

Working
with
RT-11

David Beamont
Anne Summerfield
Julie Wright

mamaama
DECbooks

Copyright © 1983 by Digital Equipment Corporation
All Rights Reserved. Reproduction of this book, in part or in
whole, is prohibited. For information write Digital Press,
Digital Equipment Corporation, 12 Crosby Drive, Bedford,
Massachusetts 01730

Designed by Virginia J. Mason
Printed in the United States of America

10 9 8 7 6 5 4 3 2

Documentation number EY-00021-DP
ISBN 0-932376-31-2

CALC-II is a trademark of Computer Systems Corporation
C-CALC is a trademark of Digitec Software Designs
DataCalc is a trademark of Digital Business Computers
RTFILE is a trademark of Contel Information Systems
RTSORT and TSX-Plus are trademarks of S&H Computer Systems
SATURN-CALC and SATURN-WP are trademarks of Saturn Systems
SHARE-ELEVEN is a trademark of Contel Information Systems
SIMILE is a trademark of Xatro Corporation
SuperComp is a trademark of Access Technology

The following are trademarks of Digital Equipment Corporation:

DEC
DECtape
DIBOL

PDP
PDT
Professional
RSTS

RSX
RT-ll
VT

Library of Congress Cataloging in Publication Data

Beaumont, David, 1938-
Working with RT-l1.

(The RT -11 technical user's series)
Bibliography: p.
Includes index.
1. RT-ll (Computer operating system) I. Summerfield,

Anne, 1958- II. Wright, Julie, 1955-
III. Title. IV. Series.
QA76.7.B424 1984 001.64'2 83-26185
ISBN 0-932376-31-2

Contents

Introduction vii

1 Identifying RT -11 Components 3

2 Getting Started 19

3 Storing Data on Disks 35

4 Using KED to Edit Text Files 53

5 Editing and Issuing Monitor Commands 75

6 Using Utility Programs 93

7 Developing Programs 113

8 Creating Files of Commands 135

9 Conserving Space with Device Support 169

Glossary 185

Index 201

v

vi

Acknowledgment

We would like to thank all those who contributed to the
material in this publication. In particular, we are grateful
to Dan McCarthy, who donated his time to review the man­
uscript and revise practice exercises; Les Parent, who took
time from his busy schedule to review the manuscript;
Marcy Samel and Judith Scott, who informed us of the lat­
est developments in the RT -11 operating system. The staff
at Digital Press deserve special commendation for their in­
valuable assistance.

Introduction

Working with RT-ll introduces you to the components and
functions of RT -ll-a single-user, real-time operating sys­
tem that can handle multiple tasks. This book assumes that
you have previous experience working at a computer ter­
minal with an operating system other than RT -11, that you
understand how a computer works, and that you are famil­
iar with terms such as bit, byte, word, and file.

The first three chapters of Working with RT -11 deal
with system organization. Chapter 1, "Identifying RT -11
Components," examines the hardware requirements and
software components of an RT -11 system. Particular atten­
tion is paid to major monitor components. Chapter 2, "Get­
ting Started," puts you at the terminal to begin working with
the keyboard, getting HELP, and using some essential con­
trol characters. Chapter 3, "Storing Data on Disks," de­
scribes how file storage is organized, how files are speci­
fied, and how information in files can be manipulated using
simple commands.

Two chapters examine the editors most often used on
RT -11 systems. Chapter 4, "Using KED to Edit Text Files,"
explains how to use a screen editor to create and edit text
files. Chapter 5, "Editing and Issuing Monitor Commands,"
discusses the single line editor used to modify command
lines, and describes how to issue commands using Digital
Command Language (DCL), Command String Interpreter
(CSI), and Concise Command Language (CCL).

vii

viii Working with RT -11

The flexibility of the RT -11 system for programming
and using prepared applications is pointed up in the next
two chapters. Chapter 6, "Using Utility Programs," de­
scribes the functions of utility programs and shows how to
call up utilities with DCL commands. Chapter 7, "Devel­
oping Programs," teils you how to use the RT -11 system
to create, compile, and run a program.

The last two chapters in the book focus on ways to save
you time and make the most efficient use of space in your
files. Chapter 8, "Creating Files of Commands," details the
creation and function of indirect command files and indi­
rect control files. Chapter 9, "Conserving Space with De­
vice Support," tells you how to make use of virtual mem­
ory and how to create and mount logical disks.

When you have read the chapters and completed the
practices, you will be familiar with the organization of the
RT-ll system. You will be confident in using DCL com­
mands to operate on files and in accessing the system util­
ities to edit and run your own programs. And you will be
able to use indirect files to process sequences of monitor
commands.

Learning Approach

After you have read the introduction and the chapter text,
complete any practices. Many practices are not designed to
have right or wrong answers but to give you experience
working with your RT -11 system. Answers to practices that
require them are provided near the end of the chapter. If
you need further study before moving on to the next chap­
ter, read the materials suggested at the end of the chapter,
then review the chapter from the beginning.

To become familiar with RT -11, you should spend at
least half a day at a time reading and working with the sys­
tem and not allow more than a week between work ses­
sions. You should try to finish the material covered in this
book within two weeks.

If possible, you should work in a quiet area away from
telephones and other interruptions, with space for your
terminal, and enough desk space to have two or three man­
uals open at the same time.

Equipment

Introduction ix

You will need access to a working RT -11 system. By a
working system, we mean that:

• The RT -11 monitor program has been transferred
from its storage disk to main memory (in other
words, the system has been bootstrapped)

• The language processing program for FORTRAN IV
or BASIC-11 has been installed and made available
for use

• A storage medium-whether it is a disk cartridge,
diskette, or magnetic tape-is available for the pro­
grams you will create

If you need to bootstrap your system, you may ask a
colleague who has experience working with an RT -11 op­
erating system for assistance. Table 1 lists the manuals that
provide information on bootstrapping the computer sys­
tems on which RT-11 runs.

Table 1.
Manuals with Bootstrapping Procedures

System

Professional 300

MICRO/PDP-11

PDP-11/23-Plus
124
144

Manual

RT-11 Automatic Installation Booklet:
Professional 3251350

System Release Notes

RT-11 Automatic Installation Booklet:
MICROIPDP-11

Introduction to RT-11, chapter 2

RT-11 Automatic Installation Booklet:
RX02 Diskettes

RT-11 Automatic Installation Booklet:
RL02 Disk

RT-11 Installation Guide

PDP-11 Introduction to RT-11, appendix A
(without automatic bootstrapping) RT-11 Installation Guide

x

Resources

Notations

Working with RT -11

Although every effort has been made to make Working with
RT -11 a self-contained volume, you may need to refer to
the following manuals from the RT -11 documentation set
for additional information:

• Introduction to RT -11

• RT -11 System User's Guide

• RT -11 System Utilities Manual

• RT -11 Software Support Manual

The documentation to which we refer throughout the text
is written for RT -11 version 5.0. We also used a computer
system equipped with RT-ll version 5.0 to generate the
programs in our examples and practices. If you own a newer
version of RT -11, you may also need a copy of the latest
System Release Notes to determine the difference between
your system and the one described here. A list of manuals
and books that provide supplementary information is in­
cluded at the end of this book.

The following symbols are used in this book to represent
specific elements:

(KEY) indicates keyboard and keypad keys, their func­
tions, or key combinations

indicates the prompt displayed by the system
monitor

COMMANDS (uppercase) indicates input

P romp t 5 (upper and lowercase) indicates computer output

[I indicates parts of a command that are optional
(the brackets are not part of the command string)

Working
with
RT-11

1
2

System Hardware
The Processor

The Terminal
The Storage Device
Optional Hardware

System Software
The RT -11 Operating System

The monitor
Device handlers
Utility programs
Support for language processors

Language Processors
Assemblers
Compilers
Interpreters

Applications Programs

System Documentation
Hardware Manuals
Software Manuals
Source Listings

Summary

1
Identifving
RT-off
Components

This chapter describes the hardware and software compo­
nents of a typical RT -11 computer system. The essential
hardware components include a processor, a terminal, and
a storage medium. The system software consists of the RT-
11 operating system, language processors, and application
programs. This chapter introduces you to the components
of the RT -11 operating system-the monitor, the device
handlers, the utility programs, and the support for lan­
guage processors-as well as the components of the moni­
tor-the Resident Monitor (RMON) , the Keyboard Monitor
(KMON) , and the User Service Routine (USR). It discusses
the three types of monitors available on RT -11 systems­
the Single Job monitor (S]), the Foreground/Background
monitor (FB), and the Extended Memory monitor (XM). A
list of the documentation written for RT -11 is provided near
the end of the chapter.

3

4 Working with RT -11

System Hardware

The Processor

The Terminal

RT -11 is an operating system that will run on a number of
computer systems. The minimum hardware configuration
for an RT-ll system consists of a PDP-ll, LSI-ll, or SBC-
11 processor, 32 Kbytes of main memory, one terminal, and
a disk drive with disks or diskettes for mass storage and for
backu p. Larger systems may have a clock, more memory,
more terminals, and more peripheral devices. Table 2 lists
the minimum sets of components required to run RT -11.

You can use an RT -11 operating system with a variety of
PDP-ll processors, ranging in size from the single board
LSI-ll to the PDP-11/44.

You will notice different switches, lights, and buttons
on the front panel of each PDP-ll computer. On a com­
puter system running RT -11, these are used only to start
the system. All further communication between you and the
system is done through. the terminal.

You may use either a video or printing terminal as your in­
put and output device. Generally, an RT -11 computer sys­
tem has only one terminal, called the console terminal,
through which all interaction between you and the system
takes place. Additional terminals may provide auxiliary
message-printing capabilities.

The Storage Device

Your RT -11 system allows you to use both cartridge and
floppy disk drives and to have access to more than one disk
or diskette on your system at a time.

Chapter 1 Identifying RT -11 Components 5

Table 2.
Minimum Hardware Requirements of an RT-11 System

Minimum System Storage Console
Processor Memory Device Device Terminal

Professional 300 256K bytes R051 RX50 Professional
Integral

MICRO/POP-11 256K bytes R051 RX50

POP-11 32K bytes RK05 Magnetic VT100 LA12
Unibus RK06 Tape VT101 LA34
11/04, 11/05, RKO? RK05 VT102 LA38
11/10, 11/20, RL01 RL01 VT105 LA100
11/24, 11/25, RL02 RL02 VT125 LA120
11/35, 11/40, RX01 RX01 VT131
11/44, 11/45, RX02 RX02
11/50, 11/55,
11/60,
PDT 11/150

POP-11/03 32K bytes RK05 RK05 VT100 LA12
(LSI-11) RL01 RL01 VT101 LA34

RL02 RL02 VT102 LA38
RX01 RX01 VT105 LA100
RX02 RX02 VT125 LA120

VT131

POP-11/23 64K bytes RL01 RL01
POP-11/23- RL02 RL02
PLUS RX02 RX02

A disk or diskette-also called mass storage medium
or volume-provides an area, apart from main memory, to
keep information. The information may be the programs that
make up the system software, applications programs, pro­
grams you create, data needed by a program, the results of
a computer operation, or textual information. The RT -11
operating system, for instance, is stored on a storage me­
dium referred to as the system volume. When needed, in­
formation from the storage medium is transferred into
computer memory.

To access information that is stored, you must insert
the storage medium (disk or diskette) into a drive. Each drive
is assigned a device name (a mnemonic) and a unit number

6 Working with RT -11

(0, 1, 2 etc.). Once the disk is inserted into the drive, the
disk drive's symbol identifies the storage volume.

One way to protect information on a disk is to make a
copy of it on a second storage volume. The copy, called a
backup, insures you against the loss of information. Some
storage volumes provide a mechanism that protects infor­
mation against accidental erasure. This mechanism is gen­
erally a switch-on the disk itself or on the drive-that you
can set to write-protect or write-enable. You can protect a
floppy diskette by covering its write-enable notch with a
metallic sticker. (Disks and the files that they may contain
are discussed in chapter 3, "Storing Data on Disks.")

Optional Hardware

The specific requirements of certain users may dictate the
need for additional peripheral devices. For example, com­
puter systems used mainly for program development may
need extra storage devices and a high-speed printer. Com­
puter systems used in a laboratory may need graphics dis­
play hardware, and computer systems that provide infor­
mation in conjunction with another kind of computer system
will usually require a magnetic tape device, because mag­
netic tape is a standard storage device across the industry.
Smaller PDP-11 systems, such as the MICRO/PDP-11 and
the Professional computers, cannot accommodate as much
additional hardware as larger systems.

System Software

Your system software is the set of programs that transforms
your hardware components into usable tools. Some of these
programs store and retrieve data among various peripheral
devices. Others perform difficult or lengthy mathematical
calculations. Some programs allow you to create, edit, and
process application programs of your own, and others han­
dle applications for you.

The system software, as illustrated in figure 1, in-

Chapter 1 Identifying RT -11 Components

Figure 1.
System Software

RT-11
OPERATING

SYSTEM

LANGUAGE
PROCESSORS

APPLICATION
PROGRAMS

7

cludes the RT -11 operating system, which is the "intelli­
gence" of the computer system. In addition, your system
software probably includes one or more language proces­
sors and possibly specific applications as well.

. The RT -11 Operating System

The operating system is a collection of programs that or­
ganizes all the hard ware and software resources of the
computer system into a working unit and gives you con­
trol. It allows you to create and run programs of your own.

The RT-ll operating system is made up of four types
of programs: the monitor program for control of system op­
eration; several device handlers, one program for each of
the supported hardware devices; a variety of utility pro­
grams for program and data creation and manipulation; and
the collections of programs that are necessary to support
several programming language processors (see figure 2).

8 Working with RT-11

Figure 2.
RT-11 Operating System

UTILITY
PROGRAMS

The Monitor

Your link with the system hardware and software is the
monitor, and the RT-ll monitor provides many different
subprograms or routines which work together to perform
basic system functions. These functions include the fol­
lowing:

• Acceptance, acknowledgement, and processing of
commands that you, or a program, may issue to the
system

• Control of all input and output to and from the sys­
tem

• Timing, or scheduling, of when jobs (programs)
should run

• Maintenance of system files

• Checking for abnormal conditions within the system
and issuing clear, informative messages

• Control of the way memory is used by the system

The three main parts of the monitor that perform these
and other functions are, the Resident Monitor (RMON), the

Chapter 1 Identifying RT -11 Components 9

Keyboard Monitor (KMON), and the User Service Routine
(USR).

The Resident Monitor (RMON) provides the console
terminal service and central program code necessary for both
system and user programs. When RT -11 is started, RMON
is automatically loaded from disk storage into processor
memory, where it stays until the system is closed down or
restarted. The resident monitor is so named because it al­
ways remains in computer memory, regardless of system
operations. To tell you that it has been loaded and started,
RMON issues a message to the terminal.

EXAMPLE

RT-115J (5) VOS.OO

Note that the message is made up of more than one part.

RT-ll

SJ

(S)

V05.00

The name of the operating system.

The abbreviation for Single Job. This describes
the specific type of monitor you are using. You
may also see FB or XM appear here to indicate
that you are using a Foreground/Background or
Extended Memory monitor.

The abbreviation for system generation, the
term used to describe the building of an operat­
ing system from its component parts. System
generation can be performed by those users who
wish to create a tailor-made operating system,
but RT-ll comes in ready-to-use form.

The version number of the monitor currently
being used. This number may be different on
your system, because as additions or changes
are made to the system the number is corrected
to show the current revision level.

You will see that the message is followed by a period
(.) on the next line. This is called a system prompt or dot
prompt and indicates that the monitor is waiting for you to

10 Working with RT-11

issue a command. The dot prompt is sent to the terminal
by the Keyboard Monitor.

The Keyboard Monitor (KMON) controls the interac­
tion between the monitor and keyboard and is the most
visible part of the system software from your point of view.
Among other services, KMON supplies the monitor com­
mand language, a set of command words, that you use to
initiate and control system operations. KMON is loaded into
memory when needed and processes user commands. Be­
cause you will need it only when commands are issued,
KMON does riot stay in memory but is replaced or "over­
laid" by other programs. KMON is swapped in and out of
main memory so quickly that you will not notice the activ­
ity as you type at the terminal.

The User Service Routine (USR) is used to access in­
formation stored on disks and tapes. Once it has finished
its work, the USR can be overlaid in the same way as KMON.
However, because you will probably handle information kept
on a storage medium more often than you will process sys­
tem commands, you may find it more efficient to keep the
USR in main memory at all times. You can instruct the sys­
tem to keep the USR permanently in .memory by using the
SET command.

EXAMPLE

.SET USR

RT-ll provides three different kinds of monitors, each
with its own RMON, KMON, and USR. The three monitors
are Single Job (SJ), Foreground/Background (FB), and Ex­
tended Memory (XM).

The Single Job (SJ) monitor is the simplest and small­
est monitor. The resident portion occupies only 4 Kbytes
of main memory and therefore leaves most of the memory
free for other programs and data. It can support one user
program or system utility program and is ideal for smaller
systems (sometimes called dedicated systems) which are
being used for one specific application, such as scientific
data logging or process control. The SJ monitor is not avail­
able on the Professional 325 or 350.

Chapter 1 Identifying RT -11 Components 11

A special version of the SJ monitor, the Base Line (BL)
monitor, also runs in a minimum configuration of 32 Kbytes
of memory, but it does not support optional monitor and
device functions. The BL monitor is best suited for very
small hardware configurations or for larger configurations in
which the application requires minimal executive support.

The Foreground/Background (FB) monitor has all the
capabilities of the Single Job monitor as well as its own
features. Many applications call for a high priority pro­
gram, such as data collection, and a lower priority data
analysis program. The Foreground/Background monitor al­
lows two programs to run at the same time. The high prior­
ity job is known as the foreground job and the low priority
job is known as the background job. Since the FB monitor
handles multiple jobs, you can work at the keyboard while
the system processes another job.

The PDP-ll family contains processors which will
support up to 4092 Kbytes of memory. The Extended Mem­
ory (XM) monitor allows you to make use of that memory
and allows jobs to be 128 Kbytes in size. The facilities of
the Foreground/Background monitor and the Single Job
monitor are still available with the XM monitor.

Device Handlers

Device handlers are programs that transmit control signals
and data to and from your system's peripheral hardware
components. These programs check each device for errors,
which they then report to the monitor for action. For ex­
ample, the program which looks after the line printer checks
that the printer is on and that it has paper in it. The pro­
gram also makes sure that any necessary control characters
are transmitted and that the characters for printing are valid.
You will not come in contact with the device handlers ex­
cept when the monitor asks you to make a correction, for
example, to load paper as a result of the device handler's
check.

Utility Programs

RT -11 provides a number of utility programs that allow you
to store data on a variety of devices, develop your own pro­
grams, and manage the system. Among the utility programs
to be discussed are the following:

12 Working with RT -11

• An editor, which allows you to create and change
memos, programs, and documents

• Debugging programs which help you uncover and
correct errors in your programs

• File maintenance programs which allow you to ma­
ni pulate the information contained in files or on de­
vices

• A librarian, which makes it easy for you to store and
retrieve frequently used programming routines

• A linking program, which converts programs into a
format suitable for loading and execution

• A source comparison program, which is used to com­
pare text files and to report any differences

• A dump program, which outputs to the terminal or
line printer the binary representation of any part of a
file

Many of the utility programs may be used by means of sim­
ple, easy-to-Iearn commands.

Support for Language Processors

Two language processor support programs are available as
part of the RT -11 operating system. The FORTRAN IV
System Subroutine Library (SYSLIB) allows a FORTRAN IV
user to write almost all application programs completely in
FORTRAN IV with no assembly language coding. The other
language processor support program is SYSMAC, the macro
library that contains system macros used in assembly lan­
guage, in this case MACRO-11, programs.

Language Processors

Language processors are translation programs that convert
the programs you create at the terminal into a series of bi­
nary codes that the computer can understand. They also
translate binary codes back into words for output on a video

Chapter 1 Identifying RT -11 Components 13

or printing terminal. A language processor exists for every
programming language supported by the system, whether
it is a high-level language or an assembly language.

Assemblers

Assemblers translate assembly language into object code,
a language that the machine can execute. An assembler
is a one-for-one translator; that is, each instruction in as­
sembly language becomes an instruction to the computer.
The assembly language on PDP-ll computers is called
MACRO-ll. Though MACRO-ll programs are slower to
code and compile than programs written in high-level lan­
guages, assembly language gives you more control over fac­
tors such as program size and speed of execution.

Compilers

Compilers process high-level languages such as FORTRAN
IV and COBOL-l1. Whereas assemblers translate one lan­
guage instruction into one object code, compilers may
translate one language instruction into many object codes.
For example, a single FORTRAN command may be com­
piled into twenty or more machine instructions. Though this
coding process is faster than that of an assembler, you must
relinquish some control over program execution.

Most compilers do not translate the source or lan­
guage code until it passes through the entire program at least
once. Such multipass compilation-called code optimiza­
tion-allows the compiler to eliminate unnecessary code and
to check for errors at many levels.

Interpreters

Interpreters translate instructions written in a high-level
language, such as BASIC-ll, into a format the computer
can interpret. Rather than converting the entire program to
object code before running it, an interpreter translates and
executes a program on a statement-by-statement basis.
Though interpreted programs run slowly, using an inter­
preter may enhance program development since you can
receive an immediate response from the computer when
errors in a program are detected.

14 Working with RT -11

Applications Programs

The RT -11 operating system supports numerous applica­
tions packages. These include an applications package for
the standard functions found in most laboratories. A sci­
entific package for FORTRAN IV users provides a large se­
lection of mathematical and statistical routines commonly
required in scientific programming. And a graphics sup­
port package for BASIC-11 and FORTRAN IV users pro­
vides display features such as multiple intensity and blink­
ing vectors (lines), alphanumerics, and points. In addition,
during RT -11 's ten-year history, scores of real-time and
commercial applications have been written by original
equipment manufacturers (OEMs) and customers for use
with RT -11 systems. Table 3 lists the names of some widely­
used applications programs written for RT -11.

Table 3.
Applications Packages for RT -11

Word Processing

Electronic Spreadsheet

Time-sharing

Sorting

Database Management

Applications

LEX-11
Glenn A. Barber Associates WPS
WP Saturn Word/List Processing
MASS-11

Saturn CALC
C-Calc
CALC-11
Super Comp

CTS-300
TSX-Plus
SHARE-11

ZSORT
RTSORT

RT-DBASE
"D"
RTFILE
SIMILE

Chapter 1 Identifying RT -11 Components 15

System Documentation

Documentation includes manuals that tell you how to use
the software and hardware of the computer system. It also
includes any source listings of programs that make up the
operating system.

Hardware Manuals

Hardware manuals describe the devices in the computer
system. RT -11 hardware documentation includes a pro­
cessor handbook that describes the PDP-11 computer you
are using, and a user's guide or maintenance manual for each
peripheral device in your computer system. These manuals
tell you how to operate the devices and give you special
programming information that you may need if you intend
to write device drivers or special system software involv­
ing the devices.

Software Manuals

Source Listings

Software manuals describe the operating system and the
language processors. RT -11 software documentation con­
sists of introductory manuals (intended to be used once and
then stored away), console manuals (intended to be used at
the computer), and reference manuals (intended to be used
at your desk for reference). Table 4 lists the introductory,
console, and reference manuals available for RT -11.

Source listings are actual listings of the assembly language
codes that make up the RT-11 operating system. These
listings are very detailed and generally are needed only if
you intend to modify the system software.

16

Summary

Working with RT -11

Table 4.
Documentation for RT-11

Introductory

Console

Reference

Manuals

Introduction to RT-11
System Release Notes

System User's Guide
System Utilities Manual
System Message Manual

Programmer's Reference Manual
Software Support Manual
MACRO-11 Language Reference Manual

MINIMUM HARDWARE CONFIGURATION

PDP-11, LSI-11, or SBC-11 Processor
32 KBytes of Main Memory
One Terminal
One Storage Device

COMPONENTS OF SYSTEM SOFTWARE

RT -11 Operating System
Language Processors
Applications Programs

COMPONENTS OF THE RT -11 OPERATING SYSTEM

Monitor

Types
1. Single Job (SJ)
2. Foreground/Background (FB)
3. Extended Memory (XM)
Components
1. Resident Monitor (RMON)
2. Keyboard Monitor (KMON)
3. User Service Routine (USR)

Device Handlers
Utility Programs
Support for Language Processors

2
18

Working with the Keyboard
Monitor Commands

Correcti~g Typing Mistakes
Using the HELP Command

Using Special Key Combinations
Setting the Date and Time

Type-Ahead Function
Summary

2
Getting
Started

This chapter puts you at the keyboard of your computer
terminal to begin using your RT -11 operating system. To
become familiar with the keyboard and monitor, you will
work with some simple monitor commands. You will learn
to issue commands that call up the HELP text and use spe­
cial characters to stop and start a listing, suppress output,
abort a job, and delete text. You will also learn to set the
system's clock and date-tracking device.

19

20 Working with RT -11

Working with the Keyboard

All terminals have a keyboard-used to enter informa­
tion-and a paper output device or video screen-used to
echo characters typed at the keyboard and to print system
messages and responses. The paper printer and the screen
serve the same purpose; they show your input and the sys­
tem's responses. However, paper output can be saved while
screen output is temporary.

You type all commands to the system on the key­
board. Figures 3 and 4 show the layout of the VT100 and
the Professional 300 keyboards. The keys for the alphabetic
characters, the (SHIFT), (CAPS LOCK), and (TAB) keys work and are ar­
ranged in the same way as those on most standard type­
writers. Table 5 describes the functions of some keys you
will use often.

Table 5.
Keys and Their Functions

Symbol * Key

(RETURN) Carriage Return

(CTRL) Control

(DELETE) Delete

(LiNEFEED) Linefeed

Function

Ends a line and moves cursor to the
next line
Ends certain system commands,
transmits them to the processor, and
moves the cursor to the beginning
of the next line

Forms two-key control commands
that perform specific functions
The system carries out the function
as soon as you press (CTRL) and the
other key simultaneously

Erases the character to the left of the
cursor

Ends certain system commands,
transmits them to the computer, and
moves the cursor to the beginning
of the next line

*This symbol-the label on or function of a key enclosed in angle brackets-is used
throughout the book to represent a key or its function.

1'-:1
~

-- - -- -- -----

• • • • • •• ..L ~~ T T + +

7 8 9

TAB 4 5 6

CTRL f~~ 1 2 3

NO
SCROLL

Figure 3. Keyboard Layout of the VT100 Terminal

22 Working with RT -11

Monitor Commands

Monitor commands are words or letters you type in at the
terminal after the period (.) monitor prompt to start up and
control system operations. When you enter a command, you
are communicating with the monitor program described in
chapter 1.

To issue a monitor command that the computer will
accept, you must supply the following information:

• The command for the system operation you want ini­
tiated. It may be followed by a slash and a command
option which modifies the default operation (the ac­
tion RT-ll normally takes)

• The input information-the location (indicated by a
device name, a file name, and a file type) of the data
that is to be processed.

• The output information-the location (indicated by a
device name, a file name, and a file type) w~ere the
information produced by the operation is to be stored
(chapter 3, "Storing Data on Disks," discusses file
specifications)

Whenever you type a command, the last key that you
press must be the (RETURN) key. (RETURN) will be shown at the
end of commands throughout this book to indicate input
and to remind you that it is necessary.

Monitor commands may be written in either long for­
mat or short format. For long format commands, the system
displays prompt messages, which ask for all the informa­
tion the command needs to be completed. For short format
commands, you enter all the information in one command
line. The monitor provides prompts only if you leave out
essential information. Short format commands are pre­
ferred by experienced users, while long format commands
are useful for beginners.

N
W

Fl F2 F3 F4 F5 F6 F7 F8 F9 FlO Fll F12 F13 F14 Hold ~creen L~Ck Com:ose W:it F17 F18 ~19 F20
• H •• HR ••••••• B ••• • •••
•• lIalilla.BIIII •• I· •• B •••• •••••• 1111...... 0 ••••

_Hiillll •••••••••• _ cec •• 111 _.
Figure 4. Keyboard Layout of the Professional 300 Terminal

24 Working with RT -11

EXAMPLE

• COP Y (RETURN)

From? FILE1 ~TMP(RETURN>

To ?F I LE2 .TMP(RETURN)

.COPY

The meaning of the COpy command will be explained
later; for now, just compare the long and short formats of
the command. In this chapter we will examine several
commands just to see RT -11 in action.

Correcting Typing Mistakes

Practice
2-1

If you make a mistake while typing a command, you can
correct it by using either the (DELETE) key (labeled ~ on the
Professional keyboard) or the (CTRUU) key combination.

(DELETE) erases characters from right to left, starting with
the last character typed. Each time you press (DELETE), it erases
one character to the left of the cursor. (DELETE) can only re­
move characters from the current line of typing, that is, be­
fore you press (RETURN).

(CTRUU) deletes all the characters on the current line and
moves the cursor to the beginning of a new line so that you
can enter the next character or command. (CTRUU) is dis­
played on your terminal as " U.

1. If you are using a video display terminal with the Sin­
gle Job monitor, type:

SET TT SCOPE(RETURN)

Chapter 2 Getting Started

after the period monitor prompt. SET TT SCOPE tells
RT -11 that your terminal is a video rather than a
printing terminal.

2. Type the letters:

MISTAEK

Do not press (RETURN). Once you press the (RETURN) or (LlNE­

FEED) key, you will not be able to erase the characters.

3. To erase the transposed letters, press:

(DELETE)(DELETE)

You may then type in the letters:

KE

4. Now use (CTRUU) to erase the word:

MISTAKE

While you hold down (CTRL), press (U). The two keys
should be pressed simultaneously. All the characters
will be erased.

Using the HELP Command

25

RT -11 has a very useful feature called HELP. Whenever you
have questions about the system, typing the HELP com­
mand may very well provide or direct you to the answer.
To see what commands are available, you would type the
HELP command followed by an asterisk, press (RETURN), and
be provided with a list of commands (shown in figure 5).

You need not memorize the commands you see since
the list only shows the kinds of options that are available
to you. If you need information about any of the topics listed,
you can find it by typing HELP, followed by the name of
the topic. For example, typing HELP SHOW will give you
more details about the SHOW command (see figure 6).

26

Figure 5.
HELP Listing

ADorn
ASSIGN
B
BACKUP
BASIC
BOOT
CLOSE
COMPILE
COPY
CREATE
D
DATE
DEASSIGN
DELETE
[lIJ-)OL
DIFFERENCES
DIRECTOF~Y
DISMOUNT
[lUMP
r-
EDIT
EXECUTE
r:-ORMAT
FORTRAN
FRUN
GET
(3T
HELP
INITIALIZE
INSTALL
Lll-mARY
LINK
LOAD
MACRO
MOUNT
PRINT
PROTECT
CWEMAN
r~

I:~EENTER

HEMOVE
HENAME
I:~ESET

HESUME
mJN
SAVE
SET
SHOW
SQUEEZE
SRUN
START
SUSPEND
TIME
TYPE
UNLOAD
UNpr~OTECT

Working with RT -11

Terminates¥ from the s~stem console, a Fore~round or
Associates a logical device name with a ph~sical device
Sets a relocation base
Backup/Restore lar~e files or random access devices
Invokes the BASIC lansuase interpreter
Boots a new s~stem
Makes back~round output files permanent
Translates source proSrams
Cor·>ie!5 filf~s
Creates a file at a specific block address; extends
Deposits values in memor~
Sets or displa~s the current s~stem date
Removes losical device name assignments
Removes files from a device or ~ueue
Invokes the DIBeL language compiler
Compares two files and lists the differences
Lists device or file directories
Disassociates a 10Sical disk assignment from a file
Prints formatted data dumps of files or devices
Prints the contents of memor~ on the terminal
Invokes the text editor
Translates, links, and runs a program with one command
Formats and/or verifies a volume
Invokes the FORTRAN language compiler
Loads and starts a foreground program
Loads a memor~ image file into memor~
Enables or disables the VT11 or VS60 displa~ hardware
Lists helpful information
Initializes device directories
Adds a new device handler to the s~stem
Creates and alters object and macro libraries
Produces an executable program
Makes a device handler permanentl~ resident in memor~
Invokes the macro assembler
Assigns a logical disk unit to a file
Prints files on the line printer
Sets RT-l1 file protection status
Queue control program.
Loads and executes a memor~ imase file
Starts a pro£lram at it!:; T'eentT'\:/ i:~dr..lT'ess

Removes a device handler from the s~stem
Changes the name of a file
Causes a geneT'al s~stem T'eset
Resumes execution of a foresround or s~stem Job
Loads and starts a program
Writes memoT'~ areas to a file
Controls various s~stem options
Displa~s s~stem hardware and software status
Rearranges disk files to collect unused file space
Loads and starts a s~stem Job
Initiates the program in memor~
Stops execution of the fOT'eSround or s~stem Job
Sets or displa~s the s~stem time
Outputs files to the teT'minal
Removes a resident device handler or FG Job from memor~
Resets RT-l1 file protection status

Figure 6.
HELP Text for the SHOW Command

HEL.P SHOW

SHOW Displa~s s~stem hardware and software status

SYNTAX
SHOW [options]

SEM,~NTICS

SHOW<CR> displa~s the device assisnments; other information
is displa~ed b~ specif~ins one or more option names.

OPTIONS
ALL

Shows configuration, devices,· Jobs, and terminals
CONFIGURATION

Indicates the monitor version number,SET options,
hardware confiSuration,and SYSGEN options

DEVICES
Indicates the status and vectors of all device handlers on the
s\:lstem

ERFWRSC/opticms]

JOBS

Produces on the terminal a report of all swstem and device
errors; valid onlw if error logginS is present. Options are:

IALL (default)
Produces the report fer all errors

IFILEC:filnam.twp]
Specifies the name of the file containing the logged
errors; defaults to ERRLOG.DAT

IFROM:[dd:mmm:~~J

Reports onlw errors that occurred after the date
speci fif.~d

lOUT PUT : fi lesPE'c
Produces the report in the specified file

IPRINTER
Produces the report on the line printer

ISUMMARY
Produces a summary report

ITERMINAL (default)
Produces the report on the terminal

ITO:[dd:mmm:~w]

Reports onl~ errors that occurred before the date
specified

Lists the names and status of all Joaded Jobs
MEMORY

Displa~s the current memor~ orsanization in tabular form
aUEUEC/DEVICE:dev]

Lists the contents of the line printer (or specified device)
CHJeUe

8UI(SET
List the current IOSical disk subsetting assignments in effect

TERMINALS
Indicates the status and SET options of all the terminals on the
swstem (if a multi-terminal monitor)

EXAMPLES
SHOW
SHOW CONFIGURATION
SHOW (WEUE

27

28

Practice
2-2

Working with RT -11

After the period monitor prompt, enter the command:

HE L P *(RETURN)

and survey the listing to get an overview of the commands
used with RT -11.

Using Special Key Combinations

Suppose you wanted to search the HELP * listing for a par­
ticular command. You need to be able to stop and start the
listing at intervals to do this search. To stop a listing, you
can use the (CTRUS) key combination. To continue the listing,
you can use the (CTRUQ) key combination. (NOSCROLL) on the VT100
terminal or (HOLD SCREEN) on the Professional terminal also al­
lows you to stop and start a listing. You simply press the
key once to stop a listing and press it again to continue the
listing.)

Another way to stop a listing while it is running is to
use the (CTRUO) key combination, which stops the listing being
displayed on your terminal without stopping the program.
If you press (CTRUO) a second time before the listing is com­
pleted, the remaining parts of the listing will be displayed.
To abort a program while it is running you press (CTRUC) twice.

You have already used one of the special key combi­
nations, (CTRUU). If you are using a display terminal, you should
enter the command, SET TT NOSCOPE, before you try us­
ing other special key combinations, so that listings do not
stop when the screen is full. It is not essential to do this to
use the special key combinations, but NOSCOPE makes it
easier to see the effects of using the key combinations dis­
cussed.

Practice
2-3

Chapter 2 Getting Started

1. Type:

HE L P *(RETURN)

after the dot prompt and try to stop and start the list­
ing using the (CTRUS) and (CTRUQ) key combination. Re­
member to hold down (CTRL) while you press (S) or (Q).

See if you can stop or start every few lines.

2. Type:

HE L P *(RETURN)

again following the monitor prompt, and this time stop
the listing with (CTRUO). Compare the effects of using
(CTRUO) to start and stop output with the use of (CTRUS)

and (CTRUQ), which affect the running of the program
and the output.

3. Type:

HE L P *(RETURN)

Press (CTRUC)(CTRUC) to end the HELP listing.

29

The effects of all special key combinations discussed
in this chapter are shown in table 6.

Table 6.
Control Key Combinations

Key Combination

(CTRUS)

(CTRUQ)

(CTRUO)

(CTRUC)(CTRUC)

(CTRUU)

Function

Stops the current process

Starts or continues the current process

Suppresses the display of a listing on the
terminal

Aborts a program and returns control to the moni­
tor

Deletes the line of characters to the left of the
cursor

30 Working with RT -11

Setting the Date and Time

Setting the date and time allows the system to keep a re­
cord of when operations are performed, for instance, when
files are created. If you are not sure whether the date has
been set, you may type the DATE command followed by a
(RETURN). If a date has not been set, an error message will be
displayed.

EXAMPLE

?KMON-W-No date

?KMON stands for a message from the keyboard .mon­
itor. W indicates that the message is a warning.

If a date has not yet been set on your machine you may
enter today's date in this format:

DATE dd-mmm-yy

EXAMPLE

• 0 ATE 28 - APR - 83(RETURN)

Typing in the current date replaces any previous date.
You can set the time in a similar way. Again, you

should test to see if the time has been set by typing the TIME
command followed by a (RETURN). If your system does not have
a clock, an error message will be produced.

If your system does have a clock, you may set it to the
right time by following the format:

Practice
2-4

Chapter 2 Getting Started 31

TIME hh:mm:ss

Typing a new time sets the clock at that time. The sys­
tem clock keeps track of the current time like any other
clock; time, however, is specified in 24-hour notation. So,
if it is 4:15 p.m., you would enter 16:15:00.

1. Type:

DATE(RETURN)

If today's date has not been set, type the correct date
in the format:

DATE dd-mmm-yy

2. Type:

T I ME(RETURN)

If your system has a clock and the right time has not
been set, type it in the format:

TIME hh:mm:ss

Type-Ahead Function

Characters typed at the terminal while another job is run':
ning are stored in a place called the input buffer. A buffer
is a storage area-often a special register or a designated area
of memory-used to hold information being transferred be­
tween two devices or between a device and memory. If the
job that is running does not expect or require input from
the keyboard, the characters remain stored in the buffer for
the next job or are interpreted as the next command by
KMON when the current job finishes.

32

Practice
2-5

Summary

Working with RT-11

Type:

D IRE eTO R Y (RETURN)

While the directory, listing the files stored on the system
volume, is running type:

DATE(RETURN)

Notice that the second command is run when the first is
completed.

KEYBOARD MONITOR COMMANDS

DATE sets the date

HELP displays information about system features

TIME sets the time

KEYS AND SPECIAL KEY SEQUENCES

(CTRUC)(CTRUC)

(CTRUD)

(CTRUQ)

(CTRUS)

(CTRUU)

(DELETE)

aborts a program

suppresses output

starts a listing

stops a listing

removes the line of characters to the left of the of
the cursor

removes one character at a time to the left of the
cursor

3
34

File Storage Media
Tape Structure
Disk Block Structure

File Specifications
Device Names

Physical Device Names
Logical Device Names

File Types
Wildcards
Factoring

File Maintenance Commands
DIRECTORY: Listing the Files on a Storage Volume

COPY: Making Copies of Files
RENAME: Changing the Name of a File
DELETE: Erasing a File Name from the Directory

PROTECT and UNPROTECT: Preventing Accidental Dele­
tion of a File

Summary
References
Solutions to Practices

3
Storing
Data On Disks

When you work with RT -11, you will store the data and
the programs you create on disks or magnetic tapes. To use
RT -11 efficiently, you need to understand how informa­
tion is organized on these devices and how you can access
and use it.

This chapter discusses naming files by using file spec­
ifications and saving time and space by using wildcards.
Time is also spent on six simple monitor commands used
for file maintenance: COPY, DELETE, RENAME, PRO­
TECT, UNPROTECT, and DIRECTORY.

35

36 Working with RT -11

File Storage Media

Tape Structure

Your RT -11 system stores information in a format called a
file on disks or magnetic tapes. A file is a collection of codes
which represent data or computer instructions. On a disk,
files can be accessed in any order, that is, they can be called
up from any part of the disk. But on magnetic tape, files
must be read in the sequence in which they have been re­
corded. Disks provide random-access storage whereas tapes
provide sequential-access.

On magnetic tapes, information that identifies a file (file
name, type, creation date, and its sequence number) is stored
in a file header. The system automatically places a file
header at the beginning of each file. When you have fin­
ished putting information in a file, the length of the file is
recorded automatically at the end of the file. The last file
on a tape is followed by an end-of-tape mark. An empty area,
where new files may be added, is maintained after the last
file on the volume. When a new file is added to the tape, it
overwrites the old end-of-tape mark. A new end-of-tape mark
is written after the new file. This means that the most re­
cently created file will always be the one before the end-of­
tape mark.

Disk Block Structure

The basic unit for storing information on an RT -11 disk is
a block. A block is 256 words, roughly 512 alphanumeric
characters or one and one-half typewritten pages, in length.
On a disk, each file starts at the beginning of a block and
the size of a file is always given in numbers of blocks. Each
block on an RT -11 disk is numbered starting with block O.
Files are stored in blocks with sequential block numbers,
called contiguous blocks. This means that a given RT -11

Chapter 3 Storing Data On Disks 37

file occupies one area on the disk instead of being broken
up into separate areas.

Block 0 and blocks 2 through 5 (known as boot blocks)
contain space reserved for bootstrap programs. Bootstrap
programs perform operations such as reading parts of the
operating system into main memory. They are found only
on the disk that contains the RT -11 system code. All other
disks, such as disks that hold your data, have boot blocks
but they are empty.

The code in block 0 is read and executed by the hard­
ware boot program each time you turn on your system. The
code in block 0, in turn, reads and executes the code in
blocks 2 through 5. Block 1, the home block, contains vol­
ume identification information-such as the date the vol­
ume was created and the name of its owner.

Each disk has a file called the directory. A directory
holds information about where files are stored on a disk and
where empty areas are so that new files can be created. Each
file is listed by its file name and type in the directory. Every
file and every empty area is described by its starting block
number and by its size in blocks. The directory always starts
in block 6. Files are stored in the area immediately follow­
ing the directory.

File Specifications

Frequently, the first step in processing data is to identify
the file to be used. The full address of a file is called the
file specification. The full specification for any file has three
parts:

1. The name and unit number of the device on which
the physical storage medium holding the file is
mounted.

2. The file name, one to six alphanumeric ch~racters as­
signed by the person who created the file.

3. The file type, which tells you about the format or
contents of the information held in the file.

38

Practice
3-1

Device Names

Working with RT -11

For example, if your file specification is DX1 :SUMS.MAC,
DX1: is the name of the device on which the file is held (in
this example an RX01 diskette). SUMS is the program name
given by its author, and .MAC is the file type; here it tells
you that the program is written in MACRO-11.

Assume that you have a file called TEST written in BASIC
and stored on the disk held on device DMO. The default file
type for files written in BASIC is .BAS. Write the full speci­
fication for this file.

Sometimes you may omit the device name or file type
from a specification, because certain utility programs as­
sume values for these elements, called default values. Files
are assumed to be on the default user disk if you do not
give a device name.

You use device names in the input and output portions of
a command line to identify where input information can
be found and where output information will be sent.

Physical Device Names

Each hardware device on an RT -11 system is identified by
a permanent two-letter mnemonic. The mnemonics are de­
fined in the system software and are recognized and used
by the operating system.

For those devices which can have more than one unit
or drive, a third character, a number in the range 0 to 7, is
used. This number specifies the drive number; if you omit
it, the system assumes o. Thus, the device name for a dis­
kette in RX01 drive unit 0 is DX: or DXO: and for a diskette
in RX01 drive unit 1, DX1:.

So that the system can tell the difference between de-

Practice
3-2

Chapter 3 Storing Data On Disks 39

vice and file specifications, a colon (:) always follows a de­
vice name.

EXAMPLE

• COPY DMO: MYF I LE . TXT DM1: (RETURN)

• COpy DMO: MYF I LE. TXT DM1 (RETURN)

The first command copies the file MYFILE.TXT, which
is on the RK06/07, drive 0, onto the RK06/07, drive 1, and
names the file MYFILE.TXT. The second command copies
the file MYFILE.TXT to another file called DM1 which is
also on the RK06/07, drive O.

Logical Device Names

Unlike DX:, the name SY: does not represent a specific de­
vice. It is, rather, a logical device name that can be as­
signed to a particular physical device. SY: is used by com­
mands which access the system volume. For example, a
command like RUN PROGRAM-NAME (which runs pro­
grams from the system volume) assumes that the device to
which SY: is assigned contains the system volume. Simi­
larly, DK: is the default logical device name for the system
storage volume. You can assign DK: to any kind of storage
device. Since DK: represents the default storage volume, you
need not specify the device name in commands.

To see what physical devices SY: and DK: represent on
your system, type the command:

5 H 0 W(RETURN)

The listing shown will resemble this one:

TT (Resident)
DM (Resident)

40 Working with RT -11

DMO =DK, SY
MQ (Resident)

LD

VM
MM
NL
5 free slots

You can assign DK: .to a specific disk on your system
with the following command format:

ASSIGN PHYSICAL-DEVICE LOGICAL-DEVICE

EXAMPLE

. ASS I GN DM1: OK: (RETURN)

To verify that the assignment has been made, you
type the SHOW command:

• S H 0 W(RETURN)

A listing like the following should appear:

TT (Resident)
OM (Resident)

OMO=SY
OM1 =DK

MQ (Resident)
LD
VM
MM
NL
5 free slots

File Types

Chapter 3 Storing Data On Disks 41

In addition to using default logical device names, you
may need to assign other logical device names to physical
devices for a number of reasons. You use logical device
names in programs you write if you cannot predict which
physical device will be available for use. When you run the
program, you simply assign the logical device names to the
physical device names available on your system. A logical
device name is made up of any three characters of your
choice.

EXAMPLE

• ASS I GN(RETURN)

Physical device name? DY1 :(RETURN)

Log i cal de vic e n a me? VOL: (RETURN)

Once the assignment is made. the system recognizes
the logical device name VOL: as the device name for
your volume.

Logical device assignments are temporary. Thus, you
must reassign a logical device each time you start the sys­
tem. Table 7 lists the physical and default logical device
names used with RT-l1.

The file type generally indicates the format or contents of
a file. If you do not supply the file type when giving a file
specification, the system may assume one of a number of
types, depending on the command you have used. This as­
sumed file type is known as the default file type for that
command. For example, if you type RUN PROG1, the sys­
tem assumes you are referring to a file whose specification
is PROG1.SAV .. SAV is the default file type for the RUN
command. Some commands, like COPY, assume a wild­
card (an abbreviated specification) default, so the COpy
command will be performed on all files of that name,

42

Wildcards

Working with RT-11

Table 7.
Device Names

Mnemonic Device

Physical DUn: RDS1 Disk, RXSO Diskette on
Device Names MICRO/PDP-11, RA80 Disk

DLn: RL01/02 Disk

DMn: RK06/07 Disk

OWn: RDSO/S1 Disk on Professional 300

DXn: RX01 Diskette

DYn: RX02 Diskette

DZn: RXSO Diskette on Professional 300

RKn: RKOS/RK11 Disk

MMn: T JU16 Magtape

MSn: TS 11 Magtape

MTn: TM11 Magtape

LP: Line Printer

LS: Serial Line

TT: Console Terminal

(n represents the device unit number)

Default Logical SY: The system volume
Device Names OK: The default storage volume

whatever their file type. The file types you will use most
often are defined in table 8. (A complete list of standard
file types is shown in table 3-2 of the RT -11 System User's
Guide.)

If you are doing the same operation on a number of files
with similar file specifications, it may be more efficient to
use special symbols called wildcards in the file specifica­
tion instead of naming each file. When you use a wildcard,

Chapter 3 Storing Data On Disks 43

Table 8.
Frequently Used File Types

File Type

.BAS

.FOR

.MAC

.DBL

.BAK

.OBJ

.SAV

.LST

.COM

.SYS

File Represented

BASIC source file

FORTRAN source file

MACRO source file

DIBOL source file

The backup file created by a text editor

The object file-a binary file made up of an assem­
bled or a compiled program

The file type given to executable code-the version'
of a program that is run by the computer

The listing file produced as output at the line printer

The command file type

The monitor file and handler file type-the file type
given to system programs

the operation specified by the command is performed on
all files which match the pattern you have provided.

Two symbols are used as wildcards in RT -11. An as­
terisk (*) can replace any character or a string of charac­
ters. A percent sign (0/0) can replace any single character. If
you have a series of files with the same file type suffix, like
SUMS.BAS, WORK.BAS, and GAMES.BAS, for instance, you
could use the notation * .BAS to mean all of these files.

The percent sign (0/0) is used when file specifications
differ in one character only. For example, if you want to
perform an operation on files called TEST1.BAS and
TEST2.BAS, you can use the wildcard notation TEST%.BAS
to represent these files. If there is also a file called
TEST3.BAS, the wildcard will access it, too.

You can use wildcards in place of file names, file types,
or characters in file names or file types. You can also use
wildcards to represent part of a file name. For example,
US *. * specifies all files whose names begin with "US" on
the current volume. The wildcard *. *, on the other hand,
will access all files on the current storage volume. You
cannot, however, use wildcards to specify devices.

44

Factoring

Practice
3-3

Working with RT -11

Factoring is another method of specifying a number of files
without typing in the name of each file individually. For
example, TEST(A,B,C).MAC is equivalent to TESTA.MAC,
TESTB.MAC, TESTC.MAC.

You have the following files:

1. TESTM.MAC

2. TESTF.FOR

3. TESTB.BAS

4. TESTD.DBL

5. TENTM.MAC

6. TENTF.FOR

7. TENTB.DBL

8. TINTM.MAC

9. TEAKM.MAC

Which of the following file specifications selects 1, 2, 3, 5,
6, 7, but not 4,8, or 9?

a. TE%T (M,F,B).*

b. T* .(MAC,FOR,DBL)

c. *(M,F,B). *

d. TE%T*.*

e. TE* .(MAC,FOR,DBL)

Chapter 3 Storing Data On Disks 45

File Maintenance Commands

When you receive your RT -11 system, the system volume
contains only the files of the RT -11 operating system-the
monitor files, the system device handlers, the system util­
ity programs, and perhaps the language processors. How­
ever, since the system volume serves as the default storage
volume for all system operations (unless the name DK: was
assigned to another volume), you will discover that it ac­
quires many additional files during normal use. For exam­
ple, when you create files with the keypad editor, they are
stored on the system volume; when you edit files, the key­
pad editor automatically saves the original on the system
volume; and many utility programs create output and list­
ing files as part of their normal operation. By the time you
finish an average session of computer operations, several
new file names may have been added to the directory of
your system volume.

To avoid having your system volume become full and
its directory cluttered with the names of files for which you
have no use, you should perform regular file maintenance
operations as you use the system. That is, you should up­
date and transfer copies of your important files to other
storage volumes for safekeeping and you should delete from
your system and storage volume directories the names of
files you no longer need.

The RT -11 operating system provides a number of
monitor commands for this purpose. These commands ac­
tivate the RT-11 utility programs called PIP.SAV, DUP.SAV,
and DIR.SAV, which allow you to transfer and erase files.
Using the monitor commands introduced in this chapter is
one way to maintain your system and storage volume.

DIRECTORY: Listing the Files
on a Storage Volume

Both your system volume and your storage volume have
directories, which are compiled lists of all the files stored
on the volume. The DIRECTORY command elicits lists of

46 Working with RT -11

information about a device, a file, or a group of files. The
DIRECTORY command does not prompt you for informa­
tion. If you do not specify a device name or a file name and
a file type, the system lists information about all the files
on the default storage device.

Monitor commands may be abbreviated to the mini­
mum number of characters necessary to define a command
uniquely. For instance, instead of typing the command
DIRECTORY-as you did in practice 2-5-you may trun­
cate the command to DIR. Table 9 lists the minimum ab­
breviation for each monitor command. In general, abbrevi­
ating to three letters gives a unique command.

Table 9.
Monitor Command Abbreviations

Monitor Monitor
Command Abbreviation Command Abbreviation

ABORT AB INSTALL INS
ASSIGN AS LIBRARY LIB
BACKUP BAC LINK LIN
BASIC BAS LOAD LO
BOOT BO MACRO MAC
CLOSE CL MOUNT MO
COMPILE COM PRINT PRI
COPY COP PROTECT PRO
CREATE CR REENTER REE
DATA DA REMOVE REM
DEASSIGN DEA RENAME REN
DELETE DEL RESET RESE
DIBOL DIB RESUME RESU
DIFFERENCES DIF RUN RU
DIRECTORY DIR SAVE SA
DISMOUNT DIS SET SE
DUMP DU SHOW SH
EDIT ED SQUEEZE SQ
EXECUTE EX SRUN SR
FORMAT FORM START ST
FORTRAN FORT SUSPEND SUS
FRUN FR TIME TI
GET GE TYPE TY
HELP H UNLOAD UNL
INITIALIZE INI UNPROTECT UNP

Practice
3-4

Chapter 3 Storing Data On Disks

Get a directory listing of all the files on your storage device
with file names ending in the letters ST or TS by typing the
command:

DIR *(ST,TS).*(RETURN)

47

You can use the DIRECTORY command to obtain a list
of files on magnetic tape too, even though tapes have no
directory as such. When producing a directory listing from
magnetic tape, the utility program reads through the whole
tape displaying each file header it encounters.

COPY: Making Copies of Files

The COpy command transfers the contents of one file to
another file, the contents of a number of files to a single
file, the contents of files from a large volume to several
smaller volumes, the bootstrap code to a volume, or the
contents of one device to another device. It instructs the
system to duplicate the file that you indicate as input, then
gives the new file the name and type that you specify as
output. The original version of the file is unaffected.

You saw the long and short formats of this command
in chapter 2, but they are repeated here to refresh your
memory.

'EXAMPLE

Long format:

• COP Y (RETURN)
From? INPUT.T XT(RETURN)
To ?OUTPUT. TXT(RETURN)

Short format:

• COPY INPUT. TXT OUTPUT. TXT(RETURN)

48

Practice
3-5

Working with RT -11

One of the files provided with your RT -11 operating system
is called DEMOED.TXT. Use the long format of the COpy
command to copy the contents of the DEMOED.TXT file
into a file called PRACT.TXT. The following exchange be­
tween you and the system should take place:

• COP Y (RETURN)

From? DEMO ED. T X T(RETURN)

To ? PRACT. TXT(RETURN)

RENAME: Changing the Name of a File

Practice
3-6

You can use the RENAME command if you want to change
the file name or the file type. It changes the name or type
of a file in the directory without changing or moving the
contents of the file. Thus, when you give a RENAME com­
mand the storage device indicated in the input and output
portion of the command should be the same.

EXAMPLE

Long format:

• RENAME(RETURN)
From? INPUT. TXT(RETURN)
To ? OUTPUT. TXT(RETURN)

Short format:

.RENAME. INPUT.TXT

1. Use the short format of the RENAME command to re­
name the file PRACT.TXT to BILL.TXT. Type:

RENAME PRACT. TXT BILL. TXT(RETURN)

Chapter 3 Storing Data On Disks

2. Call up the directory to see that PRACT.TXT is no
longer in the directory by typing the command:

D I R PRACT. TXT(RETURN)

49

DELETE: Erasing a File Name
from the Directory

Practice
3-7

Once copies of your important files are stored on a storage
volume, you may want to delete from the system volume­
or any storage volume-the files you no longer need. When
you issue the DELETE command, you tell the system to re­
move information about the file you specify from the vol­
ume's directory. In doing so, the space that the file occu­
pies on the volume becomes available for reuse.

You can use wildcards when issuing the DELETE
command, but you must do this with caution as file speci­
fications containing wildcards may match a large number
of files. The system will ask for confirmation before it de­
letes files when there are wildcards in the file specifica­
tion.

Delete BILL.TXT using the long format of the command.
Type:

DEL E T E(RETURN)

Wait for the monitor prompt:

Files?

Type:

B ILL • TXT (RETURN)

50 Working with RT -11

PROTECT and UNPROTECT: Preventing
Accidental Deletion of a File

Practice
3-8

If you have files that are valuable or important, you may
want to use the PROTECT command to prevent accidental
deletion. The short command format is PROTECT FILE. TXT.
When you protect a file, you will not be able to delete it
without giving the UNPROTECT command.

You can specify as many as six input files (separated
with commas) in the PROTECT or UNPROTECT command
line. As with the DELETE command, you can also use the
wildcard construction. Once you have protected a file, its
protected status will show up in the directory listing with
a "P" next to the block size number of the file's directory
entry.

EXAMPLE

PRO TEe t (RETURN)
. Files? DEMOF 1.F OR(RETURN}

• OJ R ·DEMOF 1. FOR(RETURN)
19-Apr -.83
DEMOF1 .FOR 2P1 2 -Dec -82
1 F i,le, 2 Blocks
823 Free blocks

If you try to delete a protected file you will see an er­
ror .. message:

?PIP-W-ProtectedFile FILE.TXT

1. Unprotect the file SY:DEMOED.TXT.

2. Use the PROTECT command to return the file to its
original status.

3. Use the DIR command to see how its protected status
is shown.

Summary

References

Chapter 3 Storing Data On Disks

A FILE SPECIFICATION INCLUDES

Device name
File name
File type

FILE MAINTENANCE COMMANDS

51

COpy

DELETE

DIRECTORY

PROTECT

RENAME

UNPROTECT

transfers the contents of one file to another file

erases a file name from the directory

lists the files on a storage volume

prevents accidental deletion of a file

changes the name of a file

removes the protection status of a file

Introduction to RT -11. Chapters 4 and 7 discuss entering
and using file maintenance commands.

RT -11 System User's Guide. Chapter 4 discusses and lists
keyboard commands alphabetically. Appendix A gives command
abbreviations.

RT -11 Software Support Manual. Chapters 8 and 9 discuss
file format and storage.

Solutions to Practices

3-1. DMO:TEST.BAS
3-3. (a) TE%T (M,F,B).*
3-8. (1) UNPROTECT SY:DEMOED.TXT

(2) PROTECT SY:DEMOED.TXT
(3) DIR SY:DEMOED.TXT

4
52

Editing on a Display Terminal
Starting the Keypad Editor

Creating Files
Saving Files and Leaving the Keypad Editor
Editing Files
Inspecting Files

Using Function Keys
Getting Help in the Keypad Editor Mode

Using the GOLD Key
Using the Cursor Keys
Moving the Cursor by Units of Text
Searching for Characters and Words

Inserting, Deleting, and Restoring Text
Inserting Special Characters
Inserting Blank Lines
Deleting Characters
Deleting Words

Deleting Lines
Restoring Text

Editing Sections of Text
Deleting, Copying, and Moving Sections of Text
Changing Case, Replacing, and Substituting
Sections of Text

Summary
References

4
Using
KED to Edit
Text Files

A text editor is a utility program used to create and modify
files of printable characters. Text files contain the letters,
numbers, and symbols you type in at your keyboard; they
may be programs, data to be used in programs, reports,
memos, or sequences of monitor commands.

The text editors available on RT -11 include a keypad
editor KED, and a line editor, EDIT. If you have a video
display terminal, you will use a keypad editor instead of
the line editor to create and edit text files.

In this chapter you will learn to use KED to perform
the following operations: create, edit, and inspect files; move
the cursor to any position within your file; search for a word
or character; insert, delete, and restore text in files. You will
also learn to set a select range and use the CUT and PASTE
commands to change the position of text within your file
and leave the keypad editor with or without saving the
changes you made when editing.

(If you do not have a video display terminal, refer to
chapter 6 in the RT-l1 System User's Guide for a discus­
sion of EDIT, the text editor for printing terminals.)

53

54 Working with RT -11

Editing on a Display Terminal

The keypad editor, also known as a screen editor, allows
you to move freely within a text file and see immediately
the corrections you are making.

The keypad editor allows you to edit using keys with
special functions. On a VT100 terminal, these keys are found
on or near the numeric keypad. If you are using a Profes­
sional 300 computer, you will find the function keys on the
numeric and editor keypads. Figure 7 shows the functions
of the keys on the numeric keypad; the functions are the
same on the VT100 and Professional 300 terminals. The al­
phanumeric characters or symbol at the center of a key is
the label that actually appears on each key. The term above

Figure 7.
Keypad Functions on the VT100 and
Professional 300 Terminal

Practice
4-1

Chapter 4 Using KED to Edit Text Files 55

the label or the label itself describes the function the sys­
tem performs when you press the key. The term below the
label represents the function the system performs when you
press (GOLD) (labeled PF1) first. You can use the main key­
board to type in characters as usual, but in this chapter you
will concentrate on the function keys and some control
characters that have special functions within the keypad
editor.

You create and edit text files more often than you per­
form any other system operation. To facilitate these pro­
cesses, two RT -11 editor system utility programs, EDIT.SAV
and KED.SAV, are stored as part of the RT -11 operating
system on your system volume. On all RT -11 systems, EDIT
is the default text editor when you start the system. This
means that when you issue the monitor command EDIT, the
EDIT.SAV text editor program is run.

If you have a video terminal, set KED as your default editor
by typing the command:

SET ED I T K ED(RETURN}

Starting the Keypad Editor

Creating Files

The monitor command that starts the keypad editor is
EDIT/KED. Since KED is already your default editor, you
can simply enter the command, EDIT. The system prompts
you for a file name after you issue the command.

The RT -11 editor uses an area in main memory reserved
for text that you are typing in for the first time or editing.
This area is called the text buffer. When you create a file,

56 Working with RT -11

the characters you type in at the keyboard are transmitted
to the text buffer. When you have finished typing text into
the file, the file is transferred from the text buffer to an out­
put file for storage. The monitor command to use the key­
pad editor to create a file is:

EDIT/CREA TE FILENAME

EXAMPLE

.EDI T ICREATE

The name you select for your file should not be the
same as a file which you have created previously in your
directory. If you try to repeat a name, an error message will
be produced.

KED-W-Ou tpu t fi.le ex is t s-Con t i nue,(Y, N)?

The warning message asks you fora yes or n? re­
sponse. If you type in y, meaning to continue,the
original file will be e:rased.

Saving Files and Leaving the Keypad Editor

When you have created or edited a file and want to save it
as you leave the keypad editor, press the (GOLD) key followed
by (COMMAND). Pressing these function keys tells the keypad
editor that you want to enter a command. The editor, in turn
will display the prompt:

Command:

You should then type the word EXIT and press (ENTER)

on your keypad. The system will transfer the information
in the text buffer into an output file and bring you out of
the keypad editor mode and into the RT -11 monitor com­
mand mode.

Practice
4-2

Editing Files

Chapter 4 Using KED to Edit Text Files 57

EXAMPLE

(GOLD)(COMMAND)

Com man d: E X I T (ENTER)

To leave the keypad editor and save the file but not
the edits made to it, you type QUIT instead of typing EXIT
when the editor prompts you for a command.

1. Select a file name, for example TEXT.TXT, and create
a file using the keypad editor. Type:

ED IT/CREATE TEXT. TXT(RETURN)

If you have typed in the command correctly, you will
see the cursor positioned on a special symbol, a filled
block, known as the end-of-file marker.

2. Type in approximately five lines of text (input a short
passage from this book for example). Do not worry
about mistakes at this time.

3. When you have finished typing in the text, press (GOLD)

and then (COMMAND). After the system prompt, type:

EXIT

and press (ENTER). Your file TEXT.TXT is now stored
and you should see the dot monitor prompt.

To edit a file that you created previously, use the monitor
command:

EDIT FILENAME

When you issue the EDIT command, the system copies
the file you specify (known as the input file) and transfers
the copy to the text buffer where you can modify the ma-

58

Inspecting Files

Working with RT -11

terial. When you are satisfied with the edits made to the
text in the buffer, you may issue either the EXIT or QUIT
command.

If you use the EXIT command, the edited text in the
buffer is copied into the file you specified (now known as
the output file); the edited text replaces the original text in
the file. I

If you typed in QUIT rather thah EXIT when the sys­
tem prompts for a command, the system returns to the
monitor command mode without transferring the text in the
buffer to the output file on a storage medium. The edited
text in the buffer is lost and the original text remains stored
in the file.

If you want to store the edited text in a file with a dif­
ferent name, you can use the IOUTPUT option to the EDIT
command. By specifying a different name for the output file,
KED will store the edited text in a new file and leave the
original text in the input file unchanged. The format for this
command is:

EDIT/OUTPUT:OUT-FILENAME IN-FILENAME

When you edit a file, RT -11 automatically saves the
original version as a backup file. It copies the original text
into a file using the same name and assigns the .BAK file
type to the backup file. For example, if you edited a file
called TEST1.MAC the backup copy of the file would be
called TEST1.BAK.

The keypad editor also allows you to examine files without
making any changes in them. To do this you use the EDIT
command with the IINSPECT option. The format is:

EDIT/INSPECT FILENAME

Chapter 4 Using KED to Edit Text Files 59

Using Function Keys

Getting Help in the Keypad Editor Mode

When you are using the keypad editor, you can get help by
pressing (HELP). This key is labeled PF2 on the VT100 and
Professional keyboards (see figure 7). The key labeled HELP
on the top row of the Professional keyboard does not work.
When we refer to (HELP) in the remainder of this book, we are
referring to the PF2 key.

When you press (HELP) you will see a diagram of the
keypad, which shows you the position of the functions
available. You can also get messages explaining errors by
pressing (HELP). When you use a keypad function incorrectly,
a bell rings. If you press (HELP) after the bell has sounded, in­
stead of the keypad display, you will be given an explana­
tion of your error.

By pressing (HELP) twice, you can get a listing and de­
scription of all the commands and functions available to the
keypad editor (see table 10). To enter one of these com­
mands, you must press (GOLD) (COMMAND) and type in the com­
mand after the prompt. When you have finished entering
the command, press (ENTER).

Using the GOLD Key

When used by itself, (GOLD) (labeled PF1) has no effect. In­
stead, it enables the alternate function of other keypad keys
to work. Except for (HELP) and (GOLD), you will see that all the
other keys on the keypad have two functions. The two
functions available as well as the label on each key of the
VT100 and Professional 300 numeric keypad are shown in
figure 7. To use the lower function on a key you must press
(GOLD) followed by the function key.

By using the number keys on the keyboard (not those
on the keypad) and (GOLD), you can repeat a function any
number of times. Press (GOLD) and the number of times you
want to repeat a function before you specify the function.
For example, (GOLD)7(DELCHAR) deletes seven characters to the right
of the cursor.

60 Working with RT -11

Table 10.
Summary of Commands and Keyboard Functions

CLEAR PASTE

CLOSE

EXIT

FILL

INCLUDE nnn PAGES

INCLUDE nnn LINES

INCLUDE REST

LEARN

LOCAL [starting-value [increment]]

[OPEN] INPUT FILESPEC

[OPEN] OUTPUT FILESPEC

PURGE

QUIT

Clears the paste buffer

Closes the auxiliary output file

Closes all open files

Reformats the select range to fit within
the current right margin

Copies pages from the auxiliary input
file

Copies text lines

Copies the remainder of the file

Begins recording a sequence of com­
mands and functions as an editor
macro

Renumbers MACRO-11 local
symbols

Opens an auxiliary input file

Opens an auxiliary output file

Purges the auxiliary output file

Purges all open files

SET [ENTITY] PAGE nnn [LINES] Defines a page by line count

SET [ENTITY] PAGE "string" or 'string'
Defines a page by marker string of one
or more characters

SET [ENTITY] SECTION nnn [LINES]
Defines a section by line count

SET [ENTITY] SECTION "string" or 'string'
Defines a section by a marker string
of one or more characters

SET QUIET Sets the video terminal to signal with
the reversed background

SET NOQUIET

SET [SCREEN] aD

SET [SCREEN] 132

SET [SCREEN] LIGHT

SET [SCREEN] DARK

SET [SEARCH] GENERAL

Sets the video terminal to signal with
the terminal bell

Sets the video terminal to aD-column
width

Sets the video terminal to 132-
column width

Sets the video terminal to light back­
ground

Sets the video terminal to dark back­
ground

Matches alphabetically regardless of
case

Chapter 4 Using KED to Edit Text Files 61

Table 10. Continued

SET [SEARCH] EXACT

SET [SEARCH] BEGIN

SET [SEARCH] END

SET [SEARCH] BOUNDED

SET [SEARCH] UNBOUNDED

SET TABS [indent]

SET NOTABS

SET WRAP [nn]

SET NOWRAP

SKIP nnn PAGES

SKIP nnn [LINES]

SKIP REST

TABS ADJUST ({±})nnn

WRITE nnn PAGES

WRITE nnn [LINES]

WRITE REST

WRITE SELECT

(CTRUC)

(CTRUU)

(CTRUW)

(CTRUZ)

(DELETE)

(LiNEFEED)

(GOLD)nnn

(GOLD)(S)

(GOLD)(X)

(GOLD)(E)

(GOLD)(D)

(GOLD)(A)

Matches alphabetically and requires
the same case

Leaves the cursor at the beginning of
the target

Leaves the cursor at the end of the
target

Limits searching to a page

Allows searching beyond the current
page

Enables structured tabs

Enables structured tabs

Sets the right margin and enables
word wrap

Disables word wrap

Skips pages within the auxiliary input
file

Skips text lines

Skips the remainder of the file

Changes indentation

Writes pages (as currently defined) to
the auxiliary output file

Writes text lines

Writes the remainder of the file

Writes the select range

Cancels the command or function that
is being processed

Erases one line to the left

Repaints the screen

Cancels editor prompts

Erases one character to the left

Erases one word to the left

Repeats the next function nnn times

Stops recording the macro

Executes the macro, as currently re­
corded

Increases the tab level-tounter

Decreases the tab level-counter

Aligns the tab level-counter to the
cursor

62 Working with RT -11

Using the Cursor Keys

Practice
4-3

The cursor keys on all VT100 and Professional 300 key­
boards are clearly marked with arrow symbols. The right
(-) and left (-) arrow keys move the cursor, character by
character, forward and backward through the file. The right
arrow key (-) moves the cursor to the right and from the end
of one line to the beginning of the next line. The left arrow
key (-) moves the cursor to the left and from the beginning
of a line to the end of the preceding line. Instead of moving
the cursor character by character, you can use (GOLD) along
with either the left or right arrow key to move the cursor
directly to the beginning or to the end of a line.

The up (i) and down (t) arrows move the cursor, line
by line, vertically through a file. The up and down arrows
move the cursor directly up and down, keeping it in the
same vertical column of text. When the text line does not
reach the column the cursor happens to be in (at the end
of a paragraph, for instance) the cursor moves back to the
column where the text line ended.

Find the arrow functions on your keyboard. Use the
EDIT/INSPECT command to gain access to the file you just
created and use the arrow functions to move the cursor up
and down and then left and right within your file. When
you are familiar with how the functions work, use the EXIT
command to leave the file.

Moving the Cursor by Units of Text

The cursor can also be moved by using other keypad func­
tions. You set the direction in which you want the cursor
to move by pressing (ADVANCE) or (BACKUP). (ADVANCE) moves the cursor
forward through the file. (BACKUP) moves the cursor backward
through the file.

After you have set the directional mode by pressing
(ADVANCE) or (BACKUP), you can instruct the editor to perform a

Practice
4-4

Chapter 4 Using KED to Edit Text Files 63

number of functions in the direction indicated. (The arrow
functions are not affected by the directional mode. They al­
ways move the cursor in the directions indicated on the
keys.)

The size of the unit the cursor moves is set with the
following functions: (CHAR) moves the cursor, character by
character; (WORD) moves the cursor, word by word; (EOL) moves
the cursor to the end of a line; and (BlINE) moves the cursor
to the beginning of a line.

Depending on the directional mode, (CHAR) advances or
backs up the cursor one character, and (WORD) advances or
backs up the cursor to the first character of a word. Some
keyboards may not have the CHAR function.

Both (EOL) and (BlINE) move the cursor in units of a line.
(EOL) moves it to the end of the next line, in the direction set
by (ADVANCE) or (BACKUP). (BlINE) moves the cursor to the beginning
of the next line, again in the direction you have set.

To move the cursor directly to the beginning or end of
a file, you can use (GOLD) with (TOP) or (BOnOM).

1. Use the EDIT command to gain access to one of your
files. Press (ADVANCE) to set the direction of the cursor.
Try moving the cursor through your text with (CHAR) and
with (WORD). Then try positioning the cursor at the be­
ginning and end of lines using (EOL) and (BlINE).

2. Change the direction of movement using (BACKUP). Try
moving the cursor by character, word, and line.

3. Press (GOLD)(TOP). When the cursor has reached the begin­
ning of the file and stopped, press (GOLD)(BOnOM). You
may want to practice using the keypad functions men­
tioned until you become familiar with them.

Searching for Characters and Words

The FIND function allows you to search your file for a spe­
cific character or word. The search will start at the point

64

Practice
4-5

Working with RT -11

where the cursor is positioned. If you want to search the
complete file, then position the cursor at the beginning of
the file by pressing (GOLD)(TOP).

When you press (GOLD)(FIND), you will receive the follow­
ing prompt at the top of the screen:

Mode 1 :

You then type in the character or word you want to find
and complete the command with (ADVANCE) or (BACKUP) to spec­
ify the direction of the search. The character or word you
supply in response to this prompt is known as the search
target.

If you want to search for the same word again, press
(FINDNEXT). The search will take place in the direction .set by
(ADVANCE) or (BACKUP) when you used (FIND). If you try to continue
the search beyond the beginning or end of the file, you will
hear a bell. Pressing (HELP) will give you the error message:

Search finds end of file

Use the EDIT command to get access to a file and press (GOLD)

(FIND). Search your file for a word, such as the, or a character
that appears frequently. Use (FINDNEXT) to continue the search.
Try searching both backward and forward through the file.
When you are familiar with the FIND function, exit from
the file.

Inserting, Deleting, and Restoring
Text

Inserting Special Characters

When you insert material into a file that you are creating
or editing, you simply type the text on the keyboard just as
you would on a typewriter. You cannot however, insert some

Chapter 4 Using KED to Edit Text Files 65

characters by simply typing them on the keyboard. To in­
sert special characters, such as ESCAPE or LINEFEED, you
can use the SPECINS function key. The SPECINS function
inserts the character when you specify the character's AS­
CII code in decimal. When you use the sequence, (GOLD)inte­
ger(GOLD)(SPECINS), the keypad editor interprets the integer you
type as a decimal value, evaluates the seven low order bits,
and inserts the corresponding ASCII character. Except for
the NULL character, you can use the SPECINS function to
insert any character in ASCII.

EXAMPLE

(GOLD)2 7 (GOLD)(SPECINS)

inserts the ESCAPE character (ASCII octal 033, deci­
mal 27).

Inserting Blank Lines

Practice
4-6

If you want to insert a blank line in your file, you can either
press (RETURN) or press (GOLD) with (OPENLlNE) on the keypad. (GOLD)
(OPENLlNE) inserts a blank line to the right of the cursor. Char­
acters that were originally to the right of the cursor move
down one screen line, and the keypad editor scrolls all lines
below the cursor downward.

1. Use the EDIT command to gain access to a file. Insert
blank lines in the text first by pressing (RETURN) and then
by pressing (GOLD)(OPENLlNE).

2. Now use the OPENLINE function to insert more than
one line. Press (GOLD), type the number of lines you
want inserted (2 for instance), and then press (GOLD)(OPEN­
LINE). When you are familiar with the function use the
EXIT command to store your file.

66 Working with RT -11

Deletions in your file can be done in three ways, by
one character at a time, by one word at a time, or by an
entire line at a time.

Deleting Characters

Deleting Words

Deleting Lines

Practice
4-7

(DELCHAR) on the keypad erases the character at the current
cursor position. (DELETE) on the keyboard erases the character
preceding the cursor.

The keypad editor considers any text enclosed in spaces,
tabs, or new lines as a word. There are two methods of de­
leting a word: (DELWORD) on the keypad erases forward from
the cursor to the first character of the next word. When you
use (DELWORD) to erase a word you also erase any spaces before
the next word. (LiNEFEED) on the keyboard erases backward from
the cursor through the first character of the current or pre­
ceding word.

(DELLlNE) on the keypad erases forward from the cursor to the
beginning of the next line. When the operation is com­
plete, the cursor is at the beginning of the next line.

(DELEOL) erases forward from the cursor to the end of the
current line; the cursor remains at the end of the current
line.

(CTRUU) (holding down (CTRL) on the keyboard while press­
ing (U») erases back to the beginning of the previous line.

1. Use EDIT to get access to a text file. Type in a few sen­
tences and erase characters from them using (DELCHAR)

and then (DELETE).

Restoring Text

Practice
4-8

Chapter 4 Using KED to Edit Text Files

2. Practice using (DELWORD) and (LiNEFEED) to erase words.
Look at the position of the cursor after each deletion.

3. Try the three ways of deleting a line of text. Look at
the cursor position on completion of each operation.
When you have finished using the delete functions,
use EXIT to return to the monitor command mode.

67

The keypad editor uses a character buffer, a word buffer,
and a text line buffer to store the last character, word, or
line that you erase. If you find you have erased a character,
word, or line by mistake you can use either the UNDEL­
CHAR, UNDELWORD, or UNDELLINE functions to copy the
contents of the buffer back into your file. (GOLD)(UNDELCHAR) on
the keypad restores a character to the file. (GOLD)(UNDELWORD) on
the keypad restores a word to the file. And (GOLD)(UNDELLlNE) on
the keypad restores a line of text to the file.

Use EDIT to get access into a file. Try deleting and restoring
text in your file in units of characters, words, and lines. (Re­
member that you can only restore text that you just deleted;
the latest deletions replace previous deletions in the buffer.)

Editing Sections of Text

When you are editing a file" you may find that you want to
move or modify sections of the text. For example, you have
thel sentence, "That is the question To be or not to be," and
want to move the whole phrase "To be or not to be" and
place it before the phrase "That is the question."

68 Working with RT -11

The keypad editor provides you with functions to do
this, as well as functions to copy sections of text or remove
them. You need to indicate to the editor the section of text
you want to copy, move, or replace. To do this you must
establish a select range. To set a select range, you press
(SELECT). The range begins at the position of the cursor. Mov­
ing the cursor to the right or left causes text to be included
in the select range. A left select range includes the charac­
ters to the right of the cursor. A right select range stops with
the character to the left of the cursor.

After selecting a range of text, you can do a variety of
operations on the material. You can move, copy, or delete
text using (CUT), (PASTE), and (APPEND). Or you can change text us­
ing (CHNGCASE), (REPLACE), and (SUBSTITUTE).

Deleting, Copying, and Moving
Sections of Text

Practice
4-9

The CUT function removes the selected range of text
from the screen and stores it in the paste buffer. This spe­
cial buffer holds text during editing. The PASTE function
inserts the contents of the paste buffer to the right of the
cursor. You will see the text in the select range reappear on
the screen.

1. Use the EDIT command to get access to the text file
you have been using for the practices, or use
EDIT/CREATE to start a new file. Type the following
text into your file:

That is the question To be or not to be.

2. Set the select range for the phrase To be or not to be
by moving the cursor to the T in To and pressing the
(SElECT) key. Advance the cursor until it is at the end of
the phrase (one space to the right of the period). Use
(CUT) to store the phrase you have selected, in the paste
buffer. Move the cursor to the beginning of the sen-

Chapter 4 Using KED to Edit Text Files

tence (one space to the left of the T in That). Press
(GOLD)(PASTE) to insert To be or not to be at the start of the
sentence.

3. When you are familiar with the CUT and PASTE func­
tions use EXIT to store the file.

69

The only difference between the CUT and APPEND
functions is that the CUT function discards any selection
previously in the paste buffer and replaces it with the cur­
rent selection. The APPEND function preserves the selec­
tion in the paste buffer and adds the current selection at
the end of it.

Changing Case, Replacing, and Substituting
Sections of Text

The CHNGCASE function changes uppercase letters to
lowercase letters and lowercase letters to uppercase letters
in the following cases:

1. With the cursor on a letter, the CHNGCASE function
changes the case of only the cursor's character and
then, depending on the directional mode, advances
or backs up the cursor by one character. However,
the CHNGCASE function may have a different effect
if you are using the SELECT, FIND, or FIND NEXT
functions.

2. If the cursor is on a character within a select range
when you press (GOLD)(CHNGCASE), the function changes the
case of each letter in the select range and cancels the
select range.

3. When the cursor is on a character that is at a valid
search target (and you are not building a select
range), the CHNGCASE function changes the case of
each character in the search target. The function does
not move the cursor.

70

Practice
4-10

Working with RT -11

The REPLACE function erases and discards a select
range or search target, inserts the contents of the paste buffer,
and places the cursor at the character that follows the in­
sertion. When the paste buffer is empty, the keypad editor
erases and discards the selection or search argument and
inserts nothing. (GOLD)(REPLACE) is a convenient way to erase a
string that may otherwise require using a combination of
delete functions.

The keypad editor always replaces a select range when
one exists. The keypad editor replaces a search target only
if no select range exists and the cursor is at a valid search
target. When you use the REPLACE function to replace a
search target, the keypad editor stores the search target in
the word buffer.

The SUBSTITUTE function accomplishes both a RE­
PLACE and a FINDNEXT process when the cursor is at a
valid search target. (Remember that you can use (FINDNEXT) only
after you have used (FIND).) You can change several occur­
rences of a string to whatever is in the paste buffer by re­
peating the SUBSTITUTE function. The sequence is:

(GOLD) integer(GOLD)(SUBSTITUTE)

The keypad editor accepts integers in the range from 1 to
32767.

1. Use EDIT to get access to a practice file. Type the fol­
lowing text into your file:

Although it is Digital's smallest operating system for
the pdp-11 processor family, RT -ll's features com­
pare very favorably to those of much larger systems.

Use CHNGCASE to make pdp-11 uppercase.

Use REPLACE to erase the string:

Although it is Digital's smallest operating system for
the PDP-11 processor family,.

Summary

Chapter 4 Using KED to Edit Text Files

2. Type the following text into your text file:

Thank RT -11 parts. How do you choose a material for
the structural members of an airplane wing? Or any
other members of an aircraft that will 'travel at great
speed? Whatever members are chosen must success­
fully endure the tremendous stresses of modern flight.

Use (CUT) to delete the word parts from the first line.
Then use (FIND) and (SUBSTITUTE) to change each occurrence
of members to parts.
When you have finished editing your file, use the EXIT
command to leave the keypad editor.

COMMANDS USED WITH KED

creates a text file

71

EDIT/CREATE

EDIT/INSPECT allows you to examine a file without making
changes to it

EDIT/KED

EXIT(ENTER)

QUIT (ENTER)

SET EDIT KED

allows you to modify the contents of a file
you created previously

saves the file you created or edited and takes
you from the keypad editor mode to the
monitor command mode

takes you from the keypad editor mode to
the monitor command mode without saving
the edits made to a file

makes KED the default keypad editor

FUNCTION KEYS USED WITH KED

(~) moves the cursor, character by character, to
the right

moves the cursor, character by character, to
the left

72 Working with RT -11

(1)

0)

(ADVANCE)

(BACKUP)

(BLlNE)

(CHAR)

(CUT)

(DELCHAR)

(DELEOL)

(DELETE)

(DELLlNE)

(DELWORD)

(EOL)

(FINDNEXT)

(GOLD)

(GOLD)(BOTTOM)

(GOLD)(CHNGCASE)

(GOLD)(FIND)

(GOLD)(OPENLlNE)

(GOLD)(PASTE)

(GOLD)(SPECINS)

(GOLD)(TOP)

moves the cursor, line by line, upward

moves the cursor, line by line, downward

sets the direction (forward) in which the cur­
sor will move

sets the direction (backward) in which the
cursor will move

moves the cursor to the beginning of a line

moves the cursor in units of characters

removes a selected section of text from a file
and stores it in the paste buffer

erases the character at the cursor

erases forward from the cursor to the end of
the current line

erases the character preceding the cursor

erases forward from the cursor to the begin­
ning of the next line

erases forward from the cursor to the first
character of the next word

moves the cursor to the end of a line

searches for the next occurence of the search
target, must be used after (GOLD)(FIND)

allows you to use the alternate functions of
keys on the keypad

moves the cursor to the end of a file

changes single letters or letter contents of a se­
lect range from uppercase to lowercase or low­
ercase to uppercase

(used with (ADVANCE) or (BACKUP») selects a word or
character as a search target, then searches for­
ward or backward for the target

inserts a blank line

inserts the contents of the paste buffer to the
right of the cursor

inserts characters in ASCII

moves the cursor to the beginning of a file

References

Chapter 4 Using KED to Edit Text Files 73

(G 0 LD)(U N D ELCHAR)

(GOLD)(UNDELLlNE)

(GOLD)(UNDELWORD)

(HELP)

(LiNEFEED)

(REPLACE)

(SUBSTITUTE)

(WORD)

restores the last character deleted from the file

restores the last line of text deleted from the
file

restores the last word deleted from the file

displays keypad functions and editor SET
functions and explains errors made when a
keypad function is used incorrectly

erases backward from the cursor through the
first character of the current or preceding
word

erases a selected section of text and inserts the
contents of the paste buffer in its place

accomplishes both the REPLACE and FIND­
NEXT functions

moves the cursor in units of words

PDP-l1 Keypad Editor User's Guide provides a detailed
discussion of KED.

PDP-ll Keypad Editor Reference Card.

5
74

Basics of the Single Line Editor
Starting and Stopping
Finding the Functions
Using SL LEARN to Retain the HELP Display
Using the GOLD Key to Perform Alternate Functions
Moving the Cursor

Performing Operations with the Single Line Editor
Deleting and Restoring Characters
Exchanging Characters
Executing a Command Line
Retrieving Commands

Simple and Complex Commands
Digital Command Language
Commands That Run Utility Programs Directly

Command String Interpreter

Concise Command Language
Using DCL and CCL to Compare Two Versions of a File
Screening of Monitor Commands
Selecting the Type of Command to Use
Summary

References

5
Editing and
Issuing Monitor
Commands

Monitor commands are commands you type in at your ter­
minal in response to the dot prompt from KMON. You have
already used some monitor commands like EDIT, COPY,
DIRECTORY, and RENAME. To edit monitor commands,
you will use the single line editor (SL). SL is available on
Professional 300 terminals and on video display terminals
that are compatible with the VT100.

The single line editor allows you to move the cursor
within a command line and to delete and replace charac­
ters while you are interacting with the monitor. Using SL
saves retyping commands in full when you make a mis­
take, and it is also useful if you are running a program
which needs data typed in line-by-line.

This chapter also examines the three ways in which
commands may be given to the monitor and discusses when
to use each type of command.

When you have completed this chapter, you will be
able to start and stop SL; get the SL HELP display; move
the cursor to the left and right; delete, restore, and swap
characters; and execute all or part of a command line after
using S1. You will also learn to cite the difference between
commands written in Digital Command Language (DCL),
Command String Interpreter (CSI), and Concise Command
Language (CCL).

75

76 Working with RT -11

Basics of the Single Line Editor

Much of the time you are using RT -11, you will be issuing
monitor commands. If you are typing long or complex
monitor command lines you may find that you make typ­
ing mistakes. Without using the single line editor (SL) there
are only two ways that you can change a line: you can use
the (DELETE) key to erase one character at a time to the left of
the cursor, or you can use the (CTRUU) key combination, which
erases the entire line, so that you can retype it.

Starting and Stopping

Before you can use SL you must specify your terminal type.

rfYoiI.l1avea VT102 terminal, the~ommand is:

~. SETSLVT1 02{RETURN)

If you are using a VT100 terminal, you need not give this
command since VT100 is the default terminal type. You start
SL by typing the command, SET SL ON. To stop SL, the
command is, SET SL OFF. The commands to specify the
terminal type and to start or stop SL can be combined into
one command line.

The ON or OFF part off the command must be the last
element in the command line if commands are combined
in one line.

'iii
c

"e
~
c c

e
CD
.c ...
c o

c o
~
c
:;,

LL.
...J
tn

77

78 Working with RT -11

Finding the Functions

When you have issued SET SL ON, you can get a display
showing the position of the SL function keys by pressing
(HELP). The location of the function keys on the VT100 and
Professional 300 keyboards are shown in figures 8 and 9.
The keys on the left-hand side of the diagram are on the
main keyboard, and the keys at the right of the diagram are
on the keypad. The characters and numbers in the center
of the keys are the labels that actually appear on the keys;
while the terms above and below them indicate the SL
functions.

Using SL LEARN to Retain the HELP Display

Practice
5-1

If you are using a terminal that belongs to the VT100 or
Professional 300 family, SL has a special feature to help you
become familiar with the position of the keys. When you
type the command, SET SL LEARN, and press (HELP), the HELP
display will stay on the upper half of your screen even if
you type (RETURN) a number of times. The LEARN feature al­
lows you to keep the HELP display on your terminal screen
for as long as you need it. To remove the HELP display,
give the command, SET SL NOLEARN, which returns the
terminal to scrolling normally.

1. Type the command:

SET SL LEARN(RETURN)

2. Press (HELP); then press (RETURN) several times to see what
happens to the HELP display.

3. Remove the HELP display with the command:

SET SL NOLEARN(RETURN)

'iii
c::
'E
~
'iii
c::
o

'c;;
CI)

~
Il.
CI)
J: ...
c::
o

c::
o
:u
c::
:::J
U.
..J
(J)

79

80 Working with RT -11

The HELP function is also useful if you make an error
using SL. When the bell rings after you make an error, you
can press (HELP) to get an error message. Press (HELP) again, and
you will get the (HELP) display.

To resume editing the material in your file use (CTRUR).

Pressing any key will bring your text back onto the screen,
but unless it is (CTRUR), the character you press will appear
in the text.

Using the GOLD Key to Perform Alternate
Functions

As with the keypad editor, (GOLD), when used by itself, does
not perform a function. However, when used in combina­
tion with another function key, it directs SL to perform a
specific function. If you press a function key without first
pressing (GOLD), the function at the top of the key is per­
formed (see figures 8 and 9). But if you press (GOLD) and im­
mediately press a function key, the alternate function, noted
at the bottom of each key, is performed.

Moving the Cursor

You can also use the arrow keys with SL to move the cur­
sor to the left or right one character at a time. To move the
cursor to the beginning or end of a line of text you can use
the BEGIN or END functions. To get these functions you
must press (GOLD) before pressing either (-) or (~).

Performing Operations with the
Single Line Editor

Deleting and Restoring Characters

You can delete and restore text by character or by line. (DE­

LETE) erases text one character at a time, starting from the last

Chapter 5 Editing and Issuing Monitor Commands 81

character typed. All or part of a line of text can be erased
by using (CTRUU) or (DELlINE). (CTRUU) erases a line of characters to
the left of the cursor. (DELlINE) erases a line of characters to
the right of the cursor.

If you find you have erased text by mistake, you can
restore it in the unit of a character or of a line by pressing
(GOLD)(UNDELCHAR), (GOLD)(CTRUU), or (GOLD)(UNDELlINE).

Exchanging Characters

The SWAP function allows you to switch the positions of
the character at the cursor and the character to the right of
the cursor. The cursor remains with the same character in
its new position. The UNSWAP function switches the po­
sitions of the character at the cursor and the character to
the left of the cursor. These functions are found on (BACKSPACE)

on the VT100 keyboard, and on (F12) on the Professional
keyboard.

EXAMPLE

In the examples which follow, the underlined charac­
ter indicates the position of the cursor;

,D I R I PROTECI TON(sWAP)

produces:

,DIR/PROTECTION

Executing a Command Line

When you have completed the changes you want to make
in a command line, you can execute the command by
pressing (RETURN). You can execute part of the command, from
the left margin to the cursor, by using the TRUNC function,
that is, by pressing (GOLD) followed by (RETURN).

82 Working with RT -11

EXAMPLE

If you have the command string:

.COpy DXO:*.MAC DX1 :-.BAK
:DL1 :FILES. BAK

and you movethe cursor to the D in DL1:

.COpy DXO:*.MAC DX1:*.BAK·

QL1 :FILES~BAK

you can execute the command:

.~Opy D~O:*.MAC DX1 :*.BAK

by pressing (GOLO)(TRUNC).

Retrieving Commands

Practice
5-2

The GET OLD function, obtained by pressing (GOLD) and then
(i) displays the command most recently typed at your ter­
minal. You can then edit the command as if you had just
typed it. (If you are using RT -11 version 5.1 on the Profes­
sional computer, you simply press (j) to obtain the GET OLD
function while in SL. Pressing (GOLD)(i) activates the GET
OLDER function, which displays the second-to-Iast com­
mand for you to edit.)

1. Enable SL by typing:

SET S L a N(RETURN)

Set it to the LEARN option so that the HELP display
remains on the screen. Type in the command:

D I R / PRaTE CT I ON(RETURN)

2. Use the GET OLD function to reproduce the command
line. Change the command to:

D I R / NOPROTECT I ON(RETURN)

Chapter 5 Editing and Issuing Monitor Commands

by moving the cursor and typing in the extra charac­
ters. Execute the command.

3. Use the GET OLD function to redisplay the command
line. Delete DIRINOPROTECTION, with (DELLlNE) and
type in the following command line exactly as it is
shown here:

DIR/ALPHABETIZE/RIEBF/CLMNSOU:3/DEELTED

Use the SWAP and UNSW AP functions to alter the
command line so that it reads:

DIR/ALPHABETIZE/BRIEF/COLUMNS:3/DELETED

Remember that (GOLD)(UNSWAP) moves the character at the
cursor position to the left, (SWAP) moves the character to
the right. Execute the command.

4. Use the GET OLD function to reproduce the command
line. Move the cursor to the slash after the command
word DIR and use (TRUNC) to execute the first part of the
command line and get a complete directory listing.

83

The REFRESH function-obtained by pressing (CTRUW) or
(CTRuR)-displays the current line of text on your video screen.
REFRESH is useful if you are not sure that your screen is
displaying information accurately, or if another job prints
a message on your screen while you are typing a command
line. When you press (CTRUR) or (CTRUW), the system removes
any interrupting message or data and redisplays the line you
are typing.

Simple and Complex Commands

Keyboard monitor commands can be simple or complex. The
distinction is based on the way in which the commands are
executed rather than on the difference in the format of the
command. When you issue a simple keyboard command, it

84 Working with RT -11

is executed directly by the keyboard monitor, KMON. Sim­
ple commands include LOAD, SET, DATE, and TIME .

• T I ME 1 0 : S2 : 03(RETURN}

Complex commands are not executed directly by the
keyboard monitor. Your RT-ll system has utility pro­
grams to perform functions like creating, deleting, or com­
paring files. The keyboard monitor has to call these utility
programs to perform the operations.

When you issue a complex command, KMON auto­
matically expands the command to run a utility program
and gives the utility program the file specifications and op­
tions.

EXAMPLE

If you issue the command:

• COpy INPUT. TMP OUTPUT. TMP(RETURN)

KMONwill expand it to:

.R PIP
*OUTPUT.TMP=.INPUT.TMP

So, when you use complex commands, you are calling and
running utility programs. In order to run a utility program,
the system must receive the command, file specifications,
and options in a format it can understand. The examples
above illustrate simple and complex commands written in
the Digital Command Language (DCL) -format.

Digital Command Language

The easiest and most convenient command string format to
use is Digital Command Language, which works through the

Chapter 5 Editing and Issuing Monitor Commands 85

keyboard monitor. You do not need to know the name of
the utility program being used. Instead, you use a word (one
of more than a hundred standard DCL commands) which
approximates the name of the task you are trying to accom­
plish. Once your command has been entered, the system
prompts you for file names or other necessary information.

EXAMPLE

• COP Y (RETURN)

From? OLD. TXT(RETURN)

To ? NEW. TXT(RETURN)

Or you can use the short format:

• COP Y 0 L D • TXT NEW. TXT (RETURN)

All the monitor commands introduced in this book so far
have been DCL commands. The two sections which follow
describe other ways to run utility programs.

Commands that Run Utility
Programs Directly

Command String Interpreter

The Command String Interpreter (CSI) runs utility pro­
grams directly. CSI, known as a parsing utility, is older and
less convenient to use than DCL. It consists of typing R (a
run command not to be confused with the DCL command,
RUN) followed by the name of the utility program.

EXAMPLE

• R P I P(RETURN)

RT-ll responds to this command to run the peripheral in­
terchange program by giving you an asterisk prompt. You

86 Working with RT -11

can then type in the file specification in the correct format.
When the material in the old file has been copied into the
new file, the system sends an asterisk prompt, which means
that you are still in the utility program rather than KMON.
At this time you can use PIP again simply by typing in the
file specification and options you need.

EXAMPLE

• R P I P(RETURN)

*NEW. TXT= OLD. TXT(RETURN)

*

You press (CTRUC) to return to KMON when you are finished.

Concise Command Language

Concise Command Language (CCL) also runs utility pro­
grams directly and uses the CSI syntax but without the R
command.

EXAMPLE

• PIP (RETURN)

*NEW • TXT=:: OLD. TXT(RETURN)

*

CCL allows you to use two other formats to simplify the
command string:

PIP NEW.TXT=OLD.TXT

or

PIP OLD.TXT NEW.TXT

The second format omits the equal sign and therefore re­
quires a different order in the file specification. In each case,

Chapter 5 Editing and Issuing Monitor Commands 87

system control returns to KMON when the command has
been executed. When issuing CCL and CSI commands, you
must supply the name of the utility you are using in each
command line.

In addition to DCL, CSI, and CCL, RT -11 provides you
with a facility called user command linkage (UCL). UCL is
a system generation option that allows you to write your
own program (UCL.SA V) to interpret and process addi­
tional commands.

Using DCL and CCL to Compare Two
Versions of a File

Suppose you want to compare the contents of two files. In
Digital Command Language, you would use the DIFFER­
ENCES command.

EXAMPLE

• D I F (RETURN)

F i 1 e 1? US080 1 • TMP(RETURN)
File 2? US0801.BAK(RETURN)

The short command format for this command is:

• D I F US080 1 • TMP US080 1 • BAK(RETURN)

A list of the differences between the files would be printed
at your terminal.

To compare two files using CCL, you must supply the
name of the source comparison utility program, SRCCOM.

EXAMPLE

.SRCCOM US0801.TMP,US0801.BAK(RETURN)

RT -11 runs the SRCCOM utility program regardless of the
type of command (DCL or CCL) you use.

88 Working with RT -11

Figure 10.
Issuing a Monitor Command

/
DCl

IS ITA YES
PROCESS

DCl COMMAND?

i
NO

ENTER COM MAN 0
ON KEYBOARD

CCl
.XYZ IS THERE A YES

RUN XYZ. SAV
PROGRAM XYZ.SAV?

iNO

UCl

DOES PROGRAM
YES

RUN UCL. SAV
UCL.SAV EXIST?

~NO

1
ERROR MESSAGE

Screening of Monitor Commands

The sequence of events that occurs when you issue a mon­
itor command is shown in figure 10. The keyboard monitor
tries the input string against each type of command in turn
to check whether or not it is a valid command. As figure
10 shows, KMON goes through a fixed sequence to check a
command.

Selecting the Type of Command
to Use

You can take advantage of nearly all of the capabilities of
RT-ll by using DeL commands. However, you may choose

Summary

Chapter 5 Editing and Issuing Monitor Commands 89

to access and run utility programs directly, using CCL or
CSI, on occasion.

If you are a systems programmer and need to use fea­
tures of the utility programs not accessible from DCL, you
would select CCL. If you have used an earlier version of
RT -11 or another operating system such as RSTS or OS/8,
you may prefer CCL because you are accustomed to run­
ning utility programs directly. If you need to use the same
utility several times-say, to copy a large number of files­
accessing the utility program directly would allow you to
type in only the names of the files instead of repeating the
entire command.

In general, DCL provides the simplest way to access
the utility programs. The long format of DCL is particularly
useful because it prompts you for the information needed.
For this reason, the next chapter focuses on using Digital
Command Language to run utility programs.

COMMANDS USED WITH THE SL EDITOR

SET SL LEARN

SET SL OFF

SET SL ON

(used with the HELP key) keeps the HELP
display on the upper half of the screen

stops the single line editor

starts the single line editor

FUNCTION KEYS USED WITH SL

(~)

(CTRUR)

(CTRUU)

(CTRUW)

(DELETE)

(DELLlNE)

moves the cursor one character to the left

moves the cursor one character to the right

redisplays the current line of text

deletes the line of characters to the left of the
cursor

redisplays the current line of text

deletes each character to the left of the cursor

deletes the characters from the cursor to the
end of the line

90

References

Working with RT -11

(GET OLD)

(GOLD)(BEGIN)

(GOLD)(CTRUU)

(on the Professional 300) redisplays the com­
mand just typed at the terminal

moves the cursor to the beginning of line

restores the line of characters deleted with
(CTRUU)

(GOLD)(END) moves the cursor to the end of a line

(GOLD)(GET OLD) (on the VT100) redisplays the command just
typed at the terminal

(GOLD)(GET OLDER) (on the Professional 300) redisplays the second
to last command typed at the terminal

(GOLD)(TRUNC) executes the part of a command line to the left
of the cursor

(GOLD)(UNDELCHAR) restores the character deleted with (DELETE)

(GOLD)(UNDELLlNE) restores the line of characters deleted with
(OELLlNE)

(GOLD)(UNSWAP)

(HELP)

(RETURN)

(SWAP)

switches the character at the cursor with the
character to the left of the cursor

displays the location of SL function keys and
explains error messages

executes an entire command line

switches the character at the cursor with the
character to the right of the cursor

COMMANDS THAT RUN RT-11 UTILITY PROGRAMS

Command String Interpreter (CSI)
Concise Command Language (CCL)
Digital Command Language (DCL)

RT-11 System User's Guide. Section 4 discusses editing
command lines with SL.

RT -11 System User's Guide. Chapter 4 lists and explains DCL
commands in alphabetical order.

RT -11 System Utilities Manual. Part 1 describes the utility
programs available on RT -11.

6
92

Utilities and Their Functions
File Maintenance
File Editing

File Examination
Program Development

File Maintenance Commands
DIRECTORY: Listing the Files on a Storage Volume
COPY: Making Copies of Files
CREATE: Creating or Extending Files
DELETE: Erasing a File
RENAME: Renaming a File
PROTECT and UNPROTECT: Preventing Accidental
Deletion

Common Options for File Maintenance Commands
Selecting Files by Date

Selecting Specific Files
Displaying Information about Selected Files
Applying Commands to Specific Devices

Commands for Editing and Printing Files
Printing Files on a Line Printer
Typing Files at the Terminal

File Examination Commands
DUMP: Printing Files on the Terminal or Line Printer

DIFFERENCES: Comparing Files
System Function Commands

SET: Changing Editors, Terminals, or Physical Devices
SHOW: Getting Information About RT -11

Summary
References

6
Using
Utilitv Programs

The RT -11 system has a wide range of utility programs.
You have used a small number of these by entering DeL
commands. This chapter will expand your knowledge and
allow you to make more efficient use of the system.

The following sections group DeL commands accord­
ing to the function they perform and describe options which
can be used with more than one DeL command. The DeL
commands discussed in this chapter are arranged accord­
ing to these functions: file maintenance, editing and print­
ing, file examination, and system operations.

The relationship between DeL commands and utility
programs is complex and therefore one DeL command may
run one of several utility programs, depending on the op­
tions selected.

When you have completed this chapter, you will be
able to use DeL commands to run utility programs that
create, copy, delete, rename, or change the protection sta­
tus of files; get directory listings; print files; or perform sys­
tem operations such as SET and SHOW.

93

94 Working with RT-11

Utilities and Their Functions

File Maintenance

File Editing

Listed below are some of the functions of utility programs.
As you read through, look at the range and types of func­
tions utility programs offer. The groupings of programs are
broadly analogous to the groupings of commands you will
be studying more closely in this chapter.

PIP (peripheral interchange program) and FILEX (file ex­
change) copy files. PIP transfers files from one device to
another device on an RT -11 system. It also merges, re­
names, deletes, and changes the protection status of files.
PIP is one of the utility programs you use most often. FILEX
converts files from one file format to another so that they
can be transferred between, and used with different oper~
ating systems. For example, FILEX can create and convert
diskettes in IBM format, known as Interchange format, or
transfer files from RT -11 to DOS (disk operating system)
format.

BUP (backup utility program) copies a file or volume
onto a number of smaller volumes for backup storage, and
can restore files or volumes from these backup volumes.

DUP (device utility program) is used to create files. DUP
is also used to initialize storage media, to detect and cover
or replace bad blocks and to copy the bootstrap to a new
system volume.

RESORC (resource utility) displays information about
your hardware and software configuration at the console
terminal.

DIR produces directory listings.

In earlier chapters you used one of the RT -11 text editors,
KED. KED is really an option for the EDIT command. You
call the text editor when you are at monitor level by using
the DCL command EDIT/KED.

File Examination

Chapter 6 Using Utility Programs 95

DUMP displays on the console or printer or writes into a
file all or part of a file in binary or ASCII.

BINCOM (binary file comparison) and SRCCOM (source
comparison) are both used to compare files and list the dif­
ferences between them. SRCCOM compares text files con­
taining ASCII characters. BINCOM compares files contain­
ing data in any binary form other than in ASCII.

Program Development

RT -11 provides facilities to transform a program so that it
can be run. These include the linker utility, LINK, and lan­
guage processors like MACRO-ii, DIBOL-11, FORTRAN
IV, and BASIC-11.

File Maintenance Commands

In chapter 3, "Storing Data on Disks," you used the follow­
ing DCL commands: DIRECTORY, COPY, DELETE, RE­
NAME, PROTECT, and UNPROTECT. Along with CRE­
ATE, these file maintenance commands are the DCL
commands you will probably use most often. In this chap­
ter, you will be concentrating on the various options that
allow these DCL commands to perform most efficiently.
Options available for only one command are discussed in
the section about that command. Except for CREATE, most
file maintenance commands use similar options.

The general syntax for a command string with options
is:

COMMAND/OPTION INFILE/OPTION OUTFILE/OPTION

/OPTION represents a qualifier that tells the system
either the exact action for a command or more detailed in­
formation about a file. Any option you specify after a com­
mand applies to the entire command string.

96 Working with RT -11

DIRECTORY: Listing the Files on a Storage
Volume

The DIRECTORY command, which elicits information about
files on a storage volume, has a wide range of options.
These options allow you to organize the information dis­
played, select specific files to be listed, and find volume
information. The IALPHABETIZE, ISORT[:CATEGORY] ,
and IORDER[:CA TEGORY] options allow you to change
the order of a listing. ISORT[:CA TEGORY] or IOR­
DER[:CA TEGORY] each sorts and displays the directory of
a storage device according to a category you specify, for in­
stance, by creation date, file name, file size, or file type.
ICOLUMNS:n (n can be any integer from 1 through 9) al­
lows you to specify the number of columns in a directory
listing. The default value for n is 2.

The IDELETED option lists the files that have been de­
leted from the device you specify. By supplying a file spec­
ification, or simply a device name in the command line, you
can get a directory listing showing the details of the file, or
the files on the storage device you specified.

The IBLOCKS option includes starting block number
in the directory listing. You can use the IFREE option to
get a listing of the unused areas and their size.

The DIRECTORY command runs the utility program
DIR. You can specify more than one option in the com­
mand string.

EXAMPLE

You,may want a directory listing that sh()wsthe
block address of files on DXO: in alphabetic order~
The command is: .

• D IRE C TOR Y / ALP H ABE T I Z E / B L 0 C K 5, D X 0 : (RETURN)

COPY: Making Copies of Files

The COpy command which transfers files or the contents
of a specified volume from one location to another, has a
wide selection of options (see table 11).

Chapter 6 Using Utility Programs

Table 11.
COpy Command Options

I ALLOCATE:size
IASCII
IBEFORE[:date]
IBINARY
IBOOT[:dev]
ICONCATENATE
10ATE[:date]
10ELETE
10EVICE
100S
IENOO:n
IEXCLUOE
IFILES
IIGNORE
IIMAGE
IINFORMATION
IINTERCHANGE[:size]
ILOG
INOLOG
IMUL TIVOLUME

EXAMPLE

The DeL command:

INEWFILES
10WNER[:nnn,nnn]
IPACKEO
IPOSITIONS[:n]
IPREOELETE
IPROTECTION
INOPROTECTION
IQUERY
INOQUERY
IREPLACE
INOREPLACE
IRETAIN
ISETOATE[:date]
ISINCE[:date]
ISLOWLY
ISTART:n
ISYSTEM
!TOPS
/VERIFY
/WAIT

• COP Y / NEW F I L E 5 D Z 1 : * . * D Z 0 : (RETURN)

copies all files with the current date from drive DZl
to DZO.

97

One of three utility programs-PIP, FILEX, or DUP­
may be run when the COpy command is issued, depend­
ing on the options you specify.

CREATE: Creating or Extending Files

The CREATE command creates or extends a file with a spe­
cific name, location, and size. You use the EDIT command

98 Working with RT -11

with the ICREATE option to start a new text file, but you
issue the monitor command CREATE to restore a deleted
file. The two are not related.

When you delete a file, the directory entry for the file
is deleted. This means that the blocks on the volume can
be used for another file, and the contents of the file can be
written over. If you use the CREATE command to restore a
file as soon as you have deleted it, then the blocks holding
the file will not yet have been written over. To create a di­
rectory entry for the file you have deleted in error, you will
need to specify the starting block number of that file and
its size. The CREATE command options ISTART:n and
I ALLOCATE:size allow you to supply this information. You
should be cautious when using CREATE to restore a file.
The directory may not list the starting block number or size
of the most recently deleted file if that file is stored be­
tween two files that have been deleted previously.

Another create command option is IEXTENSION:n. Use
this option to extend an existing file by the number of blocks
you specify. The IEXTENSION:n option follows the file
specification.

EXAMPLE

.CREATE DXO: TEXT. TMPIEXTENS I ON: 2 o (RETURN)

This command extends the file named TEXT.TMP by
20 blocks.

When you use this option, make sure that there is enough
unused space on the volume for the size you specify. (You
can use the DIRECTORY IFULL command to check the
amount of space available.)

DELETE: Erasing a File

The monitor command DELETE, which erases the files you
specify, has several options (two of which are presented
here).

Chapter 6 Using Utility Programs 99

INEWFILES is an option you use to delete files that have
the most recent system date. It is a convenient way to re­
move all the files you just created in a session at the com­
puter.

EXAMPLE

.DELETE/NEWFILES DY1 :*.BAK(RETURN)
Files deleted:
D Y 1 : T EXT • B A K ? Y (RETURN)
D Y 1 : MY F I L E • B A K ? Y (RETURN)

The command issued in the example above told the system
to delete all the backup files created today. The command
given in the example below tells the system to delete all
the files from DYO: except those with the file type .SAV.

EXAMPLE

• DELETE/EXCLUDE DYO:. *. 5 AV(RETURN)
?PIP-W-No .SYS action

Files deleted:
D YO: ABC. 0 L D ? Y (RETURN)

D YO: A A F • 0 L D ? Y (RETURN)
D YO: F I L E • 0 L D ? Y (RETURN)

RENAME: Renaming a File

The RENAME command, which assigns a new name to an
existing file, has several options. IPROTECTION and INO­
PROTECTION allow you to protect or remove the protec­
tion status from files using the RENAME command. lRE­
PLACE is the default mode of operation for the RENAME
command. If a file exists with the same name as the file you
specify for output, the system deletes the duplicate file when
it performs the rename operation. INOREPLACE prevents
execution of the rename operation if a file with the same

100 Working with RT -11

name as the output file you specify already exists on the
same device.

PROTECT and UNPROTECT: Preventing
Accidental Deletion

The PROTECT and UNPROTECT commands have various
options including IBEFORE, IDATE, INEWFILES, ISET­
DATE, ISINCE, IEXCLUDE, IQUERY, ISYSTEM, IINFOR­
MATION, ILOG, INOLOG, and /WAIT. These options are
described in the next section.

Common Options for File
Maintenance Commands

The options discussed here can be used with more than one
DCL command. In particular, they often accompany file
maintenance commands. Table 12 lists these options and
the commands they qualify.

Table 12.
DCl File Maintenance Commands with Common Options

Options

IBEFORE[:date]
IDATE[:date]
IEXClUDE
IINFORMATION
IlOG
INOlOG
INEWFllES
IQUERY
ISETDATE[:date]
ISINCE[:date]
ISYSTEM
/WAIT
IPOSITION:n

Commands

COPY DELETE DIR PROTECT RENAME

Chapter 6 Using Utility Programs 101

Selecting Files By Date

Files are stored with their creation dates in the directory.
You can use the creatioll date of your files to select a group
of files to operate on; for example at the end of a working
day you may want to copy all the files you have created
onto another storage device. A range of options use the cre­
ation date as a way of selecting files.

IBEFORE [:date] selects all files created before a speci­
fied date

!DATE [:date]

INEWFILES

selects all files with the creation date
you specify (if you do not specify a
date, then the current system date is
used)

selects only those files with the cur­
rent date

ISETDATE [:date] assigns the date you specify to all
files on which the command is per­
formed

ISINCE [:date]

Selecting Specific Files

selects all the files created on or after
the date you specify

As you know, if you use wildcards in the file specification,
the system allows you to select specific files, or questions
you before operating on each file that matches with the
wildcard. The following options work similarly.

/EXCLUDE

IQUERY

selects all files on a device except the ones
you specify (you can use wildcards in the
file specification)

instructs the system to request confirmation
before carrying out the command (if you use
wildcards in the file specification, this op­
tion allows you to check which files are op­
erated on)

102 Working with RT -11

fSYSTEM selects files with the file type .SYS if you
have used wildcards in the file specification
(unless this option is used, files with the file
type .SYS are usually not operated on)

Displaying Information about Selected Files

These options give more information about the files on
which the command operates. If you use wildcards in the
file specification, you will find these options useful.

/INFORMATION

fLOG

INOLOG

allows processing of a command to
continue after an error is found

lists the files on which the command
operated (without this option, the sys­
tem only prints a list of files operated
on when there are wildcards in the
file specification)

reverses the fLOG option, so no infor­
mation about files operated on is dis­
played.

Applying Commands to Specific Devices

The following options are used for device specific opera­
tions.

/WAIT

!POSITION :n

instructs the system to initiate the com­
mand you issued but to pause and wait
for you to mount the volume containing
the files you want processed (this option
is useful if your system has only one disk
drive)

specifies the block address from which to
start searching for a file (this option is for
use with operations on magnetic tapes).
!POSITION :-1 is used to continue from
the current position

Practice
6-1

Chapter 6 Using Utility Programs

In this exercise you will use file maintenance commands
and some options to manipulate files.

1. Create a text file called FILE.TXT using a text editor.

2. Protect FILE. TXT with the command:

PROTECT FILE. TXT(RETURN)

You can unprotect a file, rename it, and protect the re­
named file in one step with the RENAME command
and /PROTECTION option. Type:

RENAME/PROTECT FILE. TXT US0901.TXT(RETURN)

3. Try to delete the file US0901.TXT. You should get an
error message like the following:

?P I P-W-Protected file DLO: US0901 • TXT

103

Commands for Editing and Printing
Files

Printing Files on a Line Printer

Practice
6-2

The PRINT command lets you print files on a line printer.
It runs the utility program PIP. You can name up to six files,
separated by commas, in a command string. Wildcards can
also be used with the PRINT command. PRINT options in­
clude IBEFORE, IDATE, IINFORMATION, fLOG, INOLOG,
INEWFILES, ISINCE, and IW AlT.

If you have a line printer, use the PRINT command to pro­
duce a hard copy of the file US0901.TXT. Type the com­
mand:

• P R I NT US 090 1 • TXT (RETURN)

104 Working with RT-11

Typing Files at the Terminal

Practice
6-3

The TYPE command displays the contents of a text file on
the terminal. It also runs the PIP utility program. Use this
command when you want to examine a file. Remember that
you can use (CTRUS) and (CTRUQ) to stop and start the file listing
at your terminal and (CTRUO) to prevent the listing from being
displayed. If you are working at a hard copy terminal, you
would use the TYPE command to produce a listing of your
file.

Use the TYPE command to display the contents of
US0901.TXT at your terminal.

File Examination Commands

DUMP: Printing Files on the Terminal or
Line Printer

The DUMP command allows you to examine directories and
files. Output can be printed on the terminal or line printer,
or written to a file in octal words, octal bytes, ASCII char­
acters, or Radix-50 characters. The DUMP display will be
useful for debugging when you are more familiar with the
RT -11 system. Figure 11 shows part of a dump of a text
file. The ITER option used here specifies that the dump
should be output at the terminal instead of at the line printer,
the default output device.

DIFFERENCES: Comparing Files

The DIFFERENCES command lists the differences between
files. It may be used when you want to compare two edi­
tions of the same file, for example, to see what changes have

Chapter 6 Using Utility Programs 105

Figure 11. Dump of US0901.TXT

K",O:USO'JU1.'fXT
dLUCI\ I~UMbi::K \l00 u,jl)
0001 020040 020040 012101 Ob4440 071564 Ob1440 067157 062543 • AT ITS Cu~CE'"
02Ul 071160 067551 020150 067151 U30440 031411 026062 051040 ·P1'IOr-. IN 197.l, IH
,) 10/ 02b52'-1 030461 013440 v71!l41 06~O40 071545 063551 062556 "''C-11 \'jAS UESIGNE*
unUI 020144 Ob75tl4 061040 ()20145 u20141 06b503 0bb141 02b154 'D TO ~E A SfwlALL,·
1 ·)U/ Ob3U40 071541 026164 00b440 ub2412 071541 026571 ub1564 • fAST, •• EASY-TO'
120'1 01245~ Ob2563 Ob1440 0625bu 0005b2 0645b4 063556 071440 "'-USE O~EkATING S*
1101 0"11571 Ob25b4 02015:> 067546 02010l 064164 020145 04~120 'YSTEM £OOR THE PO*
100/ 020520 030461 063040 06b!:i41 066151 020171 063157 Oh0440 *P-ll fAIHLt m' IH
2001 067151 061551 ()b6557 v72560 0625b4 0715b2 00b45b 044412 ·INICO~PUt~~S ••• I*
2201 0201b4 060561 020163 06254~ 0625b6 067554 ub2560 020144 'T 'liAS DEVt:LUPED •
2401 071541 060441) 011440 007151 0b6147 020145 071565 071145 *AS A SINGLE. USEH*
20u/ u71440 071571 1)625b4 02U1~5 U6754b 020102 0625b2 006141 • stS'fE'" FOR Rt::AL*
h)ul u7205~ Oob~Sl 020145 00'1141 020144 Ob7543 07015~ 072165 *-lIM~ ANi) CUMPUr*
j;lOI 0721,*1 0675~1 ()60556 0005~4 072412 0625b3 020073 072151 • A l' ION A L •• USE; IT·
HOI U20103 Ob0564 063502 072145 060440 0701bO U04554 ub0543 .S rARG~f APPLICA*
3001 064564 067151 0:201b3 Ob2567 Ob25b2 Ob20 .. 0 072141 020141 'TlUi~S .vI::R~ DATA •
4001 Ob1541 012501 071551 072151 067551 u20156 070040 0675b2 *ACQuISITIUN, PtW·
't 20 I 062543 0715b3 061440 067157 011164 060157 02U054 067141 *Ci::SS CONfROL, AN'
44ul 02614 .. 006440 OoHn 020140 067S43 071105 062503 l)20054 *0, •• OF COIJRSE, •
'*00/ 071160 0&3557 060502 020155 062544 062560 0675:>4 ub05bO *PRllGRAI'I OEVELOP"'*
:>001 Ob7H5 1)27164 005015 005015 020040 020040 004124 02v145 *ENT ••••• THE *
5201 062571 071141 03044U v334/1 020061 Ob0507 020163 Ub 7141 'YEAR 1971 I';AS AN.
5,*01 Ob244U Ob1571) 072151 001151 020147 Ob45b4 Ob2555 063040 * EACl'fING TIME F*
560/ 071157 0'121)40 0625~0 061440 066557 0725hO 062564 02u162 *lJ~ fHt:; CUMPuTEH •
0001 067151 072544 0721b3 074562 020056 064124 020145 042120 ·INDUSTRY. fHE PD.
b201 026520 0304bl 006440 061412 066557 01250u 062564 020162 .P-11 •• CUMPLITER *
0401 000561 020103 067151 074554 000440 074440 U60545 020162 hAS ONLY A YE::AR *
/)01)/ Ob015/ 020144 067141 u20144 044504 044507 040~24 020114 *ULU AND UIGITAL *
7001 060567 02(J163 060555 Ob4553 Ob3S56 Ob1440 Ob6557 072500 *wAS MA~ING COMPU.
7201 062564 020162 067560 062567 02l)1b2 062546 011541 Ob1151 *Tt:;R PUwEk f'EASl.S.
1401 00255,. 000440 06301l 071151 0"12040 Ob7S50 0115b5 007141 HE:: •• fUR TrlUlISAN.
760/ 071544 Ob7~4u 02U146 0-/0141 066100 001S51 072141 Ob1551 • OS O~" At-'~LICA rIO •

dLuCK NUIo\t:lEH 000001
0001 011556 073440 u7:l151 OlO150 06411;)4 02v145 Ob1151 071104 .NS wITH 'tHE HHR.
0201 U6,d 51 l}b15b5 0645t'l4 067157 001440 020146 U64104 0'11551 *ODLICTION Of THIS'
!)401 071040 0661'.::> 072141 013151 06b145 020171 005015 067151 * RELATIVE:LY •• IN*
1100/ 07414:> 062560 071556 U73151 020145 033u61 0bl055 (d2151 .EXPEtoiSIVi:: 16-BIT·
lU01 Ob6440 067151 Ob1551 066557 072560 062504 0271b2 005U15 • MINICOM~UTER ••• *
1201 005015 020040 OlO040 052040 062550 071440 063157 073564 * •• TrlE SUfTw*
1401 071141 020145 064164 067145 U00440 06u566 066151 061141 .ARE Thi::N AVAILAb*
1001 Ob2554 063040 071157 u72040 062550 050040 050104 030455 *L~: FOR TH~ PUP-1*
2001 0200b1 007543 07155b 071551 u625b4 020144 063151 0501J4u *1 CONSISTEL> Of p*
~201 051524 024040 060520 062560 020162 0605:.!4 062560 u05015 *IS (PAPER TAPE •• •
2401 067523 0721 .. 6 060567 0625b2 020054 064167 061551 020150 *SO(o"hARE, wHICH ...
2bOl 067151 00b143 0621b5 062145 072040 062550 050040 046101 *lNC~UDEO THE PAL*
3001 030455 0::>1461 040440 0/1563 U6b545 066142 071145 020051 *-11 S ASSEt-iBLEH) *
3201 067141 020144 0475u4 026523 03U461 024040 020141 Ob0542 *AND [.lUS-11 (A BA'
3401 0615b4 026550 011157 Ob2551 072156 012141 062145 005015 *TCH-ORIFNTATED •• *
3601 074563 u72163 066545 02'1051 041440 062554 u71.141 074554 .SYSTEM). CLEARLY'
4001 020u54 Ob4164 020145 Ob4563 072564 072141 u67551 OlO156 · , THE:: SI TuAIlON *
4201 060543 066154 002145 063040 071157 Ob0440 Ob6040 073551 *CALLE.D fOI< A LOW*
4401 061455 071557 026164 064440 072156 071145 Ob1541 064564 '-COST, IfoolTERACTI*
4601 0625b6 011441) 071571 062564 020155 005015 064164 072141 .VE SYSTE::i\\ •• THAT*
5,)0/ 061440 012551 062154 061040 020145 071565 Ob2145 063040 • COULU BE USEU ~'*

'SlOI 071157 011040 060545 026554 {J64564 Ob2555 000440 062156 *OR t<EAi..- rr ME ANO.
S401 061440 066557 072560 Ob05b4 Ob'65b4 067157 066141 060440 • CO~~UTA1IUNAL A*
~bOI 010160 064554 060543 0645b4 u67151 026163 060440 062156 .PPLICA'UUNS, AND"
6001 063040 071157 006440 070012 061562 071147 066541 062040 * fOH •• PROGRAM 0*
6201 07.3145 066145 070157 062555 011156 020056 000000 000000 *EVELO~MI::I'lT ••

106 Working with RT -11

been made while editing. In the last chapter, you used the
DIFFERENCES command to run the SRCCOM utility pro­
gram.

System Function Commands

SET: Changing Editors, Terminals, or
Physical Devices

You may have used the SET command to change the de­
fault editor, to change terminal characteristics (SET TT
NOSCOPE) or to enable the single line editor (SET SL ON).
You can use the SET command to change the characteris­
tics of physical devices, and of system parameters. SET USR
NOSW AP, for example, causes the User Service Routines
module to remain resident in memory. SET LP LC enables
lowercase characters to be printed on a line printer equipped
with lowercase type. The SET command is executed by the
RT -11 monitor, and does not cause a utility program to run.

SHOW: Getting Information about RT -11

The SHOW command prints information about your RT-
11 system on the terminal.

The SHOW command can give you information about
your hardware configuration, which version of the monitor
you are using, and so on. Options allow you to select de­
tails about specific parts of your system.

EXAMPLE

~SHOW MEMORY~nuR~

Address Module Words
160000 IOPAGE 4096.
1574.00 RK 120.
127274 RMON 6170.
12611.2 DY 313.

Summary

Chapter 6 Using Utility Programs 107

The ALL option combines the information shown by CON­
FIGURATION, DEVICES, JOBS, TERMINALS, MEMORY,
and SUBSET.

UTILITY PROGRAMS

BINCOM

BUP

DUMP

DUP

FILEX

PIP

RESORC

SRCCOM

(binary file comparison)
compares files containing data in any binary form
other than ASCII

(backup utility program)
copies a file or volume onto a number of smaller
volumes for storage

(dump utility)
displays all or part of a file in binary or ASCII
code

(device utility program)
creates files, initializes storage media, and copies
the bootstrap program onto a new system volume

(file exchange)
converts files from one format to another

(peripheral interchange program)
copies files from one device to another device on
an RT -11 system

(resource utility)
displays information about hardware and software
configuration

(source comparison)
compares text files containing ASCII characters

OPTIONS TO FILE MAINTENANCE COMMANDS

COpy INEWFILES

CREA TEl ALLOCATE:size

copies only the files with
the most current system
date

allocates the number of
blocks you specify to the
file you are creating

108 Working with RT -11

IEXTENSION:n

ISTART:n

DELETEIEXCLUDE

INEWFILES

DIRECTORY I ALPHABETIZE

IBLOCKS

ICOLUMNS:n

!DELETED

IFREE

IORDER[:CA TEGORY]

ISORT[:CATEGORY]

RENAME/NOPROTECTION

extends an existing file
by the number of blocks
you specify

specifies the starting
block number of the file
you are creating

deletes all the files on a
device except the ones
you specify

deletes only the files with
the most current system
date

lists the directory of the
device you specify in al­
phabetical order by file
name and file type

displays a directory of
the device you specify
and includes the starting
block number in decimal
of all the files listed

lists a directory in the
number of columns you
specify

lists a directory of files
that have been deleted
from a specific device

lists the unused areas on
a device

sorts the directory of a
device according to the
category you specify

sorts the directory of a
device according to the
category you specify

renames a file and re­
moves the protected sta­
tus

Chapter 6 Using Utility Programs 109

INOREPLACE prevents execution of the
rename operation if a file
with the same name as
the output file you spec­
ify exists on the same de­
vice

!PROTECTION renames a file and gives
it protected status so that
it cannot be deleted acci­
dentally

OPTIONS COMMON TO FILE MAINTENANCE COMMANDS

IBEFORE[:date]

IINFORMATION

ILOG

INOLOG

IPOSITION :n

IQUERY

ISETDATE[:date]

ISINCE[:date]

ISYSTEM

/WAIT

DCL COMMANDS

DIFFERENCES

selects all files created before a specified
date

allows processing of a command to con­
tinue after an error is found

lists the files on which the command oper­
ated

reverses the ILOG option, so no informa­
tion about files operated on is displayed

specifies the block address from which to
start searching for a file

instructs the system to request confirma­
tion before carrying out the command

assigns the date you specify to all files on
which the command is performed

selects all the files created on or after the
date you specify

selects files with the file type .SYS if you
have used wildcards in the file specifica­
tion

instructs the system to initiate the com­
mand you issued but to pause and wait for
you to mount the volume containing the
files you want to process

lists the differences between ASCII files (runs
SRCCOM)

110

References

Working with RT -11

DUMP

PRINT

SET

SHOW

TYPE

prints a file in octal words, octal bytes, ASCII
characters, or Radix-50 characters (runs
DUMP)

prints files on a line printer (runs PIP)

changes the default editor, terminal charac­
teristics, the characteristics of physical de­
vices, or the characteristics of parameters

displays information about your RT -11 sys­
tem

displays the contents of a file on the terminal
(runs PIP)

RT -11 System Utilities Manual. Part 1 describes all utility
programs available on RT -11.

RT -11 System User's Guide. DCL commands and their op­
tions are listed alphabetically in chapter 4.

7
112

Writing a Program

Source Code and Machine Code
The Program Development Cycle

Creating the Source File
Creating the Object File

Assembly Language
Complied Language
Interpreted Language

Creating the Load Module
Object Libraries

Running the Program
Detecting Errors

Command Line Errors
Compilation or Assembly Errors
Link Errors
Run-time Errors
Interpretation Errors

Increasing Program Development Efficiency
COMPILE: Combining Several Source Files

in an Object File
EXECUTE: Compiling, Linking, and Running
with One Command
Program Overlays

Summary
References
Solutions to Practices

7
Developing
Programs

As an RT -11 user, you will probably want to solve prob­
lems by running applications programs. If you are a pro­
grammer, you will write these programs yourself in one of
the programming languages supported by RT -11. The pro­
cess of turning a list of source code instructions (in FOR­
TRAN IV for example) into an error-free working program,
is called the program development cycle.

This chapter describes the steps of the program devel­
opment cycle: creating a source file, compiling or assem­
bling the program, linking object modules to form a com­
plete program, and executing the program.

You will learn to use the appropriate keyboard com­
mands and utilities to assemble or compile the program,
link the program, and run the program for a source file in
MACRO-11 or FORTRAN IV. You will also learn to iden­
tify situations in which you might use program overlays,
ODT (the on-line debugging technique), and the librarian
utility.

113

114 Working with RT -11

Writing a Program

You have used the system utility programs to perform a wide
range of tasks. To solve problems which are specific to your
own applications, you may need to write your own pro­
grams. RT-ll provides software to help you to do this.

Source Code and Machine Code

Since computers can only understand machine language,
programs provided as part of RT -11, such as the utilities,
are in machine code (binary) ready to load and run. How­
ever, you do not write application programs in machine code
but in source code with a programming language such as
MACRO-ll, FORTRAN IV, or BASIC-l1.

EXAMPLE

A typical task for the MACRO....: 1 1 programmer is
adding the contents of one location in memory to an-

. other. The source code statement which adds the
contents. of . Register 1 to Register 0 (a register· is a spe­
.Cial word in memory)is:

ADD Rl,RO

The eql.livalentbina.rymachinecode for this state-
·mentis:. .

To translate the source code into machine code you will
use utility programs provided by the operating system.

The Program Development Cycle

To develop a program you:

1. Use your text editor and a programming language to
create a source file.

Chapter 7 Developing Programs

Figure 12.
The Program Development Cycle

TEXT
EDITOR

LANGUAGE
PROCESSOR

LINKER

RUN
PROGRAM

KEY TO SYMBOLS

D -SYSTEM PROGRAMS
- YOU WILL USE

O FILES THAT YOU
= WILL CREATE OR

REFERENCE

115

116 Working with RT -11

2. Use the appropriate language processor to create an
object file which will contain an intermediate form of
machine code.

3. Link one or more object files to make a complete
working program. The output from the link operation
is called a load module.

4. Run the program.

The program development cycle is illustrated in figure
12. We will now look at each step in detail, and by doing
the practices you will be able to create a working program
from a source file which is provided on your system vol­
ume.

Creating the Source File

Practice
7-1

The source file is the text file which contains the source
code of your program. Source files are created using a text
editor, such as KED. The file type will usually indicate the
language in which the program has been written. For ex­
ample, PROG.FOR is a FORTRAN IV source file; PROG.MAC
is a MACRO-ll source file. A complete list of such file types
is given in table 13.

Use a text editor to create a source file called US1001.MAC.
Type the following text into the file:

.PSECT US1001

.MCALL . TTYOUT, .EX IT,. PRINT,. TTYIN
ASK: .ASCIZ ITYPE A NUMBER I
ERMSG: .ASCIZ INON-NUMERICI

.EVEN

START: CLR R1 R1 WILL CONTAIN THE NUMBER INPUT
.PRINT #ASK
JSR PC, INPUT INPUT A NUMBER INTO R1
ASH #1,R1 SHIFT 1 POSITION LEFT IE MULTIPLY BY 2
JSR PC,OUTPUT PRINT THE NUMBER IN R1
.EXIT

Chapter 7 Developing Programs 117

; READ A NUMBER INTO R1

INPUT:

MUL TI :

. TTY IN
CMPB
BEQ
MUL
SUB
CMPB
BLT
TSTB

RO
#15,RO
MULTI
#10. ,R1
#'0, RO
#9. ,RO
ERROR
RO

BLT ERROR
ADD RO,R1
BR INPUT
.TTYIN RO
RTS PC

; OUTPUT A NUMBER FROM R1

OUTPUT: CLR RO
R2 CLR

LOOP: DIV #10. ,RO
R1 , -(SP)
RO,R1

PRINT:

MoV
MoV
CLR
INC
TST
BNE

RO
R2
R1
LOOP

MoV (SP)+,RO
ADD #'O,RO
.TTyoUT RO
DEC
TST
BNE

R2
R2
PRINT

RTS PC

; ERROR IF NON-NUMERIC DATA

ERROR: .PRINT #ERMSG
ERLooP: . TTY I N RO

CMPB #12,RO
BNE ERLooP
. EX IT
. END START

INPUT A CHARACTER TO RO
TEST IF IT'S A (CR)

END OF NUMBER IF IT IS
MULTIPLY NUMBER BY 10 FOR NEXT DIGIT
CoNyERT NEW CHARACTER FROM ASCII
ERROR IF NEW DIGIT IS GREATER THAN 9

OR LESS THAN ZERO

ADD NEW DIGIT TO NUMBER SO FAR
THEN GO BACK TO READ NEXT CHARACTER
GET (LF)

CLEAR HIGH ORDER WORD FOR DIVIDE
WILL CONTAIN THE CHARACTER COUNT
DIVIDE BY 10 (REMAINDER IN R1)
PUSH LEAST SIGNIF. DIGIT ON THE STACK
SET UP REMAINDER OF NUMBER
... FOR NEXT DIVIDE
ADD 1 TO CHARACTER COUNT
CHECK IF ANY MORE CHARACTERS
IF THERE ARE, GO BACK FOR THE NEXT
PRINT, GET 1ST (MOST SIGNIF.) DIGIT
OFF THE STACK AND CONVERT TO ASCII
OUTPUT A CHARACTER
DECREMENT CHARACTER COUNT
TEST FOR MORE CHARACTERS TO DISPLAY
BACK IF MORE

IF NON-NUMERIC, PRINT ERROR MESSAGE
READ NEXT CHARACTER
TEST IF (LF)

AND STOP .

US1001.MAC contains the source code for a program writ­
ten in MACRO-ll. We will use this program later in the
chapter to work through the steps of the program develop­
ment cycle.

118 Working with RT -11

Table 13.
Default File Types

File Type

.ANS

. :.BAC

.BAD

.BAK

.BAS

. BAT

.BLD

.BUP

.CND

.COM

.CTL

.cn

.DAT

.DBL

.DDF

.DEV

.DIF

.DIR

.DMP

.DSK

.FOR

.LDA

.LOG

.LST

.MAC

.MAP

.MLB

.MON

.OBJ

.REL

File Represented

SYSGEN answer file

Compiled BASIC program

Files with unreadable or "bad" blocks; you can assign this
file type to defective areas on a device. The .BAD file type
makes the file permanent in that area, preventing other files
from using it.

Backup file created by the text editor

BASIC source file (BASIC input)

BATCH command file

Command file to execute SYSGEN monitor (.MON) and de­
vice handler (.DEV) build files

Backup utility program output file

SYSGEN conditional file

KMON indirect command file, IND indirect control file, or SIPP
command file

BATCH control file generated by BATCH compiler

BATCH internal temporary file

BASIC, FORTRAN, or IND data file

DIBOL source file

DIBOL data file

SYSGEN device handler build file

BINCOM or SRCCOM differences file

Directory listing file

DUMP output file

Logical disk file (for use with LD handler)

FORTRAN IV source file (FORTRAN input)

Absolute binary (load image) file (optional linker output)

BATCH log file

Listing file (MACRO, FORTRAN, L1BR, or DIBOL output)

MACRO source file (L1BR, MACRO or SRCCOM input)

Map file (linker output)

MACRO library output file

SYSGEN monitor build file

Relocatable binary file (MACRO or FORTRAN output, linker
input, L1BR input and output)

Foreground job relocatable image (linker output, default for
monitor FRUN and SRUN commands)

Chapter 7 Developing Programs 119

Table 13. Continued

File Type

.SAV

.SLP

.SML

.SOU

.STB

.SYG

.SYS

.TBL

.TMP

.TXT

.WRK

File Represented

Memory image (default for R, RUN, SAVE, and GET key­
board monitor commands; default for linker output)

SLP command file

System MACRO library

Temporary source file generated by BATCH

Symbol table file containing the symbols in object format
produced during link

Monitor and handler files resulting from system generation

Monitor files and handlers

Monitor device table section created during SYSGEN

ERROUT temporary file

Text file

Temporary work file

Creating the Object File

The first step in translating a source file into machine code
is to produce an object file. This is done by special utility
programs called language processors, and each program­
ming language has its own language processor.

The object file contains your program in object code,
an intermediate code between source code and machine
code. Each symbolic instruction is replaced by one or more
machine instructions. References to memory locations, for
example, names of variables, are replaced by addresses rel­
ative to the start of the program or data section. This means
that the assignment of absolute addresses in memory is de­
ferred until the program is linked.

Most programs contain references to code or data which
is not contained within the source file. For example, all
FORTRAN IV programs must include code from the FOR­
TRAN IV object time system (OTS) to perform functions such
as opening and closing files. The language processor does
not resolve such references; this is not done until the pro­
gram is linked.

120 Working with RT -11

Unless you specify otherwise, the object file created has
the same file name as the source file and has the file type
OBJ. For example, the object file produced from a FOR­
TRAN IV source file PROG.FOR would be PROG.OBJ.

The type of language processor used depends on the
type of programming language you selected. As we men­
tioned earlier, programming languages can generally be di­
vided into three groups: assembly language, compiled lan­
guage, and interpreted language.

Assembly Language

Practice
7-2

In assembly language programs, each line of source code is
equivalent to one line of machine code, as you saw in the
ADD instruction example. The RT -11 assembly language
is MACRO-ll.

The language processor which translates an assembly
language program into object code is called an assembler.
The MACRO-ll assembler is called MACRO, and is in­
voked by the command:

MACRO FILENAME.TYP

where FILENAME.TYP is the name of the source file.

EXAMPLE

• MACRO PROG. MAC(RETURN)

USi001.MAC contains the MACRO-ii source code for a
program which performs a simple calculation.

Chapter 7 Developing Programs

1. Use the MACRO-11 assembler to produce an object
file for this program. Since it has the default file type
of .MAC, you do not have to specify the file type.

2. Use the DIRECTORY command to show all the files
which have the name US1001, regardless of their file
type. Two files should appear:

Compiled Language

US1001.MAC-the source file

US1001.0BJ-the object file

121

RT -11 supports a number of compiled languages, of which
the best known is FORTRAN IV. In FORTRAN, each line
of source code produces more than one line of machine code,
and the language processor used is called a compiler. The
object module produced by the compiler contains object
code similar to that produced by the MACRO-ll assem­
bler.

Assuming that you have the FORTRAN IV language
processing program on your system, the command to com­
pile your FORTRAN IV program is:

FORTRAN FILENAME.TYP

where FILENAME.TYP is the name of the FORTRAN IV
source file.

EXAMPLE

If your source file is called PROG2.FOR, the com-
mand is: .

• FORTRAN PROG2. FOR(RETURN)

The file type can be omitted if the default type is used. The
default for FORTRAN IV source files is FOR.

122

Practice
7-3

Working with RT -11

To find out whether the FORTRAN IV compiler is available
on your system, use the DIRECTORY command to look for
the file FORTRA.SA V on your system volume. (On some
systems, FORTRAN IV may be contained on a separate vol­
ume. If this is the case, you should ask your system man­
ager how to use FORTRAN IV on your system.)

Compilers for other languages, such as COBOL-11, are
used in a similar way.

Interpreted Language

Programs written in interpreted languages, such as BASIC-
11, do not have the same development cycle as languages
such as MACRO-11 and FORTRAN IV. All program devel­
opment and execution takes place within an interactive
program called an interpreter. No object code is produced,
because the interpreter translates the source code directly
into machine code and executes it a line at a time.

BASIC-11, FORTRAN IV, and COBOL-11 are all high­
level languages, that is, programming languages in which
the language processor generates more than one line of ma­
chine code from each line of source code.

Creating the Load Module

The object file cannot itself be executed, because object code
is designed to enable separately compiled program units to
be combined and executed as a single program. The file
containing this complete program is called the load mod­
ule.

The load module is produced by a special utility pro­
gram called the linker, invoked by the keyboard command

Practice
7-4

Chapter 7 Developing Programs 123

LINK. In the simplest instance-when the program con­
sists of one source file and hence one object file-the com­
mand to link the program is:

LINK FILENAME.TYP

where FILENAME.TYP is the name of the object file.

EXAMPLE

If the object code is in a file called EXAMP.OB], the
command is:

• LIN K EX AMP(RETURN)

Notice that the file type can only be omitted if it is
OBI, the default for object files.

Unless you specify otherwise, the load module which
you create takes the file name from the object file and has
a file type of SAY. For example, if the object file is called
PROG2.0BJ, then the linker will produce a file called
PROG2.SAV.

1. Use the LINK utility to create the load module for the
MACRO-ll program you assembled in practice 7-2.
The object file is named US1001.0B].

2. Use the DIRECTORY command to list all the files with
a file name of US1001. You should now have three
files:

US1001.MAC-the source file (source code)

US1001.0B]-the object file (object code)

US1001.SAV-the load module (machine-code)

124

Object Libraries

Working with RT -11

It is possible to write a program as a collection of units, or
subroutines, which can be compiled or assembled individ­
ually. The linker can combine all the separate object files
into a single load module. By breaking down programming
instructions into units, you may find that some tasks, such
as reading data from a file, are common to a number of pro­
grams. Such commonly used subroutines can be made ac­
cessible to other programs and users by storing the object
code in a special file called an object library.

Object libraries are created and maintained by the li­
brarian utility program, LIBR. By giving the appropriate
command to the linker, you can include the library subrou­
tines you need into your program. Some object libraries are
included with the system, for example the default system
subroutine library SYSLIB.OBJ.

Running the Program

The load module produced by the linker is now in execut­
able format (machine code), ready to load and run. The
command generally used to run a program is:

RUN FILENAME.TYP

If you omit the file type, .SAV is assumed.

EXAMPLE

~·RUN HELLO(RETURN)

As mentioned earlier, you can also run programs by
typing simply the program name.

Practice
7-5

Chapter 7 Developing Programs

EXAMPLE

If you type:

• HE L L O(RETURN)

CCL (Concise Command Language) looks for a file
called HELLO.SAV and, providing it is in executable
format, runs the program.

125

The sample program, US100l, used in previous exercises is
a MACRO-ll program for performing some simple arithme­
tic. When you run it, it prompts you for a number, multi­
plies the number by two, and displays the result.

Use the RUN command to execute US1001. When it asks for
a number, type any number between 1 and 9999, and the
result will be displayed.

Detecting Errors

In the exercises you have done so far, each step should have
produced the expected result, and the program should have
run correctly the first time. When you develop and run a
program for the first time this seldom happens. Although
this book does not teach you how to correct programming
errors, the information given in the following sections will
help you recognize some of the common problems that can
occur during program development.

Command Line Errors

If you make a mistake in the command line, the utility will
not be able to produce the correct results. In this case, check
all the details, including the file name.

126 Working with RT-11

Compilation or Assembly Errors

Link Errors

Run-time Errors

The language processor checks the source code for syntax
errors, such as unmatched parentheses on a line or branches
to undefined labels. If it finds any, it displays a warning
message. In this case, it is a good idea to run the language
processor again with the ILIST option to request a listing
showing the lines in which the errors have occurred. When
you have identified the errors, use a text editor to correct
the source code, and then try the compilation or assembly
again.

The linker searches the libraries which you specify and the
default system object library, SYSLIB.OBJ, for external ref­
erences in your program. If there are any unresolved refer­
ences, a warning is given and the load module may not be
produced. The error is usually the omission of an object file
or library name in the command line. The problem may also
occur if, for example, a subroutine name is misspelled in
the source code. In this case, you will need to correct the
source file and recompile the program, then link the sub­
routines again.

A program which has been compiled and linked success­
fully may still not give the expected results when it is run.
One of three situations may occur.

1. The program may appear to run and complete cor­
rectly, but the results are incorrect.

2. The program may crash, giving a message indicating
the cause of the problem. Sometimes this may also
cause the operating system to crash. In this case, you
will have to reboot RT -11 before you can continue.

Chapter 7 Developing Programs 127

3. There is no response from the program after a few
minutes. This is usually caused by a loop in the pro­
gram. To abort the program, press (CTRUe) twice.

Such errors are usually caused by logic errors in the
source code. The process of finding and correcting these
errors, or "bugs," is called debugging the program. Some­
times, it is easy to identify the problem by examining a
listing of the source code. Another useful technique is to
add lines of source code which display the contents of im­
portant variables at points before the program fails, and run
the program agai n.

MACRO-ll programmers can make use of a utility
called the on-line debugging technique (ODT) to run their
programs. This enables you to stop the program at impor­
tant points and to look at the contents of memory loca­
tions. Once you have found the error, make the necessary
corrections to the source code using a text editor. You then
have to compile, link, and run the program again. Figure
13 shows the program development cycle and indicates the
points at which you may have to correct and rerun the pro­
gram.

Interpretation Errors

The correction cycle is different when you use an inter­
preted programming language. An interpreter examines each
program language statement, interprets it, and executes it
before going on to the next. If it discovers an error that pre­
vents further processing, it prints on the terminal a mes­
sage informing you of the error condition and stops. You
correct the error so that execution can continue past that
point, and then rerun the program.

128 Working with RT-11

Figure 13.
Errors in the Program Development Cycle

EDIT AND RE-TRY EDIT
USER.MAC

I-_A_S_S_E_M~B_L.Y_E_R_R_O_R_S_-t .MACRO USER

LINKAGE ERRORS
. LlNK USER

RUN-TIME ERRORS
.RUN USER

CREATE
SOURCE FILE

ASSEMBLE.
CREATING OBJECT FILE

LINK .
CREATING LOAD MODULE

RUN PROGRAM

KEY TO SYMBOLS

D=
0=

SYSTEM PROGRAMS
YOU WILL USE

FILES THAT YOU
WILL CREATE OR
REFERENCE

Chapter 7 Developing Programs

Increasing Program Development
Efficiency

COMPILE: Combining Several Source Files
in an Object File

129

The COMPILE command calls up the appropriate language
processor to assemble or compile several source files into a
single object file. The file type of the input source file de­
termines the language processor that is called.

EXAMPLE

• COMP I LE PROG. MAC(RETURN)

tells the MACRO-i1 assembler to produce an object
file from· the MACRO-i1 source language statements
in PROG.MAC.

To compile (or assemble) multiple source files into a
single object file, separate the files by plus (+) signs in the
command line. Unless you specify a file name, the system
creates an object file with the same name as the first input
file and gives it an .OBJ file type. You can combine up to
six files for a compilation producing a single object file.

EXECUTE: Compiling, Linking, and Running
with One Command

Like COMPILE, the EXECUTE command instructs a lan­
guage processor to assemble or compile the source file you
specify to produce an object file. It then calls up the linker
and runs the resulting load module.

130 Working with RT -11

EXAMPLE

• EXECUTE MYPROG. FOR(RETURN)

generates two files from this FORTRAN IV source file:

MYPROG.OBJ-the object file

MYPROG.SA V-the load module

Program Overlays

In general, the more source code a program contains, the
more space it will occupy in memory. On systems without
the extended memory option, 28K words of memory is
available to a program, although some of this is used by the
resident portion of RT -11. On systems which have the ex­
tended memory and memory management o.ptions, you can
write programs that use up to 32K words of memory. If you
want to write a program that is too large to fit the memory
available to your system, you must use an overlay struc­
ture.

In an overlay structure, you write the program in parts
so that it can be executed in parts. Some of these parts, or
segments, are allowed to share memory with other seg­
ments, thus reducing the overall memory requirements of
the program. One segment of the program is called the root
segment and must remain in memory at all times. The root
segment contains the information needed by other seg­
ments of the program, called overlay segments.

A program which is to be overlaid must be written in
modular form. That is, it should have a main program unit
which calls a number of subroutines. When you load a pro­
gram linked with overlays, the subroutines which are to be
overlaid stay on the disk. When one of the subroutines is
called, it is loaded to a fixed address within the program
space in memory. If another subroutine is then referenced,
it is loaded to the same address, overlaying the code for the
previous subroutine. This reduces the amount of memory
needed to run the program, because not all of the program
is loaded at anyone time.

Summary

Chapter 7 Developing Programs

EXAMPLE

R LINK
!Run the linker program
FILE=FILE, SUBA/F/C
!Build a .SAV with FILE, SUBA,
!FORTRAN OTS library and
SUB1/0:1/C
!Put SUB1 into overlay
!region 1 and continue
SUB2/0:1/C
!Put SUB2 into overlay
!region 1 and continue
SUB3/0:2/C
!Put SUB3 into overlay
!region 2 and continue
SUB4/0:2/C
!Put SUB4 into overlay
!region 2 and end

PROGRAM DEVELOPMENT CYCLE

131

1. Create a source file (a file which contains your program writ­
ten in assembly- or a high-level language) using a text editor

2. Assemble or compile the source file into an object file (a file
which contains an intermediate form of machine code) using
a language processor

3. Create the load module by linking one or more object files
into a complete program

4. Run the program

COMMON ERRORS IN PROGRAM DEVELOPMENT

Mistake in a command line
Syntax error in the source code
Omission of the name of an object file or library
Incorrect subroutine name
Error in the logic of the program

132

References

Working with RT -11

DCL COMMANDS USED IN PROGRAM DEVELOPMENT

COMPILE calls up the appropriate language processor to as­
semble or compile a source file into an object file

EXECUTE instructs a language processor to assemble or com­
pile a source file into an object file, calls up the
linker, and runs the resulting load module

RUN runs the load module (the program in machine
code) produced by the linker

Introduction to RT -11. Chapters 8 through 11, outlines the
program development cycle under RT -11.

RT -11 System User's Guide. See the COMPILE and EXE­
CUTE commands in chapter 4. See also section 3.4 for a com­
plete list of standard file types.

Programming with RT-11, Volume 1: Program Develop­
ment Facilities (Digital Press: Bedford, MA, 1983). This book, the
second in The RT -11 Series, provides a thorough introduction to
the use of the program development tools outlined in this chap­
ter.

Solutions to Practices

The commands you should type are as follows.

7-1. .EDIT/CREATE US1001.MAC
then type in the source program.

7-2. .MACRO US100l

7-3. .DIR FORTRA.SAV

7-4. .LINK US100l

7-5. .RUN US100l
then type a number between 1 and 9999.

8
134

Understanding Indirect Files
Indirect Command Files

Adding Comments to Indirect Command Files
Executing Indirect Command Files

Indirect Control Files
Creating an Indirect Control File

Labels
IND Directives and Keyboard Commands
Internal and External Comments

Executing Indirect Control Files

IND Options
Passing Parameters
Nested Indirect Control Files
Executing Indirect Command Files from Control Files

IND Directive Summary and Operating Modes
Sample Application
Analysis of an Indirect Control File

Summary
References

Solutions to Practices

8
Creating Files
Of Commands

As you work with RT -11, you may find yourself entering
a large number of commands in order to complete some
tasks. These may be commands to run programs or to or­
ganize disk storage. Entering large numbers of commands
repeatedly is time consuming, and you may make typing
errors. Therefore, RT -11 provides two methods of storing
commands for execution at a later time: indirect command
files and indirect control files.

This chapter shows you how to create and use indi­
rect command files. To make use of indirect control files,
however, you must master a more difficult set of instruc­
tions. While we will suggest and illustrate the ways to use
these instructions, we cannot hope to make you proficient
in the remaining pages of this book'.

135

136 Working with RT -11

Understanding Indirect Files

When you type a keyboard command, the keyboard moni­
tor processes it immediately or "directly." If you place the
same command in a file, the monitor can process it later or
"indirectly" by opening the file and reading it. The file that
contains the command is called an indirect file. Such files
are useful for storing sequences of commands that you use
repeatedly, especially when those sequences require much
computer time, but little intervention from you. Examples
of such jobs include: assembling multiple source files,
compiling programs, making backup copies of disks, or
transferring data from one device to another.

RT -11 supports the use of two types of indirect files,
indirect command files and indirect control files. Indirect
command files contain only monitor commands and any
responses that those commands need. Indirect control files
contain control instructions in addition to the commands
and responses found in command files. You will need to
put control instructions in your file whenever you wish to
carry out a complex operation that requires periodic atten­
tion from you or that makes decisions based on unpredict­
able information.

Indirect Command Files

You create an indirect command file the same way that you
create a text file, by calling up a text editor (such as KED),
by naming the file, by supplying a file type, and by typing
information into the file-in this case, the commands to be
executed.

You can use the EDIT/CREATE command to start a new
file. The default file type for indirect command files is .COM.
You type each command one to a line and in the sequence
it will be executed. You should not type a period (the mon­
itor prompt) before each command. Once you have entered
the commands in your file, you can issue the EXIT com­
mand to leave the editor and save the newly created file on
a disk.

Chapter 8 Creating Files Of Commands

EXAMPLE

To print the time and date and create backup copies
of all FORTRAN IV source programs on the default
storage device DK: you would type the following
commands into a file:

DATE
TIME
COPY *.FOR *.8AK

137

When you use wildcards in the file specification of
certain commands, like DELETE, the system expects to get
a response from you before carrying out the command on
each file that fits the specification. If you use such com­
mands in a file and do not include the responses, indirect
file processing will stop. There are three things you can do
if commands require a response:

1. Use the INOQUERY option with the command, for
example:

DELETE/NOQUERY MYFILE.*

2. Work interactively with the terminal and supply the
responses when needed. When this method is used,
the process cannot run without you. You inform the
system that you want to give the responses at the ter­
minal by placing a special form of (CTRUC) in the com­
mand file, for example:

INITIALIZE/NOQUERY/VOLUMEID DM1 :
A C

(CTRUC) is indicated by a circumflex (") followed
by the letter C. "C tells the system to take all
other input lines from the console terminal.
When you finish typing in a response, the indi­
rect command file continues with the next com­
mand line.

138 Working with RT -11

3. Supply the responses in the command file, for exam­
ple:

INITIALIZE/NOQUERY/VOLUMEID DM1:
NEWDISK
DATAPACK

Using the INOQUERY option prevents the need
to respond Y[es] to the prompt normally dis­
played after the INITIALIZE command. The vol­
ume identification and owner name needed by
the NOLUMEID option is given in the second
and third lines of the file.

You cannot include responses that would destroy data in
indirect command files.

EXAMPLE

The following command file:

INITIALIZE
DK:
Y

does not work because a yes or no response must
come from the terminal, not a command file.

You use the INOQUERY option to prevent the prob­
lem.

Adding Comments to Indirect Command
Files

You may include comments in indirect command files to
help you document your work. These comments do not print
on the console terminal when the indirect file executes.
Begin each line of comment with an exclamation point (!).

Chapter 8 Creating Files Of Commands 139

The system ignores anything that it finds between the ex­
clamation point and the end of the current line.

Executing Indirect Command Files

Once you have created an indirect command file, you may
start its execution by typing an at sign (@) followed by the
name of the indirect command file.

EXAMPLE

.@MAKE

The file type is assumed to be .COM by default. If you
have used any other file type, you must specify it in the
command.

EXAMPLE

The following indirect command file assembles and
links a MACRO-ll program called MYPROG and
then displays on the terminal a directory of all files
named MYPROG:

! MAKE.COM

!This indirect command file assembles
!and links a program called MYPROG.
!The indirect command file is run by
!typing

!@MAKE

MACRO/LIST/CROSSREFERENCE MYPROG

LINK/MAP MYPROG
DIR MYPROG.*

!Do the assembly
!Link the object
!See the files

140

Practice
8-1

Working with RT-11

Write an indirect command file which displays the current
date and time, shows the RT-ll configuration, and lists a
directory of all .MAC source files on DK: in alphabetical se­
quence.

Indirect Control Files

Indirect control files give you more flexibility and control
than indirect command files. With indirect control files you
can use monitor commands, and you can also use special
commands called IND directives to control system execu­
tion. IND directives are like keyboard commands but are
executed by IND, the indirect control file processing util­
ity, rather than the keyboard monitor.

Each IND directive starts with a period (.). Keyboard
commands have no preceding characters when used in a
control file. IND processes all commands which start with
a period (.) and passes all other commands to the keyboard
monitor (KMON). Control files can be used to execute key­
board commands, access files, and perform logical tests to
control the flow of execution. Because indirect control files
have these features, they resemble programs written in a
high-level language. IND directives can be studied as if they
were the statements of a programming language.

Creating an Indirect Control File

An indirect control file contains one or more lines of direc­
tives or keyboard commands. Each line can contain up to
three elements: a label, IND directives or keyboard com­
mands, and a comment.

Labels are used to mark specific locations in a pro­
gram. IND directives and keyboard commands control the
execution of your program and perform specific opera­
tions. Comments allow you to document your control pro-

Chapter 8 Creating Files Of Commands 141

gram and also to display information. These elements must
be arranged in the following format:

.LABEL: IND DIRECTIVE ;external comment
or or
KEYBOARD COMMAND .;internal comment

Labels

A label assigns a name to a line so that the line can be ref­
erenced. Labels can have up to six alphanumeric or dollar
sign ($) characters and must start with a period (.) and end
with a colon (:).

EXAMPLE

.START:

Only one label can appear on each line and it must be
placed at the beginning of a line. A label can share a line
with directives, keyboard commands, or comments or oc­
cupy a line by itself.

Labels allow IND to find a specific sequence of com­
mands in a file. When your control file instructs IND to find
a label, IND determines whether or not the label is a direct
access label. A direct access label is a label placed on a line
by itself; you can define twenty such labels within an in­
direct control file. (IND maintains a table of up to twenty
direct access lables.) If you define more than twenty labels,
the new labels replace the old labels beginning with the first
one on the table.

When a label is referenced, IND first checks the direct
access table. If it is a direct access label, IND goes directly
to the label in the file. If it is not, IND searches the file from
the cursor to the end, then starts from the beginning of the
file and searches to the cursor.

IND Directives and Keyboard Commands

A control line may contain IND directives and monitor
commands (either DeL or eeL commands). Each complete

142 Working with RT -11

command string must fit on one line. Directives and mon­
itor commands can be used together, on the same line or
on separate lines. You separate directives from monitor
commands with a space or a tab. Some directives can also
be used on the same line with other directives.

IND directives allow you to do the following:

• Define labels:

.LOOP: a name preceded by a period (.)
and followed by a colon (:), in
this case .LOOP:, can be as­
signed to a location in your
control file, to give you ready
access to that location

• Define and assign values to logical, numeric, and
string variables. These variables can then be used in
place of values in IND directive and monitor com­
mand strings:

.SETS LINE" ABC"

.SETN NUM 10

sets the string variable LINE equal
to ABC

sets the numeric variable NUM
equal to 10

• Create and access data files:

.OPENA #0 COMMND opens a file so that records can be
written to it. The default type is
.DAT

.DA T A #0 "ABCD" writes the string ABCD to the file
COMMND

.CLOSE #0 closes the file COMMND

• Control the logical flow of processes within a control
file:

.GOTO LOOP go to the line that has the label
LOOP

Chapter 8 Creating Files Of Commands 143

• Perform logical tests:

.IF LINE = "ABC" .GOTO LOOP
if the string variable LINE is equal
to the literal string "ABC" then
go to the line which has the la­
bel LOOP

• Enable or disable operating modes:

.ENABLE ESCAPE

.ENABLE TIMEOUT

when ESCAPE is enabled, IND
recognizes (ESC) as a valid re­
sponse to a question (.ASK,
.ASKN, .ASKS)

used with questions (.ASKS,
.ASKN, .ASK) so that, if a re­
sponse is not given in a defined
period of time, the execution of
the control file is aborted. Time­
out is available only on systems
with timer support and a clock

• Increase or decrease the value of a numeric symbol:

.INC NUM adds 1 to the numeric variable
NUM

• Perform operations which depend on time (if you
have timer support):

.DELAY lOS delays the execution of the con­
trol file by 10 seconds

.ASKS[:::20S] NAME WHAT IS YOUR NAME
causes the execution of the con­
trol file to be aborted if a re­
sponse to the question is not
given in 20 seconds. The format,
nnU (where nn is a number and
U is a unit of time), is used to
specify the amount of time to
wait for a response

144 Working with RT -11

Internal and External Comments

Comments can be used for documentation within your file.
They can be either internal or external and can be up to
132 characters long-including the period, semicolon, car­
riage return, and linefeed characters.

Internal comments allow you to document your con­
trol file. The comments are not displayed during program
execution but are used to explain the internal operations of
the control file. Internal comments are defined by a period
(.) followed by a semicolon (;).

EXAMPLE

.; This is an internal comment

They can be used on lines by themselves, on lines with
a label, or with a number of directives. You must not use a
comment on the same line as a keyboard command, be­
cause the keyboard monitor will interpret the comment as
an invalid command.

External comments are displayed at the console dur­
ing program execution to give you information when the
control file is run. External comments are defined by a
semicolon (;).

EXAMPLE

;This is an external comment

You can use external comments on lines by them­
selves, on lines with labels, and with logical test direc­
tives. You cannot use them with program control (branch­
ing) directives because the branch is performed before the
comment is processed. In general, do not use external com­
ments with any directive which displays or contains text
(for example .ASK). As a general rule, it is better to put
comments on a line by themselves.

Chapter 8 Creating Files Of Commands 145

The following indirect control file does the same job
as the indirect command file that we looked at earlier in
the chapter, but allows you to specify an input file name at
run-time.

EXAMPLE

;get input source file name
.ASKS [1 :6] FILE ENTER SOURCE FILE NAME
;add file extension
.SETS FILNAM=FILE+II.MAC"
;assemble file here
MACRO/LIST/CROSSREFERENCE 'FILNAM'
;now link the file
LINK 'FILE'
;and take a directory
DIR 'FILE'

Executing Indirect Control Files

You can execute indirect control files either from keyboard
monitor level or from within another indirect control file
(discussed later in the chapter).

To execute an indirect control file from keyboard
monitor level, you must call IND.

EXAMPLE

• R I N D(RETURN)

*

The Command String Interpreter (CSI) prints an aster­
isk at the left margin of the terminal and waits for you to
enter the specification of an indirect control file.

To abort execution of a control file, you press (CTRUC) once

146 Working with RT -11

if the system is waiting for you to type in data, otherwise
you press (CTRUC) twice. The syntax of the command string is:

CONTROL-FILESPEC/OPTION [parameters]

CONTROL-FILESPEC represents the control file you
want to execute. The default file type is .COM. IOPTION is
one or more of the options listed in table 14. Parameters is
one or more values (up to nine) that you can pass to the
control file. The brackets are not part of the command syn­
tax; they indicate that the parameters are optional. You must
separate each parameter you specify with a space.

When SET KMON IND is in effect, you can use the
following syntax to execute a control file:

@CONTROL-FILESPEC/OPTION [parameters]

IND Options

IND options allow you to change the way IND processes and
displays a control file. The four IND options (/D, IN, IQ, IT)
are listed and explained in table 14.

Passing Parameters

When you give the specification for a control file, you can
assign values to nine variables or parameters the system
makes available. The parameters are named P1 through P9.
Control instructions within a file refer to these parameters
for data. The act of assigning values to these parameters is
called passing parameters. Passing parameters allows you

Table 14.
INO Options

Option

ID

IN

10

rr

Function

Deletes the control file when IND has finished processing that
file
Directs IND to ignore all keyboard commands in the control
file
Suppresses the display of keyboard commands and their
results
Displays each command line that has been processed

Chapter 8 Creating Files Of Commands 147

to predetermine the value of these variables when you be­
gin execution of a control file. Parameter values can be
names of other symbols, numeric values, or character strings.

Nested Indirect Control Files

You can call indirect control files from within an indirect
control file. This process is called nesting control files, and
is similar to the use of subroutines in programs. You can
embed or nest up to three control files within a control file,
for a total of four levels of control files.

You use a command line with the following syntax to
call a control file from within a control file:

@CONTROL-FILESPEC/OPTION [parameters]

CONTROL-FILESPEC names the file to which you want
to branch. The system assumes that the file type is .COM.
fOPTION is one or more of the options listed in table 14.
Parameters is one or more values (up to nine) that you want
to pass to the control file. You cannot include internal or
external comments in this command line.

The .ENABLE GLOBAL directive allows symbols to
retain their values on every level of a control file. Without
this directive, IND automatically masks all symbols de­
fined by the previous level as it goes from one nested file
to another; it recognizes only the symbols defined in the
current level of a nested file. When control returns to a pre­
vious level, the symbols defined there become available
again and the symbols from the lower levels are lost.

Executing Indirect Command Files from Control Files

To call an indirect command file from within an indirect
'control file, you type a dollar sign and an at sign ($@) be­
fore the name of the indirect command file you wish to ac­
cess. When you pass control to an indirect command file,
the keyboard monitor processes and executes the file. Con­
trol then returns to the control file from which the indirect
command file was called. The format of the command that
calls up an indirect command file is:

$@FILESPEC

148 Working with RT -11

The keyboard monitor assumes that any file you specify has
the file type .COM.

EXAMPLE

The following command line calls up the indirect
command file DYOUT .COM:

$ @D YOU T(RETURN)

IND Directive Summary and Operating
Modes

The IND directives are listed in table 15 by category. Use
these directives in your control files to direct execution.
Table 16 lists the operating modes you can use with .EN­
ABLE and .DISABLE directives. The entry in the scope col­
umn refers to whether the operating mode automatically
returns to its default setting or remains at its current set­
ting when control passes to a nested control file. Local op­
erating modes return to their default settings; global oper­
ating modes keep their current settings.

Table 15.
IND Directive Summary

Directive

Label Definition

.LABEL:

Symbol Definition

.ASK

.ASKN

.ASKS

Function

Assigns a name to a line in the control file so
that the line can be referenced

Prints a prompt and uses the response to define
a logical symbol and to assign the symbol a log­
ical (true or false) value

Prints a prompt and uses the response to define
a numeric symbol and to assign it a numeric
value

Prints a prompt and uses the response to define
a s'tring symbol and to assign it a string value

Chapter 8 Creating Files Of Commands 149

Table 15. Continued

Directive

.DUMP

.ERASE

.PARSE

.SETD or .SETO

.SETl

.SETN

.SETS

.SETT or .SETF

.TEST

.TESTDEVICE

.TESTFllE

.VOl

File Access

.CHAIN

.ClOSE

. DATA

.OPEN

.OPENA

Function

Displays local, global, and special symbol defi­
nitions

Deletes local or global symbols from the symbol
tables

Breaks a string into substrings

Redefines a numeric symbol to decimal (.SETD)
or octal (.SETO) radix

Defines a logical symbol and assigns it a logical
value

Defines a numeric symbol and assigns it a nu­
meric value

Defines a string symbol and assigns it a string
value

Defines a logical symbol or redefines bits within
a numeric symbol and assigns the symbol or bits
a true or false value

Tests attributes of a symbol or sting and stores
the results in special symbols

Tests a specified device and stores the device
attributes in the special symbol (EXSTRI)

Determines if a file exists and stores the results
in the special symbols (FILSPC) and (FILERR)

Assigns a volume ID to a string symbol

Closes the current control file, opens another file,
and resumes execution

Closes an output data file

Specifies a single line of data to be sent to an
output data file

Creates an output data file. If the file you specify
with .OPEN already exists, .OPEN creates a new
file and will delete the existing file if you subse­
quently use the .ClOSE directive. Use the
.OPEN directive only when you wish to write to
a file

Opens an existing file and adds data to it. If the
file you specify does not exist, .OPENA creates
a new file. Use this directive only when you wish
to write to a file

150 Working with RT -11

Table 15. Continued

Directive

.OPENR

.PURGE

.READ

Logical Control

.BEGIN

.END

.EXIT

.GOSUB

.GOTO

.ONERR

.RETURN

.STOP

Logical Tests

.IF

.IFDF or .IFNDF

.IFENABLED or

.IFDISABLED

.IFLOA or .IFNLOA

.1FT or .IFF

Execution Control

.DELAY

Function

Opens an existing file for use with the .READ
directive. Use this directive only when you wish
to read from a file

Discards or closes an output file without making
any changes to the file

Reads the next record from a file into a stril1g
variable. The file must have been previously
opened with .OPENR

Marks the beginning of a begin-end block

Marks the end of a begin-end block

Terminates processing of either the current con­
trol file or a begin-end block, and returns control
to the previous level; can also assign a value to
the numeric symbol (EXSTAT)

Branches to a subroutine within the control file

Branches to another location in the control file

On detecting an error, branches to another lo­
cation in the control file

Returns control from a subroutine to the line im­
mediately following that subroutine's call

Terminates control file processing

Determines whether a symbol satisfies one of
several possible conditions

Determines whether a symbol is defined or not
defined

Determines whether an operating mode is en­
abled or disabled

Determines whether or not a device handler has
been loaded

Determines whether a logical symbol is true or
false or tests specific bits in a numeric symbol

Delays control file processing for a specified pe­
riod of time

Chapter 8 Creating Files Of Commands 151

Table 15. Continued

Directive Function

Enable or Disable Operating Modes

.DISABLE Disables the operating modes

.ENABLE Enables the operating modes

Increase or Decrease Numeric Symbols

.DEC Subtracts one from the value of a numeric sym­
bol

.INC

Table 16.
Operating Modes

Operating
Mode

DATA

DCL

DELETE

ESCAPE

GLOBAL

Adds one to the value of a numeric symbol

Default Scope Function

Disabled Local When DATA is enabled, IND sends
to an output file all lines that follow
the .ENABLE DATA directive until a
.DISABLE DATA or .CLOSE direc­
tive is encountered

Enabled Local When DCL is disabled, IND sup­
presses execution of keyboard
commands in a control file

Disabled Local When DELETE is enabled, control
files are deleted after execution of
the file has completed

Disabled Global When ESCAPE is enabled, IND
recognizes the escape character as
a valid response to an .ASK, .ASKS,
or .ASKN directive

Disabled Global When GLOBAL is enabled, symbol
names that begin with a dollar sign
($) are recognized as global sym­
bols; that is, these symbols are rec­
ognized throughout all levels of
control files

152 Working with RT -11

Table 16. Continued

Operating
Mode

LOWERCASE

Default Scope Function

Enabled Global When LOWERCASE is enabled,
characters typed in response to an
.ASKS directive are stored in the
string symbol without automatic
lowercase to uppercase conversion

MCR Enabled Local When MCR is disabled, IND sup-
presses execution of keyboard
commands in a control file

OCTAL Enabled Global When OCTAL is enabled, the de-
fault radix of responses to .ASKN
directives and of numeric symbol
definitions is octal

PREFIX Enabled Global When PREFIX is disabled, IND
suppresses printing of the asterisk
(*) before all prompts that result from
.ASK, .ASKN, and .ASKS direc­
tives, and the semicolon (;) in front
of comments

QUIET Disabled Local When QUIET is enabled, IND does
not display keyboard command lines

SUBSTITUTION Enabled Global When SUBSTITUTION is enabled,
IND replaces symbols with their as­
signed values

SUFFIX Enabled Global When SUFFIX is disabled, IND sup-
presses printing of the question mark
and [YIN] notation at the end of an
.ASK prompt, and suppresses range,
default, timeout, and question type
notations for all ASK directive
prompts

TIMEOUT Disabled Global When TIMEOUT is enabled, IND
recognizes the timeout parameter for
ASK directives if your monitor in­
cludes timer support

TRACE Disabled Local When TRACE is enabled, IND dis-
plays the command line processed

Chapter 8 Creating Files Of Commands 153

Sample Application

Suppose you want to assemble a program, using the MA­
CRO assembler; to link it, using the LINK program; and fi­
nally to run it. You can either:

• Type the keyboard commands at the console, or

• Put the commands in an indirect command file, or

• Put the commands, along with control instructions,
in an indirect control file

If you use the first method, you must type the com­
mands each time you want to perform this operation. If you
use an indirect command file, you run only the file, but the
commands in it cannot be changed. You must use the same
file names and carry out the same instructions each time
you perform the operation.

Using an indirect control file allows you to get infor­
mation interactively, check that information, and select op­
tions as the system carries out the keyboard commands in
the control file.

Before you use the MACRO keyboard command to solve
the problem stated above, you must know:

1. The file name and extension of each of the source
files you want to assemble. You must have at least
one file, and not more than six.

2. Whether or not the files are on the source device.

3. Whether or not an assembly listing is needed, and if
so, the name of the listing device or file.

4. Whether a cross-reference listing is needed, and if so,
the name of the listing device or file.

5. What defaults will be used if you omit any informa­
tion.

Figures 14, 15, 16, and 17 show a detailed flow diagram (in
four parts) of the problem.

154

B C

Working with RT -11

Figure 14.
Control File Flow Diagram (1)

15. ,------'-----,

16.

17. ,------'-----,

18. BUILD 2nd TO
6th INPUT FILES
INTO INPUT
FILE LINE

NO

21. CALL
SUBROUTINE
TO ASSEMBLE
INPUT FILES

Chapter 8 Creating Files Of Commands

Figure 15.
Control File Flow Diagram (2)

'----~---'23. ~~=""---'n

26, 27, 28.

29.

BUILD RUN
COMMAND
INTO EXTERNAL
DATA FILE

155

156 Working with RT -11

Figure 16.
Control File Subroutine Flow Diagram

GET RESP:
<ESC> = NONE
<RET> = LP:
NAME

42.

Chapter 8 Creating Files Of Commands 157

Figure 17.
Diagram of Nested Control Files

A c

c

158 Working with RT -11

Figure 18. Main Indirect Control File

.; UBll0l.CDl1 Example Application, Main control file
• Ii
;This indirect control file obtains the filenames reQuired to assemble
iiand link UP to six source files into a runnable save imase. It will
~allow selective listins, cross reference and map files. It is written
lito show a number of IND directives? and could be written more simpl~
ii:i.f rec~UiT'0)d.

.LOOP:

.LOOPl.:

.COMP:

• LINI\!

• Dlf:;ABI ... E BUFFIX

.ENABLE EBCAPE,TIMEOUT,GLOBAL

.SETN INCNT 0

., remove prompt reminders

.; enable escape and timeout

.; and make Ss~mbols Slobal

., zeroize loop count
.BETS CR •• .; set strins variable to null

.; label on sep line

.; improves efficienc~
.ABKS INFILE IN FILE (t~pe <EBC> if end) ?

.IFT <ESCAPE> .GOTO COMP

.IF INFILE = n" .GOTO LOOP

.; set in file name

.; <RET> is invalid

.; <ESC> is allowed

.; if <ESC> so to assemble

.; if <RET> SO back to Question

.ASKS [::".MAC"] EXT EXT (t~pe <RET> if .MAC)?
.; ~j(,~t (,·):·:tension
.; <E!:;C> invalid
.; <I~ET> d(~fault

2

3
4
5

6

7
8
9

10

.IFT <ESCAPE> .GOTO LOOPl

.SETS INFILE INFILE+EXT
.; :i. f <ESC> rE'tu rn to W-,(·?~:;ti em 11
• Ii bu i I d f i 1 enalTle and f:~:·:tE)n!:; i on 12

.TESTFILE 'INFILE' 13
.; check that file exists

.IF <FILERR> NE 1 .GOTO ERROR .; if it does not, goto error 14
• INC INCNT ., if Sl-'CC(~!:;!:;' add 1 to count 15
.IF INCNT = 1 .PARSE INFILE ".n SOUTF SOUTX 16

.IF INCNT

.IF INCNT <>
• IF INCNT I ... T

.GOSUB MAC

@US:I.:l.02.COM

:1. • SETS FILE
l • f:;ETS FILE
l.:, • DOH) L.OOP

.; break filename

.Ii into 2 strinss

.Ii in slobal val'S
INFILE .; set UP 1st file
FILEt"t"tINFILE .; add files 2-6

.; So for next file

.? So to assembl~ subroutine

17
18
19
20
21
22
23

.; link, usins nested control file Slobal val'S will be available

.Ii ask if user wants to run · ;

.ASK [<FALSE>] RN DO YOU WANT TO RUN (t~pe <RET> if no) ? 24 · ;

.IFF RN .STOP 25

.; if answer <RET> or no, stop
.OPENA 10 COMMND 26

.DATA 10 RUN 'SOUTF"SEXT'

.CLOSE :1:0

.CHAIN US:I.:I.03

.; open data file for run command

., write the run command 27

.; close the data file 28

.; and chain out of this

.; c~ont rO 1 f i J. f:!

29

Chapter 8 Creating Files Of Commands 159

Figure 18. (Continued)

.; ******************** this is a subroutine **************************

.; ******************** it asseffibles UP to 6 source files *************

.; **********as part of ffiain control file, variables are available ****

.MAC:

.MACl.:

.IF INCNT = 0 .GOTO ERRORl
30

.v cannot assemble without input! ~

• v · ;
.ASKS C::SOUTF] OUT OUTFILE (t~pe <RET) if def,<ESC) if none)? 32

• ? .v set output file naffie, default
.; or none, and start testins · ;

.IFT ;ESCAPE) .SETS OUT "/NOOBJECT" .; set for none if <ESC) 33

.IFF <ESCAPE) .SETS OUT H/OBJECT:"+OUT .; set outfile naffie ~ · ;

.ASKS C::"LP!"] LST LIST FILE (t~pe <ESC)if none,<RET)if LP:)? 35

• v
.; set list file naffie, LP: or none

• v
.IFT <ESCAPE) .GOTO MACl .v no list, 50 no x-ref either 36 · ;
.IFF <ESCAPE) .ASK [<FALSE)] XR X-REF LIST(t~pe<RET>if none)? 37
.IFT XR .ASKS C::HLP:"] CRLIST X-REF FILE (t~pe <RET> if LP:)? 38

• v · ;
.IFT XR .SETS CR = "/CROSS-REFERENCE" + CRLIST .; set for x-ref 39 · ,
MAcr~O/I ... IST: 'I ... ~;T' 'OUT' 'CI:;:' 'FILE' 40

.I:~ETUF~N

MAcrw 'FILE'

.; do the assembl~ with list

.; and return froffi subroutine 41
42
43

.; do the assembl~ without listing
.RETURN .; and return 44

.; ******************** this is the end of the subroutine ************* . ;

.; ******************** the error routines start here *****************

.ERHDR:
;ERROR NUMBER '<FILERR)' DCCURRED

.; note the use of <FILERR)

45
46

.STOP 47
.; stop processins

.ERRORl: ;NO INPUT FILES WERE SPECIFIED 48
.; anoth~?T' (-?T'T'()"

.ASK C<TRUE):20.S] EXIT DO YOU WISH TO EXIT?

.IFF EXIT .GOTO LOOP

.IFT EXIT .STClP

.; did ~ou ffiBan to

.; f:i.ni5h ~~

.; no, 50 So round again

49

50
51

Figures 18 and 19 show sample control files that were
written from the flow diagram. To learn how to use the IND
directives and write control files, you should analyze and
compare the information in the figures with that of the fol­
lowing section.

160 Working with RT-11

Figure 19.
Indirect Control Files

· , Example Application, Linker Control File

• ENABI ... E GI ... OI<AL
• DISABI ... E SUFFIX
• SETS MP" H II

.ASK [(FALSE)J LNK LINKING (t~pe (RET) if no) ?

.IFF LNK .GOTO LNKl

.ASKS [::SOUTFJ SAV OUTFILE (t~pe (RET} for default)

.ASKS E::".SAV"J SEXT OUT EXT (t~pe (RET) for .SAV)

.ASK [(FALSE)J MAP MAP (t~pe (RET) for no)

.IFF MAP .GOTO LNKO

.ASKS [::"TT:"J MAPNAM MAP FILE (t~pe (RET) if TT:)

.IFT MAP .SETS MP "/MAP:"+MAPNAM

52
53
54
55
56

'~ 57
'!> 58

59
60
61
62

.L.NI"\(): LINI\/EXECUTE: 'St-IV' '~;EXT' 'MP' '!I;c)UTF' 63
• LNI\1. : 64

.; UB:I.:1.03.COM Example Application, Run ProSram control file · ; .OPENR to COMMND.DAT
.I:;:EAD :U:O COMI ... IN
• CLO~:;t :U:()

'COMLIN'
.STOP

65
66
67
68
69

Analysis of an Indirect Control File

Refer to the text discussions in this chapter and to the flow
diagrams as you work through the following analysis of the
indirect control file presented in figure 18.

Line

1

2

Directive

. DISABLE SUFFIX

.ENABLE ESCAPE

Discussion

Prevents display of suffixes .
When asking for information,
with .ASK, .ASKN, or .ASKS,
we can specify default values,
timeout periods, and numeri­
cal ranges. These items of in­
formation are shown in the
display as display suffixes.

Enables the use of (ESC) as an
operator response. (ESC) is used
in the program to indicate that
all source file names have
been entered.

Chapter 8 Creating Files Of Commands 161

Line Directive Discussion

2 .ENABLE TIMEOUT If a response to an .ASK,
.ASKN, or .ASKS is not re-
ceived in a given time, execu-
tion will be aborted.

2 .ENABLE GLOBAL Makes all symbols which start
with a dollar sign ($) available
to the entire control file, and
to any control file which it
may call (nested control file).

3,4 .SETN and .SETS Define or redefine a symbol
and assign a value to it. In line
3, for example, a numerical
symbol is defined and as-
signed an initial value of O. It
will be used to control the
loop when we process up to 6
input files. The string variable
CR will be used later, either as
null or to contain the /CROSS-
REFERENCE option. In line 4
it is set to null.

5 .label: Marks a specific line in the
control program. Labels may
be on the command line or on
a separate line. In this case, if
the operator presses (RETURN) by
accident in line 8, if less than
6 files have been processed in
line 19, or if the operator does
not press (ESC) in line 6, the
program goes back to the label,
.LOOP:, in line 5.

6 .ASKS Displays text and expects a
string response. In line six
.ASKS is used to get the Ma-
cro source file names. Because
we enabled ESCAPE in line 2,
an (ESC) response at line 6 is al-
lowed and if typed sets a spe-
cial symbol ESCAPE to true
(1). This symbol can later be
tested.

162 Working with RT -11

Line Directive Discussion

7 .1FT IF True-one of a number of
logical tests. At line 7 it is
testing the special symbol ES-
CAPE to see if (ESC) was typed
at line 6. If it was, the program
immediately branches to the
label .COMP at line 20. This
works because ESCAPE was
enabled in line 2.

8 .IF A more general logical test
with the format: .IF symbol
logical-operator expression
There are 6 logical operators:

EQor =
NE or <>
GE or >=
LE or <=
GTor>
LTor <

In this program, we are check-
ing to see if the user pressed
(RETURN) by mistake. If (RETURN)

has been pressed the program
goes back to .LOOP: .

9 .label: . LOOP: marks the line where
we get the source input file ex-
tension.

10 .ASKS With the feature [::" .MAC"],
allows us to supply a default
value .MAC if (RETURN) is typed.

The general form of the op-
tional parameters is
[low:high:"def":time). Low
and high allow you to specify
the character range. You can
use values between 0 and 132
decimal. These are the charac-
ter codes of each character in
the user's response. "Def" al-
lows you to specify a default
character string. Time allows
you to specify a timeout pe-

Chapter 8 Creating Files Of Commands 163

Line Directive Discussion

riod in the form nnU where U
is either T for ticks (1/10 sec-
and), S for seconds, M for
minutes, or H for hours. Line
49 shows the time parameter
being used. Remember you
must enable TIMEOUT (as' was
done in line 2) before time can
be used.

11 .1FT Tests to make sure that (ESC)

was not typed.

12 .SETS Set String-assigns a value to
a string symbol; here it makes
one string from the input file
name and extension.

13 .TESTFILE Tests to see if a file is in the
directory. In this example, it
tests for the specified input
file. The results of the test will
be placed in a special symbol
(FILERR) for later testing.

14 .IF Tests (FILERR). Success is indi-
cated by a value of 1.

15 .INC Increments the loop count by
1 if the file is there.

16 . PARSE Breaks a string into substrings .
Here we are separating the file
name from the extension and
placing them in global vari-
ables. The global variables
start with $. Globals were en-
abled in line 2 .. PARSE, is im-
plemented only for the first
time through the loop.

17,18, .IF A number of .IF directives that
19 assemble a line for the later

MACRO command using
.SETS. Line 19 uses a GOTO
to return to LOOP.

20 .COMP Label that serves as entry
point for call to subroutine
.MAC.

164 Working with RT -11

Line Directive Discussion

21 .GOSUB Calls a subroutine by going to
a label which marks the entry
point. In this example the la-
bel is .MAC: at line 30.

23 @LINKER.COM Calls a nested indirect control
file to do the linking. You may
nest to four levels, including
the first. Here we pass parame-
ters by using global variables
which are available to nested
control files.

24 .ASK Checks whether the user
wants to run the new program.
Like the .ASKS directive, but
this one accepts only Y or N
for yes or no. Like .ASKS it
uses optional parameters in
the form [default:time). Time
is the same as in .ASKS but
the default is either (TRUE) or
(FALSE), which are special sym-
bols.

25 .IFF If false-checks what the user
typed. If the user typed (RETURN)

in response to the previous
questions, IFF will use the
.STOP directive to stop the
program.

26 .OPENA Opens a file for output to
which records will be ap-
pended.

27 .DATA Writes a record to the opened
file. In this example it is a
keyboard command, RUN, fol-
lowed by the global variables
which contain the file name
and extension of the program
to run.

28 .CLOSE Makes the output file perma-
nent and closes the channel to
it so that the file can be used
to pass commands to KMON.

Practice
8-2

Practice
8-3

Summary

Chapter 8 Creating Files Of Commands

Line

29

Directive

.CHAIN

Discussion

Closes this control file and
chains to another.

165

Using the analysis above as a guide, finish analyzing the
subroutine MAC and the two control files US1102.COM and
US1103.COM (lines 30-69 in figures 18 and 19).

Modify the file you wrote in practice 8-1 to make it an in­
direct control file that:

1. Displays the current date and time, then asks if you
want to set. (or change) either. If you indicate a change,
it should ask for the new values and set them for you.

2. Asks which show option you want and uses the an­
swer as an option on the SHOW command.

3. Asks on which device the files are to be listed and
which file type you want to see and in what sequence.
Does not accept illegal categories for the DIREC­
TORY/ORDER command and lists the directory as
specified.

ELEMENTS IN INDIRECT COMMAND FILES

Monitor command is typed one to a line

(exclamation point) begins a line of com­
ment

166

References

Working with RT-11

@ (at sign followed by the name of an indi­
rect command file) begins execution of an
indirect command file

ELEMENTS IN INDIRECT CONTROL FILES

Label marks a specific sequence of commands
in a file so that IND can easily find it

IND directive defines labels; assigns values to logical,
numeric, and string variables; creates and
accesses data files; controls the flow of
processes within a file; performs logical
tests; enables or disables operating modes;
increases or decreases the value of a
numeric symbol; or performs operations
which depend on time

Monitor command can be typed on a line with an IND
directive or on a line by itself

Internal comment explains the internal operation of a
control file, does not appear on the
terminal when the control file is run

External comment gives you information when the control
file is run

COMMANDS THAT EXECUTE CONTROL FILES

From monitor level:
.RIND
*CONTROL-FILESPEC/OPTION [parameters]

When SET KMON IND is in effect:
@CONTROL-FILESPEC/OPTION [parameters]

To execute command files within control files:
$@COMMAND-FILESPEC

Introduction to RT -11. Chapter 16 explains how to create
and execute an indirect command file.

RT -11 System User's Guide. Chapter 5 explains how to use
the indirect control file processor (IND) and describes the IND
directives in detail.

Chapter 8 Creating Files Of Commands 167

Solutions to Practices

8-1 The indirect command file should contain the following com­
mands:

DATE

TIME
SHOW CONFIGURATION
DIRECTORY I ALPHABETIZE DK: * .MAC

8-3 The indirect control file could contain the following commands:

.; US1105.COM

.; SAMPLE SOLUTION TO PRACTICE 8-3
DATE
TIME

.ASK CHT IS DATE AND TIME CORRECT

.1FT CHT .GOTO SHOW

.ASKS DAT ENTER THE NEW DATE (dd-mmm-yy)
DATE'DAT'

.ASKS TIM ENTER THE NEW TIME (hh:mm:ss:)
TIME 'TIM'
.SHOW:

.ASKS OPT ENTER THE SHOW OPTION YOU WANT
SHOW 'OPT'

; You must now specify the files for a directory listing
.ASKS DEV ENTER THE DEVICE NAME (ddn)
.ASKS TYP ENTER THE FILE TYPE (typ)

; You can select any of the following options for a
; sorted directed listing.

; 1. DATE
; 2. NAME

; 3. POSITION
; 4. SIZE
; 5. TYPE

.ASKN [1:5:3] SEL ENTER AN OPTION NUMBER
.IF SEL EQ 1 .SETS CAT "DATE"
.IF SEL EQ 2 .SETS CAT "NAME"

.IF SEL EQ 3 .SETS CAT "POSITION"

.IF SEL EQ 4 .SETS CAT" SIZE"

.IF SEL EQ 5 .SETS CAT "TYPE"
DIRECTORY IORDER:'CA T' 'DEV': * . 'TYP'

9
168

Using Device Handlers
Using Virtual Memory

Installing the VM Device Handler
Setting the Base Address

Using VM in 18·bit Systems
Using VM in 22·bit Systems

Using Logical Disks

Creating Logical Disks
Mounting Logical Disks
Dismounting Logical Disks

Assigning Logical Names to Logical Disks
Protecting Logical Disks

Summary
References

9
Conserving
Space with
Device Support

RT -11 allows you to use a wide range of devices, both
physical and logical. This chapter describes device han­
dlers and discusses the use of the virtual memory handler
(VM) and the creation of logical disks using the logical disk
subsetting utility (LD). You will learn to install and re­
move a device, use the virtual memory device, and create
and mount logical disks.

169

170 Working with RT -11

Using Device Handlers

RT -11 supports a wide range of physical devices most of
which have a controller that interfaces· the device with the
computer. The controllers for some devices, such as disks,
support more than one unit or drive. Table 17 shows the
devices which are supported by RT -11.

Device controllers need programs called device han­
dlers to drive them. The RT -11 operating system contains
a number of device handlers. You will probably not use all

Table 17.
Typical RT-11 Physical Devices

Device Controller Device Type

Card reader CR11 CR11

Clock KW11-L (line clock)
KW11-P (programmable clock)

DECtape " data DL 11, DLV11 TU58
cartridge

Disk RK11, RKV11 RK05, RK05F
RK611 RK06, RK07
RL 11 ,RLV11 ,RLV12 RL01, RL02
RQDX1 RD51
UDA-50 RA80

Diskette RX11, RXV11 RX01
RXZ11, RXV21 RX02

Display Processor VT11
VS60
VS11

Line Printer LS11
LV11 LV11
LP11, LPV11 all LP-controlled printers (LP05,

LP25, LP26)

Magnetic tape TM11, TMA11 TU10, TE16
RH11 T JU16, TU45, TV77
TS11 TS11, TSV05, TU80

Asynchronous DL 11, DLV11 LA120, LA34, LA12
Terminal DZ11, DZV11 LA 100, LQP02,
Interface MXV11 A, MXV11 V VT100, VT1 01, VT102,

VT105, VT125

Chapter 9 Conserving Space with Device Support 171

of them, but you can see the handlers which are present on
your system by issuing the show devices command.

EXAMPLE

• 5 HOW DEV ICE S(RETURN)

The system will then produce a list like the follow-
ing:

Device Status CSR Vector(s)

RK Not installed 177440 220

DL Not installed 174400 160

DX Not installed 177170 264

DY Not installed 177170 264

VM Installed 177572 250

LD Installed 000000 000

DM Resident 177440 210

LP Not installed 177514 200

LS Not installed 176500 310 314

NL Installed 000000 000

The words Installed and Not installed tell you whether
or not the device driver is known to RT-l1 (that is, whether
or not it is installed in the monitor tables). You install a
device by using the following command format:

INSTALL DEVICE[,DEVICE, ... DEVICE]

Whenever you add a device that is not part of the orig­
inal configuration to your system, you must install it or make
it known to RT-l1. Typically, the person who manages the
system is responsible for installing new devices.

EXAMPLE

• INSTALL RK:, DY : (RETURN)

RK and DY are the permanent device names for the
RK05 and RX02 drive units. Thus, the INSTALL com­
mand has made the RK05 and RX02 storage devices
known to RT-11.

172 Working with RT -11

When your system was built, there should have been
some empty spaces, or slots, in the device tables. You can
find out by typing the SHOW command.

EXAMPLE

• S H 0 W{RETURN)

The listing displayed might be. as follows:

TT (Resldent)
OM (Resldent)

OMO=.OK, SY
MQ (Resident)
LO
VM
MM
NL
5 free slots

If there are no available slots, you may remove a de­
vice handler from the table by using the following com­
mand format:

REMOVE DEVICE:

Using Virtual Memory (VM)

All memory above the 28 K word boundary is described as
extended memory. The Virtual Memory handler (VM) is a
device handler that allows you to use all, or part, of ex­
tended memory as if it were a disk. Using memory as if it
were a disk allows you to make use of high speed memory­
to-memory transfers, instead of the slower disk-to-memory
transfers.

Transfers between disk and memory take place under
the following conditions:

Chapter 9 Conserving Space with Device Support

1. Nonresident parts of the operating system are
needed.

173

2. Programs which have overlay sections need an over­
lay. (As mentioned earlier, an overlaid program is
one in which sections of the program replace each
other in memory when needed. The process enables
you to run long programs with less memory.)

3. Data is needed.

In S] and FB systems, you can save time by loading
the operating system onto the virtual memory device and
bootstrapping it from there. You must copy onto the virtual
memory device the monitor and the device handlers for the
devices you plan to use.

In S], FB, and XM you may transfer overlaid programs
from the disk into virtual memory and run them. This means
that the program will run faster. In these three monitors,
data can be worked on as if it were contained in disk files.

Installing the VM Device Handler

To tell RT -11 that you are using the VM device handler,
you must install VM in the device handler table. To check
whether or not VM has been installed, you enter the SHOW
DEVICES command. If VM has not been installed, you can
install it with the INSTALL command.

EXAMPLE

• INSTALL VM(RETURN}

Once you have installed the VM device handler you may
use it like any other handler.

174 Working with RT -11

Setting the Base Address

Virtual memory must be defined to start at a given memory
address. This address is known as the base address. In each
of the three types of monitors-SJ, FB, and XM-the vir­
tual memory device handler has a default base address. In
SJ and FB, its default base address is 28 K words. In the XM
monitor, VM's default base address is 128 Kwords. You can
change the base address of the VM device handler in each
type of monitor by using the SET VM BASE command:

SET VM BASE = n

The value n used in the command is your selected base
address in octal, divided by 100 octal. For example, the ad­
dress of the 28K boundary is 160000. Divided by 100 octal
it becomes 1600. This means that the selected base address
must be a multiple of 100 octal, and is therefore fixed at a
32-word boundary.

Before using the SET BASE = n command you must first
remove the VM handler, because the amount of memory
available to VM is computed at the time the handler is in­
stalled. After setting the base address you can reinstall the
VM handler. If you change the base address without re­
moving the handler, the system prints a warning message.

EXAMPLE

.R EMOVEVM(RETURN)

Practice
9-1

Chapter 9 Conserving Space with Device Support

The following exercise will acquaint you with the VM han­
dler. If your RT-11 system is equipped with an SJ or FB
monitor, VM will be installed by default at a base address
of 1600 (i.e, 160000). On a system with the XM monitor,
VM will be installed at 10000 (i.e., 1000000) providing that
amount of memory exists.

1. Type:

SHOW DEV I CES(RETURN)

to determine if VM is installed.

175

2. If it is not installed, use the SET command to establish
the base address at 1700 and install the VM handler
with the INSTALL command.

3. If VM is already installed by default, remove VM, set
the base address at 1700 (on an SJ or FB monitor) or at
12000 (on an XM monitor), then install VM.

4. Initialize the VM disk with the INITIALIZE command.

5. To see the amount of storage you have, type:

D I R VM(RETURN)

6. Use the COpy command to transfer a file to VM: and
check its directory again.

7. Remove VM, set the base address to 1600 (on an SJ or
FB monitor) or 10000 (on an XM monitor) and verify
that it is no longer installed.

Using VM in 18·bit Systems

If your system uses 18-bit addressing, you can address up
to 124 Kwords of memory. With the SJ and FB monitors,
all of the memory between 28 Kwords and the top of mem­
ory can be used as virtual memory. If you are using the XM

176 Working with RT -11

monitor, the memory between 28 Kwords and the top of
memory can be shared between an XM program and virtual
memory. Figure 20 shows an 18-bit system running the XM
monitor in 124 Kwords of memory, with the virtual mem­
ory boundary set at 60K words.

Using VM in 22·bit Systems

If your system has 22-bit addressing then you may address
up to 2044 Kwords of physical memory. This means that
you can use memory from 28 Kwords to the top of memory
as virtual memory. With SJ and FB monitors, all of the space
is available; with the XM monitor, the space between 28K
and 124K is shared with XM programs. If you use the 128
K word boundary for virtual memory, all of the space that
was previously available to XM programs remains avail­
able. Figure 21 shows a 22-bit system with the virtual
memory boundary set at 128 Kwords.

Using Logical Disks

The RT -11 directory structure allows you to have 72 file
entries in each of up to 31 directory segments. This means
that you may have a maximum of 2232 (72x31) files on any
disk. Because RT-ll supports disks which will hold up to
121 million bytes, you can run out of directory space be­
fore running out of file storage space. The problem can be
solved with logical disks. Logical disks are files on a phys­
ical disk, which are handled as if they were file structured
devices.

If your organization uses diskettes, you can create log­
ical disks which have the same capacity as diskettes. You
can then copy the logical disk to the physical diskette
without space problems or the need to copy files one at a
time.

In addition to having more files on each disk, the use
of logical disks will permit the creation of sets of files,
making applications and program development easier to

Chapter 9 Conserving Space with Device Support 177

Figure 20.
Virtual Memory on an 18-bit System

r------....... I--- Up to 124 K-word (18 bit addressing)

......... ___ Space available for use by VM handler
if base address is set at 60 K-word boundary

t-----...... 4--- 60 K-word boundary

... 1----Space available for use by XM program

t-----....... 4---28 K-word boundary

RMON, low
memory

Figure 21.
Virtual Memory on a 22-bit System

Up to 2044 K-word (22 bit addressing)

Space available for use by VM handler
if base address is set at 128 K-word boundary

- 128 K-word boundary

Space available for use by XM program

28 K-word boundary

RMON, low
memory

178 Working with RT -11

control. For example, if a system has an RK05 disk and two
RX01 units you could define logical disks of 494 blocks each
on the RK05. Each logical disk could then be used as an
RX01 diskette. The logical disks could hold master copies
of data for distribution to other systems on RX01, or data
from RX01 could be copied to a logical disk on the RK05,
which gives faster access time.

To allow you to make use of logical disks, your
RT -11 system provides the logical disk subsetting utility
(LD). The logical disk subsetting utility allows you to use
areas on physical disks as logical disks, each with its own
directory structure.

Creating Logical Disks

Before you can define physical disk space as a logical disk,
you must create the space you need. Do this by creating a
file of the necessary size, with the CREATE command.

EXAMPLE

If you want a logical disk that is 512 Kbytesin size
(the capacity of anRX02 diskette) you would give the
command:

• CREATE OM1: DSKF I L. DSK/ALLDC: 1 o 24(RETURN)

This commana tells the system to create a 1024 block
file called DSKFIL.DSK on DM1:. To check.thatthe
file has been created you would take a directory. list­
ing:

.D I R DM1: DSKF IL .OSK(RETURN)
OSKFIL.DSK 1024
1 Fi 1 es ,1024 Blocks
31025 Fteeb10cks

Once you have created the file that the logical disk will need,
you can define the logical disk by using DCL commands or
by using the logical disk sub setting utility (LD) directly.

Chapter 9 Conserving Space with Device Support 179

The logical disk subsetting utility allows you to per­
form the following functions:

1. Mount and dismount logical disks and connect them
with files on the physical disk.

2. Assign logical names to logical disks.

3. Write-lock a logical disk.

4. Write-enable a logical disk.

5. Verify that the logical disk assignments are correct.

In our discussion, DCL commands are used' to run the LD
sub setting utility.

The device handler for logical disks is the program
LD.SYS, the LD utility program. Make sure that LD is in­
stalled by using the SHOW DEVICES command. If neces­
sary, install the device handler with the INSTALL com­
mand.

Mounting Logical Disks

The file type .DSK is the default type for logical disk files.
When you want to use the file as a logical disk, you can
connect it with a logical disk unit number by using the DCL
command MOUNT.

EXAMPLE

• MOUNT LDO: DM1: DSKF I L .DSK(RETURN)

Although we have made the connection between the
file and the logical disk number, the logical disk needs a
disk structure. We must initialize the disk as if it were a
physical disk. The following sequence of commands shows
an error message obtained from an invalid command, the
INITIALIZE command, and a directory listing.

180 Working with RT -11

EXAMPLE

• D I R LDO: (RETURN)
?DIR-F-Invalid directory

• I NIT LDO: (RETURN)
L DO: / I nit i a liz e; Are you sur e ? Y (RETURN)

• D I R L DO: (RETURN)
o Files, 0 BlocKs
1 01 0 F r e e b 10 C K s

Once the logical disk has been initialized, it can be used
as if it were a physical disk, (except that you cannot boot
from a logical disk). This means that you can also create a
logical disk within a logical disk. The following sequence
shows a file, LITTLE.DSK, being created within LDO: and
turned into LD1: before a data file, SMALL.DAT, is created
within it.

EXAMPLE

• C REA TEL DO: LIT T L E • D SKI ALL 0 CAT E : 2 0 (RETURN)
• D I R LDO: LITTLE. DSK(RETURN)
LITTLE.DSK 20
1 Files, 20 BlocKs
990 Free blocKs
• R LD. SYS(RETURN)
*LDO : LITTLE. DSK I L: 1 (RETURN)
*~ C

• D I R L DO: (RETURN)
LITTLE.DSK 20P
1 Files, 20 BlocKs
990 Free blocKs
• I NIT L D 1 : (RETURN)
L D 1 : / I nit i ali z e; Are you sur e ? Y (RETURN)
• CREATE LD1: SMALL. DAT IALLOCATE: 1 O(RETURN)
• D I R L D 1 : (RETURN)
SMALL.DAT 10

Files, 10 BlocKs
2 Free blocKs

Chapter 9 Conserving Space with Device Support 181

Note that the file LITTLE.DSK is shown as protected. The
default directory size for logical disks is four segments.

Dismounting Logical Disks

To dismount and disconnect the logical unit number from
a file, use the DeL command:

DISMOUNT LDn:

Assigning Logical Names to Logical Disks

You can assign logical names to logical disks in the same
way that you can assign logical names to physical devices.
You may make the logical name assignment when you
mount the logical disk.

EXAMPLE

• MOUNT LDO: DSKF I L • DSK VOL(RETURN)

Protecting Logical Disks

You can specify whether or not to write to a logical disk.
This is the equivalent of using the write-protect button on
a physical disk. When you mount a logical disk, the de­
fault selection is for logical disks to be write enabled. How­
ever, the MOUNT command takes the option IWRITE or
INOWRITE.

EXAMPLE

• MOUNT INOWR I TE LDO: LITTLE. DSK(RETURN)

182

Summary

Working with RT-11

You can also change the setting with the SET command:

SET LDn:WRITE

or

SET LDn:NOWRITE

You can use logical disks to increase the number of files
stored on a device or to hold a number of related files in
one area.

Logical disk (LD)
subsetting utility

Virtual memory
(VM)
device handler

allows you to use areas on physical disks
as logical disks

allows you to use all or part of extended
memory as if it were a disk

DCL COMMANDS USED WITH DEVICE HANDLERS

DISMOUNT

INITIALIZE

INSTALL

MOUNT

disconnects the logical unit number from a
file

clears and sets up the directory of a logical
disk

installs the device you specify on the
monitor table

connects the file you want to use as a
logical disk with a logical disk unit
number

MOUNT/NOWRITE write-protects the logical disk you are
mounting

IWRITE

REMOVE

allows you to write in the logical disk you
are mounting (the default operation for
MOUNT)

removes a device handler from the monitor
table

SET LDn:NOWRITE write-protects a logical disk

References

Chapter 9 Conserving Space with Device Support 183

SET LDn: WRITE allows you to write in a logical disk

SET VM BASE = n changes the base address of the VM device
handler to n (a value you specify)

SHOW DEVICES lists the handlers that are available on RT-
11 and whether or not they have been
installed in the monitor table

RT -11 System Utilities Manual. Chapter 9 discusses the
logical disk subsetting utility (LD).

RT -11 System User's Guide. Chapter 1 includes a brief dis­
cussion of device handlers and table 3-1 lists "Permanent De­
vice Names."

RT -11 Software Support Manual. Section 10.12 describes
VM.

184

Suggestions
for Reference

PDP-11 Keypad Editor User's Guide
PDP-11 Keypad Editor Reference Card
RT -11 Automatic Installation Booklet
RT -11 Installation Guide
VT100 User Guide

For a complete directory of documentation products, write to:
Digital Equipment Corporation
Circulation Department, MK01/W83
Continental Boulevard
Merrimack, NH 03054

Glossarv

Access time The interval between the instant at which data is
requested from or for a storage device and the instant at which
the data actually begins moving to or from the device.

Address A label, name, or number that designates a location in
memory where information is stored.

Alphanumeric The subset of ASCII characters including the 26
alphabetic characters and the 10 numeric characters.

ANSI American National Standards Institute.

Application program A program that performs a function spe­
cific to the needs of a particular user or class of users. An appli­
cation program can be any program that is not part of the basic
operating system.

Argument A variable or constant value supplied with a com­
mand that controls the commands' action, specifically its loca­
tion, direction, or range.

ASCII The American Standard Code for Information Inter­
change; a standard code consisting of eight-bit coded characters
for upper- and lower-case letters, numbers, punctuation, and
special communication control characters.

Assembler A program that translates symbolic source code into
machine instructions. This program replaces symbolic operation
codes with binary operation codes and symbolic addresses with
absolute or relocatable addresses.

185

186 Working with RT-11

Assembly language A symbolic programming language that can
be translated directly into machine language instructions and is
specific to a given type of control processing unit.

Assembly listing A listing, produced by an assembler, that
shows the symbolic code written by a programmer next to a rep­
resentation of the actual machine instructions generated.

Asynchronous The type of operation that is triggered by an­
other event, as opposed to synchronous, or occurring at set time
intervals.

Background program A program that runs at a low priority, that
is, when a higher priority (foreground) program is not using sys­
tem resources.

Backup file A copy of a file, created as a precaution against loss
of the primary file.

BASIC-11 Beginner's All-purpose Symbolic Instruction Code,
an interactive, algebraic programming language that combines
English words and decimal numbers. This standardized, simple
language can handle industrial and business applications.

Binary The number system with a base of two; used by the in­
ternallogic of all digital computers.

Binary code A code that uses two distinct characters, usually
the numbers 0 and 1.

Bit A binary digit. The smallest unit of information in a binary
system of notation. It corresponds to a 1 or 0 and to one digit
position in a physical memory word.

Block A group of physically adjacent words or bytes of a size
that is specific to a device. For input/output operations, the
smallest addressable unit on a mass storage device.

Bootstrap A technique or routine whose first instructions are
sufficient to start a system of programs that bring an operating
system into memory.

BOT Beginning Of Tape, a reflective marker that is applied to
the backside of magnetic tape and identifies the beginning of the
magnetic tape's recordable surface.

Bottom address The lowest memory address into which a
program is loaded.

Glossary 187

Breakpoint A location at which program operation is sus­
pended to allow operator investigation.

Buffer A storage area, often a special register or a designated
area of memory, used to hold information being transferred be­
tween two devices or between a device or memory.

Bug A flaw in the design or implementation of a program; a
problem that can cause erroneous results.

Byte The smallest memory-addressable unit of information. In
a PDP-ll computer system, a byte is equivalent to eight bits.

Call A transfer from one part of a program to another with the
ability to return to the original program at the point of the call.

Calling sequence A specified arrangement of the instructions
and data necessary to pass parameters and control to a given sub­
routine.

Character A single letter, numeral, or symbol used to repre­
sent information.

Clock A device within a computer system that keeps time,
counts pulses, measures frequency, or generates regular periodic
signals for synchronization.

Code A system of symbols used to represent data or instruc­
tions that are executed by a computer.

Coding The writing of instructions for a computer, using a sys­
tem of symbols that is meaningful to a computer, an assembler,
a compiler, or a language processor.

Command A word, mnemonic, or character that, by virtue of
its syntax in an input line, causes a computer system to perform
a predefined operation.

Command language The vocabulary used by a program or set
of programs that directs the computer system to perform prede­
fined operations.

Command language interpreter The program that translates a
predefined set of commands into instructions that a computer
system can interpret.

Command string A line of input entered into a computer sys­
tem that generally includes a command, one or more file speci­
fications, and optional qualifiers.

188 Working with RT -11

Compile To produce binary code from the symbolic instruc­
tions of a high-level source language.

Compiler A program that translates a high-level source lan­
guage into machine instructions.

Computer A machine that can be programmed to execute a set
of instructions.

Computer program A plan or routine for solving a problem on
a computer.

Computer system A data processing system that consists of
hardware devices, software programs, and documentation that
describes the operation of the system.

Concatenation The joining of two or more strings of charac­
ters to produce a single string.

Cursor A visible reference point on the display screen which
shows where the next entry is to be made.

Configuration A selection of hardware devices, software rou­
tines, or programs that function together.

Console terminal A keyboard terminal that acts as the primary
interface between the computer operator and the computer sys­
tem. The console terminal is used to initiate direct system oper­
ations by running software on the computer.

Constant A value that remains the same throughout a distinct
operation (compare with variable).

CPU Central Processing Unit, a hardware unit of a computer that
includes main memory and the registers and circuits that control
the interpretation and execution of instructions.

Crash A hardware crash is the failure of a particular device to
operate; the operation of an entire computer system may be af­
fected. A software crash is the result of an operating system mal­
functioning; the system's protection mechanisms may have failed
or the software may not have executed correctly.

Create To open, write data to, and close a file for the first time.

Cross-reference listing A printed listing that links references
in a program to specific symbols in a program. It also lists and
defines all the symbols used in a source program.

Glossary 189

Data A term used to denote information (in the form of num­
bers, letters, and symbols) that can be processed by a computer.

Data base An organized collection of interrelated data items
that allow one or more applications to process the items, while
disregarding physical storage locations.

Data collection To bring data from one or more locations to a
central location for eventual processing.

Debug To detect, locate, and correct coding or logic errors in a
computer program.

Default The value of an argument, operand, or field assumed
by a program if a value is not supplied by the user.

Define To assign a value to a variable or constant.

Delimiter A character that separates, terminates, or organizes
elements of a character string, statement, or program.

Device A hardware unit such as an VO peripheral, magnetic tape
drive, or line printer.

Device control unit A hardware unit thate1ectronically super­
vises one or more of the same type of devices. It acts as the link
between the computer and the I/O devices.

Device handler A routine that services and controls the hard­
ware activities of an 110 device.

Device name A unique name that identifies each device unit
on a system. It consists of a two-letter device mnemonic followed
by an optional device unit number and a colon. For example, the
common device name for the RL02 disk drive unit 1 is DL1:.

Device unit One of a set of similar peripheral devices, an ex­
ample of a device unit is disk unit O.

Digit A character used to represent one of the nonnegative in­
tegers smaller than the radix (for example, in decimal notation,
one of the characters 0 to 9; in octal notation, one of the charac­
ters 0 to 7; in binary notation, one of the characters 0 and 1).

Direct access See Random access.

Directive Assembler directives are mnemonics in an assembly
language source program that are recognized by the assembler as
commands to control a specific assembly process.

190 Working with RT -11

Directory A file in the form of a table containing the names of
and pointers to files on a mass storage volume.

Directory-structured A storage volume is directory structured
if the directory at the beginning of the volume contains infor­
mation (file name, file type, length, and date-of-creation) about
all the files on the volume. Such volumes include all disks, dis­
kettes, and DECtapes.

Disk device An auxiliary storage device on which information
can be read or written.

Display A peripheral device used to represent data graphi­
cally; normally refers to some type of cathode-ray tube system.

Downtime The time interval during which a device or system
is inoperative.

Echo The printing of characters typed by the programmer on
an liD device such as a terminal.

Edit To arrange and/or modify the format of data; for example,
to insert or delete characters.

Editor A program that allows the user to enter text into the
computer and edit it. Editors are language-independent and will
edit anything in character representation.

Entry point A location in a subroutine to which program con­
trol is transferred when the subroutine is called.

EOT End of Tape, a reflective marker applied to the backside
of magnetic tape, which precedes the end of the reel.

Error Any discrepancy between a computed, observed, or mea­
sured quantity and the specified value or condition.

Execute To perform an instruction or run a program on the
computer.

Extension The synonym used for file type.

External storage A storage medium other than main memory,
for example, a disk or tape.

Field A specified area of a record used for a particular category
of data.

FIFO First In/First Out, a data manipulation method in which
the first item stored is the first item processed.

Glossary 191

File A logical collection of data that is treated as a unit, occu­
pies one or more blocks on a mass storage volume, and has an
associated file name and type.

File maintenance The activity of keeping a mass storage vol­
ume and its directory up to date by adding, changing, or deleting
files.

File name The alphanumeric character string assigned by a user
to identify a file. It can be read by both an operating system and
a user. A file name has a fixed maximum length that is system­
dependent. (The maximum length in an RT -11 operation system
is six characters, the first of which must be alphabetic. Spaces
are not allowed.)

File specification A name that uniquely identifies a file main­
tained in any operating system. A file specification generally
consists of at least three components: a device name, a file name,
and a file type.

File-structured device A device on which data is organized into
files. The device usually contains a directory of the files stored
on the volume. (For example, a disk is a file-structured device,
but a line printer is not.)

File type The alphanumeric character string assigned to a file
either by an operating system or a user. File types are used to
identify files having the same format or type. If present in a file
specification, a file type follows the file name in a file specifica­
tion, separated from the file name by a period. A file type has a
fixed maximum length that is system-dependent. The maximum
in an RT-ll operating system is three characters, not including
any spaces and excluding the preceding period.

Flowchart A graphical representation for the definition, anal­
ysis, or solution of a problem, in which symbols are used to rep­
resent operations, data, flow, and equipment.

Foreground The area in memory designated for use by a high­
priority program. The program that gains the use of machine fa­
cilities immediately upon request.

FORTRAN IV FORmula TRANslation, a problem-oriented lan­
guage designed to permit scientists and engineers to express
mathematical operations in a form with which they are familiar.
It is also used in a variety of applications, including process con­
trol, information retrieval, and commercial data processing.

192 Working with RT -11

Function An algorithm, accessible by name and contained in
the system software, that performs commonly used operations.

General register One of eight 16-bit internal registers in the
PDP-ll computer. These are used for temporary storage of data.

Global A value defined in one program module and used in
others. Globals are often referred to as entry points in the module
in which they are defined as externals in the other modules that
use them.

Handler See Device handler.

Hardware The physical equipment components of a computer
system.

Hardware bootstrap A bootstrap that is inherent in the hard­
ware and need only be activated by specifying the appropriate
load and start address.

High-level language A programming language whose state­
ments are translated into more than one machine language in­
struction. Examples are BASIC-ll and FORTRAN-IV.

Indirect file A file containing commands that are processed se­
quentially, and that could have been entered interactively at a
terminal.

Initialize To set counters, switches, or addresses to starting
values at prescribed points in the execution of a program, partic­
ularly in preparation for re-execution of a sequence of code. To
format a volume in a particular file-structured format in prepa­
ration for use by an operating system.

Input The data to be processed; the process of transferring data
from external storage to internal storage.

Input/Output device A device attached to a computer that makes
it possible to bring information into the computer or get infor­
mation out.

Instruction A coded command that tells the computer what to
do and where to find the values it needs to work with. A sym­
bolic instruction looks like ordinary language. Symbolic instruc­
tions must be changed into machine instructions before they can
be executed by the computer.

Interactive processing A technique of user/system commu­
nication in which the operating system immediately acknowl-

Glossary 193

edges and acts upon requests entered by the user at a terminal.
Compare with batch processing.

Internal storage The storage facilities that form an integral
physical part of the computer and that are directly controlled by
the computer; for example, the registers of the machine and main
memory.

Interpreter A computer program that translates and executes a
source language statement before translating and executing the next
statement.

Interrupt A signal that, when activated, causes a transfer of
control to a specific location in memory and breaks the normal
flow of the routine being executed.

Job A group of data and control statements that does a unit of
work. A program and all of its related subroutines, data, and con­
trol statements is an example.

Label One or more characters used to identify a source lan­
guage statement or line.

Library A file containing routines (macro definitions or relo­
catable object modules) that can be incorporated into other pro­
grams.

LIFO Last In/First Out, a data manipulation method in which
the last item stored is the first item processed; a push-down stack.

Linkage The code that connects two separately coded routines
and passes values and/or control between them.

Linked file A file whose blocks are joined together by refer­
ences rather than by consecutive locations.

Linker A program that combines many relocatable object mod­
ules into an executable module. It satisfies global references and
combines program sections.

Listing The printed copy generated by a line printer or termi­
nal.

Load To store a program or data in memory. To place a volume
on a device unit and put the unit on line.

Load map A table, produced by a linker, that provides infor­
mation about a load module's characteristics; for example, the
transfer address, the global symbol values, and the low and high
limits of the relocatable code.

194 Working with RT -11

Load module A program in a format that is ready for loading
and executing.

Location An address in storage or memory where a unit of data
or an instruction can be stored.

Locked Pertaining to routines in memory that presently can­
not be swapped or transferred.

Logical device name An alphanumeric name assigned by the
user to represent a physical device. The name can then be used
synonymously with the physical device name in all references to
the device. Logical device names are used in device-independent
systems to enable a program to refer to a logical device name as­
signed to a physical device at run-time.

Loop A sequence of instructions that is executed repeatedly until
a terminal condition prevails.

Machine language The language used by the computer when
performing operations.

Macro An instruction in a source language that is equivalent to
a specified sequence of assembler instructions, or a command
language that is equivalent to a specified sequence of commands.

Main program The module of a program that contains the in­
structions at which program execution begins. The main program
usually exercises primary control over the operations performed;
it also calls subroutines or subprograms to perform specific func­
tions.

Mass storage Pertaining to a device that can store large amounts
of data that are readily accessible to the computer.

Memory Any form of data storage, including main memory and
mass storage, in which data can be read and written. Memory
usually refers to main niemory.

Memory image A replication of the contents of a portion of
memory, usually in a file.

Mnemonic An alphabetic easy-to-remember representation of a
function or machine instruction.

Monitor The master control program that observes, supervises,
controls, or verifies the operation of a computer system. The col­
lection of routines that controls the operation of user and system
programs, schedules operations, allocates resources, performs liD,
and so forth.

Glossary 195

Monitor command An instruction or command issued directly
to a monitor from a user.

Monitor command mode The state of the operating system­
indicated by a period at the left margin-that allows monitor
commands to be entered from the terminal.

Mount a volume To logically associate a physical mass storage
medium with a physical device unit. To place a volume on a
physical device unit, for example, to place a magnetic tape on a
magnetic tape drive and put the drive on the line.

Multiprocessing Simultaneous execution of two or more com­
puter programs by a computer which contains more than one
central processor.

Multiprogramming A processing method in which more than
one task is in an executable state at anyone time, even with one
CPU.

Nondirectory-structured Refers to a storage volume that is se­
quential in structure and therefore has no volume directory at its
beginning. File information (file name, file type, length, and date­
of-creation) is provided with each file on the volume. Such vol­
umes include magnetic tape and cassette.

Nonfile-structured device A device, such as a line printer or
terminal, in which data cannot be organized as multiple files.

Object code Relocatable machine language code.

Object module The primary output of an assembler or com­
piler, which can be linked with other object modules and loaded
into memory as an executable program. The object module is
composed of the relocatable machine language code, relocation
information, and the corresponding global symbol table defining
the use of symbols within the module.

Octal Pertaining to the number system with a radix of eight;
for example, octal 100 is decimal 64.

ODT On-line Debugging Technique, an interactive program for
finding and correcting errors in programs.

Off-line Pertaining to equipment or devices not currently un­
der direct control of the computer.

On-line Pertaining to equipment or devices directly connected
to and under control of the computer.

196 Working with RT -11

Operand The data that an instruction operates upon. An oper­
and is usually identified by an address part of an instruction.

Operating system The collection of programs, including a
monitor and system programs, that organizes a central processor
and peripheral devices into a working unit for the development
and execution of application programs.

Operation The act specified by a single computer instruction.
A program step undertaken or executed by a computer; for ex­
ample, addition, multiplication, comparison. The operation is
usually specified by the operator part of an instruction.

Operation code The part of a machine language instruction that
identifies the operation the CPU is to perform.

Operator's console The set of switches and display lights used
by an operator or a programmer to determine the status of the
computer system and to start the computer.

Option An element of a command or command string that en­
ables the user to select alternatives associated with the com­
mand. In the RT -11 operating system, an option consists of a slash
character (/) followed by the option name and, optionally, a co­
lon and an option value.

Output The result of a process; the transferring of data from in­
ternal storage to external storage.

Overflow A condition that occurs when a mathematical oper­
ation yields a result whose magnitude is larger than the hard­
ware is capable of handling.

Overlay segment A section of code treated as a unit that can
overlay code already in memory and be overlaid by other overlay
segments when called from the root segment or another resident
overlay segment.

Overlay structure A program overlay system consisting of a root
segment and optionally one or more overlay segments.

Page The portion of a text file delimited by form feed charac­
ters and generally 50 to 60 lines long.

Parameter A variable that is given a constant value for a spe­
cific purpose or process.

Parity A binary digit appended to an array of binary digits to
make the sum of all bits always odd or always even. It is used to
check the validity of data.

Glossary 197

PDP Programmable Data Processor.

Peripheral device Any device distinct from the computer that
can provide input and/or accept output from the compu.ter.

Physical device An liD or peripheral storage device connected
to or associated with a computer.

Priority A number, associated with a task, that determines the
order in which the monitor will process the request for service
by that task, relative to other tasks requesting service.

Process A set of related procedures and data that are executed
and manipulated by a computer.

Processor In hardware, a data processor. In s'oftware, a com­
puter program that include's the compiler, assembler, translator,
and related functions for a specific programming language (for
example, FORTRAN IV processor).

Program A set of machine instructions or symbolic statements
combined to perform some task.

Programmed request A set of instructions (available only to
programs) that is used to invoke a monitor service.

Program section A named, contiguous unit of code (instruc­
tions or data) that is considered as an entity and that can be re­
located separately without destroying the logic of the program.

Radix The base of a number system; the number of digit sym­
bols required by a number system.

RAM Random-Access Memory, memory that is accessed in such
a way that the next location from which data is to be obtained is
not dependent on the location of the data previously obtained.

ROM Read-Only Memory, memory whose contents are not al­
terable by computer instructions.

Real-time processing The computation performed while a re­
lated or controlled physical activity is occurring. The results of
the computation can be used for guiding the process.

Record A collection of related items of data treated as a unit;
for example, a line of source code.

Relative address The number that specifies the difference be­
tween the actual address and a base address.

198 Working with RT -11

Resident Pertaining to data or instructions that are perma­
nently located in main memory.

Resource The computational power, programs, data files, stor­
age capacity, or a combination of these that are available to a user.

Restart To resume execution of a program.

Root segment The segment of an overlay structure that, when
loaded, remains resident in memory during the execution of a
program.

Routine A set of instructions arranged in proper sequence to
cause a computer to perform a desired operation.

Run A single, continuous execution of a program.

Sector A physical portion of a mass storage device.

Software The collection of programs and routines associated
with a computer. Application programs, compilers, and library
routines are examples.

Software bootstrap A bootstrap that is activated by loading the
instructions of the bootstrap and specifying the appropriate load
and start address.

Source code Text, usually in the form of an ASCII file, that
represents a program. Such a file can be processed by the appro­
priate system program.

Source language The system of symbols and syntax used to
describe a procedure that a computer can execute.

Storage Pertaining to a device into which data can be entered,
in which it can be held, and from which it can be retrieved at a
later time.

String A connected sequence of entities, such as a line of char­
acters.

Subprogram A program or a sequence of instructions that can
be called to perform the same task (though perhaps on different
data) at different points in a program, or in different programs.

Subroutine See Subprogram.

Swapping The process of moving data from memory to a mass
storage device, temporarily using the empty memory area for an­
other purpose, and then restoring the original data to memory.

Glossary 199

Synchronous Pertaining to related events where all changes
occur simultaneously or in definite timed intervals.

Syntax The structure of expressions in a language and the rules
governing the structure of a language.

System program A program that performs system-level func­
tions. A program that is part of the basic operating system (for
example, a system utility program) is a system program.

System volume The volume on which the operating system is
stored.

Table A collection of data in a well-defined list.

Terminal An liD device, such as a VT100 terminal, that in­
cludes a keyboard and a display mechanism. In PDP-11 systems,
a terminal is used as the primary communication device between
a computer system and a user.

Toggle To use switches on the computer operator's console to
enter data into the computer memory.

Translate To convert from one language to another.

Word Sixteen binary digits treated as a unit in PDP-11 com­
puter memory.

Write-enabled The condition of a volume that allows infor­
mation to be written on it.

Write-protected The condition of a volume that protects the
volume against information being written on it.

Index

Address, 174
ADVANCE, 62, 63
APPEND,69
Applications programs, 14
Assemblers, 13, 120
Assembly errors, 126
Assembly language, 120-121
Asterisk, 43

Background job, 11
BACKUP, 62, 63
Backup, 6
Backup utility program, 94
Base address, 174
Base Line (BL) monitor, 11
BASIC-11,122
BEFORE,101
BEGIN,80
BINCOM,95
BLINE,63
BL monitor, 11
Blocks, 36-37
Boot blocks, 37
Bootstrap programs, 37
Buffer, 31
Bugs, 127
BUP, 94

CCL (Concise Command Language),
86-88

CHAR,63
CHNGCASE, 69

COBOL-11, 122
Code optimization, 13
COMMAND, 56-57
Command files. See Indirect com­

mand files
Commands:

editing, 60-61, 71
for editing and printing files, 103-

104
errors in, 125
file examination, 104-106
file maintenance, 45-50, 95, 100-

103
monitor, 22-31, 46, 75-90
single line editor, 76-80, 89
system function, 106-107

Command String Interpreter (CSI),
85-86,145

Comments, 138-139, 140-141, 144-
145

Compilation errors, 126
COMPILE, 129
Compiled language, 121-122
Compilers, 13, 121
Concise Command Language (CCL),

86-88
Console terminal, 4
Control files. See Indirect control

files
CONTROL-FILESPEC, 146, 147
Control key, 20, 24-25
Control key combinations, 29

201

202 Index

COPY, 24, 47-48, 96-97
CREATE, 95, 97-98, 178
CSI (Command String Interpreter),

85-86, 145
CTRL, 20, 24-25, 29
Cursor, moving of, 62-63, 80
Cursor keys, 62
CUT,68-69

Database management programs, 14
DATE,101
Date, 30

files by, 101
DCL (Digital Command Language),

84-85, 87-88
Debugging, 127
Dedicated systems, 10
Default file types, 41, 118-119
DELCHAR,66
DELEOL,66
DELETE, 20, 24-25, 49, 98-99
DELLINE, 66, 81
DELWORD,66
Device handlers, 11, 170-172
Device names, 37, 38-41, 4;2

changing, 48-49
erasing, 49
listing, 45-46
logical, 39-41,42
physical, 38-39, 42

Device utility program (DUP), 94
DIFFERENCES, 104-106
Digital Command Language (DCL),

84-85, 87-88
DIR,94
DIRECTORY, 45-47, 96
Directory, 37
DIRECTORY IFULL, 98
DIRSAV,45
Disk block structure, 36-37
Disk drives, 4, 5-6
Disks, 4-6

See also Logical disks; Storage
DISMOUNT, 181
Documentation, 15-16
Dot prompt, 9-10
DUMP, 95, 104, 105
DUP, 94
DUP.SAV,45

EDIT, 55-56, 57
Editing, 53-73

deleting, 66-67, 68-69

on a display terminal, 54-55
function keys, 59-64
inserting, 64-66
keypad editor, 55-58
restoring, 67
sections of text, 67-71
substituting, 69-71
See also Single line editor; Text

editing
Editing commands, 60-61, 71
EDIT. SA V, 55
Electronic spreadsheet programs, 14
ENABLE GLOBAL, 147
END,80
EOL,63
Errors, 125-128

assembly, 126
in command lines, 125
compilation, 126
interpretation, 127
link, 126
in program development cycle,

128
run-time, 126-127

EXCLUDE, 101
EXECUTE, 129-130
EXIT, 56-57, 58
Extended Memory (XM) monitor, 10,

11
EXTENSION,98
External comments, 144

Factoring, 44
File examination, 95
File examination commands, 104-

106
File maintenance, utility programs

for, 94
File maintenance commands, 45-50,

95, 107-109
common options for, 100-103
COPY, 47-48
DELETE,49
DIRECTORY, 45-47
PROTECT,50
RENAME, 48-49
UNPROTECT, 50

File name, 37-41
changing, 48-49
erasing, 49
listing, 45-46

Files, 36
copying, 47-48, 96-97

Index

creation, 55-56, 97-98
editing, 57-58, 94-95
erasing, 98-99
indirect command, 136-140
indirect control, 140-165
inspecting, 58, 95
listing, 45-46, 96
printing, 103
protection, 50, 100
renaming, 48-49, 99-100
saving, 56-57

File specifications, 37-44
device names, 37, 38-41, 42
factoring, 44
file types, 37,41-42,43
wildcards, 42-43

File storage media, 36-37
See also Disks; Magnetic tape

File types, 41-42, 43
FILEX, 94
FIND,63-64
Floppy diskettes. See Disks
Foreground/Background (FB)

monitor, 10, 11
Foreground job, 11
FORTRAN IV, 121, 122
FORTRAN IV System Subroutine

Library, 12
Function keys:

editing, 59-64
single line editor, 77, 78-80, 89-90

GET OLD, 82-83
GOLD key, 56-57, 59, 63, 80

Hardware, 4-6
minimum requirements for, 5
optional,6
processor, 4
storage device, 4-6
terminal, 4

Hardware manuals, 15, 16
HELP, 25-28, 59, 78-80
HOLD SCREEN, 28

IND directives, 140, 141-143
IND directive summary, 148-151
Indirect command files, 136-140

adding comments to, 138-139
creation of, 136-137
executing, 139-140

Indirect control files, 140-165
analysis of, 160-165

creating, 140-145
executing, 145-148
nested, 147, 157

IND options, 146
INFORMATION,102
Input buffer, 31
INSPECT,58
INSTALL, 179
Internal comments, 144
Interpretation errors, 127
Interpreted language, 122
Interpreters, 13

KED. See Keypad editor
KED.SAV,55
Keyboard, 19-32

correcting mistakes, 24-25
HELP command, 25-28

203

monitor commands, 22-31
setting time and date, 30-31
special key combinations, 28-29
type-head functions, 31-32
working with, 20-21

Keyboard layouts, 21, 23
Keyboard Monitor (KMON), 10
Keypad editor (KED), 54-73

commands used with, 60-61, 71
function keys, 59-64, 71-73
HELP, 59
leaving, 56-57
starting, 55-58

Keypad functions, 54, 71-73
Keys, functions of, 20
KMON,10

Labels, 140, 141
Language processors, 12-13, 119-120

assemblers, 13
compilers, 13
interpreters, 13
support for, 12

LEARN,78
LIBR,124
LINE FEED , 20, 66
LINK,123
Linker, 122-123, 124
Link errors, 126
Load module, 122-124
LOG,102
Logical disks (continued)

assigning names, 181
creating, 178-179
dismounting, 181

204 Index

Logical disks (continued)
mounting, 179-181
protecting, 181-182

Lowercase type, 106

Machine code, 114
MACRO-ll, 12, 13
Magnetic tape, 6, 36
Manuals, 15-16
Mass storage medium, 5

See also Disks; Magnetic tape
MICROIPDP-ll,6
Mnemonics, 5, 38
Monitor, 8-11

functions of, 8
kinds of, 10-11
parts of, 8-10

Monitor commands, 22-31,46, 75-90
complex, 84
correcting typing mistakes, 24-25
editing and issuing, 75-90
executing, 81-82
HELP, 25-28
in indirect control files, 141-143
retrieving, 82-83
screening, 88
selecting, 88-89
setting date and time, 30-31
simple, 83-84
special key combinations, 28-29

MOUNT, 179, 181

Nested indirect control files, 147,
157

NEWFILES, 99, 101
NOLEARN,78
NOLOG,102
NOQUERY, 137-138
NOREPLACE, 99-100
NOSCOPE,28
NOSCROLL, 28
NOSWAP, 106
NOWRITE, 182

Object code, 13, 119
Object file, 119-122
Object libraries, 124
On-line debugging technique (ODT),

127
Operating modes, 151-152
Operating system, 7-12

device handlers, 11
monitor, 8-11

support for language processors,
12

utility programs, 11-12
OPTION,95
Options:

for file maintenance commands,
100, 109

IND,146
OUTPUT,58
Overlay segments, 130

Parameters, 146-147
PDP-11,4
Percent sign, 43
Peripheral interchange program

(PIP),94
PIP.SAV,45
POSITION,102
PRINT,103
Printer, 20
Processor, 4
Professional 300 terminal:

keyboard layout of, 23
keypad functions on, 54
SL function keys on, 79

Program development, 114-132
creating load module, 122-124
creating object file, 119-122
creating source file, 116-119
cycle of, 114-116
error detection, 125-128
increasing efficiency on, 129-131
writing, 114-116

Programming languages, 120-122
assembly, 120-121
compiled, 121-122
interpreted, 122

Program overlays, 130
Programs. See Software
PROTECT, 50, 99, 100

QUERY, 101
QUIT, 57, 58

REFRESH,83
RENAME, 48-49, 99-100
REPLACE, 70, 99
Resident Monitor (RMON), 8-9
RESORC,94
RETURN, 20, 22
RMON,8-9
Root segment, 130
Run-time errors, 126-217

Index

SCOPE, 24-25
Screen editor. See Keypad editor
SELECT,68
SET, 10, 106
SETDATE, 101
SET LP LC, 106
SET SL LEARN, 78
SET SL OFF, 76
SET SL ON, 76
SET USR NOSWAP, 106
SHOW, 25, 27, 106-107
SHOW DEVICES, 179
SINCE,101
Single Job (SJ) monitor, 9, 10-11
Single line (SL) editor, 75-90

Command String Interpreter, 85-86
complex commands, 84
Concise Command Language, 86-

88
deleting characters, 80-81
Digital Command Language, 84-85,

87-88
exchanging characters, 81
executing command lines, 81-82
function keys of, 77, 78-80
GOLD,80
LEARN,78-80
moving cursor, 80
restoring characters, 80-81
retrieving commands, 82-83
screening monitor commands, 88
selecting commands, 88-89
simple commands, 83-84
starting, 76
stopping, 76

Software, 6-14
applications programs, 14
language processors, 12-13
RT-11 operating system, 7-12

Software manuals, 15, 16
Sorting programs, 14
Source code, 114
Source comparison utility program,

87,95
Source file, 116-119
Special characters, insertion of, 64-

65
SPECINS, 65
Spreadsheet programs, 14
SRCCOM, 87, 95
Storage, 35-51

file maintenance commands for,
45-50

file specifications for, 37-44
media for, 36-37

Storage device, 4-6
SUBSTITUTE,70
SWAP, 81
Syntax errors, 126
SYSLIB,12
SYSMAC,12
SYSTEM,102

205

System function commands, 106-107
System generation (S), 9
System prompt, 9-10
System Subroutine Library

(SYSLIB), 12

Tape, magnetic, 6, 36
Terminal,4
Text buffer, 55-56
Text editing, 64-71

changing case, 69
copying text sections, 68-69
deleting characters, 66
deleting lines, 66
deleting text sections, 68-69
deleting words, 66
inserting blank lines, 65-66
inserting special characters, 64-65
moving text sections, 68-69
replacing text sections, 70
restoring text, 67
substituting text sections, 70

Time, 30-31
Time-sharing programs, 14
TRUNC, 81
TYPE,104
Type-ahead function, 31-32
Typing. See Keyboard
Typing mistakes, correction of, 24-

25

UNPROTECT, 50, 99, 100
UNSWAP, 81
User Service Routine (USR), 10
Utility programs, 11-12, 93-110

editing, 55, 94
file editing and printing com­

mands, 103-104
file examination commands, 104-

106
file maintenance, 45, 94
file maintenance commands, 95-

103, 107-109

206 Index

Utility programs (continued)
functions of, 94-95, 107
SRCCOM,87
system function commands, 106-

107

Version number, 9
Virtual Memory (VM), 172-176, 177
VT100 terminal:

keyboard layout of, 21

keypad functions on, 54
SL function keys on, 77

WAIT,102
Wildcards, 41, 42-43
WORD,63
Word processing programs, 14
WRITE, 181-182

XM monitor, 11

