
MOTIF
. PROGRAMMING

The Essentials . . . and More

MOTIF PROGRAMMING

DIGITAL PRESS X AND MOTIF SERIES

Motif Programming

The Essentials ... and More

Marshall Brain

X Window System Toolkit

The Complete Programmer's Guide and Specification

Paul j. Asente and Ralph R. Swick

X and Motif Quick Reference Guide

Randi j. Rost

X Window System

The Complete Reference to XUB, X Protocol, ICCCM, XLFD

Third Edition

Robert W. Scheifler and James Gettys

With jim Flowers, David Rosenthal

The X Window System Server

Elias Israel and Erik Fortune

· MOTIF PROGRAMMING

The Essentials . . . and More

MARSHALL BRAIN

Digital Press

Copyright © 1992 by Digital Equipment Corporation.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission of the publisher.

Printed in the United States of America.

98765432

Order number EY-J816E-DP

Design: David Ford
Production: Superscript Editorial Production Services
Composition: Paul C. Anagnostopoulos, Marsha Finley,

and Alicia Quintano, using ZzTEX
Editing: Jonathan Weinert
Art: LM Graphics
Indexing: Ted Laux

PostScript is a trademark of Adobe Systems, Incorporated. Aldus
PageMaker is a trademark of Aldus Corporation. TEX is a trademark
of the American Mathematical Society. UNIX is a trademark of AT&T
Laboratories, Incorporated. DEC station, Digital, the Digital logo,
MicroVAX, and VAX are trademarks of Digital Equipment Corporation.
X Window System is a trademark of The Massachusetts Institute of
Technology. NeXT is a trademark of NeXT Computer, Incorporated.
Motif, aSF, and aSF/Motif are trademarks of Open Software
Foundation. Sun Workstation is a trademark of Sun MicroSystems,
Incorporated. Mathematica is a trademark of Wolfram Research,
Incorporated.

Views expressed in this book are those of the author, not of the
publisher. Digital Equipment Corporation is not responsible for any
errors that may appear in this book.

Library of Congress Cataloging-in-Publication Data

Brain, Marshall
Motif programming: the essentials-and more / Marshall Brain.

p. cm.
Includes bibliographical references and index.
ISBN 1-55558-089-0
1. X Window System (Computer System) 2. Motif (Computer
program)

I. Title.
QA76.76.W56B73 1992 91-46975
005.4'3---dc20 CIP

To my Mother,
whose cookie shipments

fueled this project

and to Dr. Thomas L. Honeycutt,
who has cultivated my career for many years

and given me the environment
in which I created this book

I

I

I

I

CONTENTS

PREFACE xiii

1 / INTRODUCTION 1

Getting Started: Three Simple Motif Programs 1

What Is Motif? 6

2 / ANALYZING A MOTIF PROGRAM 19

Designing a "Hello World" Program 19

What the Code Means 22

3 / RESOURCES 30

Getting Started 30

The Label Widget's Resource List 32

Understanding Inheritance 35

A Simple Example Revisited: Changing the Height and Width of a
Widget 36

Changing the labelString Resource, Revisited 39

Changing the Font Used 41

An Anomaly 44

Reading Resource Values 45

Reading Back the Label Widget's labelString 47

A Note of Caution 49

vii

viii CONTENTS

4 / CALLBACKS 50

The Basic Idea Behind Callbacks 50

Working with the Push-Button Widget 50

Using the client_data Field 54

Working with the call_data Parameter 57

Working with the Scale Widget 61

A Warning About Callback Functions 63

5 / MANAGER WIDGETS 65

Designing a Celsius-to-Fahrenheit Conversion Program 65

Implementing the Program with a Bulletin Board 66

Resizing Gracefully with the Form Widget 72

RowColumn Widgets 78

6/ MENUS 83

Menu Bars and Menus 83

Customizing Menus 90

Menu Bar Help 96

Other Menu Styles 99

7 / DIALOGS 100

Message Dialog Boxes 100

Prompt Dialog Boxes 107

Selection Dialog Boxes 110

File Selection Dialog Boxes 113

Other Canned Dialog Boxes in Motif 116

8/ TIC-TAC-TOE APPLICATION 120

Designing an Application 120

Coding the Tic-Tac-Toe Program 121

Callback Chains 131

CONTENTS ix

9 / THE MKILL APPLICATION 135

The Idea Behind mkill 136

The Link Library 137

Creating a Wrapper 143

10 / THE TEXT WIDGET 147

A First Look 147

Understanding the Text Widget 149

Text Widget Convenience Functions 152

Creating a Simple Editor 157

Enhancements 167

11 / OTHER MOTIF WIDGETS 168

Toggle Button Widgets 168

Scroll Bar Widgets 174

Shell Widgets 176

Arrow Button Widgets 178

Frame Widgets 180

List Widgets 181

Paned Window Widgets 184

Command Widgets 186

Scrolled Window and Main Window Widgets 188

Option Menus 191

Drawn Buttons 194

12 / RESOURCE OPTIONS 197

A Close Examination of XtAppInitialize 197

Resource Files 199

An Example 203

Using Command Line Options to Modify Resources 206

Using Fallback Resources 208

x CONTENTS

13 / CUSTOMIZED DIALOG BOXES 210

Creating a Customized Dialog 210

Creating a Find Dialog 211

Using a Resource File for Customized Dialogs 217

Resources Pertinent to Dialog Boxes 220

Implementing the Find Dialog 222

14 / MOTIF INTERNALS 228

Motif Strings 228

Motif Font Lists 229

The Motif Clipboard 236

Motif Gadgets 239

Shells 241

15 / THE X LAYER 243

Capabilities of the X Window System 243

The X Server/Client Model 244

Inside an X Server 246

X Events 248

Using X to Change Cursor Shape and Make Noise 253

16/ THE XT LAYER 255

Time Outs 255

Work Procs 256

Event Handlers 262

Input Events 263

Xt Memory Management 268

Warning and Error Messages 269

Xt Functions for Dealing with Widgets 272

1 7 / DRAWING 276

Basic Computer Graphics Concepts 277

CONTENTS xi

Understanding the Graphics Context 287

Drawing Commands in X 296

Advanced Drawing Concepts 313

18 / CONCLUSION 342

Designing a Motif Application 342

Dealing With Bad Days 342

Appendix A / SOURCES OF INFORMATION 346

Appendix B / DEBUGGING HINTS 350

Appendix C / THE MOTI F STYLE GUIDE 354

Appendix D / POSTSCRIPT PRINTING 357

Some Basic PostScript Terminology 357

Drawing with PostScript 358

Character Strings 360

Procedures 363

Loops and Variables 367

Dumping the Contents of a Drawing Area to the Printer 369

Operator Summary 376

Appendix E / C REVIEW 379

Introduction 379

A Simple Factorial Program 380

Branching and Looping 382

Arrays and the Bubble Sort 385

Details You Need to Know 388

Functions in C 391

C Libraries and Makefiles 395

Text Files in C 401

.xii CONTENTS

Introduction to Pointers in C 404

Using Pointers for Variable Parameters 407

Using Pointers for Dynamic Data Structures 410

Using Pointers with Arrays 415

Strings in C 418

Operator Precedence in C 426

Command Line Parameters Using argc and argv 428

Record-Based (Binary) Files in C 429

Appendix F / AN EDITOR EXAMPLE 433

Appendix G / X REFERENCE 468

Basic Functions 468

Drawing Functions 475

Appendix H / XT REFERENCE 484

Appendix I / CONVENIENCE FUNCTIONS 495

The XmText Convenience Functions 495

The XmList Convenience Functions 502

The XmString Convenience Functions 507

The XmFont Convenience Functions 514

The Xm Clipboard Convenience Functions 516

Appendix J / MOTIF WIDGET REFERENCE 523

Motif Widgets 523

X Toolkit Widgets 574

INDEX 583

PREFACE

THE PURPOSE OF THIS BOOK

So you're sitting around one day minding your own business, when suddenly
you are struck by an incredible need to understand how to write Motif pro­
grams on an X workstation. "I must learn how to write Motif programs!" you
say to yourself. This remarkable .compulsion has driven you to find and open
this book.

What could inspire such a powerful desire? Perhaps you find yourself in one
of the following situations:

1. Your boss walked into your office today and said, "Snydley, I want that
program you wrote converted over to Motif by next week so it will look
sharp on these new workstations."

2. The instructor of your "Introduction to Motif" class gave you your first
assignment a month ago, and now, with two days left before the due date,
you have decided to get started.

3. You need to write a program with a graphical user interface as quickly as
possible, and X/Motif is the only thing available in the environment you
are using. Typically, you need that program done yesterday.

4. You are an experienced programmer on the Macintosh or under Microsoft
Windows, and you want to' port one of your programs over to the UNIX
world. Your major competitor will release its UNIX version tomorrow.

S. You are a student or a programmer, you have just been given a workstation
to use, and you have a deep desire to learn Motif so that you can create
snazzy graphical applications for the fun of it.

These scenarios have one thing in common: the need for a quick, thorough,
and fairly painless introduction to Motif programming. The purpose of this
book is to fill that need. This book covers all of the basic features of graphi­
cal user interfaces as implemented under Motif, starting at the beginning. It
shows you how to get a program up and running in a short period of time

xiii

xiv PREFACE

and offers pointers to more advanced topics. It also shows you what Motif is
capable of doing and how to do it.

This book will ease you into Motif programming as smoothly and as quickly
as possible. It contains simple examples with simple explanations. It shows
you how to design and build graphical applications with Motif in a reasonable
amount of time.

THE PHILOSOPHY BEHIND THIS BOOK

There is one fundamental concept driving this book, and it is this: Motif is a
very simple, beautifully designed way of creating graphical user interfaces.

It is hard to see the simplicity of Motif, however, because it is surrounded by
a mass of complexity. In this way, Motif is rather like a power plant. The basic
idea behind a power plant is very simple: Something generates heat, which
creates steam, which drives a turbine connected to a generator. A power plant
is elegant in its simplicity. However, power plants are ferociously complicated
places, and if you tried to learn about them by walking around in one you
would run into problems. The simplicity is masked by layers of complexity
that have little or nothing to do with the basic concepts.

Motif is similar. This book will show you the fundamental forces that drive
Motif so that you understand the big picture. Then you can start adding de­
tails to that picture and begin producing applications. Once you know and
understand the fundamental concepts that drive Motif, you can easily add to
that body of knowledge incrementally over time. As long as you understand
the big picture, you will find that the rest comes easily.

PREREQUISITES

In order to use this book effectively, you need the following four prerequisites.
First, you need a good working knowledge of the C programming language.

Although Motif binds to many languages, C is by far the most common for
building Motif applications. The examples in this book, therefore, use C. Since
many people who do not know C do know Pascal, or at least find Pascal
code easier to read, Appendix E includes a set of C tutorials to help Pascal
programmers make the jump to C. Occasional C programmers can also use
these tutorials as a quick refresher course when necessary.

Second, you need access to a machine capable of compiling Motif code,
for example, a UNIX workstation-preferably, a very fast one with abundant
memory and disk space. Make sure that your workstation can compile Motif
code, since some that run Motif applications and the Motif window manager

PREFACE xv

do not. Your workstation must have access to X and Motif libraries. The ex­
amples in this book assume that you are running XIIR4 or XIIRS and Motif
version 1.1. If you are not sure which versions of X and Motif you have, or if
you need to upgrade, see your system administrator or hardware vendor.

Third, you will need to have several reference books handy as your knowl­
edge develops, since you will have to contend with a large amount of infor­
mation. For instance, the Motif, X Toolkit, and X libraries contain hundreds
of functions with thousands of variable names and types. See Appendix A for
a list of recommended reference books and on-line resources.

Finally, you will find it very helpful to form friendships with programmers
who know Motif, since they can be valuable sources of information and as­
sistance. Because Motif and X are fairly complicated, program behavior some­
times seems to make no sense. A friend can point out simple mistakes that
have serious repercussions and can answer questions in times of need.

HOW TO USE THIS BOOK

I have watched many people learn Motif, and I have learned Motif myself.
From my observations, I can tell you that people learn to program in Motif
by working with examples. Note that I did not say by looking at examples: You
actually have to work with them. This is not the sort of book that you can take
to bed with you. You need to use it while sitting in front of a workstation so
that you can see what the code does, get familiar with the v.ariable names and
calling conventions, and modify code and observe the changes that occur.

This book contains many small, relatively simple pieces of example code.
Especially in the early chapters, you should enter these examples yourself. The
best way to learn Motif quickly is for Motif code to pass from your eyes to your
brain to your fingers on a regular basis, so try to set a little (or a lot of) time
aside every day to enter, run, and play with examples.

Students often learn Motif more quickly when they have projects of their
own to work on. Once you have worked through the first few chapters, find
a project that interests you and start working on it. Maybe you have a project
at work that you could code with a graphical user interface. Maybe you have
a videotape collection for which you could build a simple graphical database.
Or maybe you could build a graphical front end to an existing character-based
application to make that application easier to use. Find a little project that you
can get excited about and start working on it.

As you work, questions will arise. Look in this book for similar situations
and find the answers to those questions, and look at the applications it

xvi PREFACE

presents for ideas and suggestions. As you answer your own questions and
design your own application, you will learn a lot about Motif. You will also
enjoy it because you are working on something that excites you.

Every student I know who has learned Motif successfully has done so as
the result of wanting to accomplish something else. Take advantage of this
phenomenon, and you williearrt Motif much more quickly.

THE ORGANIZATION OF THIS BOOK

This book follows a logical progression designed to teach you Motif starting at
the beginning. It assumes that you have never seen X or Motif or event-driven
programming before, and proceeds from there.

Chapter 1 begins with three very simple Motif programs and· discusses the
basic ideas and terminology you need to understand Motif programming. On
the assumption that you are a beginner, this chapter does not contain in­
depth theoretical discussions of the X Window System. A beginner simply has
no way of understanding such material, so those in-depth discussions appear
in Chapter 12 and beyond.

Chapter 2 contains a line-by-line discussion of a simple Motif program. This
chapter will help you become familiar with the code you entered in Chapter
1, and it will make you comfortable with the different function calls used in
every Motif application that you create.

Chapters 3, 4, and 5 introduce you to the three ba'sic concepts that drive
Motif: resources, callbacks, and managers. Once you thoroughly understand
. these concepts, you understand the heart of Motif programming.

Chapters 6 and 7 introduce you to two common graphical interface devices:
menus and dialog boxes. These tools provide users of your programs with
intuitive ways to enter commands, answer questions, and supply information.

Chapters 8 and 9 contain two simple examples that demonstrate and bind
together the ideas presented earlier in the book. The example programs are
a tic-tac-toe game, and an application called mkill, which kills background
processes.

Chapter 10 introduces you to the text widget and creates a simple editor
application using that widget. Code for a complete text editor is supplied in
Appendix F.

Chapter 11 introduces the rest of the Motif widget set using a number of
example programs and figures.

At this point in the book, you will have gained a great deal of knowledge
about Motif and the creation of Motif applications. You are now ready to

PREFACE xvii

understand some of the details of the X Window system, resource files, the X
toolkit, and so on. Chapter 12 covers resource-setting options such as resource
files, fallback resources, and command line setting of resources. Chapter 13
covers the creation of custom dialog boxes. Chapter 14 discusses strings, font
lists, gadgets, and the Clipboard. Chapter 15 discusses some of the capabilities
available in the X layer, and Chapter 16 provides a similar overview of the Xt
layer. Because the X and Xt layers are so large, Chapters 15 and 16 provide
introductory material interspersed with numerous pointers to other sources
of information. Finally Chapter 17 continues at the X level and provides an
in-depth introduction to the drawing area widget and the X drawing model.
Chapter 18 offers a brief conclusion.

This book also contains a number of appendixes. Browse through them
periodically. Their importance to you will change as your knowledge of the
subject evolves.

CODE AND COMMENTS

The example code used in this book is available for anonymous ftp, and the
process for getting it is described at the beginning of Appendix A.

If for some reason you have trouble ac'quiring the code, or if you have
any comments on this book, then please feel free to send me email at
brain@adm.csc.ncsu.edu or brain@eos.ncsu.edu. I don't mind responding to
questions and I welcome your suggestions because they will help to improve
the book in later editions.

ACKNOWLEDGMENTS

This book would not exist without the work and support of a number of
highly skilled people. I would like to acknowledge their help.

First, I would like to thank Mike Meehan, my publisher, who gave me the
opportunity to create this book and talked me through every step of it. His
patience is inexhaustible.

I thank Marsha Finley, Jonathan Weinert, David Ford, Chase Duffy, and
Paul Anagnostopoulos for turning the manuscript into a book. There is a huge
difference between a manuscript and a book, and their work propelled the
transformation.

I would also like to thank Kevin Millsap, who cheerfully performed the
thankless job of formatting and testing the more than 9,OQO lines of code
in this book. Phil Moore helped bring the code into compliance with Sun's
compiler.

xviii PREFACE

I am grateful to Carol Miller and Dorothy Strickland, my next-door neigh­
bors at North Carolina State University, who provided infinite moral support
and encouragement. They have an uncanny ability to say and do just the right
thing at just the right time.

I thank Dr. Edward Davis for his patience and support.
Dr. William Willis, Bobby Pham, Ken Barnhouse, and David Smith all de­

serve my thanks for their work in implementing the Eos system at NCSU. The
existence of the Eos system, and the amount of work they do to keep this huge
and amazing beast running, has made my life extremely easy during the devel­
opment of this book.

This book started out as a set of tutorials I wrote for students at NCSU.
They were later released onto the network in the comp.windows.x.motif news
group. I am grateful for all of the comments, corrections, and encouragement
that students and the members of the news group provided.

My thanks go to those who reviewed the book, especially Jack Beidler, Chris
Delise, Don Merusi, Timothy Rice, and George Ross. The reviewer's comments
significantly improved the book's quality.

Lance Lovette wrote the PostScript appendix. The ability to print is very
important to a Motif programmer, and I thank Lance for clearly explaining
how to add PostScript printing capabilities to your programs.

Kelly Campbell, Andy DeMaurice, Kevin Shay, and Lance Lovette con­
tributed screen dumps for Chapter 1. I thank them for that and for asking
me thousands of questions that forced me to think carefully about what I was
doing.

I experienced one hard-disk anomaly during the development of this book.
I get down on my knees and thank Joe Britt and Mike Braden for hard-disk
recovery services offered at a very critical time in my life.

Finally, I would like to thank the following folks for being there when I
needed them: Jay Lloyd, Steve Loyer, Toby Schaffer, Rob Ward, Dave Patterson,
Dr. Alan Tharp, Duane Whitehurst, Trish Brezny, Mike and Beth Eddy, Perry
Young, Molly Glander, Shari Brain, Katheryn Lee, Eric Scott, Jon Mauney, Tim
Lowman, Leigh Clarke, and Todd Cook.

Marshall Brain
Zebulon, North Carolina
December 27, 1991

MOTIF PROGRAMMING

1 INTRODUCTION

This chapter will give you your first taste of Motif programming and introduce
you to the basic ideas behind Motif and the X Window System. It will also
describe how event-driven programming works in general and under X and
Motif in particular.

1.1 GETIING STARTED: THREE SIMPLE MOTIF PROGRAMS

Motif is a collection of user interface objects called widgets. The Motif widget
set includes all of the objects that programmers and users expect to find in
a graphical user interface: pull-down menus, dialog boxes, scroll bars, push
buttons, and so on. To build a Motif application, a programmer selects a group
of widgets to create the user interface, and then writes code that makes those
widgets appear on the screen and behave appropriately.

One of the best ways to begin building an understanding of Motif is to see
it in action. Listing 1.1 uses a label widget to display the words "Hello World"
on the screen. Enter this program using your favorite text editor and save it to
a file named label. c. This code may seem rather intimidating at first, so enter
it for now and we will examine it in detail in Chapter 2.

Listing 1.1 A Label Widget Demonstration

1* label. c *1
#include <Xm/Xm.h>
#include <Xm/Label.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING~DEFAULT_CHARSET;

Widget toplevel, label;

main (argc, argv)
int argc;

2 INTRODUCTION

{

}

char *argv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&:context,"",NULL,O,&:argc,argv,NULL,NULL,O);

1* create label widget *1
ac=O;
XtSetArg(al[ac],XmNlabelString,

XmStringCreateLtoR("Hello World", char_set»; ac++;
label=XmCreateLabel(toplevel,"label",al,ac);
XtManageChild(label);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

To compile this code, type

cc -0 label label.c -lXm -lXt -lXll

This command compiles label. c, links it to the Motif, X Toolkit, and XII

libraries, and places the executable in a file named label. To run the program,
type label.

This command demonstrates the standard way to compile and run a Motif
program, and it should work if the libraries are all present and in their correct
places. If it does not work, see the sidebar "Compilation Problems" on page 3.

When you run the program, a window containing the words "Hello World"
should appear on the screen (see Figure 1.1). The object containing the words
"Hello World" in this window is called a label widget. You can use label wid­
gets in your own Motif programs to display static messages for the user. Note
that you can resize the window, collapse it into an icon, overlay it with an­
other window, and move it. Motif, or your window manager, handles the win­
dow's behavior for you gracefully and automatically.

Figure 1.1 The Output of Listing 1.1

[3

Hello World

1.1 GETIING STARTED: THREE SIMPLE MOTIF PROGRAMS 3

Compilation Problems

You may be unable to compile the program
label. c in the manner described on page
2. If so, you need to talk to a Motif-literate
friend on your system, call your system
administrator, fix it yourself by finding
paths to the libraries and include files,
or talk to the vendor. Since the problem
may have a complex solution, the easiest
way to solve it is to find someone on your
system who knows how to compile a Motif
program and ask for his or her standard
makefile or compilation command. I
recently worked on a system where the
command to compile a Motif program was
200 characters long.

If you get error messages during compi­
lation, make sure you have entered the
code exactly as it appears in Listing 1.1.
Also make sure that your system is running
X 11 R4 or X 11 R5 and Motif 1.1.

Depending on the speed of your machine
and the distance of the libraries from
the CPU, this program may take from
five seconds to five minutes to compile.
Shortage of disk space may also cause
problems. On my machine, a DECstation,
this program's executable file consumes
1.75 megabytes of disk space. If space
is critical, try compiling the executable
to /tmp or /usr/tmp. For example, try
typing cc -0 /usr /tmp/label label. c
-IXm -IXt -IXl1. Make sure you erase the
contents of the temporary directory when
you are done.

To run the compiled program, type
label. It may take some time to load the
executable-for instance, up to a minute if
you are loading a 1.75 MB executable over
a busy network from a server.

To see another Motif widget in action, enter the code in Listing 1.2 and save
it to a file named scale. c. This program demonstrates a scale widget.

Listing 1.2 A Scale Widget Demonstration

/* scale.c */
#include <Xm/Xm.h>
#include <Xm/Scale.h>

XtAppContext context;

Widget toplevel, scale;

main(argc,argv)

4 INTRODUCTION

int argc;
char *argv [] ;

{

}

Arg al[lO];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context, .11. ,NULL, O,&argc, argv, NULL, NULL, 0) ;

1* create scale widget *1
ac=O;
XtSetArg(al[ac],XmNshowValue,True); ac++;
scale=XmCreateScale(toplevel,lscale",al,ac);
XtManageChild(scale);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

To compile this code, type

cc -0 scale scale.c -lXm -lXt -lXll

To run the program, type scale. An object appears on the screen whose behav­
ior resembles that of a sliding control on a piece of stereo equipment (Figure
1.2). Use the mouse to slide the scale. A numeric display shows the scale's cur­
rent setting. Again, a scale widget is a separate object on the screen, with a
distinctive appearance and behavior. You can use scale widgets in your pro­
grams to let users enter both integer and real values.

Now, enter the final piece of code shown in Listing 1.3 and save it to a file
named text. c. This code demonstrates a text Widget.

Figure 1.2 The Output of Listing 1.2

1.1 GETTING STARTED: THREE SIMPLE MOTIF PROGRAMS

Listing 1.3 A Text Widget Demonstration

/* text.c */
#include <Xm/Xm.h>
#include <Xm/Text.h>

XtAppContext context;

Widget toplevel, text;

main (argc , argv)
int argc;
char *argv [] ;

{

}

Arg al[10] j
int aCj

/* create the toplevel shell */
toplevel = XtApplnitialize(&context,IIII,NULL,O,&argc,argv,NULL,NULL,O)j

/* create text widget */
ac=Oj
XtSetArg(al[ac],XmNeditMode,XmMULTI_LINE_EDIT)j ac++;
XtSetArg(al[ac],XmNheight,200); ac++;
XtSetArg(al[ac],XmNwidth,200); ac++;
text=XmCreateText(toplevel,lItextll,al,ac);
XtManageChild(text)j

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

To compile this code, type

cc -0 text text.c -IXm -IXt -IXll

5

To run the program, type text. A text widget appears on the screen (Figure
1.3). This widget contains a great deal of the functionality of a complete text
editor.

You can type characters into the text widget, use the arrow keys, position
the cursor with the mouse, delete text, select areas of text, and so on. You can
use text widgets in your own programs to provide users with regions in which
they can enter and edit text.

6 INTRODUCTION

Figure 1.3 The Output of Listing 1.3

"This is a sample
of the text widget.

laiD

''''''''''''''"''H''''''''H''''H''''''''"''"''''''P~'fl''''''"'"'''''''"'~''~'"'H""""""~'"'"''''~''''''"'"''''''''''''''''''''"''"'''''''H'''''"'H''''"'''''

As these three pieces of code demonstrate, Motif provides you with a set
of 40 or so objects that you can use to create programs with graphical user
interfaces. You can combine these objects in many different ways.

1.2 WHAT IS MOTIF?

Imagine that you want to create a graphical application. Perhaps you wish to
build a program that lets users draw circuit schematics, or one that provides a
graphical view of a network, allowing users to click on a node or a network
link to get more information. In creating either of these applications, you
want to include certain user interface features such as pull-down menus, scroll
bars, push buttons, text editing areas, and so on. How can the X Window
System and Motif help you?

The X Window System allows you to create blank rectangular regions of
any size on the screen. These regions are called windows. X also provides low­
level drawing capabilities, so that you can draw in these windows. Of course,
X supports many other caRabilities, but this is primarily what it does.

Programming in X can be cumbersome. To create a scroll bar, a programmer
must create a thin rectangular window on the screen and then draw the scroll
bar in it. The programmer must then write code that manages the scroll bar
when the user manipulates it-for example, if the user clicks or drags in the
scroll bar, the program must animate it appropriately. Using X, a single scroll
bar might require an immense amount of code. Furthermore, when many
programmers create their own scroll bars in their own way, each will look

1.2 WHAT IS MOTIF? 7

Table 1.1 A Summary of the Motif Widget Set

Widget Chapter Widget Chapter

Arrow button 11 List, scrolled list 11
Bulletin board, bulletin Main window 11

board Menu bar 6
dialog 5, 13 Message box, message box 7

Cascade button 6 dialog
Canned dialogs: error, Option menu 11

file selection box, Paned window 11
information, message, Push button 4
prompt, question, Radio box 11
selection box, warning, RowColumn 5
working 7 Scale 4

Command 11 Scroll bar 11
Drawing area 17 Scrolled window 11
Drawn button 11 Selection box, selection
File selection box, file box

selection dialog 7
box dialog 7 Separator 5

Form, form dialog 5, 13 Shell 11, 14
Frame 11 Text, scrolled text 10
Label 3

and behave slightly differently. This inconsistency annoys users as they move
between applications.

Motif solves this problem. It sits on top of X and provides a set of precon­
structed user interface objects-the widgets. These widgets can be placed on
the screen by an application program. Table 1.1 provides a complete list of the
widgets available in Motif and the chapters with information on them.

When you need a scroll bar in a Motif application, you call a function that
creates one for you in the desired location. The scroll bar appears on the screen
as a beautifully drawn object that is consistent across applications. Even better,
Motif does all of the scroll bar management internally. When a user adjusts
the scroll bar, Motif animates it appropriately on the screen: The slider moves,
the arrow heads blink, and so on. When the user manipulates the scroll bar,
Motif relays the new value chosen by the user to the program code.

The beauty of Motif is that almost all of the user interface overhead has al­
ready been programmed. You decide which widgets you need to use to create
the user interface that you want. Motif functions position the widgets on the
screen in the right location and at the right size. At the same time, Motif uses
functions known as callbacks that notify the program when a user adjusts one

8

1.2.1

INTRODUCTION

of the widgets. The only additional code you must write is the "thinking" por­
tion of the application: the part that makes the application respond correctly
to user actions.

Figures 1.4 through 1. 7 show examples of four typical programs created in
Motif. Each uses its own assortment of user interface objects arranged on the
screen in a unique way. As you can see, the figures illustrate the flexibility that
Motif provides.

EVENT-DRIVEN PROGRAMMING

Motif is an event-driven programming environment. If you program on the
Macintosh or under Microsoft Windows, this sort of environment is already
familiar to you. If you are unfamiliar with it, the following introduction will
provide a brief history. You must understand the basic concepts behind event­
driven programming in order to fully understand Motif.

User interfaces have evolved through three stages. The first stage produced
the command-driven user interface, which presents the user with a generally
cryptic prompt such as this:

The user must know the set of commands that the interface recognizes and
must enter those commands at the prompt.

The code required to implement a command-driven user interface is very
simple. In pseudo-code, it looks something like

repeat
display the prompt;
wait for the user to type a command;
parse off the first word of the command line;
call the appropriate function to handle it, or print an

error message;
until done;

From the programmer's standpoint, a command-driven interface is the sim­
plest kind of interface because the code can be very straightforward and com­
pact. From the user's standpoint, command-driven interfaces leave something
to be desired, especially if the user is new to the system. The user must memo­
rize a set of idiosyncratic commands that are often inconsistent.

Menu-driven user interfaces mark the next stage of user interface deSign.
Structurally, menu-driven and command-driven interfaces are surprisingly

1.2 WHAT IS MOTIF?

Figure 1.4 Xcede, by Kelly Campbell and
Andy DeMaurlce
Kelly and Andy were college seniors when they created
Xcede, a schematic drawing application for digital
circuits. Note the use of buttons overlaid with icons,
scroll bars, and menus.

The path name of ~our circuit.

D QI---~-~

C Q

9

10 INTRODUCTION

Figure 1.5 Xtracs, by Lance Lovette
Lance was a college freshman when he created the first
version of Xtracs, and a sophomore when he created
this version using wcl. Xtracs provides a graphical view
of the week using different class schedules. Note the
use of labeled text entry areas, buttons, and menus.

""'I XTrac:s@c00393-346dan.eos.ncsu.cdu

BHA .:l~ 001 219750 I NTRO COHP PASCAL 3.0 0805-0855 H 101 PERRY
BO 1101.. 002 220950 INTRO COHP PASCAL 3.0 1120-1210 H 101 PERRY
BS 112 003 221100 INTRO COHP PASCAL 3.0 0130-0220PH H 101 NELSON
BUS 112L 004 221250 INTRO COHP PASCAL 3.0 0235-0325PH H 101 NELSON
CE 200 005 221400 INTRO COHP PASCAL 3.0 060o-065OPH T H WORTH
CFR 2001..
CH 201
CHE 202
COH 210
COP 222
CS 258
LUll ~5
DAN 302
DF 311

~~ ____ V 312 v __ . _____ .. ___ .. __ .. __ . __ ... ______ . __ . _______ . __ . __ .. ___ . __ .

Options I vlJ.:·,,·,,"

ACC 210 001 069900 ACCOUNTINC I 3.0 0805-0920 T H J CILES
BO 403L 201 115950 SYST BOTANY LAB 0.0 0130-0530PH T JIoIHARDIN
CHE 446 001 191850 DES AHLY CHEH REAC 3.0 0910-1000 H W F ROBERTS
CSC 110 005 221400 INTRO COHP PASCAL 3.0 0600-0650PH T H WORTH

XTracs Course Graph a 0

file QJ"tlons

8:00

11:00 '------'---'--'----'---'----'

175 175 V OPEN
175 000 V CLOSED
175 000 V CLOSED
175 000 V OPEN
175 000 V OPEN

loll 00218
loll 00218
loll 00218
loll 00218
loll 00218

023 000 OPEN
020 000 Y OPEN
045 000 OPEN
175 000 V OPEN

N 00224
CA 02212
BR 03218
loll 00218

-

1.2 WHAT IS MOTIF?

Figure 1.6 Xdesk, by Kevin Shay
Kevin was a college senior when he created Xdesk,
which provides a Macintosh-like front end for X.
Notice the use of multiple icons, drawing areas, and
menus .

.tlcsu.tmin

LJ LJ ~ LJ LJ
102 BOOK Connection EMACS-CSC M;u1

LJ ~ ~ ~ LJ
bin bitmap.c blitunnounce bUfz.announce2 b6tzen

LJ LJ LJ ~ LJ
chkid cscl02 csc502 dt.fi. dbH

11

LJ
New,

LJ
c++

LJ
ed

similar. The main difference is that menu-driven interfaces have much more
elaborate prompts. For example, the user might see a prompt such as

---Big Bank's Automatic-Teller System---

What would you like to do?
1) Withdraw money
2) Deposit money
3) Pay us money
4) Quit

Please enter the number of your choice:

The user enters the appropriate number, and a new menu appears. The
pseudo-code for a menu-driven program looks something like this:

repeat
display the menu;
wait for the user to type a number;

12 INTRODUCTION

Figure 1.7 BUtzen Simulator, by Marshall Brain
Blitzen is a massively parallel processor. This
application lets users simulate a Blitzen program's
execution, examine the code, and see different views
of memory and the processor array. Note the use of
drawing, extensive text displays, scroll bars, and so on.

=1 blitze.n simulator I a ID
File Mel1lor!:l Bits

Address: 10 HUIII bits: 1
K 00000000000000000000000000000000

00000000000000000000000000000000
00000100000111000000000000000000
00000100000100000000000000000000
00000100000010000000000000000000
00000000000001000000000000000000
00000000000000000000000001110000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000001111000000000
00000000000000000001111000000000
00000000000000000001111000000000
00000100000000000001111000000000
00000111000000000000000000000000
00000101000000000000000000000000
00000111100000000000000000000000
00000100000000000000000000000000
00000100000000000000000000000000
00000000000000000000000000011000
00000000000000000110000000110000
00000000000000000110000000010000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000

D=B p=p WRC10]
00000000000000000000000000000000
00000000000000000000000000000000

int in_addr ,nulllbi ts~ ...l

~,~,~. ~
{

int i:

B=O 0000 0 00 0 0 A=O C=O for (i=0~ i <nulYlbits: i++)
{

SUIIIOr=O HOV_HD< in_addr+i) ~
~ ~ Index:OO P=O HOV_DA~ J

EHD~

HADD~

EHD~

HOV_BD~

HOV_DH< in_addr+i) ~

> EHD~

Step
}

}

/><---></
set_to_zero <addr ,nulllbi ts) - _ ... _--_ ...

I
/>< sets nUlllbits to 0 starting at address addr.

Run side effects - leaves P in unknown state.
></

int addr,nulYlbits:
{

int i: ;/

1.2 WHAT IS MOTIF?

parse the number;
call the appropriate function to handle it, or print an

error message;
until done;

13

Again, this code is fairly simple. It is less compact because all of the menus
have to be displayed, but it does not pose a serious programming challenge.

Interfaces of the third stage are event-driven, and they provide programmers
with plenty of challenges. The basic idea behind an event-driven environment
is fairly simple, but the programming gets messy. An event-driven environ­
ment consists of some type of application program interface (API), which pro­
vides a library of functions that create user interface objects such as menus,
windows, buttons, scroll bars, and the like. Users can manipulate these objects
with the keyboard or mouse.

Each time a user presses a key or clicks the mouse, the API picks up the
action and delivers it to the program as an event. Usually, events are held in
an event queue so that the program does not have to handle them in real time.
For example, each time a user presses a key on the keyboard, the appropriate
character is placed into an event record, which is then placed in the event
queue. Similarly, each time a user clicks the mouse, the click's location is
packaged in an event record, which is also placed in the event queue. This
behavior is typical of X, Microsoft Windows, and the Macintosh.

An event-driven program contains a loop that looks at the event queue to
see if anything is there. If an event is pending, the program removes it from
the queue, inspects its type, and handles it accordingly. The pseudo-code for
an event-driven program might look like this:

Draw the graphical objects onto the screen to begin with;
repeat

wait for an event to appear in the event queue;
Parse the event;
call the appropriate function to handle it;

until done;

The piece of looping code that receives and handles events like this is called
an event loop.

Event-driven programs have two main sources of complexity. First, many
objects appear simultaneously on the screen, and many of them have separate
parts. When the code detects a mouse event, it has to determine which object,
and which part of that object, it affects. On a Macintosh, code looks at a so­
called IIMouseDown" event and decides if it took place in a window, in the
menu bar, in the background, or elsewhere. If it took place in a window,

14 INTRODUCTION

1.2.2

the code determines which window, and then explores which region of that
window: the drag region, the close box, the zoom box, the content region,
and so on. If the event took place in a scroll bar, the code has to decide which
part of the scroll bar is affected. The Macintosh requires a great deal of code to
manage all of these details.

The second source of complexity is the many internal events the window­
ing system itself can generate. When part of one window is exposed by the
movement of another window, the program receives an expose event. When
a window is resized, the code gets a resize event. Focus changes can generate
focus events, and so on.

As you can see, you need many lines of code to parse out and handle all of
these events. Much of this code is unique to each application, because each
displays its own assortment of user interface objects. But don't get discour­
aged. The purpose of Motif is to make life as a programmer easier. The beauty
of Motif is that it handles most of the low-level details, so you don't have to
worry about them.

THE X WINDOW SYSTEM

Motif is a part of a UNIX library hierarchy which has four layers. At the bot­
tom is UNIX and its standard libraries such as stdio. h and math. h. On top
of UNIX sits the X Window System and its library, accessed through Xlib.h.

On top of X sits the X Toolkit, accessed through Intrinsics .h. And finally,
on top of the X Toolkit is Motif, accessed through Xm. h. The UNIX layer pro­
vides normal operating system support. The X layer provides basic windowing
and event-handling capabilities. The X Toolkit layer provides support for the
creation and use of widget sets. And Motif provides the widgets you need to
create user interfaces easily.

It is possible to work with subsets of these layers. For example, UNIX pro­
grammers have been writing text-based C programs for decades. You can write
programs that use only UNIX and the X layer, but this is the hard way to cre­
ate a graphical program. You can also write programs that use a widget set such
as Motif. Remember that the four layers are separate and can be used indepen­
dently.

The X Window System provides a basic event-driven programming environ­
ment. It runs on a workstation or on an X terminal. It controls the mouse, the
keyboard, and the screen; packages events, places them in an event queue, and
allows programs to draw graphical items on the screen. The X library provides
programming interface to the X Window System. You can access this library

1.2.3

1.2 WHAT IS MOTIF? 15

by including its header files in your code and then calling the appropriate rou­
tines to access the event queue, issue drawing commands, and so on.

The problem with X is that it provides little more than the core services you
need to create a graphical user interface. X lets you create rectangular windows
on the screen of any size or shape. Once you've created these windows, you
can draw in them. But your code has to manage all of the events generated
by the user, as well as all of the system events. Since X imposes absolutely no
restrictions on the "look and feel" of what you create, and since X is so basic,
you have the freedom to do nearly anything. On the other hand, even the
Simplest fully functional X program tends to become very long and complex.

THE OBJECT-ORIENTED NATURE OF MOTIF

To preserve the sanity of both programmers and users, it helps to restrict some
of the freedom available in X through standardization. Users want different
programs to work in similar ways-to have the same look and feel. Program­
mers prefer to ignore most of the low-level event-handling and drawing in­
volved in the creation of common user interface objects.

To this end, another layer of libraries, called the X Toolkit, or Xt, sits on top
of X. Xt is quite elegant. Like X, it is a general-purpose tool in that it does
not enforce a particular look and feel. It allows programmers to design widget
sets. There are several commonly used widget sets, among them the Athena
widget set, the HP widget set, the Open Look widget set, and the Motif widget
set. Because all of these widget sets use Xt, all of them work identically as far
as the programmer is concerned. In fact, you can use widgets from different
sets interchangeably. The widget sets likewise give users the impression of a
distinct look and feel among applications that use them.

All widget sets provide the same basic objects, as well as special objects
unique to each. The Motif set is typical: It contains scroll bar widgets, button
widgets, menu widgets, text widgets, and so on.

By design, widget sets appear very object-oriented to the programmer. In
practice, the Motif widget set looks much like an object-oriented programming
environment. Nevertheless, because the programming is all done in C rather
than in an object-oriented language like C++ or SmallTalk, it is not completely
object-oriented. Thus, Xt carries most of object-oriented programming's ad­
vantages without requiring the programmer to learn a new language.

In Motif programming, each user interface object (or widget) is controlled
by a set of variables called resources. By changing the resources, you can control
the appearance and behavior of the widget. By reading the resources, you

16 INTRODUCTION

The X Server/Client Model

X terminal

D
-Events I I

VAX (or other
medium to large

computer or
workstation) --~----------------------~

Network X commands-

X client

The X Window System provides a basic
event-driven programming environment
that runs on a workstation or on an
X terminal. X controls the mouse, the
keyboard, and the screen. Its job is to
accept keyboard and mouse events from
the user and also to allow applications to
create windows on the screen and draw in
them.

X is unique in that it is "network transpar­
ent." This means that an X terminal can
package events and send them to another
computer over the network, and the re­
ceiving computer can package drawing
commands and send them back.

X server

As shown in the diagram, the terminal acts
as a "server" of X for the "client" program
running on the VAX. At first, this may seem
backward from the way it should be, but it
makes sense once you think about it. The X
server provides graphics services to multiple
client machines that wish to draw graphical
images on that server.

On a standalone X workstation, the server
and client are running in the same box,
but the separation is still there at the
software level. The server is a complete,
separate background program that runs
independently of X programs that may also
be running on the workstation.

1.2 WHAT IS MOTIF?

Figure 1.8 The Motlf/Xt/X/UNIX Hierarchy

Application program

J Motif widget set

I X toolkit

I Xlib

UNIX

Accesses any layer in the hierarchy

Implements a specific set of widgets that
gives applications a certain look and feel

Allows the creation and management of
object-oriented user interface widget sets

Handles low-level window creation,
drawing, and events.

17

can find out about the widget's state. The widget can also send out messages,
known as callbacks, when it wants to communicate with your code.

Object-oriented programming environments support object hierarchies. To
build a new object, you use and add to an existing object in a process called
inheritance. The new object can do everything the original object can do, as
well as anything else you add. You can also combine several existing objects
into a new object. Similarly, Motif uses inheritance to build widgets on top of
other widgets or out of groups of widgets. All Motif widgets use inheritance
internally, as we will see in Chapter 3, although it is more difficult for a C
programmer to take advantage of inheritance in a C program.

Let's use the scroll bar widget to illustrate these concepts. A scroll bar is a
distinct object on the screen with a distinct appearance, behavior, size, and
shape. The programmer creates a scroll bar on the screen by calling a func­
tion to create the widget. The scroll bar has a set of variables, or resources,
associated with it. By setting values in the resource list, the programmer con­
trols the appearance and behavior of the scroll bar-for example, altering the
width and height by changing the width and height resources. By looking
at resource values, the programmer can query the state of the scroll bar-for
example, determining the position of the scroll bar's slider by looking at the
value resource.

Each widget can send out messages, or callbacks, to functions in the pro­
gram when a user manipulates the widget. When a user manipulates a scroll
bar, the scroll bar calls a function in the program and says, essentially: liThe
user has changed me: Do something about it."

18 INTRODUCTION

There are two immense advantages to handling user interface objects in
this way. First, someone else has already coded the widget's appearance and
behavior. Second, the widget handles all of the low-level event management.
It animates itself and then, using callbacks, tells your code about it in a very
controlled and simple way. Motif makes creating a graphical user interface
extremely easy by doing most of the work for you.

2 ANALYZING A MOTIF
PROGRAM

In this chapter we will examine the design of the simple "Hello World" pro­
gram discussed in Chapter 1, and then discuss its implementation. Although
short, this program introduces many new concepts.

This chapter should be read together with Chapter 3, where many concepts
that may seem initially confusing are made much clearer by examples.

2.1 DESIGNING A "HELLO WORLD" PROGRAM

To create a Motif program, the programmer begins with a statement or image
of the program's purpose and goals, and works from there to create a user
interface using the widgets Motif offers. Once the programmer has designed
the user interface, he or she writes code to place the widgets on the screen
and to interconnect and animate them appropriately. Let's examine the Motif
design process using the "Hello World" program from Chapter 1.

The purpose of this program is to display the words "Hello World" to the
user. Motif provides many ways to accomplish this goal. For example, to dis­
play static text labels you can use a label widget. Or you can use a push-button
widget, which also allows users to interact with the label by clicking on it. A
text widget allows users to see and edit a piece of text. A message box widget
shows users a text message in a pop-up dialog box and provides an OK button
to click to clear the message. As you go through the book, you will become
familiar with each of these widgets and their uses.

In our simple "Hello World" program, a label widget is an appropriate
choice. The goals of the program do not require the user to edit or interact
with the text, nor do they require the text to "go away" at any point.

To implement a Motif program that can display a label widget, a cer­
tain amount of standard code is required. You will find this standard code

19

20 ANALYZING A MOTIF PROGRAM

in every Motif program you write. For example, all Motif programs must cre­
ate a toplevel shell widget. The shell widget is the main application window
for the program on the user's screen. It includes all of the decorations the user
expects to see in an application window: a title bar, maximize and minimize
buttons, resize areas, and so on. The standard code also "realizes" the toplevel
shell and sets up the main event loop.

Listing 2.1 contains the code needed to create and display a label widget.
Figure 2.1 shows the output of this program, and the following sections ex­
plain each line of the program in detail.

Listing 2.1 A "Hello World" Program In Motif

1 #include <Xm/Xm.h>
2 #include <Xm/Label.h>

3 XtAppContext contextj
4 XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSETj

5 Widget toplevel, labelj

6 main(argc,argv)
7 int argcj
8 char *argv [] j
9 {

10 Arg al[10]j
11 int aCj

/* Create the toplevel shell */
12 toplevel = XtAppInitialize(&context,"",NULL,O,&argc,argv,

NULL,NULL,O)j

/* Create the label widget */
13 ac=Oj
14 XtSetArg(al[ac],XmNlabeIString,

XmStringCreateLtoR("Hello World", char_set»j aC++j
15 label=XmCreateLabel (toplevel, "label" , aI, ac) ;
16 XtManageChild(label)j

17 XtRealizeWidget(toplevel)j
18 XtAppMainLoop(context)j
19 }

2.1 DESIGNING A "HELLO WORLD" PROGRAM 21

Widgets

Resources:
XmNdecimalPoints
XmNfontList
XmNhighlightOnEnter
XmNhighlightTh ••.
XmNmaximum
XmNminimum

o
default
False
2
100
o

I Drag callback I ~~ ____________ ~r-

I ValueChanged callback I
1
+

Scale widget,
user view

Scale widget,
programmer's view

Calls functions in
your code in
response to events

A widget is a user interface object that
the user sees in one form-as a picture
on-screen-and the programmer sees in
another-as a set of resources and callbacks.
The figure shows this dichotomy using a
scale widget as an example.

The resources let the programmer control
the appearance and behavior of the widget
as seen by the user. For example, every
widget has a width and a height resource,
which determine the width and height of
the widget on-screen. When you change a
resource during the program's execution,

the user sees a change in the appearance of
the widget.

The callbacks let the widget communicate

with your program as the user performs
actions. You create code that tells the
widget to call a specific function in response
to a callback. The widget complies by

calling that function whenever the callback
is generated. For example, if the user
changes the value of the scale's slider, the
widget recognizes the change, updates the
appearance of the widget on-screen, and
generates a valueChanged callback. This

causes the widget to call the function that
the programmer specifies. The programmer
writes this function so that the program
responds appropriately to the user's action.

22 ANALYZING A MOTIF PROGRAM

Figure 2.1 The Output of the Program Shown
In Listing 2.1

Hello World

2.2 WHAT THE CODE MEANS

The code shown in Listing 2.1-in fact, Motif, Xt, and X code in general-has
a tendency to intimidate new programmers because of the unwieldy function
names, the long parameter lists, and the apparently random use of uppercase
and lowercase. Put this feeling aside for a moment and examine the code. You
should notice several things:

1. Two include files are used, Xm. h and Label. h. Both are Motif header files,
hence the Xm/ prefix. A large Motif program might include 20 or 30 header
files from X, Xm, and so on. The inclusion of Xm. h brings in most of the
Motif variable, constant, resource, and function names. It also brings in the
Xt and X header files, making these libraries available as well. The inclusion
of Label. h brings in functions and variables unique to the label widget,
such as XmCreateLabel.

2. Six variables are defined, four globally and two locally to main. The four
global variables are context, char_set, toplevel, and label. The two locals
are al and ac. Two of the global variables are widgets: one is a context
variable, and the other defines the character set to be used in the creation
of an XmString variable. The local variables al and ac are be used to create
an argument list that changes a widget's resource values and hence controls
the behavior or appearance of a widget.

3. There is one function, main, with two parameters, argv and argc. All

Motif programs, like all C programs, have one main function, which
accepts the command line arguments as its parameters. Even if the code
you write doesn't use any command line arguments, the main function
needs to accept the parameters argc and argv. The X interface defines
certain standard command line parameters that work the same way in all X
applications, such as -iconic and -geometry (see Chapter 12 for a complete
list of standard command line parameters). In practice, you will pass argc
and argv off to the XtAppInitialize function so that it can extract and
interpret all of the standard X command line options and then return what
is left.

2.2.1

2.2 WHAT THE CODE MEANS 23

4. The code calls seven functions: XtApplnitialize, XtSetArg, XmString­
CreateLtoR, XmCreateLabel, XtManageChild, XtRealizeWidget, and
XtAppMainLoop. The functions beginning with the prefix Xt come from
the X Toolkit libraries, while those beginning with Xm come from the Motif
libraries. All widget sets use the Xt functions; the Xm functions are unique
to the Motif widget set.

The following sections examine each line of code in the main function
individually.

LINE 12

The first line of the main function (line 12) is extremely important. It creates
a toplevel shell widget to hold the application, initializes all of X and the
X Toolkit for you, sets up your main application window, and parses out
standard X command line options:

toplevel = XtApplnitialize(&context,"",NULL,O,&argc,argv,NULL,NULL,O)j

As the Xt prefix indicates, XtApplnitialize is a function in the X Toolkit
library. It accepts several parameters, all but three of which are irrelevant in a
simple program such as this. This is why NULL, 0, and 1111 appear so frequently
in the function's parameter list. For completeness, all of the parameters are
described below.

XtApplnitialize Creates the application's toplevel shell.

Widget XtApplnitialize(XtAppContext *context,
String application_class,
XrmOptionDescRec options[],
Cardinal num_options,
Cardinal *argc,
String *argv,
String *fallback_resources,
ArgList *args
Cardinal num_args)j

context

application_class
options

Returns the context value. Needed for calls to other
XtApp functions.
The class name for loading resources (see Chapter 12).
Passed directly to the XrmParseCommand function
(see Chapter 12).

24 ANALYZING A MOTIF PROGRAM

num_options
argc

argv
fallback_resources
args
num_args

Number of options.
A pointer to the number of command line options
(pass an address).
The standard command line options array.
A set of predefined resource strings (see Chapter 12).
An argument list for the toplevel shell.
The number of arguments in the argument list.

The first parameter is context. The context of an application is a structure
that stores the information X needs to handle events and different displays.
The XtApplnitialize function returns the context value because other XtApp
functions need it (in this program, XtAppMainLoop).

The second parameter is the class name of the application, which deter­
mines which resource values are loaded from resource files as the application
begins to run. Resource files are text files of resource values that the user, rather
than the programmer, creates to customize applications (see Chapter 12). Re­
source values can be hard-coded into a program or read in from resource files.
Since we are not concerned with resource files at this time, we pass in an
empty string for this parameter.

The third and fourth parameters .. options and nUID_options, are not used
in this program and have been set to NULL and 0, respectively. They have to
do with command line parsing, which is discussed in detail in Chapter 12.

The next two parameters are &argc and argv. XtApplnitialize extracts the
command line arguments that relate to X but leaves those that remain for
your program to parse. Thus, XtApplnitialize has to be able to change argc.
You must pass argc and argv-you cannot use 0 and NULL. Be sure to use
the address of argc, since XtApplnitialize changes argc when X options are
removed from argv.

The next parameter passes a set of fallback resources to XtApplnitialize. X
uses fallback resources if the expected resource files cannot be found when the
application begins to run. Fallback resources are also discussed in Chapter 12.

The last two parameters let you use an argument list to change resource val­
ues belonging to the top level shell (see Chapters 3 and 12). Since this feature
is not being used during the creation of the toplevel shell, NULL and 0 are
passed.

XtApplnitialize returns the top level shell widget for this program. A shell
widget appears on the screen as a complete window, framed by decorations

2.2.2

2.2 WHAT THE CODE MEANS 25

consisting of a border with a title area, resizing areas, and so on. All Motif
programs have a shell that holds the application on the screen. The program
places the widget value that XtApplnitialize returns into the widget variable
named top level. Every time you need to change something about the toplevel
shell widget, you reference it using the top level variable.

A call to XtApplnitialize should be the first line of all of your Motif pro­
grams. Be aware that it is easy to pass parameters improperly and create seg­
mentation faults or addressing errors. All of the following lines of code cause
segmentation faults that can be very hard to track down:

toplevel=XtApplnitialize(context,IIII,NULL,O,&argc,argv,NULL,NULL,O);
toplevel=XtApplnitialize(&context,NULL,NULL,O,&argc,argv,NULL,NULL,O);
toplevel=XtApplnitialize(&context,IIII,NULL,O,O,NULL,NULL,NULL,O);
toplevel=XtApplnitialize(&context,IIII,NULL,O,argc,argv,NULL,NULL,O);

You must pass Motif, Xt, and X functions exactly what they expect, or the
program will not run.

LINES 13 AND 14

The toplevel shell, created by the call to XtApplnitialize in line 12 of the pro­
gram, acts as the window for the application on-screen. It is empty until you
place other widgets into it; doing so creates the user interface. This program
creates one label widget and places it inside the toplevel shell. Lines 13 and 14
set the labelString resource of the label widget to a value, and the label wid­
get displays that value on the screen. In this program, the value is the string
"Hello World."

ac=O;
XtSetArg(al[ac] , XmNlabelString ,

XmStringCreate(IIHello Worldll,char_set)); ac++;

Every label widget has a set of resources that you can change to customize
the widget's appearance-for example, you can change the text, font, and size
of the label. The code for our simple program changes the labelString resource
of the label widget and leaves all of its other resources at their default values.
For the names of the resources and their defaults, see AppendixJ, (which con­
tains summaries of the resource lists), the Motif Programmer's Reference Manual,
or on-line manual pages on widgets.

To change the resources of any widget, your code needs to create an argu­
ment array, fill it with the names of resource values you want to change and
their new values, and then pass it to the widget. Our program uses ac as a

26 ANALYZING A MOTIF PROGRAM

counter to keep track of the number of resource values stored in the array,
and uses al as the argument list. Using the XtSetArg call, the code inserts the
value "Hello World" into al[O] and specifies that the value should be used for
the XmNlabelString resource. Make sure ac accurately reflects the number of
resources in al.

The last point is very important. The incorrect code below shows how some­
thing seemingly straightforward can create unexpected problems in Motif:

XtSetArg(al[ac++] ,XmNlabelString, ...);

You must place ac++ on its own at the end of the statement, as shown in
the program, because XtSetArg is a macro. When the macro is expanded, the
following code is produced:

al[ac].name=XmNlabelString;
al[ac] .value= ... ;

If you place al[ac++] within the call to XtSetArg, ac is increased two incre­
ments by the expanded macro, which is not what you intended.

You also have to contend with the XmStringCreateLtoR call. Motif strings
are different from normal strings because they contain more information, so
you must use a special procedure to create them. The first parameter is the
value of the string, and the second is the character set for the string. Chapter
3 explains this process further.

You can commit errors easily when working with resource settings and ar­
gument lists. You can misspell the resource name, forget to initialize or incre­
ment ac, place too many values in al (as an array it can overflow), or forget to
create an actual XmString.

The parameters of XtSetArg and XmStringCreateLtoR are described below.

XtSetArg Sets a resource argument in the argument array.

void XtSetArg(
Arg arg,
String resource_name,
XtArgVal value);

arg

resource_name
value

An argument variable. By convention, a location in an
array.
The name of the resource to set.
The value to which you want to set the resource.

2.2 WHAT THE CODE MEANS 27

XmStringCreateLtoR Creates an XmString from a normal, null-terminated C string.

2.2.3

XmString XmStringCreateLtoR(
char *text,
XmStringCharSet charset)j

text
charset

LINE 15

The null-terminated C string.
The character set to use during creation of the
XmString.

Now that you have set up the argument list, you can create the label widget
itself.

label=XmCreateLabel(toplevel,lIlabelll,al,ac)j

In this line, the parameter label is the name you choose for the widget. Use it
when setting the widget's resources from a resource file (see Chapter 12). It is
fairly common to give the same name to the widget and the widget variable.
Widget names should be unique and descriptive.

The top level parameter declares which widget is the parent of the label
widget. All widgets in an application except the toplevel shell must have a
parent. The toplevel shell can have only one child. As we will see in Chapter
5, Motif provides manager widgets that can hold many children.

The al and ac parameters let you modify the value of the widget's resources.
Since we have set up al and ac to contain resource values, the program passes
these variables to the widget here.

Once the widget is created, the function returns a value to the label variable.
This variable will be used later to refer to that widget individually.

As with line 12, there are many ways to make line 15 create segmentation
faults. Here, however, you can replace the al and ac parameters with NULL
and 0, respectively, if you are not changing any resources at creation. An
extremely common mistake is to leave out the header file for the label widget
(Label. h). With many compilers, this omission generates irrational errors in
several places. Make sure you have included all the header files needed for all
of the widgets you use.

The description of XmCreateLabef follows.

28 ANALYZING A MOTIF PROGRAM

XmCreateLabel Creates a label widget.

2.2.4

2.2.5

Widget XmCreateLabel(
Widget parent,
String name,
ArgList args,
Cardinal num_args)j

parent
name

args
num_args

LINE 16

The parent widget of the new widget.
The name of the widget, used when referring to its
resources (see Chapter 12).
A resource argument array.
The number of arguments in the argument array.

Line 16 causes the widget's parent to manage its size and location on-screen.

XtManageChild(label)

If a widget is not managed, it will not appear on the screen. The widget will
not actually appear until the code enters the event loop.

LlNE17
Line 17 realizes the toplevel widget.

XtRealizeWidget(toplevel)j

When the top level shell is realized, the window frame that holds this ap­
plication is created, along with the application's title, resizing borders, and so
on. All of toplevel's child widgets are realized as well, and they too appear on
screen (that is, all managed children become visible; unmanaged children do
not). In general, a shell widget such as toplevel is the only widget you have
to realize with an actual call, because the call to XtRealizeWidget recursively
realizes all of the children of toplevel.

2.2 WHAT THE CODE MEANS 29

XtRealizeWidget Realizes a widget.

2.2.6

void XtRealizeWidget(Widget w);

w The shell widget to be realized.

It is useful to define the terms manage, create, and realize, and describe their
differences. When you create a widget, you set up and initialize all of its
resources. When you manage a widget, its parent is controlling its size and
placement on the screen. When you realize a widget, you create its window
(at the X level). A single realize call to toplevel recursively realizes all of its
children.

LINE 18

Line 18 causes the event loop to begin processing events. The event loop
removes events from the X event queue and passes them to the appropriate
widget for processing.

XtAppMainLoop(context);

Since Motif manages the event loop for you, you do not have to worry about
it. The main loop that XtAppMainLoop creates handles all events the appli­
cation receives. From this point on, anything that happens in your code will
happen because of callbacks triggered by user events passed to a specific wid­
get. This topic is covered in detail in Chapter 4.

XtAppMainLoop Manages the Motif event loop.

void XtAppMainLoop(XtAppContext context);

context The context variable for the application received from
XtApplnitialize.

3 RESOURCES

One of the keys to understanding Motif programming is understanding the
concept of resources. The programmer designs a Motif application by selecting
a set of widgets to compose the user interface. Every widget, in turn, has a
set of associated resources that control its appearance and behavior. Resources
are much like normal variables, except that you must access them in a special
way. For example, a label widget has resources that determine such features
as the string displayed by the label, the font used to display the string, and
the margins around the string. These resources can be read or set to new
values. The programmer changes the widgets in the user interface by adjusting
resource values.

The label widget program described in Chapter 2 set only one resource of
the label widget: it set the value of the label widget's labelString resource
to "Hello World." The rest of the resources retained their default values. This
chapter introduces you to resources by exploring some of the things you can
accomplish by setting and getting resource values in a label widget.

3.1 GElTlNG STARTED

The program shown in Listing 3.1 demonstrates how to change the width and
height resources of the label widget.

Listing 3.1 Changing the Width and Height of a
Widget

/* size1. c */
1 #include <Xm/Xm.h>
2 #include <Xm/Label.h>

3 XtAppContext context;
4 XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

30

3.1 GETTING STARTED 31

5 Widget toplevel, label;

6 main(argc,argv)
7 int argc;
8 char *argv [] ;
9 {
10 Arg al[10];
11 int ac;

1* create the toplevel shell *1
12 toplevel = XtApplnitialize(&context,"",NULL,O,&argc,argv,

NULL,NULL,O);

1* create label widget *1
13 ac=O;
14 XtSetArg(al[ac],XmNlabeIString,

XmStringCreateLtoR("Hello World", char_set»; ac++;
14a XtSetArg(al[ac],XmNheight,300); ac++;
14b XtSetArg(al[ac],XmNwidth,300); ac++;
15 label=XmCreateLabel (toplevel, "label" , aI, ac) ;
16 XtManageChild(label);

17 XtRealizeWidget(toplevel);
18 XtAppMainLoop(context);
19 }

This is the same program used in Chapters 1 and 2, with the addition of
two new lines, 14a and 14b, that modify the width and height resources of
the label widget. When you compile and run this code, note that the label
widget contains the same string in the same font, but now the widget itself
is much larger. Note also that the toplevel shell is larger to accommodate the
larger label. This occurs because the toplevel shell is the parent of the label
widget and therefore manages its size and position. When the shell is realized,
it determines its own size based on the size of the label. The window should
appear with a size of 300 x 300 pixels, as shown in Figure 3.1. Compare this
figure with Figure 2.1, which shows the output of the program in Listing 2.1.

The modification of widget resources like width and height is the key to
controlling the behavior and appearance of each widget in a Motif application.
To use a widget effectively; you should be familiar with all of its resources, as
well as the techniques for setting them. Resource lists provide this information
for each widget.

32 RESOURCES

Figure 3.1 A 300-by-300-Plxel Label Widget
Produced by Listing 3.1

Hello World

3.2 THE LABEL WIDGET'S RESOURCE LIST

Appendix J contains resource lists and brief descriptions of the resources for all
of the Motif widgets. The Motif Programmer's Reference Manual contains more
complete descriptions of all resources. Following is the deSCription for the
label widget from Appendix J. It contains a lot of information, but it tells you
everything you need to know.

XmLabel Widget

Also available as a gadget.

Description

Class Pointer

Class Name

Include File

Superclass

Displays a compound string or a pixmap

xmLabelWidgetClass

XmLabel

<Xm/Label.h>

XmPrimitive

3.2 THE LABEL WIDGET'S RESOURCE LIST 33

RESOURCES

Name

J{nrr~accelerator

J{nrr~ acceleratorText

J{nrr~ alignnrrent

J{nrr~fontList

J{nrr~labellnsensitive-

Pixnrrap

Xnrr~labelPixnrrap

Xnrr~labelString

J{nrr~labeIType

Xnrr~nrrarginBottonrr

Xnrr~nrrarginHeight

J{nrr~ nrrarginLeft

J{nrr~ nrrarginRight

Xnrr~nrrarginTop

Xnrr~nrrarginWidth

J{nrr~nrrnenrronic

Xnrr~nenrronicCharSet

Xnrr~reconrrputeSize

Xnrr~ stringDirection

RESOURCE DESCRIPTIONS

Xnrr~accelerator

Xnrr~acceleratorText

Xnrr~alignnrrent

Xnrr~fontList

J{nrr~labelInsensitivePixnrrap

J{nrr~labeIPixmap

J{nrr~labeIString

Type Default

String ~ULL

J{nrrString ~ULL

unsigned char J{nrrALIG~ME~T_CE~TER

J{nrrFontList dynanrric

Pixnrrap J{nrr U~SPECIFIED _PIJ{MAP

Pixnrrap J{nrr~SPECIFIED _PIJ{MAP

XnrrString ~ULL

unsigned char J{nrrSTRI~G

Dinrrension 0

Dinrrension 2

Dinrrension 0

Dinrrension 0

Dinrrension 0

Dinrrension 2

KeySynrr ~ULL

String dynanrric

Boolean True

J{nrrString-

Direction J{nrrSTRI~G_DIRECTIO~_L_ TO_R

The accelerator character to use when the label is
used as part of a push-button or a toggle button in
a nrrenu. See Chapter 6.

Text that tells the user what the accelerator is. See
Chapter 6.

Alignnrrent of string in the label. J{mALIG~­
ME~T_BEGI~I~G, J{nrrALIG~MEm_CE~TER,

or J{nrrALIG~E~T_E~D are valid.

Font used to display labelString.

Used if label is insensitive and is displaying a
pixnrrap (labelType = XmPIJ{MAP).

Used if label is sensitive and is displaying a pixnrrap
(labelType = XmPIJ{MAP).

String the label displays if labelType = J{mSTRI~G.

34 RESOURCES

XmNlabelType

XmNmarginBottom

XmNmarginHeight

XmNmarginLeft

XmNmarginRight

XmNmarginTop

XmNmargin Width

XmNmnemonic

XmNmnemonicCharSet

XmNrecomputeSize

XmNstringDirection

CONVENIENCE FUNCTIONS

Specifies whether label displays a string (Xm­
STRING) or a pixmap (XmPIXMAP).

Space between the bottom of the label string and
the top of the bottom margin.

Height of the margin above and below the label
string.

Space to the left of the label string.

Space to the right of the label string.

Space above the label string.

Width of the margin to the left and right of the
label string.

The mnemonic character that activates the button
when the label is part of a pushbutton or toggle
button.

The mnemonic's character set.

When true, any change to the label will cause it
to readjust its size immediately. When false, no
readjustment takes place.

Determines direction string is drawn. Xm­
STRING_DIRECTION_L_TO_R and XmSTRING_
DIRECTION_R_TO_L are valid.

Widget XmCreateLabel(Widget parent,String name,ArgList arglist,
Cardinal argcount);

Widget XmCreateLabelGadget(Widget parent,String name,ArgList arglist,
Cardinal argcount);

The description field at the top describes what the label widget does. Note
that a label widget is not restricted to texti it can also display a pixmap of
any size (see Chapter 17). You use the class (or type) pointer and name when
calling functions (XtCreateManagedWidget, for example) for which you need
to know the type of the widget. You must include the include file at the top
of any program that uses a label widget. The superclass specifies the widget
from which the label widget inherits its behavior. Section 3.3 describes the
implications of the superclass in more detail.

A summary table of resources comes next in the description. This table is
important for three reasons: It lists the names of all available resourceSi it lists
the type of each resourcei and it lists the default value of each resource. Fol­
lowing the table is a set of brief descriptions to help the programmer better

3.3 UNDERSTANDING INHERITANCE 35

understand the purpose of each resource and a list of the convenience func­
tions appropriate to the widget.

For example, the table provides the following information about the re­
source XmNlabelType (often written simply as labeIType). The type of this
resource is unsigned char, which means that it expects an integer constant
value. The default value is the constant value XmSTRING. According to the
description, you can also give the labelType resource the value XmPIXMAP,
which means that the widget can display a text string or a pixmap.

The resource list demonstrates the flexibility of the label widget. As you can
see, many of its features are customizable. For example, you can customize the
label's text by changing the labelString resource, the alignment of the text
by changing the alignment resource, or the font by changing the fontList
resource.

3.3 UNDERSTANDING INHERITANCE

The superclass of a widget plays an important role in its behavior. In the case
of a label widget, the superclass is a primitive widget. In other words, a label
widget is built from a more fundamental widget called a primitive widget.
The label Widget inherits all of the resources and callbacks a primitive widget
possesses.

When you look at the resource list for the label widget, you may note that
there are some very obvious items missing. For example, Listing 3.1 set the
height and width resources for the label, but the label widget's resource list
mentions no XmNheight or XmNwidth resources. Why? The label widget is
built from a primitive widget, and the primitive widget, in turn, is built from
a core Widget, as are all widgets in all widget sets. The core widget contains
fundamental resources common to all widgets, such as width and height.

The resource lists for the primitive and core widgets appear in Appendix J.
The width, height, foreground and background color, highlighting behavior,
borders, and so on, are all declared here. Because of the inheritance from core
widget to primitive widget to label widget, there are a total of 51 resources
that affect a label widget's behavior (18 core, 16 primitive, and 17 of its own).
Figure 3.2 summarizes the inheritance hierarchy for label widgets.

In the remainder of this chapter, we will manipulate several of the resources
that control the label widget to gain a better understanding of how to use
resources.

36 RESOURCES

Figure 3.2 The Inheritance Hierarchy for
Label Widgets

Provides resources that
specifically apply to label widgets

Provides resources common to
all display widgets

Provides fundamental resources
common to all widgets

3.4 A SIMPLE EXAMPLE REVISITED: CHANGING THE HEIGHT
AND WIDTH OF A WIDGET

All widgets have resources that control their height and width. These resources
are inherited from the core widget, from which all widgets are built. If you
do not specifically set its width and height resources, a label widget will
automatically adjust to the size of the string or pixmap it displays. If you want
it to have a specific size, however, you can specify this through the resources.

Several different techniques can be used to set the value of a widget's re­
sources. You can set resources from the command line, from resource files, or
from within a program (see Chapter 12). From within a program, you have two
options: You can specify the values as the widget is created by passing an ar­
gument list into the function that creates the widget; or you can set the values
of the widget after it has been created using the XtSetValues function.

The code in Listing 3.1 illustrated the first option, but it might also have
been written using XtSetValues, as shown in Listing 3.2.

Listing 3.2 Using XtSetValues to Set Resource Values

/* size2.c */
1 #include <Xm/Xm.h>
2 #include <Xm/Label.h>

3 XtAppContext context;
4 XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

5 Widget toplevel, label;

3.4 A SIMPLE EXAMPLE REVISITED 37

Setting and Getting Resources

al

XmNLabelString "Hello World" al[O]

al[1]

al[2]

al[3]

XmNalignment Xm_ALlGNMENT _END

XmNrecomputeSize False

al[4]

and so on

When you set resources, you make use of
a structure called an argument list. This list
is an array that contains pairs of items; the
first item in a pair is the resource's name,
and the second is the resource's new value.

In the figure above, al is the array. It
contains pairs of items, three of which
are currently in use. The ac variable keeps
track of the number of valid items in the
argument list.

Following is the code that creates the
argument list and sends it to an existing
label widget:

ac=Oj
XtSetArg(al[ac],XmNlabeIString,

XmStringCreateLtoR("Hello World",
char_set»j aC++j

XtSetArg(al[ac],XmNalignment,
XmALIGNMENT_END)j aC++j

XtSetArg(al[ac],XmNrecomputeSize,
False)j aC++j

XtSetValues(label,al,ac)j

- acis3

The Xt layer supports a second way to pass
argument lists to an existing widget, using
the XtVaSetValues function. In this case,
the argument list is passed directly:

XtVaSetValues (label,
XmNlabelString,XmStringCreateLtoR
("Hello World",char_set),
XmNalignment,XmALIGNMENT_END,
XmNrecomputeSize,False,
NULL) j

The Xt layer also supports an XtVaGet­
Values function, which you can use to
retrieve values from a widget:

XtVaGetValues(label,
XmNwidth,&w,
XmNheight,&h,
NULL) j

The Va capability does not exist in the Motif
widget creation functions, so you must use
al and ac to change resource values during
widget creation.

38 RESOURCES

6 main (argc, argv)
7 int argc;
8 char *argv [] ;
9 {

10 Arg al[10];
11 int ac;

/* create the toplevel shell */
12 toplevel = XtAppInitialize(&context,"",NULL,O,&argc,argv,

NULL,NULL,O) ;

/* create label widget */
13 ac=O;
14 XtSetArg(al[ac],XmNlabeIString,

XmStringCreateLtoR("Hello World", char_set)); ac++;
15 label=XmCreateLabel(toplevel, "label" ,al,ac);
16 XtManageChild(label);

/* Set resources in the label widget. */
16a ac=O;
16b XtSetArg(al[ac],XmNheight,300); ac++;
16c XtSetArg(al[ac],XmNwidth,300); ac++;
16d XtSetValues(label,al,ac);

17 XtRealizeWidget(toplevel);
18 XtAppMainLoop(context);
19 }

Listing 3.2 contains four new lines (16a-16d). These lines load an argument
list with the new values for the height and width resources. They then use
the argument list to set the values of those resources in the label widget using
the XtSetValues function. XtSetValues accepts three parameters: the widget
to set, the argument list, and a count. When you run this code, it will behave
identically to the code that generated Figure 3.1.

XtSetValues Passes an Arg list to a widget.

void XtSetValues(Widget widget,
ArgList arg,
Cardinal num_args)

3.5 CHANGING THE LABELSTRING RESOURCE, REVISITED

widget
arg
num_args

The widget you want to set.
The argument array of resources and values.
The number of arguments in the array.

Watch for the following problems when setting resources:

39

1. Make sure you initialize and increment ac correctly. It is extremely easy to
forget line 13, which can cause very strange behavior.

2. Make sure you spell the resource names correctly. Case matters.
3. Make sure you use only resource names valid for the widget in question. For

example, if you try to set the autoUnmanage resource for the label widget,
the code will compile because the bulletin board widget uses that resource
name and makes it valid. However, the code will ignore autoUnmanage
because the label widget does not have a resource of this name anywhere in
its inheritance hierarchy.

4. Make sure you pass al and ac to XtSetValues in the correct order, or you
will get a bus error or segmentation fault when you run the program, even
though the code will compile correctly on many machines.

As you can see, changing the height and width of a widget is straightforward.
Several other resources in the label widget's resource list have integer values,
and you can change them all easily.

3.5 CHANGING THE LABELSTRING RESOURCE, REVISITED

In all of the examples so far, we have been changing the labelString resource.
It is important to look at this process closely and understand how it works.

The C programming language defines a string as a null-terminated array of
characters. Motif uses a somewhat more complicated string type called an Xm­
String, often referred to as a compound string (see Chapter 14). In order to use
C strings with Motif widgets, you must first convert them to the XmString
format. Motif provides functions to convert C strings to XmStrings and Xm­
Strings to C strings.

Recall that when we set the width resource in the previous section, we used
a call to XtSetArg, as shown here:

XtSetArg(al[ac],XmNwidth,300); ac++;

The XtSetArg function accepts three parameters: the argument to be set, the
name of a resource, and the value to be used for that resource. The call to

40 RESOURCES

XtSetArg specifies that the width resource be set to the value 300. This speci­
fication is placed at location ac in the argument list (array) aI, and ac is incre­
mented.

To set the labelString resource, XtSetArg is used in the same way. To do
this, we have been using the line:

XtSetArg(al[ac],XmNlabelString,
XmStringCreateLtoR("Hello World",char_set)); ac++;

It might be clearer to declare a specific XmString variable (I will use s for it
here) and break the above line into two parts, as shown below:

XmString s; I*declare s somewhere in the program *1

s=XmStringCreateLtoR("Hello World",char_set);
XtSetArg(al[ac],XmNlabelString,s); ac++;

Now the XtSetArg line looks just as it did for XmNwidth: labelString is set to
the value s.

The conversion process demonstrated here is extremely important. (It is
very easy to forget the conversion and innocently try to pass a normal C string
in the XtSetArg call. The code will compile correctly on many machines, but it
will not work correctly because the resource type for the labelString resource
is XmString.) XmStringCreateLtoR converts a C string to an XmString. The
call to XmStringCreateLtoR accepts two parameters: the C string you want to
convert, and the character set for the conversion. In this example, the charac­
ter set is represented by the variable char_set, which is set to the value Xm­
STRING_DEFAULT_CHARSET. In Chapter 14, you will learn about character
sets and char_set.

You can display long messages in label widgets, but if the message contains
120 characters, the label widget that ends up holding it will become extremely
long and narrow. To get around this problem, you can embed new-line char­
acters within the C string to break up the text into several lines inside the label
widget:

XtSetArg(al[ac],XmNlabelString,
XmStringCreateLtoR("line one\nline two\nline three\nline four",
char_set)); ac++;

The function XmStringCreateLtoR recognizes the \n characters and converts
them properly into separate components within the XmString variable. Each
component will appear in its own line in the label when the label is displayed.

3.6 CHANGING THE FONT USED 41

The alignment resource controls the positioning of labelString in the
label. You can set the alignment resource to the values XmALIGNMENT_
BEGINNING, XmALIGNMENT_CENTER (the default), or XmALIGNMENT_
END. The following code provides an example:

XtSetArg(al[ac],XmNalignment,XmALIGNMENT_BEGINNING)j aC++j

Pass this argument into the widget when you create it or use an XtSetValues
call.

Exercises

1. Try replacing the line

XtSetArg(al[ac],XmNlabelString,
XmStringCreateLtoR("Hello World",char_set))j aC++j

with the line

XtSetArg(al[ac],XmNlabelString,"Hello World")j aC++j

Note the result when the program fails to execute.
2. Try all three different values for the alignment resource with a long

multiline string (a string containing \n characters) to see what effect this
resource has on the string the label widget displays.

3.6 CHANGING THE FONT USED

The label widget allows you to specify a font list for the label in your code.
Setting fontList is somewhat more involved than setting the width and height
of a widget, but you follow the same general procedure. An example is shown
in Listing 3.3.

Listing 3.3 Changing a Label Widget's fontList
Resource

/* font.c */
1 #include <Xm/Xm.h>
2 #include <Xm/Label.h>

3 XtAppContext contextj
4 XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSETj

5 Widget toplevel, labelj

42 RESOURCES

6 main(argc,argv)
7 int argc;
8 char *argv [] ;
9 {
10 Arg al[10];
11 int ac;
lla XFontStruct *font=NULL;
llb XmFontList fontlist=NULL;
llc char *namestring=NULL;

1* create the toplevel shell *1
12 toplevel = XtApplni tialize (&context , .". , NULL, 0 , &argc , argv ,

NULL,NULL,O) ;

1*" create label vidget *1
13 ac=O;
14 XtSetArg(al[ac],XmNlabeIString,

XmStringCreateLtoR("Hello World", char_set»; ac++;
15 label=XmCreateLabel(toplevel,"labe1" ,al,ac);
16 XtManageChild(label);

1* Set fontList resource in the label vidget. *1
16a namestring=l*times*24*"; 1* you may need to change this. *1
16b font=XLoadQueryFont(XtDisplay(label),namestring);
16c fontlist=XmFontListCreate(font,char_set);
16d ac=O;
16e XtSetArg(al[ac],XmNfontList,fontlist); ac++;
16f XtSetValues(label,al,ac);

17 XtRealizeWidget(toplevel);
18 XtAppMainLoop(context);
19 }

Lines 16a through 16f create a font list and set the fontList resource of the
label widget. Line 16a takes the name of the font and points namestring at
it. Line 16b loads the font using the X function XLoadQueryFont. Line 16c
creates a Motif font list from the X font structure using XmFontListCreate.
Lines 16d-16f set the value of the fontList resource. This process is similar to
the one that creates an XmString from a C string, as shown in the previous
section: Motif uses a special font list structure, so XmFontListCreate translates
the X form of the font list created by XLoadQueryFont into a Motif font list.
See Chapter 14 for more details on this process.

3.6 CHANGING THE FONT USED

Figure 3.3 A Label Widget Displaying the Label
String In 24-Polnt nmes

Hello World

43

When you run this code, you should see the label displayed in a 24-point
Times font, as shown in Figure 3.3. If not, see below for an explanation and a
fix.

To find the font names that are valid on your system, type the following
command at the UNIX prompt:

xlsfonts -fn n",n > out

The file out will contain all of the font names known to your system. Some
of them are short, such as 16xlO", but others are monsters, as the following
fragment of my out file shows:

-adobe-times-bold-i -normal-'--24-240-75-75-p-128-iso8859-1
-adobe-times-bold-i-normal---25-180-100-100-p-128-iso8859-1
-adobe-times-bold-i-normal---34-240-100-100-p-170-iso8859-1

To avoid having to type long font names such as these, you can use asterisks
(*) as wildcards when setting namestring:

namestring=n*times*24*n j

This line of code will set the font of the label widget to 24-point Times. How­
ever, there may be many 24-point Times fonts that match the wildcard de­
scription. If so, the code uses the first match it finds. On the system I am using,
the first match to "*times*24*" happens to be

-adobe-times-bold-i-normal---24-240-75-75-p-128-iso8859-1

This font is bold and italic. If you want a specific Times font, use a more
specific argument, such as "*times*bold*-24-*".

If the code finds no matching font, nothing happens. For example, if you
use the sample code on page 43, and your system does not have a 24-point
Times font, the code will leave the font at its default value. In such a case,
look at the file containing the fonts available on your system, pick one, and
use it for the value of namestring.

44 RESOURCES

Exercise

1. Try several different fonts, using more and less specific font names, and see
how the font changes the label's appearance.

3.7 AN ANOMALY

Motif is a very rich programming environment. At times, however, its richness
can lead to internal interactions that result in what appears to be incorrect
program behavior. Run the code in Listing 3.4 to see an example of such an
anomaly.

Listing 3.4 A Resource-Setting Anomaly

/* anomaly.c */
1 #include <Xm/Xm.h>
2 #include <Xm/Label.h>

3 XtAppContext contextj
4 XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSETj

5 Widget toplevel, labelj

6 main(argc,argv)
7 int argcj
8 char *argv [] j
9 {
10 Arg al[10]j
11 int aCj
lla XFontStruct *font=NULLj
llb XmFontList fontlist=NULLj
llc char *namestring=NULL;

/* create the toplevel shell */
12 toplevel = XtAppInitialize(&context,"I,NULL,O,&argc,argv,

NULL,NULL,O) ;

/* create label widget */
13 ac=O;
14 XtSetArg(al[ac],XmNlabelString,

XmStringCreateLtoR("Hello World", char_set»j ac++;
14a XtSetArg(al[ac],XmNheight,300); aC++j
14b XtSetArg(al[ac],XmNwidth,300); ac++;

3.8 READING RESOURCE VALUES 45

15 label=XmCreateLabel (toplevel, II label II , al, ac) ;
16 XtManageChild(label);

1* Set fontList resource in the label widget. *1
16a namestring=l*times*24*"; 1* you may need to change this. *1
16b font=XLoadQueryFont(XtDisplay(label),namestring);
16c fontlist=XmFontListCreate(font,char_set);
16d ac=O;
16e XtSetArg(al[ac),XmNfontList,fontlist); ac++;
16f XtSetValues(label,al,ac);

17 XtRealizeWidget(toplevel);
18 XtAppMainLoop(context);
19 }

This code changes the size of the label widget to 300 x 300 when it creates
the label. It also changes the font of the label to 24-point Times after creation.
When you run this program, you expect it to display the string "Hello World"
in 24-point Times in a label widget of 300 x 300 pixels. Instead, the label
appears as it does in Figure 3.3, as if the changes to the width and height
resources had no effect.

Why does this occur? If you examine the resource list for the label widget
(see Appendix J), you will find that it contains a resource named recompute­
Size. This is a Boolean resource with a default value of true. When true, this
resource causes the label widget to recompute its size each time the pixmap,
accelerator text, margins, font list, or label string resource types are set. The la­
bel widget in the above code resized itself when the fontList resource changed,
negating the effect of setting the widget's width and height. You can solve this
problem by setting recomputeSize to false.

This example demonstrates an important fact about Motif programming:
Unexpected behavior can result from seemingly straightforward code. When
unexpected behavior occurs, search for a rational cause.

3.8 READING RESOURCE VALUES

It is often useful to read the value of a resource when responding to a callback
or when retrieving what a user has done to a user-modifiable widget such as
a scroll bar. The code in Listing 3.5 demonstrates how to read the height and
width of a label widget.

46 RESOURCES

Listing 3.5 Reading the height and width Resources
of a Label Widget

/* getsize.c */
1 #include <Xm/Xm.h>
2 #include <Xm/Label.h>

3 XtAppContext contextj
4 XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSETj

5 Widget toplevel, labelj

6 main(argc,argv)
7 int argcj
8 char *argv [] ;
9 {
10 Arg al[10]j
11 int aCj
12 Dimension w,h;

13 toplevel = XtApplnitialize(&context,"I,NULL,O,&argc,argv,
NULL,NULL,O)j

/* Create a label widget */
14 ac=Oj
15 XtSetArg(al[ac],XmNlabeIString,

XmStringCreateLtoR("Hello Hello Hello Hello",char_set»j aC++j
16 label=XmCreateLabel(toplevel, II label" ,al,ac) j
17 XtManageChild(label)j

/* Get the height and width */
18a ac=Oj
18b XtSetArg(al[ac],XmNheight,&h)j aC++j
18c XtSetArg(al[ac],XmNwidth,&w)j aC++j
18d XtGetValues(label,al,ac)j
18e printf ("Yod Yod \n", w ,h) j

19 XtRealizeWidget(toplevel)j
20 XtAppMainLoop(context)j
21 }

Here, the string "Hello Hello Hello Hello" controls the height and width of the
widget, which will automatically size itself to hold this string.

To read a resource value, you create an argument list using XtSetArg in a

3.9 READING BACK THE LABEL WIDGET'S LABELSTRING 47

manner very similar to that used in the previous examples. To XtSetArg is
passed the argument, the name of the resource to be read, and t~e address of
the variable into which the resource value should be placed after it is read.
Then XtGetValues is called to get the resource values requested.

XtGetValues Retrieves resource values to a widget.

void XtGetValues(
.Widget widget,
ArgList arg,
Cardinal num_args)

widget
arg
num_args

The widget you want to set.
The argument array of resources and values.
The number of arguments in the array.

Note that the variables wand h are declared as type Dimension-the type
int won't work, or produces unexpected results, on many machines. Make sure
that variables you use to read resource values have exactly the same type as
the resource being read. Use the resource lists in Appendix J to determine the
correct type for a resource.

3.9 READING BACK THE LABEL WIDGET'S LABELSTRING

To see a more complicated example, let's read back the label widget's label­
String resource. Beginning with the code above, declare the variables sand
cstring, then replace lines 18a through 18e with the code shown in Listing
3.6.

Listing 3.6 Reading the labelStrlng Resource

XmString s;
char *cstring;

ac=O;
XtSetArg(al[ac],XmNlabelString,&s); ac++;
XtGetValues(label,al,ac);
XmStringGetLtoR(s,char_set,&cstring);
printf(lI%s\n ll ,cstring);

48 RESOURCES

This code gets the XmString in labelString and then converts it back to a
normal C string so that it can be printed to standard out (stdout).

Any experienced C programmer who looks at this code hears a small voice
in the back of his or her head whispering two dreaded words: "memory leaks."
The first tip-off is the fact that the code declares cstring as a pointer. Some­
thing is allocating the block to which it eventually pOints but nothing is free­
ing that block up. To prevent memory leaks, add these two lines following the
printf statement:

XmStringFree(s)j
XtFree(cstring)j

Since the variable s is specifically an XmString, this code uses a special Xm­
StringFree function to free that block: Use XtFree on the cstring block. You
can use XtFree interchangeably with the normal C free function (see Chapter
16).

While on the subject of memory leaks, notice that the following statement,
which is used frequently in this book and others, leaks:

XtSetArg(al[ac],XmNlabelString,
XmStringCreateLtoR(IHello", char_set)); ac++;

The call to XmStringCreateLtoR returns a pointer, and that pointer is never
freed. In general, this leak is considered acceptable because the labelString is
changed only once in most cases. A label whose labelString resource changes
frequently, however, can present problems. You can use the code in Listing 3.7
as a solution.

Listing 3.7 Preventing Memory Leaks In XmStrlngs

XmString s; I*declare s somewhere in the program *1

s=XmStringCreateLtoR("Hello World",char_set);
XtSetArg(al[ac],XmNlabelString,s)j aC++j
XtSetValues(label,al,ac);
XmStringFree(s);

Note that the string s cannot be freed until after the call to XtSetValues. A
copy of the string is made at that point.

3.10

3.10 A NOTE OF CAUTION 49

A NOTE OF CAUTION

XtSetArg, combined with XtSetValues, can set a resource to a four-byte value.
That is all it can do. If the resource is an integer or Boolean value, it passes
the integer or value as the four-byte value. Otherwise, it passes a pointer. No
checking is done on this pointer, as we saw in the exercise where we set la­
belString. If a normal C string pointer is passed in as the value of labelString,
with the necessary call to XmStringCreateLtoR omitted, the code compiles
properly on many machines but fails to run. You must take care while pro­
gramming to avoid pitfalls such as this.

In the same way, you can use XtGetValues to get a four-byte resource
value. XtGetValues either gets the value directly, in the case of integers and
Booleans, or returns a pointer. Misuse of these pointers can cause memory
leaks, as we have just seen, and you should take care with them as well.

4 CALLBACKS

All Motif widgets have callbacks, which they use to trigger specific actions
in response to user events. In this chapter we will work with a push-button
widget to gain an understanding of how callbacks work, and then we will look
at a more advanced example using a scale widget.

4.1 THE BASIC IDEA BEHIND CALLBACKS

The idea behind callbacks is extremely straightforward. If a user manipulates
a widget on-screen, something needs to notify the program of the change.
For example, if an application displays a push-button widget, the user will
eventually click the push button and expect some specific action to result. For
example, the user will expect the program to quit after clicking the button
labeled "Quit." The program needs to know about the click so that it can
generate the appropriate action.

Motif handles a mouse-click event in its main event loop (which is estab­
lished by the call to the XtAppMainLoop function) and routes the event to
the push-button widget. The push-button widget handles the event appropri­
ately by making the button flash, but it also needs a way to communicate
this event to the program. Motif provides a way with a callback function. A
callback function is a normal C function that performs an appropriate action.
The address of the callback function is passed to the widget with the function
XtAddCallback, and thereby registered as a callback function for that widget.
Whenever the widget detects a mouse event, it calls that function and the ac­
tion occurs.

4.2 WORKING WITH THE PUSH-BUTTON WIDGET

In order to understand callbacks, you must use a widget capable of producing
them in response to user events. A label widget cannot do this (although like

50

4.2 WORKING WITH THE PUSH-BUTTON WIDGET 51

all widgets, it produces a callback when destroyed). A push-button widget is
the simplest widget that responds to user events, so we will use it here.

Look through the description of the push-button widget in Appendix J.
Note that you must use the PushB. h include file. Also note that its superclass is
the label widget, so it inherits all of the label widget's resources and callbacks.
By extension, the push-button widget inherits all the resources and callbacks
from the primitive and core widgets, because the label widget inherits them. It
also adds three callbacks of its own: activate, arm, and disarm.

To try a push button, enter and run the code shown in Listing 4.1. Then try
clicking the push button labeled "Push Me" several times.

Listing 4.1 The Creation of a Push-Button Widget

/* button.c */

#include <Xm/Xm.h>
#include <Xm/PushB.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel. button;

void main(argc.argv)
int argc;

{

}

char *argv [] ;

Arg al[10];
int ac;

/* create the toplevel shell */
toplevel = XtAppInitialize(&context.IIII.NULL.O.&argc.argv.

NULL.NULL.O);

/* create the button widget */
ac=O;
XtSetArg(al[ac].XmNlabelString.

XmStringCreate(IIPush Mell.char_set»; ac++;
button=XmCreatePushButton(toplevel.llbuttonll.al.ac);
XtManageChild(button);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

52 CALLBACKS

Figure 4.1 A Push-Button Widget

The code in Listing 4.1 is exactly the same code we used for the label widget
in Chapters 1, 2 and 3, except that the XmCreate function has been changed
from XmCreateLabel to XmCreatePushButton, and the include file at the
top of the code has changed from Label. h to PushB. h. When you run this
code, you should see a push button with the words "Push Me" in a window, as
shown in Figure 4.1. Clicking this push button should highlight it. The button
doesn't "do" anything useful yet, because we haven't told it what to do.

To make the push button do something, we have to use its callbacks. We
can demonstrate this by modifying the code in Listing 4.1 so that it prints
the words "button pushed" to standard out (stdout) whenever the button is
pushed. Listing 4.2 shows the new code.

Listing 4.2 Wiring In the Activate Callback for the
Push-Button Widget

/* callback.c*/

#include <Xm/Xm.h>
#include <Xm/PushB.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, button;

void handle_button(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmPushButtonCallbackStruct *call_data;

/* handles the pushbutton's activate callback. */
{

printf("button pushed\n");
}

4.2 WORKING WITH THE PUSH-BUTTON WIDGET

void main(argc,argv)
int argc;

{

}

char *argv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&:context,"I,NULL,O,&:argc,argv,

NULL,NULL,O);

1* create the button widget *1
ac=O;
XtSetArg(al[ac],XmNlabeIString,

XmStringCreate("Push Me",char_set»; ac++;
button=XmCreatePushButton(toplevel,lbutton",al,ac);
XtManageChild(button);
XtAddCallback(button,XmNactivateCallback,handle_button,NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

53

This modified program calls the XtAddCallback function after it creates the
push-button widget. XtAddCallback tells the push-button widget to call the
function named handle_button whenever its activate callback is triggered.

XtAddCallback Adds a callback function to a widget.

void XtAddCallback(
Widget w,
String callback_name,
XtCallbackProc callback,
XtPointer client_data);

w
callback_name
callback
client_data

The widget.
The name of the callback.
The function to call when the callback is triggered.
Programmer-specified data sent to the callback
function.

54 CALLBACKS

Now when a user clicks the button, the widget automatically calls handle_
button which prints the words "button pushed" to stdout. As you can see,
handle_button is nothing more than a standard C function and therefore can
contain anything you like.

When called, callback functions receive three pieces of information as pa­
rameters. The first parameter is the widget that triggered the callback. The sec­
ond is a piece of programmer-defined data, which can be anything that fits
in four bytes, sayan integer or a pointer. The XtPointer type is a generic C
pOinter type available in Xt and used by convention when you need a generic
four-byte type. We use it here because at this point we are not doing anything
with client_data in the code and therefore need to declare it as something
generic. The third parameter is a pointer to the push-button callback struc­
ture, which contains an integer holding the reason for the callback and the
complete event structure describing the event that triggered the callback. Sec­
tion 4.4 describes the call_data Parameter in detail.

4.3 USING THE CLIENT_DATA FIELD

The client_data field can be extremely useful when you need to differentiate
between multiple callbacks or when you need to send in a pointer to a record
that contains information the callback needs. The code in Listing 4.3 demon­
strates the former and will also help you to learn the difference between the
arm, disarm, and activate callbacks generated by a push button.

Listing 4.3 Wiring In All Callbacks for the
Push-Button Widget Using the client_data Parameter

#include <Xm/Xm.h>
#include <Xm/PushB.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, button;

void handle_button(w,client_data,call_data)
Widget W;
int client_data;
XmPushButtonCallbackStruct *call_data;

4.3 USING THE CLIENT_DATA FIELD

1* handles callbacks generated by the pushbutton *1
{

switch (client_data)
{

case 1:
printf("activate\n");
break;

case 2:
printf("arm\n");
break;

case 3:
printf("disarm\n");
breakj

}

}

void main(argc,argv)
int argcj

{

}

char *argv [] j

Arg al [10] j
int aCj

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"I,NULL,O,&argc,argv,

NULL,NULL,O) j

1* create the button widget *1
ac=Oj
XtSetArg(al[ac],XmNlabelString,

XmStringCreate("Push Me",char_set»j aC++j
button=XmCreatePushButton(toplevel,"button",al,ac)j
XtManageChild(button)j
XtAddCallback(button, XmNactivateCallback, handle_button, 1) ;
XtAddCallback(button,XmNarmCallback,handle_button,2)j
XtAddCallback(button,XmNdisarmCallback,handle_button,3)j

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

55

This code is similar to the previous code, except that all three of the call­
backs a push-button widget can generate are now active, because of the three

56 CALLBACKS

calls to XtAddCallback that appear immediately after the widget creation
function. All of these callbacks call the same function (handle_button), but
each one passes a different integer to the callback function through the client_
data parameter. In the callback function handle_button, the client_data pa­
rameter has been declared as an integer and guides a switch statement.

You can use this code to see the differences between the arm, disarm, and
activate callbacks. Run the program, position the cursor inside the push but­
ton, and hold the mouse button down without releasing it. The word "arm"
appears in stdout, because the arm callback was activated. Clicking the mouse
button inside the push button arms the push button. Arming highlights it,
and it remains highlighted as long as the mouse button stays clicked there.

Now move the cursor outside the push button while holding the mouse
button down. The highlighting disappears, but the button is still armed. Now
release the mouse button. A disarm callback is generated and a message to this
effect prints to stdout. Since you released the mouse button outside the push
button, however, the button was never activated.

Now click the push button again, and this time release the mouse button
inside the highlighted push button. The arm callback is triggered, followed by
the activate and disarm callbacks. The activate callback is generated only if
the cursor is inside the push button when the mouse button is released.

As you can see, an arm callback is generated when you click the mouse
button inside the push button, and a disarm callback is generated when the
mouse button is subsequently released. The activate callback occurs only if
the button is disarmed while the cursor is inside the button. Activate tends to
be used far more frequently than arm or disarm in a program. The arm and
disarm callbacks can be useful, however. For example, you may want some
action to begin when the user first clicks the button and stop when the user
releases it.

Is it better to use three separate callback functions or one callback function
and a switch statement triggered off a client_data value, as shown above?
This is really a matter of personal choice. If several callback functions contain
similar code, I try to combine them and trigger the unique portions with
a switch statement. This approach reuses code and can make the program
shorter. If callback functions have nothing to do with each other, I tend to
leave them separate.

You can declare the client_data parameter as any type that will fit in four
bytes. For example, a program could have a struc~re called data of the type
struct data_type data, which must be passed into a callback function via

4.4 WORKING WITH THE CALL_DATA PARAMETER 57

clienCdata. Since the client_data parameter only accepts four bytes, a pointer
to data must be passed. The following code will create the callback:

XtAddCallback(button,XmNactivateCallback,handle_button,&data)j

You can declare the client_data parameter in the callback function as follows:

And you can use the client_data parameter in the callback function by refer­
ring to it as a pointer. Use either of the following:

client_data->fieldname = whateverj

(*client_data).fieldname = whateverj

where fieldname is the name of one of the fields in data and whatever is a
value of that type.

4.4 WORKING WITH THE CALL_DATA PARAMETER

The call_data parameter passed to a callback function contains a great deal of
information. The declaration of the XmPushButtonCallbackStruct structure
is as follows:

typedef struct
{

int reasonj
XEvent *eventj
int click_countj

} XmPushButtonCallbackStructj

The reason field contains the reason for the callback, as listed in the callback
list in Appendix]. In the case of a push-button widget, three reasons are
possible:

Callback List Call Data Type Reason
XmNactivateCallback XmPushButtonCallback-

Struct XmCR_ACTIVATE
XmNarmCallback XmPushButtonCallback-

Struct XmCR_ARM
XmNdisarmCallback XmPushButtonCallback-

Struct XmCR_DISARM

58 CALLBACKS

Inside the callback function, you can use the reason integer in much the
same way as the integer client_data value in the previous piece of code:

void handle_button(w,client_data,call_data)
Widget w;
int client_data;
XmPushButtonCallbackStruct *call_data;

1* handles callbacks generated by the pushbutton *1
{

}

switch (call_data->reason)
{

}

case XmCR_ACTIVATE:
printf("activate\n");
break;

case XmCR_ARM:
printf("arm\n");
break;

case XmCR_DISARM:
printf("disarm\n");
break;

The event field of the call_data structure contains a copy of the actual X
event that led to the callback. You can often ignore this field since Motif allows
you to ignore events, but there are times when it contains useful information.

In order to use the event field effectively, you need to understand events in
X (see Chapter 15). Briefly, X recognizes 25 different types of events. When
a user clicks and then releases the mouse button, for example, X events of
the type ButtonPress and ButtonRelease are generated. The information sur­
rounding the event is packaged in an XEvent structure and delivered to Motif,
which passes it to your code in the event field of call_data. Each different
event type has a different event structure. The type XEvent is a union of all
of these event structures (see Chapter 15). One of the fields of this union,
Xbutton, contains the structure that corresponds to ButtonPress and Button­
Release events.

The structure declaration for an XButtonEvent is as follows:

typedef struct {
int type;
unsigned long serial;
Bool send_event;

1* of event *1
1* # of last request processed by server *1
1* true if this came from a SendEvent

request *1

4.4 WORKING WITH THE CALL_DATA PARAMETER

Display *display;
Window windowj
Window rootj
Window subwindow;
Time timej

1*
1*
1*
1*
1*

Display the event
event window it's
root window that
child window *1
milliseconds *1

was read from *1
reported relative

the event occurred

int x, Yj 1* pointer x, y coordinates in event

int x_root, y_rootj
unsigned int statej
unsigned int buttonj

window *1
1* coordinates relative to root *1
1* key or button mask *1
1* detail *1

Bool same_screenj 1* same screen flag *1
} XButtonEventj
typedef XButtonEvent XButtonPressedEventj
typedef XButtonEvent XButtonReleasedEventj

59

to *1
on *1

The x and y fields contain the x and y coordinates of the cursor at the moment
the user released the mouse button. The following code shows how to extract
these values:

void handle_button(w,client_data,call_data)
Widget Wj
XtPointer client_dataj
XmPushButtonCallbackStruct *call_dataj

1* handles the pushbutton's activate callback. *1
{

}

printf("X=%d Y=%d\n",
call_data->event->xbutton.x,
call_data->event->xbutton.y);

The click_count field of the call_data parameter of the callback function is
unique to Motif buttons. It indicates the number of times the button has been
clicked within the display's multiclick time. The code in Listing 4.4 illustrates
the use of the click_count field.

Listing 4.4 Understanding the click_count Field of
the call_data Parameter

1* clickcount.c*1

#include <Xm/Xm.h>
#include <Xm/PushB.h>

XtAppContext contextj
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSETj

60 CALLBACKS

Widget toplevel, button;

void handle_button(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmPushButtonCallbackStruct *call_data;

1* handles the pushbutton's activate callback. *1
{

printf(lc1ick_count=~d\n",call_data->click_count);

}

void main(argc,argv)
int argc;

{

}

char *argv [] ;

Arg al[10];
int ac;

1* create toplevel shell *1
toplevel = XtApplnitialize(&context, 1111 ,NULL ,0 ,&argc ,argv,

NULL,NULL,O);

1* create button *1
ac=O;
XtSetArg(al[ac],XmNlabeIString,

XmStringCreate("Push Me II ,char_set» ; ac++;
XtSetArg(al[ac],XmNmultiClick,XmMULTICLICK_KEEP); ac++;
button=XmCreatePushButton(toplevel,lbutton",al,ac);
XtManageChild(button);
XtAddCallback(button ,XmNactivateCallback ,

handle_button,NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

In the main function, the multiClick resource has been set to the value
XmMULTICLICK_KEEP (which is the default). The callback function has
been coded so that the value of the click_count field is printed to stdout.
If you run this program and click the button, the value 1 will appear, and if
you click the button several seconds later, the value 1 will appear again. How­
ever, if you click the button rapidly, the click_count field will keep track of
the number of clicks.

4.5 WORKING WITH THE SCALE WIDGET 61

Exercises

1. Try changing the multiClick resource to XmMULTICLICK_DISCARD in
Listing 4.4 and observe the result of multiple clicks.

2. Modify Listing 4.4 to print out different fields of the event structure.

4.5 WORKING WITH THE SCALE WIDGET

A scale widget acts like a slider on a graphic equalizer. When a user slides the
scale widget's control with the mouse, its value changes. Scale widgets allow
users to adjust the values of variables easily and intuitively. Figure 4.2 shows
a scale widget in action. This figure was generated from the code shown in
Listing 4.5.

Listing 4.5 Code for Creating and Responding to a
Scale Widget

/* scale_callback.c */

#include <Xm/Xm.h>
#include <Xm/Scale.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, scale;

void handle_scale(v,client_data,call_data)
Widget V;
caddr_t client_data;
XmScaleCallbackStruct *call_data;

/* handles the scale vidget's callbacks. */
{

}

Arg al [10] ;
int ac;
int value;

ac=Oj
XtSetArg(al[ac],XmNvalue,&value)j aC++j
XtGetValues(v,al,ac)j
printf("value = %d\n",value)j

void main(argc,argv)
int argcj

62 CALLBACKS

{

}

char *argv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&:context,"",NULL,O,&:argc,argv,

NULL,NULL,O);

1* create the scale widget *1
ac=O;
XtSetArg(al[ac],XmNtitleString,

XmStringCreate("Slide Me",char_set»; ac++;
XtSetArg(al[ac],XmNorientation,XmHORIZONTAL)j aC++j
scale=XmCreateScale(toplevel,"scale",al,ac);
XtManageChild(scale);
XtAddCallback(scale,XmNvalueChangedCallback,handle_scale,NULL);

XtRealizeWidget(toplevel)j
XtAppMainLoop(context);

By now, the style of this code should be familiar. In Listing 4.5, the title
and the orientation resources of the scale are changed and the valueChanged
callback is registered.

A scale widget works as follows: When a user drags the slider and releases it,
the valueChanged callback is activated. You can retrieve the new value from
one of two locations: from the value resource of the scale widget using a call to
XtGetValues, or from the XmScaleCallbackStruct structure, which contains
a field called value that holds the new value (see the callback structure section
of the scale widget in Appendix J). In either case, the minimum and maxi­
mum resources bound this value and the slider's position controls it. In the
code shown in Listing 4.5, the value is retrieved in the callback function with
a call to XtGetValues, and then dumped to stdout with a printf statement.

Figure 4.2 A Scale Widget

i 1_1
Slide He

4.6 A WARNING ABOUT CALLBACK FUNCTIONS 63

The following rewrite of the handle_scale function gets the value of the value
resource from the event record instead:

void handle_scale(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmScaleCallbackStruct *call_data;

1* handles the scale widget's callbacks. *1
{

}

Arg al[10];
int ac;
int value;

printf("value = %d\n",call_data->value);

As you can see, Motif's callback structure makes something fairly compli­
cated, such as a scale widget, very easy to use in a program.

Exercises

1. Create a callback function to handle the drag callback. Print out the
value resource both from the call_data parameter and through the use
of XtGetValues.

2. Change various resources in the scale widget and note the effect. Change
the minimum and maximum resources to see how they affect scaling. Also
change decimalPoints, orientation, processingDirection, scaleHeight,
scaleWidth, scaleMultiple, and titleString.

4.6 A WARNING ABOUT CALLBACK FUNCTIONS

Any callback function that you create must finish and return within a short
period of time (on the order of milliseconds). A quick return time is important
because, while your code is processing a callback in the callback function,
none of the widgets on the screen can handle events. To handle the callback,
the program jumps out of its Motif-handled event loop and into your callback
function. If the callback function requires 20 seconds to complete its task,
the entire user interface will stall, or freeze up, during that time. When the
callback function returns, it returns to the main event loop. Only then can
the loop start handling user events inside the widgets again. Your application
can process user events only when it is inside the main event loop, not when
it is inside one of your callback functions.

64 CALLBACKS

Failure to avoid this problem can lead to user interfaces that are very an­
noying. Chapter 16 shows how to work around this problem with the XtApp­
WorkProc and XtAppTimeOut functions.

Exercise

To get a feeling for the stalling problem, modify Listing 4.2 in this chapter so
that its callback function looks like this:

void handle_button(w,client_data,call_data)
Widget Wj
XtPointer client_dataj
XmPushButtonCallbackStruct *call_dataj

1* handles the pushbutton's activate callback. *1
{

}

printf("button clicked\n")j
sleep(S)j

In this callback, a call to the sleep function simulates five seconds of process­
ing time. Click the button once and then try to click it a second time. Nothing
happens until five seconds pass and the callback function returns. Try chang­
ing the sleep value to 10 as well. Try placing a sleep statement in the handle_
scale function of Listing 4.5 as well.

5 MANAGER WIDGETS

The programs we have created so far consist of a single widget displayed in a
toplevel shell. However, most real applications need to display a number of
widgets simultaneously. In Motif, manager widgets handle the placement of
multiple widgets in a single window.

In this chapter, we will look at three manager widgets-the bulletin board
widget, the form widget, and the RowColumn widget-and see how to apply
them to a variety of multiwidget programming situations.

5.1 DESIGNING A CELSIUS-TO-FAHRENHEIT CONVERSION
PROGRAM

Let's look at a typical programming task: You have been asked to port an ex­
isting text-based application to Motif. The existing application is a Celsius-to­
Fahrenheit conversion program that prompts the user for a Celsius tempera­
ture between a and 100 degrees and converts it to the equivalent Fahrenheit
temperature.

The design process in Motif begins by deciding on what functionality the
program needs. In a Celsius-to-Fahrenheit converter, the user has to enter the
Celsius temperature, and the program has to display the Fahrenheit equiva­
lent. The user also needs a way to quit the application easily. Once you have
determined the functionality, you need to combine different Motif widgets to
create the best user interface.

At this point, you have experience with the label, push-button, and scale
widgets. You can combine the three to implement this application, using tl1e
scale widget to accept the Celsius temperature, the label widget to display the
Fahrenheit temperature, and the push button to provide the ability to quit.
Figure 5.1 shows a rough sketch of the proposed interface.

One problem arises: A toplevel shell widget can hold only one child wid­
get, but now we need it to hold three. We can solve this problem by using

65

66 MANAGER WIDGETS

Figure 5.1 A Rough Sketch of a Celslus-to-Fahrenhelt
Converter

Quit

Fahrenheit temp = 161

Celsius temp = 72

111

manager widgets. A simple manager widget contains other widgets statically.
More complicated widgets constrain other widgets dynamically: As the man­
ager changes size and shape, it rearranges its children appropriately. If the
toplevel shell holds a manager widget as its single child, the toplevel widget
can display many children.

5.2 IMPLEMENTING THE PROGRAM WITH A BULLETIN BOARD

The code shown in Listing 5.1 demonstrates the Celsius-to-Fahrenheit applica­
tion. The code places a push-button, a label, and a scale widget into a manager
widget called a bulletin board widget. You can place a widget into a manager by
making the manager the parent of the widget when you create it. Because the
bulletin board is the parent, it controls the placement of the children. The bul­
letin board determines each child's position by examining the values found in
the x and y resources of each child. This process is described in more detail
below.

Listing 5.1 A Celslus-to-Fahrenhelt Conversion
Program Using a Bulletin Board

/* c2f.bb.c */

#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/Label.h>
#include <Xm/Scale.h>
#include <Xm/BulletinB.h>

5.2 IMPLEMENTING THE PROGRAM WITH A BULLETIN BOARD

XtAppContext contextj
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSETj

Widget toplevel, button, bb, label, scalej

void buttonCB(w, client_data, call_data)
Widget Wj
int client_dataj
XmPushButtonCallbackStruct *call_dataj

/* handles the pushbuttonls activate callback. */
{

exit(O)j
}

void scaleCB(w, client_data, call_data)
Widget Wj
int client_dataj
XmScaleCallbackStruct *call_dataj

/* handles the scalels callback. */
{

}

char s [100] j
Arg al[10]j
int aCj

sprintf(s,lfarenheit=Y.d",call_data->value*9/5+32)j
ac=Oj
XtSetArg(al[ac],XmNlabelString,

XmStringCreate(s,char_set»j aC++j
XtSetValues(label,al,ac)j

void main(argc,argv)
int argcj

{

char *argv [] j

Arg al[10]j
int aCj

/* create the toplevel shell */
toplevel = XtApplnitialize(&context,"II,NULL,O,&argc,argv,

NULL,NULL,O)j

/* resize toplevel */
ac=Oj
XtSetArg(al[ac],XmNheight,300)j aC++j

67

68 MANAGER WIDGETS

XtSetArg(al[ac],XmNwidth,200); ac++;
XtSetValues(toplevel,al,ac);

1* create a bulletin board to hold the three widgets *1
ac=Oj
bb=XmCreateBulletinBoard(toplevel,lIbbll,al,ac)j
XtManageChild(bb)j

1* create a push button *1
ac=Oj
XtSetArg(al[ac],XmNlabelString,

XmStringCreate(IIQuit li ,char_set» j aC++j
button=XmCreatePushButton(bb,lIbuttonll,al,ac);
XtManageChild(button)j
XtAddCallback(button,XmNactivateCallback,buttonCB,NULL)j

1* create a scale *1
ac=Oj
XtSetArg(al[ac],XmNtitleString,

XmStringCreate(IICelsius Temperaturell,char_set»j aC++j
XtSetArg(al[ac],XmNorientation,XmHORIZONTAL); ac++;
XtSetArg(al[ac],XmNshowValue,True)j aC++j
scale=XmCreateScale(bb,lIscalell,al,ac);
XtManageChild(scale);
XtAddCallback(scale,XmNdragCallback,scaleCB,NULL);

1* create a label *1
ac=O;
XtSetArg(al[ac],XmNlabelString,

XmStringCreate(IIFarenheit = 32 11 ,char_set» j aC++j
label=XmCreateLabel(bb,lIlabelll,al,ac)j
XtManageChild(label);

1* position widgets on the bulletin board *1
ac=Oj
XtSetArg(al[ac] ,XmNx,10); ac++;
XtSetArg(al[ac],XmNy,10)j aC++j
XtSetValues(button,al,ac)j

ac=O;
XtSetArg(al[ac],XmNx,l); ac++;
XtSetArg(al[ac],XmNy,100)j aC++j
XtSetValues(scale,al,ac);

5.2 IMPLEMENTING THE PROGRAM WITH A BULLETIN BOARD

}

ac=O;
XtSetArg(al[ac],XmNx,10); ac++;
XtSetArg(al[ac] ,XmNy,200); ac++;
XtSetValues(label,al,ac);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

69

Although the code in Listing 5.1 is somewhat larger than in previous listings
(note especially how the number of include files is growing), all of its elements
should be familiar to you by now.

In the first section of the program, the toplevel widget is created with the
usual XtApplnitialize call and is resized by a change to its width and height
resources. A bulletin board widget is created as a child of the top level shell,
and then the push-button, scale, and label widgets are created as children of
the bulletin board. As the parent, the bulletin board manages the placement of
its three children. The parentage in this program can be illustrated in a figure
known as a widget tree (Figure 5.2), which shows the hierarchy of widgets in
an application.

The next section of the program determines the placement of the three chil­
dren on the bulletin board by setting each child's x and y resources (inherited
from the core widget). The bulletin board uses the x and y resources of each
child to manage its location. For example, the label widget's x resource is set to
10, while its y resource is set to 200. This means that the label widget's upper­
left corner will appear 200 pixels down from and 10 pixels to the right of the
bulletin board's upper left corner.

Two extremely brief callback functions handle the Celsius-to-Farhrenheit
conversion process and the quit function in this program. The activate call­
back for the push-button widget is wired to the buttonCB function. When a
user clicks the push button, the program quits immediately. The drag callback
for the scale widget is wired to the scaleCB function. When a user drags the
scale's control, the labelString resource for the label widget changes to reflect
the new Fahrenheit temperature.

When you run this program, the three widgets appear in the specified po­
sitions, as shown in Figure 5.3. As the scale changes, the correct Fahrenheit
temperature appears, and a click of the quit button quits the program.

70 MANAGER WIDGETS

Form Attachments

You can attach widgets to a form in
many different ways. The figures below
demonstrate some of the possibilities.
Section 5.3 shows how to create code
to implement these attachments.

Top, left, and right
sides of the label
attach to the form

Bottom of the label
attaches to nothing

Form

Here the left, top, and right sides of the
label are attached to the form. As the
form's sides move in response to resizing
commands, the attached sides of the label
move also, and the label changes width
to accommodate the form's size. Since the
bottom of the label attaches to nothing, the
height of the label does not change, but
retains its default height as determined by
the label's string and its attributes.

Label

Form

Enlarge
the form ..

Label

Bottom of the label attaches
to the midpoint of the form

Form

In the figure at the bottom of this page,
the bottom of the label is attached to the
vertical midpoint of the form by attaching
to postion 50. When the form changes size,
the midpoint changes and the bottom of
the label follows.

In the following figure, the two labels are
attached to each other.

Form

Labell's left and top sides attach to
the form, and its bottom and right sides
attach to nothing. The label defaults to its
natural width and height. The top and right
sides of label 2 attach to the form, the

5.2 IMPLEMENTING THE PROGRAM WITH A BULLETIN BOARD 71

Form Attachments (continued)

bottom attaches to nothing, and the left
side attaches to label 1. As the form
changes width, label 2 resizes to fill the
space between the right side of label 1 and
the right side of the form.

In the following figure, all four widgets align
on their right sides.

Label 1 's right side is attached to the
horizontal midpoint of the form. Labels
2, 3, and 4 attach their right sides, using
the XmATTACH_OPPOSITE_WIDGET
attachment, to label 1. As the right side
of label 1 moves, the right sides of the other

three labels follow. Thus, all of the right
sides remain aligned.

Form widgets also add offset resources
to their children. Each child of a form
acquires left, top, right, and bottom offset
values, which determine the offset between
the specified side of the widget and the
attachment point, as shown below.

Offset of 50
• • t

I
I Label

- r--
I

Form T
~

All four sides of the label attach to the
form. The label's leftOffset resource is set
to 50, so its left side remains 50 pixels away
from the side of the form to which it is
attached. You can create interesting and
useful spacing effects using negative offset
values as well.

72 MANAGER WIDGETS

Figure 5.2 The Widget Tree for the Bulletin Board
Code

Toplevel

I
BB

~
Button Scale Label

Figure 5.3 A Bulletin Board Widget Used for the
Celslus-to-Fahrenhelt Conversion Program

91': i.i:t2tbb:' "" '1Ii~:1 tIl

[(fuit]

o c:r:, ___ --"
Celsius Temperature

Farenheit = 32

Exercises

1. Arrange the three widgets horizontally on the bulletin board by modifying
the orientation resource of the scale and the x and y resource values.

2. Remove the code that sizes the toplevel shell and see what happens.

5.3 RESIZING GRACEFULLY WITH THE FORM WIDGET

Run the bulletin board code again, and this time try to resize the window.
Users tend to resize windows often but a bulletin board doesn't handle resizing
very well. The bulletin board changes in size, but the widgets it holds remain

5.3 RESIZING GRACEFULLY WITH THE FORM WIDGET 73

fixed. To solve this problem, you can either set the window so that users
cannot resize it or choose a different manager. Form widgets are the best
choice because they automatically resize and reposition the widgets they hold
when a user resizes the form.

The program shown in Listing 5.2 demonstrates the use of a form widget.
This code is a modification of the bulletin board program in Listing 5.1: It cre­
ates the same label, scale, and push-button widgets but makes them children
of a form widget rather than of a bulletin board widget. This program also
adds a fourth widget-a separator-to make the application look better. The
separator simply adds a line between the scale widget and the label widget to
separate them.

Listing 5.2 A Celslus-to-Fahrenhelt Conversion
Program Using a Form Widget

/* c2f.form.c */

#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/Label.h>
#include <Xm/Scale.h>
#include <Xm/Separator.h>
#include <Xm/Form.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, button, form, label, scale, sep;

void buttonCB(w, client_data, call_data)
Widget w;
int client_data;
XmPushButtonCallbackStruct *call_data;

/* handles the pushbutton's activate callback. */
{

exit(O);
}

void scaleCB(w, client_data, call_data)
Widget w;
int client_data;
XmScaleCallbackStruct *call_data;

74 MANAGER WIDGETS

/* handles the scale's callback. */
{

}

char s [100] ;
Arg al[10];
int ac;

sprintf(s,"farenheit=%d",call_data->value*9/5+32);
ac=O;
XtSetArg(al[ac],XmNlabelString,

XmStringCreate(s,char_set»; ac++;
XtSetValues(label,al,ac);

void main(argc,argv)
int argc;

{
char *argv [] ;

Arg al[10];
int ac;

/* create the toplevel shell */
toplevel = XtApplnitialize(&context,"",NULL,O,&argc,argv,

NULL,NULL,O);

/* resize toplevel */
ac=O;
XtSetArg(al[ac],XmNheight,300); ac++;
XtSetArg(al[ac],XmNwidth,200); ac++;
XtSetValues(toplevel,al,ac);

/* create a form to hold the other widgets */
ac=O;
form=XmCreateForm(toplevel,"form",al,ac);
XtManageChild(form);

/* create a push button */
ac=O;
XtSetArg(al[ac],XmNlabelString,

XmStringCreate("Quit",char_set»; ac++;
button=XmCreatePushButton(form,"button",al,ac);
XtManageChild(button);
XtAddCallback(button,XmNactivateCallback,buttonCB,NULL);

/* create a scale */
ac=O;

5.3 RESIZING GRACEFULLY WITH THE FORM WIDGET

XtSetArg(al[ac],XmNtitleString,
XmStringCreate("Celsius Temperature",char_set»j aC++j

XtSetArg(al[ac],XmNorientation,XmHORIZONTAL)j aC++j
XtSetArg(al[ac].XmNshowValue,True); ac++;
scale=XmCreateScale(form,lscal e".al.ac)j
XtManageChild(scale);
XtAddCallback(scale.XmNdragCallback,scaleCB,NULL)j

1* create a label *1
ac=Oj
XtSetArg(al[ac].XmNlabelString.

XmStringCreate("Farenheit = 32",char_set»; aC++j
label=XmCreateLabel(form. l label".al.ac)j
XtManageChild(label);

1* create a separator *1
ac=Oj
sep=XmCreateSeparator(form,lsep".al.ac);
XtManageChild(sep)j

1* attach the children to the form *1
ac=O;
XtSetArg(al[ac]. XmNtopAttachment. XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM); aC++j
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNbottomAttachment. XmATTACH_POSITION)j aC++j
XtSetArg(al[ac], XmNbottomPosition. 30)j aC++j 1* 30 = a percent *1
XtSetValues(button,al,ac)j

ac=Oj
XtSetArg(al[ac], XmNtopAttachment, XmATTACH_WIDGET)j aC++j
XtSetArg(al[ac], XmNtopWidget, button)j aC++j
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNleftAttachment. XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNbottomAttachment, XmATTACH_NONE); ac++;
XtSetValues(scale.al.ac)j

ac=Oj
XtSetArg(al[ac], XmNtopAttachment, XmATTACH_WIDGET)j aC++j
XtSetArg(al[ac], XmNtopWidget, scale)j aC++j
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac]. XmNbottomAttachment, XmATTACH_NONE)j ac++;
XtSetValues(sep,al,ac)j

75

76 MANAGER WIDGETS

}

ac=O;
XtSetArg(al[ac]. XmNtopAttachment. XmATTACH_WIDGET); ac++;
XtSetArg(al[ac]. XmNtopWidget. sep); ac++;
XtSetArg(al[ac]. XmNrightAttachment. XmATTACH_FORM); ac++;
XtSetArg(al[ac]. XmNleftAttachment. XmATTACH_FORM); ac++;
XtSetArg(al[ac]. XmNbottomAttachment. XmATTACH_FORM); ac++;
XtSetValues(label.al.ac);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

When you run this program and resize the window, all of the widgets in the
form are resized appropriately, as shown in Figure S.4.

Note that the program in Listing S.2 does not declare resources such as
topWidget, lefiAttachment, and bottomPosition. Nor do they appear in the
resource list for the label widget, the primitive widget, or the core widget.
These attachment resources come from the form widget itself. The form widget
is a constraint widget and can therefore impart new resources to its children.
See Appendix J for a list of constraint resources for the XmForm widget. Note
that the constraint resources are made available to every immediate child of

Figure 5.4 Multiple Widgets Attached to a Form
Widget

o
£:I::L._.~.,", ... ~ .. ~~.~._._,._.~._~~ ___ .. J
Celsius Temperature

Farenheit = 32

5.3 RESIZING GRACEFULLY WITH THE FORM WIDGET 77

the form widget. Once you create a child of a form widget, the child widget
picks up the constraint resource list of the form widget and adds it to its own
list of resources.

When you attach other widgets to a form widget, these attached widgets
change shape and size along with the form widget. Four types of attachments
are demonstrated in Listing 5.2: attachment to the form's edges, attachment
to a position on the form, attachment to other widgets, and no attachment.
Examples from the program appear below.

Attachment to the form's edges:

XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM)j aC++j

Attachment to another widget:

XtSetArg(al[ac], XmNtopAttachment, XmATTACH_WIDGET)j aC++j
XtSetArg(al[ac], XmNtopWidget, sep)j aC++j

Attachment to a position on the form:

XtSetArg(al[ac], XmNbottomAttachment, XmATTACH_POSITION)j aC++j
XtSetArg(al[ac], XmNbottomPosition, 30)j aC++j 1*30 is a percentage*1

Attachment to nothing:

XtSetArg(al[ac], XmNbottomAttachment, XmATTACH_NONE)j aC++j

Note that when attaching to another widget or attaching to a position, you
must set a pair of resources for the attachment to work.

Looking at the code, you can see that the push button is attached by its
top, left, and right sides to the form's edges. When the form's edges move in
response to resizing, the attached widget moves in the same way. The bottom
edge of the push button is attached to a position a third of the way down the
form widget. As the form grows and shrinks, this attachment point moves,
and the bottom of the push button is adjusted accordingly. Similarly, the
scale's top edge is attached to the bottom of the push button, and its sides are
attached to the form's edges. The separator's top is attached to the scale, and
its sides are attached to the form. The label widget is attached to the separator
on the top and to the form's edges on its sides and bottom.

Note that the bottom of the separator is not attached to anything. When
a widget has a fixed height as a separator does, you do not need to attach
its bottom edge since the bottom edge is already fixed by the height of the

78 MANAGER WIDGETS

widget. You can leave the bottom edge of the push button or label unattached
as well, so that these widgets default to their natural heights.

It is easy to create bugs when attaching objects to a form widget, especially
if the form has many children. You can avoid problems by working from the
top down and from left to right. You can also place forms inside of forms to
modularize attachments. See pages 70 and 79 for more information.

Exercises

1. Set the bottom attachment of the button widget to XmATIACH_NONE and
note the change in the button's behavior.

2. Remove the separator from the code and note the difference in appearance.
3. Modify the program so that the widgets appear horizontally on the form

rather than vertically.
4. Add a second button to the form, placing it and the quit button side by

side. This button should allow the user to change the program between
Celsius-to-Fahrenheit and Fahrenheit-to-Celsius conversion modes.

5.4 ROWCOLUMN WIDGETS

Both the form widget and the bulletin board widget require you to explicitly
manage the placement of the individual widgets they contain. In the bulletin
board widget, you set the x and y coordinates of each child of the bulletin
board. In the form widget, you must attach all of the child widgets appropri­
ately.

At times all of this attaching and placing can become bothersome. If, for
example, an application contains 20 buttons, you would probably prefer a
manager widget that manages the placement of all 20 children automatically.
The RowColumn widget can do this for you.

The code shown in Listing 5.3 demonstrates the capabilities of a RowCol­
umn widget by creating 10 push buttons as children of a RowColumn widget
(see Figure 5.5).

Listing 5.3 Working with a RowColumn Widget

/* rowcolumn.c */

'#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/RowColumn.h>

5.4 ROWCOLUMN WIDGETS

Managers Inside of Managers

Motif lets you place managers inside
of managers to almost any depth. This
capability can simplify the arrangement
of large numbers of widgets in a complex
application by subdividing the placement
tasks into smaller modules. For example, the
following figure represents a typical drawing
program. In this illustration, a form widget
holds the drawing area as well as another
form, which in turn holds a palette of
drawing tools.

Form for the
application

~

I
4-

I

Drawing area
attached to the form

Second form attached to the application
form, which holds a palette of drawing tools

The following figure shows a schematic
representation of the Motif news reader. In
this case, a form widget holds a number

79

of other widgets. Two RowColumn widgets
function as containers for groups of push
buttons, an arrangement that greatly
simplifies the placement of the buttons.

Form for the
application

~
I

I
I

I

Text
widget

J--f--

I-f--

J---

-

J---

Menu
bar

List
widget

RowColumn
widgets
containing
other controls

You attach managers to a form or another
manager in the same way that you
attach simple widgets to the manager.
However, you should pay attention to
parentage when creating the widgets so
that the appropriate widgets end up in the
appropriate managers.

80 MANAGER WIDGETS

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, rowcol, buttons[10];

void main(argc,argv)
int argc;

{

}

char *argv [] ;

Arg al[10];
int ac;
int x;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,III1,NULL,O,&argc,argv,

NULL, NULL, 0) ;

1* resize toplevel *1
ac=O;
XtSetArg(al[ac],XmNheight,120); ac++;
XtSetArg(al[ac],XmNwidth,480); ac++;
XtSetValues(toplevel,al,ac);

1* create a RowColumn container to hold widgets *1
ac=O;
XtSetArg(al[ac], XmNpacking, XmPACK_TIGHT); ac++;
XtSetArg(al[ac], XmNorientation, XmHORIZONTAL); ac++;
XtSetArg(al[ac], XmNadjustLast, False); ac++;
rowcol=XmCreateRowColumn(toplevel,lIrowcolll,al,ac);
XtManageChild(rowcol);

1* create 10 push buttons *1
for (x=O; x<10; x++)
{

}

ac=O;
XtSetArg(al[ac],XmNlabelString,

XmStringCreate(III'm a buttonll ,char_set»; ac++;
buttons [x] =XmCreat ePushButton (rowcol, II butt on II , al, ac) ;
XtManageChild(buttons[x]);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

5.4 ROWCOLUMN WIDGETS

Figure 5.5 A RowColumn Widget In Action

~I,·I: .. ,:::. .: roWc.Olumn I D 10
11'111 a button 1 11'111 a buttonl [1'111 a button] [1'111 a button] I"VPi a button]

11'111 a button 'I 11'111 a butto~) [I'~tt~~] [r;~~-b~tt~-;;') I'i·;·;-~-~tt~]

81

When you run this code and resize the window, the arrangement of the
buttons in the window changes to match the window's new shape.

The code is similar to that in previous listings. It creates a RowColumn
widget, and then 10 button widgets as its children. The array of button widgets
used here makes the program shorter, but is not a reqUirement. For simplicity,
the code uses no callbacks, but you would handle callbacks here as elsewhere.
Note that no code is required to place or attach the objects in the RowColumn
widget, since it manages the placement of its children for you.

A RowColumn widget provides a number of resources, and also comes in
several different flavors depending on its application (see Appendix J). The
RowColumn demonstration code shown in Listing 5.3 sets two of the available
resources, orientation and adjustLast, which affect the way the RowColumn
widget manages its children. Consider them as "hints"-the RowColumn wid­
get is managing the placement of its children on its own, but you may want
the container to behave in a certain way in different situations. Resources like
adjustLast, orientation, numColumns, spacing, and packing are useful in
controlling a RowColumn widget's general behavior, as summarized below:

adjustLast if true, causes widgets at the end of a row or column to attach
themselves to the edge of the RowColumn widget. If false, these widgets
default to their natural size.

orientation determines whether or not the RowColumn widget favors
filling rows or columns as the container is resized.

numColumns determines the number of columns or rows, depending on
the orientation, that the RowColumn widget will naturally favor.

spacing determines the space between child widgets, in pixels.

packing controls how widgets align. PACK_TIGHT causes widgets to default
to their natural sizes and packs them as tightly as possible. PACK_COLUMN
places widgets in same-size boxes based on the largest child widget. PACK_
NONE makes the RowColumn widget behave like a bulletin board widget:
it performs no automatic placement.

82 MANAGER WIDGETS

You can use the RowColumn widget whenever you need to manage sets of
widgets as a group. In Motif, both menu bars and menu panes are made from
RowColumn widgets. Radio boxes are RowColumn widgets tuned to handle
groups of toggle buttons.

Exercises

1. Modify the five hinting resources of a RowColumn widget in different ways
to understand their capabilities.

2. Place a RowColumn widget within a form widget to get a feel for placing
managers inside of managers. For example, replace the push button in the
Listing 5.2 program with a RowColumn widget full of push buttons.

3. Create a set of 10 buttons, each of which has a different-size label, and place
them in a RowColumn widget. Change the packing resource to different
values and note the behavior.

6 MENUS

The tools presented in the last three chapters are sufficient for you to cre­
ate many complete Motif applications. You can use push buttons and scales
for command and data input, and label widgets for output. You can also
combine these widgets using manager widgets. The Celsius-to-Fahrenheit con­
verter demonstrated in Chapter 5 is a good example of what these widgets can
do.

Menus and dialog boxes are somewhat more complicated to use, but once
implemented they provide easy and intuitive ways to get cOIl}.mands and in­
formation from the user. After you have seen several examples, you can begin
to incorporate menus and dialogs into your programs to provide more ad­
vanced application interfaces.

This chapter describes how to build simple menu bars and menus. The goal
of this chapter is to create a piece of generic menu-creation code that you can
easily copy to new applications. The applications in Chapters 8 and lOuse this
generic menu code.

6.1 MENU BARS AND MENUS

Menus are not necessary. Instead, you could make all of the menu options
available to the user through push buttons. The problem with this approach
is that large programs might require you to display 30 or 40 push buttons at
once, and these buttons would take up quite a bit of space.

Menus economize space when you have a large number of program options
and commands. They organize different options in groups. The menu bar dis­
plays the name of each group at the top of the application window. Clicking
a name in the menu bar pulls down a menu pane containing the options as­
sociated with the menu name. The menu bar takes up very little space in the
application, but it gives users access to a large number of program options or­
ganized by category.

83

84 MENUS

Figure 6.1 The Elements of a Menu

A pull-down menu pane
(a customized RowColumn widget)

Menu bar (a customized
RowColumn widget)

Ordinary push buttons

The rest of the application's window

In Motif, you create menu bars and menu panes with specially tuned Row­
Column widgets (see Chapter 5 and Appendix J). You can create menu bars
with the XmCreateMenuBar convenience function, and you can create a pull­
down menu pane with the XmCreatePulldownMenu convenience function.
Each of these functions creates a RowColumn widget and sets its resources so
that it works well as a menu. You create the menu options displayed in the
individual menu panes with normal push buttons. You create the items in the
menu bar itself using specialized push-button-like widgets called cascade but­
tons. Figure 6.1 shows these different elements.

To create a menu, you must follow several steps. First, you create the menu
bar. Then, for each name that appears in the menu bar, you create a cascade
button along with a pull-down menu pane. You create each cascade button
using the menu bar as its parent. The order in which you create the cascade
buttons determines the order in which they appear in the menu bar.

Next, you create a pull-down menu pane for each cascade button. Cascade
buttons have a resource named subMenuID: You set this resource to the pull­
down menu pane you will use for the cascade button. When a user clicks the
cascade button, it manages the widget in the subMenuID resource, making
the menu pane visible. When you create the pull-down menu pane, do not
manage the pane.

6.1 MENU BARS AND MENUS

Figure 6.2 View During Execution of the Menu Code,
Showing the Menu Bar and Label Widget Attached to
a Form Widget

lPlit::cH::::i!= ".: it,,-:\i:·lttlIO

Flle Edit

1'111 a label

85

You create the options for individual menu panes using push buttons, with
the pull-down menu pane as their parent. The order in which you create the
push buttons determines the order in which they will appear in the pane.
These buttons should be managed.

The creation of the Edit menu shown in Figure 6.1 requires the following
steps, assuming that the menu bar already exists:

1. Create and manage a cascade button labeled Edit, with the menu bar as its
parent.

2. Create but do not manage a pull-down menu pane, with the menu bar as its
parent.

3. Set the subMenuID resource of the cascade button to the pane.
4. Create and manage the push buttons for the four Edit menu buttons with

the pane as their parent.

When you use this structure, the following occurs during program execution:

1. The user clicks the Edit cascade button.
2. The cascade button manages the widget in its subMenuID resource.
3. The menu pane, along with its child push buttons, becomes visible.
4. The user clicks one of the push buttons, and its callback function causes the

desired action to occur.

The program shown in Listing 6.1 demonstrates how to create a simple
Motif menu consisting of a menu bar attached to a form widget. The menu
bar this program creates consists of a pair of menus (see Figure 6.2). One is a
standard File menu containing the commands Open, Close, and Quit, and the
other is a standard Edit menu containing the commands Copy, Cut, and Paste.

86 MENUS

Every time a user selects one of these commands, the program sends a message
to stdout.

Listing 6.1 Generic Menu Creation Code

/* menu.c */

#include <Xm/Xm.h>
#include <Xm/Label.h>
#include <Xm/Form.h>
#include <Xm/PushB.h>
#include <Xm/RovColumn.h>
#include <Xm/CascadeB.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, form, label, menu_bar;
Widget file_menu;
Widget open_item;
Widget close_item;
Widget quit_item;
Widget edit_menu;
Widget copy_item;
Widget cut_item;
Widget paste_item;

void menuCB(v,client_data,call_data)
Widget V;
char *client_data;
XmAnyCallbackStruct *call_data;

/* callback routine used for all menus */
{

}

printf("%s\n",client_data);
if (strcmp(client_data,"Quit")==O) /* if quit seen, then exit */

exit(O);

Widget make_menu_item(item_name,client_data,menu)
char *item_name;
caddr_t client_data;
Widget menu;

/* adds an item into a menu. */
{

int ac;

6.1 MENU BARS AND MENUS

}

Arg al[10];
Widget item;

ac =OJ
XtSetArg(al[ac],XmNlabelString,

XmStringCreateLtoR(item_name,char_set»; ac++;
item=XmCreatePushButton(menu,item_name,al,ac);
XtManageChild(item);
XtAddCallback(item, XmNactivateCallback,menuCB, client_dat a)j
XtSetSensitive(item,True);
return (item) ;

Widget make_menu(menu_name,menu_bar)
char *menu_name;
Widget menu_bar;

1* creates a menu on the menu bar *1
{

}

int ac;
Arg al[10];
Widget menu, cascade;

menu=XmCreatePulldownMenu(menu_bar,menu_name,NULL,O);
ac=O;
XtSetArg (al[ac],XmNsubMenuld, menu); ac++;
XtSetArg(al[ac],XmNlabelString,

XmStringCreateLtoR(menu_name,char_set»; ac++;
cascade=XmCreateCascadeButton(menu_bar,menu_name,al,ac);
XtManageChild(cascade);
return(menu);

void create_menus(menu_bar)
Widget menu_bar;

1* creates all the menus for this program *1
{

1* create the file menu *1
file_menu=make_menu(IFile",menu_bar);
open_item=make_menu_item(IOpenl,"Open selected",file_menu);
close_item=make_menu_item(IClosel,"Close selected",file_menu);
quit_item=make_menu_item(IQuitl,IQuit",file_menu);

1* create the edit menu *1
edit_menu=make_menu(IEdit",menu_bar);
copy_item=make_menu_item(ICopy",ICopy selected",edit_menu);

87

88 MENUS

}

cut_item=make_menu_item("Cut","Cut Selected",edit_menu)j
paste_item=make_menu_item("Paste","Paste Selected",edit_menu)j

void main(argc,argv)
int argcj

{
char *argv [] j

Arg al[10]j
int aCj

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"",NULL,O,&argc,argv,

NULL,NULL,O)j

1* resize the window *1
ac=Oj
XtSetArg(al[ac],XmNheight,200)j aC++j
XtSetArg(al[ac],XmNwidth,200)j aC++j
XtSetValues(toplevel,al,ac)j

1* create a form widget *1
ac=Oj
form=XmCreateForm(toplevel,"form",al,ac)j
XtManageChild(form)j

1* create a label widget *1
ac=Oj
XtSetArg(al[ac],XmNlabeIString,

XmStringCreate("I'm a label", char_set» j aC++j
label=XmCreateLabel(form,"labe1",al,ac)j
XtManageChild(label)j

1* create the menu bar *1
ac=Oj
menu_bar=XmCreateMenuBar(form,"menu_bar",al,ac)j
XtManageChild(menu_bar)j

1* attach the menu bar to the form *1
ac=Oj
XtSetArg(al[ac],XmNtopAttachment,XmATTACH_FORM)j aC++j
XtSetArg(al[ac],XmNrightAttachment,XmATTACH_FORM)j aC++j
XtSetArg(al[ac],XmNleftAttachment,XmATTACH_FORM)j aC++j
XtSetValues(menu_bar,al,ac)j

6.1 MENU BARS AND MENUS

}

1* attach the label to the form *1
ac=O;
XtSetArg(al[ac],XmNtopAttachment,XmATTACH_WIDGET); ac++;
XtSetArg(al[ac],XmNtopWidget,menu_bar); ac++;
XtSetArg(al[ac],XmNrightAttachment,XmATTACH_FORM); ac++;
XtSetArg(al[ac],XmNleftAttachment,XmATTACH_FORM); ac++;
XtSetArg(al[ac],XmNbottomAttachment,XmATTACH_FORM); ac++;
XtSetValues(label,al,ac);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

89

Listing 6.1 is a large, but well-modularized, program. It consists of five func­
tions:

1. The main function contains nothing you have not seen before. It creates
and attaches the form, menu bar, and label widgets.

2. The function create_menus creates the two menus and adds the appropriate
items to them.

3. The function make_menu adds a new cascade button and menu pane to
the menu bar.

4. The function make_menu_item adds a new item (a push button) to a menu
pane created in make_menu.

5. The function menuCB is the callback function that all of the menu items
use.

This program uses the callback function menuCB for all menu items. You
might use other structures in more involved programs-for example, a differ­
ent callback function for each of the menus or even for each menu item.

The main function starts out by creating toplevel and resizing it. Then
it creates a form widget, and a menu bar and a label widget as the form's
children. The menu bar widget is a specialized RowColumn widget used for
menus. The main function then attaches the label and the menu bar widgets
to the form. The call to the create_menus function creates all of the menus
and their items.

The make_menu function creates individual menu entries on the menu bar.
Each menu name appears on the menu bar as the result of a call to make_
menu. This function starts by creating a pull-down menu widget. The pull­
down menu widget is made from a RowColumn widget and will eventually

90 MENUS

6.2

6.2.1

hold the items in the menu. It is hooked into a cascade button widget. The
cascade button places the menu's name on the menu bar in a push-button­
like device. When the user clicks the menu's cascade button, it manages the
pull-down menu.

You add the actual menu items to the menus with the function make_
menu_item. The order in which you do so determines the order in which
they will appear. Menu items are simply push-button widgets attached to
the pull-down menu container. Each of these push buttons is wired to call
the menuCB function when the activate callback is triggered. Note that the
client_data value passed to the callback function is a pointer to a string: You
can pass just about anything in the client_data field as long as it is four bytes
long. Generally, you pass an integer instead and trigger off of the integer with
a switch statement. See Chapter 10 for an example.

The menuCB function prints the client_data string to stdout to demon­
strate that the menus are working correctly. Then it checks the string to see if
it contains the word "Quit." If it does, the program quits.

Once you have implemented this code, all of the widgets function together
to look like menus on the screen. All of the buttons in the menu bar are
cascade buttons that manage the appropriate pull-down menu widget. The
pull-down menu widget is a container widget that holds the push buttons that
make up the menu items. When a user clicks one of these push buttons, the
menuCB callback function is triggered to handle the item selected.

CUSTOMIZING MENUS

ADDING LABELS AND SEPARATORS TO MENUS

A menu can contain separators and labels as well as push buttons. Users see
but cannot select the label and separator items, and they often help to make
the menu clearer and easier to use. You create labels and separators and add
them to the menu in the same way you create a push-button menu item in
the make_menu_option code. Again, the order in which you add these extra
widgets to the menu determines the order of their appearance there. Listing
6.2 shows the functions to create labels and separators in a menu.

Listing 6.2 Adding Labels and Separators to Menus

void make_menu_label(item_name,menu)
char *item_name;
Widget menu;

6.2 CUSTOMIZING MENUS

1* adds a label into the menu. *1
{

}

int ac;
Arg al[10];

ac = 0;
XtSetArg(al[ac], XmNlabelString,
XmStringCreateLtoR(item_name,XmSTRING_DEFAULT_CHARSET»; ac++;
XtManageChild(XmCreateLabel(menu,item_name,al,ac»;

void make_menu_separator(menu)
Widget menu;

1* adds a separator into the menu. *1
{

XtManageChild(XmCreateSeparator(menu,lIsepll,NULL,O»;
}

91

To try out labels and separators in a menu, add these two functions to the
original code in Listing 6.1. Add an include statement for the separator widget
and then change the create_menus function to look like this:

void create_menus(menu_bar)
Widget menu_bar;

1* creates all the menus for this program *1
{

}

1* create the file menu *1
file_menu=make_menu(IIFilell,menu_bar);
open_item=make_menu_item(IIOpenll,IIOpen selectedll,file_menu);
close_item=make_menu_item(IIClose","Close selected",file_menu);
quit_item=make_menu_item("Quit","Quit",file_menu);

1* create the edit menu *1
edit_menu=make_menu(IIEdit",menu_bar);
make_menu_label(IIThis is a sample label",edit_menu);
make_menu_separator(edit_menu);
copy_item=make_menu_item("Copy","CoPY selected",edit_menu);
cut_item=make_menu_item("Cut","Cut Selected",edit_menu);
paste_item=make_menu_item("Paste","Paste Selected",edit_menu);

When you run the code, you should see a label and a separator at the top
of the Edit menu. Note when you run the program that the label and the
separator cannot be selected.

92

6.2.2

MENUS

CHANGING THE SENSITIVITY OF MENU ITEMS

You can use the sensitive resource to turn menu options on and off. This
resource disables menu items whose use would be inappropriate at some point
in the program. For example, imagine that the Open and Close menu items
demonstrated in the code above are part of an editor program that lets you
edit only one file at a time. If no file is currently open, the program should
enable Open and disable Close. Once a file is open, Close should be enabled
and Open disabled. A disabled menu item appears 1/ grayed out" so the user
knows it is disabled and cannot select it. The following code makes the Open
option insensitive:

XtSetSensitive(open_item,False)j

The following code makes it sensitive again:

XtSetSensitive(open_item,True)j

The call to XtSetSensitive is a convenience function for setting the sensitive
resource in the core widget. You can set the sensitivity of something to true or
false repeatedly without hurting anything.

XtSetSensitive Sets a widget's sensitive resource.

6.2.3

Boolean XtSetSensitive(
Widget w,
Boolean value)j

w

value
The widget that generated the callback.
The Boolean value to which you want to set the
widget's sensitive resource.

HIERARCHICAL MENUS

Using the make_menu and make_menu_item functions shown above, you
can easily create hierarchical menus (that is, menus that contain submenus).
For example, you can change the create_menus function to demonstrate hi­
erarchical menus by adding several lines at the end of the function, as shown
in Listing 6.3.

6.2.4

6.2 CUSTOMIZING MENUS

Listing 6.3 Creating Hierarchical Menus

void create_menus(Widget menu_bar)
1* creates all the menus for this program *1
{

}

1* create the file menu *1
file_menu=make_menu(IIFilell,menu_~ar)j

open_item=make_menu_item("Open","Open selected",file_menu)j
close_item=make_menu_item("Close","Close selected",file_menu)j
quit_item=make_menu_item("Quit","Quit",file_menu)j

1* create the edit menu *1
edit_menu=make_menu("Edit",menu_bar)j
copy_item=make_menu_item("Copy","Copy selected",edit_menu)j
cut_item=make_menu_item("Cut","Cut Selected",edit_menu)j
paste_item=make_menu_item("Paste","Paste Selected",edit_menu)j
1* add an "extra" sub-menu to the edit menu *1
extra_menu=make_menu("Extra",edit_menu)j
extra1_item=make_menu_item(IIExtra1","Extra1 Selected",

extra_menu)j
extra2_item=make_menu_item("Extra2","Extra2 Selected",

extra_menu)j

93

You should declare the widget variables extra_menu, extra I_item, and ex­
tra2_item at the top of the program.

When you run this code, a new menu item named Extra appears at the
bottom of the Edit menu. When you select Extra, another submenu pops
up containing the items Extral and Extra2. The callback structure for the
submenu items is the same as for an ordinary menu item, so the use of these
submenu items is extremely easy.

ADDING ACCELERATORS

Many programs assign special key sequences to frequently used menu items
to improve user access. For example, META-O might trigger File Open, META­

C might trigger Edit Copy, and so on. The META key is different on different
keyboards. On some it is the ALT key, on others it is the COMPOSE CHARACTER key.
The name of the key is machine-dependent.

Accelerators are easy to set up. The function shown in Listing 6.4 demon­
strates the process.

94 MENUS

6.2.5

Listing 6.4 Function for Adding an Accelerator to a
Menu Item

void add_accelerator(w, acc_text, key)
Widget w;
char *acc_text;
char *key;

1* adds an accelerator to a menu option. *1
{

}

int ac;
Arg al[10] ;

ac=O;
XtSetArg(al[ac],XmNacceleratorText,

XmStringCreate(acc_text,XmSTRING_DEFAULT_CHARSET»; ac++;
XtSetArg(al[ac],XmNaccelerator,key); ac++;
XtSetValues(w,al,ac);

Add the following line to the create_menus function to use the function in
Listing 6.4:

add_accelerator (open_item, "meta+o", "Meta<Key>o: II);

This code sets up the menus so that the appropriate callback function for the
open_item widget is activated when a user presses META-O. The accelerator­
Text resource is an XmString that appears in the menu next to the Open item.
The accelerator resource accepts a normal C string that represents the acceler­
ator character.

You can set up function keys and control keys as accelerators as well. For ex­
ample, Ctrl<Key>o: creates a CTRL-O accelerator, and <Key>Fl: sets up the F1

k7y as an accelerator. Be careful to capitalize properly: You must spell the ac­
celerator Ctrl<Key>o:, not ctrl<Key>o: or Ctrl<key>o:. Motif will compile
the improperly capitalized versions, but the code won't run correctly. Also, be
sure to include the colon.

ADDING MNEMONIC TRAVERSAL

A menu mnemonic offers users a way to traverse menus without using the
mouse. To create a mnemonic, a character is passed into the mnemonic re­
source (inherited from the label widget) of either a cascade button in the menu
bar or a push button in the menu pane. Motif shows the user the mnemonic
chosen by underlining the first character in the button's name that matches
the mnemonic character.

6.2 CUSTOMIZING MENUS 95

If a menu pane is visible and the program uses mnemonics in the menu,
the user can choose a specific menu item by pressing the appropriate key for
the mnemonic character on the keyboard. To select a menu from the menu
bar, the user first holds down the META key and then presses the mnemonic
character.

Adding the code shown in Listing 6.5 to Listing 6.1 demonstrates the use
of mnemonic characters. Replace same-named functions with the functions
shown in Listing 6.5.

Listing 6.5 Using Menu Mnemonics

Widget make_menu_item(item_name , client_data ,mnemonic ,menu)
char *item_namej
caddr_t client_data;
char mnemonicj
Widget menUj

1* adds an item into a menu. *1
{

}

int aCj
Arg al[10];
Widget itemj

ac = 0;
XtSetArg(al[ac] ,XmNlabelString,

XmStringCreateLtoR(item_name,char_set»j aC++j
XtSetArg (al[ac],XmNmnemonic,mnemonic)j aC++j
item=XmCreatePushButton(menu,item_name,al,ac);
XtManageChild(item);
XtAddCallback(item,XmNactivateCallback,menuCB,client_data);
XtSetSensitive(item,True)j
return (item) ;

Widget make_menu (menu_name ,mnemonic ,menu_bar)
char *menu_name;
char mnemonic;
Widget menu_bar;

1* creates a menu on the menu bar *1
{

int ac;
Arg al[10];
Widget menu, cascade;

menu=XmCreatePulldownMenu(menu_bar,menu_name,NULL,O);

96 MENUS

}

ac=O;
XtSetArg (al[ac],XmNsubMenuld, menu); ac++;
XtSetArg (al[ac],XmNmnemonic,mnemonic); ac++;
XtSetArg(al[ac],XmNlabeIString,

XmStringCreateLtoR(menu_name,char_set)); ac++;
cascade=XmCreateCascadeButton(menu_bar,menu_name,al,ac);
XtManageChild(cascade);
return(menu);

void create_menus(menu_bar)
Widget menu_bar;

/* creates all the menus for this program */
{

}

/* create the file menu */
file_menu=make_menu("File", 'F' ,menu_bar) ;
open_item=make_menu_item("Open", II Open selected", '0' ,file_menu);
close_item=make_menu_item("Close","Close selected",'C',file_menu);
qUit_item=make_menu_item("Quit", II Quit II ,'Q' ,file_menu);

/* create the edit menu */
edit_menu=make_menu(IIEdit ll , 'E' ,menu_bar);
copy_item=make_menu_item(IICopyll,IICopy selected", '0' ,edit_menu);
cut_item=make_menu_item(IICutll,IICut Selectedll,'u',edit_menu)j
paste_item=make_menu_item("Pastell,"Paste Selectedll,'P',edit_menu)j

Mnemonics traverse menu structures without a mouse and therefore might
require several keystrokes to invoke a menu option. Accelerators, on the other
hand, invoke a menu item with a single keystroke no matter where the item is
in the menu structure.

Make sure that none of the mnemonic characters in a single menu pane
or in the menu bar conflict, and that no META keystroke needed to activate a
mnemonic in the menu bar conflicts with an accelerator keystroke that uses
the META key.

6.3 MENU BAR HELP

When you use a RowColumn widget as a menu bar, you can also use the
menuHelpWidget resource to display a Help menu in a special place on the
menu bar. To use this feature, create a cascade button and its menu pane
as usual with the make_menu and make_menu_item functions. Then pass
the cascade button widget in an argument list to the menuHelpWidget using

6.3 MENU BAR HELP 97

an XtSetArg/XtSetValues call. The Help cascade button appears on the far
right of the menu bar. Traditionally, this menu contains specific items. See the
sidebar for details. Listing 6.6 shows how to add a Help menu.

Listing 6.6 Creating a Help Menu

Widget make_help_menu(menu_name, menu_bar)
char *menu_name j
Widget menu_barj

/* Creates a nev menu on the menu bar. */
{

}

int aCj
Arg al[10]j
Widget menu, cascadej

ac = OJ
menu = XmCreatePulldownMenu (menu_bar, menu_name, aI, aC)j

ac = OJ
XtSetArg (al[ac], XmNsubMenuld, menu); ac++;
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR(menu_name, XmSTRING_DEFAULT_CHARSET))j aC++j
cascade = XmCreateCascadeButton (menu_bar, menu_name, aI, aC)j
XtManageChild (cascade)j

/* Wire the help menu into the rovcol vidget's help menu resource. */
ac=Oj
XtSetArgCal[ac],XmNmenuHelpWidget,cascade); aC++j
XtSetValues(menu_bar,al,ac)j

return(menu)j

void create_menusCmenu_bar)

/*
{

}

Widget menu_bar;
creates all the menus for this program */

/* create the File menu, Edit menu, etc. */

/* Create the help menu. */
help_menu=make_help_menu(IHelp",menu_bar)j
about_item=make_menu_item(IAbout l ,"About selected",help_menu)j
help_item=make_menu_item(IHelp",IHelp selected",help_menu)j

98 MENUS

Menu Style

Menus in a Motif program should comply
with the style guidelines laid out in the Motif
style guide (Appendix C). All programs that
use menus should have a menu bar at the
top of the application window. The menu
bar should contain only cascade buttons,
and these cascade buttons should always
manage menu panes. Although you can
wire a cascade button so that it has no
menu pane and therefore acts like a push
button, doing so is considered improper.
The style guide states that all programs
should have the following menus in the
menu bar when appropriate: File, Edit, View,
Options, and Help, with the mnemonics F,
E, V, 0, and H.

The File menu should contain file options,
such as opening and closing files, saving
files, and including files. By convention, the
File menu also contains the Exit option at
the bottom. The Edit menu should contain
activities that the user can perform on the
current data: Undo, Selection, Clipboard
functions, and so on. The View menu should
contain options that change the user's view
of the data. And the Options menu should
let the user customize the application.
Finally, the Help menu should proyide on­
line help with the following options: On
Context (context-sensitive help), On Help
(help on using the Help menu), On Window
(help on the current window), On Keys

(help on function keys and accelerators),
Index (an index of all help topics), Tutorial
(a tutorial for the application), and On
Version (version information such as the
author and release date). The mnemonics
for these items are C, H, W, K, I, T, and
V, respectively. The Help menu should
appear in a specific place on the menu bar
(see Section 6.7). See the style guide for
specific menu items and accelerators for
these menus.

The application can supply additional
menus to meet the specific needs of the
application.

Motif supports hierarchical menus. Hierar­
chical menus can increase the number of
menu items available in a limited space.

Pop-up menus can make an application
much easier to use. Instead of being forced
to keep returning to the menu bar, the user
can pop up a menu at the current location.
Pop-up menu items should always have
equivalents in the main menu structure.
That is, the user should always be able
to activate any pop-up menu item from
the main menu bar. Although pop-up
menus could duplicate the entire menu
bar structure, they generally do not. They
contain only frequently used options.

6.4 OTHER MENU STYLES 99

6.4 OTHER MENU STYLES

The standard menu bar/menu pane format is the most common configuration
for menus. However, Motif also supports two other menu formats: pop-up
menus and option menus.

Chapter 17 discusses pop-up menus with the drawing area widget. Pop-up
menus are useful in programs in which constant mouse movement between
the work area and the menu bar is distracting.

Option menus allow users to select one of several options. The current op­
tion appears on a button; when the user clicks the button, other options pop
up in a menu pane. Chapter 11 covers option menus.

The Motif Style Guide (see Appendix C) defines behavior and appearance
guidelines for menu bars and panes. These guidelines include such issues as
the definition of File and Edit menus, the placement and contents of the Help
menu, and restrictions on items in the menu bar. When you build a complete
application, it is important to consult the style guide so that your menus meet
the normal expectations of the Motif user community.

7 DIALOGS

Dialog boxes provide an easy and friendly way to acquire information from
and display messages to the user. In graphical user interfaces, they replace the
standard "prompt-read" sequence commonly found in text-based programs.

You can create custom dialog boxes to do anything you want (see Chapter
13). However, Motif provides a set of canned dialog boxes that handle the vast
majority of user interaction situations. They are very easy to use once you have
seen a few examples.

The simplest form of canned dialog box is the message dialog box. It contains
a statement or a question and up to three buttons with which a user can
respond or reply (see Figure 7.1). The prompt dialog box displays a message or a
question and allows the user to type in a string in reply. The user enters text
and then clicks a button or presses the RETURN key (see Figure 7.2). A selection
dialog box lets the user choose one item from a list of items. The user can scroll
through the list and then click the desired item to select it (see Figure 7.3). A
file selection dialog box lets the user specify the name of a file. The user can
switch directories and select from a list of file names in the current directory
(see Figure 7.4).

In this chapter, we will look at example code that creates each of these four
dialog box types. In all of these examples, we create the dialog box widget,
manage the dialog box when it needs to appear on the screen, and then han­
dle the callbacks generated by the dialog box so that the user's input can be
retrieved.

7.1 MESSAGE DIALOG BOXES

As a programmer, you will frequently want to ask a user yes-or-no questions or
send messages of various types. Motif provides a message dialog box that you
can use to handle these situations. The code in Listing 7.1 demonstrates the
process. When you run this code, a push button with the words "Push Me"
appears in the application window. When this button is pushed, the message

100

7.1 MESSAGE DIALOG BOXES 101

Figure 7.1 A Message Dialog Box

Is ever~thing OK?

Figure 7.2 A Prompt Dialog Box

T~pe in a string.

dialog box shown in Figure 7.1 appears. The result of the user's interaction
with the dialog box is printed in stdout as the program is running.

Listing 7.1 Creatl.ng a Message Dialog Box

/* message.c*/

#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/MessageB.h>

#define OK 1
#define CANCEL 2

XtAppContext context; .
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, button, dialog;

void dialogCB(w,client_data,call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

102 DIALOGS

Figure 7.3 A Selection Dialog Box

Items

dog
cow
goat
horse
mouse
pig
sheep
rat

Pick an animal.

iii

~
'"711

:.J

1* callback function for the dialog box. *1
{

}

switch (client_data)
{

}

case OK:
printf("OK selected\n");
break;

case CANCEL:
printf("CANCEL selected\n");
break;

1* make the dialog box invisible *1
XtUnmanageChild(w);

void buttonCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmPushButtonCallbackStruct *call_data;

1* callback function for the pushbutton *1
{

}

1* make the dialog box visible *1
XtManageChild(dialog);

7.1 MESSAGE DIALOG BOXES 103

Figure 7.4 A File Selection Dialog Box

Filter

I edu/users/b/brain/BOOK/ch_71* ~
, , ... , ~."' H.~ H."'" H." " "."." .• M." " " .. ~ " , .. " .. " " ..

Directories Files
7' r-----"'Ii~

~ I fi leSB.c '.:.1
1

Selection

inforlTlation.c
lTlessage.c
prolTlpt.c
question.c
MM; .. j,NII
warning.c II

working.c II I .. ".::t.

[SL .. _ J.....Ik:-Ji

Ib/brain/BOOK/ch_7/selection.c..j
... " " " " .• " ".,

void main(argc,argv)
int argc;

{
char *argv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,III1,NULL,O,&argc,argv,

NULL,NULL,O);

1* create (but DO NOT manage) the message dialog *1
ac=O;
XtSetArg(al[ac], XmNmessageString,

XmStringCreateLtoR(IIIs everything OK?II,char_set»j aC++j
dialog=XmCreateMessageDialog(toplevel,lIdialog ll ,al,ac);
XtAddCallback(dialog,XmNokCallback,dialogCB,OK);
XtAddCallback(dialog,XmNcancelCallback,dialogCB,CANCEL);
XtUnmanageChild(XmMessageBoxGetChild(dialog,XmDIALOG_HELP_BUTTON»j

1* create and manage pushbutton *1
ac=O;

104 DIALOGS

}

XtSetArg(al[ac],XmNlabelString,
XmStringCreate(IIPush Mell,char_set)); ac++;

button=XmCreatePushButton(toplevel,lIbuttonll,al,ac);
XtManageChild(button);
XtAddCallback (button, XmNactivateCallback, buttonCB, NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

The code in Listing 7.1 has three parts: the main function to set everything up
and two callback functions to handle the "Push Me" push button's activate
callback and the callbacks generated by the buttons in the dialog box.

The main function starts normally, then creates the dialog box and the
push buttons. It uses a convenience function for message dialogs to create the
dialog box. Note that the dialog box is created but not managed: It will be
managed when we want it to appear on the screen. The dialog box's OK and
cancel callbacks return information to the dialogCB function, and constants
are passed through the client_data parameter so that the callback function
can tell which button the user pressed.

A message dialog box is built from a message box widget. The message box
widget's resource list in Appendix J defines three buttons: OK, Cancel, and
Help. A message box is like any other widget and can be incorporated into
applications. A message box dialog is a message box put in a dialog shell so
that it acts like a pop-up dialog box. (See Chapter 13 for details on dialog
shells.)

The Help button is disabled and made invisible in the above program by a
call that unmanages it in the main function:

XtUnmanageChild(XmMessageBoxGetChild(dialog, XmDIALOG_HELP_BUTTON));

XtUnmanageChild Unmanages the specified widget.

void XtUnmanageChild(Widget vidget);

widget The widget.

XmMessageBoxGetChild, used in main, is a convenience function that
extracts the widget variables of different children that make up the message

7.1 MESSAGE DIALOG BOXES 105

dialog box. The entry for the message box in Appendix J lists the different
child names you can extract, as shown below:

Widget XmMessageBoxGetChild(Widget widget. unsigned char child);

Valid values for child parameter:
XmDIALOG_CANCEL_BUTTON
XmDIALOG_DEFAULT_BUTTON
XmDIALOG_HELP_BUTTON
XmDIALOG_MESSAGE_LABEL
XmDIALOG_OK_BUTTON
XmDIALOG_SEPARATOR
XmDIALOG_SYMBOL_LABEL

Once the desired child has been extracted from the dialog box with XmMes­
sageBoxGetChild, it can be manipulated like any normal widget. In the code
shown in Listing 7.1, the Help button is extracted and unmanaged to make it
disappear.

When a user clicks the main push button, the buttonCB function is called.
The act of managing the dialog box in buttonCB causes the dialog box to
appear on the screen; unmanaging the dialog box in the dialogCB function
makes it disappear again.

The dialogCB function gets called when a user clicks either the OK or cancel
buttons in the dialog box. The integer in the client_data parameter tells it
which button the user clicked. The dialogCB function writes the appropriate
message to stdout and unmanages the dialog box so that it disappears. The
dialog widget continues to exist (it was unmanaged, not deleted), but it must
be remanaged to become visible and active again.

If you want to provide help, add a callback for the Help button instead of
unman aging it as shown in the code, or change the name used to display
the Help button and use it for something else. To change the name, change
the helpLabelString resource available in the message box widget. You can
also change the names of the OK and Cancel buttons-for example, to read
"Yes" and "No" instead-by changing the okLabelString or the cancelLabel­
String resources. To make a message dialog box that has only an OK button,
unman age the Cancel button as well as the Help button. The OK button will
be centered automatically.

Note that the message box contains a symbolPixmap resource that lets you
place an icon in it. Chapter 17 shows an example of how to place a pixmap in
a label. You can use this same technique to place a pixmap in a message dialog
box using the symbolPixmap resource.

106 DIALOGS

Dialog Children

Icon Label

Separator

DDD
Button Button Button

\

Dialog boxes are composed of a number
of separate children bonded into a single
widget. The children of a typical message
dialog box are shown in the figure above.

There are two techniques for manipulating
the children that make up the dialog box.
The first technique uses several resources
that exist in the resource list for the mes­
sage box widget. These resources allow
direct manipulation. For example, the labels
on the three buttons have resources in the
message box widget's resource list named

Dialog shell/bulletin board

? Are you sure?
•

o GJ I Cancel I

XmNcancelLabelString, XmNhelpLabel­
String, and XmNokLabelString. Changing
these resources modifies the labels on the
three buttons.

The second technique involves extracting
the child's widget variable from the
message box widget itself and then
manipulating the child widget in the normal
manner. For a message box widget, the
extraction is done using a convenience
function called XmMessageBoxGetChiid.
This function accepts as parameters the

7.2 PROMPT DIALOG BOXES

Dialog Children (continued)

parent widget (which must be a message
box widget) and a constant to identify the
child (see Appendix J, which contains a
complete list of the message box widget's
children).

To retrieve the widget variable for the help
button, you can use the following code:

Widget help_button,messagej

message=XmCreateMessageBoxDialog
(toplevel, "message" ,NULL, 0) j

help_button=XmMessageBoxGetChild
(message,XmDIALOG_HELP_BUTTON)j

107

Once you have extracted the help button,
you can manipulate it just as you would any
other push-button widget. You can change
its resources, add callbacks to it, unmanage
it to make it disappear, and so on.

In addition to the generic version shown here, you can create five special­
ized versions of the message dialog box. They are discussed at the end of this
chapter.

7.2 PROMPT DIALOG BOXES

Motif supports a prompt dialog box for getting strings from the user (see Figure
7.2). Prompt dialog boxes are almost identical to message dialog boxes-they
both have OK, Cancel, and Help buttons that the user accesses the same way­
but prompt dialog boxes allow the user to enter a string, and therefore require
an extra line of code to extract the string the user enters once the dialog box's
OK callback is activated. The code in Listing 7.2 shows how to use a prompt
dialog box.

listing 7.2 Creating a Prompt Dialog Box

/* prompt.c*/

#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/SelectioB.h>
/* a prompt dialog is made from a stripped-down selection box. */
#define OK 1
#define CANCEL 2

108 DIALOGS

XtAppContext context;
XmStringCharSet char_set :::: XmSTRING_DEFAULT_CHARSET;

Widget toplevel, button, dialog;

void dialogCB(w,client_data,call_data)
Widget w;
int client_data;
XmSelectionBoxCallbackStruct *call_data;

1* callback function for the dialog box *1
{

}

char *s;

switch (client_data)
{

}

case OK:
1* get the string from the call_data parameter. *1
XmStringGetLtoR(call_data->value,char_set,&s);
printf("string::::)Y.s)\n",s);
XtFree(s);
break;

case CANCEL:
printf("CANCEL selected\n");
break;

1* make the dialog box invisible *1
XtUnmanageChild(w);

void buttonCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmPushButtonCallbackStruct *call_data;

1* callback function for the push button *1
{

}

1* make the dialog box visible *1
XtManageChild(dialog);

void main(argc,argv)
int argc;

{
char *argv [] ;

Arg al[10];
int ac;

7.2 PROMPT DIALOG BOXES

}

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"I,NULL,O,&argc,argv,

NULL,NULL,O);

1* create the dialog box. *1
ac=O;
XtSetArg(al[ac], XmNselectionLabelString,

XmStringCreateLtoR("Type in a string. ",char_set)); ac++;
dialog = XmCreatePromptDialog(toplevel,"dialog",al,ac);
XtAddCallback(dialog,XmNokCallback,dialogCB,OK);
XtAddCallback(dialog,XmNcanceICallback,dialogCB,CANCEL);
XtUnmanageChild (XmSelectionBoxGetChild (dialog,

XmDIALOG_HELP_BUTTON));
1* create the pushbutton *1
ac=O;
XtSetArg(al[ac],XmNlabeIString,

XmStringCreate("Push Me",char_set)); ac++;
button=XmCreatePushButton(toplevel,"labe1",al,ac);
XtManageChild(button);
XtAddCallback (button, XmNactivateCallback, buttonCB, NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

109

In the case OK: portion of the dialogCB function the code extracts the
string entered by the user. It gets this string from call_data. The call_data
parameter is of the type XmSelectionBoxCallbackStruct:

typedef struct
{

int reason;
XEvent *event;
XmString value;
int length;

} XmSelectionBoxCallbackStruct;

Since the extracted string in the value field is an XmString, you must convert
it to a normal C string to print it, as shown in Section 3.9. Once the string has
been used, the block should be freed to prevent memory leaks. Except for the
special string-extraction code and the different convenience function used to
create the prompt dialog box, the rest of this program is identical to the code
for the message dialog box in Listing 7.1.

110 DIALOGS

Since a prompt dialog box is a selection dialog box without the scrolling
list, you must include SelectioB. h when creating one. See Appendix J for a
description of this widget's resources and callbacks.

7.3 SELECTION DIALOG BOXES

Motif provides a selection dialog box that lets users select items from a list. An
example is shown in Figure 7.3. A selection dialog box is fairly complicated: It
consists of several labels, four buttons, a text editing area, and a scrolling list
of items from which the user can select.

The code for creating a selection dialog box, shown in Listing 7.3, is nearly
identical to the code for creating a prompt dialog box, except for some extra
code to set up the scrolling list.

Listing 7.3 Creating a Selection Dialog Box

/* selection.c */

#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/SelectioB.h>
#include <Xm/List.h>

#define OK 1
#define CANCEL 2

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, button, dialog;
char *animals []={"cat", "dog", "cow", "goat", "horse", "mouse", "pig",

"sheep", "rat", "donkey", "el~phant", "squirrel"};

void dialogCB{w,client_data,call_data)
Widget w;
int client_data;
XmSelectionBoxCallbackStruct *call_data;

/* callback function for the dialog box. */
{

char *s;

switch (client_data)

7.3 SELECTION DIALOG BOXES

}

{

case OK:
1* get the string from the call_data parameter. *1
XmStringGetLtoR(call_data->value,char_set,&s)j
printf(lstring='Yos'\n",s)j
XtFree(s)j
breakj

case CANCEL:
printf("CANCEL selected\n")j
breakj

}

XtUnmanageChild(v)j

void buttonCB(v,client_data,call_data)
Widget Vj
XtPointer client_dataj
XmPushButtonCallbackStruct *call_dataj

1* callback function for the pushbutton *1
{

}

Arg al[10]j
int aCj
Widget listj
int list_cntj
XmString Sj

1* Add items to selection boxes list. *1
list=XmSelectionBoxGetChild(dialog, XmDIALOG_LIST)j
XmListDeleteAllltems(list)j
for (list_cnt=Oj list_cnt<XtNumber(animals)j list_cnt++)
{

}

s=XmStringCreate(animals[list_cnt],char_set)j
XmListAddltem(list,s,O)j
XmStringFree(s)j

XtManageChild(dialog)j

void main(argc,argv)
int argc;

{
char *argv [] j

Arg al[10]j
int aCj

111

112 DIALOGS

}

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"",NULL,O,&argc,argv,

NULL,NULL,O);

1* create the pushbutton *1
ac=O;
XtSetArg(al[ac],XmNlabeIString,

XmStringCreate("Push Me",char_set»; ac++;
button=XmCreatePushButton(toplevel,"button",al,ac);
XtManageChild(button);
XtAddCallback (button, XmNactivateCallback, buttonCB, NULL);

1* create the selection box widget *1
ac = 0;
1* the following line is commented out to make a point. Read

more about it in the text description. *1
1* XtSetArg(al[ac],XmNautoUnmanage,False); ac++; *1
XtSetArg(al[ac],XmNmustMatch,True); ac++;
XtSetArg(al[ac],XmNselectionLabelString,

XmStringCreateLtoR("Pick an animal. ",char_set»; ac++;
dialog=XmCreateSelectionDialog(toplevel,"dialog",al,ac);
XtAddCallback(dialog,XmNokCallback,dialogCB,OK);
XtAddCallback(dialog,XmNcanceICallback,dialogCB,CANCEL);
XtUnmanageChild(XmSelectionBoxGetChild(dialog,XmDIALOG_HELP_BUTTON»;

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

The animals array in Listing 7.3 represents a list of strings that you want
to appear in the selection dialog box. The code to handle the push button's
callback adds the items to the list by getting the list widget child from the
selection dialog box and then using list widget convenience functions Xm­
ListDeleteAllItems and XmListAddltem (see Chapter 11). Note the use of the
XtNumber function, which returns the size of an array.

XtNumber Returns the number of elements in an array.

Cardinal XtNumber(ArrayVariable array);

array The array.

7.4 FILE SELECTION DIALOG BOXES 113

This code introduces you to the mustMatch resource, which is set in the
main function. The selection box contains an editing area in which the user
can type a selection. Theoretically, this selection can be anything. However,
the strings in the scrolling list are often the only valid strings, and the user
should be allowed to enter only valid strings. The mustMatch resource forces
the user to enter a string that matches an item in the list. Try running the code
as is, then enter some garbage into the string area of the selection box. The
selection box will close, but the callback will not be triggered. Now change
the code and set mustMatch to false. When you enter garbage, the program
returns garbage.

When mustMatch is true, the selection box closes even if the user enters
an invalid string. This can be rather disconcerting. The program receives no
notification through the callback and the user receives no message. It is bet­
ter for the selection box to remain on screen until it receives a valid response.
To achieve this, use the autoUnmanage resource of the bulletin board widget
(the selection box is made up of separate widgets attached to a bulletin board).
When set to true, the autoUnmanage resource makes the bulletin board auto­
matically disappear whenever the user clicks OK, Cancel, or Help. Such behav­
ior is undesirable here. To change the behavior, uncomment the line that sets
the auto Unman age resource to false and rerun the program, making sure that
mustMatch is true. Now when you enter garbage into the text editing area,
the dialog box remains on the screen until the user enters a valid string. Note
that the autoUnmanage resource works only if it is set to false at the time of
widget creation.

You can create an even more user-friendly interface by using noMatchCall­
back, which is specially designed for this purpose. This callback is triggered
when the user enters a nonmatching text string in the text editing region. You
can use noMatchCallback to display a message dialog box containing an error
message when the user enters a nonmatching string.

The selection box widget contains an Apply button that this code does not
use. Use it as you please in your own applications, or unmanage it. Generally,
an Apply button allows the user to see the effect of a change on-screen without
unmanaging the dialog.

7.4 FILE SELECTION DIALOG BOXES

A file selection dialog box (Figure 7.1) lets users select from a list of files avail­
able in the current directory. It also gives the user an intuitive way of travers­
ing the directory structure. Although it looks very different from the selection

114 DIALOGS

box shown in Figure 7.3, the code for creating a file selection dialog box (list­
ing 7.4) is nearly identical to the code for normal selection boxes.

Listing 7.4 Creating a File Selection Dialog Box

/* fileSB.c */

#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/FileSB.h>

#define OK 1
#define CANCEL 2

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, button, dialog;

void dialogCB(w,client_data,call_data)
Widget w;
int client_data;
XmSelectionBoxCallbackStruct *call_data;

/* callback function for the dialog box */
{

}

char *s;

switch (client_data)
{

case OK:
XmStringGetLtoR(call_data->value,char_set,&s);
printf(" string='y's'\n",s);
XtFree(s);
break;

case CANCEL:
printf("CANCEL selected\n");
break;

}

XtUnmanageChild(w);

void buttonCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmPushButtonCallbackStruct *call_data;

/* callback function for the pushbutton */

7.4 FILE SELECTION DIALOG BOXES

{

}

1* make the dialog box visible *1
XtManageChild(dialog);

void main(argc,argv)
int argc;

{

}

char *argv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel ::: XtAppInitialize(&context,"I,NULL,O,&argc,argv,

NULL,NULL,O) ;

1* create and manage the pushbutton *1
ac:::O;
XtSetArg(al[ac],XmNlabelString,

XmStringCreate("Push Me",char_set»; ac++;
button=XmCreatePushButton(toplevel,lbutton",al,ac);
XtManageChild(button);
XtAddCallback(button,XmNactivateCallback,

buttonCB,NULL);

1* create the dialog box *1
ac = 0;
dialog=XmCreateFileSelectionDialog(toplevel,

"dialog",al,ac);
XtAddCallback(dialog,XmNokCallback,dialogCB,OK);
XtAddCallback (dialog, XmNcancelCallback,

dialogCB,CANCEL);
XtUnmanageChild(XmSelectionBoxGetChild(dialog,

XmDIALOG_HELP_BUTTON»;

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

115

The file selection dialog box is extremely powerful and provides a number of
resources that contain such data as the current directory, the list of files, and
the filter string. Much of this data is also returned in the callback structure. See
Appendix J for more information.

116 DIALOGS

Figure 7.5 An Error Dialog Box

CS> Sa~ple Error Dialog

Figure 7.6 An Information Dialog Box

• 1 Sa~ple Infor~ation Dialog

7.5 OTHER CANNED DIALOG BOXES IN MOTIF

Motif provides five other· canned dialog boxes, all of which use the message
dialog box as a foundation: error dialog boxes, information dialog boxes, ques­
tion dialog boxes, warning dialog boxes, and working dialog boxes (see Figures
7.5 through 7.9). Each is simply a message dialog box with an icon supplied
through the symbolPixmap resource. The code in Listing 7.5 produced the
error dialog box shown in Figure 7.5.

Listing 7.5 Creating an Error Message Dialog Box

/* error.c */

#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/MessageB.h>

#define OK 1
#define CANCEL 2

Widget toplevel, button, dialog;

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

void dialogCB(v,client_data,call_data)

7.5 OTHER CANNED DIALOG BOXES IN MOTIF

Widget Wj
int client_dataj
XmAnyCallbackStruct *call_dataj

1* callback function for the dialog box. *1
{

}

switch (client_data)
{

case OK:
printf("OK selected\n");
breakj

case CANCEL:

}

printf("CANCEL selected\n")j
breakj

1* make the dialog box invisible *1
XtUnmanageChild(w)j

void buttonCB(w,client_data,call_data)
Widget Wj
XtPointer client_data;
XmPushButtonCallbackStruct *call_dataj

1* callback function for the pushbutton *1
{

}

1* make the dialog box visible *1
XtManageChild(dialog)j

void main(argc,argv)
int argcj

{

char *argv [] j

Arg al[10]j
int aCj

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"",NULL,O,&argc,argv,

NULL,NULL,O)j

1* create (but DO NOT manage) the message dialog *1
ac=Oj
XtSetArg(al[ac], XmNmessageString,

XmStringCreateLtoR("Sample Error Dialog" ,char_set» j aC++j
dialog = XmCreateErrorDialog(toplevel,"dialog", al, aC)j
XtAddCallback(dialog,XmNokCallback,dialogCB,OK)j
XtAddCallback(dialog,XmNcancelCallback,dialogCB,CANCEL)j

117

118 DIALOGS

}

XtUnmanageChild(XmMessageBoxGetChild(dialog,
XmDIALOG_HELP_BUTTON))j

1* create and manage pushbutton *1
ac=Oj
XtSetArg(al[ac],XmNlabelString,

XmStringCreate(JlPush MeJl,char_set))j aC++j
button=XmCreatePushButton(toplevel,JlbuttonJl,al,ac)j
XtManageChild(button)j
XtAddCallback(button ,XmNactivateCallback ,

buttonCB,NULL)j

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

Note that code in Listing 7.S is almost the same as the sample code for cre­
ating a message dialog box, except that the message string has been changed,
and the following line creates the error dialog box:

dialog = XmCreateErrorDialog(toplevel, "dialog", al, aC)j

You can replace the word "Error" in this line with "Information," "Question,"
"Warning," or "Working" to create the other four dialog boxes.

Figure 7.7 A Question Dialog Box

• Salllple Question Dialog

Figure 7.8 A Warning Dialog Box

, Salllple Warning Dialog •

7.5 OTHER CANNED DIALOG BOXES IN MOTIF 119

Figure 7.9 A Working Dialog Box

Ell Sample Working Dialog

8 TIC-TAC-TOE APPLICATION

At this point you have all of the tools you need to create applications. Now
we will combine these tools to form a simple application that plays a game
of tic-tac-toe. This application uses label and push-button widgets along with
their resources and callbacks, a form widget, a menu, and a dialog box. When
we are done, we will have created a complete graphical application with a
very small amount of code, all of which is fairly simple and straightforward
to understand.

8.1 DESIGNING AN APPLICATION

Whenever you are about to start building an application using Motif, spend
some time working on the user interface design. Ask yourself two important
questions: What functionality does the user interface need to provide? And
what combination of widgets will best produce a user interface that is easy to
use, visually appealing, and intuitive?

In a program that plays a tic-tac-toe game, the user needs to be able to ac­
complish certain tasks. The user must be able to quit the application and re­
start it, enter a move, see the game's current state, and know when the game is
over. What combination of widgets best implements these capabilities? Often,
the only way to answer such a question is to code an interface and see how
it feels. If the interface seems to be getting in your way, or if new users have
trouble learning how to use it quickly, then you probably need to change it.

In the the tic-tac-toe program, you can most likely handle quitting and
restarting with a menu, since the user will expect the program to work that
way. Quit and Restart push buttons are also a possibility, however. A three­
by-three grid of push buttons can handle the user's moves, and the labels or
pixmaps on these buttons can also show the current state of the game. A label
widget will prompt the user to make his or her move, and a message dialog
box can announce the winner at the end of each game.

120

8.2 CODING THE TIC-TAC-TOE PROGRAM

Figure 8.1 A Rough Sketch of a Tlc-Tac-Toe
User Interface

/ File
/1--------1

The File menu contains
the Quit and Restart
options [!]DD

D@JD
DDD

Please click on your choice

121

In the process of designing the tic-tac-toe interface, you might get out a
piece of scratch paper and sketch out what the interface will look like. Figure
8.1 shows a drawing of one possibility. In larger applications, rough sketches
like this can give you a good feel for user interface options quickly.

8.2 CODING THE TIC-TAC-TOE PROGRAM

When you look at the rough sketch for the tic-tac-toe application, you can
easily see which widgets you need to use. You need a form widget to hold
the other widgets (because it resizes buttons automatically) and nine push
buttons for the grid. You also need a label widget to display the "Please click
your choice" message, a menu bar widget and appropriate menu items, and a
message dialog box to announce the winner.

The main function (Listing 8.1) consists of the code needed to create all of
these widgets and attach them to the form. It creates nine buttons in a loop
that spaces each appropriately on the form based on the value of the loop
variables.

Listing 8.1 Code for the main Function and
Declarations for the Tlc-Tac-Toe Application

/* tictactoe.c */

#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/Form.h>

122 TIC-TAC-TOE APPLICATION

#include <Xm/Label.h>
#include <Xm/MessageB.h>
#include <Xm/RowColumn.h>
#include <Xm/CascadeB.h>

#define OK 1
#define CANCEL 2

#define RESTART 1
#define QUIT 2

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget file_menu;
Widget restart_item;
Widget qUit_item;
Widget menu_bar;
Widget toplevel;
Widget dialog;
Widget button [3] [3];
Widget form;
Widget label;

int board[3] [3]={O,O,O,O,O,O,O,O,O};
int rand_seed=10;

Widget make_menu_item();
Widget make_menu();
void create_menus();
void init_board();

void menuCB 0 ;
void dialogCB();

1* Adds an item into the menu. *1
1* Creates a menu on the menu bar. *1
1* Creates all menus for this program. *1
1* Resets the state of the game to *1
1* the beginning. *1
1* Callback routine used for all menus. *1
1* Callback function for the dialog box *1
1* called whenever the user clicks on *1
1* the OK or Cancel buttons in the *1
1* dialog box. *1

Boolean check_wine); 1* Checks for a winner or a draw. If a *1
1* win or a draw is detected, the *1
1* dialog box is activated. *1

int rand(); 1* Random number generator from K&R. *1
void do_computers_move(); 1* Determines the computer's next move *1

1* and places it on the grid. *1

8.2 CODING THE TIC-TAC-TOE PROGRAM 123

void buttonCB 0 j 1* Callback function for the 9 grid
1* buttons called when one of the grid *1
1* buttons is clicked. *1

void main(argc,argv)
int argcj

{

char *argv [] j

Arg al[10]j
int aCj
int x,yj

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"I,NULL,O,&argc,argv,

NULL,NULL,O) j
1* set the default size of the window. *1
ac=Oj
XtSetArg(al[ac],XmNwidth,200)j aC++j
XtSetArg(al[ac],XmNheight,200)j aC++j
XtSetValues(toplevel,al,ac)j

1* create a form widget *1
ac=Oj
form=XmCreateForm(toplevel,lform",al,ac)j
XtManageChild(form)j

1* create the menu bar and attach it to the form. *1
ac=Oj
XtSetArg(al[ac],XmNtopAttachment,XmATTACH_FORM)j aC++j
XtSetArg(al[ac],XmNrightAttachment,XmATTACH_FORM)j aC++j
XtSetArg(al[ac],XmNleftAttachment,XmATTACH_FORM)j aC++j
menu_bar=XmCreateMenuBar(form,lmenu_bar",al,ac)j
XtManageChild(menu_bar)j

1* set up the buttons for the board. Attach them to the form. *1
for (x=Oj x<3j x++)
{

for (y=Oj y<3j y++)
{

ac=Oj
XtSetArg(al[ac],XmNlabeIString,

XmStringCreate("-I,char_set»j aC++j
XtSetArg(al[ac],XmNleftAttachment,

124 TIC-TAC-TOE APPLICATION

}

}

}

XmATTACH_POSITION); ac++;
XtSetArg(al[ac],XmNleftPosition,20+x*20); ac++;
XtSetArg(al[ac],XmNrightAttachment,

XmATTACH_POSITION); ac++;
XtSetArg(al[ac],XmNrightPosition,40+x*20); ac++;
XtSetArg(al[ac],XmNtopAttachment,

XmATTACH_POSITION); ac++;
XtSetArg(al[ac],XmNtopPosition,20+y*20); ac++;
XtSetArg(al[ac],XmNbottomAttachment,

XmATTACH_POSITION); ac++;
XtSetArg(al[ac],XmNbottomPosition, 40+y*20); ac++;
button[x] [y]=XmCreatePushButton(form,"label",al,ac);
XtManageChild(button[x] [y]);
XtAddCallback(button[x] [y],XmNactivateCallback,

buttonCB,x*3+y);

1* create a label widget and attach it to the form. *1
ac=O;
XtSetArg(al[ac] ,XmNlabelString,

XmStringCreate("Please click on your choice",char_set»; ac++;
XtSetArg(al[ac],XmNrightAttachment,XmATTACH_FORM); ac++;
XtSetArg(al[ac],XmNleftAttachment,XmATTACH_FORM); ac++;
XtSetArg(al[ac],XmNtopAttachment,XmATTACH_POSITION); ac++;
XtSetArg(al[ac],XmNtopPosition,85); ac++;
label=XmCreateLabel(form,"label",al,ac);
XtManageChild(label);

1* create a dialog that will announce the winner. *1
ac=O;
dialog=XmCreateMessageDialog(toplevel,"dialog",al,ac);
XtAddCallback(dialog, XmNokCallback,dialogCB,OK);
XtUnmanageChild(XmMessageBoxGetChild(dialog,

XmDIALOG_CANCEL_BUTTON»;
XtUnmanageChild(XmMessageBoxGetChild(dialog,

XmDIALOG_HELP_BUTTON»;

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

8.2 CODING THE TIC-TAC-TOE PROGRAM 125

You can copy the code that handles the menus from Chapter 6. The make_
menu, make_menu_item and create_menus code requires only minor mod­
ifications, including a change to the client_data parameter to make it accept
integers rather than strings. Other changes include modifying create_menus
so that the correct menu structure is built for this application (Listing 8.2).

Listing 8.2 The Menu-Handling Code for the
nc-Tac-Toe Application

Widget make_menu_item(item_name,client_data,menu)
char *item_name;
int client_data;
Widget menu;

1* adds an item into the menu. *1
{

}

int ac;
Arg al[10];
Widget item;

ac = 0;
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR(item_name,char_set»; ac++;
item=XmCreatePushButton(menu,item_name,al,ac);
XtManageChild(item);
XtAddCallback (item,XmNactivateCallback,menuCB,client_data);
XtSetSensitive(item,True);
return(item);

Widget make_menu(menu_name,menu_bar)
char *menu_name;
Widget menu_bar;

1* creates a menu on the menu bar *1
{

}

int ac;
Arg al[10];
Widget menu, cascade;

menu=XmCreatePulldownMenu(menu_bar,menu_name,NULL,O);
ac=O;
XtSetArg(al[ac],XmNsubMenuld,menu); ac++;
XtSetArg(al[ac],XmNlabelString,

XmStringCreateLtoR(menu_name,char_set»; ac++;
cascade=XmCreateCascadeButton(menu_bar,menu_name,al,ac);
XtManageChild (cascade);
return(menu);

126 TIC-TAC-TOE APPLICATION

void create_menus(menu_bar)
Widget menu_bar;

1* creates all the menus for this program *1
{

}

1* create the file menu *1
file_menu=make_menu("File",menu_bar);
restart_item=make_menu_item("Restart",

RESTART,file_menu);
quit_item=make_menu_item("Quit",QUIT,file_menu);

When the game begins, all of the buttons will display a "_" label to show
that they are available. The init_board routine reinitializes the button widgets
to contain the "_" label and initializes the board variable to all zeros. The
menuCB routine either quits the program or reinitializes the board with init_
board when a user selects one of the menu items (see Listing B.3).

Listing 8.3 The Menu Callback Code for the
Tlc-Tac-Toe Application

void init_board()
1* Resets the state of the game to the beginning. *1
{

}

int x,y;
int ac;
Arg al[10];

for(x=O; x<3; x++)
for (y=O; y<3; y++)
{

}

board [x] [y] =0 ;
ac=O;
XtSetArg(al[ac],XmNlabelString,

XmStringCreate("-" ,char_set»; ac++;
XtSetValues(button[x] [y],al,ac);

void menuCB(w,client_data,call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

8.2 CODING THE TIC-TAC-TOE PROGRAM

1* callback routine used for· all menus *1
{

}

if (client_data==QUIT) 1* if quit seen, then exit *1
exit(O);

if (client_data==RESTART)
init_boardO;

127

The dialog box appears whenever anyone wins or the game ends in a draw.
Its OK button triggers the callback function dialogCB, which closes the dialog
box and restarts the game (see Listing 8.4).

Listing 8.4 The Dialog Box Callback Code for the
nc-Tac-Toe Application

void dialogCB(w,client_data,call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

1* callback function for the dialog box. Called whenever the

{

}

user clicks on the OK or Cancel buttons on the dialog box. *1

1* after someone wins, restart. *1
XtUnmanageChild(w);
init_boardO;

The remainder of the code, shown in Listing 8.5, handles the moves of the
user and the computer and recognizes and announces winners. When the user
clicks the button of his or her choice, the button's activate callback triggers
the code for buttonCB, which checks to make sure that the user clicked on an
empty button.

If the user did so, the button's label changes to show that the user holds
the position. The program then calls the function that handles the computer's
move, which checks to see if the user has won. If not, it chooses a random po­
sition for the computer's move (you can add an AI move calculation function
here if you like). The program checks the board again to see if the computer
has won. If someone wins, the code displays the dialog box. If not, the code
falls back to the main event loop to await events.

128 TIC-TAC-TOE APPLICATION

Listing 8.5 The Button Callback and Win-Checking
Code for the Tlc-Tac-Toe Application

Boolean check_win()
1* checks for a winner or a draw. If a win or a draw is detected,

the dialog box is activated. *1
{

Arg al[lO]j
int aCj
char *s=NULLj
int x,y;
int suml,sum2,tot=Oj

1* check all rows and columns for a win *1
for (x=Oj x<3j x++)
{

}

suml=sum2=0;
for (y=Oj y<3j y++)
{

}

suml += board[x] [y];
sum2 += board[y] [x];

if (suml == 3 I I sum2 == 3) s="You won."j
else if (suml == -3 I I sum2 == -3) s="1 won!"j

1* check diagonals for a win *1
suml=sum2=Oj
for (x=Oj x<3j x++)
{

}

suml += board[x] [x]j
sum2 += board[2-x] [x]j

if (suml 3 I I sum2 == 3) s="You won.";
else if (suml == -3 I I sum2 == -3) s="1 won!";

1*' check for draw. *1
for (x=Oj x<3; x++)

for (y=Oj y<3j y++)
if (board[x] [y] != 0) tot++j

if (tot==9 &;&; Is) s="1t's a draw."j

1* announce winner in dialog box *1
if (s)

8.2 CODING THE TIC-TAC-TOE PROGRAM

{

ac=O;
XtSetArg(al[ac], XmNmessageString,

XmStringCreateLtoR(s,char_set»; ac++;
XtSetValues(dialog,al,ac)j
XtManageChild(dialog):
return(True):

}

return(False);
}

int randO
1* random number generator from K&R *1
{

rand_seed = rand_seed * 1103515245 +12345:
return (unsigned int) (rand_seed I 65536) % 32768:

}

void do_computers_move()
1* determines the computers next move and places it on the grid. *1
{

}

Arg al[10]:
int ac:
int x,y;

if (!check_win(»
{

}

1* computer move is random. Loop until valid move chosen.*1
do {x=rand()%3; y=rand()%3: } while (board [x] [y]!=O):
board[x] [y] = -1;

1* update the screen. *1
ac=O;
XtSetArg(al[ac],XmNlabelString,

XmStringCreate(IO",char_set»: ac++:
XtSetValues(button[x] [y],al,ac):
check_winO;

void buttonCB(w,client_data,call_data)
Widget Wj

int client_data;

129

130 TIC-TAC-TOE APPLICATION

{

}

XmAnyCallbackStruct *call_data;
1* callback function for the 9 grid buttons. Called when
one of the grid buttons is clicked. *1

Arg al[10];
int ac;
int x,y;

1* make sure the move is valid. If it is, update the screen. *1
x=client_data/3;
y=client_data%3;
if (board[x] [y]==O)
{

}

board [x] [y] =1;
ac=O;
XtSetArg(al[ac],XmNlabelString,

XmStringCreate(IX" ,char_set»; ac++;
XtSetValues(button[x] [y],al,ac);
do_computers_move();

Figure 8.2 shows a view of the tic-tac-toe game this program produces.
When you run the code, try resizing the window; also try minimizing and
then maximizing it. As you can see, this fairly small amount of code creates a
full-blown graphical application. Motif handles almost all the ugly details; the

Figure 8.2 Output of the nc-Tac-Toe Program

File

Please click on ~our choice

8.3 CALLBACK CHAINS 131

code simply sets up the widgets and makes the decisions needed to implement
the game.

8.3 CALLBACK CHAINS

Callback chaining is a topic that many programmers find confusing at first. It
represents a style of programming unique to Motif. When managed skillfully,
callback chains work well and are easy to understand. To explain callback
chaining, let's return to the push-button code we used in Chapter 4 and then
look at the tic-tac-toe code, which contains several chains. Here is the push­
button code from Chapter 4.

/* button.c*/

#include <Xm/Xm.h>
#include <Xm/PushB.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, button;

void handle_button(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmPushButtonCallbackStruct *call_data;

/* handles the pushbutton's activate callback. */
{

printf("button pushed\n");
}

void main(argc,argv)
int argc;

{
char *argv [] ;

Arg al[10];
int ac;

/* create the toplevel shell */
toplevel = XtApplnitialize(&:context,"I,NULL,O,&:argc,argv,

NULL,NULL,O);

132 TIC-TAC-TOE APPLICATION

}

1* create the button widget *1
ac=Oj
XtSetArg(al[ac],XmNlabelString,

XmStringCreate("Push Me",char_set»j aC++j
button=XmCreatePushButton(toplevel,"button",al,ac)j
XtManageChild(button)j
XtAddCallback(button, XmNactivateCallback, handle_button, NULL)j

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

This code never calls handle_button directly. Although this fact may seem
confusing, keep in mind that Motif promotes this style of programming: The
function is called in response to a user event on a widget that Motif is manag­
ing because of the call to XtAddCallback. When a user clicks the push button,
the push-button widget detects the click and handles it by calling the handle_
button function (Figure 8.3).

The handle_button function performs like a normal C function and even­
tually returns, taking the program back into the main event loop.

In the tic-tac-toe program, the situation is a bit more complicated. The
code never calls the menuCB, dialogCB, and buttonCB functions directly.
Moreover, the callbacks in this program form chains among one another at
several points, as shown in Figure 8.4.

The user's act of clicking on one of the grid buttons shown in Figure 8.4
sets off this chain. Clicking the button triggers the buttonCB function, which
calls do_computers_move, which calls check_win. If the code detects a win-

Figure 8.3 The Main Event Loop and Widgets
Managing the Callback Mechanism

Main event loop handling events for widgets

t
User clicks on

the push button

Program

t
l

User

8.3 CALLBACK CHAINS

Figure 8.4 A Callback Chain In the
nc-Tac-Toe Program

Main event loop handling events for widgets

User clicks on a push button that
makes up the three-by-three grid

User clicks on the OK
button in the dialog box

Program

User

133

ner, the check_win function makes a call to XtManageChild, which manages
the dialog box that announces a winner. The three functions then return to
their callers and finally to the main event loop. The main event loop immedi­
ately maps the dialog box, which then appears. (The dialog box does not get
mapped until the callback code returns to the main loop.) The user eventually
clicks the OK button in the dialog box. The main event loop detects this click
and activates the dialogCB callback function. The dialogCB function unman­
ages the dialog box, resets the board, and returns to the main loop. Keep in
mind that this entire chain of events started with one button click.

In a large Motif program, callback chains can get fairly long and the number
of callback functions in the code can get very large. It can become extremely
hard to tell which callback function is being activated when and by whom un­
less your code is well documented. As your programs get larger, make sure you
document your chains carefully. For example, you might enter a description
of the callback chains similar to this one at the beginning of your program:

1* Callback chains found in this program:

The menuCB function is called by the Quit and Restart menu options.

When the user clicks on one of the buttons on the grid, buttonCB

134 TIC-TAC-TOE APPLICATION

is called. It calls do_computers_move and check_win, which
may manage the dialog box. The dialog box's buttons are handled
by dialogCB.

In Chapter 10, you will create a program that implements a text editor. This
code also documents its callback chains at the top of the program.

9 THE MKILL APPLICATION

For many new users, one of the most frustrating and difficult aspects of X
workstations is the inconSistency of the user interface. For example, when
someone wants to read news, he or she uses mxrn, the Motif version of the
UNIX news reader. The mxrn application offers a very nice pOint-and-click
user interface containing buttons, menus, scrolling text areas, selection dia­
log boxes, and so on, which makes news reading an easy and fairly intuitive
task. On the other hand, if the user wants to copy a file from one deeply buried
subdirectory to another, he or she has to type a long and hard-to-Iearn com­
mand at a command line prompt. Because of the inconsistencies in the user
interface of a typical UNIX workstation, some applications are easy to use and
others are not. These inconsistencies tend to intimidate users, giving them a
bad first impression of their computing environment.

Even something as simple as a disk quota can get in a beginner's way. If a
system has quotas, at some point the user runs out of disk space and programs
begin to fail. Many programs fail quite ungracefully, and the user often has
no idea why commands that worked fine yesterday are going wrong today. Of
course, users learn about the quota command early on, but they usually forget
about it as it is crushed under a huge mass of UNIX minutiae.

To solve the problem of disk quotas, I created a little program called the
"quota dial," which is like a gas gauge for disk space. I built it on top of the
quota command and a gauge widget from D.A. Young's book, The X Window

System (see Appendix A). Figure 9.1 shows a typical quota dial. The gauge
appears on screen at all times, prOViding the user with a constant and intuitive
display of his or her disk usage.

The quota dial program is simple. Every 15 seconds it issues the quota com­
mand, looks at the returned text, and updates the dial widget accordingly. The
program is called a wrapper because it wraps a graphical shell around an exist­
ing text application to make the application easier to use.

13S

1 36 THE MKILL APPLICATION

Figure 9.1 The Quota Dial
The quota dial keeps users informed of their current
disk usage and displays a warning when disk space be­
gins to run short .

...

~ -----E 937. F
»WARNING«
Disk Quota

X workstations commonly use many wrappers: xload graphically displays
the system's load average using a strip chart; xdbx puts a giant wrapper around
standard dbx; and xmh provides a wrapper around a set of mail commands.
NeXT machines have made wrapping a refined art and come close to providing
a completely wrapped UNIX system (although here most of the applications
and tools are completely rewritten rather than a text version simply being
wrapped).

In general, wrappers are easy to create because the text applications already
exist. All you have to do is create a Motif program that can receive data from
the text application, and then translate that data into a graphical form on the
screen. All of the difficult programming has already been done for you in the
text applications.

In this chapter, we will look at a simple wrapper called mkill that illustrates
the techniques of wrapper creation. You will also learn how to run and com­
municate with a separately executing text application from within a Motif
application.

9.1 THE IDEA BEHIND MKILL

The mkill program was born of my own frustration with the UNIX kill com­
mand. I tend to run many background jobs on my workstation and occasion­
ally I want to kill one. To do so, I have to perform the following steps:

1. Type ps -g.

2. Scan the process list for the program to kill.
3. Read off the process ID (1401, for example).
4. Type kill -9 1401.

I would prefer to click a button that pops up a selection dialog box containing

9.2 THE LINK LIBRARY

Figure 9.2 The mklll Process In the Quiescent State:
A Small Push Button In a Corner of the Screen

61 IDkiIlII1I 0
1'·P~sh'" t~··k·i 11 "I

Figure 9.3 The mklll Selection Box
Once the user clicks the push-to-kill button, the
selection box appears so that the user can select the
application to kill.

Itellls

8713 pO S
8267 p1 S
9243 p1 HJ
9244 p1 H.I
9267 p1 S
9268 p1 R
8714 p2 HJ

0:11 lusr/local/bin/lllxterl1l
0:27 -csh (tcsh)
0:00 Itlllp/toggle
0:00 Itlllp/radio_box
0:00 Itlllp/lllkill
0:00 ps -g
0:04 -csh (tcsh)

9248 2 IW 0:00 cc -0 Itlll Iscroll_bar scroll_bar.c -lXl1'I -lXt -IX11
9253 p2 D 0:09 ld -0 Itl1lp/scroll_bar -G 8 -gO -nocount lusr/lib/clllplrs/cc ,;

Pick a process to kill.

9248 p2 IW 0:00 cc -0 Itlllp/scroll_bar scroll_bar.c -lXlIl -lXt -IX11;.

I r~~~_l I
~

137

all of the jobs currently running, and simply double-click the jobs I want to
kill. That's why I invented mkill. Figures 9.2 and 9.3 show the program in
action. As you can see, mkill is nothing more than a wrapper around the ps
and kill commands that greatly Simplifies the act of killing a process.

9.2 THE LINK LIBRARY

The hardest part of creating a wrapper is establishing a communication link
between the graphical application and the text application running simulta­
neously. Fortunately, this task is not particularly difficult under UNIX.

Forget for a moment about X, graphical user interfaces, and Motif, and
concentrate on a simple task: getting two programs to run simultaneously
and talk to one another under UNIX. To accomplish this, I created a library,

1 38 THE MKILL APPLICATION

called the link library, to form a textual communication link between two
simultaneously running programs. Like all libraries, it comes in two parts.
Listing 9.1 contains the library's header file, link.h.

Listing 9.1 The Header File for the
Link Library, IInk.h

/* link.h */

/* Link module, vl.0, 5/4/91 by Marshall Brain */

/* This module allows a program to form links to other separately
executing programs and communicate with them. Links can be
opened and closed, and the program using this library can
write to and read from the other program over the link. */

/* Warning -
This module will not link with all programs. If the program
does anything weird with stdout, or if it fails to flush
stdout correctly, then this module will fail. If you are creating
a stand-alone program that you wish to link to another program
with this library, then you MUST make sure that stdout is
flushed correctly. Either call "fflush(stdout)" after every
printf, or call "setbuf(stdout,NULL)" at the beginning of the
program to eliminate buffering. */

#include <stdio.h>
#include <strings.h>
#include <signal.h>
#include <sys/ioctl.h>

struct link_handle /* holds all info relevant to one link. */
{

};

int pipefdl[2],pipefd2[2];
int pid;
FILE *fpin,*fpout;

extern link_open(struct link_handle *1, char name[], char param[]);
/* open a link to another program named name, passing a param

to the program if desired. This routine will execute name
in parallel and you can start communicating with it with
link_read and link_write.*/

9.2 THE LINK LIBRARY

extern link_close(struct link_handle *1);
1* Close the link to a program that has terminated. Use link_kill

if the program needs to be terminated as vell.*1

extern int link_read(struct link_handle *l,char s[]);
1* read from the program started vith link_open. Returns a 0 if

there vas stuff to read, or a 1 if the linked program terminated.*1

extern int link_input_vaiting(struct link_handle *1);
1* Returns the number of bytes vaiting in the input buffer. If

0, then link_read vill block if it is called. *1

extern link_vrite_char(struct link_handle *l,char c);
1* vrite a char, vithout a nevline, to the program.*1

extern link_vrite(struct link_handle *l,char s[]);
1* vrite a string to the program, vith a nevline.*1

extern link_kill(struct link_handle *1);
I*kill the program and close the link. If the program has terminated

on its ovn use link_close instead.*1

139

When you use this library in an application, you call the function link_
open to start up another program and to open up the read/write link with
it. Then you can call the link_read function repeatedly to read information
generated by the program to which you have made a link. You can use the
link_write function to send text (such as commands) to the linked program.

When you no longer need the link, you can use either link_close or link_
kill to terminate it. Use the link_close function when the linked program has
already terminated. (For example, Is terminates on its own and tells you so by
returning a 1 from link_read.) Use the link_kill function when you need to
terminate the link and the linked program is still active.

The link_read function performs a blocking read. If the input buffer con­
tains no data, link_read will block until it can read an entire line. You can call
the link_input_waiting function to find out if the buffer contains informa­
tion before link_read is called, and thereby avoid blocking when necessary.

Once you set up the link library, you can easily get a second program to run
and communicate with a Motif application. Listing 9.2 uses the link library
to demonstrate the process. This piece of code establishes a link to ps and
then reads the data coming back from it. The code strips off the unnecessary
information and displays the names of all of the active processes to stdout.

140 THE MKILL APPLICATION

Listing 9.2 Test Code for the Link Library

1* test.c *1

#include IIlink.hll

void mainO
{

char s[1000]. *p;
struct link_handle 1;

link_open(&:l. IIpSIl. II_gil) ;
link_read(&:l.s); 1* throwaway header line. *1
while (Ilink_read(&:l.s» I*read until ps terminates *1
{

}

p=s+20;
printf(lI%s\nll.p);

}

link_close(&:l);

1* point p to start of process names. *1

The code you need to implement the link library is fairly short, but it is a
little intricate if you have never seen the concepts before (a good reference
book on pipes, forking, dup, exec, and the like, is Topics in C Programming

by Stephen Kochan). The heart of the library is contained in the link_open
function, which sets up a pair of pipes (which are coerced into being normal
text streams, or files) hooked to stdin and stdout, and then forks and executes
the requested program using these pipes in the link_read and link_write
functions (see Listing 9.3).

Listing 9.3 Ilnk.c, the Implementation of the
Link Library

1* link.c *1

1* Link module. vl.0. 5/4/91 Marshall Brain *1

#inc1ude 1I1ink.hll

1ink_open(struct link_handle *1. char name[].char param[])
{

pipe(l->pipefdl);
pipe(1->pipefd2);
if «1->pid=fork(»==0)/*chi1d*1

9.2 THE LINK LIBRARY

Fork, Exec, and Pipe

The pipes are
connected in the
parent so that
they can be read
and written like
a file

Parent process
(fork the parent to
produce the child)

UNIX lets a program split itself into two
separately executing copies using the
fork function. The traditional method for
communicating between the two copies
is called a pipe. The exec function lets a
program overlay itself with another. A Motif
program can thus use the fork function to
split itself, then overlay its child with a text
program using exec. The two programs
then communicate using pipes. The process
is shown in the figure.

The Motif program starts by calling the
fork function, which makes a complete
copy of the stack and variables of the
current program and creates a new process
so that two copies of the same program
are running simultaneously. At the instant
following the completion of the call to fork,
both copies are identical except for their
process IDs. The two copies can then go off
on their own.

Child process, overlaid
by the execution of another
program (using exec)

To
stdin

From
stdout

The pipes are
connected in the
child so that the
child's stdin and
stdout are the
pipes

141

In order to communicate, the child must
, set up its pipes appropriately. In this case,
the child starts by hooking one end of one
pipe to stdin and one end of the other
pipe to stdout. The child then calls the
exec function: It is overlaid by the program
specified in the call to exec, and that new
program begins execution. Because of the
pipe arrangement established before the
call to exec, the new program's stdin and
stdout are hooked to the pipes.

The parent can transfer data to and from
the child through the pipes. When the ,
parent writes data to the pipe connected
to the child's stdin, the executing program
in the child receives the data as though it
came from stdin and processes it normally.
When the child program writes to stdout,
the data goes into the pipe and can be read
by the parent.

142 THE MKILL APPLICATION

}

{

}

close(1->pipefd1[0]);
close(l);
dup(1->pipefd1[1]);
close(2);
dup(l->pipefdl[l]);
close(1->pipefd2[1]);
close(O);
dup(1->pipefd2[0]);
execlp(name,name,param,(char*)O);

else
{

}

1->fpin=fdopen(l->pipefd1 [0] , "r");
l->fpout=fdopen (l->pip~fd2 [1] , "w") ;
close(1->pipefd1[1]);
close(1->pipefd2[0])j

link_close(struct link_handle *1)
{

}

wait«union wait*)O);
close(l->pipefdl[l]);
close(1->pipefd2[0]);
fclose(l->fpin);
fclose(l->fpout);
l->pid=O;

int link_read(struct link_handle *l,char s[])
{

·if (fgets(s,100,1->fpin)==NULL)
eof_flag=l; 1* linked-to process has terminated on its own. *1

else.
{

}

s[strlen(s)-l]='\O'; 1* lose the newline character. *1
eof_flag=O;

return (eof_flag) ;.
}

9.3 CREATING A WRAPPER 143

{

int num;

ioctl(l->pipefdl[O],FIONREAD,&num); 1* see how many chars in buffer. *1
return num;

}

link_write_char(struct link_handle *l,char c)
{

}

fprintf (l->fpout, "%C", c) ;
fflush(l->fpout);

link_write(struct link_handle *l,char s[])
{

}

fprintfCl->fpout,l%s\n",s);
fflush(l->fpout);

link_killCstruct link_handle *1)
{

}

kill(l->pid,SIGKILL);
link_close(l);

9.3 CREATING A WRAPPER

Once you have the link library, it is easy to create the mkill application. The
code in Listing 9.4 is the same as the code that appeared in the selection
box demonstration code in Chapter 7, with two additions. In the buttonCB
routine, the link library function link_open creates a link to the ps command,
and the link_read function reads the output of ps until ps terminates. The
program uses the output of ps to create a list of items and displays them in
the selection box. In the dialogCB function, the program reads the selected
string out of the call_data parameter, extracts the process number, and kills
the process with a system call.

Enter and run the code in Listing 9.4. If you encounter problems when
running this program, try using the command ps -g at the UNIX command
line on your machine. Because the ps command is slightly different between
UNIX versions, you may have to change the -g parameter to something else,
or else use no parameter.

144 THE MKILL APPLICATION

Listing 9.4 link. hi the Header File for the
Link Library

/* mkill. c */

#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/SelectioB.h>
#include IIlink.hll

#define OK 1
#define CANCEL 2

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel,button,dialog;

void dialogCB(w,client_data,call_data)
Widget w;
int client_data;
XmSelectionBoxCallbackStruct *call_data;

/* callback function for the selection box */
{

}

char *procstr,s[100];

switch (client_data)
{

case OK:
XmStringGetLtoR(call_data->value,char_set,&procstr);
/* extract the process number from the line and

kill that process number. */
*(procstr+5)='\O';
strcpy(s,lIkill -9 II);
strcat(s,procstr);
system(s);

XtFree(procstr);
break;

case CANCEL:
break;

}

XtUnmanageChild(w);

9.3 CREATING A WRAPPER

void buttonCB(w,client_data,call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

1* callback function for the push to kill button *1
{

}

Arg al[10];
int ac;
struct link_handle 1;

char s[200];
XmString xs;
Widget list;

1* establish a link to ps with the link library, and place
the strings from it into the selection box. *1

link_open(&l,"ps","-g");
link_read(&l,s); I*lose header line*1
list=XmSelectionBoxGetChild(dialog,XmDIALOG_LIST);
XmListDeleteAllltems(list);
while (llink_read(&l,s»
{

xs=XmStringCreateLtoR(s,char_set);
XmListAddltem(list,xs);
XmStringFree(xs);

}

link_close(&l);

XtManageChild(dialog);

void main(argc,argv)
int argc;

{
char *argv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"",NULL,O,&argc,argv,

NULL,NULL,O);

1* create the "push to kill" button *1
ac=O;
XtSetArg(al[ac],XmNlabelString,

145

146 THE MKILL APPLICATION

}

XmStringCreate("Push to kill II ,char_set»; ac++;
button=XmCreatePushButton(toplevel,llabel",al,ac);
XtManageChild(button);
XtAddCallback(button, XmNactivateCallback, buttonCB, NULL);

1* create the selection box dialog *1
ac = 0;
XtSetArg(al[ac],XmNautoUnmanage,False); ac++;
XtSetArg(al[ac] ,XmNmustMatch,True); ac++;
XtSetArg(al[ac],XmNselectionLabelString,

XmStringCreateLtoR("Pick a process to kill. II ,char_set»; ac++;
dialog=XmCreateSelectionDialog(toplevel,ldialog",al,ac);
XtAddCallback(dialog ,XmNokCallback , dialogCB,OK);
XtAddCallback(dialog,XmNcancelCallback,dialogCB,CANCEL);
XtUnmanageChild(XmSelectionBoxGetChild(dialog,

XmDIALOG_HELP_BUTTON));
XtUnmanageChild (XmSelectionBoxGetChild (dialog ,

XmDIALOG_APPLY_BUTTON));

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

Other techniques might be used to link to a separately running text pro­
gram. Chapter 16 demonstrates the use of the XtAddlnput function to pro­
duce X events on pending input for a pipe.

10

10.1

THE TEXT WIDGET

The text widget is the most complicated of the Motif widgets, but it is also
the most interesting and the most useful. The text widget also gives you lithe
biggest bang for your buck": A tiny amount of code can produce amazing
results. In this chapter, we will explore the text widget, its resources, and its
numerous convenience functions. Then we will create a simple text editor.

A FIRST LOOK

To get an idea of the power of the text widget, enter and run the code shown
in Listing 10.1.

Listing 10.1 A Multiline Text Widget

/* textl.c */

#include <Xm/Xm.h>
#include <Xm/Text.h>

XtAppContext context;

Widget toplevel, text;

void main(argc,argv)
int argc;

{

147

char *argv [] ;

Arg al[20];
int ac;

/* create the toplevel shell */
toplevel = XtApplnitialize(&context,"I,NULL,O,&argc,argv,

NULL,NULL,O);

148 THE TEXT WIDGET

}

1* set the default size of the window. *1
ac=Oj
XtSetArg(al[ac],XmNwidth,200)j aC++j
XtSetArg(al[ac],XmNheight,200)j aC++j
XtSetValues(toplevel,al,ac)j

1* create a text widget *1
ac=Oj
XtSetArg(al[ac],XmNeditMode,XmMULTI_LINE_EDIT)j aC++j
text=XmCreateText(toplevel,"text",al,ac)j
XtManageChild(text)j

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

As you can see, this program creates a top level shell, resizes it, and then
creates a text widget as the shell's child. Figure 10.1 shows a screen dump of
this code during execution.

When you run the little program shown in Listing 10.1, you can do some
amazing things. You can type characters, and the program accepts and displays
them. You can press the RETURN key to begin a new line. You can use the
arrow keys or the mouse to move the cursor around in the text. You can insert
characters at any location in the text. You can delete characters at any location
in the text, and even entire areas of text, using the BACKSPACE key. If you type
more characters than the window can hold in either the horizontal or vertical

Figure 10.1 The Text Widget In Action

An example of a multi-line
text widget.

10.2

10.2 UNDERSTANDING THE TEXT WIDGET

Figure 10.2 A Scrolling Text Widget In Action

F='1!iii .. ·Liitii·ita.t2.:::····!i: ··i,··ii li·~:ID

~
An example of a scrolled
text widget.

If •• ,-.-~-.. , ••• ~-,-~.,.-, •••• , •• ,.-... ~ •••• , •• ,-.- L~\t

1001 IC>I

149

direction, the text scrolls; you can scroll it back using the arrow keys. This is
truly a startling amount of capability to get out of a 10-line program.

To create the same text widget adorned with scroll bars, you can replace the
call to the XmCreateText function with a call to XmCreateScrolledText. Now
if you type more characters than the window can hold, the scroll bars will tell
you where you are in the text and give you a second way to move around.
Figure 10.2 shows a screen dump of a scrolling text widget.

Now try running the code shown in Listing 10.2. This code creates a single­
line text widget, which is the default. It provides the same general behavior as
the multiline text widget, except that the RETURN key will not work. Figure 10.3
shows a screen dump of a single-line text widget.

As you might expect, the text widget has very large resource and callback
lists. Take a minute to examine its description in Appendix J.

UNDERSTANDING THE TEXT WIDGET

In order to make full use of the text widget, it is important to understand
all of its capabilities as well as the data structure it uses. You might expect a
widget that carries as much functionality as this one to be complicated at the
programming level, but this turns out not to be the case.

The text widget is based on an extremely simple data structure, and it pro­
vides a number of convenience functions to make a programmer's life easier.
Figures lOA and 10.5 illustrate the data structure. Imagine that you have cre­
ated code that displays a text widget on screen, and into that text widget the
user has typed the text "Four score and seven," one word per line, as shown

150 THE TEXT WIDGET

Figure 10.3 A Single-Line Text Widget

:~Ir';;;~ir ii,;;' :rl .. ;!~o

I A single-l ine text widget.,...

in Figure lOA. If you execute a call to the XtGetValues function requesting
the contents of the value resource (or better yet, use the XmTextGetString
convenience function; see below and Appendix I), you get back a normal null­
terminated C string containing a copy of the contents of the text widget, as
shown in Figure 10.5. There, the normal \n convention represents line breaks
and the normal \0 convention marks the end of the string.

Listing 10.2 A Single-Line Text Widget

/* text3.c */

#include <Xm/Xm.h>
#include <Xm/Text.h>

XtAppContext context;

Widget toplevel. text;

void main(argc.argv)
int argc;

{

}

char *argv [] ;

Arg al[20];
int ac;

/* create the toplevel shell */
toplevel = XtApplnitialize(&context."".NULL.O.&argc.argv.

NULL.NULL.O);

/* create a text widget */
ac=O
text=XmCreateText(toplevel."text".al.ac);
XtManageChild(text);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

10.2 UNDERSTANDING THE TEXT WIDGET

Figure 10.4 A Text Widget Holding the Words "Four
score and seven"

Four
spore
and
seven

_.

Figure 10.5 The Value Held by the Text Widget's
Value Resource for Figure 10.4

o 1 2 3 etc.

I Flo I u I r I \n I sic I 0 I r I e I \n I a I n I d I \n I s I e I v I e I n I \0 I

151

You can determine the cursor position with similar ease. If the cursor is
currently positioned between the sand c of the word "score," and you use the
XtGetValues function to get the value of the cursorPosition resource, you will
receive the value 6 (better yet, use the XmTextGetInsertionPosition function;
see below and Appendix I). The cursorPosition resource holds the current
cursor position as an index into the C string held by the value resource. The
value 6 is· returned because, if the cursor is between the s and the c, it is
immediately before character 6 in the string array shown in Figure 10.5.

A browse through the resource list shows that the text widget is extremely
flexible. Following is a list of a few of the important and frequently used
resources that tune the behavior of the text widget.

XmNautoShowCursorPosition. When this resource is true, a change to the
cursorPosition resource causes the text to scroll automatically to keep the
cursor visible.

XmNcursorPositionVisible. When this resource is true, a blinking I-bar
cursor appears at the insertion point.

XmNeditable. If set to true, the user can edit; if set to false, the user cannot
modify text held by the widget.

152 THE TEXT WIDGET

XmNeditMode. The editMode resource can have the values XmSINGLE_
LINE_EDIT or XmMULTCLINE_EDIT. As demonstrated in Section
10.1, the SINGLE_LINE_EDIT mode restricts the text widget to a single,
horizontally scrolling line.

XmNfontList. You can change the font used to display text in the text
widget. However, since the value resource is a C string rather than an
XmString, you can use only one font for the entire document.

XmNpendingDelete. When this resource is true, selected text is deleted
when the user inserts new text. When it is false, selected text is not deleted.

XmNwordWrap. When this resource is true, inserted text wraps at word
breaks as the lines approach the right edge of the widget.

Look through the text widget entry in Appendix J for other resources as well
as for callback functions.

10.3 TEXT WIDGET CONVENIENCE FUNCTIONS

The text widget provides 30 convenience functions. Appendix I lists and de­
scribes each one. These convenience functions give you an easy way to access
most of the resources you need to manipulate the text widget. Several of these
functions also provide capabilities beyond the scope of the text widget itself­
for example, XmTextCut manipulates the text widget as well as the clipboard.

Convenience functions exist for almost every action you will ever want to
perform on a text widget. For example, instead of using XtGetValues to get
the value resource, you can make the following call:

char *s;

s = XmTextGetString(text);

where text is the name of the text widget variable. The variable s is simply a
pOinter to a string (which you should eventually free using XtFree).

Similarly, to get the current cursor position, you can use the following code:

XmTextPosition p;

p = XmTextGetlnsertionPosition(text);

Again, text is the text widget variable.
Several of the functions request a parameter of type Time. For all of the

functions that require the time, you can extract a valid time value from the

10.3 TEXT WIDGET CONVENIENCE FUNCTIONS 153

event record associated with the callback function. If you have a menu call­
back function named menuCB, for example, you can use the following code
fragment to extract the time field from the event record contained in the calC
data parameter.

void menuCB(Widget w, int client_data,
XmAnyCallbackStruct *call_data);

{

Time time;

time = call_data->event->xbutton.time;

}

The X Window System also defines a special constant named CurrentTime
that you can use as a Time parameter if no event record value is handy
(although its use is discouraged). The Xt layer defines a function named
XtLastTimestampProcessed, which will accept a single parameter of type Dis­
play (pass in XtDisplay(toplevel)) and will return a value of type Time.

XtLastTimestampProcessed Obtains a copy of the last time stamp processed.

Time XtLastTimestampProcessed(Display d);

d The display.

As you can see from the list of convenience functions in Appendix I, the
text widget is extremely powerful. The best way to become familiar with its
power is to try some of its functions using simple test programs. Listing 10.3
shows a test program that demonstrates the XmTextGetCursorPosition and
XmTextGetString functions. The application consists of a form widget con­
taining a text widget and a push button. When the user clicks the push but­
ton, the program performs actions specified in the buttonCB function. You
can substitute other XmText functions in the push button's callback function
to see what they do.

154 THE TEXT WIDGET

Listing 10.3 Code for Experimenting with
the XmText Functions

#include <Xm/Xm.h>
#include <Xm/Text.h>
#include <Xm/Form.h>
#include <Xm/PusbB.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel;
Widget text;
Widget button;
Widget form;

void buttonCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmPusbButtonCallbackStruct *call_data;

/* called whenever pushbutton is clicked. */
{

}

char *s;

/* Change the contents of this function to test different
convenience functions. */

/* print out cursorPosition and value string. */
printf("Xd\n",XmTextGetCursorPosition(text»;
s=XmTextGetString(text);
printf("Xs\n",s);
XtFree(s);

void main(argc,argv)
int argc;

{
char *argv [] ;

Arg al[10];
int ac;

/* create the toplevel shell */
toplevel = XtApplnitialize(8t;context,"" ,NULL ,0 ,&argc ,argv,

NULL,NULL,O);

10.3 TEXT WIDGET CONVENIENCE FUNCTIONS

}

1* set window size. *1
ac=Oj
XtSetArg(al[ac],XmNheight,300)j aC++j
XtSetArg(al[ac],XmNwidth,300)j aC++j
XtSetValues(toplevel,al,ac)j

1* create a form to hold widgets *1
ac=Oj
form=XmCreateForm(toplevel,lform",al,ac)j
XtManageChild(form)j

1* create a push button *1
ac=Oj
XtSetArg(al[ac],XmNlabelString,

XmStringCreate("Push to test",char_set»j aC++j
XtSetArg(al[ac], XmNtopAttachment, XmATTAcH_FORM)j aC++j
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM)j aC++j
button=XmcreatePushButton(form,"button",al,ac)j
XtManageChild(button)j
XtAddCallback(button,XmNactivateCallback,buttonCB,NULL)j

1* create a text widget. *1
ac=Oj
XtSetArg(al[ac], XmNtopAttachment, XmATTACH_WIDGET)j aC++j
XtSetArg(al[ac], XmNtopWidget, button)j aC++j
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNbottomAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac],XmNeditMode,XmMULTI_LINE_EDIT)j aC++j
text=XmCreateText(form,"text",al,ac)j
XtManageChild(text)j

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

155

Once you become familiar with the convenience functions, you can create
a complete text editor from the text widget fairly easily. To do so, you use a
set of menu options to manipulate the text widget through its convenience
functions in appropriate ways. For example, the text editor might contain an
Open File menu option that uses a file selection box to get a file name from the
user, opens and loads the file, and gives the file's text to the text widget with
the XmTextSetString function. You can implement Clipboard functions such

156 THE TEXT WIDGET

as Cut, Copy, Paste, and Clear by creating menu options that call XmTextCut,
XmTextCopy, XmTextPaste, and XmTextRemove.

The XmTextSetInsertionPosition function can be used to create navigation
capabilities. A text editor might provide a Navigation menu that includes the
options Top (to jump to the top of the file), Bottom (to jump to the end of the
file), and Jump To Line (to jump to a specific line number). To implement the
Top option, you enter a single line of code:

XmTextSetlnsertionPosition(text, (XmTextPosition) 0);

where text is a text widget. The convenience function positions the cursor at
the first character in the file. If the autoShowCursorPosition resource is true,
the widget scrolls as necessary to display the top of the file.

To implement the Bottom option, use the following lines of code:

XmTextPosition pos;

pos = XmTextGetLastPosition(text);
XmTextSetlnsertionPosition(text, pos);

The call to XmTextGetLastPosition retrieves the location of the last character
in the text widget's string. Setting the insertion position to that value displays
the bottom of the file.

To implement the Jump To Line option, use a prompt dialog box to get the
desired line number from the user. You can extract the text widget's value
string and count \n characters until you reach the desired line. You can then
set the insertion position to that location. The code in Listing IDA demon­
strates the process.

Listing 10.4 Jumping to a Line Number In the
Text Widget

yoid jump_to_line(line_num)
int line_num;

1* Counts '\n's so that cursor can be placed at correct line. *1
{

int x,l,curr;
char *temp;
Arg al[10J;
int ac;

10.4

10.4 CREATING A SIMPLE EDITOR

}

1* get string from text widget *1
temp=XmTextGetString(text);
x=O;
curr=l;
l=strlen(temp);

1* scan the string for '\n's, counting them. *1
while ((x<l)&&(curr<line_num))

if (temp[x++]=='\n') curr++;

1* set cursor position to beginning of the correct line. *1
XmTextSetlnsertionPosition(text,(XmTextPosition)x);

1* prevent memory leaks. *1
if (temp 1= NULL)

XtFree(temp);

157

The XmTextGetString function gets the string from the text widget. A
while loop counts \n characters in the string. Then the XmTextSetInsertion­
Position function sets the cursor position.

CREATING A SIMPLE EDITOR

Since the text widget does almost all of the work of creating a text editor for
you, you can create a simple editor application fairly easily .. In this section,
we will look at the code necessary to create an editor capable of loading and
saving files as well as supporting normal Clipboard functions. In creating this
editor, you will use many of the techniques discussed in this and previous
chapters.

The user interface design of a simple text editor is straightforward. We will
use pull-down menus like those shown in Chapter 6. The File menu will con­
tain Open, Close, and Quit, while the Edit menu will contain Cut, Copy, Paste,
and Clear. The Open option manages a file selection dialog box that allows the
user to select a file to open. The Close option displays a dialog box that asks
the user whether or not to save the file if the user has made any changes to the
text.

Listing 10.5 shows the code for the editor, interspersed with comments to
help you to understand what is going on. A discussion of the code follows.

158 THE TEXT WIDGET

Listing 10.5 A Simple But Complete Text Editor

/* editor.c */

/* Editor program, ver 1.0, 5/30/91, by Marshall Brain */

/* Callback chains found in this program -

The menuCB function is called by any menu option.

The Open menu option causes the file selection box (open_dialog) to
be managed in menuCB. The buttons on this box are wired to the
openCB function.

The Save menu option causes the prompt dialog box (save dialog) to
be managed in menuCB. The buttons on this box are wired to call the
save_dialoCB function, which may call the handle_save function.

The changedCB function is called whenever the text widget
is changed.

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

#include <Xm/Xm.h>
#include <Xm/Text.h>
#include <Xm/Form.h>
#include <Xm/PushB.h>
#include <Xm/RowColumn.h>
#include <Xm/CascadeB.h>
#include <Xm/FileSB.h>
#include <Xm/MessageB.h>

/* integer values used to distinguish the call to menuCB. */
#define MENU_OPEN 1
#define MENU_CLOSE 2

#define MENU_QUIT 3

#define MENU_CUT 4
#define MENU_CLEAR 5
#define MENU_COPY 6
#define MENU_PASTE 7

10.4 CREATING A SIMPLE EDITOR

1* integer values used to distinguish the call to dialogCB. *1
#define OK 1
#define CANCEL 2

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

1* all widgets are global to make life easier. *1
Widget toplevel, text, form, label, menu_bar;
Widget open_option, close_option, quit_option;
Widget cut_option, clear_option, copy_option, paste_option;
Widget open_dialog, save_dialog;

char *filename=NULL;
Boolean text_changed=False;

void change_sensitivity(open_state)
Boolean open_state;

1* changes the menu sensitivities as needed for opened
and closed states. *1

{

}

XtSetSensitive(open_option,open_state);
XtSetSensitive(quit_option,open_state);
XtSetSensitive(close_option,!open_state);
XtSetSensitive(cut_option,!open_state);
XtSetSensitive(copy_option,!open_state);
XtSetSensitive(paste_option,!open_state);
XtSetSensitive(clear_option,!open_state);

void changedCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmAnyCallbackStruct *call_data;

1* triggered every time a character is inserted or deleted in

{

}

the text widget. text_changed is used to decide if file needs
saving or not. *1

text_changed=True;

void openCB(w,client_data,call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

159

160 THE TEXT WIDGET

/* handles the file selection box callbacks. */
{

XmFileSelectionBoxCallbackStruct *s =
(XmFileSelectionBoxCallbackStruct *) call_data;

FILE *f;
char *file_contents;
int file_length;
struct stat stat_val;

if (client_data==CANCEL) /* do nothing if cancel is selected. */
{

}

XtUnmanageChild(open_dialog);
return;

if (filename != NULL) /* free up filename if it exists. */
{

}

XtFree(filename);
filename = NULL;

/* get the filename from the file selection box */
XmStringGetLtoR(s->value, char_set, &filename);

/* open and read the file. */
if (stat (filename, &stat_val) == 0)
{

file_length = stat_val.st_size;
if «f=fopen(filename,lr "»!=NULL)
{

/* malloc a place for the string to be read to. */
file_contents = (char *) XtMalloc«unsigned)

(file_length + 10»;
*file_contents = '\0';

/* read the file string */
fread(file_contents, sizeof(char), file_length, f);
file_contents[file_length]='\O';
fclose(f);

/* give the string to the text widget. */
XmTextSetString(text, file_contents);
XtFree(file_contents);

/* set up all resources as needed to make menus and

10.4 CREATING A SIMPLE EDITOR

}

}

text widget sensitive. *1
change_sensitivity(False);
XtSetSensitive(text,True);
XmTextSetEditable(text,True);
XmTextSetCursorPosition(text,O);
text_changed=False;

}

XtUnmanageChild(open_dialog);

void handle_save()
1* saves the text widget's string to a file. *1
{

}

FILE *f;
char *s=NULL;

if «f=fopen(filename,lw"»!=NULL)
{

}

1* get the string from the text widget *1
s = (char *)XmTextGetString(text);

if (s!=NULL)
'{

1* write the file. *1
fwrite(s, sizeof(char) , strlen(s), f);

1* make sure the last line is terminated by '\n'
so that vi, compilers, etc. like it. *1

if (s[strlen(s)-l] !='\n')
fprintf(f,"\n");

XtFree(s);
}

fflush(f);
fclose(f);

void save_dialogCB(w,client_data,call_data)
Widget w;
int Client_data;
XmAnyCallbackStruct *call_data;

1* handles save_dialog buttons. *1
{

switch (client_data)

161

162 THE TEXT WIDGET

}

{

}

case OK:
handle_saveO;
break;

case CANCEL:
break;

1* get rid of the text in the text widget and set it so it
can't be used. *1

XtSetSensitive(text,False);
XmTextSetEditable(text,False);
XmTextSetString(text,"I);

1* change menu sensitivites and make the dialog invisible. *1
change_sensitivity(True);
XtUnmanageChild(save_dialog);

void menuCB(w,client_data,call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

1* handles menu options. *1
{

Time time;

switch (client_data)
{

case MENU_OPEN:
1* make the file selection box appear. *1
XtManageChild(open_dialog);
break;

case MENU_CLOSE:
1* if the text was changed. ask the user about saving it.

If not, lose the text and set the widget insensitve. *1
if (text_changed)

else
{

XtManageChild(save_dialog);

XtSetSensitive(text,False);
XmTextSetEditable(text,False);
XmTextSetString(text,"I);
change_sensitivity(True);

}

break;

10.4 CREATING A SIMPLE EDITOR

}

}

case MENU_QUIT:
exit(O)j

case MENU_CUT:
time=call_data->event->xbutton.timej
XmTextCut(text,time)j
breakj

case MENU_CLEAR:
XmTextRemove(text)j
breakj

case MENU_PASTE:
XmTextPaste(text)j
breakj

case MENU_COPY:
time=call_data->event->xbutton.timej
XmTextCopy(text,time)j
breakj

Widget make_menu_option(option_name,client_data,menu)
char *option_namej
int client_dataj
Widget menu;

1* see Chapter 6. *1
{

}

int ac;
Arg al[10];
Widget b;

ac = 0;
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR(option_name,char_set)); ac++;
b=XmCreatePushButton(menu,option_name,al,ac);
XtManageChild(b)j

XtAddCallback (b, XmNactivateCallback, menuCB, client_data)j
return(b);

Widget make_menu(menu_name,menu_bar)
char *menu_name;
Widget menu_barj

1* see Chapter 6. *1
{

int ac;

163

164 THE TEXT WIDGET

}

Arg al[10] j
Widget menu. cascadej

ac = OJ
menu = XmCreatePulldownMenu (menu_bar, menu_name. al, aC)j

ac = OJ
XtSetArg (al[ac]. XmNsubMenuId. menu)j aC++j
XtSetArg(al[ac]. XmNlabelString.

XmStringCreateLtoR(menu_name. char_set»j aC++j
cascade = XmCreateCascadeButton (menu_bar. menu_name. al, aC)j
XtManageChild (cascade)j

return(menu)j

void create_menus(menu_bar)
Widget menu_barj

{

}

int aCj
Arg al [10] j
Widget menUj

menu=make_menu("File".menu_bar)j
open_option = make_menu_option("Open".MENU_OPEN.menu)j
close_option = make_menu_option("Close".MENU_CLOSE.menu)j
XtSetSensitive(close_option.False)j
quit_option = make_menu_option("Quit",MENU_QUIT,menu)j

menu=make_menu("Edit",menu_bar)j
cut_option = make_menu_option(ICut".MENU_CUT,menu)j
copy_option = make_menu_option(ICopy",MENU_COPY,menu)j
paste_option = make_menu_option(IPaste",MENU_PASTE,menu)j
clear_option = make_menu_option("Clear".MENU_CLEAR,menu)j

void main(argc.argv)
int argcj

{
char *argv [] j

Arg al[10]j
int aCj

1* create the toplevel shell *1
toplevel = XtAppInitialize(&context." I .NULL.O.&argc.argv.

10.4 CREATING A SIMPLE EDITOR

NULL,NULL,O)j

1* default window size. *1
ac=Oj
XtSetArg(al[ac],XmNheight,200)j aC++j
XtSetArg(al[ac],XmNwidth,200)j aC++j
XtSetValues(toplevel,al,ac)j

1* create a form widget. *1
ac=Oj
form=XmCreateForm(toplevel,"form",al,ac)j
XtManageChild(form)j

1* create a menu bar and attach it to the form~ *1
ac=Oj
XtSetArg(al[ac], XmNtopAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM)j aC++j
menu_bar=XmCreateMenuBar(form,"menu_bar",al,ac);
XtManageChild(menu_bar)j

1* create a text widget and attach it to the form. *1
ac=Oj
XtSetArg(al[ac], XmNtopAttachment, XmATTACH_WIDGET)j ac++;
XtSetArg(al[ac], XmNtopWidget, menu_bar); ac++;
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM); ac++;
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM)j ac++;
XtSetArg(al[ac], XmNbottomAttachment, XmATTACH_FORM); ac++;
XtSetArg(al[ac],XmNeditMode,XmMULTI_LINE_EDIT); ac++;
text=XmCreateScrolledText(form, "text", aI, aC)j
XtAddCallback (text, XmNvalueChangedCallback, changedCB, NULL);
XtManageChild(text);
XtSetSensitive(text,False)j
XmTextSetEditable(text,False);

1* create the file selection box used by open option. *1
ac=O;
XtSetArg(al[ac],XmNmustMatch,True); ac++;
XtSetArg(al[ac],XmNautoUnmanage,False); ac++;
open_dialog=XmCreateFileSelectionDialog(toplevel,

"open_dialog",al,ac);
XtAddCallback (open_dialog, XmNokCallback,openCB, OK);
XtAddCallback (open_dialog, XmNcancelCallback, openCB, CANCEL);

165

166 THE TEXT WIDGET

}

XtUnmanageChild (XmSelectionBoxGetChild (open_dialog ,
XmDIALOG_HELP_BUTTON»;

/* create the file saving dialog. */
ac=O;
XtSetArg(al[ac], XmNmessageString,

XmStringCreateLtoR("The text was changed. Save it?",
char_set»; ac++;

save_dialog=XmCreateMessageDialog(toplevel,
"ok_dialog",al,ac);

XtAddCallback(save_dialog ,XmNokCallback,save_dialogCB ,OK);
XtAddCallback (save_dialog ,XmNcancelCallback ,

save_dialogCB,CANCEL);
XtUnmanageChild (XmMessageBoxGetChild(save_dialog ,

XmDIALOG_HELP_BUTTON»;

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

The main routine is simple: It creates a form widget and attaches the menu
bar and text widget to it. In addition, it creates the dialog boxes that the
program uses.

The menu-handling code has been copied almost verbatim from Chapter
6. The menuCB function uses an integer clienCdata parameter and a switch
statement to distinguish among the seven possible menu choices. The Open
and Close menu options manage the two dialog boxes as needed. The items
in the Edit menu call the appropriate convenience functions to handle the
clipboard.

The two dialog boxes talk to their own callback functions. The save_
dialogCB function decides if the user wishes to save the text and clears out
the text widget, making it insensitive after saving it. The openCB function
gets the name of the file to open and reads that file in.

The changedCB function works off the value Changed callback of the text
widget. Whenever a user changes anything in the text widget, the value­
Changed callback is triggered. The changedCB callback function sets a vari­
able that remembers if the text has changed. This text_changed variable de­
cides if saving the text is necessary inside the save_dialogCB function.

The change_sensitivity function enables and disables menu options as ap­
propriate to the state of the program.

10.5 ENHANCEMENTS 167

10.5 ENHANCEMENTS

You can make several enhancements to the code in Listing 10.5 to create a
more functional editor. For example, you can add a New option to the File
menu to allow the user to create new files directly rather than using Open and
entering a new file name (which is unintuitive). You can also detect if the file
being opened is read-only and set the editable resource to false so that the
user can read the file but not alter it.

You can add an Insert File option using the file-loading code that already
exists along with an XmTextInsert function. Using the techniques discussed
in Section 10.3, you can also add a Navigation menu that might contain
Jump To Top, Jump To Bottom, and Jump To Line Number options. You might
also try experimenting with the wordWrap resource to see how it affects the
behavior of the editor.

In Chapter 13, we will look at code that adds a customized find dialog box
to the editor. Appendix F contains a listing of a complete text editor that
contains the navigation commands discussed above as well as the find dialog
code from Chapter 13.

11 OTHER MOTIF WIDGETS

Depending on how you count them, we have so far discussed 26 different
widgets:

bulletin board, bulletin
board dialog

cascade button
dialogs: error, file selection box,

information, message, prompt,
question, selection box, warning,
working

file selection box
form, form dialog
label

menu bar
message box
pull-down menu
push button
RowColumn
scale
selection box
separator
text, scrolled text

In this chapter, we will look at widgets we have not yet discussed, with the
exception of the drawing area Widget (which is discussed in detail in Chapter
17). We will also look at example code to better understand each widget's uses.

11.1 TOGGLE BUTTON WIDGETS

A toggle button lets the user change the state of a two-state variable. The user
clicks on a toggle button to change the state. A visual indicator lets the user
see the toggle's current state. Figures 11.1 and 11.2 show examples of a toggle
button in its on and off states. When the user clicks the toggle, the set resource
(a Boolean) inverts and the visual indicator turns on or off accordingly.

The code in Listing 11.1 shows how to use a toggle button widget in a
program. When the toggle button changes state, it activates its valueChanged
callback. The code can then examine the set resource (or the value of the
set field in the call_data parameter) of the toggle widget to find the widget's
current state.

168

11.1 TOGGLE BUTTON WIDGETS

Figure 11.1 A Single Toggle Button In the Off State

[J Tossle Button

Figure 11.2 A Single Toggle Button In the On State

[] Tossle Button

Listing 11.1 Creating a Single Toggle Button

#include <Xm/Xm.h>
#include <Xm/ToggleB.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

void toggleCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmAnyCallbackStruct *call_data;

/* handle state changes in the toggle. */
{

}

Boolean set;
Arg al[10];
int ac;

/* get the value of the set resource. */
ac=O;
XtSetArg(al[ac], XmNset, &set); ac++;
XtGetValues(w,al,ac);

if (set)
printf("Toggle turned on\n");

else
printf("Toggle turned off\n");

169

1 70 OTHER MOTIF WIDGETS

void main(argc,argv)
int argc;

{

}

char *argv [] ;

Widget toplevel, toggle;
Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"",NULL,O,&argc,argv,

NULL,NULL,O);

1* Create the toggle button. *1
ac=O;
XtSetArg(al[ac],XmNlabelString,

XmStringCreateLtoR("Toggle Button",char_set»; ac++;
toggle=XmCreateToggleButton(toplevel,ltoggle",al,ac);
XtManageChild(toggle);
XtAddCallback (toggle, XmNvalueChangedCallback, toggleCB, NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

Programmers often arrange toggle button widgets into groups in two ways.
One way is a check box, a group of normal toggle buttons arranged in a
manager widget, usually a RowColumn widget. You might see a check box in
a compiler in which users can turn a number of two-state compiler options on
or off (range checking on/off, short-circuit evaluation on/off, and so on). The
RowColumn widget makes placing the toggles easier for the programmer.

The other way to group toggle buttons is with a radio box, which lets users
make one-of-many choices among a number of options. This arrangement
takes its name from the buttons on a car radio, which allow you to make one­
of-many choices among the programmed stations. For example, by clicking
one of four time-zone toggles arranged in a radio box, a user can choose a time
zone from the four possible time zones in the United States. Figure 11.3 shows
an example of a radio box.

A radio box is made from a RowColumn widget and is created with a
convenience function, as shown below:

Widget radio_box;

radio_box=XmCreateRadioBoxWidget(toplevel, "radio_box", al, ac);

11.1 TOGGLE BUTTON WIDGETS 171

When toggle buttons have a radio box as their parent, only one of the toggles
can be set on at anyone time. The code in Listing 11.2 demonstrates how to
use a radio box. When you click a toggle, that toggle turns on and all the other
toggles turn off.

Listing 11.2 Creating Several Toggle Buttons In a
Radio Box Container

#include <Xm/Xm.h>
#include <Xm/ToggleB.h>
#include <Xm/RowColumn.h>

XtAppContext contextj
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSETj

Widget toplevel. radio_box. toggles[5]j

void changeCB(w.client_data.call_data)
Widget Wj
int client_dataj
XmAnyCallbackStruct *call_dataj

/* called when any toggle changes */
{

}

Boolean setj
Arg al[10]j
int aCj

/* find out if toggle has been set or unset */
ac=Oj
XtSetArg(al[ac]. XmNset. &set)j aC++j
XtGetValues(w.al.ac)j

if (set)
printf("%d turned on\n".client_data)j

else
printf("%d turned off\n".client_data)j

void main(argc.argv)
int argcj
char *argv [] j

{

Arg al[10]j

1 72 OTHER MOTIF WIDGETS

Toggles in Menus

You can add toggle buttons to menus in
the same way you add push buttons
and labels. You insert the toggle in the
appropriate menu pane when it is created.
The order of its insertion determines its
position.

Toggles in menus function in one of two
ways. You can add one to a menu to turn
an individual option on or off. A text editor,
for example, might have a toggle in its Edit
menu to start and stop wrapping. Or a
compiler might have a menu of toggles that
handle certain compiler options.

Widget make_menu_toggle(
item_name,
client_data,menu)
char *item_name;
caddr_t client_data;
Widget menu;

1* adds a toggle item into a menu. *1
{

int ac;
Arg al[10];
'Widget item;

ac = 0;
XtSetArg(al[ac],XmNlabelString,

The second way toggles function in
a menu is in a radio box fashion. In
this case, the menu contains a set of
toggles. For example, a text editor might
allow the user to select one of several
fonts from a font list. Since the menu
pane is a form of RowColumn widget,
its radioBehavior resource can be set to
true. This resource causes all of the toggles
in the menu to behave as in a radio box.
The following code fragment demonstrates
this process.

XmStringCreateLtoR(item_name,char_set)); ac++;
item=XmCreateToggleButton(menu,item_name,al,ac);
XtManageChild(item);

}

XtAddCallback(item ,XmNvalueChangedCallback ,
menuCB,client_data);

XtSetSensitive(item,True);
return(item) ;

11.1 TOGGLE BUTTON WIDGETS

Toggles In Menus (continued)

Inside create_menus:

font_menu=make_menu("Font",menu_bar)j
fontl_item=make_menu_toggle("Font l","Font 1 selected",font_menu)j
font2_item=make_menu_toggle("Font 2","Font 2 selected",font_menu)j
font3_item=make_menu_toggle("Font 3","Font 3 selected",font_menu)j
ac=Oj
XtSetArg(al[ac] ,XmNradioBehavior,True)j aC++j
XtSetValues(font_menu,al,ac)j

}

int aCj
int x;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"",NULL,O,&argc,argv,

NULL ,NULL ,0) ;

1* create a Radio Box container to hold the toggles *1
ac=O;
radio_box=XmCreateRadioBox(toplevel,"radio_box",al,ac);
XtManageChild(radio_box);

1* create 5 toggles *1
for (x=O; x<5; x++)
{

}

ac=O;
XtSetArg(al[ac],XmNlabeIString,

XmStringCreate (" 1'm a toggl~", char _set)); ac++ ;
toggles[x]=XmCreateToggleButton(radio_box,"toggle",al,ac);
XtManageChild(toggles[x]);
XtAddCallback (toggles [x] , XmNvalueChangedCallback,

changeCB, x);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

173

1 74 OTHER MOTIF WIDGETS

11.2

Figure 11.3 A Radio Box Containing Five
Toggle Buttons, Only One of Which Can Be Chosen

¢ 1'111 ~ toggle

<> 1'111 a toggle

(> 1'111 a toggle

(> 1'111 a toggle

¢ 1'111 a toggle

Figure 11.4 A Scroll Bar Widget

The default behavior for the radio box requires that at least one of the
buttons always be on (after the initial selection). For example, if a radio box
displays the selection of a time zone, then one of the time zones should always
be on. However, the RowColumn widget, and therefore the radio box widget
in this code, has a radioAlwaysOne resource that, when set to false, allows the
selected option to be selected again to turn it off, so that none of the options
are selected.

SCROLL BAR WIDGETS

The scroll bar widget closely resembles the scale widget discussed in Chapter
4. You use the minimum and maximum resources to set up the scroll bar's
range. Each time the user manipulates the scroll bar, a value Changed callback
is activated to make the code aware of the change.

The resource list for the scroll bar widget in Appendix J shows that scroll
bars are highly customizable, and that you can wire them to return a great deal
of information through their callbacks. In their most simple form, however,
scroll bar widgets behave like scale widgets. Figure 11.4 illustrates a scroll bar
widget.

The code in Listing 11.3 demonstrates how to use a scroll bar widget. This

11.2 SCROLL BAR WIDGETS 175

code creates a scroll bar, sets up its valueChanged callback, and prints the new
value each time the callback is triggered.

Listing 11.3 Creating a Scroll Bar Widget

#include <Xm/Xm.h>
#include <Xm/ScroIIBar.h>

XtAppContext contextj

Widget toplevel, scrollj

void scroIICB(w,client_data,call_data)
Widget Wj
XtPointer client_dataj
XmAnyCallbackStruct *call_dataj

/* called every time the scroll bar changes. */
{

}

int valuej
Arg al[10]j
int aCj

/* get the value of the scroll bar. */
ac=Oj
XtSetArg(al[ac], XmNvalue, &value)j aC++j
XtGetValues(w,al,ac)j

printf(lIvalue = %d\nll,value)j

void main(argc,argv)
int argcj

{

char *argv [] j

Arg al[10]j
int aCj

/* create the toplevel shell */
toplevel = XtApplnitialize(&context,IIII,NULL,O,&argc,argv,

NULL,NULL,O)j

/* create the scroll bar. */
ac=Oj

1 76 OTHER MOTIF WIDGETS

11.3

}

XtSetArg(al[ac],XmNminimum,O); ac++;
XtSetArg(al[ac],XmNmaximum,1000); ac++;
XtSetArg(al[ac],XmNorientation,XmHORIZONTAL); ac++;
scroll=XmCreateScrollBar (toplevel, "scroll" , aI, 'ac) ;
XtManageChild(scroll);
XtAddCallback (scroll, XmNvalueChangedCallback,

scrollCB, NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

Section 17.4.6 contains a sample application of a, scroll bar. See also the
Motif PRM or Appendix J for a complete description of this highly functional
and useful widget, as well as the scrolled window widget, which is discussed in
Section 11.9.

SHELL WIDGETS

At times, you might want to create an entirely new shell from within an
application-that is, you might want to call some code and have it create an
entirely new and separate shell into which you can add widgets. For example,
in a text editor, you might want to have two documents open at once, each
in its own window. Creating new shells is easy in Motif. Listing 11.4 demon­
strates the process.

Listing 11.4 Creating a Separate Shell Widget from
Within an Application

#include <Xm/Xm.h>
#include <Xm/Text.h>
#include <Xm/PushB.h>
#include <Xll/Shell.h>

XtAppContext context;

Widget toplevel, button, text, shell;

void buttonCB(w,client_data,call_data)
Widget w;
caddr_t client_data;

11.3 SHELL WIDGETS

caddr_t call_dataj
1* called when pushbutton is clicked. *1
{

Arg al[10];
int aCj

1* turn the button off. *1
XtSetSensitive(button,False);

1* create a new shell *1
ac=Oj
XtSetArg(al[ac], XmNheight, 300); aC++j
XtSetArg(al[ac], XmNwidth, 300)j aC++j

177

shell=XtAppCreateShell("Shell" ,"Shell", applicationShellWidgetClass,

}

XtDisplay(toplevel), al, ac);

1* create a text widget in the new shell. *1
ac=Oj
XtSetArg(al[ac],XmNeditMode,XmMULTI_LINE_EDIT)j aC++j
text=XmCreateText(shell,"text",al,ac)j
XtManageChild(text)j

XtRealizeWidget(shell)j 1* the new shell must be realized. *1

void main(argc,argv)
int argcj

{

}

char *argv [] j

Arg al[10]j
int aCj

1* create the toplevel shell *1
toplevel = XtApplnitialize(&:context,"",NULL,O,&:argc,argv,

NULL,NULL,O) ;

1* create a pushbutton widget. *1
ac=Oj
button=XmCreatePushButton(toplevel,"button",al,ac)j
XtManageChild(button);
XtAddCallback (button , XmNactivateCallback, buttonCB, NULL)j

XtRealizeWidget(toplevel);
XtAppMainLoop(context)j

1 78 OTHER MOTIF WIDGETS

In Listing 11.4, the main function creates a push button. When a user clicks
this button, the buttonCB function is called. The code creates a completely
new and separate shell widget containing a text widget in buttonCB using a
call to XtAppCreateShell. The text widget, in its independent shell, behaves
like any other text widget.

XtAppCreateShell Creates a new shell.

11.4

Widget XtAppCreateShell(
String application_name,
String application_class,
WidgetClass widget_class,
Display *display,
ArgList args,
Cardinal num_args)j

application_name
application_class
widget_class
Display
args
num_args

Name of the application.
The class name for the application.
Widget class for the new shell.
Display for the new shell (determines resource source).
An argument list for the shell.
Number of arguments in the argument list.

Note that this new shell has all of the attributes of the toplevel shell and
fulfills the same function. It can contain anything you would normally put in
a top level shell: any widget, form, bulletin board, and so on. The new shell is
a complete window, and you can resize it, minimize it, and maximize it just
like any other window.

ARROW BUn-ON WIDGETS

An arrow button widget is a push-button widget with special properties that
make it appropriate for the arrow portion of a scroll bar. The code in Listing
11.5 demonstrates how to use an arrow button widget and Figure 11.5 illus­
trates one.

11.4 ARROW BUTTON WIDGETS

Listing 11.5 Creating an Arrow Button Widget

#include <Xm/Xm.h>
#include <Xm/ArrowB.h>

XtAppContext context:

Widget toplevel, arrow:

void arrowCB(w,client_data,call_data)
Widget w:

{

}

XtPointer client_data;
XmArrowButtonCallbackStruct *call_data:

printf("click_count = Y.d \n",call_data->click_count):

void main(argc,argv)
int argc;

{

}

char *argv [] :

Arg al[10]:
int ac:

/* create the toplevel shell */
toplevel = XtApplnitialize(&context,"",NULL,O,&argc,argv,

NULL,NULL,O) :

/* create the arrow button. */
ac=O;
XtSetArg (al[ac], XmNmultiClick, XmMULTICLICK_KEEP): ac++:
arrow=XmCreateArrowButton(toplevel,"arrow",al,ac):
XtManageChild(arrow);
XtAddCallback (arrow, XmNactivateCallback, arrowCB, NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(context):

179

Try entering and running the code shown in Listing 11.5. It takes advantage of
the click_count capability unique to Motif's button widgets. If the user clicks

180 OTHER MOTIF WIDGETS

11.5

Figure 11.5 An Arrow Button Widget

an arrow button multiple times within the multiclick time defined in your
window manager, the click_count variable is incremented. You can use this
capability to avoid repeating an action when a user accidentally clicks on the
arrow button more than once. You can turn this capability off by setting the
multiClick resource to XmMULTICLICK_DISCARD.

FRAME WIDGETS

A frame widget places a frame around widgets that otherwise lack frames (such
as labels and toggle buttons). A frame is a very simple manager widget. The
child of the frame widget is encased in the frame. The code in Listing 11.6
demonstrates how to place a frame widget around a label widget. It creates the
frame with a label as its child.

Listing 11.6 Creating a Frame Widget Surrounding
a Label

#include <Xm/Xm.h>
#include <Xm/Label.h>
#include <Xm/Frame.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, label, frame;

void main(argc,argv)
int argc;

{

char *argv [] ;

Arg al[10];
int ac;

11.6

11.6 LIST WIDGETS

}

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"I,NULL,O,&argc,argv,

NULL,NULL,O);

1* Create the frame widget. *1
frame=XmCreateFrame(toplevel,lframe",NULL,O);
XtManageChild(frame);

1* Create the label widget as a child of the frame. *1
ac=O;
XtSetArg(al[ac],XmNlabeIString,

XmStringCreate("Hello World",char_set»; ac++;
label=XmCreateLabel(frame,llabel",al,ac);
XtManageChild(label);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

LIST WIDGETS

181

We have already seen the list widget once, embedded in the selection dialog
box. We saw several list widget convenience functions in Chapter 7 during the
introduction to the selection box. You can also use the list widget by itself in
your code.

Like the text widget, the list widget is large and fairly complicated, with
many capabilities. It provides 2S convenience functions, listed and described
briefly in Appendix I.

The list widget manages a list of XmString items on screen. The user can
select items from the list using one of four selection policies:

1. Single Select. User can select one item at a time.
2. Browse Select. User can select one item at a time and can drag the cursor to

change selections.
3. Multiple Select. User can select multiple items at once.
4. Extended Select. User can select multiple items at once and drag the cursor

to select groups of items.

You can control the selection policy with the aptly named selectionPolicy
resource. When the user selects an item, one of the following callbacks is gen­
erated depending on the value of selectionPolicy: browseSelectionCallback,

182 OTHER MOTIF WIDGETS

Figure 11.6 A Scrolling List Widget

=

cow
goat
horse
mouse

sheep
rat

extendedSelectionCallback, multipleS election Callback, or singleSelection­
Callback.

You can use three different techniques in the callback routine to extract
the list of selected items: You can retrieve the selected items from the normal
resource list using XtGetValues; you can retrieve the selected items from the
call_data parameter structure; or you can retrieve positions of the selected
items using the XmListGetSelectedPos convenience function.

Listing 11. 7 demonstrates a list widget in multiple select mode, using the
third technique for extracting the selected item list. Figure 11.6 shows the list
widget in action with several items selected at once.

Listing 11.7 Creating and Using a List Widget

#include <Xm/Xm.h>
#include <Xm/List.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, list;
char *animals [] ={"cat", "dog", "cow", "goat", "horse", "mouse", "pig",

"sheep", "rat", "donkey", "elephant", "squirrel"};

void selectCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmAnyCallbackStruct *call_data;

/* called when an item in the list is selected */

11.6 LIST WIDGETS

{

}

int *pos_listj
int pos_list_lengthj
int x. *p;
int mem_allocatedj

mem_allocated = XmListGetSelectedPos(list.&pos_list.
&pos_list_length)j

p=pos_list;
for (x=Oj x<pos_list_lengthj x++)

printf("Xd ".*P++);
printf("\n")j
if (mem_allocated)

XtFree(pos_list);

void add_itemsO
1* add items to the list *1
{

}

XmString s;
int list_cntj

for (list_cnt=Oj list_cnt<XtNumber(animals)j list_cnt++)
{

}

s = XmStringCreate(animals[list_cnt]. char_set);
XmListAddltem(list.s,O)j
XmStringFree(s);

void main(argc.argv)
int argcj

{

char *argv [] j

Arg al[20];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context."".NULL.O,&argc.argv,

NULL,NULL,O);

1* set the default size of the window. *1
ac=Oj
XtSetArg(al[ac].XmNwidth,200)j ac++;
XtSetArg(al[ac],XmNheight,200); ac++;

183

184 OTHER MOTIF WIDGETS

11.7

}

XtSetValues(toplevel.al.ac);

1* create a list widget *1
ac=O;
XtSetArg(al[ac].XmNselectionPolicy.XmMULTIPLE_SELECT); ac++;
list=XmCreateScrolledList(toplevel.lIlistll.al.ac);
XtManageChild(list);
XtAddCallback (list. XmNmultipleSelectionCallback. selectCB. NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

In this code, the main routine creates the list widget and calls the add_
items function to add the items that will appear in the list, using the Xm­
ListAddltem convenience function. Whenever a user selects any item, the
selectCB function is triggered. It gets the list of selected item positions
using the XmListGetSelectedPos function and displays the list to stdout.
XmListGetSelectedPos returns an array of values in pos_list, and each value
is an integer that indicates the position of a selected item. The value returned
in pos_list_length indicates the number of values in the array. The function
result mem_allocated will be true whenever XmListGetSelectedPos has allo­
cated memory for the list in pos_list.

The list widget provides a great deal of functionality. The best way to learn
about it is to experiment with the convenience functions, callbacks, and re­
sources listed in Appendix J.

PANED WINDOW WIDGETS

A paned window, like the form widget, is a constraint widget. It holds other
widgets and imparts several new resources to its children. Paned windows let
users resize different panes of a window using a draggable control called a sash.

The code in Listing 11.8 demonstrates a simple use of a paned window by
placing two scrolling text widgets into a paned window container. When you
run this code, you will see a display similar to Figure 11. 7. With the code
running, resize the window so that it is fairly large, then drag the small square
on the line that separates the two text widgets. The text widgets automatically
resize as the areas that hold them change.

11.7 PANED WINDOW WIDGETS

Listing 11.8 Creating a Paned Window Widget to
Hold Two Text Widgets

#include <Xm/Xm.h>
#include <Xm/Text.h>
#include <Xm/PanedW.h>

XtAppContext contextj

Widget toplevel, pane, textl, text2j

void main(argc,argv)
int argcj

{

}

char *argv[] j

Arg al[20]j
int aCj

/* create the toplevel shell */
toplevel = XtApplnitialize(&context,IIII,NULL,O,&argc,argv,

NULL,NULL,O)j

/* create the paned window widget */
ac=Oj
pane=XmCreatePanedWindow(toplevel,lIpanell,al,ac)j
XtManageChild(pane)j

/* create textl widget */
ac=Oj
XtSetArg(al[ac],XmNeditMode,XmMULTI_LINE_EDIT)j aC++j
textl=XmCreateScrolledText(pane,lItext ll ,al,ac)j
XtManageChild(textl)j

/* create text2 widget */
ac=Oj
XtSetArg(al[ac],XmNeditMode,XmMULTI_LINE_EDIT)j aC++j
text2=XmCreateScrolledText(pane,lItext ll ,al,ac)j
XtManageChild(text2)j

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

185

186 OTHER MOTIF WIDGETS

11.8

Figure 11.7 A Paned Window Widget Holding Two
Scrolling Text Widgets

~l"':::~"",:,::, ," " '" ,' :.:.' "'iill' iD:,I[]

~hl:'IS the.teXt! widget." I~
l~,! ~::::::: ::: :::::::: ::::::: ::: : ::: : ::: ::: :: ::::::::: ::::::: :::::::: ~:::::::: :::::::: : 11>1

This is the text2 widget. ~

_ .. _","'''' _. ~
I~,I:: :::::::::::::::::::: ::::::::: I~

You can put almost any widget into a pane of a window. Programmers often
place manager widgets like form or RowColumn widgets into panes and then
place other widgets into these managers in the standard way.

Appendix J shows the resource and constraint resource list for a paned win­
dow widget. Remember that the constraint resource list augments the resource
lists of all immediate children of the paned window.

The paneMinimum and paneMaximum resources let you determine the
minimum and maximum size of a pane. For example, if a pane contains a
RowColumn widget holding 20 push buttons, your code should set the mini­
mum size of the pane such that the 20 buttons are always visible.

COMMAND WIDGETS

Command widgets provide an easy way to receive typed commands from
the user. They accept commands as the user enters them. They also manage
a scrolling list of previously entered commands, which allows users to see
the command history at all times. Users can select and modify previously
typed commands from the history list. Figure 11.8 shows a typical view of a
command widget.

Command Widgets are extremely straightforward, as shown in Listing 11.9.
This code creates a command widget and wires in its callbacks. The command­
Entered callback is the important one here. Each time the user enters a com­
mand, this callback is triggered so that the code can respond to the command.
The command Changed callback is called each time the user inserts or deletes
a character from the current command. Both callback functions retrieve the
command from the value field in the call_data parameter.

11.8 COMMAND WIDGETS

Figure 11.8 The Command Widget

~I: ;comriumd 10:10

Ipr
Ipq -Pmac
ps -aux

..... _,_ .. ,._,._-_ ... _ .. _
Enter a command

Listing 11.9 Creating a Command Widget

#include <Xm/Xm.h>
#include <Xm/Command.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel;
Widget command;
Widget button;

void command_enteredCB(w,client_data,call_data)
Widget w;
int client_data;
XmCommandCallbackStruct *call_data;

/* handle callbacks generated when the command is entered. */
{

}

char *s;

XmStringGetLtoR(call_data->value,char_set,&s);
printf("command entered='%s'\n",s);
XtFree(s);

void command_changedCB(w,client_data,call_data)
Widget w;

187

188 OTHER MOTIF WIDGETS

11.9

int client_data;
XmCommandCallbackStruct *call_data;

1* handle callbacks generated when the command is changed. *1
{

}

char *s;

XmStringGetLtoR(call_data->value,char_set,&s);
printf("command changed=''l.s'\n",s);
XtFree(s);

void main(argc,argv)
int argc;

{

}

char *argv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"I,NULL,O,&argc,argv,

NULL,NULL,O);

1* create the command widget. *1
ac = 0;
XtSetArg(al[ac], XmNpromptString,

XmStringCreateLtoR("Enter a command", char_set»; ac++;
command = XmCreateCommand(toplevel, II command II , aI, ac);
XtAddCallback (command, XmNcommandEnteredCallback,

command_enteredCB, NULL);
XtAddCallback (command, XmNcommandChangedCallback,

command_changedCB, NULL);
XtManageChild(command);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

SCROLLED WINDOW AND MAIN WINDOW WIDGETS

Scrolled window widgets are convenient: They let you set up a work area and
two scroll bars more easily than do form widgets. The code in Listing 11.10
shows how to set up a drawing area and two scroll bars in a scrolled window
widget (see Chapter 17 for a discussion of drawing area widgets).

11.9 SCROLLED WINDOW AND MAIN WINDOW WIDGETS

Listing 11.10 Creating a Scrolled Window Widget

#include <Xm/Xm.h>
#include <Xm/ScrollBar.h>
#include <Xm/DrawingA.h>
#include <Xm/ScrolledW.h>

XtAppContext context;

Widget toplevel, scrolll, scrol12, da, win;

void scrollCB(w,client_data,call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

/* handle callbacks from either scrollbar. */
{

}

int value;
Arg al[10];
int ac;

ac=O;
XtSetArg(al[ac], XmNvalue, &value); ac++;
XtGetValues(w,al,ac);

printf(lIbar=%d value = %d\n",client_data,value);

handle_click(w, client_data, event)
Widget w;
XtPointer client_data;
XEvent *event;

/* handle a click in the drawing area. */
{

printf("%d %d\n",event->xbutton.x,event->xbutton.y);
}

void main(argc,argv)
int argc;

{
char *argv [] ;

Arg al[10];
int ac;

189

190 OTHER MOTIF WIDGETS

}

1* create the toplevel shell *1
toplevel = XtApplnitialize(tcontext,"",NULL,O,targc,argv,

NULL,NULL,O);

1* create scrolled window. *1
ac=O;
XtSetArg(al[ac],XmNscrollingPolicy,XmAPPLICATION_DEFINED); ac++;
XtSetArg(al[ac] ,XmNscrollBarDisplayPolicy,XmSTATIC); ac++;
XtSetArg(al[ac],XmNscrollBarPlacement,XmBOTTOM_RIGHT); ac++;
win=XmCreateScrolledWindow(toplevel,"win",al,ac);
XtManageChild(win);

1* create scroll bars and drawing area. *1
ac=O;
XtSetArg(al[ac],XmNminimum,O); ac++;
XtSetArg(al[ac] ,XmNmaximum,1000); ac++;
XtSetArg(al[ac],XmNorientation,XmHORIZONTAL); ac++;
scroll1=XmCreateScrollBar(win,"scroll1",al,ac);
XtManageChild(scroll1);
XtAddCallback (scroll1, XmNvalueChangedCallback, scrollCB, 1);

ac=O;
XtSetArg(al[ac],XmNminimum,O); ac++;
XtSetArg(al[ac] ,XmNmaximum,1000); ac++;
scrol12=XmCreateScrollBar(win,"scrol12",al,ac);
XtManageChild(scrol12);
XtAddCallback (scrol12, XmNvalueChangedCallback, scrollCB, 2);

ac=O;
da=XmCreateDrawingArea(win,"da",al,ac);
XtManageChild(da);
XtAddEventHandler(da, ButtonPressMask, FALSE,

handle_click, NULL);

1* link scroll bars and drawing area into scrolled window. *1
XmScrolledWindowSetAreas(win,scroll1,scrol12,da);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

Listing 11.10 produces the window shown in Figure 11.9. It draws nothing
in the drawing area, but when you click in the drawing area, it prints the
mouse coordinates of the clicked point to stdout.

11.10

11.10 OPTION MENUS

Figure 11.9 A Scrolled Window Widget Containing
Two Scroll Bars and a Drawing Area

c:al ;.; saoJlcdwindow laiD
A

-1
~

2
1<1 [] I>i

191

The main function creates a scrolled window widget, then two scroll bars
and a drawing area as the scrolled window's children; it won't work otherwise.
A call to XmScrolledWindowSetAreas combines these four widgets. Once
combined, the scroll bars and drawing area work as you would expect. You
wire in whatever callbacks you need, manipulate their resources, draw, and
so on, in exactly the same way. you would otherwise. The scrolled window
widget simply saves you the trouble of having to create a form widget and its
attachments.

The main window widget works the same way. It lets you combine a com­
mand window, a horizontal scroll bar, a vertical scroll bar, a work area, and a
menu bar in a single window. Use the same techniques demonstrated in list­
ing 11.10, making the parent a main window widget instead.

If you are creating something this advanced, you probably need more con­
trol over placement than the main window widget affords, and you will likely
end up placing the widgets yourself on a form. However, main windows are
useful when you need to create standard applications quickly. See Appendix J
for more information.

OPTION MENUS

An Option menu provides radio-box-style functionality in a space smaller
than that required by a radio box. A button shows the currently selected op­
tion, and a click of the button pops up a menu from which the user can se­
lect another option. Figure 11.10 shows a typical Option menu when inactive.
Clicking the label pops up the menu. The code in Listing 11.11 demonstrates
how to create an Option menu.

192 OTHER MOTIF WIDGETS

Figure 11.10 An Option Menu Showing the
Currently Selected Option

listing 11.11 Creating an Option Menu

#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/RowColumn.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel;
Widget option_menu;
Widget optionl_item;
Widget option2_item;
Widget option3_item;

void menuCB(w,client_data,call_data)
Widget w;
char *client_data;
XmAnyCallbackStruct *call_data;

/* callback routine used for all menus */
{

printf("%s\n",client_data);
}

Widget make_menu_item(item_name,client_data,menu)
char *item_name;
XtPointer client_data;
Widget menu;

/* Adds an item into a menu. See Chapter 6. */
{

int ac;
Arg al[10];
Widget item;

ac = 0;
XtSetArg(al[ac],XmNlabelString,

11.10 OPTION MENUS

}

XmStringCreateLtoR(item_name,char_set»; ac++;
item=XmCreatePushButton(menu,item_name,al,ac);
XtManageChild(item);
XtAddCallback(item,XmNactivateCallback,menuCB,client_data);
XtSetSensitive(item,True);
return(item);

void main(argc,argv)
int argc;

{

}

char *argv [] ;

Arg al[10];
int ac;
Widget menu;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,IIII,NULL,O,&argc,argv,

NULL,NULL,O);

1* create the option menu *1
menu=XmCreatePulldownMenu(toplevel,lImenull,NULL,O);
ac=O;
XtSetArg (al[ac],XmNsubMenuld, menu); ac++;
XtSetArg(al[ac],XmNlabelString,

XmStringCreateLtoR(IISamplell,char_set»; ac++;
option_menu=XmCreateOptionMenu(toplevel,lIoption_menull,al,ac);
XtManageChild(option_menu);
optionLitem=make_menu_item(IIOption1",IIOptionl selectedll,menu);
option2_item=make_menu_item(IIOption211,IIOption2 selectedll,menu);
option3_item=make_menu_item(IIOption3 I1 ,IIOption3 selectedll,menu);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

193

The main function creates a pull-down menu pane. The parent of this menu
pane must be the same as the parent of the Option menu itself. The code then
sets the subMenuId resource of the Option menu to this pane and creates
the Option menu. The make_menu_item function adds items to the Option
menu, as first seen in Chapter 6.

An Option menu is not a widget itself but an adaptation of a RowColumn
widget. See the RowColumn widget's resource list in Appendix] for resources
that control the Option menu.

194 OTHER MOTIF WIDGETS

11.11

Figure 11.11 A Drawn Button Widget

DRAWN BUTTONS

A drawn button widget is a push-button widget with a drawing area on its face.
The drawing area behaves like a normal drawing area and generates expose
and resize events (see Chapter 17 for a description of drawing areas). Figure
11.11 shows an example of a drawn button, and the code in Listing 11.12
demonstrates how to use one.

Listing 11.12 Creating a Drawn Button Widget

#include <Xm/Xm.h>
#include <Xm/DrawnB.h>

XtAppContext context;

Widget toplevel, button;
GC gc;

void buttonCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmDrawnButtonCallbackStruct *call_data;

/* called when button is clicked */
{

printf(" click_count = Yod \n",call_data->click_count);
}

void exposeCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmDrawnButtonCallbackStruct *call_data;

/* Called when button is exposed. See Chapter 17. */

11 .11 DRAWN BUnONS

{

XDrawLine(XtDisplay(w),XtWindow(w),gc,O,O,100,100)j
}

void setup_gc 0
/* set up the graphics context. See Chapter 17. */
{

}

int foreground ,background j
Arg al[10]j
int aCj
XGCValues valsj

/* get the current fg and bg colors. */
ac=Oj
XtSetArg(al[ac], XmNforeground, &foreground)j aC++j
XtSetArg(al[ac], XmNbackground, &background)j aC++j
XtGetValues(button, aI, aC)j

/* create the copy gc. */
vals.foreground = foregroundj
vals.background = backgroundj
gc= XtGetGC (button , GCForeground I GCBackground, &vals)j

void main(argc,argv)
int argcj

{
char *argv [] j

Arg al [10] j
int aCj

/* create the toplevel shell */
toplevel = XtApplnitialize(&context,"",NULL,O,&argc,argv,

NULL,NULL,O)j

/* create the drawn button. */
ac=Oj
XtSetArg (al[ac], XmNmultiClick, XmMULTICLICK_KEEP)j aC++j
XtSetArg (al[ac], XmNwidth, 100)j aC++j
XtSetArg (al[ac], XmNheight, 100)j aC++j
button=XmCreateDrawnButton(toplevel,"button",al,ac)j
XtManageChild(button)j
XtAddCallback (button, XmNactivateCallback, buttonCB, NULL)j
XtAddCallback (button, XmNexposeCallback, exposeCB, NULL)j

195

196 OTHER MOTIF WIDGETS

}

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

In Listing 11.12, the code sets up the drawn button and demonstrates its
expose and activate callbacks. See Chapter 17 for more information on draw­
ing area widgets and drawing commands.

12 RESOURCE OPTIONS

At this point in your training, you are well on your way to becoming a fully
accomplished Motif programmer. You have seen and used almost every Widget
in the Motif Widget set, you are familiar with their resources and callbacks,
you have seen several different manager widgets and know their appropriate
uses, you can handle menus and dialog boxes, and you have created several
applications.

It is now time to add some depth to your knowledge. So far we have worked
almost exclusively at the Motif widget level. In the remainder of the book, we
will examine some of the capabilities available in the X and Xt layers, as well
as investigate some of the other capabilities available in the Motif layer. You
need this knowledge to make full use of the X environment. You now have
enough knowledge and experience to explore these layers in some detail and
begin to understand what they are doing.

We have so far ignored an important area of X and Motif programming: re­
source management. X and Motif provide several useful and important ways
to manage resources. This chapter explores a variety of resource-setting op­
tions. The remaining chapters discuss in detail customized dialog boxes, Motif
internals, the X layer, the Xt layer, and the X drawing model.

X, Xt, and Motif together form a vast landscape, a domain impossible to
cover in a single book. The next six chapters will give you a taste of what is
available and point you toward other sources of information. Also, Appendix
A contains a list of reference books available to help you increase your knowl­
edge of the terrain. The more you know, the more you can do.

12.1 A CLOSE EXAMINATION OF XTAPPINITIALIZE

We have been using the XtApplnitialize function to create the top level shell
widget for each application. Following is a deSCription of XtApplnitialize.

197

198 RESOURCE OPTIONS

XtAppInitialize Creates the application's toplevel shell.

Widget XtApplnitialize(
XtAppContext *context,
String application_class,
XrmOptionDescRec options[],
Cardinal num_options,
Cardinal *argc,
String *argv,
String *fallback_resources,
ArgList *args
Cardinal num_args);

context

application_class
options
num_options
argc

argv
fallback_resources
args
num_args

Returns the context value. Needed for calls to other
XtApp functions.
The class name for the application.
Passed directly to the XrmParseCommand function.
Number of options.
A pointer to the number of command line options
(pass an address).
The standard command line options array.
A set of predefined resource strings.
An argument list for the toplevel shell.
Number of arguments in the argument list.

The call to XtAppInitialize used so far in this book has looked like this:

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"II,NULL,O,&argc,argv,NULL,NULL,O);

Six of the parameters here are unused. All six have to do with resource set­
ting in its various forms. An exploration of these six parameters provides an
interesting introduction to the resource-setting techniques available to Motif
programmers.,

The last two parameters in the call to XtAppInitialize implement the nor­
mal, in-code method of resource setting, using an argument list and count.
You can replace frequently used code such as this:

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"II,NULL,O,&argc,argv,NULL,NULL,O);

12.2

12.2 RESOURCE FILES

1* resize toplevel *1
ac=O;
XtSetArg(al[ac],XmNheight,200); ac++;
XtSetArg(al[ac],XmNwidth,200); ac++;
XtSetValues(toplevel,al,ac);

with the following code:

1* create the toplevel shell *1
ac=O;
XtSetArg(al[ac],XmNheight,200); ac++;
XtSetArg(al[ac],XmNwidth,200); ac++;

199

toplevel = XtApplnitialize(&context, '11' ,NULL,O,&argc,argv,NULL,al,ac);

We have used this technique frequently with the XmCreate series of conve­
nience functions to set widget resource values during widget creation.

The application_class parameter is a normal C string that specifies the class
name for the application. The class name determines a specific resource file
that the application reads when you run it; it also specifies a set of resource
values to be pulled in from other files at the same time. See Section 12.2 for a
discussion of resource files.

The options and num_options parameters specify an array of strings you
can use to parse command line options that can set resource values. X auto­
matically supports its own set of options, and the application can augment
this set. See Section 12.4.

The fallback_options parameter points to an array of strings that contain
fallback resources. The application uses fallback resources in case the resource
files the application needs at startup are not available. See Section 12.5.

RESOURCE FILES

In all of the programs presented so far, we have explicitly set all of the wid­
get resource values directly in the code, using the XtSetArg and XtSetValues
functions. Motif and X support a second mechanism for setting resources us­
ing resource files. Resource files allow the programmer to set up resource values
in a text file external to the program. The resource values in the file are read
in when the program begins running, and these values change the behavior of
the specified Widgets.

Resource files allow users to customize an application's appearance and be­
havior when running the program and thereby avoid the need to recompile
the code. Users can customize an application simply by editing the resource
file. For example, all of the labelString resources associated with all buttons

200 RESOURCE OPTIONS

and labels in a program might reside in a resource file. You could create several
different resource files to supply the same labels in different languages. The
user can simply install the appropriate resource file to translate the application
into the desired language.

To experiment with a resource file, enter the code shown in Listing 12.1
which resembles that used in Chapter 4 to create a push-button widget. Note
that this code does not change any resource values: It simply creates a button.
Compile and run the program. You will see that the button behaves according
to the default settings of the push-button widget resources.

Listing 12.1 Example Code to Demonstrate the Use
of Resource Flies with a Push Button

/* buttonR.c */

#include <Xm/Xm.h>
#include <Xm/PushB.h>

XtAppContext context;

Widget toplevel, button;

main(argc,argv)
int argc;
char *argv [] ;

{

}

Arg al[10];
int ac;

/* create the toplevel shell */
toplevel = XtApplnitialize(&context,"Sample",NULL,O,&argc,argv,

NULL,NULL,O);

/* create the pushbutton button */
ac=O;
button=XmCreatePushButton(toplevel,"button",al,ac);
XtManageChild(button);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

Now, using a text editor, create a second text file containing the following
lines. This file will function as a resource file. Call the file Sample.

12.2 RESOURCE FILES

Sample.height:300
Sample.width:300
Sample*button*labelString:Resource file label

201

Align the text in this file flush to the left margin. Case matters, but the number
of spaces following each colon does not.

At the UNIX command line, type setenv XENVIRONMENT filename, where
filename is the complete path to the resource file (for instance, /usr/users/

smith/motif/Sample, or whatever the correct path to the resource file is on
your own machine).

Run the program again without recompiling. Now the application creates a
300-by-300 pixel window and a button with the label "Resource file label."
Edit Sample again to change the window size and label string. Then re-run the
program, noting how the button's behavior changes even though you have
not modified or recompiled the actual code.

To make the Sample resource file work correctly, the XtApplnitialize call
has been changed to include the string II Sample II. The II Sample II parameter is
a class name, which identifies resources intended for this application. When
the program runs, the system looks in a variety of places for the appropri­
ate resource values. For example, the system looks for a file specified with the
XENVIRONMENT variable. If XENVIRONMENT has been set and the speci­
fied file exists, the system scans the file for resources that have the class name
Sample.

Inside the resource file itself, you specify resource values by creating individ­
uallines for each resource you intend to change. The first word of each line in
the resource file is the class name Sample. Following the class name are wid­
get names and a resource name, delimited with a . (period) or a * (asterisk).
Use the period when you know the explicit path through the widget hierar­
chy to the resource and the asterisk when you do not. For example, the first
two lines of the file Sample specify an explicit path to the height and width
resources of the application: Sample is the class name for the application (the
toplevel shell), and width and height are resources belonging to toplevel. In
the third line, "button" is the name we gave to the button widget when we cre­
ated it (the second parameter to the XmCreatePushButton call). The resource
name labelStrlng is the name usually given to the widget resource, without
the XmN prefix. Since we do not really care about specifying the path down
to button's labelString resource, we use the * delimiter.

X searches in several places and in a specific order for resource values per­
tinent to the application. These values create a resource database, which the

202 RESOURCE OPTIONS

application consults each time it creates a widget. If you do not explicitly set
a value for a resource in your code, and if a value for a given resource exists
in the database, Motif modifies the resource value according to the database
value as it creates the widget. Note that if you specify a value for a resource in
your code, that value will override any value in the database.

The loading of the resource database starts with a app-defaults directory.
You usually find this directory at /usr/lib/Xll/app-defaults. Inside this
directory is a set of files, the names of which are class names. If the example
program above found a file in the app-defaults directory named Sample, the
program would open this file and read each line into the resource database.
Typically, if you set resource values in a resource file, any application you
build and distribute will include a second file that goes in the app-defaults

directory on all systems running your code.
As you can see from the above discussion, you have to make a choice. You

either set resource values internally, and therefore have a single executable file,
or you set resource values externally and include a second app-defaults file
with the executable. The latter approach gives both the user and the program­
mer more control over the application.

Once the system checks and loads an app-defaults file, it tries to load
resources from a file named .Xdefaults located in your home directory. This
is a resource file that the user maintains to customize the window manager
and different X applications. The system only loads values in the .Xdefaults

file that have the appropriate class name. Once it loads .Xdefaults, it loads
the file specified in the XENVIRONMENT variable into the database. Again,
it loads only those values with the appropriate class name. Note that the file
loaded last has precedence, since it overrides identical values from earlier files.
Also, if you set a resource explicitly in your code, that setting overrides any
setting in any external resource file.

There are some minor quirks in this loading sequence. First, if you incor­
rectly specify a resource name or value, the program ignores it. Second, a
resource that you set explicitly in your code cannot be set by an external re­
source file. Third, the . Xdef aul t s file is generally cached, or read into memory
at log-in time, where it resides to improve performance. Thus, any changes to
the .Xdefaults file have no effect unless you log in again. Alternatively, you
can issue the command

xrdb -merge .Xdefaults

from the home directory to reload the file into the database. You can also use
xrdb to explicitly load other resource files into the database.

12.3

, 2.3 AN EXAMPLE 203

AN EXAMPLE

There is a whole little science associated with resources and resource files, and
an entire book could be dedicated to this topic alone. For example, you can
define your own application-specific resources and use them as the application
is running. You can also create your own resource databases. You can find in­
depth discussions of these topicS in X Window System by Scheifler and Gettys,
X Window System Toolkit by Asente and Swick, and The X Window System by
Young (see Appendix A).

For simple tasks, however, resource files are straightforward. They can
greatly help the programmer in creating applications and dialog boxes con­
taining many widgets attached to forms or bulletin boards. In creating a dialog
box, for example, the correct positioning of the widgets within the dialog can
take several iterations. If the positioning resources reside in a resource file in­
stead of within the actual source code, these iterations can occur without the
code being recompiled (see Chapter 13 for an example).

Listing 12.2 shows the bulletin board widget demonstration code from
Chapter 5, with all of the resource setting code in the main function removed.
Note that the code is now somewhat shorter.

listing 12.2 A Celslus-to-Fahrenhelt Conversion
Program Using a Bulletin Board

/* c2f.bbR.c */

#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/Label.h>
#include <Xm/Scale.h>
#include <Xm/BulletinB.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, button, bb, label, scale;

void buttonCB(Widget w,
int client_data,
XmPushButtonCallbackStruct *call_data)

/* handles the pushbutton's activate callback. */
{

exit(O);
}

204 RESOURCE OPTIONS

void scaleCB(Widget w,
int client_data,
XmScaleCallbackStruct *call_data)

/* handles the scale's Value Changed callback. */
{

}

char s[100];
Arg al[10] j
int aCj

sprintf(s,lfarenheit=%d",call_data->value*9/5+32);
ac=Oj
XtSetArg(al[ac],XmNlabeIString,

XmStringCreate(s,char_set»j ac++;
XtSetValues(label,al,ac);

void main(argc,argv)
int argc;

{

char *argv [] ;

Arg al[10];
int aCj

/* create the toplevel shell */
toplevel=XtApplnitialize(&context,IExample",NULL,O,&argc,argv,

NULL,NULL,O)j

/* create a bulletin board to hold the three widgets */
bb=XmCreateBulletinBoard(toplevel,"bb",NULL,O);
XtManageChild(bb)j

/* create a push button */
button=XmCreatePushButton(bb,"button",NULL,O);
XtManageChild(button);
XtAddCallback(button,XmNactivateCallback,buttonCB,NULL)j

/* create a scale */
scale=XmCreateScale(bb,"scal e",NULL,O);
XtManageChild(scale)j
XtAddCallback(scale,XmNdragCallback,scaleCB,NULL)j

/* create a label */
label=XmCreateLabel(bb,"label" ,NULL,O);

12.3 AN EXAMPLE

}

XtManageChild(label);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

205

You can place the attachment resources in a resource file named Example

(the class name in the XtAppInitialize call is Example). A typical Example

resource file appears below.

Example.width:200
Example.height:200

Example*button*x:l0
Example*button*y:l0
Example*button*labelString:Quit

Example*scale*x:l
Example*scale*y:l00
Example*scale*titleString:Celsius Temperature
Example*scale*orientation:XmHORIZONTAL
Example*scale*showValue:True

Example*label*x:l0
Example*label*y:200
Example*label*labelString:Farenheit = 32

You can put the Example file in the app-defaults directory if you have the
privileges to do so, or you can place it in your own directory and use the
XENVIRONMENT variable as shown previously. If you do not want to create
an explicit resource file named Example, you can incorporate these values into
the . Xdefaul ts file instead. No matter which technique you use, the label,
button, and separator widgets will appear in positions on the bulletin board
specified in the resource file.

When you attach widgets to a form using a resource file, it is similar to
that shown for the bulletin board. The resource file contains the attachment
resource values for the widgets on the form. You cannot use the XmATTACH_
WIDGET option because you cannot use widget names in a resource file. You
must therefore specify all widget attachments to other widgets in the code.

206 RESOURCE OPTIONS

12.4

If your program requires many labels and buttons, place all of their label­
String values in a resource file so that you can change them easily after com­
piling the program.

Generally, color information is highly user-specific and therefore is almost
always determined in a resource file rather than in the code. In fact, it is
considered good practice to specify in your code only those resources needed
for correct program execution, and all other resource values externally so that
the user can modify them.

USING COMMAND LINE OPTIONS TO MODIFY RESOURCES

All X and Motif applications automatically support a set of command line
options to control colors, geometry, fonts, and so on. The following options
are available:

-background -foreground
-bd -geometry
-bg -iconic
-borderwidth -name
-bordercolor -reverse
-bw -rv
-display -synchronous
-fg -title
-fn -xrm
-font

These options will work on the command line in any of the programs created
so far in this book. The program passes command line arguments to XtAppIni­
tialize, which extracts the known arguments and handles them automatically.
As an example, you can execute the editor created in Chapter 10 with the fol­
lowing command line:

ed -iconic -foreground white -background black -geometry 200x200+50+500

This starts the editor as an icon.· Once expanded, the editor will have a black
background and a white foreground. The window will be 200 x 200 pixels and
will appear on the screen with the upper-left corner at the point 50, 500.

You can create customized command line options for an application as well.
Listing 12.3 shows how.

12.4 USING COMMAND LINE OPTIONS TO MODIFY RESOURCES 207

Listing 12.3 Command Line Argument Processing

/* options.c */

#include <Xm/Xm.h>
#include <Xm/Label.h>

XtAppContext contextj
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, label;

static XrmOptionDescRec options[]={
{"-label", l*label*labelString",XrmoptionSepArg, (caddr_t) NULL} ,
{"-width", "*label*width", XrmoptionSepArg,(caddr_t)NULL},
{"-height","*label*height", XrmoptionSepArg,(caddr_t)NULL},
};

main (argc ,argv)
int argc;
char *argv [] ;

{

}

Arg al[10];
int ac;

/* create the toplevel shell */
toplevel=XtApplnitialize(&context,"I,options,XtNumber(options),

&argc,argv,NULL,NULL,O);

/* create the label widget */
ac=Oj
label=XmCreateLabel(toplevel,"label",al,ac)j
XtManageChild(label)j

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

The options array contains the specification for the new command line
options. In this case, the code specifies three options: -label, -width, and
-height. If you compile this code to an executable file named options, you
can use the following command line to invoke the program:

options -width 200 -height 300 -label sample

208 RESOURCE OPTIONS

12.5

The label widget will be 200 x 300 pixels and will display a label string
containing the word sample.

To find out more about command line parsing and resource databases in
general, see Scheifler and Getty's X Window System. The X Window System by
Young is also informative.

USING FALLBACK RESOURCES

The XtApplnitialize function accepts as a parameter an array of fallback re­
source strings. The function merges these strings into the resource database
and uses them if it cannot find the specified resources in an app-defaults or
other resource file as the program is being loaded. The code in Listing 12.4
demonstrates how to use fallback resources.

Listing 12.4 Fallback Resources

/* fallback.c */

#include <Xm/Xm.h>
#include <Xm/Label.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, label;

String fallbacks [] =
{

};

"*labe1.width:500" ,
"*labe1.height:500" ,
"*labe1.labeIString:sample of using fallback resources",
NULL

main (argc ,argv)
int argc;
char *argv [] ;

{

Arg al[10];
int ac;

/* create the toplevel shell */
toplevel = XtApplnitialize(&context,"",NULL,O,&argc,argv,

fallbacks,NULL,O);

12.5 USING FALLBACK RESOURCES

}

1* create the label widget *1
ac=O;
label=XmCreateLabel(toplevel,"label",al,ac);
XtManageChild(label);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

209

You can place any resource string in the fallbacks array, using the same
format as for a resource file. The strings are merged into the resource database
if necessary, and the application uses them normally.

13 CUSTOMIZED DIALOG BOXES

Although Motif provides a number of predefined dialog boxes, you sometimes
need to create your own. Designed to address a certain problem, customized
dialog boxes can provide the user with a very simple and intuitive way to ac­
complish the assigned task. This chapter will provide insight into the process
of creating customized dialog boxes by showing you how to create a find dia­
log for the editor discussed in Chapter 10.

13.1 CREATING A CUSTOMIZED DIALOG

Creating a customized dialog box is similar to creating an application. When
you build an application, you usually create, as a child of the toplevel shell, a
bulletin board widget or form widget that acts as a manager for other user in­
terface widgets. To create a customized dialog box, you either create a bulletin
board dialog widget or form dialog widget, and attach the user interface wid­
gets you need to the dialog box. The bulletin board dialog widget and form
dialog widget are simply the manager widgets we saw in Chapter 5, hooked
into a dialog shell widget. The dialog shell allows the managers to act like dia­
log boxes when they appear on-screen.

Motif provides two convenience functions to create these manager dialogs,
as shown in the following examples

bb_dialog = XmCreateBulletinBoardDialog(toplevel, "bb_dialog", aI, ac);

form_dialog = XmCreateFormDialog(toplevel, "form_dialog", aI, ac);

where bb_dialog and fonn_dialog are declared normally as type Widget. The
code should not manage the dialog until you want it to appear on screen.

Once you have created the container dialog, you create and manage all the
user interface widgets that will make up the dialog. Create them as children of
the manager dialog, so that the dialog box will appear with all of the children

210

13.2

13.2 CREATING A FIND DIALOG

Figure 13.1 A Find Dialog for the Editor Presented
In Chapter 10

1:::11

Find: l._~~ __ ~ ... __ ~_~ __ .J
Change to: l. ________ .~ .. ~ ... ~_J

[J Case Matters

211

in the correct places when the dialog is managed. The children's callbacks,
resources, and so on, are all completely standard.

CREATING A FIND DIALOG

Most editors provide find and replace capabilities that let users search for and
modify strings in a document. You can implement such a capability at the user
interface level in many ways. One intuitive and consistent method of dealing
with all of the editor's find and replace capabilities is through a customized
Find dialog box.

Figure 13.1 shows the Find dialog box we will examine in this chapter. The
box consists of two label widgets (Find and Change To), along with associated
text widgets that let the user enter strings. Four push buttons let the user
find, change, change and then find the next match, or cancel. Finally, a Case
Matters toggle button lets the user toggle between case-sensitive and case­
insensitive search modes.

Creating this dialog box is straightforward. You can make several additions
to the editor code shown in Chapter 10 so that the find/replace capability
becomes available to the program. At the top of the editor program, you need
to declare several constants and widget variables required by the dialog:

#include <Xm/Text.h>
#include <Xm/BulletinB.h>
#include <Xm/ToggleB.h>

#define MENU_FIND 8

212 CUSTOMIZED DIALOG BOXES

#define FIND_FIND 1
#define FIND_FINO_CHANGE 2
#define FIND_CHANGE 3
#define FIND_CANCEL 4
#define FIND_CASE 5

/* widgets having to do with find dialog */
Widget find_dialog;
Widget find_label!, find_labe12;
Widget find_edit!, find_edit2;
Widget find_button, find_change_button, change_button, cancel_button;
Widget case_toggle;

In the main function, add a single line to call the function that sets up the
dialog box:

The setup_find_dialog function creates a bulletin board dialog widget and
attaches two labels, two text widgets, four push buttons, and one toggle but­
ton. This function is shown in Listing 13.1.

Listing 13.1 Creating the Find Dialog Box

void setup_find_dialog()
{

Arg al[10];
int ac;

/* create but do NOT manage the container dialog. */
ac=O;
XtSetArg(al[ac],XmNheight,200); ac++;
XtSetArg(al[ac].XmNwidth,400); ac++;
XtSetArg(al[ac],XmNautoUnmanage,False); ac++;
find_dialog=XmCreateBulletinBoardDialog(toplevel,

"find_dialog",al,ac);

1* create and manage the two labels. *1
ac=O;
XtSetArg(al[ac],XmNx,10); ac++;
XtSetArg(al[ac],XmNy,10); ac++;
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Find:", char_set»; ac++;
find_label1=XmCreateLabel(find_dialog,"find_label1",al,ac);
XtManageChild(find_labell);

13.2 CREATING A FIND DIALOG

ac=Oj
XtSetArg(al[ac],XmNx,10)j aC++j
XtSetArg(al[ac],XmNy,50)j aC++j
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Change To:", char_set»j aC++j
find_labe12 = XmCreateLabel(find_dialog,"find_labe12",al,ac)j
XtManageChild(find_labe12)j

1* create and manage the tva text vidgets. *1
ac=Oj
XtSetArg(al[ac],XmNx,100)j aC++j
XtSetArg(al[ac],XmNy,10)j aC++j
find_editl = XmCreateText(find_dialog,"find_editl",al,ac)j
XtManageChild(find_editl)j

ac=Oj
XtSetArg(al[ac],XmNx,100)j aC++j
XtSetArg(al[ac],XmNy,50)j aC++j
find_edit2 = XmCreateText(find_dialog,"find_edit2",al,ac)j
XtManageChild(find_edit2)j

1* create and manage the four pushbuttons. *1
ac=Oj
XtSetArg(al[ac],XmNx,10)j aC++j
XtSetArg(al[ac],XmNy,90)j aC++j
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Find", char_set»; aC++j
find_button = XmCreatePushButton(find_dialog,

"find_button",al,ac)j
XtManageChild(find_button)j

213

XtAddCallback (find_button, XmNactivateCallback, findCB, FINO_FINO)j

ac=O;
XtSetArg(al[ac],XmNx,60)j aC++j
XtSetArg(al[ac],XmNy,90); ac++;
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Change, Then Find", char_set»; aC++j
find_change_button = XmCreatePushButton(find_dialog,

"find_change_button",al,ac)j
XtManageChild(find_change_button)j
XtAddCallback (find_change_button, XmNactivateCallback, findCB,

FIND_FINO_CHANGE);

ac=Oj
XtSetArg(al[ac],XmNx,180)j aC++j

214 CUSTOMIZED DIALOG BOXES

}

XtSetArg(al[ac],XmNy,90); ac++;
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Change", char_set»; ac++;
change_button = XmCreatePushButton(find_dialog,

"change_button",al,ac);
XtManageChild(change_button);
XtAddCallback (change_button, XmNactivateCallback, findCB,

FIND_CHANGE);

ac=O;
XtSetArg(al[ac],XmNx,240); ac++;
XtSetArg(al[ac],XmNy,90); ac++;
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Cancel", char_set»; ac++;
cancel_button = XmCreatePushButton(find_dialog,

"cancel_button",al,ac);
XtManageChild(cancel_button);
XtAddCallback (cancel_button, XmNactivateCallback, findCB,

FIND_CANCEL);

1* create and manage the toggle button. *1
ac=O;
XtSetArg(al[ac],XmNx,10); ac++;
XtSetArg(al[ac],XmNy,130); ac++;
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Case Matters", char_set»;
case_toggle = XmCreateToggleButton(find_dialog,

"case_toggle",al,ac);
XtManageChild(case_toggle);

ac++;

XtAddCallback (case_toggle, XmNvalueChangedCallback, findCB,
FIND_CASE);

In the setup_find_dialog function, the first step is to create the find_dialog
widget as a bulletin board dialog. Note that it is created but not managed and
that its parent is toplevel. Also note that the autoUnmanage resource is set
to false so that the dialog will stay on-screen until explicitly told to go away.
The other widgets are created normally as children of the bulletin board and
attached to it with their x and y resources.

As an alternative, you could place the four push buttons in a RowColumn
widget and let the RowColumn manage their locations automatically. The
code for creating the four push buttons is shown in Listing 13.2.

1 3.2 CREATING A FIND DIALOG

Listing 13.2 Alternative Code to Create the Find
Dialog Buttons as Children of a RowColumn Widget

1* create a rowcolumn widget to hold the four pushbuttons. *1
ac=Oj
XtSetArg(al[ac],XmNx,10)j aC++j
XtSetArg(al[ac],XmNy,90)j aC++j
XtSetArg(al[ac],XmNorientation, XmHORIZONTAL)j aC++j
XtSetArg(al[ac],XmNpacking,XmPACK_TIGHT)j aC++j
XtSetArg(al[ac],XmNadjustLast,False)j aC++j
find_rc=XmCreateRowColumn(find_dialog,"find_rc",al,ac)j
XtManageChild(find_rc)j

215

1* create and manage the four pushbuttons as children of the rc. *1
ac=Oj
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Find", char_set»j aC++j
find_button=XmCreatePushButton(find_rc,"find_button",al,aC)j
XtManageChild(find_button)j
XtAddCallback (find_button, XmNactivateCallback, findCB, FIND_FIND)j

ac=Oj
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Change, Then Find", char_set»j aC++j
find_change_button=XmCreatePushButton(find_rc,"find_change_button",

al,ac)j
XtManageChild(find_change_button)j
XtAddCallback (find_change_button, XmNactivateCallback, findCB,

FIND_FIND_CHANGE)j

ac=Oj
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Change", char_set»j aC++j
change_button=XmCreatePushButton(find_rc, "change_button" ,a l,ac);
XtManageChild(change_button)j
XtAddCallback (change_button, XmNactivateCallback, findCB,

FIND_CHANGE)j

ac=Oj
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Cancel", char_set»j aC++j
cancel_button=XmCreatePushButton(find_rc,"cancel_button",al,ac)j
XtManageChild(cancel_button)j
XtAddCallback (cancel_button, XmNactivateCallback, findCB,

FIND_CANCEL)j

216 CUSTOMIZED DIALOG BOXES

The code creates the find_rc widget and the four buttons as its children.
You need no positioning code for the buttons because the RowColumn widget
handles the positioning itself.

To activate the find dialog, you need a new menu option. The following
code (which should be added at the end of the create_menus function) adds
a Utilities menu containing a Find item to the application and wires in a
MENU_FIND client_data parameter. This constant allows the menuCB func­
tion to distinguish the new menu option.

menu = make_menu("Utilities" ,menu_bar);
find_option = make_menu_option("Find",MENU_FIND,menu);

The menuCB function receives a new case statement that can manage the
find_dialog widget when necessary:

case MENU_FIND:
XtManageChild(find_dialog);
break;

The findCB function itself handles callbacks from the four push buttons
and the toggle button. The function dispatches each to an appropriate han­
dling routine. The Cancel button simply unmanages the dialog to make it
disappear.

void do_findO
{

}

void do_find_change()
{

}

void do_changeO
{

}

void do_case_sensitivity()
{

}

void findCB(w,client_data,call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

13.3

13.3 USING A RESOURCE FILE FOR CUSTOMIZED DIALOGS

{

}

switch (client_data)
{

}

case FIND_FIND:
do_findO;
break;

case FIND_FINO_CHANGE:
do_find_change();
break;

case FIND_CHANGE:
do_ change 0 ;
break;

case FIND_CANCEL:
XtUnmanageChild(find_dialog);
break;

case FIND_CASE:
do_case_sensitivity();
break;

217

As the above code shows, there is nothing. magic about creating a cus­
tomized dialog box. You simply use a special dialog box form of the usual
manager widgets and attach other widgets to these managers using standard
techniques.

USING A RESOURCE FILE FOR CUSTOMIZED DIALOGS

You might have noticed that the setup_find_dialog function devotes a great
deal of code to the setting of resources. Moreover, it usually takes several
tries to position widgets inside a dialog box such as this correctly, which can
be time-consuming if you have to recompile the code after every attempt.
Resource files (Chapter 12) are very appropriate in this situation.

You can use the code in Listing 13.3 for the setup_find_dialog function
when using a resource file. This is the same code we used above, but with all
the resource information removed.

Listing 13.3 Creating the Find Dialog Box Using a
Resource File

void setup_find_dialog()
{

Arg al[10];

218 CUSTOMIZED DIALOG BOXES

}

int ac;

ac=O;
XtSetArg(al[ac],XmNautoUnmanage,False); ac++;
find_dialog=XmCreateBulletinBoardDialog(toplevel,

"find_dialog",al,ac);

find_label1=XmCreateLabel(find_dialog, "find_label1" ,NULL,O) ;
XtManageChild(find_labell);

find_labe12=XmCreateLabel(find_dialog, "find_labe12" ,NULL, 0);
XtManageChild(find_labe12);

find_editl=XmCreateText(find_dialog,"find_editl",NULL,O);
XtManageChild(find_editl);

find_edit2=XmCreateText(find_dialog,"find_edit2",NULL,0);
XtManageChild(find_edit2);

find_button=XmCreatePushButton (find_dialog , "find_button" ,NULL,O);
XtManageChild(find_button);
XtAddCallback (find_button, XmNactivateCallback, findCB, FIND_FIND);

find_change_button=XmCreatePushButton(find_dialog,
"find_change_button",NULL,O);

XtManageChild(find_change_button);
XtAddCallback (find_change_button, XmNactivateCallback, findCB,

FIND_FINO_CHANGE);

change_button=XmCreatePushButton(find_dialog, "change_butto n",NULL,O);
XtManageChild(change_button);
XtAddCallback (change_button, XmNactivateCallback, findCB,

FIND_CHANGE);

cancel_button=XmCreatePushButton (find_dialog , "cancel_butto n",NULL,O);
XtManageChild(cancel_button);
XtAddCallback (cancel_button, XmNactivateCallback, findCB,

FIND_CANCEL);

case_toggle=XmCreateToggleButton(find_dialog, "case_togg le",NULL,O);
XtManageChild(case_toggle);
XtAddCallback (case_toggle, XmNvalueChangedCallback, findCB,

FIND_CASE);

13.3 USING A RESOURCE FILE FOR CUSTOMIZED DIALOGS 219

You should change the call to XtApplnitialize in the editor code to include
an appropriate class name. The following example uses the class named Edi­
tor.

toplevel = XtApplnitialize(&context,"Editor",NULL,O,&argc,argv,
NULL ,NULL ,0) ;

Finally, you can create a resource file named Editor as a normal, separate
text file. It should contain something like the resource list shown in List­
ing 13.4.

Listing 13.4 Contents of the Editor Resource File

Editor*find_dialog.height:200
Editor*find_dialog.width:400

Editor*find_dialog*find_labell*x:l0
Editor*find_dialog*find_labell*y:l0
Editor*find_dialog*find_labell*labelString:Find:

Editor*find_dialog*find_labe12*x:l0
Editor*find_dialog*find_labe12*y:50
Editor*find_dialog*find_labe12*labelString:Change To:

Editor*find_dialog*find_editl*x:l00
Editor*find_dialog*find_editl*y:l0

Editor*find_dialog*find_edit2*x:l00
Editor*find_dialog*find_edit2*y:50

Editor*find_dialog*find_button*x:l0
Editor*find_dialog*find_button*y:90
Editor*find_dialog*find_button*labelString:Find

Editor*find_dialog*find_change_button*x:60
Editor*find_dialog*find_change_button*y:90
Editor*find_dialog*find_change_button*labelString:Change, Then find

Editor*find_dialog*change_button*x:180
Editor*find_dialog*change_button*y:90
Editor*find_dialog*change_button*labelString:Change

Editor*find_dialog*cancel_button*x:240
Editor*find_dialog*cancel_button*y:90
Editor*find_dialog*cancel_button*labelString:Cancel

220 CUSTOMIZED DIALOG BOXES

13.4

Editor*find_dialog*case_toggle*x:l0
Editor*find_dialog*case_toggle*y:130
Editor*find_dialog*case_toggle*labelString:Case Matters

You can make the resource file known to the program by placing it in the
app-defaults directory (if you have permission); by typing setenv XENVIRON­

MENT filename, where filename is the complete path to the Editor resource
file; or by adding the resources into the .Xdefaults file and remerging, as
shown in Chapter 12.

Rather subtle bugs can arise in the creation of this resource file. For example,
when I first created the resource file, the first two lines looked like this:

Editor*find_dialog*height:200
Editor*find_dialog*width:400

Using the * delimiter in place of the. delimiter had an interesting effect: The
code set the width and height of all of the children of find_dialog, which
made quite a mess on-screen. The correct form sets the height and width of
the dialog box only:

Editor*find_dialog.height:200
Editor*find_dialog.width:400

RESOURCES PERTINENT TO DIALOG BOXES

When creating a customized dialog box, you can modify several resources to
make the dialog more appropriate to the application.

If you run an application that uses dialog boxes and do not see decora­
tions around the dialogs, you are missing out. Dialogs with decorations can
be moved and resized easily and are therefore more useful. In the Motif win­
dow manager, you can remedy this situation by adding the following line to
your . Xdef aul ts file:

Mwm*transientDecoration:all

This resource will add title bars to the dialog boxes and make them resizable.
Dialogs with decorations have default titles that are not very informative.

To change the title of a dialog box, use code such as the following:

XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(
"Editor: Find",XmSTRING_DEFAULT_CHARSET»j aC++j

By convention, you should include the name of the application as well as the
dialog's name in the dialog title.

1 3.4 RESOURCES PERTINENT TO DIALOG BOXES 221

Decorations provide the ability to resize. In the case of our find dialog, we
are using a bulletin board widget and resizing is not desirable. You can remove
the resizing capability by changing the bulletin board's noResize resource:

XtSetArg(al[ac],XmNnoResize,True); ac++;

The bulletin board widget also has an autoUnmanage resource that automat­
ically unmanages the dialog when a user clicks a button. In a find dialog, this
behavior is inappropriate. Use the following code:

XtSetArg(al[ac],XmNautoUnmanage,False); ac++;

When using a dialog such as the Prompt dialog (Chapter 7), you might
have noticed that you can use the RETURN key to activate the OK button. This
behavior is controlled by the bulletin board's defaultButton resource. The
bulletin board also has a cancel Button resource. In our find dialog, we want
the RETURN key to activate the Find button. We can also cause recognition of
the Cancel button. The following lines accomplish this:

ac=O;
XtSetArg(al[ac],XmNdefaultButton,find_button); ac++;
XtSetArg(al[ac],XmNcancelButton,cancel_button); ac++;
XtSetValues(find_dialog,al,ac);

Note that this code must follow the code that creates all three of the widgets
it references, hence the call to XtSetValues.

Finally, the dialogStyle resource of the bulletin board widget controls the
behavior of the dialog with respect to the application. You can define six
styles:

XmDIALOG_SYSTEM_MODAL. The user must respond to this dialog
before anything else can happen in any application on the system.

XmDIALOG_PRIMARY _APPLICATION_MODAL. The user must respond
to this dialog before anything else can happen in the ancestors of this
dialog.

XmDIALOG_APPLICATION_MODAL. Same as above.

XmDIALOG_FULL_APPLICATION_MODAL. The user must respond to this
dialog before anything else can happen in this application.

XmDIALOG_MODELESS. The user may use the dialog simultaneously with
the application.

XmDIALOG_ WORK_AREA. The default value for bulletin boards not in a
dialog shell.

222 CUSTOMIZED DIALOG BOXES

13.5

We want our find dialog to be available at all times, and we do not want it to
interfere with the application. We therefore want modeless operation, which
the following code sets:

XtSetArg(al[ac],XmNdialogStyle,XmDIALOG_MODELESS); ac++;

When we combine all of these features, we can use the following code to
create the desired find dialog box behavior:

ac=O;
XtSetArg(al[ac],XmNheight,200); ac++;
XtSetArg(al[ac],XmNwidth,400); ac++;
XtSetArg(al[ac],XmNautoUnmanage,False); ac++;
XtSetArg(al[ac],XmNnoResize,True); ac++;
XtSetArg(al[ac],XmNdialogStyle,XmDIALOG_MODELESS); ac++;
XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(

"Editor: Find",XmSTRING_DEFAULT_CHARSET)); ac++;
find_dialog=XmCreateBulletinBoardDialog(toplevel,

"find_dialog",al,ac);

See the bulletin board description in Appendix J for other available resources.
A form widget inherits its behavior from the bulletin board, so the resources
described above work as well when used with a form dialog widget.

IMPLEMENTING THE FIND DIALOG

You can use the code in Listing 13.5 to implement the four functions called by
the findCB function. They use the text widget's convenience functions fairly
heavily. See Appendix I for descriptions of these functions.

Listing 13.5 Implementing the Find and Change
Operations

char *string_search(cs,ct)
char *cs;
char *ct;

/* searches for ct in cs. Returns a pointer to the beginning of the
first instance of ct. */

{

int done;
char *ct2,*cs2;

/* check for "no work" situations */
if (cs==NULL I I ct==NULL)

return NULL;

13.5 IMPLEMENTING THE FIND DIALOG 223

Enhancing Dialog Boxes

idl:" .
: : :Pmrm- 14m": .:.' ::

Find: I::: tl: :::::::::: :::::::::

, , , , !m ~ff

Change To:
11:1 ::::::: :::::::

II
, ,

5I1IrCh~~;:·~Th:~·'F·;;;d 181 c:~;i'li
I ::::::::::

Cl Case Hatters
:::::: :::: :::::::::: r~:

:::::: ::::::
:::::: ~:~:f~: :f~

You can do several things to make your
dialog boxes look good. The figure above
shows the results of several techniques
applied to the editor's find dialog box.

This dialog box consists of two labels,
two text widgets, a RowColumn wid-
get containing four buttons, and a tog­
gle, all residing in a bulletin board. The
background of the entire dialog dis­
plays the standard gray3 bitmap, which
is done by setting the background­
Pixmap resource for the bulletin board
to /usr/include/Xll/bitmaps/gray3.
Try other bitmaps in this directory to see

different· effects. Note that the background
of the RowColumn widget has been left
white so that it stands out.

The widths of the labels are set to 80 to
make sure they are the same.

The borderWidth resource of all of the
widgets has been set to 1 to place a one­
pixel-wide border around all of the widgets.
This makes the labels and the R6wColumn
widget stand out better in the dialog.

The shadowThickness resource for the
entire dialog has also been set to 4 to make
the three-dimensional appearance of the
button and text widgets more pronounced.

If the class name for the editor is "Editor,"
the resource specifications for this dialog

box will look like those shown below.

Editor*find_dialog.backgroundPixmap:
Editor*find_dialog*shadowThickness:

/usr/include/Xll/bitmaps/gray3
4

Editor*find_dialog*borderWidth: 1

Editor*find_dialog*borderColor: Black

224 CUSTOMIZED DIALOG BOXES

}

if (*cs=='\O' I I *ct=='\O')
return NULL;

1* loop through each character of cs. *1
done=False;
while «!done)&&(*cs!='\O'»
{

}

1* check to see if the first char of ct is in *cs. If it
is proceed to check the rest of the letters in ct against
cs. *1

if (*cs!=*ct)
cs++;

else
{

}

cs2=cs;
ct2=ct;
do
{

ct2++;
cs2++;

} while «*cs2==*ct2) && (*ct2!='\O') && (*cs2!='\O'»;
if (*ct2=='\O')
{

}

else

done=True;
return cs;

cs++;

if (!done)
return NULL;

void lowercase(s)
char *s;

1* converts s to lower case. *1
{

int x.y;

y=strlen(s);
for (x=O; x<y; x++)
{

if (s[x]>='A' && s[x]<='Z')

13.5 IMPLEMENTING THE FIND DIALOG 225

s [x] =s [x] +32 j
}

}

void do_findO
1* finds the string in find_editl in the text starting at the current

cursor position. *1
{

Arg al[10]j
int aCj
XmTextPosition cursor_posj
char *find_string,*start,*temp,*pj
Boolean found=Falsej
int ij

1* get the strings from the dialog box and the main text widget. *1
find_string=XmTextGetString(find_editl)j
cursor_pos=XmTextGetlnsertionPosition(text)j
start=XmTextGetString(text)j
temp=start+cursor_pos+lj
if (!case_matters)
{

lowercase(temp)j
lowercase(find_string)j

}

p=string_search(temp,find_string)j
1* if not found, display an error. *1
if (p==NULL)
{

}

ac=Oj
XtSetArg(al[ac], XmNmessageString, XmStringCreateLtoR(

"String not found between current\ncursor location and end.",
XmSTRING_DEFAULT_CHARSET))j aC++j

XtSetValues(finderror_dialog,al,ac)j
XtManageChild(finderror_dialog)j

1* if found, select the found string and scroll it to the top of
the window. *1

else if (p!=NULL)
{

i=p-startj
XmTextSetSelection(text,(XmTextPosition)i,

(XmTextPosition)(i+strlen(find_string)),CurrentTime)j
XmTextSetlnsertionPosition(text, (XmTextPosition) i) j

226 CUSTOMIZED DIALOG BOXES

}

}

XmTextSetTopCharacter(text,(XmTextPosition)i)j
found=Truej

XtFree(start)j
XtFree(find_string)j

void do_changeO
1* changes the found string to the new value. *1
{

Arg al[10]j
int aCj
XmTextPosition cursor_posj
char *start,*temp,*p,*find_string,*replace_stringj

find_string=XmTextGetString(find_editl)j
replace_string=XmTextGetString(find_edit2)j
cursor_pos=XmTextGetlnsertionPosition(text)j
start=XmTextGetString(text)j
temp=start+cursor_posj
if (Icase_matters)
{

}

lowercase(temp)j
lowercase(find_string)j

1* Make sure selected text is same as find_string. *1
if «find_string==NULL)I I

{

}

else
{

(strncmp(temp,find_string,strlen(find_string»1=0»

ac = OJ
XtSetArg(al[ac], XmNmessageString, XmStringCreateLtoR(

"Change must be preceeded by a find.",
XmSTRING_DEFAULT_CHARSET»j aC++j

XtSetValues(finderror_dialog, aI, aC)j
XtManageChild(finderror_dialog)j

XmTextReplace(text,cursor_pos,cursor_pos+
(XmTextPosition)strlen(find_string),replace_string)j

XmTextSetSelection(text,cursor_pos,
cursor_pos+(XmTextPosition)strlen(replace_string),
CurrentTime)j

XmTextSetlnsertionPosition(text,(XmTextPosition)(cursor_pos+
strlen(replace_string»)j

13.5 IMPLEMENTING THE FIND DIALOG

}

}

XtFree(find_string);
XtFree(replace_string);

void do_find_change()
{

}

do_change 0 ;
do_findO;

void do_case_sensitivity()
1* get the new value of the case toggle button. *1
{

}

Arg al[10];
int ac;

ac=O;
XtSetArg(al[ac],XmNset,&case_matters)j aC++j
XtGetValues(case_toggle,al,ac);

227

Listing 13.5 assumes the existence of a finderror_dialog dialog box. Create
it as an error message dialog. Make its parent the find_dialog widget.

The do_find code searches for the entered string starting at the current
cursor position. If the program finds the string, it selects the found segment in
the main text widget, scrolls the line that contains it to the top of the window,
and sets the insertion position at the beginning of the segment. If the program
does not find the string, an error dialog appears.

The do_change code first gets the strings it will need, then checks to make
sure that the change operation was preceded by a find operation. If it was, the
program replaces the selected string in the text widget with the string that the
user entered.

The do_case_sensitivity function retrieves the current value from the toggle
button and sets a global variable to remember the current state.

14 MOTIF INTERNALS

Chapters 1 through 11 focused on individual widgets in the Motif widget set,
but there are other aspects to Motif besides the widgets. For example, Mo­
tif contains its own string and font types, as well as Clipboard functions.
This chapter introduces you to the XmString type and commands, the Xm­
FontList type and commands, the Motif Clipboard, Motif gadgets, and shell
widgets.

14.1 MOTIF STRINGS

Motif supports its own string type, XmString, also known as a compound string.
This type offers more functionality than a standard null-terminated C string.
The asp Motif Programmer's Reference Manual says that "XmString is the data
type for a compound string. Compound strings include one or more compo­
nents, each of which contains text, character set, and string direction. When
a compound string is displayed, the character set and direction are used to
determine how to display the text."

A compound string contains different text segments kept apart by separa­
tors. Each segment consists of two parts: the text of the string and a character
set. The character set is a string that determines how characters in the com­
pound string map to a given font in a font list. As a result, the XmString and
XmFontList types are intimately intertwined. When a compound string is dis­
played using XmStringDraw, XmStringDrawImage, or XmStringDrawUn­
derline, the character set of each segment is matched with the corresponding
character set in the supplied font list, which controls how the drawn charac­
ters appear on the screen. Section 14.2 contains example code that shows how
to tie strings and font lists together.

The XmString type provides a number of convenience functions. Appen­
dix I lists and describes each briefly. The table lists the functions alphabet­
ically, but you might want to start with the creation functions and fan out
from there.

228

14.2

14.2 MOTIF FONT LISTS

Figure 14.1 The Structure of an XmStrlng Created
by XmStrlngCreateLtoR

Separators

I

Line 1

chacset

Segment 1 Segment 2

229

Segment 3

The simplest functions are XmStringCreate and XmStringCreateLtoR,
which we have used throughout the book. Each accepts a normal null­
terminated C string and a character set as parameters and uses these to cre­
ate an XmString. The XmStringCreate function creates an XmString with
a single segment using the specified character set. The XmStringCreateLtoR
function creates an XmString with multiple segments isolated by separators;
all segments have the same character set. Figure 14.1 shows the structure of
such an XmString created with the following code:

XmString S;

s=XmStringCreateLtoR("1ine l\nline 2\nline3",char_set);

Figure 14.1 is a simplification, because each segment also contains direction
information. In English, however, the direction is always left to right.

You can also map each segment to a different character set in a font list, as
shown in the following section.

All the other XmString functions listed in Appendix I are self-explanatory.
The set includes functions that concatenate strings, copy strings, free strings,
and so on. Many of the functions require a font list as well. The relationship
between XmString functions and font lists is clarified in the following section.

MOTIF FONT LISTS

The X Window System supports multiple fonts. Motif builds on the X font
model with the XmFontList type. A Motif font list stores a collection of X
fonts that are tagged by character set labels.

To create a Motif font list, you must start with one font and then add others.
You must load the fonts first using the X font loading function. In general,

230 MOTIF INTERNALS

Figure 14.2 The Relationship Between the XmStrlng
and XmFontlist Used In Listing 14.1

String

First I Second I
charset1 I charset2 I

FontList

aAbBcC
charset1 I

- aAbBcC

charset2 I

aAbBcC
charset3 I

Third I
charset3 I
I

Times 24

6x10

Helvetica 14

XLoadQueryFont provides the easiest way to do this: It loads the specified
font into the designated display (or X server, as discussed in Chapter 15) and
returns a result of the type XFontStruct. You can use this value to add the
font to a Motif font list. Motif provides several convenience functions for
manipulating font lists, described in Appendix I.

When adding a font to a font list, you must specify a character set, which
is simply a string that names the font in the font list. You map the segments
in an XmString to different fonts in the font list by specifying corresponding
character set strings. XmStrings and XmFontLists are closely related by the
character sets: The font list determines how the string will look when drawn.
The code in Listing 14.1 illustrates this relationship. It uses a drawing area
widget and so the drawing portion may be easier to understand once you have
finished Chapter 17. The code isolates font and string manipulations in the
function setup _string_and_fontlist.

In Listing 14.1 the code creates an XmString containing three segments,
kept apart by separators. Each segment specifies a different character set. The
code then creates a font list containing three fonts (Times 24, a fixed font

14.2 MOTIF FONT LISTS 231

Figure 14.3 A Single XmStrlng Using Multiple Fonts

first
second

third

named 6x10, and Helvetica 14), each of which uses a character set name
that corresponds to one of the character sets used in the string. In Listing
14.1, the character sets are called charsetl, charset2, and charset3. However,
you may wish to use the name of each font as the character set string (for
example, Times24, 6x10, and Helvetica14 could be used as the character set
names). Figure 14.2 illustrates the relationship between the XmString and the
XmFontList created in Listing 14.1.

Figure 14.3 shows the output of Listing 14.1. As you can see, the charac­
ter set names reference the different fonts in the font list so that the string
displays as expected.

Listing 14.1 A Multlfont XmStrlng

/* xmstring.c */

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>
#include <Xm/Form.h>
#include <Xm/PushB.h>

#define SIZE 100

XtAppContext context;

GC gCj

Widget toplevelj
Widget drawing_area;
XmString stringj
XmFontList fontlist=NULLj

void setup_gc 0
/* set up the graphics context. */
{

int foreground ,background;
XGCValues valsj

232 MOTIF INTERNALS

}

XFontStruct *font=NULLj
Arg al[10]j
int aCj

1* Set the default font in the GC--a necessary step. *1
font=XLoadQueryFont(XtDisplay(drawing_area),"fixed")j

1* get the current fg and bg colors. *1
ac=Oj
XtSetArg(al[ac],XmNforeground,&foreground)j aC++j

, XtSetArg(al[ac] ,XmNbackground,&background)j aC++j
XtGetValues(drawing_area,al,ac)j

1* create the gc. *1
vals.foreground = foregroundj
vals.background = backgroundj
vals.font=font->fid; 1* The XFontStruct contains a field named

"fid" of type Font, as expected by the GC. *1
gc=XtGetGC(drawing_area,GCForeground I GCBackground .1 GCFont ,&vals);

void exposeCB(w,client_data,call_data)
Widget Wj
XtPointer client_data;
XtPointer call_data;

1* called whenever drawing area is exposed. *1
{

}

XmStringDraw(XtDisplay(drawing_area),XtWindow(drawing_area),
fontlist,string,gc,10, 10, 1000, XmALIGNMENT_BEGINNING,
XmSTRING_DlRECTION_L_TO_R,NULL)j

void setup_string_and_fontlist()
1* create the XmString and the associated fontlist. *1
{

XFontStruct *font=NULLj
char *namestring=NULLj
XmString sl,s2,s3,sep,t1,t2,t3j

1* Place three different fonts in the fontlist. *1
namestring="*times*24*"j 1* you may need to change this *1
font=XLoadQueryFont(XtDisplay(toplevel),namestring)j
fontlist = XmFontListCreate(font,(XmStringCharSet)"charset1")j

namestring="6x10"j 1* you may need to change this *1

14.2 MOTIF FONT LISTS 233

font=XLoadQueryFont(XtDisplay(toplevel),namestring);
fontlist = XmFontListAdd(fontlist,font,(XmStringCharSet)lcharset2");

}

namestring=l*helvetica*14*"; 1* you may need to change this *1
font=XLoadQueryFont(XtDisplay(toplevel),namestring);
fontlist = XmFontListAdd(fontlist,font,(XmStringCharSet)l charset3");

1* create three segments in an XmString and tie them to different
fonts in the fontlists with corresponding charsets. *1

sl=XmStringCreate(lfirst l ,(XmStringCharSet)l charsetl");
s2=XmStringCreate(lsecondl,(XmStringCharSet)lcharset2");
s3=XmStringCreate(lthirdl ,(XmStringCharSet)l charset3");
sep=XmStringSeparatorCreate();

1* build the XmString. *1
tl=XmStringConcat(sl,sep);
t2=XmStringConcat(tl,s2);
t3=XmStringConcat(t2,sep);
string=XmStringConcat(t3,s3);

1* deallocate memory. *1
XmStringFree(sl);
XmStringFree(s2);
XmStringFree(s3);
XmStringFree(sep);
XmStringFree(tl);
XmStringFree(t2);
XmStringFree(t3);

main (argc , argv)
int argc;
char *argv [] ;

{

Arg al[10];
int ac;

1* create the toplevel shell */
toplevel = XtApplnitialize(tcontext,"I,NULL,O,targc,argv,

NULL,NULL,O);

1* set window size. */
ac=O;
XtSetArg(al[ac],XmNheight,SIZE); ac++;
XtSetArg(al[ac],XmNwidth,SIZE); ac++;

234 MOTIF INTERNALS

}

XtSetValues(toplevel,al,ac)j

/* create a drawing area widget. */
ac=Oj
drawing_area=XmCreateDrawingArea(toplevel,"drawing_area",a l,ac)j
XtManageChild(drawing_area)j
XtAddCallback(drawing_area,XmNexposeCallback,exposeCB,NULL)j

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

The XmString type imposes certain limits. For example, each segment can
have only one character set, and each is displayed on a separate line. It is
not easy, therefore, to display multiple fonts on a single line. As a result,
programmers often place only one font in a font list and display all XmStrings
with that single font.

Motif widgets that have a font list resource use a default font list. Through­
out the book, we have used XmSTRING_DEFAULT_CHARSET to access the
default font in that font list. This specification simply tells Motif to choose the
first font in the widget's font list. The Motif PRM calls the default character set
in the default font list IS08859-1. You can see this by extracting the default
character set name from the default font list, using the code in Listing 14.2.

Listing 14.2 Extracting the Default Font String from
the Default Font List for a Label Widget

#include <Xm/Xm.h>
#include <Xm/Label.h>

XtAppContext contextj
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSETj

Widget toplevel, labelj

void main(argc,argv)

14.2 MOTIF FONT LISTS

{

}

int argc;
char *argv [] ;

Arg al[10];
int ac;
XmFontList fl;
XFontStruct *font;
XmFontContext font_context;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&:context,"I,NULL,O,&:argc,argv,

NULL,NULL,O);

1* create the label widget *1
ac=O;
label=XmCreateLabel(toplevel,"labe1",al,ac);
XtManageChild(label);

1* get the default font list *1
ac=O;
XtSetArg(al[ac],XmNfontList,&:fl); ac++;
XtGetValues(label,al,ac);

1* print out the charset name of the first font *1
XmFontListlnitFontContext(&:font_context,fl);
XmFontListGetNextFont(font_context,&:char_set,&:font);
printf("%s\n",char_set);

235

Listing 14.2 creates a label widget, then retrieves the font list from it and
uses the XmFontListGetNextFont convenience function (Appendix I) to ex­
tract the name of the first character set. When you run this code, it outputs
the string IS08859-1, as expected.

One of the problems with using XmSTRING_DEFAULT_CHARSET is that it
is defined as an empty string. Several synonyms for IS08859-1 exist in Xm. h,

however, including XmSTRING_IS08895_1, XmSTRING_OS_CHARSET, and
XmFALLBACK_CHARSET. Using these, or the literal string "IS08859-1",
yields the default character set, and therefore can be used in place of Xm­
STRING_DEFAULT_CHARSET.

If you do not like the default character set, define a new font list and use
any font and character set you choose.

236

14.3

MOTIF INTERNALS

THE MOTIF CLIPBOARD

You can use the Motif Clipboard to transfer information within or between
Motif applications. Appendix I lists and describes in some detail the functions
available for manipulating the Clipboard. You can access these functions by
including the file <Xm/CutPaste . h>. The Clipboard has three unique features:

1. It has a locking facility which prevents more than one application from
accessing the Clipboard at anyone time when multiple applications run
together.

2. It can store a single item of data in multiple formats, each of which has
a unique name. For example, an advanced word processor might store an
item on the Clipboard in the word processor's native format, in a standard
fo!mat for transferring to other word processing programs, and in raw text
format (STRING format) for copying to simple editors. A program pasting
from the Clipboard can examine these different formats and choose the
most appropriate one.

3. You can copy data onto it directly or by name. A direct copy moves a block
of data directly from a buffer onto the Clipboard. A copy by name passes
a callback function to the Clipboard. The callback function is called and
the data is transferred to the Clipboard only if the item is pasted. Thus, the
application can defer copying large data items until it needs to do so.

You can use the program in Listing 14.3 to examine the contents of the
Clipboard at any time. This piece of code creates a push button that dumps
the Clipboard's contents to stdout when clicked.

Listing 14.3 Retrieving the Contents of the
Clipboard and Dumping Them to Stdout

/* clipboard_test.c */

#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/CutPaste.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel;
Widget button;

void show_status(status,s)

14.3 THE MOTIF CLIPBOARD

{

}

int status;
char *s;

switch (status)
{

}

case ClipboardSuccess:
printf("%s successful\n",s);
break;

case ClipboardLocked:
printf("%s found locked clipboard\n",s);
break;

case ClipboardFail:
printf("%s failed\n",s);
break;

case ClipboardTruncate:
printf("%s truncated data\n",s);
break;

case ClipboardNoData:
printf("%s found no data\n",s);
break;

void buttonCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmPushButtonCallbackStruct *call_data;

1* called whenever pushbutton is clicked. *1
1* gets the contents of the clipboard and dumps it to stdout. *1
{

char format [1000] ;
char buffer[10000];
int status, private_id;
unsigned long num_bytes;

1* get the first format of the clipboard. *1
status=XmClipboardlnquireFormat(XtDisplay(toplevel), XtWindow(w),

1, format, 999, &num_bytes);
format[num_bytes]='\O';
show_status(status,IXmClipboardlnquireFormat");
printf(IFormat=%s\n",format);

1* start the retrieve. *1
status=XmClipboardStartRetrieve(XtDisplay(toplevel), XtWindow(w),

call_data->event->xbutton.time);

237

238 MOTIF INTERNALS

}

shov_status(status,"XmClipboardStartRetrieve ll);

1* get the data and dump it. *1
status=XmClipboardRetrieve(XtDisplay(toplevel), XtWindov(v),

format, buffer, 9999, &num_bytes, &private_id);
buffer[num_bytes]='\O';
shov_status(status,IIXmClipboardRetrieve ll);
printf(lIformat=%s\nll,format);
printf(IIPrivate ID=%d\nll,private_id);
printf(lInum of bytes=%d\nll,num_bytes);
printf(lIdata=%s\nll,buffer);

1* end the retrieve. *1
status=XmClipboardEndRetrieve(XtDisplay(toplevel), XtWindov(v»;
shov_status(status,IIXmClipboardEndRetrieve ll);
printf(II--\nll);

void main(argc,argv)
int argc;

{

}

char *argv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,IIII,NULL,O,&argc,argv,

NULL ,NULL ,0) ;

1* create a push button *1
ac=O;
XtSetArg(al[ac] ,XmNlabelString, XmStringCreate

(llpush to dump clipboard contentsll,char_set»; ac++;
button=XmCreatePushButton(toplevel,lIbuttonll,al,ac);
XtManageChild(button);
XtAddCallback(button,XmNactivateCallback,buttonCB,NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

To use the code in Listing 14.3, compile and execute the editor shown
in Chapter 10. Cut or copy some text from the editor onto the Clipboard
using the Edit menu, then click the push button created when Listing 14.3

14.4

'4.4 MOTIF GADGETS 239

is executed. A copy of the Clipboard's contents will be dumped to stdout. To
retrieve the data from the Clipboard, the code extracts the name of the first
format on the Clipboard. Since this item came from the text widget in the
editor, we know that it will be stored in the STRING format. The code then
retrieves the material using the format name and prints it to stdout.

MOTIF GADGETS

A gadget is virtually the same as a widget from both the programmer's and the
user's point of view. The advantage of using a gadget, however, is that it takes
less time and memory to create, manage, and update on the screen, thereby
making an application smaller and faster.

The main difference between a gadget and a widget is that a gadget does not
possess its own window. This means you must attach gadgets to a parent that
has a window (almost always some type of manager widget). Note that you
cannot attach gadgets to toplevel, because toplevel does not have a window
that gadgets can use.

Listing 14.4 demonstrates how to use a gadget by creating a radio box filled
with five toggle gadgets. Chapter 11 described the same process, but with
toggle-button widgets instead.

Listing 14.4 Using Toggle Button Gadgets
In a Radio Box

#include <Xm/Xm.h>
#include <Xm/ToggleBG.h>
#include <Xm/RowColumn.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel, radio_box, toggles[5];

void changeCB(w,client_data,call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

/* called whenever one of the toggles changes state */
{

Boolean set;

240 MOTIF INTERNALS

}

Arg al[10] ;
int ac;

ac=O;
XtSetArg(al[ac], XmNset, &set); ac++;
XtGetValues(w,al,ac);

if (set)
printf(IIYod turned on\nll,client_data);

else
printf(IIYod turned off\nll,client_data);

void main(argc,argv)
int argc;

{

}

char *argv [] ;

Arg al [10] ;
int ac;
int x;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,II",NULL,O,&argc,argv,

NULL,NULL,O);

1* create a Radio Box container to hold the toggles *1
ac=O;
radio_box=XmCreateRadioBox(toplevel,lIradio_boxll,al,ac);
XtManageChild(radio_box);

1* create 5 toggles *1
for (x=O; x<5; x++)
{

}

ac=O;
XtSetArg(al[ac],XmNlabeIString,

XmStringCreate("I'm a toggle", char_set»; ac++;
toggles [x] =XmCreateToggleButtonGadget (radio_box, "toggle ",al,ac);
XtManageChild(toggles[x]);
XtAddCallback (toggles[x], XmNvalueChangedCallback, changeCB, x);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

14.5

14.5 SHELLS 241

Listing 14.4's code differs from the radio box code shown in Chapter 11
in only two respects: The #include line includes <Xm/ToggleBG. h> instead
of <Xm/ToggleB.h>, and it calls XmCreateToggleButtonGadget instead of
XmCreateToggleButton. The toggle buttons look exactly the same whether
they're implemented with widgets or gadgets.

Gadgets are available for labels, push buttons, toggles, separators, arrow
buttons, and cascade buttons. To improve efficiency, you can create all menu
buttons, button arrays in RowColumn widgets, separators attached to forms
and bulletin boards, and all appropriate widgets in dialog boxes as gadgets
instead of widgets.

SHELLS

The toplevel shell widget returned by XtApplnitialize possesses an impressive
inheritance hierarchy. It is of the class ApplicationShell, and it inherits re­
sources from ToplevelShell, VendorShell, WMShell, Shell, Composite, and
Core. The top level widget thus provides 68 resource values that you can use to
customize its appearance. The resource lists for all of these widgets appear at
the end of Appendix J.

The toplevel widget inherits many resources important for its on-screen be­
havior from the WMShell widget. You can customize many aspects of an ap­
plication's window, including the window's title, its icon pixmap, its mini­
mum and maximum size, and so on. The code in Listing 14.5 shows how.

Listing 14.5 Manipulating the Toplevel Shell's
Resources

/* shell. c */

#include <Xm/Xm.h>

#include "folder.xbm"

XtAppContext context;

Widget toplevel;

void main(argc,argv)
int argc;
char *argv [] ;

242 MOTIF INTERNALS

{

}

Arg al[20];
int ac;
int foreground. background;
Pixmap pix;
unsigned int depth;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context.IIII.NULL.O.&argc.argv.

NULL.NULL.O);

1* create the bitmap for the icon pixmap. *1
pix=XCreateBitmapFromData(XtDisplay(toplevel).

RootWindowOfScreen(XtScreen(toplevel».
folder_bits.folder_width.folder_height);

1* modify toplevel. *1
ac=O;
XtSetArg(al[ac]. XmNtitle. IISample Title ll

); ac++;
XtSetArg(al[ac]. XmNminWidth. 200); ac++;
XtSetArg(al[ac]. XmNmaxWidth. 400); ac++;
XtSetArg(al[ac]. XmNminHeight. 200); ac++;
XtSetArg(al[ac]. XmNmaxHeight, 400); ac++;
XtSetArg(al[ac], XmNiconPixmap, pix); ac++;
XtSetArg(al[ac], XmNheight, 300); ac++;
XtSetArg(al[ac], XmNwidth, 300); ac++;
XtSetValues(toplevel,al,ac);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

The argument list passed to toplevel sets the window title, the minimum
and maximum size of the window, the initial width and height of the window,
and the icon pixmap that appears when you iconify the window (see Chapter
17 for information on pixmaps). Run the code and try resizing the window.
Iconify the window to see the icon pixmap.

Refer to the end of Appendix J, or to the Motif PRM, for more information
on the available resources.

15 THE X LAYER

The X Window System is a basic windowing system. It provides the fundamen­
tal resources and capabilities you need to create graphical applications. Sitting
on top of X is the X Toolkit, on top of which sits Motif, as shown in Figure
IS.1. A Motif application can use any of the four libraries in this stack: UNIX,
X, Xt, or Motif.

In order fully to understand and use Motif, you need a basic understand­
ing of X. As your knowledge of Motif grows, your knowledge of X should
grow as well, because X contains functionality that can significantly enhance
Motif applications or handle areas that Motif alone cannot handle (for exam­
ple, resource databases, inter-client communication, drawing, and changing
cursors). This chapter introduces you to some of the basics of X. Chapter 17
covers the X drawing model in detail and shows you how to use it to support
graphics in a Motif program. A book such as Scheifler and Gettys's, or Jones's,
provides detailed information on the X layer.

15.1 CAPABILITIES OF THE X WINDOW SYSTEM

The X Window System provides a number of different capabilities. The two
most basic and frequently used are window creation and drawing. Each Mo­
tif widget that appears on the screen consists of a window and the drawing
that represents the widget's contents. Other capabilities that X provides are
less easy to see, but are nonetheless very important to the application. These
capabilities include event and event loop handling, cursor management, re­
source management, color mapping, inter-client communication (the ability
of different X applications to communicate with one another), input and out­
put buffering, and so on. X provides its capabilities in a general way and does
not specify what you should do with them. It does not say where windows
should appear or how they should look. It simply provides the tools you need
to create them. A widget set like Motif enforces a specific "look and feel" in
user interfaces that you create.

243

244 THE X LAYER

15.2

Figure 15.1 The Motlf/Xt/X/UNIX Hierarchy

Application program

I Motif widget set

I X toolkit

I Xlib

UNIX

Accesses any layer in the hierarchy

Implements a specific set of widgets that
gives applications a certain look and feel

Allows the creation and management of
object-oriented user interface widget sets

Handles low-level window creation,
drawing, and events

One of the most interesting features of X is its handling of networks. Its fun­
damental design assumes the existence of networks, so using X over a network
is completely transparent. The desire for this transparency drove many of the
design decisions that led to X's structure and functionality.

THE X SERVER/CLIENT MODEL

A concrete example can help you understand the design of X as well as the
server/client model. Assume that you have an X terminal on your desk, con­
nected to a network. It is extremely important to understand the difference
between an X terminal and a workstation. Unlike a workstation, an X termi­
nal contains no general processing capabilities of its own, but like a normal
dumb terminal depends on another machine somewhere on the network to
perform the computations that update its display.

An X terminal consists of one or more screens (X supports multiple screens,
but a single screen is the most common configuration), a keyboard, a mouse or
other pointing device, a CPU, some RAM (typically 4 MB or so), and a network
connection. Its CPU executes a single program, typically in ROM, that causes
it to act like an X server, or a server of X for client programs running on other
machines on the network. The X server/client model enforces a total separation
of the X server and client programs: Clients generate commands that cause the
X server to update its display, and the X server accepts actions from the user
and sends them back to client programs as events.

Most of the time the X terminal is doing two things. First, when the user
uses the keyboard or the mouse, the terminal packages the action as an event
and sends it over the network to the client. The client responds to events
by sending commands to the X server (the terminal). Second, the terminal
interprets these commands to create windows, draw in them, and so on. The
configuration is shown in Figure 15.2.

15.2 THE X SERVER/CLIENT MODEL

Figure 15.2 The X Server/Client Model

VAX (or other
medium to large

computer or
workstation)

X client

-Events
--r-----------------------~

Network X commands-

245

X terminal

D
I I

X server

Together, the X terminal's screen, keyboard, and mouse are called a display.
In order for an X client to do anything on the X terminal, it must use a
function to open a communication path to a display. In a pure server/client
situation, where the server is an X terminal and the client is running on
another computer, the communication path is the network.

On a workstation, the situation is no different: The server and client remain
completely separate, although they both happen to run on the same machine.
A background process running on the workstation's CPU implements the X
server as an independent entity. Client programs also run on the workstation
(or client programs on other machines can use the workstation's X server over
the network). In general, the client programs running on the workstation it­
self talk to the X server on the workstation through some relatively efficient
mechanism such as shared memory. But keep in mind that there is still com­
plete separation between the X server and its clients. As you might expect, this
separation entails a performance penalty. By accepting X, the marketplace has
decided that network transparency is more important than peak performance.

The X protocol controls the communication between the client program and
the X server, specifying the format of bits and bytes in the network packets
flowing between the two. The client program and its programmer do not have
to worry about the actual format of the packets because Xlib. h-the library
of functions, types, constants, and variables that provide the C programming
interface to X-imposes a layer of abstraction between the protocol and the
program. X can talk to any language, provided that a programming interface
exists between the language and the protocol.

246

15.3

THE X LAYER

INSIDE AN X SERVER

An X server is an interesting device. For efficiency's sake, all of the basic re­
sources provided by X are stored in the X server rather than in the client ma­
chine. These resources include windows, pixmaps, fonts, colormaps, cursors,
and graphics contexts. Definitions of each of these resources follow. Scheifler
and Gettys, in various chapters of X Window System, provide further details.

Window

A window is a rectangular area on the screen that you can draw in using X
drawing commands. Windows in X can be nested and overlapped. They are
specific to a given screen and have a strict ownership hierarchy. The Root
window is the entire screen. Each window on the screen is owned by the root
or another window on the screen. The tree that derives from this ownership
hierarchy is called a window tree, and the entire tree resides in the X server.

Pixmap

A pixmap is a two-dimensional array of pixels, each of which consists of some
number of bits known as the depth of the pixel. In general, all pixels on a given
screen have the same depth. The depth determines the number of possible
colors a single pixel can display. By convention, a pixmap of depth 1 is called
a bitmap.

A pixmap is like a window, except that the window is on-screen and a
pixmap is off-screen. You can perform all of the X drawing commands except
XClearArea and XClearWindow in a pixmap as well as in a window. You
can copy regions of pixels from pixmaps to windows and from windows to
pixmaps, provided that the pixmap and the window are owned by the same
screen and have the same depth. (See Chapter 17 for more information.)

Font

A font is a set of bitmaps, each of which determines how an individual char­
acter in the font appears on-screen. The font bitmaps are loaded from client
to server when you first need them by using a font loading function such as
XLoadQueryFont. (See Scheifler and Gettys.)

Colormap

On color systems, the depth of each screen pixel is often smaller than the full
color range of the screen. For example, most screens can display 16.7 million

15.3 INSIDE AN X SERVER 247

colors per pixel. To save money, screen memory might consist of only one
byte per pixel, giving each pixel a depth of 8 bits and a range of only 256
possible colors. A color map controls how the 256 possible colors map to the
16.7 million available colors. It controls the mapping of each 8-bit value to a
specific 24-bit value. (See Scheifler and Gettys.)

Cursor

A cursor is a pointer on the screen whose movement follows the mouse. The
appearance of the cursor is controlled by a pair of bitmaps, and it can change
shape as it moves over different regions on the screen. (See Section 15.3.)

Graphics context

A graphics context, or GC, determines how a shape is drawn when one of the X
drawing functions is invoked. A GC can control color, line width, pattern of
pixels used during filling, and so on. (See Chapter 17 for more information.)

The fact that these resources exist in the server helps to make X more ef­
ficient. For example, a client program can create a pixmap, draw into it, and
copy the contents of the pixmap to a window to provide smooth animation.
Because the pixmap and window both reside in the X server, the copy op­
eration takes place almost instantaneously. If the bits had to flow through
the network during the copy operation, the usefulness of pixmaps would be
severely diminished. On the other hand, the RAM available to the server can
limit the space available for pixmaps.

The fact that these resources are allocated and stored in the server also re­
quires that you use special functions to deallocate the space they occupy when
you no longer need them. RAM limitations in many servers make the need
for appropriate deallocation very important. The Xlib functions XFreeCol­
ormap, XFreeCursor, XFreeFont, XFreeGC, XFreePixmap, and XDestroy­
Window provide appropriate ways to free each of the resources stored in an
X server (see Appendix G for descriptions). You should use these deallocation
functions as needed to avoid excessive consumption of RAM space in the X
server.

Motif uses the X layer and the capabilities of the X server constantly. For
example, each widget you see on-screen in an application consists of one
or more windows created by X, as well as the contents of those windows
created by X drawing commands. Because of the link between X and Motif,
an interesting dichotomy occurs: The client program maintains a copy of the

248 THE X LAYER

15.4

widget tree in the client's memory space, while the X server maintains the
corresponding window tree for the application in the server's memory space.

X EVENTS

The X server is responsible for interpreting user events, packaging them, and
sending them to the client so that it can respond to them appropriately. The
concept of an event can best be explained with an example. The code in List­
ing 15.1 creates the simplest kind of X program: It contains no error checking
and does no drawing. It simply creates one window, maps it to the screen, and
starts processing its events.

Listing 15.1 A Very Simple X Program

/* xdemo.c */

#include <X11/Xlib.h>

Display *display;
Window window;
XEvent event;

void mainO
{

}

display=XOpenDisplay(NULL);
window=XCreateSimpleWindow (display, XDefaultRootWindow (display),

100,100,200,200,4,0,0);
XMapWindow(display,window);
XSelectlnput(display,window,KeyPressMask I ButtonPressMask I

ExposureMask);

while (True)
{

}

XNextEvent(display,&event);
printf(lI%d\n ll ,event.type);

To run the code in Listing 15.1, compile it using the following command:

cc -0 xdemo xdemo.c -lXl1

Then type xdemo to execute it. Now try clicking in the window, typing keys
on the keyboard, and covering the window with another window and then

15.4 X EVENTS 249

uncovering it. Note that for each of these events, a number appears on the
screen. This number is an integer that contains the event type for the event.
The following code, which you can use to replace the bottom of Listing 15.1,
provides another, slightly cleaner, way to handle the event loop:

while (True)
{

}

XNextEvent(display,&event)j
if (event.type==ButtonPress)

printf("ButtonPress event generated\n")j
else if (event.type==KeyPress)

printf("KeyPress event generated\n")j
else if (event.type==Expose)

printf(IIExpose event generated\n")j

This code prints out appropriate messages instead of integers and is there­
fore easier to understand. ButtonPress, KeyPress, and Expose are constants
defined in Xlib. h for each of the event types. These events are discussed be­
low.

The program in Listing 15.1 starts by opening a connection to a display (an
X server). The parameter NULL indicates that the contents of the environ­
ment's DISPLAY variable should be used for the display, but a connection to
any display on the network can be formed by using the name of that display
as the parameter. The program then creates a window on the display, using
the root window of the specified display as its parent. The window's upper left
corner is located at the point 100, 100, and the window's size will be 200 x 200
pixels. The border width of the window is 4, and the border color and the
background color are O. The colors don't matter here, since the program does
no drawing, but they would matter in a real application. The program then
maps the window, making it visible.

Next, the program makes the window sensitive to certain user and system
events using an event mask. This mask is a string of bits that specifies the
events to which the window should be sensitive. The program in Listing 15.1
makes the window sensitive to three types of events: KeyPress, ButtonPress,
and Exposure. If you omit this step, the window responds to no events of any
type. You can use the following table of mask values to make any window in
X sensitive to any of 25 possible event types. See Scheifler and Gettys for a
detailed description of these event types and events in general.

KeyPressMask
KeyReleaseMask

ButtonMotionMask
KeymapStateMask

250 THE X LAYER

ButtonPressMask ExposureMask
ButtonReleaseMask VisibilityChangedMask
EnterWindowMask StructureNotifyMask
LeaveWindowMask ResizeRedirectMask
PointerMotionMask SubstructureNotifyMask
PointerMotionHintsMask SubstructureRedirectMask
Button 1 MotionMask FocusChangeMask
Button2MotionMask PropertyChangeMask
Button3MotionMask ColormapChangeMask
Button4MotionMask OwnerGrabButtonMask
Button5MotionMask

The program now enters the event loop, duplicated below:

while (True)
{

}

XNextEvent(display,&event);
printf("%d\n",event.type);

The X server interprets events and stores them in an event queue. The event
loop uses a call to XNextEvent to request an event from the event queue, and
once the event has been extracted, a program generally parses it to determine
which window it occurs in and what type of event it is. This parsing allows the
program to handle the event correctly. Given that there are 25 different event
types, and given that a typical large application has many nested windows on
screen at once, the amount of code required to successfully parse the incoming
events can be quite large. In Listing 15.1 the code does nothing but print out
the event type as each event is received.

When you run the code, each keystroke, mouse click, and exposure gener­
ates an event. The code receives an XEvent structure returned by the call· to
XNextEvent and placed in the variable named event. The XEvent structure
is a union of all of the possible event types, as shown below. This definition
comes from Xlib.h.

typedef union _XEvent {
int type; 1* must not be changed; first element *1
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotionj
XCrossingEvent xcrossingj

15.4 X EVENTS

XFocusChangeEvent xfocusj
XExposeEvent xexposej
XGraphicsExposeEvent xgraphicsexposej
XNoExposeEvent xnoexposej
XVisibilityEvent xvisibilityj
XCreateWindowEvent xcreatewindowj
XDestroyWindowEvent xdestroywindowj
XUnmapEvent xunmapj
XMapEvent xmapj
XMapRequestEvent xmaprequestj
XReparentEvent xreparentj
XConfigureEvent xconfigure;
XGravityEvent xgravityj
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequestj
XCirculateEvent xcirculatej
XCirculateRequestEvent xcirculaterequestj
XPropertyEvent xpropertYj
XSelectionClearEvent xselectionclearj
XSelectionRequestEvent xselectionrequestj
XSelectionEvent xselectionj
XColormapEvent xcolormapj
XClientMessageEvent xclientj
XMappingEvent xmappingj
XErrorEvent xerrorj
XKeymapEvent xkeymapj
long pad[24]j

} XEventj

251

You can interrogate the type field to decide what type of event has occurred
and then use the correct field of the union to access information in the event.
The event structures for KeyPress, ButtonPress, and Expose events, for exam­
ple, follow:

typedef struct {
int typej 1* of event *1
unsigned long serialj 1* # of last request processed by server *1
Bool send_eventj 1* true if this came from a SendEvent

request *1
Display *displaYj 1* Display the event was read from *1
Window window; 1* "event" window it is reported

relative to *1
Window root; 1* root window that the event occured on *1
Window subwindow; 1* child window *1

252 THE X LAYER

Time time;
int x, y;

int x_root, y_root;
unsigned int state;
unsigned int keycode;
Bool same_screen;

} XKeyEvent;

/*
/*

/*
/*
/*
/*

milliseconds */
pointer x, y coordinates

window */
coordinates relative to
key or button mask */
detail */
same screen flag */

typedef XKeyEvent XKeyPressedEvent;
typedef XKeyEvent XKeyReleasedEvent;

typedef struct {
int type; /* of event */

in event

root */

unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent

Display *display;
Window window;

Window root;
Window subwindow;
Time time;
int x, y;

int x_root, y_root;
unsigned int state;
unsigned int button;

request */
/* Display the event was read from */
/* lIeventll window it is reported

relative to */
/* root window that the event occured on */
/* child window */
/* milliseconds */
/* pointer x, y coordinates in event

window */
/* coordinates relative to root */
/* key or button mask */
/* detail */

Bool same_screen; /* same screen flag */
} XButtonEvent;
typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;

Display *display;
Window window;
int x, y;
int width, height;
int count;

} XExposeEvent;

/* # of last request processed by server */
/* true if this came from a SendEvent

request */
/* Display the event was read from */

/* Upper left corner of expose rectangle */
/* Width and height of expose rectangle */
/* if non-zero, at least this many more */

15.5

15.5 USING X TO CHANGE CURSOR SHAPE AND MAKE NOISE 253

In the XKeyPressEvent structure, the field of primary interest is keycode.
In the XButtonPressEvent structure, the fields of interest are x and y. In
The XExposeEvent structure, the fields x, y, width, and height specify the
exposed rectangle.

The event loop also has another function: It flushes the output queue. X
supports an event queue for incoming information as well as an output queue
for requests to the X server. This output queue stores requests so that the
program can send them to the server in bulk. The call to XNextEvent flushes
this output queue, as does a call to XFlush (see Chapter 17).

From this simple example program you can begin to see Motif's advantages.
Motif does almost all of the X interfacing for you. When you create and man­
age a widget, Motif is responsible for drawing the widget and creating its win­
dows. When events arrive in a widget, Motif handles them for you and updates
the screen as appropriate. Any events that interest you as the programmer are
delivered to your code using the callback structure. With Motif, you avoid al­
most all of the event handling and drawing required in X.

USING X TO CHANGE CURSOR SHAPE AND MAKE NOISE

There are many reasons for using the X layer directly in your Motif programs.
For example, since Motif has no drawing commands, you must use X to draw
(see Chapter 17). You can also use X to change the cursor's shape. If your
application is going to stall (stop processing events) for more than half a
second or so, it is customary to change the cursor to a watch or an hourglass so
that the user does not panic. The watch or hourglass frequently appears during
file loading and saving, when a complicated figure is redrawn, and so on.

You can drop the code in Listing 15.2 into your program to make cursor
changing easy.

Listing 15.2 X Code That Changes the Cursor

#include <Xll/cursorfont.h>

void watch_cursor(Widget w)
/* change the cursor to a wrist watch shape. */
{

Cursor cli

cl = XCreateFontCursor(XtDisplay(w),XC_watch)i
XDefineCursor(XtDisplay(w),XtWindow(w),cl)j

254 THE X LAYER

XFlush(XtDisplay(w));
}

void normal_cursor(Widget w)
1* return the cursor to its normal shape. *1
{

}

XUndefineCursor(XtDisplay(w),XtWindow(w));
XFlush(XtDisplay(w));

In general, you pass the toplevel widget to either of these functions,so that the
cursor shape applies to the entire application window. On the other hand, you
can pass in a single widget from the application so that the new cursor shape
applies only to that widget.

The code uses the X functions XCreateFontCursor, XDefineCursor, and
XUndefineCursor to change the cursor's shape and return it to its previous
shape (see Appendix G for descriptions). The XCreateFontCursor function
loads the specified shape from the file /usr/include/Xll/cursorfont.h. The
XDefineCursor function defines the new shape in the specified widget, while
the XUndefineCursor function returns the cursor to its prior shape. The call
to XFlush changes the cursor immediately by flushing the X output buffer.

The file /usr/include/Xll/cursorfont.h defines a large number of cursor
shapes, any of which you can use by replacing the XC_watch parameter with
the desired value. See the aSF /Motif Style Guide (Appendix C) for gUidelines on
cursor usage.

The X layer also provides access to available sound capabilities~ .use the
following call to XBell to cause the X server to beep.

XBell(display,percent);

display is the X display and percent controls the volume of the bell. If the
display supports an adjustable volume on the bell, you can set the vol~me to
any value between -100 and 100. The setting 100 provides maximum volume.

The X layer provides a wide range of capabilities, many of which can be
used to add functionality to your Motif programs. You can learn a great deal
by getting a book devoted to the X layer and studying the available features.
(For example, Sheifler and Gettys or Jones, both cited in Appendix A.)

16 THE XT LAYER

Most of the abstraction offered by the Motif widget set comes from the layer
below Motif: the X Toolkit layer, also known as Xt or tithe Intrinsics." The
X Toolkit makes the creation of widget sets possible. It also makes possible
the object-oriented aspects of Motif programming-resources, callbacks, inher­
itance, and so on. X Window System Toolkit, by Asente and Swick, offers an
in-depth look at the X toolkit and includes a great deal of material on how to
create your own widgets and widget sets.

The Xt layer offers a number of capabilities that can be used to enhance Mo­
tif applications. The following sections offer some insight into this extended
functionality by describing time outs and work procs, event handlers, memory
management functions, and so on.

16.1 TIME OUTS

A time out is like an alarm clock set to go off in a certain number of millisec­
onds. Once the alarm goes off, it is handled by a specified callback routine.
Time outs are useful in any application that has to update itself periodically.
For example, the xload application updates the load graph every specified
number of seconds. The quota dial program discussed briefly in Chapter 9
updates its display every 15 seconds. You can use a time out to handle these
updates and to perform other background processing.

To add a time out to a program, you have to make the event handler aware
of it and create a callback function to respond to the callback it generates. Use
the XtAppAddTimeOut function to add the time out.

XtAppAddTimeOut Add a timeout to the application.

Xtlntervalld XtAppAddTimeOut(
XtAppContext context,

255

256 THE XT LAYER

16.2

unsigned long interval,
XtTimerCallbackProc proc,
XtPointer client_data);

context
interval
proc

The context value for this application.
The time interval of the delay, in milliseconds.
The callback function to call when the interval
expires.
A four-byte piece of data passed to the callback
function.

A typical call to this function might look like this:

id = XtAppAddTimeOut(context,1000,the_callback_function;client_data);

where context is the application's context variable, 1000 is the time delay
(in milliseconds), the_callback_function is the callback function, and client_
data is any four-byte value (as it is for any clienCdata parameter). The id re­
sult is of type XtIntervalId and uniquely identifies this time out. If necessary,
you can remove the time out before it goes off by calling XtRemoveTimeOut
and passing it id. Following is a typical callback function:

void the_call back_function (client_data, id)
XtPointer client_data;
Xtlntervalld id;

1* function that is called when the timeout callback takes place. *1
{

}

do_whatever 0 ;
XtAppAddTimeOut(context,1000,the_callback_function,client_data);

The callback function accepts the client_data and an id parameter. If you
need to trigger the time out again, you must add it again as shown here.

WORK PROCS

A work proc is similar to a time out, but you specify no time interval. Once
a work proc is registered, it calls its callback function as soon as there are no
other events pending in the event queue. The work proc is called repeatedly,
until a Boolean value of true returned by the work proc tells the system to stop
calling it. The following description identifies the work proc creation function.

16.2 WORK PROCS

XtAppAddWorkProc Add a work proc to an application.

XtWorkProcld XtAppAddWorkProc(
XtAppContext context,
XtWorkProc proc,
XtPointer client_data);

context
proc
client_data

The context value for the application.
The callback function to be called.
A four-byte piece of data passed to the callback
function.

You can register a work proc with the following code:

id = XtAppAddWorkProc(context,the_work_proc,client_data);

257

where id is of type XtWorkProcId and the parameters are the same as for a
time out. You can remove a work proc by calling XtRemoveWorkProc and
passing it id.

Following is a typical work proc callback function:

Boolean the_work_proc(client_data)
XtPointer client_data;

1* work proc that is called when event loop
{

}

do_whatever 0 ;
return False;

The callback receives the client_data parameter specified by XtAppAddWork­
Proc, does whatever it needs to do, and returns a Boolean value. If false, the_
work_proc remains registered and will be called again as soon as the event
loop is idle. If true, the work proc is removed.

The structure of the work proc lets you break up large tasks into small pieces
handled by multiple calls to the work proc function. The code in Listings
16.1 and 16.2 shows how to use work procs. The drawing area widget and the
drawing function XDrawLine are both discussed in Chapter 17.

In Listing 16.1, the code creates a drawing area and quit button, and draws
25,000 random line segments in the drawing area. On my machine, it takes
about 10 seconds for the drawing to complete. You should adjust the NUM_

258 THE XT LAYER

LINES constant so that it takes approximately the same amount of time on
your machine.

Listing 16.1 A Drawing Program That Does Not Use
a Work Proc

/* noworkproc.c */

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>
#include <Xm/Form.h>
#include <Xm/PushB.h>

#define NUM_LINES 25000
#define SIZE 500

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

GC gc;
Widget toplevel;
Widget drawing_area;
Widget button;
Widget form;
int rand_seed=10;
int line_index;

void setup_gc 0
/* set up the graphics context. */
{

int foreground, background;
XGCValues vals;
Arg al[10];
int ac;

/* get the current fg and bg colors. */
ac=O;
XtSetArg(al[ac],XmNforeground,&foreground); ac++;
XtSetArg(al[ac],XmNbackground,&background); ac++;
XtGetValues(drawing_area,al,ac);

/* create the gc. */
vals.foreground = foreground;
vals.background = background;

16.2 WORK PROCS

gc=XtGetGC(drawing_area,GCForeground I GCBackground,&vals)j
}

int randO
/* from K&R */
{

rand_seed = rand_seed * 1103515245 +12345;
return (unsigned int) (rand_seed / 65536) Y. 32768;

}

void exposeCB(w,client_data,call_data)
Widget Wj
XtPointer client_data;
XtPointer call_data;

/* called whenever drawing area is exposed. */
{

}

int x;

/* draw random line segments */
for (x=l; x<=NUM_LINES; x++)
{

}

XDrawLine(XtDisplay(drawing_area),XtWindow(drawing_area),
gc, rand()y'SIZE,rand()y'SIZE,rand()y'SIZE,rand()y'SIZE);

void buttonCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XtPointer call_data;

/* called whenever quit button is clicked. */
{

}

printf(IIQuit button clicked\nll);
exit(O);

main (argc , argv)
int argc;
char *argv [] ;

{

Arg al[10];
int ac;

/* create the toplevel shell */
toplevel = XtApplnitialize(&context,IIII,NULL,O,&argc,argv,

259

260 THE XT LAYER

}

NULL,NULL,O)j

1* set window size. *1
ac=Oj
XtSetArg(al[ac],XmNheight,SIZE)j aC++j
XtSetArg(al[ac],XmNwidth,SIZE)j aC++j
XtSetValues(toplevel,al,ac)j

1* create a form to hold widgets *1
ac=Oj
form=XmCreateForm(toplevel,lIformll,al,ac)j
XtManageChild(form)j

1* create a push button *1
ac=Oj
XtSetArg(al[ac],XmNlabelString,

XmStringCreate(IIQuitll,char_set»j aC++j
XtSetArg(al[ac], XmNtopAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM)j ac++;
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM)j aC++j
button=XmcreatePushButton(form,lIbuttonll,al,ac)j
XtManageChild(button)j
XtAddCallback(button,XmNactivateCallback,buttonCB,NULL)j

1* create a drawing area widget. *1
ac=Oj
XtSetArg(al[ac], XmNtopAttachment, XmATTACH_WIDGET)j aC++j
XtSetArg(al[ac], XmNtopWidget, button)j aC++j
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNbottomAttachment, XmATTACH_FORM)j aC++j
drawing_area=XmCreateDrawingArea (form , IIdrawing_area li ,al,ac) j
XtManageChild(drawing_area)j
XtAddCallback(drawing_area,XmNexposeCallback,exposeCB,NULL)j

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

When you run this code, the expose event will cause the 25,000 segments
to be drawn. This causes a problem: Since it takes 10 seconds to draw 25,000
line segments, the user interface stalls for 10 seconds. Run the program, and

16.2 WORK PROCS 261

as soon as the window maps, click the quit button. The program does not
quit until after it draws all 25,000 segments. The delay occurs because the
main event loop is not processing events while the code is in the exposeCB
function.

A work proc can solve this problem. Replace the exposeCB function in
Listing 16.1 with that shown in Listing 16.2.

Listing 16.2 Adding a Work Proc to Listing 16.1

Boolean work_proc(client_data)
XtPointer client_dataj

1* The work proc divides the drawing of lines up into groups of 1000
lines so that the event loop gets returned to regularly. *1

{

}

int Xj

for (x=Oj x<=NUM_LINES/25 && line_index<NUM_LINESj x++)
{

}

XDrawLine(XtDisplay(drawing_area),XtWindow(drawing_area),
gc, rand()XSIZE,rand()XSIZE,rand()XSIZE,rand()XSIZE)j

line_index++j

if (line_index<NUM_LINES)
return Falsej

else
return Truej

void exposeCB(w,client_data,call_data)
Widget Wj
XtPointer client_dataj
XtPointer call_dataj

1* called whenever drawing area is exposed. *1
{

}

XtWorkProcId idj

line_index=Oj
id=XtAppAddWorkProc(context,work_proc,NULL)j

In this code, exposeCB sets up a work proc, which divides the drawing task
into groups of 1,000 lines each. As each group completes, the work proc re­
turns to the main loop so that it can process events before returning to the
work proc and the next 1,000 lines.

262 THE XT LAYER

16.3

Now run the code again and click the quit button. The program quits almost
immediately, because the quit button's events are processed during breaks in
the work proc processing.

EVENT HANDLERS

At times, Motif gives you insufficient access to the events received by a wid­
get. For example, as we will see in Chapter 17, you can access ButtonPress,
ButtonRelease, and ButtonMotion events directly in a drawing area widget
with the Xt function XtAddEventHandler. You can use this function on any
widget in the Motif widget set to receive raw X events intended for the widget.

XtAddEventHandler Adds an event handler to a widget.

void XtAddEventHandler(
Widget w,

w

EventMask mask,
Boolean nonmaskable,
XtEventHandler proc,
XtPointer client_data);

mask
nonmaskable

The widget to which to apply the event handler.
An X event mask.
If true, the handler is called when a nonmaskable
event is received.

proc
client_data

The callback function to be called.
A four-byte piece of data passed to the event-handling
function.

A typical call to the function follows. This statement adds an event handler
to the drawing_area widget. Each time the widget receives a ButtonRelease
event, the function handle_click is called. No clienCdata is specified.

XtAddEventHandler(drawing_area, ButtonReleaseMask, FALSE,
handle_click, NULL);

The handle_click function looks very similar to a callback function:

void handle_click(w,client_data,event)
Widget w;

16.4

16.4 INPUT EVENTS

{

}

XtPointer client_dataj
XEvent *eventj

printf("%d %d\n",event->xbutton.x,event->xbutton.Y)j

263

The only difference between this event-handling function and a callback func­
tion is that an XEvent is passed directly rather than being embedded inside of
a callback structure.

INPUT EVENTS

In Chapter 9, we used the link library to execute a standalone text application.
The link library uses a polling system that waits for input: The Motif appli­
cation must perform a link_read, which blocks if input is not available and
thus stalls the user interface, or the application must wait for input by calling
link_inpuC waiting repeatedly in a work proc. Xt avoids stalling by provid­
ing a way to implement input streams using the XtAppAddInput function.
This function causes your application to receive a callback at any time input
appears in a specified input buffer. Thus, your program services input requests
only when input is available. The programs shown in Listing 16.3 and 16.4

demonstrate the process.

Listing 16.3 A Motif Program That Uses
XtAppAddlnput

/* input.c */

#include <Xm/Xm.h>
#include <Xm/SelectioB.h>

#define OK 1
#define CANCEL 2

XtAppContext contextj
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSETj

Widget toplevel, dialog, listj
int pipefdl[2]j
int pidj

void dialogCB(w,client_data,call_data)
Widget Wj
int client_dataj

264 THE XT LAYER

XmSelectionBoxCallbackStruct *call_data;
1* callback function for the selection box *1
{

}

char *s;

switch (client_data)
{

}

case OK:
1* get the string selected by the user *1
XmStringGetLtoR(call_data->value,char_set,&s);
printf("%s\n",s);
XtFree(s);
break;

case CANCEL:
exit(O);
break;

void handle_input(client_data, source, id)
XtPointer client_data;

{

int *source;
XtInputId *id;

char *t,s[10000];
XmString xs;
int len;

len=read(*source,s,10000);
1* If the len==O, then the child has terminated so kill

off the input event. Otherwise, parse the block into its
separate lines and place them into the list widget. The
parsing is necessary because the block will probably
contain several lines rather than just one. *1

if (len==O)
{

{

else
{

XtRemoveInput(*id);
printf("Exec-ed program done.\n ll

);

s [len] =' \0' ;
t=strtok(s,"\n ll

);

while (t)

16.4 I N PUT EVENTS

}

}

{

}

xs=XmStringCreateLtoR(t,char_set);
XmListAddItem(list,xs);
XmStringFree(xs);
printf("Y.s\n",t);
t=strtok(NULL,"\n");

void setup_input_event()
forks
1* Sets up pipes and executes a text application in the child. *1
{

}

Arg al[10];
int ac;

pipe(pipefdl);
if«pid=fork(»==O)/*child*1
{

}

else

close(pipefdl[O]);
close(1) ;
dup(pipefdl[l]);
execlp("sample","sample",(char*)O);

1* Creates an input event handler for the pipe. *1
{

}

close(pipefdl[l]);
XtAppAddInput(context,pipefdl[O],XtInputReadMask,

handle_input,NULL);

void main(argc,argv)
int argc;

{

char *argv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtAppInitialize(&context,"",NULL,O,&argc,argv,

NULL,NULL,O) ;

265

266 THE XT LAYER

}

1* create the selection box *1
ac = 0;
XtSetArg(al[ac] ,XmNautoUnmanage,False); ac++;
XtSetArg(al[ac] ,XmNmustMatch,True); ac++;
dialog=XmCreateSelectionBox(toplevel,"dialog",al,ac);
XtManageChild(dialog);
XtAddCallback(dialog,XmNokCallback, dialogCB,OK);
XtAddCallback(dialog,XmNcancelCallback,dialogCB,CANCEL);
XtUnmanageChild(XmSelectionBoxGetChild(dialog,

XmDIALOG_HELP_BUTTON));
XtUnmanageChild(XmSelectionBoxGetChild(dialog,

XmDIALOG_APPLY_BUTTON));
list=XmSelectionBoxGetChild(dialog,XmDIALOG_LIST);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

Listing 16.4 Example Text Program

1* sample.c *1

#include <stdio.h>

mainO
{

}

int x;

for (x=O; x<20; x++)
{

}

sleep(1) ;
printf("Line %d\n",x);
fflush(stdout);

The code Listing 16.3 sets up a selection box widget in a toplevel shell, then
calls setup_input_event, which forks the application. The child fork routes its
stdout into one end of a pipe and then executes a standalone text application,
which in this case is the sample program shown in Listing 16.4 (although you

16.4 INPUT EVENTS 267

can substitute any text application). At the same time, the parent establishes
an input event sensitive to the other end of the pipe using XtAppAddInput.
Now the parent program returns to the event loop. As soon as input appears in
the pipe, the event loop senses the input event and triggers the handle_input
callback function. The handle_input function responds by reading the input
buffer, formatting the data found there, and then displaying it in the selection
box.

The sample application in Listing 16.4 is a simple text program that pro­
duces one line of output each second for 20 seconds. You can compile it with
the command cc -0 sample sample. c before running Listing 16.3.

When you run the program in Listing 16.3, the selection box slowly fills
as the sample text program generates its output. The Motif application never
stalls: While the selection box fills, you can still select items, click the OK
button, and so on. The application receives events as input becomes available
and responds to those events through a callback function.

The call to XtAppAddInput accepts five parameters, as shown below:

XtAppAddInput Specifies a callback function to be called when data becomes available.

XtInputId XtAppAddInput(
XtAppContext context,
int source,
XtPointer condition,
XtInputCallbackProc proc,
XtPointer client_data);

context
source
condition

proc
client_data

The application context.
The input stream.
The condition for which to wait. Valid values
are XtlnputReadMask, XtlnputWriteMask, and
XtlnputExceptMask.
The callback function to call.
User-defined data.

In Listing 16.3, XtAppAddInput receives the application's context, the par­
ent's end of the pipe, the input mask condition, the name of the callback
function, and NULL for the client data.

268 THE XT LAYER

16.5

Note that this technique will not work properly with many text programs,
because those programs do not flush their output correctly when used with a
pipe. Unfortunately, the same is true for most UNIX commands (Is, find, and
so on). You can simulate the problem by removing the fflush call in Listing
16.4. If you recompile the code and run Listing 16.3, the selection box remains
empty for 20 seconds until the application terminates, then suddenly fills with
20 lines.

XT MEMORY MANAGEMENT

The Xt layer provides its own versions of malloc, calloc, realloc, and free,
called XtMalloc, XtCalloc, XtRealloc, and XtFree. The Xt versions are func­
tionally equivalent to and interchangeable with the standard UNIX versions.

Xt also provides two convenience macros for memory allocation: XtNew
(which accepts a type as a parameter) and XtNewString (which accepts a
string as a parameter). XtNew calls XtMalloc and requests enough memory
to hold an item of the type specified. XtNewString calls XtMalloc to allocate
a block large enough to hold the string passed and performs a strcpy to copy
the string into the new block.

Xt memory allocation functions have problems with error handling. For
example, the malloc function returns a NULL pointer when it runs out of
memory to allocate. The XtMalloc function, on the other hand, kills the
application. I often use malloc instead of XtMalloc to avoid such problems.

XtMalloc Allocates memory.

char *XtMalloc(Cardinal size);

size Number of bytes to allocate.

XtCalloc Allocates an array of the specified size.

char *XtCalloc(
Cardinal num,
Cardinal size);

num Number of elements to allocate.
size Size of each element.

, 6.6 WARNING AND ERROR MESSAGES 269

XtRealloc Reallocates memory, copying old block to new.

char *XtRealloc(
char *ptr,
Cardinal size);

ptr Pointer to a block previously allocated.
size New number of bytes to allocate.

XtFree Frees memory.

void XtFree(char *ptr);

ptr Pointer to block previously allocated.

XtNew Allocates enough memory for the type specified.

type *XtNew(type);

type Type of block required.

XtNewString Allocates enough memory for the string specified.

16.6

String XtNewString(String s);

s The string.

WARNING AND ERROR MESSAGES

Xt provides standard mechanisms for generating warning and error messages.
You can use these mechanisms to create message databases, provide your own
error handlers, and so on. Two routines for generating warning and error
messages follow.

270 THE XT LAYER

XtAppErrorMsg Generates an error message and exits the program.

void XtAppErrorMsg(
XtAppContext context,
String name,
String type,
String class,
String default,
String *params,
Cardinal *num_params);

context
name
type
class
default
params
num_params

The application's context.
The name of the error.
The type of the error.
The class of the error (e.g., the application's name).
The error message, possibly containing O/os identifiers.
Substitution strings for %s identifiers.
The number of parameters in params.

XtApp WamingMsg Generates a warning message.

void XtAppWarningMsg(
XtAppContext context,
String name,
String type,
String class,
String default,
String *params,
Cardinal *num_params);

context
name
type
class
default

params
num_params

The application's context.
The name of the warning.
The type of the warning.
The class of the warning (e.g., the application's name).
The warning message, possibly containing %s
identifiers.
Substitution strings for %s identifiers.
The number of parameters in params.

16.6 WARNING AND ERROR MESSAGES 271

Do not worry about the name, type, and class parameters when you create
a simple error or warning message. The code for creating a simple warning
message appears in Listing 16.5.

Listing 16.5 Creating a Simple Warning Message

/* warning.c */

#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/CutPaste.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

Widget toplevel;
Widget button;

void buttonCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmPushButtonCallbackStruct *call_data;

/* called whenever pushbutton is clicked. */
{

XtAppWarningMsg(context, 1111 ,1111,1111,

lIyou have clicked the push button. II , NULL,O);
}

void main(argc,argv)
int argc;

{
char *argv [] ;

Arg al[10];
int ac;

/* create the toplevel shell */
toplevel = XtApplnitialize(&context,IIII,NULL,O,&argc,argv,

NULL,NULL,O);

/* create a push button */
ac=O;
XtSetArg(al[ac],XmNlabelString,

XmStringCreate("Push for warningll,char_set»; ac++;
button=XmCreatePushButton(toplevel,lIbuttonll,al,ac);
XtManageChild(button);

272 THE XT LAYER

16.7

}

XtAddCallback(button,XmNactivateCallback,buttonCB,NULL)i

XtRealizeWidget(toplevel)i
XtAppMainLoop(context)i

When you click the button, the specified warning message is printed to stdout.
If you replace the call to XtAppWamingMsg with a call to XtAppErrorMsg,
the application will exit after generating the message.

XT FUNCTIONS FOR DEALING WITH WIDGETS

We have frequently used the Xt function XtManageChild to manage widgets.
The Xt layer provides several additional functions you can use for widget
creation and management.

XtCreateWidget Creates a widget. Use in place of XmCreate (unctions.

Widget XtCreateWidget(
String name,
Widget_class class,
Widget parent,
ArgList args,
Cardinal num_args)i

name
class

parent
args
num_args

The name of the widget.
The class of the widget. Get the class name of a widget
from Appendix J.
The parent widget of this widget.
A normal al argument list.
ac.

You can use the XtCreateWidget function in place of an XniCreate function
call. Although there is no substantive reason to do this, you will sometimes
see it in other programmers' code.

16.7 XT FUNCTIONS FOR DEALING WITH WIDGETS 273

XtManageChild Manages the widget specified.

void XtManageChild(Widget widget);

widget The widget to manage.

The XtManageChild function manages a widget so that it can be mapped to
the screen. We have used this function throughout the book.

XtManageChildren Manage the widgets specified.

void XtManageChildren(
WidgetList children,
Cardinal num_children);

children
num_children

A list of widgets to manage, in an array.
The number of widgets in the list.

The XtManageChildren function manages groups of children simultaneously.
In general, this is faster than managing children individually because it re­
quires less geometry negotiation.

XtCreateManagedWidget Creates and manages a widget. Use in place of XmCreate func­
tions.

Widget XtCreateManagedWidget(
String name,
WidgetClass class,
Widget parent,
ArgList args,
Cardinal num_args);

name
class

The name of the widget.
The class of the widget. Get the class name of a widget
from Appendix J.

274 THE XT LAYER

parent
args
num_args

The parent widget of this widget.
A normal al argument list.
ac.

The XtCreateManagedWidget function creates and manages the widget spec­
ified.

XtUnmanageChild Unmanages the widget specified.

void XtManageChild(Widget widget);

widget The widget to unmanage.

The XtUnmanageChild function unmanages a widget so that it can be un­
mapped. We have used this function throughout the book.

XtUnmanageChildren Unmanages the widgets specified.

void XtManageChildren(
WidgetList children,
Cardinal num_children);

children
num_children

A list of widgets to unmanage, in an array.
The number of widgets in the list.

The XtUnmanageChildren function unmanages groups of children simulta­
neously. In general, this is faster than unmanaging children individually be­
cause it requires less geometry negotiation.

XtDestroyWidget Destroys the widget specified.

void XtDestroyWidget(Widget widget);

widget The widget to destroy.

'6.7 XT FUNCTIONS FOR DEALING WITH WIDGETS 275

The XtDestroyWidget function destroys a widget and frees up its memory.

XtDisplay, XtWindow, XtScreen, XtParent, XtIsManaged, XtlsRealized, XtlsSensi­
tive Return the specified infonnation for a widget.

Display XtDisplay(Widget widget);
Window XtWindow(Widget widget);
Screen XtScreen(Widget widget);
Widget XtParent(Widget widget);
Boolean XtIsManaged(Widget widget);
Boolean XtIsRealized(Widget widget);
Boolean XtIsSensitive(Widget widget);

widget The widget.

All of these functions return information about a widget that you can use
when calling X functions or when determining a widget's state.

17 DRAWING

Graphical user interfaces exist for two reasons: They make application pro­
grams more intuitive and easier to use, and they allow applications to produce
graphical output on the screen. Pictures are often far easier to understand than
words.

Up to this point, we have focused on the first of these two reasons: the
creation of user interfaces with Motif. In this chapter, we will examine the
second reason by looking at the X drawing model and learning how to use it.

One of the more interesting ironies of Motif programming is that Motif, a
, tool designed for implementing graphical user interfaces, has no drawing com­

mands. It is nothing more than a set of user interface widgetsJlnd convenience
functions. If you want to create computer graphics in a Motif program, you
have to drop down two levels and talk directly to the X libraries. Figure 17.1
shows a diagram of how all of the libraries involved in Motif programming
relate to one another.

In Figure 17.1, the UNIX libraries are the standard, such as stdio, strings,

and math. The X libraries are those with which you access X functions and
variables. The Xt libraries provide access to the X Toolkit functions and vari­
ables. And the Motif libraries provide access to the Motif widget set. The ar­
rows show a strict hierarchy: The Motif libraries use the Xt, X, and UNIX li­
braries; the Xt libraries use the X and UNIX libraries; and the X libraries use
the UNIX libraries. Any Motif application you write can access any of these li­
braries at any time. This accessibility allows Motif to omit drawing commands.

In this chapter, we will discuss. the basics 9f drawing under X. This chap­
ter also examines the Motif drawing area widget and its resize and exposure
events, as well as pop-up menus because they are frequently used in drawing
applications.

276

17.1 BASIC COMPUTER GRAPHICS CONCEPTS

Figure 17.1 Relationships Between All of the
Libraries Used In Motif Programming

Application program

UNIX
libraries

17.1 BASIC COMPUTER GRAPHICS CONCEPTS

277

A computer display is made up of a set of dots, called pixels, arranged in a two­
dimensional array. Although the number of pixels on a given screen varies, a
typical workstation might have a 1,024 x 864-pixel screen.,

The pixels on a given screen have a depth, which is usually the same for all. A
pure black-and-white screen-the cheapest and therefore the most common­
can have either black or white pixels; No other colors are possible. The depth
of such a screen is 1: that is, it takes orie bit to determine the value, or color,
. of anyone pixel. This type of display.is often called a bitmap display~ a bitmap
being a black or white image. A pixmap, on the other hand, is an image with
,any depth greater than or equal tol. A typical color display might have a
depth of 8 bits, or 256 colors per pixel. An advanced color display might have
16.7 million colors per pixel and a depth of 24 bitsor 32 bits, in which case
the extra 8 bits provide customized graphics functions.

Graphics displays usually have at least two coordinate systems: screen coor­
dinates and window coordinates, as shown in Figure 17.2. Screen coordinates
start in the upper left corner of the :;creen itself. More often, you need to refer
to the coordinate system of the window in which you are currently drawing.
Each window has its own coordinate system" starting c;tt 0,0 in the upper left
corner. This pOint is called the origin. From the origin, the positive X direction
extends to the right, while the positive Y direction extends down. When you
move a window on the screen, its window coordinate system moves with it.

278 DRAWING

Figure 17.2 The Screen and Window Coordinate
Systems

Typical X display screen

Upper left corner of screen is 0,0 in the screen's coordinates

Upper left corner
of window is 0,0
in the window's
coordinate system

..

Typical window on-screen

200 pixels wide

pixels
high

This line has end
points of 50,50 and
150,150 in the
window, no matter
where the window
is on the screen

Any line drawn in the window but
outside of the rectangle 0,0 to
200,200 gets clipped Qff

The upper left corner of the window is still a, a no matter where the windC!w
appears on the screen.

All windows have a finite size that appears on the screen, but they are es-
, -' '" . ,- .

sentially infinite when you draw in them. For example, imagine a window '...... .. , .", .. ,."" .. " , .. \' .
200 pixels wide by 200 pixels high. Anything you draw in the square extend-
ing from a, a to 200, 200 will appear on the screen. You can draw anywhere,
but the w~ndow au~~)m~~~~~,l.ly', clips .off anything outside of the square. In
other words, if you draw a line from -500,-500 to -lOa, -lOa, from 100,100
to 300,300, ~r from jOOOO~'10000 to 11000,11000, nothing evil will hap­
pen. The user simply will not see anything that falls outside of the a, a t9
200,200 square established by'the window. In the case of the -500, -500 to
-lOa, -100 and 10000,10000 to 11000,11000 lines, nothing will appear on
the screen. In the case of the lOa, 100 to 300,300 line, the un clipped half of
the line will appear and the clipped half will not.

You can draw into either a window on the screen ?~ a pixmap'"in.lllemory.
For example, when trying to create smooth animation, it is common to draw
into a pixmap uhtil you have completed a frame of the animation, and then

17.1 BASIC COMPUTER GRAPHICS CONCEPTS

Figure 17.3 A Drawing Area Widget Displaying a
Single Diagonal Line

279

copy the completed image into a window for display. The pixmap or window
in which drawing occurs is called a drawable ..

17.1.1 DRAWING AREA WIDGETS

Let's start the discussion of X drawing commands by looking at a piece of code
that draws a single diagonal line in a window, as shown in Figure 1 ~ .3. Enter
the code shown in Listing 17. J arid run it. When the program is running,
you should see on screen -a window containing a single diagonal line. You
should also see the message "Exposure event generated" in stdout whenever
you expose part of the window: In other words, whenever you cover it with
another window and then uncover it, or iconify and then expand it.

Listing 17.1 Drawing a Single Diagonal Line In a
Drawing Area Widget

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>

XtAppContext context;

280 DRAWING

GC gc;
Widget toplevel;
Widget drawing_area;

void setup_gc 0
1* set up the graphics context. *1
{

}

int foreground. background;
XGCValues vals;
Arg al[10];
int ac;

1* get the current fg and bg colors. *1
ac';'O;
XtSetArg(al[ac].XmNforeground.&foreground); ac++;
XtSetArg(al[ac].XmNbackground.&background); ac++;
XtGetValues(drawing_area.al.ac);

1* create the gc. *1
vals.foreground = foreground;
vals.background = background;
gc=XtGetGC(drawing_area.GCForeground I GCBackground.&vals);

void exposureCB(w.client_data.call_data)
Widget w;
XtPointer client_data;
XtPointer call_data;

1* called whenever drawing area is exposed. *1
{

}

printf("exposure event generated\nll
);

XDrawLine(XtDisplay(drawing_area).XtWindow(drawing_area).
gc. O. O. 300. 300);

void main(argc.argv)
int argc;

{
char *argv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context.IIII.NULL.O.&argc.argv.

NULL.NULL.O);

17.1 BASIC COMPUTER GRAPHICS CONCEPTS

}

/* set window size. */
ac=O;
XtSetArg(al[ac],XmNheight,300); ac++;
XtSetArg(al[ac],XmNwidth,300); ac++;
XtSetValues(toplevel,al,ac);

/* create a drawing area widge~. */
ac=O;
drawing_area:;=XmCreateDrawingArea(toplevel,ldrawing_area",al,ac);
XtManageChild(drawing_area);
XtAddCallback(drawing_area,XmNexposeCallback,exposureCB,NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

281

The main function starts off normally by calling XtApplnitialize and resiz­
ing the window. It then creates a drawing area widget using the normal widget
creation technique. A drawing area widget behaves like a drawing surface for
X: Once you have established a drawing area, you can use any of the X draw­
ing functions to draw in it. The X drawing functions allow you to draw points,
lines, rectangles, arcs, and so on. As with any other widget, you can attach a
drawing area widget to a form, make it sensitive and insensitive, resize it, and
so on.

After the main function creates the drawing area, the drawing area's expo­
sure callback is wired to the exposeCB function using a call to XtAddCall­
back, and a function is called that creates a graphics context. Note that the
main function contains no code for drawing a line.

17.1.2 A DRAWING FAILURE

It might help you understand the code in Listing 17.1 if you look at a similar
piece of code that does not work and then compare the two. Listing 17.2 is a
program that is supposed to draw a line, but doesn't.

Listing 17.2 A Program That Does Not Draw a Single
Diagonal Line

#include <Xm/Xm.h>

282 DRAWING

#include <Xm/DrawingA.h>

XtAppContext context;

GC gc;
Widget toplevel;
Widget drawing_area;

void setup_gc 0
1* set up the graphics context. *1
{

int foreground, background;
XGCValues vals;
Arg al[10];
int ac;

1* get the current fg and bg colors. *1
ac=O;
XtSetArg(al[ac],XmNforeground,&foreground); ac++;
XtSetArg(al[ac],XmNbackground,&background); ac++;
XtGetValues(drawing_area,al,ac);

}

1* create the gc. *1
vals.foreground = foreground;
vals.background = background;
gc=XtGetGC(drawing_area,GCForeground I GCBackground,&vals);

void main(argc,argv)
int argc;

{

char i1cargv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1

I I

toplevel = XtAppInitialize(&context,"",NULL,O,&argc,argv,
NULL,NULL,O);

1* set window size. *1
ac=O;
XtSetArg(al[ac],XmNheight,300); ac++;
XtSetArg(al[ac],XmNwidth,300); ac++;
XtSetValues(toplevel,al,ac);

17.1 BASIC COMPUTER GRAPHICS CONCEPTS

}

1* create a drawing area widget. *1
ac=Oj
drawing_area=XmCreateDrawingArea(toplevel,"drawing_area",al,ac)j
XtManageChild(drawing_area)j

setup_gcO j
1* Draw a line *1

XDrawLine(XtDisplay(drawing_area),XtWindow(drawing_area),
gc, 0, 0, 300, 300)j

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

283

Listing 17.2 is very similar to Listing 17.1, except that it has no exposeCB
function. Instead, the command to draw the line appears in the main func­
tion. When you run this code, you should receive a message similar to the
following:

X Error of failed request: BadDrawable (invalid Pixmap or
Window parameter)

Major opcode of failed request: 66 (X_PolySegment)
Minor opcode of failed request: 0
Resource id in failed request: OxO
Serial number of failed request: 26
Current serial number in output stream: 40

This error message is generated by the XDrawLine call. The call to XDrawLine
is passed seven parameters, as shown below.

XDrawLine(XtDisplay(drawing_area), XtWindow(drawing_area), gc,
O,O,300,300)j

You must pass the first two parameters to every X drawing function. X sup­
ports multiple windows on multiple screens. Therefore, every time you want
to draw something, you have to tell X which X server and which drawable
(that is, which window or pixmap) you want to draw in. However, when you
use Motif widgets, you do not really care about such things. You simply use
the XtDisplay and XtWindow functions to extract the necessary information
from the drawing area Widget into which you want to draw.

284 DRAWING

The third parameter is the graphics context. This code is correct and is not
causing a problem, so we will come back to it later.

The final four parameters are the x and y coordinates of the two end points
of the line, which in this case are 0,0 and 300,300. ,

Everything looks fine here, so why doesn't it work? At the time the call to
XDrawLine is made, the drawable has not yet been mapped to the screen .

. It will not be mapped until the toplevel shell is realized and the event loop
has been entered. When the program tries to draw at this point in the main
function, the fact that the drawable does not exist causes the XDrawLine

\

function call to fail and generates a BadDrawable error to tell you about it.

17.1.3 USING THE EXPOSE CALLBACK

How do you get around this problem? You need a piece of line-drawing code
that is activated after the drawing area widget has been mapped to the screen.
One possible solution is to create a form widget and attach a push button and
a drawing area to it. This push button and a blank drawing area are what the
user will see when the application starts. You can place the call to XDrawLine
in the push button's callback function so that the application draws the line in
the drawing area when the user clicks the push button. Listing 17.3 contains
the code that produces this solution.

Listing 17.3 Drawing a Single Diagonal Line When
the User Clicks a Push Button

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>
#include <Xm/Form.h>
#include <Xm/PushB.h>

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

GC gc;
Widget toplevel;
Widget drawing_area;
Widget button;
Widget form;

17.1 BASIC COMPUTER GRAPHICS CONCEPTS

void setup_gc 0
1* set up the graphics context. *1
{

}

int foreground, background;
XGCValues vals;
Arg al[10] ;
int ac;

1* get the current fg and bg colors. *1
ac=O;
XtSetArg(al[ac],XmNforeground,&foreground); ac++;
XtSetArg(al[ac],XmNbackground,&background); ac++;
XtGetValues(drawing_area,al,ac);

1* create the gc. *1
vals.foreground = foreground;
vals.background = background;
gc=XtGetGC(drawing_area,GCForeground I GCBackground,&vals);

void buttonCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XtPointer call_data;

1* called whenever drawing area is exposed. *1
{

}

printf("button clicked\n");
XDrawLine(XtDisplay(drawing_area),XtWindow(drawing_area),

gc, 0, 0, 300, 300)j

void main(argc,argv)
int argcj

{
char *argv [] j

Arg al[10]j
int aCj

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"I,NULL,O,&argc,argv,

NULL,NULL,O)j

1* set window size. *1
ac=Oj
XtSetArg(al[ac],XmNheight,300)j aC++j

285

286 DRAWING

}

XtSetArg(al[ac],XmNwidth,300)j aC++j
XtSetValues(toplevel,al,ac)j

1* create a form to hold widgets *1
ac=Oj
form=XmCreateForm(toplevel,"form",al,ac)j
XtManageChild(form)j

1* create a push button *1
ac=Oj
XtSetArg(al[ac],XmNlabelString,

XmStringCreate("Push to draw line",char_set))j aC++j
XtSetArg(al[ac], XmNtopAttachment, XmATTACH_FORM)j ac++;
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM)j aC++j
button=XmCreatePushButton(form,"button",al,ac)j
XtManageChild(button)j
XtAddCallback(button,XmNactivateCallback,buttonCB,NULL)j

1* create a drawing area widget. *1
ac=Oj
XtSetArg(al[ac], XmNtopAttachment, XmATTACH_WIDGET)j aC++j
XtSetArg(al[ac], XmNtopWidget, button)j aC++j
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM)j aC++j
XtSetArg(al[ac], XmNbottomAttachment, XmATTACH_FORM)j aC++j
drawing_area=XmCreateDrawingArea(form,"drawing_area",al,ac)j
XtManageChild(drawing_area)j

·XtRealizeWidget (toplevel)j
XtAppMainLoop(context)j

Run Listing 17.3 and click the push button. Note that the line no longer
lines up with the bottom right corner any more, because the drawing area
widget is no longer 300 x 300 pixels, since the push button is taking up some
space. Even though the code draws a line that extends beyond the window's
boundaries, nothing "bad" happens; the window simply clips off the part that
falls outside.

Now move another window so that it overlaps part of the diagonal line, and
then move it back out of the way. Figures 17.4 and 17.5 show what happens:
Once the window moves away, the part of the line that the window over-

17.2

17.2 UNDERSTANDING THE GRAPHICS CONTEXT

Figure 17.4 A View of the Application Showing the
Push Button and an Intact Diagonal Line

[)

Push to draw line

287

. lapped is erased. (The application may behave differently on your machine.
If your version of X supports a backing store, it restores the line when you
move the overlapping window.)

Exposure events come into play here. Whenever part of a drawing area is
exposed and needs to be redrawn, the X server generates an expose event
and Motif passes it to the drawing area widget. This event tells your code to
redraw part or all of the drawing area. By hooking in the drawing area's expose
callback, your code can handle exposure automatically.

The code in Listing 17.1 demonstrated this process. When the drawing area
appears on-screen initially, it generates a callback to the exposeCB function,
which tells the code to draw a diagonal line. Subsequently, any time the win­
dow is exposed and must be redrawn, the callback function is called and the
code draws the line again. Thus, the window displays the line continuously
and correctly.

UNDERSTANDING THE GRAPHICS CONTEXT

Now that you have seen the correct way to draw a line in a drawing area
widget using the drawing area's expose callback, we will turn to the topic of
graphics contexts. A graphics context, or Ge, is a structure that contains all of
the information necessary to control the appearance of any object drawn with

288 DRAWING

Figure 17.5 A View of the Application After an
Overlapping Window Has Been Removed

Note that the area previously occupied by the window
is now blank.

Alii,,·i!!·'::!:+!·, Li.. "',; 1:61 (-_. __ .
Push to draw line I

~

.~
x. This section only scratches the surface. For complete information, refer to
Scheifler and Gettys.

Say you want to draw a line. The line has two end points as well as a number
of attributes that control its appearance, such as its colors, width, pattern, and
style. When you draw a line, you call the XDrawLine funct~on an~pass it a
GC variable along with the coordinates of the two end points. The GC variable
contains all of the appearance information.

The following structure definition shows you the values that are held by a
GC variable.

1*
* Data structure for setting graphics context.

*1
typedef struct {

int function; 1* logical operation (copy,
xor, etc.) *1

unsigned long plane_mask; 1* plane mask *1
unsigned long foreground; 1* foreground pixel color *1
unsigned long background; 1* background pixel color*1
int line_width; 1* line width *1

17.2 UNDERSTANDING THE GRAPHICS CONTEXT 289

int line_style;

int cap_style;

int join_style;
int fill_style;

int fill_rule;
int arc_mode;
Pixmap tile;

Pixmap stipple;

int ts_y_origin;
Font font;

int subwindow_mode;

Bool graphics_exposures;

int clip_x_origin;
int clip_y_origin;
Pixmap clip_mask;
int dash_offset;

char dashes;
} XGCValues;

1* LineSolid, LineOnOffDash,
LineDoubleDash *1

1* CapNotLast, CapButt,
CapRound, CapProjecting *1

1* JoinMiter, JoinRound, JoinBevel *1
1* FillSolid, FillTiled, FillStippled,

FillOpaqueStippled *1
1* EvenOddRule, WindingRule *1
1* ArcChord, ArcPieSlice *1
1* tile pixmap for tiling

operations *1
1* stipple 1 plane pixmap for

stippling *1
1* offset for tile or stipple

operations *1

1* default text font for text
operations *1

1* ClipByChildren,
Includelnferiors *1

1* boolean, should exposures be
generated *1

1* origin for clipping */

1* bitmap clipping mask *1
1* patterned/dashed line

information *1

This structure definition comes from the Xlib. h" include file. Each of the vari­
ables has a default value, as shown below:

function GXcopy
plane_mask All ones
foreground 0
background 1
line_width 0
line_style LineSolid
cap_style Cap Butt
join_style JoinMiter
fill_style FillSolid
fill_rule EvenOddRule

290 DRAWING

arc_mode
tile
stipple
ts_x_origin
ts_y_origin
font
subwindow _mode
graphics_exposures
clip_x_origin
clip_y _origin
clip_mask
dash_offset
dashes

ArcPieSlice
Pixmap filled with foreground pixel color
Pixmap filled with ones
o
o
Implementation dependent, probably Fixed
ClipByChildren
True
o
o
None
o
4

Note that the foreground and background colors default to 1 and 0 automat­
ically. On almost any color system, the user will want to change these. The
line width defaults to 0, which does not make much sense unless you know
that zero is a special value that means "Let any graphics acceleration hardware
available on the system generate the line." A line width of 0 therefore produces
the same line that a line width of 1 does, but any available graphics hardware
accelerates the drawing of the line.

In Listing 17.1, the setup-8c function sets up a graphics context in the
following way:

void setup_gc 0
1* set up the graphics context. *1
{

}

int foreground,backgroundj
XGCValues valsj
Arg al[10]j
int aCj

1* get the current fg and bg colors. *1
ac=Oj
XtSetArg(al[ac], XmNforeground, &foreground)j aC++j
XtSetArg(al[ac], XmNbackground, &background)j aC++j
XtGetValues(drawing_area, aI, aC)j

1* create the gc. *1
vals.foreground = foregroundj
vals.background = backgroundj
gc= XtGetGC(drawing_area, GCForeground I GCBackground, &vals)j

17.2 UNDERSTANDING THE GRAPHICS CONTEXT 291

This function declares an XGCValues structure, called vals here. It makes a
standard XtGetValues call to extract the foreground and background colors of
'the drawing area widget. It is likely that some resource file has set these colors,
especially if the code is running on a color system. The function then sets the
foreground and background fields of the vals structure appropriately.

Finally, a call to XtGetGC is made. The parameters for XtGetGC are as
follows:

XtGetGC Returns a shareable, read-only Gc.

GC XtGetGC(
Widget w,
XtGCMask value_mask,
XGCValues *values)

w
value_mask
values

The widget.
Specifies fields in the GC that will be modified.
Specifies the values with which to modify the GC
defaults.

The call to XtGetGC creates a GC, sets all of its values to the default values,
and then modifies the specified fields to the values held in the vals structure.
Note that you must pass the address of the vals structure.

The value_mask parameter is a bit string formed by joining bit values with
Boolean OR statements. You create the names of these mask bit values by tak­
ing the field names found in the XGCValues structure, capitalizing the first
character, adding "Gcn to them, removing any underscore characters, and
converting to uppercase any characters that immediately followed an under­
score. For example, the mask bit for the clip_x_origin field is GCClipX­
Origin. In the setup~c function shown here, only the foreground and back­
ground colors change from their default values. Suppose you also want to
change the line width. The following fragment shows what changes to make:

1* create the gc. *1
vals.foreground = foreground;
vals.background = background;
vals.line_width = 5;
gc= XtGetGC(drawing_area, GCForeground I GCBackground I GCLineWidth,

&vals);

Change other fields in a similar manner.

292 DRAWING

The XtGetGC function returns a value of type GC. All of the X drawing
functions expe~t ~histype of value.INot~, that a variable of type GC is an X
server resource (Chapter 15): GCs consume X server memory s.pace. To free up
a GC, use the XtReleaseGC function and pass it the GC variable.

It is common to have many GCs associated with an application. For ex­
ample, if you want to draw some lines one pixel wide and other lines five
pixels wide, you typically create two different GC variables and use each
when appropriate. Because GCs are cached in the X server, this method pro­
vides the "fastest performance. When you change a GC, the information about
the change must travel over the network to the server, which can be time­
consuming.

In some cases, you may need to change a GC. For example, you may want
to draw in 4,000 different colors, thus making GCs for each color impractical.
X therefore provides a number of functions, such as XSetForeground, XSet­
Background, and XSetClipOrigin. Since XtGetGC returns a read-only GC,
you should use XCreateGC to create a GC that you plan to change.

XCreateGC Returns a new GC.

GC XCreateGC(
Display *disp,
Drawable draw,
unsigned long value_mask,
XGCValues *values)

disp, draw
value_mask
values

The display and drawable.
Specifies fields in the GC that will be modified.
Specifies the values with which to modify the GC
defaults.

The choice of whether to create multiple GCs with XtGetGC or to create
one GC and then modify it must be made on an appUcation-by-application
basis. If an application needs only ten or twenty GCs, you should create multi­
ple GCs. On the other hand, if you will use numerous colors or will frequently
change the clip origin, a single changeable GC is called for.

Below is a brief discussion of what each field in XGCValues does and the
values it can hold.

17.2 UNDERSTANDING THE GRAPHICS CONTEXT 293

function ..

The drawing function determines the' logical operation that places the source
pixels-what you are drawing, such as a line or an arc-into the destination:
the window or pixmap in which the drawing occurs:· The default drawing
function, GXcopy, by far the most common drawing function, copies the
source pixels into the destination pixmap without regard for the destination
pixmap's existing contents; however, there are many other possibilities. The
entire set of drawing functions follows. In this list, IIsrc" represents the source
pixels being drawn, while "dst" represents the destination pixmap or window
in which the drawing occurs.

GXclear
GXand
GXandReverse
GXcopy
GXandInverted
GXnoop
GXxor
GXor
GXnor
GXequiv
GXinvert
GXorReverse
GXcopyInverted
GXorInverted
GXnand
GXset

plane_mask

o (0 is copied into dst for all points in src)
src AND dst
src AND NOT dst

L- ~ I .

src (pixels in src replace those in dst)
(NOT src) AND dst
dst (do nothing)
src XOR dst
src OR dst
(NOT src) AND (NOT dst)
(NOT src) XOR dst
NOT dst (the inverse of dst for all points in src)
src OR (NOT dst)
NOT src
(NOT src) OR dst
(NOT src) OR (NOT dst)
1 (1 is copied into dst for all pOints in src)

The plane_mask field controls which planes of the destination pixmap the
drawing operation affects. If the bit in the plane mask is I, that plane is
modified. If the bit is 0, the drawing operation does not affect that plane.

foreground, background

These fields contain the foreground and background colors for drawing. The
background color is irrelevant when drawing points, lines, rectangles, and so
on, but applies to such things as text and tiling. Both fields accept integer
values. On a bitmap screen (depth 1), only the values 0 and 1 are valid. On

294 DRAWING

a screen with depth 8, values between 0 and 255 are valid, and on a screen
with depth 24, values between 0 and 16,777,215 are valid.

line_width

The line_width field controls the width of the line in the drawing of a line,
rectangle, or arc. Zero is a special value meaning "Draw a line 1 pixel wide
using any available graphics acceleration hardware. II Values greater than zero
indicate that a line width of the specified number of pixels should be used.

line_style

This field determines the type of dashed line. LineSolid draws a solid line.
LineDoubleDash draws odd dashes using the current filCstyle, and even
dashes as in LineSolid. LineOnOfIDash draws even dashes as in LineSolid,
but draws nothing for odd dashes.

cap_style

This field affects the drawing of ends of lines and arcs. CapButt draws square
ends on lines and arcs. CapRound draws the ends of lines and arcs rounded
off (effective only if the line_width is greater than 2). CapProjecting extends
the end point of the line a distance equal to one-half of the line's width.
CapNotLast, on lines with width 0, does not draw the end-point pixel.

join_miter

This field affects how the corners look where lines with widths greater than
1 join. JoinMiter joins lines normally, joinRound joins lines with rounded
corners, and joinBevel joins lines with beveled edges.

fill_style

The fill_style field determines the drawing of filled and dashed objects. Fill­
Solid fills using the foreground color. FillTiled uses the fill tile. FillStippled
fills using the foreground color masked by the stipple bitmap. FillOpaqueStip­
pled fills like FillTiled, but uses the stipple values to create the tile.

fill_rule

When drawing filled polygons, the fill_rule field determines which parts to
fill. The WindingRulevalue, for example, fills the polygon solid. The Even­
OddRule value is somewhat esoteric; try it on a filled polygon with intersect­
ing sides and see what happens. As different parts of a complex polygon are

17.2 UNDERSTANDING THE GRAPHICS CONTEXT 295

drawn, the EvenOddRule specifies which parts are "inside" the polygon and
therefore filled. See Scheifler and Gettys for a complete description.

arc_mode

The arc_mode field determines how the undrawn portion of a filled arc is
handled. ArcPieSlice causes the part of an arc that is not filled to be treated
as a pie slice, while ArcChord causes it to be treated as a straight edge of
the chord drawn between the starting and ending angles of the arc, as shown
here:

ArcPieSlice ArcChord

tile

The tile field is a pixmap of the same depth as the drawable. You can use tile

to draw tiled patterns in filled objects: The pixmap pattern it holds is repeated
across the object being filled. See fill_style.

stipple

The stipple field is a bitmap that determines which bits are drawn and not
drawn. See fill_style.

ts_x_origin, ts_y _origin

This is the origin that controls tiling and stippling.

font

This is the font used for any text operation. See the section on text drawing
below for an example of changing the font field.

clip_mask, clip_x_origin, clip_v_origin

The clip_mask field is a bitmap that can control where drawing takes place.
If a clip_mask is defined, only pixels where the mask contains the value 1 are

296 DRAWING

17.3

drawn. The origin of the clip_mask is the position for the upper left corner of
the masking bitmap.

DRAWING COMMANDS IN X

At this paint, you should have a general feel for drawing in Motif. You should
understand how to create a drawing area widget; how to draw a line in it;
how to set up, customize, and use a GC; and how and why a drawing area's
exposure event is important in maintaining the drawing on-screen. In this
section, we will look at the X functions for drawing different shapes in a
drawing area. All of them follow the model of XDrawLint:.

Almost all of the commands below come in two versions: "draw one" and
"draw many at once." If you have to draw 100 lines, for example, the drawing
takes place more quickly when you use the "draw many" version.

17.3.1 DRAWING POINTS

The XDrawPoint function lets you set the color of an individual pixel,in a
drawing area. A typical call to this function looks like this:

XDrawPoint(XtDisp~ay(da),XtWindow(da),gc,x,y);

The da variable is a drawing area widget. The parameters x and yare the
coordinates of the pixel you want to change. The pixel is colored according
to the contents of the GC parameter.

If you want to draw many points at once, use XDrawPoints. A typical call
looks like this:

XDrawPoints(XtDisplay(da) ,XtWindow(da) ,gc,points,num,Co ordModeOrigin);

where points and num have been declared as follows:

XPoint points[100];
int num;

The points parameter can be either an array of XPoints, as shown here, or a
painter to such an array (which you have allocated or acquired in a similar
manner). The num parameter indicates the number of values in the array. The
declaration of XPoint is defined by Xlib. h as follows:

typedef struct {
short x,y;

} XPointj

17.3 DRAWING COMMANDS IN X 297

The function shown in Listing 17.4 demonstrates how to use XDrawPoints
by drawing a 10 x 10 square of pixels. Assume that da and gc are global and
valid.

Listing 17.4 Drawing a Block of Points

void draw_points()
{

}

int x,y;
XPoint points[100];
int num=100;

for (x=O; x<10; x++)
for (y=O; y<10; y++)
{

}

points [x*10+y] .x=x;
points[x*10+y].y=y;

XDrawPoints(XtDisplay(da) ,XtWindow(da) ,gc,
pOints,num,CoordModeOrigin);

The CoordModeOrigin parameter specifies that all point coordinates in the
point array are referenced from the origin. You can also use CoordModePre­
vious, which adds the coordinates of a point in the point array to the coordi­
nates of the previous point to determine its position.

17.3.2 DRAWING LINES

XDrawLine draws a single line

XDrawLine(XtDisplay(da), XtWindow(da), gc, xl, yl, x2, y2);

where xl,yl and x2,y2 specify the end points of the line to be drawn.
You can draw groups of lines in either of two ways. You can use XDrawLines

to draw a set of lines with contiguous end points (that is, the end of one
line acts as the beginning of the next). Or you can use XDrawSegments to
draw groups of independent lines. A call to XDrawLines looks exactly like
XDrawPoints:

XDrawLines(XtDisplay(da), XtWindow(da), gc,
points, num, CoordModeOrigin);

Contiguous pairs of points in the array act as the end points of the lines; for
example pOints[O] to points[l] are a line, and points[l] to points[2] are a line,

298 DRAWING

and so on. The points array and mode work exactly as in XDrawPoints. If
the last point in the array is identical to the first point, XDrawLines draws a
polygon.

To draw groups of lines that are independent of one another, use XDrawSeg­
ments, as shown below:

XDrawSegments(XtDisplay(da), XtWindow(da), gc, segments, num);

Declare the segments parameter as follows, or as a pointer to such an array:

XSegment segments[100];

X defines the XSegment type as follows:

typedef struct {
short x1,y1,x2,y2;

} XSegment;

Set up an XSegment array similar to the points array for XDrawPoints, but
supply four coordinates instead of two.

17.3.3 DRAWING RECTANGLES

Creating rectangles is nearly identical to creating lines. You can draw one
rectangle using the XDrawRectangle function:

XDrawRectangle(XtDisplay(da), XtWindow(da), gc, x, y, w, h);

where x and yare the coordinates of the upper left corner of the rectangle and
wand h are the width and height of the rectangle.

To draw multiple rectangles, use XDrawRectangles:

XDrawRectangles(XtDisplay(da), XtWindow(da), gc, rectangles, num);

Declare the rectangles parameter as follows, or as a pointer to such an array:

XRectangle rectangles [100] ;

X defines the XRectangle type as follows:

typedef struct {
short x,y;
unsigned short width,height;

} XRectangle;

Set up an XRectangle array similar to the points array for XDrawPoints, but
supply four coordinates instead of two.

17.3 DRAWING COMMANDS IN X 299

17.3.4 DRAWING ARCS, CIRCLES, AND ELLIPSES

You draw arcs like you draw rectangles, specifying a rectangle that controls the
size and shape of the circle or ellipse, and also specifying the angles between
which an arc will be drawn. A typical call looks like this:

XDrawArc(XtDisplay(da). XtWindow(da). gc. x. y. w. h. a1. a2);

where x and yare the coordinates of the upper left corner of the rectangle and
wand h are the width and height of the rectangle that controls the size and
shape of the ellipse. The a1 and a2 parameters determine where the arc starts
and stops. For example, if the arc starts at 90 degrees and stops at 180 degrees,
a1 is 5,760 (or 90 x 64) and a2 is 11,520 (or 180 x 64). To draw a complete
circle or ellipse, set a1 to 0 and a2 to 23,040 (or 360 x 64). You must multiply
all angles by 64 as shown to make them work correctly. Figure 17.6 shows the
result of drawing an arc in a 200 x 200 pixel rectangle between angles 5,760
and 11,520.

To draw multiple arcs, use XDrawArcs:

XDrawArcs(XtDisplay(da), XtWindow(da), gc, arcs, num);

Declare the arcs parameter as follows, or as a pointer to such an array:

XArc arcs[100]; ,

X defines the XArc type as follows:

typedef struct {
short x,y;
unsigned short width,height;
short angle1,angle2;

} XArc;

Set up an XArc array similar to the points array for XDrawPoints, but supply
six coordinates instead of two.

17.3.5 DRAWING FILLED RECTANGLES .

The functions XFillRectangle and XFillRectangles use the same parameters as
XDrawRectangle and XDrawRectangles, but they draw filled rectangles. The
fill_style field in the GC controls how the rectangle will be filled.

300 DRAWING

Figure 17.6 An Example Arc

90 degrees

180 degrees

ill

200 pixels wide

200
pixels
high

o degrees

17.3.6 DRAWING FILLED ARCS AND CIRCLES

The functions XFillArc and XFillArcs use the same parameters as XDrawArc
and XDrawArcs, but draw filled arcs. The fill_style and arc_mode fields in
the GC control how the arc will be filled.

17.3.7 DRAWING FILLED POLYGONS

You draw filled polygons using the same technique you use to draw lines
with contiguous end points (see XDrawLines): setting up an array of points
that determine the vertices of the polygon. The resulting polygon is filled
according to the fill_rule and the fill_style fields in the GC. A typical
call looks like this:

XFillPolygon(XtDisplay(da), XtWindow(da), ge,
points, num, C.0J?:plex, CoordModeOrigin);

The points, num, and CoordModeOrigin parameters are the same as for
XDrawLines.

The Complex parameter improves the efficiency of the X server in drawing
the polygon. Three values are possible for this parameter: Complex, Convex,
and Nonconvex. If you know that the shape of the polygon is convex, specify
Convex. If lines in the polygon intersect at any point, specify Complex. If the
polygon is neither convex nor complex, specify Noncomplex. If you don't
know, use Complex. If the first and last point in the point array are the same,
then the polygon is closed. If not, X closes it for you.

17.3 DRAWING COMMANDS IN X

Figure 17.7 Origin of X and Y Coordinates for a
Drawn String

O,O-l-tI

17.3.8 DRAWING STRINGS

301

You can draw text in a drawing area using the XDrawString and XDrawlm­
age String functions. These two functions are identical, except that XDraw­
String draws only foreground pixels, while XDrawlmageString draws fore­
ground and background pixels to fill in the square cell bounding each char­
acter. A typical call looks like this:

XDrawString(XtDisplay(da), XtWindow(da), ge, x, y, s, strlen(s));

The x and y parameters control the position of the string. Note that x and
y do not specify the string's upper left corner. Instead, the y coordinate is
determined by the baseline of the characters in the string, as is shown in
Figure 17.7.

The s parameter is a standard array of characters containing the string to
be drawn. The XDrawString function also accepts a parameter indicating the
number of characters to be drawn. Since the string passed in s is usually a
standard C null-terminated stdrig, I have used" the strlen" function here for the
length parameter. If the array of characters is not null-terminated, specify the
length explicitly.

XDrawlmageString takes the same parameters as XDrawString.
The font for the string is controlled by the font field in the GC. Listing

17.5 shows how to change the font field. Note the similarity to the process
of changing the font discussed in Chapter 3. We do not need the step that
translates the XFontList to a Motif font list (as seen in Chapter 3) here because
we are working at the raw X level. The code in the exposureCB function draws"
the string. The code in the setup--8c function sets the font at the same time it
sets up the foreground and background colors.

302 DRAWING

Listing 17.5 Drawing a Text String

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>

XtAppContext context;

GC gc;
Widget drawing_area;
Widget toplevel;

void setup_gc 0
1* set up the graphics context. *1
{

}

int foreground,background;
XGCValues vals;
Arg al[10] ;
int ac;
XFontStruct *font=NULL;
char *namestring=NULL;

1* load the font *1
name string = l*times*-24-*";
font=XLoadQueryFont(XtDisplay(drawing_area),namestring);

1* get the current fg and bg colors. *1
ac=O;
XtSetArg(al[ac], XmNforeground, &foreground); ac++;
XtSetArg(al[ac], XmNbackground, &background); ac++;
XtGetValues(drawing_area, aI, ac);

1* create the gc. *1
vals.foreground = foreground;
vals.background = background;
vals.font=font->fid; 1* The XFontStruct contains a field named

"fid" of type Font, as expected by the GC. *1
gc = XtGetGC (drawing_area , GCForeground I GCBackground I GCFont,

&vals);

void exposureCB(w,client_data,call_data)
Widget w;
XtPointer client_data;

17.3 DRAWING COMMANDS IN X

XtPointer call_dataj
/* called whenever drawing area is exposed. */
{

}

printf("exposure event generated\n");
XDrawString(XtDisplay(drawing_area), XtWindow(drawing_area),

gc, 100, 100, "hello", 5)j

void main(argc,argv)
int argcj

{

}

char *argv [] j

Arg al[10] j
int aCj

/* create the toplevel shell *1
toplevel = XtApplnitialize(&:context,IIII,NULL,O,&:argc,argv,

NULL,NULL,O) j

/* set window size. */
ac=Oj
XtSetArg(al[ac],XmNheight,200)j aC++j
XtSetArg(al[ac],XmNwidth,200)j aC++j
XtSetValues(toplevel,al,ac)j

/* create a drawing area widget. */
ac=Oj
drawing_area=XmCreateDrawingArea(toplevel,

"drawing_area",al,ac)j
XtManageChild(drawing_area)j
XtAddCallback (drawing_area, XmNexposeCallback,

exposureCB,NULL)j

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

303

In addition, Motif provides three other string drawing functions: XmString­
Draw, XmStringDrawlmage, and XmStringDrawUnderline (see Chapter
14 for further information). You can use these functions to draw XmString
objects directly.

304 DRAWING

17.3.9 DRAWING BITMAPS AND PIXMAPS

A pixmap is an off-screen area of memory, that you can use as a drawable for
all X drawing commands except XClearArea and XClearWindow. The only
difference between an X window and an X pixmap is that the window, unlike
the pixmap, appears on the screen (see Chapter 15 for more information).

You can create a blank pixmap of any size, provided the X server has enough
memory, with the XCreatePixmap function.

XCreatePixmap Create a blank pixmap.

Pixmap XCreatePixmap(
Display *display,
Drawable drawable,
unsigned int width,
unsigned int height,
unsigned int depth)

display
drawable
width, height
depth

The X display.
The drawable.
The width and height of the pixmap.
The depth of the pixels in the pixmap.

Once you have created a pixmap, you can use it as the drawable for a
drawing command.

Typically, you use a pixmap to copy groups of pixels to and from a window.
The window and pixmap must belong to the same screen and must have the
same depth. You use the XCopy Area function to do the copying.

XCopy Area Copy a group of pixels.

void XCopyArea(
Display *display,
Drawable src,
Drawable dst,
GC gc,
int src_x,
int src_y,

17.3 DRAWING COMMANDS IN X

unsigned int width,
unsigned int height,
int dest_x,
int dest_y)

display
src,dst
gc
src_x,src_y
width, height
dest_x, dest_y

The X display.
Source and destination drawables.
The graphics parameter.
Starting coordinates of rectangle to copy.
The width and height of the rectangle to copy.
Coordinates of destination rectangle.

305

You can use a program named Bitmap to create small or large bitmap images
written to disk in the X bitmap format. Once the image exists on disk, you
can read it into a Motif program and draw it in a drawing area widget fairly
easily. Figure 17.8 shows the Bitmap program at work creating a 30 x 30 pixel
icon that represents a file folder. The program was invoked with the command
bi tmap folder. xbm 30x30.

The output of the Bitmap program is an X bitmap file, a text file containing
the bitmap's description. The contents of bitmap file for the folder icon, called
folder. xbm, look like this:

#define folder_width 30
#define folder_height 30
static char folder_bits[] = {
OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, Ox80, Ox3f, OxOO, OxOO, OxcO, Ox20,
OxOO, OxOO, Ox60, Ox20, Oxfe, Oxff, Ox3f, Ox20, Ox02, OxOO, OxOO, Ox20,
Ox02, OxOO, OxOO, Ox20, Ox02, OxOO, OxOO, Ox20, Ox02, OxOO, OxOO, Ox20,
Ox02, OxOO, OxOO, Ox20, Ox02, OxOO, OxOO, Ox20, Ox02, OxOO, OxOO, Ox20,
Ox02, OxOO, OxOO, Ox20, Ox02, OxOO, OxOO, Ox20, Ox02, OxOO, OxOO, Ox20,
Ox02, OxOO, OxOO, Ox20, Ox02, OxOO, OxOO, Ox20, Ox02, OxOO, OxOO, Ox20,
Ox02, OxOO, OxOO, Ox20, Ox02, OxOO, OxOO, Ox20, Ox02, OxOO, OxOO, Ox20,
Ox02, OxOO, OxOO, Ox20, Ox02, OxOO, OxOO, Ox20, Ox02, OxOO, OxOO, Ox20,
Ox02, OxOO, OxOO, Ox20, Ox02, OxOO, OxOO, Ox20, Ox02, OxOO, OxOO, Ox20,
Oxfe, Oxff, Oxff, Ox3f, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO};

As you can see, folder. xbm is simply a text file, conveniently set up in a
format so that you can include it in a C program. The code in Listing 17.6
shows how to display this bitmap in a drawing area.

306 DRAWING

Figure 17.8 Creating a Folder Icon with the Bitmap
Program

Bitmap Editor

ltJ~fi~l~~~t~ii~ft~i~¥~~~f~tf-~i~HJP-TT1TTTii ~ =;::=~=:=~:=AA=i=~:;;::1 ~
I

t·····
~
I·· .. ·
;.
L. .. .
~

Glear Area
Set Area

Invert Area

I::::: , I GoPy Area
t:::: i Move Area I
I:: I Overlay Area I

f::::: ~~:~e
r····· E j:ib:H+t:_HltJHiHjiH:Hj~c~ FiRed Circle

L~ j=b:::lilif:J:H:i:L:liH:b:Hijjj+-~ Flood Fill

~*I=:f=~::t~:f:i::I=:r~*f::t=j:=j:=1=1:=f:i=j:t=j~:f=t*f=~t:: I Set Hot Spot I

L}::::f:::::I:::::f:::::I:::::f:::::I:::::f:::::I:::::f:::::I:::::f:::::I:::::f:::::I:::::L::I:::::f:::::I:::::L::I:::::f:::::I:::::L::I:::::f:::::I:::::L::I:::::1 IGlear Hot Spot I
I Write Output I
I Quit I

17.3 DRAWING COMMANDS IN X

Listing 17.6 Drawing a Bitmap In a Drawing Area

/* bitmap.c */

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>
#include "folder.xbm"

XtAppContext contextj

GC gc;
Widget drawing_areaj
Widget toplevelj

unsigned int get_depth(w)
Widget Wj

/* gets the depth of the display holding w. */
{

}

Window r;
unsigned int x,y,wd,ht,bw,depthj

XGetGeometry(XtDisplay(w),XtWindow(w),
&r,&x,&y,&wd,&ht,&bw,&depth);

return depthj

void setup_gc 0
/* set up the graphics context. */
{

}

int foreground,backgroundj
XGCValues vals;
Arg al[10]j
int aCj

/* get the current fg and bg colors. */
ac=Oj
XtSetArg(al[ac], XmNforeground, &foreground)j aC++j
XtSetArg(al[ac], XmNbackground, &background)j aC++j
XtGetValues(drawing_area, aI, aC)j

/* create the gc. */
vals.foreground = foregroundj
vals.background = backgroundj
gc=XtGetGC(drawing_area, GCForeground I GCBackground ,&vals)j

307

308 DRAWING

void draw_icon(w,client_data,call_data)
Widget w;

{

}

XtPointer client_data;
XtPointer call_data;

Pixmap p;
int fc,bc,depth;
Arg al[10];
int ac;

1* get the Current fg and bg colors. *1
ac=O;
XtSetArg(al[ac], XmNforeground, &fc); ac++;
XtSetArg(al[ac], XmNbackground, &bc); ac++;
XtGetValues(drawing_area, aI, ac);

depth=get_depth(drawing_area);

1* create the pixmap and display it. *1
p=XCreatePixmapFromBitmapData(XtDisplay(drawing_area) , ,

. ,,': ".," XtWindow(drawing_area) ,folderj)its ,folder_width,folder_height,
fc, bc, depth);

XCopyArea(XtDisplay(drawing_area),p,XtWindow(drawing_area),gc,O,O,
folder_width, folder_height, 100,100);

XFreePixmap(XtDisplay(drawing_area),p);

void main(argc,argv)
int argc;

{

char *argv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"",NULL,O,&argc,argv,

NULL,NULL,O);

1* set window size. *1
ac=O;
XtSetArg(al[ac],XmNheight,200); ac++;
XtSetArg(al[ac],XmNwidth,200); ac++;
XtSetValues(toplevel,al,ac);

17.3 DRAWING COMMANDS IN X

}

1* create a draving area vidget. *1
ac=Oj
draving_area=XmCreateDravingArea(toplevel,"draving_area", al,ac)j
XtManageChild(draving_area);
XtAddCallback(draving_area,XmNexposeCallback,drav_icon,NULL)j

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

309

Figure 17.9 shows the output of Listing 17.6. The folder icon appears at
position 100, 100 in a 200 x 200 drawing area.

Most of the code in this program is the standard drawing code we have used
since the beginning of the chapter. The main routine opens and resizes the
toplevel shell, creates a drawing area, routes the exposure event to the draw_
icon function, and forms a standard GC.

The draw_icon function contains several sections, duplicated below:

1* get the current fg and bg colors. *1
ac=Oj
XtSetArg(al[ac], XmNforeground, &fc)j aC++j
XtSetArg(al[ac], XmNbackground, &bc); aC++j
XtGetValues(draving_area, aI, aC)j

depth=get_depth(draving_area);

1* create the pixmap and display it. *1
p=XCreatePixmapFromBitmapData(XtDisplay(draving_area),

XtWindov(draving_area),folder_bits,folder_vidth,folder_height,
fc, bc, depth);

XCopyArea(XtDisplay(draving_area),p,XtWindov(draving_area),gc,O,O,
folder_vidth, folder_height, 100,100)j

XFreePixmap(XtDisplay(draving_area),p)j

The first section gets the foreground and background color information
from the drawing_area widget ~sing a standard XtGetValues call.

The next section consists of a single line that makes a call to the get_depth
function. It uses XGetGeometry to get the depth of the screen. This step is
extremely important. A bitmap file contains picture information that has a
depth of 1. However, the window that displays the picture can have a depth of

310 DRAWING

Figure 17.9 Output of listing 17.6

o

between 1 and 32 bits, depending on the system. You must know the depth of
the window so that when the program converts the bitmap data to a pixmap,
the pixmap has the same depth as the window that will display it.

You can extract the depth value easily using the XGetGeometry function,
which returns a variety of information about a drawable. A call to this func­
tion looks like this:

XGetGeametry(XtDisplay(da), XtWindaw(da),
&raat, lx, &y, &w, &h, &bw, &depth);

Note that the address of the variables is passed so that values can be returned.
The root parameter (is of type Window and returns a pointer to the root
window; the x and y parameters return the offset of the drawable from its
parent window; the wand h parameters return the width and height of the
drawable; and the bw parameter returns the border width.

The depth parameter-the value we actually care about here-returns the
depth of the window. Do not make assumptions about the depth. For exam­
ple, if you are working on a display of depth 1, it is tempting simply to pass a 1
as the depth parameter to XCreatePixmapFromBitmap. This value will crash
the program if you ever run it on a color display. Note that the depth resource
in the core widget also contains the depth. This resource has the advantage of
avoiding a query on the X server.

The last section creates a pixmap from the bitmap information using the
XCreatePixmapFromBitmapData function. The parameters tell this function
the source of the bitmap data, the width and height of the bitmap, and the

17.3 DRAWING COMMANDS IN X 311

colors and depth to use when creating the pixmap. The pixmap is. copied onto
the screen using the XCopyArea function, which copies an area of pixels from
a source pixmap (in this case, the pixmap returned by XCreatePixmapFrom­
BitmapData) to a destination pixmap (in this case, the window in which we
want to display the bitmap). The parameters include the display, the source,
the destination, a GC, the x and y coordinates and width and height of the
rectangular area to be copied, and the x and y coordinates of the destination
location. In this case, we want to copy the entire pixmap, so we select a rect­
angular area starting at 0, ° and extending for the pixmap's full width and
height (folder_width and folder_height). We want to copy the area to the
point 100,100 in the destination window.

The pixmap variable p is a resource stored in the X server (see Chapter 15),
so you should use XFreePixmap to free the block of memory it points to when
you are done with it.

Remember that a label widget, as well as other widgets inheriting a label
widget (such as the push-button widget), can display a pixmap instead of a
text label. The code to get the pixmap data for a label widget is identical to the
pixmap code we saw above, as shown in Listing 17.7.

Listing 17.7 Displaying a Plxmap on a Label Widget

/* label_pixmap.c */

#include <Xm/Xm.h>
#include <Xm/Label.h>
#include IIfolder.xbm ll

XtAppContext context;

Widget toplevel, label;

unsigned int get_depth(w)
Widget w;

/* gets the depth of the display holding w. */
{

}

Window r;
unsigned int x,y,wd,ht,bw,depth;

XGetGeometry(X~Display(w), RootWindowOfScreen(XtScreen(toplevel»,
&r, &x, &y, &wd, &ht, &bw, &depth);

return depth;

main (argc, argv)

312 DRAWING

{

}

int argc;
char *argv [] ;

Arg al[10];
int ac;
int foreground, background;
Pixmap pix;
unsigned int depth;

1* create the toplevel shell ,*1
toplevel = XtApplnitia1ize(&c~ntext,"",NUi.L,O,&argc,~gv,

NULL,NULL:-6);. '... :,f" -

1* create the label *1
ac=O;
label=XmCreateLabel(toplevel,"label",al,ac);
XtManageChild(label);

1* get colors of label *1
ac=O;
XtSetArg(al[ac], XmNforeground, &foreground); ac++;
XtSetArg(al[ac], XmNbackground, &background); ac++;
XtGetValues(label, aI, ac);

1* get the depth so pixmap can be created. *1
depth=get_depth(toplevel);

1* create the pixmap *1
pix=XCreatePixmapFromBitmapData(XtDisplay(toplevel),

RootWindowOfScreen(XtScreen(toplevel»,
folder_bits ,folder_width,folder_height ,
foreground,background,depth);

1* set appropriate label resources. *1
ac=Oj
XtSetArg(al[ac], XmNlabelType, XmPIXMAP); ac++;
XtSetArg(al[ac], XmNlabelPixmap, pix); ac++;
XtSetValues (label , aI, ac);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

The main routine gets the depth of the display and the foreground and
background colors of the label so that it can create the pixmap. It attaches the

17.4

17.4 ADVANCED DRAWING CONCEPTS 313

Figure 17.10 A Label Displaying a Bitmap

o
pixmap to the label using the label's labelPixmap and labelType resources.
The code uses the folder bitmap file folder.xbm once again. Figure 17.10

I .

shows the effect of mapping the bitmap onto the label.
In the code in Listing 17.7, note the following phrase:

RootWindowOfScreen(XtScreen(toplevel»

This phrase takes the place of XtWindow(toplevel) in Listing 17.7 to get
around the BadDrawable error that occurs when the code asks for drawable
information on the label before it has been realized. We use the root window
(the background) of the screen containing the toplevel shell because it always
exists and because all windows on a given screen by definition have the same
depth.

ADVANCED DRAWING CONCEPTS

This section describes techniques needed to create drawing programs. It also
demonstrates how to add sophisticated features such as pop-up menus to pro­
grams that use drawing area widgets.

17.4.1 CLEARING AREAS

You can use the XClearArea function to clear areas in windows. A call to this
function looks like this:

XClearArea(XtDisplay(da), XtWindow(da), x, y, w, h, False);

The x, y, w, and h parameters specify the rectangular region to be cleared. If
all four are set to 0, the function clears the entire drawing area.

The False parameter determines whether or not the XClearArea function
should generate an exposure event. When set to false as shown above, XClear­
Area generates no exposure event. When set to true, it generates an exposure
event for the cleared region. You can use this feature to clear the window and
then allow your normal exposure-handling function to redraw the window for
you. See the advanced drawing program in Section 17.4.6 for an example.

314 DRAWING

You cannot use XClearArea to clear an area on a pixmap. Instead, use XFill­
Rectangle.

17.4.2 EXPOSURE REGIONS

When an exposure event is ge~erated, often only a small part of the window
is exposed. If your code redraws the entire window on every exposure event,
it will waste a great deal of time. The call_data parameter passed to the ex­
posure callback function contains information needed to determine the exact
rectangle being exposed, so that only that' portion of the window is redrawn. If
you create the data structure for your program carefully enough to determine
which parts of the drawing area fall within the exposure rectangle, Y9u can
take advantage of this capability to improve your program's performance.

The code in Listing 17.8 demonstrates the exposure rectangle by writing the
coordinates of the rectangle to stdout each time an exposure event occurs.

Listing 17.8 Determining the Exposure Rectangle
and Writing It to Stdout

/* exposure.c */

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>

XtAppContext context;

Widget drawing_area;
Widget toplevel;

void exposeCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XmAnyCallbackStruct *call_data;

/* called whenever an exposure occurs on the drawing area. */
{

}

XExposeEvent *event;

event=(XExposeEvent *) call_data->event;
printf(IIExposed rectangle: x=Y.d y=Y.d width=y'd height=Y.d\n",

event->x,event->y,event->width,event->height);

void main(argc,argv)
int argc;

17.4 ADVANCED DRAWING CONCEPTS

{

}

char *argv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,IIII,NULL,O,&argc,argv,

NULL,NULL,O);

1* default window size. *1
ac=O;
XtSetArg(al[ac],XmNheight,400); ac++;
XtSetArg(al[ac],XmNwidth,400); ac++;
XtSetValues(toplevel,al,ac);

1* create a drawing area widget. *1
ac=O;
drawing_area=XmCreateDrawingArea(toplevel,

IIdrawing_areall,al,ac);
XtManageChild(drawing_area);
XtAddCallback(drawing_area,XmNexposeCallback,

exposeCB,NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

315

In the exposeCB procedure, the call_data parameter contains the event
that generated the call to the callback. In this case, it is an exposure event.
The code in exposeCB gets the x, y, width, and height fields in the exposure
event structure and writes these values to stdout.

You may find that some actions generate multiple exposure rectangles. For
example, bringing a window forward from behind several other windows gen­
erates several exposure events, each with its own rectangle. If you are using a
redrawing technique that repaints the entire window for any exposure event,
multiple exposure events can pose a problem, since the screen will be com­
pletely redrawn several times in a row. With complicated images, redrawing
can take a great deal of time. To solve this problem the XEvent structure con­
tains a field count that, when not 0, indicates how many exposure events in
the same cluster will follow. Ignore all exposure events in which the count

field does not equal 0 if you redraw the entire screen on each exposure.

316 DRAWING

17.4.3 HANDLING RESIZE EVENTS

A drawing area widget can generate resize callbacks as well as expose callbacks.
Resize callbacks are quite useful if you are attempting to scale a figure to fill
up a window. Each time you resize a window, your code can receive a resize
callback that tells it to clear the drawing area and to redraw your figure at the
new size.

To make use of the resize event, use the XtAddCallback function to activate
the callback. In the callback function, use XtGetValues to extract the new
width and height resource values from the drawing area widget. Rescale your
figure accordingly.

The code in Listing 17.9 shows how to use the resize event. Figure 17.11
shows typical output of the program.

Listing 17.9 Demonstrating the Resize Event

/* resize.c */

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>

XtAppContext context;

GC gc;
Widget drawing_area;
Widget toplevel;
XSegment lines[2];
int nwn_Iines=2;

void setup_gcO
/* set up the graphics context. */
{

int foreground ,background;
XGCValues vals;
Arg al [10];
int ac;

/* get the current fg and bg colors. */
ac=O;
XtSetArg(al[ac], XmNforeground, &foreground); ac++;
XtSetArg(al[ac], XmNbackground, &background); ac++;
XtGetValues(drawing_area, aI, ac);

17.4 ADVANCED DRAWING CONCEPTS

}

/* create the gc. */
vals.foreground = foreground;
vals.background = background;
gc= XtGetGC(drawing_area, GCForeground I GCBackground, &vals);

void exposeCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XtPointer call_data;

/* called whenever drawing area is exposed. */
{

}

printf(lIexposure event generated\n");
XDrawSegments(XtDisplay(w),XtWindow(w),gc,lines,num_lines);

void resizeCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XtPointer call_data;

/* called whenever drawing area is resized. */
{

Dimension wdth,hght;
Arg al[10];
int ac;

printf("resize event generated\n");

/* get new window size. */
ac=O;
XtSetArg(al[ac],XmNheight,&(hght»; ac++;
XtSetArg(al[ac],XmNwidth,&(wdth»; ac++;
XtGetValues(w,al,ac);
printf("Xd Xd \n",wdth,hght);

lines [0] .xl
lines [0] .yl
lines [0] .x2

wdth/2;
0;

wdth/2;
lines [0] .y2 = hght;

lines [1] .xl = 0;
lines [1] .yl = hght/2;
lines [1] .x2 = wdth;
lines [1] .y2 = hght/2;

317

318 DRAWING

if (XtIsRealized(w»
XClearArea(XtDisplay(w), XtWindow(w), 0, 0, 0, 0, True);

}

void main(argc,argv)
int argc;

{

}

char *argv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,"",NULL,O,&argc,argv,

NULL,NULL,O);

1* set window size. *1
ac=O;
XtSetArg(al[ac],XmNheight,500); ac++;
XtSetArg(al[ac],XmNwidth,500); ac++;
XtSetValues(toplevel,al,ac);

1* create a drawing area widget. *1
ac=O;
drawing_area=XmCreateDrawingArea(toplevel,"drawing_area",al,ac);
XtManageChild(drawing_area);
XtAddCallback(drawing_area, XmNexposeCallback, exposeCB, NULL);
XtAddCallback(drawing_area, XmNresizeCallback, resizeCB, NULL);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

In Listing 17.9, the resizeCB callback function is triggered every time the
user resizes the drawing area widget. This function checks the new size of the
drawing area widget, then creates two lines that bisect the drawing area once
it is redrawn. It also clears the drawing area widget, but only if it has been
realized. The check for realization ~s necessary because one resize event will be
generated very early in the code's execution-generally long before the widget
has been realized-and if the check is not made, the XClearArea call fails on
this initial resize event.

Note that the resize event does not actually need to redraw the lines. Since
an exposure event follows any expansion of the window, the exposeCB func-

17.4 ADVANCED DRAWING CONCEPTS

Figure 17.11 Two Lines Bisecting the Window
The lines adjust correctly as the window is resized.

319

tion handles the redrawing. The True value in the XClearArea call handles
shrinking windows. This parameter generates exposure events after each clear
operation.

17.4.4 HANDLING CLICKS IN A WINDOW

You may want to draw in a drawing area widget and then let the user click
on parts of the drawing. You can easily handle button clicks that occur in the
drawing area widget by setting up an event handler.

The code in Listing 17.10 starts a drawing area widget and establishes a
callback for mouse button releases using the XtAddEventHandler function.
This function causes the specified function, to be called each time the specified
event occurs (see Chapter 16). If the user clicks in the drawing area, a callback
is generated as the mouse button is released. In Listing 17.10, the callback is
wired to display the x and y coordinates of the button click to stdout.

Listing 17.10 Handling Clicks In a Drawing Area

/* clicks.c */

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>

#define size 400

XtAppContext context;

Widget toplevel, drawing_area;

320 DRAWING

void handle_click(w,client_data,event)
Widget Wj
XtPointer client_data;
XEvent *eventj

1* event handler for mouse clicks *1
{

printf(IIYod Yod\nll,event->xbutton.x,event->xbutton.Y)j
}

void main(argc,argv)
int argcj

{

}

char *argv [] j

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,IIII,NULL,O,&argc,argv,

NULL,NULL,O);

1* default window size. *1
ac=Oj
XtSetArg(al[ac],XmNheight,size); aC++j
XtSetArg(al[ac],XmNwidth,size); aC++j
XtSetValues(toplevel,al,ac)j

1* create drawing area *1
ac=O;
drawing_area=XmCreateDrawingArea(toplevel,

IIdrawing_areall,al,ac)j
XtManageChild(drawing_area)j
1* add in event handler *1
XtAddEventHandler(drawing_area,ButtonReleaseMask,

FALSE,handle_click,NULL);

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

You can change the mask in XtAddEventHandler to ButtonPressMask,
which calls the event handler as the user clicks the button. You can also
change the mask to ButtonMotionMask, which generates callbacks when the
user holds the button down and drags the mouse.

17.4 ADVANCED DRAWING CONCEPTS 321

17.4.5 HANDLING RUBBER-BANDING

When creating any type of drawing or painting program, programmers often
give the user a rubber-banding capability for drawing lines, boxes, circles, and
so on. To rubber-band a line, the user clicks on the starting point of the line,
~hen drags the cursor toward the line's ending point. On-screen, the user sees
. what looks like a rubber band stretching between the starting point and the
cursor.

You can easily create the rubber-banding effect using ButtonMotion events
to track cursor motion. In rubber-banding, the program must erase the .old line
each time the cursor moves and draw a new line to the new cursor position.
However, if the program simply erases the old line, other lines that cross that
line are erased as well at the crossing points. Instead, the old line must be
."undrawn," leaving the original artwork untouched.

The undrawing effect is accomplished with the GXxor drawing function,
which is a Boolean operation defined by the following truth table:

inl
o
o
1
1

in2
o
1
o
1

out
o
1
1
o

If you draw a black line using the GXxor function, all white areas under the
line change to black and all black areas under the line change to white. If you
draw the same line using GXxor again, the effect is reversed and the line is
effectively undrawn. _ ..

The code in Listing 17.11 shows how to implement rubber-banding. To use
this program, click on a starting point and drag to the ending point of the
line that you wish to draw. You can easily modify the code to handle rubber­
banded rectangles or ellipses. This code does not handle exposure events, be­
cause the drawn lines are not stored in a data structure. See the drawing pro­
gram in Section 17.4.6 for more information on exposure handling.

Listing 17.11 Rubber-Banding

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>

XtAppContext context;

322 DRAWING

Widget toplevel;
Widget drawing_area;
GC gc_copy;
GC gc_xor;
int start_x,start_y;
int old_x,old_y;

void setup_gcs 0
1* set up the graphics context. *1
{

}

int foreground ,background;
Arg al[10];
int ac;
XGCValues vals;

1* get the current fg and bg colors. *1
ac=O;
XtSetArg(al[ac], XmNforeground, &foreground); ac++;
XtSetArg(al[ac], XmNbackground, &background); ac++;
XtGetValues(drawing_area, aI, ac);

1* create the copy gc. *1
vals.foreground = foreground;
vals.background = background;
gc_copy= XtGetGC(drawing_area, GCForeground I GCBackground, &vals);

1* create the xor gc. *1
vals.foreground = foreground - background;
vals.function = GXxor;
gc_xor= XtGetGC(drawing_area, GCForeground I GCBackground I

GCFunction, &vals);

void handle_start(w,client_data,event)
Widget w;
XtPointer client_data;
XEvent *event;

1* handles the ButtonPress event *1
{

}

old_x=start_x=event->xbutton.x;
old_y=start_y=event->xbutton.y;
XDrawLine(XtDisplay(w), XtWindow(w), gc_xor,

start_x, start_y, old_x, old_y);

17.4 ADVANCED DRAWING CONCEPTS

void handle_drag(w,client_data,event)
Widget Wj
XtPointer client_dataj
XEvent *eventj

1* handles the ButtonMotion event *1
{

}

XDrawLine(XtDisplay(w), XtWindow(w), gc_xor,
start_x, start_y, old_x, old_y)j

old_x=event->xbutton.xj
old_y=event->xbutton.yj
XDrawLine(XtDisplay(w), XtWindow(w), gc_xor,

start_x, start_y, old_x, old_y)j

void handle_done(w,client_data,event)
Widget Wj
XtPointer client_dataj
XEvent *eventj

1* handles the ButtonRelease event *1
{

}

old_x=event->xbutton.xj
old_y=event->xbutton·Yj
XDrawLine(XtDisplay(w), XtWindow(w), gc_copy,

start_x, start_y, old_x, old_y)j

void main(argc,argv)
int argcj

{

char *argv [] j

Arg al[10]j
int aCj

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context,IIII,NULL,O,&argc,argv,

NULL,NULL,O) j

1* default window size. *1
ac=O;
XtSetArg(al[ac],XmNheight,400)j ac++;
XtSetArg(al[ac],XmNwidth,400)j aC++j
XtSetValues(toplevel,al,ac)j

1* create drawing area *1
ac=O;

323

324 DRAWING

}

draving_area=XmCreateDravingArea(toplevel,
"draving_area",al,ac)j

XtManageChild(draving_area)j

/* add in event handlers for draving area */
XtAddEventHandler(draving_area, ButtonPressMask, FALSE,

handle_start, NULL)j
XtAddEventHandler(draving_area, ButtonReleaseMask, FALSE,

handle_done, NULL)j
XtAddEventHandler(draving_area, ButtonMotionMask, FALSE,

handle_drag, NULL)j

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

There are several interesting aspects to Listing 17.11. First, the ButtonPress,
ButtonMotion, and ButtonRelease events are all wired to separate callback
functions. When the user first presses the mouse button, handle_start is
called, the starting and ending values of the new line are stored, and the line
is drawn. As the user drags the mouse, handle_drag is called so that the old

\

line is undrawn and a new line is drawn at the new position. When the user
releases the mouse button, handle_done is called and the line is drawn one
final time in GXcopy mode to make it a solid line.

The setup~cs function creates two GCs here: One handles the normal GX­
copy mode, and the other handles the GXxor mode. The gc_xor GC sets the
drawing function to GXxor. It also uses an interesting foreground color:

vals.foreground = foreground ~ backgroundj

The " operator in C is the xor operator, which you use for the following
reason. Say you are working on an 8-bit color screen whose background color
is 65 (01000001) and foreground color is 15 (00001111). Xor-ing these values
together gives vals.foreground the value 01001110. When a pixel with this
foreground color is xor-ed onto the background color as a line is drawn, you
get 01001110"01000001 = 00001111, or the foreground color. If a pixel is xor­
ed onto the foreground color, you get 01001110"00001111 = 01000001, or the
background color. This is exactly the desired result.

17.4 ADVANCED DRAWING CONCEPTS

Figure 17.12 Improved Drawing Program with
Scroll Bar

17.4.6 USING SCROLL BARS TO CREATE LARGE VIRTUAL SPACES

325

You can use scroll bars to create large virtual spaces for drawing or editing. To
show the usefulness of scroll bars, we will create a large virtual drawing surface
by adding a scroll bar to the rubber-banding code presen"ted in Section 17.4.S.

The rubber-banding code in Section 17.4.S is fairly simple: It allows the user
to draw lines. This code cannot handle exposure events because fihas no data
structure to store the lines the user has drawn. Furthermore, the drawing can
be no larger than the drawing area on the screen. We will improve this code
by adding a data structure and a vertical scroll bar that allows the user to scroll
through a drawing surface much longer than the height of one screen. Figure
17: 12 shows a view of the improved program.

A virtual drawing surfact:; creates the impression of a very large drawing
area within a small window on-sC):een. The actual drawing area created by
the program is only as big as the window. The user manipulates the scroll
bar(s) to move around the larger drawing surface. The example code presented
here adds vertical scrolling so the user will have the impression of a very long
(S,DDD-pixel) drawing area. In order to create the large virtual area, the code

326 DRAWING

Figure 17.13 The Relationship Between the 5,000-
Pixel-High Virtual Drawing Area and the Window
That Appears on the Screen

The drawing
area's origin

isslmO,O \

y_offset ----..
equals 1,500

/
on

The part of the
drawing visible
the user's scree
in the drawing a

n
rea

I

Screen width

""/ 5,000
pixels

g Screen
height

/
~

t--
Other lines not
visible, clipped off

uses a y _offset variable and the natural clipping capabilities of a drawing area
widget (see Figure 17.13).

All of the lines are stored in the data structure with their virtual coordinates. In
other words, as far as the data structure is concerned, the drawing area really
is 5,000 pixels high. In Figure 17.13, the user has scrolled the scroll bar so that
the part of the drawing visible on the screen starts at the y coordinate of 1500
in the virtual drawing area. The y_offset variable keeps track of this offset.

Now, imagine that an exposure event occurs. If the lines in the data struc­
ture are drawn into the drawing area widget with the value in y_offset sub­
tracted from all of the lines' y coordinates, then we will see exactly what we
expect to see in the drawi~g area. If the y _offset, value is adjusted each time
the user manipulates the scroll bar, the user receives the impression of a large
virtual drawing space.

17.4 ADVANCED DRAWING CONCEPTS 327

The code for implementing a large virtual drawing area appears in Listing
17.12.

Listing 17.12 Creating a Virtual Drawing Area

/* virtual. c*/

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>
#include <Xm/Form.h>
#include <Xm/ScrollBar.h>

#define MAX_Y 5000

XtAppContext context;

GC gc_copy;
GC gc_xor;
Widget toplevel, drawing_area, form, scroll;
int start_x,start_y;
int old_x,old_y;
int y_offset=O;

/* node for the single linked list contains the 4 line coordinates
and a next pointer. */

struct node
{

};

int xl ,yl ,x2,y2;
struct node *next;

/* first points to the first node in the SLL. */
struct node *first=NULL;

void setup_gcs 0
/* set up the graphics contexts */
{

intforeground,background;
Arg al[10];
int ac;" .. ;· .. · .. -:.
XGCValues vals;

/* get the c~~:Emt fg and bg colors. *l
ac=O;
XtSetArg(al[ac], XmNforeground, &foreground); ac++;

328 DRAWING

}

XtSetArg(al[ac], XmNbackground, &background); ac++;
XtGetValues(drawing_area, aI, ac);

1* create the copy gc. *1
vals.foreground = foreground;
vals.background = background;
gc_copy= XtGetGC(drawing_area, GCForeground I GCBackground, &vals);

1* create the xor gc. *1
vals.foreground = foreground A background;
vals.function = GXxor;
gc_xor= XtGetGC(drawing_area, GCForeground I GCBackground I

GCFunction, &vals);

void handle_start(w,client_data,event)
Widget w;
XtPointer client_data;
XEvent *event;

1* See Section 17.4.5. *1
{

}

old_x=start_x=event->xbutton.x;
old_y=start_y=event->xbutton.y;
XDrawLine(XtDisplay(w), XtWindow(w), gc_xor,

start_x, start_y, old_x, old_y);

void handle_drag(w,client_data,event)
Widget w;
XtPointer client_data;
XEvent *event;

1* See Section 17.4.5. *1
{

}

XDrawLine(XtDisplay(w), XtWindow(w), gc_xor,
start_x, start_y, old_x~ old_y);

old_x=event->xbutton.x;
old_y=event->xbutton.y;
XDrawLine(XtDisplay(w), XtWindow(w), gc_xor,

start_x, start_y, old_x, old_y);

void handle_done(w,client_data,event)
Widget w;
XtPointer client_data;
XEvent *event;

17.4 ADVANCED DRAWING CONCEPTS

1* See Section 17.4.5. *1
{

}

struct node *temp;

old_x=event->xbutton.x;
old_y=event->xbutton.y;
XDrawLine(XtDisplay(w), XtWindow(w), gc_copy,

start_x, start_y, old_x, old_y);

1* add the new line to the SLL. Add y_offset to y coords so that
lines in the SLL are in virtual space coordinates. *1

temp=(struct node *) malloc(sizeof(struct node»;
temp->x1=start_x;
temp->y1=start_y+y_offset;
temp->x2=0Id_x;
temp->y2=0Id_y+y_offset;
temp->next=first;
first=temp;

void exposeCB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XtPointer call_data;

1* called whenever drawing area is exposed. *1
{

struct node *temp;

1* Traverse the SLL and draw all lines to the drawing area.
Subtract off y_offset as each line is drawn so that virtual
space is mapped correctly into the actual drawing area. *1

printf("expose event generated\n");
temp=first;
while (temp)
{

XDrawLine(XtDisplay(w), XtWindow(w), gc_copy,

329

temp->x1, temp->y1-y_offset, temp->x2, temp->y2-y_offset);
temp=temp->next;

}

}

void scroIICB(w,client_data,call_data)
Widget w;
XtPointer client_data;
XtPointer call_data;

330 DRAWING

/* called vhenever scrollbar moves. */
{

}

Arg al[10];
int ac;
int value;

XClearArea(XtDisplay(draving_area), XtWindov(draving_area),
0, 0, 0, 0, True); /* viII generate a subsequent expose event. */

/* get nev scroll bar value and adjust y_offset. */
ac=O;
XtSetArg(al[ac],XmNvalue,&value); ac++;
XtGetValues(v,al,ac);
printf("scrollbar value = Yod\n",value);

y_offset=value;

void resizeCB(v,client_data,call_data)
Widget v;
XtPointer client_data;
XtPointer call_data;

/* called vhenever draving area is resized. */
{

}

Dimension vdth,hght;
Arg al[10];
int ac;

/* get nev vindov size. */
ac=O;
XtSetArg(al[ac],XmNheight,&hght); ac++;
XtSetArg(al[ac],XmNvidth,&vdth); ac++;
XtGetValues(v,al,ac);
printf("resized to YodxYod\n",vdth,hght);

/* adjust scroll bar. */
ac=O;
XtSetArg(al[ac],XmNsliderSize,hght); ac++;
XtSetArg(al[ac],XmNpagelncrement,hght/2); ac++;
XtSetValues(scroll,al,ac);

void main(argc,argv)
int argc;
char *argv [] ;

17.4 ADVANCED DRAWING CONCEPTS

{

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&context, .". ,NULL,O,&argc,argv,

NULL,NULL,O);

1* default window size. *1
ac=O;
XtSetArg(al[ac],XmNheight,400); ac++;
XtSetArg(al[ac],XmNwidth,400); ac++;
XtSetValues(toplevel,al,ac);

1* create a form to hold widgets *1
ac=O;
form=XmCreateForm(toplevel,"form",al,ac);
XtManageChild(form);

1* create a scroll bar *1
ac=O;
XtSetArg(al[ac], XmNtopAttachment, XmATTACH_FORM); ac++;
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM); ac++;
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_NONE); ac++;
XtSetArg(al[ac], XmNbottomAttachment, XmATTACH_FORM); ac++;
XtSetArg(al[ac], XmNwidth, 20); ac++;
XtSetArg(al[ac], XmNmaximum, MAX_Y); ac++;
scroll=XmCreateScroIIBar(form,"scroll",al,ac);
XtManageChild(scroll);
XtAddCallback(scroll,XmNvalueChangedCallback,scrollCB, NULL);

1* create drawing area *1
ac=O;
XtSetArg(al[ac], XmNtopAttachment, XmATTACH_FORM); ac++;
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM); ac++;
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_WIDGET); ac++;
XtSetArg(al[ac], XmNrightWidget, scroll); ac++;
XtSetArg(al[ac], XmNbottomAttachment, XmATTACH_FORM); ac++;
drawing_area=XmCreateDrawingArea(form,ldrawing_area",al,ac);
XtManageChild(drawing_area);
1* add in event handlers *1
XtAddEventHandler (drawing_area , ButtonPressMask, FALSE,

handle_start, NULL);
XtAddEventHandler (drawing_area , ButtonReleaseMask, FALSE,

handle_done, NULL);

331

332 DRAWING

}

XtAddEventHandler(drawing_area, ButtonMotionMask, FALSE,
handle_drag, NULL)j

XtAddCallback(drawing_area, XmNexposeCallback,
exposeCB. NULL)j

XtAddCallback(drawing_area, XmNresizeCallback,
resizeCB, NULL)j

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

The main function in Listing 17.12 creates a form widget and attaches the
scroll bar and drawing area. The valueChanged callback for the scroll bar is
connected to the scrollCB callback function. The expose and resize callbacks
for the drawing area are attached to appropriate callback functions as well. The
event handlers for ButtonMotion, ButtonPress, and ButtonRelease are wired
in; they use exactly the same code as in Section 17.4.5. The ButtonRelease
function (handle_done) contains additional code that adds finished lines to
the data structure, which is implemented as a simple single-linked list here.
The y_offset value is added to the y coordinates of each line as it is stored in
the data structure, so that all lines held there have virtual coordinates.

The exposeCB function is in charge of redrawing the screen after any expo­
sure, or after any scroll bar manipulation: In the scrollCB function, the call
to XClearArea generates an exposure event. The exposeCB function traverses
the data structure and draws the lines, subtracting the y _offset value from all
y coordinates to convert the virtual space coordinate system to the drawing
area's coordinate system. All lines above y _offset in the virtual space have
negative y coordinates and get clipped off, as do all lines below the drawing
area's range. As a result, you see the correct portion of the virtual space in the
drawing area.

The resizeCB function manipulates the scroll bar's sliderSize and pageln­
crement resources to reflect the new window height. These resources allow the
scroll bar to undertake some of the image alignment. For example, the code
sets the sliderSize resource to the height of the drawing area. When the user
drags the slider to the bottom of the scroll bar, the value held in the value re­
source exactly matches the value required to display the bottom of the virtual
space.

17.4 ADVANCED DRAWING CONCEPTS 333

The scrollCB function sets y _offset to reflect the change in the scroll bar's
value resource. It also clears the drawing area, which in turn generates an
exposure event to show the user the correct portion of the virtual space.

You can use a scrolled window widget as an alternative way of holding the
drawing area and one or two scroll bars. See Chapter 11 for more information
on the scrolled window widget.

17.4.7 POP-UP MENUS

Drawing programs like the one in Sections 17.4.5 and 17.4.6 often incorporate
pop-up menus for frequently used options. Pop-ups allow the user to choose
menu options without having to move the cursor up to the menu bar.

To demonstrate the use of pop-up menus, we will add one to the rubber­
banding code presented in Section 17.4.5. This menu lets the user choose one
of two different drawing shapes: lines or boxes. You could easily expand this
menu to include choices for circles, polygons, filled shapes, and so on. Listing
17.13 contains the code for the pop-up menu.

Listing 17.13 Creating Pop-Up Menus

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>
#include <Xm/PushB.h>
#include <Xm/RowColumn.h>

#define LINE 1
#define BOX 2

XtAppContext contextj
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSETj

Widget toplevelj
Widget drawing_areaj
Widget menUj
Widget line_itemj
Widget box_itemj

GC gc_copyj
GC gc_xorj
int start_x,start_Yj/* starting position of shape */
int old_x,old_Yj/* previous cursor position */

334 DRAWING

int current_shape=LINE;
Boolean shape_started=False;

void setup_gcs()
1* set up the graphics context. *1
{

}

int foreground,background;
Arg al[10];
int ac;
XGCValues vals;

1* get the current fg and bg colors. *1
ac=O;
XtSetArg(al[ac], XmNforeground, &foreground); ac++;
XtSetArg(al[ac], XmNbackground, &background); ac++;
XtGetValues(drawing_area, al, ac);

1* create the copy gc. *1
vals.foreground = foreground;
vals.background = background;
gc_copy= XtGetGC(drawing_area, GCForeground I GCBackground, &vals);

1* create the xor gc. *1
vals.foreground = foreground - background;
vals.function = GXxor;
gc_xor= XtGetGC (drawing_area , GCForeground I GCBackground I

GCFunction, &vals);

void draw_shape(w,gc)
Widget w;

{

}

GC gc;

switch (current_shape)
{

}

case LINE:
XDrawLine(XtDisplay(w), XtWindow(w), gc,

start_x, start_y, old_x, old_y);
break;

case BOX:
XDrawRectangle(XtDisplay(w), XtWindow(w), gc,

start_x, start_y, old_x-start_x, old_y-start_y);
break;

17.4 ADVANCED DRAWING CONCEPTS

void handle_start(w,client_data,event)
Widget Wj
XtPointer client_dataj
XEvent *eventj

1* handles the ButtonPress event *1
{

}

shape_started=Falsej
if (event->xbutton.button==Buttonl)
{

}

old_x=start_x=event->xbutton.xj
old_y=start_y=event->xbutton.yj
draw_shape(w,gc_xor)j
shape_started=Truej

else if (event->xbutton.button==Button3)
{

}

XmMenuPosition(menu,(XButtonPressedEvent *)event)j
XtManageChild(menu)j

void handle_drag(w,client_data,event)
Widget Wj
XtPointer client_dataj
XEvent *eventj

1* handles the ButtonMotion event *1
{

}

if (shape_started)
{

}

draw_shape(w,gc_xor)j
old_x=event->xbutton.xj
old_y=event->xbutton.yj
draw_shape(w,gc_xor)j

void handle_done(w,client_data,event)
Widget Wj
XtPointer client_dataj
XEvent *eventj

1* handles the ButtonRelease event *1
{

if (event->xbutton.button==Buttonl)
{

old_x=event->xbutton.xj

335

336 DRAWING

}

}

old_y=event->xbutton.y;
draw_shape(w,gc_copy);
shape_started=False;

void menuCB(w,client_data,call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

1* callback routine used for all menus *1
{

}

current_shape=client_data;
XtUnmanageChild(menu);

Widget make_menu_item(item_name,client_data,menu)
char *item_name;
XtPointer client_data;
Widget menu;

1* adds an item into a menu. *1
{

}

int ac;
Arg al[10];
Widget item;

ac = 0;
XtSetArg(al[ac],XmNlabeIString,

XmStringCreateLtoR(item_name,char_set»; ac++;
item=XmCreatePushButton(menu,item_name,al,ac);
XtManageChild(item);
XtAddCallback(item,XmNactivateCallback,menuCB,client_data);
XtSetSensitive(item,True);
return(item);

"void main(argc,argv)
int argc;

{

char *argv []; .

Arg al[10] ';
int ac;

1* create the toplevel shell *1 .
toplevel = XtApplnitialize(tcontext,"",NULL,O,targc,argv,

17.4 ADVANCED DRAWING CONCEPTS

}

NULL,NULL,O)j

1* default window size. *1
ac=Oj
XtSetArg(al[ac],XmNheight,400); ac++;
XtSetArg(al[ac],XmNwidth,400)j aC++j
XtSetValues(toplevel,al,ac);

1* create drawing area *1
ac=O;
drawing_area=XmCreateDrawingArea(toplevel,ldrawing_area",al,ac);
XtManageChild(drawing_area)j
1* add in event handlers for drawing area *1
XtAddEventHandler(drawing_area, ButtonPressMask, FALSE,

handle_start, NULL)j
XtAddEventHandler(drawing_area, ButtonReleaseMask, FALSE,

handle_done, NULL)j
XtAddEventHandler(drawing_area, ButtonMotionMask, FALSE,

handle_drag, NULL);

1* create the popup menu *1
ac=O;
menu=XmCreatePopupMenu(drawing_area,lmenu",al,ac);
line_item=make_menu_item(ILine",LINE,menu);
box_item=make_menu_item(IBox",BOX,menu);

XtRealizeWidget(toplevel);
XtAppMainLoop(context);

337

This program, for the most part identical to the code in Section 17.4.5, con­
tains three Significant changes. For one, the event-handling functions are
button-sensitive. The rubber-banding code in Section 17.4.5 has no mouse
button sensitivity: You can draw a line with any of the mouse's three but­
tons. For a pop-up menu to work, you must isolate the drawing activity to
one mouse button so that you can use another for the menu. You assign but­
tons with an if statement in handle_start and handle_done that checks to
see if the user has pressed Buttonl. If so, the program runs the normal rubber­
banding code.

Button motion events do not return an indication of the button in use. Your
code must set a Boolean variable to true when a shape is started and false when

338 DRAWING

Figure 17.14 Output of Listing 17.14

a shape is finished. The handle_drag function determines whether the button
motion is tied to a drawing operation by examining this Boolean value.

The handle_start function has also been modified to recognize when the
user presses the third menu button, so that it can manage the pop-up menu.

The second significant change is that the pop-up menu code has been
added. The pop-up menu is created with a convenience function and filled
with the make_menu_item function introduced in Chapter 6. The menueB
function sets the current_shape variable, so that the program knows the cur­
rent shape, and unmanages the pop-up.

Third, the code now supports multiple shapes: lines and boxes. The draw_
shape function handles the creation of the two shapes. The choice between
the two is made with a switch statement triggered off of current_shape. You
can easily extend this code to handle other shapes by adding menu options
and augmenting the draw_shape function.

The program in Listing 17.13 does not handle exposure events, so if the
menu pops up over part of the figure (and if your machine does not use a
backing store), a blank patch remains when the menu closes. To solve this
problem, add the code shown in Section 17.4.6 to handle exposure events and
scrolling in a drawing area.

17.4.8 USING A CLIP MASK

.The X drawing model supports a clip mask, which you can use to create some
interesting drawing effects. A clip mask is a bitmap. When you use one in a
GC, the program draws only those portions where the clip mask contains the
value 1. Listing 17.14 shows how to use a clip mask. In this code, the clip
mask is a bitmap that looks like a ring. Vertical lines extend through the mask,
creating the effect shown in Figure 17.14.

17.4 ADVANCED DRAWING CONCEPTS

Listing 17.14 Using a Clip Mask

1* clip.c *1

#include <Xm/Xm.h>
#include <Xm/DrawingA.h>
#include IIcircle.xbm ll

XtAppContext context;

Widget toplevel;
Widget drawing_area;
GC gc;
int foreground, background;

void setup_gc 0
1* set up the graphics context. *1
{

}

Arg al[10];
int ac;
XGCValues vals;
Pixmap p;

1* get the current fg and bg colors. *1
ac=O;
XtSetArg(al[ac], XmNforeground, &foreground); ac++;
XtSetArg(al[ac], XmNbackground, &background); ac++;
XtGetValues(drawing_area, aI, ac);

1* create the mask. *1
p=XCreateBitmapFromData(XtDisplay(toplevel),

RootWindowOfScreen(XtScreen(toplevel»,
circle_bits,circle_width,circle_height);

1* create the gc. *1
vals.foreground = foreground;
vals.background = background;
vals.clip_mask=p;
vals.clip_x_origin=O;
vals.clip_y_origin=O;
gc= XCreateGC(XtDisplay(toplevel),

RootWindowOfScreen(XtScreen(toplevel»,
GCForeground I GCBackground I GCClipMask
GCClipXOrigin I GCClipYOrigin, &vals);

339

340 DRAWING

void exposeCB(w,client_data,call_data)
Widget Wj
XtPointer client_dataj
XtPointer call_dataj

1* handles the exposure event *1
{

}

int Xj

for (x=Oj x<100j x+=3)
XDrawLine(XtDisplay(drawing_area), XtWindow(drawing_area), gc,

x,O,x,100)j

void main(argc,argv)
int argcj

{

}

char *argv [] j

Arg al[10]j
int aCj

1* create the toplevel shell *1
toplevel = XtApplnitialize(&:context,"",NULL,O,&:argc,argv,

NULL,NULL,O)j

1* default window size. *1
ac=Oj
XtSetArg(al[ac],XmNheight,100)j aC++j
XtSetArg(al[ac],XmNwidth,100)j aC++j
XtSetValues(toplevel,al,ac)j

1* create drawing area *1
ac=Oj
drawing_area=XmCreateDrawingArea(toplevel,"drawing_area",al,ac)j
XtManageChild(drawing_area)j
1* add in event handlers for drawing area *1
XtAddCallback(drawing_area, XmNexposeCallback, exposeCB, NULL)j

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

17.4 ADVANCED DRAWING CONCEPTS 341

The unique feature of the code in Listing 17.14 is the creation of a pixmap
of depth 1 in the setup~c function. This pixmap functions as the clip mask.
When the user draws the lines, the mask automatically clips them.

The clip origin can be changed to move the clipping mask around in the
drawing area. It is also possible to move the clip mask to follow the mouse. To
do this, use XCreateGC to create a modifiable GC, and then use the XSetClip­
Origin function to modify the clip origin in that GC.

17.4.9 USING XFLUSH

The X Window System stores drawing requests in an output buffer. If your
program generates a large number of requests, the system stores them in the
client until the buffer fills and then ships them to the X server all at once. In
c.ertain situations, this process creates a jerky display.

Imagine that you have created code that draws 1,000 shapes in a drawing
area. Your program may take a while to generate all of those shapes. You will
probably notice that the screen is blank for several seconds, then suddenly
shows half the shapes, then shows the rest several seconds later. This visual
effect of buffering can seriously detract from a program's overall appearance.

To flush the buffer, use the XFlush function, passing it the display as a
parameter:

XFlush(XtDisplay(da»;

Each time XFlush is called, the output buffer is flushed and its contents sent to
the X server. By calling XFlush frequently during complicated redraws, display
smoothness is improved.

18 CONCLUSION

In this book, I have tried to give you the essential knowledge you need to be a
productive Motif programmer. Obviously you don't know everything, but you
now know enough to create your own applications. You will learn more on
your own as the need arises.

In conclusion, I would like to offer two suggestions. The first concerns de­
sign issues; the second concerns bad days.

18.1 DESIGNING A MOTIF APPLICATION

18.2

Whenever you design a complex Motif program, consider doing it in two
parts: a user-interface part and a getting-the-work-done part. It does not matter
if you use libraries ,toJmplement this separation, or if you build a text appli­
cation that does the work and then put a Motif wrapper around it. Just try
to keep these two parts separate. If you maintain this separation and if your
program is successful, you can easily port it to other environments, such as
,the Macintosh and Microsoft Windows, by changing only the user-interface
portion of your code.

There is a second reason for keeping the user interface separate, which the
program Mathematica best illustrates. Mathematica, a FLOPS hog, is designed
so that the user interface can run on one machine (say a Macintosh) while
some number-crunching machine (say a Sun) does all the work. This arrange­
ment greatly improves performance. By separating the work portion from the
interface portion, you open the door to this sort of multiprocessing.

DEALING WITH BAD DAYS

If you do a lot of Motif programming, you will have occasional bad days. Al­
most all of the problems you encounter on these days will be "stupid C prob­
lems": bad addresses, missing or incorrect parameters, failures to increment

342

, 8.2 DEALING WITH BAD DAYS 343

ac, forgetting to manage a widget, and so on. Motif and X seem to foster these
mistakes. I will give you an example of a bad day from my own experience so
that you will know one when you see it.

I was writing the code for the drawing program presented in Section 17.4.6.
This program is not very long or complicated, and I figured that it would take
me fifteen minutes, tops. To create it, I simply cut and pasted most of the code
from other Motif programs. I compiled it and then ran it.

I had no drawing area. The scroll bar was there, but I could not draw any­
thing. Staring at the code, I eventually noticed the following:

drawing_area=XmCreateDrawingArea(toplevel,"drawing_area", aI, ac);

I was creating the drawing area and going through all of the correct attach­
ment motions to hook it into the form, but the parent of the drawing area was
not the form but toplevel. This does not work in Motif: The code accepts but
ignores all of the attachment code. I changed the word toplevel to form and
recompiled.

Now I could draw, but the program was sucking up a huge amount of CPU
time, it would not resize, and the scroll bar had no effect. Not good. Into the
program I went. I found the following code in the main function where the
callbacks for the drawing area are wired in:

XtAddCallback(drawing_area, . XmNexposeCallback,exposeCB, NULL);
XtAddCallback(drawing_area, XmNresizeCaIIback,exposeCB, NULL);

This is Ilo~the sortof thing I can usually see in five seconds: It took some star­
ing, scr.<?ll~"ng around, and ~utte~i!1g. Even~ally I saw that both the resize and
expose callbacks were wired into exposeCB. So I changed the resize callback
to get it talking to resizeCB, recompiled, and ran the program.

Igot a segmentation fault immediately. Segmentation faults are obnoxious.
I recompiled with the -g option and used dbx to see where the crash was
occurring. I started up dbx, typed run,. let it. crash, .. ap~ then typed where.

I found that in the resizeCB functio~~ ""~: had used XtGetValues ins~ead of
XtSetValues to set the value of the pagelncrement and sliderSize-a stupid
mistake." I corrected the error, recompiled, and ran the program again. The
segmentation fault was gone.

The scroll bar still did not work, however, so I decided to try something else.
The program was still sucking up huge quantities of CPU time: The machine
would fall to its knees as soon as I drew a line. I decided to check exposure
events. I drew two lines, iconified the window, and then expanded it. Only

344 CONCLUSION

the first line redrew. I killed the program and scanned exposeCB. Where else
could the problem be?

void exposeCB(Widget w, caddr_t client_data, caddr_t call_data)
1* called whenever drawing area is exposed. *1
{

struct node *tempj

printf("expose event generated\n")j
temp=firstj
while (temp)
{

XDrawLine(XtDisplay(w), XtWindow(w), gc_copy,
temp->xl, temp->yl-y_offset, temp->x2, temp->y2-y_offset)j

}

}

This code looked all right to me. I looked in a few other places and came back.
It still looked all right. The phone rang, and after a few more distractions I
noticed that something was missing: temp=temp->next in the while loop was
noticeable by its absence, and I had an infinite loop. The infinite loop was
using up all of the CPU time drawing a single line over and over again. I fixed
that, recompiled, and re-ran the program.

Exposure now worked, but the scroll bar still did not. I stared at the code.
I added in a printf statement to confirm that scrollCB was getting called, but
then I noticed that the exposure event that XClearArea should have triggered
was not occurring. I stared at the XClearArea call:

XClearArea(XtDisplay(w), XtWindow(w), 0, 0, 0, 0, True)j

At this point, I ~as getting very annoyed. What could possibly be wrong with
such a simple line? The exposure parameter was set to true, and I knew that
exposure events were working correctly. Eventually I noticed the problem: I
had pasted this line from somewhere else, where the w variable was a drawing
area. But here, w was the scroll bar, and XClearArea, of course, was having
no effect on it. "Sheesh!" is not what I said, but this is a family publication so
imagine that I said it. I then changed w to drawing_area and recompiled.

It finally worked! "Cheese and crackers got all muddy!" as my father used to
say. A task that should have taken ten minutes ended up taking an hour and a
half.

I will make a prediction: You will have days like this, too. And when they
happen, don't let them get you down. Even the best and the brightest have

18.2 DEALING WITH BAD DAYS 345

bad days on occasion, so get used to them. Go take a shower, play raquetball,
or do something, and then go back the next day and get on with it.

Fortunately, the bad days are rare. On the good days, you can create some
great applications with Motif. I hope you have fun creating your own pro­
grams.

A SOURCES OF INFORMATION

Downloading the Code

The code contained in this book can be downloaded from several FrP sites, as
listed below:

ftp.uu.net
Look for the file brain.motif. tar.Z in published.

osl.csc.ncsu.edu
Look for the file brain. motif. tar . Z in pub/ncsu_motif.

ftp.eos.ncsu.edu
Look for the file brain. motif. tar . Z in pub.

Here is an example of how to get the file. First, type

ftp ftp.uu.net

When asked for the name, type

anonymous

When asked for the password, type

guest

On some systems, your email address is also acceptable as the password, and
its use is encouraged.

Now, type binary to switch to binary mode, which is necessary to download
compressed files. Then change to the appropriate directory with a normal
cd command. For example, type cd published. Once you are in the correct
directory, download the file by typing

get brain.motif.tar.Z

Now type quit to exit the FrP command.
On your own system, type

uncompress brain.motif.tar.Z

346

A SOURCES OF INFORMATION 347

Then type

tar -xvf brain.motif.tar

This will build a new directory called brain.motif, which will contain all of
the code found in the book.

If you have problems, or if you are unable to use FTP from your machine,
please send me mail at one of the two following addresses:

brain@adm.csc.ncsu.edu

brain@eos.ncsu.edu

If you have problems sending email to me, you can send regular mail to:

Marshall Brain
P.O. Box 841
Zebulon, NC 27597

For further information about Appendix D, Lance Lovette can be reached via
email at: ltlovett@eos.ncsu.edu.

Further Reading

All Motif programmers I know use two or more of the following references
on a regular basis. There's so much in X, Xt, and Motif that it's impossible to
remember it all.

Adobe Systems, Inc. PostScript Language Program Design. Reading, Mass.: Addi­
son-Wesley, 1989.

Adobe Systems, Inc. PostScript Language Reference Manual. Reading, Mass.: Addi­
son-Wesley, 1986.

Adobe Systems, Inc. PostScript Language Tutorial and Cookbook. Reading, Mass.:
Addison-Wesley, 1985.

Asente, P., and R. Swick. X Window System Toolkit: The Complete Programmer's
Guide and Specification. Bedford, Mass.: Digital Press, 1990.

Barkakati, N. X Window System Programming. Carmel, Ind.: Sams, a division of
Macmillan Computer Publishing, 1991.

comp.windows.x.motif
This news group deals with Motif questions and answers. Get on the news
reader, and watch and learn. Be sure to download the Frequently Asked
Questions (FAQ) file for answers to basic questions.

348 SOURCES OF INFORMATION

Jones, O. Introduction to the X Window System. Englewood Cliffs, N.J.: Prentice­
Hall, 1989.

Kernighan, B., and D. Ritchie. The C Programming Language. 2d ed. Englewood
Cliffs, N.J.: Prentice-HaU, 1989.

Kochan, S. Topics in C Programming. New York: Wiley, 1991.

Man Pages, Section 3.
There are man pages for all X, XT, and Motif functions discussed in this
book. If you do not have man pages on your system, get your system
administrator to install them for you. They are extremely useful.

Nye, A. The X Window System Series, Volume Zero: X Protocol Reference Manual
for Version 11 of the X Window System. Sebastapol, Calif.: O'Reilly and
Associates, 1990.

Nye, A. The X Window System Series, Volume One: Xlib Programming Manual for
Version 11. Sebastapol, Calif.: O'Reilly and Associates, 1990.

Nye, A. The X Window System Series, Volume Two: Xlib Reference Manual for
Version 11. Sebastapol, Calif.: O'Reilly and Associates, 1990.

Nye, A., and T. O'Reilly. The X Window System Series, Volume Four: X Toolkit
Intrinsics Programming Manual. Sebastapol, Calif.: O'Reilly and Associates,
1990.

Nye, A., and T. O'Reilly. The X Window System Series, Volume Five: X Toolkit In­
trinsics Reference Manual. Sebastapol, Calif.: O'Reilly and Associates, 1990.

Open Software Foundation. OSF/Motif Programmer's Reference. Englewood
Cliffs, N.J.: Prentice-Hall, 1990.

Open Software Foundation. OSF/Motif Style Guide. Englewood Cliffs, N.J.:
Prentice-Hall, 1990.

O'Reilly, T. The X Window System in a Nutshell. Sebastapol, Calif.: O'Reilly and
Associates, 1990.

Quercia, V., and T. O'Reilly. The X Window System Series, Volume Three: X
Window System User's Guide for X11 R3 and R4. Sebastapol, Calif.: O'Reilly
and Associates, 1990.

Rost, Randi]., X and Motif Quick Reference Guide: X Window System 11 Release 4
and Motif 1.1. Bedford, Mass.: Digital Press, 1990.

A SOURCES OF INFORMATION 349

Scheifler, R. W., and J. Gettys. X Window System: The Complete Reference to Xlib,
X Protocol, ICCCM, XLPD-X Version 11 (Release 5). 3d ed. Bedford, Mass.:
Digital Press, 1992.

Smith, R. Learning PostScript: A Visual Approach. Berkeley, Calif.: Peachpit Press,
1990.

Young, D. The X Window System: Programming and Applications with Xt, asP/
Motif Edition. Englewood Cliffs, N.J.: Prentice-Hall, 1990.

B DEBUGGING HINTS

Debugging Motif programs is not always easy. Many things can go wrong at
many different levels, and it can be difficult to track the error to its point of
origin. Even so, several common errors seem to occur quite frequently. In this
appendix, I outline some common errors and their causes so that you can find
them more easily when they occur.

Bug 1: Segmentation Faults (and Other Random Crashes)

One of the most disheartening errors possible is a segmentation fault. You can
use dbx or a similar symbolic debugger to track them down quickly.

To use dbx, recompile the program with the -g option. Then, assuming
you have compiled it to a. out for the sake of this example, type dbx a. out.

Once dbx is started, type run and do whatever it takes to get the code to crash
again. Once it crashes, type where. The where command dumps the contents
of the program stack so that you can see the chain of function calls in effect at
the time of the crash. Many of these calls will often be Motif internals. Look
through the list until you find a function that you can call your own. Note
its name, source file, and line number. You can also type print variable_

name, where variable_name is the name of a variable in your program. If, for
example, you get a crash on the line XtSetSensitive(cut_option,False),

you should try typing print cut_option. If null or zero comes back, then you
know that the program has not yet created the widget for some reason and
this is causing the crash.

Once you have finished with dbx, type quit and then look at the offending
line with an editor. You may not see why the line is offensive right away,
but at least you can see the enemy. Some common causes of segmentation
faults include uninitialized Widgets, an incorrect number or type of parameters
passed to a C function, a failure to initialize ac, and a failure to use the address
operator (&).

350

B DEBUGGING HINTS 351

Bug 2: "Toplevel shell has zero width and/or height" Error
Message

For some reason, Motif novices see this message fairly often. As stated, the
toplevel shell has no width or height and therefore cannot appear on the
screen. This means that either the top level widget does not have a child,
through omission or programming error, or it has a child but the child has
not been managed. For example, the toplevel widget may be the parent of a
form widget, and the form widget may have children, but you must manage
the form widget with the XtManageChild function call so that toplevel has
dimensions.

The cause of this error is easy to track down. Simply look at the parentage of
the widgets, and make sure that you have managed all widgets properly.

Bug 3: One or More Widgets Do Not Appear On-Screen

A common error is to place an XmCreate function in a program but then
forget the associated and necessary XtManageChild call. When you make this
mistake, the code runs but the new widget does not appear on the screen.
Make sure that you have given all widgets an XtManageChild call.

Bug 4: Setting a Resource Has No Effect

Here is the scenario: You entered a piece of code that places a new resource
value in an argument list, but when you run the code, it seems to have no
effect. You may have forgotten to increment ac or to call XtSetValues, or
perhaps the resource name you specified is valid for some other widget but
not for the widget you are using. For example, to change the name shown in
the title bar of an application, you might use the following code:

XtSetArg(al[ac],XmNtitleString, "NMG Editor"); ac++;

The code compiles and runs, but the title will not change. The argument list is
correct. Unfortunately, while titleString is a valid resource name in some wid­
gets, it is not valid for a shell widget. The proper resource name for a shell wid­
get is title. The code compiles because titleString is a known resource name,
but when executed the shell widget simply ignores the improperly named re­
source.

Another possible cause is an invalid resource value. In many cases, if a re­
source value is of an invalid format or type, the widget will ignore it with­
out complaining (although in other cases you get a segmentation fault). You

352 DEBUGGING HINTS

should also use typecasting when necessary to convert integers to specific re­
source types such as Dimension or XmTextPosition.

Of course, the problem might be that resource interactions are nullifying the
effect of the resource value change you are making. See Section 3.7 for more
information on this problem.

Bug 5: A Resource Value Returned by XtGetValues Makes No
Sense

The converse of being unable to set a resource value is being unable to get
the value. Resource-getting problems frequently have one of these four causes:
failure to increment ac; failure to use an &- address operator for a scalar variable
name; an invalid resource name for the widget; or a variable of the wrong
type in which to place the resource value. If you wish to retrieve the width
and height of a widget, for example, you should declare the variables as type
Dimension. If you declare them as type int, you get back garbage values on
many systems.

Bug 6: Failure to Return to the Main Event Loop in Time

Inside a callback function, you frequently want to cause something to happen
on the screen. Perhaps you want to draw something or change the cursor or
display a dialog box before returning to the event loop. In some cases, you can
use XFlush. The cursor-changing code shown in Chapter IS, for example, uses
XFlush to make the cursor change immediately.

In other cases, however, XFlush is ineffective. For example, you might want
a dialog box to appear in the middle of a callback function. You can manage
the dialog and call XFlush, but the dialog will not appear until Motif returns
to the main event loop aqd brings up a pop-up shell, makes the child widgets
of the dialog active, and so on.

Chapter 8 discusses callback chains. To make a dialog box appear, you must
, structure your code so that the program returns to the main event loop.

Bug 7: Bad Parentage Problems

A number of extremely subtle errors derive from parentage problems. When
you give a widget the wrong parent, it often behaves in strange ways. For
example, if a widget is supposed to be on a form widget but has top level as
its parent, it either will not appear or will not attach correctly. Similarly, the
pop-up menu code in Chapter 17 did not work correctly at first: Because of
a parentage error, the menu simply would not appear on the screen. I had

B DEBUGGING HINTS 353

made toplevel the parent of the pop-up menu pane. Changing the parent to
the drawing area widget instead solved the problem.

Bug 8: Forgetting Header Files

If you forget to include a header file for a widget you are using-for example,
if you are using a label widget but forget to include label. h-your code will
generate strange error messages as it compiles.

C THE MOTIF STYLE GUIDE

If you have ever used a Macintosh for any length of time, you know that there
is a definite look and feel that extends to all true Macintosh applications. One
day, I walked into my sister's office in Atlanta and got a taste of how nice this
look and feel is. She uses a Macintosh in her graphic design business and had
created a business card for me. The card needed one correction. She was busy,
so I found the document containing the card and opened it in the normal
Macintosh way.

My heart sank when the document appeared in Aldus Pagemaker. I had
never touched Pagemaker before, and I knew it to be a gigantic program. To
my surprise, however, the File and Edit menus appeared as they do in all Mac­
intosh programs, and I saw a tool palette that uses the standard tools found
in most Macintosh drawing programs. I used the standard tools, modified the
card, saved the document under a different name in case I had made any mis­
takes, and printed it. The whole process took less than two minutes. From a
user-interface design perspective, this feat was amazing: I had used an enor­
mous program successfully with no training and no experience.

Now imagine the same scenario in WordPerfect on a PC or in who-knows­
what on a UNIX workstation. I could not have done anything. The point is
that Apple expends an enormous amount of effort to ensure that Macintosh
developers conform to one set of style guidelines, so that all applications per­
form similar tasks in similar ways. Furthermore, the Macintosh marketplace
refuses to accept programs that do not conform. The result is a set of applica­
tions that work very well together.

In Motif, there is no central authority that influences all developers. More­
over, there are not enough users with voices loud enough to cause the demise
of an application because it does not conform to established guidelines. How­
ever, the OSF/Motif Style Guide attempts to set down some standards. So far,

354

C THE MOTIF STYLE GUIDE 355

it represents the only hope for establishing any consistency among Motif ap­
plications. Every Motif programmer should read through it at least once and
follow its guidelines as closely as possible.

The first chapter of the style guide discusses user interface design princi­
ples. The section titles of this chapter provide a good checklist of objectives
for successful user interface design, so I will repeat them here with my own
annotations.

Adopt the user's perspective: Put yourself in the user's shoes.

Give the user control.

Keep interfaces flexible: Give the user several ways to do things.

Use progressive disclosure: Put common tasks within easy reach, obscure
tasks out of the way.

Use real-world metaphors.

Allow direct manipulation: Use the mouse to manipulate directly.

Provide rapid response: Let the user know what is happening instantly.

Provide output as input: An application's output should work as input.

Keep interfaces natural.

Make navigation easy.

Provide natural shades and color.

Keep interfaces consistent.

Within the application itself:

Similar components operate similarly and have similar uses.

The same action should always have the same result.

The function components should not change based on context.

The position of components should not change based on context.

The pOSition of the mouse pointer should not warp.

Between applications:

Components should look familiar.

Interaction should be familiar.

Components should be organized in a familiar manner.

Communicate application actions to the user.

Give the user feedback

Anticipate errors: Grayout or disable options that you know will cause
errors.

356 THE MOTIF STYLE GUIDE

Use explicit destruction: Get user confirmation before deleting files or
data.

Avoid common design pitfalls.

Pay attention to details.

Do not finish prematurely.

Design iteratively: Build it, try it, see what does not work, change it, and
soon.

Start with a fresh perspective.

Hide implementation details.

If you follow these guidelines, you will go a long way toward creating good
programs on any system. This chapter provides a great deal of information.

Chapter 2 of the style guide discusses input and navigation models. Chapter
3 concerns selection and component activation. Chapter 4 discusses applica­
tion design principles-an important subject. For example, it specifies stan­
dard menu bar entries, standard menu entries, and the principles of dialog
box design (see also the "Menu Style" sidebar in Chapter 6). Chapter 5 covers
window manager design principles. Chapter 6 discusses international design
issues. Finally, Chapter 7 is a reference section of all Motif capabilities and how
to use them.

Keep in mind the following principles ~hen creating applications:

1. All applications should have File, Edit, and Help menus.
2. The menu bar should contain only cascade buttons that control menu

panes.
3. Standard Motif dialogs (Chapter 7) should be used when possible. When

creating customized dialogs, follow the pattern set by the standard dialogs.
4. Changing cursor shapes should be used to inform the user about what is

happening. The OSF/MotifStyle Guide provides a complete lis(of all available
cursors and their appropriate uses.

D POSTSCRI PT PRI NTI NG

0.1

0.1.1

0.1.2

by Lance Lovette

PostScript is a device-independent programming language for describing the
appearance of text and graphics on a printed page. In this appendix, we will
cover enough of the basics to allow you to incorporate PostScript graphics into
your Motif applications.

SOME BASIC POSTSCRIPT TERMINOLOGY

STACKS

The PostScript interpreter manages: a dictionary stack, an operand stack, an
execution stack, and a graphics state stack. Each is last-in, first-out (LIFO).
Most PostScript operators use the operand stack-for example, the statement
for adding two numbers is as follows:

2 3 add

This statement "pushes" a 2 and then a 3 onto the stack, and the add operator
"pops" both numbers off and then pushes the result (5) back onto the stack
(Figure D.l). PostScript uses postfix notation, where the operands (2 and 3)
precede the operators (add).

THE GRAPHICS STATE AND PATHS

The graphics state is a data structure that contains the current values for the
graphics operators (line width, color, font, and so on). One field of the graph­
ics state is the path. Every object drawn in PostScript consists of one. When
you draw a line, for example, the path is one straight line. When you draw
a rectangle, it consists of four straight lines. The definition of characters in
PostScript is nothing but a collection of paths made up of bezier curves and
lines. When you want to "paint" something onto a page, you first have to de­
fine a path, then call a painting operator (stroke, fill, or show) that performs
that function.

357

358 POSTSCRIPT PRINTING

D.l.3

D.l.4

Figure D.l PostScript Operand During an add
Operation

Operand stack Operand stack

3 5 - Top of stack

2

Before add After add

COORDINATE SYSTEM

The unit of measurement in PostScript is the point. There are 72 points
per inch. Thus, a letter-size sheet of paper measures 612 x 792 points. The
PostScript coordinate system resembles the Cartesian coordinate system, with
the origin (0,0) in the lower left corner of the page. PostScript operators allow
you to manipulate the coordinate system if you want (translate, scale, rotate,
and so on).

SYNTAX

PostScript is an interpreted language, which means that when a, 'printer or
other interpreter looks at the file, it executes the instructions on the fly-there
is no compilation step~" A PostScript' file is an ordinary ASCII file that "has a
"magic cookie" at the beginning to let the interpreter ,know that this file is
PostScript and to execute'the instructions" as PostScript. The ,first line of every
PostScript file begins with %!, usually followed by the version identifier. The
examples in this chapter use PS-Adobe 2.0 as the identifier. Comments begin
with a % and end with a new line.

D.2 DRAWING WITH POSTSCRIPT

To introduce you to PostScript, I will show you pieces of example code. I will
follow each piece with an explanation that discusses new operators and their
use. First we will make a simple program that draws a diagonal line from the
origin to the upper right corner of the page (Figure D.2).

0.2 DRAWING WITH POSTSCRIPT

Figure Do2 Output of Listing Dol

Listing Dol A Simple PostScript Program

%!PS-Adobe-2.0
o 0 moveto
612 792 lineto
stroke
showpage

359

Line 1 contains the "magic cookie" and states the PostScript version. Line 2
establishes a new path an~ sets the current point to the origin. The statement
pushes two zeros onto the stack; calls moveto, which requires two operands;
and pops off both zeros, leaving the stack empty. Line 3 draws a line (extends
the path) from the current point 0,0 to 612,792. The operator lineto draws a

. line from the current point to another .point (x,y) where x and yare relative
to the origin. The statement pushes 612 and 792 onto the stack, then lineto
pops off both operands, leaving the stack empty. Line 4, the operator stroke,
applies paint along the current path (renders the path). Paint is opaque, so if
you paint a black line and then paint a white line over it, the white line will
hide the black. Line 5 sends the page to the printer or other PostScript output
device. The following C function produces the PostScript code above. It shows
how easy it is to generate a PostScript file from within a C program.

Listing Do2 A C Program That Produces Listing Dol

void CreatePostScript(void)
{

char *ps;

360 POSTSCRIPT PRINTING

FILE *file;

ps=(char *) XtMalloc(300) ;

strcpy(ps, "!PS-Adobe-2.0 \n") ;

strcat(ps, "0 0 moveto \n") ;

strcat(ps, "612 792 lineto \n") ;

strcat(ps, "stroke \n") ;

strcat(ps, "showpage \n") ;

/*
* After we open the file we want to make sure there
* wasn't an error (file != NULL).

}

* 'fprintf' is like 'printf' except that it prints
* a string to a specified stream
* (in this case 'file').

*/
file=fopen("filename", "w");
if(file != NULL)

fprintf(file, "'los", ps);
fclose(file);
XtFree(ps);

D.3 CHARACTER STRINGS

In PostScript, ~ character's path is defined by a set of bezier curves and lines.
This allows PostScript to manipulate a character or string like any other graph­
ical object. Once you determine the path of a string using the charpath oper­
ator, you can use stroke, fill, scale, rotate, or any other path operator on the
string. Alternatively, the show operator p'aints a character string onto the cur­
rent page using the current graphics state without using the charpath oper­
ator. (See Figure D.3.)

Listing D.3 A PostScript Program That Prints
a String

'lo!PS-Adobe-2.0
100 200 moveto
/Times-BoldItalic findfont
72 scalefont
setfont
(Motif is neat.) show
showpage

0.3 CHARACTER STRINGS 361

Figure Do3 Output of Listing Do3

Motif is neat.

This code starts a new path with the current point at (100, 200). In line 2,
the slash defines a literal name in PostScript. A literal name, as opposed to an
executable name, is treated as data by the interpreter and pushed onto the op­
erand stack to be used by an operator. The string /Times-Boldltalic pushes
the font name "Times-BoldItalic" onto the stack. The tindfont operator pops
the font name off the stack and searches for it. If found, the font is pushed
onto the top of the stack and becomes the current font. Since the tindfont
operator pushes a I-point font on the stack, the code scales it 72 points (one
inch) in both the x and y direction to make it more readable.

The scalefont operator has two operands, a font and a scale value. The
font was pushed on the stack by tindfont, and the scale value is 72. The
scale operator pops both operands off the stack and returns the new font.
The scalefont operator requires only one scale operand because it scales the
font in both the x and y directions. You can use the scale operator to scale
each axis separately. The setfont operator pops a font off the top of the stack
and establishes it as the current font for subsequent character operations by
changing the graphics state. The text to be printed is enclosed in parentheses
unless the string is a literal. The show operator is used only with text, and does
not use charpath. It fills the current string with the current color, rendering it
as stroke did before, and moves the current point to the end of the string.

The following C code generates the PostScript code shown above.

Listing D.4 C Code That Generates Listing Do3

void CreatePostScript(void)
{

char *ps, text[25]j

362 POSTSCRIPT PRINTING

FILE *file;
/*
* We use 'sprintf' with 'text' so that we can change
* the string from within the program,
* then include that string in the PostScript.
* This comes in handy when you want to let the
* user insert a title of his own or something.
* 'sprintf' is like 'printf' except it prints a
* string into another string.
*/

ps=(char *) XtMalloc(300);
sprintf (text , "(~s) show \n", "Motif is neat.");

strcpy(psi "!PS-Adobe-2.0
strcat(ps, "100 200 moveto

\n"
\n"

) ;

) ;

strcat(ps, "/Times-BoldItalic findfont
strcat(ps, "72 scalefont

\n") ;

}

strcat(ps, "setfont
strcat(ps, text);
strcat(ps, "showpage

file=fopen("filename", "W");

if(file != NULL)
fprintf(file, II~S", ps);

fclose(file);
XtFree(ps);

\n") ;

\n") ;

\n") ;

The show operator fills characters in a string with the current color. To
outline an object instead (Figure D.4), you must use stroke, but to do so you
must know the object's path. The charpath operator appends the paths of the
characters in a string to the current path. To outline a string, get its path with
charpath, and then use stroke as before, as shown in Listing D.S.

Listing D.S PostScript Code That Demonstrates the
Use of charpath

~!PS-Adobe-2.0

100 200 moveto
/Times-BoldItalic findfont
72 scalefont
setfont
(Motif is neat.) false charpath
stroke
showpage

D.4 PROCEDURES

Figure D.4 PostScript Characters Produced by
Listing D.S

363

This listing is the same as the previous listing, except for line 6. The charpath
operator has two operands, a string and a Boolean value. If the Boolean value
is false, the path of the characters is appended to the current path unchanged,
at which point you can only use stroke. If the Boolean value is true, then
charpath applies the strokepath operator to the characters' path, yielding a
new path that you can use for filling or clipping.

You can imitate the show operator if the Boolean value for charpath is set
to true and you use fill instead of stroke. The fill operator can cause side­
effects, so be cautious. It implicitly calls the newpath operator when it finishes
filling. If you want to keep the current path while filling an object, you must
save the current graphics state first (for example, with gsave fill grestore).

D.4 PROCEDU RES

Procedures are handy if you have something you want to repeat more than
once. You can dump a standard header containing %! and procedures into
a file, then append the variable code (code that might change) to it. For ex­
ample, if you want to draw 10 horizontal lines on a page, you can create a
procedure that draws a line, then call that procedure 10 times. To create a pro­
cedure in PostScript, you define a literal name as the procedure name, then
follow it with the body of the procedure, between curly braces.

Listing D.6 Demonstration of a PostScript
Procedure

/drawHorizontalLine {
gsave

364 POSTSCRIPT PRINTING

1 setlinewidth
o set gray
moveto
o rlineto
stroke

grestore
} bind def
Yo arguments for drawHorizontalLine: width, starting x, starting y

612 0 10 drawHorizontalLine

First, you define the name of the procedure as a literal. The left bracket denotes
where the procedure begins. The gsave operator pushes a copy of the current
graphics state onto the graphics stack. Since you are going to edit some fields
of the graphics state (the path, line width, and current color), and you want
this procedure to leave the current graphics state alone, you make a copy
of it, change the copy, then restore the original when you are done. The
setlinewidth operator pops a number off the stack and sets it as the current
line width. Here, the line width is 1. The line is stroked with equal amounts on
each side of the path. The setgray operator pops a number off the stack and
makes it the current color-O is black and 1 is white. Any number between 0
and 1 is acceptable. For example, .99 is almost all white, .50 is medium gray,
and .25 is dark gray. Here, the line is solid black.

Note that the moveto has no operands explicitly defined, since the caller
will pass the procedure the operands using the stack. The rlineto operator
means "relative line to." It takes the same operands as lineto, but x and y
are relative to the current point, not the origin. For example, 0 10 moveto 10
o rlineto sets the current pOint at (0,10), then draws a line over (10 + the
current x) and up (0 + the current y): a horizontal line 10 points wide, starting
at (0, 10). Only 0 is set explicitly; the second argument is passed on the stack
from the caller.

The grestore operator pops the top graphics state off the stack, leaving the
current graphics state as it was when the procedure was called. The bind and
def operators are separate. If the bind operator were left out of the declaration,
the procedure would produce the same result. The bind operator binds all
operator names in the procedure to the operators themselves, thus increasing
the procedure's speed. The def operator pops two operands off the stack, the
/literal and the procedure, and associates the two in the current dictionary,
which defines the procedure for the rest of the program. You can also use def
to create variables in PostScript.

D.4 PROCEDURES

Figure D.5 How the drawHorlzontalLine Procedure
Affects the Stack

10 612 o

o 612

612

(a) (b) (c)

365

The final line calls the procedure. The numbers preceding the call are the
arguments drawHorizontalLine requires. The first number is the width, the
second is x, and the third is y. First, 612 is pushed onto the stack, then 0 (x)
and 10 (y).

Figure 0.5(a) shows how the operand stack looks when the procedure is
called. From within the procedure, the code pushes a I, which setlinewidth
uses, then a 0 for setgray. Next, moveto, which has no explicitly set operands,
pops two numbers off the stack, that correspond to the last two arguments
pushed onto the stack with the call to drawHorizontalLine. One argument
remains on the stack: the 612 (Figure 0.5(b». The rlineto operator needs two
operands: an x offset and a y offset. The x offset is 612, since the line is to be
612 pOints wide. The code pushes a 0 onto the stack for the y offset (Figure
0.5(c», and rlineto pops both operands off the stack, leaving the operand
stack empty.

The following C code creates a PostScript file that draws 10 horizontal lines
using the procedure defined above.

Listing D.7 A C Function That Generates Listing D.S

void CreatePostScript(void)
{

char *ps, *tempj
FILE *filej
int i, width, x, Yj

ps=(char *) XtMalloc(300)j
temp=(char *) XtMalloc(300)j

strcpy(ps, "!PS-Adobe-2.0 \n");
strcpy(ps, "/drawHorizontalLine {\n");
strcpy(ps," gsave 1 setlinewidth 0 setgray moveto 0 rlineto stroke

366 POSTSCRIPT PRINTING

/*

grestore \n");
strcpy(ps, II } bind def \n") ;

* First we dump the header into the file, which contains any
* procedures used. Then we append the variable code on to it.
* We will draw 10 horizontal lines starting

}

* at 0,0 and going up the page, with 10 points
* in between each line. Each line will
* be 50 points wide.
*/

width=50;
x=O;
y=O;
for(i=O; i < 10; i++)

{

}

sprintf(temp,"%d %d %d drawHorizontalLine
strcpy(ps, temp);
y+=10;

strcpy(ps, "showpage \n");

file=fopen("filename", "W");

if(file 1= NULL)
fprintf (file, "%s ", ps);

fclose(file);
XtFree(ps);
XtFree(temp);

This C code generates the following PostScript file.

Listing D.8 PostScript Code That Generates Ten
Horizontal Lines

%IPS-Adobe-2.0
/drawHorizontalLine {

\n", width, x, y);

gsave 1 setlinewidth 0 setgray moveto 0 rlineto stroke grestore
} bind def
50 0 0 drawHorizontalLine
50 0 10 drawHorizontalLine
50 0 20 drawHorizontalLine
50 0 30 drawHorizontalLine
50 0 40 drawHorizontalLine
50 0 50 drawHorizontalLine

0.5 LOOPS AND VARIABLES

50 0 60 drawHorizontalLine
50 0 70 drawHorizontalLine
50 0 80 drawHorizontalLine
50 0 90 drawHorizontalLine
showpage

D.5 LOOPS AND VARIABLES

367

Since PostScript is a programming language, it has control operators like for,
repeat, loop, if, and ifelse. The last example drew 10 horizontal lines, and
the C code generated a PostScript file containing 15 lines of code. What if you
wanted to draw 10,000 lines? If you use the method above, with a for loop in
the C code, the PostScript file will have a separate line of code for each line
drawn. Thus, it will have over 10,000 lines of code! A more efficient way to
draw multiple lines is to put a for loop within the PostScript code itself and let
the PostScript interpreter do the work. The following PostScript file draws 10
lines more efficiently than the previous listing.

Listing D.9 PostScript Code That Draws Ten
Horizontal Lines Using a for Loop

%IPS-Adobe-2.0
/drawHorizontalLine {

gsave 1 setlinewidth 0 setgray moveto 0 rlineto stroke grestore
} bind def
/width 50 def

o 10 90 {
/y exch def
width 0 y drawHorizontalLine

} for
showpage

Line 5 defines a PostScript variable. The def operator associates the name
width with the value SO. Line 6 begins a for loop with initial value, increment
value, limit, and a procedure enclosed in brackets. The for loop repeats the
procedure with an initial value, increments that value by increment, and exits
when increment equals limit. Each time the loop is performed, the control
variable (the current value of the loop) is pushed onto the top of the stack
(Figure D.6(a». This code uses the control variable as the y value at which to
draw, so it defines y as a variable to use later and gives it the current value of
the control variable. The format of the operator is key value def, but /y (the

368 POSTSCRIPT PRINTING

Figure D.6 Switching Values on the Stack with the
Exch Operator

o /y o

o /y

(a) (b) (e)

key) is on top of the value we want to assign to it on the stack (Figure D.6(b».
The exch operator switches the top two values on the stack. The next line calls
the procedure drawHorizontalLine, and contains the necessary arguments.
The width is always SO, x is always 0, and y depends on the control variable.

The following C code generates the preceding PostScript code.

Listing D.10 A C Function That Generates
Listing D.9

void CreatePostScript(void)
{

/*

char *ps, *temp;
FILE *filej
int vidth, x, begin, limit, incrementj

ps=(char *) XtMalloc(300)j
temp=(char *) XtMalloc(300);

strcpy(ps, "!PS-Adobe-2.0 \n");
strcpy(ps, "/dravHorizontaILine { \n")j
strcpy(ps," gsave 1 setlinevidth 0 setgray \n")j

strcpy(ps, " moveto 0 rlineto stroke grestore \n");
strcpy (ps," } bind def \n") j

vidth=50;
sprintf(temp, "/vidth Yod def \n", vidth);
strcat(ps, temp);

* First ve dump the header into the file, vhich contains any
* procedures used. Then ve append the variable code on to it.
* We viII dray 10 horizontal lines (begin -> limit by increments

D.6 DUMPING THE CONTENTS OF A DRAWING AREA

}

* of increment), vith a vidth of vidth, the starting x of 0
* and starting y of the current control variable.

*1
x=O;
begin=O;
increment=10;
limit=90;
sprintf(temp, "%d %d %d { \n", begin, increment, limit);
strcpy(ps, temp);
strcpy(ps, "ly exch def \n");
sprintf(temp,"vidth %d y dravHorizontalLine \n", x);
strcpy(ps, temp);
strcpy(ps, II } \n");

strcpy(ps, "showpage \n");

file=fopen(lIfilename", "V");

if(file != NULL)
fprintf(file, "%S", ps);

fclose(file);
XtFree(ps);
XtFree(temp);

D.6 DUMPING THE CONTENTS OF A DRAWING AREA
TO THE PRINTER

369

You can use PostScript to create code that dumps the contents of a Motif
drawing area widget to a printer. When you run the code in this section,
you see a drawing area containing a circle, a square, a triangle, and three
text labels. Above the drawing area is a push button: When you click it, the
program dumps a PostScript file of the image to stdout.

In Listing D.II, buttonCB contains a set of calls to a series of PSDraw func­
tions, which accept the same parameters as the equivalent XDraw functions.
The goal is to create a series of function calls that closely duplicate the con­
tents of the drawing area in a PostScript file with a minimum of effort. You
can extend this example to draw almost anything.

The PSlnit and PSTerminate function calls are important. PSlnit dumps a
standard header to the PostScript file. This header contains the magic cookie
along with a set of PostScript procedures that draw lines, arcs, and text. The

370 POSTSCRIPT PRINTING

body of the PostScript file calls these procedures to draw the objects that ap­
pear in the drawing area widget. The PSTerminate function puts out a stan­
dard trailer.

Listing D.ll A Motif Program That Creates
a Drawing Area Widget and Its Equivalent
PostScript File

/* ps_demo.c*/
#include <Xm/Xm.h>
#include <Xm/DrawingA.h>
#include <Xm/Form.h>
#include <Xm/PushB.h>

#define OFFSET 612

XtAppContext context;

XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

GC gc;
Widget toplevel;
Widget drawing_area;
Widget button;
Widget form;

void setup_gc 0
/* set up the graphics context. */
{

}

int foreground, background;
XGCValues vals;
Arg al[10];
int ac;

/* get the current fg and bg colors. */
ac=O;
XtSetArg(al[ac],XmNforeground,&foreground); ac++;
XtSetArg(al[ac],XmNbackground,&background); ac++;
XtGetValues(drawing_area,al,ac);

/* create the gc. */
vals.foreground = foreground;
vals.background = background;
gc=XtGetGC(drawing_area,GCForeground I GCBackground,&vals);

D.6 DUMPING THE CONTENTS OF A DRAWING AREA

void PSlni to
{

printf(I%%IPS-Adobe-2.0\n\n")j
printf("/DrawLine {\n")j
printf(" gsave 1 setlinewidth 0 setgray \n")j
printf(" moveto lineto stroke grestore\n")j
printf(" } bind def\n\n")j
printf("/DrawText {\n")j
printf(" gsave 1 setlinewidth 0 setgray moveto\n")j

371

printf(" /Courier findfont 12 scalefont setfont show grestore\n")j
printf(" } bind def\n\n")j

}

printf("/DrawArc {\n")j
printf(" gsave translate 1 setlinewidth 0 setgray\n")j
printf(" scale arc stroke grestore\n"):
printf(" } bind def\n\n");
printf("612 0 translate\n")j
printf("90 rotate\n\n")j

void PSDrawLine(xl,yl,x2,y2)
int xl;
int yl;
int x2;
int y2;

{

printf("%d %d %d %d DrawLine\n",xl,OFFSET-yl,x2,OFFSET-y2);
}

void PSDrawRectangle(x,y,width,height)
int x;

{

}

int y;
int width:
int heightj

printf("%d %d %d %d DrawLine\n",x,OFFSET-y,x+width,OFFSET-y):
printf("%d %d %d %d DrawLine\n",x+width,OFFSET-y,x+width,

OFFSET-y-height);
printf("%d %d %d %d DrawLine\n",

x+width,OFFSET-y-height,x,OFFSET-y-height):
printf("%d %d %d %d DrawLine\n",x,OFFSET-y-height,x,OFFSET-y)j

void PSDrawArc(x,y,width,height,al,a2)
int Xj
int Yj

372 POSTSCRIPT PRINTING

{

}

int vidth:
int height:
int al:
int a2:

int radius, xrad, yrad, xscale, yscale:

xrad=(int)vidth / 2:
yrad=(int)height / 2;
radius=(xrad < yrad) ? xrad : yrad:

xscale=(int) (vidth > height) ? vidth/height 1:
yscale=(int) (height > vidth) ? height/vidth 1:

printf("O 0 Y.d Y.d Y.d Y.d Y.d Y.d Y.d DravArc\n",
radius,(int)al/64,(int)a2/64,xscale,yscale,x+radius,OFFSET-y-radius):

void PSDravString(x,y,s)
int x:
int y:
char *s:

{

printf("(y's) Y.d Y.d DravText\n",s,x,OFFSET-y):
}

void PSTerminate()
{

}

printf("\nshovpage\n"):
printf(Iy'y'y'y'Trailer\n"):

void buttonCB(v,client_data,call_data)
Widget v:

{

caddr_t client_data:
caddr_t call_data:
/* called vhen the "Create PostScript II button is pushed */

PSlnitO:
PSDravLine(20,150,70,50):
PSDravLine(70,50,120,150):
PSDravLine(120,150,20,150):
PSDravRectangle(140,50,100,100):
PSDravArc(260,50,100,100,O,23040);
PSDravString(20,170,ITriangle"):

D.6 DUMPING THE CONTENTS OF A DRAWING AREA

}

PSDrawString(140, 170, "Rectangle");
PSDrawString(260,170,"Circle");
PSTerminate 0 ;

void exposeCB(w,client_data,call_data)
Widget w;
caddr_t client_data;
caddr_t call_data;

1* called whenever drawing area is exposed. *1
{

}

XDrawLine(XtDisplay(drawing_area),XtWindow(drawing_area),
gc, 20,150,70,50);

XDrawLine(XtDisplay(drawing_area),XtWindow(drawing_area),
gc, 70,50,120,150);

XDrawLine(XtDisplay(drawing_area),XtWindow(drawing_area),
gc, 120,150,20,150);

XDrawRectangle(XtDisplay(drawing_area),XtWindow(drawing_area),
gc, 140,50,100,100);

XDrawArc(XtDisplay(drawing_area),XtWindow(drawing_area),
gc, 260,50,100,100,0,23040);

XDrawString(XtDisplay(drawing_area),XtWindow(drawing_area),
gc, 20,170,"Triangle",8);

XDrawString(XtDisplay(drawing_area),XtWindow(drawing_area),
gc, 140,170, II Rectangle II ,9) ;

XDrawString(XtDisplay(drawing_area),XtWindow(drawing_area),
gc, 260,170,ICircle",6);

void main(argc,argv)
int argc;

{

char *argv [] ;

Arg al[10];
int ac;

1* create the toplevel shell *1
toplevel = XtApplnitialize(&:context,"I,NULL,O,&:argc,argv,

NULL,NULL,O);

1* set window size. *1
ac=O;
XtSetArg(al[ac],XmNheight,220); ac++;
XtSetArg(al[ac],XmNwidth,380); ac++;
XtSetValues(toplevel,al,ac);

373

374 POSTSCRIPT PRINTING

}

1* create a form to hold widgets *1
ac=Oj
form=XmCreateForm(toplevel,"form",al,ac)j
XtManageChild(form);

1* create a push button *1
ac=Oj
XtSetArg(al[ac],XmNlabelString,

XmStringCreate("Push to generate PostScript" ,char_set»; ac++;
XtSetArg(al[ac], XmNtopAttachment, XmATTACH_FORM)j ac++;
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM); ac++;
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM)j aC++j
button=XmCreatePushButton(form,"button",al,ac)j
XtManageChild(button)j
XtAddCallback(button,XmNactivateCallback,buttonCB,NULL)j

1* create a drawing area widget. *1
ac=Oj
XtSetArg(al[ac], XmNtopAttachment, XmATTACH_WIDGET)j aC++j
XtSetArg(al[ac], XmNtopWidget, button)j ac++;
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM); ac++;
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM); aC++j
XtSetArg(al[ac], XmNbottomAttachment, XmATTACH_FORM); ac++;
drawing_area=XmCreateDrawingArea(form, "drawing_area" , aI, aC)j
XtAddCallback(drawing_area,XmNexposeCallback,exposeCB,NULL);
XtManageChild(drawing_area);

setup_gc();

XtRealizeWidget(toplevel)j
XtAppMainLoop(context)j

The code in Listing D.ll uses the OFFSET constant because in the X Win­
dow System, the origin is the upper left corner of the drawing area, but in
PostScript the origin is the lower left corner of the page. PSDraw Arc does some
number-crunching to convert an X arc into a PostScript arc. The radius is the
lesser of width and height. If width is greater than height, the circle must
be scaled in the x direction by width/height. If height is greater than width,
it must be scaled in the y direction by height/width. Scaling by a factor of 1
does nothing. The scale operator is enclosed by gsave and grestore because
you want to scale the circle, not the whole user space. Without gsave and gre­
store, everything after scale would be scaled by x and y. To convert from an

D.6 DUMPING THE CONTENTS OF A DRAWING AREA 375

X angle to a PostScript angle, the code divides the X angle by 64. Note that
the header and procedures were dumped at once, then everything else was ap­
pended, and then a trailer was put at the end of the file.

Listing D.II generates the following PostScript file.

Listing D.12 PostScript Code Generated by
Listing D.ll

%!PS-Adobe-2.0

/DrawLine {
gsave 1 setlinewidth 0 set gray moveto lineto stroke grestore

} bind def

/DrawText {
gsave 1 setlinewidth 0 set gray moveto
/Courier findfont 12 scalefont setfont show grestore

} bind def

/DrawArc {
gsave translate 1 setlinewidth 0 set gray
scale arc stroke grestore

} bind def

612 0 translate
90 rotate

20 462 70 562 DrawLine
70 562 120 462 DrawLine
120 462 20 462 DrawLine
140 562 240 562 DrawLine
240 562 240 462 DrawLine
240 462 140 462 DrawLine
140 462 140 562 DrawLine
o 0 50 0 360 1 1 310 512 DrawArc
(Triangle) 20 442 DrawText
(Rectangle) 140 442 DrawText
(Circle) 260 442 DrawText

showpage
%%Trailer

The first procedure, DrawLine, is DrawHorizontalLine, which we used
above, altered to draw a line from (xl,yl) to (x2,y2). This procedure imitates

376 POSTSCRIPT PRINTING

the Motif XDrawLine function. The second procedure draws a string at (x,y)
using the Courier font in black. The third procedure draws an arc 1 pOint wide
in black.

The two lines following these procedures make the printer print in land­
scape, in which the longer dimension of a page is on top. The translate oper­
ator positions the new origin at the lower right corner of the page. The rotate
operator flips the page 90 degrees counterclockwise.

The DrawArc procedure takes nine parameters: x, y, radius, angl, ang2,
xscale, yscale, xcenter, and ycenter. The first two are the coordinates of the
center of the arc, which is (0,0) because the procedure needs to center the user
space at the origin of the original arc (xeenter, yeenter). The scale operator
scales the entire user space. If you do not translate and then use a center of
(0,0) for the arc, the center gets scaled and does not show up on the page. The
radius, angl, and ang2 parameters are normal arc parameters.

When you use PostScript files on different interpreters, you usually encap­
sulate them. Encapsulating provides them with a set of standardized com­
ments such as who created the file, what fonts it uses, and how many pages
it has. %%Trailer is an encapsulated PostScript (EPS) comment that some in­
terpreters need when a file ends.

D.7 OPERATOR SUMMARY

This summary is a condensed and slightly modified version of the operator
summary found in the PostScript Language Reference Manual from Adobe Sys­
tems.

Arguments

Stack Operators

oplop2

op

Control Operators

Boolean proc

Boolean procl proc2

Operator

exeh

pop

if

ifelse

Return
Values

op2opl

Description

Exchanges top two
elements
Removes element
from stack

Executes proe if
Boolean is true
Executes proel if
Boolean is true,
proc2 if false

D.7 OPERATOR SUMMARY

Control Operators, continued

init incr limit proc

num proc

proc

Graphics State Operators

num

num

for

repeat

loop

gsave
grestore

setlinewidth

setgray

Coordinate System Operators

xy scale

angle rotate

xy translate

Path Construction Operators

newpath

xy

dxdy
xy

move to

rmoveto
lineto

377

Executes proc with
values from init
by steps of incr to
limit
Executes proc num
times
Executes proc an
indefinite number
of times

Saves graphics state
Restores graphics
state
Sets line width to
num
Sets color to gray
num between
o (black) and 1
(white)

Scales user space by
x and y
Rotates user space
by angle degrees
counterclockwise
Translates user
space by x and
y

Initializes current
path to be empty
Sets current point
to (x,y)
Relative moveto
Extends straight
line to (x, y)

378 POSTSCRIPT PRINTING

Path Construction Operators, continued
dxdy rlineto Relative lineto
x y r angle 1 angleZ arc Extends arc coun-

terclockwise with
center (x/y) and ra-
dius r, from anglel
to angleZ

closepath Extends path from
current point to
the starting point
of the path

string Boolean charpath Extends character
outline of string to
current path

Painting Operators

fill Fills current path
with current color

stroke Paints line along
current path

Character and Font Operators

key findfont font Returns font dic-
tionary identified
by key

font scale scalefont fontZ Scales font by scale
to produce new
fontZ

font setfont Sets current font to
font

string show Paints characters
of string on page
(solid)

string stringwidth xy Returns width of
string

Output Operators

showpage Outputs and resets
current page

copypage Outputs current
page

E C REVIEW

E.l INTRODUCTION

C is an easy language to learn, especially if you already know Pascal or some
other procedural language. Every concept in Pascal maps directly to a concept
in C: The ideas are exactly the same, but you use different words to express
them. C sometimes seems difficult because it gives the programmer more free­
dom, and therefore makes it easier to make mistakes or create bugs that are
hard to track down.

This appendix introduces you to C by showing you how Pascal maps to
it. It also introduces several concepts not found in Pascal. Most of these new
concepts deal with pointers.

I believe that the only way to learn C (or any language) is to write and read
a lot of code in it. One very good way to get C programming experience is to
take existing Pascal programs and convert them. This way, if the program does
not work in C, you know that the translation is causing the problem and not
the original code.

One major difference between Pascal and C causes problems: C does not
allow nested procedures, so you must remove any in order to convert Pascal
programs. You should avoid nested procedures in your Pascal programs alto­
gether or remove nesting from programs in the Pascal version. That way, you
can retest the program in the Pascal environment before you move it over
toC.

Also watch case sensitivity in C. C compilers consider uppercase and low­
ercase characters to be different: XXX, xxx, and Xxx are three different names
in C. By convention, constants in C are spelled with uppercase, while variables
are spelled with lowercase, or an uppercase/lowercase combination. Keywords
are always lowercase.

A good reference source for C programming is The C Programming Language

by Kernighan and Ritchie. If you find it too terse, go to the library or bookstore
and pick out a reference book that suits you.

379

380 C REVIEW

In this appendix, all compilation instructions and references to man pages
assume that you are working on a fairly normal UNIX workstation. If you are
not, you will have to use the manuals for your system to map the instructions
to your environment.

E.2 A SIMPLE FACTORIAL PROGRAM

Below is a very simple C program that finds the factorial of 6. Fire up your
favorite editor and enter it. Do not copy the file or cut and paste: Actually
type the code, because the act of typing will cause it to start entering your
brain. Then save the program to a file named samp. c. If you leave off . c, you
will get a "Bad Magic Number" error when you compile it, so make sure you
remember it.

1* Program to find factorial of 6 *1
#include <stdio.h>
#define VALUE 6
int i,jj

void mainO
{

}

j=lj
for (i=lj i<=VALUEj i++)

j=j*ij
printf("The factorial of %d is %d\n", VALUE,j);

When you enter this program, position #include and #define so that the
pound sign is in column 1. Otherwise, the spacing and indentation can be any
way you like it. On most UNIX systems, you will find a program called cb, the
C Beautifier, which will format code for you.

To compile this code, type cc samp. c. To run it, type a. out. If it does not
compile or does not run correctly, edit it again and see where you went wrong.

Now let's look at the equivalent Pascal code:

{ Program to find factorial of 6 }

program samp j

const
value=6j

var

i,j:integer;

E.2 A SIMPLE FACTORIAL PROGRAM

begin
j :=1;

for i:=l to value do
j:=j*i;

writeln('The factorial of ',value,' is ',j);

end.

381

You can see an almost one-to-one correspondence. The only real difference
is that the C code starts with #include <stdio.h>. This line includes the
standard I/O library into your program so that you can read and write values,
handle text files, and so on. C has a large number of standard libraries like
stdio.

The #define line creates a constant. Two global variables are declared using
the int i, j; line. Other common variable types are float (for real numbers)
and char (for characters), both of which you can declare in the same way as
into

The line main 0 declares the main function. Every C program must have a
function named main somewhere in the code. In C, { and} replace Pascal's
begin and end. Also, = replaces Pascal's : = assignment operator. The for loop­
and the printf statement are slightly strange, but they perform the same func­
tion as their Pascal counterparts. Note that C uses double quotes instead of
single quotes for strings.

The printf statement in C is easier to use than the Pascal version once you
get used to it. The portion in quotes is called the format string and describes
how the data is to be formatted when printed. The format string contains
string literals such as The factorial of and \n for carriage returns, and %
operators as placeholders for variables. The two %d operators in the format
string indicate that integer values found later in the parameter list are to be
placed into the string at these pOints. Other operators include %f for floating
point values, O/OC for characters, and O/os for strings. You can type man printf

to get the man page on formatting options.
In the printf statement, it is extremely important that the number of %

operators in the format string corresponds exactly with the number and type
of the variables following it. For example, if the format string contains the
operators %s, %d, and %f, it must be followed by exactly three parameters,
and they must have the same types in the same order as those specified by the
0/0 operators.

This program is good, but it would be better if it read in the value instead
of using a constant. Edit the file, remove the VALUE constant, and declare

382 C REVIEW

a variable value instead as a global integer (changing all references to lower­
case because value is now a variable). Then place the following two lines at
the beginning of the program:

printf("Enter the value:")j
scanf("%d",&value)j

The equivalent code for this in Pascal is:

write('Enter a value:')j
readln(value)j

Make the changes, then compile and run the program to make sure it works.
Note that scanf uses the same sort of format string as printf (type man scanf

for more info). Also note the & sign in front of value. This is the address
operator in C: It returns the address of the variable, and it will not make sense
until we discuss painters. You must use the & operator in scanf on any variable
of type char, int, or float, as well as record types, which we will get to later. If
you leave out the & operator, you will get a segmentation fault when you run
the program.

C Errors to Avoid

1. Forgetting to use the & in scanf.
2. Too many or too few parameters following the format statement in printf

or scanf.
3. Forgetting the */ at the end of a comment.

E.3 BRANCHING AND LOOPING

If statements and while loops in C both rely on the idea of Boolean expressions,
as they do in Pascal. In C, however, there is no Boolean type: You use plain
integers instead. The integer value 0 in C is false, while any other integer value
is true.

Here is a simple translation from Pascal to C. First, the Pascal code:

if (x=y) and (j>k) then
z:=l

else
q:=10j

The C translation looks very similar, but there are some important differences,
which we will discuss next.

E.3 BRANCHING AND LOOPING

if «x==y) && (j>k))

z=lj
else

q=10j

383

Notice that = in Pascal became == in C. This is a very important difference,
because C will accept a single = when you compile, but will behave differently
when you run the program. The and in Pascal becomes && in C. Also note
that z=l; in C has a semicolon, that C drops the then, and that the Boolean
expression must be completely surrounded by parentheses.

The following chart shows the translation of all Boolean operators from
Pascal to C.

Pascal C

< <

> >

<= <=

>= >=
<> !=
and &&
or II

not

The == sign is a problem because every now and then you may forget and
type just =. Because integers replace Booleans, the following is legal in C:

void mainO
{

}

int aj

printf("Enter a number:")j
scanf ("%d", a) ;
if (a)

{

blah blah blah
}

If a is anything other than 0, the code that blah blah blah represents gets
executed. Suppose you take the following Pascal statement:

if a=b then

384 C REVIEW

and incorrectly convert it to Cas:

if (a=b) 1* it SHOULD be "if (a==b)" *1

In C, this statement means /I Assign b to a, and then test a for its Boolean
value." So if a becomes 0, the if statement is false; otherwise, it is true. The
value of a changes as well. This is not the intended behavior (although this
feature is useful when used correctly), so be careful with your = and == conver­
sions.

While statements are just as easy to translate as if statements. For example,
the following Pascal code:

while a<b do
begin

blah blah blah
end;

in C becomes:

while (a<b)
{

blah blah blah
}

C also provides a "do-while" structure to replace Pascal's "repeat-until," as
shown below:

do
{

blah blah blah
}

while (a<b);

The for loop in C is somewhat different from a Pascal for loop, because
the C version is simply a shorthand way of expressing a while statement. For
example, suppose you have the following code in C:

x=l;
while (x<10)
{

blah blah blah
x++; 1* x++ is the same as saying x=x+l. It's an increment. *1

}

EA ARRAYS AND THE BUBBLE SORT

You can convert this into a for loop as follows:

for(x=lj x<10j x++)
{

blah blah blah
}

385

Note that the while loop contains an initialization step (x=l), a test step
(x<10), and an increment step (x++). The for loop lets you put all three parts
onto one line, but you can put anything into those three parts. For example,
suppose you have the following loop:

a=lj
b=6j
while (a<b)
{

}

a++j
printf("i.d\n",a)j

You can place this into a for statement as well:

for (a=l,b=6j a<bj a++,printf("i.d\n",a))j

It is confusing, but it is possible. The comma operator lets you separate several
different statements in the initialization and increment sections of the for
loop (but not in the test section). Many C programmers like to pack a lot of
information into a single line of C code. I think it makes the code harder to
understand, so I break it up.

C Errors to Avoid

1. Putting = when you mean == in an if or while statement.
2. Accidentally putting a ; at the end of a for loop or if statement, so that the

statement has no effect. For example,

for (x=lj x<10j x++)j
printf("i.d\n",x)j

only prints out one value because of the semicolon after the for statement.

E.4 ARRAYS AND THE BUBBLE SORT

In this section, you will create a small program that generates 10 random
numbers and sorts them.

386 C REVIEW

Start an editor and enter the following code:

#include <stdio.h>
#define MAX 10

int a[MAX];
int rand_seed=10j

int rand() 1* from K&R - returns random number between 0 and 32767.*1
{

rand_seed = rand_seed * 1103515245 +12345;
return (unsigned int) (rand_seed 1 65536) % 32768;

}

void mainO
{

}

int i,t,x,y;

1* fill array *1
for (i=O; i<MAX; i++)
{

}

a [i] =rand 0 ;
printf(lI%d\nll,a[i]);

1* more stuff will go here in a minute *1

This code contains several new concepts, although the lines #include and
#define should be familiar to you. The line int a[MAX]; shows you how to
declare an array of integers in C. As an example, the declaration int a [10] ; is
declared like this in Pascal:

a:array [0 .. 9] of integer;

All arrays start at index zero and go to n-l in C. Thus, int a[10] ; contains
10 elements, and the largest valid index is 9. Unlike Pascal, C offers no way to
change the range of index values. Also note that because of the position of the
array a, it is global to the entire program.

The line int rand_seed=10; also declares a global variable, this time named
rand_seed, that is initialized to 10 each time the program begins. This value is
the starting seed for the random number code that follows. In a real random
number generator, the seed should initialize as a random value, such as the
system time. Here, the rand function will produce the same values each time
you run the program.

E.4 ARRAYS AND THE BUBBLE SORT 387

The line int rand 0 is a function declaration. The equivalent function dec­
laration looks like this in Pascal:

function rand:integer;

The rand function accepts no parameters and returns an integer value.
The four lines that follow implement the rand function. We will ignore

them for now.
The main function is normal. Four local integers are declared, and the array

is filled with 10 random values using a for loop. Note that arrays are indexed
exactly as they are in Pascal.

Now add the following code in place of the more stuff ... comment:

/* bubble sort the array */
for (x=O; x<MAX-l; x++)

for (y=O; y<MAX-x-l; y++)
if (a[y]>a[y+l])
{

}

t=a[y];
a[y] =a[y+l] ;
a[y+l]=t;

/* print sorted array */
printf(II--------------------\nll);
for (i=O; i<MAX; i++)
printf(lI%d\nll,a[i]);

This code sorts the random values and prints them in sorted order.

Exercises

1. In the first piece of code, try changing the for loop that fills the array to
a single line of code. Make sure that the result is the same as the original
code.

2. Take the bubble sort code out and put it into its own function. (See E.6, if
necessary.) The function header will be void bubble_sort O. Then move
the variables used by the bubble sort to the function as well and make them
local there. Because the array is global, you do not need to pass parameters.

3. Initialize the random number seed to different values.

388 C REVIEW

E.S

E.S.l

E.S.2

C Errors to Avoid

1. C has no range checking, so if you index past the end of the array, it will
not tell you about it. It will eventually crash or give you garbage data.

2. A function call must include 0, even if no parameters are passed. For
example, C will accept x=rand;, but the call will not work. The memory
address of the rand function will be placed into x. You must say x=rand 0 ; .

DETAILS YOU NEED TO KNOW

OPERATORS AND OPERATOR PRECEDENCE

The operators in C are similar to the operators in Pascal, as shown below:

Pascal C

+ +

/ /
* *
div /
mod %

The / operator performs integer division if both operands are integers and
floating pOint division otherwise. For example:

void mainO
{

}

float a;
a=10/3;
printf("%f\n",a);

This code prints out a floating point value since a is declared as type float,

but a will be 3.0 because the code performed an integer division.
Operator precedence in C is also similar to that in Pascal. As in Pascal,

parentheses control precedence. See E.14 for more information on precedence,
which becomes somewhat complicated in C once pointers are introduced.

TYPECASTING

C allows you to perform type conversions on the fly. You do this especially
often when using pointers. Typecasting also occurs during the assignment

E.5.3

E.5.4

E.S DETAILS YOU NEED TO KNOW 389

operation for certain types. For example, in the code above, the integer value
was automatically converted to a float.

You do typecasting in C by placing the type name in parentheses and
putting it in front of the value you want to change. Thus, in the above code,
replacing the line a=10/3; with a= (float) 10/3; produces 3.33333 in a be­
cause 10 is converted to a floating point value before the division.

TYPES

You declare named, user-defined types in C with the typedef statement. The
following example shows a type that appears often in C code:

#define TRUE 1
#define .FALSE 0

typedef int boolean;

void mainO
{

boolean b;

b=FALSE;
blah blah blah

}

This code allows you to declare Boolean types in C programs.
If you do not like the word "float" for real numbers, you can say:

typedef float real;

and then later say:

real rl,r2,r3;

You can place typedef statements anywhere in a C program as long as they
come prior to their first use in the code. You do not have to group them
together as in Pascal, and you need no special word to mark the beginning
of the block as in Pascal.

RECORDS

Records in C and Pascal are very similar, as shown below. First, consider a
Pascal record.

390 C REVIEW

type

var

rec=record
a,b,c:integer;
d,e,f:real;

end;

r:rec;

In C, the same code looks like:

struct rec
{

int a,b,c;
float d,e,f;

}; 1* Note semicolon *1

struct rec r;

As shown here, whenever you want to create records of the type rec, you
have to say struct rec. This line is very easy to forget, and I get many com­
piler errors because I absent-mindedly leave out the struct. You can compress
the code into the form

struct rec
{

} r;

int a,b,c;
float d,e,f;

where the type declaration for rec and the variable r are declared in the same
statement.

You access fields of records exactly as in Pascal, using a period (.), for exam­
ple, r.a=5;.

You can declare a typedef for a record. For example, if you do not like saying
struct rec r every time you want to declare a record, you can say

typedef struct rec rec_type;

and then declare records of type ree_type by saying

rec_type r;

E.5.5

E.5.6

E.6 FUNCTIONS IN C 391

ARRAYS

You declare arrays by inserting an array size after a normal declaration, as
shown below:

int a[10];
char s [100] ;
float f [20] ;
struct rec r[50];

INCREMENTING

1* array of integers *1
1* array of characters (a C string) *1
1* array of reals *1
1* array of records *1

We have seen that the statement i ++ increments a variable. A few more of the
C shorthand incrementing functions, and what they mean, follow:

Long Way

i=i+lj

i=i-lj
i=i+3j

i=i*jj

Exercises

Short Way

i++j

i--j
i += 3j

i *= j j

1. Try out different pieces of code to investigate typecasting and precedence.
Try out int, char, float, and so on.

2. Create an array of records and write some code to sort that array on one
integer field.

C Errors to Avoid

1. As described above, using the / operator with two integers will often produce
an unexpected result, so think about it whenever you use it.

E.6 FUNCTIONS IN C

Most languages let you create procedures or functions, or both. C allows only
functions, although you can create procedures by making functions that re­
turn nothing. C functions can accept an unlimited number of parameters. As
mentioned in the introduction, they cannot be nested. In general, C does not
care in what order you put your functions in the program.

392 C REVIEW

We have already talked a little about functions. The rand function in E.4 is
about as simple as a function can get. It accepts no parameters and returns an
integer result:

int randO
1* from K&R - produces a random number between 0 and 32767.*1
{

}

rand_seed = rand_seed * 1103515245 +12345;
return (unsigned int) (rand_seed 1 65536) % 32768;

The int rand () line declares the function rand to the rest of the program
and specifies that rand will accept no parameters and return an integer result.
This function has no local variables, but if it needed locals, they would go right
below the opening {. (C actually allows you to declare variables after any {.
Those variables vanish as soon as the matching} is reached. While they exist,
they are placed on the system stack.) Note that there is no ; after the 0 in
the first line. If you aCcidentally put one in, you will get a huge cascade of
error messages that make no sense. Also note that even though there are no
parameters, you must use the O. They tell the compiler that you are declaring
a function rather than simply declaring an into

The return statement is important to any function that returns a result. It
gives the function the value to return and causes it to exit immediately. This
means that you can place multiple return statements in the function to give
it multiple exit points. If you do not place a return statement in a function, it
returns when it reaches} and gives you garbage. In C, a function can return
values of any type.

There are several correct ways to call the rand function-for example;
x=rand 0 ;. The x is assigned the value returned by rand in this statement.
Note that you must use 0, even though no parameter is passed. Otherwise, x
is given the memory address of the rand function.

You might also call rand this way:

if (rand() > 100)

Or this way:

randO;

In the latter case, the value returned by rand is discarded. You may never
want to do this with rand, but many functions return some kind of error code
through the function name, and if you are not concerned with the error code
(say you know that an error is impossible) you can discard it in this way.

E.6 FUNCTIONS IN C 393

You create procedures (in the Pascal sense) by giving the function a void
return type. For example:

void print_header()
{

}

printf("Program Number l\nll)j
printf(lIby Marshall Brain\nll)j
printf(IIVersion 1.0, released 12/26/91\nll) j

This function returns no value, so it is a procedure. You can call it with the
following statement:

print_header 0 j

You must include () in the call. If you do not, the function is not called, even
though it will compile correctly on many systems.

C functions can accept parameters of any type. For example:

int fact (int i)
{

}

int j,kj

j=lj
for (k=2j k<=ij k++)

j=j*kj
return jj

returns the factorial of i, which is passed in as an integer parameter. Separate
multiple parameters with commas:

int add (int i, int j)
{

return i+jj
}

C has evolved over the years. You will frequently see functions such as add
written in the "old style," as shown below:

int add(i,j)
int ij
int jj

{

return i+jj
}

394 C REVIEW

It is important to be able to read code written in the older style. There is
no difference in the way it executes; it is just a different notation. You should
use the "new style," with the type declared as part of the parameter list, unless
you know you will be shipping the code to someone who has access only to
an "old style" compiler.

It is now considered good form to use function prototypes for all functions
in your program. A prototype declares the function name, its parameters, and
its return type to the rest of the program in a manner similar to a forward
declaration in Pascal. To understand why function prototypes are useful, enter
the following code and run it:

#include <stdio.h>

void mainO
{

printf(lY.d\n",add(3»;
}

int add(int i, int j)
{

return i+jj
}

This code compiles without giving you a warning, even though add expects
two parameters but receives only one, because C does not check for parameter
matching either in type or count. You can waste an enormous amount of
time debugging code in which you are simply passing one too many or too
few parameters. The above code compiles properly, but it produces the wrong
answer.

To solve this problem, C lets you place function prototypes at the beginning
of a program. If you do so, C checks the types and counts of all parameter lists.
Try compiling the following:

#include <stdio.h>

int add (int,int)j 1* function prototype for add *1

void mainO
{

printf(ly'd\n",add(3»j
}

int add(int i, int j)

E.7

E.7.1

E.7 C LIBRARIES AND MAKEFILES 395

{

return i+j;
}

The prototype causes the compiler to flag an error on the printf statement.
Place one prototype for each function at the beginning of your program.

They can save you a great deal of debugging time, and they also solve the
problem you get when you compile with functions that you use before they
are declared. For example, the following code will not compile:

#include <stdio.h>

void mainO
{

printf("%d\n",add(3»;
}

float add(int i, int j)
{

return i+j;
}

Why, you might ask, will it compile when add returns int but not when it
returns a float? Because C defaults to an int return value. Using a prototype
will solve this problem. "Old style" compilers allow prototypes, but the pa­
rameter list for the prototype must be empty. Old style compilers do no error
checking on parameter lists.

C LIBRARIES AND MAKEFILES

INTRODUCTION TO LIBRARIES

Libraries are very i~portant in C because the C language supports only the
most basic elements it needs. C does not even contain I/O functions to read
from the keyboard and write to the screen. Anything that extends beyond the
basic language must be written by a programmer. The resulting chunks of code
are placed in libraries. We have seen the standard I/O, or stdio, library al­
ready: Libraries exist for math functions, string handling, time manipulation,
and so on. Libraries also give you the ability to split up your programs into
modules, which makes them easier to understand, test, and debug, and also
makes it possible to reuse code from other programs that you write.

You can create your own libraries easily. As an example, we will take some
code from E.4 and make a library out of two of its procedures.

396 C REVIEW

#include <stdio.h>
#define MAX 10

int a[MAX];
int rand_seed=10;

int randO
1* from K&R - produces a random number between 0 and 32767.*1
{

rand_seed = rand_seed * 1103515245 +12345;
return (unsigned int) (rand_seed 1 65536) % 32768;

}

void mainO
{

}

int i,t,x,y;

1* fill array *1
for (i=O; i<MAX; i++)
{

}

a[i]=rand();
printf("%d\n" ,a[i]);

1* bubble sort the array *1
for (x=O; x<MAX-1; x++)

for (y=O; y<MAX-x-1; y++)
if (a[y]>a[y+1])
{

}

t=a[y] ;
a[y]=a[y+1];
a[y+1]=t;

1* print sorted array *1
printf("--------------------\n");
for (i=O; i<MAX; i++)

printf("%d\n",a[i]);

This code fills an array with random numbers, sorts them using a bubble sort,
and then displays the sorted list.

Take the bubble sort code, and use what you learned in E.6 to make a
function from it. Since both the array a and the constant MAX are known

E.7 C LIBRARIES AND MAKEFILES 397

globally, the function you create needs no parameters, nor does it need to
return a result. However, you should use local variables for x, y, and t.

Once you have tested the function to make sure it is working, pass in the
number of elements as a parameter rather than using MAX. Do this first with­
out looking at the code below and then compare the two only when you have
finished.

#include <stdio.h>
#define MAX 10

int a[MAX];
int rand_seed=10;

int rand() 1* from K&R - returns random number between 0 and 32767.*1
{

rand_seed = rand_seed * 1103515245 +12345;
return (unsigned int) (rand_seed 1 65536) % 32768;

}

void bubble_sort(int m)
{

}

int x,y,t;

for (x=O; x<m-1; x++)
for (y=O; y<m-x-1; y++)

if (a[y]>a[y+1])
{

}

t=a[y] ;
a[y]=a[y+1] ;
a[y+1]=t;

void mainO
{

int i,t,x,y;

1* fill array *1
for (i=O; i<MAX; i++)
{

a[i] =rand() ;
printf (n%d\n n , a [i]) ;

}

398 C REVIEW

E.7.2

}

bubble_sort(MAX);

1* print sorted array *1
printf("--------------------\n");
for (i=O; i<MAX; i++)

printf("Yed\n",a[i]);

You can also generalize the bubble_sort function even more by passing in a
and the size of a as parameters:

void bubble_sort(int m, int a[])

This line says, "Accept the integer array a of any size as a parameter." Nothing
in the body of the bubble_sort function needs to change. To call bubble_sort,
change the call to:

bubble_sort(MAX,a);

Note that &a has not been used even though the sort will change a. The reason
for this will become clear in E.1 O.

MAKING A LIBRARY

Since the rand and bubble_sort functions in the program above are useful,
you will probably want to reuse them in other programs you write. You can
put them into a utility library to make their reuse easier.

Every library consists of two parts: a header file and the actual code file. The
header file, normally denoted by a . h suffix, contains information about the
library that programs using it need to know. In general, the header contains
constants and types, along with headers for functions available in the library.
Enter the following header file and save it to a file named util. h.

extern int rand();
extern void bubble_sort(int,int []);

These two lines should remind you of function prototypes. The word "extern"
in C represents procedures that will be linked in later. In an old-style compiler,
remove the parameters from the parameter list of bubble_sort.

Enter the following code into a file named util. c.

#include "util.h"

int rand_seed=10;

E.7 C LIBRARIES AND MAKEFILES

int randO
1* from K&R - produces a random number between 0 and 32767.*1
{

rand_seed = rand_seed * 1103515245 +12345;
return (unsigned int) (rand_seed 1 65536) % 32768;

}

void bubble_sort(int m,int a[])
{

}

int x,y,t;

for (x=O; x<m-1; x++)
for (y=O; y<m-x-1; y++)

if (a[y]>a[y+1])
{

}

t=a[y] ;
a[y] =a[y+1] ;
a[y+1]=t;

399

Note that it includes its own header file (util. h) and that it uses quotes
instead of the symbols < and >, which are used only for system libraries. As
you can see, this looks like normal C code. Note that the variable rand_seed,
because it is not in the header file, cannot be seen or modified by a program
using this library. This is called information hiding. Adding the word static

in front of int enforces the hiding completely.
Enter the following main program in a file named main. c.

#include <stdio.h>
#include "uti1.h"

#define MAX 10

int a[MAX];

void mainO
{

int i,t,x,y;

1* fill array *1
for (i=O; i<MAX; i++)
{

a[i]=rand();

400 C REVIEW

E.7.3

}

printf (IIYed\n ", a [i]) ;
}

bubble_sort(MAX,a);

1* print sorted array *1
printf("--------------------\n");
for (i=O; i<MAX; i++)

printf(IYed\n",a[i]);

This code includes the utility library. The main benefit of using a library is that
the code in the main program is much shorter.

COMPILING AND RUNNING WITH A LIBRARY

To compile the library, type the following:

cc -c -g util.c

The -c causes the compiler to produce an object file for the library. The object
file contains the library's machine code. It cannot be executed until it is linked
to a program file that contains a main function. The machine code resides in
a separate file named uti!. o.

To compile the main program, type the following:

cc -c -g main.c

This line creates a file named main. 0 that contains the machine code for the
main program. To create the final executable that contains the machine code
for both the main program and the library, link the two object files by typing
the following:

cc -0 main main.o util.o

which links main. 0 and uti!. 0 to form an executable named main. To run it,
type main.

It can be cumbersome to type all of the cc lines required to compile a
large program, especially if you are making a lot of changes and it has several
libraries. As an alternative, the make facility can be used. You can use the
following makefile to replace the compilation sequence above:

main: main.o util.o
cc -0 main main.o util.o

E.B TEXT FILES IN C

main.o: main.c util.h
cc -c -g main.c

util.o: util.c util.h
cc -c -g util.c

401

Enter this into a file named makefile, and type make to build the executable.
Note that you must precede all cc lines with a tab. (Eight spaces will not
suffice-it must be a tab. All other lines must be flush left.)

This makefile contains two types of lines. The lines appearing flush left are
dependency lines. The lines preceded by a tab are executable lines, which
can contain any valid UNIX command. A dependency line says that some file
is dependent on some other set of files. For example, main.o: main.c util.h

says that the file main. 0 is dependent on the files main. c and util. h. If either
of these two files changes, the following executable line(s) should be executed
to recreate main. o.

Note that the final executable produced by the whole makefile is main, on
line 1 in the makefile. The final result of the makefile should always go on line
1, which in this make file says that the file main is dependent on main. 0 and
util. o. If either of these changes, execute the line cc -0 main main. 0 util. 0

to recreate main.

It is possible to put multiple lines to be executed below a dependency line­
they must all start with a tab. A large program may have several libraries and
a main program. The makefile automatically recompiles everything that needs
to be recompiled because of a change.

E.8 TEXT FILES IN C

Text files in C are straightforward and easy to understand. They work the same
way as Pascal text files. All text file functions and types in C come from the
stdio library.

When you need text I/O in a C program, and you need only one source
for input information and one sink for output information, you can rely on
stdin (standard in) and stdout (standard out). You can then use input and
output redirection at the command line to move different information streams
through the program. There are six different I/O commands in <stdio . h> that
you can use with stdin and stdout:

printf
scanf
puts

prints formatted output to stdout
reads formatted input from stdin
prints a string to stdout

402 C REVIEW

gets
putc
getc, getchar

reads a string from stdin
prints a character to stdout
reads a character from stdin

The advantage of stdin and stdout is that they are easy to use. Likewise, the
ability to redirect I/O is very powerful. For example, maybe you want to create
a program that reads from stdin and counts the number of characters:

#include <stdio.h>
#include <string.h>

void mainO
{

}

char s[1000];
int count=O;

while (gets(s»
count += strlen(s);

printf("%d\n" ,count);

Enter this code and run it. It waits for input from stdin, so type a few lines.
When you are done, press CTRL-D to signal end-of-file (eof). gets reads a line
until it detects eof, then returns a 0 so that the while loop ends. When you
press CTRL-D, you see a count of the number of characters in stdout (the screen).

Now, suppose you want to count the characters in a file. If you compiled the
program to a. out, you can type the following:

a.out <filename

Instead of accepting input from the keyboard, the contents of the file named
filename will be used instead. You can achieve the same result using pipes:

cat <filename I a.out

You can also redirect stdout to a file:

a.out <filename >out

This code places the character count produced by the program in a text file
named out.

Sometimes, you need to use a text file directly. For example, you might need
to open a specific file name and read from or write to it. You might want to
manage several streams of input or output or create a program like a text editor
that can save and recall data or configuration files on command.

E.8 TEXT FILES IN C 403

The commands that handle text files are similar to those for stdin and
stdout. Again, they come from <stdio. h>

fopen
fclose
feof
fprintf
fscanf
fputs
fgets
fputc
fgetc

opens a text file
closes a text file
detects end-of-file marker in a file
prints formatted output to a file
reads formatted input from a file
prints a string to a file
reads a string from a file
prints a character to a file
reads a character from a file

You use fopen like reset and rewrite in Pascal. It opens a file for a specified
mode (the three most common are r, w, and a, for read, write, and append). It
then returns a file pointer that you use to access the file. For example, suppose
you want to open a file and write the numbers 1 to 10 in it. You could use the
following code:

#include<stdio.h>

#define MAX 10

void mainO
{

}

FILE *f;

int Xj

f=fopen(" out", "W") ;

for(x=l; x<=MAX; x++)
fprintf(f,IYed\n",x);

fclose(f);

The fopen statement here opens a file named out with the w mode. This is
a destructive write mode, which means that if out does not exist it is created,
but if it does exist it is destroyed and a new file is created in its place. The
fopen command returns a pointer to the file, which is stored in the variable f.
This variable is used to refer to the file. If the file cannot be opened for some
reason, f will contain NULL.

The fprintf statement should look very familiar: It is just like printf but uses
the file pointer as its first parameter. The fclose statement closes the file when
you are done.

404 C REVIEW

To read a file, open it with r mode. In general, it is not a good idea to use
fscanf for reading: Unless the file is perfectly formatted, fscanf will not handle
it correctly. Instead, use fgets to read in each line and then parse out the pieces
you need.

The following code demonstrates the process of reading a file and dumping
its contents to the screen:

#include<stdio.h>

void mainO
{

}

FILE *f;

char 8[1000];

f=fopen("infile","r");
while (fgets(s,1000,f)!=NULL)

printf("%s",s);
fclose(f)j

The fgets statement returns a NULL value at the end-of-file marker. It reads a
line (up to 1,000 characters in this case) and then prints it to stdout. Notice
that the printf statement does not include \n in the format string, because
fgets adds \n to the end of each line it reads. Thus, you can tell if a line is not
complete in the event that it overflows the maximum line length specified in
the second parameter to fgets.

C Errors to Avoid

1. Do not accidentally type close instead of fclose. The close function exists,
so the compiler accepts it. It will even appear to work if the program only
opens or closes a few files. However, if the program opens and closes a file
in a loop, it will eventually run out of available file handles and/or memory
space and crash, because close is not closing the files correctly.

E.9 INTRODUCTION TO POINTERS IN C

Pointers are used everywhere in C, and if you have a good understanding of
them C should not pose a problem. If, however, you have never seen pointers
before, or feel uncomfortable with them, you may want to read an extra book
or two, or talk to someone who already understands them. C pointers are
basically the same as Pascal pointers except they appear more often.

E.9 INTRODUCTION TO POINTERS IN C 405

C uses pointers in three main ways. First, they create dynamic data structures:
data structures built up from blocks of memory allocated from the heap at run­
time. Second, they handle variable parameters passed to functions. And third,
they provide an alternative means of accessing information stored in arrays,
which is especially valuable when you work with strings. There is an intimate
link between arrays and pointers in C.

In many cases, programmers use pointers because they make the code
slightly more efficient. Sometimes, they simply seem to make the code harder
to understand. Once you have mastered the three uses of pointers in C, how­
ever, you "know" C for all practical purposes.

Pointer Basics

A normal variable is a location in memory that can hold a value. For example,
when you declare a variable i as an integer, four bytes of memory are set aside
for it. In your program, you refer to that location in memory by the name i.
At the machine level, that location has a memory address, at which the four
bytes can hold one integer value.

A pointer is a variable that points to another variable. This means that it
holds the memory address of another variable. Put another way, the pointer
does not hold a value in the traditional sense; instead, it holds the address of
another variable. It points to that other variable by holding its address.

Because a painter holds an address rather than a value, it has two parts. The
pointer itself holds the address. That address points to a value. There is the
pointer and the value pointed to. This fact can be a little confusing until you
get used to it.

The following example code shows a typical pointer:

#include <stdio.h>

void mainO
{

}

int i,j;
int *p; 1* a pointer to an integer *1

p = &i;

*p=5;
j=i;
printf("Y.d Y.d Y.d\n",i,j,*p);

406 C REVIEW

The line int *P declares a pointer. It asks the compiler to declare a variable p
that is a pointer to an integer. The * indicates that a pOinter is being declared
rather than a normal variable. You can create a pointer to anything: a float, a
structure, a char, and so on.

The line p = &i; will definitely be new to you. In C, & is called the address
operator. The expression &i means lithe memory address of the variable L"
Thus, the expression p = &i; means II Assign to p the address of L" Once you
execute this statement, p points to i. Before you do so, p contains a random,
unknown address, and its use will likely cause a segmentation fault.

After the line p = &i;, the memory situation looks something like this:

p

G--D
*p

Note that p is represented by a circle to indicate that it is a pointer, while i is
represented by a square to indicate that it is a normal variable.

Once p points to i, the memory location i has two names. It is still known as
i, but now it is known as *p as well. This is how C talks about the two parts of a
pointer variable: p is the location holding the address, while *p is the location
pointed to by that address. Therefore *p=5 means that the location pointed to
by p should be set to 5. Because this location is also i, i also takes on the value
5. Consequently, j=i; sets j to 5, and the printf statement produces 5 5 5.

Try the following:

#include <stdio.h>

void mainO
{

}

int i,j;
int *p; 1* a pointer to an integer *1

printf("%d %d\n",p,&i)j
p = &ij
printf("%d %d\n",p,&i)j

This code tells the compiler to print out the address held in p, along with the
address of L The variable p starts off with some crazy value or with O. The
address of i is generally a large value. For example, when I ran this code, I
received the following output:

E.l0

E.l0 USING POINTERS FOR VARIABLE PARAMETERS

o 2147478276
2147478276 2147478276

407

which means that the address of i is 2147478276. Once the statement p = &i;

has been executed, p contains the address of i. Try this as well:

#include <stdio.h>

void mainO
{

int *pj 1* a pointer to an integer *1

printf("%d\n",*p)j
}

This code tells the compiler to print the value p points to. However, p has
not been initialized yeti it contains the address O. A segmentation fault results,
which means that you have used a pointer that points to an invalid area of
memory. Almost always, an uninitialized pointer or a bad pointer address is
the cause of segmentation faults.

Also note that if you type in the statement p=&i; without any spaces, you
will probably get a warning like:

Warning: c.c, line 9: ambiguous assignment: simple assign,
unary op assumed

When you see this warning, place blanks around the equal sign.

USING POINTERS FOR VARIABLE PARAMETERS

Most C programmers first need to use pointers for variable parameters. Sup­
pose you have a simple procedure in Pascal that swaps two integer values:

program samp j
var

a,b:integerj

procedure swap(var i,j:integer)j
var t:integerj
begin

endj

t:=ij
i:=j j
j:=tj

408 C REVIEW

begin

end.

a:=5;
b:=10;
writeln(a,b);
swap(a,b);
writeln(a,b) ;

Because this code uses variable parameters, it swaps the values a and b cor­
rectly.

C has no formal mechanism for passing variable parameters: It passes every­
thing by value. Enter and execute the followi~g code and see what happens:

#include <stdio.h>

void swap(int i, int j)
{

}

int t;

t=i;
i=j;
j=t;

void mainO
{

}

int a,b;

a=5;
b=10;
printf("y'd Y.d\n",a,b);
swap(a,b);
printf("Y.d Y.d\n",a,b);

No swapping takes place. The values of a and b are passed to swap, but no
values are returned.

To make this function work correctly, you must use pointers, as shown
below:

#include <stdio.h>

void swap(int *i, int *j)

E.lO USING POINTERS FOR VARIABLE PARAMETERS

{

}

int tj

t = *ij
*i = *jj
*j = tj

void mainO
{

}

int a,bj

a=5j
b=10j
printf("iod iod\n",a,b)j
swap(&a,&b)j
printf("iod iod\n",a,b)j

409

To get an idea of what this code does, print it out, draw the two integers a
and b, and enter 5 and 10 in them. Now draw the two pointers i and j, along
with the integer t. When swap is called, it is passed the addresses of a and b.
Thus, i points to a (draw an arrow from i to a) and j pOints to b (draw another
arrow). Because the pointers have been established, *i is another name for a,
and *j is another name for b. Now run the code in swap. When the code uses
*i and *j, it really means a and b. When the function completes, a and b have
been swapped.

t

i=&a j=&b D

*i *j

a

Suppose you aCcidentally forget the & when the swap function is called, and
that the swap line aCcidentally reads swap(a, b) ;. This causes a segmentation
fault. When you leave out the &, the value of a is passed instead of its address.
Therefore, i points to an invalid location in memory and the system crashes
when *i is used.

410 C REVIEW

This is also why scanf crashes if you forget &-scanf is using pointers to put
the value it reads back into the variable you have passed. Without &, scanf is
passed a bad address and crashes.

E.ll USING POINTERS FOR DYNAMIC
DATA STRUCTURES

Dynamic data structures-those that grow and shrink as you need them to by
allocating and deallocating memory from the heap-are extremely important
in C. If you have never seen them before, pick up a book on data structures so
that you can learn about them in depth.

Dynamic data structures allocate blocks of memory from the heap as re­
quired and link those blocks together into some kind of structure that uses
pointers. When a structure no longer needs a block, it will return it to the heap
for reuse.

The following two examples show the correspondence between Pascal code
and C code using the heap. The first example allocates an integer block, fills it,
writes it, and disposes of it. In Pascal, it looks like this:

program samp j
var

p:~integerj

begin

end.

new(p)j
p~:=10j

writeln(p~)j

dispose(p)j

The same code in C looks like this:

#include <stdio.h>

void mainO
{

}

int *pj

p=(int *) malloc (sizeof(int»j
*p=10j
printf (n%d\n n ,*p) j
free(p)j

E.l1 USING POINTERS FOR DYNAMIC DATA STRUCTURES 411

This code is really useful only for demonstrating the process of allocating,
deallocating, and using a block in C. The malloe line does the same thing
as the new statement does in Pascal. It allocates a block of memory of the
size specified-in this case, sizeof (int) bytes. The sizeof command in C
returns the size, in bytes, of any type. The code could just as easily have said
malloe (4), since sizeof (int) equals four bytes on most UNIX machines.
Using sizeof, however, makes the code much more portable and readable.

The malloe function returns a pointer to the allocated block. This pointer
is generic. Using the pOinter without typecasting generally produces a type
warning from the compiler. The (int *) typecast converts the generic pointer
returned by malloe into a pointer to an integer, which is what p expects. The
dispose statement in Pascal is replaced by free in C. It returns the specified
block to the heap for reuse.

The second example illustrates the same functions as the previous example,
but it uses a record instead of an integer. In Pascal, the code looks like this:

program sampj
type

var

rec=record
i:integerj
f:realj
c:charj

endj

p: ~recj

begin

end.

new(p)j
p~.i:=10j

p~.f:=3.14j

p~ .c='a' j
writeln(p~.i.p~.f.p~.c);

dispose(p);

In C, the code looks like this:

#include <stdio.h>

struct rec
{

}j

int i;
float f;
char Cj

412 C REVIEW

void mainO
{

}

struct rec *p;

p=(struct rec *) malloc (sizeof(struct rec));
(*p).i=10;
(*p).f=3.14;
(*p) . c=' a';
printf("%d %f %c\n".(*p).i.(*p).f.(*p).c);
free(p);

Note the following line:

(*p).i=10;

Many wonder why the following doesn't work:

*p.i=10;

The answer has to do with the precedence of operators in C. The result of the
calculation 5+3*4 is 17, not 32, because the * operator has higher precedence
than + in most computer languages. In C, the. operator has higher precedence
than *, so parentheses force the proper precedence. See E.14 for more informa­
tion on precedence.

Most people tire of typing (*p). i all the time, so C provides a shorthand
notation. The following two statements are exactly equivalent, but the second
is easier to type:

(*p).i=10;
p->i=10;

You will see the second more often than the first when referencing records
pointed to by a pointer.

A more complex example of dynamic data structures is a simple stack li­
brary, one that uses a dynamic list and includes functions to init, clear, push,
and pop. The library's header file looks like this:

1* Stack Library -
This library offers the minimal stack operations for a
stack of integers (easily Changeable) *1

typedef int stack_data;

E.11 USING POINTERS FOR DYNAMIC DATA STRUCTURES

extern void stack_init();
1* Initializes this library. Call first before calling anything. *1

extern void stack_clear();
1* Clears the stack of all entries. *1

extern int stack_empty();
1* Returns 1 if the stack is empty, 0 otherwise. *1

extern void stack_push(stack_data d);
1* Pushes the value d onto the stack. *1

extern stack_data stack_pop();
1* Returns the top element of the stack, and removes that element.

Returns garbage if the stack is empty. *1

The library's code file follows:

#include "stack.h"
#include <stdio.h>

1* Stack Library - This library offers the minimal stack operations
for a stack of integers *1

struct stack_rec
{

stack_data data;
struct stack_rec *next;

};

struct stack_rec *top=NULL;

void stack_init()
1* Initializes this library. Call before calling anything else. *1
{

tOP=NULL;
}

void stack_clear()
1* Clears the stack of all entries. *1
{

413

414 C REVIEW

}

while (!stack_empty(»
x=stack_pop();

int stack_empty()
1* Returns 1 if the stack is empty, 0 otherwise. *1
{

}

if (top==NULL)
return(l);

else
return(O);

void stack_push(stack_data d)
1* Pushes the value d onto the stack. *1
{

}

struct stack_rec *temp;

temp=(struct stack_rec *)malloc(sizeof(struct stack_rec»;
temp->data=d;
temp->next=top;
top=temp;

stack_data stack_pop()
1* Returns the top element of the stack, and removes that element.

{

}

Returns garbage if the stack is empty. *1

struct stack_rec *temp;
stack_data d=O;

if (top!=NULL)
{

d=top->data;
temp=top;
top=top->next;
free(temp);

}

return(d);

Note how this library practices information hiding: Someone who can see
only the header file cannot tell if the stack is implemented with arrays, point­
ers, files, or in some other way. Note also that C uses NULL in place of the

E.12 USING POINTERS WITH ARRAYS 415

Pascal nil. NULL is defined in stdio. h, so you will almost always have to in­
clude stdio. h when you use pointers.

C Errors to Avoid

1. Forgetting to include parentheses when you reference a record, as in (*p) . i
above.

2. Failing to dispose of any block you allocate. For example, you should not
say top=NULL in the stack_clear function, because that orphans blocks that
need to be disposed.

3. Forgetting to include stdio . h with any pointer operations.

Exercises

1. Add a dup, a count, and an add function to the stack library.
2. Build a driver program and a makefile, and compile the stack library with

the driver to make sure it works.

E.12 USING POINTERS WITH ARRAYS

Arrays and pointers are intimately linked in C. To use arrays effectively, you
have to know how to use pointers with them. Fully understanding the rela­
tionship between the two requires several weeks or even months of study, so
do not get discouraged if you do not understand it right away. Kernighan and
Ritchie have a good chapter on these topics.

Let's start with the treatment of arrays in Pascal and other languages. C is
nothing like Pascal in this regard, so it will provide a good contrast. Following
is an example of arrays in Pascal:

program samp;
const

var
max=9;

a,b:array[O .. max] of integer;
i:integer;

begin

end.

for i:=O to max do
a[i] :=i;

b:=a;

416 C REVIEW

The elements of the array a are initialized, and then all elements in a are
copied into b, so that a and b are identical.

Compare the C version:

#define MAX 10

void mainO
{

}

int a[MAX];
int b[MAX];
int i;

for(i=O; i<MAX; i++)
a[i]=i;

b=a;

Enter this code and try to compile it. You will find that C will not compile it.
If you want to copy a into b, you have to enter something like the following:

for (i=O; i<MAX; i++)
a[i]=b[i] ;

Or, to put it more succinctly:

for (i=O; i<MAX; a[i]=b[i], i++);

Better yet, use the memcpy utility in string. h.

Arrays in C are unusual in that variables a and b are not technically arrays
themselves but permanent pointers to arrays. Thus, they point to blocks of
memory that hold the arrays. They hold· the addresses of the actual arrays,
but since they are permanent pointers, you cannot change their addresses. The
statement a=b; therefore does not work.

Because a and b are pointers, you can do several interesting things with
pointers and arrays. For example, the following code works:

#define MAX 10

void mainO
{

int a[MAX];
int b[MAX];
int i;
int *p,*q;

for(i=O; i<MAX; i++);

E.12 USING POINTERS WITH ARRAYS

}

a[i]=i;
pea;
printf("%d\n",*p);

417

The statement pea; works because a is a pointer. Technically, a points to
the address of the Oth element of the actual array. This element is an integer,
so a is a pointer to a single integer. Therefore, declaring p as a pointer to an
integer and setting it equal to a works. Another way to say exactly the same
thing would be to replace pea; with p=&:a[O] ;. Since a contains the address of
a [0], a and &:a [0] mean the same thing.

Now that p is pointing at the Oth element of a, you can do some rather
strange things with it. The a variable is a permanent pointer and can not be
changed, but p is not subject to such restrictions. C actually encourages you
to move it around using pointer arithmetic. For example, if you say p++;, the
compiler knows that p points to an integer, so this statement increments p
the appropriate number of bytes to move it to the next element of the array. If
p were pointing to an array of 100-byte-Iong records, p++; would move p over
by 100 bytes. C takes care of the details of element size.

You can copy the array a into b using pointers as well. The following code
can replace (f or i=O; i <MAX; a [i] =b [i] , i ++) ; :

pea;
q=b;
for (i=O; i<MAX; i++)
{

}

*q = *p;
q++;
p++;

You can abbreviate this code as follows:

pea;
q=b;
for (i=O; i<MAX; i++)

*q++ = *p++;

and you can further abbreviate it to:

for (p=a,q=b,i=O; i<MAX; *q++ = *p++, i++);

What if you go beyond the end of the array a or b with the pointers p or q?
C does not care-it blithely goes along incrementing p and q, copying away

418 C REVIEW

over other variables with abandon. You need to be careful when indexing into
arrays in C, because C assumes that you know what you are doing.

You can pass an array such as a or b to a function in two different ways.
Imagine a function dump that accepts an array of integers as a parameter and
prints the contents of the array to stdout. There are two ways to code dump:

void dump(int a[],int nia)
{

}

or

int ij

for (i=Oj i<niaj i++)
printf("%d\n" ,a[i]) j

void dump(int *p,int nia)
{

}

int ij

for (i=Oj i<niaj i++)
printf("%d\n" ,*P++) j

The nia (number_in_array) variable is required so that the size of the array
is known. Note that only a pointer to the array, rather than the contents of the
array, is passed to the function. Also note that C functions can accept variable­
size arrays as parameters, which is not possible in Pascal.

E.13 STRINGS IN C

E.13.1 USING STRINGS

Strings in C are intertwined with pointers to a large extent. You must become
familiar with the pointer concepts covered in E.9 through E.12 to use C strings
effectively. Once you get used to them, however, you can often perform string
manipulations more efficiently than you can in Pascal.

A string in C is simply an array of characters (a string of characters held in
an array). The following declares a string that can hold up to 99 characters:

char str[100]j

It holds characters as you would expect: str [0] is the first character of the
string, str [1] is the second character, and so on. But why is a 100-element ar­
ray unable to hold up to 100 characters? Because C uses null-terminated strings,

E.1 3 STRINGS IN C 419

which means that the end of any string is marked by the ASCII value 0 (the
null character), which is also represented in Cas \0.

Null termination is very different from the way Pascal compilers such as
Turbo Pascal handle strings. In Turbo, each string consists of an array of char­
acters, with a length byte that keeps count of the number of characters stored
in the array. The differences are shown below. In these diagrams, - represents
garbage.

Pascal String
1 234 5 6 789

I Hie I I I I I 0 I - I - I - I - I etc.

[i] Length byte

C String

o 1 2 3 4 5 6 7 8

I Hie I I I I I 0 ho I - I - I - I etc.

The structure above gives Pascal a definite advantage when you ask for the
length of a string. Pascal can simply return the length byte, whereas C has
to count the characters until it finds \0. This fact makes C much slower than
Pascal in certain cases, but in others it makes it somewhat faster, as we will see
in the examples below.

Because C provides no explicit support for strings in the language itself, all
of the string-handling functions are implemented in libraries. The string I/O
operations (gets, puts, and so on) are implemented in <stdio . h>, and a set of
fairly simple string manipulation functions are implemented in <string. h>

(on some systems, <strings .h».

The fact that strings are not native to C forces you to create some fairly
roundabout code. For example, suppose you want to assign one string to an­
other string; that is, you want to copy the contents of one string to another.
In Pascal, this task is easy:

program samp;
var

s1,s2:string;
begin

s1:='hello';
s2:=s1;

end.

In C, as we saw in E.12, you cannot simply assign one array to another.
You have to copy it element by element. The string library «string. h> or

420 C REVIEW

<strings. h» contains a function called strcpy for this task. The following
code shows how to use strcpy to achieve the same results in C as in the Pascal
code above:

#include <string.h>

void mainO
{

char sl[100],s2[100];

strcpy(sl,"hello"); /* copy "hello" into sl */
strcpy(s2,sl); /* copy sl into s2 */

}

strcpy is used whenever a string is initialized in C. Another major difference
between Pascal and C is the way they handle string comparisons. In Pascal,
unlike in C, string compares are built into the language. In C, you use the
strcmp function in the string library, which compares two strings and returns
an integer that indicates the result of the comparison. Zero means the two
strings are equal, a negative value means that sl < s2, and a positive value
means sl > s2. In Pascal, the code looks like this:

program samp;
var

sl,s2:string;
begin

end.

readln(sl);
readln(s2);
if sl=s2 then

wri teln (, equal')
else if (sl<s2) then

writeln('sl less than s2')
else

writeln('sl greater than s2');

Here is the same code in C:

#include <stdio.h>
#include <string.h>

void mainO
{

char sl[100],s2[100];

E.13 STRINGS IN C

}

gets(sl);
gets(s2);
if (strcmp(sl,s2)==0)

printf(lIequal\nll);
else if (strcmp(sl,s2)<0)

printf(lIs1 less than s2\nll);
else

printf(lIs1 greater than s2\nll);

421

Other common functions in the string library include stden, which returns
the length of a string, and strcat which concatenates two strings. The string
library contains a number of other functions, which you can peruse by reading
the man page. Note that many of the standard Pascal capabilities, such as
copy, delete, pas, and so on, are misSing.

To get you started building string functions, and to help you understand
other programmers' codes-everyone seems to have his or her own set of
string functions for special purposes in a program-we will look at two exam­
ples, stden and strcpy. Following is a strictly Pascal-like version of stden:

int strlen(char s [])
{

int x;

x=Oj
while (s [x] != '\0')

x=x+l j
return(x)j

}

Most C programmers shun this approach because it seems inefficient. Instead,
they often use a painter-based approach:

int strlen(char *s)
{

int x=Oj

while (*s != '\0')
{

x++j
s++j

}

return(x)j
}

422 C REVIEW

You can abbreviate this code to the following:

int strlen(char *s)
{

}

int x=Oj

while (*s++)
x++j

return(x)j

I imagine a true C expert could make this code even shorter.
When I compile these three pieces of code on a Micro VAX with gcc, using

no optimization, and run each 20,000 times on a 120-character string, the first
piece of code yields a time of 12.3 seconds, the second 12.3 seconds, and the
third 12.9 seconds! What does this mean? To me, it means that you should
write the code in whatever way is easiest for you to understand. Pointers
generally yield faster code, but the strlen code above shows that that is not
always the case.

We can go through the same evolution with strcpy:

strcpy(char sl[],char s2[])
{

}

int Xj

for (x=Oj x<=strlen(s2)j x++)
sl [x] =s2 [x] ;

Note here that <= is important in the for loop. Be sure to copy \0. Major
bugs occur later on if you leave it out, because the string has no end and there­
fore an unknown length. Note also that this code is very inefficient, because
strlen gets called every time through the for loop. To solve this problem, you
could use the following code:

strcpy(char sl[],char s2[])
{

}

int x,lenj

len=strlen(s2);
for (x=O; x<=lenj x++)

sl [x] =s2 [x] j

The pointer version is similar.

E.13 STRINGS IN C

strcpy(char *sl,char *s2)
{

}

while (*s2 != '\0')
{

}

*sl = *s2;
sl++;
s2++;

You can compress this code further:

strcpy(char *sl,char *s2)
{

while (*s2)
*sl++ = *s2++;

}

423

If you wish, you can even say while (*s 1 ++ = *s2++) ;. The first version of
strcpy takes 415 seconds to copy a 120-character string 10,000 times, the sec­
ond version takes 14.5 seconds, the third version 9.8 seconds, and the fourth
10.3 seconds. As you can see, pointers provide a significant performance boost
here.

The prototype for the strcpy function in the string library indicates that it
is designed to return a pointer to a string:

char *strcpy(char *sl,char *s2)

Most of the string functions return a string pointer as a result, and strcpy
passes the value of sl as its result.

Using pointers with strings can sometimes result in definite improvements
in speed and you can take advantage of these if you think about them a little.
For example, suppose you want to remove the leading blanks from a string. To
do this in Pascal, you might use the delete function in one of two ways, the
most obvious way being the following:

program samp;
var

s:string;
begin

readln(s);

end;

while (s[l] <> ' ,) and (length(s»O) do
delete(s,l,l);

writeln(s);

424 C REVIEW

This is inefficient because it moves the whole array of characters in the
string over one position for each blank found at the beginning of the string. A
better way follows:

program samp;
var

s:string;
x: integer;

begin
readln(s);
x:=O;

end;

while (s[x+l] <> ' ') and (x<length(s)) do
x:=x+l;

delete(s,l,x)j
writeln(s);

With this technique, each of the letters moves only once. In C, you can
avoid the movement altogether:

#include <stdio.h>
#include <string.h>

void mainO
{

}

char s[100],*p;

gets(s);
p=s;
while (*p== , ,)

p++;
printf("%s\n",p);

This is much faster than the Pascal technique, especially for long strings.
You will pick up many other tricks with strings as you go along and read

other code. Practice is the key.

E.13.2 A SPECIAL NOTE ON STRING CONSTANTS

Suppose you create the following two code fragments and run them:

Fragment 1

{

char *s;

E.13 STRINGS IN C

}

s="hello";
printf("%s\n",s);

Fragment 2

{

}

char s [100] ;

strcpy(s,"hello");
printf("%s\n",s);

425

These two fragments produce the same output, but their internal behavior
is quite different. In fragment 2, you cannot say s="hello";. To understand
the differences, you have to understand how the string constant table works in
C.

When your program is compiled, the compiler forms the object code file,
which contains your machine code and a table of all the string constants
declared in the program. In fragment I, the statement s="hello"; causes s
to point to the address of the string hello in the string constant table. Since
this string is in the string constant table, and therefore technically a part of
the executable code, you cannot modify it. You can only point to it and use it
in a read-only manner.

In fragment 2, the string hello also exists in the constant table, so you
can copy it into the array of characters named s. Since s is not a pointer, the
statement s="hello"; will not work in fragment 2. It will not even compile.

E.13.3 A SPECIAL NOTE ON USING STRINGS WITH MALLOC

Suppose you write the following program:

void mainO
{

}

char *s;

s=(char *) malloc (100);
s="hello";
free(s);

It compiles properly, but gives a segmentation fault at the free line when you
run it. The malloc line allocates a block 100 bytes long and points s at it, but
now the s="hello"; line is a problem. It is syntactically correct because s is a

426 C REVIEW

E.14

pointer; however, when 8=lhello"; is executed, s points to the string in the
string constant table and the allocated block is orphaned. Since s is pointing
into the string constant table, the string cannot be changed; free fails because
it cannot deallocate a block in an executable region.

The correct code follows:

void mainO
{

}

ehar *8;

s=(ehar *) malloe (100);
strepy(s,"hello");
free(s);

C Errors to Avoid

1. Losing the \0 character, which is easy if you aren't careful, and can lead to
some very subtle bugs. Make sure you copy \0 when you copy strings. If
you create a new string, make sure you put \0 in it. And if you copy one
string to another, make sure the receiving string is big enough to hold the
source string, including \0. Finally, if you point a character pointer to some
characters, make sure they end with \0.

Exercises

1. Create a program that reads in a string containing a first name followed by
a blank followed by a last name. Write functions to remove any leading or
trailing blanks. Write another function that returns the last name.

2. Write a function that converts a string to uppercase.
3. Write a function that gets the first word from a string and returns the

remainder of the string.

OPERATOR PRECEDENCE IN C

C contains many operators, and because of the way in which operator prece­
dence works, the interactions between multiple operators can become confus­
ing.

Most programmers learn about operator precedence from writing equations.
For example, say the following statement exists in a C program:

E.14 OPERATOR PRECEDENCE IN C 427

X receives the value 23, not 48, because in C multiplication and division have
higher precedence than addition and subtraction.

Since C has so many operators, it is important to know how operator prece­
dence works. For example, examine the following C declaration:

char *a[10]j

Is a a single pointer to an array of 10 characters, or is it an array of 10 point­
ers to character? Unless you know the precedence conventions in C, there is
no way to find out. Similarly, in E.11 we saw that because of precedence state­
ments such as *p.i = 10; do not work. Instead, the form (*p).i = 10; must
be used to force correct precedence.

The following table from Kernighan and Ritchie shows the precedence hi­
erarchy in C. The top line has the highest precedence,· the bottom line the
lowest.

Operators
o [] ->.
! - ++ -- + * & (type-cast) sizeof
(in the above line, +, - and * are
the unary forms)

* /%
+-
«»

< <= > >=
==!=
&

&&
II
?:

= += -= *= /= %= &= "= 1= «= »=

Associativity
Left to right
Right to left

Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Right to left
Left to right

Using this table, you can see that char *a[10]; is an array of 10 pointers
to character. You can also see why the parentheses are required if (*p). i is
to be handled correctly. After some practice, you will memorize most of this
table, but every now and again something will not work because you have
been caught by a subtle precedence problem.

428

E.1S

C REVIEW

COMMAND LINE PARAMETERS USING
ARGC AND ARGV

C on UNIX provides a fairly simple mechanism for retrieving command line
parameters entered by the user. It passes an argv parameter to the main func­
tion in the program. argv structures appear in a fair number of the more ad­
vanced library calls, so you should understand them.

Enter the following code and compile it to a.out:

#include <stdio.h>

void main(int argc, char *argv[])
{

}

int X;

printf("%d\n",argc);
for (x=O; x<argc; x++)

printf("%s\n",argv[x]);

In this code, the main program accepts two parameters, argv and argc. The
argv parameter is an array of pointers to string that contains the parameters
entered when the program was invoked at the UNIX command line. The argc
integer contains a count of the number of parameters. This particular piece of
code types out the command line parameters. To try this, compile the code
to a. out and type a. out xxx yyy zzz. The code will print the parameters, one
per line.

The char *argv [] line is an array of pointers to string. In other words,
each element of the array is a pointer, and each pointer points to a string
(technically, to the first character of the string). Thus, argv [0] points to a
string that contains the first parameter on the command line (the program's
name), argv [1] points to the next parameter, and so on. The argc variable
tells you how many of the pointers in the array are valid. You will find that the
preceding code does nothing more than print each of the valid strings pointed
to by argv.

Because· argv exists, you can let your program react to command line pa­
rameters entered by the user fairly easily. For example, you might have your
program detect the word help as the first parameter following the program
name, and dump a help file to stdout. File names can also be passed in and
used in your fop en statements.

E.16

E.16 RECORD-BASED (BINARy) FILES IN C 429

RECORD-BASED (BINARY) FILES IN C

Record-based files are very similar to arrays of records, except the records are in
a disk file rather than in an array in memory. Because the records in a record­
based file are on disk, you can create very large collections of them (limited
only by your available disk space). They are also permanent and always avail­
able. The only disadvantage is the slowness that comes from disk access time.

Record-based files have two features that distinguish them from text files:
You can jump instantly to any record in the file, which provides random
access as in an array; and you can change the contents of a record anywhere
in the file at any time. Record-based files also usually have faster read and
write times than text files, because a binary image of the record is stored
directly from memory to disk (or vice versa). In a text file, everything has to
be converted back and forth to text, and this takes time.

Pascal supports the file-of-records concept very cleanly. You declare a vari­
able such as var f :file of ree; and then open the file. At that point, you
can read a record, write a record, or seek to any record in the file. This file
structure supports the concept of a file pointer. When the file is opened, the
pointer points to record 0 (the first record in the file). Any read operation
reads the currently pointed-to record and moves the pointer down one record.
Any write operation writes to the currently pointed-to record and moves the
pointer down one record. Seek moves the pointer to the requested record.

In C, the concepts are exactly the same but less concise. Keep in mind that
C thinks of everything in the disk file as blocks of bytes read from disk into
memory or read from memory onto disk. C uses a file pointer, but it can point
to any byte location in the file.

The following program illustrates these concepts:

#include <stdio.h>

1* random record description - could be anything *1
struct rec
{

int x,y,z;
};

1* writes and then reads 10 arbitrary records from the file "junk". *1
void mainO
{

int i,j;
FILE *f;

430 C REVIEW

struet ree r;

1* create the file of 10 records *1
f=fopen("junk", "w");

for (i=1;i<=10; i++)
{

r.x=i;
fwrite(&r,sizeof(struet ree),l,f);

}

felose(f);

1* read the 10 records *1
f=fopen("junk", "r");
for (i=lji<=10j i++)
{

}

fread(&r,sizeof(struet ree),l,f)j
printf("%d\n",r.x)j

felose(f)j
printf("\n")j

1* use fseek to read the 10 records in reverse order *1
f=fopen("junk", "r");

for (i=9; i>=O; i--)
{

}

fseek(f,sizeof(struet ree)*i,SEEK_SET)j
fread(&r,sizeof(struet ree),l,f);
printf("%d\n",r.x)j

felose(f)j
printf("\n")j

1* use fseek to read every other record *1
f=fopen("junk", "r");
fseek(f,O,SEEK_SET)j
for (i=Oji<5; i++)
{

}

fread(&r,sizeof(struet ree),l,f)j
printf("%d\n",r.x)j
fseek(f,sizeof(struet ree),SEEK_CUR)j

E.16 RECORD-BASED (BINARy) FILES IN C 431

}

fclose(f);
printf("\n");

/* use fseek to read 4th record, change it, and write it back */
f=fopen("junk", "r+");
fseek(f,sizeof(struct rec)*3,SEEK_SET);
fread(&r,sizeof(struct rec),l,f);
r.x=100;
fseek(f,sizeof(struct rec)*3,SEEK_SET);
fwrite(&r,sizeof(struct rec),l,f);
fclose(f);
printf("\n");

/* read the 10 records to insure 4th record was changed */
f=fopen("junk", "r");
for (i=1;i<=10; i++)
{

fread(&r,sizeof(struct rec),l,f);
printf("%d\n",r.x);

}

fclose(f);

In this program, a random record description ree has been used, but you can
use any record description you want. You can see that fop en and fclose work
exactly as they did for text files.

The new functions here are fread, fwrite and fseek. The fread function
takes four parameters: a memory address, the number of bytes to read per
block, the number of blocks to read, and the file variable. Thus, the line
fread(&r, sizeof (struct rec) ,1,f); says to read 12 bytes (the size of ree)
from the file f (from the current location of the file pointer) into memory ad­
dress Nr. One block of 12 bytes is requested. It would be just as easy to read
100 blocks from disk into an array in memory by changing 1 to 100.

The fwrite function works the same way, but moves the block of bytes from
memory to the file. The fseek function moves the file pointer to a byte in
the file. Generally, you move the pointer in sizeof (struct rec) increments
to keep the pointer at record boundaries. You can use three options when
seeking: SEEK_SET, SEEK_CUR, and SEEK_END. SEEK_SET moves the pointer x
bytes down from the beginning of the file (from byte 0 in the file). SEEK_CUR

432 C REVIEW

moves the pointer x bytes down from the current pointer position. SEEK_END
moves the pointer from the end of the file (so you must use negative offsets
with this option).

Several different options appear in the code above. In particular, note the
section where the file is opened with r+ mode. This opens the file for reading
and writing, which allows records to be changed. The code seeks to a record,
reads it, and changes a field; it then seeks back because the read displaced the
pointer, and writes the change back.

F AN" EDITOR EXAMPLE

To test some of the code and ideas in this book, I created an editor called NMG
Editor as the first release of the NCSU Motif Group (NMG). NMG is a group
of students who get together once a week to discuss Motif programming. The
group's goal is to learn about Motif. To that end I encourage students to work
on projects of a high enough quality to be released onto the network. This
editor code acts as a code formatting, documentation, and style baseline for
the group.

NMG Editor is a good example of a fairly large Motif program that works
well. It uses a number of widgets and combines material from Chapters 3
through 7, 10, 13, 14, and 15. Enjoy using it and customizing it for your own
needs.

1*---

433

00 0 00000 0000 0 0 The North Carolina State

o 0 0 0
o 0 0 0

000 0
o 00 00000

0 0 0000

00 00 0 0
o 0 0 0 0 0
0 0 o 0 0

0 o 0 0

0 0 0000

000
0000 0 0

000

0000 0000

0000000 0 00000
0 0 0
0 0 00000

0 0 0

0 0 0

0 0 0

Title: NMG Editor demo

File name: nmg_editorl.c

File Type: Code

University Motif Group
NCSU Box 8206

Raleigh, NC 2695-8206

0000 0000 000 0
0 o 0 o 0 o 0

0 0000 0 o 0

0 000 0 0 0 o 0

0 o 0 0 0 o 0

0000 0 0 000 0000

o 0000
o 0 0
o 0000
o 0
o 0

0

434 AN EDITOR EXAMPLE

Lead Programmer: Marshall Brain, brain~eos.ncsu.edu

Testing by: Errol Casey, Dave Patterson, Rob Ward, Kelly Campbell
Brian Casper, Lance Lovette, Aaron Nauman, Steve Loyer,
Jerry Cox.

Version: 1.03
Date 11/5/91

Description: This program implements a Motif text editor. It
includes File open, new, save, save as, close and quit;
Clipboard cut, copy, paste and clear; and Navigate top,
bottom, jump to cursor and jump to line. It also includes
a utility menu containing a find dialog. Use it to learn
about the text widget or to create a personalized editor.

Author's notes:
I have written a book on Motif programming (due from Digital
Press in early 1992). This program was written to prove some
of the code in the book correct. For detailed descriptions
of the code, please see the book (all chapter references in
the comments refer to chapters in the book).

The Find dialog used in this program will be more useful if
it has a title bar that allows it to be moved. If dialog boxes
on your system do not have title bars and other decorations,
then add the following line to your ".Xdefaults" file:

mwm*transientDecoration: all

Occasionally the scroll bar in the text widget will not allow
you to scroll all the way to the bottom of the text. I believe
this is a problem inside the text widget. To solve this, use
the Navigate/Bottom menu option. It will go to the bottom of
the text and reset the scroll bar.

System Information:
This text and code is based on the OSF/Motif widget set version
1.1 and the X Window System version 4.

About the NCSU Motif Group:
The NCSU Motif Group is a group of students at North Carolina
State University who meet once a week to discuss Motif
programming. Individual projects are used to help students

F AN EDITOR EXAMPLE 435

learn Motif. These projects are then released onto the network
to help others. All released code is available at our anonymous
FTP site: osl.csc.ncsu.edu, in the directory pub/ncsu_motif.
Questions and comments should be directed to the lead
programmer for the project in question, or to the faculty
advisor, Marshall Brain, at brain~eos.ncsu.edu.

Copyright Information:
Copyright 1991 by Marshall Brain
All Rights Reserved

Permission to use, copy, and distribute this software and text
for non-commercial purposes and without fee is hereby granted,
provided that this notice appears in all copies.

The author disclaims all warranties with regard to the software
or text including all implied warranties of merchantability and
fitness.

In no event shall the author or NCSU be liable for any special,
indirect or consequential damages or any damages whatsoever
resulting from loss of use, data or profits, whether in an
action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance
of this software or text.

***/

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

#include <X11/cursorfont.h>

#include <Xm/Xm.h>
#include <Xm/Text.h>
#include <Xm/Form.h>
#include <Xm/PushB.h>
#include <Xm/Label.h>
#include <Xm/RowColumn.h>
#include <Xm/CascadeB.h>
#include <Xm/FileSB.h>
#include <Xm/SelectioB.h>

436 AN EDITOR EXAMPLE

#include <Xm/MessageB.h>
#include <Xm/BulletinB.h>
#include <Xm/ToggleB.h>

/* constants for menu options
#define OPEN 11

#define CLOSE 12
#define NEW 13
#define SAVE 14
#define SAVE_AS 16
#define QUIT 17

#define CUT 21
#define CLEAR 22
#define COPY 23
#define PASTE 24

#define TOP 35
#define BOTTOM 36
#define JUMP_CURS 37
#define JUMP_LINE 38

#define ABOUT 41
#define HELP 42

#define FIND 51

#define OK 1
#define CANCEL 2

#define FIND_FIND 1
#define FIND_FIND_CHANGE 2
#define FIND_CHANGE 3
#define FIND_CANCEL 4
#define FIND_CASE 5

/* bitmap for icon */
#define nmg_width 50
#define nmg_height 50
static char nmg_bits[] = {
OxOO, OxOO, OxOO, OxOO, OxOO,
OxOO, OxOO, Oxle, Ox98 , Ox07,
Ox8f, Ox81 , OxOl, OxOO, Ox36 ,

and find dialog buttons. */

OxOO, OxOO, OxOe, Ox98 , Ox03, OxOe, Ox7e,
Ox8f, Oxff, OxOO, OxOO, Oxle, Ox98 , Ox07,
Ox98 , Ox8d, Oxcd, Ox80, OxOl, OxOO, Ox36 ,

F AN EDITOR EXAMPLE 437

Ox98, Ox8d, Oxcd, Oxoo, Oxoo, OxOO, Ox66, Ox98, Oxd9, Oxcc, Oxoo, OxOO,
Oxoo, Ox66 , Ox98 , Oxd9, Oxcc, Oxoo, Oxoo, Oxoo, Oxc6, Ox98 , Ox7l, Oxcc,
Oxoo, Oxoo, Oxoo, Oxc6, Ox98 , Ox7l, Oxcc, Oxf8, OxOl, Oxoo, Ox86 , Ox99,
OxOl, Oxcc, Oxf8, OxOl, OxOO, Ox86 , Ox99, OxOl, Oxcc, Ox80, OxOl, Oxoo,
Ox06, Ox9b, OxOl, Oxcc, Ox80, OxOl, Oxoo, Ox06, Ox9b, OxOl, Oxcc, Ox80,
OxOl, OxOO, Ox06, Oxge, OxOl, Ox8c, Ox8l, OxOl, OxOO, Ox06, Ox9c, OxOl,
Ox8c, Oxff, OxOO, OxOO, Ox06, Ox9c, OxOl, oxoc, Ox7e, oxoo, OxOO, OxOO,
oxoo, oxoo, oxoo, oxoo, OxOO, oxoo, oxoo, oxoo, oxoo, oxoo, OxOO, oxoo,
OxOO, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Ox03, Oxff, Oxff, Oxff, Oxff,
Oxff, Oxff, Ox03, oxoo, oxoo, OxOO, oxoo, OxOO, oxoo, oxoo, OxOO, oxoo,
oxoo, OxOO, oxoo, oxoo, OxOO, Ox42 , Ox8e, Ox13, OxOl, oxoo, OxOO, OxOO,
Ox46 , Ox5l, Ox14, OxOl, oxoo, OxOO, oxoo, Ox4a, Ox4l, OxlO, OxOl, OxOO,
oxoo, oxoo, Ox4a, Ox8l, Oxll, OxOl, oxoo, oxoo, oxoo, Ox52, OxOl, Ox12,
OxOl, oxoo, oxoo, oxoo, Ox52, OxOl, Ox14, OxOl, oxoo, oxoo, OxOO, Ox62,
Ox5l, Ox14, OxOl, oxoo, OxOO, OxOO, Ox42 , Ox8e, Oxe3, oxoo, oxoo, OxOO,
oxoo, oxoo, oxoo, oxoo, oxoo, oxoo, oxoo, oxoo, oxoo, oxoo, OxOO, OxOO,
oxoo, oxoo, oxoo, Ox22 , Oxe7, Oxeb, Ox03, oxoo, oxoo, oxoo, Oxb6, Ox88 ,
Ox28, OxOO, OxOO, OxOO, OxOO, Oxaa, Ox88 , Ox28 , oxoo, oxoo, OxOO, OxOO,
Oxa2, Ox88 , Oxe8, oxoo, OxOO, OxOO, OxOO, Oxa2, Ox88 , Ox28 , OxOO, OxOO,
oxoo, oxoo, Oxa2, Ox88 , Ox28, OxOO, oxoo, oxoo, oxoo, Ox22, Ox87 , Ox28,
oxoo, oxoo, oxoo, oxoo, oxoo, OxOO, oxoo, oxoo, oxoo, oxoo, OxOO, oxoo,
oxoo, OxOO, oxoo, oxoo, OxOO, oxoo, Ox9c, Oxc7, Ox89 , Oxle, OxOO, OxOO,
OxOO, Oxa2, Ox28 , Ox8a, Ox22, OxOO, OxOO, OxOO, Ox82 , Ox28 , Ox8a, Ox22 ,
OxOO, OxOO, OxOO, Oxba, Ox27 , Ox8a, Oxle, OxOO, OxOO, OxOO, Oxa2, Ox22,
Ox8a, Ox02, OxOO, OxOO, OxOO, Oxa2, Ox24 , Ox8a, Ox02, OxOO, OxOO, OxOO,
Ox9c, Oxc8, Ox7l, Ox02, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO,
OxOO, OxOO};

1* general widgets. *1
Widget toplevel, text, form, menu_bar;

1* dialog box widgets *1
Widget open_dialog, new_dialog, jump_dialog, quit_dialog,

readonly_dialog, error_dialog, close_dialog, save_as_dialog,
about_dialog, help_dialog, find_dialog, finderror_dialog,
overwrite_dialog;

1* widgets having to do with find dialog *1
Widget find_labell, find_labe12;
Widget find_editl, find_edit2;
Widget find_button, find_change_button, change_button, find_top_button,

cancel_button;
Widget case_toggle;

438 AN EDITOR EXAMPLE

1* menu item widgets. *1
Widget open_option, new_option, save_option, save_as_option,

close_option, quit_option;
Widget cut_option, clear_option, copy_option, paste_option;
Widget top_option, bottom_option, jump_curs_option, jump_line_option;
Widget help_option, about_option;
Widget find_option, find_rc;

XtAppContext context;
XmStringCharSet char_set=XmSTRING_DEFAULT_CHARSET;

char *filename=NULL;
char *new_filename=NULL;

1* holds the current filename *1
1* holds new filename for save as

option. *1
Boolean text_changed=False; 1* tells whether file has been modified. *1
Boolean case_matters=False; 1* remembers case sensitivity for find. *1

void change_menu_sensitivity(open_state)
Boolean open_state;

1* changes the menu sensitivities between open and close states. *1
{

}

XtSetSensitive(open_option,open_state);
XtSetSensitive(new_option,open_state);
XtSetSensitive(close_option,!open_state);
I *will get set true if text is modified. *1
XtSetSensitive(save_option,False);
XtSetSensitive(save_as_option,!open_state);

XtSetSensitive(cut_option,!open_state);
XtSetSensitive(copy_option,!open_state);
XtSetSensitive(paste_option,!open_state);
XtSetSensitive(clear_option,!open_state);

XtSetSensitive(top_option,!open_state);
XtSetSensitive(bottom_option,!open_state);
XtSetSensitive(jump_curs_option,!open_state);
XtSetSensitive(jump_Iine_option,!open_state);

XtSetSensitive(find_option,!open_state);
XtSetSensitive(find_change_button,!open_state);
XtSetSensitive(change_button,!open_state);

F AN EDITOR EXAMPLE

void watch_cursor(w)
Widget w;

1* change the cursor to a wrist watch shape. *1
1* See Chapter 15. *1
{

}

Cursor cl;

cl = XCreateFontCursor(XtDisplay(w),XC_watch);
XDefineCursor(XtDisplay(w),XtWindow(w),cl);
XFlush(XtDisplay(w»;

void normal_cursor(w)
Widget w;

1* return the cursor to its normal shape. *1
1* See Chapter 15. *1
{

}

XUndefineCursor(XtDisplay(w),XtWindow(w»;
XFlush(XtDisplay(w»;

void change_title()
1* changes the title on the window to file name. *1
1* See Chapter 14. *1
{

int ac;
Arg al[10] ;
char 5[1000];

if (filename!=NULL)
{

}

else
{

strcpy(s,"NMG Editor - II);

strcat(s,filename);
ac = 0;
XtSetArg(al[ac], XmNtitle, 5); ac++;
XtSetValues(toplevel,al,ac);

strcpy(s,"NMG Editor");
ac = 0;
XtSetArg(al[ac], XmNtitle, 5); ac++;

439

440 AN EDITOR EXAMPLE

XtSetValues(toplevel,al,ac)j
}

}

Boolean read_file()
1* reads the file in filename into the text widget. *1
1* See Chapter 10. *1
{

FILE *fj
char *file_contentsj
int file_lengthj
struct stat stat_valj

1* open and read the file. *1
if (stat (filename, &stat_val) 0)
{

}

watch_cursor(toplevel)j
file_length = stat_val.st_sizej
1* try to open file in "r+" mode. if OK then read it. *1
if «f=fopen(filename,l r +"»==NULL)
{

}

1* if can't open with "r +", try to open with "r". This
means the file is read-only. If can't open that way,
then file is unreadable. *1

if «f=fopen(filename,"r"»==NULL)
return(False)j

else
XtManageChild(readonly_dialog)j

1* malloc a place for the string to be read to. *1
file_contents = (char *) XtMalloc(file_length+l)j
*file_contents = '\O'j
1* read the file string *1
fread(file_contents, sizeof(char), file_length, f)j
fclose(f)j
file_contents[file_length]='\O'j
1* give the string to the text widget. *1
XmTextSetString(text, file_contents)j
XtFree(file_contents)j
text_changed=Falsej
XtSetSensitive(save_option,False)j
normal_cursor(toplevel)j

F AN EDITOR EXAMPLE 441

}

else
return(False);

return(True);

void openCB(w, client_data, call_data)
Widget W;
int client_data;
XmFileSelectionBoxCallbackStruct *call_dataj

1* handles the file selection box callback and the new dialog callback.
if the file is new, then read_file will do nothing and a blank
file will be created. *1

1* See Chapter 10. *1
{

}

if (client_data==CANCEL) 1* do nothing if cancel is selected. *1
{

}

XtUnmanageChild(open_dialog);
returnj

if (filename != NULL) 1* free up filename if it exists. *1
{

}

XtFree(filename);
filename = NULL;

1* get the filename from the file selection box *1
XmStringGetLtoR(call_data->value, char_set, &filename);
change_title 0 ;

if (read_file()I I (w==new_dialog»
{

}

change_menu_sensitivity(False);
XtSetSensitive(text,True);
XmTextSetEditable(text,True)j
XmTextSetlnsertionPosition(text,O)j
XtUnmanageChild(open_dialog)j

void handle_close()
1* closes the file and returns text widget to blank state. *1
1* See Chapter 10. *1

442 AN EDITOR EXAMPLE

{

}

int ac;
Arg al[10];

XtSetSensitive(text,False);
XmTextSetEditable(text,False)j
XmTextSetString(text,"I);
change_menu_sensitivity(True)j
text_changed=Falsej

1* change title back to default. *1
ac=Oj
XtSetArg(al[ac], XmNtitle, "NMG Editor"); ac++;
XtSetValues(toplevel,al,ac);

Boolean handle_save(filename)
char *filename;

1* saves the text widget'S string to a file. *1
1* See Chapter 10. *1
{

FILE *fj
char *s=NULLj

1* otherwise, prepare to write the file. If cannot write the file,
display an error dialog. *1

if «f=fopen(filename, "W"» ! =NULL)
{

watch_cursor(toplevel)j
1* get the string from the text widget *1
s = (char *)XmTextGetString(text);
if (s!=NULL)
{

1* write the file. *1
fwrite(s, sizeof(char) , strlen(s), f)j
1* make sure the last line is terminated by '\n'

so that vi, compilers, etc. like it. *1
if (s[strlen(s)-l] !='\n')

fprintf(f,"\n");
XtFree(s);

}

fflush(f)j
fclose(f)j

F AN EDITOR EXAMPLE

}

else
{

}

}

text_changed=False;
normal_cursor(toplevel);
return True;

XtManageChild(error_dialog);
return False;

void text_changedCB(w, client_data, call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

1* Each time text widget value is changed, this CB is called.
It allows the quit option to detect that the text
has been changed.*1

1* See Chapter 10. *1
{

}

if (!text_changed)
{

}

XtSetSensitive(save_option,True);
text_changed=True;

void overwriteCB(w, client_data, call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

1* handles the "ok to overwrite" dialog for save as. *1
{

if (client_data==CANCEL)
{

}

XtUnmanageChild (overwrite_dialog);
return;

else if (handle_save(new_filename»
{

if (filename != NULL) 1* free up filename if it exists. *1
{

XtFree(filename);

443

444 AN EDITOR EXAMPLE

}

}

filename = NULL;
}

filename=new_filename;
change_title 0 ;
XtSetSensitive(save_option,False); 1* will get set true if *1

1* changed again. *1

void save_asCB(w, client_data, call_data)
Widget w;
int client_data;
XmSelectionBoxCallbackStruct *call_data;

1* handles retrieval of new file name dialog box. *1
{

FILE *f;

if (client_data==CANCEL)
{

}

XtUnmanageChild (save_as_dialog);
return;

1* get the filename from the dialog box *1
XmStringGetLtoR(call_data->value, char_set,

&new_filename);

if «f=fopen(new_filename, UrU» ! =NULL)
{

}

fclose(f);
XtManageChild(overwrite_dialog);

else if (handle_save(new_filename»
{

if (filename != NULL) 1* free up filename if it exists. *1
{

}

XtFree(filename);
filename = NULL;

filename=new_filename;
change_title 0 ;
XtSetSensitive(save_option,False); 1* will get set true if *1

1* changed again. *1

F AN EDITOR EXAMPLE

}

}

void jump_to_line(line_num)
int line_num;

1* Counts '\n's so that cursor can be placed at correct line. *1
1* See Chapters 10 and 13. *1
{

}

int x,l,curr;
char *temp;
Arg al[10];
int ac;

1* get string from text widget *1
temp=XmTextGetString(text);
x=O;
curr=l;
l=strlen(temp);
1* scan the string for '\n's, counting them. *1
while «x<l)&&(curr<line_num))

if (temp[x++]=='\n') curr++;
1* set cursor position to beginning of the correct line. *1
XmTextSetlnsertionPosition(text,(XmTextPosition)x);
1* prevent memory leaks. *1
if (temp != NULL)

XtFree(temp);

void jumpCB(w, client_data, call_data)
Widget w;
int client_data;
XmSelectionBoxCallbackStruct *call_data;

1* handles jump-to-line dialog box. *1
1* See Chapter 10. *1
{

char *jumpstr;

if (client_data==CANCEL)
{

}

XtUnmanageChild (jump_dialog);
return;

445

446 AN EDITOR EXAMPLE

}

1* get the number entered *1
XmStringGetLtoR(call_data->value, char_set, &jumpstr)j

1* use the jump string to jump to a line *1
jump_to_line(atoi(jumpstr»j

1* popdown the file selection box *1
XtUnmanageChild (jump_dialog);
XtFree(jumpstr);

void closeCB(w, client_data, call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

1* handles the "OK to close" question. *1
{

}

if (client_data==OK)
handle_close 0 ;

char *string_search(cs,ct)
char *cs;
char *ct;

1* searches for ct in cs. Returns a pOinter to the beginning of the
first instance of ct. *1

1* See Chapter 14. *1
{

int done;
char *ct2,*cs2;

1* check for "no work" situations *1
if (cs==NULL I I ct==NULL)

return NULL;
if (*cs=='\O' I I *ct=='\O')

return NULL;

1* loop through each character of cs. *1
done=False;
while «!done)&&(*cs!='\O'»
{

1* check to see if the first char of ct is in *cs.
If it is, proceed to check the rest of the letters

F AN EDITOR EXAMPLE

}

}

in ct against cs. *1
if (*cs!=*ct)

else
{

}

cs++;

cs2=cs;
ct2=ct;
do
{

ct2++;
cs2++;

} while ((*cs2==*ct2) && (*ct2!='\O') && (*cs2!='\O'»;
if (*ct2=='\O')
{

}

else

done=True;
return cs;

cs++;

if (! done)
return NULL;

void lowercase(s)
char *s;

1* converts s to lower case. *1
1* See Chapter 14. *1
{

}

int x,y;

y=strlen(s);
for (x=O; x<y; x++)
{

}

if (s[x]>='A' && s[x]<='Z')
s [x] ==5 [x] +32 ;

void do_findO

447

1* finds the string in find_edit1 in the text starting at the current
cursor position. *1

448 AN EDITOR EXAMPLE

1* See Chapter 14. *1
{

Arg al[10];
int ac;
XmTextPosition cursor_pos;
char *find_string,*start,*temp,*p;
Boolean found=False;
int i;

1* get the strings from the dialog box and the main text widget. *1
find_string=XmTextGetString(find_edit1);
cursor_pos=XmTextGetlnsertionPosition(text);
start=XmTextGetString(text);
temp=start+cursor_pos+1;
if (!case_matters)
{

lowercase(temp);
lowercase(find_string);

}

p=string_search(temp,find_string);
1* if not found, display an error. *1
if (p==NULL)
{

}

ac=O;
XtSetArg(al[ac], XmNmessageString, XmStringCreateLtoR(

"String not found between current\ncursor location and end.",
char_set»; ac++;

XtSetValues(finderror_dialog,al,ac);
XtManageChild(finderror_dialog);

1* if found, select the found string and scroll it to the top of
the window. *1

else if (p!=NULL)
{

i=p-start;
XmTextSetSelection(text,(XmTextPosition)i,

(XmTextPosition)(i+strlen(find_string»,
CurrentTime);

XmTextSetlnsertionPosition(text,(XmTextPosition)i);
XmTextSetTopCharacter(text,(XmTextPosition)i);
found=True;

}

XtFree(start);

F AN EDITOR EXAMPLE

XtFree(find_string);
}

void do_change 0
1* changes the found string to the new value. *1
1* See Chapter 14. *1
{

Arg al[10];
int ac;
XmTextPosition cursor_pos;
char *start,*temp,*p,*find_string,*replace_string;

find_string=XmTextGetString(find_edit1);
replace_string=XmTextGetString(find_edit2);
cursor_pos=XmTextGetlnsertionPosition(text);
start=XmTextGetString(text);
temp=start+cursor_pos;
if (!case_matters)
{

}

lowercase(temp);
lowercase(find_string);

if «find_string==NULL)I I
(strncmp(temp,find_string,strlen(find_string»!=O»

{

}

else
{

ac = 0;
XtSetArg(al[ac], XmNmessageString, XmStringCreateLtoR(

"Change must be preceeded by a find.",
char_set»; ac++;

XtSetValues(finderror_dialog, aI, ac);
XtManageChild(finderror_dialog);

XmTextReplace(text,cursor_pos,cursor_pos+
(XmTextPosition)strlen(find_string),replace_string);

XmTextSetSelection(text,cursor_pos,
cursor_pos+(XmTextPosition)strlen(replace_string),
CurrentTime);

449

XmTextSetlnsertionPosition(text, (XmTextPosition) (cursor_po s+
strlen(replace_string»);

}

XtFree(find_string);

450 AN EDITOR EXAMPLE

XtFree(replace_string);
}

void dO_find_change()
{

}

do_change 0 ;
do_findO;

void do_case_sensitivity()
1* get the new value of the case toggle button. *1
1* See Chapter 14. *1
{

}

Arg al[10];
int ac;

ac=O;
XtSetArg(al[ac],XmNset,&case_matters); ac++;
XtGetValues(case_toggle,al,ac);

void findCB(w,client_data,call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call_data;

1* callback for any button in the find dialog box. *1
1* See Chapter 14. *1
{

switch (client_data)
{

case FIND_FIND:
do_findO;
break;

case FIND_FINO_CHANGE:
do_find_change();
break;

case FIND_CHANGE:
do_ change 0 ;
break;

case FIND_CANCEL:
XtUnmanageChild(find_dialog);
break;

case FIND_CASE:

F AN EDITOR EXAMPLE

}

}

do_case_sensitivity()j
breakj

void quitCB(w, client_data, call_data)
Widget Wj
int client_dataj
XmAnyCallbackStruct *call_dataj

1* handles the "OK to quit" question. *1
{

}

if (client_data==OK)
exit(O)j

void unmanageCB(w, client_data, call_data)
Widget Wj
int client_data;
XmAnyCallbackStruct *call_dataj

1* handles the unmanagement of any dialog needing to
simply disappear. *1

{

XtUnmanageChild(w);
}

void readonlyCB(w, client_data, call_data)
Widget Wj
int client_dataj
XmAnyCallbackStruct *call_dataj

1* handles menu options. *1
{

}

XtSetSensitive(save_option,False)j
XtSetSensitive(cut_option,False)j
XtSetSensitive(clear_option,False)j
XtSetSensitive(paste_option,False)j
XtSetSensitive(find_change_button,False);
XtSetSensitive(change_button,False)j
XmTextSetEditable(text,False)j
XtUnmanageChild(readonly_dialog)j

void menuCB(w, client_data, call_data)
Widget Wj

451

452 AN EDITOR EXAMPLE

int client_data;
XmAnyCallbackStruct *call_data;

/* handles menu options. */
/* See Chapter 6, 10. */
{

Time time;
Arg al[10];
int ac;
XmString directory,dir_mask,pattern;
char *s;

switch (client_data)
{

case OPEN:
/* make the file selection box appear. The DoSearch

function is called each time so that new files are
incorporated into the list of available files.*/

ac=O;
XtSetArg(al[ac],XmNdirMask,&dir_mask); ac++;
XtGetValues(open_dialog,al,ac);

XmFileSelectionDoSearch(open_dialog,dir_mask);

XtManageChild(open_dialog);
break;

case CLOSE:
if (text_changed)

XtManageChild(close_dialog);
else

handle_close 0 ;
break;

case SAVE:
handle_save(filename);
XtSetSensitive(save_option,False); /* will get set true */

/* if file is changed */

break;
case SAVE_AS:

/* again.

/* get the directory from the open dialog filter so the
user knows where the filter path is pointing when
using save_as. */

ac=O;
XtSetArg(al[ac],XmNdirectory,&directory); ac++;

F AN EDITOR EXAMPLE

XtGetValues(open_dialog,al,ac);
ac=O;
XtSetArg(al[ac],XmNtextString,directory); ac++;
XtSetValues(save_as_dialog,al,ac);
XtFree(directory);
XtManageChild(save_as_dialog);
break;

case NEW:
1* get the directory from the open dialog filter so the

user knows where the filter path is pointing when
using new. *1

ac=O;
XtSetArg(al[ac],XmNdirectory,&directory); ac++;
XtGetValues(open_dialog,al,ac);
ac=O;
XtSetArg(al[ac],XmNtextString,directory); ac++;
XtSetValues(new_dialog,al,ac);
XtFree(directory);
XtManageChild(new_dialog);
break;

case QUIT:
if (text_changed)

XtManageChild(quit_dialog);
else

exit(O);
break;

case CUT:
time=call_data->event->xbutton.time;
XmTextCut(text,time);
break;

case CLEAR:
XmTextRemove(text);
break;

case PASTE:
XmTextPaste(text);
break;

case COPY:
time=call_data->event->xbutton.time;
XmTextCopy(text,time);
break;

case TOP:

453

454 AN EDITOR EXAMPLE

1* if the cursor is already at 0 and you have scrolled
elsewhere with the scroll bar and then select top, the
fact that you move the cursor from 0 to 0 will not
cause the screen to update to the top of the file.
To solve this problem, move to position 1 and then
back to O. Same technique is used in other options.*1

XmTextSetInsertionPosition(text,(XmTextPosition)l);
XmTextSetInsertionPosition(text,(XmTextPosition)O);
break;

case BOTTOM:
{

}

XmTextPosition y,z;
char *temp;

temp=XmTextGetString(text);
y=z=XmTextGetLastPosition(text);
if (y!=O) z--;
XmTextSetInsertionPosition(text,z);
XmTextSetInsertionPosition(text,y);
if (temp != NULL)

XtFree(temp);
break;

XmTextPosition x,cursorPos;

cursorPos=XmTextGetInsertionPosition(text);
if (cursorPos>O) x=cursorPos-l; else x=cursorPos+l;
XmTextSetInsertionPosition(text,x);
XmTextSetInsertionPosition(text,cursorPos);
break;

case JUMP_LINE:
XtManageChild (jump_dialog);
break;

case ABOUT:
XtManageChild (about_dialog);
break;

case HELP:
XtManageChild (help_dialog);
break;

F AN EDITOR EXAMPLE

}

}

case FIND:
XtManageChild(find_dialog);
break;

Widget make_help_menu(menu_name, mnemonic, menu_bar)
char *menu_name;
KeySym mnemonic;
Widget menu_bar;

1* Creates a new menu on the menu bar. *1
1* See Chapter 6. *1
{

}

int ac;
Arg al[10];
Widget menu, cascade;

ac = 0;

menu = XmCreatePulldownMenu (menu_bar, menu_name, aI, ac);

ac = 0;

XtSetArg (al[ac], XmNsubMenuId, menu); ac++;
XtSetArg (al[ac], XmNmnemonic, mnemonic); ac++;
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR(menu_name, char_set»; ac++;
cascade = XmCreateCascadeButton (menu_bar, menu_name, aI, ac);
XtManageChild (cascade);

ac=O;
XtSetArg(al[ac],XmNmenuHelpWidget,cascade); ac++;
XtSetValues(menu_bar,al,ac);

return(menu);

void add_accelerator(w, acc_text, key)
Widget w;
char *acc_text;
char *key;

1* adds an accelerator to a menu option. *1
1* See Chapter 6. *1
{

int ac;

455

456 AN EDITOR EXAMPLE

}

Arg al[10];

ac=O;
XtSetArg(al[ac],XmNacceleratorText,

XmStringCreate(acc_text,char_set»; ac++;
XtSetArg(al[ac],XmNaccelerator,key); ac++;
XtSetValues(w,al,ac);

Widget make_menu_option(option_name, mnemonic, client_data, menu)
char *option_name;
KeySym mnemonic;
int client_data;
Widget menu;

1* Adds an option to an existing menu. *1
1* See Chapter 6. *1
{

}

int ac;
Arg al[10];
Widget b;

ac = 0;
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR(option_name,
char_set»; ac++;

XtSetArg (al[ac], XmNmnemonic, mnemonic); ac++;
b=XtCreateManagedWidget(option_name,xmPushButtonWidgetClass,

menu,al,ac);
XtAddCallback (b, XmNactivateCallback, menuCB, client_data);
return(b);

Widget make_menu(menu_name, mnemonic, menu_bar)
char *menu_name;
KeySym mnemonic;
Widget menu_bar;

1* Creates a new menu on the menu bar. *1
1* See Chapter 6. *1
{

int ac;
Arg al[10];
Widget menu, cascade;

F AN EDITOR EXAMPLE

}

ac = OJ
menu = XmCreatePulldownMenu (menu_bar, menu_name, al, aC)j

ac = OJ
XtSetArg (al[ac], XmNsubMenuld, menu)j aC++j
XtSetArg (al[ac], XmNmnemonic, mnemonic)j aC++j
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR(menu_name, char_set»j aC++j
cascade = XmCreateCascadeButton (menu_bar, menu_name, al, aC)j
XtManageChild (cascade)j

return(menu)j

void create_menus(menu_bar)
Widget menu_barj

1* See Chapter 6. *1
{

int aCj
Arg al[10]j
Widget menUj

menu=make_menu(IFile", 'F' ,menu_bar) j
open_option = make_menu_option(IIOpen", '0' ,OPEN ,menu) j
add_accelerator(open_option,lmeta+ol,IMeta<Key>o:")j
new_option = make_menu_option(INew", 'N' ,NEW ,menu) j
add_accelerator (new_option , "meta+w", "Meta<Key>w: II) j
save_option = make_menu_option(ISave",'S',SAVE,menu)j
add_accelerator (save_option , "meta+s", "Meta<Key>s: ") j
save_as_option = make_menu_option(IISave As",'A',SAVE_AS,menu)j
close_option = make_menu_option(IClose",'C',CLOSE,menu)j
add_accelerator (close_option, "meta+l", "Meta<Key>l: II);
quit_option = make_menu_option(IExit",'E',QUIT,menu)j
add_accelerator(quit_option,lmeta+ql,IMeta<Key>q:")j

menu=make_menu(IEdit", 'E' ,menu_bar) j
cut_option = make_menu_option(ICut", 'C' ,CUT ,menu) j
1* my Mac heritage is showing through on these accelerators.

Change them to something else if you want. *1
add_accelerator (cut_option, "meta+x", "Meta<Key>x: ") j
copy_option = make_menu_option("Copy",'o',COPY,menu)j
add_accelerator(copy_option,lmeta+cl,"Meta<Key>c:")j
paste_option = make_menu_option(IPaste",'P',PASTE,menu)j

457

458 AN EDITOR EXAMPLE

}

add_accelerator(paste_option,lmeta+vl,IMeta<Key>v:")j
clear_option = make_menu_option(IClear",'r',CLEAR,menu)j

menu=make_menu(INavigate", 'N' ,menu_bar) j
top_option = make_menu_option(ITop",'T',TOP,menu)j
add_accelerator (top_option, "meta+t", "Meta<Key>t: ") j
bottom_option = make_menu_option(IBottom",'B',BOTTOM,menu)j
add_accelerator(bottom_option,lmeta+bl,IMeta<Key>b:")j
jump_curs_option = make_menu_option("Jump to Cursor",'C',

JUMP_CURS,menu)j
jump_line_option = make_menu_option(IIJump to Line",'L',

JUMP_LINE,menu)j
add_accelerator (jump_line_option, "meta+j ", "Meta<Key>j: ") j

menu=make_help_menu(IHelp", 'H' ,menu_bar) j
about_option=make_menu_option(IAbout",'A',ABOUT,menu)j
help_option=make_menu_option(IHelp", 'H' ,HELP ,menu) j

menu=make_menu(IUtilities", 'U' ,menu_bar) j
find_option = make_menu_option(IFind/Change",'F',FIND,menu)j

change_menu_sensitivity(True)j

void create_find_dialog()
/* creates all of the widgets in the find dialog box. */
/* See Chapter 13. */
{

Arg al[10]j
int aCj

/* create but do NOT manage the container dialog. */
ac=Oj
XtSetArg(al[ac],XmNheight,200)j aC++j
XtSetArg(al[ac],XmNwidth,400)j aC++j
XtSetArg(al[ac],XmNautoUnmanage,False)j aC++j
XtSetArg(al[ac],XmNnoResize,True)j aC++j
XtSetArg(al[ac],XmNdialogStyle,XmDIALOG_MODELESS)j aC++j
XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(

"NMG Editor: Find",char_set»j aC++j
find_dialog=XmCreateBulletinBoardDialog(toplevel,

"find_dialog",al,ac)j

F AN EDITOR EXAMPLE

1* create and manage the two labels. *1
ac=Oj
XtSetArg(al[ac],XmNx,10)j aC++j
XtSetArg(al[ac],XmNy,10)j ac++;
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR(IFind:", char_set»j aC++j
find_labell=XmCreateLabel(find_dialog,lfind_labell",al,aC)j
XtManageChild(find_labell)j

ac=Oj
XtSetArg(al[ac],XmNx,10)j aC++j
XtSetArg(al[ac],XmNy,50)j aC++j
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Change to:", char_set»j aC++j
find_labe12=XmCreateLabel(find_dialog,lfind_labe12",al,aC)j
XtManageChild(find_labe12)j

1* Create and manage the two text widgets. *1
ac=Oj
XtSetArg(al[ac],XmNx,100)j aC++j
XtSetArg(al[ac],XmNy,10)j aC++j
find_editl=XmCreateText(find_dialog,lfind_editl",al,ac)j
XtManageChild(find_editl)j

ac=Oj
XtSetArg(al[ac],XmNx,100)j aC++j
XtSetArg(al[ac] ,XmNy,50)j aC++j
find_edit2=XmCreateText(find_dialog,lfind_edit2",al,ac)j
XtManageChild(find_edit2)j

459

1* create and manage the four pushbuttons in a rowcolumn widget. *1
ac=Oj
XtSetArg(al[ac] ,XmNx,O)j aC++j
XtSetArg(al[ac],XmNy,90)j aC++j
XtSetArg(al[ac],XmNorientation,XmHORIZONTAL)j aC++j
XtSetArg(al[ac],XmNpacking,XmPACK_TIGHT)j aC++j
XtSetArg(al[ac],XmNadjustLast,False); ac++;
find_rc=XmCreateRowColumn(find_dialog,lfind_rc",al,ac);
XtManageChild(find_rc);

ac=Oj
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR(IFind", char_set»j aC++j

460 AN EDITOR EXAMPLE

find_button=XmCreatePushButton(find_rc, II find_button" ,aI, aC)j
XtManageChild(find_button)j
XtAddCallback (find_button, XmNactivateCallback,

findCB, FIND_FIND)j

ac=Oj
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Change, then Find", char_set»j aC++j
find_change_button=XmCreatePushButton(find_rc, "find_change _button",

al,ac)j
XtManageChild(find_change_button)j
XtAddCallback (find_change_button, XmNactivateCallback, findCB,

FIND_FIND_CHANGE)j

ac=Oj
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Change", char_set»j aC++j
change_button=XmCreatePushButton(find_rc,"change_button",a l,ac)j
XtManageChild(change_button)j
XtAddCallback (change_button, XmNactivateCallback, findCB,

FIND_CHANGE)j

ac=Oj
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Top", char_set»j aC++j
find_top_button=XmCreatePushButton(find_rc,

"find_top_button",al,ac)j
XtManageChild(find_top_button)j
XtAddCallback (find_top_button, XmNactivateCallback, menuCB,

TOP)j

ac=Oj
XtSetArg(al[ac], XmNlabelString,

XmStringCreateLtoR("Cancel", char_set»j aC++j
cancel_button=XmCreatePushButton(find_rc, "cancel_button" ,a l,ac)j
XtManageChild(cancel_button)j
XtAddCallback (cancel_button, XmNactivateCallback, findCB,

FIND_CANCEL)j

1* create and manage the toggle button. *1
ac=Oj
XtSetArg(al[ac],XmNx,10)j aC++j
XtSetArg(al[ac] ,XmNy,130)j aC++j

F AN EDITOR EXAMPLE 461

}

XtSetArg(al[ac], XmNlabelString,
XmStringCreateLtoR("Case Matters", char_set»j aC++j

case_toggle=XmCreateToggleButton(find_dialog,"case_toggle",al,ac)j
XtManageChild(case_toggle)j
XtAddCallback (case_toggle, XmNvalueChangedCallback, findCB,

FIND_CASE)j

1* set the default and cancel button for the find dialog. *1
ac=Oj
XtSetArg(al[ac],XmNdefaultButton,find_button)j aC++j
XtSetArg(al[ac] ,XmNcanceIButton,cancel_button)j aC++j
XtSetValues(find_dialog,al,ac)j

void create_dialog_boxes()
1* See Chapter 7. *1
{

Arg al[10]j
int aCj

1* create the file selection box used by open option. *1
ac=Oj
XtSetArg(al[ac],XmNmustMatch,True)j aC++j
XtSetArg(al[ac],XmNautoUnmanage,False)j aC++j
XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(

"NMG Editor: Open",char_set»j ac++;
open_dialog=XmCreateFileSelectionDialog(toplevel,

"open_dialog",al,ac)j
XtAddCallback (open_dialog, XmNokCallback, openCB, OK)j
XtAddCallback (open_dialog, XmNcancelCallback, openCB, CANCEL)j
XtUnmanageChild(XmSelectionBoxGetChild(open_dialog,

XmDIALOG_HELP_BUTTON»j

1* create the new file prompt dialog. *1
ac = OJ
XtSetArg(al[ac], XmNselectionLabelString, XmStringCreateLtoR

(IIEnter the name of the new file.", char_set»j aC++j
XtSetArg(al[ac],XmNdialogStyle,XmDIALOG_APPLICATION_MODAL)j aC++j
XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(

"NMG Editor: New",char_set»j aC++j
new_dialog = XmCreatePromptDialog(toplevel,

"new_dialog", aI, aC)j
XtAddCallback (new_dialog, XmNokCallback, openCB, OK)j

462 AN EDITOR EXAMPLE

XtAddCallback (new_dialog, XmNcancelCallback, openCB, CANCEL)j
XtUnmanageChild (XmSelectionBoxGetChild (new_dialog ,

XmDIALOG_HELP_BUTTON))j

1* create the overwrite error dialog. *1
ac = OJ
XtSetArg(al[ac], XmNmessageString, XmStringCreateLtoR

("The file exists.\nOK to overwrite?",
char_set))j aC++j

XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(
"NMG Editor: Overwrite",char_set))j aC++j

overwrite_dialog = XmCreateQuestionDialog(toplevel,
"overwrite_dialog", aI, aC)j

XtAddCallback (overwrite_dialog, XmNokCallback, overwriteCB, OK)j
XtAddCallback (overwrite_dialog, XmNcancelCallback,

overwriteCB, CANCEL)j
XtUnmanageChild (XmMessageBoxGetChild (overwrite_dialog ,

XmDIALOG_HELP_BUTTON))j

1* create the jump prompt dialog. *1
ac = OJ
XtSetArg(al[ac], XmNselectionLabelString, XmStringCreateLtoR

("Enter line number to jump to.", char_set)); ac++;
XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(

"NMG Editor: Jump to Line",char_set)); aC++j
jump_dialog = XmCreatePromptDialog(toplevel, "jump_dialog",

aI, aC)j
XtUnmanageChild(XmSelectionBoxGetChild(jump_dialog,

XmDIALOG_HELP_BUTTON))j
XtAddCallback (jump_dialog, XmNokCallback, jumpCB, OK);
XtAddCallback (jump_dialog, XmNcancelCallback, jumpCB, CANCEL)j

1* create the save_as prompt dialog. *1
ac = OJ
XtSetArg(al[ac], XmNselectionLabelString, XmStringCreateLtoR

("Enter the new file name to save the file as.",
char_set))j ac++;

XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(
"NMG Editor: Save As",char_set))j aC++j

save_as_dialog = XmCreatePromptDialog(toplevel, "save_as_dialog",
aI, aC)j

XtUnmanageChild(XmSelectionBoxGetChild(save_as_dialog,
XmDIALOG_HELP_BUTTON))j

F AN EDITOR EXAMPLE

XtAddCallback (save_as_dialog, XmNokCallback, save_asCB, OK);
XtAddCallback (save_as_dialog, XmNcancelCallback,

save_asCB, CANCEL);

1* create the quit question dialog. *1
ac = 0;
XtSetArg(al[ac], XmNmessageString, XmStringCreateLtoR

463

(lithe file has been changed.\nOK to quit?II, char_set»; ac++;
XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(

IINMG Editor: Quit Checkll,char_set»; ac++;
qUit_dialog = XmCreateQuestionDialog(toplevel, II quit_dialog" ,

aI, ac);
XtUnmanageChild (XmMessageBoxGetChild (quit_dialog ,

XmDIALOG_HELP_BUTTON»;
XtAddCallback (quit_dialog, XmNokCallback, quitCB, OK);
XtAddCallback (quit_dialog, XmNcancelCallback, quitCB, CANCEL);

1* create the close question dialog. *1
ac = 0;
XtSetArg(al[ac], XmNmessageString, XmStringCreateLtoR

("The file has been changed.\nOK to close without saving?",
char_set»; ac++;

XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(
"NMG Editor: Close Check",char_set»; ac++;

close_dialog = XmCreateQuestionDialog(toplevel, "close_dialog",
aI, ac);

XtUnmanageChild(XmMessageBoxGetChild(close_dialog,
XmDIALOG_HELP_BUTTON»;

XtAddCallback (close_dialog, XmNokCallback, closeCB, OK);
XtAddCallback (close_dialog, XmNcancelCallback, closeCB, CANCEL);

1* create the read only dialog. *1
ac = 0;
XtSetArg(al[ac], XmNmessageString, XmStringCreateLtoR

(IIThis file is read-only.II, char_set»; ac++;
XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(

IINMG Editor: Read Onlyll,char_set»; ac++;
readonly_dialog = XmCreatelnformationDialog(toplevel,

IIreadonly_dialogll , aI, ac);
XtUnmanageChild(XmMessageBoxGetChild(readonly_dialog,

XmDIALOG_HELP_BUTTON»;
XtUnmanageChild(XmMessageBoxGetChild(readonly_dialog,

XmDIALOG_CANCEL_BUTTON»;

464 AN EDITOR EXAMPLE

XtAddCallback (readonly_dialog, XmNokCallback, readonlyCB, OK);

/* create the write error dialog. */
ac = 0;
XtSetArg(al[ac], XmNmessageString, XmStringCreateLtoR

("The file could not be written.", char_set»; ac++;
XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(

"NMG Editor: Write Error",char_set»; ac++;
error_dialog = XmCreateErrorDialog(toplevel, "error_dialog",

aI, ac);
XtUnmanageChild (XmMessageBoxGetChild (error_dialog ,

XmDIALOG_HELP_BUTTON»;
XtUnmanageChild(XmMessageBoxGetChild(error_dialog,

XmDIALOG_CANCEL_BUTTON»;
XtAddCallback (error_dialog, XmNokCallback, unmanageCB, OK);

/* create the help dialog. */
ac = 0;

XtSetArg(al[ac], XmNmessageString, XmStringCreateLtoR
("This is a fairly simple program, and should be self­

explanatory.\nThe only question I've had is, 'What does Jump to
Cursor do?'\nIf you have used the scroll bar to move around in
the document,\nthen Jump to Cursor will take you back to the
current cursor\nposition and display it.\n Occasionally the
scroll bar in the text widget will not allow\nyou to scroll all
the way to the bottom of the text. I believe\nthis is a problem
inside the text widget. To solve this, use\nthe Navigate/Bottom
menu option. It will go to the bottom of\nthe text and reset
the scroll bar.",

char_set»; ac++;
XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(

"NMG Editor: Help",char_set»; ac++;
help_dialog = XmCreateInformationDialog(toplevel, "help_dialog",

aI, ac);
XtUnmanageChild(XmMessageBoxGetChild(help_dialog,

XmDIALOG_HELP_BUTTON»;
XtUnmanageChild (XmMessageBoxGetChild (help_dialog,

XmDIALOG_CANCEL_BUTTON»;
XtAddCallback (help_dialog, XmNokCallback, unmanageCB, OK);

/* create the find error dialog. */
ac=O;

F AN EDITOR EXAMPLE

XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(
"NMG Editor: Find error",char_set)); ac++;

finderror_dialog = XmCreateMessageDialog(find_dialog,
"fr_error", aI, ac);

XtAddCallback (finderror_dialog, XmNokCallback,
unmanageCB, OK);

XtUnmanageChild(XmMessageBoxGetChild(finderror_dialog,
XmDIALOG_CANCEL_BUTTON));

XtUnmanageChild(XmMessageBoxGetChild(finderror_dialog,
XmDIALOG_HELP_BUTTON));

/* create the about box dialog. */
ac = 0;
XtSetArg(al[ac], XmNmessageAlignment, XmALIGNMENT_CENTER); ac++;
XtSetArg(al[ac],XmNdialogTitle,XmStringCreateLtoR(

"NMG Editor: About" ,char_set)); ac++;
XtSetArg(al[ac], XmNmessageString, XmStringCreateLtoR

465

("NMG Editor\n\nPresented by the NCSU Motif Group\n\nVersion
1.03, released 11/5/91\nby Marshall Brain. \nemail: brainCOeos.ncsu.edu".

char_set)); ac++;

}

about_dialog = XmCreateMessageDialog(toplevel. "about_dialog".
aI, ac);

XtUnmanageChild(XmMessageBoxGetChild(about_dialog.
XmDIALOG_HELP_BUTTON));

XtUnmanageChild(XmMessageBoxGetChild(about_dialog.
XmDIALOG_CANCEL_BUTTON));

XtAddCallback (about_dialog. XmNokCallback. unmanageCB. OK);

void create_icon()
/* creates the icon pixmap and title. */
/* See Chapter 14. */
{

Pixmap p;
Arg al[10];
int ac;

p=XCreateBitmapFromData(XtDisplay(toplevel).
RootWindowOfScreen(XtScreen(toplevel)).
nmg_bits, nmg_width, nmg_height);

ac=O;
XtSetArg(al[ac]. XmNiconPixmap. p); ac++;

466 AN EDITOR EXAMPLE

}

XtSetArg(al[ac], XmNiconName, IIEditor"); ac++;
XtSetValues(toplevel,al,ac);

void main(argc, argv)
int argc;
char *argv [] ;

1* See Chapter 2, 5, 10. *1
{

Arg al[10];
int ac;
XFontStruct *font=NULL;
XmFontList fontlist=NULL;

toplevel = XtApplnitialize(&context,IIII,NULL,O,&argc,argv,
NULL,NULL,O);

1* default window size and title. *1
ac=O;
XtSetArg(al[ac], XmNtitle, IINMG Editor ll); ac++;
XtSetArg(al[ac],XmNheight,400); ac++;
XtSetArg(al[ac],XmNwidth,600); ac++;
XtSetValues(toplevel,al,ac);

1* create a form widget. *1
ac=O;
form=XtCreateManagedWidget(lIformll,xmFormWidgetClass,

toplevel,al,ac);

1* create a menu bar and attach it to the form. *1
ac=O;
XtSetArg(al[ac], XmNtopAttachment, XmATTACH_FORM); ac++;
XtSetArg(al[ac], XmNrightAttachment, XmATTACH_FORM); ac++;
XtSetArg(al[ac], XmNleftAttachment, XmATTACH_FORM); ac++;
menu_bar=XmCreateMenuBar(form,lImenu_barll,al,ac);
XtManageChild(menu_bar);

1* create a text widget and attach it to the form. *1
ac=O;
XtSetArg(al[ac] ,
XtSetArg(al[ac],
XtSetArg(al[ac],
XtSetArg(al[ac],

XmNtopAttachment, XmATTACH_WIDGET); ac++;
XmNtopWidget, menu_bar); ac++;
XmNrightAttachment, XmATTACH_FORM); ac++;
XmNleftAttachment, XmATTACH_FORM); ac++;

F AN EDITOR EXAMPLE

XtSetArg(al[ac], XmNbottomAttachment,XmATTACH_FORM); ac++;
XtSetArg(al[ac],XmNeditMode,XmMULTI_LINE_EDIT); ac++;
text=XmCreateScrolledText(form, "text", al, ac);
XtManageChild(text);
XtSetSensitive(text,False);
XmTextSetEditable(text,False);

467

XtAddCallback(text, XmNvalueChangedCallback, text_changedCB, NULL);

}

1* change the font used *1
ac=O;
font=XLoadQueryFont(XtDisplay(text),lfixed");
fontlist=XmFontListCreate(font,char_set);
XtSetArg(al[ac],XmNfontList,fontlist); ac++;
XtSetValues(text,al,ac);

create_find_dialog();
create_dialog_boxes();
create_menus(menu_bar);
create_icon 0 ;

XtRealizeWidget(toplevel);
XtAppMainLoop(context)j

G X REFERENCE

This appendix contains a summary of all of the X function calls used in this
book, along with several others. Most of this material is discussed in Chap­
ter 17. Section G.1 contains the basic functions, while G.2 contains the draw­
ing functions.

G.l BASIC FUNCTIONS

XBlackPixel Returns the black pixel value for the specified screen. Use it to set foreground and
background colors in a GC.

unsigned long XBlackPixel(
Display *display,
int screen);

display
screen

The display (use XtDisplay).
The screen (use XtScreen).

XClearArea Clears an area in the given window.

XClearArea(
Display *display,
Window window,
int x,
int y,
unsigned int width,
unsigned int height,
Boolean exposures);

display
window

The display (use XtDisplay).
The window (use XtWindow).

468

G.l BASIC FUNCTIONS

x,y
width, height
exposures

The upper left corner of the rectangle to clear.
The width and height of the rectangle to clear.
If true, generates an exposure event on the cleared
rectangle.

XClearWindow Clears the given window.

XClearWindow(
Display *display,
Window window)j

display
window

The display (use XtDisplay).
The window (use XtWindow).

469

XCopy Area Copies pixels from one drawable to another. The drawables must be the same

depth and have the same root window.

XCopyArea(
Display *display,
Drawable src,
Drawable dst,
GC gc,
int src_x,
int src_y,
unsigned int width,
unsigned int height,
int dst_x,
int dst_y)j

display The display (use XtDisplay).
The source drawable. src

dst
src_x,src_y

width, height

The destination drawable.
The upper left corner of the rectangle from which to
copy.
The width and height of the rectangle from which to
copy.
The upper left corner of the destination rectangle.

470 X REFERENCE

XCreateBitmapFromData Copies a pixmap of depth 1 from the bitmap data specified.

Pixmap XCreateBitmapFromData(
Display *display,
Drawable drawable,
char *data,
unsigned int width,
unsigned int height);

display
drawable

data

The display (use XtDisplay).
A drawable (used to indicate the screen that will own
the pixmap).
Bitmap data.

width, height Width and height of the bitmap.

XCreateFontCursor Creates a cursor from the list in /usr/Xll/cursorfont .h.

Cursor XCreateFontCursor(
Display *display,
unsigned int shape);

display
shape

The display (use XtDisplay).
The shape of the cursor. See cursorfont.h for the
available shapes.

XCreateGC Creates a modifiable GG.

GC XCreateGC(
Display *display,
Drawable drawable,
unsigned long value_mask,
XGCValues *values);

display
drawable
value_mask

values

The display (use XtDisplay).
The drawable (use XtWindow).
Bit mask indicating which fields in values contain
valid information.
GC values structure (pass an address).

G.1 BASIC FUNCTIONS

XCreatePixmap Creates a pixmap.

Pixmap XCreatePixmap(
Display *display,
Drawable drawable,
unsigned int width,
unsigned int height,
unsigned int depth);

display
drawable
width, height
depth

The display (use XtDisplay).
The drawable (use XtWindow).
The width and height of the pixmap.
The depth of the pixmap.

471

XCreatePixmapFromBitmapData Creates a pixmap of the depth specified from the bitmap
data specified.

Pixmap XCreatePixmapFromBitmapData(
Display *display,
Drawable drawable,
char *data,
unsigned int width,
unsigned int height,
unsigned long fg,
unsigned long bg,
unsigned int depth);

display
drawable

data
width, height
fg,bg
depth

The display (use XtDisplay).
A drawable (used to indicate the screen that will own
the pixmap).
Bitmap data.
Width and height of the bitmap.
Foreground and background colors for pixmap.
Depth of the pixmap.

XDefineCursor Defines which cursor to use in the specified window. See also XUndefineCur­
sor and XCreateFontCursor.

Cursor XDefineCursor(
Display *display,

472 X REFERENCE

Window window,
Cursor cursor);

display
window
cursor

The display (use XtDisplay).
The window (use XtWindow).
The cursor to use.

XFlush Flushes the output buffer to the X server.

XFlush(Display *display);

display The display (use XtDisplay).

XFreeCursor Frees the specified cursor.

XFreeCursor(
Display *display,
Cursor cursor);

display
cursor

The display (use XtDisplay).
The cursor to free.

XFreeFont Frees the specified font.

XFreeFont(
Display *display,
XFontStruct *font);

display
font

The display (use XtDisplay).
The font to free.

XFreeGC Frees a previously created GG.

XFreeGC(
Display *display,
GC gc);

display
gc

The display (use XtDisplay).
The GC to free.

G.1 BASIC FUNCTIONS

XFreePixmap Frees a previously created pixmap.

XFreePixmap(
Display *display,
Pixmap pixmap);

display
pixmap

The display (use XtDisplay).
The pixmap to free.

XGetGeometry Returns information about the given drawable.

Status XGetGeometry(
Display *display,
Drawable drawable,
Window *root,
int *x,
int *y,
unsigned int *width,
unsigned int *height,
unsigned int *border_width,
unsigned int *depth);

display
drawable
root
x,y

width, height
border_width
depth

The display (use XtDisplay).
The drawable (use XtWindow).
Returns the root window for that display.
Returns the upper left corner of the drawable relative
to the parent's origin.
Returns the width and height of the drawable.
Returns the border width of the drawable.
Returns the depth of the drawable.

XLoadQueryFont Gets and loads the specified font.

XFontStruct *XLoadQueryFont(
Display *display,
char *font_name);

473

474 X REFERENCE

display
font_name

The display (use XtDisplay).
The font name (see Chapter 3).

XSetBackground Sets the background color in a GC.

XSetBackground(
Display *display,
GC gc,
unsigned long background);

display
gc
background

The display (use XtDisplay).
The GC to set.
The new background color.

XSetClipOrigin Sets the clip origin in a Gc.

XSetClipOrigin(
Display *display,
GC gc,
int clip_x_origin,
clip_y_origin);

display
gc
clip_x_origin, clip_y _origin

The display (use XtDisplay).
The GC to set.
The clip origin.

XSetForeground Sets the foreground color in a Gc.

XSetForeground(
Display *display,
GC gc,
unsigned long foreground);

display
gc
foreground

The display (use XtDisplay).
The GC to set.
The new foreground color.

G.2 DRAWING FUNCTIONS

XUndefineCursor Replaces the cursor with its shape prior to the call to XDefineCursor.

Cursor XUndefineCursor(
Display *display,
Window window);

display
window

The display (use XtDisplay).
The window (use XtWindow).

475

XWhitePixel Returns the white pixel value for the specified screen. Use it to set foreground and
background colors in a Gc.

unsigned long XWhitePixel(
Display *display,
int screen);

display
screen

The display (use XtDisplay).
The screen (use XtScreen).

G.2 DRAWING FUNCTIONS

The following structures are useful:

typedef struct
{

short x, y;
unsigned short width, height;
short angle1, angle2;

} XArc;

typedef struct
{

short x, y;
} XPoint;

typedef struct
{

short x, y;

476 X REFERENCE

unsigned short width, height;
} XRectangle;

typedef struct
{

short xl, yl, x2, y2;
} XSegment;

XDrawArc Draws the specified arc.

XDrawArc(
Display *display,
Drawable drawable,
GC gc,
int x,
int y,
unsigned int width,
unsigned int height
int anglel,
int angle2);

display
drawable
gc

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).
TheGC.

x,y
width, height
anglel

angleZ

The upper left corner of the arc's rectangle.
The width and height of the arc's rectangle.
Starting at three o'clock, the starting angle in the unit
degree*64.
Starting at three a' clock, the ending angle in the unit
degree*64.

XDrawArcs Draws the specified set of arcs.

XDrawArcs(
Display *display,
Drawable drawable,
GC gc,
XArc *arcs,
int num_arcs);

G.2 DRAWING FUNCTIONS

display
drawable
gc
arcs
num_arcs

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).
The GC.
An array of XArc.
The number of arcs in the array.

477

XDrawImageString Draws the specified string. Draws pixels of characters as well as the
surrounding box; see XDrawString).

XDrawPoint(
Display *display.
Drawable drawable.
GC ge.
int x,
int y,
ehar *string,
int length);

display
drawable
gc
x

y
string
length

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).
The GC.
The x coordinate of the left baseline of the text.
The y coordinate of the left baseline of the text.
The string to draw.
Number of characters in the string.

XDrawLine Draws a line between specified points.

XDrawLine(
Display *display,
Drawable drawable,
GC ge,
int xl,
int yl,
int x2,
int y2);

display
drawable
gc

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).
The GC.

478 X REFERENCE

xl,yl
x2,y2

First end point of the line.
Second end point of the line.

XDrawLines Draws a set of lines between points in a point array. See also XDrawSegments.

XDraliLines(
Display *display,
Drallable drallable,
GC ge,
XPoint *points,
int num_points,
int mode);

display
drawable
gc
paints
num_points
mode

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).
The GC.
An array of XPoints.
The number of points in the array.
Valid values: CoordModeOrigin (absolute) and
CoordModePrevious (relative).

XDrawPoint Draws the specified point.

XDraliPoint(
Display *display,
Drallable drallable,
GC ge,
int x,
int y);

display
drawable
gc
x
y

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).
The GC.
The x coordinate of the paint.
The y coordinate of the paint.

G.2 DRAWING FUNCTIONS

XDrawPoints Draws the specified set of points.

XDrawPoints(
Display *display,
Drawable drawable,
GC ge,
XPoint *points,
int num_points,
int mode);

display
drawable
gc
points
num_points
mode

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).
The GC.
An array of XPoint.
The number of points in the array.
Valid values: CoordModeOrigin (absolute) and
CoordModePrevious (relative).

XDrawRectangle Draws the specified rectangle.

XDrawReetangle(
Display *display,
Drawable drawable,
GC ge,
int x,
int y,
unsigned int width,
unsigned int height);

display
drawable
gc
x,y
width, height

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).
The GC.
The upper-left corner of the rectangle.
The width and height of the rectangle.

XDrawRectangles Draws the specified set of rectangles.

XDrawReetangles(
Display *display,

479

480 X REFERENCE

Drawable drawable,
GC gc,
XRectangle *rectangles,
int num_rectangles);

display
drawable
gc
rectangles
num_rectangles

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).
TheGC.
An array of XRectangle.
The number of rectangles in the array.

XDrawSegments Draws a set of line segments.

XDrawSegments(
Display *display,
Drawable drawable,
GC gc,
XSegment *segments,
int num_segments);

display
drawable
gc
segments
num_segments

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).
The GC.
An array of XSegments.
The number of segments in the array.

XDrawString Draws the specified string. Draws pixels of characters only; see XDrawlmage­
String.

XDrawPoint(
Display *display,
Drawable drawable,
GC gc,
int x,
int y,
char *string,
int length);

display The display (use XtDisplay).

G.2 DRAWING FUNCTIONS

drawable
gc
x
y
string
length

The drawable (use XtWindow or a pixmap).
The GC.
The x coordinate of the left baseline of the text.
The y coordinate of the left baseline of the text.
The string to draw.
Number of characters in the string.

XFillArc Draws the specified filled arc.

XFilIAre(
Display *display,
Drawable drawable,
GC ge,
int x,
int y,
unsigned int width,
unsigned int height
int angle 1 ,

int angle2)j

display
drawable
gc

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).
The GC.

x,y
width, height
anglel

angleZ

The upper-left corner of the arc's rectangle.
The width and height of the arc's rectangle.
Starting at three o'clock, the starting angle in the unit
degree*64.
Starting at three 0' clock, the ending angle in the unit
degree*64.

XFillArcs Draws the specified set of filled arcs.

XFillAres(
Display *display,
Drawable drawable,
GC ge,
XAre *ares,
int num_ares)j

481

482 X REFERENCE

display
drawable
gc
arcs
num_arcs

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).
The GC.
An array of XArc.
The number of arcs in the array.

XFillPolygon Draws the specified filled polygon.

XFillPolygon(
Display *display,
Drawable drawable,
GC ge,
XPoint *points,
int num_points,
int shape,
int mode);

display
drawable
gc
points
num_points
shape
mode

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).
The GC.
An array of XPoint.
The number of points in the array.
Valid values: Complex, Convex, and Nonconvex.
Valid values: CoordModeOrigin (absolute) and
CoordModePrevious (relative).

XFillRectangle Draws the specified filled rectangle.

XFillReetangle(
Display *display,
Drawable drawable,
GC ge,
int x,
int y,
unsigned int width,
unsigned int height);

display
drawable

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).

G.2 DRAWING FUNCTIONS

gc
x,y
width, height

The GC.
The upper-left corner of the rectangle.
The width and height of the rectangle.

XFillRectangles Draws the specified set offilled rectangles.

XFillRectangles(
Display *display,
Drawable drawable,
GC gc,
XRectangle *rectangles,
int num_rectangles)j

display
drawable
gc
rectangles
num_rectangles

The display (use XtDisplay).
The drawable (use XtWindow or a pixmap).
The GC.
An array of XRectangle.
The number of rectangles in the array.

483

H Xl REFERENCE

XtAddCallback Adds a callback function to a widget.

void XtAddCallback(
Widget widget,
String callback_name,
XtCallbackProc callback,
XtPointer client_data);

widget
callback_name
callback
client_data

The widget.
The name of the callback.
The function to call when the callback is triggered.
Programmer-specified data sent to the function.

XtAddEventHandler Adds an event handler to a widget.

void XtAddEventHandler(
Widget widget,
EventMask mask,
Boolean nonmaskable,
XtEventHandler proc,
XtPointer client_data);

widget
mask
nonmaskable

484

The widget to which to apply the event handler.
An X event mask.
If true, calls the handler if it receives a nonmaskable
event.

H XT REFERENCE 485

proc The function to be called.
client_data A four-byte piece of data passed to the event-handling

function.

XtAppAddlnput Specifies a callback function to be called when data becomes available.

Xtlnputld XtAppAddlnput(
XtAppContext context,
int source,
XtPointer condition,
XtlnputCallbackProc proc,
XtPointer client_data);

context
source
condition

proc
client_data

The application context.
The input stream.
The condition for which to wait. Valid values
are XtInputReadMask, XtInputWriteMask, and
XtInputExceptMask.
The callback function to call.
User-defined data.

XtAppAddTimeOut Adds a timeout to the application.

Xtlntervalld XtAppAddTimeOut(
XtAppContext context,
unsigned long interval,
XtTimerCallbackProc proc,
XtPointer client_data);

context
interval
proc

The context value for the application.
The time interval of the delay, in milliseconds.
The callback function to be called when the interval
expires.
A four-byte piece of data passed to the function.

486 XT REFERENCE

XtAppAddWorkProc Adds a work proc to the application.

XtWorkProcld XtAppAddWorkProc(
XtAppContext context,
XtWorkProc proc,
XtPointer client_data);

context
proc
client_data

The context value for the application.
The function to be called.
A four-byte piece of data passed to the function.

XtAppErrorMsg Generates an error message and exits the program.

void XtAppErrorMsg(
XtAppContext context,
String name,
String type,
String class,
String default,
String *params,
Cardinal *num_params);

context
name
type
class

default
params
num_params

The application's context.
The name of the error.
The type of the error.
The class of the error (for example, the application's
name).
The error message, possibly containing %s identifiers.
Substitution strings for %s identifiers.
The number of parameters in params.

XtAppInitialize Creates the application's toplevel shell.

Widget XtApplnitialize(
XtAppContext *context,
String application_class,
XrmOptionDescRec options[],
Cardinal num_options,
Cardinal *argc,

H XT REFERENCE

String *argv,
String *fallback_resources,
ArgList *args,
Cardinal num_args)j

487

context Returns the context value; needed for calls to other
XtApp functions.

application_class
options
num_options
argc

argv
fallback_resources
args
num_args

The class name for loading resources~
Passed directly to the XrmParseCommand function.
Number of options.
A pointer to the number of command line options
(pass an address).
The standard command line options array.
A set of predefined resource strings.
An argument list for the toplevel shell.
Number of arguments in the argument list.

XtAppMainLoop Manages the Motif event loop.

void XtAppMainLoop(XtAppContext context)

context The context variable for the application received from
XtAppInitialize.

XtApp WarningMsg Generates a warning message.

void XtAppWarningMsg(
XtAppContext context,
String name,
String type,
String class,
String default,
String *params,
Cardinal *num_params) j

context
name
type
class

The application's context.
The nalne of the warning.
The type of the warning.
The class of the warning (for example, the applica­
tion's name).

488 XT REFERENCE

default

params
num_params

The warning message, possibly containing %s
identifiers.
Substitution strings for %s identifiers.
The number of parameters in params.

XtCalloc Allocates memory for an array.

char *XtCalloc(
Cardinal num,
Cardinal size);

num Number of elements to allocate.
size Size of each element.

XtCreateManagedWidget Creates and manages a widget. Use instead of XmCreate func­
tions.

Widget XtCreateManagedWidget(
String name,
WidgetClass class,
Widget parent,
ArgList args,
Cardinal num_args);

name
class
parent
args
num_args

The name of the widget.
The class name of the widget from Appendix J.
The parent of this widget.
A normal al argument list.
ac.

XtCreateWidget Creates a widget. Use instead ofXmCreate functions.

Widget XtCreateWidget(
String name,
WidgetClass class,
Widget parent,
ArgList args,
Cardinal num_args);

H XT REFERENCE

name
class
parent
args
num_args

The name of the widget.
The class name of the widget from Appendix J.
The parent of this widget.
A normal al argument list.
ac.

XtDestroyWidget Destroys the specified widget.

void XtDestroyWidget(Widget widget);

widget The widget to destroy.

XtDisplay Returns the X display for a widget.

Display *XtDisplay(Widget widget);

widget The widget.

XtFree Frees memory.

void XtFree(char *ptr);

ptr Pointer to block previously allocated.

XtGetGC Obtains a read-only graphics context.

GC XtGetGC(
Widget widget,
XtGCMask value_mask,
XGCValues *values)

widget
value_mask

values

The widget used to find the screen for the GC.
Specifies fields in the GC the default values of which
will be modified.
Specifies the values to use during modification.

489

490 XT REFERENCE

XtGetValues Retrieves resource values for a widget.

void XtGetValues(
Widget widget,
ArgList arg,
Cardinal num_args)

widget
arg
num_args

The widget.
The argument array of resources and values.
The number of arguments in the array.

XtIsManaged Indicates if the widget is managed.

Boolean XtIsManaged(Widget widget);

widget The widget.

XtIsRealized Indicates if the widget is realized.

Boolean XtIsRealized(Widget widget);

widget The widget.

XtIsSensitive Indicates if the widget is sensitive.

Boolean XtIsSensitive(Widget widget);

widget The widget.

XtLastTimestampProcessed Obtains a copy of the last time stamp displayed.

Time XtLastTimestampProcessed(Display *display)

display The display.

H XT REFERENCE

XtMalloc Allocates memory.

char *XtMalloc(Cardinal size)j

size Number of bytes to allocate.

XtManageChild Manages the specified widget.

void XtManageChild(Widget widget)j

widget The widget to manage.

XtManageChildren Manages the specified widgets.

void XtManageChildren(
WidgetList children,
Cardinal num_children)j

children
num_children

A list of widgets to manage, in an array.
The number of widgets in the list.

XtNew Allocates memory for the specified type.

type *XtNew(type)j

type Type of block required.

XtNewString Allocates memory for the specified string and copies the string.

String XtNewString(String s)j

s The string to be allocated.

491

492 Xl REFERENCE

XtNumber Returns the number of elements in an array.

Cardinal XtNumber(ArrayVariable array);

array The array.

XtParent Returns the parent of the widget.

Widget XtParent(Widget widget);

widget The widget.

XtRealizeWidget Realizes a widget. Creates a window for the widget and realizes all of its
managed children.

void XtRealizeWidget(Widget widget);

widget The widget to be realized.

XtRealloc Allocates memory, copying old block to new.

char *XtRealloc(
char *ptr,
Cardinal size);

ptr Pointer to a block previously allocated.
size New number of bytes to allocate.

XtReleaseGC Releases a read-only graphics context created by XtGetGC.

GC XtReleaseGC(
Widget widget,
GC gc);

widget
gc

A widget with the same display as the gc.
GraphiCS context to free.

H XT REFERENCE

XtRemoveTimeOut Removes a time out.

void XtRemoveTimeOut(Xtlntervalld id);

id Identifier of time out from XtAppAddTimeOut.

XtRemoveWorkProc Removes a work proc.

void XtRemoveWorkProc(XtWorkProcld id);

id Identifier of work proc from XtAppAddWorkProc.

XtScreen Returns the screen of the widget.

Screen *XtScreen(Widget widget);

widget The widget.

XtSetArg Sets a resource argument in the argument array.

void XtSetArg(
Arg arg,
String resource_name,
XtArgVal value);

493

arg An argument variable. By convention, a location in an
array.

resource_name
value

The name of the resource to set.
The value to which to set the resource.

XtSetSensitive Sets a widget's sensitive resource.

Boolean XtSetSensitive(
Widget widget,
Boolean value);

widget
value

The widget.
The Boolean value to which to set the sensitivity.

494 XT REFERENCE

XtSetValues Passes an argument list to a widget.

void XtSetValues(
Widget widget,
ArgList arg,
Cardinal num_args)

widget
arg
num_args

The widget to be set.
The argument array of resources and values.
The number of arguments in the array.

XtUnmanageChild Unmanages the specified widget.

void XtUnmanageChild(Widget widget);

widget The widget to unmanage.

XtUnmanageChildren Unmanages the specified widgets.

void XtUnmanageChildren(
WidgetList children,
Cardinal num_children);

children
num_children

A list of widgets to unmanage, in an array.
The number in the list.

XtWindow Returns the window for a widget.

Window XtWindow(Widget widget);

widget The widget.

I CONVENIENCE FUNCTIONS

This appendix summarizes five categories of special Motif convenience func­
tions: XmText, XmList, XmString, XmFontList, and XmClipboard. These
summaries are made from the OSF/Motif Programmer's Reference. For more in­
formation, please refer to the OSF/Motif Programmer's Reference.

1.1 THE XMTEXT CONVENIENCE FUNCTIONS

The XmText convenience functions provide easy ways to manipulate the text
widget. Several also provide capabilities beyond the scope of the text widget
itself. For example, XmTextCut manipulates the text widget as well as the
Clipboard.

Several of the following functions request a parameter of type Time. In all
of the functions that require Time, you can extract a valid time value from
the event record associated with the callback function. The following code
fragment demonstrates how to extract the time field from the event record
contained in the call_data parameter of a menu callback function named
menuCB.

void menuCB(Widget w, int client_data,
XmAnyCallbackStruct *call_data);

{

Time time;

time = call_data->event->xbutton.time;

}

X also defines a special constant named CurrentTime that you can use as
a Time parameter if no event record value is handy. Xt defines a function,
XtLastTimestampProcessed, that is also useful.

495

496 CONVENIENCE FUNCTIONS

Several of the functions deal with selected text, which is created when the
user drags over a region of text in the text widget. It is normally displayed in
reverse video.

All of the following functions accept a widget as a parameter. This widget
must be a text widget.

XmCreateScrolledText

Creates a text widget with scroll bars. Several of the resources in the text
widget control the position of the scroll bars.

Widget XmCreateScrolledText(
Widget parent,
char *name,
ArgList arglist,
Cardinal argcount);

XmCreateText

Creates a text widget.

Widget XmCreateText(
Widget parent,
char *name,
ArgList arglist,
Cardinal argcount);

XmTextClearSelection

Clears the selected region; that is, it unselects all text in the selected region so
that no part of it remains highlighted.

void XmTextClearSelection(
Widget widget,
Time clear_time);

You can extract the Time parameter from the event record as explained at the
beginning of this section.

XmTextCopy

Copies the currently selected region onto the Clipboard. The region remains
selected and remains in the widget. Returns false if something goes wrong (for
example, nothing is selected at the time of the call).

I. 1 THE XMTEXT CONVENIENCE FUNCTIONS

Boolean XmTextCopy(
Widget widget,
Time copy_time);

497

You can extract the Time parameter from the event record as explained at the
beginning of this section.

XmTextCut

Deletes the selected text from the widget and places it on the Clipboard.

Boolean XmTextCut(
Widget widget,
Time cut_time);

You can extract the Time parameter from the event record as explained at the
beginning of this section.

XmTextGetBaseline

Returns the y coordinate of the baseline of the first line of characters displayed
in the text widget, in pixels.

int XmTextGetBaseline(Widget widget);

XmTextGetEditable

Returns the value of the editable resource.

Boolean XmTextGetEditable(Widget widget);

XmTextGetInsertionPosition

Returns the value of the current insertion position.

XmTextPosition XmTextGetlnsertionPosition(Widget widget);

XmTextGetLastPosition

Returns the position of the last character in the text widget's value resource.

XmTextPosition XmTextGetLastPosition(Widget widget);

XmTextGetMaxLength

Returns the value of the maxLength resource.

int XmTextGetMaxLength(Widget widget);

498 CONVENIENCE FUNCTIONS

XmTextGetSelection

Returns a pointer to a string that contains a copy of the currently selected re­
gion. The string is a standard null-terminated C string. You should eventually
free the string with XtFree.

char *XmTextGetSelection(Widget widget);

XmTextGetSelectionPosition

Returns the left and right position values of the selected string within the
full string held by the text widget. Returns false if something is wrong (for
example, nothing is selected). Note that you must pass the address of the left
and right parameters so that the function can return values.

Boolean XmTextGetSelectionPosition(
Widget widget,
XmTextPosition *left,
XmTextPosition *right);

XmTextGetSource

In Motif, multiple text widgets can share the same source of text. This function
gets the source resource from one text widget so you can pass it to another
using the XmTextSetSource function.

XmTextSource XmTextGetSource(Widget widget);

XmTextGetString

Returns a pOinter to a string that contains a copy of the current value resource.
The string is a standard null-terminated C string. You should eventually free
the string with XtFree.

char *XmTextGetString(Widget widget);

XmTextGetTopCharacter

Returns the position of the character currently appearing in the top left of the
text widget's window.

XmTextPosition XmTextGetTopCharacter(Widget widget);

XmTextInsert

Inserts the string into value at the specified position.

1.1 THE XMTEXT CONVENIENCE FUNCTIONS

void XmTextlnsert(
Widget widget,
XmTextPosition position,
char *value)j

XmTextPaste

499

Pastes the contents of the Clipboard into the widget at the current insertion
position. The function returns false if something is wrong (for example, the
Clipboard is empty).

Boolean XmTextPaste(Widget widget)j

XmTextPosToXY

Translates a position value in the string into x and y coordinate values on the
current screen. If the position is not on the screen or is beyond maxLength,
the function returns false. Note that you must pass the address of x and y so
that the values can be returned.

Boolean XmTextPosToXY(
Widget widget,
XmTextPosition position,
Position *x,
Position *Y)j

XmTextRemove

Deletes the selected text from the text widget. Returns false if something is
wrong (for example, nothing is selected).

Boolean XmTextRemove(Widget widget)j

XmTextReplace

Replaces the text between post and pos2 with the text to which value points.

void XmTextReplace(
Widget widget,
XmTextPosition posl,
XmTextPosition pos2,
char *value)j

XmTextScroll

Scrolls the text in the text window the number of lines specified in n. Positive
values scroll upward; negative values scroll downward.

500 CONVENIENCE FUNCTIONS

void XmTextScroll(
Widget widget,
int n);

XmmTextSe~d~ode

Sets Add Mode to true or false. When true, the insertion point can be moved
without affecting selected text.

void XmTextSetAddMode(
Widget widget,
Boolean mode);

XmmTextSetEditable

Sets the value of the editable resource.

void XmTextSetEditable(
Widget widget,
Boolean editable);

XmmTextSetHighlight

Highlights regions of text. The post and pos2 parameters specify the start­
ing and ending positions of the region. You can set the mode parame­
ter to XmHIGHLIGHT_NORMAL (turn off highlighting), XmHIGHLIGHT_
SELECTED (highlight with reverse video), or XmHIGHLIGHT_SECONDARY_
SELECTED (highlight with underlining).

void XmTextSetHighlight(
Widget w,
XmTextPosition posl,
XmTextPosition pos2,
XmHighlightMode mode);

XmmTextSetInsertionPosition

Sets the current insertion position.

void XmTextSetlnsertionPosition(
Widget widget,
XmTextPosition position);

XmmTextSetMaxLength

Sets the maximum size allowed for the text widget.

1.1 THE XMTEXT CONVENIENCE FUNCTIONS

void XmTextSetMaxLength(
Widget widget,
int max_length);

XmTextSetSelection

501

Sets the selected region. It is equivalent to the user selecting an area of text
with the mouse. The posl and pos2 parameters indicate the starting and end­
ing point of the selected region.

void XmTextSetSelection(
Widget widget,
XmTextPosition posl,
XmTextPosition pos2.
Time set_time);

You can extract the Time value from an event structure as shown at the begin­
ning of the section.

XmTextSetSource

See XmTextGetSource. The top parameter indicates which character should
appear in the top left postiion of the widget. The cursor_position parameter
sets the initial cursor position.

void XmTextSetSource(
Widget widget,
XmTextSource source,
XmTextPosition top.
XmTextPosition cursor_position);

XmTextSetString

Sets the value of the text widget's value resource.

void XmTextSetString(
Widget widget,
char *value);

XmTextSetTopCharacter

Sets the position of the character displayed in the top left corner of the text
widget's window.

void XmTextSetTopCharacter(
Widget widget.
XmTextPosition top);

502 CONVENIENCE FUNCTIONS

XmTextShowPosition

Ensures that the position specified appears within the text widget's window.
Scrolls the text if necessary.

void XmTextShowPosition(
Widget widget,
XmTextPosition position)j

XmTextXYToPos

Translates a pair of x and y coordinates on the screen into a position in the
value resource. This function is the converse of XmTextPosToXY.

XmTextPosition XmTextXYToPos(
Widget widget,
Position x,
Position Y)j

1.2 THE XMLlST CONVENIENCE FUNCTIONS

Like the text widget, the list widget is fairly complicated and provides 2S
convenience functions. All of these functions accept a widget, which must be
a list widget.

XmListAddltem

Adds one item to the list at the position specified. If position 0 is specified,
adds the item to the end of the list.

void XmListAddltem(
Widget w,
XmString item,
int position)j

XmListAddltems

Adds a set of items at the position specified. The items parameter is an array of
XmStrings, with item_count indicating the number in the array. If position 0
is specified, adds the items to the end of the list.

void XmListAddltems(
Widget w,
XmString *items,
int item_count,
int position)j

1.2 THE XMLlST CONVENIENCE FUNCTIONS 503

XmListAddltem Unselected

Same as XmListAddItem, but the added item does not appear selected even if
it belongs to the set held in the selected Items resource.

void XmListAddltemUnselected(
Widget w,
XmString item,
int position);

XmListDeleteAlIItems

Clears all items from the list widget.

void XmListDeleteAllltems(Widget w);

XmListDeleteItem

Removes the indicated item from the list.

void XmListDeleteltem(
Widget w,
XmString item);

XmListDeleteItems

Deletes a set of items. The items parameter is an array of XmStrings, with
item_count indicating the number in the array.

void XmListDeleteltems(
Widget w,
XmString *items,
int item_count);

XmListDeleteItemsPos

Deletes item_count items starting at the position indicated.

void XmListDeleteltemsPos(
Widget w,
int item_count,
int position);

XmListDeletePos

Deletes one item at the position indicated.

504 CONVENIENCE FUNCTIONS

void XmListDeletePos(
Widget w,
int position);

XmListDeselectAllItems

Undoes all item highlighting and clears the selectedItems resource.

void XmListDeselectAllltems(Widget w);

XmListDeselectltem

Undoes the highlighting of the item specified and removes that item from the
selectedItems resource.

void XmListDeselectltem(
Widget w,
XmString item);

XmListDeselectPos

Undoes the highlighting of the item at the specified position and removes that
item from the selectedItems resource.

void XmListDeselectPos(
Widget w,
int position);

XmListGetMatchPos

Finds the specified item in the list and returns an array of positions at which
the item exists. The pos_count parameter indicates the number of items in the
array. The return value is true if memory was allocated to create the array. If
so, you should free the pos_list pointer with XtFree.

Boolean XmListGetMatchPos(
Widget w,
XmString item,
int **pos_list,
int *pos_count);

XmListGetSelectedPos

Returns an array containing the positions of all selected items in the list (the
contents of the selectedItems resource). The pos_count parameter indicates

1.2 THE XMLlST CONVENIENCE FUNCTIONS 505

the number of items in the array. The return value is true if memory was
allocated to create the array. If so, you should free the pas_list pointer using
XtFree.

Boolean XmListGetSelectedPos(
Widget w,
int **pos_list,
int *pos_count);

XmListItemExists

Returns true if item exists in the list.

Boolean XmListltemExists(
Widget w,
XmString item);

XmListItemPos

Returns the position of the first occurrence of the item in the list.

int XmListltemPos(
Widget w,
XmString item);

XmListReplaceItems

Receives two arrays of items in old_items and new_items. These arrays must
both contain item_count items. All occurrences of the first item of old_item
are replaced by the first item of new_item, the second item by the second, and
so on.

void XmListReplaceltems(
Widget w,
XmString *old_items,
int item_count,
XmString *new_items);

XmListReplaceItemsPos

Replaces item_count items, starting at the specified position, with the items
in the new_items array.

void XmListReplaceltemsPos(
Widget w,

506 CONVENIENCE FUNCTIONS

XmString *new_items,
int item_count,
int position);

XmListSelectItem

Highlights the specified item and adds it to the selectedItems resource. If the
notify parameter is true when the function is called, the appropriate selection
callback is triggered.

void XmListSelectltem(
Widget w,
XmString item,
Boolean notify);

XmListSelectPos

Highlights the specified position and adds it to the selectedItems resource.
If the notify parameter is true when the function is called, the appropriate
selection callback is triggered.

void XmListSelectPos(
Widget w,
int position,
Boolean notify);

XmListSetAddMode

Sets the add mode on or off. This mode controls keyboard and mouse func­
tionality in extended selection mode.

void XmListSetAddMode(
Widget w,
Boolean mode);

XmListSetBottomItem

Makes the specified item the last item visible in the list.

void XmListSetBottomltem(
Widget w,
XmString item);

XmListSetBottomPos

Makes the item at the specified position the last item visible in the list.

void XmListSetBottomPos(Widget w, int position);

1.3 THE XMSTRING CONVENIENCE FUNCTIONS

XmListSetHorizPos

Moves the scroll bar to the indicated position.

void XmListSetHorizPos(
Widget w,
int position);

XmListSetItem

Makes the specified item the first item visible in the list.

void XmListSetltem(
Widget w,
XmString item);

XmListSetPos

Makes the item at the specified position the first item visible in the list.

void XmListSetPos(Widget w, int position);

1.3 THE XMSTRING CONVENIENCE FUNCTIONS

507

This section lists and describes the Motif functions you can use to manipulate
compound strings. The prototypes come from the Xm. h file. The list is alpha­
betical, but you might want to start with the creation functions and fan out
from there.

XmStringBaseline

Accepts a font list and a compound string. This function determines the
height of the first segment of text in the string in pixels, measuring from the
top of the character box to the baseline of the text.

Dimension XmStringBaseline(
XmFontList fontlist,
XmString string);

XmStringByteCompare

Compares two compound strings byte by byte and returns true if they are
identical.

Boolean XmStringByteCompare(
XmString ai,
XmString bi);

508 CONVENIENCE FUNCTIONS

XmStringCompare

Compares two strings semantically to see if they contain the same compo­
nents, directions, and separators. Returns true if they are the same.

Boolean XmStringCompare(
XmString a,
XmString b);

XmStringConcat

Concatenates b to a and returns the result. Does not change the original
strings.

XmString XmStringConcat(
XmString a,
XmString b);

XmStringCopy

Copies the string passed and returns the result.

XmString XmStringCopy(XmString string);

XmStringCreate

Creates a new compound string from the null-terminated C string passed in.
The new string has one segment containing the text.

XmString XmStringCreate(
char *text,
XmStringCharSet charset);

XmStringCreateLtoR

Creates a new compound string from the null-terminated C string passed in.
The function recognizes \n characters, places a separator in the string, and
starts a new segment for each \n character it finds. All segments have the same
charset.

XmString XmStringCreateLtoR(
char *text,
XmStringCharSet charset);

XmStringCreateSimple

Same as XmStringCreate, but derives its character set from the current lan­
guage environment.

1.3 THE XMSTRING CONVENIENCE FUNCTIONS 509

XmString XmStringCreateSimple(char *text)j

XmStringDirectionCreate

Creates a compound string that contains only a direction component (no
text). The direction parameter can have the value XmSTRING_DIRECTION_
L_TO_R or XmSTRING_DIRECTION_R_TO_L.

XmString XmStringDirectionCreate(XmStringDirection direction);

XmStringDraw

Draws the specified string in a drawing area widget. See Chapter 17 for infor­
mation on drawing areas, graphics contexts, and so on. See Chapter 14 for
information on this function. The parameters XmStringDraw uses are defined
as follows:

d
w
fontlist
string
gc
x,y
width

align

clip

The X display.
The drawable in which to draw.
The font list for drawing.
The compound string to draw.
A graphics context.
The coordinates at which to start drawing.
The width of a rectangle that determines the right margin
for the text.
Valid values: XmALIGNMENT_BEGINNING, XmALIGNMENT_
CENTER, and XmALIGNMENT_END.
Direction in which segments are laid out. Use XmSTRING_DI­
RECTION_L_TO_R or XmSTRING_DIRECTION_R_TO_L.
A clipping rectangle. Pass NULL for no clipping.

This function draws only the characters' pixels. See XmStringDrawlmage to
draw the background pixels as well.

void XmStringDraw(
Display *d,
Window w,
XmFontList fontlist,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,

510 CONVENIENCE FUNCTIONS

unsigned char align,
unsigned char lay_dir,
XRectangle *clip);

XmStringDrawImage

Same as XmStringDraw, except that it draws the background pixels surround­
ing each character as well as the foreground pixels. The parameters are the
same as for XmStringDraw.

void XmStringDrawlmage(
Display *d,
Window w,
XmFontList fontlist,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned char align,
unsigned char lay_dir,
XRectangle *clip);

XmStringDrawUnderline

Searches for the string in under in the string str, draws str, and underlines
the characters in under if they are found. Underlines only the first instance of
under in str.

void XmStringDrawUnderline(
Display *d,
Window w,
XmFontList fntlst,
XmString str,
GC gc,
Position x,
Position y,
Dimension width,
unsigned char align,
unsigned char lay_dir,
XRectangle *clip,
XmString under);

1.3 THE XMSTRING CONVENIENCE FUNCTIONS 511

XmStringEmpty

Returns true if all text segments in the compound string have a length of O.

Boolean XmStringEmpty(XmString string);

XmStringExtent

Returns the width and height of the smallest rectangle that can contain the
string when drawn with the given font list.

void XmStringExtent(
XmFontList fontlist,
XmString string,
Dimension *width,
Dimension *height);

XmStringFree

Deallocates the memory associated with a compound string.

void XmStringFree(XmString string);

XmStringFreeContext

Frees a string context. See XmStringInitContext.

void XmStringFreeContext(XmStringContext context);

XmStringGetLtoR

Returns a null-terminated C string containing the contents of all of the seg­
ments in the compound string that have the matching character set.

Boolean XmStringGetLtoR(
XmString string,
XmStringCharSet charset,
char **text»;

XmStringGetNextComponent

Returns the characters and type of the next component in a compound string,
using the context parameter to identify the string (see XmStringInitCon­
text). Returns one of five values: XmSTRING_COMPONENT_UNKNOWN,
XmSTRING_COMPONENT_CHARSET, XmSTRING_COMPONENT_SEPARA­
TOR, XmSTRING_COMPONENT_DIRECTION, or XmSTRING_COMPONENT_

512 CONVENIENCE FUNCTIONS

TEXT. If the return type indicates that the component is a character set, text,
or direction component, the function sets the appropriate field. Deallocate
the space with XtFree when finished. If the component is of an unknown
type, the unknown fields will be filled.

XmStringComponentType XmStringGetNextComponent(
XmStringContext context,
char **text,
XmStringCharSet *charset,
XmStringDirection *direction,
XmStringComponentType *unknown_tag,
unsigned short *unknown_length,
unsigned char **unknown_value);

XmStringGetNextSegment

Returns characters and type of the next segment in a compound string, us­
ing the context parameter to identify the string (see XmStringInitContext).
Returns all information about each segment, including a null-terminated C
string, its character set, and direction. The function returns false when no seg­
ments remain.

Boolean XmStringGetNextSegment(
XmStringContext context,
char **text,
XmStringCharSet *charset,
XmStringDirection *direction,
Boolean *separator);

XmStringHasSubstring

Tries to find substring in anyone segment of string. If found, returns true.

Boolean XmStringHasSubstring(
XmString string,
XmString substring);

XmStringHeight

Returns the height, in pixels, of the block consisting of all lines in string for
the specified font list.

Dimension XmStringHeight(
XmFontList fontlist,
XmString string);

1.3 THE XMSTRING CONVENIENCE FUNCTIONS 513

XmStringInitContext

Returns a string context for the given string. Functions that pull separate
segments from the string use the context so that the library can remember its
current position in the string from call to call. The return value false indicates
that something went wrong (for example, the string is invalid).

Boolean XmStringlnitContext(
XmStringContext *context,
XmString string)j

XmStringLength

Returns the number of bytes in the string.

int XmStringLength(XmString string)j

XmStringLineCount

Returns the number of separators plus one in the string.

int XmStringLineCount(XmString string)j

XmStringNConcat

Concatenates n bytes from second onto the end of first and returns the result.

XmString XmStringNConcat(
XmString first,
XmString second,
int n)j

XmStringNCopy

Returns a string containing the first n bytes of str.

XmString XmStringNCopy(
XmString str,
int n)j

XmStringPeekNextComponent

Returns the type of the next component that XmStringGetNextComponent
gets. See XmStringGetNextComponent.

XmStringComponentType XmStringPeekNextComponent(
XmStringContext context)j

514 CONVENIENCE FUNCTIONS

XmStringSegmentCreate

Creates a compound string. The string has the text, character set, and direction
specified. If separator is true, the segment is followed by a separator.

XmString XmStringSegmentCreate(
char *text,
XmStringCharSet charset,
XmStringDirection direction,
Boolean separator);

XmStringSeparatorCreate

Creates a compound string that contains only a separator.

XmString XmStringSeparatorCreate (void);

XmStringWidth

Returns the width of the widest segment in the string, given the specified font
list.

Dimension XmStringWidth(
XmFontList fontlist,
XmString string);

1.4 THE XMFONT CONVENIENCE FUNCTIONS

The convenience functions in this section can be used to create and manipu­
late Motif font lists.

XmFontListAdd

Adds the specified font and character set to old and returns the augmented
font list. Deallocates the old parameter.

XmFontList XmFontListAdd(
XmFontList old,
XFontStruct *font,
XmStringCharSet charset);

XmFontListCopy

Returns a copy of the specified font list.

XmFontList XmFontListCopy(XmFontList fontlist);

1.4 THE XMFONT CONVENIENCE FUNCTIONS

XmFontListCreate

Returns a new font list containing the specified font and character set.

XmFontList XmFontListCreate(
XFontStruct *font,
XmStringCharSet charset)j

XmFontListFree

Deallocates the memory associated with a font list.

void XmFontListFree(XmFontList fontlist)j

XmFontListFreeFontContext

515

Deallocates the memory allocated to a context. See XmFontListInitFont­
Context.

void XmFontListFreeFontContext(XmFontContext context);

XmFontListGetNextFont

Retrieves the next font from the font list, returning its font and character
set. See XmFontListInitFontContext. You should eventually free the charset
string with XtFree. The function returns false if something goes wrong (for
example, no fonts remain).

Boolean XmFontListGetNextFont(
XmFontContext context,
XmStringCharSet *charset,
XFontStruct **font)j

XmFontListInitFontContext

Returns a font context variable. XmFontListGetNextFont uses the context so
that the library can keep track of where it is in the font list as each font is
extracted. You should eventually free the context with XmFontListFreeFont­
Context. The function returns false if something goes wrong (for example, the
font list is invalid).

Boolean XmFontListlnitFontContext(
XmFontContext *context,
XmFontList fontlist);

516 CONVENIENCE FUNCTIONS

1.5 THE XM CLIPBOARD CONVENIENCE FUNCTIONS

This section lists and describes the functions available for manipulating the
Clipboard, which you can access by including the file <Xm/CutPaste . h>. All of
these functions require a display and a window parameter. The easiest way to
obtain these parameters is to use XtDisplay and XtWindow: When you pass
these functions a widget, they return the display and window of that widget.
For example, for the widget w, you can call the function XmClipboardStart­
Copy with the line:

XmClipboardStartCopy(XtDisplay(w), XtWindow(w), ...

All of these functions also return an integer result. You can compare the re­
sult with the constants ClipboardSuccess, ClipboardLocked,and Clipboard­
Fail (along with several others, as described below). The Success and Fail
constants have obvious meanings. You should use the Locked constant as a
spin lock. Since multiple applications that run simultaneously often access the
Clipboard in competition with one another, this constant provides a locking
mechanism for the Clipboard. If a Clipboard- function is called and returns the
value ClipboardLocked, that function should be called repeatedly until Clip­
boardSuccess is returned.

The application gives an item a name when it copies the item to the
Clipboard-generally the name of the application itself. The application also
gives the item a format name. A single item can exist on the Clipboard in mul­
tiple formats: For example, an advanced word processor might store an item
on the Clipboard in its own native format, in some standard format for trans­
fer to other word processor programs, and in raw text format for copying to
simple editors. The format name can be an arbitrary string, but should com­
ply with ICCCM standards if you want the item to interact appropriately with
other applications. (See Scheifler and Gettys for ICCCM standards.)

The following functions manipulate the Clipboard. They appear in logical
rather than alphabetical order.

XmClipboardStartCopy

Begins transferring data to the Clipboard during a cut or copy operation. You
can copy data either directly or by callback function. The latter is used so that
large pieces of data are not actually copied to the Clipboard unless and until
they are pasted somewhere else. This process is also called copying by name. To
copy directly, a NULL parameter is passed to callback. To copy by name, a
callback function name is passed.

1.5 THE XM CLIPBOARD CONVENIENCE FUNCTIONS 517

The label parameter contains the name of the data item. In general, the
name is the originating application's name. The timestamp parameter must
be derived from the event record that generated the cut or copy request or
from XtLastTimestampProcessed (see Section 10.3); you cannot use the Cur­
rentTime constant. The widget parameter should contain the widget from
which the data item will be copied.

You should use the itemid value in subsequent calls to other functions
involved in the copy operation, such as XmClipboardCopy.

int XmClipboardStartCopy(
Display *display,
Window window,
XmString label,
Time timestamp,
Widget widget,
VoidProc callback,
long *itemid);

XmClipboardCopy

You must precede the XmClipboardCopy function with a call to XmClip­
boardStartCopy. The XmClipboardCopy function puts the data into tempo­
rary space so that XmClipboardEndCopy can copy it onto the Clipboard.

int XmClipboardCopy(
Display *display,
Window window,
long itemid,
char *format,
char *buffer,
unsigned long length,
int private_id,
int *dataid);

The itemid parameter should be the value returned by the XmClipboard­
StartCopy function. The format parameter is a string identifying the format
of the data; for raw text, the standard name is STRING (see the ICCCM for
other formats). The buffer parameter points to the memory location contain­
ing the data, and length indicates the number of bytes there. The private_
data parameter is a piece of application-specific data that you can use in any
way you choose.

518 CONVENIENCE FUNCTIONS

The dataid parameter returns an identifier that Motif uses when passing
data by name (with the callback function described in the XmClipboardStart­
Copy function). To pass data by name, set the buffer parameter to NULL.
When an application pastes the data item from the Clipboard, the callback
function specified in the XmClipboardStartCopy function is called. It should
have the following format:

void clipboard_callback_function(
Widget Wj
int *dataidj
int *privatej
int *reason)j

When the callback function is called, it receives the widget that contains the
data, the dataid value (which you can match against the dataid value re­
turned by the XmClipboardCopy function), the private data specified in the
call to the XmClipboardCopy function, and a reason value with either the
value XmCR_CLIPBOARD_DATA_DELETE or the value XmCR_CLIPBOARD_
DATA_REQUEST. The DELETE value says that the data item has been removed
from the Clipboard and will no longer be referenced. The REQUEST value says
that the item is needed on the Clipboard and should be put there by a call to
the XmClipboardCopyByName function.

If you copy the same data to the Clipboard in multiple formats, you should
make multiple calls to XmClipboardCopy within the same StartCopy and
EndCopy pair, using a different format string for each format.

XmClipboardEndCopy

Moves the Clipboard data from temporary storage to the Clipboard itself. The
itemid parameter comes from the original call to the XmClipboardStartCopy
function that started this copy operation.

int XmClipboardEndCopy(
Display *display,
Window window,
long itemid)j

XmClipboardCancelCopy

When copying, you can call this function any time prior to a call to XmClip­
boardEndCopy to halt the copy operation and free up temporary space. The
itemid parameter comes from the original call to the XmClipboardStartCopy
function that started this copy operation.

1.5 THE XM CLIPBOARD CONVENIENCE FUNCTIONS

int XmClipboardCancelCopy(
Display *display,
Window window,
long itemid);

XmClipboardCopyByName

519

This function resembles the XmClipboardCopy function. It should be called
from within the callback function triggered by a call by name to actually put
the desired data onto the Clipboard. See XmClipboardCopy for a description
of the parameters.

int XmClipboardCopyByName(
Display *display,
Window window,
int data,
char *buffer,
unsigned long length,
int private_id);

XmClipboardUndoCopy

Removes the last item placed onto the Clipboard if it has the same display and
window as those passed to this function.

int XmClipboardUndoCopy(
Display *display,
Window window);

XmClipboardLock

Locks the Clipboard to prevent other applications from changing it. You do not
need to use this function between calls to StartCopy and EndCopy or Start­
Retrieve and EndRetrieve because these functions handle locking themselves.

The lock is a counter rather than a Boolean value. Multiple calls to a lock
must be followed by an equal number of unlock calls.

int XmClipboardLock(
Display *display,
Window window);

XmClipboardUnlock

Unlocks the Clipboard. See XmClipboardLock. If all_levels is true, all prior
locks are removed.

520 CONVENIENCE FUNCTIONS

int XmClipboardUnlock(
Display *display,
Window window,
Boolean all_levels);

XmClipboardStartRetrieve

You must call this function at the start of a retrieve (paste) operation. The
timestamp parameter comes from the event record generating the retrieve
request (see XmClipboardStartCopy).

int XmClipboardStartRetrieve(
Display *display,
Window window,
Time timestamp)j

XmClipboardRetrieve

Incrementally retrieves all data with the matching format name from the Clip­
board. The format parameter specifies the format of the data the application
wants to retrieve. The buffer parameter points to a preallocated memory area
that will hold the returned data. The length parameter is the size of the preal­
located buffer. The outlength parameter returns the length of the data copied
to the buffer. The private_id parameter returns the private data passed dur­
ing the copy operation. Call this function multiple times to get all data of the
specified format.

Besides returning the normal ClipboardLocked and ClipboardSuccess val­
ues, this function can also return ClipboardTruncate (the buffer was not big
enough) and ClipboardNoData (nothing of that format is in the Clipboard,
or a value copied by name is no longer available).

int XmClipboardRetrieve(
Display *display,
Window window,
char *format,
char *buffer,
unsigned long length,
unsigned long *outlength,
int *private_id)j

XmClipboardEndRetrieve

You should call this function at the end of a retrieve operation started by
XmClipboardStartRetrieve to unlock the Clipboard.

1.5 THE XM CLIPBOARD CONVENIENCE FUNCTIONS

int XmClipboardEndRetrieve(
Display *display,
Window window);

XmClipboardInquireCount

521

Returns a count of the number of different formats in which the current
clipboard item is stored. The count parameter returns the count, and the
maxlength parameter returns the length of the longest format name.

int XmClipboardlnquireCount(
Display *display,
Window window,
int * count ,
int *maxlength);

XmClipboardInquireFormat

Gets the name of the format for the specified item. The n parameter is an
index specifying which format's name to retrieve. The buffer parameter is a
pOinter to a preallocated buffer that will contain the name once this function
returns. The bufferlength parameter is the length of the supplied buffer. The
outlength parameter is the length of the string placed into the buffer. Call
XmClipboardlnquireCount first to get the number of formats and the size of
the buffer.

int XmClipboardlnquireFormat(
Display *display,
Window window,
int n,
char *buffer,
unsigned long bufferlength,
unsigned long *outlength);

XmClipboardInquireLength

When you pass this function a format name, it returns the length of the data
item with that name.

int XmClipboardlnquireLength(
Display *display,
Window window,
char *format,
unsigned long *length);

522 CONVENIENCE FUNCTIONS

XmClipboardInquirePendingItems

Finds out if any items passed by name still need to be copied to the Clipboard
before the application terminates. The format parameter specifies the format
of interest. The function returns a structure containing a list of the privateid
and dataid values passed by the XmClipboardCopy function for data of the
specified format. The count parameter returns the number of items in the list.
Free the list itself with XtFree when you no longer need it.

int XmClipboardlnquirePendingltems(
Display *display,
Window window,
char *format,
XmClipboardPendingList *list,
unsigned long *count);

XmClipboardRegisterFormat

Registers a new format (that is, formats not specified in the ICCCM) and makes
the format known to other applications.

int XmClipboardRegisterFormat(
Display *display,
String format_name,
unsigned long format_length);

XmClipboardWithdrawFormat

Tells the Clipboard that the application can no longer supply data previously
passed by name by a call to XmClipboardCopy. The dataid parameter speci­
fies the id of that item.

int XmClipboardWithdrawFormat(
Display *display,
Window window,
int dataid);

J MOTIF WIDGET REFERENCE

This appendix represents a summary of the Motif Programmer's Reference man­
ual (PRM). It contains enough information to allow you to program and use
the widgets if you do not have the PRM. The PRM contains more information.

This appendix is divided into two parts. Section] .llists Motif widgets, while
].2 lists Xt widgets (which are common to all widget sets). Figure].l shows the
relationships among all the widgets.

This will probably be the appendix that you use most often. I had wanted
it to be printed on colored paper to make it easier to find, but this was not
possible. You may want to pinch the pages together and color their edges with
a magic marker to make them stand out.

).1 MOTIF WIDGETS

XmArrowButton Widget

See Chapter 11. Also available as a gadget.

Description

Class Pointer

Class Name

Include File

Superclass

A push button that displays an arrow rather than a label.

xmArrowButton WidgetClass

XmArrowButton

<Xm/ ArrowB.h>

XmPrimitive

RESOURCES

Name Type

XmNarrowDirection

XmNmultiClick

unsigned char

unsigned char

523

Default

XmARROW_VP

dynamic

524 MOTIF WIDGET REFERENCE

Figure).1 The Inheritance Hierarchy of the Motif
and Xt Widgets

XmArrowButton
XmCascadeButton

XmLabel
XmDrawnButton

XmList
XmPushButton

XmScroliBar
XmToggleButton

XmSeparator

XmText

XmTextField

XmMenuShell

XmForm
XmBulietinBoard

XmSelectionBox
XmDrawingArea

XmMessageBox
XmFrame

XmPanedWindow

XmRowColumn

XmScale

XmScroliedWindow XmMainWindow

D Motif

1'1 Xt Intrinsics

XmApplicationShell

XmDialogShell

XmCommand

XmFileSelectionBox

XMBULLETINBOARD WIDGET 525

RESOURCE DESCRIPTIONS

XmNarrowDirection Valid values: XmARROW_UP, XmARROW_DOWN,
XmARROW _LEFf, XmARROW _RIGHT.

XmNmultiClick See multi Click resource for push button.

CALLBACKS

Callback List

XmNactivateCallback

XmNarmCallback

XmNdisarmCallback

CALLBACK DESCRIPTIONS

XmNactivateCallback,
XmNarmCallback,
XmNdisarmCallback

CALLBACK STRUCTURE

typede£ struct
{

int reason;
XEvent *event;
int click_count;

Call Data Type

XmArrowButtonCallbackStruct

XmArrowButtonCallbackStruct

XmArrowButtonCallbackStruct

See push-button widget.

} XmArrowButtonCallbackStructj

CONVENIENCE FUNCTIONS

Widget XmCreateArrowButton(Widget parent,String name,
ArgList arglist,Cardinal argcount);

Reason

XmCR_ACTIVATE

XmCR_ARM

XmCR_DISARM

Widget XmCreateArrowButtonGadget(Widget parent,String name,
ArgList arglist,Cardinal argcount)j

XmBulletinBoard Widget

See Chapter 5, Chapter 13.

Description

Class Pointer

Class Name

Include File

Superclass

A basic manager widget that lets you "tack on" other widgets at
any position.

xmBulletinBoardWidgetClass

XmBulletinBoard

<Xm/BulletinB.h>

XmManager

526 MOTIF WIDGET REFERENCE

RESOURCES

Name

XmNallowOverlap

XmNautoUnmanage

XmNbuttonFontList

XmNcancelButton

XmNdefaultButton

XmNdefaultPosition

XmNdialogStyle

XmNdialogTitle

XmNlabelFontList

XmNmarginHeight

XmNmargin Width

XmNnoResize

XmNresizePolicy

XmNshadowType

XmNtextFontList

XmNtextTranslations

RESOURCE DESCRIPTIONS

XmNallowOverlap

XmNautoUnmanage

XmNbuttonFontList

XmNcancelButton

XmNdefaultButton

XmNdefaultPosition

XmNdialogStyle

Type Default

Boolean True

Boolean True

XmFontList dynamic

Window NULL

Window NULL

Boolean True

unsigned char dynamic

XmString NULL

XmFontList dynamic

Dimension 10

Dimension 10

Boolean False

unsigned char XmRESIZE_ANY

unsigned char XmSHADOW_OUT

XmFontList dynamic

XtTranslations NULL

Determines whether children are allowed to
overlap.

If the bulletin board is in a dialog shell, then if a
button within the bulletin board is activated, the
shell is unmanaged automatically if this resource is
true. Must be set at widget creation.

Determines the font for any buttons in the bulletin
board.

Holds the widget value for the Cancel button.

Determines which button is the Default button.

If true, automatically positions the bulletin board if
it is within a dialog shell.

Possible values: XmDIALOG_SYSTEM_MODAL (sys­
tem waits for user to answer dialog); XmDIALOG_
PRIMARY_APPLICATION_MODAL and XmDIA­
LOG_APPLICATION_MODAL (user must answer
dialog before anything can happen in ancestors);
XmDIALOG_FULL_APPLICATION_MODAL

XMBULLETINBOARD WIDGET 527

(application waits for user to answer dialog);
XmDIALOG_MODELESS (for dialogs that coexist
with application); XmDIALOG_ WORK_AREA (for
bulletin boards not in a dialog shell).

XmNdialogTitle Title in title bar of dialog shell.

XmNlabelFontList Font list for labels in the bulletin board.

XmNmarginHeight Margin used at top and bottom of dialog.

XmNmarginWidth Margin used at left and right of dialog.

XmNnoResize Determines if dialog shell around bulletin board
can be resized.

XmNresizePolicy Possible values: XmRESIZE_NONE; XmRESIZE_ANY
(grow or shrink); XmRESIZE_GROW (grow only)

XmNshadowType Possible values: XmSHADOW _IN (shadow appears
inset); XmSHADOW_OUT (shadow appears outset);
XmSHADOW_ETCHED_IN (double-line shadow
inset); XmSHADOW _ETCHED_OUT (double-line
shadow outset).

XmNtextFontList Font for child text widgets.

XmNtextTranslations Translations added to text children.

CALLBACKS

Callback List

XmNfocusCallback

XmNmapCallback

XmNunmapCallback

Call Data Type

XmAnyCallbackStruct

XmAnyCallbackStruct

XmAnyCallbackStruct

Reason

XmCR_FOCUS

XmCR_MAP

XmCR_UNMAP

CALLBACK DESCRIPTIONS

XmNfocusCallback

XmNmapCallback

XmNunmapCallback

CALLBACK STRUCTURE

typede£ struct
{

int reason;
XEvent *event;

} XmAnyCallbackStruct;

Triggered when bulletin board accepts focus.

If in a dialog shell, triggered when bulletin board is
mapped.

If in a dialog shell, triggered when bulletin board is
unmapped.

528 MOTIF WIDGET REFERENCE

CONVENIENCE FUNCTIONS

XmCreateBulletinBoard(Widget parent,String name,
ArgList arglist,Cardinal argcount);

XmCreateBulletinBoardDialog(Widget parent,String name,
ArgList arglist,Cardinal argcount);

XmCascadeButton Widget

See Chapter 6. Also available as a gadget.

Description A button that can call up a menu pane. Must have a rowColumn
parent as part of a menu.

Class Pointer

Class Name

Include File

Superclass

xmCascadeButton WidgetClass

XmCascadeButton

<Xm/CascadeB.h>

XmLabel

RESOURCES

Name

XmNcascadePixmap

XmNmappingDelay

XmNsubMenuId

Type

Pixmap

int

Widget

RESOURCE DESCRIPTIONS

XmNcascadePixmap

XmNmappingDelay

XmNsubMenuId

CALLBACKS

Default

dynamic

180

NULL

Determines the pixmap displayed when the cascade
button appears in a hierarchical menu. Default is a
right arrow.

Time in milliseconds before submenu appears.
Applies only if widget is in a pop-up or pull-down
menu.

Widget that appears when this button is armed.

Callback List

XmNactivateCallback

XmNcascadingCallback

Call Data Type

XmAnyCallbackStruct

XmAnyCallbackStruct

Reason

XmCR_ACTIVATE

XmCR_CASCADING

CALLBACK DESCRIPTIONS

XmNactivateCallback

XmNcascadingCallback

Triggered when button is activated.

Called immediately before submenu is mapped.

XMCOMMAND WIDGET

CALLBACK STRUCTURE

typede£ struct
{

int reason;
XEvent *event;

} XmAnyCallbackStructj

CONVENIENCE FUNCTIONS

Widget XmCreateCascadeButton(Widget parent,String name,
ArgList arglist,Cardinal argcount);

Widget XmCreateCascadeButtonGadget(Widget parent,String name,
ArgList arglist,Cardinal argcount);

void XmCascadeButtonHighlight(Widget cascadeButton,
Boolean highlight)j

void XmCascadeButtonGadgetHighlight(Widget cascadeButton,
Boolean highlight);

XmCommand Widget

See Chapter 11.

Description

Class Pointer

Class Name

Include File

Superclass

A widget that accepts commands from the user.

xmCommandWidgetClass

XmCommand

<Xm/Command.h>

XmSelectionBox

RESOURCES

Name

XmNcommand

XmNhistoryItems

XmNhistoryItemCount

XmNhistoryMaxItems

XmNhistoryVisibleItemCount

XmNpromptString

RESOURCE DESCRIPTIONS

XmNcommand

XmNhistoryItems

XmNhistoryItemCount

Type Default

XmString 1111

XmStringTable NULL

int 0

int 100

int 8

XmString dynamic

Current command's text.

Values in the history list.

Numbers of values in historyItems.

529

530 MOTIF WIDGET REFERENCE

XmNhistoryMaxItems

XmNhistoryVisible­
ItemCount

XmNpromptString

CALLBACKS

Callback List

XmNcommandChangedCallback

XmNcommandEnteredCallback

CALLBACK DESCRIPTIONS

XmNcommandChanged­
Callback

XmNcommandEntered­
Callback

CALLBACK STRUCTURE

typedef struct
{

int reason;
XEvent *event;
XmString value;
int length;

} XmCommandCallbackStruct;

CONVENIENCE FUNCTIONS

Maximum items in history list.

Number of visible lines in history list.

Prompt displayed in the widget.

Call Data Type

XmCommand
CallbackStruct

XmCommand
CallbackStruct

Reason

XmCR_COMMAND_
CHANGED

XmCR_COMMAND_
ENTERED

Triggered each time user changes current
co~mand.

Triggered when user enters command.

Widget XmCreateCommand(Widget parent,String name,
ArgList arglist,Cardinal argcount);

void XmCommandAppendValue(Widget widget,XmString command);
void XmCommandError(Widget widget,XmString error);
Widget XmCommandGetChild(Widget widget,unsigned char child);

Valid values fOT child:
XmDIALOG_COMMAND_TEXT
XmDIALOG_PROMPT_LABEL
XmDIALOG_HISTORY_LIST

void XmCommandSetValue(Widget widget, XmString command);

XMDRAWINGAREA WIDGET 531

XmDrawingArea Widget

See Chapter 17.

Description An area in which an application can draw using X drawing
commands. Also acts like a bulletin board manager.

Class Pointer

Class Name

Include File

Superclass

xmDrawingArea WidgetClass

XmDrawingArea

<Xm/DrawingA.h>

XmManager

RESOURCES

Name

XmNmarginHeight

XmNmarginWidth

XmNresizePolicy

Type

Dimension

Dimension

unsigned char

Default

10

10

XmRESIZE_ANY

RESOURCE DESCRIPTIONS

XmNmarginHeight

XmNmargin Width

XmNresizePolicy

CALLBACKS

Callback List

XmNexposeCallback

XmNinputCallback

XmNresizeCallback

Spacing between edge of drawing area and any
child widget on top and bottom. Does not include
drawn elements, such as lines and arcs, which do
not require margins.

Spacing between edge of drawing area and any
child widget on left and right. Does not include
drawn elements such as lines and arcs, which do
not require margins.

Possible values: XmRESIZE_NONEi XmRESIZE_ANY
(grow or shrink)i XmRESIZE_GROW (grow only).

Call Data Type

XmDrawingAreaCallbackStruct

XmDrawingAreaCallbackStruct

XmDrawingAreaCallbackStruct

Reason

XmCR_EXPOSE

XmCR_INPUT

XmCR_RESIZE

CALLBACK DESCRIPTIONS

XmNexposeCallback

XmNinputCallback

XmNresizeCallback

Triggered when part of the widget is exposed.

Triggered when the widget receives a keyboard or
mouse event.

Triggered when the widget is resized.

532 MOTIF WIDGET REFERENCE

CALLBACK STRUCTURE

typedef struct
{

int reasonj
XEvent *eventj
Window Wj

} XmDrawingAreaCallbackStructj

CONVENIENCE FUNCTIONS

Widget XmCreateDrawingArea(Widget parent,String name,
ArgList arglist,Cardinal argcount)j

XmDrawnButton Widget

See Chapter 11.

Description

Class Pointer

Class Name

Include File

Superclass

A push button with a drawing area on its face.

xmDrawnButton WidgetClass

XmDrawnButton

<Xm/DrawnB.h>

XmLabel

RESOURCES

Name

XmNmultiClick

XmNpushButtonEnabled

XmNshadowType

RESOURCE DESCRIPTIONS

XmNmultiClick

XmNpushButtonEnabled

XmNshadowType

CALLBACKS

Callback List

XmNactivateCallback

XmNarmCallback

Type Default

dynamiC

False

unsigned char

Boolean

unsigned char XmSHADOW _ETCHED_IN

See push-button widget.

Enables and disables shadow drawing (the appear­
ance of a button going in and out) when button is
clicked.

See XmBulletinBoard.

Call Data Type

XmDrawnButtonCallbackStruct

XmDrawnButtonCallbackStruct

Reason

XmCR_ACTIVATE

XmCR_ARM

XMFILESELECTIONBOX WIDGET

XmNdisarmCallback

XmNexposeCallback

XmNresizeCallback

CALLBACK DESCRIPTIONS

XmNactivateCallback,
XmNarmCallback,
XmNdisarmCallback

XmDrawnButtonCallbackStruct

XmDrawnButtonCallbackStruct

XmDrawnButtonCallbackStruct

See push-button widget.

XmCR_DISARM

XmCR_EXPOSE

XmCR_RESIZE

533

XmNexposeCallback

XmNresizeCallback

Triggered whenever part of the button is exposed.

Triggered whenever button is resized.

CALLBACK STRUCTURE

typede£ struct
{

int reason;
XEvent *event;
Window w;
int click_count;

} XmDrawnButtonCallbackStruct;

CONVENIENCE FUNCTIONS

Widget XmCreateDrawnButton(Widget parent,String name,
ArgList arglist,Cardinal argcount);

XmFileSelectionBox Widget

See Chapter 7.

Description

Class Pointer

Class Name

Include File

Superclass

A selection box for file and directory handling.

xmFileSelectionBoxWidgetClass

XmFileSelectionBox

<Xm/FileSB.h>

XmSelectionBox

RESOURCES

Name Type Default

XmNdirectory XmString dynamic

XmNdirectoryValid Boolean dynamic

XmNdirListItems XmStringTable dynamic

XmNdirListItemCount int dynamic

534 MOTIF WIDGET REFERENCE

XmNdirListLabelString

XmNdirMask

XmNdirSearchProc

XmNdirSpec

XmNfileListItems

XmNfileListItemCount

XmNfileListLabelString

XmNfileSearchProc

XmNfileTypeMask

XmNfil terLabelString

XmNlistUpdated

XmNnoMatchString

XmNpaUern

XmNqualifySearchDataProc

RESOURCE DESCRIPTIONS

XmNdirectory

XmNdirectoryValid

XmNdirListItems

XmNdirListItemCount

XmNdirListLabelString

XmNdirMask

XmNdirSearchProc

XmNdirSpec

XmNfileListItems

XmNfileListItemCount

XmNfil eListLabelString

XmNfileSearchProc

XmNfileTypeMask

XmNfilterLabelString

XmNlistUpdated

XmString "Directories"

XmString dynamic

(*)0 default proc

XmString dynamic

XmStringTable dynamic

int dynamic

XmString "Files"

(*)0 default proc

unsigned char XmFILE_REGULAR

XmString "Filter"

Boolean dynamic

XmString "[]"

XmString dynamic

(*)0 default proc

Current directory being used. If NULL, then current
working directory.

Used by dirSearchProc. If true, dirSearchProc can
search the directory.

List of items in directory list.

Number of items in directory list.

String displayed above directory list.

Mask that determines which files and directories
are displayed.

Custom directory search procedure that user
specifies.

Full file path name, which replaces the textString
resource in the selection box ancestor.

List of names in the file list.

Number of items in the file list.

The label displayed over the file names.

Custom file search procedure that the user specifies.

Valid values: XmFILE_REGULAR (file list contains
only files); XmFILE_DIRECTORY (file list contains
only directories); XmFILE_ANY_TYPE (file list
contains both files and directories).

Label displayed over filter string.

Set to true when search procedures update file lists.

XMFILESELECTIONBOX WIDGET 535

XmNnoMatchString

XmNpattern

XmNqualifySearchDataProc

Label displayed in file list when file list is empty.

Filter pattern used to select files.

CALLBACK STRUCTURE

typedef struct
{

int reason;
XEvent *event;
XmString value;
int length;
XmString mask;
int mask_length;
XmString dir;
int dir_length;
XmString pattern;
int pattern_length;

Custom search procedure that the user specifies.

} XmFileSelectionBoxCallbackStruct;

CONVENIENCE FUNCTIONS

Widget XmCreateFileSelectionBox(Widget parent.String name.
ArgList arglist.Cardinal argcount);

Widget XmCreateFileSelectionDialog(Widget parent.String name.
ArgList arglist.Cardinal argcount);

void XmFileSelectionDoSearch(Widget w. XmString dirmask);
Widget XmFileSelectionBoxGetChild(Widget w. unsigned char child);

Valid values for child:
XmDIALOG_APPLY_BUTTON
XmDIALOG_CANCEL_BUTTON
XmDIALOG_DEFAULT_BUTTON
XmDIALOG_DIR_LIST
XmDIALOG_DIR_LIST_LABEL
XmDIALOG_FILTER_LABEL
XmDIALOG_FILTER_TEXT
XmDIALOG_HELP_BUTTON
XmDIALOG_LIST
XmDIALOG_LIST_LABEL
XmDIALOG_OK_BUTTON
XmDIALOG_SELECTION_LABEL
XmDIALOG_SEPARATOR
XmDIALOG_TEXT
XmDIALOG_WORK_AREA

536 MOTIF WIDGET REFERENCE

XmForm Widget

See Chapter 5.

Description A manager widget that lets children attach themselves in
various ways.

Class Pointer

Class Name

Include File

Superclass

xmForm WidgetClass

XmForm

<Xm/Form.h>

XmBulletinBoard

RESOURCES

Name

XmNfractionBase

XmNhorizontalSpacing

XmNrubberPositioning

XmNverticalSpacing

RESOURCE DESCRIPTIONS

XmNfractionBase

XmNhorizontalSpacing

XmNrubberPositioning

XmNverticalSpacing

CONSTRAINT RESOURCES

Name

XmNbottomAttachment

XmNleftAttachment

XmNrightAttachment

XmNtopAttachment

XmNbottom Widget

XmNleftWidget

XmNrightWidget

Type Default

int 100

Dimension 0

Boolean False

Dimension 0

The divisor used when attaching to a position. The
default value of 100 makes attach positions behave
like percentages.

Offset for right and left attachments.

If false, top and left attachments default to
XmATTACH_FORM. If true, attachments default
to XmATTACH_POSITION.

Offset for top and bottom attachments.

Type Default

unsigned char XmATTACH_NONE

unsigned char XmATTACH_NONE

unsigned char XmATTACH_NONE

unsigned char XmATTACH_NONE

Window NULL

Window NULL

Window NULL

XMFORM WIDGET 537

XmNtopWidget Window NULL

XmNbottomPosition int 0

XmNleftPosition int 0

XmNrightPosition int 0

XmNtopPosition int 0

XmNbottomOffset int 0

XmNleftOffset int 0

XmNrightOffset int 0

XmNtopOffset int 0

XmNresizable Boolean True

CONSTRAINT RESOURCE DESCRIPTIONS

XmNbottomAttachment,
XmNleftAttachment,
XmNrightAttachment,
XmNtopAttachment

XmNbottomOffset,
XmNleftOffset,
XmNrightOffset,
XmNtopOffset

XmNbottomPosition,
XmNleftPosition,
XmNrightPosition,
XmNtopPosition

XmNbottom Widget,
XmNleftWidget,
XmNrightWidget,
XmNtopWidget

XmNresizable

Valid values: XmATTACH_NONE (don't attach);
XmATTACH_FORM (attach to same side of form);
XmATTACH_OPPOSITE_FORM (attach to opposite
side of form); XmATTACH_ WIDGET (attach
specified side of this widget to opposite side of
specified widget); XmATTACH_OPPOSITE_ WI[) GET
(attach specified side of this widget to same side of
specified widget); XmATTACH_POSITION (attach to
specified position); and XmATTACH_SELF (attach
specified side of widget to position proportional to
size of widget divided by form size).

Determines the offset between the side of the
widget and its attachment point.

Position used when attachment resource is set
to XmATTACH_POSITION.

Widget used when attachment resource is set to
XmATTACH_ WIDGET or XmATTACH_OPPOSITE_
WIDGET.

If set true, the child's resizing requests are granted
when possible.

538 MOTIF WIDGET REFERENCE

CONVENIENCE FUNCTIONS

XmCreateForm(Widget parent,String name,
ArgList arglist,Cardinal argcount);

XmCreateFormDialog(Widget parent,String name,
ArgList arglist,Cardinal argcount);

XmFrame Widget

See Chapter 11.

Description

Class Pointer

Class Name

Include File

Superclass

Frames the child widget.

xmFrame WidgetClass

XmFrame

<Xm/Frame.h>

XmManager

RESOURCES

Name Type

XmNmargin Width Dimension

XmNmarginHeight Dimension

XmNshadow1'ype unsigned char

RESOURCE DESCRIPTIONS

Default

0

0

dynamic

XmNmargin Width

XmNmarginHeight

XmNshadow1'ype

Margin to left and right of the frame.

Margin to top and bottom of frame.

See XmBulletinBoard~

CONVENIENCE FUNCTIONS

Widget XmCreateFrame(Widget parent,String name,
ArgList arglist,Cardinal argcount);

XmGadget Widget

See Chapter 14.

Description

Class Pointer

Class Name

Include File

Superclass

Basic object from which all gadgets are built.

xmGadgetClass

XmGadget

<Xm/Xm.h>

RectObj

XMLABEL WIDGET

RESOURCES

Name

XmNHighlightOnEnter

XmNhighlightThickness

XmNnavigationType

XmNshadowThickness

XmNtraversalOn

XmNunitType

XmNuserData

RESOURCE DESCRIPTIONS

XmNhighlightOnEnter

XmNhighlightThickness

XmNnavigationType

XmNshadowThickness

XmNtraversalOn

XmNunitType

XmNuserData

XmLabel Widget

539

Type Default

Boolean False

Dimension 2

XmNavigationType XmNONE

Dimension 2

Boolean True

unsigned char dynamic

Pointer NULL

When true, gadget highlights when cursor enters it.

Thickness of highlighting rectangle.

Valid values: XmNONE, XmTAB_GROUP, Xm­
STICKY _ TAB_GROUP, XmEXCLUSIVE_ TAB_
GROUP.

Size of border shadow.

When true, gadget can be traversed.

Valid values: XmPIXELS, XmlOOTH_MILLIMETERS,
XmlOOOTH_INCHES, XMlOOTH_POINTS, Xm­
lOOTH_FONT_UNITS. Specifies how to interpret
sizing requests.

Pointer to user data.

See Chapter 3. Also available as a gadget.

Description

Class Pointer

Class Name

Include File

Superclass

Displays a compound string or pixmap.

xmLabelWidgetClass

XmLabel

<Xm/Label.h>

XmPrimitive

RESOURCES

Name

XmNaccelerator

XmNacceleratorText

Type

String

XmString

Default

NULL

NULL

540 MOTIF WIDGET REFERENCE

XmNalignment

XmNfontList

XmNlabelInsensitive-
Pixmap

XmNlabelPixmap

XmNlabelString

XmNlabelType

XmNmarginBottom

XmNmarginHeight

XmNmarginLeft

XmNmarginRight

XmNmarginTop

XmNmargin Width

XmNmnemonic

XmNmnemonicCharSet

XmNrecomputeSize

XmNstringDirection

RESOURCE DESCRIPTIONS

XmNaccelerator

XmN acceleratorText

XmNalignment

XmNfontList

XmNlabelInsensitivePixmap

XmNlabelPixmap

XmNlabelString

XmNlabelType

XmNmarginBottom

XmNmarginHeight

XmNmarginLeft

XmNmarginRight

unsigned char XmALIGNMENT_CENTER

XmFontList dynamic

Pixmap XmUNSPECIFIED _PIXMAP

Pixmap XmUNSPECIFIED _PIXMAP

XmString dynamic

unsigned char XmSTRING

Dimension 0

Dimension 2

Dimension 0

Dimension 0

Dimension 0

Dimension 2

KeySym NULL

String dynamic

Boolean True

XmStringDirection dynamic

The accelerator character to use when the label is
part of a push button or a toggle button in a menu.

Text that tells the user what the accelerator is.

Alignment of string jn the label. Valid values:
XmALIGNMENT_BEGINNING, XmALIGNMENT_
CENTER, and XmALIGNMENT_END.

Font of labelString.

Pixmap used if label is insensitive and contains a
pixmap (labeIType=XmPIXMAP).

Pixmap used if label is sensitive and contains a
pixmap (labeIType=XmPIXMAP).

String displayed in the label if labeIType=Xm­
STRING.

Specifies whether label displays a string (Xm­
STRING) or a pixmap (XmPIXMAP).

Space below labelString.

Height of margin above and below labelstring.

Space to the left of labelString.

Space to the right of labelString.

XMLlST WIDGET

XmNmarginTop

XmNmargin Width

XmNmnemonic

XmNmnemonicCharSet

XmNrecomputeSize

XmNstringDirection

CONVENIENCE FUNCTIONS

541

Space above labelString.

Width of margin to left and right of labelString.

Specifies the mnemonic character that activates the
button when the label is part of a push button or
toggle button in a menu.

Mnemonic's charset.

When true, any change to the label automatically
readjusts its size. When false, no readjustment
occurs.

Determines direction in which string is drawn.
Valid values: XmSTRING_DIRECTION_L_TO_R and
XmSTRING_DIRECTION_R_TO _L.

Widget XmCreateLabel(Widget parent,String name,
ArgList arglist,Cardinal argcount)j

Widget XmCreateLabelGadget(Widget parent,String name,
ArgList arglist,Cardinal argcount)j

XmList Widget

See Chapter 11.

Description

Class Pointer

Class Name

Include File

Superclass

Lets the user choose single or multiple items from a list.

xmListWidgetClass

XmList

<Xm/List.h>

XmPrimitive

RESOURCES

Name Type Default

XmNautomaticSelection Boolean False

XmNdoubleClickInterval int dynamic

XmNfontList XmFontList dynamic

XmNitemCount int 0

XmNitems XmStringTable NULL

XmNlistMarginHeight Dimension 0

XmNlistMargin Width Dimension 0

XmNlistSizePolicy unSigned char XmVARIABLE

542 MOTIF WIDGET REFERENCE

XmNlistSpacing

XmNscrollBarDisplayPolicy

XmNselectedItemCount

XmNselectedltems

XmNselectionPolicy

XmNstringDirection

XmNtopItemPosition

XmNvisibleItemCount

RESOURCE DESCRIPTIONS

XmNautomaticSelection

XmNdoubleClickInterval

XmNfontList

XmNitemCount

XmNitems

XmNlistMarginHeight,
XmNlistMargin Width

XmNlistSizePolicy

XmNlistSpacing

XmNscrollBarDisplayPolicy

XmNselectedItemCount

XmNselectedItems

XmNselectionPolicy

XmNstringDirection

XmNtopItemPosition

XmNvisibleItemCount

Dimension 0

unsigned char XmAS_NEEDED

int 0

XmStringTable NULL

unsigned char XmBROWSE_
SELECT

XmStringDirection dynamic

int 1

int 1

If true, then a selection callback is triggered
when an item is armed (in browse and extended
modes). When false, item must be activated to get
callback.

Time (in milliseconds) within which. second click
must occur to be interpreted as a double-click.

Font for items in list.

Number of items currently in list.

XmString items held in the list.

Margins around list.

Possible values: XmCONSTANT, XmVARIABLE, and
XmRESIZE_IF _POSSIBLE. Determines what happens
when a new item in the list forces the list widget to
resize horizontally. Must be set at creation.

Space between items.

Possible values: XmAS_NEEDED and XmSTATIC.

Number of selected items.

XmString array holding selected items.

Possible values: XmSINGLE_SELECT, XmMULTI­
PLE_SELECT, XmEXTENDED_SELECT, and Xm­
BROWSE_SELECT.

Possible values: XmSTRING_DIRECTION_L_TO_R
and XmSTRING_DIRECTION_R_TO_L.

Holds the number of the item at the top of the list
displayed by the widget.

Maximum number of items visible at once.

XMLlST WIDGET

CALLBACKS

Callback List

XmNbrowseSelectionCallback

XmNdefaultActionCallback

XmNextendedSelectionCallback

XmNmultipleSelectionCallback

XmNsingleSelectionCallback

CALLBACK DESCRIPTIONS

XmNbrowseSelection­
Callback

XmNdefaultActionCallback

XmNextendedSelection­
Callback

XmNmultipleSelection­
Callback

XmNsingleSelectionCallback

CALLBACK STRUCTURE

typedef struct
{

int reason;
XEvent *event;
XmString item;
int item_length;
int item_position;
XmString *selected_items;
int selected_item_count;

Call Data TYpe

XmListCallbackStruct

XmListCallbackStruct

XmListCallbackStruct

XmListCallbackStruct

XmListCallbackStruct

543

Reason

XmCR_BROWSE_

SELECT

XmCR_DEFAULT_

ACTION

XmCR_EXTENDED_

SELECT

XmCR_MULTIPLE_

SELECT

XmCR_SINGLE_

SELECT

Triggered in browse II].ode when a user selects an
item.

Triggered when user double-clicks an item.

Triggered when user selects an item in extended
selection mode.

Triggered when user selects an item in multiple
selection mode.

Triggered when user selects an item in single
selection mode.

int *selected_item_positionsj
int selection_typej

} XmListCallbackStructj

544 MOTIF WIDGET REFERENCE

CONVENIENCE FUNCTIONS

Widget XmCreateList(Widget parent,String name,
ArgList arglist,Cardinal argcount);

Widget XmCreateScrolledList(Widget parent,String name,
ArgList arglist,Cardinal argcount);

void XmListAddltem(Widget w, XmString item, int position);
void XmListAddltems(Widget w, XmString *items, int item_count,

int position);
void XmListAddltemUnselected(Widget w, XmString item, int position);
void XmListDeleteAllltems(Widget w);
void XmListDeleteltem(Widget w,XmString item);
void XmListDeleteltems(Widget w, XmString *items, int item_count);
void XmListDeleteltemsPos(Widget w, int item_count, int position);
void XmListDeletePos(Widget w, int position);
void XmListDeselectAllltems(Widget w);
void XmListDeselectltem(Widget w, XmString item);
void XmListDeselectPos(Widget w, int position);
Boolean XmListGetMatchPos(Widget w, XmString item, int **pos_list,

int *pos_count);
Boolean XmListGetSelectedPos(Widget w, int **pos_list, int *pos_count);
Boolean XmListltemExists(Widget w, XmString item);
int XmListltemPos(Widget w, XmString item);
void XmListReplaceltems(Widget w, XmString *old_items, int item_count,

XmString *new_items);
void XmListReplaceltemsPos(Widget w, XmString *new_items, int item_count,

int position);
void XmListSelectltem(Widget w, XmString item, Boolean notify);
void XmListSelectPos(Widget w, int position, Boolean notify);
void XmListSetAddMode(Widget w, Boolean mode);
void XmListSetBottomltem(Widget w, XmString item);
void XmListSetBottomPos(Widget w, int position);
void XmListSetHorizPos(Widget w, int position);
void XmListSetltem(Widget w, XmString item);
void XmListSetPos(Widget w, int position);

XmMainWindow Widget

See Chapter 11.

Description

Class Pointer

A widget that builds a main application window.

xmMain WindowWidgetClass

XMMAINWINDOW WIDGET

Class Name

Include File

Superclass

RESOURCES

Name

XmMain Window

<Xm/MainW.h>

XmScrolledWindow

545

Type Default

Window NULL XmNcommandWindow

XmNcommandWindowLocation unsigned char XmCOMMAND_ABOVE_

XmNmain WindowMarginHeight

XmNmainWindowMargin Width

XmNmenuBar

XmNmessageWindow

XmNshowSeparator

RESOURCE DESCRIPTIONS

XmNcommandWindow

XmNcommandWindow­
Location

XmNmainWindowMargin­
Height, XmNmain Window­
Margin Width

XmNmenuBar

XmNmessageWindow

XmNshowSeparator

CONVENIENCE FUNCTIONS

WORKSPACE

Dimension 0

Dimension 0

Window NULL

Window NULL

Boolean False

The widget child that is the command window.

Possible values: XmCOMMAND _ABOVE_
WORKSPACE and XmCOMMAND_BELOW_
WORKSPACE.

Margins around main window.

The widget child that is the menu bar.

The widget child that is the message area.

If true, displays separators between the parts.

Widget XmCreateMainWindow(Widget parent,String name,
ArgList arglist,Cardinal argcount)j

Widget XmMainWindowSepl(Widget w);
Widget XmMainWindowSep2(Widget w)j
Widget XmMainWindowSep3(Widget w)j
void XmMainWindowSetAreas(Widget w, Widget menu_bar,

Widget command_window. Widget horizontal_scrollbar,
Widget vertical_scrollbar, Widget work_area);

546 MOTIF WIDGET REFERENCE

XmManager Widget

Description A widget type that builds managers of other widgets (for
example, rowColumn, form, and so on).

Class Pointer

Class Name

Include File

Superclass

xmManagerWidgetClass

XmManager

<Xm/Xm.h>

Constraint

RESOURCES

Name

XmNbottomShadowColor

XmNbottomShadowPixmap

XmNforeground

XmNhighlightColor

XmNhighlightPixmap

XmNnavigationType

XmNshadowThickness

XmNstringDirection

XmNtopShadowColor

XmNtopShadowPixmap

XmNtraversalOn

XmNunitType

XmNuserData

RESOURCE DESCRIPTIONS

XmNbottomShadowColor

XmNbottomShadowPixmap

XmNforeground

XmNhighlightColor

XmNhighlightPixmap

XmNnavigationType

XmNshadowThickness

XmNstringDirection

XmNtopShadowColor

Type Default

Pixel dynamic

Pixmap XmUNSPECIFIED _PIXMAP

Pixel dynamic

Pixel dynamic

Pixmap dynamic

XmNavigationType XmTAB_GROUP

Dimension 0

XmStringDirection dynamic

Pixel dynamic

Pixmap dynamic

Boolean True

unsigned char dynamic

Pointer NULL

Color of border shadow.

Pixmap for border shadow.

Foreground color.

Highlight rectangle color.

Highlight rectangle pixmap.

Valid values: XmNONE, XmTAB_GROUP, Xm­
STICKY_TAB_GROUP, and XmEXCLUSIVE_TAB_
GROUP.

Border shadow thickness.

Possible values: XmSTRING_DIRECTION_L_TO_R
and XmSTRING_DIRECTION_R_TO_L.

Color of border shadow.

XMMENUSHELL WIDGET

Pixmap for border shadow.

Transversal activation.

547

XmNtopShadowPixmap

XmNtraversalOn

XmNunitType Valid values: XmPIXELS, XmlOOTH_MILLIMETERS,
XmlOOOTH_INCHES, XMIOOTH_POINTS, and
XmlOOTH_FONT_UNITS. Specifies how to interpret
sizing requests.

XmNuserData A pointer to anything.

CALLBACKS

Callback List

XmNhelpCallback

Call Data Type

XmAnyCallbackStruct

Reason

CALLBACK DESCRIPTIONS

XmNhelpCallback

CALLBACK STRUCTURE

typede£ struct
{

int reason;
XEvent *event;

} XmAnyCallbackStruct;

XmMenuShell Widget

Activated when user presses Help key.

Description

Class Pointer

Class Name

Include File

Superclass

A widget designed to handle menus.

xmMenuShellWidgetClass

XmMenuShell

<Xm/XmMenuShell.h>

OverrideS hell

RESOURCES

Name Type

XmNdefaultFontList XmFontList

Default

dynamic

RESOURCE DESCRIPTIONS

XmNdefaultFontList Font for any text, label, or button widget held in
the menu, unless the child widget specifies a font.

548 MOTIF WIDGET REFERENCE

XmMessageBox Widget

See Chapter 7.

Description A widget that displays messages, yes/no questions, and so on to
the user.

Class Pointer

Class Name

Include File

Superclass

xmMessageBoxWidgetClass

XmMessageBox

<Xm/MessageB.h>

XmBulletinBoard

RESOURCES

Name

XmNcancelLabelString

XmNdefaultButtonType

XmNdialogType

XmNhelpLabelString

XmNmessageAlignment

XmNmessageString

XmNminimizeButton

XmNokLabelString

XmNsymbolPixmap

RESOURCE DESCRIPTIONS

XmNcancelLabelString

XmNdefaultButtonType

XmNdialogType

XmNhelpLabelString

XmNmessageAlignment

XmNmessageString

Type Default

XmString "Cancel"

unsigned char XmDIALOG_OK_BUTION

unsigned char XmDIALOG_MESSAGE

XmString "Help"

unsigned char XmALIGNMENT_BEGINNING

XmString III'

Boolean False

XmString "OK"

Pixmap dynamic

String on cancel button.

Possible values: XmDIALOG_CANCEL_BUTTON,
XmDIALOG_OK_BUTTON, and XmDIALOG_
HELP_BUTTON. Determines which button is the
default.

Possible values: XmDIALOG_ERROR, XmDIALOG_
INFORMATION, XmDIALOG_MESSAGE, Xm­
DIALOG_QUESTION, XmDIALOG_ WARNING,
and XmDIALOG_ WORKING.

String on Help button.

Possible values: XmALIGNMENT_BEGINNING,
XmALIGNMENT_CENTER, and XmALIGNMENT_
END. Alignment of message.

String displayed by the message box.

XMMESSAGEBOX WIDGET 549

XmNminimizeButtons If false, buttons are all the same size as the largest
button displayed. If true, they take on their
minimum sizes.

XmNokLabelString

XmNsymbolPixmap

String on OK button.

Pixmap used for icon in message box.

CALLBACKS

Callback List

XmNcancelCallback

XmNokCallback

Call Data Type

XmAnyCallbackStruct

XmAnyCallbackStruct

CALLBACK DESCRIPTIONS

Reason

XmCR_CANCEL

XmCR_OK

XmNcancelCallback

XmNokCallback

Triggered when user clicks Cancel button.

Triggered when user clicks OK button.

CALLBACK STRUCTURE

typede£ struct
{

int reason;
XEvent *event;

} XmAnyCallbackStruct;

CONVENIENCE FUNCTIONS

Widget XmCreateMessageBox(Widget parent.S~ring name.
ArgList arglist.Cardinal argcount);

Widget XmMessageBoxGetChild(Widget w.
unsigned char child);
Valid values for child:

XmDIALOG_CANCEL_BUTTON
XmDIALOG_DEFAULT_BUTTON
XmDIALOG_HELP_BUTTON
XmDIALOG_MESSAGE_LABEL
XmDIALOG_OK_BUTTON
XmDIALOG_SEPARATOR
XmDIALOG_SYMBOL_LABEL

Widget XmCreateMessageDialog(Widget parent.String name.
ArgList arglist.Cardinal argcount);

Widget XmCreateErrorDialog(Widget parent.String name.
ArgList arglist.Cardinal argcount)j

550 MOTIF WIDGET REFERENCE

Widget XmCreatelnformationDialog(Widget parent,String name,
ArgList arglist,Cardinal argcount);

Widget XmCreateQuestionDialog(Widget parent,String name,
ArgList arglist,Cardinal argcount);

Widget XmCreateWarningDialog(Widget parent,String name,
ArgList arglist,Cardinal argcount);

Widget XmCreateWorkingDialog(Widget parent,String name,
ArgList arglist,Cardinal argcount);

XmPanedWindow Widget

See Chapter 11

Description A manager widget that places multiple widgets, separated by
draggable sashes, in a single window.

Class Pointer

Class Name

Include File

Superclass

xmPanedWindowWidgetClass

XmPanedWindow

<Xm/PanedW.h>

XmManager

RESOURCES

Name

XmNmarginHeight

XmNmargin Width

XmNrefigureMode

XmN sashHeight

XmNsashIndent

XmNsashShadowThickness

XmNsashWidth

XmNseparatorOn

XmNspacing

RESOURCE DESCRIPTIONS

XmNmarginHeight,
XmNmargin Width

XmNrefigureMode

XmNsashHeight

XmNsashIndent

Type Default

Dimension 3

Dimension 3

Boolean True

Dimension 10

Position -10

Dimension dynamic

Dimension 10

Boolean True

Dimension 8

Margin between widget and its children.

When true, changes to panes affect the children
immediately.

Height of sash.

Spacing between sash and window.

XMPRIMITIVE WIDGET

XmNsashShadowThickness

XmNsashWidth

XmNseparatorOn

XmNspacing

Thickness of shadow on sash.

Width of sash.

When true, separators appear between panes.

Spacing between panes.

CONSTRAINT RESOURCES

Name Type Default

XmNallowResize Boolean False

XmNpaneMaximum Dimension 1000

XmNpaneMinimum Dimension 1

XmNskipAdjust Boolean False

CONSTRAINT RESOURCE DESCRIPTIONS

551

XmNallowResize When true, pane tries to follow size of child. When
false, children cannot resize themselves.

XmNpaneMaximum

XmNpaneMinimum

XmNskipAdjust

CONVENIENCE FUNCTIONS

Maximum size of pane.

Minimum size of pane.

When true, pane will not be adjusted.

Widget XmCreatePanedWindow(Widget parent,String name,
ArgList arglist,Cardinal argcount);

XmPrimitive Widget

See Chapter 3.

Description The Widget from which all simple Motif widgets are built. All
simple Motif widgets inherit these resources.

Class Pointer

Class Name

Include File

Superclass

xmPrimitive WidgetClass

XmPrimitive

<Xm/Xm.h>

Core

RESOURCES

Name

XmNbottomShadowColor

XmNbottomShadowPixmap

Type

Pixel

Pixmap

Default

dynamic

XmUNSPECIFIED _PIXMAP

552 MOTIF WIDGET REFERENCE

XmNforeground

XmNhighlightColor

XmNhighlightOnEnter

XmNhighlightPixmap

XmNhighlightThickness

XmNnavigationType

XmNshadowThickness

XmNtopShadowColor

XmNtopShadowPixmap

XmNtraversalOn

XmNunitType

XmNuserData

RESOURCE DESCRIPTIONS

XmNbottomShadowColor

XmNbottomShadowPixmap

XmNforeground

XmNhighlightColor

XmNhighlightOnEnter

XmNhighlightPixmap

XmNhighlightThickness

XmNnavigationType

XmNshadowThickness

XmNtopShadowColor

XmNtopShadowPixmap

XmNtraversalOn

XmNunitType

XmNuserData

Pixel dynamic

Pixel dynamic

Boolean False

Pixmap dynamic

Dimension 2

unsigned char XmNONE

Dimension 2

Pixel dynamic

Pixmap dynamic

Boolean True

unsigned char dynamic

Pointer NULL

Color of border shadow.

Pixmap for border shadow.

Foreground color.

Highlight color.

If true, highlight appears when cursor enters
widget.

Highlight pixmap.

Highlight thickness.

See XmManager widget.

Border shadow thickness.

Color of border shadow.

Pixmap for border shadow.

See XmManager widget.

See XmManager widget.

A pOinter to anything.

CALLBACKS

Callback List

XmNhelpCallback

Call Data Type

XmAnyCallbackStruct

Reason

CALLBACK DESCRIPTIONS

XmNhelpCallback Activated when user presses Help button.

XMPUSHBUTTON WIDGET

CALLBACK STRUCTURE

typedef struct
{

int reason;
XEvent *event;

} XmAnyCallbackStruct;

XmPushButton Widget

553

See Chapter 4. Also available as a gadget.

Description

Class Pointer

Class Name

Include File

Superclass

Lets user issue a command by clicking a push button.

xmPushButton WidgetClass

XmPushButton

<Xm/PushB.h>

XmLabel

RESOURCES

Name TYpe Default

XmNarmColor Pixel dynamic

XmNarmPixmap Pixmap XmUNSPECIFIED _PIXMAP

XmNdefaultButton-
ShadowThickness Dimension 0

XmNfillOnArm Boolean True

XmNmultiClick unsigned char dynamic

XmNshowAsDefault Dimension 0

RESOURCE DESCRIPTIONS

XmNarmColor

XmNarmPixmap

XmNdefaultButton­
ShadowThickness

XmNfillOnArm

Color of button when armed.

If labelType inherited from label widget is
XmPIXMAP, this pixmap appears on the button
when armed.

The thickness of the border around the default
button.

When true, the button fills when armed. When
false, only shadow borders change appearance
when armed.

554 MOTIF WIDGET REFERENCE

XmNmultiClick

XmNshow AsDefault

Possible values: XmMULTICLICK_DISCARD and
XmMULTICLICK_KEEP. If you use DISCARD and
the program receives a second click within the
multiclick time, the second click is ignored.

Any value greater than 0 marks the button as the
default button.

CALLBACKS

Callback List

XmNactivateCallback

XmNarmCallback

XmNdisarmCallback

Call Data Type

XmPushButtonCallbackStruct

XmPushButtonCallbackStruct

XmPushButtonCallbackStruct

Reason

XmCR_ACTIVATE

XmCR_ARM

XmCR_DISARM

CALLBACK DESCRIPTIONS

XmNactivateCallback

XmNarmCallback

XmNdisarmCallback

CALLBACK STRUCTURE

typedef struct
{

int reason;
XEvent *event;
int click_count;

} XmPushButtonCallbackStruct;

CONVENIENCE FUNCTIONS

Called when button is successfully activated.

Called when button is armed.

Called when button is disarmed.

Widget XmCreatePushButton(Widget parent,String name,
ArgList arglist,Cardinal argcount);

Widget XmCreatePushButtonGadget(Widget parent,String name,
ArgList arglist,Cardinal argcount);

XmRowColumn Widget

See Chapter s.

Description

Class Pointer

Class Name

A manager widget that automatically arranges its children in
rows and columns.

xmRowColumn WidgetClass

XmRowColumn

XMROWCOLUMN WIDGET 555

Include File <Xm/RowColumn.h>

Superclass XmManager

RESOURCES

Name

XmNadjustLast

XmNadjustMargin

XmNentryAlignment

XmNentryBorder

XmNentryClass

XmNisAligned

XmNisHomogeneous

XmNlabelString

XmNmarginHeight

XmNmargin Width

XmNmenuAccelerator

XmNmenuHelpWidget

XmNmenuHistory

XmNmenuPost

XmNmnemonic

XmNmnemonicCharSet

XmNnumColumns

XmNorientation

XmNpacking

XmNpopupEnabled

XmNradioAlwaysOne

XmNradioBehavior

XmNresizeHeight

XmNresize Width

XmNrowColumnType

XmNspacing

XmNsubMenuld

XmNwhichButton

RESOURCE DESCRIPTIONS

XmNadjustLast

Type Default

Boolean True

Boolean True

unsigned char XmALIGNMENT_BEGINNING

Dimension 0

WidgetClass dynamic

Boolean True

Boolean dynamic

XmString NULL

Dimension dynamic

Dimension dynamic

String dynamic

Widget NULL

Widget NULL

String NULL

KeySym NULL

String dynamic

short 1

unsigned char dynamic

unsigned char dynamic

Boolean True

Boolean True

Boolean False

Boolean True

Boolean True

unsigned char XmWORK_AREA

Dimension dynamic

Widget NULL

unsigned int dynamic

When true, adjusts last widget in row or column to
end of RowColumn widget. When false, does not
adjust last widget.

556 MOTIF WIDGET REFERENCE

XmNadjustMargin

XmNentry Alignment

XmNentryBorder

XmNentryClass

XmNisAligned

XmNisHomogeneous

XmNlabelString

XmNmarginHeight

XmNmargin Width

XmNmenuAccelerator

XmNmenuHelpWidget

XmNmenuHistory

XmNmenuPost

XmNmnemonic

XmNmnemonicCharSet

XmNnumColumns

XmNorientation

When true, inner margins for all children of the
RowColumn have the same value.

Possible values: XmALlGNMENT_BEGINNING,
XmALIGNMENT_CENTER, and XmALIGNMENT_
END. If XmNisAligned is true, all label widgets use
this value for their alignment resource.

Gives all children the same border. Disabled if set
to O.

If XmNisHomogeneous is true, this resource
specifies the allowed class.

If true, any child widget that is a label uses the
alignment specified in XmNentryAlignment.

If true, RowColumn forces all children to be of the
type specified in XmNentryClass.

If XmNrowColumnType is set to XmMENU_
OPTION, this string is displayed to the side of
the selection area.

Determines margin between RowColumn and its
children at the top and bottom of each column.

Determines margin between RowColumn and its
children to the left and right of each row.

If RowColumn is a pop-up menu or a menu bar,
this key activates the menu.

If RowColumn is a menu bar and this resource is
set to a cascade button widget, the cascade button
specified appears at the far right of the menu bar.

Holds the widget ID of the last child activated.

Determines which type of event activates the menu
(that is, which button on the mouse activates a
pop-up).

If type is XmMENU_OPTION, holds the menu's
mnemonic character.

Character set for XmNmnemonic.

Indicates the preferred number of columns or rows,
depending on the orientation, used to arrange
the children. XmNpacking must be XmPACK_
COLUMN.

Possible values: XmVERTICAL and XmHORI­
ZONTAL.

XMROWCOLUMN WIDGET 557

XmNpacking Possible values: XmPACK_TIGHT (packs as tight
as possible, using minimum sizes); XmPACK_
COLUMN (places all children in boxes of the
same size); or XmPACK_NONE (reverts to bulletin
board behavior, with x and y resources controlling
placement).

XmNpopupEnabled

XmNradioAlwaysOne

XmNradioBehavior

XmNresizeHeight,
XmNresizeWidth

XmNrowColumnType

XmNspacing

XmNsubMenuId

XmNwhichButton

CALLBACKS

Callback List

XmNentryCallback

XmNmapCallback

XmNunmapCallback

Allows pop-up behavior.

Forces one toggle in a radio box always to be on.

Makes all of the toggle children have radio box
behavior.

When true, changes to widget or children cause the
Widget to resize.

Valid values: XmMENU_BAR, XmMENU_
PULLDOWN, XmMENU_POPUP, XmMENU_
OPTION, and XmWORK_AREA (the default).

Spacing between children.

The rowColumnType resource must be set to
XmMENU_OPTION. Determines which menu is
activated.

Determines which mouse button activates a pop­
up. This resource is obsolete; use XmNmenuPost
instead.

Call Data Type

XmRowColumnCallbackStruct

XmRowColumnCallbackStruct

XmRowColumnCallbackStruct

Reason

XmCR_ACTIVATE

XmCR_MAP

XmCR_UNMAP

CALLBACK DESCRIPTIONS

XmNentryCallback

XmNmapCallback

XmNUnmapCallback

Remaps a widget's XmNactivateCallback or
XmNvalueChangedCallback to the
RowColumn's entry callback. Must be set before
creating children.

Activated when RowColumn is mapped.

Activated when RowColumn is unmapped.

558 MOTIF WIDGET REFERENCE

CALLBACK STRUCTURE

typedef struct
{

int reasonj
XEvent *eventj
Widget widgetj
char *dataj
char *callbackstructj

} XmRowColumnCallbackStructj

CONVENIENCE FUNCTIONS

Widget XmCreateRowColumn(Widget parent,String name,
ArgList arglist,Cardinal argcount)j

Related convenience functions:
Widget XmCreateMenuBar(Widget parent,String name,

ArgList arglist,Cardinal argcount)j
Widget XmCreateOptionMenu(Widget parent,String name,

ArgList arglist,Cardinal argcount)j
Widget XmCreatePopupMenu(Widget parent,String name,

ArgList arglist,Cardinal argcount)j
Widget XmCreatePulldownMenu(Widget parent,String name,

ArgList arglist,Cardinal argcount)j
Widget XmCreateRadioBox(Widget parent,String name,

ArgList arglist,Cardinal argcount)j
Widget XmCreateSimpleCheckBox(Widget parent,String name,

ArgList arglist,Cardinal argcount)j
Widget XmCreateSimpleMenuBar(Widget parent,String name,

ArgList arglist,Cardinal argcount)j
Widget XmCreateSimpleOptionMenu(Widget parent,String name,

ArgList arglist,Cardinal argcount)j
Widget XmCreateSimplePopupMenu(Widget parent,String name,

ArgList arglist,Cardinal argcount)j
Widget XmCreateSimplePulldownMenu(Widget parent,String name,

ArgList arglist,Cardinal argcount)j
Widget XmCreateSimpleRadioBox(Widget parent,String name,

ArgList arglist,Cardinal argcount)j
Widget XmCreateWorkArea(Widget parent,String name,

ArgList arglist,Cardinal argcount)j
Cursor XmGetMenuCursor(Display *displaY)j
Widget XmGetPostedFromWidget(widget menu)j
void XmMenuPosition(Widget menu,XmButtonPressedEvent *event)j

XMSCALE WIDGET

Widget XmOptionButtonGadget(Widget option_menu);
Widget XmOptionLabelGadget(Widget option_menu);
void XmSetMenuCursor(Display *display, Cursor cursor);

XmScale Widget

See Chapter 4.

Description

Class Pointer

Class Name

Include File

Superclass

Creates a slider that lets users change a value.

xmScale WidgetClass

XmScale

<Xm/Scale.h>

XmManager

RESOURCES

Name

XmNdecimalPoints

XmNfontList

XmNhighlightOnEnter

XmNhighlightThickness

XmNmaximum

XmNminimum

XmNorientation

XmNprocessingDirection

XmNscaleHeight

XmNscaleMultiple

XmNscaleWidth

XmNshowValue

XmNtitleString

XmNvalue

RESOURCE DESCRIPTIONS

Type Default

short 0

XmFontList dynamic

Boolean False

Dimension 2

int 100

int 0

unsigned char XmVERTICAL

unsigned char dynamic

Dimension 0

int dynamic

Dimension 0

Boolean False

XmString NULL

int 0

Location of decimal point from the right.

Font of title.

559

XmNdecimalPoints

XmNfontList

XmNhighlightOnEnter

XmNhighlightThickness

XmNmaximum

When true, widget highlights when cursor enters it.

Thickness of highlight.

Maximum value of slider.

560 MOTIF WIDGET REFERENCE

XmNminimum

XmNorientation

XmNprocessingDirection

XmNscaleHeight

XmNscaleMultiple

XmNscale Width

XmNshowValue

XmNtitleString

XmNvalue

CALLBACKS

Callback List

XmNdragCallback

XmNvalueChangedCallback

CALLBACK DESCRIPTIONS

XmNdragCallback

XmNvalueChangedCallback

CALLBACK STRUCTURE

typedef struct
{

int reason;
XEvent *event;
int value;

} XmScaleCallbackStruct;

CONVENIENCE FUNCTIONS

Minimum value of slider.

Valid values: XmVERTICAL and XmHORIZONTAL.

Valid values: XmMAX_ON_TOP, XmMAX_ON_
BOTTOM, XmMAX_ON_LEFf, and XmMAX_ON_
RIGHT.

Height of slider.

Amount slider moves when clicking in trough.
(XmNmaximum-XmNminimum)/lO is the default.

Width of slider.

When true, creates a label that displays the current
value.

Message displayed above slider.

Holds current value of slider.

Call Data Type

XmScaleCallbackStruct

XmScaleCallbackStruct

Reason

XmCR_DRAG

XmCR_VALUE_
CHANGED

Triggered each time a change occurs as slider is
dragged.

Triggered when value changes.

Widget XmCreateScale(Widget parent,String name,
ArgList arglist,Cardinal argcount);

void XmScaleGetValue(Widget w, int*value);
void XmScaleSetValue(Widget w, int value);

XMSCROLLBAR WIDGET

XmScrollBar Widget

See Chapter 11.

561

Description

Class Pointer

Class Name

Include File

Superclass

Implements a Motif-style scroll bar.

xmScrollBarWidgetClass

XmScrollBar

<Xm/ScrollBar.h>

XmPrimitive

RESOURCES

Name

XmNincrement

XmNinitialDelay

XmNmaximum

XmNminimum

XmNorientation

XmNpageIncrement

XmNprocessingDirection

XmNrepeatDelay

XmNshowArrows

XmNsliderSize

XmNtroughColor

XmNvalue

RESOURCE DESCRIPTIONS

XmNincrement

XmNinitialDelay

XmNmaximum

XmNminimum

XmNorientation

XmNpageIncrement

XmNprocessingDirection

XmNrepeatDelay

XmNshowArrows

XmNsliderSize

Type Default

int 1

int 250

int 100

int 0

unsigned char XmVERTICAL

int 10

unsigned char dynamic

int 50

Boolean True

int dynamic

Pixel dynamic

int 0

Amount value changes when user clicks arrow of
the scroll bar.

Milliseconds of delay before repetition starts when
user clicks arrow or shaft.

Maximum value of scroll bar.

Minimum value of scroll bar.

Valid values: XmVERTICAL and XmHORIZONTAL.

Amount value changes when user clicks shaft of the
scroll bar.

See scale widget.

Milliseconds between repetitions.

Determines if scroll bar's arrows are visible.

Size of the slider.

562 MOTIF WIDGET REFERENCE

XmNtroughColor

XmNvalue

CALLBACKS

Callback List

XmNdecrementCallback

XmNdragCallback

XmNincrementCallback

XmNpageDecrementCallback

XmNpagelncrementCallback

XmNtoBottomCallback

XmNtoTopCallback

XmNvalueChangedCallback

CALLBACK DESCRIPTIONS

XmNdecrementCallback

XmNdragCallback

XmNincrementCallback

XmNpageDecrement­
Callback

XmNpagelncrement­
Callback

XmNtoTopCallback,
XmNtoBottomCallback

XmNvalueChangedCallback

Color of shaft.

Current value of the scroll bar.

Call Data Type Reason

XmScrollBar-
CallbackStruct XmCR_DECREMENT

XmScrollBar-
CallbackStruct XmCR_DRAG

XmScrollBar-
CallbackStruct XmCR_INCREMENT

XmScrollBar-
CallbackStruct XmCR_PAGE_DECREMENT

XmScrollBar-
CallbackStruct XmCR_PAGE_INCREMENT

XmScrollBar-
CallbackStruct XmCR_TO_BOTTOM

XmScrollBar-
CallbackStruct XmCR_TO_TOP

XmScrollBar-
CallbackStruct XmCR_ VALUE_CHANGED

Triggered when scroll bar value decreases by one
increment.

Triggered each time value changes when user drags
scroll bar.

Triggered when scroll bar value increases by one
increment.

Triggered when user clicks to move scroll bar back
by one page.

Triggered when user clicks to advance scroll bar by
a page.

Triggered when the slider reaches the top or the
bottom.

Triggered each time XmNvalue changes.

XMSCROLLEDWINDOW WIDGET

CALLBACK STRUCTURE

typedef struct
{

int reason;
XEvent *event;
int value;
int pixel;

} XmScrollBarCallbackStruct;

CONVENIENCE FUNCTIONS

Widget XmCreateScrollBar(Widget parent,String name,
ArgList arglist,Cardinal argcount);

void XmScrollBarGetValues(Widget w, int *value, int *slider_size,
int *increment, int *page_increment);

void XmScrollBarSetValues(Widget w, int value, int slider_size,
int increment, int page_increment, Boolean notify);

XmScrolledWindow Widget

See Chapter 11.

Description

Class Pointer

Class Name

Include File

Superclass

A work area combined with two scroll bars.

xmScrolledWindowWidgetClass

XmScrolledWindow

<Xm/ScrolledW.h>

XmManager

RESOURCES

Name Type Default

XmNclipWindow Window NULL

XmNhorizontalScrollBar Window NULL

XmNscrollBarDisplayPolicy unsigned char dynamic

XmNscrollBarPlacement unsigned char XmBOTTOM_RIGHT

XmNscrolledWindowMarginHeight Dimension 0

XmN scrolledWindowMargin Width Dimension 0

XmN scrollingPolicy unsigned char XmAPPLICATION_
DEFINED

XmNspacing Dimension 4

XmNverticalScrollBar Window NULL

563

564 MOTIF WIDGET REFERENCE

XmNvisualPolicy

XmNworkWindow

RESOURCE DESCRIPTIONS

XmNclipWindow

XmNhorizontalScrollBar

XmN scrollBarDisplayPolicy

XmN scrollBarPlacement

XmNscrolledWindow­

MarginHeight, XmN­

scrolledWindow­

Margin Width

XmNscrollingPolicy

XmNspacing

XmNverticalScrollBar

XmNvisualPolicy

XmNworkWindow

CONVENIENCE FUNCTIONS

unsigned char

Window

dynamic

NULL

Set automatically if XmNvisualPolicy is Xm­
CONSTANT.

Identifier of horizontal scroll bar.

Valid values: XmAS_NEEDED (removes scroll bars
from view if window is large enough to display
entire pixmap)i XmSTATIC (always displays scroll
bars).

Valid values: XmTOP _LEFT, XmBOTIOM_LEFT,
XmTOP _RIGHT, XmBOTIOM_RIGHT.

Margins in window.

Causes widget to handle all scrolling itself using
an oversized pixmap. Also handles normal
scroll callbacks to the application. Valid values:
XmAUTOMATIC and XmAPPLICATION_DEFINED.

Space between scroll bars and window.

Identifier of vertical scroll bar.

Valid values: XmVARIABLE and XmCONSTANT.

Identifier of work area.

Widget XmCreateScrolledWindow(Widget parent,String name,
ArgList arglist,Cardinal argcount);

void XmScrolledWindowSetAreas(Widget w, Widget horiz_scrollbar,
Widget vert_scrollbar,Widget work_area);

XmSelectionBox Widget

See Chapter 7.

Description

Class Pointer

Class Name

Creates a list of options from which the user can make
selections.

xmSelectionBoxWidgetClass

XmSelectionBox

XMSELECTIONBOX WIDGET 565

Include File <Xm/SelectioB.h>

Superclass XmBulletinBoard

RESOURCES

Name

XmNapplyLabelString

XmNcancelLabelString

XmNdialogType

XmNhelpLabelString

XmNlistltemCount

XmNlistltems

XmNlistLabelString

XmNlistVisibleItemCount

XmNminimizeButtons

XmNmustMatch

XmNokLabelString

XmNselectionLabelString

XmNtextAccelerators

XmNtextColumns

XmNtextString

RESOURCE DESCRIPTIONS

XmNapplyLabelString

XmNcancelLabelString

XmNdialogType

XmNhelpLabelString

XmNlistltems

XmNlistltemCount

XmNlistLabelString

XmNlistVisibleItemCount

XmNminimizeButtons

XmNmustMatch

Type Default

XmString IIApply"

XmString IICancel"

unsigned char dynamic

XmString II Help"

int 0

XmStringTable NULL

XmString NULL

int 8

Boolean False

Boolean False

XmString /10K"

XmString /lSelection"

XtAccelerators default

short 20

XmString lit'

String for Apply button.

String for Cancel button.

Possible values: XmDIALOG_PROMPT, Xm­
DIALOG_COMMAND, XmDIALOG_SELECTION,
XmDIALOG_FILE_SELECTION, and XmDIALOG_
WORK_AREA.

String for Help button.

Items in the list.

Number of items in list.

String displayed above list.

Number of items visible in list.

If false, buttons are all the size of the largest. If true,
buttons take on minimum sizes.

When true, value entered iri text area must match
one of the items in the list.

566 MOTIF WIDGET REFERENCE

XmNokLabelString

XmNselectionLabelString

XmNtextAccelerators

XmNtextColumns

XmNtextString

CALLBACKS

Callback List

XmNapplyCallback

XmNcancelCallback

XmNnoMatchCallback

XmNokCallback

CALLBACK DESCRIPTIONS

XmNapplyCallback

XmNcancelCallback

XmNnoMatchCallback

XmNokCallback

CALLBACK STRUCTURE

typede£ struct
{

int reason;
XEvent *event;
XmString value;
int length;

String for OK button.

Label displayed above text field.

Normal accelerators for text widget.

Width of list.

Value held in text widget.

Call Data Type

XmSelectionBoxCallbackStruct

XmSelectionBoxCallbackStruct

XmSelectionBoxCallbackStruct

XmSelectionBoxCallbackStruct

Reason

XmCR_APPLY

XmCR_CANCEL

XmCR_NO_MATCH

XmCR_OK

Triggered when user clicks Apply button.

Triggered when user clicks Cancel button.

Triggered when value in text area does not match a
value in the list.

Triggered when user clicks OK button.

} XmSelectionBoxCallbackStruct;

CONVENIENCE FUNCTIONS

Widget XmCreateSelectionBox(Widget parent,String name,
ArgList arglist,Cardinal argcount);

Widget XmCreateSelectionDialog(Widget parent,String name,
ArgList arglist,Cardinal argcount);

Widget XmCreatePromptDialog(Widget parent,String name,
ArgList arglist,Cardinal argcount);

Widget XmSelectionBoxGetChild(Widget w, unsigned char child);

XMSEPARATOR WIDGET

Valid values for child:
XmDIALOG_APPLY_BUTTON
XmDIALOG_CANCEL_BUTTON
XmDIALOG_DEFAULT_BUTTON
XmDIALOG_HELP_BUTTON
XmDIALOG_LIST
XmDIALOG_LIST_LABEL
XmDIALOG_OK_BUTTON
XmDIALOG_SELECTION_LABEL
XmDIALOG_SEPARATOR
XmDIALOG_TEXT
XmDIALOG_WORK_AREA

XmSeparator Widget

See Chapter 5. Also available as a gadget.

Description Creates a separation line on the screen. Be sure to attach this
widget to a form, or assign it a width, or it will appear as a dot
and not a line.

Class Pointer

Class Name

Include File

Superclass

RESOURCES

Name

xmSeparatorWidgetClass

XmSeparator

<Xm/Separator .h>

XmPrimitive

Type

XmNmargin

XmNorientation

XmNseparatorType

Dimension

unsigned char

unsigned char

RESOURCE DESCRIPTIONS

Default

o
XmHORIZONTAL

XmSHADOW _ETCHED_IN

Margin at end of separator.

567

XmNmargin

XmNorientation

XmNseparatorType

Valid values: XmVERTICAL and XmHORIZONTAL.

Valid values: XmSINGLE_LINE, XmDOUBLE_
LINE, XmSINGLE_DASHED_LINE, XmDOUBLE_
DASHED_LINE, XmNO_LINE, XmSHADOW_
ETCHED_IN, and XmSHADOW_ETCHED_OUT.

568 MOTIF WIDGET REFERENCE

CONVENIENCE FUNCTIONS

Widget XmCreateSeparator(Widget parent,String name,
ArgList arglist,Cardinal argcount)j

Widget XmCreateSeparatorGadget(Widget parent,String name,
ArgList arglist,Cardinal argcount)j

XmText Widget

See Chapter 10.

Description

Class Pointer

Class Name

Include File

Superclass

Provides text editing capabilities.

xmTextWidgetClass

XmText

<Xm/Text.h>

XmPrimitive

RESOURCES

Name Type

XmNautoShowCursorPosition Boolean

XmNblinkRate int

XmNcolumns Short

XmNcursorPosition XmTextPosition

XmNcursorPosition Visible Boolean

XmNeditable Boolean

XmNeditMode int

XmNfontList XmFontList

XmNmarginHeight Dimension

XmNmargin Width Dimension

XmNmaxLength int

XmNpendingDelete Boolean

XmNresizeHeight Boolean

XmNresizeWidth Boolean

XmNrows short

XmNscrollHorizontal Boolean

XmNscrollLeftSide Boolean

XmNscrollTopSide Boolean

XmNscrollVertical Boolean

XmNselectThreshold int

XmNselectionArray Pointer

Default

True

500 (milliseconds)

dynamic

0

True

True

XmSINGLE_LINE_EDIT

dynamic

5

5

largest int

True

False

False

dynamic

True

dynamic

False

True

5

default array

XMTEXTWIDGET

XmNselectionArrayCount

XmNsource

XmNtopCharacter

XmNvalue

XmNverifyBell

XmNwordWrap

RESOURCE DESCRIPTIONS

XmNautoShowCursor­
Position

XmNblinkRate

XmNcolumns

XmNcursorPosition

XmNcursorPosition Visible

XmNeditable

XmNeditMode

XmNfontList

XmNmarginHeight,
XmNmarginWidth

XmNmaxLength

XmNpendingDelete

XmNresizeHeight

XmNresize Width

XmNrows

XmNscrollHorizontal

XmNscrollLeftSide

XmNscrollTopSide

XmNscrollVertical

XmNselectThreshold

XmNselectionArray

int

XmTextSource

XmTextPosition

String

Boolean

Boolean

4

Default source

o
1111

True

False

569

When true, text scrolls to make cursor visible if
cursorPosition resource changes.

Rate of cursor blinking (in milliseconds).

Width of text widget in columns of characters.

Position of the cursor in the text string.

When true, blinking cursor marks insert point.

When true, text can be modified. When false, text
is read-only.

Possible values: XmSINGLE_LINE_EDIT and
XmMULTCLINE_EDIT.

Font for widget.

Size of margin around text.

Maximum length of the text.

When true, selected area is deleted at next insert.

When true, widget tries to display all text it owns
in one window by readjusting its height.

When true, widget tries to display all text it owns
in one window by readjusting its width.

Height of widget in rows of characters.

When true, creates horizontal scroll bar.

When true, positions horizontal scroll bar on the
left side.

When true, positions horizontal scroll bar on top.

When true, uses vertical scroll bar.

Number of pixels that user must move mouse to
select a character.

Holds an array containing the actions that occur on
multiple mouse clicks. The default array contains
the values XmSELECT_POSITION, XmSELECT_
WORD, XmSELECT_LINE, and XmSELECT_ALL.

570 MOTIF WIDGET REFERENCE

XmNselectionArrayCount

XmNsource

XmNtopCharacter

XmNvalue

XmNverifyBell

XmNwordWrap

CALLBACKS

Callback List

XmNactivateCallback

XmNfocusCallback

XmNgainPrimaryCallback

XmNlosePrimaryCallback

XmNlosingFocusCallback

XmNmodifyVerifyCallback

XmNmotion VerifyCallback

XmNvalueChangedCallback

CALLBACK DESCRIPTIONS

XmN activateCallback

XmNfocusCallback

XmNgainPrimaryCallback

XmNlosePrimaryCallback

XmNlosingFocusCallback

XmNmodifyVerifyCallback

XmNmotion VerifyCallback

XmNvalueChangedCallback

Number of elements in selection array.

Allows sharing of text sources.

Holds the location of the first visible character in
the text string.

Holds the text string.

When true, sounds bell.

When true, turns on automatic word wrapping.

Call Data Type Reason

XmAny-
CallbackStruct XmCR_ACTIVATE

XmAny-
CallbackStruct XmCR_FOCUS

XmAny-
CallbackStruct ' XmCR_GAIN_PRIMARY

XmAny-
CallbackStruct XmCR_LOSE_PRIMARY

XmTextVerify-
CallbackStruct XmCR_LOSING_FOCUS

XmTextVerify- XmCR_MODIFYING_TEXT_
CallbackStruct VALUE

XmTextVerify- XmCR_MOVING_INSERT_
CallbackStruct CURSOR

XmAny-

CallbackStruct XmCR_ VALUE_CHANGED

Triggered when widget is activated.

Triggered when widget receives focus.

Triggered when widget gains primary selection.

Triggered when widget loses primary selection.

Triggered when widget loses focus.

Calle,d prior to changes in text due to insertion or
deletion.

Triggered each time cursor moves.

Called following text changes due to insertion or
deletion.

XMTEXTWIDGET

CALLBACK STRUCTURE

typedef struct
{

int reasonj
XEvent *eventj

} XmAnyCallbackStructj

typedef struct
{

int reasonj
XEvent *eventj
Boolean doitj
XmTextPosition currlnsert, newlnsertj
XmTextPosition startPos, endPosj
XmTextBlock textj

} XmTextVerifyCallbackStructj

CONVENIENCE FUNCTIONS

Widget XmCreateText(Widget parent,String name,
ArgList arglist,Cardinal argcount)j

Widget XmCreateScrolledText(Widget parent,String name,
ArgList arglist,Cardinal argcount)j

void XmTextClearSelection (Widget widget, Time clear_time)j
Boolean XmTextCopy (Widget widget, Time copy_time)j
Boolean XmTextCut (Widget widget, Time cut_time)j
int XmTextGetBaseline (Widget widget)j
Boolean XmTextGetEditable (Widget widget)j
XmTextPosition XmTextGetlnsertionPosition (Widget widget)j
XmTextPosition XmTextGetLastPosition (Widget widget)j
int XmTextGetMaxLength (Widget widget)j
char *XmTextGetSelection (Widget widget)j
Boolean XmTextGetSelectionPosition (Widget Widget,

XmTextPosition *left, XmTextPosition *right)j
XmTextSource XmTextGetSource (Widget widget)j
char *XmTextGetString(Widget widget)j
XmTextPosition XmTextGetTopCharacter (Widget widget)j
void XmTextlnsert (Widget widget, XmTextPosition position,

char *value)j
Boolean XmTextPaste (Widget widget);
Boolean XmTextPosToXY (Widget widget. XmTextPosition position.

Position *x. Position *y)j
Boolean XmTextRemove (Widget widget)j

571

572 MOTIF WIDGET REFERENCE

void XmTextReplace (Widget widget, XmTextPosition frompos,
XmTextPosition topos, char *value);

void XmTextScroll (Widget widget, int n);
void XmTextSetAddMode (Widget widget, Boolean state);
void XmTextSetEditable (Widget widge~, Boolean editable);
void XmTextSetHighlight (Widget w, ~TextPosition left,

XmTextPosition right, XmHighlightMode mode);
void XmTextSetlnsertionPosition (Widget widget, XmTextPosition position);
void XmTextSetMaxLength (Widget widget, int max_length);
void XmTextSetSelection (Widget widget, XmTextPosition first,

XmTextPosition last, Time set_time);
void XmTextSetSource (Widget widget, XmTextSource source,

XmTextPosition top_character, XmTextPosition cursor_position);
void XmTextSetString (Widget widget, char *value);
void XmTextSetTopCharacter (Widget widget, XmTextPosition top_character);
void XmTextShowPosition (Widget widget, XmTextPosition position);
XmTextPosition XmTextXYToPos (Widget widget, Position x, Position y);

XmToggleButton Widget

See Chapter 11. Also available as a gadget.

Description

Class Pointer

Class Name

Include File

Superclass

Lets user flip a two-state variable. Provides a visual indicator.

xmToggleButton WidgetClass

XmToggleButton

<Xm/ToggleB.h>

Xmlabel

RESOURCES

Name Type Default

XmNfillOnSelect Boolean True

XmNindicatorOn Boolean True

XmNindicatorSize Dimension XmINVALlD _DIMENSION

XmNindicatorType unsigned char dynamic

XmNselectColor Pixel dynamic

XmNselectInsensitivePixmap Pixmap XmUNSPECIFIED_PIXMAP

XmNselectPixmap Pixmap XmUNSPECIFIED _PIXMAP

XmNset Boolean False

XmNspacing Dimension 4

XmNvisible When Off Boolean dynamic

XMTOGGLEBUTTON WIDGET

RESOURCE DESCRIPTIONS

XmNfillOnSelect

XmNindicatorOn

XmNindicatorSize

XmNindicatorType

XmNselectColor

XmN selectlnsensitive-

Pixmap

XmNselectPixmap

XmNset

XmNspacing

XmNvisible When Off

CALLBACKS

Callback List

XmNarmCallback

XmNdisarmCallback

XmNvalueChangedCallback

CALLBACK DESCRIPTIONS

arm Callback

disarmCallback

valueChangedCallback

CALLBACK STRUCTURE

typedef struct
{

int reason;
XEvent *event;
int set;

When true, fills indicator with selectColor.

When true, makes indicator visible.

573

Sets indicator's size. Special value XmINVALID_
DIMENSION scales indicator to label's font size.

Valid values: XmONE_OF_MANY (diamond shape)
and XmN_OF _MANY (square shape).

Fill color for indicator.

Pixmap for selected and insensitive button.

Pixmap for selected and sensitive button.

Current value of the toggle.

Space between toggle indicator and button.

When false, makes indicator invisible if not
selected.

Call Data Type

XmToggleButtonCallbackStruct

XmToggleButtonCallbackStruct

XmToggleButtonCallbackStruct

Called when button is armed.

Reason

XmCR_ARM

XmCR_DISARM

XmCR_ VALUE_
CHANGED

Called when button is disarmed.

Called when value of set resource flips.

} XmToggleButtonCallbackStruct;

574 MOTIF WIDGET REFERENCE

CONVENIENCE FUNCTIONS

Widget XmCreateToggleButton(Widget parent ,String name,
ArgList arglist,Cardinal argcount);

Widget XmCreateToggleButtonGadget(Widget parent,String name,
ArgList arglist,Cardinal argcount);

).2 X TOOLKIT WIDGETS

The following widgets come from the X Toolkit. They are included because
you will need to use them often, and because they make up the hierarchy to
an application shell widget. See Section 14.5 for more information.

ApplicationShell Widget

Description

Class Pointer

Class Name

Include File

Superclass

RESOURCES

Name

XmNargc

XmNargv

The toplevel shell for any application.

applicationShellWidgetClass

ApplicationShell

<Xm/Xm.h>, <Xl1/Shell.h>

TopLevelShell

Type

int

String *

Default

o
NULL

RESOURCE DESCRIPTIONS

XmNargc

XmNargv

Number of strings held in argv.

Applications argument list. Contains a copy of
the command line arguments used to invoke the
application.

Composite Widget

Description

Class Pointer

Class Name

Include File

Superclass

The basis of all container widgets.

composite WidgetClass

Composite

<Xm/Xm.h>

Core

CORE WIDGET 575

RESOURCES

Name Type Default

XmNchildren WidgetList NULL

XmNinsertPosition (*)0 NULL

XmNnumChildren Cardinal 0

RESOURCE DESCRIPTIONS

List of child widgets. XmNchildren

XmNinsertPosition Pointer to a function determining insert position of
children.

XmNnumChildren Number of children.

Constraint Widget

Description

Class Pointer

Class Name

Include File

Superclass

The basis of all constraint Widgets.

constraintWidgetClass

Constraint

<Xm/Xm.h>

Composite

This widget defines no resources of its own.

Core Widget

See Chapter 3.

Description The superclass of all widgets. All widgets have the core widget's
resources and callbacks.

Class Pointer

Class Name

Include File

Superclass

RESOURCES

Name

widgetClass

Core

<Xm/Xm.h>

None

XmNaccelerators

XmNancestorSensitive

XmNbackground

Type

XtAccelerators

Boolean

Pixel

Default

NULL

dynamic

dynamic

576 MOTIF WIDGET REFERENCE

XmNbackgroundPixmap

XmNborderColor

XmNborderPixmap

XmNborderWidth

XmNcolormap

XmNdepth

XmNheight

XmNinitialResourcesPersistent

XmNmappedWhenManaged

XmNscreen

XmNsensitive

XmNtranslations

XmNwidth

XmNx

XmNy

RESOURCE DESCRIPTIONS

XmNaccelerators

XmNancestorSensitive

XmNbackground

XmNbackgroundPixmap

XmNborderColor

XmNborderPixmap

XmNborderWidth

XmNcolormap

XmNdepth

XmNheight

XmNinitialResources­
Persistent

XmNmappedWhenManaged

XmNscreen

XmNsensitive

XmNtranslations

XmNwidth

XmNx

XmNy

Pixmap XmUNSPECIFIED _PIXMAP

Pixel XtDefaultForeground

Pixmap XmUNSPECIFIED _PIXMAP

Dimension 1

Colormap copy from parent

int dynamic

Dimension dynamic

Boolean True

Boolean True

Screen* dynamic

Boolean True

XtTranslations NULL

Dimension dynamic

Position 0

Position 0

Translation table for accelerators.

If true, the parent of this widget can receive input
events.

Background color.

Pixmap for tiling background of widget.

Color of widget's border.

Pixmap for the border.

Width of border in pixels.

Colormap table for widget.

Depth of pixels in widget.

Height of Widget.

Set to true if widget will not be destroyed during
the life of the application. Set to false if it will.

When true, widget is mapped as soon as it is
managed. When false, Widget must be mapped
explicitly.

Screen that displays widget.

When true, widget receives input events.

Pointer to translation list.

Width of the widget.

X coordinate of the widget.

Y coordinate of the widget.

SHELL WIDGET

CALLBACK DESCRIPTIONS

XmNdestroyCallback Triggered when widget is destroyed.

Shell Widget

Description

Class Pointer

Class Name

Include File

Superclass

Toplevel widget that works with the window manager.

shellWidgetClass

Shell

<Xm/Xm.h>, <Xl1/Shell.h>

Composite

RESOURCES

Name

XmNallowShellResize

XmNcreatePopupChildProc

XmNgeometry

XmNoverrideRedirect

XmNsaveUnder

XmNvisual

RESOURCE DESCRIPTIONS

Type Default

Boolean False

(*)() NULL

String NULL

Boolean False

Boolean False

Visual* Copy From Parent

When false, shell size cannot be changed.

Function called when shell is popped up.

Geometry for the shell.

Do not change.

577

XmNallowShellResize

XmNcreatePopupChildProc

XmNgeometry

XmNoverrideRedirect

XmNsaveUnder Hint to window manager if it has a backing store
that determines if the screen under this widget
should be saved or not.

XmNvisual

CALLBACKS

Callback List

XmNpopdownCallback

XmNpopupCallback

Visual used when widget is created.

578 MOTIF WIDGET REFERENCE

CALLBACK DESCRIPTIONS

XmNpopupCallback

XmNpopdownCallback

TopLevelShell Widget

Triggered when widget is popped up.

Triggered when widget is popped down.

Description

Class Pointer

Class Name

Include File

Superclass

Creates additional decorated shells on the screen.

topLevelShellWidgetClass

RESOURCES

Name

TopLevelShell

<Xm/Xm.h>, <X11/Shell.h>

VendorS hell

Type Default

False XmNiconic

XmNiconName

XmNiconNameEncoding

Boolean

String

Atom

NULL

XA_STRING

RESOURCE DESCRIPTIONS

XmNiconic

XmNiconName

XmNiconNameEncoding

VendorShell Widget

When true, widget appears as icon at startup.

Title of widget's icon.

Encoding of icon name string.

Description

Class Pointer

Class Name

Include File

Superclass

Shell widget superclass for all shells visible to window manager.

vendorShellWidgetClass

VendorShell

<Xm/Xm.h>, <X11/Shell.h>

WMShell

RESOURCES

Name Type

XmNdefaultFontList XmFontList

XmNdeleteResponse unsigned char

XmNkeyboardFocusPolicy unsigned char

XmNmwmDecorations int

Default

dynamic

XmDESTROY

XmEXPLICIT

-1

WMSHELL WIDGET

XmNmwmFunctions

XmNmwmInputMode

XmNmwmMenu

XmNshellUnitType

XmNuseAsyncGeometry

RESOURCE DESCRIPTIONS

XmNdefaultFontList

XmNdeleteResponse

XmNkeyboarFocusPolicy

XmNmwmDecorations

XmNmwmFunctions

XmNmwmlnputMode

XmNmwmMenu

XmNshellUnitType

XmNuseAsyncGeometry

WMShell Widget

int

int

String

unsigned char

Boolean

-1

-1

NULL

XmPIXELS

False

579

Font for any text, label, or button child unless some
other font is specified for the widget.

Valid values: XmDESTROY, XmUNMAP, and
XmDO_NOTHING. Specifies what happens when
the shell receives a destroy message from the
window manager.

Valid values: XmEXPLICIT (click-to-type) and
XmPOINTER (pointer-driven).

Specifies which window decorations are in effect.

Specifies functions in the system menu.

Specifies the input mode flag.

Items to be added to the end of the system menu.

Valid values: XmPIXELS, Xm100TH_MILLIMETERS,
Xm1000TH_INCHES, XM100TH_POINTS, and
Xm 100TH_FONT_ UNITS.

When set to true, XmNwaitForWm is set to false
and XmNwmTimeout is set to O. When false,
nothing happens.

Description

Class Pointer

Class Name

Include File

Superclass

Shell widget providing interface to window manager.

wmShellWidgetClass

RESOURCES

Name

XmNbaseHeight

XmNbaseWidth

XmNheightInc

WMShell

<Xm/Xm.h>, <X11/Shell.h>

Shell

Type Default

int X tU nspecifiedShellIn t

int XtUnspecifiedShellInt

int X t U nspecifiedShellIn t

580 MOTIF WIDGET REFERENCE

XmNiconMask Pixmap

XmNiconPixmap Pixmap

XmNicon Window Window

XmNiconX int

XmNiconY int

XmNinitialState int

XmNinput Boolean

XmNmaxAspectX int

XmNmaxAspectY int

XmNmaxHeight int

XmNmaxWidth int

XmNminAspectX int

XmNminAspectY int

XmNminHeight int

XmNminWidth int

XmNtitle String

XmNtitleEncoding Atom

XmNtransient Boolean

XmNwaitForWm Boolean

XmNwidthInc int

XmNwindowGroup Window

XmNwinGravity int

XmNwmTimeout int

RESOURCE DESCRIPTIONS

XmNbaseHeight

XmNbaseWidth

XmNheightInc

XmNiconMask

XmNiconPixmap

XmNicon Window

XmNiconX

XmNiconY

XmNinitialState

NULL

NULL

NULL

-1

-1

NormalState

False

Xt U nspecifiedShellIn t

XtUnspecifiedShellInt

Xt U nspecifiedShellInt

XtUnspecifiedShellInt

XtUnspecifiedShellInt

XtUnspecifiedShellInt

XtUnspecifiedShellInt

Xt U nspecifiedShellInt

dynamic

XA_STRING

False

True

Xt U nspecifiedShellIn t

dynamic

dynamic

5000 ms.

Starting pOint for height progression. Widget height
starts here and goes up by XmNheightInc.

Starting point for width progression. Widget width
starts here and goes up by XmNwidthInc.

Increments in which height increases and
decreases.

Bitmap for clipping face of icon.

Pixmap on face of icon.

Window holding icon.

Preferred X location of icon.

Preferred Y location of icon.

Valid values: NormalState and IconicState.

WMSHELL WIDGET

XmNinput

XmNmaxAspectX,
XmNmaxAspectY

XmNmaxHeight,
XmNmaxWidth

XmNminAspectX,
XmNminAspectY

XmNminHeight,
XmNminWidth

XmNtitle

XmNtitleEncoding

XmNtransient

XmNwaitForWm

XmNwidthInc

XmNwindowGroup

XmNwinGravity

XmNwmTimeout

Helps determine input model for widget.

Maximum aspect ratio (X/Y) of widget.

Maximum height and width of widget.

Minimum aspect ratio (X/Y) of widget.

Minimum height and width of widget.

Title displayed in window border.

Encoding for XmNtitle.

If widget is a pop-up, this is true.

Determines whether widget waits for window
manager to respond to actions.

581

Increments in which width increases and decreases.

Window to which this widget belongs.

Valid values: NorthGravity, NorthEastGravity,
EastGravity, and so on. Determines which way
window manager places widget.

Time in milliseconds to wait for window manager.

INDEX

Accelerators
help on, 98
for menus, 93-94
resource for, 33, 94

acceleratorText resource, 94
activate callback

differentiating, 54-57
for drawn buttons, 196
for menus, 90
for message dialog box, 104
for push-button widgets, 51-57
for temperature conversion program,

72
for tic-tac-toe program, 127

add_accelerator function, 94, 455-456
add_items function, 183-184
Add mode

for lists, 506
for text, 500

Addresses
inC, 382, 405-406
of callbacks, 50

adjustLast resource, 81
Alignment, resource for, 33, 35, 41
alCcallbacks.c program, 54-57
Allocating memory, 410-415, 488, 491-492
ALT key for accelerators, 93
Ampersands (&:) in C, 382-383, 406, 410
Angles, PostScript, 375
Animation, 278-279
anomaly.c program, 44-45
app-defaults directory, 202, 205, 220
Appearance of Widgets, resources for, 15, 17,

21,30-32
application_class parameter, 199
Application program interface (API), 13
ApplicationShell class, 241
ApplicationShell widgets, 574
Apply buttons, 113
arc_mode field, 295
arc operator (PostScript), 378

583

Arcs
drawing, 299, 476-477
filled,300,481-482
in PostScript, 374, 376,378
structure for, 475

argc parameter, 22, 24, 428
Argument arrays and lists

for resources, 25-26, 37, 493
for widgets, 494

argv parameter, 22, 24,428
arm callback

differentiating, 54-57
for push-button Widgets, 51

Arrays
inC, 385-388,391,415-420
memory allocation for, 488
number of elements in, 492
for resources, 25-26, 37
of selected list items, 504-505

Arrow button widgets, 178-180,523,525
arrow.c program, 179-180
arrowCB function, 179
ASCII files for PostScript, 358
Asente, P., X Window System Toolkit, 203,

255
Assignment operator in C, 381
Asterisks (*)

with font names, 43
with resource names, 201, 220

Athena Widget set, 15
Attaching

forms, 70-71, 77,205,516-518
gadgets, 239

autoShowCursorPosition resource, 156
autoUnmanage resource, 113, 214, 221

Background color, 290-294, 324, 468,
474-475

backgroundPixmap resource, 223
Backing stores for drawings, 287
Bad days, dealing with, 342-345

584 INDEX

BadDrawable error, 284, 313
Baselines

for strings, 507
for text, 497

bb_dialog function, 210
Behavior of widgets, resources for, 15, 17,

21,30-32
Beveled line edges, 294
Binary files in C, 429-432
bind operator (PostScript), 364
bitmap.c program, 305, 307-311
Bitmaps

clip masks as, 338
creating, 470
for dialog boxes, 223
drawing, 304-311
pixmaps from, 471
with X servers, 246

Black pixel value, 468
Blinking I-bar cursor, 151
Blitzen simulator, 12
Books, reference, 347-349 .
Boolean expressions in C, 382-383
borderWidth resource, 223
Brackets ({})

in C, 381
in PostScript, 364

Brain, Marshall, application by, 12
Branching in C, 382-385
Browse select policy, 181
browseSelectionCallback callback, 181
Bubble sort in C, 385-388
Bulletin board dialog widgets, 210, 212, 221
Bulletin board widgets, 65-72, 525-528

resizing, 72-73
for temperature conversion program,

65-66,203-206
Bus errors, 39
Button clicks in draWings, 319-320
button.c program, 51-52, 131-133
buttonCB function

for callback chaining, 132
for Clipboard, 237-238
for diagonal line drawing, 285
for drawn buttons, 194
for error message dialog boxes, 117
for file selection dialog boxes, 114-115
for message dialog boxes, 102, 105
for mkill wrapper program, 143, 145
for PostScript program, 369,372-373
for prompt dialog boxes, 108
for selection dialog boxes, 111
for shell widgets, 176-178
for temperature conversion program,

67,72-73,203

for text widgets, 153-154
for tic-tac-toe program, 127, 129-130
for warnings, 271-272
for work procs, 259

ButtonMotion events, 320-321
with rubberbanding, 324
with virtual spaces, 332

ButtonMotionMask value, 320
ButtonPress constant, 249
ButtonPress events, 320

with rubberbanding, 324
structure for, 58, 252-253
with virtual spaces, 332

ButtonPressMask value, 320
buttonR.c program, 200-202
ButtonRelease events, 262

with rubberbanding, 324
structure for, 58
with virtual spaces, 332

Buttons
apply, 113
arrow, 178-180, 523, 525
cascade, 84,90, 97-98,528-529
in dialog boxes, 104-105, 107
in drawings, 319-320
drawn, 194-196,532-533
event handling for, 262, 320-321, 324,

332
push-button (See Push-button widgets

and push buttons)
toggle, 168-174,573-574

C,379
arrays in, 385-388,391,415-420
branching and looping in, 382-385
command line parameters in, 428
dynamic data structures in, 410-415
functions in, 387, 391-395
incrementing variables in, 391
libraries for, 395-401
operators in, 388, 426-427
pointers in, 404-418
precedence in, 388,412,426-427
record-based files in, 429-432
records in, 389-390
sample program in, 380-382
strings in, 39-41, 229, 381, 401-402,

418-426
text files in, 401-404
typecasting in, 388-389
types in, 389

-c compiler option in C, 400
%c format operator in C, 381
C Programming Language, The (Kernighan

and Ritchie), 379

INDEX

c2f.bb.c program, 66-72
c2f.bbR.c program, 203-206
c2f.form.c program, 73-78
call_data parameter, 57-61

for command widgets, 186
for drawings, 314-315
for list widgets, 182
for mkill wrapper program, 143
for prompt dialog boxes, 109
and time field, 495
for toggle button widgets, 168

Callback chains, 131-134
callback.c program, 52-54
Callbacks, 7-8, 17,21

adding, 484
call_data parameter for, 57-61
chaining of, 131-134
differentiating, 54-57
inheriting, 35-36
parameters for, 54
for push-button widgets, 50-54
for scale Widgets, 61-63
speed of, 63-64
for tic-tac-toe program, 127-131

Campbell, Kelly, application by, 9
Cancel button, 104-105
cancel callback, 104
cancelButton resource, 221
cancelLabelString resource, 105
cap_style field, 294
Cascade buttons, 84, 90, 97-98, 528-529
Case Matters button, 211
Case-sensitivity

in C, 379
for resource names, 39
in searches, 211

cb program, 380
Celsius-to-Fahrenheit conversion program

with bulletin board widgets, 65-66,
203-206

with form Widgets, 73-78
Chaining, callback, 131-134
change_menu_sensitivity function, 438
change_sensitivity function, 159, 166
change_title function, 439-440
changeCB function

for gadgets, 239-240
for radio buttons, 171

changedCB function, 159, 166
char data type in C, 381
Character sets

forfonts, 230-231, 234
for strings, 228

Character strings. See Strings
Characters in PostScript, 357

585

charpath operator (PostScript), 360, 362-
363,378

Check boxes, 170
check_win function, 128-129, 132-133
Child parameter, 105
Children

dialog box, 106-107
realizing, 28-29

Chords, mode for, 295
Circles, drawing, 299-300
Classes

names for, 23-24, 199,201
pointers for, 34

Clearing
areas for drawing, 313-314
text, 496
windows, 468-469

click_count variable
for arrow button widgets, 179-180
for callbacks, 59-61

clickcount.c program, 59-61
clicks.c program, 319-320
client_data parameter

for differentiating callbacks, 54-57
for Find dialog box, 216
for menus, 90
for message dialog boxes, 104-105
for text editor, 166
for tic-tac-toe program, 125
for time outs, 256

Client programs, 16, 244-245
clip_mask field, 295-296
Clip masks, 295-296, 338-341
Clip origin, 295-296, 474
clip_x_origin field, 291, 295-296
clip_y _origin field, 295-296
Clipboard, 236-239

copying data to, 236, 496-497, 518-519
formats for, 236, 521-522
length of data items in, 521
locking, 236, 519-520
retrieving data from, 520-521
starting transfers with, 516-518
with text, 155, 496-497,499

clipboard_test.c program, 236-239
Clipboardxxx constants, 516, 520
clip.c program, 339-341
Clipping drawings, 278, 286, 295-296,

338-341
closeCB function, 446
closepath operator (PostScript), 378
Closing files in C, 403, 431
Code, downloading, 346-347
Color, 468

of characters in PostScript, 362

586 INDEX

Color (continued)
with graphics context, 290-294, 324,

468,474-475
of pixels, 296, 468, 475
resource files for, 206
with X servers, 246-247

Comma operator (,) in C, 385
command_changedCB function, 186-188
Command-driven user interfaces, 8
command_enteredCB function, 186-187
command line parameters, 22, 24

in C, 428
for resources, 206-208

Command widgets, 186-188,529-530
command.c program, 187-188
Comments in PostScript, 358
Comparing strings, 420, 507-508
Compiling, 2

C code, 380, 400-401
problems in, 3

Complex parameter, 300
COMPOSE CHARACTER key, 93
Composite widgets, 241, 574-575
Compound strings, 39,228, 508-509
Concatenating strings, 421, 508, 513
Consistency in user interfaces, 355
Constants in C, 379, 381, 424-426
Constraint resources, 76-77
Constraint widgets, 184, 575
Container Widgets, 574-575
Context

of applications, 23-24
for fonts, 515
graphics (See Graphics context)
for strings, 513

Context-sensitive help, 98
context variable, 256
Control keys for accelerators, 94
Convenience functions, 34-35, 495-522
Converting

Celsius-to-Fahrenheit, 65-66, 73-78,
203-206

PostScript arcs and angles, 374-375
string types, 26-27, 39-41, 229

Convex parameter, 300
Coordinate systems

for mouse events, 59
for PostScript, 358
for windows, 277-278

CoordModeOrigin parameter, 297
CoordModePrevious parameter, 297
Copying

arrays in C, 417, 419-420
to Clipboard, 236, 496-497, 518-519
fonts, 514

memory blocks, 492
pixels, 304-305, 469
strings, 420-423, 508,513

copypage operator (PostScript), 378
Core widgets, 241, 575-577
count field, 315
Crashes, debugging, 350
create_dialog_boxes function, 461-465
create_find_dialog function, 458-461
create_icon function, 465-466
create_menus function

for accelerator keys, 94
for Find dialog box, 216
for help, 97
for hierarchical menus, 92-93
for labels and separators in menus,

91
for menu creation, 87-89
for mnemonics, 96
for NMG Editor, 457-458
for text editor, 164
for tic-tac-toe program, 125-126

Create PostScript function, 359-360
currencshape variable, 338
CurrentTimeconstant, 153, 495, 517
Cursor

blinking I-bar, 151
creating, 470
defining, 471-472
freeing, 472
position of, 151, 153
shape of, 253-254
undefining, 475
with X servers, 247

cursorfont.h library file, 254
cursorPosition resource, 151
Custom dialog boxes

creating, 210-211
enhancing, 223
Find,211-217
implementing, 222-227
resources for, 217-222

Customizing menus, 90-96

%d format operator in C, 381
Dashed lines, 294
Debugging, 350-353
Decorations for dialog boxes, 220-221
def operator (PostScript), 364, 367
Default character set, 234
default_font.c program, 234-235
Default resource values, 34
defaultButton resource, 221
#define directive (C), 381
Delays and work procs, 261

INDEX

Deleting
list items, 503-504
text, 497, 499

DeMaurice, Andy, application by, 9
Dependency lines in C make files, 401
Depth

of bitmaps, 307, 309-310
of pixmaps, 246-247, 277, 311

Description fields, 34
Deselecting list items, 504
Designing programs, 19-22,342-345

tic-tac-toe program, 120-121
user interfaces, 354-356

Destroying widgets, 489
Diagonal lines, drawing, 279-281, 284-287,

359-360
Dial Widget, 135
Dialog boxes

children for, 106-107
custom (See Custom dialog boxes)
error message, 116-119
file selection, 113-115
message, 100-107
prompt, 107-110
selection, 11 0-113

dialogCB function
for callback chaining, 131-133
for error message dialog boxes, 116
for file selection dialog boxes, 114
for input, 263-264
for message dialog boxes, 101-102,

104-105
for mkill wrapper program, 143-144
for prompt dialog boxes, 108-109
for selection dialog boxes, 110-111
for tic-tac-toe program, 127

dialogStyle resource, 221
Dictionary stack (PostScript), 357
Dimension resource type, 352
Disabling menu items, 92
disarm callback

differentiating, 54-57
for push-button Widgets, 51

Disk quota, 135-136
Display type, 153
Displays, 245
Division in C, 388
do_case_sensitivity function

for Find dialog box, 216, 227
for NMG Editor, 450

do_change function
for Find dialog box, 216, 226-227
for NMG Editor, 449-450

do_computers_move function, 129, 132
do_find function

for Find dialog box, 216, 225-227
for NMG Editor, 447-449

do_find_change function
fpr Find dialog box, 216, 227
for NMG Editor, 450

587

do-while structures (C), 384
Documentation for callback chains, 133-

134
Double quotes (") for C strings, 381
Downloading code, 346-347
drag callback, 72
draw_icon function, 308-309
draw_points function, 297
draw_shape function, 334, 338
draw_string.c program, 302-303
draw1.c program, 279-281
draw2.c program, 281-284
draw3.c program, 284-287
Drawables,279

copying pixels between, 469
retrieving information on, 473

DrawArc procedure (PostScript), 376
drawHorizontalLine procedure (PostScript),

363-365,375
Drawing, 276

arcs, 299-300, 476-477, 481-482
bitmaps, 304-311
circles, 299-300
clearing areas for, 313-314
clicks in, 319-320
clipping in, 278, 286, 295-296, 338-341
computer hardware for, 277-279
ellipses, 299
expose callback for, 284-287
exposure regions for, 314-315
filled objects, 299-301, 481-482
flushing output with, 341
functions for, 476-483
graphics context for, 287-296
lines, 279-281, 284-287, 297-298,

359-360,477-478
pixmaps, 304-306, 311-313
pOints, 296-297, 478-479
polygons, 300-301, 482
pop-up menus for, 333-338
with PostScript, 358-360
problems in, 281-284
rectangles, 298-300, 479-480, 482-483
resizing events for, 316-319
rubberbanding in, 321-325
strings, 301-303, 477, 480-481, 509-

510
structures for, 475-476
virtual spaces in, 325-333
widgets for, 279-281

588 INDEX

Drawing (continued)
and work procs, 258-262
with X servers, 246
X Window System for, 243

Drawing area, 262, 309
printing, with PostScript, 369-376
push buttons with, 194-196
widgets for, 279-281, 531-532

drawing_area widget, 262, 309
DrawLine procedure (PostScript), 375-376
Drawn button widgets, 194-196,532-533
drawn_button.c program, 194-196
Dumping drawing area to printer with

PostScript, 369-376
Dynamic data structures in C, 405, 410-415

Edit menu, 98
editable resource, 167

retrieving, 497
setting, 500

Editor resource file, 219-220
editor.c program, 158-167
Editors

NMG, 433-467
text, 157-167

Ellipses, drawing, 299
Empty strings, checking for, 511
Encapsulated PostScript files, 376
End-of-file marker in C, 403-404
Ends of lines, 294, 297
Enhancing dialog boxes, 223
Equal signs (=) in C, 381, 383-384
Error message dialog boxes, 116-118
Error messages and error handling

with C functions, 392
in compilation, 3
dialog boxes for, 116-118
generating, 486
in Xt layer, 268-272

error.c program, 116-118
Errors, bus, 39
EvenOddRule value, 294-295
Event-driven programming, 8, 13-15
event field for callbacks, 58
Events and event handlers

adding, 484-485
and event loops, 13,29,250,253,352,

487
masks for, 249
programming for, 8, 13-15
queues and records for, 13
X, 248-253
Xt,262-263

exch operator (PostScript), 368, 376

Exchanging information with Clipboard,
236-239,516-522

exec command, 140-141
Executable lines in C make files, 401
Execution stack (PostScript), 357
Exit option (File), 98
expose callback, 332

for diagonal lines, 284-287
for drawn buttons, 196

Expose constant, 249
Expose events, structure for, 252-253
exposeCB function

for clip masks, 340
for drawing failure, 283
for drawn buttons, 194-195
for exposure regions, 314-315
for drawing failure, 283
for fonts, 232
for PostScript program, 373
for resizing drawings, 317-319
for virtual spaces, 329, 332
for work procs, 259, 261

Exposure regions for drawing, 314-315
exposure.c program, 314-315
exposureCB function

for diagonal line drawings, 280-281
for string drawings, 301-303

Extended select policy, 181
extendedSelectionCallback callback, 182
extern keyword (C), 398

%f format operator in C, 381
Factorial program in C, 380-382
fallback_options parameter, 199
Fallback resources, 208-209
fallback.c program, 208-209
False value in C, 382
fclose function (C), 403, 431
feof function (C), 403
fflush function, 268
fgetc function (C), 403
fgets function (C), 403-404
Fields in C records, 390
File menu, 98
File selection dialog boxes, 100, 103, 113-

115, 533-535
Files

dialog boxes for, 100, 103, 113-115,
533-535

header, 15, 22
opening and closing, in C, 403-404,

431-432
for PostScript, 358
record-based, in C, 429-432
for resources, 199-206

INDEX

Files (continued)
text, in C, 401-404

fileSB.c program, 114-115
fill operator (PostScript), 363, 378
fill_rule field, 294-295
fill_style field, 294
Filled objects, drawing, 299-301, 481-483
Find dialog box

creating, 211-217
implementing, 222-227

find_dialog Widget, 214
find_rc Widget, 216
findCB function

for Find dialog box, 216-217, 222
for NMG Editor, 450-451

findfont operator (PostScript), 361, 378
float data type in C, 381
Flushing

event queues, 253
output buffers, 341

folder.xbm file, 305-306, 313
font field, 295
Font lists, 229-235
font.c program, 41-44
Fonts, 229-235

adding, 514
changing, 41-44
context for, 515
copying, 514
creating, 515
freeing, 472
for labels, 25
loading, 230, 473-474
memory for, 515
for PostScript, 361, 378
resource for, 33, 35, 41-44, 152
retrieving, 515
for strings, 301
with X servers, 246

fopen function (C), 403, 431
for loops (C), 384-385
for operator (PostScript), 367, 377
Foreground color, 290-294, 324, 468, 474-

475
Forks, 140-141,266-267
Form attachments, 70-71, 77,205,516-518
form_dialog function, 210
Form dialog widgets, 210
Form Widgets, 536-538

for resizing, 72-78
for text editor, 166
for tic-tac-toe program, 121

Format operators in C, 381
Formats for Clipboard, 236, 521-522

fprintf function (C), 403
fputc function (C), 403
fputs function (C), 403
Frame Widgets, 180-181, 538
frame.c program, 180-181
fread function (C), 431
free function (C), 411, 425-426
fscanf function (C), 403-404
fseek function (C), 431
function field, 293
Function keys

for accelerators, 94
help for, 98

Functions in C, 387, 391-395
fwrite function (C), 431

-g compiler option, 350
Gadgets, 239-241, 538-539
gc_xor graphics context, 324
GCClipXOrigin mask bit, 291
geCdepth function

for bitmaps, 307, 309
for pixmaps, 311

getc function (C), 402
getchar function (C), 402
gets function (C), 402
getsize.c program, 46-47
Gettys, J., X Window System, 203
Global variables, 22
Goals and purpose of programs, 19
Graphics context, 284, 287-296

clip origin in, 474

589

color for, 290-294, 324,468,474-475
creating, 470
freeing, 472
read-only, 489
releasing, 492
structure for, 288-290
with X servers, 247-248

Graphics state with PostScript, 357, 364,
377

grayed-out menu items, 92
grestore operator (PostScript), 364, 374, 377
gsave operator (PostScript), 364, 374, 377
GXcopy function, 293
GXxor function, 321, 324

handle_button function
for activating callbacks, 52-54
for chaining callbacks, 131-132
for click counts, 59-61
for multiple callbacks, 54-57
for reason for callbacks, 57-59

handle_click function, 262-263
for drawings, 320

590 INDEX

handle_click function (continued)
for scrolled window widgets, 189

handle_close function, 441-442
handle_done function

for pop-up menus, 335-337
for rubberbanding, 323-324
for virtual spaces, 328-329

handle_drag function
for pop-up menus, 335, 338
for rubberbanding, 323-324
for virtual spaces, 328

handle_input function, 264-265, 267
handle_save function

for NMG Editor, 442-443
for text editor, 161

handle_scale function, 61-63
handle_start function

for pop-up menus, 335, 337
for rubberbanding, 322, 324
for virtual spaces, 328

Header files, 15, 22
in C, 398
missing, 27, 353

Headers in PostScript, 363
Heap for C dynamic data structures, 410-

415
Height

of bitmaps, 310
of drawings, 316
for Expose events, 253
resources for, 21, 30-32, 35-39, 44-47
of strings, 512

Hello World program, 19-22
Help buttons, 97, 104-105
Help menu, 96-98
helpLabelString resource, 105
Hierarchies

of libraries, 276-277
of menus, 92-93,98
of objects, 17

Highlighting text, 500
History, command, 186
HP Widget set, 15

I-bar cursor, 151
if operator (PostScript), 367, 376
if statements (C), 382
ifelse operator (PostScript), 367, 376
#include directive (C), 381
Include files, 22, 34
Incrementing variables in C, 391
Increments in PostScript for loops, 367
Indentation in C, 380
Indexes

array, in C, 386

for help, 98
Information dialog boxes, 116, 118
information hiding in C, 399, 414
Inheritance, 17, 35-36, 241
iniCboard function, 126
Input

function for, 485
with Xt layer, 263-268

input.c program, 263-268
Inserting strings, 498-499
Insertion position

retrieving, 497
setting, 500

Interfaces. See User interfaces
Interpreted language, PostScript as, 358
Intrinsics layer. See Xt layer
Intrinsics.h library, 14
Invalid resource settings, 351-352

join_miter field, 294
]oinxxx miter style, 294
jump_to_line function

with NMG Editor, 445
with text editor, 156-157

jumpCB function, 445-446

Kernighan, B., The C Programming Language,
379

Keyboards, 16,245
keycode field, 253
KeyPress constant, 249
Keypress events

event record for, 13
structure for, 251-253

Keywords in C, 379
kill command, 136-137
Kochan, Stephen, Topics in C Programming,

140

label_pixmap.c program, 311-313
Label widgets and labels, 1-2, 19,539-541

creating, 25, 27-28
fonts for, 41-44
height and width for, 30-32, 35-39,

44-45
inheritance by, 35-36
for menus, 90-91
and push-button widgets, 50
resource list for, 32-35
strings for, 39-41
for tic-tac-toe program, 121

labe1.c program, 1-2
Labe1.h include file, 22, 27
labelPixmap resource, 313
labelString resource, 30, 201, 206

INDEX

labelString resource (continued)
changing, 39-41
reading, 47-49
in temperature conversion program, 72

labelType resource, 313
Landscape mode with PostScript, 376
Last time stamp, 153, 490, 495, 517
Layers, UNIX, 14. See also Xt layer
Leading blanks in C strings, removing,

423-424
leftOffset resource, 71
Length

of Clipboard data items, 521
of strings, 419, 421, 513

Libraries
API,13
in C, 395-401
for compiling, 2
hierarchyof,276-277
for mkill wrapper program, 137-143
standard, 14

Limits in PostScript for loops, 367
line_style field, ~94
line_width field, 294
Lines

drawing, 279-281, 284-287, 297-298,
359-360,477-478

in PostScript, 363-367, 377-378
width of, 294, 364-365

lineto operator (PostScript), 359, 377
Linexxx style, 294
link_close function, 138-139, 142
link_handle structure, 138
link_input_waiting function, 139, 142-143
link_kill function, 139, 143
link_open function, 138-140, 143
link_read function, 139-140, 142-143
link_write function, 139-140, 143
link_write_char function, 139, 143
link.c program, 140-143
link.h library file, 138-139, 144-146
Linking, 2

in C, 400
for mkill wrapper program, 137-143

List widgets and lists, 112, 181-184, 541-
544

add mode for, 506
adding items to, 183-184, 502-503
checking for items in, 505
deleting items from, 503-504
deselecting items in, 504
finding items in, 504
font, 229-235
position of items in, 182, 184, 505, 507
replacing items in, 505-506

selecting items in, 506
visible items in, 506-507

list.c program, 182-183
Loading

fonts, 230, 473-474
resources, 202

Local variables, 22
Locking clipboard, 236, 519-520
loop operator (PostScript), 377
Loops

in C, 382-385
event, 13,29,250,253,352,487
in PostScript, 367-369, 377

Lovette, Lance, application by, 10
lowercase function

for Find dialog box, 224-225
for NMG Editor, 447

Magic cookie for PostScript, 358-359
main function (C), 381
Main window Widgets, 191,544-545
make facility (C), 400-401
make_help_menu function

for menu creation, 97
for NMG Editor, 455

make_menu function
for Find dialog box, 216
for help, 96
for hierarchical menus, 92
for menu creation, 87, 89-90
for mnemonics, 95-96
for NMG Editor, 456-457
for text editor, 163-164
for tic-tac-toe program, 125

make_menu_item function
for help, 96
for hierarchical menus, 92
for menu creation, 86-87, 89-90
for mnemonics, 95
for Options menu, 192-193
for pop-up menus, 336, 338
for tic-tac-toe program, 125

make_menu_Iabel function, 90-91
make_menu_option function

for NMG Editor, 456
for text editor, 163

make_menu_separator function, 91
make_menu_toggle function, 172
malloc function (C), 268, 411, 425
Managed Widgets, 29

checking for, 490
creating, 488

Manager widgets, 546-547
bulletin board, 65-72
inside managers, 79

591

592 INDEX

Manager widgets (continued)
for resizing, 72-78
RowColumn, 78-82
for temperature conversion program,

65-66
Mapping windows, 249
Margins, resource for, 33-34
Masks

for drawings, 338-341
for events, 249
for graphics context, 291, 293, 295-296
for mouse buttons, 320

Mathematica program, 342
maximum resource

for scale widgets, 62
for scroll bar widgets, 174

maxLength resource, retrieving, 497
mem_allocated result, 184
memcpy function (C), 416
Memory

allocating, 410-415, 488, 491-492
for arrays, 488
copying, 416, 492
for drawings, 278-279
for fonts, 515
freeing, 489
screen, 247
for strings, 491, 511
with X servers, 247
Xt layer management of, 268-269

Memory leaks, 48-49
Menu bar widgets and menu bars, 82, 84,

121
Menu-driven user interfaces, 8, 11, 13
Menu panes, 82, 84
menu.c program, 86-90
menuCB function

for callback chaining, 132
for Find dialog box, 216
for menu creation, 86, 89-90
for NMG Editor, 451-455
for Options menu, 192
for pop-up menus, 336, 338
for text editor, 162-163, 166
for tic-tac-toe program, 126-127
for time, 153, 495

menuHelpWidget resource, 96-97
Menus

accelerators for, 93-94
customizing, 90-96
Help, 96-97
hierarchical, 92-93, 98
labels and separators for, 90-91
and menu bars, 83-90
mnemonic traversal in, 94-96

Option, 99, 191-194
pop-up, 98-99, 333-338
sensitivity of items on, 92
style of, 98
toggles in, 172-173

MenuShell Widgets, 547
Message box widgets, 19, 104,548-550
Message dialog boxes, 100-107, 121
message.c program, 101-105
Messages. See Callbacks
META key for accelerators, 93-94
Metaphors in user interfaces, 355
minimum resource

for scale Widgets, 62
for scroll bar widgets, 174

mkill wrapper program, 136
creating, 143-146
link library for, 137-143

mkill.c program, 144-146
mnemonic resources, 33-34, 94
Mnemonic traversal in menus, 94-96
Modes

add, 500, 506
file opening, in C, 403-404, 432

Motif Widget set, 15
Mouse and mouse events

callbacks for, 50
coordinates for, 59
handling of, 13-14
X control of, 16,245

moveto operator (PostScript), 359, 364, 377
multi Click resource, 60, 180
Multifont strings, 231-234
Multiline text widgets, 147-149
Multiple callbacks, differentiating, 54-57
Multiple exposure regions, 315
Multiple select policy, 181
multipleSelectionCallback callback, 182
mustMatch resource, 113

\n character, 40, 150, 381
Names

of classes, 23-24, 199, 201
copying data by, 236, 516-519
of fonts, 43
of procedures in PostScript, 364
of resources, 34, 39, 201, 220
of widgets, 27

Navigation with text widgets, 156
Nested functions in C, 379
Network transparency, 16, 244-245
new-line characters, 40, 150, 381
new_shell.c program, 176-178
newpath operator (PostScript), 363, 377
NMG Editor, 433-467

INDEX

Noise, 254
noMatchCallback callback, 113
Nonconvex parameter, 300
noResize resource, 221
normal_cursor function, 254, 439
noworkproc.c program, 258-261
Null-terminated strings, 26-27, 39-41, 229,

418-419
NULL value in C, 404, 414-415
num_options parameter, 199
numColumns resource, 81

Object files in C, 400
Object-oriented nature of Widgets, 15-18
Objects. See Widgets
OK button, 104-105
OK callback, 104
okLabelString resource, 105
Open Look widget set, 15
openCB function

for NMG Editor, 441
for text, 159-161, 166

Opening files in C, 403-404, 431-432
Operand stack, PostScript, 357
Operators

in C, 388, 426-427
in PostScript, 376-378

option_menu.c program, 192-194
Option menus, 98-99, 191-194
options parameter, 199
options.c program, 207-208
Orientation resources, 62, 81
Origins

clip, 295-296,474
drawing, 277
for tiling and stippling, 295

OSF/Motif Style Guide, 354-356
outlining objects in PostScript, 362
overwriteCB function, 443-444

PACK_xxx values, 81
packing resource, 81
pagelncrement resource, 332
Paned window widgets, 184-186,550-551
paned.c program, 185
paneMaximum resource, 186
paneMinimum resource, 186
Parameters, 22-24

for C functions, 391, 393-395, 405,
407-410, 428

for callback functions, 54
command line, 22, 24, 206-208, 428

Parentage problems, 352-353
Parentheses 0 in C, 388-389, 392, 427
Parents of widgets, retrieving, 492

593

Pasting text from Clipboard, 236, 499
Paths with PostScript, 357-358, 360-363,

377-378
Percent signs (%)

for C format operators, 381
in PostScript, 358

Periods (.)
with C records, 390, 412
with resource names, 201,220

Permanent pointers in C, 416
Pictures. See Drawing
Pie slices, mode for, 295
Pipes, 140-141

in C, 402
with input program, 266-268

Pixels, 277
color of, 296, 468, 475
copying, 304-305, 469

Pixmaps, 277-279
creating, 471
drawing, 304-306, 311-313
freeing, 473
with label widgets, 34
resource for, 33
with X servers, 246-247

plane_mask field, 293
Pointers

in C, 404-418
class, 34
freeing, 48
generic,54
to text selection, 498

Points
drawing, 296-297, 478-479
in PostScript, 358
structure for, 475

Polygons, drawing, 300-301, 482
pop operator (PostScript), 376
Pop-up menus, 98-99, 333-338
popup.c program, 333-338
pos_list field, 184
pos_list_length field, 184
Position

of cursor, 151, 153
of list items, 182, 184, 505, 507
of strings, 301
of text, 497-499, 502
of Widgets, 28

Postfix notation with PostScript, 357
PostScript

character strings with, 360-363
drawing with, 358-360
loops and variables in, 367-369
operator summary for, 376-378
printing drawing area with, 369-376

594 INDEX

PostScript (continued)
procedures in, 363-367
terminology of, 357-358

PrecedenceinC, 388,412, 426-427
Primitive widgets, 35, 551-553
print command, 350
printf function (C), 381, 401
Printing

inC, 381, 401-403
drawing area with PostScript, 369-376
variable values, 350

Procedures in PostScript, 363-367
Programs, designing, 19-22, 342-345

tic-tac-toe program, 120-121
user interfaces, 354-356

Prompt dialog boxes, 100-101, 107-110
prompt.c program, 107-110
Prompts in command-driven interfaces, 8
Protocols, X, 245
Prototypes, function, in C, 394-395
ps command, 143
ps_demo.c program, 370-376
PSDrawArc function, 371-372, 374
PSDrawLine function, 371
PSDrawRectangle function, 371
PSDrawString function, 372
PSlnit function, 369, 371
PSTerminate function, 369-370, 372
Pull-down menu panes, 84, 193
Pull-down menu widgets, 90
Purpose and goals of programs, 19
Push-button Widgets and push buttons, 19

arrow button Widgets for, 178
call_data parameter for, 57-61
client_data parameter for, 54-57
creating, 50-54
for diagonal line drawing, 284-287
drawn buttons, 194-196
for menu options, 85
for message dialog boxes, 100, 104
for resource files, 200-202
for tic-toe-toe program, 119-121

PushB.h include file, 51-52
PushButton widgets, 553-554
putc function (C), 402
puts function (C), 401

Question dialog boxes, 116, 118
Queues, event, 13
quit function, 72
quitCB function, 451
Quota dial, 135-136

radio_box.c program, 171-174
RadiO boxes, 170-174

for gadgets, 239-241
RowColumn widget for, 82, 84

radio~adget.c program, 239-241
radioAlwaysOne resource, 174
radioBehavior resource, 172
RAM. See Memory
rand function, 129

in C, 386-387, 392
for work procs, 259

read_file function, 440-441
Read-only graphics contexts, 489, 492
Read-only text files, 167
readonlyCB function, 451
Realized widgets, 28-29

checking for, 490
creating, 492

reason field, 57-58
recomputeSize resource, 45
Record-based files in C, 429-432
Records

in C, 389-390
event, 13

Rectangles
drawing, 298-300, 479-480,482-483
for strings, 511
structure for, 475-476

Redirecting I/O in C, 402
Redrawing, callback function for, 287
Reference books, 347-349
Relative lines in PostScript, 364-365, 377-

378
repeat operator (PostScript), 367, 377
Replacing

list items, 505-506
strings, 211-217

resize callback, 196,332
resize.c program, 316-319
resizeCB function

for resizing drawings, 317
for virtual spaces, 330, 332

Resizing
dialog boxes, 221
drawings, 196,316-319,330,332
form widget for, 72-78
window panes, 184-186

Resource arguments, setting, 493
Resources, IS, 17, 21

changing, 25-26
command line options for, 206-208
for custom dialog boxes, 217-222
fallback, 208-209
files for, 199-206
for height and width, 30-32
inheriting, 35-36
for label Widgets, 32-35

INDEX

Resources (continued)
names for, 34, 39, 201, 220
parameter for, 24
problems in, 351-352
retrieving, 37-39, 45-47, 490
setting, 37-39, 44-45, 351-352, 493

return statement (C), 392
Ritchie, D., The C Programming Language,

379
rlineto operator (PostScript), 364-365, 378
rmoveto operator (PostScript), 377
Root window, 246, 310
rotate operator (PostScript), 376-377
Rounded line corners, 294
RowColumn widgets, 78-82, 554-559

for check boxes, 170
for Find dialog box, 214-216
for menu bars and panes, 84
and Option menu, 193
for radio boxes, 170-174

rowcolumn.c program, 78-82
rubber_band.c program, 321-325
Rubberbanding in drawings, 321-325
Running compiled programs, 3

%s format operator in C, 381
sample.c program, 266
Sashes, 184-186
save3sCB function, 444-445
save_dialogCB function, 161-162, 166
scale_callback.c program, 61-63
scale operator (PostScript), 361, 374, 376-

377
Scale widgets, 3-4, 21, 61-63, 559-560
scale.c program, 3-4
scaleCB function, 67, 72-74,204
scalefont operator (PostScript), 361, 378
Scaling drawings, 316-319
scanf function (C), 382, 401, 410
Scheifler, R. W., X Window System, 203
Screen

coordinates for, 277-278
of widgets, 493
X control of, 16, 244-245

Scroll bar widgets and scroll bars, 17, 174-
176,561-563

creating, 7, 149
for virtual spaces, 325-333

scroll_bar.c program, 175-176
scrollCB function, 175

for scrolled window widgets, 189
for virtual spaces, 329-330, 332-333

Scrolled text widgets, 496
Scrolled window widgets, 188-191, 563-564
scrolled_window.c program, 189-191

595

Scrolling text, 499-500
Searching for and replacing strings, 211-217
SEEK_xxx options with C files, 431-432
Segmentation faults, 27, 343

debugging, 350
and pointers in C, 406-407, 409-410
and resource settings, 39
with strings in C, 425-426

Segments
draWing, 480
string, 512, 514
structure for, 476
text, 228

selectCB function, 182-184
Selected regions for text, 501
Selecting list items, 506
SelectioB.h header file, 110
Selection dialog boxes, 100, 102, 110-113
selection Policy resource, 181
SelectionBox widgets, 564-567
selection.c program, 110-113
Semicolons (;) in C, 383
sensitive resource, 92, 493
Sensitive widgets, checking for, 490
Sensitivity of menu items, 92
Separator Widgets, 73, 77, 567-568
Separators

for menus, 90-91
for strings, 513-514
for text segments, 228

Server programs, 16,244-245
set resource, 168
setenv command, 201
setfont operator (PostScript), 378
setgray operator (PostScript), 364-365, 377
setlinewidth operator (PostScript), 364-365,

377
setup_find_dialog function, 212-214, 217-

219
setup-8c function

for bitmaps, 307
for clip masks, 339, 341
for diagonal line drawing, 280, 285
for drawn buttons, 195
for failure drawing, 282
for fonts, 231-232
for graphiCS context, 290-291
for PostScript program, 370
for resizing drawings, 316-317
for string drawing, 301-302
for work procs, 258-259

setup-8cs function
for pop-up menus, 334
for rubberbanding, 322, 324
for virtual spaces, 327-328

596 INDEX

setup_input_event function, 265-266
setup_string_and_fontlist function, 230,

232-233
shadowThickness resource, 223
Shape of cursor, 253-254
Shay, Kevin, application by, 11
Shell widgets, 20, 23-25, 176-178,577-578
shell.c program, 241-242
Shells, 241-242
show operator (PostScript), 360-363, 378
show_status function, 236-237
showpage operator (PostScript), 378
Single-line text widgets, 150-152
Single select policy, 181
singleSelectionCallback callback, 182
Size

of arrays in C, 391
of attachments, 77
of labels, 25, 33-34
of text widgets, 500-501
of widgets, 28

size 1.c program, 30-32
size2.c program, 36-39
sizeof command (C), 411, 431
Slashes (/)

in C, 388
in PostScript, 361

sliderSize resource, 332
Solid lines, 294
Sorting in C, 385-388
Sound,254
source resource

retrieving, 498
setting, 501

Spacing in C, 380
spacing resource, 81
Stacks, PostScript, 357
Standard libraries, 14
Standardization, 15
stdin file, 141
stdio.h library, 14, 395, 401
stdout file, 141
Stippled fill style, 294-295
strcat function (C), 421
strcmp function (C), 420
strcpy function (C), 420-423
String constant tables in C, 425-426
strin!Lsearch function

for Find dialog box, 222, 224
for NMG Editor, 446-447

string.h library in C, 419
Strings, 228-229

baseline for, 507
in C, 381, 401-402, 418-426
comparing, 420, 507-508

concatenating, 421, 508, 513
context for, 513
converting, 26-27,39-41, 229
copying,420-423,508,513
creating, 26, 508-509
drawing, 301-303, 477,480-481,509-

510
empty, checking for, 511
extracting, from prompt dialog boxes,

109
height of, 512
inserting, 498-499
length of, 419, 421, 513
memory for, 491, 511
pointers to, 498
in PostScript, 360-363, 378
reading, 47-49
rectangles for, 511
resource for, 33-34, 39-41
retrieving components and segments

of,511-514
searching for and replacing, 211-217
in selection dialog boxes, 112-113
separators in, 513-514
substrings in, 512
with text Widgets, 150
underlining, 510
width of, 378, 514

stringwidth operator (PostScript), 378
strlen function (C), 421
stroke operator (PostScript), 359, 362, 378
strokepath operator (PostScript), 363
Style

of dialog boxes, 221-222
of lines, 294
of menus, 98

Style guide, 354-356
subMenuID resource, 84-85, 193
Substrings, 512
Superclasses, 34-35
Swick, R., X Window System Toolkit, 203, 255
symbolPixmap resource, 105, 116
Syntax of PostScript, 358

Tables of C string constants, 425-426
Tabs in make files, 401
Temperature conversion program

with bulletin' board Widgets, 65-66,
203-206

with form Widgets, 73-78
test.c program, 140
texcchanged variable, 166
text_changedCB function, 443
Text files in C, 401-404
Text segments in strings, 228

INDEX

text_test.c program, 154-157
Text widgets and text, 4-5, 147-151, 568-

572
add mode for, 500
baseline for, 497
clearing, 496
and Clipboard, 496-497
convenience functions for, 495-502
creating, 496
deleting, 497, 499
for editor, 157-167
functions for, 152-157
highlighting, 500
inserting, 498-499
insertion position for, 497, 500
of labels, 25
position of, 497-499, 502
scrolling, 496, 499-500
selected regions for, 501
size limit for, 500-501

text1.c program, 147-149
text3.c program, 150-152
text.c program, 4-5
the_callback_function function, 256
the_work_proc function, 257
Tic-tac-toe program

callback chains in, 131-134
coding, 121-131
designing, 120-121

tictactoe.c program, 121-125
tile field, 295
Tile fill style, 294
Time outs, 255-256

adding, 485
removing, 493

Time parameter, 152-153
Time type, 495
Titles of dialog boxes, 220
Toggle button Widgets, 168-174,573-574
toggle.c program, 169-170
toggleCB function, 169
Toggles in menus, 172-173
Top level shell widgets, 241, 486-487, 574,

578
Topics in C Programming (Kochan), 140
toplevel parameter, 27
"Toplevel shell has zero width and/or

height" error message, 351
toplevel Widgets, 23-25, 28-29
Transferring information with Clipboard,

236-239,516-522
translate operator (PostScript), 376-377
True value in C, 382
ts_x_origin field, 295
ts_y_origin field, 295

Typecasting, 352, 388-389
typedef statement (C), 389-390
Types

C,389
event, 249-251
for resources, 34

Underlining strings, 510
Unix libraries, 14-15,276
unmanageCB function, 451
Unmanaging Widgets, 494
User-defined types in C, 389
User interfaces, 8-13

command-driven, 8

597

designing, 19, 120-121,342,354-356
event-driven, 13-14
menu-driven, 8, 11, 13

value_mask parameter, 291
value resource

pointer to, 498
with scale widgets, 62-63
setting, 501

value Changed callback, 21, 62, 166, 168,
174,332

Variables, 22. See also Resources
in C, 405
in PostScript, 364, 367-369
printing value of, 350

VendorShell widgets, 241, 578-579
View menu, 98
Virtual spaces, 325-333
virtual.c program, 327-333
void functions in C, 393

Warning dialog boxes, 116, 118-119
Warning messages

dialog boxes for, 116, 118-119
generating, 487-488
in Xt layer, 269-272

warning.c program, 271-272
watch_cursor function

for cursor shape, 253-254
for NMG Editor, 439

where command, 350
while loops in C, 382, 384-385
White pixel value, 475
Widgets, 1,21

attaching, to forms, 70-71, 77, 205,
516-518

creating, 488-489
destroying, 489
vs. gadgets, 239
height and width of, 30-32, 44-47
managing, 29, 351,491

598 INDEX

Widgets (continued)
names for, 27
realizing, 492
screen of, 493
sets of, 15
size and position of, 28
summary of, 7,523-581
unman aging, 494
window for, 494
Xt layer handling of, 272-275

Width
of bitmaps, 310
of drawings, 316
of lines, 294, 364-365
resources for, 21, 30-32, 35-39, 44-47
of strings, 378, 514

width field for Expose events, 253
Wildcards with font names, 43
WindingRulevalue value, 294
Window type, 310
Windows, 6-8

clearing, 468-469
coordinates for, 277-278
layer for, 14
main, 191, 544-545
mapping, 249
resizing, 72-78, 184-186
for Widgets, 494
with X servers, 246
with X Window System, 243-244

WMShell widgets, 241, 579-581
word wrap, 152, 167
wordWrap resource, 167
work_proc function, 261
Work procs, 256-262

adding, 486
removing, 493

Working dialog boxes, 116, 118-119
Workstations vs. X terminals, 244-245
Wrapper programs, 135-136. See also mkill

X

wrapper program

and cursor shape, 253-254
drawing commands in, 296-313
libraries in, 14, 276
server/client model in, 16,246-248
and sound, 254

X coordinates for mouse events, 59
X events, 248-253
x field for events, 253
X protocol, 245
x resources, 69
X Toolkit layer. See Xt layer
X Window System, 6-8, 14-15,243-244

X Window System (Scheifler and Gettys), 203
X Window System (Young), 135, 203
X Window System Toolkit (Asente and Swick),

203,255
XArc type, 299, 475
XBeIl function, 255
XBlackPixel function, 468
XButtonEvent structure, 58-59, 252-253
Xcede application, 9
XClearArea function, 246, 313, 318-319,

332,468-469
XClearWindow function, 246, 469
XCopyArea function, 304-305, 311, 469
XCreateBitmapFromData function, 470
XCreateFontCursor function, 254, 470
XCreateGC function, 292, 341, 470
XCreatePixmap function, 304, 471
XCreatePixmapFromBitmapData function,

310-311,471
xdbx program, 136
.Xdefaults file, 202, 220
XDefineCursor function, 254, 471-472
xdemo.c program, 248-253
Xdesk application, 11
XDestroyWindow function, 247
XDrawArc function, 299, 476
XDrawArcs function, 299, 476-477
XDrawImageString function, 301, 477
XDrawLine function, 283-284, 288, 297,

477-478
XDrawLines function, 298, 478
XDrawPoint function, 296, 478
XDrawPoints function, 296-297, 479
XDrawRectangle function, 298, 479
XDrawRectangles function, 479-480
XDrawSegments function, 297-298, 480
XDrawString function, 301, 480-481
XENVIRONMENT variable, 201-202, 205,

220
XEvent structure, 58, 250, 315
XExposeEvent structure, 252-253
XFillArc function, 300, 481
XFillArcs function, 300, 481-482
XFillPolygon function, 482
XFillRectangle function, 299, 314, 482-483
XFillRectangles function, 299, 483
XFlush function, 253-254, 341, 472
XFontStruct type, 230
XFreeColormap function, 247
XFreeCursor function, 247, 472
XFreeFont function, 247, 472
XFreeGC function, 247, 472
XFreePixmap function, 247, 311, 473
XGCValues structure, 291
XGetGeometry function, 309-310, 473

INDEX

XKeyEvent structure, 251-253
Xlib.h library, 14,245
xload program, 136
XLoadQueryFont function, 42, 230, 473-

474
xlsfonts command, 43
XmALIGNMENT_xxx values, 41
XmArrowButton widget, 178-180,523,525
XmATTACH_OPPOSITE_WIDGET attach-

ment,71
XmBulletinBoard widget, 66-72, 210-211,

525-528
XmCascadeButton widget, 528-529
XmClipboardCancelCopy function, 518-

519
XmClipboardCopy function, 517-518
XmClipboardCopyByName function, 518-

519
XmClipboardEndCopy function, 518
XmClipboardEndRetrieve function, 520-

521
XmClipboardlnquireCount function, 521
XmClipboardlnquireFormat function, 521
XmClipboardlnquireLength function, 521
XmClipboardlnquirePendingltems func-

tion,522 '
XmClipboardLock function, 519
XmClipboardRegisterFormat function, 522
XmClipboardRetrieve function, 520
XmClipboardStartCopy function, 516-518
XmClipboardStartRetrieve function, 520
XmClipboardUndoCopy function, 519
XmClipboardUnlock function, 519-520
XmClipboardWithdrawFormat function,

522
XmCommand widget, 186-188,529-530
XmCR_xxx reasons, 57-58, 518
XmCreate function, 351
XmCreateErrorDialog function, 118
XmCreateLabel function, 22-23, 27-28, 34
XmCreateLabelGadget function, 34
XmCreateMenuBar function, 84
XmCreateMessageBoxDialog function, 107
XmCreatePulldownMenu function, 84
XmCreatePushButton function, 52, 201
XmCreateRadioBoxWidget function, 170-

171
XmCreateScrolledText function, 149,496
XmCreateText function, 149, 496
XmCreateToggleButtonGadget function,

241
XmDIALOG_xxx styles, 221-222
XmDrawingArea widget, 279-281, 531-532
XmDrawnButton Widget, 194-196,532-533
XmFALLBACK_CHARSET value, 235

XmFileSelectionBox Widget, 533-535
XmFontList types, 228-235

599

XmFontListAdd function, 514
XmFontListCopy function, 514
XmFontListCreate function, 42, 515
XmFontListFree function, 515
XmFontListFreeFontContext function, 515
XmFontListGetNextFont function, 235, 515
XmFontListInitFontContext function, 515
XmForm widget, 72, 76,536-538
XmFrame Widget, 180-181, 538
XmGadget widget, 538-539
xmh program, 136
Xm.h library, 14,22,235
XmLabel widget, 32-34, 539-541
XmList widget, 181-184, 541-544
XmListAddltem function, 112, 184, 502
XmListAddltems function, 502
XmListAddltemUnselected function, 503
XmListDeleteAllItems function, 112, 503
XmListDeleteltem function, 503
XmListDeleteltems function, 503
XmListDeleteltemsPos function, 503
XmListDeletePos function, 503-504
XmListDeselectAllItems function, 504
XmListDeselectItem function, 504
XmListDeselectPos function, 504
XmListGetMatchPos function, 504
XmListGetSelectedPos function, 182, 184,

504-505
XmListItemExists function, 505
XmListItemPos function, 505
XmListReplaceItems function, 505
XmListReplaceltemsPos function, 505-506
XmListSelectItems function, 506
XmListSelectPos function, 506
XmListSetAddMode function, 506
XmListSetBottomltem function, 506
XmListSetBottomPos function, 506
XmListSetHorizpos function, 507
XmListSetItem function, 507
XmListSetPos function, 507
XmMainWindow widget, 188-191,544-545
XmManager Widget, 546-547
XmMenuShell widget, 547
XmMessageBox widget, 548-550
XmMessageBoxGetChild function, 104-107
XmMULTCLINE_EDIT value, 152
XmMULTICLICK_DISCARD value, 61, 180
XmMULTICLICK_KEEP value, 60
XmNaccelerator resource, 33
XmNacceleratorText resource, 33
XmNalignment resource, 33,35, 41
XmNautoShowCursorPosition resource, 151
XmNcancelLabelString resource, 106

600 INDEX

XmNcursorPositionVisible resource, 151
XmNeditable resource, 151
XmNeditMode resource, 152
XmNfontList resource, 33, 35, 41-44, 152
XmNhelplLabelString resource, 106
XmNlabellnsensitivePixmap resource, 33
XmNlabelPixmap resource, 33
XmNlabelString resource, 26,33
XmNlabelType resource, 33-35
XmNmarginxxx resources, 33-34
XmNmnemonic resource, 33-34
XmNmnemonicCharSet resource, 33-34
XmNokLabelString resource, 106
XmNpendingDelete resource, 152
XmNrecomputeSize resource, 33-34
XmNstringDirection resource, 33-34
XmNwordWrap resource, 152
XmPanedWindow widget, 184-186, 550-

551
XmPIXMAP constant, 35
XmPrimitive widget, 551-553
XmPushButton widget, 50-54, 553-554
XmPushButtonCallbackStruct structure, 57
XmRowColumn widget, 78-82, 554-559
XmScale widget, 61-63, 559-560
XmScaleCallbackStruct structure, 62
XmScrollBar widget, 174-176,561-563
XmScrolledWindow widget, 188-191, 563-

564
XmScrolledWindowSetAreas function, 191
XmSelectionBox widget, 564-567
XmSelectionBoxCallbackStruct structure,

109
XmSeparator widget, 567-568
XmSINGLE_LINE_EDIT value, 152
XmSTRING constant, 35
XmSTRING_DEFAULT_CHARSET value, 40,

234-235
XmSTRING_IS08895_1 value, 235
XmSTRING_ OS_ CHARSET value, 235
XmString resource, 152
XmString type, 39-41, 228

list widgets for, 181
and XmFontLists type, 230, 234

XmStringBaseline function, 507
XmStringByteCompare function, 507
xmstring.c program, 231-234
XmStringCompare function, 508
XmStringConcat function, 508
XmStringCopy function, 508
XmStringCreate function, 229, 508
XmStringCreateLtoR function, 23, 26-27,

40-41,48,229,508
XmStringCreateSimple function, 508-509
XmStringDirectionCreate function, 509

XmStringDraw function, 228, 303, 509-510
XmStringDrawImage function, 228, 303,

510
XmStringDrawUnderline function, 228,

303,510
XmStringEmpty function, 511
XmStringExtent function, 511
XmStringFree function, 48, 511
XmStringGetLtoR function, 511
XmStringGetNextComponent function,

511-512
XmStringGetNextSegment function, 512
XmStringHasSubstring function, 512
XmStringHeight function, 512
XmStringInitContext function, 513
XmStringLength function, 513
XmStringLineCount function, 513
XmStringNConcat function, 513
XmStringNCopy function, 513
XmStringPeekNextComponent function,

513
XmStringSegmentCreate function, 514
XmStringSeparatorCreate function, 514
XmStringWidth function, 514
XmText widget, 147-152, 568-572
XmTextClearSelection function, 496
XmTextCopy function, 156, 496-497
XmTextCut function, 152, 156, 497
XmTextGetBaseline function, 497
XmTextGetCursorPosition function, 153
XmTextGetEditable function, 497
XmTextGetInsertionPosition function, 151-

152,497
XmTextGetLastPosition function, 156,497
XmTextGetMaxLength function, 497
XmTextGetSelection function, 498
XmTextGetSelectionPosition function, 498
XmTextGetSource function, 498
XmTextGetString function, 150, 152-153,

157,498
XmTextGetTopCharacter function, 498
XmTextInsert function, 167,498-499
XmTextPaste function, 156, 499
XmTextPosition resource type, 352
XmTextPosToXY function, 499
XmTextRemove function, 156, 499
XmTextReplace function, 499
XmTextScroll function, 499-500
XmTextSetAddMode function, 500
XmTextSetEditable function, 500
XmTextSetHighlight function, 500
XmTextSetInsertionPosition function, 156-

157,500
XmTextSetMaxLength function, 500-501
XmTextSetSelection function, 501

INDEX

XmTextSetSource function, 501
XmTextSetString function, 155,501
XmTextSetTopCharacter function, 501
XmTextShowPosition function, 502
XmTextXYToPos function, 502
XmToggleButton widget,S 72-5 74
XNextEvent function, 250, 253
XPoint structure, 296-297, 475
xrdb command, 202
XRectangle type, 298, 475-476
XrmOptionDescRec function, 207
XrmParseCommand function, 23
XSegment structure, 476
XSetBackground function, 292, 474
XSetClipOrigin function, 292, 341, 474
XSetForeground function, 292, 474
Xt layer, 14-15, 23

event handlers in, 262-263
with input events, 263-268
memory management by, 268-269
and time outs, 255-256
warning and error messages in, 269-272
widget handling by, 272-275
and work procs, 256-262

XtAddCallback function, 50, 53, 56-57,
132,281,316,484

XtAddEventHandler function, 262, 319-
320,484-485

XtAppAddInput function, 263, 267, 485
XtAppAddTimeOut function, 255-256, 485
XtAppAddWorkProc function, 257, 486
XtAppCreateShell function, 178
XtAppErrorMsg function, 270, 272, 486
XtApplnitialize function, 69, 197-199,201,

486-487
command line parameters with, 22, 206
for custom dialog boxes, 219
fallback resources with, 208-209
and inheritance, 241
parameters for, 23-25

XtAppMainLoop function, 23-24, 29, 50,
487

XtAppWarningMsg function, 270, 487-488
XtCalloc function, 268, 488
XtCreateManagedWidget function, 34, 488
XtCreateWidget function, 272, 488-489
XtDestroyWidget function, 274-275, 489
XtDisplay function, 275, 489, 516
XtFree function, 48, 268-269, 489
XtGetGC function, 291-292, 489
XtGetValues function, 47, 49, 490

with list widget, 182
problems with, 352
with scale widget, 62
with text widget, 150-151

601

XtIntervalId type, 256
XtIsManaged function, 275, 490
XtIsRealized function, 275, 490
XtIsSensitive function, 275, 490
XtLastTimestampProcessed function, 153,

490,495,517
XtMalloc function, 268, 491
XtManageChild function, 23, 28, 133, 273,

351,491
XtManageChildren function, 273,491
XtManagedWidget function, 273-274
XtNew function, 268-269, 491
XtNewString function, 268-269, 491
XtNumber function, 112-113, 492
XtParent function, 275, 492
XtPointer type, 54
Xtracs application, 10
XtRealizeWidget function, 23, 28-29, 492
XtRealloc function, 268-269,492
XtReleaseGC function, 292, 492
XtRemoveTimeOut function, 256, 493
XtRemoveWorkProc function, 257, 493
XtScreen function, 275, 493
XtSetArg function, 23, 26, 39-40, 46-47, 49,

97,493
XtSetSensitive function, 92, 493
XtSetValues function, 36,38-39,41,48-49,

97,494
XtUnmanageChild function, 104, 274, 494
XtUnmanageChildren function, 274, 494
XtVaGetValues function, 37
XtVaSetValues function, 37
XtWindow function, 275, 494, 516
XUndefineCursor function, 254, 475
XWhitePixel function, 475

Y coordinates for mouse events, 59
y field for events, 253
y _offset variable, 326, 332-333
Y resources, 69
Young, D. A., The X Window System, 135,

203

"Motif Programming is comprehensive enough to be the one book you

need Brain has included four appendices that form one of the most

convenient and complete programmer's references available."

-Eliot Solomon, The X Journal

Motif Programming: The Essentials . .. and More is a straightforward

introduction to Motif application development. It eases you into Motif

programming smoothly and quickly, even though you may have little or

no experience with X or other window programming environments. It

shows you how to design and build graphical applications with Motif in a

reasonable amount of time.

The key concept behind this book is that Motif is a very simple, beautifully

designed way of creating graphical user interfaces. The simpl icity is hard to

see because Motif is surrounded by a mass of complexity. This book tries to

keep the layers of complexity from overwhelming you, but at the same time

provides enough advanced details to allow you to produce applications on

your own.

Marshall Brain is co-founder of Interface Technologies, Raleigh, NC, a firm

specializing in customer software and programmer training. He received a BS

from Rensselaer Polytechnic Institute and an MS from North Carolina State

University.

Also in the Digital Press X and Motif Series

X Window System: The Complete Reference to XLlB, X Protocol,
ICCCM, XLFD-X Version 11, Release 5, Third Edition

Robert W. Scheifler & James Gettys. 1992. EY-J802E-DP

~DmDDmD '·
Digital Press

One Burlington Woods Drive

Burlington, MA 01803

f $"-3Z:~'
Or >--i 'EY-J816E-OP
OF _ ; 58-089-0
PH ISBN 0-13-489378-6

t

