serious impact
on all other applications that use that application's resources. The
impact could be so great that it precludes the addition of multilingual
functionality.

88 Designing Multilingual Software

5.4 Designing Multilingual Software Products

Meeting the multilingual requirement is largely a matter of following
the guidelines presented in Chapter 4 with special attention to the
following details.

• The user interfaces should be switchable at run time using tech­
niques recommended later in this chapter.

• Internal data/text encodings must be locale- and language-neutral.
That is, data in databases must be stored in flexible culture- or
language-independent formats. The application must be able to
transform or translate the data into locale-specific user inter­
face views using language- and locale-sensitive formats at run
time under user interface control. For more information, see
Section 5.4.l.

• The body of text interchanges should use DDIF, DTIF, and/or
compound strings to identify the appropriate character set or
other content protocol language to the level of a single word and
font. This level of precision is needed in switching dictionaries
and algorithms for linguistic aids. For more information, see
Section 5.4.l.

• Interchange formats of data and text should not contain language
or locale-specific data in their structural and attribute encodings.
For example, in a mail message TO:, FROM:, DATE:, TIME: should
not appear as text but as internal codes, that is, as fields of the
header record or typed objects in compound string encodings.
Values for the date and time fields should be unformatted, following
an external standard where appropriate.

• Error conditions reported network-wide should be locale-neutral,
registered and uniquely identified error codes. They should be
interpreted or translated by the user interface to the user-viewable
forms. Advanced multilingual message facilities and translated
technical term dictionaries will eventually be developed in support
of better international messages.

• Times used for time-stamping of events should be accurate network­
wide, for proper sequencing of time-dependent processing steps.

Designing Multilingual Software 89

5.4.1 Storing Data for Use by Multilingual Applications

Multilingual applications must apply locale-specific conventions and
language to data extracted from a database. For example, an appli­
cation that presents a numeric value to a German user should use
German conventions for the display of numeric values; the value should
be expressed using a period as the thousands separator and a comma
as the decimal separator:

12.998,00

An American view of the same numeric value should use American
conventions:

12,998.00

Thus, the data must be stored in locale-neutral formats and trans­
formed for locale-specific displays at run time. Data such as date
and time values, currency values, and keywords displayed by the
application should be modifiable for display as described in Chapter 4.

Special requirements apply to pure text stored in databases used
by multilingual applications. In order for free-format text to be dis­
playable, it should be stored with display instructions, that is, with
specifications for the character set and writing direction needed to dis­
play the text. Compound strings (introduced in Chapter 6) are designed
to provide this type of support.

5.4.2 Sorting Data Used by Multilingual Applications

Multilingual applications must be able to use multiple, locale-specific
collating sequences to sort data· stored in a database. A Spanish user
will expect data to be sorted using the Spanish collating sequence,
while a Dutch user will expect a Dutch sort of the same data.

Databases therefore must supply keyed access to files and allow the ap­
plications to apply collating sequences to the data when it is displayed.
Techniques and tools that applications can use to actually sort the data
are presented in Chapters 6, 7, and 8.

90 Designing Multilingual Software

Chapter 6

Using the DECwindows Interface

Based on the X Window System architecture developed at the
Massachusetts Institute of Technology, Digital's DECwindows soft­
ware is an interface to the VMS or ULTRIX operating system. The
DECwindows interface lets users divide a workstation screen into
windows and design a working environment to suit specific needs.
Users execute commands by selecting objects on the screen instead
of typing long command lines. With DECwindows, users can run two
applications simultaneously on a single physical screen and the user
can switch between them using a mouse. Because DECwindows soft­
ware provides an environment in which all applications have similar
features, a user can use the same handful of techniques to interact
with each application, avoiding the need to master several command
languages.

The following features of the DECwindows interface aid localization:

• Separation of user interface form from application function

• Object-oriented, rather than language-based, interactions with the
user

• User interface widgets that accommodate the text expansion or
reduction that results from translation

• Application and library use of user interface definition (UID) files, X
Resource Manager (XRM) files, and the DECwindows Help Facility

• Support for international text processing:

- Full ISO Latin-l font and character set support

- Support for compound strings

• Support for local devices:

Startup procedure set-up of LK201 keyboard variants

Xlib support for Compose key and other international keyboard
features

Using the DECwindows Interface 91

V ser Interface Language (VIL) support for redefinable key
bindings

6.1 International DECwindows User Interfaces

The DECwindows toolkit includes two integrated application develop­
ment tools used to define the DECwindows user interface:

• V ser Interface Language (VIL)

• DECwindows Resource Manager (DRM)

The VIL and DRM tools allow engineering groups in various countries
to replace a DECwindows interface with a translated interface without
having to recompile the application program. Vser interfaces can
be created in several languages without making any changes to the
application itself.

In addition, the DECwindows user interface can use compound strings
to store text and data. A compound string enables applications to
specify attributes in text, graphics, images, or data. Compound strings
make it possible for text in a DECwindows user interface to be trans­
lated into any language for which a DECwindows-supported font is
available.

6.1.1 Object-Oriented User Interfaces

The DECwindows interface allows users to control the application by
manipulating or selecting screen objects with the mouse rather than
by entering text commands. To select a menu option, for example, the
user points to the option with the cursor, and presses a mouse button
to execute the selection.

Figures 6-1 and 6-2 show two versions of the same DECwindows
dialog box, the first version in English, the second version in Japanese.
The application function associated with this dialog box receives input
from the user in the form of callbacks from the objects the user selects
with the mouse.

92 Using the DECwindows Interface

Figure 6-1. Dialog Box in English

01 Session Manager IQJlbJJ
Session Create Customize Print Screen Help

Messages

Welcome to VAXIVMS version V5.0-1 DO on node HANJA 6
Last interactive login on Monday, 8-0CT-1990 09:01 .=
Last non-interactive login on Tuesday, 1-0CT-1990 10:44

You have 6 new Mail messages.

'=
(7

Figure 6-2. Dialog Box in Japanese

01 Session Manager IQJlbJJ
t '1 j 3 /' ~jn ~~~ i!OOJJtpfrjllj ,,\)v1

Messages

Welcome to VAXIVMS version V5.0-1 DO on node HANGUL 6
Last interactive login on Wednesday, 10-OCT-1990 17:38 .=

Last non-interactive login on Tuesday, 9-0CT-1990 12:32
Starting a vue process

-=
(7

Using the DECwindows Interface 93

Using UIL, application designers can build menus, dialog boxes, and
other user interface objects labeled with translatable text. While
applications still must be able to present user interfaces in other
natural languages, they do not necessarily need to interpret user input
in different languages.

6.1.2 User Interface Language

The user interface language is the specification language used to
describe the initial state of a user interface for a DECwindows applica­
tion. UIL specifies the objects used in the interface, and the routines
to be called when the interface changes state as a result of user input.
The objects specified are typically these:

• Menus

• Dialog boxes

• Labels

• Push buttons

The UIL module containing this information is stored in a UIL speci­
fication file. The UIL compiler translates the UIL module into a User
Interface Description (UID) file. An application uses DECwindows
Resource Manager (DRM) routine calls to gain access to the UID file.
When the application is executed, DRM builds the run-time structures
necessary to create the user interface.

The implementation of UIL and DRM offers many benefits to inter­
national product developers. It facilitates the separation of form and
function, which is one of the principal requirements of international
software products. Since the UIL specifications exist as a separate file,
changes in a product's user interface require few, if any, changes to the
application program.

Used correctly, UIL and DRM make it possible to create user interfaces
that are easily translated into other languages. Used incorrectly, UIL
specification files can cause problems for translators and engineers in
other countries for the following reasons:

• UIL does not prohibit placing user interface text in program source
files. If translators must search through program source files to
locate the text to be translated, localization becomes more difficult
and time-consuming, and errors may be introduced.

94 Using the DECwindows Interface

• UIL specifications that control the size and position of an interface
object can appear anywhere in the UIL file. These specifications
often must be changed after translation. If translators must search
through UIL files to locate and change specific coordinates, transla­
tion becomes more difficult and time consuming, and errors may be
introduced.

• UIL is much like a programming language. It mayor may not be
easily understood by a translator.

The translated UID file is generally supplied in the user interface
component of Digital's international product model. When country­
specific data such as a currency symbol is used in an application, this
data must be supplied in the market-specific component. To allow for
this, two UID hierarchies have to be built into the application. The
first hierarchy contains all the language-specific data; the second, all
the country-specific data. Thus, all country-specific information should
be contained in a UID file separate from that of the language-specific
data.

Guidelines

To simplify the localization process for UIL files, Digital observes the
following guidelines:

• Keep the application programs free of text.

DECwindows interface software and applications allow program­
mers to include translatable text and messages in the source code of
the application rather than in UIL specification files. This must be
avoided. Place all translatable text in a single UIL specification file.
This isolates user interface text and eliminates the need to relink
the user interface to the application object files after translation.
This modular approach facilitates future upgrades and revisions.

• Declare all translatable text as constants.

The following items should be declared as constants if they are
modifiable:

Natural language text used in prompts and messages:

value
ReallyQuitText : exported 'Do you really want to quit?';

In this example, text used to prompt the user is associated with
a constant, and then the constant is used throughout the UIL
file in place of the text. The translator has to translate this
prompt only once, in the constant declaration. Also, do not use
the same text string in several different contexts.

Using the DECwindows Interface 95

Translatable text can be declared as a constant in string tables:

value
stringl
string2

strings

'Print' ;
'File' ;

exported string_table(stringl,string2);

In this case, the global value "strings" is read by the application
program.
Menu items:

list
ItemsOfChoice : arguments

FileLabel = 'File';
ReadLabel = 'Read';
PrintLabel = 'Print';

};

Language-dependent keywords, which are often time-related,
such as the names of months and days:

Monday_label
Tuesday_label
Wednesday_label
Thursday_label
Friday_label

'Monday' ;
, Tuesday' ;
, Wednesday' ;
, Thursday' ;
'Friday' ;

Strings used for validating user input:

list
ValidAbbreviations: arguments {

YesAbbr = 'Y';
NoAbbr = ' N' ;

} ;

• Declare widget coordinates and sizes as constants.

The following items must be declared as constants if they are
modifiable:

Widget coordinates

Interface widgets can be positioned using either explicit coor­
dinates or relative coordinates (using attached dialog boxes as
described in Section 6.1.3.2).

96 Using the DECwindows Interface

When using explicit coordinates, declare them as constants:

value
!+
! This position (in pixels) is for the second button column

in the radio box.

The position is affected by the text for the first column.
It affects the right border of the radio box.

!-
Co12RadioBoxButtonPosX : 500;

In this example, the constant has been given a meaningful
name; comments tell the translator how changing its position
might affect the position of other widgets in the user interface.
Widget sizes

The space required to display text often changes as a result of
translation. Widget sizes, therefore, should be easily modifiable.
Declare widget sizes as constants:

value
!+
! This dimension (in pixels) represents the cancel button

in the radio box.
It is affected by the Okay button position
It affects the Apply button position

!-
CancelButtonRadioBoxXsize : 40;
CancelButtonRadioBoxYsize : 3D;

In this example, the constants for the sizes have been given
meaningful names; comments tell the translator how changing
this widget size could affect other widgets in the user interface.

• Use font units to allow positioning in a coordinate system that is
not pixel-based, but is sensitive to the font being used.

• Address constant values by-meaningful names.

Constants should be assigned names that indicate how they are
used in the user interface:

+
The items to be listed in the list box DisplayListBox

DisplayListBoxIteml
'First item';

DisplayListBoxItem2
'Second item' ;

DisplayListBoxItem3
'Third item';

DisplayListBoxItem4
, Fourth item';

Using the DECwindows Interface 97

k dis text:

k allow text:- -

k_space_char:

• Group the related constants.

Constant declarations that logically belong together should be
placed together in a UIL file. For example, group the constant
declarations for the labels of a particular widget:

value
a box label:

, a_label' ;

a box item 1:- - -
, first item';

a box item 2:- - -
, second item' ;

Also group the size and position specifications for the widget:

value
a box x:

50;

a_box_height:
500;

a box width:
400;

• Never compose messages from parts.

Messages that are assembled from two or more text strings often
cause problems for translators. In the following example, four
constants are used to construct a two-word message.

compound_string("Dis");

compound_string(" a llow");

compound_string(" ");

k_hyphenation_text: compound_string ("hyphenation") ;

k_stop_hyphen_message: k_dis_text & k_allow_text & k_space_char & k_hyphenation_text;

The constant k_stop_hyphen_message contains the value "Disallow
hyphenation" as its final text string, but, as constructed, the string
is not translatable. Different syntaxes in different languages
prohibit a straight translation of the text. Instead, the message
will have to be restructured.

98 Using the DECwindows Interface

• Make full use of the option menu to accommodate syntax changes.

When translation forces syntax changes, the option menu label and
any associated text can be changed to a null string (""), and the
option menu item and size can be changed to become the complete
translated message. Consider the following example:

Option menu widget:

Option required:

[Do this to]

[THAT]

These items are displayed in the original syntax as follows:

[Do this to [THAT]]

Translation requires the following syntax change:

[This to [THAT] do]

To achieve this, the option menu label should be changed from ([Do
this toD to a null string ("") and the option item should be changed
from [THAT], to the complete string [This to THAT do].

• Do not use the same text string in several different contexts.

To display the same text string in many contexts, use a separate
constant for each context. In languages other than English, context
can influence the spelling and syntax of a message.

The obvious exceptions are common labels such as "help," "ok,"
"yes," and so on, which are used frequently and by different appli­
cations. They should be defined in a common include file that is
inherited by all applications.

• Place your constant declarations in a separate file and include that
file in your main UIL module.

Your main UIL module should consist of the widget structure only.
Translatable elements such as text, coordinates, and sizes, should
be supplied in separate modules that are included in the main
module.

When constants are declared in a separate file, translators can
easily locate the user interface text that must be translated. This
supports translation both in the initial localization of your product
and in any subsequent releases.

Section 6.6 presents three examples of UIL files used to declare
constants. These files are included and used by the UIL main
module presented in Example 6-7, in Section 6.6.

Using the DECwindows Interface 99

• To assist the translator, include meaningful translation markup.

UIL specification files are not translator-friendly. It is therefore
essential to provide comments, or markup, to identify and explain
translatable and customizable elements for the translator. Markup
is particularly important if the meaning of messages and other text
is not obvious. Use comments in UIL files to indicate

Values that will need to be translated or changed during
localization
The context in which an error message is displayed

Any restrictions on the size or position of a text string

See Section 10.1 for more information about translation markup.

6.1.3 OeCwindows Toolkit Widgets

When used correctly, DECwindows Toolkit Widgets provide interna­
tional product developers with several advantages:

• A help subsystem that supports international requirements

The DECwindows Help Widget supplies a context-sensitive help
facility that maintains application help text in a translatable form.
The Help Widget is supported on both VMS and ULTRIX operating
systems.

• Messages that support international requirements

DECwindows makes it possible to store application message text
in the UIL specification files used to define the application user
interface. Message text is thus separated from application code,
which simplifies translation. UIL also supports storing messages as
compound strings.

• Ways to do relative, rather than fixed, positioning of labels and
fields

DECwindows provides ways to position user interface objects. The
Attached Dialog Box widget offers a way to simplify the localization
of DECwindows user interface layout.

The UIL guidelines presented in Section 6.1.2 describe how to make the
text displayed by the application translatable. If the application uses
DECwindows Toolkit Widgets, the text used by those widgets must also
be made translatable.

100 Using the DECwindows Interface

6.1.3.1 Making DECwindows Toolkit Widgets Translatable

If the application uses DECwindows Toolkit Widgets such as the Help
Widget, the File Selection Widget, the Caution Box Widget, or others,
declare the label text used by the widgets as constants and define the
constants in separate, includable UIL files.

Every widget label used by a DECwindows Toolkit Widget has a unique
resource associated with it. The default English value for the resources
can be overridden in the applications' UIL file. The resources that are
associated with translatable text strings are easy to recognize because
their names end with label and their type is compound_string.

To make a Toolkit Widget translatable, create a UIL file that contains
an argument list for each widget that contains a translatable string.
Include the UIL file in the application's main UIL file. Use the argu­
ment list name in each Toolkit Widget that will require translation in
the application's UIL file.

Example 6-1 shows a template that can be used to create a translatable
DECwindows File Selection Widget. Example 6-2 shows the UIL file
that declares as constants the text used in the File Selection Widget.

Example 6-1. A Translatable DECwindows File Selection Widget

!==
!+
! This file contains object declarations for the DECwindows File

Selection Widget, FileSelectionBox. The object used in the
application should be taken from this file and 'pasted' into
the applications UIL file, changing the object name for that
of the applications object name.

In the object declarations, anything starting with "Your"
should be changed to the value used by the application UIL.

!-
!+++
! File Selection
!---
object

YourFileSelection file selection
{

arguments
{

(Example 6-1 continues on next page)

Using the DECwindows Interface 101

Example 6-1 (Cont.). A Translatable DECwindows File Selection
Widget

!+
! These are the translatable arguments
!-

apply_label
cancel label
filter label
object_label
ok label
selection label
title

FileSelectionApplyLabel;
FileSelectionCancelLabel;
FileSelectionFilterLabel;
FileSelectionObjectLabel;
FileSelectionOKLabel;
FileSelectionSelectionLabel;
FileSelectionTitle;

!+
! These arguments can be cut out if not defined by the application,
! otherwise, the appropriate value name should be added.
!-

accelerators
background_color
background_pixmap
border color
border_pixmap
border width
default_position
dir mask
file_search_proc
file selection value

- -
font_argument
items
list_updated
mapped_when_managed
margin_height
margin_width
must match
no resize
resize
sensitive
style
take focus
text cols
translations
user data
visible items count
x
y
height
width

} ;

(Example 6-1 continues on next page)

102 Using the DECwindows Interface

Example 6-1 (Cont.). A Translatable DECwindows File Selection
Widget

!+
! paste your callbacks list in here
!-

callbacks
{

} ;

!+
! paste your controls list in here
!-

controls
{

} ;
} ;

Example 6-2. Declaration of Constants for the File Selection Widget

!==
!+
!

Title:
FILESELECTION XLAT TEXT.UIL

Description:

This file contains the text strings of the DECwindows File
Selection Widget, FileSelectionBox, for translation purposes.
It should be included in the application program's main UIL file
BEFORE any widget declarations.

Note: the character sequences %s and \n are special character
sequences and therefore should be left alone.

Usage:
include file 'fileselection_xlat_text.uil';

!-
value

(Example 6-2 continues on next page)

Using the DECwindows Interface 103

Example 6-2 (Cant.). Declaration of Constants for the File Selection
Widget

!+++
! File Selection
!---

!+
! The apply button
!-

FileSelectionApplyLabel

!+
! The cancel button
!-

FileSelectionCancelLabel

!+
! The filter label
!-

FileSelectionFilterLabel

!+
! The object label
!-

FileSelectionLabel

!+
! The okay button
!-

FileSelectionOKLabel

!+
! The selection label
!-

FileSelectionSelectionLabel

!+
! The title
!-

FileSelectionTitle

compound_string
("Apply") ;

compound_string
("Cancel") ;

compound_string
("File filter");

compound_string
("Files in");

compound_string
("Ok") ;

compound_string
("Selection");

compound_string
("Open") ;

!+++
! End of FILESELECTION XLAT TEXT.UIL include file
!---

104 Using the DECwindows Interface

6.1.3.2 Positioning Objects with DECwindows Widgets

The Attached Dialog Box Widget is a very useful tool to help reduce
the work entailed in the translation process. It offers a way to accom­
modate translated text in user interface objects: when text lengthens
due to translation, the widget positions user interface objects relative
to one another. With the Attached Dialog Box Widget, developers can
relate the size and position of an object to the size of the text presented
within the object. The widget allows the omission of origin, width, and
height coordinate specifications, in favor of relationships among the
objects within the box. DECwindows software automatically manages
the positioning of the object and compensates for the text expansion or
compression that results when text is translated.

Use an Attached Dialog Box Widget to position and size the objects
within a dialog box relative to the size and position of the dialog box
itself. The widget automatically adjusts the size of the dialog box if the
text labels, fields, or other objects change size after translation.

6.1.3.3 Using Icons

DECwindows supports the use of icons in many of the objects specified
through the UIL. If designed and used with care, icons can be very
effective in international products because they may not need to be
changed for different international markets.

6.2 International Application Resource Databases

Application resource databases provide default values that define the
basic attributes of an application user interface such as origin, height,
width, background color, foreground color, and font. These values are
stored in a customizable file and form a type of application profile for
the software product.

Never store user interface text in an application resource database.
Instead, use language-neutral values to set application defaults, and, if
necessary, translate those values into user displays in UIL.

Example 6-3 provides an example of a bad application resource
database, that is, a database that specifies user interface text.
Example 6-4 corrects the problem by replacing the text with values
that are not specific to a particular language. The application user in­
terface can refer to these values and translate them into locale-specific
user interface text at run time.

Using the DECwindows Interface 105

Example 6-3. A Bad Application Resource Database

appname.x:
appname.y:
appname.width:
appname.height:
appname*foreground:
appname*background:
appname*sqrtFontFamily:
appname*keyFontFamily:
! Define calendar order
appname*firstday:
appname*secondday:
appname*thirdday:
appname*fourthday:
appname*fifthday:
appname*sixthday:
appname*seventhday:

300
200
190
240
Turquoise
DarkSlateGrey

--Symbol-*-R-*- -14-*-*-*-P-*-*-*
--Times-Bold-R-Normal- -14-*-*-*-P-*-*-*

for days of the week:
"Sunday"
"Monday"
"Tuesday"
"Wednesday"
"Thursday"
"Friday"
"Saturday"

Example 6-4. A Corrected Application Resource Database

appname.x:
appname.y:
appname.width:
appname.height:
appname*foreground:
appname*background:
appname*sqrtFontFamily:
appname*keyFontFamily:
!

300
200
190
240
Turquoise
DarkSlateGrey

--Symbol-*-R-*-_-14-*-*-*-P-*-*-*
--Times-Bold-R-Normal- -14-*-*-*-P-*-*-*

Define calendar order for days of the week. Identify days by number:

o
1
2
3

Sunday
Monday
Tuesday
Wednesday

4
5
6

Thursday
Friday
Saturday

appname*firstday:
appname*secondday:
appname*thirdday:
appname*fourthday:
appname*fifthday:
appname*sixthday:
appname*seventhday:

6
o
1
2

3
4
5

In general, applications that allow users to modify defaults should
provide a means of doing so in the application user interface, through a
set-up menu, for example. Users should not have to edit default files to
customize their applications.

106 Using the DECwindows Interface

6.3 Local Conventions

DECwindows applications must support locale-specific data formatting.
For example, the application must be able to display a date and time
value in the format preferred in the locale where the application is
being used. Applications can use operating system services to support
local conventions.

For more information about VMS and ULTRIX services available to do
locale-specific formatting, see Chapters 7 and 8.

6.4 International Text Processing

DECwindows fonts and character sets, compound strings, and the text
processing services and facilities resident in the operating system use
the character sets listed in Table 6-1.

6.4.1 Indicating Character Sets

The UIL compiler supports each of the character sets listed, although
not all of them are currently available in fonts that DECwindows
software can use. Engineering groups in other countries can create
user interfaces that use characters from any of the character sets in
Table 6-1. Use the FONT_TABLE function to specify the character set
and font used by the interface. The default character set used by UIL
is ISO Latin-I.

Table 6-1. UIL-Supported Character Sets
UIL Name Size Description

ISO_LATINI
ISO_LATIN2
ISO_ARABIC

ISO_GREEK

8-bit
8-bit
8-bit

8-bit

8-bit

GL: ASCII, GR: ISO Latin-I Supplemental
GL: ASCII, GR: ISO Latin-2 Supplemental
GL: ASCII, GR: ISO Latin-Arabic
Supplemental
GL: ASCII, GR: ISO Latin-Arabic
Supplemental
GL: ASCII, GR: ISO Latin-Greek
Supplemental

(Table 6-1 continues on next page)

Using the DECwindows Interface 107

Table 6-1. UIL-Supported Character Sets (cont.)
UIL Name Size Description

ISO_LATIN7 8-bit GL: ASCII, GR: ISO Latin~Greek

Supplemental
ISO_HEBREW 8-bit GL: ASCII, GR: ISO Latin-Hebrew

Supplemental
ISO_LATIN8 8-bit GL: ASCII, GR: ISO Latin-Hebrew

Supplemental
ISO_HEBREW_LR 8-bit GL: ASCII, GR: ISO Latin-Hebrew

Supplemental
ISO_LATIN8_LR 8-bit GL: ASCII, GR: ISO Latin-Hebrew

Supplemental
JIS_KATAKANA 8-bit GL: JIS Roman, GR: JIS Katakana
DEC_TECH 8-bit GL: DEC Special Graphics, GR: DEC

Technical
DEC_KANJI 16-bit DEC Kanji Character Set (Japanese)
DEC_HANZI 16-bit DEC Hanzi Character Set (People's

Republic of China)

6.4.2 Compound Strings

Any text string used as a label or message in a DECwindows Toolkit
Widget must be passed to the widget as a compound string.

Handling text as compound strings permits the text in a UIL speci­
fication file to be translated into any language for which a character
set is supported by the DECwindows interface. It also makes applica­
tion support possible for multiple character sets and for character sets
whose writing directions are not left-to-right.

Application developers can supply user interface text in any charac-
ter set recognized by the UIL compiler, or any mixture of recognized
character sets and writing directions. For example, it is possible to
mix English, Japanese, and Arabic characters in a single string if that
string uses the compound string format. This simplifies the modifica­
tion of user interfaces to accept text from non-Latin scripts, such as
Hebrew, Arabic, and Japanese. It also supports the development of
multilingual applications that display characters and ideographs from
several character sets at a time. Applications can support the display of
multi-byte character sets without requiring explicit information about
how the text must be represented on the screen.

108 Using the DECwindows Interface

DECwindows Toolkit support for compound strings makes possible
future toolkit expansions to support multi-byte intermixed character
sets and mixed writing directions. This support will be possible without
any changes to the interfaces between the applications and the toolkits.

6.4.3 Collating Sequences and Conversion Functions

DECwindows applications must provide support for locale-specific
collating sequences and conversion functions. For example, a
DECwindows application must be capable of sorting lists of names
using the Spanish or German collating sequences. Similarly, your ap­
plication should be able to do case conversions on characters in the ISO
Latin-l character set, for example, the letters {3, 0, and.IE.

Applications m:ust use services available in the operating system un­
derlying the application to provide alternative collating sequences and
conversion functions. Operations like capitalizing and converting to
uppercase or lowercase characters might be meaningless for alphabets
that have only one case. Also, grammatical rules stating where upper­
case letters are appropriate or mandatory vary from country to country.
Even the assumption that capitalizing only changes the first letter of
a word is not universally correct. For example, in Dutch ijzer is to be
capitalized as IJzer.

For more information about VMS and ULTRIX services used to
work with multiple collating sequences and conversion functions,
see Chapters 7 and 8.

6.5 Local Devices

In most cases, DECwindows software provides device support, including
keyboard mappings for different character sets. Keyboard mapping is
needed if, for example, a German-speaking Swiss person working with
a French keyboard needs a German keyboard layout. The DECwindows
interface downloads software that changes the definition of some
of the keys in the keyboard, and enables other characters through
compose sequences. Compose sequences are two- or three-stroke
sequences that create characters not available as standard keys. As far
as the application is concerned, all devices are DECwindows devices.
DECwindows provides startup procedure support for LK201 keyboard
variants and support for compose sequences for characters in the ISO
Latin-l character set.

Using the DECwindows Interface 109

International software products that use accelerator keys, such as the
Gold key or Control key sequences, to invoke functions must support
completely redefinable keyboards. Because the name of a function may
be changed during translation, for example, from Exit to Sortie, the key
used to invoke a function should be translatable as well, for example,
from the GoldIE keys to the Gold/S keys.

DECwindows applications can provide redefinable key bindings through
the TRANSLATION_TABLE function in a UIL specification file, as
shown in Example 6-5.

Example 6-5. Support for Redefinable Keyboards in DECwindows

!==
!

APPL KEYS.UIL

!+
! This UIL file binds application functions to keys.

It is included in the main module KEYBINDING EXAMPLE.UIL
! -

value
!+
! Set up the control key codes in an understandable

form for translators

NOTE: this section does not need to be translated.
!-
Ctrl a
Ctrl e

'Ctrl<KeyPress>a:
'Ctrl<KeyPress>e:

, ;
, ;

!+
! Set up the callback name to map to the accelerator key

NOTE: this section does not need to be translated.
!-
AppendAction
ExitAction

110 Using the DECwindows Interface

'AppendCallback()' ;
'ExitCallback(), ;

(Example 6-5 continues on next page)

Example 6-5 (Cont.). Support for Redefinable Keyboards in
OECwindows

!+
! Bind the keys to the actions

NOTE: Translators - key bindings can be changed by
changing the keycodes associated with the functions.

For example, if the Exit key binding needs to be changed
from Control/E to Control/S, then replace Ctrl_E below
with Ctrl_S. In this case, "Ctrl_E & ExitAction" becomes
"Ctrl S & ExitAction".

!-
AppendAccelerator

Ctrl S & AppendAction;

ExitAccelerator
Ctrl E & ExitAction;

!+
! Key event table
!
! NOTE: this section does not need to be translated.
!-
KeyTable : exported translation_table (AppendAccelerator

, ExitAccelerator
) ;

The APPL_KEYS.UIL file is included by KEYBINDING_EXAMPLE.UIL,
as shown in Example 6-6.

If possible, the best solution is to not use keys at all. Besides the
fact that functions, when translated, may not begin with the same
letter, certain functions may be positional. Therefore, the keys may
not function as expected if a different keyboard is used. A keyboard­
independent application allows the keyboard layout card to match
different keyboards.

Using the DECwindows Interface 111

Example 6-6. KEYBINDING_EXAMPLE.UIL

!+
! Include translatable key bindings
!-
include file 'appl_keys.uil';

object

ApplDialogBox dialog_box
{

arguments
{

!+
! Set up the accelerators for this object
!-

translations = KeyTable;

};

6.6 DECwindows Interface: Localizable Software Example

This section shows how developers at Digital use the DECwindows
interface to create a localized application. Figure 6-3 specifies the
layout of the main window for an application user interface. This
example shows an object-oriented user interface widget. Users interact
with the application by positioning the mouse on the appropriate object
(for example, the Apply button or the Cancel button) and pressing the
first mouse button, MBl.

112 Using the DECwindows Interface

Figure 6-3. XLAT_EXAMPLE.UIL Main Window

MainWindowDB

{)
@ Enable_button

0@ Disable_button

Q

I Apply I I Cancel I

The XLAT_EXAMPLE.UIL file used to define the window shown in
Figure 6-3 includes three files that declare constants:

File Description

Declares all translatable text
strings as constants

Declares all modifiable sizing and
positioning values as constants

Declares all constants that do not
need to be translated

Example 6-7 shows a UIL specification file that can be translated.

Using the DECwindows Interface 113

Example 6-7. A Translatable UIL Specification File: XLAT_
EXAMPLE.UIL

!==
!

XLAT EXAMPLE.UIL

module uil_example
version = 'vI.O'
names = case insensitive

!+
! This UIL file specifies the layout of the main window for an

application user interface. It also demonstrates how to
write UIL files in ways that support translation.

!-

!+
! Include translatable constants
!-
include file 'uil_example_text.uil';
include file 'uil_example_values.uil';

!+
! Include non-translatable constants
!-
include file 'uil_example_nonxlat.uil';

!+
! Main Section, builds up the widgets and their layout.
!-
object MainWindowDB
{

arguments {
x =
y =
height
width

dialog_box widget

MainWindowDBXPos;
MainWindowDBYPos;
MainWindowDBHeight;
MainWindowDBWidth;

} ;

controls
};

{

toggle_button
toggle_button
list box
push_button
push_button
push_button

};

EnableToggleButton;
DisableToggleButton;
DisplayListBox;
OKPushButton;
ApplyPushButton;
CancelPushButton;

(Example 6-7 continues on next page)

114 Using the DECwindows Interface

Example 6-7 (Cont.). A Translatable UIL Specification File: XLAT_
EXAMPLE.UIL

!+
! The enable toggle button gadget
!-

object EnableToggleButton
{

arguments {
x =
y =
label label

} ;
};

toggle_button gadget

EnableToggleButtonXPos;
EnableToggleButtonYPos;
EnableToggleButtonLabel;

!+
! The disable toggle button gadget
!-

object DisableToggleButton
{

arguments {
x =
y =
label label

} ;
};

!+
! The list box widget
!-

toggle_button gadget

DisableToggleButtonXPos;
DisableToggleButtonYPos;
DisableToggleButtonLabel;

object DisplayListBox
{

arguments {
x =
y =
height
width
items

};

};

list box widget

DisplayListBoxXPos;
DisplayListBoxYPos;
DisplayListBoxHeight;
DisplayListBoxWidth;
DisplayListBoxltemTable;

(Example 6-7 continues on next page)

Using the DECwindows Interface 115

Example 6-7 (Cont.). A Translatable UIL Specification File: XLAT_
EXAMPLE.UIL

!+
! The okay push button gadget
!-

object OKPushButton
{

push_button gadget

arguments {
x =
y =
label label

} ;
} ;

OKPushButtonXPos;
OKPushButtonYPos;
OKPushButtonLabel;

!+
! The apply push button gadget
!-

object ApplyPushButton
{

push_button gadget

arguments {
x =
y =
label label

} ;
};

ApplyPushButtonXPos;
ApplyPushButtonYPos;
ApplyPushButtonLabel;

!+
! The cancel push button gadget
!-

object CancelPushButton
{

push_button gadget

arguments {
x =
y =
label label

};

};

end module;

CancelPushButtonXPos;
CancelPushButtonYPos;
CancelPushButtonLabel;

The files shown in Examples 6-8,6-9, and 6-10 are included by XLAT_
EXAMPLE.UIL (shown in Example 6-7).

116 Using the DECwindows Interface

Example 6-8. Declaration of Text Strings as Constants

!==

! UIL EXAMPLE TEXT.UIL

!+
! This UIL file contains the text strings to be translated for the

application.

This file is included in the main module, XLAT EXAMPLE.UIL.
!-
value

!+
! The label name for the toggle button Enable button
!-

Enable button
'Enable the application';

!+
! The label name for the toggle button Disable button
!-

Disable button
'Disable the application';

!+
! The items to be listed in the list box DisplayListBox

DisplayListBoxlteml
, First item';

DisplayListBoxltem2
, Second item' ;

DisplayListBoxltem3
, Third item' ;

DisplayListBoxltem4
, Fourth item';

!+
! The label for the push button OK
!-

OK :
, Okay' ;

!+
! The label for the push button ApplyPushButton
!-

ApplyPushButtonLabel :
, Apply';

!+
! The label for the push button CancelPushButton
!-

CancelPushButtonLabel :
'Cancel' ;

Using the DECwindows Interface 117

Example 6-9. Declaration of Position and Size Values as Constants

!==
!
! UIL EXAMPLE VALUES.UIL- -
!
!+
! This UIL file contains the position and dimension values of

the objects used in the application program. These values
can be affected by the translation of the text strings found
in the file UIL EXAMPLE TEXT.UIL.- -

This file is included in the main module XLAT EXAMPLE.UIL.
!­
value

!+
! Height and width of the dialog box widget MainWindowDB.

These dimensions are affected by the positions and dimensions
of the following objects:

EnableToggleButton
DisableToggleButton
DisplayListBox
OKPushButton
ApplyPushButton
CancelPushButton

!-
MainWindowDBHeight

600;
MainWindowDBWidth

800;
DisplayListBoxHeight

300;
DisplayAttachSeparation:

30;
l+
! X and Y position for the toggle button widget EnableToggleButton.

This position can affect the following widgets:

DisableToggleButton
DisplayListBox

!-
EnableToggleButtonXPos

20;
EnableToggleButtonYPos

20;
!+
! X and Y position for the toggle button widget DisableToggleButton.

This position is affected by the position of EnableToggleButton,
and can affect the following widget:

DisplayListBox
!-

DisableToggleButtonXPos

(Example 6-9 continues on next page)

118 Using the DECwindows Interface

Example 6-9 (Cont.). Declaration of Position and Size Values as
Constants

20;
DisableToggleButtonYPos

40;
!+
! X and Y position for the list box widget DisplayListBox.

This position is affected by the position and labels of the
following:

EnableToggleButton
DisableToggleButton

This position affects the following widgets:

OKPushButton
ApplyPushButton
CancelPushButton

!-
DisplayListBoxXPos

100;
DisplayListBoxYPos

20;
!+
! Height and width of the list box widget DisplayListBox.

These dimensions affect the following widgets:

MainWindowDB
OKPushButton
ApplyPushButton
CancelPushButton

!-
DisplayListBoxHeight

300;
DisplayListBoxWidth

200;
!+
! X and Y position for the push button widget OKPushButton.
! This position is affected by the list box widget DisplayListBox
! and affects the dialog box widget MainWindowDB height.
!-

OKPushButtonXPos
20;

OKPushButtonYPos
350;

!+
! X and Y position for the push button widget ApplyPushButton.

This position is affected by the following widgets:

OKPushButton
DisplayListBox

This position affects the following widgets:

(Example 6-9 continues on next page)

Using the DECwindows Interface 119

Example 6-9 (Cont.). Declaration of Position and Size Values as
Constants

CancelPushButton
MainWindowDB (height)

!-
ApplyPushButtonXPos

200;
ApplyPushButtonYPos

350;
!+
! X and Y position for the push button widget CancelPushButton.

This position is affected by the following widgets:

ApplyPushButton
DisplayListBox

This position affects the dialog box widget MainWindowDB height
and width

!-
CancelPushButtonXPos

300;
CancelPushButtonYPos

350;

Example 6-10. Declaration of Nontranslatable Values as Constants

!===

! UIL EXAMPLE NONXLAT.UIL

!+
! This UIL file contains the constants that do not require

translation. It is included in the main module "xlat_example.uil"
!-

!+
! The dialog box position will remain fixed (overriding any xdefault

position)
!-
value

(Example 6-10 continues on next page)

120 Using the DECwindows Interface

Example 6-10 (Cont.). Declaration of Nontranslatable Values as
Constants

MainWindowDBXPos 500;
MainWindowDBYPos 500;

+
The string table of items to be listed in DisplayListBox

DisplayListBoxltemTable : string_table (
DisplayListBoxlteml

, DisplayListBoxltem2
, DisplayListBoxltem3
, DisplayListBoxltem4
) ;

Using the DECwindows Interface 121

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Chapter 7

Using the VMS Operating System

This chapter describes many of the VMS features that support inter­
national product development. The VMS and Japanese VMS (JVMS)
operating systems support international product development with the
following system features:

• Application development tools

New tools enable the separation of user interface text from applica­
tion functions, provide means of testing translated user interfaces,
and provide mechanisms for formatting local data conventions.

• VMS Message Utility

This utility allows developers to construct informational, warning,
or error messages in standard VMS format.

• Run-Time Library routines

Routines are available to support date and time values, and other
text and data formatting requirements.

• National Character Set (NCS) Utility and Run-Time Library

These routines support ISO Latin-l text processing requirements.

• Terminal Fallback Facility

This facility supports terminals that use the National Replacement
Character set (NRC).

Using the VMS Operating System 123

7.1 DECforms User Interface

Designers working in the VMS environment can choose from several
application development tools that support localization. This sec­
tion describes the advantages afforded by creating a DECforms user
interface for an international product.

DECforms is an application development tool used to create and
manipulate fixed form interfaces. It is the preferred development
tool in simple data-entry applications, which use the forms and menus
as user interfaces. The forms manage the exchange of information
between the user and the application program, and manage the input
and output devices used by the application as well.

The use of DECforms supports a principal requirement of international
product development by separating user interface form from application
function. A DECforms user interface can be created and edited apart
from the application program that will use the interface. Consequently,
engineering groups in other countries can localize the user interface
without having to modify, or even access, the international base code.

Several DECforms components support the development of interna­
tional products:

• The Independent Form Description Language (IFDL) and the IFDL
Translator

The Independent Form Description Language (IFDL) and the IFDL
Translator provide one method of creating a form in DECforms.
The IFDL is a semi-procedural language used to describe:

Information displayed on a terminal screen

The format used to display that information

Interactions with a user

Interactions with the application program

To create a form used in a DECforms user interface, write an IFDL
source file and translate that source file into a form file using
the IFDL Translator. Form files can be edited using the Form
Development Environment, or invoked by an application using the
Form Manager.

An IFDL source file is a text file that can be edited using standard
VMS text editors. This capability supports the important inter­
national requirement that translatable text be available to non­
technical translators in an easily editable form. An IFDL source
file can also be edited in the Form Development Environment.

124 Using the VMS Operating System

• The Form Development Environment

The Form Development Environment (FDE) is a menu-driven form
creation tool that enables developers to create or modify a form file
or test a form file's functioning at run time. Application developers
can use FDE to interactively design forms.

• The Panel Editor

The Panel Editor enables developers to create and modify graphic
form elements and their attributes, and see the results on the
screen immediately. Application developers can use the Panel
Editor to interactively create graphic form elements such as back­
ground text and graphics, and modify the locations and sizes of
fields. The readjustment of forms when translating a DECforms
application can be avoided by using widgets in applications based
on the DECwindows interface (see Chapter 6).

Engineering groups in other countries can use FDE and the Panel
Editor to make adjustments to the layout of a form after the form
text has been translated, and after other modifications have been
made to the form.

• The Back Translator

The Back Translator produces an IFDL source file from a form
file. Thus, it performs the reverse function of the IFDL Translator.
Because form files cannot be edited with a text editor, DECforms
provides the Back Translator as a way of creating an editable and
translatable IFDL source file from a forms file. The IFDL source
file produced by the Back Translator can be translated back into a
form file by the IFDL Translator.

• The Test Utility

The Test Utility enables a form designer to check the appearance
of a form before the application that will use the form is written.
Engineering groups in other countries can use this utility to test
the appearance of translated user interfaces before the application
code is frozen or even available. The full user interface can then be
tested using the FDE and enable/control text responses.

• The Form Manager

The Form Manager is the interface between the application pro­
gram and the display device. It is a run-time system that controls
form display and operator input on terminals. It is the Form
Manager that activates the form interface used by the application,

Using the VMS Operating System 125

and passes data to and from the input/output device. By plac­
ing form requests in your application program, you establish the
interface between application function and form.

For more information about the DECforms system, see the following
documents in the DECforms documentation set:

• DECforms Guide to Developing Forms, Order Number AA-LC17A­
TE-Explains how to use the DECforms software to create forms.

• DECforms Reference Manual, Order Number AA-LC19A-TE­
Provides descriptions of the DECforms DCL commands and Panel
Editor Commands, and provides syntax information on the IFDL.

• DECforms Guide to Programming, Order Number AA-LC20A-TE­
Describes calling DECforms from a program and how the program
operates at run time.

7.2 Messages in VMS

The VMS Messaging Facility enables application designers to isolate
the translatable message text displayed by an application by placing
the text in a separate file. The application locates and uses its message
text through a pointer file, which is linked to the application directly.
By separating message text from the application that displays that text,
designers create application programs that can use interchangeable
message text files in several languages, as described in the next section.

Designers can add comments and context information for translators
by subsequently editing the files generated by the VMS Messaging
Facility.

7.2.1 Using Message Pointers

Message pointers allow an international product to provide different
message texts for one set of messages. Using message pointers does
not link the object module containing the message text directly with
the facility object module. Consequently, engineering groups in other
countries do not need to relink with the application executable image
file to change the message text included in it. The groups can substi­
tute message text in one language for message text in another without
making changes to the application source code.

126 Using the VMS Operating System

To use message pointers,

• Isolate the message text used by your product.

1. Create a nonexecutable message file that contains the message
text.

2. Create a separate pointer file that contains message symbols
and a pointer to the nonexecutable message file.

3. Link the pointer file with your application object files.

• Create the nonexecutable message file by compiling and linking a
message source file.

For example, to create the nonexecutable message text file
XYZMSGTEXT.EXE, first create the object module by compil­
ing the message source file, XYZMSG.MSG, using the following
command:

$ MESSAGE/NOSYMBOLS XYZMSG IReturn \

Link the resulting message text object module using the following
command:

$ LINK/SHAREABLE=SYS$MESSAGE:XYZMSGTEXT XYZMSG.OBJIReturnl

This example creates the XYZMSGTEXT.EXE nonexecutable mes­
sage text file and places it into the SYS$MESSAGE system message
library.

• Create the message pointer file by recompiling the message source
file.

Use the MESSAGE/FILE_NAME command. To avoid confusion,
use a file name other than the name you gave the nonexecutable
message text file. The resulting object module contains only global
sYmbols and the file specification of the nonexecutable message text
file.

For example, the following command creates the object module
XYZMSGPOINTER.OBJ, containing a pointer to the nonexecutable
message file, SYS$MESSAGE:XYZMSGTEXT.EXE:

$ MESSAGE/FILE_NAME=XYZMSGTEXT /OBJECT=XYZMSGPOINTER XYZMSG\Returnl

The object module XYZMSGPOINTER.OBJ contains, in addition to
the message pointers, the global symbols defined in the XYZMSG
message source file. If the nonexecutable message text file (in this
example, XYZMSGTEXT.EXE) is not in SYS$MESSAGE, you must
specify a device and directory or, better still, use a logical name in
the file specification for the /FILE_NAME qualifier.

Using the VMS Operating System 127

• Mter creating the pointer object module, link it with the application
program's object module.

For example, the following command links the pointer object mod­
ule, XYZMSGPOINTER.OBJ, with the application object module,
XYZCODE.OBJ:

$ LINK XYZCODE, XYZMSGPOINTERIRffiurnl

When you run the resulting facility image file, message pointers
direct the $GETMSG system service to retrieve message text from
the nonexecutable message text file, XYZMSGTEXT.

Translating message text in the message source file, and then creating
a new nonexecutable message text file allows the engineering groups
in other countries to use the same message pointers used by the base
version of the product to point to translated message text.

Figure 7-1 illustrates the process used to create an application that
retrieves message text from a separate, nonexecutable message text
file.

7.2.2 Using Logical Names to Switch Message Files

The VMS Message Utility enables you to create an application that re­
trieves message text from a separate message text file. The application
uses a message pointer file, which is linked with the application object
file.

The message pointer file can also direct the application to a logical
name rather than to a file specification for the message text file. Thus,
the target message text file can be changed by redefining a logical
name. This method of switching message files implies that users must
exit from the product, change the logical name, then reinvoke the
product each time they want to switch message files.

128 Using the VMS Operating System

Figure 7-1. Creating and Using a Message Pointer File

Message
Source File

XYZMSG.MSG

+ +
Message Compiler

Message CompilerIFILENAME=
XYZMSGTEXT/OBJECT INOSYMBOLS

XYZMSGPOINTER XYSMSG

+ +
Message Pointer Message Object

Object Module Module
XYZMSGPOINTER XYZMSG.OBJ

+ +
Facility

Linker
ISHAREABLE=Object Module -----. Linker

SYS$MESSAGE:XYZCODE.OBJ
XYZMSGTEXT

+ +
Executable Non-Executable

Program Including -----. Message File
Pointer to SYS$MESSAGE:

Message Data XYZMSGTEXT

Example 7-1 shows a command file that uses three source files:

• TEST_MESSAGE.FOR

• ENGLISH.MSG

• FRENCH.MSG

Using the VMS Operating System 129

Example 7-1. Command File for Switching Message Files

Compile the message files

Link the message files into
! shareable images

Logical name pointing to a
! shareable image

! Note that this is only
! done once

/OBJECT=MESSAGE_POINTERS ­
ENGLISH

$ FORTRAN TEST MESSAGE
$ LINK/NOTRACE TEST_MESSAGE, MESSAGE_POINTERS
$ DEFINE my_messages DISK$: [DIRECTORY]ENGLISH.EXE

$ LINK/SHAREABLE FRENCH.OBJ
$ MESSAGE/FILE_NAME=My_messages -

$ MESSAGE/NOSYMBOL ENGLISH.MSG
$ MESSAGE/NOSYMBOL FRENCH.MSG
$ LINK/SHAREABLE ENGLISH.OBJ

When the TEST_MESSAGE program is run, message text is extracted
from the shareable image named ENGLISH.EXE, which is the file
pointed to by the logical name my_messages. To access the French
message, redefine the logical name:

$ DEFINE my_messages DISK$: [DIRECTORY]FRENCH.EXE

Use a full file specification when defining a logical name that points
to a shareable image message file, unless the shareable image resides
in SYS$MESSAGE. If a shareable image resides in SYS$MESSAGE,
supply just the file name.

7.2.3 Using $FAO to Reo~der Message Parameters

When translating software, engineering groups in other locales create
foreign-language message files in which both the message text and the
order of parameters may change. For example:

English: Found 'DUAl:' when expecting 'DUAO:'
French: 'DUAO:' attendu; 'DUAl:' re~u

Use parameters very selectively in application messages. Never use
parameters to build a natural language sentence from parts. Because
different languages use different syntax, messages built from parts may
be difficult to translate. Do not use $FAO for composing messages from
pieces of text. If you use artificial language parameters such as file or
device names in messages, do so with care. See Section 4.2.2 for more
information.

130 Using the VMS Operating System

The $FAO facility provides a means for reordering parameters. For
example, the following message file, ENGLISH.MSG, defines one
error, whose IDENT is MSG_ORDER, "MSG_" being the prefix to all
messages defined in this file. The definition specifies two parameters,
whose values are provided by the $FAO parameter list.

. Facility efgh,l /prefix=MSG_

. Severity error

order <Found ' lAS' when expecting' lAS'>/fao=2

.end

The following program source code signals this error message:

external msg_order
call lib$signal (msg_order , %val(2) , 'abc' , 'xyz')
end

The call to LIB$SIGNAL specifies the message name, the number
of $FAO parameters to be inserted in the message, and the $FAO
parameters.

When the message is built, the first value, 'abc', is inserted at the point
of the first $FAO directive in the message and the second value, 'xyz', is
inserted at the point of the second $FAO directive. When the program
is linked with the object file created by the VMS Message Utility and
then executed, the following message is displayed:

%EFGH-E-ORDER, Found 'abc' when expecting 'xyz'

To use the parameters in a different order, as required by the French
translation of the message, use the following $FAO directives:

!+

!­
!nC)

Causes $FAO to skip a parameter

Causes $FAO to back up one parameter

Allows specification of a repeat count for the !+ and !- direc­
tives

These directives allow access to the $FAO parameter in any order. For
example, the following message file called FRENCH.MSG is phrased
so that the second $FAO parameter is used first and the first $FAO
parameter used second.

Using the VMS Operating System 131

.Title test_fao_messages

.Facility efgh,l /prefix=msg_

.Severity error

order<' !+!AS' attendu; , !2(-) !AS' recu >/fao=2

.end

The !+!AS construction selects the second parameter in the list and
inserts it into the message. Mter the !+!AS directives have been
processed, the pointer is moved to the third directive, !2(-), needed to
move the current parameter pointer two parameters to the left, or back
to the first parameter, which is then output by the !AS which follows.

When this message file is compiled by the MESSAGE utility and the
same program is linked with the resulting object file, the following
message is issued:

%EFGH-E-ORDER, 'xyz' attendu; 'abc' recu

This example links the program object file with a message object file,
which results in a separate image for each program- and message-file
combination.

7.2.4 Using $FAO for Conditional Messaging

In VMS Version 5.2 and later, you can use $FAO directives to test the
value of a message parameter and create conditionalized messaging
based on the result. For example, your message might include one text
string that is displayed ifa tested value is zero, another if the value is
one, and a third if the value is anything else. This facility has obvious
uses in international messages, where ways of pluralizing nouns may
vary for different languages. International software products should
pluralize using this approach, rather than by adding s to the end of a
noun string.

The $FAO directives used for conditional messaging are as follows:

Directive

lUL

In%C

Function

Captures the parameter to be tested.

Identifies the string to be displayed if the tested parameter
equals the value n. The message can contain any number of
In%C case directives.

132 Using the VMS Operating System

Directive

!%E

!%F

Function

Identifies the string to be displayed if the tested parameter is
other than any of the values specified in !n%C directives.

Marks the end of the list of !n%C strings.

7.3 Local Conventions

VMS provides several facilities that enable international products to
use local conventions when formatting and validating data. These
facilities include:

• Run-Time Library support for date and time formatting

• Forms system support for number and currency formatting

7.3.1 Formatting Dates and Times

The VMS Run-Time Library provides routines to format date and time
values and perform date and time manipulations. Applications that use
the Run-Time Library date and time routines can determine a user's
preferred date and time format at run time and display date and time
values accordingly. Applications can also use date and time routines
to transform user supplied values from the input format to an internal
format for storage, processing, or transmission.

7.3.1.1 Specifying Language and Date and Time Formats

In VMS Version 5.0 and later, a system manager or someone with com­
parable privileges can define the SYS$LANGUAGES logical name to
indicate the languages that will be used on the system. The available
languages, and the logical names associated with the languages, are
shown in the following table.

Language

Austrian
Danish
Dutch
Finnish
French

Logical Name

AUSTRIAN
DANISH
DUTCH
FINNISH
FRENCH

Using the VMS Operating System 133

Language

French Canadian
German
Hebrew
Italian
Norwegian
Portuguese
Spanish
Swedish
Swiss French
Swiss German

Logical Name

CANADIAN
GERMAN
HEBREW
ITALIAN
NORWEGIAN
PORTUGUESE
SPANISH
SWEDISH
SWISS_FRENCH
SWISS_GERMAN

For example, if system managers need to support English-, French-,
German-, and Italian-speaking users, they can define SYS$LANGUAGES
as shown below:

$ DEFINE SYS$LANGUAGES FRENCH, GERMAN, ITALIAN

Mter defining SYS$LANGUAGES, the system manager should invoke
the command procedure SYS$MANAGER:LIB$DT_STARTUP.COM.
This procedure defines default date and time formats and spellings
(day and month names) for the languages associated with the
SYS$LANGUAGES variable. The VMS system uses the translation
of SYS$LANGUAGES to select which alternate spellings and formats
are to be available to applications and users.

The LIB$DT_STARTUP.COM procedure must be executed before any of
the date and time routines can provide formats other than the default
VMS format. Both the definition of SYS$LANGUAGES and the invoca­
tion ofLIB$DT_STARTUP.COM can be done in SYSTARTUP.COM.

7.3.1.2 Defining Date and Time Formats

Users can select from a number of predefined date and time formats, or
they can define new formats. Date and time formats are defined using
format mnemonics. When defining a format, each mnemonic must be
preceded by an exclamation point (!).

Table 7-1 lists mnemonics used to define date and time formats.

134 Using the VMS Operating System

Table 7-1. Date and Time Run-Time Format Mnemonics
Mnemonic Description Example

DO Day value, 0 filled 01 - first day of month
09 - ninth day of month

DN Day value, not filled 1 - first day of month
9 - ninth day of month

MAAU Month name, alphabetic, JULl- July
abbreviated, uppercase

MAAC Month name, alphabetic, Jul1 - July
abbreviated, capitalized

H04 Hours, zero-filled, 24-hour 05 - five o'clock, a.m.
clock

HB2 Hours, blank-filled, 12-hour 2 - two o'clock a.m. or p.m.
clock

IMonth names are presented here in English. If the user has indicated another lan­
guage as the preferred language, month names are displayed in the preferred language.

Table 7-2 lists several of the predefined date and time formats.

Table 7-2. Predefined Date and Time Formats

Predefined Logical

LIB$DATE_FORMAT_001

LIB$DATE_FORMAT_038

LIB$TIME_FORMAT_OO1

LIB$TIME_FORMAT_012

Format

!DB-!MAAU-!Y4

!Y4.!MNO.!DO

!H04:!MO:!SO.!C2

!HB2:!MO !MIU

Example

13-JAN-1987

1987.01.13

09:13:25.14

9:13 a.m.

7.3.1.3 Using Date and Time Formats

A system manager can select an alternative date and time format for
the entire system, or individual users can create formats or select the
predefined formats they prefer. You can specify date and time formats
at run time by using LIB$DT_INPUT_FORMAT and the mnemonics
listed in Table 7-1, for example:

$ DEFINE LIB$DT INPUT FORMAT -
$ "!MAU !DD, !Y4 !H02: !MO: !SO: !C2 !MIU"

Using the VMS Operating System 135

Once the SYS$LANGUAGE, LIB$DT_FORMAT, and LIB$DT_INPUT_
FORMAT logicals are defined, date/time routines that format date and
time values use the spellings and formats indicated by the logicals. For
example, applications can use the LIB$FORMAT_DATE_TIME routine
to format a VMS internal date and time in the output format indicated
by the LIB$DT_FORMAT logical. Similarly, applications can use the
LIB$CONVERT_DATE_STRING routine to parse user-input values
against the format associated with the LIB$DT_INPUT_FORMAT
logical.

Table 7-3 lists the date and time routines supplied in the VMS Version
5.0 Run-Time Library.

See the VMS RTL Library Routines Manual, Order No. AA-76A-TE,
for more information about the VMS date/time routines used to provide
international date and time formats.

Table 7-3. Run-Time Library DatelTime Routines

Routine Name Description

LIB$FORMAT_DATE_TIME

LIB$FREE_DATE_TIME_
CONTEXT

LIB$GET_DATE_FORMAT

LIB$GET_MAXIMUM_DATE_
LENGTH

LIB$GET_USERS_LANGUAGE

LIB$INIT_DATE_TIME_
CONTEXT

Formats a date or time for output.

Frees the date and time context.

Returns the user's specified date and time
input formats.

Returns the maximum possible length of
an output date and time string.

Returns the user's selected language.

Initializes the date and time context with a
user-specified format.

7.3.2 Formatting Number and Currency Values

The VMS Run-Time Library provides routines to format number and
currency values and perform number and currency manipulations.
Applications that use the Run-Time Library number/currency routines
can determine a user's preferred number and currency format at run
time and display the values accordingly. Applications can also use
number/currency routines to transform user supplied values from
the input format to an internal format for storage, processing, or
transmission.

136 Using the VMS Operating System

In VMS Version 5.0 and later, a system manager or someone with
comparable privileges can define the SYS$CURRENCY logical name to
indicate the currency that will be used on the system. An individual
user with a special need can define SYS$CURRENCY as a process
logical name to override the system default. DECforms enables users
to specify alternate number and currency formats.

See the DECforms Reference Manual for more information.

7.3.3 International Collating Sequences

The National Character Sets (NCS) are subsets of the Multinational
Character Set (MCS). To convert text from a National Replacement
Character (NRC) set to MCS, see Section 7.3.5. Applications using
MCS can run on NRC terminals and printers with the help of the
Terminal Fallback Facility (see Section 7.5).

The default NCS Library, located in SYS$LIBRARY:NCS$LIBRARY.NLB,
contains collating sequence tables for the following languages and
character sets:

• Danish

• Dutch

• English

• Finnish

• French

• German

• Italian

• Multinational

• Multinational 1-
• MultinationaL2

• Norwegian

• Portuguese

• Spanish

Using the VMS Operating System 137

NCS provides routines that a VMS application can use to access the
collating sequence tables. These routines are listed in Table 7-4.

Table 7-4. NCS Routines Using Collating Sequences
Routine Name Description

NCS$COMPARE

NCS$CONVERT

NCS$RESTORE_CS

NCS$SAVE_CS

Compares two strings using a specified collating
sequence.

Converts a string using a specified conversion
function.

Terminates the use of a specified collating sequence
by the calling program.

Retrieves the definition of the named collating
sequence from the library. If a collating sequence
is not specified, it retrieves the native collating
sequence.

Permits the calling program to restore the defini­
tion of a saved collating sequence from a database.

Permits an application to store the definition for a
collating sequence in a database.

An international software product specifies a collating sequence to
be used at run time in an application profile. Use NCS$GET_CS to
retrieve the appropriate collating sequence and NCS$COMPARE to do
all string comparisons.

In a typical application, the program performs these steps:

1. Prepares a string for comparison

2. Makes a call to NCS$GET_CS to retrieve the appropriate collating
sequence

3. Makes one or more calls to the NCS$COMPARE routine to deter­
mine sorting order based on the retrieved collating sequence

4. Terminates the comparison with a call to NCS$END_CS

Example 7-2 shows a piece of code that retrieves a collating sequence
from the NeS library and uses it to compare two strings.

138 Using the VMS Operating System

Example 7-2. Comparing Two Strings

cs name = "spanish";
lib name = "sys$library:ncs$library";
ncs$get_cs (cs_id, cs_name, lib_name);
result=ncs$compare_cs(cs_id,strl,str2);
ncs$end_cs(cs_id);

In Example 7-2, each command performs its function in the following
ways:

• ncs$get_cs retrieves the definition of the named collating sequence
(Spanish) from the NCS library (sys$library:ncs$library).

• ncs$compare_cs compares the strings strl and str2 using the
Spanish collating sequence as the basis for comparison.

• ncs$end_cs terminates the program's use of the Spanish collating
sequence.

The program may also include the use of conversion functions to
prepare strings for the comparison routines. For example, conversion
routines might be used to convert an entire string to all lowercase
before comparison.

VMS Record Management Services (RMS), Version 5.0, support NCS
routines for index files. A collating sequence can be accessed from a
specified library and copied into the file during file creation. Thus, the
records can be inserted according to the collating sequences embedded
in the file.

Using the VMS Operating System 139

Example 7-3 illustrates the use of NCS Utility collating sequence
routines in a C program.

Example 7-3. C Program for Comparing Strings

/**/
/* ** */
/* * * */
/* * COMPARE.C -- An NCS demonstration program * */
/* * * */
/* * This program takes two hard-coded strings and compares them * */
/* * using a specified collating sequence. The contents of the * */
/* * strings and the name of the collating sequence can be * */
/* * varied to see the effects of different characters in * */
/* * different sequences. * */
/* * * */
/* * Any bad status (such as a warning, error, or fatal condi- * */
/* * tion) returned by the calls is signaled immediately to * */
/* * the user. If the status is not fatal, execution will resume * */
/* * with the following statement. * */
/* * * */
/* ** */
/**/

/* Include Files */
#include descrip
#include stdio

/* Macro Definitions */
#define CHECK_ (i) if. (! ((status

/* External Routines */
extern unsigned lib$signal();
extern unsigned ncs$get cs();
extern unsigned ncs$compare();
extern unsigned ncs$end_cs();

/* The Main Procedure */
main()
{

i) & 1)) lib$signal(status)

long cs_id; /* Collating Sequence Ident */
int order; /* The order in which the strings collate */
unsigned status; /* Used by CHECK macro */
/* Create static descriptors for the conversion function name */
/* and the two strings to be compared. */
$DESCRIPTOR(cs_name, "German");
$DESCRIPTOR(stringl, "Strasse");
$DESCRIPTOR(string2, "StraBe");

(Example 7-3 continues on next page)

140 Using the VMS Operating System

Example 7-3 (Cont.). C Program for Comparing Strings

1* Get the ident of the collating sequence, compare the strings, and *1
1* then release the resources. *1
CHECK_{ ncs$get_cs (&cs_id, &cs_name));
order = ncs$compare(&cs_id, &stringl, &string2);
CHECK_(ncs$end_cs (&cs_id));

1* Print the results *1
printf("\n\nThe string, \n\n\t\"%s\"\n\n", stringl.dsc$a pointer);
printf("collates %s the string,\n\n\t\"%s\"\n\n", -

{order > 0 ?
"after" :
(order < 0 ?

"before"
"equal to"

),

string2.dsc$a pointer);
printf{"using the \"%8\" collating sequence.\n\n", cs_name.dsc$a_pointer);

7.3.4 Using SortlMergeRoutines

Sort/Merge callable routines use the same collating tables as the
collating routines of the NeS Library. An international software
product can use the SortlMerge routines listed in Table 7-5 to sort or
merge files and then continue processing the files.

Table 7-5. Sort/Merge Routines
Routine Name Description

SOR$BEGIN_MERGE

SOR$BEGIN_SOR

SOR$DTYPE

Sets up key arguments and performs the merge.

Initializes sort operation by passing key informa­
tion and sort options.

Defines a key data_type that is not normally sup­
ported by SORT/MERGE.

Performs clean-up functions, such as closing files
and releasing memory.

(Table 7-5 continues on next page)

Using the VMS Operating System 141

Table 7-5. Sort/Merge Routines (cont.)
Routine Name Description

SOR$PASS_FILES

SOR$RELEASE_REC

SOR$RETURN_REC

SOR$SORT_MERGE

SOR$SPEC_FILE

SOR$STAT

Passes names of input and output files to SORT or
MERGE; must be repeated for each input file.

Passes one input record to SORT or MERGE; must
be called once for each record.

Returns one sorted or merged record to a program;
must be called once for each record.

Sorts the records.

Passes a specification file or specification text. A
call to this routine must precede all other calls to
SOR routines.

Returns a statistic about the sort or merge
operation.

7.3.5 Using Conversion Functions

The NCS Library also provides conversion function tables used to
perform the following transformations:

• Convert text from NRC to DEC MCS

• Convert text from DEC MCS to NRC
• Change the case of DEC MCS characters

• Remove diacritical marks from DEC MCS characters

Table 7-6 lists the conversion function tables provided in the default
NCS library.

Table 7-6. Conversion Function Tables in the NCS Library

Danish_NRC_to_Multi
Finnish_NRC_to_Multi
French_NRC_to_Multi
Italian_NRC_to_Multi
MultLto_Finnish_NRC
MultLto_French_NRC
MultLto_Italian_NRC

142 Using the VMS Operating System

EDT_VT2XX
FrCan_NRC_to_Multi
German_NRC_to_Multi
Multi_to_Danish_NRC
Multi_to_FrCan_NRC
Multi_to_German_NRC
MultLto_Lower

(Table 7-6 continues on next page)

Table 7-6. Conversion Function Tables in the NCS Library (cont.)

Multi_to_NoDiacriticals Multi_to_Norwegian_NRC
Multi_to_Swedish_NRC Multi_to_Swiss_NRC
Multi_to_Swiss_NRC Multi_to_UK_NRC
Multi_to_Upper Norwegian_NRC_to_Multi
Swedish_NRC_to_Multi Swiss_NRC_to_Multi
UK_NRC_to_Multi

International software products can use NCS conversion tables to
transform user input to a form appropriate for internal processing,
storage, or transmission.

Table 7-7 lists the NCS routines that a VMS application can use to
access conversion function tables.

Table 7-7. NCS Routines Using Conversion Functions
Routine Name Description

NCS$CONVERT

NCS$END_CF

NCS$GET_CF

NCS$RESTORE_CF

NCS$SAVE_CF

Converts a string using a specified conversion
function table.

Terminates the use of a conversion function table.

Retrieves the definition of the named CF from the
library.

Permits the calling program to restore the defini­
tion of a saved conversion function.

Permits the calling program to save the definition
of a conversion function in a database.

Example 7-4 illustrates the use of NCS Utility conversion function
routines in a C program.

Using the VMS Operating System 143

Example 7-4. C Program for Case Conversions

/**/
/* ** */
/* * * */
/* * CONVERT.C * */
/* * * */
/* * An NCS demonstration program. * */
/* * * * /
/* * This program takes a hard coded string and converts it using a * */
/* * hard coded conversion function. The compiletime constant "d_size" * */
1* * can be varied to see the effects of having a destination string * */
/* * which is too long or too short. * */
/* * * * /
I~ * Any bad status (i.e. warning, error, or fatal condition) which is * *1
1* * returned by the calls is signaled immediately to the user. If * */
1* * the status is not fatal, execution will resume with the following * */
/* * statement. * */
/* * * */
/* ** */
/**/

/* Include Files */
#include <descrip>
#include <stdio>

/* Macro Definitions */
#define CHECK_(i) if (! ((status

/* Constants */
#define d_size 80

/* External Routines */
extern unsigned lib$signal();
extern unsigned ncs$get_cf () ;
extern unsigned ncs$convert();
extern unsigned ncs$end_cf();

/* The Main Procedure */
main ()
{

long cf_id;
unsigned short ret_length;
struct dsc$descriptor_s dest;
char d_str [d_size];
unsigned status;

i) & 1» lib$signal(status)

/* Conversion Function Ident
/* Length of the return string
/* Destination string descriptor
/* Destination string allocation
/* Used by CHECK_ macro

*/
*/
*/
*/
*/

/* Create static descriptors for the conversion function name and the */
1* string to be converted (source of conversion). */
$DESCRIPTOR(cf_name, "EDT_VT2xx"»)
$DESCRIPTOR(source, "ctrl-A ='<ESC>', ctrl-B ='<ESC>''');

(Example 7-4 continues on next page)

144 USIng the VMS Operating System

Example 7-4 (Cont.). C Program for Case Conversions

/* Initialize the destination string descriptor */
dest.dsc$w length = d size;
dest.dsc$b-dtype = DSC$K DTYPE T;
dest.dsc$b=class = DSC$K=CLASS=S;
dest.dsc$a_pointer = d_str;

/* The allocation of the string */
/* The data type: Character string */
/* The descriptor class: String */
/* Address of allocation */

/* Get the ident of the conversion function, convert the string, and */
/* then release the resources. */
CHECK_(ncs$get_cf (&cf_id, &cf_narne));
CHECK_(ncs$convert(&cf_id, &source, &dest, &ret_length));
CHECK_(ncs$end_cf (&cf_id));

/* Print the results */
printf("\n\nThe source string, \n\n\t\"%s\"\n\n", source.dsc$a_pointer);
printf("was converted to\n\n\t\"%s\"\n\n", dest.dsc$a_pointer);
printf("using the \"%s\" conversion function.\n\n", cf narne.dsc$a pointer);
printf("The source string was %d characters long.\n", source.dsc$w_length);
printf("The destination string was %d characters long.\n", ret_length);

7.4 Command Language Localization

If the application uses a command introducer, that is, a character
that announces a command to the application, then that character
should be modifiable. For example, if the application recognizes \ P as
the directive used to insert a page break, foreign engineering groups
should be able to replace both the P and the backslash with charac­
ters more appropriate for the locales they support. (On some LK201
keyboard variants, the backslash character is only available through a
three-keystroke Compose key sequence.) Store command introducers
externally with other application control, and in a modifiable form.

Use standard encoding to handle any user-supplied text that is in­
tended to become a part of the attributes interchanged between
applications. Never store such attributes in natural language text
in the interchange format.

User-supplied keywords (in the language of the user) should be recog­
nized on input and stored in a language-neutral form in the document.
These keywords may then be translated again into a different user's
language at a future processing time.

Using the VMS Operating System 145

7.5 The Terminal Fallback Facility

VMS provides transparent support for local terminals and keyboards
through the Terminal Fallback Facility (TFF). TFF helps bridge the gap
between the character set used by your application, and the character
set supported by the user's terminal, relieving the application from
character conversion tasks. TFF can convert characters sent to the
terminal by your application to characters the terminal is capable of
displaying, and it can convert characters· input at the terminal into
characters that your application can process. Figure 7-2 illustrates a
typical configuration using TFF.

Figure 7-2. Terminal Fallback Facility

I Printer I-I
Terminal

MCS-Specific
FallbackApplication ,
Facility

:"1 Terminal I-

In international markets, the Terminal Fallback Facility allows users
with National Replacement Character (NRC) set terminals to use ap­
plications that use the DEC Multinational Character Set (MCS). To use
an NRC terminal with an MCS-specific application, characters must
be converted going to and from the terminal to MCS. TFF provides
this conversion using a library of conversion tables, all in a manner
that is completely transparent to the application. Thus, VMS relieves
an application that uses MCS of the need to provide support for NRC
terminals.

If your application uses accelerator keys, such as Control key or Gold
key sequences, to invoke application functionality, define your key
bindings in an external, modifiable file. Your key bindings should
not be hardcoded in your application source code. If you use a form
management system such as DECforms, you can define your accelerator
keys in the modifiable user interface source files for your product. Print

146 Using the VMS Operating System

control should be modifiable also, as any printing devices your product
supports can vary from locale to locale.

7.6 VMS Operating System: Multilingual Software Example

This section presents an example of a multilingual software product
based on the VMS operating system. This example is a menu-driven
order entry system in two languages: English and French. Referred
to as the Order Entry System (OES), the application demonstrates the
following features:

• VMS date and time support
• DECforms (for the forms system)

• The NCS Utility

• RMS features for collating sequences and manipulation of currency
and number values for an international environment

The system monitors inventories of computer components and processes
orders for the components. Users can perform the following tasks:

• Place an order for a component

• Display a sorted list of components

• List a component in different languages

• Change the user profile to change the user interface

• Exit the program

The application uses two databases, one language-specific and one
language-independent. The language-specific database maintains the
records containing part identifiers and part descriptions in a particular
language. The language-independent database maintains the records
containing part identifiers, quantities, prices, order dates, and so on.

Records in both databases are accessed by using the part identifier,
which is a unique, language-independent identifier. Both databases are
RMS-indexed files that have specific collating sequences stored in them.
Once a file is created with a collating sequence, all records inserted
in the file are automatically sorted according to the stored collating
sequence.

The language-specific database is ordered by using the part description
as its primary key and the part identifier as its secondary key. The
language-independent database uses the part identifier as its primary
key, with no secondary key.

Using the VMS Operating System 147

The component information is collected by using the part ID from both
data files. Data formatting is based on the information stored in the
form and the profile before it is displayed.

7.6.1 Sample Application and User Profiles

The OES application uses two profiles:

• An application profile

The application profile provides two sets of information:
Information used by all user interfaces, regardless of locale
Locale-specific information used as the default (English in this
case). This information includes such things as date and time
formats, currency, exchange rate, and so on.

• A user profile

The user profile contains information that is specific to a particular
locale; the user profile supplements the application profile. The
user profile in this example is in French.

Both profiles are text files. Example 7-5 shows a default application
profile, and Example 7-6 shows a default French user profile.

Example 7-5. Application Profile

!* This is the application profile for the application. User profile
!* of English is included as part of this file.
!* If there is a need for comments, add them on the line before the
!* code, NOT on the same line.
!*
!* Location of common database which includes the part 10, price,
!* quantity.
AOl:$OISK2: [AVAKIAN.EXAMPLEJOATA_BASE.DAT
!* Location of description file for English
A02:$OISK2: [AVAKIAN.EXAMPLEJENG_DESC.OAT

(Example 7-5 continues on next page)

148 Using the VMS Operating System

Example 7-5 (Cont.). Application Profile

!* Location of the form file, holds the help files also
A03:$DISK2: [AVAKIAN.FORMSjORD_ENTRY.FORM
!* Location of the message file.
A04:$DISK2: [AVAKIAN.EXAMPLEjENGLISH_MSG.MSG
!* Location of the user profile's which will be read at start up.
B01:$DISK2: [AVAKIAN.EXAMPLE]FRENCH.UP
!* Location of the NCS library
C01:SYS$LIBRARY:NCS$LIBRARY
!* Base language
C02:ENGLISH
!* Base date/time formats and the language of use.
D01:LIB$DATE_FORMAT_Ol1
D02:LIB$TIME_FORMAT_013
D03:ENGLISH
!* Base currency and exchange rate relative to base country
!* Make sure the currency symbol matches the one specified in
!* IFDL file.
E01:$
E02:1
!* The thousand separator and the fraction separator.
!* Make sure the separators are the same specified in the IFDL
!* form fil-e.
E03: ,
E04: .

Example 7-6. French User Profile

!* The user profile specific to French.
!* Since this file is a subset of application profile, the
!* format of the file is similar to the application profile.
!* Even the records have the same ID (for example, A01 has
!* the same kind of information in both f~les if they are
!* the same kind)
A02:$DISK2: [AVAKIAN.EXAMPLEjFRN_DESC.DAT
A04:$DISK2: [AVAKIAN.EXAMPLEjFRENCH_MSG.MSG
!* Location of the NCS library and the NCS language.
C01:SYS$LIBRARY:NCS$LIBRARY
C02:FRENCH
!* Date and Time format
D01:LIB$DATE FORMAT 001
D02:LIB$TIME=FORMAT=019
D03:FRENCH

(Example 7-6 continues on next page)

Using the VMS Operatlng System 149

Example 7-6 (Cont.). French User Profile

!* The currency and the exchange rate relative to us.
E01:Fr
!* Put the exchange rate in (rate * us $) = country money
E02:0.5
!* The thousand separator and the fraction separator.
E03:
E04:,

The OES application utilizes the profiles as follows:

1. At the beginning of the OES program, both profiles are read in and
stored in memory as data structures, the application profile has a
pointer to the user profile.

2. Some initialization is done from the information read in.

3. Logical names for date and time formatting and the language,
LIB$DT_FORMAT and SYS$LANGUAGE, are set as shown in
Example 7-6.

4. A language logical for forms, FORMS$LANGUAGE, is set up.

5. The language-specific database, language-independent database,
and the form file are opened.

6. The menu is displayed.

7.6.2 Sample Source Code

The OES sample source code for two options is shown in Example 7-7
in detail: Placing an order and Displaying ordered list of components.
The panels (from the .IFDL file) for these options appear at the end of
the source code in both English and French. The other three options
are described at the end of the .IFDL piece.

150 Using the VMS Operating System

Example 7-7. OES Source Code

/*
**
** Structure defined to read each line of the profile.
**

*/

struct AP LINE
{

char id[ID_LENGTH]
char *data ;
} ;

/*
**
**
**
**
**

*/

UP_REC holds the language dependent information such as
date/time formatting logicals and language, the currency,
and the rate exchange.

struct UP REC
{

char *ncs lib ;
char *ncs_lang ;
char *desc_file ;
char *msg_file ;
char *date format
char *time format
char *dt_lang ;
char *currency ;
char *exchange_rate
char *thousand_sep
char *fraction_sep
};

/*
**
**
**
**

*/

Since UP_REC is a subset of AP_REC, include the structure
in AP_REC and add the AP_REC specific ones at the end.
NOTE: The header of UP_REC type should be the first field of
the structure.

struct AP REC
{

struct UP REC header
char *up_file
char *neutral data ;
char *form lib
struct UP REC *u_profile

} ;

(Example 7-7 continues on next page)

Using the VMS Operating System 151

Example 7-7 (Cont.). OES Source Code

/*
**
**
**
**

*/

Record for the order item panel.
The constants for length are defined earlier.

struct COMPONENT {
char part_id[COMP_ID] ;
char part_desc[COMP_DESC]
long unit_price ;
char valid_until [DATE_LENGTH]
short quantity
short order ;
} ;

/*
**
**
**

*/

Record used for listing the sorted items.

struct ordered_items {
char part id[COMP ID] ;
char descrip[DESC_LEN] ;
char currency [CURR_LEN]
long price ;
short q_avail ;
char valid_until [DATE_SHORT]
} ;

struct ordered_list {
short number entries
struct ordered items list_items [ITEM_LIMIT]
} ;

/*
**
**
**
**

*/

/*
**

All the external functions for DECforms, NCS calls
and necessary system calls.

** Global information set for accessing the forms$ calls.
**

*/

$DESCRIPTOR (device_name , "SYS$INPUT")

(Example 7-7 continues on next page)

152 Using the VMS Operating System

Example 7-7 (Cont.). OES Source Code

/*
**
** Since switching between English and French occurs, save
** each one and then set it to the main session id when needed.
**

*/

$DESCRIPTOR (session_id , " ") ;
$DESCRIPTOR (session_idl ")
$DESCRIPTOR (session_id2 ")

$DESCRIPTOR (list items~desc, "ordered list"

struct COMPONENT comp_info ;
struct ordered_list list ;
$STRUCTURE_DESCRIPTOR(list_desc, list)

/*
**
**
**
**
**
**

*/

SET UP LOGICALS sets up the itemlist and the other parameters
and-calls the system routine SYS$CRELNM to create the
'SYS$LANGUAGE' and date/time formatting logicals in the process
table.

long SET_UP_LOGICALS (up_profile
struct UP_REC *up_profile
{

unsigned long status ;

char *temp = "LNM$FILE_DEV" ;
char *logic name = "SYS$LANGUAGE"
char *date_time = "LIB$DT_FORMAT"
char temp log [50] ;
struct dsc$descriptor stable ;
struct dsc$descriptor-s log_name
/* -

**
**
**
**
**

Since LIB$DT_FORMAT is combination of LIB$DATE_FORMAT_nnn and
LIB$TIME_FORMAT_nnn (nnn specifies a format) itemlist is an
array of 3 items. For FORMS$LANGUAGE, itemlist will be 2.

struct items itemlist[3]

/*
**
**

*/

Put the table name and the logical name in a string descriptor
format, since sys$crelnm expects a string descriptor.

(Example 7-7 continues on next page)

Using the VMS Operating System 153

Example 7-7 (Cont.). OES Source Code

table.dsc$w_length = strlen (temp) ;
table.dsc$b_dtype = DSC$K_DTYPE_T
table.dsc$b_class = DSC$K_CLASS_S ;
table.dsc$a_pointer = temp;

log name.dsc$w length = strlen (logic name)
log-name.dsc$b-dtype = DSC$K DTYPE T ;
log-name.dsc$b-class = DSC$K-CLASS-S ;
log=name.dsc$a=pointer = logic_name;

/*
** Fill in the itemlist with information for SYS$LANGUAGE logical.
**

*/

itemlist[O] .buf_len = strlen(up_profile->dt_lang
itemlist[O] . item_code = LNM$_STRING ;
itemlist[O] .buf_add = up_profile->dt_lang
itemlist[O] .ret len_add 0;

itemlist[l] .buf_len = 0
itemlist[l] . item_code 0
itemlist[l] .buf_add = 0
itemlist[l] .ret_len_add 0

status = sys$crelnm (0, &table, &log_name , 0, itemlist);
if (status SS$_NORMAL I I status == SS$_SUPERSEDE)

/*
**
**

*/

When SYS$LANGUAGE is set, then set up the LIB$DT_FORMAT logical
using the same procedure as above.

log name.dsc$w length = strlen(date time
log-name.dsc$b-dtype = DSC$K DTYPE T
log=name.dsc$b=class = DSC$K=CLASS=S ;
log_name.dsc$a_pointer = date_time;

itemlist[O] .buf len = strlen(up profile->date format
itemlist[O] . item_code = LNM$_STRING ; -
itemlist[O] .buf_add = up_profile->date_format
itemlist[O] .ret len_add = 0 ;

itemlist[l] .buf len = strlen(up profile->time format
itemlist[l] . item_code = LNM$_STRING ; -
itemlist[l] .buf_add = up_profile->time_format
itemlist[l] .ret len_add 0;

itemlist[2] .buf_len = 0
itemlist[2] . item_code 0
itemlist[2] .buf_add = 0
itemlist[2] .ret len_add 0

(Example 7-7 continues on next page)

154 Using the VMS Operating System

Example 7-7 (Cont.). OES Source Code

status
/*

**
** If the date/time logical was already set up, clear the memory
** block for that information so we can reset it.
**

*/
if (user_context != 0) status lib$free_date_time_context &user_context)
if (status = SS$_NORMAL)

{

status = sys$crelnm (0, &table , &log name , 0, itemlist)
if (status == SS$_NORMAL I I status SS$_SUPERSEOE

return (SS$_NORMAL)

}

return (status)

/*
**
** OPEN FORM FILE sets up the descriptor for the form file which
** is a-global variable set in the application profile and calls
** the DEC forms call to perform it.
**

*/
long open_form_file ()

{

long stat ;

struct dsc$descriptor_s form_name ;

form name.dsc$w length = strlen(prof->form lib)
form-name.dsc$b-dtype = OSC$K DTYPE T; ­
form=name.dsc$b=class = OSC$K=CLASS=S ;
form_name.dsc$a_pointer = prof->form_lib

stat = forms$enable (0, /* form table in case of linked in */
&device_name, /* Terminal to use */
&session_id, /* session 10 returned by enable */
&form_name) ; /* name of the form file */

if (stat = FORMS$_NORMAL)
stat sys$success;

else
stat sys$enable_error

return stat ;

(Example 7-7 continues on next page)

Using the VMS Operating System 155

Example 7-7 (Cont.). OES Source Code

/*
**
**
**
**
**
**

*/

The information following this point shows steps taken when
the first option, Place an order for component, is selected.

ORDER_ITEM puts up the order item panel and receives the user
input for the part ID.

long order_item (part)
struct dsc$descriptor_s *part

{

long stat ;
long cf_id ;

$DESCRIPTOR(comp_name_desc, "comp_info") ;
$STRUCTURE DESCRIPTOR(comp rec desc, comp info
$DESCRIPTOR(cf name, "Multi to Upper") ;­
$DESCRIPTOR(cf=lib , u_p->ncs_lib) ;
struct dsc$descriptor_s dest
struct dsc$descriptor libr

stat
stat

SS$ NORMAL ;
for;s$receive(&session id ,

&comp_name_desc,
&1,
0,0,
0,0,
0,
0,
0,
&comp_rec desc,
0)

/* session id */
/* name of receive record */
/* number of records received */
/* receive ctl text msg/count */
/* send ctl text msg/count */
/* timeout */
/* parent request ID */
/* request options item list */
/* the record */
/* shadow record */

if (stat = FORMS$_NORMAL)
{

stat = SS$_NORMAL ;
part->dsc$w length = COMP ID ;
part->dsc$b-dtype = DSC$K-DTYPE T ;
part->dsc$b-class = DSC$K-CLASS-S ;
part->dsc$a=pointer = comp_info~part id

dest.dsc$w length = COMP ID ;
dest.dsc$b-dtype = DSC$K-DTYPE T
dest.dsc$b-class = DSC$K-CLASS-S
dest.dsc$a=pointer - -

156 Using the VMS Operating System

(Example 7-7 continues on next page)

Example 7-7 (Cont.). OES Source Code

/*
**
**
**
**
**
**
**

The next piece demonstrates the use of NCS conversion functions.
The user can enter the part 10 in capital letters, lowercase letters,
or a combination of both.
The piece converts the input (part 10) to uppercase characters.
DECforms lets the user specify 'UPPERCASE' clause in the field
attribute to capitalize the input.

*/
libr.dsc$w_length = strlen(u p->ncs lib
libr.dsc$b_dtype = DSC$K_DTYPE_T ;
libr.dsc$b_class = DSC$K_CLASS_S ;
libr.dsc$a_pointer = u_p->ncs_lib ;

stat = ncs$get_cf(&cf id &cf name ,&libr)

if (stat = SS$_NORMAL) {
stat = ncs$convert (&cf_id, part , &dest
if (stat = SS$_NORMAL) {

stat = ncs$end_cf (&cf_id

strncpy(comp_info.part_id dest.dsc$a_pointer
part->dsc$a_pointer comp_info.part_id
stat = SS$_NORMAL ;

}

else stat = sys$conv_func_f
}

else stat = sys$cf_get_f
}

else stat sys$receive_f

return stat

/*
**

COMP 10

**
**
**
**
**
**
**
**

*/

After the language-specific database and Language-Independent
Database are searched for the remaining information,
DISPLAY COMPONENT is called. It in turn calls:
CONVERT_DATE, CONVERT_PRICE, and DISPLAY_THE_COMPONENT.

CONVERT DATE formats the date and time (in the internal format)
passed by the 'date' to a string using the already setup logicals.

long convert date (date , date desc
struct quad *date ;
struct dsc$descriptor_s *date desc

(Example 7-7 continues on next page)

Using the VMS Operating System 157

Example 7-7 (Cont.). .OES Source Code

date desc->dsc$w length = 50 ;
date=desc->dsc$b=dtype = DSC$K_DTYPE_T ;
date desc->dsc$b class = DSC$K CLASS S ;
date-desc->dsc$a-pointer = (ch~r *) calloc(l,date desc->dsc$w length)
retu~n (lib$for;at_date time (date_desc , date ~ &user_context)) ;

}

/*
**
**
**
**
**
**
**
**
**
**
**

*/

CONVERT PRICE converts the price according to the exchange rate
specified in user_profile. The price is stored in the data base as
longword integer. The price_type which is kept as a field in the same
data base identifies the price as decimal (fractional) or integer.
If the price_type is 'I' (integer) then the price is multiplied by
100 to cancel out the forms scaling down by -2.
The form makes the necessary additions before displaying the information.
It adds thousand separator if necessary, the decimal separator and also
the currency symbol. All of this information is kept in the .IFDL file.

convert price price, converted_price , price_type
long *p~ice ;
long *converted_price
char *price_type

{

float temp ;
long temp_l ;
float rate ;

(float) atof(u_p->exchange_rate)
*price * rate ;

temp ;

temp - temp_l >= .50)

rate
temp
temp_l

/*
**

*/
if

The number is rounded up.

temp temp + 1

/*
**

*/
To undo the scaling down of the forms system.

if (*price_type == 'I'
*converted_price = temp

temp temp * 100

(Example 7-7 continues on next page)

158 Using the VMS Operating System

Example 7-7 (Cont.). OES Source Code

/*
**
**
**
**
**
**

*/

Displays information such as quantity available, price, date the
price is valid until and description of the part in specified language.
The information is displayed on the same panel where ID was entered.
Forms$transceive is used first to send this information to the panel,
and then to receive the users input on the 'Quantity to Order' field.

long display_the_component ()

{

long stat ;
$DESCRIPTOR(comp name desc, "comp info")
$STRUCTURE_DESCRIPTOR(comp_rec_desc , comp_info

stat = forms$transceive(&session_id,
&comp_name_desc,
&1,
&comp_name_desc,
&1,
0, 0,
0, 0,
0,
0,
0,
&comp_rec desc,
0,
&comp_rec_desc,
a)

/* session id */
/* send record name in form */
/* number of records sent */
/* receive record name in form */
/* number of records sent */
/* receive ctl text msg/count */
/* send ctl text msg/count */
/* timeout */
/* parent request 10 */
/* request options item list */
/* the send record */
/* send shadow record */
/* the receive record */
/* receive shadow record/length */

if (stat != FORMS$_NORMAL)
else stat = SS$_NORMAL
return stat

stat sys$transceive f

}

/*
**
**
**
**
**
**

*/

DISPLAY_COMPONENT converts the date, price, and all the raw data to
user specified values, and then calls the DISPLAY_THE_COMPONENT to
display it on the panel. It also stores the date and time the order
was put in.

(Example 7-7 continues on next page)

Using the VMS Operating System 159

Example 7-7 (Cont.). OES Source Code

display_component (id , q_avail , q ordered , date_ordered , price ,
price type , price_valid , description)

struct dsc$descriptor s *ld ;
short *q_avail ; -
short *q_ordered ;
struct quad *date_ordered
long *price ;
char *price_type ;
struct quad *price valid ;
struct dsc$descriptor_s *description

{

struct dsc$descriptor_s date desc
long converted-price ;
long status ;

status = convert date (price valid , &date desc)
if (status != SS$_NORMAL) - return status;
convert_price (price , &converted-price price_type

id->dsc$b_dtype = DSC$K DTYPE T ;
id->dsc$b class = DSC$K-CLASS-S ;
strncpy(comp info.part-id , id->dsc$a pointer id->dsc$w_length)
description->dsc$b dtype = DSC$K DTYPE-T ;
description->dsc$b-class = DSC$K-CLASS-S ;
strncpy(comp info.part desc , description->dsc$a pointer, description->dsc$w_length
comp_info.unit_price =-converted_price ; -
strncpy(comp info.valid until, date desc.dsc$a pointer date_desc.dsc$w_length
comp_info.qua~tity = *q_avail ; - -
comp_info.order = 0 ;

status = display_the_component ()
if (status != SS$_NORMAL) return status
*q_ordered comp_info.order

/*
**
**
**
**
**
**
**
**

*/
return

Get the date and time the order was placed, in case we want
to use it later on.

After displaying the information, the user is expected
either to enter a quantity to order or quit. The database
modification is done after the panel is processed.

lib$convert_date string (0, date_ordered))

(Example 7-7 continues on next page)

160 Using the VMS Operating System

Example 7-7 (Cant.). OES Source Code

/*
**
** The information following this point is the second option
** on the menu, Listing the ordered items.
**
**
**
**
**
**
**
**
**
**

*/

This routine is called when the list of ordered items is to be
displayed. The components information is read from two different data
files and for each component this function is called.
This routine fills up the array to be displayed for index.
'list' is declared globally. Also there is an equivalent structure in
IFDL file (as form data and form record). Since the entries in the data
base are limited to a small number in this example, the array is
preallocated to 30 elements.

long populate ordered list (id, description, price_type, price,
- - q_avail, price_valid)

struct dsc$descriptor_s *id ;
struct dsc$descriptor_s *description ;
char *price_type
long *price ;
short *q_avail ;
struct quad *price_valid

{

struct dsc$descriptor s date desc
long converted_price
long status ;

status

status convert date (price_valid , &date_desc)

convert_price (price, &converted_price, price_type)

strncpy (list.list_items[list.number_entries] .part_id, id->dsc$a_pointer,
id->dsc$w length) ;
strncpy (list.list_items[list.number_entries] .descrip, description->dsc$a_pointer,
DESC_LEN) ;
strncpy (list.list_items[list.number_entries] . currency, u_p->currency,
strlen(u p->currency));
strncpy (list.list_items[list.number_entries] .valid_until ,
date_desc.dsc$a_pointer, DATE_SHORT)

/*
** converted price and q_avail are passed as long and short integers.
** The form makes the final modifications to display them in the
** user-specified format.
*/

list.list_items[list.number_entries] .price = converted_price
list.list_items[list.number_entries] .q_avail *q_avail
list.number_entries ++ ;

(Example 7-7 continues on next page)

Using the VMS Operating System 161

Example 7-7 (Cont.). OES Source Code

return status

}

/*
**
** This routine is called after the array is filled with information
** to blank out the array fields not filled, otherwise if the last page is
** not full it will have the items from the previous page.
**
*/
clean_up_array ()

{

short i

for (i = list.number_entries ; i < ITEM_LIMIT i ++
{

strcpy(list.list_items[i] .part_id , " ")
strcpy (lisLlist_items [i] . descrip , "
strcpy(list.list_items[i] . currency ,~ ")
strcpy(list.list_items[i] .valid_until
list.list items[i] .price = °
list.list items[i] .q_avail = ° ;
}

")

")

/*
**
**
**
**

DISPLAY LIST is called when the array of ordered items is ready
to be displayed.

*/

display_list ()

long stat ;

stat forms$transceive(&session_id,
&list items desc
&1,
&list items_desc,
&1,
0,0,
0,0,
0,
0,

°,
&list_desc,
0,
&list_desc,

°) ;

/* session id */
/* send record name in form */
/* number of records sent */
/* receive record name in form */
/* number of records sent */
/* receive ctl text msg/count */
/* send ctl text msd/count */
/* timeout */
/* parent request ID */
/* request options item list */
/* the send record */
/* send shadow record */
/* the receive record */
/* receive shadow record */

(Example 7-7 continues on next page)

162 Using the VMS Operating System

Example 7-7 (Cont.). OES Source Code

if (stat != FORMS$_NORMAL) stat = sys$transceive_f
else stat = SS$_NORMAL
return stat ;

Example 7-8 shows portions of code taken from the ORD_ENTRY.IFDL
file. They correspond to the source code described in Example 7-7.
Both layouts with their corresponding panels are kept in one file, called
ORD_ENTRY.FORM. Switching between layouts is done through the
FORMS$LANGUAGE logical when the user selects the fourth option,
Change Profile. Example 7-8 does not display the full layouts and
panels; rather, it includes only the pieces necessary to demonstrate
DECforms internationalization features.

All the text relating to the screen is kept in ORD_ENTRY.IFDL. The
panel and field names in the two layouts are identical to each other.
The layouts differ only in the text that is displayed and the position of
that text.

Example 7-8. Samples from ORD_ENTRY.lFDL

/*
* The data fields are defined at the beginning of the file.
* Form data is defined first, then the form records.
*/

Form Data
PART_ID Character(7)
PART_DESC Character(30)
UNIT_PRICE Longword Integer
VALID_UNTIL Character(30)
QUANTITY Word Integer
DATE_TIME Character(30)

END Data

(Example 7-8 continues on next page)

Using the VMS Operating System 163

Example 7-8 (Cont.). Samples from ORD_ENTRY.lFDL

FORM DATA
first page UNSIGNED WORD
entry_count UNSIGNED WORD
GROUP items OCCURS 30

part_id CHARACTER (7)
descrip CHARACTER (22)
curr CHARACTER (2)
price LONGWORD INTEGER
q_avail WORD INTEGER
VALID CHARACTER (25)

END GROUP
END DATA

FORM RECORD comp_info
PART_ID Character(7)
PART_DESC Character (30)
UNIT_PRICE Longword Integer
VALID_UNTIL Character (30)
QUANTITY Word Integer
ORDER Word Integer

END RECORD

FORM RECORD ordered list
entry_count
GROUP items OCCURS 30

part_id
descrip
curr
price
q_avail
VALID

END GROUP
END RECORD

UNSIGNED WORD

CHARACTER (7)
CHARACTER (22)
CHARACTER (2)
LONGWORD INTEGER
WORD INTEGER
CHARACTER (25)

/*

*
*
*/

Beginning of a layout - English layout.
Note the Language is defined here.

Layout ENGLISH_LAYOUT
Device

Terminal
Type %VT300

Terminal
Type %VT200

Terminal
Type %VTIOO

End Device.
Language "ENGLISH"
Units Characters
Size 24 Lines by 80 Columns

(Example 7-8 continues on next page)

164 Using the VMS Operating System

Example 7-8 (Cont.). Samples from ORO_ENTRY.lFOL

/*
* Define External responses for this panel.
*/

TRANSCEIVE RESPONSE camp_info camp_info
ACTIVATE FIELD order ON order item

END RESPONSE

RECEIVE RESPONSE camp_info
RESET PART ID
RESET PART DESC RESET UNIT PRICE RESET VALID UNTIL

- -
RESET QUANTITY RESET ORDER
ACTIVATE FIELD part_id ON order_item

END RESPONSE

/*
* English panel for ordering a component.

*/

Panel ORDER ITEM
Display

%Keypad_Application

/*
* screen where the user can enter the order

*/

Use Help Panel
HELP ORDER ITEM- -

/*

*
*/

code for Digital Logo - NOT SHOWN

Literal Text
Line 5
Column 23
Value "Order Item Menu"
Display

Bold
Font Size Double High

End Literal

Literal Text
Line 10
Column 8
Value "Part id ."
Display

Bold
End Literal

(Example 7-8 continues on next page)

Using the VMS Operating System 165

Example 7-8 (Cont.). Samples from ORD_ENTRY.lFDL

Literal Text
Line 12
Column 8
Value "Part Description ."
Display

Bold
End Literal

Literal Text
Line 14
Column 8
Value "Price /Unit ."
Display

Bold
End Literal

Literal Text
Line 16
Column 8
Value "Price /Valid Until·"
Display

Bold
End Literal

Literal Text
Line 18
Column 8
Value "Quantity·"
Display

Bold
End Literal

Literal Text
Line 20
Column 8
Value "Quantity to Order ."
Display

Bold
End Literal

Field PART ID
Line 10
Column 18
Output Picture X(7)
REQUIRE part_id <> " "

MESSAGE "INPUT REQUIRED"
End Field

Field PART DESC
Line 12
Column 27
Output Picture X(30)

End Field

(Example 7-8 continues on next page),

166 Using the VMS Operating System

Example 7-8 (Cont.). Samples from ORO_ENTRY.lFDL

/*

*
*
*
*
*
*
*
*
*/

W - There will be a currency sign displayed at the left side of
the picture.

R - Appearing to the right of decimal point invokes the trailing
replacements. And to the left of the decimal point invokes
the leading replacements.

Note - The currency sign is specified in the form and also the
decimal separator is specified here.

Field UNIT PRICE
Line 14
Column 22
Output Picture W99' ,'999' ,'99R9.9R9
SCALE -2
CURRENCY SIGN IS "$"
DECIMAL POINT IS PERIOD

End Field

Field VALID UNTIL
Line 16
Column 29
Output Picture X(30)

End Field

Field QUANTITY
Line 18
Column 19
Output Picture 99' ,'999R

End Field

Field ORDER
Line 20
Column 28
Justification Right
Replace Leading " "
Output Picture 99' ,'999R

VALIDATION RESPONSE
IF ORDER > QUANTITY THEN
MESSAGE "'Order' amount should be less than 'Quantity' available"
INVALID
END IF

END RESPONSE
End Field

End Panel

(Example 7-8 continues on next page)

Using the VMS Operating System 167

Example 7-8 (Cont.). Samples from ORD_ENTRY.lFDL

/*

*
*/

/*

*
*/

/*

*
*/

The layout definition for French. Language is again defined here.

Layout FRENCH_LAYOUT
Device

Terminal
Type %VT300

Terminal
Type %VT200

Terminal
Type %VTIOO

End Device
Language "FRENCH"
Units Characters
Size 24 Lines by 80 Columns

The external responses are defined the same way as in English layout.

The French version of the same panel.

Panel ORDER ITEM
Display

%Keypad_Application

/*
* screen where the user can enter the order

*/

Use Help Panel
HELP ORDER ITEM- -

/*
* Digital Logo

*/

Literal Text
Line 5
Column 19
Value "Menu d'articles a commander"
Display

Bold
Font Size Double High

End Literal

(Example 7-8 continues on next page)

168 Using the VMS Operating System

Example 7-8 (Cont.). Samples from ORD_ENTRY.lFDL

Literal Text
Line 10
Column 8
Value "Identification de l'article ."
Display

Bold
End Literal

Literal Text
Line 12
Column 8
Value "Description de l'article ."
Display

Bold
End Literal

Literal Text
Line 14
Column 8
Value "Prix unitaire ."
Display

Bold
End Literal

Literal Text
Line 16
Column 8
Value "Prix valable jusqu'au ."
Display

Bold
End Literal

Literal Text
Line 18
Column 8
Value "Quantit~ ."
Display

Bold
End Literal

Literal Text
Line 20
Column 8
Value "Quantit~ a commander
Display

Bold
End Literal

(Example 7-8 continues on next page)

Using the VMS Operating System 169

Example 7-8 (Cont.). Samples from ORD_ENTRY.lFDL

Field PART ID
Line 10
Column 38
Output Picture X(7)
REQUIRE part_id <> " "
MESSAGE "Entr~e requise"

End Field

Field PART DESC
Line 12
Column 34
Output Picture X(30)

End Field

Field UNIT PRICE
Line 14
Column 24

/*
* The thousand separator can be any character.

*/
Output Picture W99' '999' '99R9,9R9
SCALE -2
CURRENCY SIGN IS "Fr"
DECIMAL POINT IS COMMA

End Field

Field VALID UNTIL
Line 16
Column 32
Output Picture X(30)

End Field

Field QUANTITY
Line 18
Column 19
Output Picture 99' '999R

End Field

Field ORDER
Line 20
Column 28
Justification Right
Replace Leading " "
Output Picture 99' '999R

VALIDATION RESPONSE
IF ORDER > QUANTITY THEN
MESSAGE "L'ordre le montant doit etre au-dessous de la

Quantit~ existante"
INVALID
END IF

END RESPONSE

(Example 7-8 continues on next page)

170 Using the VMS Operating System

Example 7-8 (Cont.). Samples from ORD_ENTRY.lFDL

End Field

End Panel

/*
* English panel for the list of ordered items.

*/

Panel list items
Viewport OPTION SCREEN
Display -

%Keypad_Application
REMOVE

FUNCTION RESPONSE TRANSMIT
REMOVE OPTION SCREEN
RETURN

END RESPONSE

LITERAL TEXT
LINE 5 COLUMN 11
VALUE "Ordered List of the Items"
DISPLAY FONT SIZE DOUBLE HIGH

END LITERAL

LITERAL TEXT
LINE 7 COLUMN 2
VALUE "Part ID"
DISPLAY BOLD

END LITERAL

LITERAL TEXT
SAME LINE COLUMN 12
VALUE "Part Description"
DISPLAY BOLD

END LITERAL

LITERAL TEXT
SAME LINE COLUMN 35
VALUE "Price/Unit"
DISPLAY BOLD

END LITERAL

LITERAL TEXT
SAME LINE COLUMN 49
VALUE "Quantity"
DISPLAY BOLD

END LITERAL

(Example 7-8 continues on next page)

Using the VMS Operating System 171

Example 7-8 (Cont.). Samples from ORD_ENTRV.lFDL

LITERAL TEXT
SAME LINE COLUMN 59
VALUE "Price Valid Until"
DISPLAY BOLD

END LITERAL

LITERAL POLYLINE
LINE 8 COLUMN 1
LINE 8 COLUMN 80

END LITERAL

GROUP items
VERTICAL DISPLAYS 10
FIRST first_page
SCROLL BY PAGE

FUNCTION RESPONSE DOWN ITEM
IF LAST ITEM THEN

MESSAGE "End of the list"
SIGNAL

ELSE
POSITION TO DOWN OCCURRENCE

END IF
END RESPONSE

FUNCTION RESPONSE UP ITEM
IF FIRST ITEM THEN

MESSAGE "Beginning of the list"
SIGNAL

ELSE
POSITION TO UP OCCURRENCE

END IF
END RESPONSE

FUNCTION RESPONSE NEXT PANEL
IF LAST ITEM THEN

MESSAGE "End of the list"
SIGNAL

ELSE
POSITION TO DOWN OCCURRENCE UNSEEN

END IF
END RESPONSE

FUNCTION RESPONSE PREVIOUS PANEL
IF FIRST ITEM THEN

MESSAGE "Beginning of the list"
SIGNAL

ELSE
POSITION TO UP OCCURRENCE UNSEEN

END IF
END RESPONSE

(Example 7-8 continues on next page)

172 Using the VMS Operating System

Example 7-8 (Cont.). Samples from ORD_ENTRY.lFDL

FIELD descrip

FIELD curr

FIELD price

FIELD valid

LINE 9 COLUMN 2
OUTPUT PICTURE X(7)

END FIELD

LINE 9 COLUMN 10
OUTPUT PICTURE X(22)

END FIELD

LINE 9 COLUMN 33
OUTPUT PICTURE X(2)

END FIELD

LINE 9 COLUMN 36
OUTPUT PICTURE 9' ,'999' ,'99R9.9R9
DECIMAL POINT IS PERIOD
SCALE -2

END FIELD

LINE 9 COLUMN 50
OUTPUT PICTURE 99' ,'999R

END FIELD

LINE 9 COLUMN 57
OUTPUT PICTURE X (23)

END FIELD

END GROUP

LITERAL POLYLINE
LINE 19 COLUMN 1
LINE 19 COLUMN 80

END LITERAL

FIELD first page
LINE 20 COLUMN 2
OUTPUT PICTURE X(50)
OUTPUT "FIRST page of the list."

WHEN first_page 1
OUTPUT "MIDDLE page of the list."

WHEN first_page = 11
OUTPUT "LAST page of the list."

WHEN first_page = 21
PROTECTED

END FIELD

END PANEL

(Example 7-8 continues on next page)

Using the VMS Operating System 173

Example 7-8 (Cont.). Samples from ORO_ENTRYoiFOL

/*
* French panel for listing the ordered items

*/
Panel list items

Viewport OPTION_SCREEN
Display

%Keypad_Application
REMOVE

FUNCTION RESPONSE TRANSMIT
REMOVE OPTION SCREEN
RETURN

END RESPONSE

LITERAL TEXT
LINE 5 COLUMN 11
VALUE "Liste alphabetique d'articles"
DISPLAY FONT SIZE DOUBLE HIGH

END LITERAL

LITERAL TEXT
LINE 7 COLUMN 2
VALUE "Ident."
DISPLAY BOLD

END LITERAL

LITERAL TEXT
SAME LINE COLUMN 12
VALUE "Description de l'article"
DISPLAY BOLD

END LITERAL

LITERAL TEXT
SAME LINE COLUMN 35
VALUE "Prix unitaire"
DISPLAY BOLD

END LITERAL

LITERAL TEXT
SAME LINE COLUMN 49
VALUE "Quantite"
DISPLAY BOLD

END LITERAL

LITERAL TEXT
SAME LINE COLUMN 59
VALUE "Prix valable jusqu'au"
DISPLAY BOLD

END LITERAL

LITERAL POLYLINE
LINE 8 COLUMN 1
LINE 8 COLUMN 80

END LITERAL

(Example 7-8 continues on next page)

174 Using the VMS Operating System

Example 7-8 (Cont.). Samples from ORD_ENTRY.lFDL

GROUP items ,
VERTICAL DISPLAYS 10
FIRST first_page
SCROLL BY PAGE

FUNCTION RESPONSE DOWN ITEM
IF LAST ITEM THEN

MESSAGE "Fin de la liste"
SIGNAL

ELSE
POSITION TO DOWN OCCURRENCE

END IF
END RESPONSE

FUNCTION RESPONSE UP ITEM
IF FIRST ITEM THEN

MESSAGE "Commencement de la liste"
SIGNAL

ELSE
POSITION TO UP OCCURRENCE

END IF
END RESPONSE

FUNCTION RESPONSE NEXT PANEL
IF LAST ITEM THEN

MESSAGE "La fin de la liste"
SIGNAL

ELSE
POSITION TO DOWN OCCURRENCE UNSEEN

END IF
END RESPONSE

FUNCTION RESPONSE PREVIOUS PANEL
IF FIRST ITEM THEN

MESSAGE "Le commencement de la liste"
SIGNAL

ELSE
POSITION TO UP OCCURRENCE UNSEEN

END IF
END RESPONSE

FIELD part id LINE 9 COLUMN 2
OUTPUT PICTURE X(7)

END FIELD

FIELD descrip LINE 9 COLUMN 10
OUTPUT PICTURE X (22)

END FIELD

FIELD curr LINE 9 COLUMN 33
OUTPUT PICTURE X(2)

END FIELD

(Example 7-8 continues on next page)

Using the VMS Operating System 175

Example 7-8 (Cont.).

FIELD price

Samples from ORD_ENTRY.lFDL

LINE 9 COLUMN 36
OUTPUT PICTURE 9' , 999' " 99R9, 9R9
DECIMAL POINT IS COMMA
SCALE -2

END FIELD

FIELD valid

END GROUP

LINE 9 COLUMN 50
OUTPUT PICTURE 99' '999R

END FIELD

LINE 9 COLUMN 57
OUTPUT PICTURE X (23)

END FIELD

LITERAL POLYLINE
LINE 19 COLUMN 1
LINE 19 COLUMN 80

END LITERAL

FIELD first_page
LINE 20 COLUMN 2
OUTPUT PICTURE X(50)
OUTPUT "Premiere page de la liste"

WHEN first_page = 1
OUTPUT "Page central de la liste"

WHEN first_page = 11
OUTPUT "Derniere page de la liste"

WHEN first_page = 21
PROTECTED

END FIELD

END PANEL

The third option brings up a panel where the user must enter the ID of
the desired component. As with the Placing an order option, the ID is
matched with the information in two databases, and then the collected
information goes through two phases:

• Modification based on the setting of the current user interface

• Modification after logical reassignment by the new values

This information is put into the array one piece at a time and is then
displayed.

176 Using the VMS Operating System

In this case, unlike the regular listing where the quantity and price
information was passed as short and long integers, the information is
passed to the form as character strings, and the separators and the
currency symbol are inserted prior to display. The logicals are set to
their original values at the end.

The fourth option invokes the Change Profile panel. The user enters
the new profile and presses the Return key. The logicals are reset,
and the corresponding language-specific database is opened. The main
menu is then displayed with the new interface.

The last option, Exit, closes all of the open files and terminates the
program.

.Using the VMS Operating System 177

I
I

I

I
I

I

I
I

I

I

I
I

I

I

I

I

I

I
I

I

I
I

I
I

I

I

I

I
I

I
I

I

I

I
I

I

I

I

I
I
I

I

I

I
I

I

I

I
I

I

Chapter 8

Usi"9 the ULTRIX Operati"9 System

Digital's ULTRIX operating system supports international product
development with the following system features:

• Message catalogs and associated tools

Message catalogs are databases that make possible the separation
of text strings from application code. The tools are used to assist in
the following tasks:

Extraction of text strings from existing C language programs

- .Translation from one language to another of the message text

- Generation of message catalogs

• A set of library routines

The set of library routines enables programs to dynamically deter­
mine the format of cultural and language-specific data, such as date
and time strings, day and month names, currency symbols, and
radix character symbols.

• Internationalized library functions

The internationalized library functions of standard C library rou­
tines provide:

Locale-dependent character type classification

Conversion from uppercase to lowercase characters and vice
versa

Date and time messages

Floating point to string conversions

Text collation

Using the ULTRIX Operating System 179

•

•

•

An announcement mechanism

The announcement mechanism identifies the national language,
local custom, and codeset requirements (referred to as language in
this chapter) appropriate to each user for applications at runtime.
Language support databases

Language support databases contain the tables that hold the
language-specific data, with one database for each supported
language.

An internationa~compiler for the database

The international compiler (ic), supplied with the ULTRIX interna­
tionalization package, compiles the source languages information
into the language support databases.

8.1 International Keyboard Support

Programmers writing applications that support several languages must
take into account that languages are represented by one or more coded
character sets. Because of the requirements of different languages, the
coded character sets may vary in both size and representation.

You can create characters that do not exist as standard keys on your
keyboard by using compose sequences. A compose sequence is a series
of keystrokes that creates a character. You can create any character
from the character set currently used by your terminal or, if you are
using ULTRIX Worksystem Software, by your DECterm session.

Depending on your keyboard, you can compose characters in any of the
following ways:

• Using three-stroke sequences for a VT320 keyboard
• Using two-stroke sequences on all keyboards except the North

AmericanlUnited Kingdom, the Dutch, and the Norwegian/Danish
keyboards, which all use three-stroke sequences

• Using a combination of the Compose key and the space bar to
create characters in a DECwindows environment

180 Using the ULTRIX Operating System

8.2 The Message Catalog System

Digital's ULTRIX message catalog system allows users to interact with
an application program in their local language. The program message
text is stored in a message catalog separate from the main body of the
program. Thus, message catalog source files can be translated into
many languages depending on the requirements of the end users.

The access mechanism to a message catalog retrieves a message catalog
at run time and binds it to a particular program. Each internation­
alized program contains a number of library routines. The library
routines provide for retrieval of the message text from the message
catalog.

The routine used for accessing the opened catalogs is catgets1
• This

routine retrieves messages from a message catalog opened by a call to
catopen. The routine catclose closes an open message catalog.

When using the message catalog system it is recommended that mes­
sage source files be suffixed by .msf and message catalog files be
suffixed by .cat.

8.2.1 Creating a Message Catalog

To create a message catalog:

1. Write the program, including the program messages.

2. Use the string extraction tools to extract the message text and put
it in a message text source file (see Section 8.2.2).

3. Translate the message text source file into the required national
languages using the trans translation tool (see Section 8.2.6).

4. Pass the message text source files through the gencat program to
create the message catalogs (see Section 8.2.4).

You can use any text editor to create the program source file.

You can combine Steps 1 and 2 if the source program includes the
calls to the message catalog retrieval functions. In this case, the
catgets or catgetmsg routines should be included in the source file
as appropriate. The message text string can then be extracted using a
stream editor and stored in the message text source file.

1 ULTRIX terms appear in boldface type in the text of this chapter.

Using the ULTRIX Operating System 181

You can divide message catalogs into one or more sets of program
messages, each set containing one or more messages. The library
routines allow programs to access messages within message sets.

The internationalization tools used to create a message catalog are
shown in Table 8-1.

Table 8-1. Internationalization Tools to Create Message Catalogs
Tool Description

extract

strextract

strmerge

gencat

8.2.2 String Extraction

For interactive message string extraction

For batch message string extraction

For batch message source file merging (used in conjunction
with strextract and the trans translation tool)

The message catalog generator

You can use the string extraction tools to partially automate the process
of internationalizing a C program. For example, you could use the tools
to change the following segment from a C program:

printf("hello world\n");

to

printf(catgets(cat, 1, 1, "hello world\n"));

The corresponding message text source file would be automatically
created:

$set 1
$quote "
1 "hello world\n"

There are two ways to extract text strings from a particular program
source file and to replace the extracted strings with library routines:

• Use only the interactive extraction tool, extract
• Use the batch extraction tool, strextract, followed by the batch

merging tool, strmerge

In both cases the extracted message text is stored in a message source
file with the .rnsf suffix. The message text can then be translated using
the trans translation tool.

182 Using the ULTRIX Operating System

The translated messages in the source file are submitted to gencat
to generate a message catalog. At run time, the library routines in
the internationalized program retrieve the translated text from the
message catalog.

The interactive and batch methods of string extraction use the following
files:

• Pattern file

The pattern file is used to determine which strings are matched for
the program being internationalized. The default pattern file is
/usr/lib/intlnJpatterns. The systemwide pattern file is used by the
extraction tools.

• Optional ignore file

The ignore file is used to instruct the string extraction tools to
ignore specific strings in the source file. Each line in the ignore
file contains a single string, which is compared against the strings
matched by the pattern file.

• Internationalized source program file

The internationalized source program file has a prefix of nl_ and is
generated during the internationalization process.

• Intermediate file

The intermediate file has a .msg suffix and is created in your
directory. This file can be referenced by other utilities.

• Message text source file

The message text source file contains the extracted and translated
text strings (with a .msf suffix) that are generated during the
internationalization process. The format of the message text source
file is described in Section 8.2.3.

The string extraction tools produce two files:

• Internationalized program source file

The internationalized program source file has had the text strings
removed and replaced with calls to a message catalog access rou­
tine.

• Message text source file

The message text source file contains the text strings removed from
the original program source file, for use as input to gencat after
translation of the text.

Using the ULTRIX Operating System 183

8.2.3 Format of the Message Text Source File

Message text strings can be specified using either message numbers or
mnemonics. The fields of a message text source line are separated by
a single ASCII space or tab character. Any other ASCII spaces or tabs
are considered to be part of the subsequent field.

8.2.3.1 Set and Message Numbers

Message catalogs can be divided into one or more sets of program
messages that are grouped together by a set number. The set number
is a parameter of the catgets routine.

Use the following construct to specify the set number of succeeding
messages up to the next $set, $delset, or end-of-file command.

$set n comment

The n denotes the set number, which must be presented in ascending
order within a single source file but need not be contiguous. Any
string following the set number is treated as a comment. A message
text source file must include at least one $set directive before any
messages.

Any string following the set number is treated as a comment.

To place comments in the message text source file, type a line beginning
with a dollar sign ($), followed by an ASCII space or tab character and
then the comment:

$ comment
" .

To define message numbers, use the following construct:

m message-text

In the message catalog, message-text is stored with message number
m and the set number specified by the last $set directive. If message­
text is empty, and an ASCII space or tab field separator is present, a
null string is stored in the message catalog.

Note the catgets routine does not distinguish between a null message
and an undefined message; it returns a pointer to the null string.
Message numbers within a single set need not be contiguous, although
they must be in ascending order. The length of message-text must not
exceed the number of characters specified in the NL_TEXTMAX field
of the file /usr/include/limits.h.

184 Using the ULTRIX Operating System

You can use an optional quote character c to surround message-text
so that trailing spaces are visible in a message source line. You specify
this with the following command:

$quote c

By default, or if an empty $quote directive is supplied, quoting of
message-text is not recognized. If a quote character is defined, all
blank space between the message number and the quote is ignored.
Empty lines in a message text source file are always ignored.

Text strings can contain the special characters and escape sequences.
Escape sequences recognized by the gencat program are defined in
Table 8-2.

Table 8-2. Escape Sequences Recognized by the gencat Program
Description Symbol Sequence

Newline NL (LF) \n

Horizontal tab HT \t

Vertical VT \v

Backspace • BS \b

Carriage return CR \r

Form feed FF \f

Backslash \ \\

Octal value ddd \ddd

The escape sequence \ dddl consists of a backslash followed by one, two,
or three octal digits which specify the value of the desired character.
If the character following a backslash is not one of those specified, the
backslash is ignored. You can also use a backslash to continue a string
on the following line. Thus, the following two lines describe a single
message string:

1 This line continues \
to the next line

These two lines are equivalent to:

1 This line continues to the next line

1 ULTRIX variables appear in italic type in the text of this chapter.

Using the ULTRIX Operating System 185

The backslash must be the last character on the line that is to be
continued. Further localization is provided by translating the strings
contained in the message text source file into the required languages,
and by using the gencat program to create the various language
message catalogs.

The gencat utility is designed to allow for some maintenance and
update of existing message catalogs if they use numeric identifiers.
As already mentioned,· if a catalog exists, it is possible to merge new
messages or replace messages in an existing set. It is also possible
to delete an entire set by using the delset directive. If the message
catalog foo.cat already exists, the following message source file can be
used to update it.

$ file: foo.msf V1.1
$ Maintenance update for foo.cat V1.0

$ Replace message 1,2 in set 2 with new version based on code changes
$set 2
$quote "
1 "A new message for the catalog\n"
2 "Another one\n"

$ Delete set 3 since routine bogus() is no longer required
$delset 3

$ Add new set for routine creative()
$set 4
$quote "
$1 "creative processing at its finest\n"

In this example, set 1 in foo.cat is not modified but the others are,
as indicated by the comments in the new message source file. The
following command would result in the appropriate updates:

gencat faa. cat foo.msf

8.2.3.2 Mnemonics

Sets and messages can be given mnemonic names as an alternative
to set and message numbers. A mnemonic is any string that begins
with an alphabetic character. Digital recommends using mnemonic
identifiers since they are easier to read and maintain and because they
make the C language source files easier to maintain. You cannot mix
the use of mnemonic identifiers with numeric identifiers in the same
message text source file.

186 Using the ULTRIX Operating System

In the following example, the mnemonic SET_GREET, HELLO and
BYE are used instead of the numbers 1, 1 and 2 respectively:

$set SET_GREET
HELLO Hello world
BYE Goodbye world

The call

catgets (catd, SET_GREET, HELLO, '"')

would return the message:

Hello world

A more detailed example of a message catalog can be found in
Section 8.6.

The -h flag of the gencat tool forces the creation of a header file
containing #define statements. You must include #define statements
in the program source files when you use mnemonics. Using the
previous example as a basis, the following code fragments compare two
programs, one using mnemonics and the other using message numbers:

• Using mnemonics:

#include "prog.h"

catopen (" prog . cat ", 0) ;

catgets(catd, SET_GREET, HELLO, "Hello\n");

catclose (" prog) ;

• Using numerics:

catopen("prog.cat",O);

catgets (catd, 1, 1, "Hello\n");

catclose("prog");

The contents of the message text source file, prog.msf, used to
create the message catalog, prog.cat would be:

catgets(catd, 1, 1, "Hello\n");

Using the ULTRIX Operating System 187

The contents of the message text source file, prog.msf, used to create
the message catalog, prog.cat and header file, prog.h would be:

$quote "
$set SET_GREET
HELLO "Hello world"

Only the text within the quotes should be translated.

The header file generated using gencat -h contains the following lines:

#define SET GREET 1
#define HELLO 1
#define BYE 2

In all other respects, using mnemonics does not change the way you
use the internationalization tools. Restrictions on the use of mnemonics
do exist:

• Set and message mnemonics cannot have the same name.
• Catalogs cannot be merged using the gencat program. A new

catalog replaces an old catalog.

• Mnemonics and set and message numbers cannot be combined in
the same source file.

8.2.4 Using the gencat Program

The gencat program takes a message text source file and either
produces a new message catalog or merges the new message text into
an existing message catalog. If the message catalog has already been
created, and set and message numbers are being used, gencat merges
the set and message numbers with the existing message catalog. If the
message catalog does not exist, gencat creates it.

If a message text source file uses mnemonics, gencat does not merge
the files. The new file overwrites the original file. An example of the
use of gencat follows:

gencat cat file msgfile

In this example, catfile is the name of the target message catalog and
msgfile is the name of a message text source file. If catfile exists, then
the messages and sets defined in msgfile are added to catfile.

188 Using the ULTRIX Operating System

If set and message numbers collide, the new message text given in
msgfile replaces the existing message text contained in catfile. If
catfile does not exist, gencat creates it.

When using mnemonic identifiers in the message text source, the
gencat -h option creates the header file that defines the mapping
between the mnemonic message identifiers and the numbers required
by the catgets function.

For example:

gencat -h catfile msgfile

In this case, the hdrfile file is created in addition to catfile. You
then have to add the include statement, #include ''hdrfile'', to the C
language source program.

The sequence of operations needed to create an internationalized source
file and a translated message catalog is shown in Figure 8-l.

In Figure 8-1, the C program (prog.c) is changed into an internation­
alized source program (nl_prog.c) with the text strings removed. The
text strings are replaced with calls to the message catalog retrieval
routines. This is done by using either the interactive extraction tool
extract, or by using the batch extraction tool strextract, followed by
the batch merging tool strmerge.

The message text source file produced, prog.msf, can be translated
using the ULTRIX translation tool trans. A message catalog, prog.cat,
containing the translated messages is then produced using the gencat
tool. The message catalog, prog.cat, is accessed at run-time by the
application program, a.out.

8.2.5 Library Routines

The ULTRIX library routines are as follows:

• catopen

• catgets
• catclose

To compile a C program, use the -Ii option to include the international­
ization library, as shown in the following example:

cc -0 prog prog.c -Ii

Using the ULTRIX Operating System 189

Figure 8-1. Creating a Message Catalog

c=J = Internationalization tool use

190 Using the ULTRIX Operating System

8.2.5.1 Using the catopen Routine

Message catalogs are opened for use by calling the library routine
catopen. This routine locates the identified message catalog according
to the search and naming rules defined in the environment vari-
able NLSPATH. The following example demonstrates the use of the
catopen routine:

catd = catopen(argv[O], 0);

If successful, catopen returns a catalog-descriptor of type nl_catd
which is used on subsequent calls to catgets and catgetmsg to identify
the prepared message catalog. Message catalogs are closed by calling
the library routine, catclose.

Two environment variables, NLSPATH and LANG, can affect the
behavior of the catopen() function call.

If set, NLSPATH specifies the search path to be used for locating the
message catalog. The syntax for setting this environment variable,
shown below, is based on that of the Bourne shell PATH environment
variable.

NLSPATH=[:] [/directory] [/substitution field] [/filename] [:alternate pathname

A leading colon indicates the current directory while subsequent colons
act solely as field separators. The substitution fields, as shown in
Table 8-3, are derived from the setting of the LANG environment
variable and the argument passed in the catopen() function call.

Table 8-3. Substitution Fields
Substitution
Field

%N

%L

%1

%t

%c

Description

The value of the name argument to catopen()

The value of the LANG environment variable

The language component of LANG

The territory component of LANG

The codeset component of LANG

If the. LANG variable is not set, the null string is substituted into
NLSPATH. In the following example, the current directory is searched
for the message catalog foo;. If the message catalog is not found, the
file /usr/lib/nls/msgIFRE_FR.8859/foo.cat is searched. If that too
fails, /usr/newapp/foo.cat is opened. If the LANG variable was not
set, an attempt to open the file /usr/lib/nls/msg//foo.cat would have

Using the ULTRIX Operating System 191

been made. Note that multiple slashes in pathnames are treated as a
single slash. If the message catalog cannot be opened or is not found,
catopen() returns an error message.

$LANG=FRE_FR.8859
$ NLSPATH=:/usr/lib/nls/msg/%L/%N.cat:/usr/newapp/%N.cat
$EXPORT LANG NLSPATH

catopen("foo",O) ;

Message catalogs should be in the directory tree /usrllib/nls/msg.

8.2.5.2 Using the catgets Routine

The catgets routine retrieves a numbered message from a numbered
message set in the message catalog identified by the catd argument.

char *catgets (catd, set_num, msg_num, s)

In this example, the set_num argument is the number of the message
set containing the message msg_num, and s is a pointer to the default
message string. If catgets retrieves the message successfully, the
routine returns a pointer to the message text to the caller. If the
call is unsuccessful because the message catalog identified by catd is
unavailable, then catgets returns an s. If msg_num is not contained in
the message catalog identified by catd, catgets returns the null string.

All buffer handling and allocation of storage space (for holding the text
of a program message) is performed internally by catgets.

The following C source program uses catopen and catgets to retrieve
messages from the message catalog identified as prog:

#include <stdio.h>
#include <nl types.h>
#define NL SETN 1

main ()
{

nl catd catd = catopen ("prog", 0);
printf ("%s\en", catgets (catd, NL_SETN, 1, "hello world"));
catclose (catd);

192 Using the ULTRIX Operating System

Default message strings enable the text for one language to be kept
with the program to make it easier to read. Alternatively, the default
message strings can be used to allow application programs to continue
working predictably when specific localizations of the message text are
unavailable. For example, the above program could be invoked from
the shell as follows:

$ LANG=FRE_FR.8859; export LANG
$ prog

Assuming that the French message text for prog was undefined on
the system, then the above invocation of prog would cause the default
message string to be displayed:

hello world
$

8.2.6 Using the trans Translation Tool

The translation tool trans assists in the translation of source message
catalogs. This utility has built-in knowledge of the source format for
message catalogs. Such knowledge assists the translator by ensuring
that only the appropriate text strings are modified.

The command reads input from file.msf and writes its output either to
a file named trans.msf or to a file you name on the command line. The
command displays file.msf in a multiple window screen that lets you
simultaneously see the original message, the translated text you enter,
and any messages from the trans command.

This multiple window screen is easier to use for translating messages
than a single window screen. The top window in the multiple window
screen displays the text in the message source file file.msf. The editor
displays the current message in reverse video.

In the center window, trans displays a prompt asking the user to enter
a translated message. A control key editor allows the user to move the
cursor and delete text in the center window. The control key sequences
are defined in Table 8-4.

Using the ULTRIX Operating System 193

Table 8-4. Control Key Sequences
Key Sequence Meaning

CTRLIK

CTRLIH

CTRLIL

CTRLIW

CTRL/F

CTRLIE

CTRL/B

CTRL/N

CTRUP

CTRUU

CTRUI

CTRLIR

DEL

Display control key help

Back space

Forward space

Back word

Forward word

Move to end of input

Move to beginning of input

Next line

Previous line

Delete input

Insert mode (default)

Replace mode

Delete previous character

If you need to span more than one line with the translated text, enter
a backslash (\) and press the Return key to enable line continuation.
Mter you finish entering the translated text, press the Return key to
signal that you have finished translating that message.

The bottom window displays any messages generated by trans. If an
error occurs, trans prompts you to re-enter the entire line, including
the message label or number.

8.3 Creating Localized Programs

An internationalized program localizes its run-time behavior for a
particular language, territory, and codeset by establishing the required
localization data in the program's locale. Calling the setlocale library
routine establishes the localization data.

language[_territory[.codeset]] [@modifier]

The ULTRIX operating system allows you to define language territory,
and codeset for all settings of category. You can also define an @modifier
for all categories except LC_ALL.

194 Using the ULTRIX Operating System

The following preset values of locale are defined for all settings of
category:

Preset Value

c

NULL

Description

Specifies the standard environment for the C language. The
C locale is the default if setlocale is not invoked.

Specifies that the setting of the locale is obtained from the
corresponding environment variables.

Directs setlocale to query category and return the current
setting of locale. You can use the string setlocale returns
only as input to subsequent setlocale calls.

To use setlocale to obtain the locale for all categories from environ­
ment variables, use the following command:

setlocale (LC_ALL, 1111)

You can also define a locale setting for a specific category. To define a
specific category, you pass the locale setting directly in the setlocale
call, as shown:

setlocale (LC_COLLATE, "FRE_FR.MCS")

This example specifies collation appropriate for the DEC MCS in
France.

If you need to define a category more precisely than is possible us­
ing language, territory, and codeset, you can use the @modifier. The
following example shows a category definition that uses the @modifier.

setlocale (LC_COLLATE, "FRE_FR.8859@CCOLL")

In this example collating is done according to the collation table,
CCOLL, defined in the FRE_FR.8859 'database, rather than the
default collation table. Preferably, you can obtain the locale for the
LC_COLLATE category from the corresponding environment variable
as follows:

set locale (LC_COLLATE, 1111)

Using the ULTRIX Operating System 195

8.3.1 The Announcement Mechanism

When a program internationalized using the ULTRIX operating system
is run, the system must be aware· of the language requirements of the
program.

By defining the environment variable, ${LANG}, you can identify which
language, territory, codeset, and modifier a program requires. You
can define a unique value of ${LANG} for each supported language,
territory, codeset, and modifier combination. If you define ${LANG}
settings for different language, territory, codeset, and modifier settings,
each definition might be associated with a different instance of collating
sequence, character conversion, character classification, langinfo
tables, and message catalogs.

The ${LANG} variable contains the required language, territory,
codeset, and modifier names in English as follows:

language[_territory[.codeset] [@modifier]

The length of the entire string should not exceed the value of NL_
LANGMAX located in /usr/include/limits.h. The set of characters,
excluding separators, is restricted to the ASCII set of alphanumeric
characters.

On its own, language selects the required native language. If you need
to be more specific than native language, you can specify _territory or
_territory.codeset. The following examples demonstrate defining the
${LANG} variable. The first example selects a database that supports
the French native language.

$ LANG=FRE

The next example selects a database that supports the French nativ~

language, as it is spoken in France (rather than Canada).

$ LANG=FRE_FR

The last example selects a database that supports the French native
language, as spoken in France, and the DEC MCS. You cannot specify
the DEC MCS unless you specify a _territory, in this case _FR.

$ LANG=FRE_FR.MCS

If the files FRE and FRE_FR are linked to the FRE_FR.MCS
database, the three ~xamples refer to the same database.

196 Using the ULTRIX Operating System

8.3.2 Announcement Categories

The environment variable ${LANG} provides the general announce­
ment mechanism by which users can identify overall requirements for
program localization. This is sufficient when a single localization covers
the user's requirements for text collation, character classification, and
message presentation.

The ULTRIX operating system allows you to selectively modify the in­
ternational environment by defining additional environment variables,
one for each setting of the categories:

• LC_COLLATE

• LC_CTYPE

• LC_NUMERIC

• LC_TIME

• LC_MONETARY

You cannot define additional environment variables for LC_ALL.

If any of these categories are not defined in the current environment,
LANG provides the necessary default information. The categories are
also defined to accept an additional field, @modifier, which enables
you to select a specific instance of localization data within a single
category, such as selecting dictionary-ordering of data as opposed to
character-ordering of data.

For example, if you want to interact with the system in French, but
are required to sort German text files, you could define LANG and
LC_COLLATE as follows:

$ LANG=Fr_FR
$ LC_COLLATE=De_DE

You could extend this definition to select, for example, dictionary
ordering by using the @modifier field, as follows:

Using the ULTRIX Operating System 197

8.3.3 Setting the Program Locale

There are three ways to set the program locale using the setlocale
library routine:

• setlocale (category, string)

This usage sets a specific category in the program locale to a
specific value of string, for example;

set locale (LC_ALL, "FRE_FR.MCS");

In this example, all categories of the program locale are set to the
locale corresponding to the string FRE_FR.MCS, or the French
language as spoken in France, using the Digital MCS. The string
FRE_FR.MCS is used to locate the appropriate database.

If string does not correspond to a valid setting of locale, setlocale
returns a null pointer and the program locale is not changed.
Otherwise, setlocale returns the name of the locale.

• setlocale (category, "c")
This usage resets the default environment for the C language.

• setlocale (category, " ")

This usage sets category to correspond to the setting of the associ­
ated environment variable.

By default, the directory /usr/lib/intln contains the language support
databases. The ULTRIX operating system allows you to place your
language support databases in another directory by specifying the
directory path with the INTLINFO environment variable.

8.3.4 Setting a Specific Category

Setlocale allows you to set the LC_COLLATE, LC_CTYPE, LC_
NUMERIC, LC_TIME or LC_MONETARY values individually. For
example:

set locale (LC_COLLATE, "");

Here, setlocale first checks the value of the corresponding environment
variable, ${LC_COLLATE}. If the value contains the name of a valid
locale, setlocale sets the specified category to that value and returns
its name. If the value is invalid, setlocale returns a null pointer and
the program locale is not changed.

198 Using the ULTRIX Operating System

If the environment variable corresponding to category is not set or is
the empty string, setlocale examines ${LANG}. If ${LANG} is set and
contains the name of a valid locale, that value is used to set category.
Otherwise, setlocale returns a null pointer and the program locale is
not changed.

When using the ULTRIX operating system, the default locale is the C
locale.

8.3.5 Setting All Categories

This use of setlocale is similar to that described in Section 8.3 ex­
cept that here setlocale examines all the environment variables to
determine what values to set. In this case, setlocale is called as
follows:

setlocale (LC_ALL, nn)

Here, setlocale first checks all the environment variables. If the
variables are valid, setlocale initializes each category to the value of
the corresponding environment variable. If any environment variable
is invalid, setlocale returns a null pointer and the program locale is
not changed.

Categories are initialized in the following order, where ${LANG} is
used to initialize category LC_ALL:

LC_ALL
LC_CTYPE
LC_COLLATE
LC_TIME
LC_NUMERIC
LC_MONETARY

Using this scheme, environment variables corresponding to specific
cat,egories override the setting of ${LANG}.

If a category-specific environment variable is not set, or is set to the
.empty string, that category is not overwritten; it assumes the setting
of ${LANG}. If ${LANG} is not set, or is set to the empty string,
setlocale returns a null pointer and the program locale is not changed.
This is the default.

Using the ULTRIX Operating System 199

8.3.6 Supported Locales

The following language support databases are included as part of the
base system on ULTRIX platforms:

Table 8-5. ULTRIX Language Support Databases
Name Language Territory Character Set

ENG_GB.MCS English United Kingdom DEC MCS
FRE_FR.MCS French France DEC MCS
GER_DE.MCS German Germany DEC MCS

ENG_GB.8859 English United Kingdom ISO Latin-l
FRE_FR.8859 French France ISO Latin-l
GER_DE.8859 German Germany ISO Latin-l

ENG_GB.646 English United Kingdom ISO 646
FRE_FR.646 French France ISO 646
GER_DE.646 German Germany ISO 646

The file names of the language support databases will be updated in
the future to align with the ISO 639, ISO 3166, and other appropriate
standards. For example GER_DE.MCS will become de_DE.DECMCS.
File names specified here will continue to be supported on ULTRIX
systems during this transition.

In the C locale, all characters are encoded in 7-bit ASCII. Also, charac­
ters are collated in machine order. The C locale is guaranteed to exist
on all systems compliant with X10pen and Portable Operating System
Interface for Computer Environments (POSIX). Table 8-9 shows how
national language strings are returned in the C locale.

8.4 Local Conventions

In addition to using message catalogs, an application must be able to
format information in a locale-specific manner. For example, a product
should be capable of displaying a numeric value using the thousands
separator and decimal point character preferred in the locale where the
product is being used.

200 Using the ULTRIX Operating System

Specialized C routines can reference a language support database for
the formats, natural-language strings, separators, and so on, needed
to do locale-specific data formatting. These routines, which enable an
application to format data for a specific locale at run time, are listed in
Table 8-6.

Table 8-6. C Routines Supporting the Use of Local Conventions
Routine Name Description

atof()

ecvt()

printf()

scanft:)

strftime()

vprintf()

Converts ASCII characters to a numeric value formatted
using the thousands separator and decimal point character
indicated by the LC_NUMERIC setlocale() category.

Converts a numeric value formatted for a specific locale
into a locale-neutral ASCII character string. This routine
uses the LC_NUMERIC setlocale() category to identify
separator and decimal point characters in the number to be
converted.

Returns a pointer to a string containing locale-specific
information for date and time formats, yes and no prompts,
and monetary and numeric formats.

Prints formatted output, optionally using natural-language
strings (for example, day or month names) extracted from
a language support database. Includes extensions to aid
translation of message text strings.

Reads formatted input, interpreting and storing the input
using values extracted from a language support database.
Includes extensions to aid translation of message text
strings.

Converts a date and time value to a formatted string using
natural-language strings and separators indicated by the
LC_TIME setlocale() category.

Prints formatted output, optionally using natural-language
strings extracted from a language support database. Is
called with an argument list as defined by varargs.
Includes extensions to aid translation of message text
strings.

The extended versions of printf(), scanf(), and vprintf() are in libi.
A user must link with libi if the extensions are desired. The extensions
provide a mechanism whereby a specific argument in the argument list
can be referenced in the format specification. The traditional use is to
access the argument list sequentially.

Using the ULTRIX Operating System 201

The following example results in the second argument being printed
first (digit-name).

printf("%2$d-%1$s", name, digit)

This can be very useful for a translator when the word order changes
from language to language. A simple change in the format specification
within a message text source file and re-creation of an updated message
catalog is all that is required. The application program itself remains
unchanged.

8.5 International Text Processing

An application should be able to sort text using multiple character
sets and collating sequences, and do case conversions for multinational
characters. ULTRIX software provides specialized C routines that
support these international text processing requirements. Table 8-7
lists these routines.

Table 8-7. C Routines Supporting International Text Processing
Routine Name Description

conv()

ctype()

strcoll()

strxfrm()

Does character conversions. For example, toupper(),
tolower(), converts a character from lowercase to upper­
case, and uppercase to lowercase, respectively. The routine
uses conversion tables from a language support database
indicated by the LC_CTYPE setlocale() category.

Identifies the character type (uppercase character, lowercase
character, punctuation, digit, and so on) of a character.
Characters are identified using a character code from the
character set identified by the LC_CTYPE setlocale()
category.

Indicates the order in which two strings should be sorted,
based on the collating sequence indicated by the LC_
COLLATE setlocale() category.

Transforms a string into the form the strcmp() and
memcmp() routines use to efficiently compare strings.

202 Using the ULTRIX Operating System

8.6 IDATE: A Sample ULTRIX Program

Example 8-1 is an internationalized C program. This program,
idate.c, displays the date and time for a specified locale. The as­
sociated header and message files are shown following the source
program.

Example 8-1. idate.c

/*
* idate: display date and time in locale specific format

*
* Sample internationalized application. This program uses the *
* mnemonic format for message catalogs to enhance maintainability *
*/

#include <sys/time.h>

#include <langinfo.h>

*
#include <locale.h>
#include <nl_types.h>

#include "idate.h"

*
nl_catd catd;
struct timeval tp;
struct timezone tpz;

main (argc, argv)
int argc;
char *argv[];
{

/* default strings for date/time *
formats, etc. */

/* declarations used by setlocale */
/* declarations for message catalog system */

/* generated by gencat, contains message *
identifiers */

char
struct

timestring[50];
tm *tms;

/* open message catalog - look in current directory */

catd = catopen("idate.cat", 0);

/* check command line arguments */

if (argc > 1) {
printf(catgets(catd, IDATE SETl, USE_MSG, "usage: incorrect\n"));
exit (1);

/* initialize runtime locale */

if (setlocale(LC_TIME, "") == (char *)0) {

(Example 8-1 continues on next page)

Using the ULTRIX Operating System 203

Example 8-1 (Cont.). idate.c

printf(catgets(catd, IDATE SETl, LOCALE MSG, "idate: cannot change \
locale - check environment-variables\n"));

/* get time from system clock */

time(&tp.tv_sec);
tms = localtime(&tp.tv_sec);

/* do I18N conversion */

strftime(timestring, sizeof(timestring), nl_langinfo(D_T_FMT), tms);

printf(catgets(catd, IDATE_SETl, TIME_MSG, "Local time: %s\n"), \
timestring);

/* close message catalog */

catclose (catd) ;

Example 8-2 contains the contents of the header file for idate.

Example 8-2. Header File Contents

/*
* idate.h: header file created by gencat -h idate.h
* idate.cat idate.msf
*/

#define IDATE SETI
#define USE MSG 0
#define LOCALE MSG
#define TIME MSG:

o

1
2

/* set name */

Example 8-3 displays the contents of the message file idate.msf that
is used in conjunction with idate.c.

204 Using the ULTRIX Operating System

Example 8-3. Message File: idate.msf

$ idate.msf

$ This is the sample message file for use with the program
$ idate.c. Note the syntax of each line with a directive.

$ Note also that blank lines are accepted as input

$ When using mnemonic format for messages you are required
$ to use a quote character and to quote each message string.

$ This file can be used as input to the trans utility.
$ trans provides a simple user interface to aid the
$ process of message text translation.

$quote "

$set IDATE_SETI
USE_MSG "usage: idate\n"
LOCALE MSG "idate: cannot change locale, check environment variables\n"
TIME MSG: "Local Time: %s\n"

$ End of idate.msf

8.7 Language Support Databases

The ULTRIX operating system's language support databases are used
to hold various language dependent entities, and to free programs
from national language dependencies. There is one language support
database for each national language used on the system. The informa­
tion in the language support databases is supplied through database
language source files, which enable the national language and codeset
characteristics to be defined.

The database language source file includes definitions for

• Codeset
• Property table
• Collation table
• String tables
• Conversion tables

The international compiler converts these tables into an efficient binary
representation suitable for use by run-time functions.

The following general considerations apply to the database language
source file:

• The database source should contain only ASCII characters.

Using the ULTRIX Operating System 205

• The source is free format; blank spaces have no significance other
than as a separator for tokens in the input.

• You can use C-style comments and macro definitions, in particular
the #include and define facilities.

By default, the language support database files are held under
/usr/lib/intln. Example 8-4 demonstrates the basic structure of the
source file. All definitions are terminated with the END. sequence.

Example 8-4. Sample Language Database Source File

CODE SET ENG GB.MCS
/*
* codeset definition and default property table
*/

END.
COLLATION :

/*
* default collation table
*/

END.
STRINGTABLE :

/*
* default string table
*/

END.
CONVERSION toupper

/*
* lowercase to uppercase conversion table
*/

END.
CONVERSION tolower :

/*
* uppercase to lowercase conversion table
*/

END.

8.7.1 The Codeset Definition

The codeset defines the valid characters and their properties within
the language. For example, it could specify that A is a valid charac­
ter in the English language, possessing lowercase and hexadecimal
properties.

The definition of the codeset being used starts with the keyword
CODESET followed by the codeset name double letters. For example,
ein the ISO 6937 standard is replaced by the sequence e'.

206 Using the ULTRIX Operating System

Once compilation is successful, the name given to the codeset becomes
the name of the binary file. In most cases, this name is in the following
format:

language_[territory[.codeset] [@modifier]]

You can specify the name of the codeset on the ic command line using
the -0 option.

If you specify a name on the command line, the name you specify
supersedes the name of the codeset in the database source file. Mter
the keyword assignment, each code is defined by assigning the value of
the code to an identifier.

This identifier can be used to reference the code from then on. This
assignment has the following form:

Identifier '=' value list

For example:

a = 'a' : LOWER, HEX;

Properties , ; ,

The value_list is a list of values separated by commas. A value may be
given as a C-style character constant (' '), in octal (Onnn), hexadecimal
(Oxnnn), decimal (nnn), ISO notation (mm/nn), or by giving the name of
a previously defined code.

Codes may be either simple or combined. However, several restrictions
must be observed when defining codes in the CODESET section:

• The list of simple codes must contain all codes from code value OxO
up to and including the code with the highest value defined. The
order of definition is not important, since all code values are sorted
into ascending collation order after the whole codeset definition has
been read.

• The list of simple codes cannot contain codes with duplicate code
values.

• There may be up to 215 definitions for multi-byte codes. Combined
codes need not have contiguous code values and will be sorted in
ascending machine collation order and will construct the double
letter table in the compiled database.

• Only one definition of a codeset can exist, and that definition must
be the first item in the source file.

Using the ULTRIX Operating System 207

The optional properties part of the definition assigns default proper­
ties to a code. If it is not given, the code is assumed to be defined but
illegal. This feature is useful for languages that do not require all the
letters defined in a standard code· set. Properties take the form of a list
of keywords separated by commas.

A third kind of statement allowed in the CODESET section is the
assignment of default properties to an already defined code in the
following form:

Identifier':' Properties';'

The use of the #include facility provided in the language is strongly
recommended since most of the codes considered contain common code
(for example ASCII or ISO 646) in their lower half. Using a common
include file reduces the risk of error and provides a common name
basis for the remainder of the source.

8.7.2 The Property Table

The property table contains the mapping information between char­
acters in the codeset and classification. Each character code from the
coded character set is used to index an entry in the relevant language
property table. Each entry in the property table contains a series of
flags identifying whether a particular language assertion is. true or
false. The character may possess any of the following attributes:

• Undefined
• Uppercase alphabetic

• Lowercase alphabetic

• Punctuation

• Control

• Blank

These can be accessed at run-time by the ctype library routines.

More than one property table can be included, and each is introduced
by the keyword PROPERTY. The default property table, built along
with the code set, has the predefined name PROP_DFLT. The property
table must not be redefined. Names of property tables must be unique
throughout the source.

208 Using the ULTRIX Operating System

A statement in the property table takes the following form:

Identifier':' Properties' i'

where Identifier designates a defined code and Properties is a list of
properties separated by commas. For example:

c: UPPER, HEXi

Some properties affect the interpretation of characters by various
other internationalization library routines. For example, the property
DIPHTONG must be set for diphthongs to collate correctly as diph­
thongs, and the property DOUBLE must be set to recognize correctly
the first of a double-letter sequence.

The full list of properties is shown in Table 8-8.

Table 8-8. Properties and Character Classification
Property Character Classification

ARITH

BLANK

CTRL

CURENCY

DIACRIT

DIPHTONG

DOUBLE

FRACTION

ILLEGAL

LOWER

MISCEL

PUNCT

SPACE

SUPSUB

UPPER

Arithmetic sign

Blank character

Control character

Currency character

Diacritical sign

Diphthong

Double letter

Fraction character

Illegal character

Lowercase letter

Miscellaneous symbol

Punctuation character

Space character

Superscript or subscript

Uppercase letter

The corresponding code to the property DOUBLE is constructed from
two other single-byte codes, but it is treated as a single code. This
treatment allows:

• The expansion of 8-bit character sets to allow double letters (for
example LI or II in Spanish) that collate 2 to 1

Using the ULTRIX Operating System 209

• The handling of 8- or 16-bit codes like ISO 6937-1,
character e

is the

The corresponding code to the property DIACRIT, for e>, _}lie, is
a diacritical sign. If combined with either UPPER or LOWER, the
corresponding code is a diacritical letter.

The meaning of the word diphthong in internationalization is somewhat
different from the definition used in the grammar of languages that use
diphthongs. Diphthong, for the purposes of internationalization, is
defined as a character for which 1-to-2 collation must be used. This
definition implies an interdependence with the collation tables.

The properties of a code can be redefined by the user because only the
definition in effect upon reaching the end of the property table will be
put in the binary file.

A code with no defined property will be listed as ILLEGAL in the
resulting property table.

8.7.3 The Collation Table

Collation tables define the collating sequence for each supported
language. The binary values of characters in the associated coded
character set are used as indexes into the table. Individual entries are
used to indicate the relative position of that character in the language
collating sequence. The package supports the following capabilities:

• 1-to-1 character mappings, such that a collates before b and so on.
• 1-to-2 character mappings, where certain characters are treated as

two characters. For example, in German f3 becomes ss for collating.

• 2-to-1 character mappings, where certain character sequences
are treated as a single character in the collating sequence. For
example, ch and II in Spanish are collated after c and l respectively.

• No-preference characters, where certain characters are ignored by
the collating sequence. For example, if the hyphen is defined as a
no-preference character, then the strings re-locate and relocate are
equal.

These capabilities provide support for collating algorithms that provide
for case and accent priority, where for example, two characters are
first compared for equality, ignoring accents, and, if equal, are then
ordered by accent sequence. Collating algorithms of this type give a
dictionary ordering of data. The dictionary ordering of data within the
internationalization package is the same as for a normal dictionary in

210 Using the ULTRIX Operating System

the language being considered. Telephone book ordering is the same
as for a telephone directory in the supported language. It should be
noted that both dictionary and telephone book ordering may be subject
to local variation.

The default collation table is introduced by the keyword COLLATION,
and is named COLL_DFLT. The default table must exist for ic to
compile the database. Other collation tables can be introduced by the
keyword COLLATION, followed by the name of the table. The names
of the collation tables must be unique throughout the source.

A statement in the collation section may take one of the following
forms:

• PRIMARY':' Ident_Iist ';'

For example:

PRIMARY: a, A, b, B;

The statement PRIMARY':' Ident_list ';' assigns the named codes
ascending secondary weights from left to right.

• PRIMARY':' Ident '-' Ident ';'

For example:

PRIMARY: a-z;

The statement PRIMARY':' Ident '-' Ident ';' assigns ascending
secondary weights for ascending machine collation order to the
named codes.

• PRIMARY':' REST ';'

For example:

PRIMARY: REST;

The statement PRIMARY':' REST ';' sets the primary weight of
codes not explicitly named in the collation section. The secondary
weight of the codes is set to ascending machine collation order. This
is a convenient notation for defaulting unspecified codes to collate
after or before all others.

• EQUAL ':' Ident_Iist ';'

For example:

EQUAL: a,A;

The statement EQUAL ':' Ident_Iist assigns the same PRIMARY
and SECONDARY weight to all codes in the list.

Using the ULTRIX Operating System 211

• Ident '=' '(' Ident ',' Ident ')' ';'

For example:

PRIMARY: ae = (a, e);

The statement Ident '=' 'C Ident ',' Ident ')' ';' is reserved for the
collation of diphthongs (1-to-2 collation). It implies that the left­
hand code collates as if it were the first right-hand code followed by
the second right-hand code.

• PROPERTY ':' Property_table_name ';'

For example:

PROPERTY: newprop;

In order for the diphthong collation to work correctly, the code
named on the left-hand side of the statement must be marked as
DIPHTONG in at least one property table. If this property table
is not the default table, the statement PROPERTY ':' Property_
table_name ';' must be used to identify the property table name to
the compiler. This statement allows the run-time routines to load a
collation-only property table for use with diphthongs.

The order of statements in the collation section is significant. All of
the statements (except the last) open a new class of codes with primary
and secondary weights. The primary weight is set by the position
of the PRIMARY or EQUAL statement, with all the codes named in
the statement having the same primary weight. For example, the
sixth PRIMARY statement in a collation section would assign the
primary weight 6 to all the codes listed. Primary weights start at 1 and
increase by one for each statement encountered up to a limit of 254.
The secondary weight of the codes is governed by their ordering within
a set, except codes with an EQUAL statement, which all have the same
secondary weight. The limit on secondary weights is 255.

8.7.4 The String Table

The string table contains the language strings required for formatting
date and time, yes and no, and radix characters. The default string
table is introduced by the keyword STRINGTABLE, and is named
STRG_DFLT. The default string table must exist for the international
compiler to compile the database. Other string tables can be introduced
by the keyword STRINGTABLE, followed by the table name. However,
the names of the string tables must be unique throughout the source.

212 Using the ULTRIX Operating System

Each statement in a string table has the following form:

Ident '=' value_list';'

In this statement, Ident is an identifier, and the name of the string and
value_list are part of a comma-separated list of strings, character con­
stants, and identifiers designating codes. This format allows inclusion
of non-ASCII codes in any string table by giving the name of the code
in value_list. Table 8-9 shows the strings that must appear in the
string table.

Table 8-9. Mandatory Strings in the String Table
String Meaning C locale Category

NOSTR Negative response no LC_ALL
YESSTR Positive response yes LC_ALL
D_T_FMT Default date and time format %a %b %d LC_TIME

%H:%M:%S%Y
D_FMT Default date format %mJ%d/%y LC_TIME
T_FMT Default time format %H:%M:%S LC_TIME

DAY_l Day name Sunday LC_TIME
DAY_2 Day name Monday LC_TIME

DAY_7 Day name Saturday LC_TIME

ABDAY_l Abbreviated day name Sun LC_TIME
ABDAY_2 Abbreviated day name Mon LC_TIME
ABDAY_3 Abbreviated day name Tue LC_TIME

ABDAY_7 Abbreviated day name Sat LC_TIME

MON_l Month name January LC_TIME
MON_2 Month name February LC_TIME
MON_3 Month name March LC_TIME

MON_12 Month name December LC_TIME

ABMON_l Abbreviated month name Jan LC_TIME
ABMON_2 Abbreviated month name Feb LC_TIME

ABMON_12 Abbreviated month name Dec LC_TIME

(Table 8-9 continues on next page)

Using the ULTRIX Operating System 213

Table 8-9. Mandatory Strings in the String Table (cant.)
String Meaning C locale Category

RADIXCHAR
THOUSEP
CRNCYSTR
AM_STR
PM_STR
EXPL_STR
EXPU_STR

Radix character
Thousands separator
Currency format
String for AM
String for PM
Lowercase exponent character
Uppercase exponent character

AM
PM
e
E

LC_NUMERIC
LC_NUMERIC
LC_MONETARY
LC_TIME
LC_TIME
LC_NUMERIC
LC_NUMERIC

8.7.5 The Conversion Tables

The conversion tables are used to convert characters within the codeset,
such as to convert uppercase characters to lowercase characters. There
must be at least two conversion tables within the database language
source file. These are named toupper and tolower and are used to
convert characters to uppercase and lowercase respectively.

A statement in a conversion table takes one of three forms in which
Ident specifies a code defined in the codeset, and conversion_value
specifies the code or string value that the left-hand side should be
converted to.

• Ident '->' conversion_value ';'

For example:

a -> A;

• Ident '-' Ident '->' Ident '-' Ident ';'

For example:

a-z -> A-Z;

• DEFAULT'->' default_value ';'

For example:

DEFAULT -> SAME;

The default value for a conversion may be given using the DEFAULT
statement. Any code without a specified conversion maps to the given
value.

214 Using the ULTRIX Operating System

There are two predefined values possible in a DEFAULT statement:

• VOID, which means that all other codes convert to either the ASCII
NUL code (in the case of a code conversion) or to an empty string
(in the case of a string conversion).

• SAME, which means that a code is converted to itself if there is no
explicit conversion given. This default conversion is not valid for
string-type conversions.

The range notation in the conversion section implies an underlying
machine collation sequence and is only valid for code conversions where
such a collation sequence is always defined.

If no DEFAULT clause is given, the default clause is assumed to read:

DEFAULT -> VOID ;

Appendix G provides examples of both types of conversion.

Using the ULTRIX Operating System 215

Chapter 9

Supporting Multi-byte Characters

When designing the international base component of software targeted
for Asian markets, it is important to address the input, output, and
editing of multi-byte characters. Ensuring the ability to handle the
input and output of Asian ideographic characters is a significant part of
the localization effort in Chinese, Korean, and Japanese markets.

The major difference in handling Asian data versus European and
American data is the difference in the processing environments. This
difference is further complicated by the two- or four-byte representation
of different characters in the same character set. Digital's Asian
platforms have adopted a simple rule of using a 1:1 ratio between
the display positions required and the number of bytes in an internal
buffer. The adoption of this rule allows for easy synchronization of
display positions and internal buffer pointers.

Many input and output capabilities for Asian markets have been in­
cluded in Digital language-specific terminals and printers. Digital also
provides utilities for Asian character input, output, and manipulation.
These utilities are included in multi-byte-handling routine libraries of
individual operating systems.

The prerequisite for multi-byte character support is the ability to rec­
ognize all multi-byte characters as valid data. When international
software is designed, the routines in the software that validate input
against Digital's Multinational Character Set (DEC MCS) must be mod­
ified to accept all valid multi-byte characters defined for a particular
Asian language.

Supporting Multi-byte Characters 217

9.1 Input of Multi-Byte Characters

At Digital, the input method for Japanese characters is built into the
software, while the input methods for Chinese and Korean are built
into the terminals. Digital's terminals for Chinese and Korean lan­
guages can handle input methods that support multi-byte characters.
When the input mode is activated in these local language terminals,
the terminal uses one of its input methods to select the data character
for input. The terminal then passes the multi-byte internal code that
represents this character to the application.

9.1.1 Terminators and Delimiters

The recognition of terminators and delimiters in an input stream of
multi-byte characters requires more handling than it does in a single­
byte input stream. In a mixed single-byte and multi-byte environment,
part of a multi-byte character can contain the same code as a valid
single-byte terminator or delimiter.

The design of software for the Asian market should ensure that all
input parsing within the software process of the input stream is based
on characters rather than bytes. Digital provides a multi-byte search
routine, JSY$STR_SEARCH, as a useful tool for this task.

9.1.2 Queue Input/Output

In any software performing editor-like functions, Digital's QI/O (Queue
Input/Output) service is very often used to acquire input. QI/O services
$QIO and $QIOW requests under the VMS operating system. The QI/O
request system service prepares an I/O request for processing by the
driver and performs device-independent preprocessing of the request.

The standard English QI/O service only operates on a single-byte basis.
Digital recommends designing software to use QI/O that operates on
a multi-byte basis in order to support multi-byte languages. QI/O
ensures that all bytes required to represent the character are read into
a buffer before processing begins, as shown in the following example.

218 Supporting Multi-byte Characters

Issue QIO to get BYTEl
IF hex (BYTE1) < hex(AO) THEN

Process it as a 7-bit ASCII character
or 8-bit control character

ELSE
BEGIN

Issue QIO to get BYTE2
Process BYTEl and BYTE2 together as a 2-byte

Asian character
END

9.2 Character Output

The multi-byte character output at field, line, or screen boundaries,
where there is not sufficient space to accommodate the whole multi­
byte character, must be properly handled in order to preserve the
accuracy of the data. Digital's Asian VMS software offers localized
editors such as HEDT (Hanzi, Hanyu, or Hangul EDT) or HTPU
(Hanzi, Hanyu, or Hangul TPU), which can be used in the design of
these output functions.

9.2.1 Character Wrapping

Because multiple display positions are required for multi-byte charac­
ters, special handling is necessary when software displays multi-byte
characters. Preprocessing of the output buffer is necessary to han-
dle proper wrapping of multi-byte characters at field, line, or screen
boundaries. If a wrapping function is not provided by the software, the
software should ensure that no partial multi,.byte character is displayed
at field, line, or screen boundaries.

In wrapping multi-byte characters, the software must determine
whether sufficient space is available for the output of the multi-byte
character. If sufficient space is not available, then the whole multi-byte
character should be wrapped.

For screen display, the software can choose to place a special charac­
ter at the last position of the field, line, or screen. When designing
software for an Asian market, ensure that the display is based on
characters rather than bytes.

Supporting Multi-byte Characters 219

9.2.2 Formatted Output

Formatted output also requires that the display be based on multi­
byte characters. Software design should identify formatted output,
and ensure that truncation at a field boundary including multi-byte
characters is based on characters instead of bytes.

For example, assume the string is to be fitted into a field that can store
up to a maximum of 10 bytes. In a byte-processing environment, part
of the multi-byte character at the field boundary would be truncated,
leaving part of the character in the field.

When designing software for Asian markets, make sure that the whole
multi-byte character is truncated. A multi-byte truncate routine,
JSY$TRUNC can be used for this purpose.

9.3 Editing

Line editing, as well as screen editing, requires special attention for
multi-byte characters. The complexity of Asian characters makes it
necessary to use more space to present each individual character.

In a multi-byte processing environment, editing should be based on
characters, rather than on bytes. Methods for moving the cursor,
as well as deleting and replacing characters, must be modified for
multi-byte characters.

9.3.1 Moving the Cursor

A multi-byte character occupies multiple video positions. Since each
multi-byte character is considered as a single logical unit, the left
and right boundaries of a multi-byte character must be recognized.
The software should always position the cursor at the first byte of a
multi-byte character.

All functions and utilities that involve the movement of the cursor in
the software should be designed so that the cursor is positioned at
the first byte of a multi-byte character. This rule applies whether the
cursor is moved as a result of direct positioning, editing functions (such
as character insertion), or pressing the up or down arrow keys.

220 Supporting Multi-byte Characters

9.3.2 Deleting and Replacing Characters

Because a multi-byte character occupies multiple video positions,
character deletion should be extended from a byte-by-byte basis to a
character-by-character basis. For example, all positions occupied by the
multi-byte character should be deleted by pressing the Delete key once.

Guidelines

Digital recommends the following guidelines to accomplish the charac­
ter deletion.

• Modify the size of the delete buffer to allow for the storage of multi­
byte characters. In most cases, this means increasing the size of
the buffer.

• Because concepts of characters and words differ in different lan­
guages, the function of character deletion versus word deletion
should be clearly defined.

• For software that has an undelete function, which replaces the
text deleted, the software should perform the undeletion so that it
exactly reverses deletion.

Like deletion, undeletion in a multi-byte environment should be
character-based.

9.3.3 Overstriking Characters

Character overstriking becomes complicated when characters of vari­
able lengths are mixed. In a true character processing environment,
a character overstrike should be a one-to-one character replacement
without regard to the difference between the number of bytes in the
overstriking character and the character being replaced.

Thus, if the overstriking character is a different length, the rest of
the string shifts accordingly. The shift reflects the change in both the
internal buffer and the character displayed.

Another condition in character overstriking is important in multi­
byte processing. At times, it is not desirable to change the position
in the internal buffer or display the position of the rest of the string
after the overstrike character. Under these circumstances, character
overstriking should be handled in one of three possible ways:

• Overstrike a character with one character that occupies the same
number of bytes in the internal buffer. In this case, no additional

Supporting Multi-byte Characters 221

action is necessary. Simply replace the existing character with the
new character.

• Overstrike a character with one character that occupies fewer bytes
in the internal buffer. Since the existing character occupies more
bytes, there are unused bytes after the character is replaced. Fill
these bytes with spaces.

• Overstrike a character with one character that occupies more bytes
in the internal buffer. If the new character spans over a portion of
another character, fill the remaining bytes of the affected character
with blanks.

9.3.4 Cutting and Pasting

In most software developed for English and European markets, the cut­
and-paste functions of the software work on a line-by-line basis. For
the Asian market, design the software to perform cuts on a character­
by-character basis. When you cut and paste a multi-byte character
in a byte-processing environment, you may cut part of a multi-byte
character and leave the rest, producing errors in subsequent characters.

Nor should you select a block of text containing multi-byte charac-
ters for cutting in a byte processing environment either. Multi-byte
characters could be cut or pasted incorrectly during the process.

The design of software that provides the cut-and-paste functions should
establish its own rule for handling these situations. For instance,
depending on the situation, the multi-byte characters that span the cut­
and-paste boundaries mayor may not be included in the cut-and-paste
action.

When performing the paste function, be sure to avoid inserting data in
the middle of a multi-byte character.

9.4 Character Casing

Most of the multi-byte character sets define a set of 2-byte alphabetic
characters called full-form characters. These full-form characters
are distinguished from single-byte alphabetic characters, referred to
as half-form characters, and make the case conversion of alphabetic
characters problematic, as shown in Figure 9-1.

222 Supporting Multi-byte Characters

Figure 9-1. Case Conversion of Alphabetic Characters

Uppercase

Single-Byte .-_--+__~ Multi-Byte
(Half-Form) (Full-Form)

Lowercase

Although putting a multi-byte alphabetic character in uppercase or
lowercase is recognized as a valid activity, case conversion of multi-byte
ideographic characters produces undesirable results. When a multi­
byte character's case is changed, a different multi-byte character is
created.

During software design, parts of the software that perform casing
conversion of a string or text should be designed to ensure that the
casing of multi-byte ideographic characters is disabled. If the case of
text must be converted, use the multi-byte routines JSY$TRA_ROM_
UPPER and JSY$TRA_ROM_LOWER, located in the multi-byte library.

9.5 Character Searching

String searching and matching in standard English software is usu­
ally done on a byte-by-byte basis. However, to support multi-byte
characters, the search or match should be performed character by
character.

To localize software, modify all search routines so that they are per­
formed on a character-by-character basis. You can use JSY$STR_
SEARCH, a multi-byte search routine, to do this. If the software sup­
ports a wildcard search, the search should be carried out character by
character.

Supporting Multi-byte Characters 223

9.6 Character Sorting

Sorting and merging of multi-byte characters is fundamentally different
from sorting and merging of single-byte characters. A number of at­
tributes unique to some Asian languages, such as Chinese, necessitate
a different set of rules for sorting and merging these characters. These
unique· attributes include a large character set, duplicate collating val­
ues, a number of different collating sequences, user-defined characters,
and characters of variable length. The sorting of multi-byte characters
should be carried out character by character rather than byte by byte.

9.6.1 Collating Sequences

Languages, such as English, which are built on alphabets, have unique
collating sequences. These unique sequences do not exist in languages
based on ideographic characters. For most Asian languages, each
ideographic character may have more than one collating sequence.
For example, an ideographic character can be sorted by the number of
strokes in the character, or by its phonetic alphabet. Depending on the
purpose of the sort, different collating sequences may be used.

The sorting of ideographic characters is also distinguished by non­
unique collating values. For a particular collating sequence, different
characters can have the same collating value, such as the number of
strokes. For this reason, sorting of ideographic characters based on one
collating sequence is usually not enough. Thus a single key may need
to be sorted according to multiple collating sequences.

The key field identified for the sort process is first sorted according to
the primary collating sequence specified. If the collating values are
the same, the values of the character according to the second collating
sequence specified are compared. This comparison will be repeated
until all the collating sequences specified for the particular sort are
exhausted.

A set of commonly used collating sequences is already defined in sort
utilities provided with Digital's operating systems. Users can also
define collating sequences to meet their own specific needs. When
defining these collating sequences, define the absolute collating value
of characters instead of relative collating positions. This practice
eliminates the need to reshuffle the collating sequence when characters
are added or deleted, which can be inefficient due to the large size of
the character set.

224 Supporting Multi-byte Characters

9.6.2 Variable Length Data

In a standard sort of alphabetic characters, the key starting position is
expressed in terms of byte offset from the beginning of the record. This
method does not work in the multi-byte environment. If you specify
the key to start from byte two, the first byte of the second character
in record one is compared with the last byte of the first character in
record two, and with the second byte of the first character in record
three, and so on. This does not provide for a comparison based on the
logical unit of a character.

Similarly, specifying the length of the sort key by the number of
bytes does not produce correct results in a multi-byte character data
environment, as shown in Figure 9-2.

Figure 9-2. Sample Specification of the Sort Key

@@ = Fi rst character
%% = Second character
&& = Unnecessary bytes compared

If the length of the sort key can only be specified by the number
of bytes, in most cases the maximum possible length will be used.
However, in a multi-byte character environment where a character
occupies a variable number of bytes, specifying the maximum number
of bytes causes the comparison of pad characters. This results in
additional processing resources and unreliable results.

Supporting Multi-byte Characters 225

In a multi-byte character environment, processing should be carried out
on a character-by-character basis. To sort data that involves multi-byte
characters, users need a mechanism to specify the character position
where a sort key is located and the length of the sort key in terms of
the number of characters.

226 Supporting Multi-byte Characters

Chapter 10

Supporting Localization

This chapter describes the support that a central engineering group at
Digital provides to an engineering group located in another country.
Such support is often facilitated by an intermediary group operating
between two groups.

The central engineering group's support for product localization should
begin as soon as the decision to localize a product is made and should
include development plans for the product. Internationalization issues
should be considered in each phase of product planning, design, and
development.

The central engineering group must also work to ensure that the
appropriate deliverables are provided to the engineering groups in
other countries. The deliverables fall into five categories:

• Planning

A successful localization effort depends on effective organization
and scheduling. This goal is best reached through collaboration
between the central engineering group and the groups in the
countries localizing the product. Planning should:

Define the scope of localization support to be provided for the
particular product

Define the kinds of support to be provided, such as training

Define the contents of the localization kit (see Section 10.3)

Provide schedules

• Design

The central engineering group should provide a modular design (see
Chapter 4) as well as the following aids to localization:

System flags for localizable software modules

Bottom-up, incremental releases of code (see Section 10.3.1)

Supporting Localization 227

Bottom-up, incremental, and translatable test procedures (see
Section 10.3.5)

Incremental release of software builds, and build procedures
(see Section 10.3.2)

Baselevel notes (see Section 10.3.4)

Tools to support specific tests (see Section 10.3.7)

• Translation

The central engineering group should provide the following support
to ease the translation effort:

Software translation markup (see Section 10.1)

- Estimates for translation (see Section 10.2)
- Ongoing consulting resources

• Engineering

The central engineering group should provide the product itself,
and the tools needed to facilitate localizing the product:

Localizable source files

Internals documentation (see Section 10.3.6)

Installable localization baselevels, including translatable instal­
lation procedures (see Section 10.3.3)

Modular, translatable build procedures (see Section 10.3.2)

Translatable test procedures (see Section 10.3.5)

A build environment to compile translated code

Kit build tools

Validation tools and translatable test suites

• Training

The central engineering group is most knowledgeable about the
product and is therefore best suited to lead training efforts and
provide ongoing assistance to the engineering groups in other
countries.

228 Supporting Localization

10.1 Translation Markup

It is not always obvious to translators which portions of a software
product require translation. This section describes how to help trans­
lators locate the translatable text. At Digital, for reasons of simplicity,
we use the term translatable text to refer to any area in a file that is
subject to translation or localization. This section also gives examples
of translation markup, that is, comments in application files that assist
the translator in locating translatable and localizable items.

It is important to pay careful attention to detail during the markup of
a product. Incomplete translation markup makes the translators' task
unnecessarily difficult and delays the entire localization process. It is
good practice to review the translation markup at least once to detect
and correct errors or omissions.

Text to be translated can take the following forms:

• Natural language text used in prompts and messages

• Menu items
• Language-dependent keywords

• Strings used for validating user input
• Positioning information for display text (coordinates and sizes)

10.1.1 Objectives and Advantages of Markup

Translation markup in software files serves two objectives:

• It identifies the textual portions of a software product that have to
be localized. The flags placed by the markup allow the translator to
quickly find the translatable text.

• It helps developers understand how localization affects the product
and where changes in the product could affect localization.

Translation markup is best done in the original files, rather than in a
separate file or document, for the following reasons:

• Engineering groups in other countries can start translation with
any baselevel, which allows translation to start early.

• Every baselevel contains markup from previous baselevels.
Complete records of previous activities are preserved, providing
an opportunity to refine and upgrade the translation at each pass.

Supporting Localization 229

• Markup is easier to update between baselevels. It takes less effort
to make changes to text that has already been translated than to
create an original translation for every baselevel.

• Because online markup is faster and more manageable than hard­
copy markup, translation is easier to do on line than in hardcopy.

• Distribution is easier: if your translation agencies have network
access, marked up files can be sent over the network.

10.1.2 Guidelines for Markup

The person best suited for providing translation markup is the product
developer, since he or she knows the product best. The developer
should mark up the original files at development time, and this set
should be the only markup files produced.

Observe the following guidelines when performing source file markup:

• Start the section that requires translation with a comment:

!++ Begin translation

• Terminate the section that requires translation with a comment:

!-- End translation

• Mark up files using a comment line preceding the line that contains
a translatable item.

This practice enables the translators and software specialists to
ignore comments outside the translatable section. It also makes it
possible to automate the recognition of translatable portions.

• Include translation comments on the following subjects:
Restrictions on the length of text strings

Origin and context of text strings

Sample translation markup of VMS message files and ULTRIX files is
shown in the sections that follow.

10.1.3 Markup of VMS Message Files (.MSG)

In VMS message files, there is no need to draw the translator's atten­
tion to translatable messages because it is assumed that all messages
should be translated. However, it is essential that markup identify any
messages that are not to be translated.

230 Supporting Localization

Place the comments pertaining to a particular message or group of
messages on the line before the messages. It is good practice to start
comments with the !+ and terminate them with the !- characters, for
example:

!+
! This is a comment on the following message(s) ...
!-

Where possible, put short comments at the end of the code line.

Guidelines

Observe the following guidelines when creating new messages in a
message file or when transferring messages from code into a message
file.

• Include meaningful comments on any messages that are not self­
explanatory.

• State the origin of the message, that is, the part or parts of the
source code that call the message.

• State the context in which the message appears on the screen.

• When a message is removed from source code and put into a
message file, be sure that the message symbol or key points to the
name of the file from which the message has been removed. If this
cannot be done, include the file name in a comment.

In Example 10-1 the markup informs the translator about string
format requirements and date convention formats, and it explains the
meaning of an appended message when an error message overlays a
prompt.

Example 10-1. Translation Comments in a VMS Message File

!+
! Printer destination "DOCUMENT" from SMPRINTER.DAT. Only translate
! if you have changed the name of the destination:
!-
WP PRNTDOCDEST <DOCUMENT>

!+
! The following must match the string supplied by the help

(Example 10-1 continues on next page)

Supporting Localization 231

Example 10-1 (Cont.). Translation Comments in a VMS Message
File

! librarian in your language:
!-
ADDINFO

CMCAPITALA
CMCAPITALB
CMCAPITALC
CMCAPITALD
CMCAPITALM
CMCAPITALP
CMCAPITAL8
CMCAPITALR
CMCAPITALT
CMCAPITALW

<Additional information available:>

<A> !Appointment
 !Both
<C> !Conflict
<D> !Day
<M> !Meeting
<P> !Personal
<8> !Schedule
<R> !Reminders
<T> !Two calendars
<W> !Week

The following date formats should be changed to represent the
standard way of displaying a date format. The separators used for
the date formats in OALLV.BLI should be applied to these formats also.

MM stands for up to 2 numbers for the month
DD stands for up to 2 numbers for the day
YY stands for 2 numbers for the year (90)
MMM stands for three letters for the month (APR for APRIL)
YYYY stands for 4 numbers representing the year and century (1990)

DATE LOAD NUl

DATE LOAD NU2

DATE LOAD NU3

DATE LOAD AN1

DATE LOAD AN2

DATE LOAD ANDEFAULT
!

<MM/DD/YY>
---20--­

<DD/MM/YY>
---20--­

<YY/MM/DD>
---20--­

<DD-MMM-YYYY>
----40----­

<YYYY-MMM-DD>
----40-----

<Default date format for this language>
---------------40--------------------

!+
! The following message is appended to the end of any error

message which overlays a prompt.
!­
PRET

232 Supporting Localization

< ... Press RETURN>

10.1.4 Markup of ULTRIX Files

The following example shows a manpage from the ULTRIX man pro­
gram that displays information about the operation of a program, much
like the VMS utility.

Example 10-2. Translation Comments in an ULTRIX File

.\" SCCSID: @(#)man.1 2.13 8/23/90

.TH man 1

.SH NAME
man \- print manual pages
.SH SYNTAX
.br
.B man
\fB\-k\fR \fIkeyword ... \fR
.br
.B man
\fB\-f\fR \fIfile ... \fR
.br
.B man
[\fB\-\fR] [\fB\-t\fR] [\fB\-s\fR] [\ I \fIsection\fR\ I] \fItitle ... \fR
.SH DESCRIPTION

.1"++ Begin translation

.1"+

.1" Translate the command lines .

. 1"-

.NXR "man command"

.NXA "man command" "man macro package"

.NXAM "man command" "catman command"

.NXR "command" "locating on-line information"

. . 1"+
.1"Translate and change the manual's name, if necessary .
. 1"-

.NXR "Programmer's Manual" "accessing on line"

.NXR "Programmer's Manual" "printing"

.1"+

.1" Translate the program's description .

. 1"-

The
.PN man command is a program which gives information from the
programmers manual. It can be asked for one line descriptions of
commands specified by name, or for all commands whose description
contains any of a set of ds. It can also provide on-line access
to the sections of the printed manual .
. SH OPTIONS

(Example 10-2 continues on next page)

Supporting Localization 233

Example 10-2 (Cont.). Translation Comments in an ULTRIX File

.1"+

.1" Translate the command line .

. 1"-

.NXR "man command" "options"

.1"-- End translation

Example 10-3 shows comments associated with the translation of
dates.

Example 10-3. Date Conventions in an ULTRIX File

1*
* The following abbreviations should be changed to represent your
* standard way of displaying them. The second number between
* parenthesis stands for the number of characters in the
* abbreviation of both month and day. If necessary, change the
* number [3] to the number of characters that you are using.

*
* ++ Begin translation
*1

char month[12] [3] = {
"Jan", "Feb", "Mar", "Apr",
"May", "Jun" , "Jul" , "Aug",
"Sep", "Oct", "Nov", "Dec"

};

char days [7] [3] = {

"Sun", "Mon", "Tue" , "Wed",
"Thu", "Fri" , "Sat"

1* -- End translation *1

10.1.5 Files Not Requiring Markup

No translation markup is required for files where the translatable
portion is obvious, such as the text file shown below, or where the
respective file format does not require comments, as is the case with
the help file.

234 Supporting Localization

Example 10-4. Text File-No Markup Required

This means that a number of user interface options are
available for the product. The options may be bundled
into the product, or available by order to be installed
separately at a later time. Users can select from language
interface and functionality options during execution of
the program, perhaps even moving from one user interface
option to another while using the product. This implies
that two users of the same software product on the same
system can use different user interfaces for that product.

Example 10-5. Help File-No Markup Required

PRINT

Queues one or more files for printing, either to the default
system printer queue or to a specified queue.

Format:

PRINT file-spec[, ... J

Additional information available:

Parameters Command Qualifiers
/AFTER /BACKUP !BEFORE /BURST /BY OWNER /CHARACTERISTICS
/CONFIRM /COPIES /CREATED /DELETE /DEVICE /EXCLUDE /EXPIRED

10.2 Translation Estimates

To assist foreign engineering groups, Digital's central engineering
groups supply estimates on the amount of translatable text contained
in a corporate product. Incorrect counts of lines in text files and
incorrect page counts can seriously hinder a translation project. It is
important that these counts be as accurate as possible. Engineering
groups in other countries base their resource planning and scheduling
on these estimates, and production groups use these estimates to
schedule equipment and prepare materials. Central engineering must
provide accurate and up-to-date information about the items listed in
Table 10-1.

Supporting Localization 235

Table 10-1. Page and Screen Counts

Software files

Online help, menus

Hardcopy documentation

Line counts

Number of translatable lines (do not in­
clude code, comment, and markup lines)

Number of screens
Number of dialog boxes
Number of screen messages

Page and line counts in original documen­
tation

For all manuals and other hardcopy documentation to be translated,
central engineering must provide estimated page counts.

For all menus and online help files, central engineering must provide
an estimated number of screens (24-line displays).

For other translatable software (for example, message files), central
engineering must provide a realistic estimate of the number of lines to
be translated.

10.3 Localization Kit

Digital's central engineering groups provide a localization kit to the
product teams in the other countries. The localIzation kit contains all
the elements that the teams need to localize the software; it results
from collaboration of the central and local groups during the product
planning and preliminary design phase.

The localization kit should include an installable baselevel that ver­
ifies the way the product is built and tested and that conforms to
specifications.

A complete localization kit includes the components described in the
following sections.

10.3.1 Source Software Modules

The localization kit should provide the source code, messages, and help
modules that need to be translated. The kit includes the modules that

• Display text
• Solicit input from the user

236 Supporting Localization

• Process user input to make decisions and take actions

• Generate error messages

• Produce device-specific output

10.3.2 Modular Build Procedures

Product development includes incremental integration of code and
incremental release of builds. Modular build procedures help put
together those modules of the software product that are required for
a given incremental release. Each modular build procedure should
contain all the necessary instructions to complete one incremental
integration of code. The central engineering group should strive to
create build procedures that can be used by engineering groups in other
countries.

10.3.3 Installable Baselevel

Central engineering groups collaborate with local engineering groups by
supplying installable baselevel kits that demonstrate how the product
functions, and how it appears to the user. The availability of installable
baselevels at every phase enables the engineering groups in other
countries to produce a product version with the same appearance as the
original product. This baselevel will be used by the local engineering
groups in other countries for reference only. It must not be used
directly for translation.

10.3.4 Baselevel Notes

For larger localization projects, Digital has found it useful to provide
engineering groups in other countries with additional baselevel notes.
Baselevel notes typically consist of collected Internal Change Orders
(ICOs), or Engineering Change Orders (ECOs), used by engineering
teams for reporting and controlling engineering changes.

10.3.5 Test Procedures

When writing test procedures, the central engineering group should
keep in mind that its international product will be tested in each
country localizing the product.

Supporting Localization 237

Guidelines

To simplify the localization process, central engineering groups at
Digital follow these guidelines for developing tests:

• Design test procedures that execute automatically. Include all input
to the tests and all expected output from the tests.

• Collaborate with groups in other countries to create translatable
test suites, including regression tests.

• Create test procedures that can be modified to test product vari-
ants.

• Make the test procedure easily translatable to other languages.

• Provide test procedures with each baselevel.

• Include, for each new release, detailed information on any changes
made.

10.3.6 Internals Documentation

Digital's central engineering group provides the engineering groups
in other countries with all applicable internals documentation, which
includes the following:

• List of localizable modules

• Functional specifications

• Development plans

• Procedures manuals

• Quality evaluation plans

• Data definition documents

At Digital, central engineering groups should provide the teams in
other countries with the latest revisions as they become available.

10.3.7 Tools and Utilities

It is important that software tools and utilities created specifically to
test the international product be made available to the groups in other
countries, and that the group members be familiar with their use.
Include the following test tools:

• Product-specific test tools

• Compilers

238 Supporting Localization

• Linkers

• Filters
• Command procedures

• Verification programs

10.4 Digital's Localization Platform

Internationalization efforts are easier when the process begins by
localizing the operating system. A localized operating system provides
a common platform and architecture for the application programs.
For example, many of the Asian character and data manipulation
issues discussed in Chapter 9 can be handled by the localized Asian
terminal drivers and specialized multi-byte handling utilities that
Digital packages with the various Asian VMS operating systems.
Similar facilities are also available in the Asian ULTRIX operating
systems.

Besides the localized operating systems for European and Asian lan­
guages, Digital offers other localized hardware and software to assist
with the localization of software applications. Digital's localized Asian
products include hardware and software for

• Localized operating systems to provide a common platform to
handle multi-byte characters and to support localized applications

• Input and output devices such as terminals, workstations, and
printers for handling multi-byte Asian characters input and output

• Input methods to enter Asian characters

• Localized information management tools to facilitate development
and run-time support of the Asian language by the application
(currently only available under the Asian VMS platform)

• Other software engineering tools and languages such as VAXset and
VAX SCAN can aid developers throughout the software localization
process

Supporting Localization 239

Appendix A

Digital's Asian Products

Digital has made a significant investment in the development of both
hardware and software platforms to facilitate international software
products in native languages in Asia. This appendix lists Digital's
available hardware and software that currently support the Chinese,
Japanese, and Korean languages.

A.1 Hardware Platform

Most VAX and RISC processors, in conjunction with their respective
VMS and ULTRIX operating systems, provide varying degrees of
support for the local language processing of Chinese, Japanese, and
Korean. Together with the available local language terminals and
printers, Digital provides a complete hardware platform for users who
have needs for data processing in Chinese, Japanese, or Korean.

Some of Digital's terminals and printers provide a complete local
language processing architecture for a number of Asian languages.
This effort includes a series of VT382 terminals supporting various
Asian languages. Currently, Digital terminals and printers listed in
Table A-I and Table A-2 support the Traditional Chinese (Taiwan),
Simplified Chinese (PRC), Japanese, and Korean languages.

Digital's Asian Products 241

Table A-1. Available Asian Terminals
Traditional Simplified
Chinese Chinese Japanese Korean

VT382-D

Mitac CT282

Mitac CPS50 (with
terminal emulation
software)

VT382-C

VT82

VT382-J

VT286-J

VT284-J

VT282-J

VT382-K

Doosan
220C

Table A-2. Available Asian Printers
Traditional Simplified
Chinese Chinese Japanese Korean

Mitac CPC70
(printer controller)

A.2 Software Platform

LA380

LA280

LA86

LA380

LA280

LA86

LN03

DEClaser 2300

LPS40

LPS20

LA380

.Digital provides a local language processing environment in the VAX
architecture with localized VMS operating systems. Many utilities
facilitating the processing of Asian characters are available with the
localized VMS operating system; many of the data management tools
and development tools have also been localized to support the process­
ing of Asian characters. These utilities and tools make application
localization a much easier task and also minimize the maintenance
efforts required due to changes in standards adopted for a particular
language.

242 Digital's Asian Products

The localization of the VMS operating system has brought about the
development of a number of utilities specific to the processing of partic­
ular languages. Table A-3 lists these utilities. Some of them may not
be included in all Asian VMS operating systems. Consult the Software
Product Descriptions and System Support Addendums of individual
Asian VMS operating systems for the specific information. In addition
to these localized software products, some standard software prod­
ucts are available as useful tools in the Asian language multi-byte
processing environment.

Similar local language processing capabilities are being developed for
the RISC architecture.

Table A-3. Digital's Asian Software Platform
Capability Asian Language

Traditional Chinese

Operating System

Networking

Data Management

Development Tools

Application Integration

Applications

VMSlHanyu
ULTRIXlHanyu
UWSlHanyu

PCSAlHanyu
DECnet

RdblHanyu
DTRlHanyu
DBMSlHanyu
CDDlPlus

DECformslHanyu
FMSlHanyu
RALLYlHanyu MACRO
BASIC
BLISS-32
C
COBOL
FORTRAN
PASCAL
PUI

VMS DECwindowslHanyu
ALL-IN-llHanyu

DECwritelHanyu

(Table A-3 continues on next page)

Digital's Asian Products 243

Table A-3. Digital's Asian Software Platform (cant.)
Capability Asian Language

Simplified Chinese

Operating System

Networking

Data Management

Development Tools

Application Integration

Applications

244 Digital's Asian Products

VMSIHanzi
ULTRIXlHanzi
UWSIHanzi

PCSAlHanzi
DECnet

RdbIHanzi
DTR/Hanzi
CDDlPlus

DECformslHanzi
FMSIHanzi
RALLYIHanzi MACRO
BASIC
BLISS-32
C
COBOL
FORTRAN
PASCAL
PUI

VMS DECwindowslHanzi
ALL-IN-lIHanzi

DECwriteIHanzi
VWSIHanzi
MANMANIHanzi

(Table A-3 continues on next page)

Table A-3. Digital's Asian Software Platform (cant.)
Capability Asian Language

Japanese

Operating System

Networking

Data Management

Development Tools

Application Integration

Applications

Graphic Tools

VMS/Japanese
ULTRIXlJapanese
UWS/Japanese

PCSAlJapanese
DECnet

Rdb/Japanese
DTRlJapanese
CDDlPlus

DECforms/Japanese
FMS/Japanese MACRO
BASIC
BLISS-32
C
COBOL
FORTRAN
PASCAL
PLil

ALL-IN-l/Japanese
VWS/Japanese
VMS DECwindows/Japanese

DECwrite/Japanese
MANMAN/Japanese

GKS/Japanese
PHIGS/Japanese

(Table A-3 continues on next page)

Digital's Asian Products 245

Table A-3. Digital's Asian Software Platform (cont.)
Capability Asian Language

Korean

Operating System

Networking

Data Management

Development Tools

Application Integration

Applications

VMS/Hangul
ULTRIX/Hangul
UWS/Hangul

PCSA/Hangul
DECnet

Rdb/Hangul
DTR/Hangul
CDD/Plus

DECforms/Hangul
FMS/Hangul
RALLY/Hangul MACRO
BASIC
BLISS-32
C
COBOL
FORTRAN
PASCAL
PUI

VMS DECwindows/Hangul
ALL-IN-l/Hangul

DECwrite/Hangul

A.3 Chinese and Korean VMS Components

Some Digital utilities and routines in Chinese and Korean VMS provide
a computing environment for these two languages. They include the
terminal driver, HEDT, and HTPU:

• Terminal driver

The terminal driver within the VMS operating system has been
enhanced to handle multi-byte character input and output. The
following advanced line editing features are also available to
support Asian characters:

Cursor movement over Asian characters
Deletion of Asian characters

Insertion of Asian characters in the middle of a line

246 Digital's Asian Products

Wrapping at the end of a line containing Asian characters

Overstriking of Asian characters

READ verification

• HEDT and HTPU

The HEDT and HTPU editors supplied with the Asian VMS operat­
ing system provide advanced editing features to support multi-byte
Asian character editing.

• HSORT and HMERGE

HSORTIHMERGE supports both the sorting of data according to
collating sequences specific to the supported language and multiple
collating sequences on the same sort key, a requirement of sorting
in Asian languages.

• Callable SORT/MERGE Interfaces

Callable interfaces for the Asian language SORT/MERGE facility is
provided.

• HDUMP

HDUMP supports the proper handling of multi-byte characters in
DUMP output.

• HSYSHR

HSYSHR, a multi-byte run-time library, facilitates application
development in Asian languages. The run-time library routines
perform various Asian language processing functions, such as string
manipulation, read/write operations, and character conversions.

• HMAIL

HMAIL, the local mail facility, supports both the editing and
viewing of mail text with multi-byte Asian characters and Asian
character folder names.

• Bilingual HELP messages

The VMS operating system's HELP messages are provided in both
English and the specific language of the particular Asian VMS
operating system.

• Font utilities

For some Asian VMS operating systems, users can define their own
characters.

Digital's Asian Products 247

A.4 Japanese VMS Operating System's Components

Some Digital utilities and routines in Japanese provide a computing
environment for this language.

• Terminal driver

The terminal driver in VMS/Japanese has been enhanced to handle
the following capabilities:

On demand loading of glyph

In case the current terminal device does not have some glyphs,
the terminal driver sends them to the terminal to meet the
requests. Thus the terminal can display characters that the
terminal does not have as a default. Users can enable and
disable this feature by using the KANJIGEN utility.
JIS78 to JIS83 conversion

The JIS78 to JIS83 conversion feature in the terminal drivers
allows users with JIS78 terminals to also use JIS83 terminals.
Users can specify the terminal version by using the KANJIGEN
utility.

Input/Output flags

Users can use the KANJIGEN utility to determine if the
current device is a Kanji terminal.

• JTPU

JTPU/JEVE is an editor supplied with VMS/Japanese that provides
advanced editing features to support Japanese character editing.

• SORT/MERGE

SORT/MERGE supports both the sorting of data according to
collating sequences specific to the Japanese language, and supports
multiple collating sequences on the same sort key, which is a
requirement of sorting in the Japanese language.

• KDUMP

KDUMP is a utility that supports the proper handling of multi-byte
characters in DUMP output.

248 Digital's Asian Products

• JSYSHR

JSYSHR is a shareable image that facilitates application devel­
opment in Japanese. The run-time library routines perform a
variety of Japanese language processing functions such as string
manipulation, read/write operations, Kana-Kanji conversion, and so
on.

• JSYLIB

JSYLIB is an object library that has the same functionality as
JSYSHR, but also contains code conversion routines.

• JSY$SMGSHR

JSY$SMGSHR is a shareable image of enhanced SMGSHR that
supports the Japanese language.

• JMAIL

JMAIL is the local mail facility that supports both the editing and
viewing of mail text with Japanese characters.

• VMS Local language (VMSL)

VMS HELP messages, system messages, and some utilities' mes­
sages are provided in both English and Japanese. Users can choose
the language displayed in messages by using the SET LANGUAGE
command.

• KCODE

This utility converts a DEC Kanji file to a file in another vendor's
Kanji files and vice versa.

• JDICEDIT

JDICEDIT maintains a personal dictionary for users performing
Kana-Kanji conversions.

• Font Utilities

Font utilities are provided with the VMS/Japanese operating
system so that users can define their own characters.

Digital's Asian Products 249

A.5 Japanese ULTRIX Components

Digital provides a·locallanguage processing environment in its VAX
and RISC architectures with a localized ULTRIX operating system.
Many utilities that facilitate the processing of Asian characters have
been provided with the localized ULTRIX operating system.

For specific information, consult the Software Product Descriptions and
System Support Addendums for individual Asian ULTRIX software.

Digital provides a number of utilities and routines in the Japanese
ULTRIX operating system to provide a computing environment for this
language.

• Tty subsystem

The tty subsystem handles multi-byte characters input and output
and offers the following features:

Code conversion between terminal code and internal code
Kana-Kanji conversions

Soft-ODL capability

History capability

• Csh

The Japanese csh handles Japanese characters in the command
argument, shell script, and history list.

• Text editor

The Japanese Vi and Japanese Emacs editors provide advanced
editing features to support Japanese character editing.

• Nroff

The Japanese Nroff supports Japanese characters and includes the
Japanese specific KINSOKU-SYORI. Nroff also supports Japanese
tbl.

• Libraries

The libraries included with the ULTRIX/Japanese operating sys­
tem include Kana-Kanji conversion libraries and code conversion
libraries.

• On-line manuals

Digital provides on-line manuals in Japanese for all supported
Japanese products.

250 Digital's Asian Products

• Font utilities

The fedit utility is provided with the ULTRIX/Japanese operating
system so that users can define their own characters. The fonts
created by fedit are used for VT terminals and Kanji printers.

• Code conversion

In the tty subsystem, the supported terminal codes are shift-JIS,
7 bit-JIS, DEC Kanji 1978, and DEC Kanji 1983. And the jcode
utilities and libraries convert one code to the other among those
terminal codes.

• Other utilities

Digital also supports Japanese printer filters, Japanese grep,
Japanese od, Japanese ed, and Japanese sed.

A.6 Japanese OECwindows

Application developers should use Japanese DECwindows software to
support Japanese characters. Japanese DECwindows software is avail­
able as part of VMS/Japanese and Japanese ULTRIX Worksystem
Software (UWS). It consists of localized versions of the original
DECwindows components such as a server, fonts, XUI Toolkit and
several bundled applications as described below:

• Japanese DECwindows server

The X Window System specifies Kana key symbols to be used for
identifying Kana keyboard events. Japanese DECwindows software
provides the keymap file which defines mapping between Digital's
LK201-AJ (Kana keyboard) key codes and Kana key symbols.

In addition, the Japanese version of the DECwindows server can
control Kana input mode.

• Japanese fonts

The DEC-Kanji character set consists of more than 7,000 Japanese
characters. Four families (grouped by size) of Japanese fonts are
available. Each family contains a set of Hankaku font files and
a Zenkaku font file. Hankaku fonts (ASCII, JIS-Roman, JIS­
Katakana, ISO Latin-I, DEC-Supplemental and DEC-Technical)
have the same height and half-width as Zenkaku fonts (DEC-Kanji)
in the same family.

Each font file has a unique logical font description compliant with
the X Logical Font Description (XLFD) convention.

Digital's Asian Products 251

As part of the Kanji character set, users can define new characters.
VMS/Japanese provides the facilities called FEDIT/FDESIGN
(fedit) to define and maintain the user-defined characters. Since
the above facilities are designed to be used for character terminals,
Japanese DECwindows software provides a font file converter
which converts FEDIT/FDESIGN (fedit) generated font files to
DECwindows server native format (SNF) font files.

• Japanese Xlib

The original Xlib includes basic 16-bit character handling routines.
The following six functions have their 16-bit counterparts.

8·Bit Functions

XDrawString

XDrawImageString

XDrawText

XTextWidth

XTextExtents

XQueryTextExtents

16·Bit Functions

XDrawString16

XDrawImageString16

XDrawText16

XTextWidth16

XTextExtents16

XQueryTextExtents16

Xlib does not provide a built-in mechanism to handle the mixture of
8-bit and 16-bit characters.

• Japanese XUI Toolkit

The original XUI Toolkit supports DDIF and incorporates a set
of functions to handle it. Some widgets accept compound strings
as values of their resources. Users can use DEC-Kanji or JIS­
Katakana with those widgets.

The Japanese version of XUI Toolkit is a superset of the original
XUI Toolkit. It changes its behavior according to the language spec­
ified by the session manager. This language switching mechanism
is subject to change.

In the Japanese version of XUI Toolkit, the following widgets are
localized in terms of default labels, propagation mechanisms of font
lists, and so on.

ColorMix

FileSelection
Help

MessageBox

Scale

252 Digital's Asian Products

Selection

SText

The SText widget includes a built-in Japanese input method (Kana­
to-Kanji conversion). The FileSelection and Help widgets contain
some SText widgets.

A.7 Japanese Multi-Byte Run-Time Library

JSYSHR, the multi-byte run-time library, is a collection of commonly
used routines that perform a wide variety of multi-byte Japanese
language processing operations. The library is a valuable tool in the
localization of software supporting Kanji data.

The library is available as part of the VMS/Japanese operating system.
All routines provided in this library can be called from any program­
ming language supported in the VMS/Japanese environment. Routines
in JSYSHR are prefixed by either 'JLB$' or 'JSY$' and are divided into
the following four groups according to the task they perform. Table A-4
lists the four routine groups.

Table A-4. JSYSHR Routines
Routines

General

Preliminary

Kana-Kanji conversion

Kanji code conversion

Task Performed

Japanese processing library routines that are called
with standard interface from VAX programming
languages.

Basic routines to process details such as character
manipulation.

A set of routines that perform the Kana-Kanji
conversion.

A set of routines to convert code between Digital's
Kanji code and other vendors' Kanji code.

A.8 Chinese and Korean Multi-Byte Run-Time Library

HSYSHR, the multi-byte run-time library, is a collection of commonly
used routines that perform a wide variety of multi-byte Asian language
processing operations. The library is a valuable tool in the localization
of single-byte software to multi-byte software.

Digital's Asian Products 253

The HSYSHR library is available as part of the Asian VMS operat­
ing system. All of the routines in this library follow the same VAX
Procedure Call Standard and can be called from any programming lan­
guage supported in the Asian VMS environment. Routines in HSYSHR
are prefixed by either 'JLB$' or 'JSY$'; they are divided into nine
groups according to the task they perform, see Table A-5.

Table A-5. HSVSHR Routines
Routine

Conversion

String

ReadlWrite

Pointer

Comparison

Search

Count

Character Type

DatelTime

Task Performed

Multi-byte character conversion

Manipulate multi-byte character strings

Read/write of multi-byte characters in user buffers

Manipulate multi-byte character pointers

Compare strings that contain multi-byte characters

Search for substrings containing multi-byte characters

Count bytes and characters in strings containing multi­
byte characters

Identify the type and class of symbols and characters in
multi-byte character processing

Convert the date/time format into the local language
format

A.9 Japanese Screen Management Run-Time Library
(JSY$SMGSHR)

JSY$SMGSHR is also a run-time library that can be called from any
language supported in the Japanese VMS environment; supporting
both Japanese Kanji and Katakana characters.

254 Digital's Asian Products

Appendix B

Digital's International Market

Digital localizes software products to provide users with interfaces in
languages other than American English. Digital currently supports
products with various user interface languages including British
English, Chinese (traditional and simplified scripts), Danish, Dutch,
Finnish, French, German, Hebrew, Icelandic, Italian, Japanese, Korean,
Norwegian, Portuguese, Spanish, Swedish, and Thai.

Digital is also adapting products to support character sets other than
the ISO Latin-1 character set, providing products that support lan­
guages such as Arabic, Chinese, Greek, Hebrew, Japanese, Korean,
Thai, and Turkish. Languages supported by the ISO Latin-2 character
set, such as Czech, (Serbo-)Croatian, Hungarian, Polish, Romanian,
Slovak, and Slovene could be added to this list in the future.

Table B-1 provides an overview of countries to which these localizations
apply and where Digital is currently selling localized products. For
most of the countries listed, the product localization goes beyond
language support to include other areas, such as support of various
keyboards, various data input and display conventions, as well as
various collating sequences.

The character sets listed are, where applicable, ISO standards. The
keyboards listed are specific to a particular language. For example, a
country like Belgium may use more than one keyboard to accommodate
the various languages of its citizens. The labels, Modified xxx, VT28x,
VT38x, LA8x, and LAx80, in the keyboard column indicate that more
than just a local keyboard is required to adequately support the country
and its languages.

Table B-1 lists languages used in the country, whether they are used
in business or not. Some minority languages with no official status in
the country are listed in parentheses.

Digital's International Market 255

The user interface languages of Digital's products include the important
business languages for the countries listed. English is the most widely
used language in business in many countries. Digital has offices in
most of the countries listed in the table and also in some not listed,
such as Fiji, India, Malaysia, and the Philippines.

Table B-1. Countries and Languages
Country Character Set Keyboard Languages

Algeria

Australia

Austria

Belgium

Brazil

Canada

China (PRC)

Cyprus

Denmark

Egypt

Finland

France

Germany

Greece

Latin-Arabic

ISO Latin-1

ISO Latin-1
German NRC

ISO Latin-1
French NRC

ISO Latin-1

ISO Latin-1
Canadian NRC

Simplified
Chinese Script

Latin-Greek
ISO Latin-5

ISO Latin-1
Norwegian NRC

Latin-Arabic

ISO Latin-1
Finnish NRC

ISO Latin-1
French NRC

ISO Latin-1
German NRC

Latin-Greek

Modified Arabic

North American

German

FrenchlBelgian, Flemish

North American

North American, French
Canadian

VT28x, VT38x, LA8x,
LAx80

Greek, Turkish

Danish

Modified Arabic

Finnish

FrenchlBelgian

German

Modified Greek

Arabic, French (Berber)

English

German (Croatian, Slovenian)

German, French, Dutch

Portuguese (German,
Spanish, Italian, Japanese,
Polish)

English, French
(Italian, Ukranian)

Chinese (Tibetan, Kazakh,
Korean, Mongolian, Uighur,
Vi, Zhuang)

Greek, Turkish

Danish (German)

Arabic

Finnish, Swedish

French, Breton, Corsican,
Basque, Occitan (Catalan,
German, Dutch)

German (Danish, Frisian)

Greek (Macedonian,
Albanian, Turkish)

(Table B-1 continues on next page)

256 Digital's International Market

Table B-1. Countries and Languages (cont.)
Country Character Set Keyboard Languages

Hong Kong ISO Latin-1 VT28x, VT38x, LA8x, English, Chinese
Chinese LAx80

Iceland ISO Latin-1 Icelandic Icelandic, Danish

Ireland ISO Latin-1 United Kingdom English, Irish Gaelic
United Kingdom
NRC

Israel Latin-Hebrew Modified Hebrew Hebrew, Arabic

Italy ISO Latin-1 Italian German, Italian, French
Italian NRC (Rhaeto-Romance, Sardinian,

Albanian)

Japan Kanji and Kana VT28x, VT38x, LA8x, Japanese (Korean)
LAx80

Luxembourg ISO Latin-1 Swiss German, French, Luxembourgian

Mexico ISO Latin-1 Spanish Spanish (Indian)

Morocco Latin-Arabic Modified Arabic Arabic, French (Berber,
Spanish)

Netherlands ISO Latin-1 Netherlands Dutch, Frisian
Dutch NRC

New Zealand ISO Latin-1 North American English, Maori

Norway ISO Latin-1 Norwegian Norwegian
Norwegian NRC

Portugal ISO Latin-1 Portuguese Portuguese
Portuguese
NRC

Republic of Hangul and VT28x, VT38x, LA8x, Korean
Korea (South) Hanja LAx80

Saudi Arabia Latin-Arabic Modified Arabic Arabic, English

Singapore Simplified (Not sold by Digital) English, Malay, Tamil,
Chinese Script Chinese

Spain ISO Latin-1 Spanish Catalan, Spanish, Basque,
Spanish NRC Galician, Valencian

(Mallorcan)

(Table B-1 continues on next page)

Digital's International Market 257

Table B-1. Countries and Languages (cont.)
Country Character Set Keyboard

Sweden ISO Latin-l Swedish
Swedish NRC

Switzerland ISO Latin-l Swiss (German), Swiss
Swiss NRC (French)

Taiwan (ROC) Traditional VT2Bx, VT3Bx, LABx,
Chinese Script LAxBO

Thailand Thai VT2Bx, VT3Bx, LABx,
ISO Latin-l LAxBO

Tunisia Latin-Arabic Modified Arabic

Turkey ISO Latin-5 Modified Turkish

United Kingdom ISO Latin-l United Kingdom
United Kingdom
NRC

United States ISO Latin-l North American

Yugoslavia ISO Latin-2 Modified Croatian
Latin-Cyrillic

258 Digital's International Market

Languages

Swedish

German, French, Italian,
Rhaeto-Romance

Chinese

Thai (English, Malay,
Chinese)

Arabic (French)

Turkish (Kurdish)

English, Welsh (Irish Gaelic,
Scots Gaelic)

English, Spanish (German,
French, Italian, Chinese)

Croatian, Macedonian,
Slovenian, Serbian (Albanian,
German, Hungarian)

Appendix C

Language-Specific Collating
Sequences

This appendix contains tables listing the collating sequences for the
following languages:

Danish
English
Finnish
French
German
Greek
Icelandic
Italian
Norwegian
Portuguese
Spanish
Swedish

The tables are intended as a source of information for applications
developers. They show how characters should be collated to obtain
alphabetical output according to dictionary order.

The Arabic, Chinese, Hebrew, Japanese, Korean, Taiwanese, and Thai
collating sequences are not included here because of the numerous
characters involved and the variety of possible collating methods.

Refer to Table C-l to find out which collating sequence a country uses.
Tables C-2 through C-4 list the collating sequences for each language.

Language-Specific Collating Sequences 259

Table C-1. Collating Sequences Used by Different Countries
Country Collating Sequences Used

Australia
Austria
Belgium
Canada
Denmark
Finland
France
Germany
Greece
Hong Kong
Iceland
Ireland
Israel
Italy
Luxembourg
Mexico
Netherlands
New Zealand
Norway
Portugal
Puerto Rico
Spain
Sweden
Switzerland
United Kingdom
United States

English
German
English, French
English, French
Danish
Finnish
French
German
Greek
English
Icelandic
English
Hebrew
Italian
French, German
Spanish
English1

English
Norwegian
Portuguese
English, Spanish
Spanish
Swedish
French, German, Italian
English
English

IThe English collating sequence is used for Digital's Dutch products.

260 Language-Specific Collating Sequences

When reading Tables C-2 through C-4, keep the following points in
mind:

• Letters are grouped in sets. Each set consists of variants of a basic
letter; all letters in a set have the same basic collating value, which
means that sorting is performed as if the variants were replaced by
the basic letter.

• Within any set, the variants are in a specific order; this order is
used for tie-breaking. For example, with the English collating
sequence, a sorted list could contain the following elements:

key
Keynesian
kg
KG
khaddar

Language-Specific Collating Sequences 261

Table C-2. Danish, English, Finnish, and French Collating Sequences
Danish English Finnish French

a A a
b B
c C
dD
e E e E
fF
gG
hH
i I
j J
kK
1 L
mM
nN
o 0
p p
qQ
r R
s S
t T
uU
vV
wW
xX
yYiiU
z Z
relE
o 0
aA

aA
b B
c C
d D
e E
fF
gG
hH
i I
j J
kK
1 L
mM
nN
o 0
p p
qQ
r R
s S
t T
uU
vV
wW
xX
yY
z Z

aA
b B
c C
dD
e E e
fF
gG
hH
i I
j J
kK
1 L
mM
nN
o 0
p p
q Q
r R
s S
t T
uU
v V w W
xX
yYiiU
z Z
aA
aA
o 0

a A re2 lE2 al AI a A a A a1

Al al Al iiI Al
b B
c C ~ C
dD
eEeEeEeEeE
fF
gG
hH
i I 11 11 11 II 1 I 'i 1
j J
kK
1 L
mM
n N iiI Nl

o 0 002 (E2 61 61 01 61 0
6 01 0 1 01 6 1 01 0 1

P P
q Q
r R
s S
t T
u U U1 VI U U u fJ ii V
vV
wW
xX
yYyY
z Z

IFor French, these letters occur only in borrowed words.
2re, lE, re, and CE are collated as if they were ae, AE, oe, OE; for tie-breaks they collate between a and a, 0

and 6. For example, the order would be: aede, E£gosome, aerage, E£rage, E£schne, aetite.

262 Language-Specific Collating Sequences

Table e-3. German, Greek, Icelandic, and Italian Collating Sequences
German Greek Icelandic Italian

aAaA
b B
c C
d D
e E
fF
gG
hH
i I
j J
kK
I L
mM
nN
o 0 0 6
p p
qQ
r R
s S ill
t T
uUiiU
vV
wW
xX
yY
z Z

O! A
{3 B
1 r
6 L1
€ E
~ Z
11 H
() e
L I
It K
A A
J.l,M
lJ N
e E
o 0
rrII
p p
(J <;; E
7 T
v T
¢ 4'
xX
1/J l[I

wD

aA
aA
b B
c C
dD
(eth)
e E
e E
fF
gG
hH
i I
i f
j J
kK
I L
mM
nN
o 0
6 6
p p
qQ
r R
s S
t T
uU
liD
vV
wW
xX
yY
(yacute)
z Z
(thorn)
rolE
o 6

aAaA
b B
c C ~ Q
dD
e E e E e E
fF
gG
hH
iIi t
j J
kK
I L
mM
nN
o 0 0 6
p p
qQ
rR
s S
t T
uUuU
vV
wW
xX
yY
z Z

1B is treated as if it were the 2-letter sequence ss when compared with other characters.
When it is compared with the characters ss, it is sorted after ss; for example, the order
would be: Maf3arbeit, Masse, Maf3e, massieren.

Language-Specific Collating Sequences 263

Table C-4. Norwegian, Portuguese, Spanish, and Swedish Collating
Sequences

Norwegian Portuguese Spanish Swedish

aA
b B
c C
dD
e E
fF
gG
hH
i I
j J
kK
I L
mM
nN
o 0
p p
qQ
r R
s S
t T
uU
vV
wW
xX
yY
z Z
relE
o 0
aA

aAaAaAaAaA
bB
c C c; Q
dD
eEeEeE
fF
gG
hH
iIi f
j J
I L
mM
nN
0066060
p P
q Q
r R
s S
t T
uUuU
vV
xX
z Z

a A a
b B
c C
ChI ChI
d D
e E e
fF
gG
hH
iIi
j J
kK
I L
IF LF
mM
nN
fiN
006
p P
qQ
rR
s S
t T
u U u iiw
vV
wW
xX
yY
z Z

aA
b B
c C
dD
e E e
fF
gG
hH
i I
j J
kK
I L
mM
nN
o 0
p p
qQ
rR
s S
t T
uU
vV
wW
xX
yY
z z
aA
aA
o b

ICollate the two-letter combinations as if they were one letter; for example, the order
would be: curva, chasquido, dana for ch and falta, falla, familia for ll.

264 Language-Specific Collating Sequences

Appendix D

Local Data Formats

This appendix presents the formats used by countries shown in
Table D-l for the following types of data:

• Names and abbreviations for weekdays (Table D-2)

• Names and abbreviations for months (Table D-3)

• Dates (Table D-4)

• Translations for yesterday, today, tomorrow (Table D-5)

• Personal titles and forms of address (Table D-6)

• Postal addresses (Table D-7)

• Representations of currency (Table D-8)

• Expressions of time (Table D-9)

• Ordinal numbers (Table D-IO)

• Telephone numbers (Table D-ll)

Local Data Formats 265

Table 0-1. Countries and Their Major Business Languages
ISO 3166

Country Name in Local Country
Country Language Local Languages Code

Austria Osterreich Deutsch AT

Belgium Belgie Fran~ais BE
Belgique Nederlands

Canada Canada English CA
Fran~ais

Denmark Danmark Dansk DK

Finland Suomi Suomian FI

France France Fran~ais FR

Germany Deutschland Deutsch DE
Bundesrepublik Deutschlands
(BRD)

Iceland Island Islenska IS

Ireland Eire English IE
Republic of Ireland

Italy Italia Italiano IT

Netherlands Nederland Nederlands NL

Norway Norge Norsk NO

Portugal Portugal Portugues PT

Spain Espana Espanol ES

Sweden Sverige Svensk SE

Switzerland Schweiz Deutsch: Schweiz CH
Suisse Fran~ais: Suisse Romande
Svizzera Italiano: Svizzero

United Kingdom United Kingdom English GB

United States United States English US

266 Local Data Formats

Table 0-2. Abbreviations of Weekdays

Austria Belgium: Flanders Belgium: French-speaking

Sonntag Son zondag zon/zo dimanche dim/di
Montag Mon maandag maa/ma lundi lun/lu
Dienstag Die dinsdag din/di mardi mar/rna
Mittwoch Mit woensdag woe/wo mercredi mer/me
Donnerstag Don donderdag don/do jeudi jeu/je
Freitag Fre vrijdag vri/vr vendredi ven/ve
Samstag Sam zaterdag zat/ za samedi sam/sa

Canada: Canada:
English-speaking French-speaking Denmark

Sunday Sun dimanche dim. sllmdag s0n
Monday Mon lundi lundi mandag man
Tuesday Tue mardi mardi tirsdag tir
Wednesday Wed mercredi mercr. onsdag ons
Thursday Thu jeudi jeudi torsdag tor
Friday Fri vendredi vendr. fredag fre
Saturday Sat samedi sam. 10rdag 10r

Finland France Germany

maanantai rna dimanche dim/di Sonntag So
tiistai ti lundi lun/lu Montag Mo
keskiviikko ke mardi mar/rna Dienstag Di
torstai to mercredi mer/me Mittwoch Mi
perjantai pe jeudi jeu/je Donnerstag Do
lauantai la vendredi ven/ve Freitag Fr
sunnuntai su samedi sam/sa Samstag Sa

Iceland Ireland Italy

sunnudagur sunnud.!su. Sunday Sun domenica (Abbrevia-
manudagur manud.lma. Monday Mon lunedi tions not
tridjudagur tridjud.!tri. Tuesday Tue martedi used)
midvikudagur midv.d.lmi Wednesday Wed mercoledi
fimtudagur fimmtud.lfi. Thursday Thu giovedi
f6studagur f6stud.lf6. Friday Fri venerdi
laugardagur laugard./lau. Saturday Sat sabato

(Table D-2 continues on next page)

Local Data Formats 267

Table 0-2. Abbreviations of Weekdays (cont.)

Netherlands Norway Portugal

zondag zo/zon s~ndag s~n/s~ domingo dom.
maandag ma/maa mandag man/rna segunda-feira seg.
dinsdag di/din tirsdag tir/ti ter~a-feira ter.
woensdag wo/woe onsdag ons/on quarta-feira qua.
donderdag do/don torsdag tor/to quinta-feira qui.
vrijdag vr/vri fredag fre/fr sexta-feira sex.
zaterdag za/zat l~rdag l~r/l~ sabado sab.

Switzerland:
Spain Sweden French-speaking

lunes lun/L (mil) sondag son dimanche di
martes marlM (mil) mandag man lundi lu
miercoles mielX (mil) tisdag tis mardi rna
jueves jue/J (mil) onsdag ons mercredi me
viernes vieN (mil) torsdag tors jeudi je
sabado sa /S (mil) fredag fre vendredi ve
domingo do /D (mil) lOrdag lor samedi sa

Switzerland: Switzerland:
German-speaking Italian-speaking United Kingdom

Sonntag So domenica (Abbrevia- Sunday Sun
Montag Mo lunedi tions not Monday Mon
Dienstag Di martedi used) Tuesday Tue
Mittwoch Mi mercoledi Wednesday Wed
Donnerstag Do giovedi Thursday Thu
Freitag Fr venerdi Friday Fri
Samstag Sa sabato Saturday Sat

United States

Sunday Sun.lSund.lS.
Monday Mon.lMo. 1M.
Tuesday Tue./Tu. /T.
Wednesday Wed./We. /W.
Thursday Thu./Th. /Thurs.
Friday Fri.lFr. IF.
Saturday Sat.lSa.

268 Local Data Formats

Table 0-3. Abbreviations of Months

Austria Belgium: Flanders Belgium: French-speaking

Januar Jan januari jan janvier jan
Februar Feb februari feb fevrier fev
Marz Mar maart mrt mars mar
April Apr april apr avril avr
Mai Mai mei mei mai mai
Juni Jun juni jun juin juin
Juli Jul juli jul juillet juil
August Aug augustus aug aout amI
September Sep september sep septembre sep
Oktober Okt oktober okt octobre oct
November Nov november nov novembre nov
Dezember Dez december dec decembre dec

Canada: Canada:
English-speaking French-speaking Denmark

January Jan janvier janv. jariuar jan
February Feb fevrier fevr. februar feb
March Mar mars mars marts mar
April Apr avril avr. april apr
May May mai mai maj maj
June Jun juin juin juni jun
July Jul juillet juil. juli jul
August Aug aout aout august aug
September Sep septembre sept. september sep
October Oct octobre oct. oktober okt
November Nov novembre nov. november nov
December Dec decembre dec. december dec

(Table D-3 continues on next page)

Local Data Formats 269

Table 0-3. Abbreviations of Months (cont.)

Finland France Germany

tammikuu tammi janvier jan. Januar Jan
helmikuu helmi fevrier fev. Februar Feb
maaliskuu maalis mars mar. Marz Mar
huhtikuu huhti avril avr. April Apr
toukokuu touko mai mai Mai Mai
kess.kuu kesS. juin juin Juni Jun
heinakuu heina juillet juil. Juli Jul
elokuu elo aout aou. August Aug
syyskuu syys septembre sep. September Sep
lokakuu loka octobre oct. Oktober Okt
marraskuu marras novembre nov. November Nov
joulukuu joulu decembre dec. Dezember Dez

Iceland Ireland Italy

jamiar jan. January Jan gennaio GEN
februar feb. February Feb febbraio FEB
marz mar. March Mar marzo MAR
april apr. April Apr aprile APR
mai mal. May May maggio MAG
juni jun. June Jun giugno GIU
juli ju!. July Jul luglio LUG
agUst ago August Aug agosto AGO
september sept. September Sept settembre SET/7bre
okt6ber okt. October Oct ottobre OTT/8bre
n6vember n6v. November Nov novembre NOV/9bre
desember des. December Dec dicembre DIC/IObre

(Table D-3 continues on next page)

270 Local Data Formats

Table 0-3. Abbreviations of Months (cont.)

Netherlands Norway Portugal

januari jan januar jan janeiro jan.lJAN
februari feb februar feb fevereiro fev./FEV
maart mrt mars mar mar~o mar./MAR
april apr april apr abril abr.lABR
mei mei mai mai maio mai./MAI
juni jun juni jun junho jun.lJUN
juli jul juli jul julho jul.lJUL
augustus aug august aug agosto ago.lAGO
september sep september sept setembro set.lSET
oktober okt oktober okt outubro out.lOUT
november nov november nov novembro nov./NOV
december dec desember des dezembro dez./DEZ

Switzerland:
Spain Sweden French-speaking

enero enD januari jan janvier janv.
febrero fbro februari feb fevrier fevr.
marzo mzo mars mar mars mars
abril ab april apr avril avr.
mayo may/my (mil) maj maj mai mai
junio jun juni juni juin juin
julio jul juli juli juillet juil
agosto agto augusti aug aout aout
septiembre sbre september sept septembre sept.
octubre obre oktober okt octobre oct.
noviembre nbre november nov novembre nov.
diciembre dbre december dec decembre dec.

(Table D-3 continues on next page)

Local Data Formats 271

Table D-3. Abbreviations of Months (cont.)

Switzerland:
German-speaking

Januar Jan.
Februar Feb~

Marz Marz
April Apr.
Mai Mai
Juni Juni
Juli Juli
August Aug.
September Sept.
Oktober Okt.
November Nov.
Dezember Dez.

United States

Switzerland:
Italian-speaking United Kingdom

gennaio GEN January Jan
febbraio FEB February Feb
marzo MAR March Mar
aprile APR April Apr
maggio MAG May May
giugno GIU June Jun
luglio LUG July Jul
agosto AGO August Aug
settembre SET/7bre September Sept
ottobre OTT/8bre October Oct
novembre NOV/9bre November Nov
dicembre DIC/IObre December Dec

January
February
March
April
May
June
July
August
September
October
November
December

Jan.lJa.
Feb.IF.
Mar./Mr.
Apr.lApl.
May /My.
Jun.lJe.
Jul./Jy.
Aug.lAg.
Sep.lS.l7ber
Oct.lO.l8ber
Nov./N.I9ber
Dec./D.llOber

272 Local Data Formats

Table 0-4. Dates

Austria

Gregorian calendar

2.Januar 1990
2.1.90

900102
2.Jan.1990

2 Jan 1990

Note: Abbreviations of
months are used in date
formats in data processing.

Roman numerals: no

Canada: English-speaking

Gregorian calendar

January 2, 1991
2-jan-91

1/02/90 (mm/dd/yy)

Belgium: Flanders

Gregorian calendar

31-12-90
31-jan-90

31/12/90
31 januari 1990

31.12.90
31 jan 90

Roman numerals: no

Canada: French-speaking

Gregorian calendar

2 janvier 1990

90-01-02 (yy-mm-dd)

90 01 02 (yy mm dd)

2 janv. 1990

Note: It is recommended
to use the full name of the
month or to use the numeric
form, rather than an abbre­
viated form such as "2 janv.
1990." In text, the abbrevi­
ated form should never be
used.

Belgium: French-speaking

Gregorian calendar

31-12-90
31-jan-90

31/12/90
2 janvier 1990

2 jan 90

Note: Zeroes are optional in
date formats.

Roman numerals: optional

Denmark

Gregorian calendar

31. januar 1990
1990-01-31

199001 31
31/1-90

Note: The standard EEC date
format 90-12-31 is rarely used
in Danish and is being adopted
reluctantly. The exception also
applies to the date format in
Finland.

Roman numerals: optional

(Table D-4 continues on next page)

Local Data Formats 273

Table 0-4. Dates (cont.)

Finland

Gregorian calendar

2.1.1990
2.1.90

1990-01-02
2. tammikuuta 1990

Note: The standard EEC
format 1990-01-02 is rarely
used.

Roman numerals: no

Iceland

Gregorian calendar

2. januar 1990.
2. 1. 1990.

2. 1. '90.
020190

900102
900102

Note: The last two exam­
ples are based on ISO 2014
(data formats) which lists an
Icelandic standard for dates,
but these formats are rarely
used.

Roman numerals: no

France

Gregorian calendar

2 janvier 1990
2 jan 90

02.01.90
02/01/90
02-01-90

Note: Zeroes are optional.
The first two figures for year
are optional, 1990 or simply
90.

Roman numerals: yes

Ireland

Gregorian calendar

2-January-1990
2.1.90

020190

Roman numerals: optional

Germany

Gregorian calendar

2. Januar 1990

2. Jan. 1990

2.1.90

02.01.90

2.1.1990
Roman numerals: no

Italy

Gregorian calendar

2-GEN-90
2/1/90

2 Gennaio 1990
29.1.90

Roman numerals: no

274 Local Data Formats

(Table D-4 continues on next page)

Table 0-4. Dates (cont.)

Netherlands

Gregorian calendar

31-12-90
31-jan-90

31/12/90
31 januari 1990

31.12.90
31 jan 90

Roman numerals: no

Spain

Gregorian calendar

02-01-90 (civil)
02.01.90 (military)

Roman numerals: no

Switzerland:
German-speaking

Gregorian calendar

2. Januar 1990
2.1.90

2. Jan. 90

Roman numerals: no

Norway

Gregorian calendar

2. januar 1990
2.1.90

020190
02.01.90

Roman numerals: no

Sweden

Gregorian calendar

2 januari 1990 2/1-90

900102 (Swedish standard)
90-01-02

Roman numerals: no

Switzerland:
Italian-speaking

Gregorian calendar

2-GEN-90
2/1/90

2 Gennaio 1990
29.1.90

Roman numerals: no

Portugal

Gregorian calendar

90.01.02
2.1.90

02.01.90
2.JAN.90

2/1/90
02/01/90

2/JAN/90
2/1/1990

Roman numerals: no

Switzerland:
French-speaking

Gregorian calendar

2 janvier 1990
2.1.90

2 jan. 90
2 janv. 90

Roman numerals: no

United Kingdom

Gregorian calendar

2nd January 1990
2-January-1990

2/1/90
2.1.90
020190

2 Jan 90

Roman numerals: yes

(Table D-4 continues on next page)

Local Data Formats 275

Table D-4. Dates (cont.)

United States

Gregorian calendar

02-Jan-90
January 2, 1990

1/02/90
second of January '90

31-Month-1990 (military)
90/12/31 (military)

Roman numerals: no

Table 0-5. Yesterday, Today, Tomorrow
Country Yesterday Today Tomorrow

Austria
Belgium: Flanders
Belgium: French-speaking
Canada: English-speaking
Canada: French-speaking
Denmark
Finland
France
Germany
Iceland
Italy
Netherlands
Norway
Portugal
Spain
Sweden
Switzerland: French-speaking
Switzerland: German-speaking
Switzerland: Italian-speaking
United Kingdom
United States

276 Local Data Formats

gestern
gisteren
hier
yesterday
hier
i gar
eilinen
hier
gestern
i grer
ieri
gisteren
i gar
ontem
ayer
i gar
hier
gestern
ieri
yesterday
yesterday

heute
vandaag
aujourd'hui
today
aujourd'hui
i dag
tanaan
aujourd'hui
heute
i dag
oggi
vandaag
i dag
hoje
hoy
i dag
aujourd'hui
heute
oggi
today
today

morgen
morgen
demain
tomorrow
demain
i morgen
huomenna
demain
morgen
amorgun
domani
morgen
i morgen
amanha
manana
i morgon
demain
morgen
domani
tomorrow
tomorrow

Table D-6. Personal Titles and Forms of Address

Austria Title

Male

Female, married

Female, unmarried

Medical doctor

Hr. Alfred Maier

Fr. Helga Maier

Frl. Helga Maier (no longer used officially)

Hr. Dr. Alfred Maier

Note: The difference between Fraulein and Frau depends on age, rather than marital status.
Frau is most commonly used in addresses. Austria does not use middle initials in personal
names.

Belgium: Flanders Title

Medical doctor

Academic titles

Male

Female

De heer Emile Dubois (abbr: Dhr.! de Hr.)

Mevrouw Charlotte Van De Woestijne (abbr.
Mevr.lMw.)

Dokter Peeters (abbr. Dr.)

prof. D'Hertoghe
ir. Rene Smedts

Legal profession Mr. De Clercq

Note: Indication of marital status is no longer used in addresses.

Belgium: French-speaking Title

Male Monsieur P. Dupont (abbr. M.)

Female, married Madame M. Dupont (abbr: Mme)

Female, unmarried Mademoiselle L. Dupont (abbr. MIle)

Medical doctor only Dodeur G. Durand (abbr. Dr.)

Medical or academic title Professeur G. Durand (abbr. Prof.)

Legal profession Maitre G. Durand (abbr~ MO)

Note: The title Mademoiselle is rarely used; Madame now replaces it.

(Table D-6 continues on next page)

Locaf Data Formats 277

Table 0-6. Personal Titles and Forms of Address (cant.)

Canada: English-speaking Title

Ms. A. Smith

John F. Smith, MD (periods and comma
required)

Professor John Smith (abbr. to Prof.)Professor: medical or academic

Female, married

Female, unmarried

Female, without indication of marital status

Medical doctor only

Male Mr. John Smith (Mister is rarely used,
abbr. to Mr. is normally used)

Mrs. Jane-Anne Smith

Miss Jane-Anne Smith

Canada: French-speaking Title

Male

Female, married

Female, unmarried

Monsieur Jean Tremblay (abbr. to M.)

Madame Jeannine Tremblay (abbr. to Mme)

Mademoiselle Jeannine Tremblay (abbr. to
MIle)

Female, without indication of marital status Madame Jeannine Tremblay (abbr. to Mme)

Lawyer Maitre J.L. Durand (abbr. to Me)

Medical doctor only Docteur J.L. Durand (abbr. to Dr)

Professor: medical or academic Professeur J.L. Durand (abbr. to Prof.)

Note: The title "Mademoiselle" is rarely used; the title "Madame" now replaces it.

Denmark Title

Male Hr. John F. Hansen

Female, married Fru Charlotte Jensen

Female, unmarried Frk Charlotte Jensen

Female, no indication of marital status Fr Charlotte Jensen

Medical doctor John F. Hansen, Dr. Med.

Chartered accountant Charlotte Jensen, Statsaut. Rev.

Note: Fru, Frk, and Fr .are normally omitted if the addressee's professional qualifications are
added to a name.

(Table D-6 continues on next page)

278 Local Data Formats

Table 0-6. Personal Titles and Forms of Address (cont.)

Finland Title

Male Kari Koikkalainen (the name only)

Female Anja Koikkalainen (the name only)

Kari Koikkalainen, ekonomi (comma re­
quired) (Ekonomi is a degree equivalent to
MSc. Economic Sciences)

Note: Degrees and professional qualifications, if used, are placed either before or after the
name.

France

Male

Female, married

Female, unmarried

Medical doctor only

Professor: medical or academic

Lawyer

Germany

Male

Female, married

Female, unmarried

Female, no indication of marital status

Medical doctor

Title

Monsieur H. Martin (abbr. M.)

Madame J. Dupont (abbr. Mme)

Mademoiselle M. Durand (abbr. MIle)

Docteur M. G. Laurent (abbr. Dr)

Professeur J. B. Balzac (abbr. Prof)

Maitre J. L. Lorin (abbr. Me)

Title

Herr Josef Meier (no abbreviation)

Frau Irmgard Mainz (no abbreviation)

Fraulein Irmgard Mainz (rarely used) (abbr.
Frl.)

None (Frau may be used)

Herrn Dr. med. Klaus Kunkel

Engineer Herrn Dipl. Ing. Uwe Kniep

Note: The difference between Fraulein and Frau depends on age, rather than marital status.
Frau is most commonly used in addresses.

(Table D-6 continues on next page)

Local Data Formats 279

Table 0-6. Personal Titles and Forms of Address (cont.)

Iceland Title

Male Hr. (Herr) Gisli Sigurdsson

Female, married Fru Vigdis Sigurdsson

Female, unmarried Frk. (Frliken) V. Sigurdsson

Female, no indication of marital status Fr. M. Sigurdsson

Business manager Hr. framkvremdastj6ri, Gisli Sigurdsson

Note: If addressing a person with a professional qualification, the name is always placed after
the personal title and in lowercase letters followed by a comma.

Ireland Title

Mr. John Smith

John Smith Esq. (used only for correspon­
dence from business sources)

Mrs. Lisa Smith

Miss Lisa Smith

Ms. L. Smith

Dr John F. Smith, MD (period and comma
optional)

Lisa Smith, FCA (comma optional)

are usually omitted if professional qualifications are added.

Male

Chartered accountant

Note: Mr., Mrs., and Ms.

Female, married

Female, unmarried

Female, no indication of marital status

Medical doctor

Italy Title

Male

Female, married

Female, unmarried

Female, no indication of marital status

Medical doctor

Academic degree

Signor Giovanni Sabatini

Egr. Sig. Giovanni Sabatini (sometimes
used to address correspondence from busi­
ness or professional sources)

Signora Roberta Verri

Signorina Roberta Verri

Sig.ra Roberta Verri

Egr. Dott. Piero Savoni

Rag. Roberta Verri

(Table D-6 continues on next page)

280 Local Data Formats

Table 0-6. Personal Titles and Forms of Address (cont.)

Netherlands Title

De Heer C.J.M. Bosch (abbr. Dhr.)

Mevrouw M. Westerhout (abbr. Mw)

Mevr. M. Westerhout

Profession, peerage, and academic titles

Male

De Heer C.J.M. Bosch, arts

De Heer Prof. Dr. C.J.M. Bosch

Brigade-generaal b.d. Jhr. Mr. C.J.M.
Bosch

Note: Many other valid variants of Brigade-generaal exist.

Female, married

Female, no indication of marital status
(abbr. Mw)

Medical doctor

Academic titles

Norway Title

Male

Female, married

Female, unmarried

Female, no indication of marital status

Medical doctor

Chartered accountant

Herr Per Johansen (abbr. Hr.)

Fro Kari Haugen

Fr. Kari Haugen

Fr. Kari Haugen

Prof.dr.med. Per Johansen

Siv.~k. Kari Haugen

Portugal Title

Male

Female, married

Female, unmarried

Medical doctor

Medical doctor, female

Senhor Jorge Manuel de Sousa (abbr. Sr.)

Senhora Maria Isabel de Sousa (abbr. Sra)

Senhora M. Isabel de Sousa

Senhor Dr. Jorge Manuel de Sousa

Senhora Dra. Maria Isabel de Sousa

(Table D-6 continues on next page)

Local Data Formats 281

Male

Female, married

Female, unmarried

Table 0-6. Personal Titles and Forms of Address (cont.)

Spain Title

Seiior Don Carlos Bustamante Lopez (abbr.
Sr. D.)

Seiiora Maria Jimenez (abbr. Sra.)

Seiiorita Dona Maria Jimenez (abbr. Srta,
Dna.)

Female, no indication of marital status Dona Maria Jimenez

Advanced academic degree Senor Don Ruben Cerdan, Doctor en Fisicas

Medical doctor Dr. Carlos Bustamante Lopez

Note: Professional titles are not often appended to names. In this case, Dr. (Doctor) is substi­
tuted for Sr. D.

Sweden

Male

Title

Herr Lars G Andersson

Female, married Fru Eva Svensson

Female, unmarried Frk Eva Svensson

Female, no indication of marital status Fr Eva Svensson

Medical doctor Dr Lars G. Andersson

Note: Qualifications and titles are usually added before the name, without a comma or period.

Switzerland: French-speaking

Male

Female, married

Female, unmarried

Female, no indication of marital status

Medical doctor

Legal profession

282 Local Data Formats

Title

Monsieur Alain Delon (abbr. M.)

Madame Brigitte Chaval (abbr. Mme)

Mademoiselle Brigitte Chaval (abbr. MIle)

Mademoiselle Brigitte Chaval

De en medicine

Dr en droit Alain Delon

(Table D-6 continues on next page)

Male

Medical doctor

Female, married

Female, unmarried

Female, no indication of marital status

Table 0-6. Personal Titles and Forms of Address (cont.)

Switzerland: German-speaking Title

Herr Hans F. Schmid (abbr. Hr. or Herrn if
in address on a letter)

Frau Dora Meier (abbr. Fr.)

Fraulein Dora Meier (abbr. Frl.)

Frau Dora Meier (abbr. Fr.)

Herrn
Dr. med. K.Wieland

Academic doctor Frau
Dr. rer. pol. K. Wieland

Notes: In professional qualifications, Herr (Herrn), Frau and Fraulein are placed one line before
the profession and the personal name.

The difference between Fraulein and Frau depends on age, rather than marital status. Frau is
most commonly used in addresses.

Switzerland: Italian-speaking

Male

Female, married

Female, unmarried

Female, no indication of marital status

Medical doctor

Academic degree

Title

Signor Giovanni Sabatini

Egr. Sig. Giovanni Sabatini (sometimes
used to address correspondence from busi­
ness or professional sources)

Signora Roberta Verri

Signorina Roberta Verri

Sig.ra Roberta Verri

Egr. Dott. Piero Savoni

Rag. Roberta Verri

(Table D-6 continues on next page)

Local Data Formats 283

Table 0-6. Personal Titles and Forms of Address (cont.)

United Kingdom Title

Male

Female, married

Female, unmarried

Female, no indication of marital status

Medical doctor

Chartered accountant

Mr. John F. Smith (Mister is rarely us~d,

abbr. Mr. is normally substituted)

J. F. Smith Esq. (used only to address
formal correspondence from a business or
professional source)

Mrs. Jane Smith

Miss Jane Smith

Ms. J. Smith

John F. Smith Esq., MD (period and comma
optional)

Jane Smith, CA (comma optional)

Titled person with civil decoration
and membership in a learned society Sir John Smith-Smythe, CBE, FRS

Notes: Mr., Mrs., and Ms. are usually omitted if the addressee's professional qualifications are
added to a name.

The middle initial in personal titles is optional. The courtesy title Esq. is now rarely used except
in formal or legal correspondence.

United States Title

Mr. Robert L. Jones (Mister is rarely used;
abbr. Mr. is normally substituted)

Mrs. Patricia Jones (no abbr.)

Miss Patricia Jones

Ms. P. Jones (no abbr.)

Robert L. Jones, M.D. (periods and comma
required)

Patricia M. Jones, C.P.A. (periods and
comma required)

Military title Maj. Gen. John F. Schwartz

Note: U.S. scholastic, military and civil titles are commonly abbreviated when they are used
before or after a proper name. Such abbreviations consist of capital letters separated by periods
without spaces between the letters and periods.

Certified public accountant

Female, married

Female, unmarried

Female, no indication of marital status

Medical doctor

Male

284 Local Data Formats

Table D.....7. Addresses

Austria

Personal address:

Amtsrat DlpI.lng~. Eric' Maier

Ackerweg3
A-4711 Bad Voslau
Osterreich

Business address:

Sonnenuhren Ges.m.b.H
z.Hd. Amtsrat Dip1.Tng.. Eric Maier

Amtsweg31
A,·4711 Niederndorf
Osterreich

Belgium: Flanders

Personal address:

De Heer G.J.M. Bosch
Stationsstraat 124
B-2000 Antwerpen
BELGTE

Busi.ness address:

WindmoIen N.V.
T.a.v.. Mevrouw T. De Lange
Md. Public Relations
Waterweg 3
B-2000 Antwerpen
BELGIE

Format

[title] [degrees] [name] [surname]
[blank line]
[street name] [number]
[country code] [postal code] [county]
[country]

[company name]
[attention] [title] Enamel [surname]
[blank line]
[streetJ·[numberJ
[country code] [postal code] [county]
[country]

Format

[title] [name]
[street name] [number]
[country code] [postal code] [town]
[country]

[company name]
[attention addressee]
[department]
[street name] [number]
[country code] [postal codeT [town]
[country]

(Ta.ble n-7 continues on next pa.ge)

Local Data Formats 285

Table 0-7. Addresses (cont.)

Belgium: French-speaking

Personal address:

M. Ph. Delacroix
Av. Leopold II 123
B-1140 Bruxelles
BELGIQUE

Business address:

Madame Delvaux
abs Windmolen S.A.
Dept. Public Relations
Bd. Brand Whitlock 12
B-1140 Bruxelles
BELGIQUE

or:

Windmolen S.A.
a l'att. de Madame Delvaux
Dept. Public Relations
Bd. Brand Whitlock 12
B-1140 Bruxelles
BELGIQUE

286 Local Data Formats

Format

[title] [name] [surname]
[street name] [number]
[country code] [postal code] [town]
[country]

[title] [surname]
[company]
[department]
[street name] [number]
[country code] [postal code] [town]
[country]

[company]
[attention addressee]
[department]
[street name] [number]
[country code] [postal code] [town]
[country]

(Table D-7 continues on next page)

Table 0-7. Addresses (cont.)

Canada: English-speaking

Personal address:

Louise Adams
304 Oak Street
Kanata, Ontario
Canada
J7Y 4D5

Business address:

Mrs. Louise Adams
Regional Sales Manager
ABC Company
Suite 400
304 Elm Street
Kanata, Ontario
J7X 3Z2

Canada: French-speaking

Personal address:

M. Jean Durand
1228, rue Kirouac
St-Jean (Quebec)
Canada
J3V 5V9

Business address:

A l'attention de M. Jean Durand
Directeur du personnel
Entreprises Canadiennes
6506, autoroute transcanadienne
Bureau 900
Saint-Laurent (Quebec)
H4T 9X6

Format

[name] [surname]
[number] [street name]
[town] [province]
[country] (optional if letter is mailed within Canada)
[postal code]

[title] [name] [surname]
[job title]
[company]
[location details]
[number] [street name]
[town] [province]
[postal code]

Format

[title] [name] [surname]
[number] [,] [street name]
[town] [province]
[country] (optional if letter is mailed within Canada)
[postal code]

[attention] [title] [name] [surname]
[job title]
[company]
[number] [,] [street name]
[location details]
[town] [province]
[postal code]

(Table D-7 continues on next page)

Local Data Formats 287

Table 0-7. Addresses (cont.)

Denmark

Personal address:

Hr. A. Jensen
Sandtoften 9
DK-2820 Gentofte
Danmark

Business address:

Administrerende direktl1lr
Digital Equipment Corp.
Sandtoften 9
DK-2820 Gentofte
Danmark

Finland

Personal address:

Ekonomi Pekka Paukku
Mannerheimintie 12
SF..OOIOO Helsinki
Finland

Business address:

Toimitusjohtaja Pekka Paukku
Computop Oy
Koulutie 6
SF-02200 Espoo
Finland

Format

[title] [initial] [surname]
[street name] [number]
[country code] [postal code] [town]
[country]

[job title]
[company name]
[street name] [number]
[country code] [postal code] [town]
[country]

Format

[title or degree] [name] [surname]
[street name] [number]
[country code] [postal code] [town] or [municipality]
[country]

[job title] [name]
[company name]
[street name] [number]
[country code] [postal code] [town]
[country]

Note: The business or company name may also come before the job title and personal name.

(Table D-7 continues on next page)

288 Local Data Formats

Table 0-7. Addresses (cont.)

France

Personal address:

M. J. Martin
25, rue de la Poste
Thoue
F-38560 Le Versoud
France

Business address:

Compagnie des Eaux
M. J. Durand-Dupond,
Directeur des recherches
25, rue de la Paste
Thoue
F-38560 Le Versoud
France

or:

A l'attention de:
M. Ie Directeur du personnel
Compagnie des Eaux
25, rue de la Paste
Thoue
F-38560 Le Versoud
France

Format

[title] [initial] [surname]
[number] or [name] [,I [street name]
[town] (if not postal town)
[country code] [postal code] [postal town]
[country]

[company name]
[personal title] [initial] [surname]
(job title]
[number] [,] [street name]
[town]
[country code] [postal code] [postal town]
[country]

[attention]
[personal title] (job title]
[name of company]
[number] [,] [street name]
[town]
[country code] [postal code] [postal area]
[country]

(Table D-7 continues on next page)

Local Data Formats 289

Table D-7. Addresses (cont.)

Gennany Fonnat

Personal address:

Ingrid Boderke
Sabener Str. 32
D-8000 Munchen
Germany

Business address:

Hd.d August GmbH and Co KG.
Geschaftsleitung
Sommerstr. 41
D-7639 Winterdorf
Germany

Iceland

Personal address:

Hr. framkvoomdastj6ri,
Gisli Sigurdsson,
Austurstrooti 18, 1. hood t.h.,
101 Reykjavik
Island

Business address:

Hr. framkvoomdastj6ri,
Gisli Sigurdsson,
Framkvoomdabanki Islands,
Hafnarstrooti 10, 3. hood t.h.,
IS 101 Reykjavik,
ICELAND

290 Local Data Formats

[name] [surname] [degrees]
[street name] [number]
[country code] [postal code] [postal town]
[country code]

[company name]

[street name] [number]
[country code] [postal code] [town]
[country]

Format

[personal title and profession] (optional)
[name] [surname]
[street name] [number] [floor] (optional)
[post number] [city]
[country]

[personal title] [profession]
[name] [surname]
[name of company]
[street name] [number] [floor]
[country code] [postal code] [city]
[country]

(Table D-7 continues on next page)

Table 0-7. Addresses (cont.)

Ireland

Personal address:

Mr L.M. O'Grady
16 Thomas Street
Carrickfergus
Co. Antrim
Northern Ireland

Business address:

L.M. O'Grady PhD

The Managing Director
Gaelic Software Ltd
Unit 5, Industrial Estate
Carrickfergus
Co. Antrim
Northern Ireland

Italy

Personal address:

Egr. Dott. Silvano Mattei
Via Piave, 23
1-20052 Monza (MI)
Italia

Business address:

Spett. Ie DIGITAL SpA
Direttore Generale
Via Italia, 32
1-20100 Milano (MI)
Italy

Format

[personal title] [initial] [surname]
[number] or [name of house] [street name]
[postal town]
[country code] [county]
[country]

[initials] [surname] [degrees]
[blank line]
[job title]
[company name]
[location details]
[postal town]
[country code] [county]
[country]

Format

[courtesy adjective] [title] [name] [surname]
[street name] [,] [street number]
[country code] [postal code] [town] [county]
[country]

[courtesy adjective] [company name]
[job title]
[street name] [,] [street number]
[country code] [postal code] [town] [county code]
[country]

(Table D-7 continues on next page)

Local Data Formats 291

Table 0-7.. Addresses (c.ont.)

Ne,therlands

Personal address.:

De Heel' PoL. Bosch
Reigerskamp 1024
3345 TE Amsterdam
The .Netherlands

Busine.ssaddress:

Windmolen B.V.
Mw drs. T. de Lange, Public Relations
Water:w~g3

2187 'WU De Kwakel
The Netherlands

Norw8:Y

Personal address:

Herr Per Hansen
Drammensveien20
N·0271 OSLO 2
Norge

Business address:

Direkt~r Per Hansen
Western Computer Company AlB
Drammensveien20
N·0271 OSLO 2
Norway

29,2 Local Data Formats

Format

[title] [initia.ls] [surname]
[street name] [number]
[country code] Ipostalcode] [town]
[country]

[company name]
[personal title] [surname] [department]
[street name] [number]
[country code] Ipostalcode] [town]
[country]

Format

[title] [name] [surname]
[street name] [number]
[country code] [postal.code] {postal town/area .code]
[country]

[title] Iname] [surname]
[company name]
[street name] [number]
[country code] Ipostal code] [postal town/area code]
[country]

(Table D-7 continues on next page)

TableD-:]. Addresses (cont.)

Portugal

Personal address:

Exmo. Senhor Dr. Jorge Manuel de
Sousa
Rua dos Douradores, n Q 14
P-1200 LISBOA
Portugal

Business address:

Exmo. Senhor Dr. Jorge Manuel de
Sousa
Director-Geral daPhilips Portuguesa
Philips Portuguesa
Rna dos Douradores, n Q 14
P-1200LISBOA
Portugal

Spain

Personal address:

Sr. R.J. Bustamante Garcia
Avenida de la Constitucion, 45,
E-28045 Madrid (Espana)

Business address:

Sr. R.J.Bustamante Garcia
Director Tecmco,
Aleph Systems Inc.
Avenida de la Constitucion, 45,
E-28045 Madrid (Espana)

Format

[title] [degrees] [surname] [name]

[street name] [,] [number]
[country code] [postal code] £town]
[country]

[courtesy adjective] [title] [degrees] [name] [surname]

[job title]
[company name]
[street name] [number]
[country code] [postal code] [town]
[country]

Format

[title] [name] [surname] [degrees]
[street name] [number]
[country code] [city postal code] [town]

[title] [name] [surname] [degrees]
(job title]
[name of company]
[street name] [number]
[country code] [city postal code] [town]

(Table D-7 continues on next page)

Local Data Formats 293

Table 0-7. Addresses (cont.)

Sweden

Personal address:

Dr John Andersson
Villagatan 45 II
S-114 57 Stockholm
Sweden

Business address:

Digital Equipment AB
Att: John Andersson
SWAS
Box 34567
S-114 37 Stockholm
Sweden

Switzerland: French-speaking

Personal address:

Monsieur
Robert Tissot
25, rue Jacques Martin
CH-1200 Geneve
Suisse

Business address:

Monsieur
Robert Tissot
Lombards SA
25, rue Jacques Martin
CH-1200 Geneve
Switzerland

294 Local Data Formats

Format

[title] [first name or initial] [surname]
[street name] [number] [optional floor number]
[country code] [postal code] [town]
[country] (optional if letter is mailed within Sweden)

[name of company]
[attention] [job title] [addressee]
[department]
[postal address]
[country code] [postal code] [town]
[country] (optional if letter is mailed within Sweden)

Format

[title]
[name] [surname]
[number] [,] [street name]
[country code] [postal code] [town]
[country]

[title]
[name] [surname]
[company]
[number] [,] [street name]
[country code] [postal code] [town]
[country]

(Table D-7 continues on next page)

Table 0-7. Addresses (cont.)

Switzerland: French-speaking

or:

Lombard SA
a l'att. M. Robert Tissot
25, rue Jacques Martin
CH-1200 Geneve
Switzerland

Switzerland: German-speaking

Personal address:

Herrn
Dr. K. Diggelmann
Bahnhofstr.41
CH-3000 Bern
Schweiz

Business address:

Hasler AG
z.H. Herrn Dr. K. Diggelmann
Bahnhofstr.41
CH-3000 Bern
Switzerland

or:

Herrn
Dr. K. Diggelmann
Hasler AG
Bahnhofstr.41
CH-3000 Bern
Switzerland

Format

[company]
[attention addressee]
[number] [,] [street name]
[country code] [postal code] [town]
[country]

Format.

[title]
[degrees] [initial] [surname]
[street name] [number]
[country code] [postal code] [town]
[country]

[company]
[attention addressee]
[street name] [number]
[country code] [postal code] [town]
[country]

[title]
[degrees] [initial] [surname]
[company]
[street name] [number]
[country code] [postal code] [town]
[country]

(Table D-7 continues on next page)

Local Data Formats 295

Table 0-7. Addresses (cant.)

Switzerland: Italian-speaking

Personal address:

Egr. Dott. Silvano Mattei
Via Piave, 23
1-20052 Monza (M!)
Svizzera

Business address:

Spett. Ie DIGITAL SpA
Direttore Generale
Via Italia, 32
1-20100 Milano (M!)
Switzerland

United Kingdom

Personal address:

Mr. J. L. Smith
15 Evergreen Street
Camberley
Surrey GR2 5TT
England

Format

[courtesy adjective] [title] [name] [surname]
[street name] [,] [street number]
[country code] [postal code] [town] [county]
[country]

[courtesy adjective] [company name]
[job title]
[street name] [,] [street number]
[country code] [postal code] [town] [county code]
[country]

Format

[title] [initial] [surname]
[number] or [house name] [street name]
[postal town]
[county] [postal code]
[country]

Note: Commas after the number or house name and at the end of each line (except for the last
line) are optional.

Business address:

The Managing Director
Western Computer Co. Ltd
Peyton House
235 Commercial Road
Croydon CR8 4GA
UK

296 Local Data Formats

[job title]
[company]
[location]
[number] [street or road name]
[county] [postal code]
[country]

(Table D-7 continues on next page)

Table 0-7. Addresses (cont.)

United Kingdom Format

For mail sent from outside the United Kingdom, the country name and postal code must be in
this form:

The Managing Director
Western Computer Co. Ltd
Peyton House
235 Commercial Road
Croydon CR8 4GA
UK

[job title]
[company]
[location]
[number] [street or road name]
[county] [postal code]
[country]

Note: The first part of a postal code in the U.K. is from two to four characters. The first
character of the code is always alphabetic; the other characters can be letters or numbers. A
space is always allowed within the number. Examples are: WCIV 6HB, M60 8AS, Bl 2HE.

United States

Personal address:

Susan J. Avril, Ph.D.
11 Hancock Street
Lexington
MA 02173
U.S.A.

Business address:

Richard J. Blickstein Jr.
Vice-President, Marketing
Western Computer Corporation
Peyton House
654 Commercial Boulevard
Merrimack, New Hampshire 03054
U.S.A.

Format

[name] [surname] [degrees]
[number] or [name] [street name]
[city]
[state] [postal code]
[country]

[Name of addressee]
[job title]
[company name]
[location name]
[number] [street name]
[town name] [,] [state name] [postal code]
[country]

Note: For mail sent to the U.S.A. from overseas, the country name and postal code must be in
the above format.

Local Data Formats 297

Table 0-8. Currency

Currency unit

Fraction

ISO 4217 symbol

ISO 4217 numeric code

International symbol

EEC symbol

Internal symbols

Formats

Separators

Austria

Austrian schilling

groschen x 100 (g)

ATS

040

A$

AS

oS Sch OS S

A$2.50
AS 2,50
Sch 2.50
ATS 2.50
oS 2,50
oS 0,50

Period and comma

oS -,50
oS 1,-
oS 1,50
oS 5,-
oS 50,-
oS 500,-
oS 5.000,-
oS 50.000,-
oS 500.000,-
oS 5.000.000,-

30 groschen -,30

Note: The groschen has
no symbol of its own. The
Austrian currency sym-
bol uses oS (O-umlaut) in
German, but is written AS in
English.

Belgium: Flanders

Belgian franc (frank)

centime x 100

BEF

056

BF

BEF

F fro

F 22,50
BEF 2.50

BF 2,50
12,5 fro

BFr 12,75

Period and comma

0,5 fro
1 fro
1,5 fro
5 fro
50 fro
500 fro
5.000 fro
50.000 fro
500.000 fro
5.000.000 fro

298 Local Data Formats

(Table D.:....8 continues on next page)

Table 0-8. Currency (cont.)

Belgium: French-speaking Canada: English-speaking

Currency unit

Fraction

ISO 4217 symbol

ISO 4217 numeric code

International symbol

EEC symbol

Internal symbols

Formats

Separators

Belgian franc

centime x 100

BEF

056

FB

BEF

F

12,5 fro
BF 12,5

BEF 12,5
FB 2.50

Comma and period

F 0,5
F1
F 1,5
F5
F 50
F 500
F 5.000
F 50.000
F 500.000
F 5.000.000

Canadian dollar

cent x 100

CAD

124

$

$

$

$2.50
$ 2.50

0.50 $

Comma and period

- $1
- $1.50
$5
$50
$500
$5,000
$50,000
$500,000
$5,000,000

$13K
$50M

Notes: Thousands or mil­
lions of dollars are often
expressed by placing an up­
percase K or M immediately
after the numerals indicating
the number.

When there is no decimal
value, the decimal separator
and zeroes are not used, except
in tables where you find num­
bers with and without decimal
values.

(Table D-8 continues on next page)

Local Data Formats 299

Tabfe D~~ Currene.y (cont.,)

Canada:: Frencb-speaking: Denmark

Currency unit

Fraction

ISO 4217 symbol

ISO 4217 numeric code

International symbol

EEG symbol

National symbols

Formats

Separators

300 Local Data Formats

Canadian doITar

cent x 100

CAD

124

$

$

$

2',50$

0,50 $'

Space and comma

-1 $'
- 1,50 $
5$
50$
500$
5000$
50 000 $
500000 $
5,00(1000 $

Danish krone (DKr)

~ex 100

DKK
208

ilkr

DIm
Kr~ krDkr

Kr: 2,50
Dkr2.50

2,50Kr
2,-Kr'

Kr.2,,50
DKR2.50

DKK2.,50
1 krone

1,50 kr;

5kr.
10 kroner og 50 ~re

Period and comma

0,5kr.,
1 kr:,
1,5 kr.
5kr:
5nkr.
500 kr.
5.000kr:
50.000kr.
500.00(} kr:
5.00(>'..000 kr:

(Table D:....g continues on next page)

Table 0-8. Currency (cont.)

Finland France

Currency unit

Fraction

ISO 4217 symbol

ISO 4217 numeric code

International symbol

EEC symbol

National symbols

Formats

Separators

Finnish markka (the finn­
mark)

penni x 100 (Pia)

FIM

246

FMK

FMK

FIM mk Fmk

65 pennia
2.50 FIM

FMK2.50
FIM 2.50

Space and comma

5,00 mk
or: 5 mk
10,75 mk
500mk
5000 mk
or:
5000 mk
5000000 mk
10080,50 mk

Notes: Finland has many
speakers of Swedish but the
currency remains the Finnish
markka, sometimes referred
to as the finnmark.

A period is sometimes used
for the sake of clarity, but is
encountered in normal usage
only for very large quantities,
for example 5.000.000 mk.

French franc

centime x 100

FRF

250

FFR

FFR

F or FF centime c, ct, or cs

20F50
FF 2.50

2,50 F
2,50 FF

F 2,50
FFR 2.50

FRF 2.50

Space, period, and comma

F 0,50
F1
F 1,5
F5
F 50
F 500
F 5000
F 50 000
F 5000 000
or: F 5 000 000
or: F 5.000.000

Notes: The period and a space
are used for convenience, not
as a compulsory standard.

Currency symbols can be
placed before or after the
figure. FF is distinct from FS
(Swiss francs) and FB (Belgian
francs).

(Table D-8 continues on next page)

Local Data Formats 301

Table 0-8. Currency (cont.)

Currency unit

Fraction

ISO 4217 symbol

ISO 4217 numeric code

International s}""Illbol

EEC symbol

National symbols

Formats

Separators

Germany

deutsche mark

pfennig (Pt) x 100

DEM

280

DM

DM

DM

DM 2,50
DM2,-

2,50 DM
DM 2,50

DEM 2,50
DM 2,-

Period and comma

65 Pf
DM 5,00
or: DM 5,-
DM 10,75 (10 deutsche-marks
and 75 pfennig)
DM500
DM 5.000
DM 5.000.000
DM 10.080,50

Iceland

Icelandic krona (plural:
kronur)

eyrir x 100 (plural: aurar)

ISK

352

ICK

1SK

Kr. kr.

1SK 2,50
Kr. 2,50

ISK 2,50

kr. 2,-
ICK2,50

Period and comma

,65 (65 aurar)
Kr. 5,00
Kr.5
Kr. 5,75
Kr. 5.080,50
Kr. 500,00
Kr. 5.000,­
Kr. 5.000.000
Kr. 5.080,50 (5,080 kronur, 50
aurar)

302 Local Data Formats

(Table D-8 continues on next page)

Table 0-8. Currency (cont.)

Currency unit

Fraction

ISO 4217 symbol

ISO 4217 numeric code

International symbol

EEC symbol

National symbols

Formats

Separators

Ireland

Irish pound (or punt)

penny x 100

IEP

372

IR£

IR£

£

IR£2.50
£2.50

IEP 2.50

Period and comma

65p (65 pence)
IR£5.00
IR£10.75 (10 pounds and 75
pence)
IR£5
IR£500
IR£5,000
IR£5,000,000
IR£10,080.50

Italy

Italian lire (plural: lira)

centesimo (ctmo)

ITL

380

LIT

LIT

L. Lit

Lit 250
LIT 250

L 250
L. 250

ITL 2,500

Period and space

L. 50
L. 500
L. 1.000
L.10.000
L. 1.000.000
L. 100 000 000

Note: The L. for Italian lire
is similar to the U.K. pound­
sterling sign. It is not included
in the MNC, so 'L' should
suffice. Lire do not have a
decimal point; the quantity
is always an integer. Periods
are not used as separators
for quantities greater than
1.000.000.

(Table D-8 continues on next page)

Local Data Formats 303

Table 0-8. Currency (cont.)

Currency unit

Fraction

ISO 4217 symbol

ISO 4217 numeric code

International symbol

EEC symbol

National symbols

Formats

Separators

304 Local Data Formats

Netherlands

Dutch (Netherlands) guilder
(f.)

cent x 100

NLG

528

Dfl.

NLG

FL fl F fHfl gld DFL

FL 15,47
FL 15,-

fl15,47
flI5,-

f 15,47
f 15,-

Hfl15,47
Hfl15,-

fl. 15,47
fl. 15,-

NLG 2.50

Period and comma

65 cents
FL 5,00
or: FL 5
FL 10,75
(10 guilders and 75 cents)
FL 500
FL 5.000
FL 5.000.000
FL 10.080,50

Norway

Norwegian krone (plural:
kroner)

fl,ire x 100

NOK

578

NKR

NKr.

Kr.

kr. 2,50
NKr 2.50

Kr. 2,50
NKR 2.50

NOK2.50

Space, period, and comma

NKr. 0,65 (65 fl,ire)
NKr.5,00
NKr. 10,75
NKr. 500,00
NKr. 5 000,00 or NKr.
5.000,00
NKr. 10080,50
(10,080 kroner, 50 fl,ire)
Note: A comma is always used
as decimal point between kro­
ner and fl,ire. A period or space
may be used as a thousands
separator.

(Table D-8 continues on next page)

Table 0-8. Currency (cont.)

Portugal Spain

Currency unit

Fraction

ISO 4217 symbol

ISO 4217 numeric code

International symbol

EEC symbol

National symbols

Formats

Separators

Portuguese escudo

centavo x 100

PTE

620

ESC

ESC

Esc. or a $ with two dashes

1$50
Esc. 2.50

1$50
ESC 2.50

PTE 2.50

Period

5.00 (5$00)
500.00 (500$00)
5.000.00 (5.000$00)
ESC 5.000.000.00
(5.000.000$00)
10.50 (10$50) (10 escudos and
50 centavos)

Portugal has the word canto
(C) meaning 1.000 escudos.

5.000$00 = 5,000 escudos, 5
contos, or 5C.
100.000$00 = 100,000 escu­
dos, 100 contos, or 100C.

Note: The $ symbol for
escudos is always placed after
the quantity it is signifying.
Price tags use the $ symbol
instead of a period.

Spanish peseta

centimo (cts)

ESP

724

PTA

Pts.

Pta, plural: Pts

2.50 Pts
2,50 Pts

PTA 2,50
ESP 2,50

Period and comma, apostrophe
for centimos alone

0'65 Pts (65 centimos)
5,00 Pts or 5 Pts
10,75 Pts
500 Pts
5.000 Pts
5.000.000 Pts
10.080,50
(10,080 pesetas, 50 centimos)

Note: Centimos generally tend
to be expressed as a fraction
of pesetas (0'75 pesetas = 75
centimos). There are no coins
for the centimo, as it is only
a theoretical division without
physical representation.

(Table D~8 continues on next page)

Local Data Formats 305

Table O-B. Currency (cant.)

Currency unit

Fraction

ISO 4217 symbol

ISO 4217 numeric code

International symbol

EEC symbol

National symbols

Formats

Separators

Sweden

Swedish krona
(plural: kronor)

ore x 100

SEK

752

SKR

SKR

Krkr

-:50 (50 ore)
50:- (50 kronor)

Kr 10:-
10 Kr

5 Kr.
SEK 2.50

2,50 kr
SKR 2,50

In accounting:
Kr. 2,50
Kr. 2:50

Colon, period, and comma
-:50 ore
2,50 kr. (often used)
10:75 Kr.
500 Kr.
5.000 Kr.
50.000.000 Kr.
10.080:50 Kr. (10,080 kronor,
50 ore)

Special conventions to ex­
press quantities of currency:

13 000 kr. or 13 tkr. (13,000
kronor)
50 milj kr. or 50 mkr.
(50,000,000 kronor)

Switzerland:
French-speaking

Swiss franc

centime x 100 (ct.)

CHF

756

SFR

SFR

F SFr fro

2.50F
SFr 2.50

SFR 2.50
CHF 2.50

Period and apostrophe
fr.s. 5.00
fr.s. 5.-
fr 5.00
fr 5.-
fr 10.75
fr 500.00
fr 5'000.00
fr 50'000.50
fr 50'000'000.-

306 Local Data Formats

(Table D-8 continues on next page)

Table 0-8. Currency (cant.)

Switzerland:
German-speaking

Switzerland:
Italian-speaking

Currency unit

Fraction

ISO 4217 symbol

ISO 4217 numeric code

International symbol

EEC symb~l

National symbols

Formats

Separators

Swiss franken

centime x 100 (ct.)

CHF

756

SFR

SFR

F Fr.

F 2,50
Fr. 2.50

SFR 2.50
CHF 2.50

SFr. 5.00
SFr. 5.-

5.- Fr.
500.- Fr.

Period and apostrophe

Fr. 5.00
Fr. 5.-
Fr. 10.75
Fr. 500.00
Fr. 5'000.00
Fr. 5'000.-
Fr. 5'000'000.-

Special conventions to ex­
press quantities of currency:

50 Mio Fr. (50 million francs)

Swiss franchi

centisimo

CHF

756

SFR

SFR

F SFr fro

2.50F
SFr 2.50

SFR 2.50

Period and apostrophe

fr.s. 5.00
fr.s. 5.-
fr 5.00
fr 5.-
fr 10.75
fr 500.00
fr 5'000.00
fr 50'000.50
fr 50'000'000.-

(Table D-8 continues on next page)

Local Data Formats 307

Table 0-8. Currency (cont.)

Currency unit

Fraction

ISO 4217 symbol

ISO 4217 numeric code

International symbol

EEC symbol

National symbols

Formats

Separators

308 Local Data Formats

United Kingdom

British pound (pound­
sterling)

new penny x 100 (p)
(plural: pence)

GBP

826

GB£

GB£

£

75p
£2.50
£0.25

GB£2.50
GBP 2.50

Comma, decimal point, and
center dot

65p (65 pence) (no -separator
or decimal point is used)
£5.00 or £5
£5.75
£500
£5,000
£5,000,000
£5,000.50 (5,000 pounds and
50 pence)
£50M (50,000,000 pounds­
sterling)

Millions of pounds-sterling
are often expressed by plac­
ing an uppercase M imme­
diately after the numerals
indicating the number of
millions.

United States

u.s. dollar

cent x 100
(plural: cents)

USD

840

US$

USA

$ (dollars)
¢ (cents)

65¢
65¢
$50'
$50.65¢
$500
US$5000
USD5000

Comma and period

$0.65 or .65 or 65¢ (sixty-five
cents)
$5 or $5.00
$500.00
$5,000
$5,000.50
$5,550.50
$5,000,000
$ 13K (thirteen thousand
dollars)
$ 50 M (fifty million dollars)

Note: Thousands or millions
of dollars are often expressed
by placing an uppercase K or
M immediately after the nu­
merals indicating the number.

Table 0-9. Expressions of Time

Austria 9:45
19:45

9:45 Uhr
23:15 Uhr

9:45:17
08:15

08:15:10
08:05:10.75

Belgium: Flanders

Belgium: French-speaking

Canada: English-speaking

Canada: French-speaking

14.15 u.
9 u. 15 min. 30 sec. (in everyday writing)
14:15
09:15:30.75 (in data processing)

18.18
18h27
6 h 3 min 4 s (in everyday writing) 09:15
9:15:30.25 (in data processing)

9:45 AM (12-hour clock)
11:15 PM (12-hour clock)

9:45 (24-hour clock)

23:15 (24-hour clock)
23:15:30.75 (hours, minutes, seconds, fractions of seconds
format)

9 h 45 (24-hour clock)
23 h 15 (24-hour clock)

9:18:14 (hours, minutes, seconds, fractions of seconds are
usually not represented)

9:45 (this format should be used in a scientific or technical
context only, usage of the 24-hour clock still applies)

(Table D-9 continues on next page)

Local Data Formats 309

Table 0-9. Expressions of Time (cont.)

Denmark

Finland

France

Germany

Iceland

310 Local Data Formats

09:45
23:15

23:15:30.75

9.45
23.15

23.15.30,75

18.18
18h 18mn

18 h 27
04.15

Note: These formats may be written with or without spaces.

09:00:02.03

23:15:30.75

23 h 15 min 30 s 75/100eme

23 h 15 mn 30 s 75/100eme

Note: Formats for hours, minutes, seconds, and hundredths
of a second require spaces.

9.45 Uhr
9.30 - 13.30 (24-hour clock)
9:45 Uhr (24-hour clock)
23:15 Uhr (24-hour clock)

23:15:30.75

9.45 f.h. (equivalent to a.m. for the 12-hour clock)
11.15 e.h. (equivalent to p.m. for the 12-hour clock)

09:45 (24-hour clock)
23:15 (24-hour clock)

23:15:30.75

(Table D-9 continues on next page)

Table 0-9. Expressions of Time (cant.)

Ireland 9.45 AM (12-hour clock)
11.15 PM (12-hour clock)

09:45 hrs (24-hour clock)
23:15 hrs (24-hour clock)

23:15:30.75

Italy 9.45
09.45

13:15

23:15:30.75

Note: The English style for writing hours, minutes, seconds
and fractions of seconds is generally used in computing;
otherwise, the style 23 15' 30" e 75 is used in science and
commerce.

Netherlands

Norway

Portugal

14.15 (in everyday writing)
14:15 (in data processing)

09.15.30 uur
09:15:30 uur

23:15:30.75 in data processing
09.00.02 03 in everyday use

kl 09.45 (24-hour clock)
kl23.15

23.15.30,75

09.00.02,03

09H45m (24-hour clock)
23H15m (24-hour clock)

Note: Portugal uses seconds and fractions of a second in
scientific and medical applications.

23:15:30.75
09:00:02.03

(Table D-9 continues on next page)

Local Data Formats 311

Table 0-9. Expressions of Time (cant.)

Spain

Sweden

Switzerland:
French-speaking

Switzerland:
German-speaking

Switzerland:
Italian-speaking

312 Local Data Formats

09:45 (24-hour clock)
21:45 (24-hour clock)

09H45'
21H45'

23:15:30.75
or:
23:15:30:00 (preferred)

09:00:02.03
or:
09:00:02:03 (preferred)

Note: Seconds apostrophes are always shown in military
specifications.

kl. 9.45 (24-hour clock)
kl 23.45 (24-hour clock)

23.15.30,75

1.15.30,75

09.45 h
23.15 h

23:15:30.75

9.45 h
09.45 h

23.15 h

9.45 Uhr
23.15 Uhr

23:15:30.75

9.45 h
09:45
23:15
23:15:30.74

(Table D-9 continues on next page)

Table 0-9. Expressions of Time (cont.)

United Kingdom

United States

9.45 am (12-hour clock)
11.15 pm (12-hour clock)

09:45 hrs (24-hour clock)
23:15 hrs (24-hour clock)

2 o'clock

23:15:30.75

Note: Ante meridiem (AM) indicates morning (before noon);
post meridiem (PM) indicates after midday (after noon).
These suffixes are used in 12-hour clock systems only.

9:45 AM (12-hour clock)
11:15 PM (12-hour clock)

0945 hrs (24-hour clock)
2315 hrs (24-hour clock)

23:15:30.75

Note: No punctuation or abbreviations are used in standard
military 24-hour time-systems, for example, 0630, 1645,
1900.

Table 0-10. Ordinal Numbers

Austria Belgium: Flanders

1. 2. 3. 4. lste 2de 3de 4de
5. 6. 7. 8. 5de 6de 7de 8ste
9. 10. 11. 12. 9de lOde 11de 12de

13. 14. 15. 16. 13de 14de 15de 16de
17. 18. 19. 20. 17de 18de 19de 20ste
21. 22. 23. 24. 21ste 22ste 23ste 24ste
25. 26. 27. 28. 25ste 26ste 27ste 28ste
29. 30. 31. 29ste 30ste 31ste

(Table D-10 continues on next page)

Local Data Formats 313

Table D-10. Ordinal Numbers (cont.)

Belgium: French-speaking Canada: English-speaking

1er 2eme1 3eme 4eme 1st 2nd 3rd 4th
5eme 6eme 7eme 8eme 5th 6th 7th 8th
geme 10eme lleme 12eme 9th 10th 11th 12th
13eme 14eme 15eme 16eme 13th 14th 15th 16th
17eme 18eme 1geme 20eme 17th 18th 19th 20th
21eme 22eme 23eme 24eme 21st 22nd 23rd 24th
25eme 26eme 27eme 28eme 25th 26th 27th 28th
2geme 30eme 31eme 29th 30th 31st

Canada: French-speaking Denmark

1er2 2e 3e 4e 1. 2. 3. 4.
5e 6e 7e 8e 5. 6. 7. 8.
ge 10e lle 12e 9. 10. 11. 12.
13e 14e 15e 16e 13. 14. 15. 16.
17e 18e 1ge 20e 17. 18. 19. 20.
21e 22e 23e 24e 21. 22. 23. 24.
25e 26e 27e 28e 25. 26. 27. 28.
2ge 30e 31e 29. 30. 31.

Finland France

1. 2. 3. 4. 1er 2eme1 3eme 4eme
5. 6. 7. 8. 5eme 6eme 7eme 8eme
9. 10. 11. 12. geme 10eme 11eme 12eme

13. 14. 15. 16. 13eme 14eme 15eme 16eme
17. 18. 19. 20. 17eme 18eme 1geme 20eme
21. 22. 23. 24. 21eme 22eme 23eme 24eme
25. 26. 27. 28. 25eme 26eme 27eme 28eme
29. 30. 31. 2geme 30eme 31eme

IThe feminine form of ler is lre. The plural form for the three notations is lers, lres, and xes.
2If there are more than two choices, 2eme is used; if there are only two choices, 2nd is used.

(Table D-10 continues on next page)

314 Local Data Formats

Table 0-10. Ordinal Numbers (cant.)

Germany Iceland

1. 2. 3. 4. 1. 2. 3. 4.
5. 6. 7. 8. 5. 6. 7. 8.
9. 10. 11. 12. 9. 10. 11. 12.

13. 14. 15. 16. 13. 14. 15. 16.
17. 18. 19. 20. 17. 18. 19. 20.
21. 22. 23. 24. 21. 22. 23. 24.
25. 26. 27. 28. 25. 26. 27. 28.
29. 30. 31. 29. 30. 31.

Ireland Italy

1st 2nd 3rd 4th P 2Q 3Q 4Q

5th 6th 7th 8th 5Q 6Q 7Q 8Q

9th 10th 11th 12th 9Q 10Q llQ 12Q

13th 14th 15th 16th 13Q 14Q 15Q 16Q

17th 18th 19th 20th 17Q 18Q 19Q 20Q

21st 22nd 23rd 24th 2P 22Q 23Q 24Q

25th 26th 27th 28th 25Q 26Q 27Q 28Q

29th 30th 31st 29Q 30Q 31Q

Netherlands Norway

lste 2de 3de 4de 1. 2. 3. 4.
5de 6de 7de 8ste 5. 6. 7. 8.
9de lOde 11de 12de 9. 10. 11. 12.
13de 14de 15de 16de 13. 14. 15. 16.
17de 18de 19de 20ste 17. 18. 19. 20.
21ste 22ste 23ste 24ste 21. 22. 23. 24.
25ste 26ste 27ste 28ste 25. 26. 27. 28.
29ste 30ste 31ste 29. 30. 31.

(Table D-10 continues on next page)

Local Data Formats 315

Table 0-10. Ordinal Numbers (cont.)

Portugal Spain

l Q 2Q 3Q 4Q P 2Q 3Q 4Q

5Q 6Q 7Q 8Q 5Q 6Q 7Q 8Q

9Q 10Q IP 12Q 9Q 10Q IP 12Q

13Q 14Q 15Q 16Q 13Q 14Q 15Q 16Q

17Q 18Q 19Q 20Q 17Q 18Q 19Q 20Q

21Q 22Q 23Q 24Q 21Q 22Q 23Q 24Q

25Q 26Q 27Q 28Q 25Q 26Q 27Q 28Q

29Q 30Q 31Q 29Q 30Q 3P

Sweden Switzerland: French-speaking

1 2 3 4 1er 2 3 4
5 6 7 8 5 6 7 8
9 10 11 12 9 10 11 12

13 14 15 16 13 14 15 16
17 18 19 20 17 18 19 20
21 22 23 24 21 22 23 24
25 26 27 28 25 26 27 28
29 30 31 29 30 31

Switzerland: German-speaking Switzerland: Italian-speaking

P 2Q 3Q 4Q 1. 2. 3. 4.
5Q 6Q 7Q 8Q 5. 6. 7. 8.
9Q 10Q 11Q 12Q 9. 10. 11. 12.

13Q 14Q 15Q 16Q 13. 14. 15. 16.
17Q 18Q 19Q 20Q 17. 18. 19. 20.
2P 22Q 23Q 24Q 21. 22. 23. 24.
25Q 26Q 27Q 28Q 25. 26. 27. 28.
29Q 30Q 31Q 29. 30. 31.

(Table D-10 continues on next page)

316 Local Data Formats

Table 0-10. Ordinal Numbers (cant.)

United Kingdom United States

1st 2nd 3rd 4th 1st 2nd 3rd 4th
5th 6th 7th 8th 5th 6th 7th 8th
9th 10th 11th 12th 9th 10th 11th 12th
13th 14th 15th 16th 13th 14th 15th 16th
17th 18th 19th 20th 17th 18th 19th 20th
21st 22nd 23rd 24th 21st 22nd 23rd 24th
25th 26th 27th 28th 25th 26th 27th 28th
29th 30th 31st 29th 30th 31st

Table 0-11. Telephone Numbers
Austria Belgium: Flanders Belgium: French-speaking

8486 11
84 86 111DW. 1230
02228486 11
84.86.11
0222 84 86 11IDW. 1230
(complete number and exten­
sion)

Canada: English-speaking

473-9064
(518) 473-9064
1-800-473-9000
1 800-473-9000

Finland

90-4746481
904746481
(90) 474 6481
921-307 570
921307570
(921) 307 570

02-7345095
051-32 1860

Canada: French-speaking

473-9064
(518) 473-9064
1-800-473-9000
1 800-473-9000

France

(16-1)60-75-54-01
(16) 84-48-52-13
(16.1) 60.75.54.01
(16) 84.48.52.13

02-7345095
051-32 1860
02/35.56.78

Denmark

02889666

Germany

(089)3 59 37 10
089/3 5937 10
(089)3593710
(089)3.59.37.10

(Table D-11 continues on next page)

Local Data Formats 317

Table 0-11. Telephone Numbers (cont.)

Icelandl Ireland Italy

1357 (0903) 29631 (06) 5209021
13579 0903-29631 06/5209021
135791 06-5209021

010-353-903-29631 06-52-09-21
92-1357 (from outside Ireland)
96-13579
99-135791

Netherlands Norway Portugal

(015) 56789 02303500 068-23322
015-56789 (073) 24 226 068-222222

07324226 068-222 22 22
02134-53265 017-351-96
020-7432567
020-625432

Switzerland: French-
Spain Sweden speaking

(91) 734 70 02 08/7654983 01/398-79-78
(91) 734-70-02 08/2787 54 (01) 398-79-78
(91)734.70.02 0155/27651 031/24-66-96

(031) 24-66-96
or preferred, 01/398'79'78

(01) 398'79'78
08-7654983
08-27 87 54
0155-27 657

lIcelandic telephone numbers consist of only four, five, or six numeric characters if the number is being
called inside a zone. From outside a zone, two numeric characters (of the series 91 through 99) are added
in front of the number.

(Table D-ll continues on next page)

318 Local Data Formats

Table 0-11. Telephone Numbers (cont.)

Switzerland: German­
speaking

01/398-79-78
(01) 398-79-78
031/24-66-96
(031) 24-66-96
01/398'79'78
(01) 398'79'78

United States

398-7979
601-398-7978
(601)398-7978
1-800-398-7979

Switzerland: Italian­
speaking

01/398-79-78
(01) 398-79-78
031/24-66-96
(031) 24-66-96
01/398'79'78
(01) 398'79'78

United Kingdom

(071) 398 7978
031-246 6965
0255 716509
Farnharn(0252) 718645

(071) = inner city London
(081) = suburban London

Local Data Formats 319

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Appendix E

Creating a Bidirectional Text Editor

Using symmetric programming techniques, it is possible to develop
a text editor that will accommodate two language directions. This
bidirectional capability is useful with Hebrew, for example, which is
written from right to left, but has embedded numbers and text from
other languages, such as English, that are written from left to right.

Figure E-l shows the mirror symmetry of a simple text editor that
works as well for languages that are written consistently in one
direction-either from left to right or from right to left-as it does
for bidirectional languages. In this figure, the x axis represents the
writing direction and the y axis represents the line position. The
two-dimensional text editor shown in Figure E-l has the following
characteristics:

• An entered character is inserted at the cursor position and the
cursor advances one position in the writing direction.

• Pressing the Delete key removes the character adjacent to the
cursor in a direction opposite to the writing direction, that is to
the left in a left-to-right language, to the right in a right-to-left
language.

• Pressing the Tab key advances the cursor in the writing direction
to the next tab position, inserting a single tab character in the text.

• Pressing the Return key inserts a carriage return into the text and
moves the cursor to the first position on the next line.

• Pressing the Backspace key moves the cursor one position in the
direction opposite the writing direction.

• Pressing ~he Arrow keys moves the cursor one position in the
direction of the arrow; this works the same way for right-to-left or
left-to-right languages.

Creating a Bidirectional Text Editor 321

Figure E-1. Mirror Symmetry for a Simple Text Editor

Right-to-Left Left-to-Right
.......I----------xaxis---------...

bengiaeb asw lotibe elqmia airlT This simple editor was designed i
gnitilw ot tnelsqanslt ed ot to be transparent to writing

lIew '{lIsupe a)!low tl ;noitoelib direction; It works equally well
J-ot-R 10 R-ot-J lerltie lot for either L-to-R or R-to-L y axis

~_IS_iO_eq_a_'{_n_s_tu_O_rlt_iw_._ae_g_s_ug_n_sl...._Ia_ng_u_a_ge_s_,_w_ith_o_ut_a_n_
y

_sp_e_Ci_a_1_ I_ .gniboo _Coding. •

Following the principles of symmetric programming, the designer of a
bidirectional text editor needs to:

• Design the editor so that its internal function remains the same,
regardless of the writing direction, but the external view shows the
appropriate view of the text data being entered.

• Treat the logical flow of text data in the same way for either
language writing direction. The data has to be processed internally,
for example, for searches, and stored permanently in files in the
same way.

• Use mirror symmetry (left-to-right reversal) so that the amount
of function conditioned by parameters is minimal; with the choice
of virtual coordinates illustrated in Figure E-l, no conditionalized
coding is required until the final virtual-to-physical mapping is
made.

• Use virtual coordinates internally to establish positions and in­
crement/decrement positions on the virtual screen. For example,
adding 1 to the X position always advances the cursor one char­
acter position in the writing direction; adding 1 to the Y position
advances the cursor to the next line.

• Transform from the internal virtual display coordinate to actual
positions and movements (left and right) on the physical screen as
the last step prior to physical input and output to the terminal.

Regardless of the language direction, the editor works the same way in
accepting input, moving the cursor, and deleting and displaying text.
While the logical text entered and saved on file is organized the same
way for either language direction, the editor operates under the control
of the writing direction attribute of the language to produce a distinctly
different display of the text.

322 Creating a Bidirectional Text Editor

The details of the mapping of virtual coordinates to physical coordi­
nates, under writing direction control, depend on the control primitives
of the particular physical device-video display terminal or bit-mapped
workstation display. It is possible to build a terminal that can be set up
as a right-to-left terminal, effectively changing its coordinate system to
agree with the characteristics of the language. The origin would be in
the upper right corner for right-to-left languages, and upper left corner
for left-to-right languages.

Figure E-2 shows that using appropriate parameters can extend the
applicability of the editor. In fact, taking full advantage of symmetry,
the editor could be used to edit languages that include combinations
of all the line layout and character layout directions: 0, 90, 180, and
270 degrees. For example, a right-to-left (character layout) and bottom­
to-top (line layout) writing direction with origin (1,1) at the bottom
right-hand corner of the display would be permitted, even though no
language actually uses that combination.

Figure E-2. .Editing Vertical Writing with the Symmetric Editor

Inter-line
Spacing Origin

(+Y) (1,1)

e w p w v J C
Inter-character d i 0 r e a h

Spacing i t s i r p i
t h s t t a n
0 i i i n e
r t b n c e s

h I g a s e

V-Max i e I e
Margin s &

X-Max Margin (+X)

It is possible to mix text requiring different writing directions, such as
inserting an Arabic number or English text into Hebrew or Arabic text.
However, additional programming is required to do so.

Creating a Bidirectional Text Editor 323

E.1 Bidirectional Editing

It is necessary to understand the following terms when creating a
bidirectional editor.

• Chronological order

The order in which a stream of characters is typed in. This is the
order in which the stream is intended to be read. Chronological
order is sometimes referred to as logical order.

• Display order

The order in which a stream of characters is displayed. In bilingual
situations this order is not the same as the chronological order of
the stream. In the example below, the h in the word werbeh and the
M in the word MORE are physically next to each other. However,
when the text is read, as illustrated below, the chronological order
is different. Display order is sometimes referred to as physical
order.

order in which displayed

order in which read:
(chronological order)

+--------------------------------------+
IENGLISH TEXT txet werbeh MORE ENGLISH I
+--------------------------------------+

1 2 4 3 5 6

• Segmentation

When representing bidirectional text, divide it into smaller por­
tions, called segments, which can be nested. An entire document
is a segment that consists of other segments. If a segment does
not contain other segments, the text it contains must be of a single
direction. In other words, a segment that contains text of different
directions must be broken into smaller segments, each containing
either right-to-Ieft text or left-to-right text. Within each segment,
character data is stored in logical order.

• Bidirectional data storage

A bidirectional document can be viewed as a group of segments,
each having its own direction. Additionally, an attribute signifies
the orientation or direction of the document.

324 Creating a Bidirectional Text Editor

• Document direction

The value of document direction determines the global formatting
behavior, such as starting and ending margins, juxtaposing of
segments, how the document is to be bound, and placing of page
headers and page numbers. For example, when the document
direction is left-to-right, the starting margin is the left margin, the
ending margin is the right margin, and each segment is placed
to the right of the previous one. When the document direction is
right-to-Ieft, the starting margin is right, the ending margin is left,
and each segment is placed to the left of the previous one.

• Segment direction

The value of segment direction determines the juxtaposition of
characters within the segments.

Figure E-3 contains a document with a left-to-right document direction
consisting of three segments.

Figure E-3. Left-to-Right Document Direction

segment 1:
segment direction: left-to-right
segment data: "ENGLISH TEXT"

segment 2:
segment direction: right-to-left
segment data: "hebrew text"

segment 3:
segment direction: left-to-right
segment data: "MORE ENGLISH"

After formatting this will be:

+---+
IENGLISH TEXT txet werbeh MORE ENGLISH I
+---+

Figure E-4 contains a document with a right-to-Ieft document direction
consisting of three segments.

Creating a Bidirectional Text Editor 325

Figure E-4. Right-to-Left Document Direction

segment 1:
segment direction: right-to-left
segment data: "hebrew text "

segment 2:
segment direction: left-to-right
segment data: "ENGLISH TEXT"

segment 3:
segment direction: right-to-left
segment data: "more hebrew"

After formatting this will be:

+---+
I werbeh erom ENGLISH TEXT txet werbehl
+---+

E.2 Hebrew Text Entry and Editing

Word processing in a bidirectional environment must support the
following two features:

• Text entry and editing in one of the two main text paths, left­
to-right and right-to-Ieft. The left-to-right text path is used for
languages based on Latin characters and the right-to-Ieft text path
is used in accordance with right-to-Ieft based languages (such as
Hebrew or Arabic).

• Text entry and editing in a secondary segment within a document
to allow inclusion of left-to-right text within right-to-Ieft text and
vice versa.

Direction-based editing is implemented by setting direction attributes
(segment tags) that are maintained and manipulated by the editor.
This attribute of the main text path could be implemented as a tag of
a segment within the document.. The user can then have sections with
different main direction paths in a single document. The main text
path determines the editing direction and the alignment of the text.

The Direction Switching Key (DSK), or Toggle key, can be used to
insert a portion of text in a direction opposite to the main text path.
Pressing the DSK opens a new editing window where the editing is
done according to the rules of the secondary direction.

326 Creating a Bidirectional Text Editor

If the text at the insertion point was inserted originally in the sec­
ondary direction, this secondary segment is moved to the new window
and formatted according to the secondary path, as if it were the main
path in that window. If the insertion point is inside the main segment,
the new editing window is empty. The text editing in this window is
done normally.

When the user finishes editing in the secondary segment window and
presses the DSK, the secondary segment is inserted in the document at
the insertion point and formatted according to the main text path.

Creating a Bidirectional Text Editor 327

Appendix F

Database Source Language Syntax
Description

This appendix describes the database source language used in the
ULTRIX operating system to create a source file for a language support
database. The appendix explains the syntax elements of the source
files and gives an Extended Backus-Naur Form (EBNF) notation of the
syntax recognized by the ULTRIX ic compiler.

F.1 Rules for Building Identifiers

The rules for building an identifier (Ident) are as follows:

• Each identifier must start with a letter or a hyphen.
• An identifier can be any length and can contain letters (a to z and

A to Z), digits (1-9), hyphens, and periods.

• If you use a period in an identifier, at least one letter, digit, or
hyphen must follow the period.

F.2 Rules for Building Strings

The rules for building a string (String) are as follows:

• No string can contain more than 255 characters.
• Each string must be enclosed in quotation marks (" ").

• Each string must be on one line in the source file.

Database Source Language Syntax Description 329

• A string can contain the following escape sequences:

Description Symbol Sequence

Newline NL (LF) \n

Horizontal tab HT \t

Vertical VT \v

Backspace BS \b

Carriage return CR \r

Form feed FF \f

Backslash \ \\

F.3 Rules for Building Constants

A constant can be any of the following forms:

• A character constant, such as one character enclosed in single
quotation marks (' '). You can use constant by following the C
language rules for using escape sequences.

• A hexadecimal constant of the form Oxnnnn, where n designates
a hexadecimal digit (0-9, a to f, and A to F). The hexadecimal
constant must be in the range of 0 to Ox7FFF. You can omit leading
null valued digits.

• An octal constant of the form Onnnn, where n designates an octal
digit (0-7). The octal constant must be in the range of 0 to 077777.
You can omit leading null valued digits.

• A character in ISO notation nln, where n designates a decimal
number in the range of 0 to 15.

• A decimal number n, where n is a positive integer in the range 0 to
32,767.

F.4 Rules for Separating Tokens, Specifying Comments, and
Using Directives

Separate tokens with spaces or horizontal tabs. You must not include
blank space within tokens. White space (for example, " ", newline,
horizontal tab) is significant only as a token separator. The ic compiler
ignores blank space that you use to make your source file readable.

330 Database Source Language Syntax Description

As in the C language, comments are delimited by pairs of slashes and
asterisks (/*comment*/). You can include comments anywhere in the
source file except within tokens. If you use a comment within a token,
the ic compiler considers the token to end where the comment begins.
Any text that follows the comment begins a new token.

Because the database source file is preprocessed by the C preprocessor,
you can use the preprocessor directives, such as #include, #define,
and #if, throughout the source file.

F.5 EBNF Description

Example F-l contains the EBNF description of the database source
language.

Example F-1. EBNF Description of the Database Source Language

intl data base
: codeset table data tables

data tables
: data_table I data_tables data table

data table
property_table

I collation_table
I format_table
I conversion_table

codeset table
: CODESET Ident ':' code definition list END- -

code definition list- -
: code definition
I code_definition_list ';' code definition

code definition
Ident '=' code value' 0' property_list

I Ident '=' code_value
I property_definition

code value
: code I code value ' , code

(Example F-l continues on next page)

Database Source Language Syntax Description 331

Example F-1 (Cont.). EBNF Description of the Database Source
Language

code
: Constant Ident

property_list
: property I property_list',' property

property_table
: PROPERTY Ident ':' property_definition_list END

property_definition_list
: property_definition
I property_definition_list 'i' property_definition

property_definition
Ident ,., property_list

property
ARITH I BLANK I CTRL I CURENCY I DIACRIT
DIPHTONG I DOUBLE I FRACTION I HEX I ILLEGAL
LOWER I MISCEL I NUMERAL I PUNCT
SPACE I SUP SUB I UPPER

collation table
COLLATION':' collation list END'.'

I COLLATION Ident ,., collation list END

collation list
collation

collation

collation list' i' collation

PRIMARY , .' code value list
PRIMARY , .' Ident ' -' Ident
PRIMARY , .' REST
EQUAL '. , code value list
EQUAL '. , Ident ' -' Ident
EQUAL '. , REST
Ident ,-, , (' Ident , , , Ident ') ,
PROPERTY , ., Ident

code value list
: Ident I cOde_value_list ',' Ident

format table
STRINGTABLE ,., format list END'.'

I STRINGTABLE Ident ,., format list END

format list
: format I format list' i' format

format
: Ident format value

format value
: code_or_string format value , ,, code_or_string

(Example F-l continues on next page)

332 Database Source Language Syntax Description

Example F-1 (Cont.). EBNF Description of the Database Source
Language

code_or_string
: code I String

conversion table
CONVERSION Ident ':' conversion list END'.'

I CODE CONVERSION Ident '.' conversion list END

conversion list
: conversion

conversion

conversion list';' conversion

DEFAULT '->' default value
I Ident '->' conversion_value
I Ident '-' Ident '->' Ident '-' Ident

default value
: VOID SAME I conversion value

conversion value
code_or_string
conversion value , ,, code_or_string

Database Source Language Syntax Description 333

Appendix G

Example Source Language File

Example G-l illustrates the file structure of a source file for a language
support database using the ULTRIX operating system. The example is
only a portion of a source file.

Example G-1. Example of a Language Support Database Source File

/*
* example annotated (partial) source for
* a Language Support Database
*/

CODESET CH ASCIIPLUS :
/*- CH ASCIIPLUS will be the name of the INTLINFO file */

#include "IS0646"
/* include IS0646 as the predefined ASCII code definition */

/*
* additional definitions for demonstration purposes:

*

Ox83;
Ox87;
Ox8b;
Ox8f;

Ox82; sc03
Ox86; sc07
Ox8a; scOb
Ox8e; scOf

Ox8l; sc02
Ox85; sc06
Ox89; scOa
Ox8d; scOe

Ox80; scOl
Ox84; scOS
Ox88; sc09
Ox8c; scOd

* first we have a range of secondary control codes.
* This is not enforced by the ic compiler nor by
* the language but is a common IS 2022 style
* code set extension technique. Note that because
* there are no properties defined below all these
* codes are defined but not legal.
*/

scOO
sc04
sc08
scOc

/*
* NOTE: this gap in the source will prevent compilation.
* This was done to shorten the example.
*/

(Example G-l continues on next page)

Example Source Language File 335

UPPER;
UPPER;
UPPER;
UPPER;
UPPER;
UPPER;

LOWER;
LOWER;
LOWER;
LOWER;
LOWER;
LOWER;
LOWER, DIPHTHONG;

Example G-1 (Cont.). Example of a Language Support Database
Source File

/*
* now come some more useful code definitions. These
* definitions are taken from the ISO 8859-1
* definition. Note the convention of writing
* uppercase letters in all uppercase, lowercase
* letters and special codes in all lowercase.
* Here the codes are defined directly from their
* ISO notation.
*/

A_GRAVE = 12/0
A_AIGU = 12/1
A CIRCON = 12/2
A~)ILDE = 12/3
DIA_A = 12/4
A_CIRCLE = 12/5
/*
* The following declaration of AE as a diphthong enables
* the correct treatment of diphthongs (one-to-two
* collation) in the default collation.
*/

AE = 12/6 UPPER, DIPHTHONG;

/*
* NOTE: this gap in the source will prevent compilation.
* This was done to shorten the example.
*/

/*
* lowercase equivalents of the codes defined
* in the last block
*/

a_grave = 14/0
a_aigu = 14/1
a_circon = 14/2
a tilde = 14/3
di"a_a = 14/4
a_circle = 14/5
ae = 14/6

/*
* special double letters for Spanish
* Note that these "characters" are not defined by
* any standard! They represent an extension
* useful to handle the following problems:
* *- two to one collation
* *- conversions toupper and tolower
*/

Ll L, 1
11 = 1, 1

336 Example. Source Language File

DOUBLE, UPPER;
DOUBLE, LOWER;

(Example G-l continues on next page)

Example G-1 (Cont.). Example of a Language Support Database
Source File

END.

/*
* Collation table that shows most of the possible
* problems in collation but does not make very much
* sense in the real world:

*
* Uppercase and lowercase letters are intermixed and
* within one letter the uppercase comes before the
* lowercase letter.

*
* Accented characters sort after their corresponding
* nonaccented base character.

*

C; PRIMARY: c;
E; PRIMARY: e;
G; PRIMARY: g;
I; PRIMARY: i;
K; PRIMARY: k;

*/
COLLATION

PRIMARY

PRIMARY

PRIMARY:
PRIMARY:
PRIMARY:
PRIMARY:
PRIMARY:
PRIMARY:

A, A_GRAVE, A_AIGU, A_CIRCON, A_TILDE,
DIA_A, A_CIRCLE;
a, a_grave, a_aigu, a_circon, a_tilde,
dia_a, a_circle;

B; PRIMARY: b; PRIMARY:
D; PRIMARY: d; PRIMARY:
F; PRIMARY: f; PRIMARY:
H; PRIMARY: h; PRIMARY:
J; PRIMARY: j; PRIMARY:
L; PRIMARY: 1;

/*
* TWO-TO-ONE COLLATION:

*
* For Ll and 11 Spanish collation rule says that
* this has to be collated after L or 1.
*/

PRIMARY: Ll; PRIMARY: 11;

PRIMARY: M; PRIMARY: m; PRIMARY: N; PRIMARY: n;

/*
* ONE-TO-TWO COLLATION:

*
* The following two codes are diphthongs, that is
* codes that collate as two characters.
*/

AE = (A, E); ae = (a, e);

/*
* The rest of the codes defined in the codeset will
* collate as don't care characters.
*/

(Example G-l continues on next page)

Example Source Language File 337

Example G-1 (Cont.). Example of a Language Support Database
Source File

END.

/*
* This is a sample string table based on the German language.

*
* Note the mixed uses of ASCII strings and identifiers
* specified in the codeset definition.

*
* The strings for CRNCYSTR, D_T_FMT, D_FMT, T FMT are
* typically specified as ASCII strings.

*
* Each of the items specified is required by the ic
* compiler. Additional items can be specified if so
* desired.
*/

STRINGTABLE
NOSTR
EXPL STR
EXPU STR
RADIXCHAR
THOUSEP
YESSTR
CRNCYSTR

D T FMT
D FMT
T FMT
AM STR
PM STR

"nein";
'e' ;
'E' ;
comma;
dot;
"ja";
"+DM" ;

"%a, %d. %b %Y %H:%M:%S"
n%a, %d. %b %Y";
n%H:%M:%S";
"AM";
"PM";

DAY 1
DAY 3
DAY 5
DAY 7

ABDAY 1
ABDAY 3
ABOAY 5
ABDAY 7

MON 1
MON 3
MON 5
MON 7
MON 9
MON 11

"Sonntag";
"Dienstag";
"Donnerstag";
"Samstag";

"So";
"Di";
"Do";
"Sa";

"Januar";
M, dia_a, "rz";
"Mai";
"Juli" ;
"September";
"November";

DAY 2
DAY 4
DAY 6

ABDAY 2
ABDAY 4
ABDAY 6

MON 2
MON 4
MON 6
MON 8
MON 10
MON 12

"Montag" ;
"Mittwoch";
"Freitag";

"Mo";
"Mi";
"Fr";

"Februar";
"April";
"Juni";
"August";
"Oktober";
"Dezember";

338 Example Source Language File

(Example G-l continues on next page)

Example G-1 (Cont.). Example of a Language Support Database
Source File

ABMON 1
ABMON 3
ABMON 5
ABMON 7
ABMON 9
ABMON 11

END.

STRINGTABLE
MON_1 = "January";
YESSTR = "oui";
END.

"Jan";

"Mai" ;
"Jul" ;
"Sep" ;
"Nov";

ABMON 2
ABMON 4
ABMON 6
ABMON 8
ABMON 10
ABMON 12

"Feb" ;
"Apr";
"Jun";
"Aug";
"Okt" ;
"Dez";

Example Source Language File 339

Appendix H

ISO Standards

Table H-l lists the ISO standards that pertain to office and publishing
processes, systems, interchange formats, data/text encodings.

Table H-1. ISO Standards
Standard Description

ISO 646 : 1973

ISO 2022 : 1986

ISO 4873:1983

ISO 6429 : 1988

ISO 8601

ISO 8613 : ODAlODIF

ISO 8632 : 1987

ISO 8824: 1987

ISO 8825 : 1987

Information processing-7-bit coded character set for information
interchange (ASCII is the US variant of ISO 646; ISO 646 also
defines the framework for the National Replacement Character sets)

Information processing-ISO 7-bit and 8-bit coded character sets­
Code extension techniques

Information processing-ISO 8-bit code for information interchange­
structure and rules for implementation

Information processing-ISO 7-bit and 8-bit coded character sets­
Additional control functions for character-imaging devices

Data elements and interchange formats-Information interchange­
Representation of dates and times

Office Document Architecture, Office Document Interchange Format

Information processing systems-Computer graphics metafile (CGM)
for the storage and transfer of picture description information,
Part 1: Functional description, Part 3: Binary encoding

Information processing systems-Open System Interconnection
(OSD-Specification of Abstract Syntax Notation One (ASN.1)

Information processing systems-Basic encoding rules for Abstract
Syntax Notation One (ASN.1)

(Table H-1 continues on next page)

ISO Standards 341

Table H-1. ISO Standards (cont.)
Standard Description

ISO 8859-1: 1987

ISO 8859-2: 1987

ISO 8859-3: 1988

ISO 8859-4: 1988

ISO 8859-5: 1988

ISO 8859-6: 1987

ISO 8859-7: 1987

ISO 8859-8: 1988

ISO 8859-9: 1988

ISO 8879 : 1986

ISO 9069

ISO DIS 9541

ISO DIS 10646

342 ISO Standards

Information processing-8-bit single-byte coded graphic character
sets. Part 1: ISO Latin-1 character set

Information processing-8-bit single-byte coded graphic character
sets. Part 2: ISO Latin-2 character set

Information processing-8-bit single-byte coded graphic character
sets. Part 3: ISO Latin-3 character set

Information processing-8-bit single-byte coded graphic character
sets. Part 4: ISO Latin-4 character set

Information processing-8-bit single-byte coded graphic character
sets. Part 5: Latin-Cyrillic Alphabet character set

Information processing-8-bit single-byte coded graphic character
sets. Part 6: Latin-Arabic Alphabet character set

Information processing-8-bit single-byte coded graphic character
sets. Part 7: Latin-Greek Alphabet character set

Information processing-8-bit single-byte coded graphic character
sets. Part 8: Latin-Hebrew Alphabet character set

Information processing-8-bit single-byte coded graphic character
sets. Part 9: Latin Alphabet No. 5 (Western Europe variation)

Information processing-Standard Generalized Markup Language
(SGML)

Information processing-SGML support facilities, SGML Document
Interchange Format (SDIF)

Information processing-Font and character information inter­
change. Part 1: Introduction, Part 2: Registration and naming
procedures, Part 5: Font attributes and character model

Information processing-MultipIe-octet coded character set
(MOCCS)-Aim is to permit the representation of the written form
of the languages of the world

Appendix I

Addresses of Standards
Organizations

This appendix lists the addresses of standards organizations.

International Organization for Standardization (ISO)
1, Rue de Varembe
Case postale 56
CH-1211 Geneve 20
Suisse/Switzerland

European Standards

European Computer Manufacturers Association (ECMA)
114, Rue du Rhone
CH-1204 Geneve
Suisse/Switzerland

Arab States

Arab Standards and Metrology Organisation (ASMO)
P.O. Box 926161
Amman
Jordan

Australia

Standards Association of Australia (SAA)
Standards House
80-86 Arthur Street
North Sydney - N.S.W. 2060

Addresses of Standards Organizations 343

Austria

Osterreichisches Normungsinstitut (ON)
HeinestraBe 38
Postfach 130
A-I021 Wien

Belgium

Institut BeIge de Normalisation (IBN)
Belgisch Instituut voor Normalisatie (BIN)
Av. de la Braban~onne - Braban~onnelaan 29
B-I040 Bruxelles - Brussel

Canada

Standards Council of Canada (SCC)
International Standardisation Branch
2000 Argentia Road, Suite 2-401
Mississauga
Ontario
L5N IV8

China

China State Bureau of Standards (CSBS)
P.O. Box 820
Beijing
People's Republic of China

Denmark

Dansk Standardiseringsraad (DS)
Aurehfljjvej 12
Postbox 77
DK-2900 Hellerup

Finland

Suomen Standardisoimisliitto (SFS)
P.O. Box 205
SF-00121 Helsinki

344 Addresses of Standards Organizations

France

Association Fran~aise de Normalisation (AFNOR)
Tour Europe
Cedex 7
F-92080 Paris

Germany

DIN
Deutsches Institut fur Normung
BurggrafenstraBe 6
Postfach 1107
D-I000 Berlin 30

Greece

Hellenic Organisation for Standardisation (ELOT)
Didotou 15
106 80 Athens

Hong Kong

Hong Kong Standards and Testing Centre
10 Dai Wang Street
Taipo Industrial Estate
Taipo, N.T.

Iceland

Technological Institute of Iceland
Standards Division
Keldnaholt
IS-112 Reykjavik

Ireland

National Standards Authority of Ireland (NSAI)
Ballymun Road
Dublin-9

Israel

Standards Institution of Israel (SIl)
42 University Street
Tel Aviv 69977

Addresses of Standards Organizations 345

Italy

Ente Nazionale Italiano di Unificazione (UNI)
Piazza Armando Diaz, 2
1-20123 Milano

Japan

Japanese Industrial Standards Committee (JISC)
c/o Standards Department
Agency of Industrial Science and Technology
Ministry of International Trade and Industry
1-3-1, Kasumigaseki
Chiyoda-ku
Tokyo 100

Mexico

Direcci6n General de Normas (DGN)
Calle Puente de Tecamachalco N° 6
Lomas de Tecamachalco
Secci6n Fuentes
Naucalpan de Juarez
53 950 Mexico

The Netherlands

Nederlands Normalisatie-instituut (NNI)
Kalfjeslaan 2
P.O. Box 5059
2600 GB Delft

New Zealand

Standards Association of New Zealand (SANZ)
Private Bag
Wellington

Norway

Norges Standardiseringsforbund (NSF)
Postboks 7020 Homansbyen
N-0306 Oslo 3

346 Addresses of Standards Organizations

Portugal

Instituto Portugues da Qualidade (lPQ)
Rua Jose Estevao, 83-A
P-1199 Lisboa

Spain

Instituto Espanol de Normalizaci6n (lRANOR)
Calle Fernandez de la Hoz, 52
28010 Madrid

Sweden

SIS-Standardiseringskommissionen i Sverige
Box 3295
S-103.66 Stockholm

Switzerland

Swiss Association for Standardisation (SNV)
Kirchenweg 4
Postfach
CH-8032 Zurich

United Kingdom

British Standards Institution (BSI)
2 Park Street
London
W1A 2BS

United States of America

American National Standards Institute (ANSI)
1430 Broadway
New York
NY 10018

Addresses of Standards Organizations 347

Appendix J

Additional Reading

This appendix lists documentation associated with the material in
this guide and also provides the order number for each document or
document set. A table at the end of this appendix shows you how to
order documentation from Digital.

• The Digital Guide to Software Development
Order No. EY-C178E-DP

• DECforms Document Set
Order No. QA-VCHAA-GZ; includes the following:

DECforms Guide to Developing Forms
DECforms Guide to Programming
DECforms Reference Manual
DECforms Guide to Converting VAX FMS Applications
DECforms Guide to Converting VAX TDMS Applications
DECforms Summary Card
DECforms Keypad Card

• Guide to Creating VMS Modular Procedures
Order No. AA-FB84A-TE

• Guide to VAX DEC / Code Management System
Order No. AI-KL03A-TE

• Guide to VAX DEC / Module Management System
Order No. AI-Pl19C-TE

• Guide to VAX Language-Sensitive Editor and VAX Source Code
Analyzer
Order No. AI-FY24B-TE

• Input Method Manual (for Traditional Chinese)
Order No. EK-VT38D-IM

• Input Method User's Guide (for Simplified Chinese)
Order No. EK-IMUGC-UG-OOI

Additional Reading 349

• A Technical Guide to Asian Language Software Localization
Order No. EF..,...B2551-50

• ULTRIX-32 (DECwindows) Document Set
Order No. QA-OJQAA-GZ; includes the following:

UWS (ULTRIX Workstation Software) V2.0 Release Notes
UWS Advanced Installation Guide
UWS Guide to UWS Window Manager
UWS Reference Pages, Section 1
UWS Introduction to UWS User Environment
UWS DECwindows User's Guide
UWS DECwindows Desktop Applications Guide
UWS Guide to DXDIFF VS DIFF Programming
UWS XUI Programming Overview
UWS Guide to Writing Applications for Widgets
UWS Guide to Porting Xlib Applications
UWS Guide to DXDB Debugger
UWS Guide to XUI User Interface
UWS Guide to XUI Toolkit Widgets
UWS Guide to Toolkit Intrinsics
UWS Guide to Xlib Library
UWS X Window System Protocol
UWS Reference Pages, Section 3
UWS Guide to X Toolkit Widgets
UWS User Interface Style Guide

• ULTRIX-32 Guide to Internationalization
Order No. AA-LY26A-TE

• ULTRIX Worksystem Software / Japanese Documentation Set l

Order No. QA-VYUJA-GZ (H-kit, VAX)
Order No. QA-YEQJA-GZ (H-kit, RISC)

• ULTRIX/Japanese V4.0 Documentation Set 1

Order No. QA-VWGJA-GZ (H-kit, VAX)
Order No. AQ-YERJA-GZ (H-kit, RISC)

• VAX GKS/Ob Document Set
Order No. QA-810AA-GZ; includes the following:

VAX GKS Reference Manual Volume 1
VAX GKS Reference Manual Volume 2
VAX GKS User Manual
Writing VAX GKS Handlers
VAX GKS Pocket Guide

1 This documentation is available in Japanese.

350 Additional Reading

• VAX PHIGS Document Set
Order No. QA-OKBAA-GZ; includes the following:

VAX PHIGS$ Binding Manual
VAX PHIGS FORTRAN Binding Manual
VAX PHIGS C Binding Manual
VAX PHIGS Reference Manual

• VMS / ULTRIX Compound Document Architecture Manual
Order No. AA-MG30A-TE

• VMS Command Definition Utility Manual
Order No. AA-LA60A-TE

• VMS Debugger Manual
Order No. AA-LA59A-TE

• VMS DECwindows User Kit
Order No. QA-09SAB-GZ; includes the following:

VMS DECwindows User's Guide
VMS DECwindows Desktop Applications Guide
Overview of VMS DECwindows

• VMS DECwindows Programming Kit
Order No. QA-OOIAM-GZ; includes the following:

XUI Style Guide
VMS DECwindows Guide to Application Programming
VMS DECwindows User Interface Language Reference Manual
VMS DECwindows Toolkit Routines Reference Manual Part 1
VMS DECwindows Toolkit Routines Reference Manual Part 2
VMS DECwindows Guide to Xlib Programming: MIT C Binding
VMS DECwindows Guide to Xlib Programming: VAX Binding
VMS DECwindows Xlib Routines Reference Manual Part 1
VMS DECwindows Xlib Routines Reference Manual Part 2
VMS DECwindows Device Driver Architecture Manual

• VMS Message Utility Manual
Order No. AA-LA63A-TE

• VMS Record Management Services Reference Manual
Order No. AA-LA83A-TE

• VMS RTL Screen Management (SMG$) Manual
Order No. AA-LA77A-TE

• VMS Run-Time Library Routines Manual
Order No. AA-76A-TE

• VMS Utility Routines Manual
Order No. AA-LA67A-TE

Additional Reading 351

• VT382-K User Guide (for Korean)
Order No. EK-VT38K-UG-OOI

• XLIB Programming Volume 1
Order No. QA-OOIA6-GZ

Table J-1. How to Order Documentation from Digital
From Call Write

Alaska, Hawaii, or 603-884-6660
New Hampshire

Rest of United States 1-800-DIGITAL
and Puerto Rico*

Canada 800-267-6219

United Kingdom 0101-800-DIGITAL

Countries other than 001-800-DIGITAL
Canada, U.S., or
U.K.

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061
U.S.A.

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: Direct Order Desk

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061
U.S.A.

Digital Equipment Corporation
p.O. Box CS2008
Nashua, NH 03061
U.S.A.

*For prepaid orders from Puerto Rico, call Digital's local subsidiary (809-754-7575).

352 Additional Reading

Glossary

ABCD model: For ease of reference, Digital often uses the letters A, B, C, and
D to refer to the four international product model components, and calls the
entire model the ABCD model. See product.

American National Standards Institute (ANSI): A group that represents most
foreign country specifications and supplies all types of standards.

American Standard Code for Information Interchange (ASCII): A character
set that uses seven bits to code a character. It includes the standard 26
letters of the English alphabet but none of the national characters used by
non-English speaking countries.

ANSI: See American National Standards Institute.

application profile: A data structure that defines the values of options and
attributes that control or condition the performance of a product.

Arabic character sets: There are a number of Arabic character sets, some
of which are 7-bit and some of which are 8-bit. The most common Arabic
sets are ASMO-449 and ASMO-662 (defined by the Arabic Standards and
Metrology Organization) and ECMA-114 (defined by the European Computer
Manufacturers Association). ECMA-114 includes Latin and Arabic charac­
ters.

architecture: A precise specification of all data structures and functional
interfaces of a computer system or solution. For example, the VAX hardware
architecture specifies internal data structures and instructions operating
on those data structures. The VMS software architecture specifies rules for
writing VMS applications that operate within the VAX hardware framework.

ASCII: See American Standard Code for Information Interchange.

Glossary 353

bourne shell: A standard command interpreter.

byte: A 7-bit or 8-bit unit of information used to represent control or graphic
information.

C shell: A command interpreter that provides a number of convenient features
for interactive use including filename completion, command aliasing, history
substitution, job control, and a number of built-in commands.

case conversion: Information identifying the possible other cases of each
legal character code. Used by character conversion functions to shift charac­
ters from uppercase to lowercase and vice versa.

CCITT: See Consultative Committee of the International Telegraph and
Telephone.

COA: See Compound Document Architecture.

COG: See country development group.

character: A member of the set of elements used for the organization, control,
or representation of text. Distinct from coded character in that no coding or
one-to-one relationship is implied.

character cell: A matrix of pixels used to display a single glyph, most often
a fixed-size matrix, but may vary with proportional fonts and/or character
sets.

character set: A set of alphabetic or other characters used to construct the
words and other elementary units of a national language or a computer
language.

CLO: See Command Language Definition.

code conversion: The process of taking source data coded according to
a particular ·coded character set and producing destination data coded
according to another character set.

coded character: A member of the coded character set; often confused with
character.

coded character set: A set of unambiguous rules that establish a set of named
characters and the one-to-one relationships between the characters and their
unique bit combinations.

354 Glossary

collating sequence: The sequence in which characters are ordered for string
comparison and sorting. Depending on character encodings, this sequence
can be very complicated, as when uppercase and lowercase characters must
be sorted together in order (A, a, B, b, and so on), for example: aldehyde, al
dente, Alderney, aleph.

Command Language Definition (.CLD): A type of file format. The command
definition for the VAX RALLY command is provided in Command Language
Definition (CLD) format.

compose sequence: A series of keystrokes that creates a character.

composite graphic symbol: A graphic symbol consisting of a combination of
two or more other graphic symbols in a single character position, such as a
diacritical mark and a basic letter.

compound document: A file that can include all or some of the following
elements: text, graphics, images, or spreadsheets, and, in the future, voice
and video. Books, magazines, and newspapers are all examples of traditional
compound documents.

Compound Document Architecture (CDA): The core technology for a new area
of networked documents. This technology provides the means to universally
interchange and link all types of information and to create and manage
compound documents across a network and between multiple platforms and
applications. CDA is an architecture, or set of rules for dynamic compound
documents.

compound string: A DDIF data type that enables applications to specify
attributes in text, graphics, images, or data. Compound strings make it
possible for text in a DECwindows user interface to be translated into
any language for which a font supported by the DECwindows interface is
available.

configuration data: Identifies the locale supported by a system in terms
of permitted locale-name settings. This name is a composite text string
identifYing the associated language, cultural data, and coded character set.

Consultative Committee of the International Telegraph and Telephone
(CCITT): A committee that sets international communications usage stan­
dards, which include facsimile, mail, and image compression.

control character: A character, other than a graphic character, that affects
the recording, processing, transmission, or interpretation of text.

Glossary 355

corporate engineering group: The Digital engineering group that produces an
international product.

country development group (CDG): A group within Digital's European or­
ganization, located in Paris, whose mission is to develop business in new
European markets. These markets now include the Eastern countries
Yugoslavia, Turkey, and some Arabic countries.

country-specific information component: See product.

country-specific information: Information that is relevant only in a particular
country or area, such as references to time, telephone numbers, warranties,
and ordering information.

culture-specific information: Information that relates to specific cultural
knowledge and experience.

DDIF: See Digital Document Interchange Format.

DDIS: See Digital Data Interchange Syntax.

dead key: A key used when composing characters. On certain keyboards
some keys, such as the apostrophe, circumflex, and quotation mark are dead
keys. When the key is pressed, the character is not sent to the program,
but a compose sequence is started. If the next character completes a valid
compose sequence, the composed character is sent.

DEC Multinational Character Set (DEC MCS): An 8-bit coded character set
that includes all of the characters of most Western European languages. It
does not include the additional characters used by Iceland, or any characters
not based on the Latin alphabet.

DECwindows Resource Manager (DRM): The DECwindows Resource Manager
interprets the output of the UIL compiler (a resource database) and gen­
erates argument lists for DECwindows widget creation routines. See also
widget and User Interface Language.

development cycle: The cycle of events within engineering that starts with
initial product conceptions and ends with the transfer of the completed
product into manufacturing.

diacritical mark: A mark added to a letter or symbol to distinguish it in some
way or to show its pronunciation.

356 Glossary

diagnostics: A program that tests a product or system and reports perfor­
mance and error correction. Diagnostics programs are also used to test
hardware, firmware, peripheral operation, logic, or memory, and to report
any faults detected.

dialog box: A special window that is displayed in response to user action
in the DECwindows interface. Usually, the user must take an appropriate
action (as indicated by the choices presented in the dialog box) to continue
application activity.

Digital Data Interchange Syntax (0015): Digital's internal version of the ISO
Abstract Syntax Notation One (ASN.l) which provides a means for Type­
Length-Value (TLV) encoding of structured data. DDIS is a collection of
notation and encoding rules for data, with a standard data type notation
(analogous to C structure declaration), a standard data value notation (anal­
ogous to a C initialization statement), and standard data value encoding
rules (analogous to CPU data representation).

Digital Document Interchange Format (DDIF): A syntax based on DDIS
that serves as a document interchange format and conversion hub that
is application- and system-independent. DDIF can express most known
document semantics and combinations of text, graphics, images, and data.

Digital Table Interface Format (DTIF): A syntax based on DDIS that serves as
a interchange format and conversion hub that is application- and system­
independent.

diphthong: For the purposes of internationalization, a character for which
I-to-2 collation must be used. This implies an interdependence with the col­
lation tables. The meaning of diphthong in internationalization is somewhat
different from the definition used in the grammar of languages that use
diphthongs.

ditroff: A text-formatting tool used on ULTRIX and other UNIX-based sys­
tems. The term ditroff stands for device-independent troff. See also troff.

DTIF: See Digital Table Interface Format.

end user: The ultimate consumer of a computer product, beyond the manufac­
turer or distributor; one who uses a computer system, as opposed to one who
owns, manages, operates, or supports the computer system.

environmental interface: The ways a product interacts with the physical and
electrical end-user environment in which it is placed. The product affects
the local environment, and the local environment affects the product.

Glossary 357

European area: In Digital's organization, Europe currently includes continen­
tal Europe, the British Isles, Israel, Iceland, parts of Northern Mrica, and
the Near East (Saudi Arabia, Turkey, and so on).

FOE: See Form Development Environment.

form: The total of all user-perceived characteristics of a product, including
both the control interactions provided by the user and the resulting user­
visible output of the system, that is, all user input and output.

Form Development Environment (FOE): A menu-driven form creation tool
that enables developers to create or modify a form file or test a form file's
functioning at run time. Application developers can use FDE to interactively
design forms.

format: The shape, size, and general makeup, as of a printed document.

full-form characters: A set of 2-byte alphabetic characters defined in most of
the multi-byte character sets.

function: The information processing (computing) carried out by a product in
response to the user actions. This processing is not visible to the user.

geographical market: A market defined or bounded by a physical geography.
A geographical market may be a country, a part of a country, or a collection
of countries.

geometric information: Information used to position user interface objects
such as prompts, menus, messages, and so on, on a video screen. Also
referred to as positioning information.

global product: A product that functions properly in a usage environment
that includes users throughout the world. Such a product performs equally
well in any locale; it is either language- and locale-neutral (insensitive to
language, country, and local convention) or it has all the necessary variants
to provide localized function to its users.

glyph: An image, typically of a character in a font.

GMT: See Greenwich Mean Time.

graphic character: A character, other than a control character, that has a
visual representation normally handwritten, printed, or displayed.

graphic symbol: The visual representation of a character (graphic or control)
or control function on a character imaging device.

358 Glossary

Greenwich Mean Time (GMT): Mean solar time of the meridian at Greenwich,
England. Used for the basis of standard time throughout most of the world.

half-form characters: Single-byte alphabetic characters.

Hangul: The script used when writing Korean characters. Chinese characters
are also used when writing Korean. They are then referred to as Hanja.

Hanja: Chinese characters used when writing Korean.

Hanyu: A Digital-specific term that refers to Chinese characters as defined by
the (Taiwan) CNS standard.

Hanzi: A Digital-specific term that refers to Chinese characters defined by the
(PRC) GB standard.

Hebrew character sets: There are three Hebrew character sets. These all
contain both Latin and Hebrew characters. The DEC Hebrew 7-bit set, an
adapted version of the ASCII character set, is essentially the Hebrew NRC
set. The DEC Hebrew 8-bit set, based on DEC MeS, removes some of the
characters and adds the Hebrew characters. Also, an 8-bit ISO Hebrew set,
ISO Latin/Hebrew Alphabet, is based on the ISO Latin-l character set.

HELP key: A key the user can press to view an explanatory message about
the subsystem, form, or field the user is currently in.

help message: Explanatory message to help users to understand the product
or to correct a problem or error.

Hiragana: The kana that is used to write all verbal and adjectival end­
ings in the Japanese language. Hiragana is associated primarily with
the representation of items that are regarded as native to the Japanese
language.

hooks: Facilities in a product that allow a future addition or alteration of
functions in order to allow it to interface with other products.

Kana: The Japanese set of written characters representing syllables.

Kanji: The script used when writing Japanese characters.

Katakana: The Japanese set of written characters representing syllables used
primarily for writing words borrowed from foreign languages. For example,
Katakana for motorscooter is mootaasukuutaa and Katakana for Asia is
Azia.

Glossary 359

icon: A pictorial representation of an object or function. Icons are used
for software representations, and only a few icons are standard. See also
symbol.

ideographic character: A character that symbolizes a specific thought or idea
without actually expressing the name of the thing they represent. Generally
consisting of many elements, some contain over 30 strokes of the pen or
brush. Languages such as Japanese, Chinese, and Korean use ideographic
characters.

IEEE: See Institute of Electrical and Electronics Engineers

IFDL: See Independent Form Description Language.

Independent Form Description Language (IFDL): The source language in
which DECforms screens are written.

Institute of Electrical and Electronics Engineers (IEEE): A formal, ANSI­
accredited, standards-developing organization. IEEE standards include the
802.x local-area network and POSIX 1003.x efforts.

international: Existing between or among nations or their citizens; partici­
pated in by two or more nations.

international base component: See product.

internationalization: A process that includes both the development of an
international product and the localization of the international product for
delivery into worldwide markets.

International Organization for Standardization (ISO) Latin Alphabets:
The ISO Latin-l character set has been developed by the International
Organization for Standardization as the standard character set for Western
European languages. It will eventually supersede DEC MCS. Other ISO
character sets are being developed to cover European languages not based
on the Latin alphabet. They cover Eastern Europe (ISO Latin-2), Southern
Europe (ISO Latin-3), and the Northern European Countries (ISO Latin-4).

international product: An international product (also sometimes known as
an international base product) is a product that can easily be localized. An
international product consists of the following components:

• international base component

• user interface component
• market-specific component

360 Glossary

• country-specific information component

international product development: The process of developing a product that
can be easily localized. The design and development efforts ensure that the
product conforms to:

• The general structure of the international product model

• Published guidelines and standards for producing international
products

The result of this effort will be an international product.

ISO: See International Organization for Standardization

ISO 646: An ISO 7-bit coded character set for information interchange. The
reference version of ISO 646 contains 95 graphic characters, which are
identical to the graphic characters defined in the ASCII coded character set.

ISO 6937: An ISO 7-bit or 8-bit coded character set for text communication
using public communication networks, private communication networks, or
interchange media such as magnetic tapes and discs.

ISO 8859 - 1: An ISO 8-bit single-byte coded character set Part 1, Latin
Alphabet No. 1. The ISO 8859/1 character set comprises 191 graphic
characters covering the requirements of most of Western Europe.

LAN: See Local Area Network.

LANG: The environment variable used with the ULTRIX operating system to
announce the user's requirements for national language, local customs, and
coded character set to the computer system.

language-neutral: See locale-neutral.

language information: Refers to the localization data describing the format
and setting of locale-specific cultural data.

language variant: A language variant of a software product consists of the in­
ternational base component and a modified and/or translated user interface
component.

linguistic aids: Software used for natural-language text processing. Examples
of linguistic aids are spell-checking, grammar-checking, and automatic
hyphenation tools.

Glossary 361

Local Area Network (LAN): A data communication system that spans a
physically limited distance, provides high bandwidth communication over
inexpensive media, and is privately owned.

local conventions: The formats and separators used for certain types of data
in a particular locale, such as formats for telephone numbers, date and time
values, and currency values. These formats and separators vary from locale
to locale.

local customs: The conventions of a geographical area or territory for such
things as date, time, and currency formats.

local devices: The user-interface devices that are used in a particular locale,
such as keyboards, input/output devices, communications equipment, and
printers. These devices can vary from locale to locale.

local engineering group: A Digital engineering group within a country's soft­
ware and applications support organization, that performs those engineering
activities required to produce a product variant from an international (base)
product for their local market.

local language: The primary language or languages spoken within a par­
ticular geographic area. Synonymous with natural language and national
language.

local usage environment: A synonym for locale. See locale.

locale: The environment in which a product is used. This environment
includes language, dialect, keyboard, data input and display conventions,
collating sequence, and many other attributes, all of which directly affect the
way users interact with the product. Note that the boundaries for a locale
do not necessarily match country borders; a single country might include
several different locales and vice versa.

locale-neutral: Independent of natural language and other attributes of the
locale, such as keyboard type. Used to apply to locale-neutral test suites,
locale-neutral data structures, or locale-neutral coding. By implication,
locale-neutral components are equally valid, without change, in any specified
locale.

localizable software: Software designed to be easily localized. Preferred to
the term translatable, which is frequently and incorrectly used to mean
localizable.

362 Glossary

localization: The process that includes all activities required to create a prod­
uct variant from the international product. Localization of the international
product may, or may not, include translation of the product. Localization
does not change the functionality of the international base component. If
functionality changes, reengineering has been performed and a new product
has been created.

localization components: Those components of an international product that
vary in different markets. By contrast, the international base component, is
invariant in all markets.

localization kit: A package containing all of the files and information a local
engineering group needs to create a product variant. The localization
kit typically consists of electronic and hardcopy files, documents (plans,
specifications, and so on), and tools.

localization team: The group that performs the localization. The team may
be part of a local engineering group, located in the country where the local
version will be sold.

localized software: Software that functions effectively in a particular locale.
To be effective, it should be as attractive and familiar to the user as software
developed specifically for that environment.

logical name: A user-specified name for any portion of a VMS file specifica­
tion. For example, the logical name INPUT can be assigned to a terminal
device from which a program reads data entered by a user.

market-specific component: See product.

message catalog: A file or storage area containing program messages, com­
mand prompts, and responses to prompts for a particular national language,
territory, and codeset.

mnemonics: Techniques that use established conventions, prior training, or
memory aids, such as an abbreviation or symbol, to assist human memory.
As mnemonics are usually specific to the language and culture they come
from, they are best avoided in material to be translated.

monotoniko: A simplified transliteration of Greek writing in which the Latin
alphabet is used in combination with Greek accent marks. For example,
"where do you come from?" is written "apa pOll elste."

mouse: A peripheral pointing device that, when moved across any surface,
causes a corresponding movement of the pointer on the screen. A mouse can
have one or more buttons.

Glossary 363

multilingual software: Software capable of supporting user interfaces in more
than one natural language at a time.

multinational: Of, relating to, or involving more than one nation; usually
applied to business activities. International is the preferred term.

multi-byte character: A single character represented by a series of one or
more bytes in an underlying codeset.

National Character Set (NCS): The National Character Set Utility is available
in Digital's VMS Version 5.0 Run-Time Library and assists developers
writing software that uses collating sequences. This utility supports the ISO
Latin-l character set and allows specific collating sequences to be defined .
and then stored in an NCS library.

National Replacement Character (NRC) Set: A 7-bit coded character set
that replaces certain ASCII characters with characters used in a specific
country. Many NRC sets are specified by national standards; others have
been created by Digital.

natural language: The primary language or languages spoken within a partic­
ular geographic area. Such languages are natural languages, as opposed to
artificial languages such as C, Assembly, Ada, and so on. Synonymous with
local language and national language.

NCS: See National Character Set.

NLSPATH: An environment variable used with the ULTRIX operating system
to indicate the search path for message catalogs.

noninternational product: A product that does not conform to the guidelines
and standards for creating an international product. Such products cannot
be localized unless they are first reengineered.

NRC: See National Replacement Character set.

nroff: A tool used on ULTRIX and other UNIX-based systems for producing
formatted text files that can be displayed on a terminal or workstation
screen.

polytonic: A form of Greek writing in which a variety of diacritical marks
are used. Today, these diacritical marks have only historic meaning; they
do not change pronunciation. Similarly, accents in Greek only show which
syllable is to be stressed. The form of the accent does not have an impact on
pronunciation.

364 Glossary

Portable Operating System Interface for Computer Environments (POSIX):
A set of standards designed to provide applications portability that are
being developed by the IEEE 1003.0-1003.9 working groups. POSIX is also
commonly used to refer specifically to the 1003.1 Standard, which defines an
operating system interface specification.

POSIX: See Portable Operating System Interface for Computer Environments.

product: A combination of components, developed iIi response to a market
problem or opportunity, that is consistent with company strategy. An inter­
national product, whether hardware or software, consists of the following
components.

• international base component

The international base component consists of software functionality
or hardware modules that will remain constant in all the worldwide
markets where the product will be sold. This component is the
common element in all variants of the product.

For example, an international base component for a software
product consists of code that does not require any changes for use
in any market where the product is sold.

• user interface component

The user interface component is the text and language processing
component. It does not contain code. This is the component that
typically gets translated or modified to meet the needs of specific
languages or cultures.

For example, the user interface component could include user
messages, text control information, online help, symbols and icons,
and documentation.

• market-specific component

The market-specific component provides optional features that
can be added to the international base component in response to
a particular market need. This component provides additional or
changed functionality for the specified market.

For example, the general market requirements for an office system
would be satisfied in the international base component; the various
modem, printer, local interconnect, and power cords which tend to
vary by area or country would be contained in the market-specific
component. Specific dialects of languages could also be included in
this component.

Glossary 365

• country-specific information component

The country-specific information component contains information
that is specific to a particular country and is required for delivery
of the product. This component does not contain software code.

For example, warranty, service and ordering information, license
certificates, VDE postcards, and terms and conditions are all
examples of country-specific information components.

product variant: A variant of a software product produced as a result of
localization. A product variant has the same international base component
as the international product. It also includes

• user interface component
• optionally, a market-specific component

• country-specific information component

Product variants are complete and ready for delivery to the customer.
Note that the process of creating a product variant (localization) does
not change functionality in the international base component. If that
functionality is changed, a new version of the product has been created.

radix character: The character that separates the integer of a number from
the fraction.

reengineering: A process that includes any additional engineering activities
required to make a product suitable for localization. Reengineering may
include the following activities:

• Engineering activities required to create an international product
from a noninternational product: redesign, writing of interface
specifications, and other activities.

• Engineering activities required because of the unique requirements
of particular languages: redesigning the product to handle addi­
tional character sets and screen display requirements for the Asian,
Hebrew, and Arabic languages, for example.

Reengineering is still commonly performed to produce Asian, Hebrew
and Arabic products. The result of reengineering is a base Asian,
Hebrew, or Arabic version. Because reengineering is time-consuming, it
adds to the cost of localizing software.

simultaneous ship: A strategy to ship a number of product variants on the
same day as the first revenue shipment of the international product. See
also synchronized ship.

366 Glossary

single-byte format: An 8-bit character format used in the standard ASCII
computing environment of European and English-speaking countries.

software architecture: See architecture.

Software Product Description (SPD): A document that defines the function of
a Digital software product and minimum hardware needed to support it. It
describes software, components, and service.

standard: 1. A precise rule, communication protocol, functional interface, data
format specification, or environmental measure or interface that a product is
expected to adhere to in order to claim conformance to that standard. 2. A
set of minimum requirements upon which successful product designs may be
based for products intended for worldwide markets. 3. Any rule, principle,
or measure established by authority.

strategic market: A market in which Digital is making significant long term
investments and where customers must be able to use the full functionality
of a product regardless of the local standards, language environment, power,
or regulatory environment.

symmetric programming: Programming techniques that allow you to develop
text editors that accommodate two language directions. This bidirectional
capability is useful with Hebrew, for example, which is written from right
to left, but has embedded numbers and text from other languages, such as
English, that are written from left to right.

synchronized ship: A strategy to ship a predetermined number of product
variants within an agreed period of time after first revenue shipment of the
international product. See also simultaneous ship.

telecommunications interface: The mechanism by which a product is con­
nected to the telephone system.

Terminal Fallback Facility (TFF): A facility that provides table-driven character
conversion for terminals. TFF allows you to compose characters not included
on the keyboard. TFF allows users with NRC set terminals to use software
developed with DEC MCS.

TFF: See Terminal Fallback Facility.

time-to-market: The time lapse between identifying a commercial opportunity
for a new product and shipping the product to the first customer.

TLV: See Type-Length-Value.

Glossary 367

translatability: A measure of the ease of translating user information into
another language.

translatable text: Natural language text designed for ease of translation, for
example, text that is structured in modules permitting selective translation,
and free of culturally biased examples and acronyms that are not usually
considered translatable.

translation: The process of rendering information presented in one natu­
ral language into another natural language. Translation is one part of
localization.

translation markup: Comments in application files that assist the translator
in locating translatable and localizable items.

translator: 1. A person who renders information presented in one natural
language into another natural language and retains its original meaning. 2.
A program or series of programs that changes statements from one machine
language into another (for example, a compiler or assembler).

troff: A UNIX-based text-formatting tool similar to nroff. Files generated by
troff can be used to drive a phototypesetter or laser printer. See also nroff.

type-length value (TLV): A type of software coding of structured data provided
by DDIS.

UID: See User Interface Description.

UIL: See User Interface Language.

ULTRIX Worksystems Software (UWS): A Digital product based on two major
components: the ULTRIX-32 operating system and an extensive X window­
based environment that supports general users and graphics applications
developers.

UPS: See User Preference Supplemental.

user interface: A mechanism through which the user makes the product
perform its intended function. This mechanism takes into consideration the
way user information is used, the way hardware is used, and the way user
behaviors are integrated to solve a problem.

user interface architecture: The user's view of a software product consisting
of all online command and control actions taken by the user, online and
hardcopy documentation (error messages, help, and tutorials), labels and
legends on control keys, and other controls and indicators, such as a mouse.

368 Glossary

user interface component: See product.

User Interface Description (UID): File created when the DECwindow's user in­
terface language (UIL) compiler translates the UIL module. Application and
library use of user interface definition ~UID) files then aid in the localization
process.

User Interface Language (UIL): Definition files produced by the DECwindows
UIL compiler containing the data necessary to separate form and function
in the DECwindows applications and allowing DECwindows toolkit widgets
and gadget detail to be stored separately from the toolkit and run-time code.

user profile: A data structure that defines the attributes of the local usage
environment.

UWS: See ULTRIX Worksystems Software.

VDE Postcards: Cards used in Germany for registering high-frequency
equipment with the telecommunications authority.

Widget: A DECwindows interaction mechanism by which users give input
to an application or receive messages from an application. Widgets are
standard calls to the DECwindows windowing system that help to maintain
a consistent look and feel across different applications.

worldwide product: A term that encompasses an international product and
any product variants.

Xdefault files: DECwindows application resource databases that provide de­
fault values that define the basic attributes of an application user interface
such as origin, height, width, background color, foreground color, and font.
These values are stored in a customizable file and form a type of application
profile for the software product.

Xlib: Digital's implementation of the X Window System's graphic programming
library. Xlib provides low-level routines for creating windows, managing
windows, and performing graphic functions.

X/Open: An international consortium of vendors whose purpose is to de­
fine the X/Open Common Applications Environment (CAE). The CAE is
a comprehensive software environment designed to provide applications
portability.

X Resource Manager: A feature of the DECwindows interface that aids in the
localization process.

Glossary 369

XRM: See X Resource Manager.

Xtoolkit: A package of tools for programmers that extends the basic func­
tionality provided by the X Window System to support human interface
construction within user applications. It does this by providing application
programmers with a common set of intrinsics.

XUI: See X User Interface

X User Interface (XUI): The programmer and user interface developed by
Digital for X-based workstations. The X User Interface is made up of the
User Executive, the Session Manager, and the Window Manager. Each helps
developers and end users to maintain a consistent user interface.

370 Glossary

A
Abbreviations

national, for months • 269
national, for weekdays· 267

ABCD model • 6
Accelerator keys

in DECwindows· 110
in multilingual applications· 83
in VMS ·146

A component
definition of • 6

Alphabetization • 24

See also collating sequences
and handling diacriticals • 24
and handling upper/lowercase • 24
of Asian text • 24
using NCS routines for • 24

American National Standards Institute· 353
American Standard Code for Information Interchange

·18,353
ANSI· 35,353
Application Integration Architecture (AlA)

used in international software • 35
Application profile • 36, 353
Application resource database

example of • 105
Application resource databases • 105
Arabic language

character sets • 18, 353
collation of • 32
text processing support for • 18

Architecture· 353
ASCII • 18, 353
ASCII encodings

and collation • 29
Asian languages

characteristics of • 25

Asian languages (Cont.)

collation of • 33
text processing support for • 23

Asian market
printers for • 242
software for • 243
terminals for • 241
tools for • 243

Attached Dialog Box widget· 105

B
Baselevel notes • 237
B component

definition of • 7
Bourne shell • 191, 354
Byte· 354

c
Case conversion· .354
catclose library routine • 181
catgetmsg routine • 181
catgets routine • 181
catopen library routine • 181
CCITT • 35, 354
C component

definition of • 8
CDA· 354
COG ·354
Central engineering group

and localization support· 227
Character

casing of • 222
cell· 354
definition of • 354
output of • 219

Index

Index 371

Characters

full-form • 222
half-form • 222

Character set
ASCII· 18
DEC MCS ·18
ISO Latin-1 • 18
NRC ·18

Character sets
Arabic ·18
Asian

standard summary • 21
Cyrillic· 20
Greek· 20
Hebrew· 19
ideographic· 20,360
Japan· 21
Korea· 21
major sets, description of • 17
People's Republic of China • 20
support for • 23
Taiwan· 20
Thailand· 21

Character set support
and collation • 17
summary· 26
summary of guidelines for • 17
with DECwindows· 107
with ULTRIX· 202

Chinese components • 246
CLD· 354
CLD files • 69
C locale • 200
Code conversion· 354
Coded character • 354

set· 354
Collating sequence • 355
Collating sequences

background • 28
by number of strokes • 33
by phonetic sequence • 3~
by radicals • 33
designing for multiple • 27
for Arabic languages • 32
for Asian languages • 33
for Danish • 262
for English • 262
for Finnish • 262
for French • 262
for German • 263
for Greek· 263

372 Index

Collating sequences (Cont.)

for Icelandic· 263
for Italian • 263
for Latin-based languages • 29
for MCS· 30
for Norwegian • 264
for Portuguese • 264
for Spanish • 264
for Swedish • 264
how they are used • 27
introduction to • 27
language-specific • 259
tables of country-specific • 259

Collation
using DECwindows ·109
using VMS • 137

Command introducers • 145
Command Language Definition· 355
Command Language Interface (CLI) • 61
Command languages

international guidelines for • 60
Compose sequence • 355

three-key • 58
two-key· 58

Composite graphic symbol • 355
Compound document • 355

architecture • 355
Compound Document Architecture (CDA)

used in international software· 35
Compound strings • 108, 355

support of • 91
Configuration data • 355
Consultative Committee of the International Telegraph

and Telephone· 35,355
Control character • 355
Conversion functions

using DECwindows • 109
using ULTRIX • 202
using VMS • 142

Corporate engineering group· 356
Country codes

EEC· 266
ISO 3166 • 266

Country development group • 356
Country names

in local languages • 266
Country-specific information • 356

date formats • 49
devices· 55
lexical formats • 54
telephone nymbers • 53

Country-specific information (Cont.)

time formats • 52
time zones • 53

Country-specific information component • 356
contents of· 8
definition of • 8

Csh ·250
C shell· 354
Culture-specific information • 356
Currency values

formats for (table) • 298
guidelines for using • 49

Cursor
moving· 220

Cyrillic character sets· 20

D
Database

data encoding • 35
query languages • 60

Data formats
See also Date strings
address formats (table) • 285
business addresses (table) • 285
currency (table) • 298
date formats (table) • 273
formats for Europe (tables) • 265
forms of address (table) • 277
in DECwindows • 107
in VMS ·133
personal titles (table) • 277
See also Local conventions· 47
telephone numbers (table) • 317
time values • 309
ULTRIX·200

Date and time formats
guidelines for using • 49, 52
in DECwindows • 107
in VMS ·133
ULTRIX·200

Date formats
table of country-specific • 273

Date strings
day names and abbreviations • 267
names of months • 269
ordinal days • 313
translations for yesterday, today, tomorrow • 276

Date/time routines (VMS) • 133
L1B$CONVERT DATE STRING ·136
L1B$FORMATj)'ATEjlME ·136

Date/time routines (VMS) (Cont.)

summary of· 136
Day names

abbreviations for • 267
translations of • 267

D component
definition of • 8

DDIF· 356
definition of • 22
in international software • 35

DDIS· 356
definition of· 22

Dead key • 356
DECforms

components of • 124
overview of • 124

Decimal separators
guidelines for using • 48

DEC MCS ·18
DEC Multinational Character Set (DEC MCS) • 356
DECwindows

See also User interface language (UIL)
and accelerator keys • 110
and application resource databases • 105
and character set support • 107
and collating sequences • 109
and compound strings • 108
and conversion functions • 109
and icons • 105
and local devices • 109
and object-oriented user interfaces • 92
and positioning objects • 105
and text processing • 107
and the Attached Dialog Box • 105
and the help widget • 100
and the separation of form and function • 95
and toolkit widgets • 100, 101
and Xdefault files • 105, 369
Japanese· 251
local conventions of • 107
messaging in • 100
mouse· 363
toolkit widget (example) • 101
user interfaces

Resource Manager (DRM) • 92
User Interface Language (UIL) • 92

DECwindows Resource Manager (DRM) • 356
definition· 94
definition of • 92

DECwrite ·11
as product model example • 11

Index 373

Delimiters • 218
Development cycle • 356
Devices

adapting international software to • 55
Diacritical mark • 356
Diagnostics • 357
Dialects • 81
Dialog box • 357
Digital

ABCD model • 6
hardware platform· 241
international product model • 5, 6
localization platform • 239
Multinational Character Set • 18
software platform • 242

Digital Data Interchange Syntax (ODIS) • 22, 357
for international text • 22

Digital Document Interchange Format (OOIF) • 22,
357

for international text • 22
Digital Table Interface Format (OTIF)· 357
diphthong • 357
ditroff • 357
DRM· 94

See DECwindows resource manager
DTIF· 357

E
EEC codes for countries • 266
End user • 357
Environmental interface • 357
Escape sequences • 56
European area • 358
Example

OECwrite • 11

F
$FAO

case directives • 132
conditional messaging • 132

$FAO facility • 130
FOE· 358
Field truncation· 220
Font utilities· 247, 249, 251
Form· 358
Format· 358
Formats

See also Local conventions • 47

374 Index

Formatted output • 220
Form Development Environment (FOE) • 358
Form editors

user interface presentation • 41
Forms of address (table) • 277
Forms systems

user interface presentation • 41
Full-form characters • 222, 358
Function • 358

G
Gender of nouns • 45
Geographical market· 358
Geometric information • 358

See DECwindows, positioning objects
Global product· 358
Glyph· 358
GMT· 358
Graphic

character • 358
symbol, 358

Greek character sets • 20
Greenwich Mean Time • 359
Guidelines

for analyzing user input· 42
for coding multilingual data' 22
for developing artificial language processors • 60
for handling formatting issues • 48
for text processing • 23
for using Arabic collating sequence • 32
for using currency values • 49
for using date and time formats· 49
for using decimal separators • 48
for using lexical formats • 54
for using positive and negative values • 48
for using telephone numbers • 53
for using thousands separators • 48
for using time zones • 53
for writing code to format data' 47
for writing natural language text • 46
for writing software for adaptable devices • 55
general· 35

H
Half-form characters· 222, 359
Hangul· 359
Hanyu· 359
Hanzi· 359
Hardware platform

Asian· 241
for Asian printers • 242
for Asian terminals • 241

HDUMp· 247
Hebrew character sets • 359
Hebrew language

characteristics of • 19
character sets • 19
collating sequence for • 19
text processing support for • 19

HEDT· 219,247
Help

key· 359
message • 359

HELP messages
bilingual • 247

Hiragana· 359
HMAIL· 247
HMERGE· 247
Hooks· 359
HSORT·247
HSYSHR· 247
HTPU • 219, 247

Icons· 360
in international products· 105

Ideograms • 14
Ideographic character sets· 20, 360
IEEE • 35, 360
IFDL· 360

See Independent form description language
Independent Form Description Language (IFDL)· 360

definition of • 124
Indexed Sequential Access Method files· 24
InpuVOutput flags • 248
Input parsing • 218
Installable baselevel kits • 237
Installation

of multilingual software • 81
Institute of Electrical and Electronics Engineers • 35,

360

International • 360
product • 360
product development • 361

International base code· 6
International base component· 360

contents of • 6
definition of • 6

Internationalization • 360
concept of • 1
keyboard support for • 180
related documentation· 349

International Organization for Standardization • 18, 35
International Organization for Standardization Latin

Alphabets • 360
International product model

applied to Asian software • 10
benefits of • 5
components of • 6
definition of • 10
purpose of • 5

International software
design of • 227
development of • 227
general guidelines for • 35
independent aspects of • 12
model of· 13

International Standards
addresses • 343
organizations· 343

ISAM
definition • 24

ISO • 18, 35, 361
646· 361
6937· 361
8859 - 1 • 361
standards • 341

J
Japanese ULTRIX components

Csh· 250
font utilities • 251
libraries • 250
Nroff· 250
text editor· 250
Tty subsystem • 250

Japanese VMS components • 248
font utilities • 249
InpuVOutput flags· 248
JDICEDIT· 249
JIS78 to JIS83 conversion· 248

Index 375

Japanese VMS components (Cont.)

JMAIL- 249
JSY$SMGSHR - 249
JSYLlB- 249
JSYSHR· 249
JTPU· 248
KCODE'249
KDUMP'248
SORT/MERGE -248
terminal driver • 248

Japan Industrial Standard' 21
JDICEDIT • 249
JIS· 21
JIS78 to JIS83 conversion • 248
JMAIL ·249
JSY$SMGSHR • 249
JSYLlB· 249
JSYSHR ·249
JTPU· 248

K
Kana • 59, 359
Kanji' 359
Katakana • 25, 359
KCODE ·249
KDUMP'248
Keyboard

character set • 57
usage mode • 57

Keyboards
and capitals lock - 59
and compose mechanisms • 58
and design issues • 57
and gold keys' 59
and Kana lock • 59
and shift lock· 59
in DECwindows' 109
in VMS ·146
LK201 variants of, 57
redefinable • 55
selection of • 57

Keys
Alt· 58
Compose' 58
Gold· 59
Space bar • 58

Korea· 21
Korean components • 246

376 Index

L
LAN· 361
LANG '191,361
Language

information • 361
variant • 361

Language-neutral, 361
Languages

by country· 266
Latin-based languages

collation • 29
Lexical formats

guidelines for using • 54
L1B$CALLG· 74
L1B$CONVERT_DATE_STRING routine • 136
L1B$DT_FORMAT logical name ·135
L1B$DT_INPUT_FORMAT logical name • 135
L1B$FIND_IMAGE_SYMBOL· 74
L1B$FORMAT_DATE_TIME routine ·136
Libraries • 250
Linguistic aids • 361
Local

conventions • 362
customs • 362
devices • 362
engineering group • 362
language • 362
usage environment • 362

Local Area Network • 362
Local conventions

currency values • 49
data formats' 47
date formats • 49
day, month, year· 47
decimal separators' 48
guidelines for' 47
lexical formats • 54
positive and negative values • 48
telephone numbers • 53
thousands separators • 48
time formats' 52
time zones • 53
VMS support for • 133

Local devices
and DECwindows • 109
and VMS ·146
support for • 55

Locale· 362
Locale-neutral • 362

Localizable software • 362
Localization • 363

baselevel notes as deliverables • 237
common platform • 239
components • 363
engineering • 228
installable baselevel as deliverable • 237
internals documentation as deliverables • 238
international engineering development, role • 227
kit • 227, 363
kit, contents· 236
kit, definition • 236
modular build procedures as deliverables· 237
operating system • 239
participating groups • 227
planning issues • 227
process • 227
source modules for translation • 236
support • 227
team· 363
test procedures as deliverables • 237
tools and utilities as deliverables • 238
training· 228
translation • 228
translation markup

translatable text • 229
Localization support

central engineering group • 227
Localized operating system • 239
Localized software • 363
Logical name • 363
Logical names

L1B$DT_FORMAT ·135
L1B$DT_INPUT_FORMAT ·135
SYS$CURRENCY • 137
SYS$LANGUAGES • 133
VMS messaging • 128

M
Market-specific component· 363

contents of • 8
definition of • 8
importance of • 14
linguistic aids for • 15
purpose of • 14

Markup
of baselevel • 229
when not required • 234

Markup flags • 229

MCS characters

collation of • 30
MCS to NRC conversions • 142, 146
Menus

option listings • 43
Message catalog • 181, 363

creating • 181
Message pointer files • 126
Messages

pluralization • 46
strings to use· 46
use of parameters • 46

Message text source file
example code fragments • 187
specifying mnemonics • 186

Messaging facilities
and VMS ·126
conditional messaging • 132
$FAO ·130
in DECwindows • 100

Metadata, handling • 36
Mnemonics· 363

using ·186
Modular build procedures • 237
Monotoniko • 363
Month names

abbreviations for • 269
translations of • 269

Mouse· 363
in international products • 92
usage· 44

Multi-byte character· 364
searching • 223

Multi-byte characters
and cursor movement • 220
casing of • 222
collating sequences for • 224
cutting of· 222
deleting· 221
delimiters for • 218
editing of • 220
field truncation of • 220
formatted output of • 220
output of • 219
overstriking of· 221
pasting of • 222
replacing • 221
sorting of· 224
terminators for • 218
wrapping of • 219

Index 377

Multilingual

See also Symmetric programming
applications

data sorting • 90
data storage • 90

application types • 83
communication between applications • 88
concurrent support within an application • 85
concurrent support within a system • 83
distributed applications • 87
functionality· 82
software

definition • 82
designing • 89

user interface • 82, 86
MUltilingual data

coding· 22
Multilingual software· 364

designing • 79
functionality· 79
model· 79
user interfaces· 79

Multinational • 364

N
National Character Set· 364
National Replacement Character (NRC) Set • 364
National Replacement Character set • 18
Natural language • 364
NCS ·364
NCS$COMPARE routine • 138
NCS$CONVERT routine • 143
NCS$GET_CF routine ·143
NCS$GET_CS routine ·138
NCS routines

and collating sequences • 138
conversion functions • 143
conversion functions (example) • 143
NCS$COMPARE ·138
NCS$CONVERT • 143
NCS$GET_CF ·143
NCS$GET_CS ·138
Sort/Merge • 141
usage example of • 139

NCS utility • 27
and collating sequences • 137
conversion functions • 142

Networks • 56
NLSPATH • 191, 364
Noninternational product • 364

378 Index

Noun gender· 45
NRC ·18,364
NRC to MCS conversions • 142, 146
nroff· 364
Nroff· 250
Numqer and Currency formats

in VMS ·136
Number/Currency routines (VMS) • 136

o
Operating system

localized • 239
Ordinal days • 313

p

Parsing
input· 218

People's Republic of China • 20
Personal titles (table) • 277
Pluralization

$FAO case directives • 132
$FAO in VMS • 130

Pluralization differences
handling· 45

Pointer files
messaging in VMS • 126

Polytonic • 364
Portable Operating System Interface for Computer

Environments • 365
Positive and negative values

guidelines for using • 48
POSIX ·365
Product • 365

variant • 366
Product model

components of • 6
example ·11

Product model component
country-specific information· 8
international base • 6
market-specific • 8
user interface· 7

Profile
application • 36
user·36

Profiles
defining attributes of· 37
implementation of • 40

Programming and command languages
analysis of • 59

Q

0110
definition of • 218

Oueue Input • 218
Queue Output· 218

R
Radix character • 366
Reengineering • 366
Related documentation • 349
Removing embedded text strings· 64
Reordering message parameters· 130
Root radicals· 14

s
Scrolling

in user interfaces • 41
Simultaneous ship • 366
Single-byte format • 367
Software

general design guidelines for· 35
localized • 363

Software architecture· 367
Software platform

Asian· 242
development tools • 243

Software Product Description· 367
Sorting

See collating sequences
SORT/MERGE • 248
SPD· 367
Spelling differences

handling· 45
Standard • 367
Standard address formats (table) ·285
Strategic market • 367
String conversions

NCS routines for· 142
Supporting local conventions

using ULTRIX • 200
Symmetric programming • 321 , 367

and bidirectional editing • 324
and horizontal mapping· 322
and vertical mapping • 323

Symmetric programming (Cont.)

guidelines for • 322
Synchronized ship • 367
Syntax differences

handling • 44
SYS$CURRENCY logical name • 137
SYS$LANGUAGES logical name ·133

T
Taiwan·20
Telecommunications • 59
Telecommunications interface • 367
Telephone numbers

formats (table) • 317
guidelines for using· 53

Terminal driver
Japanese • 248

Terminal Fallback Facility • 367
Terminal Fallback Facility (TFF) • 146
Terminals

and writing direction • 56
for multilingual support • 55
variants of • 56

Terminators· 218
Text

guidelines for handling in code • 35
Text editor • 250
Text expansion • 41

allowing space for· 42
and field sizes • 41
and string length restrictions • 42

Text format
changes in translation· 42

Text processing
and character sets • 17
and character set support· 23
and compound strings • 108
and DECwindows • 107
and positioning· 41
DECwindows • 109
general guidelines for • 23
in Arabic • 18
in Asian languages • 23
in Hebrew· 19
international· 17
over networks • 56
summary of guidelines· 17
summary of requirements • 25
using DDIS • 22
using ULTRIX • 202

Index 379

Text processing (Cont.)

using VMS· 137, 142
Text processing support

Asian languages • 25
TFF· 367
Thailand· 21
Thousands separators

guidelines for using • 48
Time formats

guidelines for using • 52
(table)· 309

Time-to-market • 367
Time zones

gUidelines for using • 53
TLV· 367
Toolkit widgets

compound string support for • 109
translating • 100, 101

Training
as a product deliverable • 228

Translatability • 368
Translatable text· 229,368

markup of • 229
Translation· 368

and text expansion • 41
as a localization factor • 228
as a product deliverable • 228
estimates • 235
markup ·368
of an ULTRIX file • 233

Translation markup· 46
advantages of • 229
comments in code· 230
of source files· 230
ULTRIX file as an example· 233
VMS message file as an example· 231
VMS messages • 230
when not required (examples) • 234

Translator • 368
troff· 368
Tty subsystem • 250
Type-length value • 368

u
UID· 368
UIL· 368

See User Interface Language
ULTRIX

Worksystems Software • 368

380 Index

ULTRIX operating system

C locale • 200
ULTRIX Operating System

catgetmsg library routine • 181
catgets librarY routine • 181, 189
extract command • 182, 189
gencat command • 186, 189
local conventions • 200
memcmp() • 202
message catalog • 181
message text source file • 182
setlocale library routine • 197
strcmp() • 202
strcoll() • 202
strextract command • 182, 189
strftime() • 202
string extraction • 182, 183
string extraction, batch method • 182
string extraction, interactiv~ method • 182
strmerge command • 182, 189
strxfrm() • 202
text processing • 202
trans command • 182, 189, 193

UPS ·368
User input

analysis of • 42
by menu selection • 44

User interface· 368
analyzing user input • 42
and VMS ·124
application profiles

user profiles • 36
architecture • 368
component • 369
displaying user output

storing translatable text • 44
form editors • 41
forms systems • 41
in DECwindows • 92
menus· 43
multilingual • 82
multilingual, within an application· 86
non-ISO Latin-1 languages· 108
presentation services • 41
scrolling· 41, 42
text positioning • 41

User interface component • 7
contents of • 7
definition of· 7

User Interface Description • 369
User Interface Language • 369

User Interface Language (Cont.)

and fonCtable function • 107
and toolkit widgets • 100
definition of·92
file structure • 99
separation of form and function • 95
specification file as an example • 112
translation markup • 100
translation_table function • 110
usage guidelines for • 95
use of constants· 95

User output
display· 44
structuring for display • 46

User profile • 36, 369
UWS· 369

v
Variable length data • 225
VAX SCAN • 239
VAXset·239
VDE Postcards • 369
VMS components

Japanese • 248
VMSL· 249
VMS local language • 249
VMS Operating System

and collating sequences • 137
and conversion functions • 142
and local devices • 146
Chinese components • 246
collating sequences (example) • 139

conversion functions (example) • 143
introduction • 123
Korean components • 246
local conventions • 133
logical names and messaging ·128
messaging • 126
separation of form and function • 124
SorVMerge • 141
user interfaces in • 124

VMS run-time library
date/time routines for· 133, 136
number/currency routines • 136

w
Widget· 369
Worldwide product • 369
Writing direction • 56

and compound strings • 108

x
Xdefault files • 105, 369
Xlib· 369
XlOpen· 369
X Resource Manager· 369
XRM ·370
Xtoolkit • 370
XUI· 370
X User Interface • 370
X Window System· 91

Index 381

GUIDE TO
Developing
International
Software

-
This book tells how Digital Equipment Corporation and
hundreds of independent vendors design software
products that can be rapidly adapted to meet the local
requirements of countries from North America and
Europe to Asia, Africa, and Latin America.

Here you will find Digital's international product model
and recommendations on the use of DECwindows,
VMS, and UlTRIX to create "localizable" and "multi­
lingual" software. Also included are approaches to text
processing, standards for 11 major language areas, col­
lating sequences for 12 alphabets. and telephone, cur­
rency, and address formats for 18 European countries.

Like its companion volume, The Dlgit81 Gukte to Soft·
were Development lorder number EY-C178E-DPI, this
book offers an inside look at the procedures used by a
major computer vendor to design software products
that are truly global.

Digital Press
12 Crosby Dri....e
Bedford, Massachusetts 01730

ORDER NUM8ER EY-f577E-DP
DP IS8N .-55558-063-7
PH IS8N 0-.3-2..228-0

	Contents
	Foreword
	Preface
	Chapter 1 The Concept of Internationalization
	Chapter 2 Digital's International Product Model
	Chapter 3 International Text Processing
	Chapter 4 Designing Localizable Software
	Chapter 5 Designing Multilingual Software
	Chapter 6 Using the DECwindows Interface
	Chapter 7 Using the VMS Operating System
	Chapter 8 Using the ULTRIX Operating System
	Chapter 9 Supporting Multi-byte Characters
	Chapter 10 Supporting Localization
	Appendix A Digital's Asian Products
	Appendix B Digital's International Market
	Appendix C Language-Specific Collating Sequences
	Appendix D Local Data Formats
	Appendix E Creating a Bidirectional Text Editor
	Appendix F Database Source Language Syntax Description
	Appendix G Example Source Language File
	Appendix H ISO Standards
	Appendix I Addresses of Standards Organizations
	Appendix J Additional Reading
	Glossary
	Index

