

Programming
with RT-11

VOLUME 1
Program Development Facilities

Programming
with RT-11

VOLUME 1

Program
Development
Facilities

Simon Clinch
Stephen Peters

dlilaliltlall

DECbooks
]

Copyright © 1984 by Digital Equipment Corporation.

All Rights Reserved. Reproduction of this book, in part or in
whole is prohibited. For information write Digital Press,
Digital Equipment Corporation, 30 North Avenue, Burlington,
Massachusetts 01803

Designed by Virginia J. Mason
Printed in the United States of America

1098765432

Documentation number EY-00022-DP
ISBN 0-932376-32-0

The following are trademarks of Digital Equipment Corporation:

DEC PDP RSX
DECtape PDT RT-11
DIBOL Professional UNIBUS
MICRO/PDP RSTS VT

Library of Congress Cataloging in Publication Data

Clinch, Simon, 1959—
Programming with RT-11.

Includes index.

Contents: v. 1. Program development facilities.

1. RT-11 (Computer operating system) 2. MACRO-
11 (Computer program language) 3. FORTRAN (Com-
puter program language) 4. Basic (Computer program
language) I. Peters, Stephen, 1951— . IL. Title.
QA76.6.C55 1984 001.64'2 84-5031
ISBN 0-932376-32-0 (v. 1)

Contents

Introduction vii

1 Developing Programs in MACRO-11

and FORTRAN IV 3
2 Executing Programs 43
3 Developing Programs in BASIC 59
4 Debugging Programs 75
5 Using Libraries 107
6 Designing and Implementing Overlay

Structures 121
7 Using Language Interfaces 133
Solutions to Practices 151

Index 173

Acknowledgment

We would like to thank all those who contributed to this
publication. In particular, we are grateful to Martin Gentry,
who reviewed and updated the material in this book and
Bernard Volz, who reviewed the material and revised prac-
tice exercises. The staff at Digital Press deserve special
commendation for their invaluable assistance.

Introduction

Programming with RT—11 examines the RT—11 facilities that
enable you to develop executable programs in MACRO-11,
FORTRAN 1V, or BASIC-11. Programming with RT-11
comprises two volumes. Volume 1 covers the program de-
velopment process, RT—11 debugging aids, libraries, over-
lays, and the FORTRAN IV and BASIC-11 subroutine con-
ventions for MACRO-11 interfacing. Volume 2 discusses the
use of programmed requests to perform file and terminal
input/output, foreground/background communication, and
synchronous and asynchronous input/output operations.
Volume 1 contains chapters 1 through 7. Chapter 1,
“Developing Programs in MACRO-11 and FORTRAN 1V,”
describes the program development cycle for MACRO-11
and FORTRAN 1V, focusing on the conventions for assem-
bling, compiling, and linking source programs. Chapter 2,
“Executing Programs,” examines the execution of fore-
ground, background, and system jobs and discusses the
EXECUTE command. Chapter 3, “Developing Programs in
BASIC,” gives an overview of the program development
cycle for BASIC-11 and discusses the procedures for in-
voking the BASIC interpreter; creating, modifying, precom-
piling, and saving programs; and leaving the interpreter.
Chapter 4, ‘“‘Debugging Programs,’” explains the use of ODT
and VDT in debugging programs and the process of failure
analysis. Chapter 5, “Using Libraries,” describes the crea-

vii

viii

Introduction

tion, modification, and use of macro and object libraries.
Chapter 6, ‘“Designing and Implementing Overlay Struc-
tures,” discusses the procedures for checking memory use
and implementing program overlays. Chapter 7, “Using
Language Interfaces,” examines the functions of MACRO-11
subroutines in FORTRAN IV and BASIC-11 programs and
describes the FORTRAN/MACRO and BASIC/MACRO in-
terfaces. (The introductory chapter of volume 2 describes
its thirteen chapters in detail.)

Equipment

In order to do the practice exercises, you will need access
to a working RT—11 system with at least 500 blocks of disk
space for your files. By a working system, we mean that:

¢ The RT—11 monitor program has been transferred
from its storage disk to main memory (in other
words, the system has been bootstrapped)

¢ The FORTRAN IV compiler or BASIC~11 interpreter
has been installed and is available for use

Resources

Although every effort has been made to make Program-
ming with RT—11 self-contained volumes, you may need to
refer to the following manuals from the RT-11 documen-
tation set for additional information:

e RT-11 Installation Guide

e RT-11 Programmer’s Reference Manual
e RT-11 Software Support Manual

e RT-11 System Generation Guide

e RT-11 System Message Manual

Introduction ix

e RT-11 System User’s Guide
* RT-11 System Utilities Guide

The documentation to which we refer throughout the text
is written for RT—11 version 5.0. We also used a computer
system equipped with RT—-11 version 5.0 to generate the
programs in our examples and practices. If you own a newer
version of RT—11, you may also need a copy of the latest
System Release Notes to determine the difference between
your system and the one described here.

Programming with RT-11 is written under the as-
sumption that you know how to program in MACRO-11,
FORTRAN 1V, or BASIC-11. The authors assume that you
can manipulate files and get directory listings on an RT-11
system and are familiar with RT—11 conventions for device
and file specifications, the operation of the Foreground/
Background monitor, and monitor components and their
functions. If you need additional information on RT-11
conventions and programming procedures, you may refer
to some of the publications listed below:

e Working with RT-11 (Digital Press, 1983)

* Tailoring RT-11: System Management and Program-
ming Facilities (Digital Press, 1984)

* MACRO-11 Language Reference Manual
 FORTRAN IV Language Reference

e RT-11/RSTS/E FORTRAN IV User’s Guide
* BASIC-11 Language Reference Manual

« BASIC-11/RT-11 Installation Guide

* BASIC-11/RT-11 User’s Guide

For a directory of documentation products, write:
Digital Equipment Corporation

Circulation Department, MK01/W83

Continental Boulevard
Merrimack, NH 03054

Introduction

Notations

The following symbols are used in the two volumes to rep-
resent specific elements:

(KEY) indicates keyboard and keypad keys, their func-
tions, or key combinations

COMMANDS (uppercase) indicates input
Prompts (upper and lowercase) indicates computer output

[1] indicates parts of a command that are optional (the
brackets are not part of the command string)

Programming
with RT-11

VOLUME 1
Program Development Facilities

Program Development
Assembly and Compilation
Controlling the Production of an Object Module
Generating Listings
Assembling or Compiling Multiple Source Files
Multiple MACRO-11 source files
Multiple FORTRAN 1V source files
General form
Allocating Storage Space for Your Output Files
More MACRO-11 Assembler Options
Optional Information in MACRO-11 Listings
/SHOW option
/NOSHOW option
Cross-Reference Listings
Interpreting CREF Listings
Controlling Code Recognition and Generation
More FORTRAN IV Compiler Options
Optional Information in FORTRAN 1V Listings
Debugging Lines
FORTRAN IV Error Messages
Linking
Load Map Files
Load Image Files
Save image
Relocatable image
Absolute binary image
More Linker Options
Stack location and size
Base address
Debugging aids
Summary of Linker Options
References

Developing
Programs

in MACRO-11
and FORTRAN IV

RT-11 allows you to program in assembly, compiled, and
interpreted languages. In this chapter, you will learn the
basic command procedures and concepts needed to de-
velop programs in MACRO-11, the language processed by
the RT—11 assembler, and FORTRAN 1V, one of the com-
piled languages you may use with RT—11. Options for the
FORTRAN 1V compiler are generally different from those
for other compilers, but the phases of program develop-
ment are the same for all compiled languages.

This chapter shows you how to use the commands,
MACRO, FORTRAN, and LINK, in program development.
When you have completed this chapter, you will be able to
produce an executable file, using error-free FORTRAN IV
or MACRO-11 source code. You will learn to control LINK,
the linking program, by enabling or disabling the options:
/BOTTOM, /[FOREGROUND, /LDA, IMAP, and /STACK.

In addition, you will learn to control the assembly of
MACRO-11 source programs by enabling or disabling the
options: /ALLOCATE, /CROSSREFERENCE, /ENABLE, /LIST,
/OBJECT, and /SHOW. You will learn to control the com-
pilation of FORTRAN 1V source programs by enabling or
disabling the options: /CODE, /HEADER, /LIST, /OBJECT,
/ONDEBUG, and /SHOW.

3

4 Programming with RT—-11

Program Development

The process of writing a program in source code, translat-
ing it into machine code, and producing an executable file
is called program development. The process is made up of
the following steps:

1. Create or Edit a Program. You use an editor program
to create or modify a file containing your MACRO-11
or FORTRAN IV source code.

2. Assemble or Compile a Program. You use the
MACRO-11 assembler or the FORTRAN IV compiler
to check that the syntax of the source file is correct
and to produce an object module if there are no syn-
tax errors. An object module contains the machine
code for your program. You can divide programs
across more than one source file, so that they com-
pile into more than one object module. Because ob-
ject modules contain relocatable code and code that
indicates how the modules can be linked together,
object modules cannot be executed.

3. Link Object Modules. You link object modules to
produce a file that can be loaded into memory and
executed. Such a file is called a load module. You
may specify whether the load module runs in fore-
ground or in background.

4. Execute and Test the Load Module. You load the
load module into memory and execute it. For fore-
ground or system programs, you must provide param-
eters that control memory allocation.

Figures 1 and 2 show the sequence of steps used in devel-
oping MACRO-11 and FORTRAN IV programs.

Assembly and Compilation

To assemble a program written in MACRO-11 you type the
command, MACRO. To compile a program written in FOR-

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV

Figure 1.
Program Development in MACRO-11

EDIT OR
KED

A

OTHER SOURC
FILES AND/OR
MACRO

LIBRARIES

SOURCE
PROGRAM
PROG. MAC

Yy ¥

MACRO
ASSEMBLER

j Y

ASSEMBLY
LISTING OBJECT

MODULE
PROG. LST PROG. OBJ

LINK KEY TO SYMBOLS

| — SYSTEM PROGRAMS
YOU WILL USE

LOAD MAP LOAD MODULE

USUALLY

PROG. SAV FILES THAT YOU
= WILL CREATE OR
REFERENCE
RUN — DOCUMENTATION YOU
MAY GENERATE

PROG. MAP

6 Programming with RT—11

Figure 2.
Program Development in FORTRAN IV

OTHER OBJECT,
MODULES
AND/OR
LIBRARIES

EDIT OR
KED
SOURCE
PROGRAM
PROG. FOR
/
FORTRAN
COMPILER
|
Y
COMPILER OBJECT
LISTING MODULE
PROG. LST
_/‘\ PROG. OBJ
Y
LINK

LOAD MODULE
USUALLY
PROG. SAV

LOAD MAP

PROG. MAP

RUN

KEY TO SYMBOLS

— SYSTEM PROGRAMS
YOU WILL USE

FILES THAT YOU

= WILL CREATE OR
REFERENCE

— DOCUMENTATION YOU
MAY GENERATE

Chapter 1 Developing Programs in MACRO-11 and FORTRAN 1V 7

TRAN IV you type the command FORTRAN. These com-
mands, combined with various options, allow you to:

* Produce zero, one or more object modules
* Produce listings
* Process multiple source files

* Control the allocation of storage space to output files

Controlling the Production of an Object Module

When the MACRO-11 assembler or FORTRAN IV com-
piler produces an object module, it automatically gives the
file containing the module the file name of the source file
with the file type .OB]J. If a file with the same file name and
file type already exists, that file is automatically deleted. To
prevent this, you can specify a unique file name and file
type for the new object module produced by using the /OB-
JECT option in the following format:

MACRO/OBJECT:NEW-FILESPEC SOURCE-FILESPEC
or
FORTRAN/OBJECT:NEW-FILESPEC SOURCE-FILESPEC

 EXAMPLE

i When assembling the program PROG.MAC, you could
specify that the object module file should be named
! NEWPRG OB]J, by using the command:

MACRD/UBJECT NEWPRG PROG

| 80 that the prev10us module PROG. OB] would not be |
deleted.

You may want to see whether a source file is without
syntax errors, but not need to produce an object module.
You can use the /NOOBJECT option to prevent the produc-

8 Programming with RT-11

tion of object modules. The /NOOBJECT option is used in
the following format:

MACRO/NOOBJECT SOURCE-FILESPEC
or
FORTRAN/NOOBJECT SOURCE-FILESPEC

A previous version of an object module can also be saved
by making a copy of it in a file with a different name.

Generating Listings

When your assembler or compiler detects syntax errors in
your program, you need to know where they occurred.
MACRO-11 and FORTRAN IV listings can help because
they:

» List the lines of code in the source file
* Indicate where any syntax errors were detected
* Give details about the program sections

» List assembler or compiler statistics
In addition, MACRO-11 assembler listings can:

* Include the table of symbol names that were used in
the source code, together with their values

* Show the addresses that will be used by the load
module and the data that will be loaded into those
addresses

» Indicate which references are external or relocatable
FORTRAN IV compiler listings can:

* Include a table of variables, with their names, data
types, and offsets

e Include a table of arrays, with their names, data
types, section names, offsets, and dimensions

Chapter 1 Developing Programs in MACRO-11 and FORTRAN 1V 9

¢ Include a table of subroutines and functions refer-
enced, with their names and types

* Provide each line of code with a sequence number

These listings will be discussed in detail later.

To get an assembler or compiler listing of a source file,
you can use the /LIST option. The default file type for a
listing is .LST.

EXAMPLE
The command:
.MACRO/LIST PROG

assembles the file PROG.MAC and tells the loglcal
device LP: to prmt a listing. The command:

. FDRTRAN/L,I ST PROG

compiles the file PROG.FOR and prints a listing.

You can also specify the file name and file type of a
listing file. The command format is:

MACRO/LIST:FILESPEC SOURCE-FILENAME
or

FORTRAN/LIST:FILESPEC SOURCE-FILENAME

The /LIST option can store a listing in a file. The ben-
efit of this is that the file need not be printed out immedi-
ately and more than one copy can be printed. To store a
listing, you type the /LIST option after the file name.

EXAMPLE

MACRD PRCIG/L I[ST

If you have the listing file PROG.LST and again pro-
cess the source file PROG with the /LIST option, the pre-

10

Programming with RT-11

vious listing file is automatically deleted. To prevent this,
you can give the new listing a file name other than the de-
fault file name, using the /LIST option but with a file name

qualifier. The command takes the form:

MACRO/LIST:LIST-FILESPEC SOURCE-FILENAME

or

FORTRAN/LIST:LIST-FILESPEC SOURCE-FILENAME

When you use a file name qualifier, listings are not au-
tomatically sent to LP:. To get a hard copy, you must use a

separate PRINT command.

Practice
1-1

1. Type in either the MACRO-11 program PR0101.MAC

or the FORTRAN IV program PR0101.FOR:

MACRO-11

L.TITLE
.MCALL
MESS: .ASCIZ
.EVEN
START: .PRINT
CEXIT
.END

FORTRAN 1V

PR0O101

.PRINT, .EXIT

/THIS PROGRAM SHOULD ASSEMBLE WITHOUT ERRORS/
#MESS

START

PROGRAM PRO101

TYPE 1000
1000 FORMAT C1HO,

END

‘THIS PROGRAM SHOULD COMPILE WITHOUT ERRORS’)

Chapter 1 Developing Programs in MACRO—-11 and FORTRAN IV 11

2. Assemble or compile the program PR0101 to produce
the object module PR0101.0B]. Assemble or compile
the program PR0101 again, to produce the listing
MESS.LST and the object module MESS.OBJ without
deleting the object module PR0101.0B]J.

Assembling or Compiling Multiple Source Files

You may want to process more than one source file using
only one command if:

* You have a source program that is divided across
more than one file

* You want to process more than one source program
in order to produce more than one object module

Multiple MACRO-11 source files

Assume that your MACRO-11 source program is made up
of the following five files:

COPRGT.MAC Your own copyright text in the form of
MACRO-11 comment lines

PRJCMT.MAC Comments that apply to every module
in the project for which this program is
written

MACDEF.MAC Common macro definitions
DATDEF.MAC Common data definitions

PROGO01.MAC The code for the main part of your
program

To assemble the program into one object module and pro-
duce a complete listing, you issue the following command.

12

Programming with RT—11

Usually, the file name of output files defaults to the first
file name in the list. Here it would be COPRGT.
/LIST:PROGO1 overrides the default so that the listing file
PROGO1.LST and the object module PROG01.0B]J are pro-
duced.

You can also use one command to assemble several
MACRO-11 programs into separate object modules. The
format of this command is:

MACRO FILENAME1,FILENAME2,...,FILENAMEn

This is the same as assembling each of the source files with
a separate command. Figure 3 shows a MACRO-11 pro-
gram in which the source code is divided across more than
one file.

Multiple FORTRAN IV source files

Assume that you have a FORTRAN IV source program made
up of three files:

COPRGT.FOR Your own copyright text in the form of
FORTRAN IV comment lines

PRJCMT.FOR Comments that apply to every module in
the project for which this program is
written

PROGO1.FOR The code for your program

To compile the program into one object module and pro-
duce a listing that includes the comment lines, you use the
following command.

Chapter 1 Developing Programs in MACRO—11 and FORTRAN IV

Figure 3.

Assembling Multiple MACRO-11 Source Files

13

.MACRO/LIST:PROG/OBJECT:PROG COPRGT+PRJCMT+MACDEF+DATDEF+PROG

COPRGT. MAC
(A COPYRIGHT
NOTICE)

PRJCMT. MAC
(PROJECT
COMMENTS)

MACDEF. MAC
(COMMON MACRO

i

PROG. LST
(COMPLETE
LISTING)

Y

DEFINITIONS)

DATDEF. MAC
(COMMON DATA
DEFINITIONS)

PROG. MAC
(PROGRAM CODE
WITH COMMENTS)

Ll

MACRO
ASSEMBLER

PROG. OBJ
(OBJECT
MODULE)

You can also use one command to separately process
more than one program producing more than one object
module. You can compile the three FORTRAN IV source
programs, PROG01.FOR, PROG02.FOR, and PROG03.FOR,
by using the following command.

14

Programming with RT-11

: EXAMPI.E

-y FDRTRAN PRDGO1 PRUGO2 PRUG03

;’ The ob]ect modules PROGOl OB] PROGOZ OB] nd
PROGO3. OB] are produced This smgle comman
_l'equlvalent to the followmg three commands:

. .FORTRAN. PRUGO1“
.FORTRAN PROGO2
FORTRAN PR06031”

Figure 4 shows a FORTRAN IV program in which the source
code is divided across more than one file.

General form

You can use both the plus sign (+) and the comma (,) in a
command to assemble or compile more than one source file.
In general, you can assemble or compile more than one set
of source files so that each set produces one object module.
Each set is separated from the next by a comma and each
set is made up of one or more file names separated by a
plus sign.

Figure 5 illustrates a single MACRO-11 command caus-
ing more than one module to be assembled. Some of these
programs are divided into more than one source file. A sim-
ilar capability is available when you use FORTRAN IV.

Chapter 1 Developing Programs in MACRO—-11 and FORTRAN IV 15

Figure 4.

Compiling Multiple FORTRAN IV Source Files

.FORTRAN/LIST: PROG/OBJECT:PROG COPRGT+PRICMT+PROG

NOTICE)

(PROJECT

PROG. FOR

Figure 5.

COPRGT. FOR
(A COPYRIGHT

PRJCMT. FOR

Y

FORTRAN

COMMENTS)

(PROGRAM CODE
WITH COMMENTS)

“| COMPILER

PROG. LST
(COMPLETE
LISTING)

Producing Multiple Modules from Multiple MACRO-11 Source Files

(e Q_@Ac (_

MACRO A +B,C.D+E +F

Y

MACRO

PROG. OBJ

(OBJECT
MODULE)

(C.MAC <

ASSEMBLER

L »{ C.0BJ

D.oBJ

e
@

16

Programming with RT—11

Practice
1-2

Using MACRO-11

1. Type the following programs into three files. Name

them PR0102.MAC, PR0103.MAC, and PR0104.MAC.

PR0102.MAC:

.TITLE PRO102
* COPYRIGHT (c) 1984 A. N. Other
* This software was written by A. N. Other and may be

* used by anyone. A. N. Other is not responsible for
* any errors.

PR0103.MAC:

B

2

* R *

Project RTVS

This text describes the project RTVS, Program PR0104
is a part of this project.

3 *

’

PR0104.MAC:
.MCALL .PRINT,.EXIT

MESS: .ASCIZ /THIS PROGRAM IS PART OF PROJECT RTVS/
.EVEN

START: .PRINT #MESS

LEXIT
.END START

2. Assemble the source files PR0102, PR0103, and

PR0104 to produce a single object module along with a
single listing file. The listing file should contain the
code from all three source files. Name the output files
PR1234.0BJ and PR1234.LST.

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 17

Practice Using FORTRAN IV

1-3 1. Type the following programs into three files. Name

them PR0102.FOR, PR0103.FOR, and PR0104.FOR.

PR0102.FOR:

*

*

* Copyright (c) 1984 A.N. Other

This software was written by A. N. Other and
may be used by anyone. A. N. Other is not
responsible for any errors.

* * * * *

OO0 0000 0o

PR0103.FOR:

C =
C Project RTVS

C This text describes the project RTVS, Program PR0104
C is a part of this project.

C *

PR0104.FOR:
TYPE 1000

1000 FORMATC1HO, ‘THIS PROGRAM IS PART OF PROJECT RTVS‘)
END

2. Compile the source files PR0102, PR0103, and PR0104
to produce a single object module, along with a single
listing file. The listing file should contain the code
from all three source files. Name the output files
PR1234.0BJ and PR1234.LST.

18 Programming with RT—-11

Allocating Storage Space for Your Output Files

The size of listing files and object modules does not de-
pend on the size of the source files from which they are
produced. Listings can include or omit different types of
information, as we will discuss later. Lines of source code
generate any number of words of object code. For these
reasons, the MACRO-11 assembler and the FORTRAN IV
compiler are not able to determine the size of output files
in advance.

If you know the approximate size of the output files,
you can make sure that the assembler or compiler checks
whether there is enough room by using the /ALLOCATE
option. Assume that you know that your source file PROG
will produce an object module of size 100 blocks, but you
are not sure if there is enough room on the disk. You can
check whether there will be enough room for this file.

You would use the FORTRAN command in the same
format to check if a disk has enough room for an object
module. You can make a similar check for listing files.

More Macro—11 Assembler Options

In addition to the options already discussed, you can use
other MACRO-11 assembler options to perform tasks. You
can control the selection of information appearing in list-
ings and you can generate a cross-reference listing to assist

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 19

you in analyzing the source code. You can also control how
the MACRO-11 assembler interprets your source code and
generates your object code.

Optional Information in MACRO-11 Listings

Now that you know how to get a MACRO-11 listing, you
need to know how to control the information it contains.
You use the .LIST and .NLIST directives to select the in-
formation to be included in an assembler listing. For the
lines of source code in which directives are not in opera-
tion, the assembler makes a default selection. These de-
faults are shown in table 1. To override the default selec-
tions for one listing without having to edit the source code,
use the /SHOW and /NOSHOW options.

/SHOW option

You use the /SHOW option to include listing information
that would otherwise be omitted by default. The format is:

MACRO/LIST/SHOW:ARGUMENT FILESPEC

EXAMPLE
The commandz ,
.MACRO/LIST:PROG/SHOW:ME:LD PROG

causes the assembler to generate the object module
- PROG.OB]J and a listing file PROG.LST. This listing
includes the macro expansions (ME) of any macros
found in your program during assembly, and lists
those directives (LD) that have no arguments.

Refer to table 6—2 in the PDP-11/MACRO-11 Language
Reference Manual for a complete list of MACRO-11 listing
control directives.

20

Programming with RT-11

Table 1.
.LIST and .NLIST Directive Summary
Argument Default Controls
SEQ List Source line sequence numbers
LOC List Location counter
BIN List Generated binary code
BEX List Binary extensions
SRC List Source code
COM List Comments
MD List Macro definitions, repeat range expansions
MC List Macro calls, repeat range expansions
ME List Macro expansions
MEB Nolist Macro expansion binary code
CND List Unsatisfied conditionals, .IF and
.ENDC statements
LD Nolist Listing directives with no arguments
TOC List Table of contents
TT™ Line printer Output format
mode
SYM List Symbol table

/NOSHOW option

The /NOSHOW option has the same general format as the
/SHOW option, but it has the opposite effect. Use it to pre-
vent listing information that would otherwise be included
by default.

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 21

Note that the /SHOW and /NOSHOW options may be
used only in conjunction with the /LIST option. If you do
not use the /SHOW or /NOSHOW option, the default selec-
tion of information appears in the listing.

Practice Assemble the source file PR0101.MAC so that a listing file
1-4 is produced. Using the /SHOW and /NOSHOW options,
specify the following types of information to be included in
the listing:

The source code

Comments

Macro definitions

Macro calls

Macro expansions

No other optional information

Study the listing and see where each type of information
appears.

Cross-Reference Listings

If you have a very complex MACRO-11 program that you
want to modify with only a normal listing, you may find it
difficult to do the following:

¢ Check whether the source file contains user-defined
symbols whose names are also Digital assembler
mnemonics

* Find the position of the definition of a symbol in or-
der to change that definition

« Identify all the places where a symbol is referenced
e Identify all the places where a symbol is modified

* Locate the specific positions at which errors are
flagged

Programming with RT—-11

A cross-reference (CREF) listing can provide all of this
information for you. To get a cross-reference listing use the
/CROSSREFERENCE option. You can use the /CROSSREF-
ERENCE option to include the following information in a
listing:

¢ The name of each symbol referenced
¢ The type of symbol it is

* The position at which each symbol is defined (if the
definition appears in the source files assembled)

* The positions at which each symbol is referenced

You give a code for each optional type of information
to be included. This one-character code or argument indi-
cates the sections of a cross-reference listing the assembler
should include. Table 2 lists and describes these argu-
ments. You must use the /CROSSREFERENCE option with
the /LIST option and issue the command in the form:

MACRO/LIST/CROSSREFERENCE:ARGUMENT FILESPECS

The /CROSSREFERENCE option does not enable cross-ref-
erences on lines of code that are disabled with the .NO-
CROSS directive.

Table 2.

Cross-Reference Sections

Argument Section Type

S User-defined symbols

R Register symbols

M Macro symbolic names

P Permanent symbols (instructions, directives)
C Control sections (.CSECT symbolic names)
E Error codes

None Equivalent to :S:M:E

Chapter 1 Developing Programs in MACRO—-11 and FORTRAN IV 23

Interpreting CREF Listings

A CREF listing includes the following information:

* A code letter with each page number for the argu-
ment represented in that section (for example, S—1)

e The name of each symbol, together with a list of one
or more numbers specifying the page and lines on
which the symbol occurs

¢ Additional information about each symbol indicated
by a special character to the right of one of the line
numbers. The special characters are:

refers to a symbol definition

* refers to an operation that changes the contents of a
location
EXAMPLE

‘The CREF listing:

VAR 1-20# 2-17 2-24x
LF 1-10# 2-20 2-23

- informs you that the symbol VAR is defined on line
20 of page 1, is referenced on line 17 of page 2, and
is modified on line 24 of the same page. LF is defined

~on line 10 of page 1 and is used on page 2, line 20,
and page 2, line 23..

Controlling Code Recognition and Generation

The assembler interprets your source code and generates
your object code according to programmed defaults. You can
override these defaults in order to select from the options
that then become available.

24

Programming with RT—-11

Table 3 lists the assembler features for controlling code
recognition and generation by means of .ENABL and .DSABL
directives in source files. Where these directives are not in
operation, the assembler makes a default selection.

You can use the /ENABLE and /DISABLE options to
override default selections without having to edit the source
code. The /ENABLE option enables features that would
otherwise be omitted by default. Use it as follows:

MACRO/ENABLE:ARGUMENT FILESPEC

If this option is not enabled, all characters are con-
verted to uppercase. This is also true for any listing file that
is produced when this option is selected. '

More FORTRAN IV Compiler Options

In addition to the features we have discussed, you can use
the FORTRAN IV compiler to select the types of informa-
tion that appear in a listing and to select whether debug-
ging lines (lines of code with a “D” in the first column) are
treated as code or as comments. The compiler also tells you
when errors occur. FORTRAN IV compiler optimization
methods are discussed in chapter 6, ‘“Designing and Imple-
menting Overlay Structures.”

Chapter 1 Developing Programs in MACRO--11 and FORTRAN 1V 25

Table 3.

.DSABL and .ENABL Directive Summary

Argument Default Enables or Disables

ABS Disable Absolute binary output

AMA Disable Assembly of all absolute addresses as relative
addresses

CDR Disable Treating source columns 73 and greater as
comments

DBG Disable Generation of internal symbol directory (ISD)

records during assembly (See chapter 8 of the
RT-11 Software Support Manual for more
information on ISD records)

FPT Disable Floating-point truncation

GBL Enable Treating undefined symbols as globals
LC Enable Accepting lowercase ASCII input

LCM Disable Uppercase and lowercase sensitivity of

MACRO-11 conditional assembly directives
.IF IDN and .IF DIF

LSB Disable Local symbol block
PNC Enable Binary output
REG Enable Mnemonic definitions of registers

Optional Information in FORTRAN 1V Listings

The types of information that you can select to appear in a
FORTRAN 1V listing are:

* Source program
¢ Diagnostic messages
e Storage map

* Generated code

By default, the first three types of information are included
in the listing. You can override this default by using the
/SHOW option in the following format:

26

Programming with RT-11

FORTRAN/LIST/SHOW:code FILESPEC

The different selections you can make are shown in
table 4.

Eltherofthecommands below

FORTRAN/LIST:PROG/SHOM: 2 PROG.

”,FORTRANiLiST'PéUG/Swa‘MAP'PRUG

1nstructs the cornpller to generate an ob]ect modul

When you refer to a listing, it is often useful to know
which compiler options were in effect. You can make this
information appear in the listing by using the /HEADER
option. The /HEADER option results in the generation of a
listing that contains all the information generated by the
command in the previous example, in addition to a list of
compiler characteristics.

Table 4.

FORTRAN Listing Codes

Code Listing Content

0] Diagnostics only

1 or SRC Source program and diagnostics

2 or MAP Storage map and diagnostics

3 Diagnostics, source programs, and storage map

4 or COD Generated code and diagnostics

7 or ALL Diagnostics, source program, storage map, and generated

code

Chapter 1 Developing Programs in MACRO—11 and FORTRAN IV 27

EXAMPLE

.FORTRAN/LIST/SHOW:2/HEADER PROGA

Debugging Lines

During the development of your programs, you may want
to check run time and final data to determine whether rou-
tines are performing as planned. The most direct way to do
this is to insert printing statements at carefully selected
points so that the information you need can appear at the
terminal. Because you may want to use these test state-
ments regularly, the FORTRAN IV compiler has been de-
signed to recognize all statement lines beginning with a “D”
in column 1 as special debugging lines. The advantage of
this is that you can choose to include debugging code
without having to edit your source program. Use the
/ONDEBUG option if you want the compiler to compile de-
bugging lines.

EXAMPLE
The command:
.FORTRAN/ONDEBUG PROG el |

causes statements with “D”’ in column 1 of the
FORTRAN IV program PROG to be compiled.

FORTRAN 1V Error Messages

Despite careful creation and editing of your source code,
errors do occur. During the first two phases of compilation,
the compiler checks for syntax and definition errors. FOR-
TRAN 1V includes the appropriate error messages in the

28

Programming with RT—-11

listing. There are different message formats for the errors
detected in each of these two phases. Errors reported by the
first phase of compilation have the format:

Rpckkk G

Here ““c” is a code letter. The meanings of the various code
letters are described in the table on page C-3 of the RT—
11/RSTS/E FORTRAN 1V User’s Guide. For example, the
code letter “S” refers to a syntax error. Errors reported from
the second phase of compilation have the general format:

IN LINE nnnn, Error: description

Here ‘“‘nnnn” is the internal sequence number of the state-
ment in question, and ‘“‘description” is a short description
of the error.

You can find a list of compilation error messages in
appendix C of the RT-11/RSTS/E FORTRAN IV User’s
Guide. This appendix includes an explanation of the prob-
able causes of all types of errors recognized by the com-
piler.

Errors reported during the execution of your FOR-
TRAN IV program are called OTS (Object Time System) er-
rors. Appendix C of the RT—11 RSTS/E FORTRAN IV User’s
Guide also describes OTS errors in detail.

Linking

You use the RT—11 LINK utility to:

* Join object modules and resolve references across
modules

» Relocate individual object modules as necessary, as-
sign absolute (permanent) memory addresses, and, if
necessary, define overlay structures (discussed later)

* Produce an executable form of your program called a
load image and an optional load map

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 29

One major advantage of program linking is that it al-
lows you to implement your program designs in a modular
way. After you have assembled or compiled a number of
individual modules, use the linker to join them into a sin-
gle running program.

You can also use the linker to obtain modules from an
object library and use them in building the program. An
object library is a single file that contains more than one
object module. You may join any combination of object
modules and object library modules at link time. The linker
produces two types of output files, load map files and load
image files.

Load Map Files

As an option, the linker produces a load map. This is a list-
ing file that describes how the save image file was put to-
gether. It indicates the base address within the save image
of each module and named program section. It also lists the
addresses of globally defined symbols. The generation of load
maps is controlled by the /MAP option.

EXAMPLE
"The command'
L INK/MAP PRDG

' links the modules in file PROG. OB] and generates a
load map, which is directed towards the line printer.

- You can output the map toa ﬁle usmg the FILE- ;

' NAME quahﬁer : : s T

LINK/MAP PRUG MAP PRDG

This command additionally produces a file PROG.MAP,
which contains the map listing for PROG.OB].

30

Programming with RT—11

Practice
1-5

1.

If you are using MACRO-11, type the following pro-
gram into a file and name it PR0105.MAC.

s This is text
.TITLE PRO105
.MCALL .PRINT,.EXIT

MESS: .ASCIZ /THIS IS A MESSAGE/
.EVEN

START: .PRINT #MESS
LEXIT

.END START

If you are using FORTRAN 1V, type the following pro-
gram into a file and call it PR0105.FOR.

C This is text
TYPE 1000

1000 FORMAT (1HO, ‘THIS IS A MESSAGE’)
END

Produce an object module, a save image, and a load
map file for program PR0105. Print out the load map
and on it, circle the sections corresponding to the fol-
lowing eight items and mark them with the letter indi-
cated. Include the following:

a. The load module file name and type

b. The date of creation of the load module, provided
that the date was entered using the DATE moni-
tor command

The time of creation of the load module

e o

The title of the load module
e. The version number of the linker program

f. All section names, together with the address
where each section begins and the size of each
section (octal bytes)

g. The transfer address of the program (the starting
address or entry point)

Chapter 1 Developing Programs in MACRO-11 and FORTRAN IV 31

h. The high limit of the program in octal bytes and
decimal words

3. If any of the information listed above is missing, find
the reason for its absence.

Load Image Files

The linker operates on the object module(s) that you in-
clude in your command line to produce a load image file.
The three different types of load image files are save, relo-
catable, and absolute binary.

Save image

A save image is required to run your program under the
Single Job (SJ) monitor, or as a background job under the
Foreground/Background (FB) or Extended Memory (XM)
monitors. The linker stores this image in a file which has a
.SAV file type.

This file is an image of your program as it appears in
memory immediately after you load it. Each word in the
file is loaded into a location in memory. The first block of
the file (block 0) contains the machine code that is loaded
into locations 0 to 776 (octal). Block 1 is loaded into loca-
tions 1000 (octal) to 1776 (octal), and so on.

Figure 6 shows how a save image file is laid out. Lo-
cations 40 to 50 in block 0 of such a file contain the control
parameters of your program. These are initialized by the
linker and contain the information shown in table 5.

Locations 360 to 377 in block 0 of the file are reserved
for use by RT—11. The linker stores the memory usage bits
in the eight words of this block. The bit map is organized
as follows: each bit of these words represents one 256-word
block of memory and is set to 1 if your program occupies

32 Programming with RT—-11

Figure 6.

Save Image File Structure

BLOCK N-1

BLOCK 2

BLOCK 1

BLOCK O

(TOTAL No. OF
BLOCKS=N)

MEMORY USAGE BIT MAP

PROGRAMS CONTROL
PARAMETERS

MEMORY IMAGE
- OF PROGRAM

)\

1000

400

360
BLOCK 0 MAY
CONTAIN PROGRAM
CODE BUT USUALLY

52 DOES NOT

40

0 J

(BYTE OFFSET
IN OCTAL)

Chapter 1 Developing Programs in MACRO—11 and FORTRAN IV 33

Table 5.

Information in Block 0

Location Information

34 Trap vector (TRAP)

36 Trap vector (TRAP)

40 Program’s relative start address

42 Initial location of stack pointer (changed by /M option)

44 Job Status Word

46 USR swap address

50 Program’s high limit

52 Size of program’s root segment, in bytes (used for .REL
files only)

54 Stack size, in bytes (changed by /R:n option, used for .REL
files only)

56 Size of overlay region, in bytes (0 if not overlaid, used for
.REL files only)

60 .REL file ID (.REL in Radix-50, used for .REL files only)

62 Relative block number for start of relocation information

(used for .REL files only)

that block of memory. Other locations in block 0 may con-
tain program code, initial vector contents, or data, but un-
der most conditions they are not used. The R, RUN, and
GET commands use this information when loading your
program. The information from block 1 to the last block of
your file contains the image of your program.

Relocatable image

In order to run a program in foreground under the FB mon-
itor, you must first use the linker to produce a relocatable
image file. This allows the program to be loaded into higher
memory, leaving the lower memory available for use by a
normal save image. A relocatable image has the .REL file
type. The structure of this file is shown in figure 7. Block

34

Programming with RT-11

0 of the .REL file contains the program control parameters
in locations 34 to 62 (see figure 8). Locations 40 to 50 have
the same contents as the save image file.

The remainder of the file is divided into two parts. The
first part begins in block 1 and occupies the number of
blocks necessary to contain the memory image of your pro-
gram, as in the .SAV file. Relocation information occupies
the subsequent blocks, beginning with the block indicated
in location 62 of block 0 of the file. The linker links your
foreground program to start at location 1000 (octal) by de-
fault. However, when you load and run your program with
the FRUN command, the FRUN processor uses this relo-
cation information to load the program, not at location 1000,
but rather, just below the resident monitor or loaded de-
vice handlers. During the relocation operation, the FRUN
processor modifies certain locations in your program ac-
cording to the relocation information in order to ensure that
your program will run in available memory when started
(described in chapter 2, “Executing Programs.”’)

To generate a relocatable image file, use the /FORE-
GROUND option of the linker. This option assigns the de-
fault file type .REL to the load module.

Absolute binary image

Use an absolute binary image when you want a program to
run without the operating system controlling the system
resources. (Chapter 2, “Executing Programs,” discusses how
you can load this type of image using the absolute loader.)
You must design this type of load module so that it can
control any system resources it needs. Use the /LDA option

Figure 7.

Relocatable Image File Structure

BLOCK N+R-1

BLOCK N

BLOCK N-1

BLOCK 2

BLOCK 1

BLOCKO

PROGRAM
CONTROL
PARAMETERS

(TOTAL No. OF BLOCKS N+R)
(R OF WHICH CONTAIN
RELOCATABLE INFORMATION)

- RELOCATABLE
INFORMATION

\ MEMORY
IMAGE

1000

64

34

0

(BYTE OFFSET
IN OCTAL)

36

Programming with RT—11

in the linker command line to generate an absolute binary
image.

: “‘E‘XAMBL‘E‘

The command

‘LINK/LDA”PRUG
links ‘the" modules m file: PROG OBJ and produce

in ﬁl PROG LDA

More Linker Options

Linker options which enable you to control certain features
of a load image when it is loaded and executed include stack
location and size, base address, and debugging aids.

Stack location and size

Unless you specify otherwise, the linker provides your load
module with a default stack location and size. If your pro-
gram requires a greater stack depth, you will need to allo-
cate more stack space. If, on the other hand, your program
does not need as great a stack depth, you can decrease the
allocated depth to make more space available for use by
program code and data.

For save images, the stack location, which is deter-
mined by the initial value of the stack pointer (SP), deter-
mines the size of the stack. You can override the default
location of 1000 (octal) by using the command:

LINK/STACK:location FILENAME

and giving your location in octal. If you omit the :location
qualifier, the system will prompt you for a stack location.
To make use of the space created, you must modify the base
address.

For relocatable images, you cannot modify the actual

Figure 8.

Chapter 1

Layout of Program Control Parameters

for a .REL File

INFORMATION FOR
FOREGROUND
PROGRAM

<

RELATIVE BLOCK NUMBER FOR
START OF RELOCATION
INFORMATION

.REL INFORMATION

SIZE OF OVERLAY
REGION (BYTES)

STACK SIZE (BYTES)

SIZE OF ROOT SEGMENT
(BYTES)

HIGHEST MEMORY ADDRESS

USR SWAP ADDRESS

JOB STATUS WORD

INITIAL SETTING OF
THE STACK POINTER

START ADDRESS

Developing Programs in MACRO-11 and FORTRAN IV 37

62

60

56

54

52

50

46

INFORMATION FOR
44 »> BACKGROUND OR
SJ PROGRAM

42

40

J
(BYTE OFFSET
IN OCTAL)

38

Programming with RT-11

location of the stack, since this is determined at run time,
but you can override the default stack size of 128 bytes by
using the command:

LINK/FOREGROUND:stack-size FILENAME

and giving the stack size in bytes (octal).

Base address

The base address of your program is located immediately
above the stack. If you raise the stack location for a save
image, you should raise the base address to prevent over-
lap between the stack and the code. If you lower the stack
location, you also should lower the base address in order
to move down the program code and data, making use of
the unused space. To override the default base address of
1000 (octal), use the command:

LINK/BOTTOM:base-address FILENAME

and give the base address in octal. Relocatable images can-
not be given a base address because the address is deter-
mined at run time (discussed in chapter 2, “Executing
Programs”).

Debugging aids

Debugging is the process of correcting run-time errors in a
program. Two commonly used debugging aids are the On-
line Debugging Technique (ODT) and the FORTRAN IV
Debugging Tool (FDT). ODT is supplied with all RT-11
systems as a standard system software item, whereas FDT
is available only as part of the FORTRAN IV Real-time Ex-
tensions Package.

You use ODT by linking your object modules with ODT,
using the command:

LINK/DEBUG FILENAME

The resulting load module will be modified so that it
includes the necessary code to use ODT. ODT is further
discussed in chapter 4, “Debugging Programs.” To use FDT,

Chapter 1

Developing Programs in MACRO—-11 and FORTRAN IV 39

you specify /DEBUG:FDT, which overrides the default tool
ODT. Instruction on the use of FDT is not given in this book.

Summary of Linker Options

LINK
/ALPHABETIZE

/BITMAP
/BOTTOM

/BOUNDARY

/DEBUG

/DUPLICATE

/EXECUTE

/EXECUTE/ALLOCATE

/EXTEND

/FILL

/FOREGROUND

/GLOBAL

lists in the load map your program’s
global symbols in alphabetical order

creates a memory usage bitmap

specifies the lowest address to be
used by the relocatable code in the
load module

starts a specific program section in
the root on a particular address
boundary

links ODT (on-line debugging tech-
nique) with your program

places duplicate copies of a library
module in each overlay segment that
references the module

specifies a file name or device for the
executable file

reserves space on a device for the ex- .
ecutable file

extends a program section to a spe-
cific octal value

initializes unused locations in the
load module and places a specific
octal value in those locations

produces an executable file in relo-
catable format for use as a fore-
ground job under the FB or XM mon-
itor

generates a global symbol cross-
reference section in the load map

40

Programming with RT-11

/INCLUDE

/LDA

/LIBRARY
/LINKLIBRARY

/MAP
/MAP/ALLOCATE

/MAP/WIDE
/NOBITMAP

/NOEXECUTE

/PROMPT

/ROUND

/RUN

/SLOWLY

/STACK

/SYMBOLTABLE

takes global symbols from any library
and includes them in the linked
memory image

produces an executable file in LDA
format

same as /LINKLIBRARY

includes the library file you specify
as an object module library in the
linking operation

produces a load map listing

reserves space on a device for the
load map listing file

produces a wide load map listing

suppresses creation of a memory
usage bitmap

suppresses creation of an executable
file

tells the system to accept lines of
linker input until you enter two

slashes (//)

rounds up the section you specify so
that the size of the root segment is a
whole-number multiple of the value

you supply

initiates execution of a background
job which does not require responses
from the terminal, produces a .SAV
file

instructs the system to allow the
largest possible memory area for the
link symbol table

allows you to modify location 42, the
address containing the value for the
stack pointer (SP)

creates a file that contains symbol
definitions for all the global symbols
in the load module

Chapter 1 Developing Programs in MACRO—11 and FORTRAN IV 41

/TOP specifies the highest address to be
used by the relocatable code in the
load module

/TRANSFER allows you to specify the start ad-
dress of the load module
/XM enables special .SETTOP and .LIMIT

programmed request features pro-
vided in the XM monitor

[XM/LIMIT limits the amount of memory allo-
cated by .SETTOP

References

RT—11 System User’s Guide. Chapter 4 discusses options to the
MACRO and FORTRAN commands.

RT-11/RSTS/E FORTRAN IV User’s Guide. Appendix C con-
tains material on error diagnostics.

RT-11 System Message Manual.

Program Execution
Using the Single Job Monitor
Terminating Jobs
Using the Foreground/Background Monitor
Initiating Jobs
Special Considerations for Foreground Jobs
Foreground/Background Communication
Terminating Jobs
Using the Extended Memory Monitor
Executing with System Jobs
Scheduling
Starting Systems Jobs
Communication
Executing Programs on Systems with Multiple Terminals
Executing MACRO-11 and FORTRAN IV Source Files
Debugging
Reference

Executing
Programs

After assembling or compiling your program source code
and linking the resulting object modules to produce a load
image file, you are now ready to execute the file. This
chapter discusses the monitor commands: EXECUTE, R,
RUN, FRUN, SRUN, and UNLOAD. When you have com-
pleted this chapter you will be able to run background,
foreground, and system jobs, and send data from the ter-
minal to one or more jobs running at the saume time.

43

44

Programming with RT-11

Program Execution

Having produced a load module, you are ready to execute
it. To execute one program at a time, use the Single Job (SJ)
monitor. To execute two programs at the same time, use the
Foreground/Background (FB) monitor. If your machine has
more than 32 Kwords of memory, you can use the Ex-
tended Memory (XM) monitor. Using the FB or XM moni-
tor, you can run your programs and system jobs at the same
time.

The commands that specify program execution di-
rectly are RUN, R, FRUN, and SRUN. When a save image
is on the logical device SY:, you can run the image by en-
tering its file name.

Using the Single Job Monitor

When you execute a job, you perform two functions, load-
ing the code and data from the image file into memory and
starting execution of the code. You can use a single com-
mand to perform both functions. For the Single Job moni-
tor this command is:

RUN FILESPEC

If the program is on the system device, you can shorten the
command to R. To run the program SY:PROG.SAV, use the
command:

R PROG

You can also run such a program just by typing its name:

Chapter 2 Executing Programs 45

PROG

You will probably need to debug a program before run-
ning it. To debug a program, load it into memory where you
can examine the contents of locations and modify the data
before starting execution. The commands you need in or-
der to do this are discussed in chapter 4, ‘“Debugging
Programs.”

Terminating Jobs

Normally a program exits via the .EXIT directive for
MACRO-11, or CALL EXIT for FORTRAN IV; however, not
all programs terminate in this way. Some programs cause a
fatal monitor error before performing such an exit, while
others “hang.” A program hangs if it enters a permanent
loop or if it waits for an event to occur that does not take
place. You can abort a hung job by pressing (crrucy twice.

Using the Foreground/Background Monitor

All the facilities of the SJ monitor are available in the FB
monitor, plus additional features that enable you to load
more than one program and schedule them for concurrent
execution.

When a foreground program is running, it cannot be
interrupted for the execution of background code. The
background program runs only if the foreground program
is waiting for an external event, such as the arrival of data
from a peripheral device. A job is said to be blocked if it is
waiting for an external event, for example, the performance
of I/O operations.

Perhaps you have a foreground program that uses the
CPU for long periods of time because no external events
occur. If you need to allow time for a background job to
execute, you should modify the foreground program so that
this is possible. You can do this by including calls to sys-

46

Programming with RT-11

tem programmed requests (for example, I/O and timer re-
quests) in the foreground program. RT—11 then blocks the
program until the requested operations are complete. Pro-
grammed requests are discussed in volume 2.

Initiating Jobs

When you issue a command to KMON to run a user pro-
gram in background, KMON is suspended until that pro-
gram terminates. This means that during execution of a
background job, you are not able to issue KMON com-
mands, for example, to initiate a foreground job.

Thus, when you want to execute a foreground and
background job at the same time, you must run the fore-
ground job first. You do this by using the FRUN command.

Special Considerations for Foreground Jobs

A number of conditions must be met when loading and
running foreground jobs.

1. You must use the /FOREGROUND option to link the
foreground job:

.LINK/FOREGROUND PROG

2. You may need to alter the size of the foreground pro-
gram stack. This is done by using the /FOREGROUND
option with an optional numeric argument. (See chap-
ter 1, “Developing Programs in MACRO-11 and
FORTRAN IV.”) The following command links PROG
as a foreground job with a stack size of 300 (octal) bytes:

Chapter 2 Executing Programs 47

.LINK/FOREGROUND:300 PROG

3. You must load required device handlers (programs to
control devices). For example, if your program uses an
RX50 diskette, you must load its handler using the
command:

.LOAD DU:

4. You may need to create more space in memory than
was allocated initially. For example, FORTRAN IV
programs, running in the foreground under the FB
monitor, need additional space for blocks of data that
are created when files are opened. To reserve more
space, you can use the /BUFFER option of the FRUN
command. For example, the following command re-
serves 500 extra words of memory for the program
PROG.REL:

.FRUN PROG/BUFFER:500

A formula provided in the section on the FRUN com-
mand in chapter 4 of the RT-11 System User’s Guide
helps determine the space needed to run a FORTRAN
IV program as a foreground job. You need not reserve
more space for a program running under the XM mon-
itor because such programs can use more space as
needed. Chapter 19, “Memory Use,” has further dis-
cussion of how a program can reserve more space for
itself at run time.

5. When you run a foreground or system job, any inac-
tive jobs are removed from memory. If a foreground
program has terminated, however, and you want to run
a background job, then you must remove the inactive
job yourself. You do this by using the command:

.UNLOAD PROG

Foreground/Background Communication

You can run a foreground and a background program so that
each communicates with the console terminal. Messages
generated by jobs are indicated by the following prompts:

48

Programming with RT—-11

F> for foreground

B> for background

To type data to a foreground program, press (ctrur followed
by the data. For a background program, press (cmus) fol-
lowed by the data.

Practice
21

Running a MACRO-11 Program in the Foreground and a
FORTRAN IV Program in the Background

1. Type in the MACRO-11 program PR0201.MAC listed
below:

.MCALL .TWAIT, .GTLIN, .EXIT ;Declare macro calls
.MCALL .PRINT

.ENABL LC
START: .GTLIN #BUFF ,#PROMPT ;Input line with prompt
TSTB BUFF sCheck for null line
BEQ 1% sIf null then exit
JSR PC,TWT ;1f not then perform a wait
.PRINT #NOTIFY ;Print leader
.PRINT #BUFF sPrint the buffer
BR START sRepeat process
1¢: .PRINT #EXMES ;Print exit message
JEXTT ;Program exit
TWT: TWAIT #AREA,#TIME sPerform first wait using
sEMT
H Compute bound wait
CLR RO sInit RO
Mov #2,R1 sInit R1=2
S¢: DEC R1
108: DEC RO
TST RO sHas RO reached 0 yet?
BNE 108 ;1f not go back and decr.
TST R1 ;Has R1 reached 0 yet?
BNE S$ 3If not go back and decr.
RTS PC ;Iteration complete so return
AREA: .WORD 0,0
TIME: .WORD 0,600.
BUFF: .BLKW 41.

PROMPT: .ASCII /PRO201-1,TEXT: /<200>
NOTIFY: .ASCII /PR0201-1,Finished processing text: /<200>

Chapter 2 Executing Programs 49

EXMES: .ASCIZ /PR0201-I,Normal successful completion/
.EVEN
.END START

2. Now type in the FORTRAN IV program PR0202.FOR
listed below:

C INPUT A LOAD OF DATA
c
100 TYPE 6000

READ (S, +)REALND

IF (REALNO.EQ.-1.0)> GOTO 9999

TYPE 6001

TYPE *,REALNO

GOTO 100
6000 FORMATC1HO,’PR0O202-1,Enter your data (-1 to finish): ’$)
6001 FORMATC1HO,'PR0202-1,Accepted data as: '$)
9999 END

3. Assemble PR0201.MAC by typing the command:

MACRO PRO0201

Link PR0201 to run in the foreground (PR0201.REL).
4. Compile PR0202.FOR by typing the command:

FORTRAN PRO202

Link PR0202 to run in the background (PR0202.SAV).
5. Type in the command:

SET USR NOSWAP

An error will occur if you do not issue this command.

6. Run the program PR0201.REL in the foreground. It
gives you the prompt:

PR0201-1,TEXT:

Press (cTrRup to communicate with this program and re-
ply to the prompt by typing in a text string. PR0201
then waits, allowing you to perform background
operations.

7. Using (ctruB) to communicate with KMON, run the pro-

50 Programming with RT—11

gram PR0202.SAV in the background. PR0202 gives
you the prompt:

PR0202-1, Enter your data (-1 to finish):

Enter a number (56, for instance). Each time you enter
a number, PR0202 will accept and acknowledge the
data with a response. For example:

PR0202-1-Data accepted as: 56.00000

8. After some time, the foreground job finishes waiting
and tells you:

PR0201-I-Finished processing text: TEXT STRING

“TEXT STRING” is the text string you entered. The
foreground job then prompts you with:

PR0O201-1, TEXT:

At this point you can no longer enter data in either the
background or the foreground without pressing (cTruB)
Or (CTRL/F).

9. Continue to enter strings in the foreground and data in
the background for as long as you like. The foreground
job terminates when you enter a null string. The back-
ground job terminates when you enter —1.

10. Unload the foreground job after its termination.

Terminating Jobs

Jobs running under the FB monitor terminate in the same
way as jobs running under the S} monitor, but to abort jobs
under FB, use the following key sequences:

(CTRL/B)CTRL/C)CTRL/C) for background jobs

(CTRUFY(CTRLCXCTRL/C) for foreground jobs

Chapter 2 Executing Programs 51

Using the Extended Memory Monitor

The commands used when running jobs under the Ex-
tended Memory monitor are the same as those used under
the FB monitor, but job execution under the XM monitor
can use more memory.

Under the SJ and FB monitors, system and user jobs
share the 32 Kwords of addressable memory. By using spe-
cial system services which manipulate windows into mem-
ory, each job under the XM monitor may use its own 32
Kwords of memory or expand its usable address space to
128 Kwords. In this way, the total amount of memory
available becomes 32 to 128 Kwords for UNIBUS proces-
sors. RT—11 version 5 supports Q-bus processors with 22-
bit "addressing such as the PDP-11/23-PLUS, so that a
maximum of 2048 Kwords is available for use.

Executing with System Jobs

Through the system generation process you can create an
FB or XM monitor capable of simultaneously running up
to six system jobs plus a foreground and a background job.
This feature was built into the RT—-11 specifically to sup-
port system programs supplied by Digital.

Digital now supplies two of these system jobs: an error
logger (ERRLOG) and a device queue program (QUEUE).
Digital does not encourage you to write your own system
jobs; the four remaining system job slots are reserved for
future use.

Scheduling

A monitor that supports system jobs provides the same type
of scheduler that ordinary FB and XM systems use. The
monitor services jobs according to their priority: the back-
ground job always has the lowest priority (0); the fore-
ground job always has the highest priority (7). You cannot
change these assignments. At any given time, the job that
runs is the highest priority job that is not blocked.

You assign a priority to a system job by using the SRUN
command in the format:

52

Programming with RT-11

SRUN PROGRAM

This causes the monitor to assign to that job the highest
unassigned priority. In order to give the job a specific
priority, you use the /LEVEL:priority qualifier.

EXAMPLE

SRUN PROG/LEVEL:3

You can assign priority values from 1 to 6. You cannot
assign a priority to a job if another system job is running at
the same priority. For example, if you run QUEUE as a sys-
tem job, you should assign it the lowest priority so that more
important jobs, such as the error logger, will not be blocked.
You can assign a priority only when you start a system job
with the SRUN command. The priority levels do not change
dynamically; that is, you cannot change the priority of a job
while it is running.

Starting System Jobs

Use the SRUN command to start system jobs. You refer-
ence a system job by its logical name, which is, by default,
its file name. You may, however, assign a new logical name
when you start the job, using the SRUN command with the
/NAME:logical-name option. This is of specific benefit when
you want to run multiple copies of a system or foreground
job. The following commands show how you can run two
system jobs, a foreground job, and a background job:

Chapter 2 Executing Programs 53

.SRUN SYS2/LEVEL:6
runs the system job SYS2.REL at priority 6.
.FRUN FROG j

starts execution of foreground job FROG.REL (fore-
ground job always executes at highest priority, 7).

.RUN PROG

starts execution of background job PROG.SAV (back- ;
ground job always executes at lowest priority, 0).

Communication

In a system job environment, you use («mwx to communi-
cate with a system job in much the same way that you use
«trup for a foreground job and (crrus) for a background job.
This facility allows two or more jobs to share one terminal.
You can communicate with system jobs in the following
ways:

1. The system answers rrux) with the prompt:

Job?

Respond to the prompt by typing the job’s logical name,
followed by eturn). For example:

(CTRL/X)
Job? SYS1

If the job you specify is not running or cannot be found,
the monitor prints a question mark immediately after
the name of the job:

(CTRL/X)
Job? SYS17?

2. To abort «aux before you have completed typing the
job name, press («ruc). This does not abort any job; it

54 Programming with RT—11

only returns to the state at which the terminal was be-
fore you pressed (ctrwx), for example:

.SRUN J1

Welcome to J1, please enter your data:
. (CTRL/X)

Job? (CTRUC)

3. To actually abort a system job, press), then type
in the job name, press @ewen), and then press cmue) twice:

. (CTRUX)
Job? SYS1(RETURN)
(CTRL/C)(CTRL/C)

While terminal input is routed to one system job, an-
other may send data to the terminal. Thus, the monitor prints
out an identification label every time the output source
changes.

Executing Programs on Systems
with Multiple Terminals

If your system supports multiple terminals, you can exe-
cute different jobs on different terminals. (The system gen-
eration option allows RT-11 to support multiple termi-
nals.) To direct a foreground or system job to a specific
terminal, use the /TERMINAL:n option with the FRUN or
SRUN command. In this case, “n” is the logical unit num-
ber of the terminal.

Chapter 2 Executing Programs 55

The /TERMINAL option is discussed in the sections on
FRUN and SRUN in chapter 4 of the RT-11 System User’s
Guide.

Executing MACRO-11 and
FORTRAN 1V Source Files

At times you will keep only the source files of error-free
programs in order to save space on a storage device. When
you want to execute these programs, you can do so with
the single command EXECUTE. This command assem-
bles/compiles, links, and then runs your program in the
background. It takes the form:

EXECUTE FILESPEC

You specify the language processor you wish to use by
one of two methods: either by giving the file type, for ex-
ample .FOR, or, if the file type does not specify the lan-
guage properly, by using the language option, for example
EXECUTE/FORTRAN.

If the file name uniquely specifies your program (that
is, there is only one type, whether in MACRO-11, FOR-
TRAN 1V, or the DIBOL language) you can omit the file type.
EXECUTE searches for files of type .MAC, then .DBL, then
.FOR.

If a fatal error occurs during assembly/compilation or
linking, EXECUTE does not attempt to continue past that
phase, but exists in the normal way. Many of the options
available with the assembly and compilation commands and
with LINK and RUN are also available as options to EXE-
CUTE. However, if you want to use these options it is
probably better to perform each step separately. The EXE-
CUTE command does not work properly if the assembler
or compiler and the linker are not on the system device.

Debugging

You can often isolate program problems by examining se-
lected memory locations before, during, and after program

56

Programming with RT—-11

execution. Under the RT—-11 operating system this debug-
ging method is supported by a number of software tools. In
addition, tools are available that allow the more precise
control of program execution that is necessary during de-
bugging. This phase of program development is discussed
in detail in chapter 4, “Debugging Programs.”

Reference

RT-11 System User’s Guide. Chapter 4 contains detailed ex-
planation of the RUN command, the options of the FRUN com-
mand, and the facilities available from the EXECUTE command.

58

Entering the BASIC Environment

Creating a Program

Entering New Lines of BASIC Program Code

Retrieving a Saved Program

Executing a BASIC Program

Editing a BASIC Program
Printing a Listing of a BASIC Program
Inserting New Lines of Program Code
Resequencing
Deleting Lines of Program Code
Changing Lines of Program Code

Saving a BASIC Program

Using Immediate Mode

Leaving the Interpreter

Reference

Developing
Programs
in BASIC

RT-11 allows you to create, edit, run, load, and save a
BASIC program without exiting from the interpreter.

In addition to these program development operations,
you can type some commands directly to the interpreter for
immediate execution. Commands discussed in this chap-
ter include the monitor command, BASIC, and the BASIC
language commands, BYE, COMPILE, DEL, LIST, NEW, OLD,
REPLACE, RESEQ, RUN, SAVE, and SUB.

In this chapter, you will learn to create or modify a
BASIC program using the BASIC interpreter, run a BASIC
program and save the standard or preprocessed form of a
BASIC program in a file, execute BASIC statements in im-
mediate mode, and exit from the interpreter.

|

59

60

Programming with RT-11

Entering the BASIC Environment

You can use BASIC with any of the RT—11 monitors (S],
FB, or XM). When using either the FB or XM monitors, you
can run BASIC as either a foreground or background job.
To load and start the BASIC interpreter, simply type the
command BASIC. If there is not enough memory available
to contain BASIC, an error message is displayed.

This situation often results when a large foreground job has
been loaded.

BASIC is made up of a set of fixed language elements
and a set of optional elements. When you enter the BASIC
environment, you select which optional elements you wish
to use.

The response ALL allows you to use all of the optional
functions available with the RT—11 BASIC interpreter. If you
type NONE, the interpreter performs without any optional

Chapter 3 Developing Programs in BASIC 61

function. You may choose the NONE option when you want
a program to contain only standard BASIC functions. To
select the optional functions you want to use, you type IN-
DIVIDUAL. After this response, the interpreter displays each
function and requests a YES or NO reply. YES includes the
function; NO excludes it.

The interpreter tells you that it is ready to accept BA-
SIC commands and program lines by issuing the message:

READY

At this point, you can create new programs, retrieve old
ones, edit and insert new material, save, run, or delete pro-
grams by issuing the appropriate BASIC commands to the
interpreter. After typing each complete command, press
(RETURN).

Creating a Program

Program lines, the program name, and any variables and
their values are stored by the interpreter in its own mem-
ory. When you create a new program, you first initialize that
memory and give the new program a name. You do this us-
ing the NEW command, which takes the form:

NEW PROGRAM-NAME

The program name may contain no more than six al-
phanumeric characters. Examples of valid program names
include: 024680, STAR, or PROGO1. Examples of invalid
program names are: MAINPROG (too long) or PROG/1
(contains a nonalphanumeric character).

If you type the command NEW without giving a pro-
gram name, BASIC asks you for the program name with the
prompt: :

NEW FILE NAME--

You should then supply the program name. If you press
®eTurN) without giving a program name, the program as-
sumes the default name NONAME.

62

Programming with RT—-11

Entering New Lines
of Basic Program Code

Each line of BASIC program code begin with a line num-
ber. Line numbers must be in the range 1 to 32767. To in-
sert a line of program code into a program, you type the
line number, the program code, and press (Retuan).

NT “HELLO"ReruAn

""bé”ckotmézs lin : 10 of the program

Retrieving a Saved Program

To avoid retyping, you can retrieve existing programs and
copy them into the interpreter’s memory with the OLD
command, which takes the form:

OLD FILESPEC

The two types of saved programs which can be retrieved
are normal BASIC programs and preprocessed BASIC pro-
grams. Normal BASIC programs are usually stored in a file
with the file type .BAS. Preprocessed BASIC programs are
usually stored in a file with the file type .BAC (or .BAX if
you are using double-precision BASIC).

The default file type for the OLD command is .BAC.
That is, if no file type is specified with a program name,
the interpreter will search first for a program file with the
file type .BAC.

Chapter 3 Developing Programs in BASIC 63

OLD PROG

the interpreter will search first for a program stored
in the file DK:PROG.BAC. If no .BAC file exists on
DK:, the interpreter searches for and loads your file
DK:PROG.BAS. If the file you specified does not ex-
ist, the interpreter displays the following message at
the terminal:

?FILE NOT FOUND

When a program is retrieved, the interpreter initializes
its memory as with the NEW command. It then loads each
line from the file into its memory, using the file name as
the name of the program.

A line of program code can contain no more than 129
characters, in addition to the characters that make up the
line number. If a line is too long, the interpreter does not
load the line but displays a message:

?LINE TOO LONG

If a line being loaded does not have a valid line number,
the interpreter does not load the line but displays the mes-
sage:

?SYNTAX ERROR

Executing a BASIC Program

After a program is loaded into the interpreter’s memory, you
can run it by typing the command RUN. The interpreter
executes the program, starting with the lowest numbered
line of code. You can also load a program from a file and
execute it by issuing the RUN command in the format:

RUN FILENAME

64

Programming with RT—11

RUN ",‘FDIRUG(RETURN);,“ o

; has tl}ek”:ys,éljmé’effe(:t&S“:t”hé'commapd::sk:k'

When a program is executed, the interpreter normally
prints a header containing the program name and the sys-
tem date and time. You can prevent this header from ap-
pearing by using the command RUNNH in place of RUN.
.To abort execution you press (ctrue) twice:

Editing a BASIC Program

When you have loaded an old program or have typed in a
new program, you may wish to modify the program. The
BASIC interpreter has several commands that allow you to
edit a program in different ways.

Printing a Listing of a BASIC Program

To get a listing of the program at your terminal, use the LIST
command. When you use the LIST command the inter-
preter prints a header for the program, followed by all the
lines of code in ascending order according to line number.
The header takes the same form as with the RUN com-
mand. Specifying LISTNH prevents this header from ap-
pearing. To list only a selection of lines from the program,
specify a range with the LIST command.

Chapter 3 Developing Programs in BASIC 65

EXAMPLE

LIST 300 -400(RETURN)

This command causes all those lines between line num-
bers 300 and 400 to be listed at the terminal. You can also
list more than one range of lines by using a comma as a
separator.

EXAMPLE

LIST 200-250,500-55 0(RETURN)

This command causes the ranges of lines from 200 to 250
and 500 to 550 to be printed at the terminal. When you
specify more than one range, the interpreter prints a blank
line between ranges.

Inserting New Lines of Program Code

To insert a new line of code between two consecutive lines,
type a line with a line number that falls between the line
numbers of the consecutive lines.

. EXAMPLE
- To 1nsert a hne between these two lmes

100 PRINT "NELCDME TU THE PRDGRAM"«'"y,k_f
200 INPUT AS e

~ assignaline numberrbétéveémoo and 20057 ne

"f 1S07PRiNT“"NHAT"i ?LNPUT“{f

66

Programming with RT-11

Resequencing

You should increment your line numbers by at least five
when writing a program (for example 120, 125, 130). This
allows you to insert four new lines of program code if you
need to. However, you may run out of space between two
line numbers if you have to make many insertions. To rem-
edy this situation, you can renumber lines of a program by
using the RESEQ command in the format:

RESEQ start-line-no,range,increment

In this command format, “start-line-no” is the new
lowest line number for the range; “‘range” is the range of
lines that is to be renumbered; and “increment”’ is the des-
ignated increment between lines. The range of lines is re-
numbered in the form nnn-mmm; “nnn”’ is the lower lim-
its and “mmm’” is the upper limts of the resequencing.

If you omit any of these parameters, the interpreter uses
default values which are as follows:

start-line-no: 10

range: 1 to 32767

increment: 10

Chapter 3 Developing Programs in BASIC 67

then the program in the interpreter’s memory
becomes:

10 PRINT ‘HELLO"™
: 20 GOSUB 50
X 30 PRINT G$
40 GOTO 70
50 G$="THIS IS A MESSAGE"
60 RETURN
70 END

Deleting Lines of Program Code

In some cases you may want to remove a line of program
code. To delete a line of code, use the command:

DEL line-no

| EXAMPLE
In the program:

10 A$="HELLO"
20 B$="WELCOME"
30 PRINT A$

you can delete the second line by using the
command: o

DEL 2 O (RETURN)

~ Then the program in the interpreter’s me'mory'
- becomes: - Bl S B
10 A$="HELLD"

30 PRINT A$

You can also specify one or more ranges of lines to be
deleted, separating the ranges with commas.

68 Programming with RT—11

 EXAMPLE

DEL 1-250

20000-32766

Changing Lines of Program Code

To change a line of code, you can use the interpreter in two
ways: by retyping the line, or by making a substitution us-
ing the SUB command. When you want to change a line of
code completely, simply type the new line with the same
line number.

When you make a minor error and need to change only a
few characters in the line, you may prefer to use the SUB
command, which takes the form:

SUB line-no delimiter old-string delimiter new-string

In this command format:

line-no is the line number of the line of code to be
changed

delimiter is any single character that appears neither in
the old string nor in the new string

old-string is the string whose first occurrence in the line
of code is to be substituted for new string

new-string is the new string that will appear in place of

the old

Chapter 3 Developing Programs in BASIC 69

EXAMPLE

When a program in the interpreter’s memory contains
the line:

100 PRINT "ENTER YOUR DATA (-1 TO FINNISH)";

The command:

SUB 100@NN@N

corrects the misspelled word and changes this line to:

100 PRINT "ENTER YDUR DATA (-1 TO FINISH)";

The SUB command may have an additional argument, a
number. This number indicates that a certain occurrence of
the old string should be replaced. For example, if the num-
ber is “5,” the fifth occurrence of the old string would be
replaced by the new string. The number goes at the very
end of the command line, preceded by a delimeter. The de-
fault value is 1.

Saving a BASIC Program

When you have finished entering or editing the program in
the interpreter’s memory, you may want to save the pro-
gram so that it can be retrieved and executed later. You can
do this with one of three BASIC commands: SAVE,
REPLACE, or COMPILE.

If you want to store the program in the interpreter’s
memory in a file that does not yet exist, use the SAVE com-
mand. When you issue the SAVE command by itself, the
program will be saved as a file with the specification:

DK:PROGRAM-NAME.BAS

“PROGRAM-NAME” is the program name in the in-
terpreter’s memory.

You can choose the device name, file name, and file
type of the same file by using the command format:

70

Programming with RT-11

SAVE FILESPEC

For example, if your program’s name is NONAME, the
SAVE command would wuse the file specification

DK:NONAME.BAS by default. To override the default file
specification, you can supply a file specification with SAVE.

To delete an existing file and save a new file with the same
file name, you use the command:

REPLACE FILESPEC

If the file you wish to replace is DK:PROGRAM-
NAME.BAS, then you need only type REPLACE.

The SAVE and REPLACE commands copy the lines of
a program from the interpreter’s memory in the same for-
mat as for a listing. As an alternative, you can create a pre-
processed file, which stores the lines of a program in a for-
mat that loads more quickly into the interpreter’s memory.
To save the program in the interpreter’s memory in a pre-
processed file use the command COMPILE.

The default file-specification for a preprocessed file is:
DK:PROGRAM-NAME.BAC. To override this default, use
the command:

COMPILE FILESPEC

If you are using double precision BASIC, then prepro-
cessed files assume the file type .BAX.

Chapter 3 Developing Programs in BASIC 71

Using Immediate Mode

If you want to execute BASIC language statements, without
creating and running a program, you can do so by typing
the statement without a line number.

EXAMPLE
The command:
PRINT "HELLO"™

causes the interpreter to execute that command
immediately.

This facility has a number of uses. You can use BASIC
as a calculator by issuing the command:

PRINT arithmetic-expression

For instance, you can instruct the computer to multiply two
values, divide by a third value, then print the result at the
terminal.

EXAMPLE ‘ ‘ . ;,

PRINT 327+128/61

You can also use immediate mode in lieu of some
monitor commands.

EXAMPLE

The B,ASic command: o

KILL "NONAME.BAS"

has the same effect as the monitor command:

~ .DELETE NONAME.BAS

72

Programming with RT-11

Leaving the Interpreter

To return control from the BASIC interpreter to the RT—-11
keyboard monitor use the command BYE. If you want to
exit from a program to the monitor instead of the BASIC
interpreter, you can use the BASIC language statement:

numeric-variable=SYS(4)

In the following example, the program prints “HELLO”
at the terminal and then exits directly to the monitor.

Practice
3-1

Enter the BASIC interpreter selecting all optional functions.
Create the program PR0301.BAS and save it:

10 PRINT "WHAT IS YOUR GAME?";
20 INPUT #0,A$
30 A=SYS(4)

Retrieve the program PR0301.BAS and run it. It will print
the message:

WHAT IS YOUR GAME?

and accept input. Abort the program and modify it so that it
gives the message:

WHAT IS YOUR NAME?

Save the program as a preprocessed file and leave the inter-
preter. Now reenter the interpreter as before and run
PR0301 without using the OLD command.

Type your name and press ReturN). The program should exit
to the monitor.

Chapter 3 Developing Programs in BASIC 73

Reference

BASIC-11/RT-11 User’s Guide contains examples of commands
discussed in this chapter.

Testing Programs
Finding the Cause of an Error
Locating an Error
Gaining Access to Background Program Code
Loading Programs without Execution
Locating Values in a Loaded Program
Examining Locations
Modifying Loaded Programs
Executing the Code in Memory
Gaining Access to Foreground Program Code
System On-line Debugging Aids
Enabling On:-line Debugging
Enabling debugging aids for background programs
Enabling debugging aids for foreground programs
Using ODT and VDT
Gaining access to addresses
Gaining access to registers
Setting a breakpoint
Starting execution
Examining and modifying locations
Proceeding from a breakpoint
Using the single-step mode
Exiting from ODT or VDT
Using VDT to Debug
Debugging BASIC Programs
Dummy Routines
Setting Breakpoints
References

74

Debugging
Programs

Program errors (bugs) can be difficult to find. Although there
are different methods for identifying these errors, all meth-
ods include checking program code and data at different
points—either before, during, or after execution. RT—11
provides tools to help identify errors and make corrections
in MACRO-11, FORTRAN 1V, and BASIC-11 programs.
These include, ODT (On-line Debugging Technique) and
VDT (Virtual Debugging Technique).

This chapter discusses the testing of MACRO-11,
FORTRAN 1V, and BASIC programs to find errors. It also
covers the use of utility programs, together with certain
monitor commands and BASIC commands for debugging
your programs. The monitor commands discussed in this
chapter are: D, E, FRUN/PAUSE, GET, RESUME, and
START.

You will learn how to stop a BASIC program after the
execution of different statements and then check data or
use ODT and VDT to check data at selected points during
the execution of a MACRO-11 program. You will also learn
to use GET, START, EXAMINE, and DEPOSIT to check data
at selected points during the execution of FORTRAN IV and
MACRO-11 programs.

75

76

Programming with RT-11

Testing Programs

After you have removed all compilation and linking errors,
you are ready to test your program. It is unlikely that you
will detect all errors immediately. To be sure that a pro-
gram has as few errors as possible, you must test it thor-
oughly. Here are some methods which you can use to do
this:

1. For a given set of test data, determine what action
the program should take.

2. Run the program with the test data and verify that
the program performs as expected. Change this data
again and again, and rerun the program so that every
conditional branch that depends on this data is
executed.

3. Examine any data output to the terminal and use the
DUMP utility to check the contents of any output
files.

4. Include printing statements to trace the path of exe-
cution through the code and to check values of data
at key points. (FORTRAN IV programmers can use
the TYPE statement in a debugging line.)

If your program is designed in modules, you can test
each module in isolation. First, test the main module with
dummy modules for each subroutine referenced; then in-
clude and test each subroutine referenced in turn until all
of the program is tested. This is called top-down testing.

Your dummy modules should be written so that they
accept and return only the arguments with which they are
called, and so they identify themselves. Assume that a sub-
routine is designed to accept a single character from the
terminal without echo. Figure 9 shows dummy versions of
such a routine in FORTRAN IV and MACRO-11. In this
case, the subroutine GETCHA has two arguments—the in-
put channel and the byte value of the character. The dummy
routine sets the value of the input character to 64, which is
the ASCII code for a capital “A.” The real routine would

Chapter 4 Debugging Programs 77

Figure 9.
FORTRAN IV and MACRO-11 Dummy Subroutines

c AR ESE SRR R R R XA RREREEER SR

c

C Accept single character input

c

C DUMMY VERSION (FORTRAN IV)

c

C LA E RS AR R R R R R R R R RERREE R ¥
SUBROUTINE GETCHACCHANNL ,CHRCTR)
INTEGER CHANNL,CHRCTR
TYPE 8000

8000 FORMATC’ %DUMMY: GETCHA’)
CHRCTR=64
RETURN
END

LA RS AR AR RS R Z R SRR EERRRERREERE X]

; Accept Single Character Input

; DUMMY VERSION (MACRO-11)

LAAA AR RS RS R R R R ER R R R AR RN R

.TITLE GETCHA
.MCALL .PRINT

GETCHA: : ;Entry point
PRINT #TEST ;Print id message
MoV 4(R5),R1 ;Address of return param.
MOVB #’A,(R1) sPut "A" at that address
RTS PC sReturn from subroutine
TEST: .ASCIZ /%DUMMY: GETCHA/
.END

read a character from the channel specified. Using the
dummy subroutine, you can identify and correct errors
in the main program before testing the real subroutine
GETCHA. You can also write dummy subroutines to re-
place any system subroutines that are referenced.

Finding the Cause of an Error

Your test program should be made up of modules that have
been tested and corrected, the module you want to test, and

78

Programming with RT-11

dummy modules for those that have not yet been tested.
System subroutines should be treated as modules also. Each
time you test a module, one of the following situations
results:

1. There are no errors in the module.
2. The module does not produce the correct data.

3. The program fails and an error message is printed at
the terminal.

4. The program fails to continue executing at some
point, but no error message is printed.

When there are no errors found in the module, test an-
other module by selecting a dummy routine, replacing it
with the real one, and executing the program again. If a
module’s intermediate or final data does not have the ex-
pected values, first check the code to see why it produces
incorrect data. At which line do data first go wrong? If a
line contains a wrong calculation, correct the line. If some
of the data is not structured correctly, restructure the data.

If an error message appears at the terminal, you may
refer to the RT—11 System Message Manual for further in-
formation. If the program fails, with or without a message,
then find out at which line the error occurred. If you still
cannot find the cause of an error in a MACRO-11 or FOR-
TRAN IV program, you should use the debugging aids dis-
cussed later. These aids help you make a detailed exami-
nation of the code and data of a program, but you must first
understand how your code behaves before you proceed to
debugging.

Locating an Error

You may be able to identify the line at which an error oc-
curred by looking at the source code. For example, if you
know what type of error occurred, then you can determine
which lines of code may contain the error.

If this fails, an effective way of finding an error is by

Chapter 4 Debugging Programs 79

inserting PRINT statements at checkpoints in your code. The
checkpoints could be before and after conditional branches,
inside loops, and in other critical places in the program.
When the program runs, the printed text will provide a trace
of the program’s execution, indicating the path taken be-
fore the error.

Gaining Access to Background

Program Code

The RT-11 system supplies monitor commands for exam-
ining and modifying program machine code before and after
execution. These methods are especially helpful if you are
programming in MACRO-11.

Loading Programs without Execution

The first step in the process of examining the machine code
of a program is to load the program into memory without
executing it. You do this with the GET command, which
takes the form:

GET FILENAME

“FILENAME” is the file in which the load image is stored.

Locating Values in a Loaded Program

The base address of each module is shown in the load map,
which can be produced using the LINK/MAP command. The
offset of a symbol in a module is shown in the assembler
listing. Thus, the absolute address of a symbol is:

module-base-address + symbol-offset

“module-base-address’ is the base address of the module
and ‘“symbol-offset” is the offset of the symbol, from the
start of that module.

80 Programming with RT—-11

Figure 10.

Load Map for a Main Program Using Subroutine GETCHA

RT-11 LINK V08.00 Load Map Page 1
MAIN .SAV Title: MAIN Ident:

Section Addr Size Global Value Global Value
. ABS. 000000 001000 = 256. words (RW,I,GBL,ABS,0VR)
001000 000140 = 48. words (RW,I,LCL,REL,CON)
GETCHA 001100
Transfer addr = 001000, High limit = 001136 = 303. words

Figure 10 shows the load map for a program compris-
ing a main routine and a subroutine. The base address of
the module is 1100 (octal). Figure 11 shows a listing of the
subroutine GETCHA. You can see that the offset of the
symbol TEST is 000020 (octal), so the absolute address of
TEST is 1120.

Examining Locations

When the program exits, or is aborted, you can examine the
contents of an address by using the E (Examine) command.

Modifying Loaded Programs

Having used the GET command to load a program into
memory, you can modify the program code. Refer first to a
loap map (produced by the linker) to check where values

Chapter 4 Debugging Programs

81

are stored, then use the E command to verify that you have
the right address before changing the value. Use the D (De-

posit) command to modify a value. The format is:

D address =value

Figure 11. Listing of Dummy Subroutine GETCHA
(Produced with the Command MACRO/SHOW:MEB/LIST)

GETCHA MACRO V05.00dd 05:19 Page 1

1 ;l!lli'l!i'*’.iill“llQ'IIQ!QI{
2 ;
3 sACCEPT SINGLE CHARACTER INPUT
4 H
5 ;DUMMY VERSION (MACRO)
3 ;ll’!iii*llilii”Il‘l’{{'liii!i
8 .TITLE GETCHA
9 .MCALL .PRINT
10 .GLOBL GETCHA
11 000000 GETCHA: .PRINT #TEST
000000 012700 000020’ MoV #TEST, %0
000004 104351 EMT ~0351
12 000006 016501 000004 MoV 4(R5),R1
13 000012 112711 000101 mMOVB #’A,(R1)
14 000016 000207 RTS PC
15 000020 045 104 125 TEST: .ASCIZ /%ZDUMMY:
GETCHA/
000023 115 118 131
000026 072 040 107
000031 105 124 103
000034 110 101 000
16 000001 .END

GETCHA MACRO V05.00d 05:19 Page 1i-1
Symbol table

GETCHA 000000RG TEST 000020R
ABS. 000000 000 (RW,I,GBL,ABS,0VR)
000037 001 (RW,I,LCL,REL,CON)
Errors detected: 0

*** Assembler statistics

Work file reads: 159

Work file writes: 42

Size of work file: 154 Words (1 Pages)
Size of core pool: 3328 Words (13 Pages)
Operating system: RT-11

Elapsed time: 00:00:07.00
DK:GETCHA,DK:GETCHA/L :MEB=DK:DUM

82 Programming with RT—11

“address” is the absolute address in octal of the location to
be modified, and “value’ is the new value in octal that the
address is to hold.

Executing the Code in Memory

After modifying the code, you can execute it by using the
START command. The program then begins execution at
the program’s transfer address as shown in the map. If you
want, you can specify a different start address.

Gaining Access to Foreground
Program Code

To load a foreground program into memory without exe-
cuting it, use the FRUN/PAUSE command. This has the same
effect as the GET command for background programs, ex-
cept that the base address of the program is printed out. To
start execution of a paused foreground program, use the
RESUME command. You cannot change the start address
of a foreground program once it has been loaded.

System On-line Debugging Aids

Another way of detecting program errors is to use an on-
line debugging aid. RT—11 supplies two similar on-line de-
bugging aids, ODT and VDT, to help you debug MACRO-
11 programs. ODT is for single-terminal systems; VDT for
multiterminal systems.

Many high-level languages have their own debugging
aids. For example, FORTRAN IV programs can be de-

Chapter 4 Debugging Programs 83

bugged using FDT. High-level language debugging aids are
not discussed in this course.

Enabling On-line Debugging

If your main program references subroutines that are as-
sembled in separate object modules, always make sure that
the subroutine names are declared as globals (by using the
.GLOBAL directive) before continuing with the debugging
procedures.

Enabling debugging aids for background programs

To enable a debugging aid to be used with your back-
ground program, you must first get an assembler listing of
your program, including all the addresses of the symbols
used, and the binary expansions of the instructions and data.
You then link your program modules with the debugging
module DK:ODT.OB]J, using the LINK/DEBUG command:

LINK/DEBUG OBJECT-MODULES

“OBJECT-MODULES?” is the list of object modules that you
would normally use to produce your save image.

If the debugging module you want is not DK:ODT.OB]J,
qualify the /DEBUG option with the file specification of the
debugging module you want.

EXAMPLE

 .LINK/DEBUG:SY:VDT.0BJ MAIN,SUBA,SUBB

Here the debugging module SY:VDT.OB] has been
specified.

You need a load map when you are linking with de-
bug, so that you can see which modules are included and
at what addresses in the load image. This information is
essential during debugging.

84

Programming with RT-11

save image you want to produce from the ob]ect mod-

les DK:PROG. OB] DK: SUBA_OB] and DK SUBB.OBJ -

When you run the load image that you have created,
control is initially passed to the debugging aid.

Enabling debugging aids for foreground programs

To enable a debugging aid to be used in your foreground
program, you first get an assembler listing that includes all
the addresses of the symbols used and the binary expan-
sions of the instructions and data. You then get a relocat-
able image and load map for your program by issuing the
command:

LINK/FORE/MAP:MAP-FILESPEC OBJECT-MODULES

“MAP-FILESPEC” is the file that is to contain the load map,
and “OBJECT-MODULES” is the list of object modules that
will be used to produce your relocatable image file. You can
then get a load image file from the debugging module.

You can then run your program in foreground using
the command:

FRUN/PAUSE FILESPEC

Chapter 4 Debugging Programs 85

Make a record of the base address of your program and press
ctrus) to direct terminal input back to the monitor. Using
the command ODT, you can run the debugging aid load
image in the background.

Using ODT and VDT

ODT and VDT issue an asterisk (*) prompt and receive
commands from the terminal. ODT always receives input
from the system console terminal because it is designed for
single-terminal systems. VDT receives input from the ter-
minal to which the console is set. On systems that have been
generated with multiterminal support, you must use VDT,
even on the console terminal TTO:.

ODT and VDT read characters as they are typed. You
do not need to terminate a command with ey, because
@eTurny has a special function in ODT and VDT. You cannot
simply correct input; @eere) cancels a command and you must
retype it.

Gaining access to addresses

We have discussed how the base addresses of the modules
of your program are shown in the load map. The addresses
of all your symbols are shown in the assembler listing. The
absolute address of a symbol can be calculated as the value
of the expression:

base-address + symbol-address

To avoid calculating this value each time you want to ac-
cess a symbol, use a relocation register. There are eight such
registers, numbered from 0 to 7. You load the base address
of a module into a relocation register using the command:

*base-address;register-numberR

“base-address” is in octal and ‘“‘register-number” must be
in the range 0 to 7.

, 86

Programming with RT-11

If you are debugging a foreground program, you should
load the base address of the program into a relocation
register. You should have a record of this address from
when you loaded the program using the FRUN/PAUSE
command. You can redefine any of the relocation registers
at any time. In addition, you can use the following
commands:

#nR clears relocation register n

#R clears all relocation registers

The notation register, offset may be used anywhere in
ODT or VDT instead of using an absolute address.

Gaining access to registers

The following commands allow you to examine the values
stored in the different types of registers:

*$Rn displays the value of relocation register n
*$Bn displays the value of breakpoint register n

*$n displays the value of the program’s general
register Rn

Setting a breakpoint

If the program you are debugging crashes, link it with ODT
and execute it again, allowing it to crash. You can then study
the values stored at different locations at the time of the
crash. If you want to execute only part of a program before
examining locations, select a point at which the program

Chapter 4 Debugging Programs 87

must stop and return control to ODT. Such a point is called
a breakpoint. Good places to put a breakpoint include:

¢ Subroutine calls
¢ First instruction within a subroutine
 Branches and jumps

e Locations to which branching and jumping is carried
out

e The first instruction in a sequence of suspect code

ODT has eight breakpoint registers, numbered 0 to 7.
This means that you can have as many as eight breakpoints
at one time. You set a breakpoint using the command:

+*address;register-numberB

It does not matter which breakpoint register is used for
which breakpoint address. You can use any breakpoint reg-
ister that has not been used or one that contains a break-
point that you no longer need.

"EXAMPLE

To set a breakpoint at location 1666, select a break- -
point register not yet used or one that containsa
breakpoint that is no longer needed. If this applies to
breakpoint register 3, then you would type: ‘

+1666;3B

When the program is about to execute at location
1666, control is returned to ODT.

When control of the program is returned to ODT, you
may examine the registers and data before allowing the
program to continue executing.

You clear breakpoint registers in the same way that you
clear relocation registers:

Programming with RT—-11

;nB clears breakpoint register n

;B clears all breakpoint registers

Starting execution

When your breakpoints are set, you can start execution with
the command:

+*address;G

If no breakpoints are set, execution continues until the pro-
gram exits in the usual way or aborts. If you have set break-
points, the program will execute until it reaches a break-
point and then ODT prints the message:

Bn;address
%k

In this message “n” is the number of the breakpoint regis-
ter that caused the break, and “address” is the address at
which execution stopped. At this point you can examine
and modify values stored at addresses.

Examining and modifying locations

With breakpoints set to permit partial program execution,
you should examine data before and after execution. By
modifying data before execution, you can test the effect of
that part of the program more thoroughly. To modify a value
or merely examine it, first open its location, by using the /
(Slash) command, which takes the form:

*address/

Chapter 4 Debugging Programs 89

If you have loaded the base address of a module into
a relocation register, you can also open an offset within the
module by using the command:

xregister,offset/

ODT accepts characters immediately, so it recognizes the /
command without waiting for a (etuan).

EXAMPLE

If you type the command to open the location at an
offset of 2 from the relocation register 1, and the
value there is 20 (octal), the characters that appear at
the terminal are:

*1,2/ 000020 _

Note that the print head or cursor, (indicated by the
underline character “__") stays on the same line. If
you press (ReTURN), the value stored at the address is
not changed. To modify the value, type in its octal
value and press (RETURN). -

0,12/000020 40(RETURN) -

The / command causes ODT to access the word start-
ing at the given location. If you want to access a byte, you
use \\ (Backslash) instead. You cannot modify a location
without opening it first. A location is opened when you use
the / or \\ command. It is also opened when you perform
ASCII and RADIX-50 input and output. These modes are
discussed in chapter 18, “On-line Debugging Technique
(ODT),” of the RT-11 System Utilities Guide.

Proceeding from a breakpoint

After you have investigated the conditions at a breakpoint,
you can continue execution using the P (Proceed) com-
mand, which takes the form:

P

90

Programming with RT-11

Execution then continues to the next breakpoint.

When you set a breakpoint in a loop, you can allow
the program to execute the loop a specified number of times
by setting a proceed count using the n;P command. The
count n is the number of times that ODT can reach the cur-
rent breakpoint before it suspends the program. It will sus-
pend if it meets any other breakpoint before the loop count
is exhausted.

Using the single-step mode

To perform a detailed examination of part of a program, you
can use ODT’s single-step mode instead of setting a num-
ber of breakpoints close together. This allows you to exe-
cute single instructions or a specific number of instruc-
tions. To enter single-step mode, you give the command:

*;18

You can then execute a number of instructions by using the
command:

*n;P

Here “n” is the number of instructions to be executed.

To exit single-step mode, you give the command:

*:S

Chapter 4 Debugging Programs 91

Exiting from ODT or VDT

To exit from ODT or VDT, press «rucy in response to the
asterisk prompt. Control is then returned to the keyboard
‘ monitor.

) Using VDT to Debug

: Figure 12 shows a terminal session using VDT. The com-

’ mands used are the same as for ODT. The comments de-
scribe the action occurring. The operator first loads relo-
cation registers with the base address of the modules to be
examined, then sets breakpoints before starting execution.
When the first breakpoint is reached, the operator switches
to single-step mode and steps until the message is printed.
At the end of the session a location is opened, and the
character A is changed to B. You will see that VDT prints
single-step messages as if they resulted from a breakpoint
at breakpoint register 8. You can set breakpoint registers only
from 0 to 7.

Debugging BASIC Programs

The procedure for testing BASIC programs is almost the
same as the procedure for testing MACRO-11 and FOR-
TRAN IV programs. In BASIC, you remove all syntax errors
detected by the interpreter. You may produce a prepro-
cessed (.BAC) version of the program before testing it. Other
than this, the test procedures listed in the section “Testing
Programs’ at the beginning of this chapter apply the same
to BASIC as to FORTRAN IV and MACRO-11.

Dummy Routines

Good BASIC programs are written in a modular way so that
each module in the program design is coded as a subrou-

92

Programming with RT-11

. Figure 12.

Using ODT/VDT

.MACRO/LIST:MAIN/SHOW:MEB MAIN,GETCHA
.LINK/DEBUG:SY:VDT MAIN,GETCHA/MAP:MAIN.MAP

.RUN MAIN
VDT V05.01
*1000;0R

*1100; 1R

*0,30;0B

*1,0;1B

*0,0:;6G
B0;0,000030
Q;P
B1;1,000000
*:1S

l;P
B8;1,000004
I;P

ZDUMMY: GETCHA

B8;1,000006
Q;s
*0,34;0B

’;p
B0;0,000034

*0,75/101 =A 102<RET>

*/102 =B
*.p

The character is:

(Set relocation register 0 to
base address of module MAIN)
(Set relocation register 1 to
base address of module GETCHA)
(Set breakpoint register 0 to
instruction in MAIN that
calls GETCHA)

(Set breakpoint register 1 to
first instruction in module
GETCHA)

(Execute from start of MAIN)
(Message at first breakpoint)
(Proceed to next breakpoint)
(Message at second breakpoint)
(Enter single step mode)
(Execute single step)

(Single step message)
(Execute single step)

(Output resulting from
execution of GETCHA)

(Single step message)

(Cancel single step mode)
(Set breakpoint to .PRINT
request in module MAIN)
(Proceed to breakpoint)
(Breakpoint message)

(Examine value of CHAR. It is
ASCIT 101 . Modify it to
ASCII 102.)

(Verify the modified location)
(Proceed--there are no more
breakpoints)

(Output resulting from
execution of MAIN)

tine. When performing top-down testing on a BASIC pro-
gram, you test the main program logic by writing dummy
subroutines to replace all the subroutines referenced.

Chapter 4 Debugging Programs 93

EXAMPLE

For a module designed to display a file containing a

list of employees, a dummy version of the subroutine
could be:

10000 REM SUBROUTINE TD DISPLAY EMPLOYEE FILE
10010 REM DUMMY VERSION

10020 PRINT "%DUMMY - DISPLAY EMPLOYEE FILE"™
10099 RETURN

When a BASIC error occurs at run time, BASIC prints
at the terminal a message that includes the line at which
the error was detected.

Setting Breakpoints

To set breakpoints in a BASIC program, insert STOP state-
ments. You can then use immediate mode PRINT com-
mands to analyze the contents of any open files or the val-
ues of all the variables in use.

EXAMPLE :
~ 1If your pryogram contains the lines:
10 DIM #1,M0$C1002=10
20 0PEN "MASTER DAT" AS FILE #1

100 A%=VAL(SEG$(MO0$C0),1,5))
110 B% VAL(SEG$(M0$(0) 6, 10))

and you want to examine data in the v1rtual array
M0$ then you can msert the hne

95 STOP

‘so that' the program would open the v1rtual drray flle, :
and stop w1th the message

kSTDP AT LINE 95

94

Programming with RT-11

When your program has stopped you can access the file in-
teractively. You can use immediate mode statements to view
parts of your program and modify the data.

EXAMPLE

You can display the first record in the virtual array
file with the command:

PRINT M0$C0)

You can now modify this file data interactively, for
example with the command:

MO$C0)="00123"+SEG$(M0$C0),6,10)

Practice
41

MACRO-11, FORTRAN 1V, and BASIC versions of a pro-
gram are included in this exercise. The MACRO-11
(PR0403.MAC, PR0404.MAC, and PR0405.MAC) and FOR-
TRAN IV (PR0403.FOR, PR0404.FOR, and PR0405.FOR) ver-
sions are modular. Each has a main program and two sub-
routines. The BASIC program (PR0403.BAS) contains
equivalent subroutines and a function from lines 10000,
11000, and 15000.

The program is designed to accept twelve monthly values
(in the range 0 to 100) and plot them as a histogram. One
subroutine is designed to take a value and return the num-
ber of units of height that represent that value in the histo-
gram. On the histogram 20 units of height represent the
value 100, and other heights represent values in the same
proportion. The other subroutine is designed to convert a
string into the real number it represents.

The programs contain up to two errors each and will not
print the histogram properly. The errors are different in

Chapter 4 Debugging Programs

95

each language. Your task is to use the testing procedures we
have discussed to locate and correct the errors so that the
program accepts a value in the range 0 to 100 for each
month in the year and displays a histogram on the screen.
You must do the following:

1.

Select the program in the language you know best and
create the files exactly as listed.

Assemble and run the program to see what happens.
The MACRO-11 and FORTRAN IV programs are made
up of three object modules each.

Write dummy subroutines (or, for BASIC, a dummy
function) to replace the original ones. If you are pro-
gramming in BASIC-11, make a copy of the program,
calling it HISTO.BAS, instead of editing the original
program. You will need to refer to the original later.

Use printing statements to display data at key points
during the program. A list of the location of such
points is shown earlier in this chapter. In order to
print a message from a MACRO-11 program -use the
macro:

.PRINT #string-address

where “string-address” is the address of an .ASCIZ
string. Then use ODT/VDT to carefully debug the
program.

Note: The MACRO-11 exercise requires that your PDP—-11
processor have the extended instruction set. The exercise
makes use of the DIV, MUL, and SOB instructions which
are not available on all PDP—11 models.

96 Programming with RT—-11

PR0403.MAC

MTAB: :

START:

LOOP:

BADVAL :

INTRO:

PROMPT:
VALUE:
HEIGHT:
INB:
VAL:

LTITLE
.MACRO
.PSECT
.$8.=,
.ASCII
.PSECT
.WORD
.ENDM
.MCALL
.GLOBL
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
mov
.PRINT
MoV
MoV
.PRINT
.GTLIN
mov
JSR
CMP
BEG
DIV
MOVB
SOB
mMov
JSR
JEXIT
.ASCII
.ASCII
.ASCII
.ASCII
.ASCIZ
.ASCIZ
.BLKB
.BLKB
.BLKB
.BYTE
.EVEN
.END

PR0403 Debugging Exercise
MONTH , NAME s;Macro to set up month table
MOVNAM

;Each entry points to string
/NAME/<200> ;This is the string

.88, 3;This is the space for entry

.PRINT, .EXIT,.GTLIN
CNVSTR,HISPRT ;Declare subroutines

JAN sBuild months table

FEB

MAR

APR

MAY

JUN

JuL

AUG

SEP

ocT

NOV

DEC

#MTAB,R2 ;Get address of months table
#INTRO sPrint introduction

#12.,R3 ;Initialize month loop
#HEIGHT,R4 ;6et address of heights table
(R2)+ sMth part of prompt for month
#INB,#PROMPT ;Get decimal number string
#INB,RS ;Get address of input buffer
PC,CNVSTR ;Convert stiring to binary
#-1.,R0 ;Check returned value for -1
BADVAL ;1f so branch past height calc
#5,R0 ;Convert value to height

RO, (R4)+ ;Place height in height table
R3,L00P sBranch for next month
#HEIGHT,RS ;Pass address of height table
PC,HISPRT ;0utput the histogram

/THIS PROGRAM PRINTS A HISTOGRAM FROM 12 /
/MONTHLY VALUES./<¢15><12>

/THE MONTHS ARE JANUARY TD DECEMBER./<15><12>
/PLEASE ENTER YOUR TWELVE VALUES:/

/THEY MUST BE IN THE RANGE 0 TO 100/

/: /<200>

12.%4,

12.

81.

-1,

START

Chapter 4 Debugging Programs 97
PR0404.MAC .TITLE PR0404 Debugging Exercise

.MCALL .PRINT
CNVSTR::

mav R1,-(SP) ;Save caller’s registers

Mov R2,-(SP)

MoV R3,-(SP)

MoV R4,-(SP)

CLR R1 sInit value accumulator

Mav RS5,R2 ;Save address of string
NEXINT: MOVB (R2)+,R3 ;Get next character

BEQ ENDSTR ;Check for end of string

CMPB R3,#’9 ;15 character > ‘97

BGT ENDINT sBranch if so

CMPB R3,#’0 ;Is character ¢ 707

BLT ENDINT ;Branch if so

BIC #’0,R3 ;Now make digit binary

MUL #10.,R1 ;Multiply accumulator by 10

BCS BADVAL sBranch if overflow

ADD R3,R1 sAdd number to accumulator

BCS BADVAL ;Branch if overflow

BR NEXINT ;Process next character
ENDINT: CMPB R3,#/. ;Is it a decimal point?

BNE BADVAL sIf not it isn’t valid!
NEXDVL: MOVB (R2)+,R3 ;Get next character

BEQ ENDSTR ;Check for end of string

CMPB R3,#’9 ;1s character > ‘97

BGT BADVAL ;sBranch if so, invalid

CMPB R3,#0 sIs character ¢ 70?

BLT BADVAL sBranch if so0, invalid

BR NEXDVL ;Get next fractional char
ENDSTR: MOV R1,R0 ;End of string: return val

BR RESTOR ;Goto finale of subroutine
BADVAL: MOV #-1.,R0 ;Not valid, return -1
RESTOR: MOV (SP)+,R4 ;Restore saved registers

MoV (SP)+,R3

Mav (SP)+,R2

Mav (SP)+,R1

RTS PC ;Return to caller

.END

Programming with RT-11

PR0405.MAC

HISPRT::

ILOOP:

0DD:

JLOOP:

GO1:

LOWER:

MLOOP:

L.TITLE
.MCALL
.GLOBL

Mov
mov
mMav
Mav
«PRINT
Mmav
Mav

BR

Mov
Mav
BIT
BNE
ASR
BISB
MOVB
Mov
.PRINT
Mav
Mav
MOVB
mav
TSTB
BPL
CMP
BNE
Mov
CMPB
BLT
Mov
«PRINT
SaB
SaB

PRINT
mav
Mav
.PRINT
MOVB
LTTYOUT
SOB
PRINT
Mov
mav
mov
mav
RTS

PR0405 Debugging Exercise
LPRINT,.TTYOUT

MTAB

R1,-(SP)
R2,-(SP)
R3,-(SP)
R4, -(SP)
#HEADER

#20.,R1

#E100,R3
oDD

#0IDSTR,R3
R1,R2
#1,R2

opD

R2

#/0,R2

R2,DIGIT
#EIDSTR,R3
R3

RS,R4
#12.,R2
(R4>+,R3
#BLANK,STR
R3

601

R1,#1
LOWER
#BAD, STR
R3,R1
LOWER
#BLOCK,STR
STR
R2,JLOOP
R1,1LOOP

#BASE
#MTAB,R1
#12.,R2
(R1)+
#32.,R0

R2,MLOOP
#CRLF
(SP)+,R4
(SP)+,R3
(SP)+,R2
(SP)+,R1
PC

;Save caller’s registers

sPrint three blank lines

;Init height loop counter
;First height level = 20 (100)
;Branch to output value

;Point to ruler section

sCopy height loop counter

;1s height level odd?

;Branch if so to print ruler
;Divide loop counter by 2

;Make this value a character
sInsert into ruler section
sPoint to ruler section

sPrint ruler section

;Get pointer to monthly height
;Init months loop counter

;Get next monthly height
;Default section is blank

;Test monthly height

;1f positive go past BAD handler
;BAD: check for height level=1
;1f not go print blank anyway
s1f BAD+hgt 1lvl=1 section is BAD
;Compare height lvl with month’s
;1f below, go print blank
;0therwise print shaded block
sPrint section

;End of loop for months

;End of loop for height level

;Print base of histogram

;Get address of months table
;Init months loop counter
sPrint month pointed to
;Create a space character
;Print space character

;End of months loop

sFinish mths ruler with CR/LF
sRestore saved registers

sReturn to caller

Chapter 4 Debugging Programs

PR0405.MAC HEADER: .ASCIZ <153¢12><155¢12>¢15>¢12>
(continued) EIDSTR: .ASCII <153>¢12>/ /
DIGIT: .ASCII /*01/¢200>
OIDSTR: .ASCII «<153>¢12>/ -1/¢200>
E100: .ASCII /100%/¢200>
BLOCK: .ASCII /### /¢200>
BLANK: .ASCII / /¢200>

BAD: .ASCIl /BAD /<200>

BASE: LASCIT €152€12)/ Q#=--mmmmmmm e ceme e
WASCII /--e-ccmmcme e ccecee e /
.ASCII <15>¢<12>/ /¢200>

CRLF: .ASC1Z2 / 7/
.EVEN

STR: .WORD 0

.END

100

Programming with RT—11

PR0403.FOR

c L2 E A2 X 2 R R R R X A R R R R X R R R Y R R R X R R RN YY)
c
C DEBUGGING AND FAILURE ANALYSIS
c
C PRACTICE 4-1, PR0403.FOR
c
c LA AR R RS RS RS S R R R A 2 A AR R R R R R R A R R R R R R R R RS R YRY]
c
C INITIALIZE VARIABLES AND ARRAYS
(==sssssssssssssssssssmmszzsnx=s
REAL VALUE(C12)
BYTE VALSTR(8)
REAL*4 MONTHC12)
INTEGER HEIGHT(12)
DATA MONTH /’ JAN’,’ FEB’,’ MAR’,’ APR’,’ MAY’,’ JUN’,
1 / JUL‘,’ AUG’,’ SEP’,’ OCT’,” NOV’,’ DEC‘/
c
C MAIN PROGRAM LOGIC
c AABERARAREERARERER
c
C PRINT INSTRUCTIONS
C ==ssscsscsanmnnn==
TYPE 6000
6000 FORMAT (’ THIS PROGRAM PRINTS A HISTOGRAM FROM 12 MONTHLY ‘,
1 ‘VALUES.’/’ THE MONTHS ARE JANUARY TO DECEMBER.‘/
2 ’ PLEASE ENTER YOUR TWELVE VALUES: “,
3 ‘THEY MUST BE IN THE RANGE 0 TO 100°)
c

C ACCEPT VALUES AS STRINGS, PROMPTED BY THE MONTH AND PROCESS THEM
C ==sssssssssmssszssssSansssssssssssssNssESEESssEEEEEEESEEEEESEEES
DO 100 I=1,12
TYPE 6010,MONTHCI)
6010 FORMAT (A4,’:’,1X$)
DD 50 J=1,8
VALSTRCJI=*
50 CONTINUE
READ (5,5010,END=90) (VALSTR(K),K=1,8)
HEIGHTCI)=-1
S010 FORMAT (8A1)

c
C CONVERT STRING TO REAL VALUE
C mmmmmmmmcccceemc——— e ——————
VALUEC1)=CNVSTRCVALSTR)
c
C CONVERT REAL VALUE TO HEIGHT ON CHART
[e
IF C(VALUECI) .NE. -1.0) HEIGHTCI)=VALUECI)>*20/100
G0 TO 100
90 TYPE *,* ¢
100 CONTINUE
c

C PRINT HISTOGRAM

C sszssssszsssan=
CALL HISPRTC(HEIGHT,MONTH)
CALL EXIT
END

Chapter 4 Debugging Programs 101

PR0404.FOR

L R R R Y]

DEBUGGING AND FAILURE ANALYSIS

PRACTICE 4-1, PR0404.FOR

L Y YN

OO0 000000

FUNCTION CNVSTR(STRING)
BYTE STRING(8),CURCHA
INTEGER POINTA,DIGIT
REAL CNVSTR,DIV

BAD VALUES ARE SET T0 -1.0
VALUES OUT OF RANGE ARE TREATED AS BAD

OO0 000

INITIALIZE RETURN VALUE AND POINTER INTO STRING

CNVSTR=0.0
POINTA=1

o

C PROCESS EACH CHARACTER, STRING IS TERMINATED BY SPACE OR LENGTH=8

10 IF (POINTA .GT. 8) GO TO 100
CURCHA=STRING(POINTA)
IF (CURCHA .GT. ’ ‘) GO TO 100
IF (CURCHA .GT. ‘9‘) GO TO 50
IF (CURCHA .LT. ‘0’) GO 7O S0
DIGIT=CURCHA-"0"
CNVSTR=C10.0*CNVSTR)+DIGIT

POINTA=POINTA+1
GO TO 10

S0 IF (CURCHA .NE. “.’) GO TO 200
DIV=1.0

75 POINTA=POINTA+1

IF (POINTA .GT. 8) GO TO 100
CURCHA=STRING(POINTA)

IF (CURCHA .GT. * ‘) GO TO 100
1F (CURCHA .GT. ‘9‘) GO TO 200
IF C(CURCHA .LT. ‘0’) GO TO 200
DIV=DIV*10.0

DIGIT=CURCHA-"0"
CNVSTR=CNVSTR+DIGIT/DIV

GO 7O 75
c
C BRANCH TO HERE AT END OF STRING PROCESSING
C mcccmmeeeeaac e aceccmcc e mmmmm e —————
100 IF (CNVSTR .GT. 100.0) GO TO 200
RETURN
c
C BRANCH TO HERE IF VALUE 1S BAD
o
200 CNVSTR=-1.0
RETURN

END

102 Programming with RT-11

(AR A R R R Y YY)

PR0405.FOR
DEBUGGING AND FAILURE ANALYSIS

PRACTICE 4-1, PR0O405.FOR

LA AR R A Y Y Y Y]

OO0 0

SUBROUTINE HISPRTCHEIGHT,MONTH)
INTEGER HEIGHT(12)
REAL*4 MONTHC12)
TYPE 6100
6100 FORMAT C* *//7)
DO 100 I=20,1,-1
IF (1 .EQ. 20) GO TO 10
IF (2*C1/2) .EQ. I> TYPE 6000,1*5
IF €2*C1/2) .NE. 1> TYPE 6010

GO TO 20

10 TYPE 6020

6000 FORMAT C* *,12,71’$)

6010 FORMAT -1’%)

6020 FORMAT €’ 1001‘$)

20 DO 90 J=1,12
IF (HEIGHT(J) .NE. I) GO TO 30
TYPE €030

6030 FORMAT (7 ### ’$)
HEIGHT(J)=HEIGHT(J)>-1

GO TO 90
30 IF C(1 .NE. 1) GO TO 38
IF C(HEIGHT(J) .NE. -1) GO TO 35
TYPE 6040
6040 FORMAT (’ BAD ‘$)
GO TO 90
35 TYPE 6050
6050 FORMAT (5X$)
a0 CONTINUE
TYPE 6060

6060 FORMAT €’)
100 CONTINUE

TYPE 6070

6070 FORMAT 0+’¢)
TYPE 6075

6075 FORMAT €/ --mmmmmmmcc e m oo e e e e 8]
TYPE 6080

6080 FORMAT C’ ‘$)

TYPE 6090, (MONTH(K),K=1,12)
6090 FORMAT €’ ’,12A4)

RETURN

END

Chapter 4 Debugging Programs 103

PR0403.BAS

10 REM X R E R R E R EE SRR R R R R R R R R R R R E R R R AR R AR R RS RS R RS R R R RN E RN

20 REM
30 REM DEBUGGING AND FAILURE ANALYSIS

40 REM

50 REM PRACTICE 4-1, PR0403.BAS

60 REM

70 REM HERRBRAEFRFARRRARAARRERAARRARARARRARRAARRRARERRRRRRRERERRERRERERER
80 REM

90 REM INITIALIZE VARIABLES AND ARRAYS

100 REM ==s=sssssssssssssssssssssssszsas

110 DIM V(12%)

120 DIM M$C12%)

130 DIM HZ(12%)

140 REM

150 REM MAIN PROGRAM LOGIC

160 REM ERRREERRE SRR RE RN

170 REM

180 REM READ MONTH STRINGS INTO ARRAY

190 REM ==s=szszsxsszszsssszszsz=s=xx

200 FOR I%=1% TO 12% \ READ M$CI%) \ NEXT I%

210 REM

220 REM PRINT INSTRUCTIONS

230 REM ====s==s=sszzszszsx

240 PRINT “THIS PROGRAM PRINTS A HISTOGRAM FROM 12 MONTHLY VALUES."
250 PRINT “THE MONTHS ARE JANUARY TO DECEMBER."

260 PRINT “PLEASE ENTER YOUR TWELVE VALUES: THEY MUST BE IN THE RANGE 0 TO 100"
270 REM

280 REM ACCEPT VALUES AS STRINGS, PROMPTED BY THE MONTH
290 REM ====sssssssssssssssssssssssszszsssssssssssxsnss
300 FOR I%=1% TOD 12% \ PRINT M$CIX)*": "; \ LINPUT #0%,V$ \ GOSUB 10000
310 REM

320 REM CONVERT EACH VALUE INTO A HEIGHT INTEGER

330 REM =======ssz=ssssssssssssssssszsssssas=s==

340 HXCID=FNAXCVCI%)) \ NEXT I%

350 REM

360 REM DISPLAY HISTOGRAM

370 REM ===sassss=zaz=ss=s

380 GOSUB 11000

390 REM

400 REM END OF MAIN PROGRAM LOGIC

410 REM FRERBRERRERRRERRRERRERE R

420 60 TO 32767

10000 REM

10010 REM SUBROUTINE TO CONVERT STRING INTD A REAL NUMBER
10020 REM ====x=sxssssssssssssssssssssssssssssszssssssssss
10030 REM BAD VALUES ARE SET TO -1.0

10040 REM VALUES OUT OF RANGE ARE TREATED AS BAD

10050 VCI%)=0%

10060 L%=LENCV$) \ F$=SEGCV,1%,1%) \ IF F$<>"" THEN V$=SEGS$(V$,2%,L%)

104 Programming with RT—11

PR0403.BAS (continued)

10070 IF F$="" THEN 10180

10080 IF F$>"39" THEN 10110

10090 IF F$¢"0"™ THEN 10110

10100 VCI%)=10*VCI%X)+VALCF$) \ GO TO 10060

10110 IF F$¢>"." THEN V(I%)=-1 \ GD TO 10180

10120 D=1

10130 D=D*10 \LX=LENCV$) \ F$=SEGCVS,1%,1%) \ IF F$<>"" THEN V$=SEGS(VS,2%,L%)
10140 IF F$="" THEN 10180

10150 IF F$>"9" THEN VC(I%)=-1% \ GO TO 10180

10160 IF F$<¢"0" THEN VCI%)=-1% \ GO TO 10180

10170 VCI%)=VCI%)+VALCF$)/D \ GO TO 10130

10180 IF VCI%)>100 THEN VCI%)=-1

10190 RETURN

11000 REM

11010 REM PRINT HISTOGRAM

11020 REM ==scsssazz=====

11030 PRINT \ PRINT \ PRINT

11040 FOR I%=20% TO 1% STEP -1%

11050 I1$=STR$CI%*5) \ IF I%<20% THEN Is$=" "+Is

11060 IF 2%*CI1%/2%)=1% THEN PRINT I$; \ GD TO 11080

11070 PRINT ™ -v;

11080 PRINT "i*;

11090 FOR J%=1% TO 12%

11100 IF HXCJX)=1% THEN PRINT " ###"; \ HZ(JZ)=HXCJZ)>-1% \ GO TO 11140
11110 IF I1%Z¢>1% THEN 11130

11120 IF HXCJ%)=-1% THEN PRINT " BAD"™; \ GO TO 11140

11130 PRINT * u,

11140 NEXT J% \ PRINT \ NEXT I%

11150 PRINT * 0+"; \ FOR I%=1% TO 12% \ PRINT "----"; \ NEXT I% \ PRINT
11160 PRINT * “; \ FOR I%=1% TO 12% \ PRINT ™ ";M$CI%); \ NEXT I% \ PRINT
11170 RETURN

15000 REM

15010 REM FUNCTION TO CALCULATE HEIGHT

15020 REM ===rcczcssssss==z=sssssssa===

15030 DEF FNA%CX)=INTC(X*20/100)

20000 REM

20010 REM DATA DECLARATION FOR MONTH STRING ARRAY

20020 REM ====csss=zs=sa====ssssca=ssssssxssss=sax=s

20030 DATA JAN,FEB,MAR,APR,MAY, JUN, JUL,AUG,SEP,OCT,NOV,DEC
32000 REM

32010 REM END OF PROGRAM

32020 REM =====s====s=z=z=

32767 END

Chapter 4 Debugging Programs 105

References

RT-11 System User’s Guide. Chapter 4 discusses the
FRUN/PAUSE and RESUME commands in detail.

RT-11 System Utilities Guide. Chapter 18 lists and explains
additional commands that will enable you to use ODT and VDT
more effectively.

RT-11 System Message Manual.

Using Object Libraries
Searching Sequence for Object Code Subroutines
Using Object Libraries with EXECUTE
Using Macro Libraries
Searching Sequence for Macros
Using Macro Libraries with EXECUTE
Creating Libraries
Creating a New Object Library
Creating a New Macro Library
Creating an Object Module from an Object Library
Maintaining Libraries
Maintaining Object Libraries
Maintaining Macro Libraries
Reference

106

Using
Libraries

This chapter deals with the creation and maintenance of
your own object and macro libraries. You will learn to carry
out operations using the RT-11 monitor command
LIBRARY, which enables you to maintain such libraries and
their contents. The options used with the LIBRARY com-
mand to create and maintain libraries are /CREATE,
/DELETE, /EXTRACT, /INSERT, /LIST, /IMACRO, and /RE-
MOVE.

When you have completed this chapter you will be able
to create a new object library; insert, replace, and delete
modules from libraries; list the contents of a library; and
link a program using object modules contained within an
object library of your own creation. If you are using
MACRO-11 you will learn to create a new macro source
library and assemble a program using macros within a ma-
cro library of your creation.

When you have a number of routines that are used for
one type of application, you may want to group them into
a library. The linker uses only those subroutines that are
referenced, and the MACRO-11 assembler uses only those
macros that are referenced. If these subroutines or macros
are contained in a library, you do not have to type in a
whole list of selected files.

Two libraries are supplied with your system, the sys-
tem object library SYSLIB.OBJ which contains a set of sub-
routines in object code form, and the system macro library
SYSMAC.SML which contains a set of system macros.

107

108 Programming with RT—11

Using Object Libraries

You can store object modules either in an object file or as
a subroutine in an object library. When you want to link a
set of object modules, some of them may be contained in
an object library. There are two ways of including modules
from an object library when using the linker:

» Specifying each library that contains subroutines that
are called by using the /LINKLIBRARY option (which
can be abbreviated to /LIBRARY.)

e Specifying the library in the same way that you spec-
ify object modules; the linker can detect that the file
is an object library and will access any routines that
are called.

Searching Sequence for Object Code
Subroutines

When you link a main program and your code contains ref-
erences to subroutines, the linker first looks for each sub-
routine in any object modules you specify, taking them from
left to right in the command line. If it cannot find the sub-

Chapter 5 Using Libraries 109

routine there, it looks in any libraries you specify, taking
them from left to right in the command line. If that fails, it
looks in the system object library (SY:SYSLIB.OB]J). You do
not need to specify this library. If that also fails, it prints
warnings at the terminal. Once a subroutine has been found,
any subroutines with the same name that come later are ig-
nored. Only subroutines that are referenced are used by the
linker.

Using Object Libraries with EXECUTE

To specify that object libraries are to be used during link-
ing, you can use the /LINKLIBRARY option with the
EXECUTE command. This command takes the same format
as the LINK/LIBRARY command:

EXECUTE/LINKLIBRARY:LIBRSPEC PROGSPEC

Using Macro Libraries

You can store macro definitions either:

¢ In the modules which use them or

* In a macro library

By storing the macro definitions in a macro library,
modules which use them need not define the macros. These
modules can call the macros which are defined in a library
by using the .MCALL directive. The .MCALL directive is
fully described in chapter 7 of the MACRO-11 Language
Reference Manual.

When you assemble your modules, you must also
specify the macro libraries containing the macro defini-
tions needed by your module(s). The macro libraries must
contain the definitions for all of the macros specified by the
.MCALL directive. You can specify macro libraries by us-
ing the /LIBRARY option with the MACRO command after
each macro library file specification.

110

Programming with RT-11

~assembles PROG MAC w1th the macro hbrary
i MYMACS MLB b

You can also specify macro libraries by including the
LIBRARY directive and specifying the macro library file
specifications in the modules themselves. The .LIBRARY
directive is discussed in chapter 6 of the MACRO-11 Lan-
guage Reference Manual.

Searching Sequence for Macro Libraries

The MACRO assembler searches the macro libraries for the
macros specified by the .MCALL directive. The search be-
gins with the user specified libraries (either from the
/LIBRARY option or the .LIBRARY directive) and continues
onto the system library (SY:SYSMAC.SML) if the macro
is not found. When found, the definition is extracted from
the macro library for use in the modules.

Using Macro Libraries with EXECUTE

You may also specify macro libraries when you use the
EXECUTE command to assemble modules. The EXECUTE
command also has a /LIBRARY option which is used in the
same way as with the MACRO command.

Chapter 5 Using Libraries 111

Creating Libraries

You can use the RT—11 librarian to create library files so
that they contain the contents of one or more files. We will
discuss only the creation of object libraries and macro li-
braries, although it is possible to use the library structure
to group together other types of files. You create libraries
by using the LIBR/CREATE command.

Creating a New Object Library

You use an object library to group together a set of object
modules that have been assembled or compiled from sub-
routines written in source code. You may optionally in-
clude one main program object module in the library. To
create an object library that initially includes the contents
of one or more object modules, use the command:

LIBR/CREATE LIBRARY-FILE OBJECT-MODULES

In this command “LIBRARY-FILE” is the file specifi-
cation of the object library you want to create, and “OB-
JECT-MODULES” is a list of file specifications (separated
by commas) of the object modules to be inserted in the li-
brary. If you omit the file types of the object modules, the
librarian assumes that they have the .OBJ file type. Object
libraries will also be given the default file type .OB]J.

EXAMPI.E

- If you have two ob]ect modules DK SUBA OB] and
T DK:SUBB.OB]J, and want to group them to form the e
E 'ob]ect llbrary DK MYLIB. OB] then you type‘ el

LIBR/CREATE MYLIB SUBA SUBB e

If you try to include more than one main program in such
a command line, no library is created.

Stored in an object library is an index to the modules
it contains. The name of each module is taken from the name

112 Programming with RT—11

of the subroutine. The library also contains a table of all
the entry points (globals) used in the modules. For exam-
ple, assume that you have created a FORTRAN IV source
file PROG.FOR containing the subroutine CALC. If you
compile this subroutine to produce the object module
PROG.OB]J and then include that module in an object li-
brary, it is entered in the library under the name of CALC.

Only one object module can be stored in the library
under a given name. If you create a library including two
object modules whose subroutine names are the same, the
librarian prints a warning message at the terminal and only
the first such module is used in the library.

Creating a New Macro Library

When you have a number of macros that are all used in one
application, it is useful to group them in a macro library.
The MACRO-11 assembler then accesses only those mac-
ros that are referenced when you assemble a source file us-
ing the library. You place macro definitions extracted from
various modules into one or more files. Such macros are
identified by the .MACRO directive. To create a macro li-
brary that contains the macros found in one or more source
files, use the command:

LIBR/MACRO/CREATE LIBRARY-FILE MACRO-FILES

In this command “LIBRARY-FILE” is the file-specification
of the macro library you want to create and “MACRO-FILES”
is a list (separated by commas) of source files containing
the macros that are to be included in the library.

If you omit the file type of the source files you use, the
librarian assumes that they have the default file type of
.MAC. Macro library files are assigned the default file type
.MLB.

Chapter 5 Using Libraries 113

want to group them to form the macro library
DK:MYMACS.MLB, you type:

.LIBR/MACRD/CREATE MYMACS MACA,MACB i

The name of each macro in the source files you spec-
ify must be unique. If there are two macros with the same
name in these source files, only the first one encountered
is included, and the librarian prints warnings at the terminal.

Creating an Object Module from an
Object Library

When you have successfully included an object module in
a library, you no longer need to keep the original object
module for program development and you can delete it. You
may want to recreate an object module, for example, to
produce a version of it on a different storage volume.
You create object modules from object libraries using the
/JEXTRACT option. To use this utility, type the command:

LIBR/EXTRACT

The librarian then asks you to supply the following:

1. The library file containing the subroutines you want
to recreate. For this the librarian prompts you with:

Library?

2. The file specification of each object module you want
to create. For this the prompt is:

File ?

3. The name of each subroutine whose object code is to
be used to create this module. These names are often
referred to as globals. For each of these the prompt is:

Global ?

114 Programming with RT—-11

Maintaining Libraries

When you develop programs in a modular way, you may
want to add new modules, delete obsolete ones, replace old
ones with new ones, and also list the contents of your li-
brary. If you are a MACRO-11 programmer, you will also
want to perform similar operations on the macros in your
macro library.

Maintaining Object Libraries

The RT-11 librarian allows you to maintain your object li-
braries using the following options:

/DELETE removes an object module from the library,
deleting from the symbol table globals that
no longer apply

/INSERT includes a new object module in the library,
updating the symbol table with any new
global symbols

/LIST gets a directory listing of all the modules in
the library |

Chapter 5

/REMOVE

Using Libraries

represent

115

deletes global symbol(s) from the library in-
dex without deleting the routines they

Maintaining Macro Libraries

You cannot modify or list a macro library using the LIBR
command alone. To modify a macro library, edit the origi-
nal source file(s) and recreate the library, using the
LIBR/MACRO/CREATE command as discussed previously.

Practice
5-1

Using FORTRAN IV

1. Type the following programs into four files. Name
them PR0501.FOR, PR0502.FOR, PR0503.FOR, and
PR0504.FOR.
PR0501.FOR:
C PROS01.FOR
c
C Set up data for word processing-like subroutines
C and then call those subroutines
c

INTEGER*2 NAMEC10),DATEC10)

REAL MONEY

DATA NAME

A T R G S R L R P L N e

DATA DATE

1/'JU','1y',' 17,70t7,'h #,9197,77727,¢, +, ¢ 4 ¢+ ¢y

DATA
CALL
CALL
CALL
CALL
END

MONEY /16.27/
TEXT1(NAME ,MONEY)
TEXT2(DATE)

TEXT3

EXIT

PR0502.FOR:

C PROS02.FOR

c

SUBROUTINE TEXT1 (NAME,MONEY)
INTEGER*2 NAMEC(C10),VFLAG

116

Programming with RT-11

REAL MONEY

TYPE 1000,(NAMECI),I=1,10)

VFLAG=4

IF (MONEY .LT. 1000.0) VFLAG=3

IF (MONEY .LT. 100.0) VFLAG=2

IFf (MONEY .LT. 10.0) VFLAG=1

GOT0C100,200,300,400) VFLAG
100 TYPE 2000,MONEY

GOTO 500

200 TYPE 2010,MONEY
GOTO 500

300 TYPE 2020,MONEY
GOTO 500

400 TYPE 2030,MONEY
500 TYPE 1010
RETURN
1000 FORMAT(1HO, ‘Dear ‘,10A2//
17 During our last quarter, our records showed that you ‘,
2’owed us ‘)
1010 FORMATC’ .“)
2000 FORMATC’ “,F4.2,$)
2010 FORMATC’ ’,F5.2,%)
2020 FORMATC’ ‘,F6.2,$%)
2030 FORMATC’ *,F7.2,$%)
END

PR0503.FOR:

C PR0S03.FOR
c

SUBROUTINE TEXT2 (DATE)

INTEGER*2 DATEC10)

TYPE 1000,(DATECI),I=1,10)

TYPE 1500
1500 FORMATC’ Accordingly we sent you a letter of invoice ‘,

1’at that time.’)
1000 FORMAT(’ We have been expecting your payment since ‘,10A2)

RETURN

END

PR0504.FOR:

C PROS04.FOR
c
SUBROUTINE TEXT3
TYPE 500
TYPE 1000
TYPE 1500
TYPE 2000
500 FORMATC’ Regrettably this was an error on our part.’)

Chapter 5 Using Libraries 117

1000 FORMATC’ ‘/’ PLEASE SEND THE MONEY STRAIGHT AWAY.’)
1500 FORMATC’ */’ Yours sincerely,’)
2000 FORMATC’ “///' A.N. Other (Manager)’)

RETURN

END

2. Compile each of these FORTRAN 1V files to produce
four object modules.

3. Create an object library from the modules PR0502.0B]J
and PR0503.0B]J, giving the library the name
TEXLIB.OB]J.

4. Insert the module PR0504.0B]J and get a listing of the
library.

5. Produce and run the save image PR0501.SAV using the
main object module PR0501 and the object library
TEXLIB.

6. The program will print two paragraphs of text at your
terminal. One of the sentences printed by the program

is:
PLEASE SEND THE MONEY STRAIGHT AWAY.
Change the sentence to:

PLEASE ACCEPT OUR APOLDGIES.

by editing the source program PR0504.FOR. Replace
the FORMAT statement labelled 1000 with the line:

1000 FORMATC’ “/’ PLEASE ACCEPT DOUR APOLDGIES. ‘)

7. Update the object library; produce and run a new save
image.

Practice Using MACRO-11

5-2 1. Type the following programs into three files. Name the

files PR0505.MAC, PR0506.MAC, and PR0507.MAC re-
spectively.

118

Programming with RT-11

PR0505.MAC:

LTITLE PR0S05 Subroutine MCTST
.MCALL L.EXIT,GOSUB

.ENABL LC
MCTST:: GOSUB TEXT1,(#NAME , #MONEY)
GOSUB TEXT2,(#DATE)
GOSUB TEXT3
RTS PC
MONEY : .FLT2 16.27
NAME : .ASCI1Z /Mr. Griffiths, /
DATE: .ASCIZ /July 10th 1977. /
-END
PR0506.MAC:
H *
5 0+ BON
; *
HER Branch if bit set on
3 *
; *
.MACRD BON MASK,TEST,LABEL
BIT MASK,TEST
BNE LABEL
.ENDM BON
PR0507.MAC:
; *
H *
] G ODSUB

Macro to call a high-level language subroutine

.MACRO GDSUB SUBR,PARS
.GLOBL SUBR

Q$P=0

. IRP X,(PARS)
Q$P=Q%$P +1

.ENDR

Q$$P=Q$P+Q$P+2

SUB #Q$$P ,SP

Chapter 5 Using Libraries 119

mav SP,RS
mov #Q$P,(R5) +
.IRP XX ,(PARS)

Mav XX, (RS)+
.ENDR

mov SP,RS
CALL SUBR

ADD #Q$$P,SP
.ENDM GOSUB

2. Type the following FORTRAN IV program into a file
named PR0508.FOR:

CALL MCTST
CALL EXIT
END

3. Create the macro library PRMACS.MLB from the
source files PR0O506.MAC and PR0507.MAC.

4. Assemble the program PR0505 to create the object
module PR0505.0B]J, using the macro library you have
just created.

5. Compile the FORTRAN IV program PR0508, and link
the programs PR0508.0BJ and PR0505.0BJ with the li-
brary TEXLIB.OBJ that you created in practice 5—1 to
produce a save image and run that image.

The program should print at the terminal the letter you saw
in practice 5-1.

Reference

RT-11 System Users Guide. Chapters 4 and 12 discuss the
LIBRARY command in detail.

Limitations on Available Memory
Overlays
Specifying Overlay Structures
High-level Language Optimization
Generated Code
Types of code and their characteristics
Selection of generated code
Vectors
Sequence Numbers
Additional Optimization Techniques
Swapping the User Service Routine
References

120

Designing and
Implementing
Overlay
Structures

When you need to write a large program or modify an ex-
isting one so that it becomes larger, you may find that it
takes up so much memory that other jobs, which need to
run at the same time, are unable to run. Even with the XM
monitor, it is possible for a program to be too large for the
available memory. This chapter discusses ways of improv-
ing memory use and speed of execution.

You will learn to design and implement an overlay
structure for a MACRO-11 or FORTRAN IV program, check
the memory use of an overlaid program from the load map,
and control when the User Service Routine is swapped in
and out of memory during execution of a program. If you
are programming with FORTRAN 1V, you will also learn to
use options of the compiler to generate more efficient ma-
chine code.

121

122

Programming with RT-11

Limitations on Available Memory

The memory space available for running a program is less
than the full addressing space of the system, some of which
is taken up by system programs, such as device handlers
and the monitor. In a foreground/background environment,
often the remaining space has to be shared between a fore-
ground and a background job. Therefore, the memory re-
quirements of both of these jobs may have to be reduced.
Some ways of reducing memory requirements are:

e Using overlay programs
e Swapping out the User Service Routine (USR)

* Using compiler optimization techniques

Overlays

If a program is too large to be entirely resident in memory
at one time, you can reduce its memory requirements by
using overlays. This means that parts of your program are
resident in memory, while other parts are swapped out to
a file. To do this you define an overlay structure for your
program. An overlay structure is a system by which the
program’s memory is divided into a root region and a num-
ber of overlay regions.

When you overlay a program, the linker extracts those
parts of each object module that must be resident in mem-
ory throughout the execution of the program and groups
them into the root segment. These parts are global program
sections and include global .PSECTs (MACRO-11) or
COMMON blocks (FORTRAN 1V). The root segment re-
sides in the root region. The linker places the remaining code
of an object module in an overlay segment. Figure 13 shows
how this is done for a program that is made up of a main
object module, MAIN, and two subprogram modules, SUBA
and SUBB.

In an overlay structure, you assign a group of overlay
segments to each overlay region. Only one overlay segment
is resident in a region at one time and the remaining over-

Chapter 6 Designing and Implementing Overlay Structures 123

Figure 13.
Using the Linker to Implement an Overlay Structure

MAIN. SAV
SUBB. OBJ OVERLAY SEGMENT 2
GLOBAL PROGRAM
SECTION 6 SUBROUTINE B
SUBROUTINE B /
SUBA. OBJ OVERLAY SEGMENT 1
GLOBAL PROGRAM
CTION
SECTION G »{ | INKER —— - SUBROUTINE A
SUBROUTINE A
MAIN. OBJ \ ROOT SEGMENT
GLOBAL PROGRAM
MAIN ROUTINE \ SECTION G
M MAIN ROUTINE
M

lay segments are swapped out to a file called an overlay file.
The swapping of overlay segments is carried out at run time
by the Run-time Overlay Handler. For example, assume that
your program is made up of a main object module, MAIN,
and six subroutine modules, SUB1 to SUB6. Assume also
that you define an overlay structure so that:

e The root segment contains MAIN and SUB1

e A first overlay region is assigned the overlay seg-
ments produced from SUB2 and SUB3

e A second overlay region is assigned the overlay seg-
ments produced from SUB4, SUB5, and SUB6

Figure 14 shows how the program’s memory is shared.

124 Programming with RT-11

Figure 14.

Overlay Segments Sharing a Program’s Memory

SUB6 OVERLAY SEGMENT

SUBROUTINE 6

SUB5 OVERLAY SEGMENT

SUBROUTINE 5

SUB4 OVERLAY SEGMENT

SUBROUTINE 4

SUB3 OVERLAY SEGMENT

SUBROUTINE 3

SUB2 OVERLAY SEGMENT

SUBROUTINE 2

ROOT SEGMENT

GLOBAL PROGRAM SECTIONS

SUBROUTINE 1

MAIN ROUTINE

T~

OVERLAY REGION 2

(SUB4 OR SUB5 OR SUB6)

OVERLAY REGION
1

(SUB2 OR SUB3)

ROOT REGION
(GLOBAL PROGRAM
SECTIONS
AND
SUBROUTINE 1
AND
MAIN ROUTINE)

MAIN. SAV

MEMORY ALLOCATED
TO MAIN. SAV

HIGH
MEMORY

LOw
MEMORY

Specifying Overlay Structures

You specify an overlay structure for your program to the
linker by using the /O option. This option is used in the
following format:

.R LINK

*save-image,map-file=root-list/
*object-module-1/0:1

Chapter 6 Designing and Implementing Overlay Structures 125

*object-module-2/0:1
*,,

*object-module-n/O:r/

save-image is the file specification in which the
save image is to be built

map-file is the file specification of the load map
to be produced from the linker

root-list is the list of those object modules, in-
cluding the main routine, that contain
code that must be placed entirely in
the root segment; also, link libraries
that contain code that is referenced
elsewhere in the root segment

object-module-i is the object module used for the over-

(i=1,...,n) lay segment
/0:j specifies to which region the
(j=1,....,r) overlay segment is assigned

Assume that you want to create an overlay structure
in which references are made to code contained in the ob-
ject libraries LIBA and LIBB. Your command would look
like the following:

 EXAMPLE

R LINK R e
~ #«MAIN,MAIN.MAP=MAIN,SUB1,LIBA,LIBB//
 *5UB2/0:1 Hsaes i e
*SUB3/0:1
*SUB4/0:2
© 4SUBS/0:2
 *5UBB/0:2//

Code linked directly from an object library is placed
in the root segment. If you want to produce an overlay seg-
ment from an object library module, you must first extract
it from the library, using the LIBR/EXTRACT option, thereby
producing an object module in a separate file. You can then

126

Programming with RT—-11

link your program and assign your module to an overlay
region in the usual way.

Practice
6-—1

Use either the FORTRAN IV or MACRO-11 program you
created in the exercises in chapter 4, “Debugging Pro-
grams.” The main program calls each of the subroutines in
turn. The subroutines shown below do not reference each
other.

PR0403 a main program that accepts monthly values and
prints a histogram

PR0404 the routine CNVSTR for converting values to
heights on the histogram

PR0405 the subroutine HISPRT for printing the histogram

Design and implement an overlay structure for this program
by assembling the source files into separate object modules
and using the linker to create the overlaid program
HISTQO.SAV. The program should use the minimum amount
of memory without your changing the code of the routines.
Get a load map of the overlaid program from the linker.

High-level Language Optimization

A compiled language program generally uses more mem-
ory space than an equivalent assembly language program.
This is because high-level language compilers often in-
clude a number of general purpose subroutines in the code
that they produce, such as the OTS for FORTRAN IV. Also,
the code generator of a compiler is usually far less capable
than the average MACRO-11 programmer in producing ef-
ficient machine code. For this reason, many compilers are
equipped with optimization routines that reduce the code
generated without affecting the action of the program.
Different high-level language compilers offer different
optimization techniques for the code they generate. They
usually have options that allow you to select the extent to
which optimization is carried out. For example, BLISS—-16

Chapter 6 Designing and Implementing Overlay Structures 127

has a very large and complex code generator and, if you se-
lect full optimization, it generates code only 10% larger than
that produced from an equivalent MACRO-11 program.

The two optimization options provided by the FOR-
TRAN IV compiler are: selection of generated code and in-
clusion of line numbers or vectors. Additionally, some op-
timization techniques are automatically performed by the
FORTRAN IV compiler.

Generated Code

Basically, there are two ways in which the FORTRAN IV
compiler can generate code. These two methods are usu-
ally called in-line code and threaded code.

Types of code and their characteristics

In-line code is usually arranged so that it is executed from
start to end with as few machine code subroutine calls as
possible. Threaded code is made up of a list of small rou-
tines. The only purpose of each routine is to call a subrou-
tine. Before doing this, the routine sets up a data section
that will be active only during the execution of that sub-
routine. To determine which type of code to use you should
consider the following:

* In-line code is always executed faster than threaded
code because fewer subroutine calls are used

e Unless most of your data exceeds the storage require-
ments of INTEGER=*2 variables (two bytes per vari-
able), there is little difference in size between in-line
code and threaded code

e If most of your data uses REAL*4, REAL*8, or COM-
PLEX=8 variables, then threaded code uses much less
memory

Although the above relationships are usually true, they dif-
fer from program to program. You should compile and test
production programs with both in-line and threaded code

128

Programming with RT-11

to determine the best match of speed and size for your
applications.

Selection of generated code

By default, the FORTRAN compiler generates in-line code.
In order to select threaded code, you use the /CODE option
as follows:

FORTRAN/CODE:THR FILENAME

Connected with the /CODE option are three values that
select specific types of in-line code appropriate for use in
your machine’s arithmetic operations. You should include
the values that agree with your system configuration (check
with your system manager).

Figure 15 illustrates the structure of the object module
that has been produced from a FORTRAN 1V source file us-
ing the /CODE:THR option.

Vectors

For the RT-11 FORTRAN IV compiler, the vector method
decreases the time needed to compute the address of an
element in an array of more than one dimension. It does so
by computing in advance some of the multiplication oper-
ations and storing the resulting values in a table called a
vector. If you use the /NOVECTORS option to prevent the
creation of these vectors, you can reduce the memory space
used, but you sacrifice some execution speed.

Chapter 6

Figure 15.

Designing and Implementing Overlay Structures

Structure of Threaded Code

START
INITIALIZATION
CALL A
INITIALIZATION
CALL B
INITIALIZATION
CALL A
INITIALIZATION
CALLC
INITIALIZATION
CALL B
INITIALIZATION
CALL D

STOP

SUBROUTINE A

SUBROUTINE B

SUBROUTINE C

SUBROUTINE D

129

130 Programming with RT-11

Sequence Numbers

When you are debugging code, it is useful to see the se-
quence numbers generated by the compiler, because error
diagnostic messages include these numbers. Sequence
numbers are also useful if you want to examine compiler-
generated code. These sequence numbers, however, oc-
cupy memory. The /NOLINENUMBERS option allows you
to disable the generation of internal sequence numbers, but
it should be used only for production programs which you
think are free of errors.

Additional Optimization Techniques

In addition to the options discussed above, there are many
programming techniques that allow you to create more ef-
ficient FORTRAN IV programs. Other optimization tech-
niques implemented automatically when your program is
compiled include:

e Simplifying arithmetic expressions

» Performing often needed computations, such as loop
iteration counts, in registers

* Using bit shifting operations to implement multipli-
cation and division

Swapping the User Service Routine

The User Service Routine (USR), which processes your
program’s file I/O requests, does not reside permanently in
memory. By default, it is swapped in and out of memory
as needed, allowing use of more memory. Swapping the USR

Chapter 6 Designing and Implementing Overlay Structures 131

out of memory makes an additional 2 Kwords available
for use. Swapping, however, may cause problems with
FORTRAN IV program execution if your program is very
large, because the USR may be swapped over some of
your code. You can prevent USR swapping by using the
/NOSWAP option.

EXAMPLE
There are two ways to use the /NOSWAP option:

\ 1. - Use the /NOSWAP option in your command line to the
¢ . compiler. ~ N

. .FORTRAN/NOSWAP PROG
2. Set USR to NOSWAP by uSihg the monitor command: ‘

~-SET USR NOSWAP

To reset the system to swap 'USR', use the monitor
command: ’ ‘ '

i

.SET USR SWAP : : Sk

References

RT-11 System Utilities Manual. Chapter 11 describes in detail
overlays and system utility options of the linker. It offers guide-
lines to help you select an overlay structure and discusses op-
tions that enable you to control the production of overlaid pro-
grams. The chapter also explains the different features that apply
to extended memory (available with the XM monitor) and virtual
overlays.

RT—11/RSTS/E FORTRAN 1V User’s Guide. Chapter 4 details
how to structure programs that will make maximum use of FOR-
TRAN IV execution capabilities.

RT-11 Software Support Manual. Chapter 2 explains USR con-
siderations for foreground and background jobs and USR swap-
ping considerations.

Usefulness of Language Interfaces
Calling MACRO-11 Subroutines from a FORTRAN IV Program
Transferring Control
Passing Arguments
Returning Function Values
Using Registers
Maintaining the Stack
Creating Common Blocks
Receiving Arguments
Calling FORTRAN 1V Routines from a MACRO-11 Program
Initializing OTS
Conventions
BASIC—-11 Programs that Call MACRO-11 Subroutines
Using the BASIC—-11 Call Statement
Modifying the BASIC Interpreter
References

132

Using
Language
Interfaces

In the first six chapters of this book, the development of
programs in MACRO-11, FORTRAN 1V, and BASIC-11,
independent of one another, is discussed. In this chapter,
you will learn to write a FORTRAN IV program that calls
a MACRO-11 subroutine. You will also learn to write a
MACRO-11 program that calls a FORTRAN IV subroutine,
and learn to formulate MACRO-11 subroutines that can be
called from a FORTRAN 1V or BASIC-11 program. If you
are using BASIC, you will be able to write a BASIC pro-
gram that calls a MACRO-11 subroutine.

133

134

Programming with RT-11

Usefulness of Language Interfaces

When developing a program in FORTRAN IV or BASIC, you
may find that these languages cannot perform some opera-
tions or that they perform them in a complex or inefficient
way. To solve this problem, you can write MACRO-11
subroutines to be called by your high-level language pro-
gram, or you can use existing MACRO-11 subroutines. For
example, you are programming in BASIC and you want to
manipulate a device. But BASIC-11 does not provide an
interface to the hardware address of devices, so you would
need to write a MACRO-11 subroutine to do the task.

If you are programming in FORTRAN IV, you may want
to create a data structure that is not available using the
FORTRAN 1V language alone. You might use MACRO-11
subroutines to create such a structure and then perform op-
erations on it.

If you are programming in MACRO-11, you may find
user-written FORTRAN IV subroutines and FORTRAN IV
library or SYSLIB routines useful. It is usually easier to
create an interface between a MACRO-11 program and
FORTRAN 1V subroutines than to rewrite these routines from
scratch.

Calling MACRO—-11 Subroutines from a
FORTRAN IV Program

To call a MACRO-11 subroutine from a FORTRAN IV pro-
gram you use the FORTRAN IV CALL statement in the same
way that you call FORTRAN IV subroutines. The sections
which follow discuss the conventions used in this process:

* Transferring control
e Passing arguments
* Returning function values

* Using registers

Chapter 7 Using Language Interfaces 135

¢ Maintaining the stack
e Structuring common blocks

* Receiving arguments

Transferring Control

When the FORTRAN IV compiler processes a subroutine,
it generates the instruction that is created in MACRO-11
by the line:

JSR PC, subname

Here ‘“‘subname’ is the global symbol for the entry point
into the subroutine. If the subroutine is written in
MACRO-11, you must ensure that it contains a global dec-
laration of this entry point. You can do this using the
.GLOBL directive.

Because the MACRO-11 subroutine is called with JSR
PC,subname, it must return with the instruction:

RTS pPC

Passing Arguments

When a FORTRAN IV program calls a subroutine, it passes
the arguments in a contiguous block of memory called an
argument block. This block contains n+1 words where “n”
is the number of arguments to be passed.

The first word in the block is made up of two bytes.
The high-order byte contains an identifier for the calling
language. For FORTRAN IV calling routines, this identifier
is zero. The low-order byte contains the number of argu-
ments ‘“‘n.” Each word that follows contains the address of
an argument. The structure of an argument block is shown
in figure 16. Before calling the subroutine, the main pro-
gram stores in register R5 the address of the first word of
the argument block.

136

Programming with RT—11

Figure 16.
Structure of an Argument Block
in FORTRAN IV Subroutine Calls

LANGUAGE

RS—1 |pENTIFIER N

ADDRESS OF ARGUMENT 1

ADDRESS OF ARGUMENT 2

ADDRESS OF ARGUMENT N

Returning Function Values

You can also write MACRO-11 subroutines that behave like
FORTRAN IV FUNCTION subprograms. The argument block
has the same structure as that of a normal subroutine, but
additional values are returned. The calling FORTRAN IV
routine looks for these return values in one or more of the
registers RO to R3. The registers examined depend upon the
type of function called. These conventions are listed in
table 6.

Using Registers

The FORTRAN IV compiler generates code that uses reg-
isters RO to R4. Your MACRO-11 subroutine may still use
these registers, because their values are saved whenever a
subroutine is called. You may use R5 in your MACRO-11
subroutine after you have referred to it to access the argu-
ment block.

Chapter 7 Using Language Interfaces

Table 6.

FORTRAN IV Function Return Conventions

Type of Function

Return Register(s)

INTEGER=*2 RO
LOGICAL=*1

LOGICAL=2

INTEGER=*4 RO (low order)
LOGICALx4

REAL R1 (high order)

DOUBLE PRECISION

RO (highest order)
R1 :

R2 :

R3 (lowest order)

COMPLEX

RO (high real)
R1 (low real)
R2 (high imaginary)
R3 (low imaginary)

137

Maintaining the Stack

The value of the stack pointer (R6) must not change after a
subroutine execution. If you use the stack to store argu-
ments or make computations as part of the execution of your
MACRO-11 subroutine, make sure that the number of stack

PUSHes equals the number of stack POPs.

Creating Common Blocks

When you use the FORTRAN IV COMMON statement to
create common blocks, the FORTRAN IV compiler gener-
ates these blocks as named .PSECTs, using the name of the
common block as the .PSECT name.

138

Programming with RT—-11

o EXAMPI.E 5

k’,k"’fThe FORTRAN IV statement ;
 " chmMUN /BUF/IA(10) IB(20)
e s equlvalent to the MACRO 11 code e
i ‘*3PSECT 'BUF, RN D, GBL REL OVR

Receiving Arguments

Your MACRO-11 subroutine must be able to locate the ar-
gument block with which it was called. The address of the
first word of the argument block is stored in R5 at the start
of execution of the subroutine. If the subroutine is to be
called by a variable number of arguments, then you must
read that number from the low-order byte of the first word
of the block.

For calling languages other than FORTRAN 1V, the
high-order byte of the first word in the argument block
may not be zero. For example, when BASIC-11 calls a
MACRO-11 routine, it places the value 202 (octal) into this
high-order byte. Each word that follows in the block con-
tains the address of an argument. Therefore, you can use
the auto-increment mode to access each argument, incre-
menting R5 each time. Figure 17 shows a MACRO-11 sub-
routine that accesses a variable number of arguments that
were passed by a FORTRAN IV routine. Each argument
points to an integer. The subroutine then returns the high-
est integer that was received, using the convention of a
FORTRAN IV FUNCTION.

Chapter 7 Using Language Interfaces 139

Figure 17.
A MACRO-11 Subroutine that Can Be Called
as a FORTRAN IV Function

.TITLE GETHST

GETHST::
mMav (RS)+,R1 sPut number of args in R1
BIC #177400,R1 ;Clear high order byte
BEQ 20% ;Exit if no arguments
mav (R5)+,R0 ;iRead 1st argument value
10$: DEC R1 ;Decrement the argument
BEQ 20¢ sBranch if no more args
mav (R5)+,R2 ;Get address of next arg
CMP RO, (R2) ;1s highest exceeded?
BGE 15¢ sBranch if not
MoV (R2),R0 ;Move new highest into RO
15¢: BR 10$;Next argument
20$: RTS PC ;Exit at end,
.END ;Return highest in RO

Calling FORTRAN IV Routines from a
MACRO-11 Program

If you are writing a MACRO-11 program, you may want to
use existing FORTRAN IV subroutines and functions rather
than rewrite them. You may also find that it is easier to write
a subroutine in FORTRAN IV than to write it in MACRO—
11. Two considerations apply:

1. You must initialize the Object Time System (OTS).

2. You must use the conventions for the passing of data
and control.

You need not initialize OTS if you are using FORTRAN IV
library routines written in MACRO-11, such as those pro-
vided in FORLIB and SYSLIB.

140

Programming with RT—-11

Initializing OTS

When you link a MACRO-11 main program with object
modules that include FORTRAN IV routines, you must make
sure that all the Object Time System (OTS) routines refer-
enced by the FORTRAN IV code are linked to the program.
The best way to do this is to write the MACRO-11 pro-
gram as a subroutine and call it from a simple FORTRAN
IV program. The FORTRAN IV program will contain only
a call without arguments to the subroutine, followed by an
END statement. This coding causes the FORTRAN IV com-
piler to reference the OTS routines automatically.

The following example shows a program MAIN.MAC
with an entry point at the symbol “START” which will be
linked to FORTRAN IV routines.

Chapter 7 Using Language Interfaces 141

You can now assemble and compile and link the mod-
ules in the usual way to produce your load image.

Conventions

Conventions similar to those discussed for the FORTRAN
IV/MACRO-11 interface apply to MACRO-11 routines that
call FORTRAN IV subroutines. Here is a summary of the
conventions that apply to the MACRO-11/FORTRAN IV
interface:

1. To call the FORTRAN IV subroutine, use the
MACRO-11 instruction:

JSR PC,subname

2. The MACRO-11 program must create an argument
block in the manner previously described and leave
R5 pointing to the first word in the block.

3. If the FORTRAN IV routine is a function, it returns
values in registers RO to R3 as discussed previously.

4. If you want the values to be kept, the MACRO-11
routine should save the registers RO to R4 before call-
ing the FORTRAN IV routine.

5. If you want to access COMMON blocks that will be
used by your FORTRAN IV routines, they must be

declared as .PSECTs in the manner previously
described.

Figure 18 shows a MACRO-11 routine that calls a
FORTRAN IV function and subroutine, using these
conventions.

142

Figure 18.

Programming with RT-11

A MACRO-11 Routine that Calls a FORTRAN IV Function
and FORTRAN IV Subroutines

LTITLE

3 GOSUB

.MACRO GOSUB SUBR,PARS

.GLOBL SUBR
Qs$P=0

.IRP X, <PARS)>
Q$P=Q$P+1

.ENDR
Qs$P=QsP+QsP+2
SUB #QssP,SP
Mav SP,RS

MOV #Q$P,(RS)+
. IRP XX, <PARS>
Mav XX, C(R5)+
.ENDR

mov SP,RS
CALL SUBR

ADD #QsP,SP
.ENDM GOSUB

;s Main Subroutine Code

START::

20$:

RVAL:
C:

GOSUB
CMPB
BEQ
GOSUB
BR
GOSUB
RTS
.FLT2
.FLT2
.END

GETVAL , #RVAL
#1,R0

20¢

RADD, ¢<#RVAL,#C>
START

ROUT, #RVAL

PC

0.0

0.0

CALLER, MACRO routine calling FORTRAN subrout.

Macro to call a high level language subroutine

sDeclare subroutine name
sinttialize arg count

;Start of loop to count args
sIncrement counter

sEnd of loop

;Byte count for arg block
;Save space on stack
;RS points to start of
;Push no. of arguments
;Start of loop to push
;Push next argument
;End of loop

;Restore RS to beg. of
sCall the subroutine
;Pop the arguments off stack
sEnd of Macro definition

block

args

block

;Call FOR func to input RVAL
3RO = 1 i f end of data

;1f end, print result, exit
;Call FOR routine to accu-
;jmulate total, and repeat

sAt end, call FOR routine

sto print total, and return
;RVAL is floating point acc
;€ is floating point overflow

BASIC—-11 Programs that Call
MACRO-11 Subroutines

To call MACRO-11 subroutines from your BASIC-11 pro-
gram, you must first assemble the subroutine with the
MACRO-11 source code of the BASIC—-11 interpreter pro-
vided in the distribution kit. You then link a new version
of the BASIC-11 interpreter that allows you to call
MACRO-11 subroutines, using the BASIC-11 CALL
statement.

Chapter 7 Using Language Interfaces 143

Using the BASIC—-11 CALL Statement

In a BASIC-11 program, Assembly Language Routines
(ALRs) are accessed using the CALL statement, which takes
the form:

CALL string-expression (argument-list)

In this statement, “string-expression’” is the name, en-
closed in quotes or stored in a string variable, of the ALR.
‘“Argument-list” is a list of variables that are to be passed
to or from the ALR. For example, assume that the BASIC—
11 interpreter has been modified so that it includes an ALR
that performs single-character input from the terminal,
without echo or carriage return. Assume that the routine has
one argument—an integer containing the byte value of the
character to be returned. You need to use the CALL state-
ment in your BASIC program to access the ALR.

EXAMPLE
The statement:
1010 CALL "GETCHA“ (C0%)

in your program places the byte value of the recelved k
, character in the variable CO% :

Modifying the BASIC Interpreter

To include a tested MACRO-11 subroutine in the BASIC—
11 interpreter, you must:

1. Insert the name of the routine in the user routine
name table in the BSCLL.MAC file. This procedure is
discussed in chapter 4 of the BASIC-11/RT-11
User’s Guide.

2. Make sure that the argument list used in your
MACRO-11 subroutine uses the same convention as

144

Programming with RT-11

that described in the user’s guide. For example, the
MACRO-11 routine must take care not to include the
high-order byte of the first word of the argument
block, when reading the number of arguments. For
BASIC-11, this high-order byte is given the value
202 (octal).

3. Assemble your routine with the MACRO-11 source
files that make up the BASIC-11 kit. This procedure
is discussed in chapter 4 of the BASIC-11/RT-11
Installation Guide.

4. Build a version of the BASIC—11 interpreter that in-
cludes support for the CALL statement. This proce-
dure is discussed in chapter 4 of the BASIC~11
/RT-11 Installation Guide.

Practice Writing a FORTRAN IV Program that Calls a MACRO-11
7—1 Subroutine

1. Write a FORTRAN IV program (PR0702.FOR) that does
the following:

a. Accepts a REAL#4 value from the terminal. If the
value is —1, the program exits. If it is less than
—32767 or more than 32767, it repeats the accept
request.

b. Calls the subroutine SUBA with the REAL*4 vari-
- able as the argument. This subroutine is written
in MACRO-11 and is listed below. It performs an
operation which may or may not divide the vari-
able by 2.

2. Then print the returned value of the variable on the
terminal using format F10.3 and go back to step 1.
Compile your program. Create the MACRO-11 subrou-
tine listed below, in file PR0701.MAC:

LTITLE PRO701
SUBA:: MOVB (RS5),R1 3Put number of arguments in R1
BEQ 208 3sExit if no arguments

Chapter 7 Using Language Interfaces 145

ST (RS)Y+ ;Point to 1st argument
10$: BIC #200,@(RS)+ ;Clear 56th bit of high order
sand increment argument pointer
DEC R1 ;Repeat to end of arqument list
BNE 108
209% RTS PC sReturn to caller
.END

3. Assemble this program using the command:
.MAC PRO0O701

4. Link your program with the subroutine, and run your
program,

Practice Writing a MACRO-11 Program that calls FORTRAN IV
7-2 Subroutines

1. Write the following FORTRAN IV INTEGER*2 function
and FORTRAN IV subroutine:

a. NINPUT. This INTEGER=*2 function takes one
REAL#4 argument. The subroutine accepts a
REAL#4 number from the terminal, giving the
prompt:

ENTER NUMBER)

It puts the number it reads into the REAL#4 func-
tion argument. If the number is —1.0, the func-
tion should return the value 1. Otherwise, the
function value should be 0.

b. NOUT. This subroutine receives a REAL#*4 argu-
ment. It prints the value of the argument on the
terminal and returns.

2. Create the following MACRO-11 program
PR0704.MAC which calls both of these routines.

.TITLE PRO0704
.GLOBL NINPUT,NOUT

146 Programming with RT-11

PR0704::M0OV #ARG,RS sPoint to argument block
JSR PC,NINPUT ;Read a floating point number
CMP RO, #1 ;Is returned value = 1
BEQ QuUIT sExit if it is
BIC #200,RVAL ;Clear 56th bit of high order
mMov #ARG,R5 sPoint to argument block
JSR PC,NOUT sPrint result
BR PR0704 ;Repeat
QUIT: RTS pPC sReturn to OTSINI
RVAL: .FLT4 0.0 sFloating point variable
ARG: .WORD 1,RVAL sArgument block
.END

The logic is the same as for practice 7—1. The main
program must be called by the following FORTRAN IV
routine PR0703.FOR to initialize OTS.

PROGRAM DTSINI
C...0TS INITIALIZATION PROGRAM FOR MACRD-11 PROGRAM
C...WHICH CALLS FORTRAN IV SUBROUTINES

CALL PRO704

CALL EXIT

END

3. Compile your subroutines and PR0703. Assemble the
MACRO-11 program using the command:

.MAC PR0704

4. Link all of the object modules together, naming the
OTS initialization file first:

.LINK PR0O703,PR0704,NINPUT,NOUT,SY:FORLIB

5. Run the program.

Practice Writing a MACRO-11 Subroutine

7-3 1. Write a MACRO-11 subroutine called SUBA, to do the

following:

Chapter 7 Using Language Interfaces 147

a. Receive any number of arguments from a pro-
gram. These arguments are .FLT4 format.

b. Clear the least significant bit of the exponent (bit
7 of the most significant word) of each argument,
and then return. (Make sure that your subroutine
will work if it is called from a program that was
not written in FORTRAN 1V.)

2. Create the FORTRAN IV program PR0702.FOR listed
below.

PROGRAM PRO702
EXTERNAL SUBA
REAL*4 RVAL
S0 TYPE 100
100 FORMAT C(’ENTER NUMBER)’$)
READ (5,#,ERR=1110,END=1000)> RVAL
IF (RVAL .EQ. -1.0) 6OTO 999
CALL SUBA (RVAL) ICALL MACRO-11 SUBROUTINE
TYPE 150,RVAL
150 FORMATC’CHANGED TO)’,F10.3)
GOTO 50 'REPEAT TILL -1.0 ENTERED
999 STOP
C...NUMBER OUT OF RANGE
1000 TYPE 1010
1010 FORMAT ¢’)
1100 TYPE 1110
1110 FORMAT (’ ?VALUE BAD OR QUT OF RANGE’)
GOTO 50 'TRY AGAIN
END

3. This program reads a REAL+*4 number from the termi-
nal and calls this subroutine. It then prints the value’
returned from SUBA and loops to get the next value. If
the number received is —1, it exits.

4. Assemble your subroutine. Compile the FORTRAN IV
program using the command:

.FORTRAN PRO702

5. Link PR0702.0B]J with your subroutine, and run the
program. ‘

148

Programming with RT-11

Practice Writing a MACRO-11 Program that calls FORTRAN IV
7-4 Subroutines

1.

Write a MACRO-11 program (PROG.MAC), which will
call subroutines written in FORTRAN IV. Also write a
FORTRAN 1V routine (OTSINI.FOR) to initialize OTS
for your program.

a.

The MACRO-11 program should call the subrou-
tine NINPUT, giving it the address of a .FLT4
variable as an argument. If, on return from the
subroutine, register RO contains 1, then exit. The
routine returns a floating point value in the argu-
ment specified.

Clear the least significant bit of the exponent of
the floating point variable (bit 7 in the most signif-
icant word).

Call the subroutine NOUT, giving it the address
of the floating point variable as an argument. This
subroutine prints the value of the variable. On re-
turn from the subroutine go back to step (a).

Create the following subroutine NINPUT as file
PR0705.FOR:

FUNCTION NINPUTC(RVAL)

C.FORTRAN FUNCTION TO ACCEPT A REAL*4 NUMBER

50
100

999

1000
1099
1100

INTEGER NINPUT

REAL*4 RVAL

DATA NINPUT/0/

TYPE 100

FORMATC’ ENTER NUMBER)‘$)
READ(5,* ,ERR=1000,END=999) RVAL
IF (RVAL .EGQG. —-1.0) NINPUT=1
RETURN

TYPE 1099

TYPE 1100

FORMAT ¢’)

FORMAT (’?VALUE BAD OR 0OUT OF RANGE’)
GOTO 50

END

Chapter 7 Using Language Interfaces

149

Create the following subroutine NOUT as file
PR0706.FOR:

SUBROUTINE NOUT(RVAL)
C...SUBROUTINE TO OUTPUT A REAL=*4 NUMBER
REAL*4 RVAL
TYPE 1000,RVAL
RETURN
1000 FORMATC ',F10.3)
END

Assemble your MACRO-11 program and compile the
OTS initialization routines PR0705.FOR and
PR0706.FOR. Link all of the object modules together,
naming the OTS initialization file first, for example:

.LINK OTSINI,PROG,PR0705,PR0706

Run the program.

Practice Using a BASIC—11 Program to Call a MACRO-11
7-5 Subroutine

1.

Create the following BASIC~11 program PR0708.BAS,
designed to call the assembly language routine SUBA
which you wrote in practice 7-3.

300 REM PRO0708.BAS

310 REM

1000 PRINT "ENTER NUMBER)";
1010 INPUT R

1020 IF R=-1 GOTO 32767
1030 CALL SUBA (R)

1040 PRINT R

1050 GOTD 1000

32767 END

Produce a new version of the BASIC—11 interpreter,
calling it MYBAS.SAV, to include the subroutine

150

Programming with RT-11

SUBA. You will have to create a new version of
BSCLI.MAC. When you do this, make a copy of
BSCLL.MAC and call it NEWBCL.MAC instead of edit-
ing the original source file.

3. Run the program PR0708.BAS. It asks you to enter a
number. If the number is —1, then the program will
exit. Otherwise it will call SUBA, passing it the num-
ber as an argument. On return it will output the num-
ber and then repeat the process.

References

RT-11 Programmer’s Reference Manual. Chapter 1 discusses in
detail the interfaces between MACRO-11 and FORTRAN IV pro-
grams and offers programming examples.

BASIC-11/RT-11 Language Reference Manual. Chapter 8 ex-
plains how to use assembly language routines with BASIC.

BASIC-11/RT-11 User’s Guide. Chapter 4 describes the use of
assembly language routines with BASIC.

BASIC-11/RT—-11 Installation Guide. Chapter 4 details the
process for installing different versions of the BASIC interpreter.

Solutions to Practices

CHAPTER 1

1-1. MACRO-11

.EDIT/CREATE PR0101.MAC
.MACRO PR0101

.MACRO/0BJECT:MESS/LIST:MESS PR0101

1-1. FORTRAN IV
.EDIT/CREATE PRO101.FOR

.FORTRAN PRO101

.FORTRAN/LIST:MESS/0BJECT:MESS PR0101

1-2. MACRO-11

.EDIT/CREATE PR0102.MAC
.EDIT/CREATE PR0103.MAC
.EDIT/CREATE PRO104.MAC

.MACRD/LIST:PR1234/0BJ:PR1234 PR0102+PR0103+PR0O104

151

152 Programming with RT-11, Volume 1

1-3. FORTRAN IV

.EDIT/CREATE PRO102.FOR
.EDIT/CREATE PRO103.FOR
.EDIT/CREATE PR0104.FOR

.FORT/LIST:PR1234/0BJ:PR1234 PR0102+PR0O103+PR0O104

1-4. MACRO-11

.MACRO PR0101/LIST/SHOW:SRC:COM:MD:MC:ME

1-5. MACRO-11
.EDIT/CREATE PR0105.MAC
.MACRO PRO105

.LINK PRO105/MAP

e

RT-11 Link (V8. 01) Load Map Friday 10-Feb-84 Page 1
(FRo105.5AY) Title: (PRO10S) Ident: b c

a d
Sectton Addr Size Global Value Global Value Global Value

001000 000032} = 13. words (RW,I,LCL,REL,CON)
f

Transfer address -mgh 1imit = (001030 = 268.) words

g h

[. ABS. 000000 00100‘)- 256. words (RW,I,GBL,ABS,0VR)

1-5. FORTRAN IV
.EDIT/CREATE PRO105.FOR
.FORTRAN PR0O105

.LINK PRO105/MAP,SY:FORLIB/LIBRARY

Solutions to Practices 153

e b

RT-11 L1nk (Vos.o01) Load Map Friday 10-Feb-84 Page 1
(PrR0105.5AY) Title: ldent: FORV02 <

a d

Section Addr Size Global Value Global Value Global Value
f

. ABS. 000000 001000) - 256. words (RW,1,GBL,ABS,0VR)
$USRSW 000000 $RF2A1 000000 $HRDWR 000000
VIR 000001 $NLCHN 000006 $WASIZ 000152
$LRECL 000210 $TRACE 004737
0TSs1 001000 013744| = 3058. words (RW,I,LCL,REL,CON)
$$0TSI 001000 0TI 001026 $$0T! 001030
$SETOP 001240 $$SET 002712 $OPNER 003206
$CHKER 003244 $IOEXI 003270 S$EOL 003336
EOLS$ 003340 IFW$ 003510 S$IFW 003514
$$IFUW 003520 IFWss 003556 MODI$SS 003626
MOL$SS 003626 MOIsSSM 003632 MOI$SSA 003636
MOI$IS 003642 MOL$IS 003642 RELS 003642
MOI$IM 003646 MOI$SIA 003652 MDISMS 003656
MOI$MM 003662 MOI$SMA 003666 MOI$0S 003672
MOI$OM 003676 MOI$0A 003702 MOI$1S 003706
MOIsiM 003714 MOIS1A 003722 ISNS$ 003730
$ISNTR 003734 LSNS$ 003750 $LSNTR 003754
RETSL 004110 RETSF 004114 RETSI 004122
RET$ 004124 S$INITI 004160 $CLOSE 004276
$ERRTB 005054 $ERRS 005161 $FCHNL 010722
$FI0 011564 $$FI0 011570 $PUTRE 012734
$PUTBL 013242 $GETBL 013452 S$EOFIL 013636
$EOF2 013652 SAVRGS 013672 THRDS 014050
$STPS 014052 STP$ 014060 $STP 014060
FOOs$ 014064 SEXIT 014104 SWAIT 014230
$VRINT 014272 $DUMPL 014574

-

0TS$P 014744 000054| = 22. words (RW,D,GBL,REL,OVR)
SYSSI 015020 000000|= 0. words (RMW,I,LCL,REL,CON)
USER$I 015020 000000| = 0. words (RW,I,LCL,REL,CON)

$CODE 015020 000032 = 13. words (RW,I,LCL,REL,CON)
$$07TSC 015020

0TS$0 015052 001140 = 304. words (RW,I,LCL,REL,CON)
$$0TSD 015052 $OPEN 015052

SYS$0 016212 000000f= 0. words (RW,I,LCL,REL,CON)

$DATAP 016212 000040| = 16. words (RW,D,LCL,REL,CON)

0TS$D 016252 000010| = 4. words (RMW,D,LCL,REL,CON)
NHCLN$ 016256

0TSs$S 016262 000002| = 1. words (RW,D,LCL,REL,CON)
$A0TS 016262

SYS$S 016264 000000|= 0. words (RW,D,LCL,REL,CON)

$DATA 016264 000000f{= 0. words (RW,D,LCL,REL,CON)

USERSD 016264 000000{= 0. words (RW,D,LCL,REL,CON)

_-$$$s8. 016264 00000@ = 0. words (RW,D,GBL,REL,OVR)

Transfer address -High limit =(016262 = 3673.) words

9 h

154

Programming with RT-11, Volume 1

CHAPTER 2

2-1. Foreground/Background Jobs
.EDIT/CREATE PR0201.MAC
.EDIT/CREATE PR0202.FOR

.MACRO PR0201

.LINK PR0201/FOREGROUND
.FORTRAN PR0202

.LINK PR0202,SY:FORLIB/LIBRARY
.SET USR NOSWAP

.FRUN PR0201

F>
PR0201-1, TEXT: “FDATA FOR FOREGROUND JOB.

B>

.“BRUN PR0202

PR0202-1, Enter your data (-1 to finish): 56

PR0202-1, Accepted data as: 56.00000

PR0202-1, Enter your data (-1 to finish): 34

PR0202-1, Accept

F>

PR0201-1, Finished processing text: DATA FOR FOREGROUND JOB.
PR0201-1, TEXT: "“FTHIS IS LINE TWO!

B>

ed data as: 34.00000

PR0202-1, Enter your data (-1 to finish): ~B-1

STOP --

F>

PR0201-1, Finished processing text: THIS IS LINE TWO!

PR0201-1, TEXT: *F
B>

F>
PR0201-1, Normal successful completion
B>

.UNLOAD F

Solutions to Practices

CHAPTER 3

155

3-1. BASIC-11

.R BASIC
BASIC-11/RT-11 V02-03
OPTIONAL FUNCTIONS C(ALL, NONE,

READY
NEW PR0301

READY

10 PRINT "WHAT IS YOUR GAME?"
20 INPUT #0,AS

30 A=SYS(4)

SAVE PR0301

READY
OLD PRO301

READY
LIST

PR0301 10-FEB-84 10:02:33
10 PRINT "WHAT IS YOUR GAME?";
20 INPUT #0,A$

30 A=SYS(4)

READY
RUN

PRO301 10-FEB-84 10:02:40
WHAT 1S YOUR GAME?"C

STOP AT LINE 20

READY
SUB 10!GAME!NAME
10 PRINT "WHAT IS YOUR NAME?"

READY ‘
COMPILE PR0O301

READY
BYE

.R BASIC
BASIC-11/RT-11 V02-03
OPTIONAL FUNCTIONS C(ALL, NONE,

READY
RUN PRO301
WHAT 1S YOUR NAME?A.N. OTHER

OR INDIVIDUAL)? A

DR INDIVIDUAL)? A

156

Programming with RT-11, Volume 1

CHAPTER 4

4-1. MACRO-11

.EDIT PR0403.MAC

LTITLE
.MACRO
.PSECT
.88,
.ASCII
.PSECT
.WORD

.ENDM

.MCALL
.GLOBL

MTAB:: MONTH

MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH
MONTH

START: MOV
PRINT
Mav
MoV

LOOP: .PRINT
.GTLIN
mMav
JSR
MOV
CMP
BEQ
CLR
DIV

BADVAL: MOVB
SOB
Mov
JSR
JEXIT

INTRO: .ASCII
.ASCII
.ASCI1
.ASCI1
.ASCIZ
PROMPT: .ASCIZ
VALUE: .BLKB
HEIGHT: .BLKB
INB: .BLKB
VAL: .BYTE
.EVEN
.END

PR0403 Debugging Exercise

MONTH, NAME
MOVNAM

/NAME/<200>

.45,

PRINT, .EXIT,
CNVSTR,HISPRT

JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
acT
NOV
DEC

#MTAB,R2
#INTRO
#12.,R3
#HEIGHT,R4
(R2)+

#1NB, #PROMPT
#1NB,R5
PC,CNVSTR
RO,R1
#-1,,R0
BADVAL

RO

#5,R0

RO, (R4)+
R3,LO0P
#HEIGHT,RS
PC,HISPRT

sMacro to set up month table

sEach entry points to string
;This is the string

;This is the space for entry

.GTLIN

;Declare subroutines

sBuild months table

;Get address of months table
sPrint introductton
sInttialize month loop

;G6et address of heights table
;Mth part of prompt for month
;6et decimal number string
;Get address of input buffer
;Convert string to binary

3 ** Copy returned value (DIV)
sCheck returned value for -1
;1f so branch past height calc
3 ** Clear high order of value
;Convert value to height
;Place height in height table
sBranch for next month

;Pass address of height table
;0utput the histogram

/THIS PROGRAM PRINTS A HISTOGRAM FROM 12 /
/MONTHLY VALUES./<15>¢<12>

/THE MONTHS ARE JANUARY TO DECEMBER./<15><12>
/PLEASE ENTER YOUR TWELVE VALUES:/

/THEY MUST BE IN THE RANGE 0 TO 100/

/s /<200>
12.%4,
12.

81.

-1.

START

Solutions to Practices

-MACRD PR0403,PR0404,PR0405

.LINK/EXEC:HISTO PR0503,PR0404,PR0405

.RUN HISTO

THIS PROGRAM PRINTS A HISTOGRAM FROM 12 MONTHLY VALUES.

THE MONTHS ARE JANUARY TO DECEMBER.

PLEASE ENTER YOUR TWELVE VALUES: THEY MUST BE IN THE RANGE 0 TO
BAD
100

JAN:
FEB:
MAR:
APR:
MAY:
JUN:
JuL:
AUG:
SEP:
acT:
NOV:
DEC:

1001
-1
901
-1
80!
-1
701
-1
601
-1
S01i
-1
408
-1
308
-1
201
-3
101
-1

a0
80
70
60
50
40
30
20
10
0

L2 44
re s
‘e
s
s
L2 L4
ree
res
rae
14
res
rae
res

e
ras
s
s
rae
rre

ree
ey
res
L4
rrey
rer
re
ree
#re
#re
ree
yre
s

rse

e
ree
ey
ree
rae

re s

‘s

ree

srs

res

JAN

FEB

NOV DEC

100

157

158 Programming with RT-11, Volume 1

4-1. FORTRAN IV

.EDIT PR0404.FOR

R R Ry YY)
C

DEBUGGING AND FAILURE ANALYSIS

PRACTICE 4-1, PR0404.FOR

c
c
[
c
R R Ry Y Y
Cc

FUNCTION CNVSTRC(STRING)

BYTE STRING(8),CURCHA

INTEGER POINTA,DIGIT

REAL CNVSTR,DIV

BAD VALUES ARE SET TO -1.0
VALUES OUT OF RANGE ARE TREATED AS BAD

OO0 000

INITIALIZE RETURN VALUE AND POINTER INTOD STRING

CNVSTR=0.0
POINTA=1

(2]

C PROCESS EACH CHARACTER, STRING IS TERMINATED BY SPACE OR LENGTH=8

10 IF (POINTA .GT. 8) GD TO 100
CURCHA=STRING(POINTA)
IF (CURCHA .EQ. * ‘> GO TO 100 ! ** CORRECTION (GT --> EQ)
IF (CURCHA .GT. ‘9> GO TO 50
IF C(CURCHA .LT. ‘0‘) GO TO 50
DIGIT=CURCHA-‘0"’
CNVSTR=C10.0*CNVSTR)+DIGIT

POINTA=POINTA+1
GO TO 10

S0 IF CCURCHA .NE. ’.’) GO TO 200
DIV=1.0

75 POINTA=POINTA+1
IF (POINTA .GT. 8) GO TO 100
CURCHA=STRING(POINTA)
IF (CURCHA .GT. * “)> GO TO 100
IF (CURCHA .GT. ‘97> GO TO 200
IF C(CURCHA .LT. ‘0°> GO TO 200
DIV=DIV*10.0
DIGIT=CURCHA-’0"
CNVSTR=CNVSTR+DIGIT/DIV

G0 TO 75
c
C BRANCH TO HERE AT END OF STRING PROCESSING
C ~-mmmmmmmmccecccmemeccmcmmmmm—————— e ————
100 IF (CNVSTR .GT. 100.0) GO TD 200
RETURN
c
C BRANCH TO HERE IF VALUE IS BAD
C ~-mmmmmmmeccccccrecmmcm———————
200 CNVSTR=-1.0
RETURN

END

Solutions to Practices

.FORTRAN PR0403,PR0404,PR040S

.LINK PR0403,PR0404,PR0405,SY:FORLIB/LIBRARY

.RUN PRO403

THIS PROGRAM PRINTS A HISTOGRAM FROM 12 MONTHLY VALUES.

THE MONTHS ARE JANUARY TO DECEMBER.

PLEASE ENTER YOUR TWELVE VALUES: THEY MUST BE IN THE RANGE 0 TO
BAD
100

JAN:
FEB:
MAR:
APR:
MAY:
JUN:
JUL:
AUG:
SEP:
0cT:
NOV:
DEC:

1008
-1
20!
-1
801
-1
70¢
-1
60!
-1
50¢
-1
401!
-1
301
-1
201
-1
101
-1

0
80
70
60
S0
40
30
20
10
0

e

s

s

e

s
o
rre
s
re
ras
s
rae
e
rrs
‘e
e
e

e
e
e
s
ey
res
res
ey

ree

JAN

FEB

NOV DEC

159

160

Programming with RT-11, Volume 1

4-1. BASIC-11

.R

BASIC

BASIC-11/RT-11 V02-03
OPTIONAL FUNCTIONS C(ALL, NONE, OR INDIVIDUAL)? A

READY
OLD PR0403

READY
SUB 340!'1)!1%)

340

REA
LIS

PRO
10
20
30
40
50
60
70

HXCIZ)=FNAXCVZCIZ)) \ NEXT IX

DY
T

403 10-FEB-84 15:34:18

REM [ZEZ R 2 S R E R R A R R A R R R R A R E R R R EE R E R E R A R E R R R EEEEEERNEREZEE RS RS RS R R X 3
REM
REM DEBUGGING AND FAILURE ANALYSIS
REM
REM PRACTICE 4-1, PR0403.BAS
REM
REM AR R R R R E R R R R R R RS R R R A R R R R R R R R R R R R R R R R R L R R R R R R E X A RS SRR R E X 2
REM

REM INITIALIZE VARIABLES AND ARRAYS

REM ===ssssssszzsszsasssxssssnmsnnsx

DIM Vv(12%)

DIM M$C12%)

DIM HZC12%)

REM

REM MAIN PROGRAM LOGIC

REM IZEEEZZXRZEEREEERR X 3

REM

REM READ MONTH STRINGS INTO ARRAY

REM ==ssszsssssssssssssssssssssss

FOR I%=1X TO 12% \ READ M$CIX) \ NEXT IX

REM

REM PRINT INSTRUCTIONS

REM s=sszszsssssssssazxzs

PRINT "THIS PROGRAM PRINTS A HISTOGRAM FROM 12 MONTHLY VALUES."
PRINT "“THE MONTHS ARE JANUARY TO DECEMBER.*®

PRINT “PLEASE ENTER YOUR TWELVE VALUES: THEY MUST BE IN THE RANGE 0 TO 100"
REM

REM ACCEPT VALUES AS STRINGS, PROMPTED BY THE MONTH

REM ==sssssssssssssssssssssns s nnnssasnsanaanunnnn

FOR IX=1%X TO 12X \ PRINT M$CIX)*": "; \ LINPUT #0X,V$ \ GOSUB 10000
REM

REM CONVERT EACH VALUE INTO A HEIGHT INTEGER

REM ss==ssussssssssssssssssssssannnnaxxnnans

HXCIX)=FNAXCVCIZ)) \ NEXT IX

REM

REM DISPLAY HISTOGRAM

REM sssssassszssssx=s

GOSUB 11000

REM

REM END OF MAIN PROGRAM LOGIC

REM ##esscnsarrssesssssnnnnny

GO 70 32767

Solutions to Practices 161

10000 REM

10010 REM SUBROUTINE TO CONVERT STRING INTO A REAL NUMBER

10020 REM =s=wsucssssssssssncssssssnasssssssssnnnnnnnannns

10030 REM BAD VALUES ARE SET TO -1.0

10040 REM VALUES OUT OF RANGE ARE TREATED AS BAD

10050 VCIX)=0%

10060 LX=LEN(V$) \ F$=SEGS(VS$,1X,1X) \ IF F$<>"" THEN V$=SEG$(VS,2%,L%)
10070 IF F$="" THEN 10180

10080 IF F$>"9" THEN 10110

10090 IF F$¢"0" THEN 10110

10100 VCIX)=10*V(IX)+VAL(F$) \ GO TO 10060

10110 IF F$<>"." THEN V(IX)=-1 \ GO TO 10180

10120 D=1

10130 D=D*10 \ LX=LENCVS$) \ F$=SEG$(VS,1%,1%X) \ IF F$<>"" THEN V$=SEGS$(VS,2X,L%)
10140 IF F$="" THEN 10180

10150 IF F$>"3" THEN V(I%)=-1X \ GO TO 10180

10160 IF F$<*"0*" THEN V(I%)=-1X \ GO TO 10180

10170 VCIX)=V(IX)+VALC(F$)/D \ GO TO 10130

10180 IF VCIZ)>100 THEN V(IX)=-1

10190 RETURN

11000 REM

11010 REM PRINT HISTOGRAM

11020 REM ==s==zsz=zcxszens

11030 PRINT \ PRINT \ PRINT

11040 FOR IX=20% TO 1% STEP -1X%

11050 I$=STR$CIX*S) \ IF [%<20X%X THEN I$=" "+]$

11060 IF 2X*(IX%/2X%)=1X THEN PRINT I$; \ GO TO 11080

11070 PRINT » -%;

11080 PRINT v,

11090 FOR JX=1X% TO 12%

11100 IF HX(J%)=IX THEN PRINT * ###v; \ HXC(JX)=HX(JXI-1% \ GO TO 11140
11110 IF IX<>1% THEN 11130

11120 IF HX(JX)=-1X THEN PRINT * BAD"; \ GO TO 11140

11130 PRINT * "

11140 NEXT J%Z \ PRINT \ NEXT I%

11150 PRINT "™ 0+*; \ FOR IX=1X% TO 12% \ PRINT "----"; \ NEXT IX \ PRINT
11160 PRINT * ®; \ FOR IX=1X TO 12X \ PRINT "™ ";M$CI%); \ NEXT IX \ PRINT
11170 RETURN

15000 REM

15010 REM FUNCTION TO CALCULATE HEIGHT

15020 REM ======szssssssxsssssssssccun

15030 DEF FNAXCX)=INT(X*20/100)

20000 REM

20010 REM DATA DECLARATION FOR MONTH STRING ARRAY

20020 REM =sssmszssssssssssusssssssssssunsssnnnxs

20030 DATA JAN,FEB,MAR,APR,MAY, JUN, JUL,AUG,SEP,DCT,NOV,DEC

32000 REM

32010 REM END OF PROGRAM

32020 REM ==smsssszzz=sx

32767 END

162 Programming with RT—11, Volume 1

READY
RUN

PR0403 10-FEB-84 15:34:47

THIS PROGRAM PRINTS A HISTOGRAM FROM 12 MONTHLY VALUES.
THE MONTHS ARE JANUARY TO DECEMBER.

PLEASE ENTER YOQUR TWELVE VALUES: THEY MUST BE IN THE RANGE 0 TO
JAN: BAD

FEB: 100

MAR: 90

APR: 80

MAY: 70

JUN: 60

JUuL: 50

AUG: 40

SEP: 30

0CT: 20

NOV: 10

DEC: 0

1008 44
-1 ere
901 rrs 20y
-1 ree sre
801 sre 200 2as
-1 24 #0E SN
701 I 20 208 20y
-1 AR HEE 20F Han
601 FEE IEE SEE NE 4
-1 PEE BEE BEF KB 40N
5014 PRE T BEE REE RPN
-1 FED HOE BEE BEE RN N
401 HEE BEE REN KRE RBE HEE W22
-1 FEE NGO BEE REE RIE HES 08
301 BRE BEE BEN REE REE FEE XEF P
-1 FEE FEE NEE HEE NN KRN KPP 00
201 REE FEE BEX BN QRN NES PN RR s
-1 QOE BEIE NEE BEE DT RS NP HEP M
1014 HEE HEE BOE REE BRI RRE RER REN NEE K
-1 FEE BET RN NI BT NEE SR RSP RS K

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

READY
REPLACE PR0403

READY

Solutions to Practices 163

CHAPTER 5

5-1. FORTRAN IV

.EDIT/CREATE PR0O501.FOR

.EDIT/CREATE PR0OS02.FOR

.EDIT/CREATE PR0503.FOR

.EDIT/CREATE PR0504.FOR

.FORTRAN PRO501,PR0502,PR0503,PR0504

.LIBRARY/CREATE TEXLIB PR0502,PR0503

.LIBRARY TEXLIB PR0S04/INSERT

.LIBRARY/LIST:TT: TEXLIB

.LINK PROSO1,TEXLIB/LIB,SY:FORLIB/LIB

.RUN PROS01

Dear Mr Griffiths,

During our last quarter, our records showed that you owed us
16.27.

We have been expecting your payment since July 10th 1977.
Accordingly we sent you a letter of invoice at that time.
Regrettably this was an error on our part.

PLEASE SEND THE MONEY STRAIGHT AWAY.

Yours sincerely,

A.N. Other (Manager)

.EDIT PROS04.FOR

.FORTRAN PR0S504

.LIBRARY TEXLIB PR0S04/REPLACE

.LINK PROS01,TEXLIB/LIB,SY:FORLIB/LIB
.RUN PRO501

Dear Mr Griffiths,

During our last quarter, our records showed that you owed us

164 Programming with RT-11, Volume 1

16.27.

We have been expecting your payment since July 10th 1977.
Accordingly we sent you a letter of invoice at that time.
Regrettably this was an error on our part.

PLEASE ACCEPT OUR APOLOGIES.

Yours sincerely,

A.N. Other (Manager)

5-2. MACRO-11

.EDIT/CREATE PR0505.MAC

.EDIT/CREATE PR0S06.MAC

.EDIT/CREATE PRO0S07.MAC

.EDIT/CREATE PROS08.FOR

.LIBRARY/MACRO/CREATE PRMACS PR0506,PR0507
.MACRO/0BJECT:PR0505 PRMACS/LIBRARY+PROS0S

.FORTRAN PROSO08

.LINK PR0508,PR0S505,TEXLIB,SY:FORLIB

.RUN PROS08

Dear Mr Griffiths,

During our last quarter, our records showed that you owed us
16.27.

We have been expecting your payment since July 10th 1977.
Accordingly we sent you a letter of invoice at that time.
Regrettably this was an error on our part.

PLEASE ACCEPT OUR APOLOGIES.

Yours sincerely,

A.N. Other (Manager)

Solutions to Practices

CHAPTER 6

165

6-1. MACRO-11

.MACRO PR0403,PR0404,PR0405

.R LINK
*HISTO,HISTO=PR0403//
*PR0404/0:1
*PR0405/0:1//

L2l
RT-11 LINK V08.01 Load Map Friday 10-Feb-84 11:10
HISTO .SAV Title: PR0403 Ident:

Section Addr Size Global Value Global Value Global

. ABS. 000000 001000 = 256. words (RW,I,GBL,ABS,0VR)
.OHAND 000000

$0HAND 001000 000106 = 3S. words (RW,I,GBL,REL,CON)
$OVRH 001002 O$READ 001024 O$DONE
$0DF1 001102 $0DF2 001104

$OTABL 001106 000034 = 14. words (RW,D,GBL,REL,OVR)

001142 000626 = 203, words (RW,I,LCL,REL,CON)

MTAB 001142

MOVNAM 001770 000060 = 24, words (RW,I,LCL,REL,CON)

Segment size = 002050 = 532. words

Overlay region 000001 Segment 000001
002052 000126 = 43. words (RW,I,LCL,REL,CON)

CNVSTR 002052

Segment size = 000126 = 43. words

Overlay region 000001 Segment 000002
002052 000376 = 127, words (RW,I,LCL,REL,CON)

HISPRT 002052

Segment size = 000376 = 127. words

Transfer address = 001172, High limit = 002446 = 659, words

6-1. FORTRAN IV

.FORTRAN PR0403,PR0404,PR040S

.R LINK
*HISTO,HISTO=PR0403,SY:FORLIB//
*PR0404/0:1

*PR0405/0:17/

L3l o}

Page 1

Value

001036

166

Programming with RT-11, Volume 1

RT-11 LINK VO08.01 Load Map

HISTO .SAV Title: .MAIN.
Section Addr Size Global

. ABS. 000000 001000 = 256.
$USRSW
.OHAND
$WASIZ

$OHAND 001000 000106 = 3S.
$OVRH
$ODF 1

$OTABL 001106 000034 = 14.

0TSs$1I 001142 017752 = 4085.
$$0TS1
$CVTCB
$CVTDI
CLCs
CIF$
CILS
DIF$MS
DIF$SS
MUF $MS
MUF $SS
$$0T1
$INITI
BLES
BGES
BLTS
$CLOSE
CMF$1S
$CMR
CMFS$II
CMF $MP
CMF$PM
CMF$SM
ERRS
$0PNER
$EOL
$ERRS
$F10
MOF $PS
MOF $RA
$TTYIN
ADI$SM
ADISIM
ADI$MM
CMIS$SM
CMI$IM
CMISMM
$SIFR
$IFW
ILWS
$TVS
MOI$SM
MOL$1S
MOISIA
MOI$MA
MOIS0A
MOI$1A

Ident:

Value

words

000000
000000
000152
words

001002
001102
words

words

001142
001156
001156
001170
001200
001312
001324
001354
001646
001676
002236
004414
004554
004566
004576
004644
005442
005462
005510
005532
005556
005576
006012
006064
006214
006473
013102
014264
014306
014372
014562
014576
014612
014626
014642
014656
014672
014752
015064
015212
016030
016040
016050
016064
016100
016120

Friday 10-Feb-84 11:13

FORVO02

Global

Value

Global

(RW,I,GBL,ABS,0VR)

$RF2A1
VIR
$LRECL

000000
000001
000210

$HRDWR
$NLCHN
$TRACE

CRW,1,GBL,REL,CON)

O$READ
$0DF2

001024
001104

0$DONE

(RW,D,GBL,REL,OVR)
C(RW,I,LCL,REL,CON)

$CVTFB
$CVTCI
cIcs
CLDS$
CLF$
cLIs
DIF$IS
$DVR
MUF$1S
$MLR
$SETOP
NMI$ 1M
BEQ$
BRA$
cAls
CMF $PS
$CMPF
CMF$PI
CMF$SI
CMF$IP
CMF $MM
$DUMPL
SEND
$CHKER
EOLS
EXIT
$$F10
MOF $RS
MOF $RP
ADI$SS
ADISIS
ADI $MS
CMI$SS
CMISIS
CMI$MS
IFRS$
IFRS$
$SIFW
$ILW
MOI$SS
MOIS$SA
RELS
MDI$MS
MO1$0S
MOIs1S
ICI$S

001142
0011586
001170
001170
001200
001316
001334
001354
001656
001676
002446
004532
004556
004570
004606
005422
005450
005474
005514
005542
005562
005630
006024
006122
006216
012234
013106
014270
014312
014582
014566
014602
014616
014632
014646
014662
014724
014756
015070
016024
016034
016040
016054
016070
016104
016126

$CVTFI
$CVTDB
CiDs$
$DI
$RI
DIF$PS
$DIVF
MUF$PS
$MULF
$0T1
$$SET
NMI$11
BGTS
BNES
CALS
CMF $MS
CMF$SS
CMF$MI
CMF$PP
CMF$SP
CMF$IM
END$
$ERR
$I1DEXI
$ERRTB
$FCHNL
MOF $MS
MOF $RM
$GETRE
ADI$SA
ADISIA
ADIS$MA
CMIsSI
CMIsII
CMIsMI
$IFR
IFWs
1FUsS
TVSS$
MOL$SS
MOI$IS
MOIS$IM
MOI$MM
MOI$OM
MOI$1M
ICIsM

Page 1

Value

000000
000006
004737

001036

001142
001156
001170
001170
001200
001320
001342
001642
001664
002234
004120
004544
004564
004574
004614
005426
005462
005500
005526
005546
005572
006000
006042
006146
006366
012240
014252
014276
014316
014556
014572
014606
014622
014636
014652
014666
014746
015014
015210
016024
016040
016044
016060
016074
016112
016132

Solutions to Practices

RT-11 LINK VO08.

HISTO .SAV

0TSsP 021114
SYS$1 021170
USERS$I 021170
$CODE 021170

0TS$0 021676

SYS$0 023036
$DATAP 023036
OTS$D 023346

0TSss 023356

SYS$S 023360
$DATA 023360
USER$D 023600
.$$$s. 023600
Segment size =

Overlay region
oTss1 023602

01
Title:

000054
000000
000000
000506

001140

000000
000310
000010

000002

000000
000220
000000
000000
023600

000001
001134

Load Map
-MAIN.

ICIsP
DCIsM
MOISIP
MOIsMP
MOISPA
ISNS$
$LSNTR
MOL $MS
MOLS$SP
MOL$PM
MOLSIM
$PUTRE
RETSI
$GETBL
SAVRGS
STP$
$SEXIT
TVLS
$TVF
TvVGS
$TVP
SWAIT
SAF$SM
SAF $MM
SAIS$SM
SAIS$MM
SAL$SM
SAL$MM
= 22.
= 0.
= 0.
= 163.
$$0TSC
= 304.
$$0TSO
= 0.
= 100.
= 4.
NHCLNS$
= 1.
$AOTS
= 0.
= 72.
= 0.
= 0.
= 5056.

Segment
= 302.

ADF$IM
SUF $MM
SUF$SM
$CVTIC
CDIs

CFIs$

ADF $PS
ADF $MS

Ident:

016136
016180
016162
016176
016222
016246
016272
016436
016456
016500
016520
016544
017064
017332
017552
017740
017764
020232
020240
020254
020262
020424
020772
021024
021036
021056
021070
021104
words
words
words
words
021170
words
021676
words
words
words
023352
words
023356
words
words
words
words
words

000001
words

023602
023620
023646
023706
023720
023734
024026
024050

167

Friday 10-Feb-84 11:13 Page 2

FORV02

ICIs$A
DCIsP
MO1$SP
MOI$PS
MOIs$OP
$ ISNTR
MOL$SM
MOL $MM
MOL$PP
MOL $PS
MOLSIA
RETSL
RETS
$EOFIL
THRD$
$STP
$0TIS
$TVL
TVDS
$TVQ
TVIS
$VRINT
SVF$IM
SVF$MM
SVISIM
SVIsMM
SVLS$IM
SVL$MM

016140
016154
016164
016206
016230
016252
016426
016446
016464
016506
016526
017052
017066
017516
017730
017740
020110
020232
020246
020254
020270
020466
021002
021030
021044
021062
021074
021110

DCIsS
DCIs$A
MOIS$PP
MOIS$PM
MOIS1P
LSN$
MOL$SA
MOL $MA
MOL $MP
MOL$PA
MOLS$IP
RETSF
$PUTBL
$EOF2
$STPS
FOOs$
$$0TIS
TVFs
$TVD
TVPS
$TVI
SAF$IM
SVF $SM
SAISIM
SVIS$SM
SALSIM
SVL$SM

(RW,D,GBL,REL,OVR)
(RW,I,LCL,REL,CON)
C(RW,1,LCL,REL,CON)
C(RW,I,LCL,REL,CON)

(RW,I,LCL,REL,CON)
$OPEN 021676

C(RW,I,LCL,REL,CON)
(RW,D,LCL,REL,CON)
C(RW,D,LCL,REL,CON)

(RW,D,LCL,REL,CON)
(RW,D,LCL,REL,CON)
(RW,D,LCL,REL,CON)

(RW,D,LCL,REL,CON)
(RW,D,GBL,REL,QVR)

(RW,I,LCL,REL,CON)

ADF$PM
ADF $MM
ADF$SM
$CVTID
$IC

$IR

SUF$PS
SUF$IS

023610
023632
023652
023706
023720
023734
024032
024060

SUF$PM
SUF$IM
$CVTIF
CCIs
$1D
ADF$1IS
SUF $MS
$ADDF

016144
016156
016172
016214
016236
016266
016432
016452
016470
016512
016534
017056
017122
017532
017732
017744
020112
020240
020246
020262
020270
020770
021004
021034
021046
021066
021076

023614
023642
023672
023720
023720
024020
024036
024066

168 Programming with RT—11, Volume 1

RT-11 LINK VO08.01

HISTD .SAV
SYSS$1I 024736
USERS$I 024736
$CODE 024736
0TSs0 025460
SYSsO 025460
$DATAP 025460
aTSssD 025512
0TSsS 025512
SYS$S 025512
$DATA 025512
USER$D 025532
Segment size =

Overlay region
0TSs!1 023602
SYS$I 024570
USERS$I 024570
$CODE 024570
0TSs0 025470
SYSs$0 025470
$DATAP 025470
0TS$D 025710
0TS$S 025710
SYS$S 025710
$DATA 025710
USER$D 025732
Segment size =

Transfer

address = 021170, High limit = 025730 = S612.

Title:

000000
000000
000522

000000
000000
000032
000000
000000
000000
000020
000000
001730

000001
000766

000000
000000
000700

000000
000000
000220
000000
000000
000000
000022
000000
002130

Load Map
.MAIN. Ident:
$SUBF 024102
ADF$SS 024120
MOF$SM 024560
MOF$IP 024606
MOF$O0P 024630
SUI$SM 024644
SUI$IM 024660
SUISMM 024674
SALSIP 024710
SVL$SP 024720
= 0. words
= 0. words
= 169. words
CNVSTR 024736
= 0. words
= 0. words
= 13. words
= 0. words
= 0. words
= 0. words
= 8, words
= 0. words
= 492. words
Segment 000002
= 251. words
DII$PS 023602
DII$SS 023616
ICIS 023734
1C0$ 024136
CMISMP 024344
CMISPI 024366
NMISMI 024440
NPI$SMI 024462
SAF$SP 024474
SAF$MP 024526
SAI$SP 024540
SAISMP 024560
= 0. words
= 0. words
= 224. words
HISPRT 024570
= 0. words
= 0. words
= 72. words
= 0. words
= 0. words
= 0. words
=9, words
= 0. words
= 556. words

Friday 10-Feb-84 11:13
FORVO02

SUF$SS 024114 $SBR
$ADR 024120 ADDS$
MOF$SP 024570 MOF$IM
MOF$OM 024614 MOF$0A
SUI$SS 024634 SUISSA
SUI$IS 024650 SUISIA
SUISMS 024664 SUISMA
CMLS$SMI 024700 CMLS$SI
SAL$SP 024712 SVLS$IP
SALSMP 024726 SVLS$MP

C(RW,I,LCL,REL,CON)
C(RW,I,LCL,REL,CON)
(RW,I,LCL,REL,CON)

C(RW,TI,LCL,REL,CON)
(RW, I,LCL,REL,CON)
C(RW,D,LCL,REL,CON)
C(RW,D,LCL,REL,CON)
(RW,D,LCL,REL,CON)
C(RW,D,LCL,REL,CON)
(RW,D,LCL,REL,CON)
C(RW,D,LCL,REL,CON)

C(RW,I,LCL,REL,CON)

DIIs$MS 023610 DIIS$IS
$DVI 023616 O0OCIs$
$ECI 023750 0OCOs$
CMI$IP 024334 CMIS$SP
CMISPP 024354 CMISPS
CMISPM 024374 NMISII
NMISPI 024446 NPISII
NPISPI 024466 SAFS$IP
SVF$IP 024504 SVFS$SP
SVF$MP 024532 SAISIP
SVI$IP 024546 SVIS$SP
SVISMP 024564

C(RW,T,LCL,REL,CON)
(RW,I,LCL,REL,CON)
C(RW,I,LCL,REL,CON)

C(RW, I,LCL,REL,CON)
C(RW,I,LCL,REL,CON)
C(RW,D,LCL,REL,CON)
(RW,D,LCL,REL,CON)
(RW,D,LCL,REL,CON)
(RW,D,LCL,REL,CON)
(RW,D,LCL,REL,CON)
C(RW,D,LCL,REL,CON)

words

Page 3

024114
024134
024574
024624
024640
024654
024670
024702
024716
024732

023614
023726
024130
024336
024360
024402
024456
024472
024506
024536
024550

Solutions to Practices 169

CHAPTER 7

7-1. FORTRAN IV

.EDIT/CREATE PR0702.FOR
PROGRAM PRO702
C...READ A REAL*4 NUMBER, CALL SUBA AND PRINT RESULT
C...SUBA IS WRITTEN IN MACRO-11
EXTERNAL SUBA
REAL*4 RVAL
50 TYPE 100
100 FORMAT (’ ENTER NUMBER>’,$)
READ (5,*,ERR=1100,END=1000) RVAL
IF (RVAL .EQ. -1.0) GOTO 999
CALL SUBA(CRVAL) 'CALL MACRO-11 SUBROUTINE
TYPE 150,RVAL
150 FORMAT ¢’ CHANGED TO>’,F10.3)
GOTO SO 'REPEAT TILL -1.0 ENTERED
999 STOP
C...NUMBER OUT OF RANGE
1000 TYPE 1010
1010 FORMAT ¢)
1100 TYPE 1110
1110 FORMAT ¢’ ?VALUE BAD OR OUT OF RANGE’)
GO0TO 50 'TRY AGAIN
END

.FORTRAN PRO702

.EDIT/CREATE PR0701.MAC

.MACRO PRO701

.LINK PR0O702,PR0701,SY:FORLIB/LIB
.RUN PRO702

ENTER NUMBER>123

CHANGED TO»> 61.500
ENTER NUMBER>1

CHANGED TO»> 0.500
ENTER NUMBER>2
CHANGED TO» 2.000

ENTER NUMBER>-1

STOP --

170

Programming with RT-11, Volume 1

7-2. FORTRAN IV

.EDIT/CREATE NINPUT.FOR
FUNCTION NINPUTC(RVAL)
C...FORTRAN FUNCTION TO ACCEPT A REAL*4 NUMBER
INTEGER NINPUT
REAL*4 RVAL
DATA NINPUT/O0/
50 TYPE 100
100 FORMAT (’ ENTER NUMBER>‘$)
READ (5,*,ERR=1000,END=999) RVAL
IF (RVAL .EQ. -1.0)> NINPUT=1
RETURN
9399 TYPE 1099
1000 TYPE 1100
1099 FORMAT ¢’)
1100 FORMAT (¢’ ?VALUE BAD OR 0OUT OF RANGE’)
GaTo 50
END

.EDIT/CREATE NOUT.FOR
SUBROUTINE NOUT(RVAL)
C...SUBROUTINE TO OUTPUT A REAL*4 NUMBER
REAL*4 RVAL
TYPE 1000,RVAL
RETURN
1000 FORMAT ¢ 7,F10.3)
END

.EDIT/CREATE PR0704.MAC

.EDIT/CREATE OTSINI

.FORTRAN NINPUT,NOUT,OTSINI

.MAC PR0704

.LINK PR0703,PR0704,NINPUT,NOUT,SY:FORLIB

.RUN PR0703
ENTER NUMBER>123
61.500

ENTER NUMBER>1
0.500

ENTER NUMBER>2
2.000

ENTER NUMBER>-1

Solutions to Practices

7-3. MACRO-11
.EDIT/CREATE SUBA.MAC
.TITLE SUBA
SUBA:: MOVB (R5),R1
BEQ 20s
TST (RS)+
108: BIC #200,@(R5)+
DEC R1
BNE 108
20s: RTS PC
END

.EDIT/CREATE PRO702.FOR

.MAC SUBA

.FORTRAN PRO702

.LINK PR0O702,SUBA,SY:FORLIB/LIB

.RUN PRO702
ENTER NUMBER>123

CHANGED TO»> 61.500
ENTER NUMBER>1
CHANGED TO> 0.500
ENTER NUMBER>2
CHANGED TO» 2.000

ENTER NUMBER>-1

STOP --

7-4. MACRO-11

.EDIT/CREATE PROG.MAC
.TITLE PROG
.GLOBL NINPUT,NOUT

PROG:: MOV #ARG,RS
JSR PC,NINPUT
CMP RO, #1
BEQ QuUIT
BIC #200,RVAL
mav ARG, RS
JSR PC,NOUT
BR PROG

QUIT: RTS PC

RVAL: FLT4 0.0

ARG: .WORD 1,RVAL
.END

.EDIT/CREATE OTSINI.FOR
PROGRAM OTSINI
CALL PROG
CALL EXIT
END

171

Get number of arguments
Branch if no arguments

Point to 1st argument

Clear S6th bit of high order
Repeat to end of list

s Return to caller

;Point to argument block
sRead a real number

3Is returned value = 1
sExit 1f 1t is

;Clear 56th bit of high order
;Point to argument block
sPrint result

;Repeat

sReturn to OTSINI
;Floating point variable
;jArgument block

172 Programming with RT—11, Volume 1

.EDIT/CREATE PR070S

.EDIT/CREATE PR0O706

.MACRO PROG

.FORTRAN OTSINI,PR0705,PR0706

LINK/EXEC:PROG OTSINI,PROG,PR0705,PR0706,SY:FORLIB/LIB

.RUN PROG
ENTER NUMBER>123
61.500
ENTER NUMBER>1
0.500
ENTER NUMBER>2
2.000
ENTER NUMBER>-1

7-5. NEWBCL.MAC

.TITLE BSCLI
. IDENT 7000008/ ;Copyright (c¢) 1974, 1975, 1976
;by Digital Equipment Corporation

ROOT

.GLOBL FTABI,BKGI

.GLOBL SUBA
FTABI: .WORD FTBL
FTBL: .WORD SUBNM

.WORD 0
SUBNM: .BYTE 4

.ASCII "suBa“

.EVEN

.WORD SUBA
BKGI: .WORD 0

** Modification for practice

we

** Modification for practice

e

** Modifications for practice

** End of modifications

Command to Reassemble Root of Interpreter
.MACRO/OBJECT :NEWBCL BSMAC+BSASM+NEWBCL
Replies to SUCNFG Program

MYBAS

Y

NEWBCL

SUBA

Index

Absolute binary image, 34-36
Addresses, gaining access to, 85-86
ALLOCATE, 18, 39, 40
ALPHABETIZE, 39
Arguments:

passing, 135-136

receiving, 138-139
Assembly Language Routines

(ALRs), 143

;B, 88
*$B, 86
Background program code, gaining
access to, 79-82
Background programs, enabling de-
bugging aids, 83-84
\ (backslash) command, 89
Base address, 38, 85-86
BASIC command, 61
BASIC programs, 59-72
creation of, 61
editing of, 64-69
entering interprter, 60-61
entering new lines, 62
execution of, 63-64
leaving interpreter, 72
MACRO-11 subroutines in, 142-
144
optional functions in, 60-61
program names in, 61
retrieving saved program, 62-63
saving, 69-70
using immediate mode, 71

BITMAP, 39
BOTTOM, 39
Breakpoint, 86-90
BOUNDARY, 39
BUFFER, 47
BYE, 72

CALL, 143
Code, 127-128
in-line, 127-128
threaded, 127-128, 129
CODE, 128
COMPILE, 70
CREATE, 111-113
CROSSREFERENCE, 22
Cross-reference (CREF) listing, 21-23

D, 81
DEBUG, 39, 83
Debugging, 55-56, 75-104
BASIC, 91-104
finding errors, 77-79
FORTRAN 1V, 27-28, 38
gaining access to background pro-
gram code, 79-82
gaining access to foreground pro-
gram code, 82
on-line, 38-39, 85-91, 92
testing programs, 76-77
DEL, 67-68
DELETE, 114
Deletions (editing), 67-68
Delimiter, 68

173

174

Index

DEPOSIT, 81

Device queue program, 51
DISABLE, 24, 25

Dummy routines, 76-77, 81, 91-93
DUPLICATE, 39

E, 80
Editing (BASIC), 64-69
changes, 68-69
deletions, 67-68
insertions, 65
listing, 64-65
resequencing, 66-67
ENABLE, 24, 25
ERRLOG, 51
Error messages, FORTRAN IV, 27-28
Errors, 77-79
cause of, 77-78
location of, 78-79
See also Debugging
EXAMINE, 80
EXECUTE/ALLOCATE, 39
EXECUTE command, 55, 110
EXECUTE option, 39
EXTEND, 39
Extended Memory (XM), monitor, 51
EXTRACT, 113-114, 125

FB monitor. See Fore-
ground/Background monitor
FDT (FORTRAN IV Debugging Tool),
38, 39, 83
FILL, 39
FOREGROUND, 39, 46-47
Foreground/Background (FB) moni-
tor, 45-50
foreground/background commu-
nication, 47-50
foreground jobs, 46-47
initiating jobs, 46
terminating jobs, 50
Foreground program code, 82
Foreground programs, enabling de-
bugging aids, 84-85
FORTRAN command, 7
FORTRAN IV compiler options, 24-
28
ALLOCATE, 18
CODE, 128
HEADER, 26-27
LIST, 9-10
NOOBJECT, 7-8
OBJECT, 7
ONDEBUG, 27
SHOW, 25-26

FORTRAN IV Debugging Tool (FDT),
38, 39, 83
FORTRAN 1V programs, 3-41
allocating storage space for output
files, 18
compilation of, 4, 7
controlling production of object
module, 7-8
debugging lines, 27
development of, 6
error messages, 27-28
executing source files, 55
generating listings, 8-11
linking, 28-41
MACRO-11 subroutines in, 134-
139
multiple source files, 12-14, 15
See also Debugging; Program exe-
cution
FORTRAN 1V subroutines, in a MA-
CRO-11 program, 139-142
conventions, 141
initializing OTS, 140-141
FRUN, 46, 47, 54
FRUN/PAUSE, 82, 84

G, 88
GET, 79
GLOBAL, 39

HEADER, 26-27

Immediate mode, 71
INCLUDE, 40
In-line code, 127-128
INSERT, 114
Insertions (editing), 65
Interfaces. See Language interfaces
Interpreter, BASIC:
entering, 60-61
leaving, 72
modifying, 143-144

KMON, 46

Language interfaces, 133-150
BASIC-11 programs calling MA-
CRO-11 subroutines, 142-144
FORTRAN 1V routines in MA-
CRO-11 program, 139-142
MACRO-11 routines in FOR-
TRAN IV program, 134-139
Language optimization, high level,
126-131
additional techniques, 130

Index

generated code, 127-128, 129
sequence numbers, 130
vectors, 128
LDA, 34, 36, 40
LEVEL, 52
Libraries, 107-119
creation of, 111-113
macro, 109-110, 112-113, 115
maintenance of, 114-115
object, 108-109, 111-112, 113-115
LIBRARY option, 40, 109-110
LIMIT, 41
LINK/DEBUG, 38, 83-84
Linker options, 36-41
ALLOCATE, 39, 40
ALPHABETIZE, 39
BITMAP, 39
BOTTOM, 39
BOUNDARY, 39
DEBUG, 39, 83
DUPLICATE, 39
EXECUTE, 39
EXECUTE/ALLOCATE, 39
EXTEND, 39
FILL, 39
FOREGROUND, 39, 46-47
GLOBAL, 39
INCLUDE, 40
LDA, 34, 36, 40
LIBRARY, 40, 109-110
LIMIT, 41
LINKLIBRARY, 40, 108, 109
MAP, 29, 40, 79-80
MAP/ALLOCATE, 40
MAP/WIDE, 40
NOBITMAP, 40
NOEXECUTE, 40
PROMPT, 40
ROUND, 40
RUN, 40
SLOWLY, 40
STACK, 36, 40
SYMBOLTABLE, 40
TOP, 41
TRANSFER, 41
WIDE, 40
XM, 41
XM/LIMIT, 41
Linking, 4, 28-41
load image files, 31-36
load map files, 29-31
LINKLIBRARY, 40, 108, 109
LINK/MAP, 29, 79
LIST command, 64-65
LIST option, 9-10, 114

175

Listings:
FORTRAN IV:
generating, 8-11
optional information in, 25-27
MACRO-11:
cross-reference, 21-23
generating, 8-11
optional information in, 19-21
LISTNH, 64
LOAD, 47
Load image files, 31-36
absolute binary image, 34-36
relocatable image, 33-34
save image, 31-33
Load map, 29-31, 79-80, 84
Load module, 4

MACRO command, 4, 109-110
MACRO directive, 112
MACRO-11 assembler options, 18-
24
ALLOCATE, 18
CROSSREFERENCE, 22-23
DISABLE, 24
ENABLE, 24
LIST, 9-10
NOOBJECT, 7-8
NOSHOW, 20-21
OBJECT, 7
SHOW, 19, 21
MACRO-11 programs, 3-41
allocating storage space for output
files, 18
assembly of, 4
controlling production of object
module, 7-8
development of, 5
executing source files, 55
FORTRAN IV subroutines in, 139-
142
generating listing, 8-11
linking, 28-41
multiple source files, 11-12, 13, 15
See also Debugging; Program exe-
cution
MACRO-11 subroutines:
in a BASIC-11 program, 142-144
modifying interpreter, 143-144
using CALL statement, 143
in a FORTRAN IV program, 134-
139
creating common blocks, 137-
138
maintaining the stack, 137
passing arguments, 135-136

176

Index

MACRQ, in FORTRAN 1V (cont.)
receiving arguments, 138-139
returning function values, 136
transferring control, 135
using registers, 136-137

Macro libraries:

creation of, 112-113
maintenance of, 115
use of, 109-110

MACRO option, 112-113

MAP, 29, 40, 79-80

MAP/ALLOCATE, 40

MAP/WIDE, 40

MCALL directive, 109

Memory limitations, 122

See also Language optimization;
Overlays

Monitors:

Extended Memory, 51
Foreground/Background, 45-50
Single Job, 44-45

NEW, 61

NOBITMAP, 40
NOEXECUTE, 40
NOLINENUMBERS, 130
NOOBJECT, 7-8
NOSHOW, 20-21
NOSWAP, 131
NOVECTORS, 128

0, 124-125
OBJECT, 7
Object libraries:
creation of, 111-112
creation of object module from,
113-114
maintenance of, 114-115
use of, 108-109
Object modules:
controlling production of, 7-8
creation of, from object libraries,
113-114
linking, 4, 28-41

Object Time System (OTS), 139-141

Object Time System errors, 28
ODT. See On-line Debugging
Technique
OLD, 62-63
ONDEBUG, 27
On-line Debugging Technique
(ODT), 38-39, 85-91, 92
examining and modifying loca-
tions, 88-89
exiting, 91

gaining access to addresses, 85-86
gaining access to registers, 86
proceeding from breakpoint, 89-90
setting breakpoint, 86-88
starting execution, 88
using single-step mode, 90
OTS (Object Time System), 139-141
OTS errors, 28
Output files, allocating storage space
for, 18
Overlays, 122-126

*;P, 89-90
Proceed command, 89-90
Program development, 4-41, 58-72
in BASIC, 59-72
creation of, 61
editing programs, 64-69
executing programs, 63-64
optional functions in, 60-61
program names in, 61
saving programs, 69-70
in FORTRAN 1V, 3-18, 24-41
compiler options, 24-28
compiling multiple source files,
12-14, 15
controlling production of object
module, 7-8
generating listing, 8-11
linking, 28-41
storage space for output files, 18
in MACRO-11, 3-24, 28-41
assembler options, 18-24
assembly, 4
compiling multiple source files,
11-12, 13, 15
controlling production of object
module, 7-8
generating listings, 8-11
linking, 28-41
storage space for output files, 18
process of, 4
Program execution, 43-56, 63-64
debugging, 55-56
source files, 55
with system jobs, 51-54
on systems with multiple termi-
nals, 54-55
using Extended Memory Monitor,
51
using foreground/background
monitor, 45-50
using Single Job Monitor, 44-45

Program names, in BASIC, 61
PROMPT, 40

QUEUE, 51, 52

R, 44

*R, 86

*$R, 86

Registers, 86-89, 136-137
Relocatable image, 33-34, 84
REMOVE, 115

REPLACE, 70

RESEQ, 66-67
Resequencing, 66-67
RESUME, 82

ROUND, 40

RUN command, 44, 63-64
RUN option, 40

RUNNH, 64

%S, 90
SAVE, 69-70
Save image, 31-33
Sequence numbers, 130
SHOW, 19, 21, 25-26
Single Job (S]) monitor, program ex-
ecution with, 44-45

Single-step mode, 90
SJ monitor. See Single Job Monitor
/ (slash) command, 88, 89
SLOWLY, 40
Source files:

executing, 55

multiple, 11-17
SRUN, 51-52, 54
STACK, 36, 40
Stack location, 36-38
Stack pointer, 137
Stack size, 36, 38
START, 82
SUB, 68-69
Subroutines:

177

dummy, 76-77, 81, 91-93
FORTRAN 1V, in MACRO-11 pro-
grams, 139-142
MACRO-11, in BASIC-11 pro-
grams, 142-144
MACRO-11, in FORTRAN IV pro-
grams, 134-139
SYMBOLTABLE, 40
System jobs, 51-54
communication, 53-54
scheduling, 51-52
starting, 52-53

TERMINAL, 54-55

Threaded code, 127-128, 129
TOP, 41

TRANSFER, 41

UNLOAD, 47
User Service Routine (USR), 130-131

VDT. See Virtual Debugging
Technique
Vectors, 128
Virtual Debugging Technique (VDT),
82, 85-91, 92
examining and modifying loca-
tions, 88-89
exiting, 91
gaining access to addresses, 85-86
gaining access to registers, 86
proceeding from breakpoint, 89-90
setting breakpoint, 86-88
starting execution, 88
using single-step mode, 90

WIDE, 40

XM, 41

XM/LIMIT, 41

XM monitor. See Extended Memory
Monitor

Programming with RT-11, Volume 1 provides an overview of the RT-11 tools
that facilitate program development. Included are detailed discussions of
the MACRO assembler, FORTRAN compiler, BASIC interpreter, as well as,
the RT-11 linker. It also examines the execution of foreground, background,
and system jobs and discusses the use of ODT and VDT in debugging
programs. The last chapters of this volume focus on the RT-11 facilities
which increase programming efficiency. They describe the use of libraries,
overlays, and language interfaces.

The RT-11 Technical User’s Series presents comprehensive, up-to-date infor-
mation on RT-11. Other books in the series are:

Programming with RT-11, Volume 2
Callable System Facilities

Working with RT-11

Tailoring RT-11
System Management and Programming Facilities

The authors develop courses for Educational Services Division of Digital

Equipment Corporation in Reading, England.

clilgliltlall

For a complete list of DECbooks, write to:

Digital Press
Digital Equipment Corporation
30 North Avenue, Burlington, MA 01803 ISBN 0-932376-32-0

