

VAX Users Series

VAX/VMS: Writing Real Programs in DeL

Digital Press VAX Users Series

Paul C. Anagnostopoulos
VAX/VMS: Writing Real Programs in DCL

Philip E. Bourne
UNIX for VMS Users

James F. Peters III and Patrick Holmay
An Introduction to VAX/VMS

Ronald M. Sawey and Troy T Stokes
A Beginner's Guide to VAX/VMS Utilities and Applications

VAX/VMS:
Writing Real Programs in DCl

Paul c. Anagnostopoulos

Digital Press

Copyright © 1989 by Digital Equipment Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without prior written permission of the publisher.

987654

Order number EY-CI68E-DP

Printed in the United States of America.

Trademarks and trademarked products mentioned in this book include: American Mathematical So­
ciety, TEX; Bell Laboratories, UNIX, Shell; Digital Equipment Corporation, DCL, the Digital logo,
DIGITAL, DEC/CMS, DEC/MMS, DECnet, DEC/shell, VAX, VAX LISP, VAX/TPU, VAXNMS,
VAXcluster, VAXstation, VMS, VT100, VT200, VT300; International Business Machines Corpora­
tion, IBM, IBM VM/SP, REXX.

La Vie Dansante. Jimmy Buffett / Michael Utley / Will Jennings © 1984 Coral Reefer Music BMI
& Coconutley Music ASCJ\P & Warner Tamer!ane Music & Blue Sky Rider Songs BMI.

Design: Sandra Calef
Copyediting: Alice Cheyer
Index: Howard Burrows, John Mann, Rosemary Simpson
Production: Editorial Inc. (Page makeup via TP(with PostScript output)
Printing and binding: Hamilton Printing Company

Library of Congress Cataloging-in-Publication Data

Anagnostopoulos, Paul C., 1953-
VAXNMS-Writing real programs in DCL / Paul C. Anagnostopoulos.
p. cm. - (Digital Press VAX users series)
Includes index.
ISBN 1-55558-023-8
I. VAXNMS (Computer operating system) 2. DCL (Computer program language)
I. Title II. Title: Writing real programs in DCL. III. Series.

QA 76.76.063A48 1989 005.4' 44-dc 19 89-1161 CIP

Contents

Preface xiii

J Introduction J
1. 7 Choosing to Use DCL 2
7.2 The Application Domain for DCL 3
7.3 A Word of Caution 6
7.4 How to Use This Book 6

2 A Review of VMS Concepts JO
2.7 An Interactive Session 70
2.2 The DCL Command Interpreter 77
2.3 DCL Commands 77
2.4 Files and Directories 74
2.5 Logical Names 15
2.6 User Identication Codes 76
2.7 Privileges 77
2.8 DCL Procedures 77
2.9 Procedure Verification 20
2.10 The Login Procedure 20

v

3 Sym;,ois, Data, and Expressions 2 J
3.1 Symbols 21

3.2 Types of Data 22

3.3 Assignment Commands 25

3.4 Expressions 31

3.5 Lexical Functions 36

3.6 Substring Assignment 42

3.7 Bit-Field Assignment 44

3.8 Summary of Assignment Commands 47

3.9 Deleting Symbols 47

4 Flow 01 Control 49
4.1 Sequential Execution 49

4.2 The GOTO Command 50

4.3 The IF Command 52

4.4 Loops 56

4.5 Invoking a Command Procedure 58

4.6 The CALL Command 62

4.7 The GOSUB Command 64

5 Substitution 66
5.1 Apostrophe Substitution 66

5.2 Implicit Substitution 70

5.3 Ampersand Substitution 73

6 Displaying Output 75
6. 7 Displaying Text 75

6.2 Terminal Control Sequences 76

6.3 Formatting Output 78

6.4 Redirecting Program Output 79

6.5 Displaying a File 81

7 The DCl Environment 82
7. 1 Aspects of the Environment 83

7.2 Putting It All Together 88

vi Contents

8

9

JO

J J

J2

Error Handling 90
8. 1 Status Codes 90
8.2 The Default Error Handler 94

8.3 Changing Error-Handling Behavior 95
8.4 Checking a Status Code Explicitly 96
8.5 Handling Errors When Cleanup Is Required 97
8.6 Procedure Call Unwinding 98
8.7 Ignoring an Error 100

8.8 Obtaining the Message for a Status Code 101

Interrupt Handling J 04
9. 1 Interrupt Situations 104

9.2 The Default Interrupt Handler 105

9.3 Changing Interrupt Handler Behavior 106

9.4 Using Interrupts for Other Purposes 109

9.5 Tying It All Together 110

Application Structure
10. 1 Naming Conventions
10.2 Invoking the Application
10.3 The Main Procedure
10.4 A Subprocedure 116
10.5 The Subroutine Library
10.6 The SIGNAL Subroutine

J J J
111

112
113

118
120

10.7 Captive Accounts 122

Obtaining User Input
11. 1 The INQUIRE Command
11.2 The READ Command
11.3 Default Answers 126
11.4 Editing Input 127

J23
124

125

11.5 Checking the Validity of Input
11.6 Main Procedure Arguments

128
131

11.7 A Sophisticated Input Subroutine 132

11.8 Redirecting Program Input 133
11.9 Displaying Large Amounts of Text

Debugging J 36
12. 1 Verification 136
12.2 Temporary Debugging Output
12.3 Permanent Debugging Output
12.4 Capturing Procedure Output

134

140

140

141

Contents vii

l3

14

l5

16

viii Contents

Fiies and Directories
13.1 File Specifications
13.2 Parsing 148
13.3 Searching Directories
13.4 File Protection 156
13.5 File Attributes 157

'43
143

151

13.6 File Operations 158

Logical Names 161
14. 1 Defining and Using Logical Names 162
14.2 Complete File Spec Parsing Algorithm 165
14.3 Displaying Logical Names 166
14.4 Access Modes 167
14.5 Standard Logical Names 169
14.6 Other Uses for Logical Names 169
14.7 Obtaining Logical Name Information 174

14.8 Deleting Logical Names 176
14.9 Overview of VMS Directory Organization 177
14. 10 Overview of Logical Name Tables 179

Sequential File Operations
15. 1 Reading an Existing File 184
15.2 Creating and Writing a New File
15.3 Appending to an Existing File
15.4 Temporary Files 190
15.5 Displaying a File 192
15.6 Searching Files 193

Data Manipulation 196
16.1 Arithmetic Techniques 196

16.2 Lists 198

16.3 Keywords 201
16.4 Dates and Times 202
16.5 Record Structures 205

IB3

187

189

'7 Indexed File Operations 2'0
17.1 Sample File 212
17.2 Reading an Existing File 213
17.3 Creating a File 216
17.4 Writing a File 219
17.5 Updating a File 220
17.6 Deleting Records 220
17.7 File Sharing 221

'8 File Protection 225
18.1 UlC-Based Protection 226
18.2 Access Control Lists 230
18.3 Default File Protection 237
18.4 The Access Algorithm 239

'9 Devices 24'
19.1 Device Names 241
19.2 Device Information 242
79.3 Obtaining a List of the Devices on a System 244
19.4 Terminal Characteristics 246
19.5 Device Allocation 247
19.6 Volume Initialization 249
19.7 Volume Mounting 250

20 Processes 253
20.1 Information about the Current Process 254
20.2 Information about Other Processes 257
20.3 Setting Process Information 259
20.4 Subprocesses 260
20.5 Process-Permanent Files 265
20.6 Jobs 266
20.7 An Example with SPAWN 267

2' Batch Jobs 270
21.1 The Batch Environment 270
21.2 Submitting a Batch Job 271
27.3 Sending Mail about Job Status 274
21.4 Restartable Batch Jobs 276
21.5 Periodic Batch Jobs 279
21.6 Preventing Duplicate Jobs 282

Contents ix

22

A

8

C

D

x Contents

Arrays 284
22.1 Arrays with Integer Indexes 284
22.2 Arrays with String Indexes 288
22.3 The DCL Symbol Table 290

Appendixes

Hexadecimal Notation 291

DEC Multinational Character Set 293

Subroutine Library 296

Sample Application 304
D. 1 Using MODL 305
0.2 MODL Commands 306
0.3 File Layout 313
0.4 Listings 315

Glossary 352

Index 367

List of Tables

3.1 DCL's Interpretation of Data as Boolean Values 25
3.2 Integer Operators 32
3.3 Character String Operators 33
3.4 Boolean Operators 34
3.5 Operator Precedence 35
3.6 Summary of Assignment Commands 47

4.1 Summary of Subroutine Facilities 64

6.1 F$FAO Directives 78

8.1 Status Code Fields 91
8.2 Status Code Severity Levels 92
8.3 VMS Message Files 102

13.1 F$FlLE_ATTRIBUTES Items 157
13.2 VMS File Utilities 159
13.3 File Selection Qualifiers 160

14.1 Defining Logical Names in Different Modes 168
14.2 Standard Process and Job Logical Names 169
14.3 F$TRNLNM Items 176
14.4 System Logical Names 178

xi

75. 1 How /A1ATCH Affects Searching 194

16. 1 Fields in a Record Structure 206

17. 1 Fields in the Sample Indexed File 212

18.1 Access Needed for Directory Operations 227
18.2 Access Needed for File Operations 228
18.3 SET ACL Command Qualifiers 235

19. 1 F$GETDVlltems 243
19.2 MOUNT Command Qualifiers 251

20.1 F$GET)Plltems 255
20.2 F$ENVIRONMENT Items 256
20.3 Commands to Set Process Environment 259
20.4 SPAWN Command Qualifiers 261
20.5 Standard PPFs: Interactive Procedure 266
20.6 Standard PPFs: Batch Procedure 267

21.1 SUBMIT Command Qualifiers (Part 1) 272
21.2 SUBMIT Command Qualifiers (Part 2) 273

B.l Standard ASCII Character Set 294
B.2 DEC Multinational Extension 295

D.l MODL File: Header Record 314
D.2 MODL File: Keyword Record 314
D.3 MODL File: User Record 314

xii List of Tables

Preface

During 1983, while working in the VMS Development Group at Digital Equip­
ment Corporation, I was given the task of developing a new software installation
procedure for VMS. The purpose of this procedure was to provide a uniform en­
vironment and methodology for installing software products on a VMS system.
There were no preconceived notions about how this procedure should be struc­
tured, other than its required name: VMSINSTAL. I was annoyed by the missing
"L" in the name, but I nevertheless accepted the task with enthusiasm. After
giving the problem some careful thought, I decided to implement the required
software in the Digital Command Language, DCL.

My decision raised a few eyebrows. Some people said, "It's too big and com­
plicated, DCL will just get in your way." Others said, "DCL isn't a program­
ming language!" I was convinced it was the correct decision, however, given
the requirements of the project. Most of the actions taken by an installation
procedure involve the manipulation of files: restoring from backup, copying, re­
naming, and so on. DCL is certainly a language that makes file manipulation
easy. VMS INSTAL has to interact with a program written by the developers of the
product being installed. The product's program drives the installation process
in conjunction with VMSINSTAL. DCL makes this kind of interaction simple:
one procedure simply invokes the other, and vice versa. One need not worry
about compiling or linking the programs. Finally, I felt that the user interface to
VMS INSTAL would be simple and not require any fancy programming.

xiii

xiv Preface

After a couple of months' work I had written a 1,300-line DCL procedure that
performed software installations in a consistent and extensible fashion. In the
process, I was forced to develop stylistic and organizational guidelines for pro­
gramming in DCL.

Since that time I have developed many complex DCL procedures and lent a hand
to other people who were developing them. I have also read many procedures
and remain overwhelmed by their lack of style and organization. I have three
goals in writing this book. The first is to help people make an intelligent choice
between DCL and more conventional programming languages. You will only be
comfortable with the decision to write an application in DCL if you understand
DCL's capabilities and limitations.

My second goal is to offer a programming language to computer users who are
not conversant with conventional languages. Secretaries, administrative assis­
tants, word processing folks, database administrators, system managers: all will
be more challenged and productive if they can create new programs and solve
problems on their own. Never forget what Commander Grace Hopper said: It's
easier to apologize later than it is to get permission.

My final goal is to make the DCL programming process enjoyable for everyone.
Programming is satisfying when you understand the features of the language,
know how to apply them, and have the ability to build upon previous work to
meet new situations. The entire software development process is more rewarding
when the resulting software is correct and the programs are easy to understand.

If you are going to write an application in DCL, you might as well take it seri­
ously. Then you can have fun.

Paul C. Anagnostopoulos
March 1989

Acknowledgments

Very special appreciation goes to my wife, Cynthia L. Sorn, for her constant
support and patience during the past year. She read all the chapters and gave me
suggestions and criticisms that directed the book toward a broad audience with
a wide range of background knowledge. The project was a lot more fun with
her participation. She spurred me on when my enthusiasm was lagging and gave
me encouragement when I grumped about some difficult section. I wonder what
she'll think if I start another book?

I particularly appreciate the help of the folks at UIS, Inc. in Lexington, Mas­
sachusetts. They let me use their VMS Version 5 system to develop all the ex­
amples in this book. Samir Bhatia and Charles Strauss reviewed some chapters
for me.

Lots of friends at Digital Equipment Corporation reviewed part or all of the book:
Ruth Goldenberg, Joel Magid, Brian Mahoney, Rich Robbins, Rachel Ross, Hal
Shubin. Thanks to all of them. Extra thanks to Rich and Hal, who read the
entire book twice. As Rich said when he reviewed the chapter on debugging:
"Debugging can be avoided if programmers refrain from making errors."

I appreciate my friend Bill Rothman spending time on some of the introductory
chapters. He was not a VMS user back then, so his comments were invaluable
for clarifying fundamental concepts.

The official technical reviewers from among the VMS user community were
helpful and supportive: Ted Maryan of LTV Missiles and Electronics, James
F. Peters of Kansas State University; Ronald Sawey of Southwest Texas State
University; Joy Veronneau of Cornell University.

Particular recognition goes to Donald E. Knuth and Leslie Lamport. This book
was composed with the TEX typesetting system running the I8.T:f;X macro pack­
age. It sure was fun to typeset the whole thing myself!

Additional recognition goes to everyone who helped produce the book: Howard
Burrows, Sandra Calef, Alice Cheyer, Stephani Colby, Chase Duffy, Timothy
Evans, Hartley Ferguson, Amy Hendrickson, John Mann, Mike Meehan, Mari­
lyn Rash, Rosemary Simpson, Joe Snowden.

Preface xv

xvi Preface

A final thank you to Jimmy Buffett, an artist whose homemade music kept me

going through all those long hours staring at the terminal screen.

Miss the beat if you close your eyes

Every night wears a new disguise

And I live when a new surprise surrenders

Feel it all with a willing heart

Every stop is a place to start

If you know how to play the part with feeling

I play with feeling

That's why I wander and follow fa vie dansante ...

- Jimmy Buffett

Will Jennings

Michael Utley

VAX Users Series

VAX/VMS: Writing Real Programs in DCL

Chapter 1

Introduction

The Digital Command Language, DCL, is the vehicle by which the interactive
user communicates with the VAXNMS operating system. The user enters com­
mands, which are analyzed and executed by the DCL command language inter­
preter to perform actions or display information. Commands can have dozens or
even hundreds of variations, many of which the user must understand intimately.
A command language layer is present on all interactive operating systems, man­
ifested as the Shell on Unix or REXX on IBM VM/SP. There are other command
language interpreters available for VMS, including DEC/shell, which creates an
environment similar to the Unix Shell.

VMS users soon find that they want to capture a series of DCL commands in
a file so they can use the same series of commands quickly and accurately in
the future. In this way, the file acts as a script, specifying actions to be taken
automatically when the script is called up. Often the script can be significantly
more useful if its commands can be varied from one use to the next. Therefore,
most command languages inevitably evolve into programming languages. In the
case of VMS, DCL is the name given to both the interactive command language
and the command programming language, which are really one and the same
thing. A file containing a DCL program is called a command procedure.

The goal of this book is to help you write better DCL procedures. The book
assumes a familiarity with VMS; it does not attempt to teach the operating system
from the ground up. However, even if you have written only a few rudimentary

r. r

2 Introduction

procedures, you can become skilled in the art of DeL programming by the time
the last chapter is read.

Choosing to Use DCL

DeL is by no means the solution to all programming problems. However, there
are programming tasks for which it is perfectly suited, and there are even some
aspects of DeL that are refreshing when compared to conventional languages. It
is necessary to analyze the task at hand carefully when considering DeL as the
programming language. The following is a list of DeL's strong points:

• DeL is available on every VMS system.

• DeL procedures can be developed rapidly. The programmer is freed from
the edit/compile/link/test cycle because DeL is an interpreted language.

• DeL procedures can be modified quickly when requirements change or ex­
pand.

• DeL procedures can employ VMS utilities and other software products in a
simple and natural manner.

• Some tricky aspects of VMS programming, such as error and interrupt pro­
cessing, are significantly simplified by DeL (as long as the necessary pro­
cessing is straightforward).

Ii Unsophisticated programmers can use DeL procedures as building blocks
to create sophisticated programs. So, for that matter, can sophisticated pro­
grammers.

If one or more of these points stand out as important to the application being
planned, then DeL may be the programming language of choice. Nevertheless,
DeL's weak points must also be considered:

• A DeL procedure runs slower than a program written in a conventional lan­
guage because the procedure is executed by an interpreter. This is partic­
ularly true if the procedure is,computationally intensive (Le., if it performs
many arithmetic calculations), less true if the procedure spends most of its
time doing file manipulations.

• DeL is missing some important arithmetic facilities such as floating-point
numbers.

• Data-structuring capabilities, important to many software algorithms, are
virtually nonexistent in DeL.

1.2

1.2.1

• DeL is missing some of the modem structured programming constructs such
as WHILE and FOR loops.

• Only the simplest user interface can be programmed in DeL. DeL has no
windowing or graphics capabilities.

• A program can be invoked directly from a DeL procedure only if it has a
command interface. In particular, shareable images cannot be called directly
from DeL procedures.

DeL is a programming language that allows rapid development of programming
of VMS utilities and software products. DeL is also a language whose original
design did not foresee the wide range of applications for which it would be
used, so parts of DeL are not as well-structured as other modem programming
languages.

The Application Domain lor DCL

In light of these pros and cons, DeL is an appropriate choice of implementation
language for some applications and not for others. The following sections de­
scribe a few of the application domains for which it is well suited. This is in no
wayan exhaustive list.

Environment Extension

One ofthe most common uses for DeL is to extend a user's personal VMS envi­
ronment. Any sequence of commands that is frequently needed can be embodied
in a DeL procedure. Such a procedure reduces the amount of typing required
and, if properly written, can make decisions and alter its actions based upon the
current state of the environment.

Simple procedures can be used to submit batch and print jobs. It is often helpful
to use a procedure to run an application consisting of two or three programs exe­
cuted in sequence. A procedure can be written to replace the LOGOUT command:
before logging out it can delete scratch files and purge the user's directories in
order to save disk space.

A moderately sophisticated but extremely handy procedure can be written to
enhance the SET DEFAULT command, which is the VMS way of establishing the
current working directory. This procedure can accept commands (e.g., UP, DOWN,

SIDEWAYS) that reset the working directory by moving around in the directory

1.2 The Application Domain for DCL 3

1.2.2

4 Introduction

tree. An additional feature can allow the user to record the working directory,
switch to a new working directory, and then pop back to the original one.

Extremely complex procedure libraries have been written to add a layer of fea­
tures "on top of" DeL. These procedures provide an extended set of facilities,
including a calendar and a telephone directory. The calendar interacts with the
VMS batch facility to submit and run batch jobs at predetermined times. The
telephone directory interacts with VMS electronic mail to provide powerful dis­
tribution list capabilities. These procedure libraries even allow users to write
their own procedures, assign them a command name, and integrate them into the
library.

System Management

DeL is perfect for extending the system management facilities included in VMS,
particularly since many of these facilities are missing essential features. A pro­
cedure can tie together the many different system management tools, allowing
complex tasks to be performed easily. Such a procedure also reduces the chance
of doing things in the wrong order or of leaving out a critical step (a mistake
made in system management can leave the VAX unusable).

A simple procedure can be used to run the AUTHORIZE utility, the VMS pro­
gram that is used to authorize new system users. Because AUTHORIZE has no
corresponding DeL command, and because it must be invoked from a particu­
lar system directory, the utility must be invoked in a special way. This is easily
accomplished by a short procedure, whose only real purpose is to save typing.

A moderately complex procedure can be used to add new system roots to a
system disk. This is particularly useful in a VAXcluster environment, where
each node has its own system-specific root and all nodes share a common root.
A procedure to perform just this task is included with VMS. It is provided in the
file MAKEROOT . COM residing in the SYS$MANAGER directory.

A more complex procedure can be written to perform daily disk backups. It
would use the BACKUP utility to create incremental backups on tape. It might
also include a simple tape library facility, which would automatically label the
tapes and keep track of backup cycles. This backup procedure could be extended
to deal with weekly backups, monthly backups, disk restoration, and so on.

1.2.3

1.2.4

Complex File Manipulation

Many applications require relatively complicated file manipulation. Files must
be created, copied, backed up, and reorganized. VMS provides a host of utilities

to help with such operations, but many of them cannot be called from conven­
tional programs; they have no callable interface. DCL procedures are one way
to sequence these utilities and control their subtler aspects.

In a simple application, a frequently updated file may need to be archived peri­
odically. A batch job would run every four hours and make a copy of the file,

purging all but the last five versions.

A distributed application might require that certain files be copied over a network
every evening. A batch job is run that copies the files from the remote node to
the local node. Relatively sophisticated error handling is necessary in case the
network link is lost during a file transfer. It is essential to inform the application
manager of the problem and to ensure that a consistent set of files is maintained
on the local node.

The VMS software installation procedure, VMS INSTAL, is an example of a very
complex DCL procedure that essentially solves a file manipulation problem. The
files making up a software product are distributed on magnetic tape. These files,
along with additional files created at the customer's site, must be placed in the
appropriate VMS directories. Some files, such as command definitions and help
text files, must be placed in specific libraries. All of these file operations must
be performed in such a way as to minimize the confusion caused by a system
failure during the installation.

Software Development

The software development process often requires complex procedures to create,
maintain, and assemble the components of the software system. Many of the
common procedures are addressed by products already on the market. For exam­
ple, DEC/CMS is a source code management system that keeps track of program
modules and prevents two developers from altering a module in an inconsistent
fashion. It is always best to consider available products before embarking on
a project to create one from scratch. However, development methodologies are
constantly changing and a new idea may necessitate the development of in-house

tools.

DCL procedures can tie together existing development tools to improve com­
munication between members of a development group. For example, when a

1.2 The Application Domain for DCL 5

1.3

1.4

6 Introduction

developer replaces a module after modification, electronic mail can be sent to
other members of the group so that they know the module is available.

Most software systems must be "built" before they can be tested. Building a
system from its myriad components is a time-consuming process that must take
into account the many interdependencies between the components. A set of
DCL procedures, perhaps constructed around a system-building product such as
DEC/MMS, can drive the building process from start to finish. The procedures
can maintain and use a description file that lists all the software components and
their relations. The procedures can make use of multiple nodes in a VAXcluster
or network to perform the build in parallel.

DCL procedures can act as the backbone of an automated regression test system.
The purpose of a regression test system is to verify a software product from one
release to the next, to ensure that everything that worked in the previous release
works in the new release. A critical aspect of such systems is the maintenance of
a test case library and the execution of the tests within it. The results of the tests
must be carefully recorded and compared with known correct results. Either or
both of these requirements can be met with a set of DCL procedures.

A Word of Caution

A DCL procedure often runs with a .bigh level of system privilege, particularly
if the procedure performs system management functions. Beware of accepting
"black box" procedures from people you do not know, or from a public bulletin
board. There have been instances of "viruses" and "worms"-procedures that
have deleted system files or destroyed the system in some other fashion.

How to Use This Book

This book can teach you how to write DCL procedures even if you have never
written one before. However, the author assumes that you have a basic\knowl­
edge of VMS concepts and facilities. Do not attempt to learn all about VMS by
reading this book; choose an introductory VMS text, like Introduction to VMS
in the VMS Documentation Set, to read instead. Chapter 2 is a review of the
VMS concepts required to understand the rest of the book. If you are a novice
VMS user, read it carefully; otherwise a quick review is all that is necessary.
Chapters 3-5 provide a detailed description of the facilities DCL provides for
data manipulation and decision making. The author recommends that everyone
read these chapters, because even experienced DCL programmers will discover
new features and ideas.

1.4.1

The remaining chapters of the book address various DeL topics in detail. They
have been arranged to allow each chapter to rely almost exclusively on features
introduced in previous chapters. The goal of this book is to teach you a set of
techniques for building applications in DeL. This is by no means a DeL ref­
erence manual; every command and option is not described in full. When you
want the complete description of a particular feature, consult the VMS Docu­
mentation Set. References to the appropriate documents are given throughout
the text. A list of the most important documents is presented in Section 1.4.2.

This book presents some VMS features that are only available in VMS Version 5.
Whenever there is an important difference between the Version 5 and the Version
4 systems, the difference is explicitly noted.

Program examples are best presented within the context of a particular applica­
tion. Throughout the book, examples are written as if they were part of a ficti­
tious DeL application called "Example DeL Application," or XDA. The XDA
application does not really exist, but you can pretend it does while reading the
examples. This lends some coherence and consistency to the many DeL exam­
ples illustrated in the book. In order to tie together all the information presented
in the book, the procedures for a real application are presented in Appendix D.

A glossary of the terms introduced in this book is provided following the ap­
pendixes.

Typographic Conventions

The following typographic conventions are used throughout this book:

Introduction of term. A new term is introduced in boldface.

Emphasis of word. A word is emphasized in italics.

Document Name. The name of a manual in the VMS Documentation Set is
specified in italics.

VMS KEYWORD or NAME. A keyword or name that is provided by VMS and en­
tered as shown is specified in an uppercase "typewriter" typeface, as in SHOW

TIME. This command is composed of two words, which must be spelled and
punctuated as shown.

<RETURN> key. The name of a key on the terminal keyboard is specified in angle
brackets.

7.4 How to Use This Book 7

I> Ch. 1

1.4.2

8 Introduction

Metalinguistic symhol. A metalinguistic symbol is shown in italics. A meta­
linguistic symbol is a symbolic name that stands for some information to be
included in a DCL command. For example: DELETE file-spec. The metalin­
guistic symbol file-spec stands for a file specification, which must be included
in the command in place of the symbol.

DCL programs and examples of the interaction between the user and VMS are
illustrated as follows:

$! This is a DeL procedure.
$

$ show time

. do other things

$ exit

The program is set off from the text in a smaller typeface. It uses the same "type­
writer" typeface as the text but is shown in lowercase letters. A program example
may include metalinguistic symbols or ellipses to indicate portions of the pro­
gram that are missing from the example. In examples of interaction between the
user and VMS, the user's input is shown in color.

When a complicated or tricky DCL feature is being used, a reference to the
chapter or appendix in which it is described is called out in the margin.

VMS Documentation Set

The definitive description of the Digital Command Language is provided in the
VMS Documentation Set. Five of the manuals in the set are particularly impor­

tant for the DCL programmer:

Introduction to VMS. An introduction to VMS for the novice user.

VMS DCL Concepts Manual. A thorough discussion of DCL concepts and fa­
cilities.

VMS DCL Dictionary. A detailed description of the DCL commands and fa­
cilities. This manual defers to other manuals to describe some of the more
complicated commands, such as BACKUP.

Guide to Using VMS Command Procedures. A description of some of the DCL
programming techniques covered in this book.

Guide to Creating VMS Modular Procedures. A summary of the VMS naming
standards, which allow various DIGITAL products and user applications to
coexist on a VMS system.

This book does not describe every feature of DeL, nor does it list every option
of every DCL command. You must consult the VMS DCL Dictionary when you
need the full details of any particular DCL feature. This book is not a replacement
for the VMS DCL Dictionary.

So you want to learn a new programming language? There are only four things
you need to find out:

• What does a semicolon do?

• Are vector indexes zero- or one-based?

• How is a compound statement formed?

• Does it have macros?

If the answer to the last question is no, forget it.

- Technical Folklore

7.4 How to Use This Book 9

Chapter 2

?

2.1

10

A Review of VMS Concepts

This chapter reviews some basic VMS concepts, which any user of VMS must
understand in order to use the operating system effectively. You may already
understand all the concepts presented here, but a review is certainly helpful. If
you find yourself stumbling over these ideas, it is best to study them in more
detail by reading the volume Introduction to VMS in the VMS Documentation
Set. All the concepts presented in this chapter are described in greater detail in
subsequent chapters of this book.

An Interactive Session

An interactive VMS session is initiated by logging in to VMS from a terminal.
VMS creates an interactive process, which can perform work on your behalf.
The process executes the programs making up the applications that you choose
to run on the VAX. These programs may be supplied by DIGITAL, purchased
from third-party software vendors, or written at your own site.

A VMS process has many items of information associated with it. A few of the
more interesting items are

• The user name with which you logged in to VMS. This may be your actual
name or some other identifier for your account.

• The name of the VMS process. For your first interactive session, the process
name is the same as your user name.

2.2

2.3

• The name of the terminal at which you logged in. You use this terminal to
tell VMS what to do, and VMS uses it to display information.

The DCL Command Interpreter

Once you have established an interactive session, there must be some way to tell
VMS what you want to do. To instruct VMS to perfonn an action, you issue a
command at the terminal. This command is carried out by a special program
called a command language interpreter. The standard command language in­
terpreter for VMS is called DCL, which stands for Digital Command Language.
DCL accepts commands from the keyboard, analyzes them, and then performs

them.

DCL has control of your terminal during an interactive session. It signals that it

is ready to accept a command by displaying the DeL prompt, which is a dollar
sign ($) unless you explicitly change it. A command is entered by typing it at

the dollar sign prompt and pressing the <RETURN> key.

Most commands cause DCL to run a program in your process. The program is
then responsible for further analyzing the command and eventually carrying it

out. Once the program has finished, DCL prompts for another command from
the keyboard. A few commands do not run any program but are instead carried
out directly by the DCL interpreter. These are simple commands that do not
warrant their own complete program.

The DCL command repertoire is extremely rich in features, as the size of the
VMS DCL Dictionary attests. The VMS DCL Dictionary is the manual in the
VMS Documentation Set that describes most of the commands and other features
of DCL. Whenever you are in doubt about the features of a command, consult

the Dictionary.

DCL Commands

Every DCL command adheres to the same basic command format. The first
item in a command is called the command verb. The command verb is a single
English word, or combination of words, that identifies the command and sum­
marizes what it does. For example, the command LOGOUT is used to terminate
an interactive session. Command verbs may be entered in an abbreviated form
as long as the abbreviation is unambiguous. The LOGOUT command may be ab­
breviated to LOG but not to L, because there is also a LINK command. A verb is
guaranteed to be unique if four or more letters are specified.

2.2 The DCl Command Interpreter 77

Many commands accept one or more parameters following the verb. A param­
eter is an item of information used by the command to further refine the action it
will take. Often a parameter names some entity upon which the command will
operate, such as a data file to be copied. The command verb specifies the action,
while the parameter specifies an object to be acted upon.

Some command parameters are required parameters; they must always be
specified. Others are optional parameters and are specified only when needed.
Each command description points out which parameters are required and which
are optional.

The following command deletes all the files called NAMES. DAT:

$ delete names.dat;*

The command verb is DELETE and the first parameter is the file specification
NAMES. DAT; *. The format for file specifications is described in a later section.

The operation of DeL commands is modified and augmented by the presence
of command qualifiers. Almost all qualifiers are optional. When specified, they
alter certain aspects of the operation performed by the command. A qualifier con­
sists of the slash character (/) followed by a word that describes the qualifier's
effect on the command. In addition, some qualifiers accept values that further de­
termine the operation. As with the command verb, qualifiers may be abbreviated
as long as the abbreviation is unique (four letters guarantee uniqueness).

Here is the DELETE command with two qualifiers:

$ delete /confirm flog names.dat;*

The /CONFIRM qualifier specifies that the DELETE command should ask the user
to confirm each file deletion before it is performed. The /LOG qualifier requests
that a message be displayed naming each file after it is deleted. Without the
qualifiers the command neither confirms nor displays messages about files as it
deletes them. The particular action taken when a qualifier is omitted is called the
default action. The default action for the /CONFIRM qualifier is to not confirm;
the default for the /LOG qualifier is to not display log information.

When a qualifier requires a value, the qualifier name is followed by an equal sign
(=) and then the value. For example:

$ delete /before=1-jan-1988 names.dat;*

72 A Review of VMS Concepts

The /BEFORE qualifier specifies that only files created before 1 January 1988 are
to be deleted.

The overall format of DeL commands and the rules that govern their format are
together called command syntax. The complete syntax rules are given in the
VMS manual entitled VMS DCL Concepts Manual. You will learn about many
DeL commands and their syntax as this book proceeds. Here is a summary of
the syntax rules:

I'll A command begins with a verb, which may be preceded by one or more
spaces. The verb may be abbreviated as long as the abbreviation is unam­
biguous. Verbs are guaranteed unique if at least four letters are specified.

III A command may take parameters, some of which are required and some
optional. The verb and parameters are separated from one another by one or
more space~.

- When a parameter contains spaces, commas, slashes, or lowercase letters,
it must be enclosed in double quotes (").

- Some parameters may include a list of items. The items in the list are
separated by commas (,).

ill Most commands allow qualifiers, which consist of a slash (/) followed by
a name. The name may be abbreviated as long as the abbreviation is un­
ambiguous. As with verbs, qualifiers are guaranteed unique if at least four
letters are specified.

Some qualifiers require a value, others accept an optional one. The value
is separated from the qualifier name by an equal sign (=).

- When a qualifier value contains spaces, commas, slashes, or lowercase
letters, it must be enclosed in double quotes (").

Some qualifiers may include lists of values. The items in the list are
enclosed in parentheses [()] and separated by commas (,).

III A command can be continued on additional lines by ending each line (except
the last) with a hyphen (-). The command can be split at any point where a
space or a comma appears.

2.3 DCL Commands 73

2.4 Files and Directories

A file is a collection of data stored on a penn anent medium such as disk or mag­
netic tape. The infonnation in a file is organized into records, each one contain­
ing a portion of the total collection of data. One of the primary purposes of any
operating system is to support the creation and manipulation of data files. On
VMS, a file is designated by a sequence of characters called a file specification,
or file spec for short. The complete fonnat for a file spec is given here, and each
component of the file spec is summarized:

node: : device: [directory .. .J name. type; version

Node. The node component identifies a particular node in a DECnet network.
The name of the node is included in the spec, followed by a double colon to
distinguish it from a device name. If the node is omitted, the local node is
assumed.

Device. The device component specifies the disk or tape on which the file re­
sides. If it is omitted, the device containing the working directory is assumed
(see below for a description of the working directory).

Directory. The directory component specifies a file catalog on the device, the
catalog containing the desired file. Multiple catalogs are allowed on some
devices. If the directory component is omitted, the working directory is
assumed.

Name. The name component, taken together with the type component, identi­
fies a particular file in the chosen directory. The purpose of the file name is
to assign a meaningful identifier to the file.

Type. The type component is used with the file name to uniquely identify a
file in a directory. This two-level name/type scheme allows the file name to
identify a family of related files, while the file type identifies particular kinds
of files within the family.

Version. The version component allows multiple generations of the same file
to exist simultaneously. More than one generation can exist in the same
directory. If the version component is omitted, the latest version is assumed.

Certain classes of storage media, most notably disks, can contain hundreds or
thousands of data files. The concept of a directory is introduced to allow a col­
lection of files to be cataloged together under one name, while another collection

74 A Review of VMS Concepts

2.5

is cataloged under a different name. A directory can catalog not only data files
but other directories as well. This permits a hierarchy of directories to be formed,
with data files cataloged at all levels of the hierarchy.

Two directories are of notable importance to the VMS user. When a user logs in
to VMS, one particular directory is established as the user's login directory, or
home directory. This directory acts as the repository for the user's files, and the
user can create subdirectories under the login directory for additional files. At
any time during a VMS session, one directory, not necessarily the login directory,
is chosen as the default directory. When a file is accessed using a file spec that
does not include a device and directory, the file is assumed to reside in the default
directory. Thus, if the directory in which you are currently working is established
as the default directory, most file specs need not include an explicit device or
directory. When you log in, the login directory is automatically established as the
default directory. You can change the default directory with the SET DEFAULT

command.

Files and directories are discussed in detail in Chapters 13 through 18.

Logical Names

A logical name is a named entity that stands for part or all of a file specification.
The primary purpose of a logical name is to relieve the VMS user from having
to remember the disk and directory location of a file. To this end, VMS defines
many logical names such as SYS$HELP, which you can use to locate system files.

A logical name is created and assigned a value with the DEFINE command. The
DEFINE command requires a logical name and its corresponding value:

$ define data_files user_disk: [smith. data]

Once the logical name DATA_FILES is defined, a file in Smith's data directory
can be referred to without knowing either the disk or the directory:

$ type data_files:october.dat

This command will display the contents of the OCTOBER. DAT file in the data di­
rectory. Logical names defined in the manner of DATA_FILES are only available
to your process. Other logical names defined by VMS or the system manager
can be made available to all processes.

Chapter 14 describes logical names in detail.

2.5 Logical Names 15

2.6

I> Ch. 18

I>Ch.18

User Identification Codes

The user identification code (UIC) is a number assigned to certain objects to
identify the owner of the object. Files and disk volumes are two kinds of objects
that have an owner. A file is assigned an owner when it is created, a disk volume
when it is initialized. A UIC is also assigned to each authorized user of a VMS
system. When you log in to VMS, your UIC is located and becomes associated
with the interactive process VMS creates for you. Every VMS process has a UIC
associated with it.

VMS uses the UIC as part of its object protection scheme. An object can be
protected so that only certain users can read or modify it. For example, a file can
be protected so that many users can read it, fewer users can modify it, and only
one user can delete it. File protection is described in detail in Chapter 18. The
protection scheme is based upon comparing the UIC of the process accessing the
object with the owner UIC of the object itself.

A UIC is an integer that is divided into two parts. The first part is called the
group number and the second part the member number. The system man­
ager determines how the group/member hierarchy is used when assigning UIC
numbers to users. A typical scheme is that all the users in one department are as­
signed the same group number, with separate member numbers assigned to each
person in the group.

A numeric UIC is displayed in the format [123, 456J , where 123 is the group
number and 456 is the member number. The group and member numbers are
specified and displayed in the octal number system, which means that their dig­
its must range from 0 through 7 (8 and 9 are not allowed). VMS Version 4
introduced the idea of UIC identifiers, which are referred to as rights identi­
fiers. Each group is assigned a mnemonic identifier, such as DEVELOPMENT, and
each group member is also assigned an identifier, such as ROBERTSON. If the de­
velopment group is group 123 and Robertson is member 456, then Robertson's
UIC is displayed as [DEVELOPMENT, ROBERTSONJ instead of [123, 456J. This
identifier format conveys much more information than the numeric format. A
member identifier is almost always identical to the member's user name.

Certain group numbers are reserved for system groups. A user in a system
group can generally access system files that are not available to regular users.
The system group numbers usually range from 1 through 10 octal (1 through 8
decimal), although the system manager can alter the range.

16 A Review of VMS Concepts

2.7

2.8

Privileges

The VMS privilege scheme is the means by which VMS restricts the use of those
system functions and resources that can have a negative impact on the system
when used indiscriminately. For example, the capability to terminate another
user's interactive session has the potential to be misused. Another example is
the ability to delete files that normally cannot be deleted: only a few authorized
users should be able to do so.

Every critical system function has one or more privileges associated with it. Each
privilege has a name, so that it can be specified in DeL commands. The OPER

privilege, for example, is required to perform various operator activities, such as
broadcasting a message to all system users. Only users with OPER privilege can
broadcast messages to all users.

There are four sets of privileges associated with each VMS process, two of which
are important to DeL. The first set is the authorized privileges, which are as­

signed to a user by the system manager. The authorized privileges are those the
user is allowed to enable. As long as OPER privilege is authorized, a user can en­
able it and then broadcast a message to all system users. The second privilege set
is the process privileges. These are the privileges the user has in fact enabled.
Again, the system manager determines which privileges will be enabled when a
user logs in, but the user can change the enabled privileges at any time with the
SET PROCESS/PRIVILEGES command. A user cannot enable privileges that are
not in the authorized set unless the user has SETPRV privilege. The SETPRV priv­
ilege allows a user to enable any privileges whatsoever, and therefore it should
be authorized with extreme caution.

Some DeL commands can only be performed when you have certain privileges
enabled. Such restrictions will be stated in this book whenever they apply.

DCL Procedures

After using VMS for a while, you may find yourself entering the same sequence

of DeL commands over and over. This quickly becomes tedious, so users look
for a way to capture the command sequence, assign it a name, and request the

command sequence by name. A command sequence can be stored in a text file
using an editor, and the text file can be "played back" later by DeL, just as if
the commands were reentered at the terminal. The command text file is called
a DeL command procedure. Command procedures are what this book is all

about.

2.7 Privileges 77

A command procedure is a file of text that you can create with your favorite
editor. In its simplest form, a procedure file consists of a sequence of DeL
commands, one per line:

$ show default
$ show process
$ show quota

Each command in the procedure must begin with a dollar sign, which tells DeL
that the line contains a command for it to interpret. One or more spaces can
follow the dollar sign. Then the DeL command is specified exactly as it would
be typed at the DeL prompt.

By convention, a DeL command procedure file is given the file type COM, for
"command." Assume that the previous procedure is contained in a file named
SIMPLE. COM. Once a procedure file is created with an editor, the commands in
the procedure can be played back using the at-sign (@) command:

$ @simple.com

The at-sign tells DeL that the file spec for a command procedure follows. DCL
looks for the file SIMPLE. COM and interprets the commands contained in it, one
at a time, until it runs out of commands. When the commands have all been inter­
preted, DeL requests another command from the terminal. The at-sign command
is said to invoke or call the procedure, and DCL subsequently executes the com­
mands contained within it. The commands in a DeL procedure are sometimes
called DeL code.

DeL assumes that the file type of a procedure is COM, so the . COM can be omitted
from the preceding command:

$ @simple

The procedure displays the following information at the terminal:

$DISK3: [GREEK. PERSONAL. BOOK]

9-MAY-1988 19:45:00.12 LTA5: User: GREEK
Pid: 0000015A Proc. name: GREEK UIC: [AMCDEV, GREEK]
Priority: 4 Default file spec: $DISK3: [GREEK.PERSONAL.BOOK]

Devices allocated: LTA5:
User [AMCDEV,GREEK] has 6956 blocks used, 33044 available,
of 40000 authorized and permitted overdraft of 100 blocks on $DISK3

78 A Review of VMS Concepts

2.8.1

2.8.2

If a procedure line contains nothing but a dollar sign, DeL ignores it and goes
on to the next line. Such a line can be used for visual separation of commands:

$ show default
$ show process
$

$ show quota

Comments

A comment in a command procedure is a phrase or sentence that describes the
procedure to the human reader. Comments are completely ignored by DCL;
they have absolutely no effect on the execution of the procedure, the actions it
takes, or the output it displays. The beginning of a comment is marked with an
exclamation point (!) and the rest of the line contains the comment. DCL ignores
the exclamation point and all other characters through the end of the line.

This is the procedure SIMPLE. COM $!
$!
$

$
$
$
$

It displays information about the current process.

show default
show process The process name and other info.

show quota Disk space used by this user.

This procedure contains four kinds of lines:

• Lines beginning with $!, which contain only comments.

• Separator lines containing only the dollar sign.

• Command lines with no comments.

• Command lines that also include a comment at the end.

Comments allow a complex procedure to be annotated so that future readers and
maintainers of the procedure can better understand how the procedure works.

Abbreviation

DCL allows command verbs and qualifiers to be abbreviated. In a command
procedure, however, it is best to avoid abbreviation. Abbreviations are harder
to read, and searching for particular command verbs or qualifiers is difficult

2.8 DeL Procedures 79

2.9

2.'0

when spellings are inconsistent. If you insist on abbreviating a verb or qualifier,
never abbreviate to fewer than four letters. The names of verbs and qualifiers
are guaranteed to be unique within the first four letters, but not in three or fewer.

Take the SET PROTECTION command, for example. In VMS Version 2, you
could include the following line in a procedure:

$ set pro=(o:rwed) *.dat;* ! Abbreviate "protection".

However, the SET PROMPT command was added in a later version of VMS. Sud­
denly the abbreviation PRO was not unique, because it matched both PROTECTION

and PROMPT.

Procedure Verification

The following command will cause DCL to verify the lines in a command pro­
cedure as it performs them:

$ set verify

As DCL reads the command procedure and interprets its commands, each com­
mand line is displayed at your terminal. In this way you can trace the procedure
and see what it is doing. The SET VERIFY command can be useful as you read
this book and tryout examples.

Procedure verification is described in Chapter 12.

The Login Procedure

After you log in to VMS, DCL checks your login directory for a file named
LOGIN. COM. If such a file exists, it is automatically invoked as if specified with
an at-sign command. All the commands in this login procedure are executed
before DCL issues the first command prompt. The login procedure can be used
to establish a personal working environment: it can define logical names, enable
privileges, or change the DCL prompt.

As you read further, you may discover interesting things to put in your login
procedure.

20 A Review of VMS Concepts

Chapter 3

3.1

Symbols, Data, and Expressions

Chapter 2 introduced basic DCL concepts, which are important for all VMS
users. This chapter begins an examination of DCL facilities that make it useful
as a general-purpose programming language. The focus ofthis chapter is on data
and the manipulation of data.

Symbols

A symbol is the DCL equivalent of what most programming languages call a
variable. A symbol is a named entity with which you can associate an item of
data. Later on, the data can be retrieved and manipulated by using the name
to refer to it. The item of data is called the symbol's value. The same symbol
may have different values at different points in the program. It is the ability of
a symbol to take on different values that makes it such a powerful programming
tool. A DCL symbol has three items of information associated with it:

Name. Each symbol has a name, which is used to refer to it. The name of
a symbol, together with its level, uniquely distinguishes it from all other
existing symbols.

Level. Each symbol has a level, which is determined by the context in which the
symbol was originally created. The various symbol contexts are described
in Section 3.3. A symbol with the same name may exist in two different
contexts, but duplicate names may not exist in the same context. Therefore,
a symbol's name and level uniquely distinguish it from all other symbols.

27

3.2

Value. Each symbol has a value associated with it. The value is an item of data,
which can be manipulated by referring to it by way of the symbol's name. In
other words, the symbol name acts as a "handle" for the data item.

A symbol name is composed of letters, digits, dollar sign ($), and underscore C},

but its first character cannot be a digit. You may type a symbol name in lowercase
or uppercase letters; DeL converts the name to uppercase before doing anything
with it. A symbol name is limited to 255 characters in length. The symbol value
is an item of data, associated with the symbol, that can be accessed using the
symbol name. In DeL, data items can be integers or character strings.

Here is a simple example to illustrate the creation of a symbol:

$ sym1 = 42

This is an assignment command, which creates a new symbol. The symbol has
the four-character name 8YM1, a level determined by the context of the assign­
ment command, and the value 42, which is an integer. Once a symbol is created,
its value can be replaced with a new value by performing another assignment
command:

$ sym1 = "I'd rather be sailing."

This command does not create a new symbol but rather replaces the existing
symbol's value with the character string II I'd rather be sailing. ". An
assignment command creates the symbol if it does not already exist and then
sets it to the value specified on the right-hand side of the command.

It is difficult to fully appreciate the power of symbols without some further back­
ground. The rest of this chapter describes symbols, data items, and assignment
commands in detail.

Types of Data

The ultimate purpose of every program is to create and manipulate data. The
collective term data refers to all the information available to, or generated by, a
program. This data is composed of individual data items, each of which can be
manipulated separately from the rest. In DeL, a data item has an associated data
type, which signifies what kind of data it is. Strictly speaking, DeL supports two
types of data: integers and character strings. However, a particularly useful third
type of data, boolean data, can be implemented with the first two. The following
sections discuss these data types.

22 Symbols, Data, and Expressions

3.2. J

Every data item has two representations, an internal one and an external one.
The internal representation is determined by the host computer, which for DCL
is the VAX. Almost all computers operate in binary, representing data items as
numbers in base 2. Each binary digit is called a bit, so we speak in terms of data
occupying a certain number of bits of computer memory.

Computer users are much happier when data can be represented in natural forms
such as decimal numbers or letters of the alphabet. These familiar forms are the
external representations of the data, and all programming languages provide for
them. When the external representation of a data item appears in a program, it
is called a literal. The following DCL command contains two literals:

$ write sys$output liThe answer is: ", 13

The first literal is the character string "The answer is: "and the second is
the decimal integer 13.

Integers

An integer is a whole number, which can be negative, zero, or positive. DCL
supports integers that occupy 32 bits of memory, thus restricting them. to the
range from -2, 147,483,648 to +2, 147,483,647. In the VAX architecture, a
32-bit quantity is referred to as a longword. Although the internal representation
of an integer is in binary, the external representation is made up of digits and other
characters, which allows a "natural" specification of the number.

Integer literals can be represented in base 10 (decimal), base 16 (hexadecimal),
or base 8 (octal). Decimal integers are discussed in this section, hexadecimal
integers in Appendix A. Octal integers are rarely used and will not be discussed
in this book. A decimal integer is composed of the ten decimal digits 0-9, op­
tionally preceded by a plus sign (+) or minus sign (-). Punctuation marks such
as commas are not allowed in integers. The following are examples of decimal
integers:

o 7 07 42 +3286 -1 -39840938

3.2 Types of Data 23

3.2.2 Character Strings

A character string is a sequence of individual characters. A character can be an
actual glyph, such as an uppercase A or a plus sign (+). Glyphs are usually called
printable characters. A character can also be a control character, which does
not represent a glyph but rather a formatting operation, such as tab or line feed.
Each distinct character is assigned a code number, and the complete collection
of characters and their code numbers is called a character set. The VAX archi­
tecture employs the ASCII character set (ASCII stands for American Standard
Code for Information Interchange), in which characters occupy eight bits and the
code numbers range from a to 255. A complete ASCII character table is included
in Appendix B.

The number of individual characters in a character string is called its length.
A character string can be composed of any number of characters from one to
approximately 900. The upper limit depends on the context in which the string
is used. A character string can also contain no characters at all, in which case it
is called the null string.

A character string literal is represented by enclosing its constituent characters in
a set of double quotes ("). Here are a few examples:

"x" "X" "*" "a short string"
"This is a sentence complete with punctuation."

The first example is the null string. You can represent any printable character in
a string literal, but there is no way to represent control characters. A special case
is made of the double quote character: you must represent each double quote
character in the literal with an adjacent pair of double quotes:

"This string contains ""a quoted phrase""."

The string literal shown here consists of six words, the last three of which are
inside double quotes. Each double quote that is part of the literal, but not the
ones that enclose the literal, must be paired. It is a common mistake to forget to
pair the double quotes inside a string:

"This string contains "a quoted phrase"."

It appears to DCL that the string literal ends with the space following the word
contains and that the final three words are not part of the string literal.

24 Symbols, Data, and Expressions

3.2.3

3.3

Table 3. 1 Del's Interpretation of Data as Boolean Values

Boolean Value Data So Interpreted

TRUE Odd integers; character strings beginning with t, T, y, or Y; character
strings representing odd integers (e.g., "381")

FALSE Even integers; all other character strings

Booleans

The boolean data type encompasses the two logic values true and false. Logical
values are important in programming because true/false, yes/no decisions are
constantly being made by a program in order to guide its flow of execution.
Many conventional programming languages distinguish the boolean data type
from other data types, but DeL does not. However, the boolean data type can
be simulated using the integer and character string data types. Whenever DeL
needs a true/false value to use with a logical operation, it accepts an integer or
character string and interprets it as true or false depending on its value. Table 3.1
specifies how this interpretation is made.

The following data items are considered true:

1 3 II True II lIylI "yupsters ll

The following are considered false:

o 2 IIFalse" liN" "NO" "nope" II random!nonsense ll 11380 11

Symbolic literals for the two boolean values true and false round out the sim­
ulation of the boolean data type. DeL provides no such literals, so the author
chooses the two symbols TRUE and FALSE to represent them. These symbols can
be established with the assignment command described in the next section.

Assignment Commands

The assignment command is the means by which DeL symbols are created and
assigned values. Because most languages refer to their commands as state­
ments, the assignment command is often called the assignment statement. The
assignment statement has the following general format:

3.3 Assignment Commands 25

$ symbol = expression

The symbol named on the left-hand side of the equal sign is assigned the value
determined by the expression on the right-hand side. For example:

$ my_name = "Fred Shubin"

Here the symbol MY_NAME is assigned the character string "Fred Shubin". We
read the assignment statement as "MY _NAME gets "Fred Shubin"" and say that
the symbol MY _NAME is set to the value of the expression "Fred Shubin". The
word equals is not used when discussing the action of an assignment statement
because it is too easily confused with the idea of equality for comparison pur­
poses, as in "1 does not equal 2." Integer and string literals are examples of
simple expressions; a literal can appear by itself on the right-hand side of an
assignment statement. Section 3.4 describes expressions in detail.

A symbol is created the first time a command is used to assign it a value. Sub­
sequent assignments to the same symbol discard the current value and replace
it with the new value. A symbol can have an integer value at one point in the
program and a character string value at another point. The data type is associated
with the value, not with the symbol, as it is in many languages such as Pascal.
Because the data type is associated with the value and not with the symbol, a
symbol can be set to any type of data. The following assignment statements
illustrate these rules:

$ days_per_year = 366
$ days_per_leap_year = days_per_year
$ days_per_year = 365
$ days_per_leap_year = "three hundred sixty-six"

In the second assignment statement, the symbol DAYS _PER_LEAP _YEAR is set
to the value of the previously created symbol DAYS_PER_ YEAR. A symbol by
itself is another example of a simple expression on the right-hand side of an
assignment command. Note that DAYS_PER_LEAP _YEAR is assigned both types
of data at different times.

In addition to its name and value, each symbol has a level. The name and the
level together uniquely identify the symbol from among all existing symbols. A
symbol's level is determined by the context in which it is created and by the kind
of assignment statement used to create it. The following sections describe the
different levels: prompt level, procedure level, and global level.

26 Symbols, Data, and Expressions

3.3.1

3.3.2

DCl Prompt level

Symbols created at the DeL prompt are associated with the DeL prompt level.
You might create such a symbol to remember something to do later:

$ note = "Remember to call Jim before leaving."

This symbol is at the prompt level because it was created with an assignment
statement at the DeL prompt. You can display the value of the symbol with the
SHOW SYMBOL command (you type the first line, and VMS responds with the
second line):

$ show symbol note
NOTE = "Remember to call Jim before leaving."

The symbol can be used to create another symbol at the prompt level:

$ old_note = note
$ note = "Don't forget to pick up a video tape. II

Now two prompt-level symbols exist, NOTE and OLD_NOTE.

Symbols at the prompt level remain in existence during your entire login period
unless explicitly deleted. Section 3.9 describes how to delete symbols.

Procedure levels

Each DeL command procedure has its own symbol level. When you invoke
a procedure with the at-sign (@) command, a new level is established. Any
symbols created by the procedure are associated with the procedure's level. If
the procedure invokes another procedure, the second procedure has its own level
and its symbols are associated with its level. In this way, each procedure has a
set of symbols that "belong" to it.

Here is a simple procedure named SIMPLE-PROC:

$ name = "Moon Unit"
$ show symbol name

When invoked, this procedure creates the procedure-level symbol NAME and as­
signs a character string to it. The procedure then displays the value of the symbol:

$ @simple-proc
NAME = "Moon Unit"

3.3 Assignment Commands 27

!> Ch. 6

When a procedure tenninates, all the symbols created at its level are deleted.
Since the symbols are associated with the procedure's level, it makes no sense
for them to exist once the procedure has tenninated. Should the procedure be
invoked again, its symbols will be recreated from scratch by DeL; they will
have lost their old values.

A procedure can refer to a symbol created at the prompt level as long as the
symbol does not have the same name as a symbol created by the procedure. If
symbols with the same name are created at the prompt and procedure levels, the
one at procedure level "shadows" or "hides" the one at prompt level. Similarly,
a subprocedure invoked from a main procedure can refer to symbols created by
the main procedure. For example, if procedure A invokes procedure B, B can
refer to the symbols created by A. The ability to use symbols created at an outer
level allows you to write a procedure that displays the NOTE symbol created at
the prompt level:

$! Procedure to display the note.
$
$ write sys$output "Your note is:"
$ show symbol note

The WRITE command displays the text in double quotes. The SHOW SYMBOL

command refers to the NOTE symbol created at the prompt level. Because this
little procedure does not create its own symbol named NOTE, the reference to
NOTE gets the symbol at prompt level. The display produced by this procedure
is shown here:

Your note is:
Don't forget to pick up a video tape.

When DeL is executing a procedure and needs the value of a symbol, it perfonns
a simple search process. As soon as it finds a symbol with the given name, it
tenninates the search and uses the value of the symbol. Here is the process as
described so far:

1. DeL looks for the symbol among the symbols created by the currently exe­
cuting procedure.

2. If the procedure was invoked by another procedure, DeL looks for the sym­
bol among the invoking procedure's symbols.

28 Symbols, Data, and Expressions

3.3.3

t>Ch.10

3. Step 2 is repeated for each additional level of command procedure.

4. DeL looks for the symbol among the symbols created at DeL prompt level.

Although a procedure can use the values of symbols at outer levels, it cannot
create or change symbols at outer levels. This is somewhat restrictive, so a
special global level exists to solve the problem.

Global Level

Sophisticated DeL applications are composed of multiple procedures, which
invoke one another in various combinations. Sometimes it is necessary for a
procedure B to calculate a value and pass it back to another procedure A, which
invoked it. With what you know so far, there is no way to accomplish this. If B

stores the value in a symbol at its own level, that symbol will be deleted when
B terminates. The alternative is for B to store the value in a symbol at A's level,
but DeL provides no means of doing so. The global symbol level exists to solve
this dilemma.

Symbols created at the global level are called global symbols. You must explic­
itly request that a global symbol be created by using a variant of the assignment
statement:

$ xda_answer == 42

Note that two equal signs are used in the example. The double equal sign requests
that the symbol XDA_ANSWER be created at the global level and assigned the value
42. Global symbols are only created when you use the double equal sign form
of the assignment command.

By convention, global symbol names begin with the application facility code and
a single underscore. In the preceding example, the facility code is XDA.

Global symbols can always be created, whether you are at the DeL prompt or
executing a command procedure. This capability is what distinguishes global
symbols from prompt-level symbols and is the only major difference between
the two kinds of symbols. The double equal sign forces a global symbol to be
created regardless of the level at which the assignment statement is executed.
Subsequent global assignment to the same symbol changes the global symbol's
value. The value of a global symbol can be obtained at any level as long as
there are no symbols of the same name at a procedure level or prompt level. To
accommodate global symbols, the symbol search process is extended to its final
form:

3.3 Assignment Commands 29

1. DeL looks for the symbol among the symbols created by the currently exe­
cuting procedure.

2. If the procedure was invoked by another procedure, DeL looks for the sym-
bol among the invoking procedure's symbols.

3. Step 2 is repeated for each additional level of command procedure.

4. DeL looks for the symbol among the symbols created at prompt level.

5. DeL looks for the symbol among the global symbols.

The following simple example illustrates a subprocedure that creates a global
symbol in order to pass a value back to its calling procedure:

$! This is procedure A.
$

$ @b ! B will set global symbol XDA_ANSWER.
$ show symbol xda_answer

$! This is procedure B.
$

$ xda_answer == 42
$ exit

Procedure A invokes procedure B to establish the global value. Procedure B

creates the global symbol XDA_ANSWER using a double equal sign assignment
statement. It then exits, allowing procedure A to continue. Procedure A displays
the value of the global symbol. Because XDA_ANSWER is global, it is not deleted
when procedure B exits, thus allowing A to obtain its value.

It is quite easy to omit the second equal sign when you mean to perform a global
assignment. Look at the following code:

$ xda_answer == 42

$

$
xda_answer = 43
show symbol xda_answer

Meant to use

The first assignment command creates the global symbol XDA_ANSWER and as­
signs it the value 42. The second assignment command was intended to change
the value of the global symbol, but only one equal sign is present. Therefore,
the assignment command creates a procedure-level symbol with the same name,
XDA_ANSWER. This procedure-level symbol hides the global symbol. The SHOW

command displays 43 quite nicely, but the global symbol still has the value 42.
Be careful always to use two equal signs when performing global assignments.

30 Symbols, Data, and Expressions

3.4

I> Ch. 4

Global symbols remain in existence during your entire login period, unless ex­
plicitly deleted. Section 3.9 describes how to delete symbols.

Expressions

An assignment statement assigns a value to a symbol. The value is determined
by an expression on the right-hand side of the equal sign. Expressions are also
used in other DCL commands, such as the IF command. Literals and symbols
have already been used as simple expressions. When used in an expression, a
literal stands for itself and a symbol stands for its current value. These simple
expressions are useful but are not powerful enough to compute new values, such
as the sum of two integers.

New values are computed using expressions composed of operators and oper­
ands. An operator is a character or sequence of characters that stands for some
mathematical operation, such as multiplication, or for a string operation, such as
concatenation. The operands associated with an operator determine the values
that are to participate in the operation. Here is a simple expression:

a * b

This denotes that the value of the symbol A is to be multiplied by the value of
the symbol B to produce a new value. The fate of the new value is determined
by the context in which the expression appears. So far, the only context in which
an expression can appear is the assignment statement:

$ product = a * b

Here, the product of the values of A and B is assigned to the symbol PRODUCT.

When DCL encounters an expression, it applies the operators to their operands
in a certain predetermined order, producing a final result, which is assigned to a
symbol or used for some other purpose. When DCL processes an expression in
this manner, we say that DCL evaluates the expression.

In order to completely understand expressions, you must become familiar with
the available operators, the operands they expect, and the order in which the op­
erators are applied to their operands. Tables 3.2, 3.3, and 3.4 describe the opera­
tors provided by DCL for use with integer, character string, and boolean values,
respectively. Table 3.5 illustrates the order in which operators are applied.

Not all operators require two operands as multiplication does. Some require
only one operand. (In the C language there is an operator that requires three
operands.) The number of operands required by an operator is called its arity.

3.4 Expressions 37

Table 3.2 Integer Operators

Operator Arity Result Type Result Value

+ Unary Integer Integer operand unchanged.

Unary Integer Negative of integer operand.

+ Binary Integer Sum of integer operands.

Binary Integer Difference of integer operands.

* Binary Integer Product of integer operands.

/ Binary Integer Quotient of integer operands, truncated towards
zero.

.EQ. Binary Boolean True if integer operands are equal, false other-
wise.

.NE. Binary Boolean True if integer operands are unequal, false
otherwise.

.GT. Binary Boolean True if first integer operand is greater than
second, false otherwise.

.GE. Binary Boolean True if first integer operand is greater than or
equal to second, false otherwise.

.LT. Binary Boolean True if first integer operand is less than second,
false otherwise.

.LE. Binary Boolean True if first integer operand is less than or equal
to second, false otherwise.

.NOT. Unary Integer Bitwise boolean NOT of integer operand. A bit
in the result is 1 if the corresponding bit in the
operand is zero, and vice versa.

.AND. Binary Integer Bitwise boolean AND of integer operands. A bit
in the result is 1 if both of the corresponding bits
in the operands are 1.

.OR. Binary Integer Bitwise boolean inclusive-OR of integer oper-
ands. A bit in the result is 1 if either or both of
the corresponding bits in the operands are 1.

Operators with an arity of 2 are called binary operators. Those with an arity of
1 are called unary operators. A few examples:

$ sum = a + b - c
$ sum = -sum
$ positive sum .gt. 0
$ negative = .not. positive

32 Symbols, Data, and Expressions

Table 3.3 Character String Operators

Operator Arity Result Type Result Value

+ Binary String A copy of the first string operand with a
copy of the second one concatenated to
it (e.g., "Hello-" + "there." produces
"Hello-there. ").

Binary String A copy of the first string operand with the
leftmost occurrence of the second one removed
from it (e.g., lIoh-why-oh-whyll - "why"
produces" oh--oh-why").

.EQS. Binary Boolean True if string operands contain the same
character sequence, false otherwise.

.NES. Binary Boolean True if string operands contain different charac-
ter sequences, false otherwise.

.GTS. Binary Boolean True if first string operand is alphabetically
greater than second, false otherwise. The
collating sequence is based on the ASCII
character set.

.GES. Binary Boolean True if first string operand is greater than or
equal to second, false otherwise.

.LTS. Binary Boolean True if first string operand is less than second,
false otherwise.

.LES. Binary Boolean True if first string operand is less than or equal
to second, false otherwise.

The first example contains an expression composed of two binary operators. The
operands for the plus operator are A and B; the operands for the minus operator
are the resulting sum and C. The second example uses the unary minus operator
to negate its operand. Notice how the hyphen character is used as two different
operators with different arities, its meaning determined by context. The third
example uses the binary "greater than" operator to compare two numbers. The
final example uses the unary "not" operator to invert its boolean operand. The
operator tables specify the arity and meaning of every DCL operator.

The order in which operators are applied to operands is determined by operator
precedence. Table 3.5 lists the precedence of the DCL operators. An operator
with a high precedence is applied before an operator with a lower precedence,
regardless of the order of their appearance in the expression. Every operator is
assigned a precedence so that the order of application can be determined without
ambiguity. Here are a few expressions to illustrate operator precedence:

3.4 Expressions 33

Table 3.4 Boolean Operators

Operator Arity Result Type Result Value

· NOT. Unary Boolean True if boolean operand is false, false if it is true.

· AND. Binary Boolean True if both boolean operands are true, false
otherwise. There is no guarantee about which
operand is evaluated first.

· OR. Binary Boolean True if either or both boolean operands are true,
false otherwise. There is no guarantee about
which operand is evaluated first.

$ value a * b + c
$ value c + a * b
$ value a * b - c * d
$ value -x + y

Because multiplication has a higher precedence than addition, the first two ex­
amples both multiply A by B before adding C. This is true even though, in the
second example, the multiply operator appears after the add operator. The or­
der of evaluation is determined by operator precedence, not merely by order of
appearance. The third example calculates the product of A and B, and then the
product of C and D, and finally subtracts one product from the other. The fourth
example negates X and then adds Y; the precedence of unary minus is higher than
that of addition. If there are two or more operators of equal precedence in an ex­
pression, such as the multiply operators in the third example above, the operators
are evaluated from left to right. In the third example, A * B is evaluated before

C * D.

Sometimes the order of evaluation determined by operator precedence is not
what you want. Parentheses are used to force operators to be evaluated in a cer­
tain order regardless of their precedence. When parentheses surround a portion
of an expression, that portion is evaluated before the surrounding expression,
regardless of precedence. Here are the preceding examples with parentheses
added:

$ value a * (b + c)
$ value (c + a) * b
$ value a * (b - c) * d
$ value -(x + y)

34 Symbols, Data, and Expressions

Table 3.5 Operator Precedence

Precedence Operators

8 (highest) ()

7 Unary +-

6 */

5 Binary +-

4 . EQ. . NE. . GT. . GE. . LT. . LE. . EQS. . NES. . GTS. . GES. . L TS .
. LES.

3 .NoT.

2 .AND.

1 (lowest) . OR.

The first example now calculates the sum of Band C and then multiplies it by
A. The sum appears in parentheses, so it is evaluated first, even though the
precedence of multiplication is higher. The second one adds C and A and then
multiplies the sum by B. The third example subtracts C from B, multiplies the
difference by A, and then multiplies that result by D. The final example adds X
and Y and negates the resulting sum. In each case, the final value is different
when parentheses are used.

As DCL evaluates an expression, it must decide whether each operand represents
an integer, string, or boolean value. In some cases, the type of the operands
actually affects the meaning of the operator. Such a case is the plus (+) operator,
which performs addition when its operands are integers, but performs string
concatenation when its operands are character strings. DCL uses the following
rules to match operators and operand types:

• If the operator accepts only integer operands (e.g., * for multiply), then any
string operands are first converted to integers.

• If the operator accepts only string operands (e.g., . EQS. for string compare
equal), then any integer operands are first converted to strings.

• If the operator accepts either integers or strings (e.g., + for add or concate­
nate) and its operands are of different types, then integers win over strings
and the string operand is first converted to an integer. For example, if you
attempt to add an integer and a string, the string is first converted to an integer.

3.4 Expressions 35

3.5

• If the operator is a boolean operator (e.g~, . AND. for logical and), then the
operands are interpreted as boolean values according to the rules given in
Table 3.1.

A string can be converted to an integer as long as it contains a valid external
representation of an integer (e.g., "-372" can be converted to -372). If it does
not, it is converted to the integer o. An integer can always be converted to a
string by simply creating a string containing its external representation.

Because these operator/operand matching rules are complicated, it is best to
avoid using operators with mixed operand types. You can explicitly request that
a string be converted to an integer, or vice versa, using the lexical functions
F$INTEGER and F$STRING presented in the next section.

Lexical Functions

So far, we have worked with operands that can be integer literals, character string
literals, symbols, or expressions. There is another form of operand called the
lexical function. A lexical function, or simply function, is a built-in DCL sub­
routine that can perform complex operations related to character strings, files,
processes, and other VMS entities. A lexical function may be used in an expres­
sion wherever an operand is allowed. The general format of a lexical function is
as follows:

f$name (argument, ...)

Each lexical function has a name beginning with F$ and includes a meaningful
word or phrase that describes what the function does. Following the name is a
pair of parentheses enclosing the arguments to the function. Each argument is
itself an expression whose value is needed by the function in order to perform
its intended operation. A lexical function may require one or more arguments,
each of which is separated from the others by a comma. A few lexical functions
require no arguments, but the parentheses must be included anyway.

A lexical function uses its argument values to perform its intended operation.
The operation always results in a new value, which is returned by the function.
The return value is used in place of the lexical function as DCL continues to
evaluate the expression in which the function appears. Lexical functions are
similar to symbols in this regard: the value of the symbol or lexical function is
used in place of the symbol or lexical function itself.

36 Symbols, Data, and Expressions

A simple lexical function is F$LENGTH. It requires one argument, which must be
a character string. The function determines the length of the string and returns it
as an integer value. Assume that the symbol NAME contains a character string:

$ name_length = f$length(name)
$ name_too_long = f$length(name) .gt. 31

In the first example, F$LENGTH is used by itself to determine the length of the
name and assign it to the symbol NAME_LENGTH. In the second example, the
name length is compared to 31 to decide whether it is too long. The symbol
NAME_ TOO_LONG is set to true if the length is greater than 31, false otherwise.
Lexical functions may be used by themselves or in combination with operators
and other operands.

A lexical function that requires no arguments is F$TIME. It returns the current
system time as a character string:

$ current_time = f$time()

Note that the parentheses are required even though they enclose no arguments.
In this example, the system time is assigned to the symbol CURRENT_TIME.

Each argument to a lexical function is an expression. This means that an argu­
ment to a lexical function can be another lexical function, as in this example:

$ time_length = f$length(f$time())

The argument to the F$LENGTH function is the F$TIME function. The F$TIME

function returns the current system time, which is then handed to the F$LENGTH

function to determine its length. The F$LENGTH function returns the length,
which is assigned to TIME_LENGTH.

Some lexical functions accept optional arguments. An optional argument may
be included or omitted according to the requirements of each use of the lexical
function. If an optional argument is omitted, the function provides a default
value, that is, a standard value that the designer of the function felt was the one
most commonly needed. The F$GETSYI lexical function is one that takes an
optional argument. The function obtains information about a VMS system ("get
system information"). Its first argument is required and specifies the desired item
of information. The second argument is optional and specifies the VAXcluster
node from which the information is to be obtained. If the second argument
is omitted, the information· is obtained from the local node, the one on which
you are running. This default represents the most common use of the function,

3.5 Lexical Functions 37

I>Ch.13

particularly since the local node is the only available node on a system that is not
a member of a cluster. Here are some examples:

$ vms_version = f$getsyi(IINODE_SWVERSII)
$ node_version = f$getsyi(IINODE_SWVERSII,node)

The first example obtains the VMS version for the local node and assigns it to
the symbol VMS_ VERSION. Note how the second argument is not specified, so
the local node is assumed. The second example obtains the VMS version for the
node whose name is the value of the symbol NODE. The symbol can contain the
name of any node in the VAXcluster, including the local one.

When a lexical function accepts three or more arguments, and some of the argu­
ments in the middle are not included, you must still specify the correct number
of commas preceding the arguments you do include. For example, the F$P ARSE

function accepts up to five arguments. If only the first and fourth arguments are
desired, three consecutive commas are required to signify that the second and
third arguments are missing:

$ file_name = f$parse(file_spec, ,,"NAME")

The F$GETSYI lexical function is one of many functions that accept keyword
arguments. A keyword argument is a character string selected from a fixed set of
strings, each of which specifies an item of information or a particular operation to
be performed by the function. The first argument to F$GETSYI is a keyword that
names the item of system information to be returned. The keyword cannot be
an arbitrary character string but must be chosen from a predetermined repertoire
of strings, each of which denotes a particular item. Keyword strings can be
specified in uppercase or lowercase letters. In this book, all keywords appear in
uppercase to emphasize that they are keywords and not arbitrary strings.

The following sections describe lexical functions that determine the type of a
data item and convert between the integer and string types.

38 Symbols, Data, and Expressions

3.5. J

3.5.2

A Type-Checking Function

The F$TYPE lexical function provides a type-checking capability for DCL. The
F$TYPE function requires a single argument, which must be a symbol name; an
arbitrary expression is not allowed. The function inspects the value ofthe symbol
and returns one of three strings:

II INTEGER II
• This string is returned if the value of the symbol is an integer or

a string whose value is the external representation of an integer (e.g., "all,
"4211, 11-4872 11).

II STRING II. This string is returned if the value of the symbol is a string (unless
the string represents a valid integer).

II II. The null string is returned if the symbol has not been created.

So F$TYPE is useful not only to determine the type of a symbol's value but also
to determine whether the symbol exists at all. If the symbol has not been created,
the null string is returned. Here are a few examples:

$ number = 42
$ type = f$type(number)
$ show symbol type

TYPE = "INTEGER"

-Of-

$ string = "Margaritaville!"
$ type = f$type(string)
$ show symbol type

TYPE = "STRING"

-Of-

$ string =" -987"
$ type = f$type(string)
$ show symbol type

TYPE = "INTEGER"

-Of-

$ type = f$type(nonexistent_symbol)
$ show symbol type

TYPE = ""

Conversion Functions

DCL provides two lexical functions to perform data conversions: F$INTEGER

and F$STRING. The F$INTEGER function requires a single argument, which can
be any expression producing a character string result. The string is converted to

3.5 Lexical Functions 39

3.5.3

an integer, and the integer is returned. If the string does not contain the external
representation of an integer, zero is returned. The F$STRING function requires
a single argument, which can be any expression producing an integer result. As
you might expect, the integer is converted to a string, and the string is returned.
If the argument to one of these functions is already of the correct type, it is simply
returned by the function.

Here are a few examples:

$ string = "108"
$ integer = f$integer("-" + string)
$ show symbol integer

INTEGER = -108 ~ex = FFFFFF94 Octal 37777777624

-Of-

$ string = "gobble-dee-gook"
$ integer = f$integer(string)
$ show symbol integer

INTEGER = 0 Hex = 00000000 Octal 00000000000

-or-

$ integer = 384726
$ string = f$string(integer/2)
$ show symbol string

STRING = 11192363"

Character String Manipulation

The F$LENGTH lexical function allows you to determine the length of a char­
acter string. There are two more lexical functions that are fundamental to the
manipulation of strings: F$LOCATE and F$EXTRACT.

The F$LOCATE function searches one string (the target) for an occurrence of
another string (the pattern). It returns the index in the target of the first (leftmost)
occurrence of the pattern. The index of the first character in a string is zero,
the second character is 1, and so forth. If the pattern does not occur in the
target, the length of the target is returned. The pattern is the first argument to
the function, the target the second. For the following examples, assume that
the symbol PHRASE contains an English phrase and the symbol WORD contains a
single word:

$! Find the position of a question mark in the phrase.
$
$ qm_index = f$locate ("?II ,phrase)

40 Symbols, Data, and Expressions

$! Determine whether the phrase contains the word "who".
$
$ who_index = f$locate("who",phrase)
$
$! Find the position of the word in the phrase.
$

$ word_index = f$locate(word,phrase)

The F$EXTRACT lexical function makes a copy of a portion of a character string
and returns a new string containing the copy. The portion of the string to be
copied is called the substring. A substring can be any part of a string: perhaps
the first few characters, a section in the middle, the final few characters, or even

the entire string. The F$EXTRACT function requires three arguments: the starting
index of the substring, the length of the substring, and the string from which the
substring is to be extracted. The portion of the string beginning at the starting
index and continuing for the length is copied and returned by the function. The
following examples expand upon the previous ones:

$!
$
$

$

$!
$!
$
$

Chop off the phrase at the question mark.

phrase = f$extract(O, qm_index, phrase)

Eliminate the word "who" from the phrase.
(Note that the hyphen is a continuation character.)

wo who f$extract(O, who_index, phrase) + -
f$extract(who_index+3, 9999, phrase)

$

$! Get a copy of the word plus its surrounding characters.
$

$ context = f$extract(word_index-1, f$length(word)+2, phrase)

Assume that the value of PHRASE is "So who is the winner?" and the value
of WORD is "the". After the above commands are executed, the values of the
resulting symbols are as follows:

QM_INDEX: 20

WHO_INDEX: 3

WORD_INDEX: 10

PHRASE: "So who is the winner"

WO_WHO: "S'o is the winner"

CONTEXT: " the "

3.5 Lexical Functions 41

3.6

When working with character strings and the lexical functions that manipulate
them, there are a few things to keep in mind:

• The characters in a string are indexed beginning with zero.

• Therefore, the index of the last character in a string is I less than the length
of the string.

• The F$LOCATE function returns the length of the target if the pattern does not
occur in it.

• The first argument to the F$EXTRACT function is an index, but the second
argument is a length.

• If the starting index for an F$EXTRACT function is past the end of the string,
the null string is returned. If the length extends past the end of the string,
only the existing characters are returned.

• Therefore, to extract a substring beginning at a certain point and extending
for the rest of the string, specify a length greater than the longest possible
string (e.g., 9999).

Substring Assignment

DeL provides a facility that lets you alter a substring of an existing character
string. When a substring assignment is specified, you choose the portion of the
string to be replaced.

The general form of a substring assignment is as follows:

$ symbol [index, length] : = II replacement II

The symbol is the name of a symbol containing the character string to be altered;
index and length specify the boundaries of the substring. The substring begins
with the character specified by the index. The length determines the number of
characters in the substring; it must be zero or positive. The assignment statement
will replace the characters beginning at the index and extending for the length.
Both the index and length can be arbitrary expressions. The replacement text
is specified as a string literal following the substring assignment indicator (: =).

The characters in the substring are replaced by the characters in the replacement
string.

If the replacement string is shorter than the substring, it is padded on the right
with spaces to make it the required length. If it is longer than the substring, it is
truncated to the required length.

42 Symbols, Data, and Expressions

Here are a few examples:

$
$
$
$

$
$
$
$

string = ".This is a string. II
string[O,1] := "("
string[f$length(string)-1,1]

string[0,9] .=

i = 10
string [i, 3] : = " ___ "

")"

The goal of the first example is to replace the first and last characters of the string
with parentheses. Replacing the first character is easy: the index is zero and the
length is 1. The index of the last character is determined by obtaining the length
of the string and subtracting 1. This index, coupled with a length of 1, is used
to replace the last character. Note that the length of a string is 1 greater than the
index of its final character because the indexes begin at zero. The result of the
first example is II (This is a string) ".

The second example replaces the first nine characters of the string with a single
space. Because the replacement string is shorter than the substring, it is padded
on the right with spaces to the length of the substring being replaced. This results
in a string of nine spaces that overlays the substring. It would work just as well
to specify the null string (" ") as the replacement value, but the single space
emphasizes that the substring is being blanked. The result of the second example
is II a string) ".

The third example replaces three characters of the string with dashes. The start­
ing index is specified by the symbol I, which in this case has the value 10. There­
fore, the characters with indexes 10 through 12 are replaced with dashes. The
result of the third example is II a---ring) ".

If the starting index of the substring is beyond the end of the existing string, the
string is padded with spaces to extend it to the required length. After the padding
is performed, the substring is replaced. For example:

$ buffer = 1111

$ buffer[4,4]·= "abed"

3.6 Substring Assignment 43

The BUFFER symbol is first initialized to the null string. The starting index of
the substring assignment is 4, so the buffer is padded with four spaces, and then
the fourth through seventh characters are set to "abed". The resulting string is

" abed".

The substring assignment indicator : = specifies that the assignment is done to
a symbol at the current procedure level. The indicator : == specifies that the
assignment is done to a global symbol.

You must be wary of a few idiosyncracies exhibited by substring assignment:

• No space can appear between the symbol and the left square bracket (D.

• The length of the symbol name plus the length of the replacement string
cannot exceed 1,024 characters.

• The maximum index value is 768. The sum of the index and length cannot
exceed 769.

• In an obsolete variation of substring assignment, the replacement text need
not be enclosed in double quotes. In this case, all the characters following the
: = operator are taken as the replacement text. The behavior of this form of
assignment is confusing, because you expect an expression on the right-hand
side of the assignment operator.

• The previous point makes it clear that the replacement text cannot be an
expression or even a simple symbol. However, there is a way to replace

l> Ch. 5 a substring with the value of a symbol using a substitution operation.

3.7 Sit-Field Assignment

The bit-field assignment facility allows you to alter the sequence of bits that make
up the value of a symbol. Bits can be altered in both integer and character string
values. The general form of a bit-field assignment is as follows:

$ symbol [position, size] = expression

The use of bit-field assignment to alter bits in an integer value is rare and will not
be described in this book. It is more common to create or alter character strings.
In order to effectively use bit-field assignment on character strings, you must first
understand how the bits in a character string are numbered. The following picture
illustrates the numbering scheme for the bits in the character string "ABC":

44 Symbols, Data, and Expressions

IT] o index
7 0

[IJ 1 index
15 8

[TI 2 index
23 16

Every character is composed of eight bits. The first character has bits numbered
0-7, the second has bits numbered 8-15, and so on. In other words, the position
of the least significant bit of each character is equal to the character's index in
the string times eight. The bit-field assignment specifies both the position of the
least significant bit and the size of the field to be altered. The position is limited
to 6,151 and the size to 32 bits.

The assignment indicator = specifies that the bit-field assignment is done to a
symbol at the current procedure level. The indicator == specifies that the assign­
ment is done to a global symbol.

The replacement expression must be an integer expression. When the symbol
specified in a bit-field assignment does not exist, DCL creates a new symbol with
a character string value. The characters in the string are derived from the integer
value of the replacement expression. Each bit in the integer value becomes the
corresponding bit in the character string value. So bits 0-7 of the integer become
the first character, bits 8-15 become the second character, and so on. A character
string of up to four characters can be created in this manner. For example, here
is an assignment statement that creates a character string containing a form feed:

$ formfeed[O,8] = %xOC

Assuming that the symbol FORMFEED does not exist, this assignment creates the
symbol and assigns it a character string value. The bit position is 0 and the size 8,
so the symbol's value will be a one-character string derived from the replacement
expression. The replacement expression has the hexadecimal value OC, which is
the ASCII code for a form feed.

There is a trick to creating a string with more than one character. The following
assignment statement creates a string containing a carriage return/line feed pair:

3.7 Bit-Field Assignment 45

$

$!
$!

crlf [0,16] %xOAOD
first character
second character

The bit position is 0 and the size 16, so a two-character string is created. The
hexadecimal literal contains two characters, a carriage return (00) and a line feed
(OA). They appear to be backwards, but remember that the first character is in bits
0-7 and the second in bits 8-15. So the carriage return will be deposited as the
first character in the string, and the line feed as the second one.

Bit-field assignment is the best way to create character strings containing control
characters. Do not include a control character directly in a DCL procedure,
because strange things may happen when you display the procedure at a terminal
or print it.

If the symbol in a bit-field assignment already exists and has a character string
value, then the assignment replaces characters in the string with new ones. As al­
ways, the bit position and size specify the particular characters that are replaced,
and the replacement expression gives the ASCII values of the new characters. If
the position specifies bits beyond the end of the string, it is extended with zero
bits to the required length. Here is an example of replacing a character in a string:

$ message = IIHello there.XXGoodbye. 1I

$ message[12*8,16] = %xOAOD

The symbol MESSAGE is assigned a character string. The bit-field assignment
then replaces the XX sequence with the carriage return/line feed combination.
The bit position of the first X is specified as the product of 12, the character
index of the X, and 8, the number of bits per character.

The above assignment will work, but it is certainly not perspicuous. It is better
to create the message with simple concatenation:

$ message = IIHello there. 1I + crlf + IIGoodbye. 1I

This method of creating the message does not use bit-field assignment at all.
However, it does use the value of the CRLF symbol created above to obtain the
carriage return/line feed characters.

46 Symbols, Data, and Expressions

3.8

3.9

Table 3.6 Summary of Assignment Commands

Command

A = expression

A == expression

A [i, lJ : = "text"

A[i,lJ :== "text"

A [p, s] = expression

Operation

Set procedure-level symbol to value of expression.

Set global symbol to value of expression.

Replace substring of procedure-level symbol with new text.

Replace substring of global symbol with new text.

Replace bit field of procedure-level symbol with value of
expression.

A [p, s] == expression Replace bit field of global symbol with value of expression.

If the symbol in a bit-field assignment exists and has an integer value, then the
assignment alters bits in the integer value. This form of bit-field assignment is
rarely used and will not be described in this book.

Summary of Assignment Commands

Table 3.6 summarizes the various forms of the DeL assignment command.

Deleting Symbols

Symbols at the prompt and global levels are never deleted automatically by DeL;
they remain in existence as long as your process does. All the symbols created
at a procedure level are deleted when the procedure exits. You can explicitly
request that a symbol be deleted using the DELETE/SYMBOL command. There
are two variations of the command, the first being used to delete prompt- or
procedure-level symbols:

$ delete/symbol note

When used at the DeL prompt, the command will delete the prompt-level symbol
named NOTE. When used in a procedure, the command will delete the procedure­
level symbol NOTE.

3.8 Summary of Assignment Commands 47

The second variation of the command is used to delete global symbols. A global
symbol can be deleted at the DeL prompt or in a procedure, as follows:

$ delete/symbol/global xda_answer

The /GLOBAL qualifier specifies that a global symbol is to be deleted.

There is rarely any reason to delete procedure-level symbols. Because they
are deleted automatically when the procedure exits, you don't have to worry
about lots of symbols cluttering up procedure levels or conflicting with other
procedures.

48 Symbols, Data, and Expressions

Chapter 4

4.1

Flow of Control

The previous chapter presented symbols and expressions, the tools DeL provides
for creating and manipulating data. Without some means for making decisions
about data, however, there is not much a procedure can do with data other than
display it. This chapter presents DeL commands that allow a procedure to make
decisions and take different actions based on those decisions. These commands
are called flow-of-control commands because they are used to control and alter
the flow of execution through the procedure. Each time the procedure is run,
DeL can execute distinct portions of the procedure based on data obtained or
calculated by it.

Sequen~aIExecu~on

When you run a DeL procedure with the at-sign (@) command, DeL executes
the commands in the procedure one at a time, in order, from top to bottom. This
is called sequential execution of commands. Simple procedures can be written
using only sequential execution:

$' A procedure named SIMPLE-PROC.
$

$ show time
$ directory
$ show users

49

4.2

This procedure first displays the current date and time. It then displays a listing
of the files in the working directory. Finally it displays a list of the users logged
in to the system.

In order to run this procedure, you use the at -sign command. The name of the
procedure file is specified following the at-sign, and DeL runs the procedure:

$ @simple-proc
18-MAR-1988 17:54:39:17

Directory LISPW$: [GREEK]

ARCHREQ.TXT;10 BACK-UP-VAXSTATIDN.CDM;1 BASE-DEVD.DIS;3
BASE-DEVDS.DIS;2 BINDECLIB.DIS;4 CHECKSIZE.CDM;1 CLCS.DIR;1

$

We say that the at-sign command runs or executes a procedure. When DeL
reaches the end of a procedure file, the procedure is terminated and the DeL
prompt appears again. DeL is ready for the next command.

The GOTa Command

Simple procedures can be written using only sequential execution, but flow-of­
control commands are needed to construct the majority of useful procedures. The
GOTO command is a fundamental flow-of-control command that allows a proce­
dure to alter the normal sequential execution of commands. A GOTO command
breaks sequential execution and redirects DeL to another part of the procedure.

Here is a procedure containing a GOTO command:

$ show time
$ directory
$ goto another_place
$ show users
$

$another_place:
$ show memory

This procedure begins by displaying the time and directory listing. Then DeL
encounters the GOTO command, which specifies ANOTHER_PLACE as its destina­
tion. The name of the destination of a GOTO command is called a label because
it labels a particular point in the procedure. When DeL encounters a GOTO, it
ceases sequential execution, ignoring the commands immediately following the

50 Flow of Control

GOTO, and takes up execution at the line containing the label. Sequential execu­
tion is resumed at the line containing the label. In this example, DeL contin­
ues execution at the line labeled ANOTHER_PLACE after displaying the directory.
It then displays information about system memory and finally terminates the
procedure. The SHOW USERS command is never executed.

A GOTO command can specify a label preceding it in the procedure as well as one
following it. Here is an example:

$ show time
$again:
$ show users
$ goto again
$ show memory

After displaying the time, DeL encounters the label AGAIN. DeL ignores la­
bels that it finds as it executes commands sequentially. DeL executes the SHOW

USERS command. It then comes to the GOTO command, which specifies the la­
bel that appeared earlier in the procedure. DeL suspends sequential execution,
locates the label, and resumes execution at the line containing the label. This
causes the SHOW USERS command to be executed once more, followed by the
GOTO, followed again by SHOW USERS, and so on indefinitely. The procedure is
stuck in an infinite loop and never terminates. The SHOW MEMORY command is
never executed.

A procedure should not contain duplicate labels. When a duplicate label appears
in a procedure, it "replaces" the previous label of the same name. DeL remem­
bers the position of the second label and forgets the first one without issuing a
warning message. Your procedure may then behave in a strange manner, because
GOTO commands might not alter the flow of execution to the expected point in
the procedure.

The GOTO command is of little use by itself. All you can do with it is skip
commands or cause infinite loops. Some kind of decision-making commands
are needed to vary the action of the GOTO command.

4.2 The GOTO Command 57

4.3

[> Ch. 3

The IF Command

The IF command is the means by which procedures can make decisions. Once
a decision is made, a procedure can choose one of two alternative actions. The
actions are disjoint; DeL executes one or the other but not both. The ability to
make decisions, coupled with the GaTa command's ability to alter the sequential
flow of execution, provides all the power you need to solve arbitrarily complex
problems with a computer.

In VMS Version 5, there are two forms of the IF command: simple and com­
pound. The compound form is not available in Version 4, so Section 4.3.1
describes what to do in the event you are running VMS Version 4.

The first form of the IF command, the simple form, consists of an expression
and a command, as follows:

$ if expression then command

The expression must result in a boolean value. If the value is true, then the com­
mand following the word THEN is executed. If the value is false, the command
is ignored. Nothing else is done with the expression value; its sole purpose is to
determine whether or not the command is executed. The expression is called the
condition, because its true/false condition determines whether the command is
executed.

Here is a simple example:

$ if f$getsyi("PAGEFILE_FREE") .It. 50000 then -
write sys$output "WARNING: paging space is getting low."

$ show time

The expression in this IF command uses the F$GETSYI lexical function to de­
termine whether the amount of free paging file space is less than 50,000 blocks.
The expression's value is true if there are fewer than 50,000 blocks, false if there
are 50,000 or more. When the value is true, the WRITE command is executed to
display the message. When the value is false, the WRITE command is ignored.
In either case, sequential execution continues and the time is displayed.

The real power of the IF command emerges when it is used in conjunction with
the GaT a command. The following code uses the IF command to skip a group
of commands in the event they should not be executed:

52 Flow of Control

$ if f$getsyi(IPAGEFILE_FREE") .ge. 50000 then goto skip_stuff
$ write sys$output "WARNING: paging space is getting low. II
$ show memory
$skip_stuff:
$ show time

The expression in the IF command tests the number of free paging file blocks,
just as in the previous example. However, instead of testing whether the number
is less than 50,000, the condition is inverted to test whether the number is greater
than or equal to 50,000. If so, the GOTO command redirects execution to the
SKIP _STUFF label. If not, the GOTO command is ignored and both the WRITE and
SHOW MEMORY commands are executed. This is how a group of commands can
be executed or skipped based on an IF test. In either case, sequential execution
continues at the SKIP _STUFF label and the SHOW TIME command is executed.

Now that you understand how to use IF and GOTO to conditionally execute a
group of commands, it is time to learn how the GOTO can be avoided. Modem
programming practice dictates that commands such as GOTO, which allow arbi­
trary changes to a program's control flow, should be shunned because a program
with a lot of GOTOs can easily deteriorate into a complex "bowl of spaghetti,"
which is difficult to follow. The GOTO command also requires that you constantly
devise labels that serve no purpose other than to group statements together. The
compound form of the IF command in VMS Version 5 allows a group of com­
mands to be executed when the condition expression is true, without the use of
the GOTO command. The previous example can be rewritten as follows:

$ if f$getsyi(IIPAGEFILE_FREE") .It. 50000
$ then
$ write sys$output "WARNING: paging space is getting low."
$ show memory
$ endif
$ show time

When the condition in the IF command is true, all the commands between the
THEN and the ENDIF are executed. When the condition is false, the commands
are skipped. In either case, execution continues with the command following
the ENDIF. Notice how the IF command has reverted to testing for free blocks
less than 50,000, a more natural test because the critical condition is "less than
50,000 blocks," not "greater than or equal to 50,000 blocks." Notice also that
there are no GOTO commands with their clutter of command labels.

The first command in the group (WRITE) can appear on the same line as the THEN
keyword, although the author feels it is better style to use a separate line for the
first command. The ENDIF keyword must appear on a line by itself. Note also

4.3 The IF Command 53

4.3. J

that the commands between the THEN and the ENDIF are indented two columns
to emphasize that they are grouped together. This is not required, but it helps a
reader of the procedure to see where the group begins and ends.

It is often the case that one group of commands is to be executed when a condition
is true and an alternative group is to be executed when it is false. The second form
of the IF command accommodates this requirement with the ELSE keyword:

$ if f$getsyiCIPAGEFILE_FREE") .It. 50000
$ then
$ write sys$output "WARNING: paging space is getting low. II

$ show memory
$ else
$ write sys$output "Paging space is fine. II

$ endif
$ show time

The block of commands between the ELSE and ENDIF keywords is only executed
if the condition is false. So if the condition is true, the WRITE and SHOW MEMORY

commands are executed, and if it is false, the single WRITE command is executed
to display "Paging space is fine. ". As usual, regardless of whether the
condition is true or false, execution continues with the SHOW TIME command
following the ENDIF.

The two forms of the IF command provide the capability to conditionally execute
single commands or groups without the need for any GoTo commands.

The IF Command Prior to VMS Version 5

The compound form of the IF command, which allows groups of commands to
be executed as one unit, was not available until VMS Version 5. If a version prior
to Version 5 is being used, the compound IF command must be constructed with
simple IF and GoTo commands. Here is the example of an IF with a group of
commands to be executed when the boolean expression is true:

$ if f$getsyi(IPAGEFILE_FREE") .ge. 50000 then goto 19
$ write sys$output "WARNING: paging space is getting low. II
$ show memory
$19:
$ show time

The WRITE and SHOW MEMORY commands are to be executed when there are
fewer than 50,000 free paging file blocks. The IF expression is arranged so
that the GoTo will skip the commands when there are enough blocks. The label

54 Flow of Control

19 marks the end of the commands that are conditionally executed, and it serves
as the target of the GOTO.

Here is the example with one group of commands to be executed when the con­
dition is true, another when it is false:

$ if f$getsyiCIPAGEFILE_FREE") .ge. 50000 then goto 15
$ write sys$output "WARNING: paging space is getting low."
$ show memory
$ goto 19
$15:
$ write sys$output "Paging space is fine."
$19:·
$ show time

In the previous example, the GOTO command specified label 19, the end of the
entire IF construct. In this example, it specifies label 15, which marks the be­
ginning of the commands to be executed when the IF expression is false. In
addition, a new GOTO command is required after the SHOW MEMORY command in
order to skip around the second WRITE command. Here is the overall flow of
control depending upon the number of free paging file blocks:

Less than 50,000. The condition is false, so the GOTO is ignored. The WRITE

and SHOW MEMORY commands are executed. The GOTO 19 command skips
to the end of the IF construct.

Greater than or equal to 50,000. The condition is true, so the GOTO is performed.
Execution continues at label 15 and the "Paging space is fine." mes­
sage is displayed. Execution falls through to the end of the construct.

The author used the following labeling convention for an IF construct prior to
VMS Version 5: The end of the construct is marked with a numeric label equal
to a multiple of ten plus nine. If the construct has an "else" alternative, it is
assigned a label equal to the same multiple of ten plus five. The example uses
15 and 19. This labeling scheme is consistent with the one presented for loops.

4.3 The IF Command 55

4.4 Loops

A loop is a sequence of commands that is repeatedly executed until some ter­
mination condition arises. Section 4.2 described how to set up an infinite loop,
one that never terminates. This is rarely useful because the command procedure
executes forever. A loop that eventually terminates must check for a termination
condition and stop looping when the condition is met. Each execution of the
commands in a loop is called an iteration.

Here is a loop that iterates exactly ten times:

$ count = 0
$10: count = count + 1
$ if count .gt. 10 then goto 19
$ show users
$ goto 10
$19:

The symbol COUNT is used to maintain a count of the number of iterations. It
is initialized to zero and incremented at the beginning of each iteration. The
loop is terminated when the counter exceeds ten. The SHOW USERS command is
therefore executed exactly ten times. Here is what happens on the first iteration:

1. The value of COUNT is incremented from 0 to 1.

2. The value of COUNT is compared to 10. Since it is less, the condition is false
and the GOTO 19 command is ignored.

3. The SHOW USERS command is executed.

4. The GOTO 10 command redirects execution back to the beginning of the
loop.

In contrast, this is what happens on the eleventh iteration:

1. The value of COUNT is incremented from 10 to 11.

2. The value of COUNT is compared to 10. Since it is greater, the condition is
true and the GOTO 19 command is executed. It redirects execution to the line
labeled 19, thus terminating the loop.

The author uses the following labeling convention for a loop: The beginning of
the loop has a numeric label that is a multiple of ten. The line following the loop
has a numeric label equal to the beginning label plus nine. The example uses 10

and 19. In addition to the labeling convention, the commands within the loop
are indented two columns. These commands are called the loop body.

56 Flow of Control

I> Ch. 3

I> Ch. 3

There are many ways to control loop termination other than with a simple counter.
Assume we have a character string in the symbol LINE and we want to remove
all the spaces from the string. The following loop accomplishes this task:

$10: if f$locate(" ",line) .eq. f$length(line) then goto 19
$ line = line -
$ goto 10
$19:

The F$LOCATE lexical function takes two arguments, a pattern string and a target
string. It scans the target string for an occurrence of the pattern and returns the
index of the pattern in the target. If the pattern does not occur in the target, the
length of the target string is returned. In this example, the F$LOCATE function
is used to determine whether the line contains any spaces. If not, the loop is
terminated. If so, the leftmost space is removed from the line with the string
reduction operator (-) and the loop is repeated. Eventually, all spaces will be
removed and the loop will terminate.

The preceding loop could also be written as follows:

$10: line = line - II II

$ if f$locate(" ",line) .eq. f$length(line) then goto 19
$ goto 10
$19:

It is perfectly fine to write the loop this way, because the string reduction operator
is harmless if there is no space in the line. The loop removes a space if there is
one and then checks the line to see if it is free of spaces. If not, the loop is
repeated. By reorganizing the loop this way, we push the termination test to the
bottom of the loop. This allows us to combine the terminating IF command with
the final GOTO command:

$10: line = line - II II

$ if f$locate(" ",line) .ne. f$length(line) then goto 10
$19:

In this case, the IF command determines whether there are any more spaces in
the line and redirects execution to the beginning of the loop if there are. When
all spaces have been removed, the IF command "falls through" to the label fol­
lowing the loop and the loop is terminated. The label 19 is no longer the target
of any GO TO commands and is therefore technically unnecessary, but it is left as
a visual indicator of the end of the loop.

4.4 Loops 57

I> Ch. 3

4.5

A loop may require more than one termination test. The following loop finds the
first parenthesis in a string:

$ i = -1
$10: i = i + 1
$ if i .ge. f$length(line) then goto 19
$ if f$extract(i,l,line) .eqs. "(" .or. -

f$extract(i,l,line) .eqs. ")" then goto19
$ goto 10
$19:

The symbol I is used as an index into the string. It is initialized to 1 and
incremented each time through the loop. Remember that the characters in a string
are indexed beginning with zero. Two termination tests are required. The first
one checks to see if I has become too large to index the string. If the first check
does not terminate the loop, then I can be used as a string index. The second. IF

checks to see if the character indexed by I is an open or a close parenthesis and
terminates the loop if so. If neither test terminates the loop, another iteration is
started.

The condition ofthe second IF command in the preceding example is more com­
plicated than in previous IF commands. The boolean expression contains the
. OR. operator. Because of the relative precedence of the . EQS. and . OR. oper­
ators, the string comparisons are performed first. The first comparison produces
a true value if the character is an open parenthesis, false if not. The second com­
parison produces a true value if the character is a close parenthesis, false if not.
The result of the . OR. operation is true if either comparison was true, false if both
were false. In other words, the final result is true if the character is a parenthesis,
false if not.

Invoking a Command Procedure

Chapter 2 presented a cursory overview of the at-sign command and how it is
used to run a command procedure. This section describes the at-sign command
in greater detail. When you enter a command at the DCL prompt, DCL reads
the command from the keyboard and executes it. If the command is an at -sign
command, DCL stops reading commands from the keyboard and instead reads
them from the command procedure file specified following the at -sign. Once it
has read all the commands from the procedure, DCL resumes reading commands
from the keyboard. At first, this may seem like a trivial concept, but it is really
quite a powerful one.

58 Flow of Control

4.5. J

We use the word level to refer to DeL's source of commands. The DeL prompt
is at prompt level, and a procedure invoked from prompt level is said to run at
procedure level I. It is perfectly permissible for a procedure running at level I
to invoke another procedure, which would then be running at procedure level
2. Here is an example:

$! This is procedure A.
$
$ show time
$ @b
$ show time

$! This is procedure B.
$
$ show users

If you invoke procedure A from the DeL prompt, it runs at procedure level I. Af­
ter displaying the current time, it invokes procedure B with the at-sign command.
Procedure B then runs at procedure level 2, displays a list of the current users,
and terminates. When B terminates, execution continues in procedure A with the
line following the at-sign command (the second SHOW TIME). The time is dis­
played again, A terminates, and the DeL prompt reappears. The important point
is that DeL remembers the line in procedure A where execution must continue
after B terminates. This place is called the return point. DeL can keep track of
the return points for up to 32 procedure levels, more than most applications ever
require.

In the jargon of programming languages, a procedure invoked by another pro­
cedure is called a subprocedure or subroutine. The at-sign command provides
the DeL programmer with a straightforward subroutine capability.

Parameters

In order to create a procedure that can vary its actions from one use to the next,
there must be a way for the user of the procedure to provide it with data and
control information. For example, a procedure that deletes or purges all the files
with the file type TMP must be told whether it should delete or purge. There are
many ways to provide a procedure with information; one of the most common is
called the procedure parameter. A procedure parameter is an item of informa­
tion passed to the procedure when it is invoked with the at-sign command. You
can pass as many as eight parameters to a procedure.

4.5 Invoking a Command Procedure 59

C> Ch. 3

Here is a procedure that can delete or purge all of the TMP files in the working
directory:

$! Procedure CLEAN-UP.
$! First parameter is the word DELETE or PURGE.
$

$ if pi .eqs. "DELETE" then delete *.tmp;*
$ if pi .eqs. "PURGE" then purge *.tmp

When this procedure is invoked, it is provided with a parameter that specifies
whether temporary files should be deleted or purged. There are two ways to
invoke it:

$ @clean-up delete

-or-

$ @clean-up purge

The parameter is specified after the procedure name and must be separated from it
by one or more spaces. Before DeL begins to execute the procedure, it creates a
special procedure-level symbol named Pi whose value is the specified parameter.
The parameter is converted to uppercase letters unless it is enclosed in double
quotes. The value of the Pi symbol is always a character string, even if the
parameter is an integer. When CLEAN-UP is invoked with the first command, Pi

has the value "DELETE". When it is invoked with the second command, Pi has
the value "PURGE". The IF commands in the procedure compare the value of
Pi against two literal strings to decide which function to perform.

You can specify up to eight parameters to a procedure. They are stored in the
symbols Pi, P2, and so on, up through P8. There are always eight symbols
regardless of the number of parameters specified. Those symbols that have no
corresponding parameter are set to the null string. Do not use these special
symbols for any purpose other than to access the parameters. The symbols are
procedure-level symbols and so are deleted when the procedure exits.

Spaces are used to separate the parameters in an at-sign command. If a single
parameter contains spaces or slashes (/), it must be enclosed in quotation marks.
The quotation marks group all the enclosed characters into one parameter. Here
is a procedure that accepts two messages, displays them, and remembers them
in two global symbols:

60 Flow of Control

4.5.2

$! Procedure REMEMBER
$! The first parameter is one message.
$! The second parameter is another message.
$
$ write sys$output pi
$ write sys$output p2
$ save_messagei pi
$ save_message2 == p2

The two messages are passed as parameters 1 and 2 and so are obtained by the
procedure using symbols P1 and P2. Both messages are displayed and then saved
in the symbols SAVE_MESSAGE1 and SAVE_MESSAGE2. The procedure is invoked
with a command such as

$ @remember "go to the grocery store" "get a video -c;ape il

Because the messages contains spaces, they must be enclosed in quotation marks.
This makes it clear that the first message is "go to the grocery store" and
the second one is "get a video tape". If the procedure is invoked without
the quotation marks:

$ @remember go to the grocery store get a video tape

then each word appears to be a separate parameter, because parameters are sep­
arated by spaces. In this case, there would be nine parameters, more than are
allowed by DeL.

A procedure parameter must be enclosed in quotation marks in the following
circumstances:

• When the parameter contains spaces or slash characters.

• When the parameter contains lowercase letters that must not be converted to
uppercase.

The EXIT Command

When DeL runs out of commands in a procedure file, it automatically termi­
nates the procedure. If the procedure was invoked from the DeL prompt, the
prompt reappears and you can enter another command. If the procedure was in­
voked from another procedure, the original procedure resumes execution with
the command following the at-sign command. The termination of a procedure is
called procedure exit. The EXIT command can be used to cause procedure exit
before DeL gets to the bottom of the procedure.

4.5 Invoking a Command Procedure 67

4.6

Here is the CLEAN-UP procedure with an EXIT command:

$! Procedure CLEAN-UP.
$! First parameter is the word DELETE or PURGE.
$
$ if pi .nes. "DELETE" .and. pi .nes. "PURGE"
$ then
$ write sys$output "The parameter must be DELETE or PURGE."
$ exit
$ endif
$
$ if pi .eqs. "DELETE" then delete *.tmp;*
$ if pi . eqs. "PURGE" then purge *. tmp

The new IF command checks the parameter to make sure it is either "DELETE"

or "PURGE". If not, an error message is displayed and an EXIT command is
executed: the procedure terminates immediately. If the parameter is valid, the
procedure continues with its task.

The preceding example illustrates a common use for the EXIT command. Proce­
dure parameters are checked at the beginning of the procedure to ensure they are
valid. If not, the EXIT command is employed to terminate the procedure before
it begins its real work. Be careful not to overuse the EXIT command; a per­
son reading your procedure has to be particularly aware of each EXIT command
because it stops the natural flow of execution from top to bottom.

The CALL Command

The CALL command provides a subroutine capability similar to the at-sign com­
mand, except that the subroutine resides in the same procedure file as the com­
mand that invokes it. The CALL command was introduced in VMS Version 5.
Here is a procedure that uses the CALL command:

$ call show_disks "Before the program:"
$ run sys$system:application-pgm
$ call show_disks "After the program:"
$ exit
$
$show_disks:
$ subroutine
$ write sys$output pi
$ show time
$ show devices/mounted
$ exit
$ endsubroutine

62 Flow of Control

The CALL commands are used to invoke a subroutine named SHOW_DISKS. Pa­
rameters can be passed to the subroutine just as if it were a separate procedure in­
voked with the at-sign command. In this example, the subroutine is called twice,
the firsttime with the parameter "Before the program: II and the second time
with the parameter "After the program: ".

The subroutine begins with a label specifying its name, followed by the DeL
command SUBROUTINE. This command marks the start of the subroutine, which
includes all the commands down through the corresponding ENDSUBROUTINE

command. When the subroutine is invoked with CALL, a new procedure level is
established, new procedure-level symbols Pl-P8 are defined, and the commands
in the subroutine are executed. When the ENDSUBROUTINE is reached, the sub­
routine is terminated and execution continues after the CALL command. As with
procedures, an EXIT command can be used to terminate the subroutine at any
point during its execution.

If DeL runs into a SUBROUTINE command as it executes a procedure sequen­
tially, all the subroutine's commands are skipped and execution continues after
the ENDSUBROUTINE. The only way to execute the commands in a subroutine is
to call it. Therefore, the first EXIT command in the preceding procedure is tech­
nically unnecessary. DeL would skip over the subroutine as it executed the main
portion of the procedure, reach the end of the procedure file, and terminate the
procedure. However, the use of the EXIT command in this circumstance makes
the procedure easier to read and follows our convention that an explicit EXIT

command is used at the end of every procedure.

Table 4.1 summarizes the similarities and differences between the at-sign and
CALL commands.

A disclaimer: when the term subroutine is used in this book, it does not neces­
sarily refer to a subroutine invoked with the CALL command. The term is used in
a general way to signify any sequence of commands invoked by a DeL proce­
dure, whether they are in the same procedure file or another one, and regardless
of how they are invoked. Subroutines therefore encompass procedures invoked
with the at-sign command, subroutines invoked with CALL, and those invoked
with GOSUB.

4.6 The CALL Command 63

4.7

Table 4.1 Summary of Subroutine Facilities

Feature At-sign CALL GOSUB

Location of subroutine Separate proce- Same procedure Same procedure
dure

Creates new procedure Yes Yes No
level?

Pass Pi-P8 parameters? Yes Yes No

Implicit termination End of proce- ENDSUBROUTINE End of proce-
dure dure

Explicit termination EXIT EXIT RETURN

Can alter caller's local No No Yes
symbols?

Can return values in global Yes Yes Yes
symbols?

The GOSUB Command

The GOSUB command is similar to the CALL command. It invokes a subroutine
that resides in the same procedure as the caller. However, there are some impor­
tant differences, summarized in Table 4.1. In particular, GOSUB does not create
a new procedure level and there is no way to pass the P 1-P8 parameters to the
subroutine. The subroutine is limited to performing relatively simple operations
and must receive its input data in symbols created by the caller. Here is the CALL
example modified to use GOSUB:

$ heading = "Before the program:"
$ gosub show_disks
$ run sys$system:application-pgm
$ heading = "After the program:"
$ gosub show_disks
$ exit
$

$show_disks:
$ write sys$output heading
$ show time
$ show devices/mounted
$ return

The GOSUB command requires one parameter, the label of the subroutine to be
invoked. The subroutine itself contains no special surrounding commands like
SUBROUTINE and ENDSUBROUTINE. It performs a series of commands and then

64 Flow of Control

terminates with the RETURN command. Because there is no way to pass parame­
ters to the subroutine, it must receive the heading string in the symbol HEADING.

The symbol acts as a parameter for the subroutine, so the main procedure must
set it before invoking the subroutine. The EXIT command is required in the
main procedure to prevent DeL from falling through and executing the subrou­
tine's commands. Because the subroutine is not delineated by commands such as
SUBROUTINE and ENDSUBROUTINE, DeL does not know to skip the subroutine
when it is encountered during sequential execution.

In effect, a subroutine invoked with GOSUB is executed exactly as if it appeared
in its entirety in the place of the GOSUB command. A subroutine invoked with
GOSUB can itself invoke another subroutine with GOSUB. For each procedure
level, DeL can remember the return points for up to 16 GOSUB levels.

4.7 The GOSUB Command 65

Chapter 5

5.1

66

Substitution

Up to this point, the book has focused on DCL language features that are similar
to those found in conventional languages. The similarity fades, however, with
the introduction of a powerful feature called substitution. The substitution fa­
cility is akin to macros in assembly language or preprocessor definitions in the C
language. However, substitution in DCL is unrelated to the syntax of commands:
it is purely textual replacement. Any part of a command, from a single character
to a portion of a file specification to an entire command line, can be created on
the fly by the appropriate use of substitution. This is an extremely potent feature,
which allows you to create DCL commands "customized" for particular circum­
stances. It also grants you the power to create malformed or completely garbled
commands.

DCL provides three kinds of substitution: apostrophe substitution, implicit sub­
stitution, and ampersand substitution. The principle underlying all three kinds
is that a symbol or lexical function appearing in a command is removed and re­
placed with its value. The differences among the three kinds of substitution lie
in how they are specified and when they occur.

Apostrophe Substitution

This section describes apostrophe substitution, which is one form of explicit
substitution. Using an apostrophe ('), you explicitly request that DCL perform a
substitution where it would not otherwise do so. (In contrast, the next section de-

scribes substitution that DeL performs automatically.) Apostrophe substitution
occurs after a command is read but before it is analyzed and executed. There­
fore, DeL performs simple textual replacement, independent of the format of
the command. Once a substitution has been performed, DeL rescans the entire
command, including the new portion, for additional substitutions of any type.

An apostrophe substitution is requested by enclosing a symbol or lexical function
in apostrophes, as follows:

$ type 'file_spec'

If the value of FILE_SPEC is the string II FOO . BAR; 1", the following command
results:

$ TYPE FDD.BAR;1

The apostrophes and the symbol they enclose have been removed and replaced
with the value of the symbol. Here is an example with a lexical function:

$ type 'f$environment(IPRoCEDURE"),

The F$ENVIRONMENT lexical function returns the file specification of the current
command procedure. If the procedure is named TEST. COM; 1 and resides in
directory $DISK1: [ROBBINS], the following command results:

$ TYPE $DISK1: [ROBBINS] TEST. COM; 1

The apostrophe was chosen as the substitution indicator because it serves no
other purpose in DeL. However, apostrophes are common inside string literals,
particularly in contractions or quotations. For this reason, two apostrophes are
required to perform substitution inside a string literal:

$ @log_line liThe file "file_spec' was typed."

After substitution:

$ @LoG_LINE liThe file $DISK1:[RoBBINS]TEST.COM;1 was typed. II

Notice that substitution requires only a single trailing apostrophe regardless of
whether it is specified outside or inside a string. This trailing apostrophe is
quite interesting. The "official" syntax for substitution calls for one trailing
apostrophe; however, it is unnecessary in many cases. In fact, it is only required
in the following situations:

5.7 Apostrophe Substitution 67

•

•

•

•

•

When the character following the symbol could be construed as part of the
symbol (i.e., the character is alphanumeric, a dollar sign, or an underscore).
This situation does not arise with the substitution of lexical functions, be­
cause the lexical function ends with a close parenthesis.

When another apostrophe substitution immediately follows. If the trailing
apostrophe were not present, the leading apostrophe of the second substitu­
tion would be mistaken for the missing trailing one.

When the substitution is specified as the last thing in a string literal. In
this situation, a trailing apostrophe is required for both symbol and lexical
function substitution.

When the character following the symbol is a grave accent ('), tilde C),
percent sign (%), ampersand (&), curly brace ({}), backslash (\), or vertical
bar (I). This is because DeL "accidentally" treats these characters as part of
the symbol (the author believes this was unintentional).

When the character following the symbol is a space, and the next character
is a sharp sign (#), circumflex (-), close parenthesis [)], plus sign (+), equal
sign (=), close square bracket (J), comma (,), question mark (?), slash (/), or
greater than sign (». The author does not know the reason for this behavior.
These last two situations do not arise in practice very frequently.

Here is an example of each of the situations:

$ type 'prefix'_table.dat

-0[-

$ type 'file_name"file_type;

-0[-

$ @log_line IIDone with file "f$parse(file~spec)'11

-0[-

$ @log_line IIIt took "cpu_pc'% of the CPU. II

-0[-

$ @log_line IINumber of "what' = "count. 1I

Trailing apostrophes will be used in this book only when necessary, because
the author believes this convention improves the readability of command proce­
dures, even though it means that the programmer must remember the foregoing
rules. If you find the rules confusing, by all means specify a trailing apostrophe
for all substitutions.

68 Substitution

5.1.1

5.1.2

Substituting Expression Values

With the apostrophe, it is easy to substitute the value of a symbol or lexical func­
tion. It is a little trickier to substitute the value of an arbitrary expression. This
is accomplished with two lexical functions. The F$INTEGER function takes an
arbitrary expression and returns its value, converted to an integer if necessary.
The F$STRING function takes an arbitrary expression and returns its value, con­
verted to a string if necessary. These functions allow the value of an arbitrary
expression to be inserted in a command.

Assume the symbol COUNT is set to the number of people attending a future
meeting. This command prints two copies of the agenda for each person:

$ print/copies='f$integer(count*2) agenda. txt

When COUNT is 3, the following command is executed by DCL:

$ print/copies=6 agenda. txt

If you did not use the lexical function and instead just wrote ' COUNT*2, the
multiplication would not occur and the following command would result:

$ print/copies=3*2 agenda. txt

Unfortunately, an expression is not a legal value for the /COPIES qualifier (or
any other qualifier, for that matter).

Common Mistakes

Programmers are often confused about the context in which apostrophe substi­
tution is required, and this results in overuse of the construct. Substitution is
difficult to comprehend and debug, particularly when used in string literals, and
therefore should be avoided when not necessary. The primary point to keep in
mind is this: when DCL allows an expression in a given context, explicit substi­
tution is normally unnecessary because DCL evaluates all symbols and lexical
functions as part of evaluating the expression. DCL allows expressions in the
following contexts:

• On the right-hand side of an assignment statement (using = or ==, but not: =
or : ==).

• In the square brackets on the . left side of an assignment statement that per­
forms substring or bit-field replacement.

• In the DEPOSIT, EXAMINE, EXIT, IF, RETURN, and WRITE statements.

5. 7 Apostrophe Substitution 69

5.2

I> Ch. 7

• As an argument to a lexical function, regardless of where the function itself
is used.

The following pairs of lines show commands as they might be entered with
unnecessary substitution and the same commands without the substitution:

$
$

string1
string1

" , 'string2' "
string2

-Of-

$
$

:= " " buffer['index,1]
buffer [index, 1] .= " "

-Of-

$ if 'count + 1 .gt. 10 then goto 19
$ if count + 1 .gt. 10 then goto 19

-Of-

$ delete 'f$parse(""spec''',''.tmp;*'')
$ delete 'f$parse(spec,".tmp;*")

Implicit Substitution

After DeL performs all the explicit substitutions specified by apostrophes, it per­
forms a single implicit substitution. This substitution is often called automatic
substitution or personal command substitution. DeL analyzes the beginning
of the command line and determines whether the first item is a symbol. If so, it
replaces the symbol with its value. Implicit substitution is done at the beginning
of the command analysis phase and thus occurs after apostrophe substitution.

All the following conditions must be met for DeL to carry out an implicit sub­
stitution:

•

•

•

•

The command must not be an assignment statement. Implicit substitution
is never performed in assignment commands, because it would render the
assignment command useless.

The first item in the command must be a symbol.

The symbol must not be a label.

The symbol must have a value.

• The value cannot be hidden with the SET SYMBOL/SCOPE command.

70 Substitution

5.2.1

Once an implicit substitution is performed, DeL does not rescan the new portion
of the command. This prevents recursive substitutions, as we shall see.

Personal Commands

One of the most common uses for implicit substitution is in the definition of per­
sonal commands. A personal command is a synonym for a command verb or a
contraction for all or part of a complete command. Using personal commands,
you can build up a collection of customized DeL verbs tailored to your work­
ing environment. When a personal command is defined in the login command
procedure, it is available for use immediately.

The following personal commands illustrate some of the possibilities:

"backup/log"
"@sys$login:deletedir"

$
$
$
$
$

backup
deletedir
notices
send

"type sys$system:notice.txt"
"mail"

sp "set process/privilege="

Assume these commands were defined in the login procedure. The following
pairs of lines show a command as it might be entered and the resulting command
executed by DeL.

$ backup *.*; msaO:save.bck/saveset/rewind
$ BACKUP/LOG *.*; MSAO:SAVE.BCK/SAVESET/REWIND

-Of-

$ deletedir work
$ @SYS$LOGIN:DELETEDIR WORK

-or-

$ notices
$ TYPE SYS$SYSTEM:NOTICE.TXT

-Of-

$ send agenda.txt sally_smith /subject="Tomorrow's agenda."
$ MAIL AGENDA.TXT SALLY_SMITH /SUBJECT="Tomorrow's agenda."

-Of-

$ sp (oper,sysprv)
$ SET PROCESS/PRIVILEGE= (OPER,SYSPRV)

5.2 Implicit Substitution 71

5.2.2

The first example illustrates why DCL does not rescan the new portion of a
command after implicit substitution. If it did rescan, the substitution process
would never terminate, because the personal command BACKUP is again present
in the command line after each substitution.

Personal Commands in Procedures

Personal commands and DCL procedures interact in two important ways. Com­
mand combinations that are frequently used in the procedure can be assigned
synonyms during procedure initialization. This assists in making the procedure
more readable. On the other hand, personal commands that were defined out­
side of the procedure can wreak havoc on the procedure's execution. Predefined
personal commands must be disabled while the procedure is running.

There are a few commands that are so common that synonyms are useful in
virtually every command procedure of any complexity. The examples in the
rest of this book rely on the following personal command definitions, which
are assumed to be defined in every main procedure. Additional personal com­
mands can be defined according to the requirements of the application. Do not
abbreviate commands used in procedures; this will just confuse the future reader.

$
$
$

$

define
inquire
display
undefine

"define/nolog"
"inquire/nopunctuation"
"write sys$output"
"deassign"

When you invoke a procedure from the DCL prompt, all the personal commands
defined outside the procedure are available to the procedure. Rather than being
a help, this feature is extremely dangerous. Imagine what would happen if per­
sonal commands like the following were defined and then mistakenly employed
by an "unsuspecting" procedure.

$ backup "backup/rewind" Rewind tape before using.
$ delete "delete/confirm" Ask user before deleting.
$ mount "mount/assist" Do operator-assisted mounts.
$ rename "rename/log" Log renames to terminal.

The first definition, for example, would cause a backup saveset to be placed at the
beginning of the tape volume, overwriting any data previously recorded. This
is not the default behavior of the BACKUP utility, and it is extremely dangerous.
One of the first things you should do in a main procedure is to prevent DCL from
considering personal commands defined outside of the procedure. Unfortunately,
there is no straightforward way to accomplish this. You must define a personal

72 Substitution

t> Ch. 7

5.3

t> Ch. 22

command for each DCL command used in the procedure, thus "hiding" any
personal commands defined outside the procedure.

Ampersand Substitution

A second form of explicit substitution is called ampersand substitution. Us­
ing an ampersand (&) you can request that DCL perform a limited kind of sub­
stitution, one that replaces a symbol with its value. Ampersand substitution
takes place after apostrophe and implicit substitution but before the command
is executed. This second form of explicit substitution was intended to be used
in concert with apostrophe substitution in certain rare instances where double
replacement is necessary.

Double replacement is most often useful when simulating arrays with symbols.
A simple example is presented here. Imagine a procedure that accepts multiple
parameters, each one a file specification. The procedure displays the contents of
the files at the terminal:

i = 0
i = i + 1

$

$10:
$ if i .gt. 8 then goto 19
$

$

$

$19:

if p'i .eqs.
type &p'i
goto 10

then goto 19
! Uses both forms of substitution.

The interesting line is the one invoking the TYPE utility. Assume the value of
I is 3 and the third parameter is NAMES. TXT. After apostrophe substitution, the
command becomes TYPE &P3. After ampersand substitution, the final command
is TYPE NAMES. TXT. The loop types all the files, terminating after the eighth one
or as soon as a null parameter is encountered.

A command containing an ampersand substitution can always be replaced by
two commands with an apostrophe substitution in each one. For example, the
critical line in the preceding example can be replaced by

$ file = p'i
$ type 'file

Ampersand substitution should be avoided, for two reasons. First, its use re­
sults in rather inscrutable code, particularly for the majority of people who are
unfamiliar with it. Second, ampersand substitution is subject to the following
restrictions and idiosyncracies:

5.3 Ampersand Substitution 73

• An ampersand may only be used with a symbol, not with a lexical function.

• Because there is no trailing delimiter, the character following the symbol
must not be a symbol character (i.e., alphanumeric, dollar sign, underscore).

• The ampersand is ignored in the at-sign (@) and CALL commands.

• The ampersand is ignored in string literals, even if doubled.

• Ampersand substitution is performed after the command is converted to up­
percase letters. This can have startling results. For example, if the value of
the symbol being substituted is another symbol name that happens to be in
lowercase letters, DeL will not recognize the second symbol.

• If verification has been enabled with SET VERIFY, the command line is
traced before ampersand substitution is performed.

74 Substitution

Chapter 6

t> Ch. 20

6.1

Displaying Output

This chapter discusses methods for displaying output during the execution of
a procedure. The word display is used because today most interactive users
have access to video display terminals rather than hardcopy terminals. DCL
provides facilities for displaying text and simple graphics on video terminals.
Such facilities are used in procedures to present results, status information, and
error messages.

The user's terminal has both an input and an output capability. DCL treats these
two functions of a terminal as separate devices: an input device, which receives
keystrokes from the keyboard, and an output device, which displays charac­
ters on the video screen. When a user logs in, VMS creates a process to exe­
cute programs on behalf of the user. Associated with this process is a process­
permanent file, which can be used to write to the video screen. This output
file is assigned the logical name SYS$OUTPUT and is always available. Text is
displayed on the terminal by writing to SYS$OUTPUT.

Displaying Text

Text is displayed with the WRITE command. This command takes two arguments.
The first is a logical name referring to the file that is to receive the output (note
that it is a logical name, not a symbol). The second is an expression or list of
expressions whose values are to be written. When you want to display text on
the terminal, use the logical name SYS$OUTPUT:

75

6.2

$ write sys$output "Greetings from the land of procedures."

-Of-

$ write sys$output "The value of X is: x

-Of-

$ write sys$output "Your name is ", name, -
"and your age is ,age,

-Of-

$ write sys$output "The average is: ", (vi+v2)/2

The last example shows that the values can be complex expressions, not just
string literals or symbols. Because the WRITE command accepts expressions,
apostrophe substitution is not usually required to produce the values to write.

Procedures often write to the terminal, so it is handy to set up a short personal
command that can be used in place of WRITE SYS$OUTPUT. This is done during
procedure initialization:

$ display = "write sys$output"

This leaves more space on the line to include lengthy expressions:

$ display "Your name is ", name, "and your age is ", age,

Terminal Control Sequences

All modern video terminals accept control sequences, which specify video op­
erations above and beyond the display of simple text. Control sequences can
be used to clear the screen, change the video rendition to boldface or reverse
video, draw lines, and so forth. Using the WRITE command, you can send control
sequences to the terminal.

A control sequence is a series of ASCII characters beginning with a control se­
quence initiator. On eight-bit terminals, such as the VT200 and VT300 series,
the initiator is the CSI character (hexadecimaI9B). On seven-bit terminals, such
as the VT100 series, the initiator is two characters, an ESC character (hexadec­
imal IB) followed by the open square bracket (D. Because older terminals use
seven-bit characters and thus initiate a control sequence with an escape character,
control sequences are often called escape sequences.

In this book, seven-bit control sequences are illustrated because they work on
both seven- and eight-bit terminals. Furthermore, control sequences acceptable

76 Displaying Output

[> Ch. 3

to the VT100, VT200, and VT300 family of tenninals are used. To set up the
control sequence initiator for such a terminal, it is best to use a bit-field assign­
ment command to create a character string containing the ESC character. Do
not place an actual ESC character in the procedure file, as this can cause unpre­
dictable behavior if the procedure is typed to the tenninal or printed on a line
printer. Here is how to set up the control sequence initiator:

$
$

esc[0,8] = %x1B
csi = esc + "["

Prepare a string containing an ESC
followed by an open bracket.

Once this is done, control sequences are sent to the tenninal by writing the ini­
tiator followed by the appropriate additional characters. The complete repertoire
of control sequences is described in the user's guide for your particular tenninal.

$
$
$

display csi,"2J"
display csi,"1;1H"
display csi, "0; 1m" ,-

"A Boldface Heading",­
csi, "Om"

Clear the entire screen.
Position cursor to 1,1.
Select boldface rendition,
display a heading,
and reset normal rendition.

Some control sequences are used frequently, such as the one that clears the entire
screen. Using some additional symbols, you can assign a symbolic name to
a complete sequence. This helps avoid errors in the repeated specification of
identical control sequences.

$ bold csi + "O;1m"
$ clear csi + "2J"
$ home csi + "1;1H II

$ normal csi + "Omll

With these symbols, the DISPLAY commands in the preceding example are sim­
plified and become more readable:

$ display clear
$ display home
$ display bold, "A Boldface Heading", normal

6.2 Terminal Control Sequences 77

6.3

Table 6.1 F$FAO Directives

Directive Description Argument

! AS Insert a character string. String expression

! SL Insert an integer in decimal. Integer expression

! / Begin a new line. None

! *x Repeat a character (denoted by x) the number None
of times specified by the field width.

! %T Insert the current time in VMS format. The integer 0 (any other
value causes an error)

! %D Insert the current date and time in VMS The integer 0
format.

Formaffing Output

It is often desirable to perform some fancy formatting of text before displaying
it. For example, if you are displaying a table containing integers, the integers
look best when shown in columns with the low-order digits lined up, that is,
right-justified. This is easily accomplished if every integer occupies the same
number of columns. DCL provides a lexical function, F$F AD, which is used to
format text.

The F$F AD lexical function provides a moderately powerful facility for text for­
matting. The acronym FAD stands for "formatted ASCII output." The function
accepts multiple arguments, the first being the control string and the remain­
der being expressions whose values are to be formatted according to the control
string. In other words, the control string argument acts as a template for the for­
matted text, while the remaining arguments are the values to be inserted in the
template. The F$F AD function returns a character string containing the formatted
text (it does not actually display the text).

The control string contains fixed text plus directives. The fixed text is placed in
the resulting string exactly as it appears. A directive is not placed in the resulting
string, but instead is replaced with the corresponding argument value, formatted
in accordance with the directive. A directive consists of an exclamation point
(!) followed by a one- or two-character code indicating the formatting to be
performed. The code, by convention, is specified in uppercase letters. An integer
may be included between the exclamation point and the code to specify the width
of the formatted field. Table 6.1 describes some basic directives; the complete
set is described in the VMS DeL Dictionary.

78 Displaying Output

6.4

An example is now in order. Assume that a procedure has calculated statistics
for a set of numbers. The symbols COUNT, MINIMUM, MAXIMUM, and MEAN contain
the statistical results. The goal is to clear the screen and format the statistics as
pictured here:

Statistics on 18-NOV-1987

Count: 73
Minimum: 3
Maximum: 485
Mean: 119

This is accomplished with the following code:

$ display clear, home
$ display f$fao("Statistics on ! 11%D" , 0)
$ display f$fao("!25*-!/")
$ display f$fao("Count: ! 7SL", count)
$ display f$fao("Minimum: !7SL", minimum)
$ display f$fao("Maximum: !7SL", maximum)
$ display f$fao("Mean: ! 7SL", mean)

Notice that the! 8L directive right-justifies the integer in the specified field width.

Redirecting Program Output

Many VMS utilities and other programs display output under the assumption that
they are being used interactively, that is, directly by the user. This assumption
fails when the programs are used by procedures as tools to accomplish some part
of the application at hand. In this case, the output may be misleading to the user
who does not know how the procedure operates internally. Another possibility
is that the output must be directed to a file and then processed by a later step of
the procedure. In these cases, it is necessary to redirect the displayed output so
that it does not appear on the terminal.

Many VMS utilities support the /OUTPUT qualifier on their command line. With
this qualifier you can specify the destination for output that would, by default,

6.4 Redirecting Program Output 79

c>Ch.15

C>Ch.14

be displayed on the terminal. In the following example, the output from the
DIRECTORY command is redirected to a scratch file:

$ directory/output=sys$scratch:dirout.tmp sys$manager:*.com

Rather than appearing on the terminal, the list of command procedures in the sys­
tem manager's directory is placed in the file DIROUT . TMP in the system scratch
directory. The procedure can then process the file as required.

Some commands do not accept the /OUTPUT qualifier, and many programs are
not invoked with a DeL command at all. In these cases, the program's output
must be redirected with the DEFINE command:

$ define/user_mode sys$output sys$scratch:pgmout.tmp
$ run sys$system:pgm

The DEFINE command redefines the SYS$OUTPUT logical name to refer to the de­
sired scratch file. The /USER_MODE qualifier makes this redefinition temporary,
lasting only for the next image execution. Therefore, all output from the PGM

program is redirected to the PGMOUT . TMP file, and then SYS$OUTPUT reverts to
the terminal for subsequent programs.

Redefining SYS$OUTPUT redirects output but does not redirect error messages
resulting from errors signaled by the program. This is because error messages
are written to both SYS$OUTPUT and SYS$ERROR. The process-permanent file
SYS$ERROR is directed to the terminal, so error messages appear there even if
normal output does not. If you know that a program is going to produce error
messages that the user should not see, you must suppress them. Use a second
DEFINE command to do this:

$ define/user_mode sys$output sys$scratch:pgmout.tmp
$ define/user_mode sys$error nl:
$ run sys$system:pgm

The second DEFINE command redirects the SYS$ERROR logical name to the null
device (NL :). All output to the null device is discarded.

80 Displaying Output

6.5

The null device is useful when you want to discard all output and error messages
produced by a program. In this case, both SYS$OUTPUT and SYS$ERROR are
redirected to the null device:

$ define/user_mode sys$output nl:
$ define/user_mode sys$error nl:
$ run sys$system:pgm

All output produced by the PGM program is discarded.

Displaying a File

This chapter does not describe how to display the contents of a data file, be­
cause files have not yet been discussed in detail. Chapter 17 addresses the issues
surrounding the display of data files.

6.5 Displaying a File 81

Chapter 7

82

The DCL Environment

The review of basic DCL concepts and facilities was completed in the previous
chapter. The remainder of the book describes how to use these facilities to create
real programs: programs that are useful, correct, and robust. The proposed tech­
niques are directed toward the development of complex procedures, applications
composed of multiple procedures, or applications to be used by many people. If
you are just writing a 20-line procedure for personal use, don't worry about fol­
lowing every guideline to the letter. Pick and choose the ones that are pertinent
to your task.

The term DeL environment refers to a collection of information that guides
the actions and responses of the DCL command interpreter. The environment
information affects the operation of DCL commands, the content of messages
displayed by DCL, and the behavior of command procedures. Commands are
available for setting and displaying the various items of information making
up the environment. This chapter describes the most important aspects of the
environment:

• Verifying command procedures.

• Hiding predefined personal commands.

• Setting message components.

• Setting process privileges.

7.1

7.1.1

7.1.2

• Setting the user identification code (DIC).

• Changing the default directory.

Aspects of the Environment

The following sections describe some important aspects of the DCL environ­
ment. These environment features will be important in the remainder of this
book.

Procedure Verification

As an aid to debugging command procedures, the execution of a procedure can
be traced. A procedure trace shows each line as it is executed by DCL, after
apostrophe and personal command substitution is performed. The act of tracing a
procedure is called verifying the procedure. The SET VERIFY command is used
to enable and disable verification as needed. Some texts suggest the use of this
command to disable verification upon entry to a large procedure. The rationale
for this suggestion is that no user could possibly want to see the trace of such a
procedure. The author believes it is best not to change the state of verification in
a procedure; do not enable or disable it. The user may be pursuing a suspected
bug in the procedure, in which case the trace is invaluable.

The SET VERIFY command is discussed in detail in Chapter 12.

Predefined Personal Commands

Chapter 5 discussed the danger inherent in allowing predefined personal com­
mands to affect the execution of a command procedure. For example, if the
symbol BACKUP is defined as "BACKUP/REWIND", savesets will be placed at the
beginning of a tape volume (overwriting any existing data), even though this is
not the default behavior of the utility. There is no simple way to prevent a pro­
cedure from using personal commands defined outside it. In the procedure, you
must define a new personal command for each command used by the procedure.
This new personal command, because it is a procedure-level symbol, will hide
any prompt- or global-level symbols of the same name:

7.1 Aspects of the Environment 83

$ backup "backup"
$ copy "copy"
$ delete "delete"

Each personal command is defined as the command verb, by itself, with no qual­
ifiers. In other words, each command is defined as itself. When DeL makes a
personal command substitution for BACKUP, the result will simply be BACKUP,

with no extra qualifiers or parameters to affect its operations. Any definitions of
BACKUP outside the procedure are effectively hidden.

It is tedious to define a personal command for every DeL command used in the
procedure. What you will probably end up doing is defining a personal com­
mand for potentially "dangerous" commands, such as BACKUP, COPY, DELETE,

MOUNT. Once a new procedure is near completion, give some thought to which
commands need to be safe from interference from personal commands.

DeL does make an attempt to solve the personal command problem with the
SET SYMBOL command. This command allows a procedure to circumvent the
normal rules of symbol lookup and hide all of the prompt- and global-level sym­
bols. Unfortunately, the command also prevents the procedure from creating any
new global symbols, something which many large procedures need to do. Any
attempt to create a new global symbol results in an error. If you are developing
a procedure that does not create any global symbols, you can use the following
command near the top of the procedure to hide all existing personal commands:

$ set symbol/scope=(nolocal,noglobal)

The NOLOCAL keyword specifies that all existing prompt-level symbols and outer
procedure-level symbols are ignored by DeL. It is as if they are hidden from the
current procedure level. The NO GLOBAL keyword specifies that all existing global
symbols are ignored by DeL and that no new ones can be created.

The examples in this book assume that all the procedures need to create global
symbols; therefore they do not use the SET SYMBOL command.

84 The DCL Environment

7. J.3 Messages

Messages are an important aspect of the VMS style of user communication. A

VMS message consists of four components:

Facility. The name of the utility or application that generated the message.

Severity. The severity level of the message: success, informational, warning,

error, or fatal error.

Identification. An identifier for the message, unique among all the identifiers

for this facility. The message identifier is used to index the message in

documentation.

Text. The actual text of the message, which conveys the information or de­

scribes the error.

When VMS displays a message, it normally includes all four components in

order:

%DCL-I-IVVERB, unrecognized command verb-check validity and spelling

The facility is DeL, the severity I (informational), the identifier IVVERB, and the

text everything following the comma.

VMS provides a command that allows you to customize the format of the mes­

sage, omitting components of no interest. A well-written procedure does not

produce arbitrary error messages during normal operation, so any abnormal cir­

cumstances that do occur can result in unexpected error messages that are out of

context (after all, the user did not type the command that produced the error). It

is best, then, to display all message components so that the user has the greatest

chance of understanding the problem in context and correcting it.

Because you cannot be sure which message components are enabled when the

procedure is invoked, it is necessary to enable all of them as part of procedure ini­

tialization. Sound modular design also demands that the user's original message

settings be restored when the procedure exits. The following two commands will

record the current message settings and then enable all components:

$ saved_msg = f$environment("MESSAGE")
$ set message/facility/severity/identification/text

The first command uses the F$ENVIRONMENT lexical function to obtain the cur­

rent message settings and store them in the SAVED_MSG symbol. They are auto­

matically stored in the form required by the SET MESSAGE command, which

7. 1 Aspects of the Environment 85

7.1.4

will ultimately reset them. For example, if all components are disabled ex­
cept the text, the following string will be stored in the symbol: "/NOF ACILITY

/NOSEVERITY /NOIDENTIFICATION /TEXT". The second command enables all
message components.

Upon exit from the main procedure, the original message settings in effect when
the procedure was invoked must be restored. This is accomplished with the
following command, which reestablishes the saved message settings using the
SAVED_MSG symbol:

$ set message 'saved_msg

Privileges

Some procedures, particularly those that perform system management functions,
may require that specific privileges be enabled for proper execution. Because
you cannot be sure which privileges are enabled when the procedure is invoked,
it is necessary to enable the required ones as part of procedure initialization.
Again, accepted modular design practice requires that the user's original privi­
lege settings be restored when the procedure exits.

The F$SETPRV lexical function is used to enable and disable privileges in a com­
mand procedure. This function takes one argument, a list of privilege settings.
The user's process privileges are enabled or disabled according to the list (as­
suming the user is authorized for such privileges), and the previous settings of
the specified privileges are returned in a similar list. For example:

$ prev_privs = f$setprv("0PER") ! Enable OPER.

-Of-

$ prev_privs f$setprv("SYSPRV,NOBYPASS II
) Enable SYSPRV,

$ disable BYPASS.

-Of-

$ prev_privs f$setprv("ALL") Enable every
$ privilege.

-Of-

$ prev_privs f$setprv("NOWORLD,WORLD") Enable WORLD (uses
$ last setting).

The following two commands will record all privilege settings in the symbol
SAVED_PRIVS and then enable some required ones:

86 The DCL Environment

7.1.5

$ saved_privs = f$setprv(IALL")
$ junk = f$setprv(saved_privs+I,OPER,PRMMBX,WORLD")

The first line enables all privileges and then sets the symbol SAVED_PRIVS to
their previous state. The user's original privilege settings are therefore recorded
in the symbol. The second line creates a new list of privileges, which is identical
to the original list but with the addition of OPER, PRMMBX, and WORLD. Privileges
are enabled and disabled according to the new list, thus reestablishing the original
privilege state except for the required privileges, all three of which are enabled.
The value returned by the second F$SETPRV is superfluous, so it is stored in the
symbol JUNK.

There is a good reason to record the state of all privileges and not just the ones
being changed. Doing so ensures that all privileges will be reset to their original
state, even if some are changed during the execution of the main procedure and
its subprocedures. Upon exit from the main procedure, all original privilege
settings in effect when the procedure was invoked must be restored. This is
accomplished with the following command, which resets the privileges to their
saved state:

$ junk = f$setprv(saved_privs)

User Identification Code

Every VMS process has a user identification code (UIC) associated with it. This
UIC determines which objects the process can access and which operations it can
perform on those objects. The UIC also determines the owner of a file created by
the process: the file will be owned by the UIC of the process unless the owner
is otherwise specified. The ways in which the UIC affects file operations are
described in detail in Chapter 13.

You should avoid changing the process UIC in a command procedure. Changing
the UIC requires the CMKRNL (Change Mode to Kernel) privilege, which most
users do not have. Once the UIC is changed, the process may be able to access
files it normally could not and may not be able to access others. Any files created
by the process will be owned by the new UIC, not the UIC normally assigned to
the user of the procedure. Always try to design procedures so that they do not
need to change the process UIC.

7. 7 Aspects of the Environment 87

7.1.6

7.2

Default Directory

The default directory is the directory in which VMS locates and creates files
when no other directory is explicitly included in a file spec. Because the word
default is overused in VMS, this book uses the tenn working directory or cur­
rent directory. The working directory exists as a convenience to the interactive
user, so that an explicit directory need not be included in every file spec. The
SET DEFAULT command is used to establish a new working directory.

Do not change the working directory in a command procedure. Include a de­
vice and directory in every file specification unless it is one entered by the user.
Leaving the working directory as is and being explicit about directories has the
following benefits:

• The user can reasonably expect that file specs entered without a directory
refer to the working directory that was current when the procedure was in­
voked. Many procedures prompt the user for a file; it is disconcerting to the
user if the procedure does not operate on the file in the working directory that
was current when the procedure was invoked.

• You are forced to consider every file reference and determine where the file
will be or where it should be created. For example, scratch files should be
created in SYS$SCRATCH, not in the working directory.

There are, of course, exceptions to every rule. If the primary purpose of a proce­
dure is to operate on files in a particular directory, and if that procedure always
prompts the user for files in that directory, then it may be appropriate for the pro­
cedure to change the working directory. An example is a procedure that builds a
software system in a specific "build" directory. Any procedure that changes the
working directory should reset it to the original directory before it exits.

Putting It All Together

Now that the important environment items have been described, it is time to
illustrate the beginning and end of a main procedure. The items that must be set
during the procedure (e.g., privileges) are saved and established by initialization
code and reestablished by tennination code. The items to be left alone (e.g.,
working directory) are simply not mentioned.

88 The DCL Environment

$

$

$
$
$

$

$

$

backup
copy
delete

II backup II
II copy II
"delete"

Hide dangerous personal commands.

saved_msg = f$environment(IMESSAGE")
set message/facility/severity/identification/text
saved_privs = f$setprv(IALL")
junk = f$setprv(saved_privs+I,OPER,PRMMBX,WORLD")

$exit:
$ junk = f$setprv(saved_privs)
$ set message 'saved_msg
$ exit

The order of initialization is important. Pred~fined personal commands are hid­
den first, so that the entire procedure is unaffected by them. The message compo­
nents are enabled next in order to ensure that all messages, even ones occurring
during the remainder of procedure initialization, are displayed in full. Privileges
are set last. Termination activities are carried out in reverse order, unfolding the
"protective cover" wrapped around the procedure by its initialization.

These code sequences do not take into account the difficulties that arise when
the user presses <CTRL/y> during initialization. This topic will be addressed in
Chapter 10, after we have discussed interrupt handling.

7.2 Putting It All Together 89

Chapter 8

B. J

90

Error Handling

Error handling is a critical aspect of every software application. It is sheer folly
to assume that everything will go as planned, that no unusual or unforeseen
events will occur. Error handling is no less important for DeL applications,
particularly since they are often interactive and operate in the highly variable
VMS environment. It is impossible t9, 'predict every variation in the environment
when you write the application.

Error handling is a weak point in many DeL applications. Error handling logic
is either missing entirely or suffers from a lack of overall organization. In other
words, there is no error-handling scheme to deal with all errors in a consistent
and predictable fashion. This chapter presents an overview of the VMS error
mechanism and describes how this mechanism is employed by DeL. It then
goes on to present an error-handling scheme for DeL applications.

Status Codes

The status code is the means by which a VMS program returns an indication
of the success or failure of a requested operation. All programs, be they system
services, run-time library routines, utilities, or entire applications, return a status
code upon completion. The user or program that requested the operation can
determine from the status whether the request succeeded or failed. The status
may also indicate the reason for the success or failure.

B.l.l

[> Apx. A

Table 8. 1 Status Code Fields

Bits Field Description

0-2 Severity Severity of the status code (see Table 8.2).

3-14 Message number Identifies a specific status code for the facility. A
facility is limited to 4,096 status codes.

15 Facility specific This bit is on for a status code that is specific to a
facility. It is off for a status code that is shared by
multiple facilities.

16-26 Facility number Identifies the software facility that defines the status
code.

27 Customer facility This bit is on for software facilities produced by third-
party vendors or by customers. It is off for facilities
produced by DIGITAL.

28 Inhibit display This bit is set on to inhibit the EXIT command or
$EXIT system service from displaying the message
corresponding to the status.

29-31 (reserved) Reserved for future use by DIGITAL.

Format

A status code is a 32-bit (long word) value that is divided into several bit fields.

Table 8.1 describes the fields. Bits 16-27 identify a particular software facility,

either supplied by DIGITAL or another source. Bits 3-15 identify a particular

status code produced by the facility. Therefore, bits 3-27 uniquely identify every

status code defined by every facility. Because a status code contains so many bit

fields, it is usually specified in hexadecimal.

The severity of a status code designates whether it represents successful or un­

successful completion of the facility. There are five severity levels, each de­

scribed in Table 8.2. The severity levels indicating a successful completion have

odd values, while those indicating an unsuccessful completion have even val­

ues. This allows a procedure to treat a status code as a boolean value: true if odd

(successful), false if even (unsuccessful).

8.7 Status Codes 97

8.1.2

Table 8.2 Status Code Severity Levels

Level Name Description

0 Warning A noncritical error or unusual condition occurred.

1 Success The program completed normally.

2 Error The program completed unsuccessfully because of some
error.

3 Informational The program completed normally but with an alternative
condition.

4 Severe error A fatal error terminated the program prematurely.

5-7 (reserved) Reserved for future use by DIGITAL.

Command Status

Like all programs, VMS commands and utilities return a status code. DeL sets
the reserved symbol $STATUS to the status code and sets the reserved symbol
$SEVERITY to its severity. A well-written procedure needs an efficient way to
check the status code after every command and must take corrective action ifthe

code indicates an error. There are three methods you can employ to check the

status code:

• Rely on a DeL feature that checks the status code automatically and supplies
a default error handler.

• Rely on DeL's automatic status checking, but provide yOllr own error han­
dler.

• Disable DeL's automatic status checking, and check the status code explic­

itly.

These three methods will be described in the following sections.

There are a few DeL commands, such as IF and GOTO j that do not return a
status code when they complete successfully and therefore do not always cause
the $STATUS and $SEVERITY symbols to be set. The list of such commands is
difficult to remember, so the author recommends that you not rely on this "inter­
esting" but inconsistent behavior. Write the error-handling code in procedures
as if every command always returned a status code and set the reserved symbols.

92 Error Handling

8.1.3 Procedure Status

DCL provides a feature whereby a command procedure can return a status code.
The EXIT command accepts an expression parameter whose value is the status
code to be returned. When an EXIT command is encountered, DCL ceases exe­
cution of the current command procedure, evaluates the expression, and returns
control to the calling procedure with the status code specified by the expression.
When the main procedure exits, control is returned to the DCL command level
and the dollar sign ($) prompt appears.

You should use the EXIT command to return a status code from every procedure,
both main ones and subprocedures. This allows the methods of status checking
described in the rest of this chapter to be used when a procedure is invoked,
treating it exactly like a command in that regard. Consistency among commands,
utilities, and procedures makes an overall error-handling scheme significantly
simpler.

A DCL program requires some application-specific status codes to use with the
EXIT command. These codes are returned from procedures to indicate various
success or error conditions peculiar to the application. In particular, every appli­
cation needs a success status code to return from procedures when they complete
normally. Status codes are usually defined with the MESSAGE utility, but it was
designed to be used with conventional programming languages that are compiled
and linked. For DCL procedures, symbols whose values are the status codes must
be established during procedure initialization.

Before you can establish status codes, you must choose a customer facility num­
ber for your application. For personal applications, you may as well choose the
number zero. For other applications, it is best to have a "facility registrar," who
keeps track of all the facilities in your organization and assigns facility numbers.
The XDA example application is assigned the facility number 66. During pro­
cedure initialization, a basic status code is established from which all others are
derived:

$ xda __ status = %x18428000

This status code has a severity and message number of zero. The facility-specific
bit is set to indicate that the status code is specific to this application. The facility
number is 66 (42 in hexadecimal). The customer facility bit is set to indicate that
this is a customer application. The inhibit-display bit is set to prevent the EXIT

command from displaying the status.

8.1 Status Codes 93

c>Ch.10

B.2

By convention, the name of a customer facility status code begins with the facil­
ity code and two underscores.

With XDA __ STATUS established, additional status codes are defined by adding
the appropriate message number and severity to it. For example, a success status
code is always needed. It is assigned message number zero with severity 1:

$ xda __ success = xda __ status + %x0001

The hexadecimal number 0001 includes the severity in bits 0-2 and the mes­
sage number in bits 3-14, as required by the status code format. The value of
XDA __ SUCCESS is %x18428001. Now it is possible for a subprocedure to exit
with a success status code using the following command:

$ exit xda __ success

The Default Error Handler

After the completion of each command, utility, or procedure, DeL normally
checks the returned status code. When the severity indicates an error or a se­
vere error, DeL executes its default error handler if no other error handler
has been established. The default error handler terminates the current proce­
dure and returns the error status code. Before exiting, the code is modified by
setting the inhibit-display bit so that the message associated with the status code
is not displayed as part of the procedure exit. This is done under the assumption
that the message was already displayed when the command or utility terminated.
The default error handler is not executed if the status code cvntains a success,
informational, or warning severity.

The default error handler was designed with typical utilities and applications
in mind. Errors and severe errors indicate that some disastrous problem has
occurred and that the program has terminated prematurely. Warnings, on the
other hand, supposedly indicate a minor problem that did not affect the outcome
in any harmful way.

A significant problem with DeL's default error handler is that syntax errors in
DeL flow-of-control commands (e.g., IF, GOTO) result in warning messages.
When such a warning occurs, the error handler is not invoked and the procedure
continues to execute with indeterminable results. There is an exception to this
rule in the case of the GOTO command. If the specified label does not exist,
a warning is issued but the procedure exits as if the severity had been error
or severe error. For some reason, the original designers of DeL felt that this

94 Error Handling

B.3

particular syntax error, unlike others, was drastic enough to warrant tenninating
the procedure.

A procedure should detect syntax errors during its execution; such errors indicate
significant bugs in the procedure. The default error handler does not do so,
and therefore you should replace it with one that does. The following section
describes how this is done.

Changing Error-Handling Behavior

In order to modify DeL's behavior so that it invokes the error handler for warn­
ings in addition to errors and severe errors, you must establish your own error
handler. An error handler is established with the ON command, which specifies
how status codes are to be checked and what action is to be taken when an unsuc­
cessful status is detected. The ON command is placed near the top of a command
procedure:

$ on warning then exit $status .or. %x10000000

The use of the word WARNING specifies that warnings, errors, and severe errors
are to be detected. The command following the keyword THEN is the error han­
dler itself; this command is executed when the specified severities are detected.
In this case, it is an EXIT command, which causes the procedure to exit and re­
turn the status code specified by the expression $STATUS . OR. %Xl0000000.

This expression takes the status that caused the handler to be invoked (stored in
$STATUS) and turns on the inhibit-display bit so that the status message will not
be displayed as the procedure exits. The ON command sets up an error-handling
environment identical to the default one, except that warnings are also detected.

The examples in the remainder of this book assume that every procedure con­
tains this ON command unless otherwise stated. The error-handling environment
established with this command is a simple and robust one: every procedure de­
tects unsuccessful status codes and immediately exits, returning the status to its
caller. However, there are variations of the ON command that are also useful.
The error-handling statement, rather than simply exiting, can perfonn a GOTO to
a more complex error handler requiring multiple lines of code. An example of
this kind of error handler is presented in Section 8.5.

8.3 Changing Error-Handling Behavior 95

8.4 Checking a Status Code Explicitly

There are times when a procedure must check a status code explicitly and act on it
in special ways, rather than relying on the automatic error-handling mechanism.
For example, the DIFFERENCE command returns a success status code if two files
are identical or an informational code if the files are different. Differentiating the
two cases is quite simple, since neither status code will trigger the error handler.
You can simply test the $SEVERITY symbol after the command completes:

$ difference old_file. txt new_file.txt
$ if $severi ty . eq. 3 then action when different

Things become more complicated when a command returns a warning or error
status code. Assume you want to copy a file from a remote node and need to
handle the failure of the copy in a special fashion. In other words, the error
handler should not gain control when COpy returns an error status code, but rather
the procedure should continue executing in order to check the code explicitly.
The following procedure will not work:

$ copy remote-file.dat local-file.dat
$ if .not. $status then action uponfai/ure

The error status code from COpy will trigger the error handler, which will cause
the procedure to exit immediately. It is necessary to disable DeL's automatic
checking of status codes, thus allowing the procedure to continue and execute the
IF command. This is accomplished with the SET NOON ("set no on") command
and its complement, the SET ON command:

$ set noon ! Not SET 12:00 o'clock noon, but SET NO ON.
$ copy remote-file.dat local-file.dat
$ status = $status
$ set on
$ if. not. status then action upon failure

The SET commands are wrapped around the sequence of commands that must
execute without automatic status checking. It is necessary to save the status
code from the copy in another symbol before executing the SET ON, otherwise
the value of $STATUS will be replaced by the status code from the SET ON itself.
After status checking is reenabled, the status code from the copy can be checked
explicitly.

96 Error Handling

8.5

c>Ch. 15

Automatic status checking should be disabled in the shortest possible sequences
of commands. Leaving it disabled across many commands can result in unde­
tected errors. Note carefully that SET NOON does not prevent error messages
from being displayed; it only disables automatic status checking.

Hanelling Errors When Cleanup Is Requireel

It is often the case in complex procedures that some cleanup must be performed
before the procedure exits. For example, a procedure that opens a file should
close it before exiting. The cleanup presents no problem when the procedure
exits normally; it is simply performed just before the EXIT statement. However,
if an error occurs during procedure execution, the error handler must also arrange
to perform the cleanup. This is not possible if the error handler simply exits, as
illustrated in Sections 8.2 and 8.3. The error handler must instead perform a
GOTO to some code, which eventually executes the cleanup logic.

The following procedure illustrates the technique for establishing an error han­
dler that includes cleanup. The procedure opens a file, which must be closed
before exiting:

$ xda __ status = %x18428000
$ xda __ success = xda __ status + %x0001
$ status = xda __ success
$ on warning then goto error

$ open/read file 'p1

$ goto exit
$
$error:
$ status = $status
$ goto exit
$
$exit:
$ set noon
$ close file
$ exit status .or. %x10000000

Examine this procedure starting at the bottom. Cleanup and exit is performed at
the label EXIT. A SET NOON command is executed to disable automatic checking
of status codes. This allows the remainder of the procedure to execute completely
regardless of any error that may occur during cleanup. The CLOSE command

8.5 Handling Errors When Cleanup Is Required 97

8.6

ensures that the file is closed regardless of whether the procedure exits nonnally
or because of an error. The procedure finally exits with the status code contained
in the symbol STATUS. Every possible path to the cleanup code must set STATUS

to a meaningful exit status.

To initialize the procedure, the symbol STATUS is set to a facility-specific success
status code. This is the code that will be returned by default if no other code is
appropriate. The ON statement establishes an error handler that detects all errors
and jumps to the label ERROR.

The procedure opens a file, processes it, and ultimately exits.

If a warning or other error is detected while the procedure is executing, the error
handler jumps to the ERROR label. This causes the error status code to be placed
in the STATUS symbol, so that it will be returned by the procedure. The error
logic then jumps to EXIT, which perfonns the cleanup and exits with the error
status code.

This organization, although a bit complicated, accomplishes the following im­
portant goals:

• The cleanup code is executed regardless of the cause of procedure exit. The
file is always closed.

• The status code returned by the procedure is either a success code (default)
or an error code detected and handled by the error handler. The status code
returned by the procedure gives a true indication of what happened.

Procedure Call Unwinding

A DeL application is often large enough to require more than one command
procedure. One of the procedures is the main procedure; it invokes other proce­
dures as subroutines, which in tum may invoke still more procedures. With such
nested flow of control, an overall error-handling scheme must be devised to deal
with errors at all levels in the procedure hierarchy. The simplest such scheme is
called procedure call unwinding. The idea is simple: when an error occurs in a
subprocedure, exit the subprocedure and all intervening subprocedures until the
main procedure is reached. The main procedure's error handler will then deal
with the error.

98 Error Handling

This scheme is straightforward to implement. If you follow the rules set forth in
the preceding sections, procedure call unwinding will occur automatically. The
rules are as follows:

• Every procedure must return a success or informational status code when it
completes normally.

• Every procedure must have an error handler that exits the procedure. It might
have to perform some cleanup first.

• The error handler must return the error status code that caused it to be in­
voked, thus propagating the error status up one procedure level to the caller.

Procedure call unwinding is illustrated by three cooperating procedures, as fol­
lows:

$! Procedure MAIN.

$
$ xda __ status = %x18428000
$ xda __ success = xda __ status + %x0001
$ status = xda __ success

$ on warning then goto error

$ @sub1 'p1

$error:

$!

$
$

$

error handling for MAIN procedure

Subprocedure SUB1.

status = xda __ success

on warning then goto error

$ open/read file 'p1
$ @sub2

$ goto exit

Cleanup required.

8.6 Procedure Call Unwinding 99

8.7

$error:
$ status = $status
$ goto exit
$

$exit:
$ set noon
$ close file
$ exit status .or. %xl0000000

$! Subprocedure SUB2.
$
$ on warning then exit $status .or. %xl0000000

·an error occurs here!

When an error is detected in procedure SUB2, the following sequence of events
occurs:

1. Its error handler exits with the error status code. The inhibit-display bit
prevents DeL from displaying the status message.

2. The flow of control returns to procedure SUB1. DeL checks the status code
from the invocation of SUB2, and because it is an error code, the error handler
in SUB 1 is invoked. It jumps to the ERROR label.

3. The error logic saves the error status code, closes the file, and exits with the
error code.

4. The flow of control returns to procedure MAIN. Again DeL checks the status
code and invokes the error handler in MAIN. It jumps to the ERROR label.

5. The code at the ERROR label performs the error handling for the main proce­
dure.

The error in procedure SUB2 causes the procedure calls to be unwound, and each
procedure's error handler gets a chance to run. This technique works regardless
of the depth of procedure call.

Ignoring an Error

Sometimes it is necessary for a procedure to ignore an error caused by a sub­
procedure. Imagine a main procedure that allows the user to enter the name of
another procedure to execute. The main procedure might want to ignore any er­
rors in the user's subprocedure and continue execution rather than invoking its
error handler. Assume that the user entered a procedure name and it was stored
in the symbol XDA_PROC:

700 Error Handling

B.B

$ set noon
$ @'xda_proc
$ set on

The SET NOON command causes DeL to ignore any error status that may be
returned when the subprocedure exits. Thus, the main procedure's error handler
is not invoked. The SET ON command reestablishes automatic error checking.

Obtaining the Message lor a Status Code

A VMS status code is an integer. VMS provides a service to translate a status
code into message text so it can be displayed in a meaningful format. This
service makes use of message files, which are tables that map each status code
into its facility name, identification, and message text. The translation service is
available to the DeL programmer through the F$MESSAGE lexical function.

The F$MESSAGE function requires one argument, a status code. It looks up the
code in certain message files and returns a character string composed of the
code's facility, severity, identification, and message text in the standard display
format: If the status code cannot be located in the message files, the following
string is returned:

%NONAME-s-NOMSG, Message number xxxxxxxx

In this string, the s represents the severity, and xxxxxxxx represents the hexadec­
imal value of the status code.

VMS includes several message files in the SYS$MESSAGE directory, but not all of
them are searched by the F$MESSAGE function. The SYSMSG . EXE file is always
searched, because it contains common messages pertaining to VMS system ser­
vices, the RMS record management system, and' file operations performed by
many utilities. No other message file is searched unless you explicitly request
one with the SET MESSAGE command.

As an example, assume you are implementing a DeL application that uses the
BACKUP command and needs to report problems that arise during backup oper­
ations. Many of the status codes returned by BACKUP are specific to the util­
ity and thus are not stored in the common SYSMSG. EXE message file. Because
F$MESSAGE searches only the common message file, the following procedure
will not work:

8.8 Obtaining the Message for a Status Code 707

Table 8.3 VMS Message Files

File Commands

CLIUTLMSG.EXE ANALYZE/MEDIA,MAIL,PHONE,PRINT,SUBMIT,RUN,SET,SHOW,
SEARCH

FILMNTMSG.EXE ANALYZE/OBJECT,ANALYZE/IMAGE,EDIT/FDL,ANALYZE/DISK

LMF _MESSAGE. EXE License Management Facility

PRGDEVMSG.EXE SET COMMAND,DIFFERENCES,LIBRARIAN,LINK,MESSAGE

SYSMGTMSG.EXE ACCOUNTING,BACKUP,INSTALL,MONITOR,AUTHORIZE,SYSMAN

SYSMSG . EXE Common system messages

TPUMSG.EXE TPU

$ set noon
$ backup ... Perform the backup operation.
$ backup_status $status
$ set on
$ if .not. backup_status
$ then
$ message = f$message(backup_status)

. perhaps write the message to a log file

$ endif

The F$MESSAGE function is not able to return the message string for those BACKUP

status codes that are specific to the BACKUP utility. If presented with a facility­
specific BACKUP status, it returns the NOMSG status. In order to ensure that the
function can return the message string for BACKUP statuses, you must request that
VMS search an additional message file, namely the system management message
file SYSMGTMSG. EXE. This is accomplished with the SET MESSAGE command:

$ set message sys$message:sysmgtmsg.exe
$ set noon
$ backup ... Perform the backup operation.
$ backup_status $status
$ set on
$ if .not. backup_status
$ then
$ message = f$message(backup_status)

. perhaps write the message to a log file

$ endif

102 Error Handling

Now the F$MESSAGE function will search the system management message file,
followed by the common system message file. The status codes specific to
BACKUP are found in the system management file, while other status codes are
found in the common system file.

Unfortunately, the SET MESSAGE command only allows one additional message
file to be searched at any given time. If an application gets status codes from
two or more facilities whose messages are in different files, the SET MESSAGE

command must be used repeatedly to establish the appropriate message file for
each status as it is looked up.

Table 8.3 lists the message files you are most likely to need, along with some
of the VMS commands whose messages reside in those files. A complete list is
included in the Guide to Setting Up a VMS System.

8.8 Obtaining the Message for a Status Code 703

Chapter 9

9.1

704

Interrupt Handling

An interrupt is caused by an event requiring immediate attention when it occurs.
If a program is executing when an interrupt takes place, program execution must
be suspended so that the event can be handled as soon as possible. Once interrupt
handling is complete, program execution is resumed at the point of suspension.
DCL procedures need only deal with one kind of interrupt, that which occurs
when the <CTRL/y> key is pressed. The <CTRL/y> key is the means by which
the VMS user signals that program execution is to be temporarily suspended or
permanently canceled.

Interrupt Situations

There are two situations in which a CTRL/Y interrupt can occur during procedure
execution. The first is while DCL is interpreting the command lines in the pro­
cedure. In this situation, both the <CTRL/y> and the <CTRL/c> keys generate an
interrupt: the two keys are equivalent. The second situation is during the execu­
tion of a program image invoked by a command in the procedure (e.g., the COpy

command invokes the COPY. EXE image). In this situation, the <CTRL/y> key gen­
erates an interrupt. Whether the <CTRL/c> key is equivalent to <CTRL/y> depends
on how the program image handles < CTRL/c > . If the image explicitly requests
special handling of <CTRL/c>, then that key will not generate an interrupt.

9.2

C> Ch. 20

Regardless of the circumstance under which a CTRL/Y interrupt occurs, it is
handled in a consistent fashion by DeL. The remainder of this chapter presents
the various methods of handling interrupts.

The Default Interrupt Handler

DeL has a default interrupt handler, which it uses if you do not specify any other
handler. Upon the occurrence of a CTRL/Y interrupt, DeL suspends execution of
the current procedure and invokes its default interrupt handler. The action taken
by the default handler depends upon the current procedure level.

When a main procedure is executing, DeL creates a temporary command level
and issues the dollar sign ($) prompt. At this point you can enter DeL commands
to display information about the executing procedure. For example, you can use
the SHOW SYMBOL command to display the value of symbols used by the proce­
dure. However, care must be taken to enter only commands interpreted directly
by DeL. If you should enter a command that invokes an image, the temporary
command level is canceled, the DeL procedure is canceled, and the image is
executed back at the DeL prompt level. This feature reduces the usefulness of
temporary command levels. To resume execution of the main procedure once the
temporary command level is no longer needed, enter the CONTINUE command.
To cancel the procedure altogether, enter the STOP command.

One command that can safely be entered at the temporary command level is
SPAWN. With the SPAWN command you can create a new VMS process with its
own environment and DeL interpreter. In this new process you can issue any
VMS command whatsoever. However, since the process has its own environ­
ment, independent from the original process, you cannot alter the state of the
interrupted command procedure. (To terminate the subprocess and continue in
the temporary command level, enter the LOGOUT command.)

Another command that can be entered at the temporary command level is SHOW

SYMBOL. This command can be used to inspect the value of symbols created by
the procedure.

When a subprocedure is executing, default interrupt handling is somewhat dif­
ferent. If neither the subprocedure's caller nor any of its caller's callers have
established their own interrupt handlers, then the interrupt handler behaves as
described above. In other words, if all procedures use the default interrupt han­
dler, then the default interrupt handler establishes a temporary command level.
However, as soon as a procedure establishes its own interrupt handler, then any

9.2 The Default Interrupt Handler 705

9.3

subprocedures it calls will acquire a different default handler. Rather than es­
tablishing a temporary command level, this default handler simply causes the
subprocedure to exit with a status of %X10000001. The status has a success
severity with the inhibit-display bit set so that no message is displayed as the
subprocedure exits. Once the subprocedure exits, its caller continues normal
execution, ignoring the interrupt because the status has a success severity. The
caller's interrupt handler is not invoked. The interrupt is forgotten!

To summarize the default interrupt handler:

• The default interrupt handler for a procedure creates a temporary command
level, unless

• A caller of the procedure had established its own interrupt handler, in which
case the default handler causes the procedure to exit.

The default interrupt behavior is relatively complex. The value of temporary
command levels is minimal, and the appearance of one in a production applica­
tion would surely confuse the naive user. The default behavior is not modular,
since the action taken by a handler depends upon the handlers of its calling pro­
cedures. Finally, the default interrupt handler does not always guarantee that
cleanup code in procedures is executed. All in all, the default interrupt behavior
is unsatisfactory; sophisticated procedures require their own interrupt handlers.

Changing Interrupt Handler Behavior

The easiest way to manage sophisticated interrupt handling for a DCL applica­
tion is to integrate its interrupt handling with its error handling. The underlying
premise is that a CTRL/Y interrupt is an error, a fatal error that should result in
controlled termination of the procedure. (There are some situations in which
an interrupt should not terminate the entire procedure. See Section 9.4.) The
integration of interrupt handling with error handling requires that you establish
your own interrupt handler in each procedure, which is accomplished with the ON

CONTROL_ Y command. The place to begin is with a main procedure. The fol­
lowing example takes the error-handling code from Chapter 8 and adds CTRL/Y

interrupt handling:

706 Interrupt Handling

$ xda __ status %xi8428000
$ xda __ success xda __ status + %xOOOi
$ xda __ ctrly xda __ status + %xOOOC A CTRL/Y status.
$ status = xda __ success
$ on control_y then goto control_y Establish the handler.
$ on warning then goto error

$ open/read file 'pi

$ goto exit
$
$control_y: Handle the interrupt.
$ status = xda __ ctrly
$ goto exit
$
$error:
$ status = $status
$ goto exit
$

$exit:
$ set noon
$ close file
$ exit status .or. %xi0000000

The additional commands required for interrupt handling are marked with com­
ments. A status is created for CTRL/Y interrupts so that the procedure, when
canceled because of an interrupt, can exit with a distinct status. The status has a
fatal error severity and a message number of 1. The ON CONTROL_ Y command
establishes an interrupt action for the procedure, which jumps to the interrupt
handler at the CONTROL_ Y label. This interrupt handler sets the STATUS sym­
bol to the special CTRL/Y status and then joins the procedure cleanup code at
the EXIT label. Note the similarity between the interrupt handling and the er­
ror handling. Both set the STATUS symbol to reflect the reason for procedure
termination, and both ensure that the cleanup code is executed.

The interrupt handler should be established with the ON command as close to
the beginning of the procedure as possible. However, you must be careful not
to establish the handler until all initialization required by the handler has been
performed. Imagine that the ON command appeared first in the preceding exam­
ple. If the user pressed <CTRL/y> after the ON command was executed but before
the XDA __ CTRL Y symbol was established, then the interrupt handler would fail
when trying to set the STATUS symbol to XDA __ CTRLY.

9.3 Changing Interrupt Handler Behavior 107

When the interrupt handler cannot be established immediately, what happens
if the user does press <CTRL/y> before it is established? The default interrupt
handler creates a temporary command level and presents it to the user. The
naive user, not realizing this, simply continues typing DCL commands. These
are executed at the temporary level until one of them invokes an image. The
temporary level and the procedure are then canceled and the user's environment
is returned to normal. Other than a slight delay as the procedure is canceled, the
user does not see any confusing behavior!

To complete the interrupt handling for a complex application, you must deal with
subprocedures. If a subprocedure has cleanup code, then the interrupt handling
is performed precisely as it is in the main procedure. Once the cleanup code is
completed, the subprocedure exits with the XDA __ CTRLY status. Because this is
a fatal status, the error handler in the subprocedure's caller will be invoked, the
entire procedure stack will be unwound, and the application will terminate. This
illustrates the advantage of fashioning an interrupt to behave like an error: no
matter how deep the procedure calls are, an interrupt causes the application to
terminate.

If a subprocedure has no cleanup code, then its interrupt handler can be sim­
plified. Instead of branching to a CONTROL_ Y label, it can simply exit with the
appropriate status:

$ on control_y then exit xda __ ctrly

If you study the preceding main procedure example, imagining that it has no
cleanup code, you will see that it simply exits with the XDA __ CTRLY status after
an interrupt. So the ON CONTROL_ Y command can specify the interrupt handler
directly when cleanup code is not needed.

One problem remains with subprocedure interrupt handling. If some initializa­
tion is required before the ON CONTROL_ Y command is executed, the user has
a chance to press <CTRLly> before the interrupt handler is established. In this
case DCL's default interrupt handler will cause the subprocedure to exit, because
the main procedure has already established its own handler. Unfortunately, the
exit status has a success severity, so the subprocedure's caller will blithely con­
tinue to execute as if the subprocedure had completed successfully. There are
two choices in this situation. The first is to ignore the problem. After all, the
probability of its occurrence is low. The second is to use the SET NOCONTROL

command to block CTRL/Y interrupts during initialization:

708 Interrupt Handling

9.4

$ set nocontrol=y

. initialization

$ set control=y
$ on control_y then

The SET NOCONTROL command disables CTRL/Y interrupts. If the user presses
<CTRL/y> during the initialization sequence, the interrupt is ignored. The SET

CONTROL command reenables interrupts. This may appear to do the trick, but
the problem is still not solved and a new problem is introduced:

•

•

A CTRL/Y interrupt just before the SET NOCONTROL command (i.e., as the
subprocedure is being invoked but before the first line is executed) still causes
the subprocedure to exit with a success status.

If the initialization code goes awry and begins to loop or takes a bad branch,
CTRL/Y interrupts will remain disabled. The only way to cancel the proce­
dure may be to stop the VMS process from another terminal.

The author recommends ignoring the interrupt "window" at the beginning of a
subprocedure. There is no way to completely eliminate the window.

Using Interrupts for Other Purposes

There may be times when you want to use <CTRL/y> for something other than
canceling the entire application. For example, a procedure may display a long list
of items for the user to peruse. If the user is not required to inspect the entire list,
<CTRL/y> can be used to cancel the list and go on to the next step of the procedure.
The procedure must temporarily override normal interrupt handling while the list
is being displayed. The following example illustrates a subprocedure in which a
list is displayed:

$ on control_y then goto control_y
$ on warning then goto error

$ on control_y then goto cancel_display

. display the list

$cancel_display:
$ on control_y then goto control_y

9.4 Using Interrupts for Other Purposes 709

9.5

The subprocedure establishes the standard interrupt handler when it starts up. At
the point where the list is to be displayed, it establishes a new interrupt handler,
which jumps to the CANCEL_DISPLAY label, thereby canceling the display. This
interrupt handler is in effect during the entire process of displaying the list. After
the display completes or is canceled, the standard interrupt handler is reestab­
lished for the remainder of the procedure. The standard handler must be explic­
itly reestablished, because it was superseded by the special handler for the list
display. Special interrupt handlers can be established whenever needed, but do
not forget to reestablish the standard one.

Tying It All Together

Chapters 7, 8, and 9 have presented much complex material. The DCL envi­
ronment and error and interrupt handling not only are deeply intertwined but
are also the most frequently neglected aspects of DCL programming. The next
chapter ties all this material together by discussing the overall structure of DCL
applications.

110 Interrupt Handling

Chapter 10

JO. J

Application Structure

The previous chapters have addressed the DeL programming environment, error
handling, and CTRL/Y interrupt handling. These three aspects of DeL applica­
tion design are by far the most complicated. You have gotten through the most
difficult part of this book. With the knowledge gained so far, you can structure
an entire DeL application, large or small, and feel confident that the application
will behave in a consistent and reliable fashion.

This chapter brings together all the information presented so far in order to
demonstrate one method of structuring an entire application. It also describes
some conventions that should be followed when developing an application so
that the application will be compatible with other VMS applications and can

coexist with them.

Naming Conventions

A wide variety of software products can be simultaneously installed and running
on a VMS system. Such products may be provided by DIGITAL, by third-party
software vendors, or by your own development staff. In order to prevent these
products from interfering with one another, a series of guidelines must be fol­

lowed by each and every product. These guidelines are presented in the VMS
document entitled Guide to Creating VMS Modular Procedures. The majority
of guidelines do not pertain to DeL, but a few important ones do. These are
the naming conventions for various system objects, such as logical names and

177

10.2

files. If you adhere to the naming conventions carefully, your DeL applica­
tion will not interfere with other applications written in DeL or any other lan­
guage. The following paragraphs describe the naming conventions relevant to
DeL applications:

Directories. The name of the top-level directory containing the application files
must be the same as the facility code or begin with the facility code and an
underscore (e.g., XDA or XDA_ROOT).

Files. The names of all the component files of the application must consist solely
of the facility code or begin with the facility code and an underscore (e.g.,
XDA. COM or XDA_CONFIG. DAT).

Global symbols. The names of all global symbols created by the application
must begin with the facility code and an underscore (e.g., XDA_MODE). This
is particularly important because DeL applications usually leave global sym­
bols around after they exit. These global symbols remain in existence until
the process terminates, so they must not conflict with global symbols created
by other applications.

Logical names. All logical names defined by the application must begin with
the facility code and an underscore (e.g., XDA_SYSTEM).

Status codes. The status code symbols created by the application should begin
with the facility code and two underscores (e.g., XDA __ SUCCESS). Because
status symbols are not global, this convention is only a suggestion.

The examples in this book follow these naming conventions.

Invoking the Application

A complex DeL application can consist of many procedures and data files. When
the application is installed on a VMS system, the files must be placed in appro­
priate directories, so that they can be accessed when the application is run. The
simplest directory organization involves creating a single directory to contain
all of the application's files. A system logical name is defined to refer to the
directory, so that users can locate the application files.

The following discussion assumes that the example application, XDA, has been
installed in a single directory. The logical name XDA_SYSTEM is defined to refer
to that directory. To run the application, a user must invoke its main procedure,
which establishes the application environment and directs it execution. The main
procedure for the sample application is named XDA . COM. The following personal

7 72 Application Structure

10.3

command is established in each user's login procedure or in the system login

procedure:

$ xda == "@xda_system:xda"

Once the command XDA is established, a user invokes the application in a fashion
similar to other VMS applications:

$ xda

The Main Procedure

Every DeL application has a main procedure, the procedure that executes first
when the application is run. The main procedure is responsible for establishing
the overall environment in which the application will execute. A small applica­
tion may consist only of the main procedure, but most applications will include
other procedures invoked by the main procedure, which execute in its established

environment.

The techniques used to establish the application environment have been intro­
duced in preceding chapters. These techniques are brought together in the fol­

lowing main procedure, which is the main procedure of the hypothetical appli­
cation, XDA:

$!
$

$!
$

$

$

$
$!
$

$

$

$
$!
$

$

$

$

$

The main procedure for the XDA application.

1. Block the use of dangerous "external" personal commands.

backup
copy

"backup"
"copy"

2. Save the current message and privilege settings.

saved_message f$environment(IMESSAGE")
saved_privs f$setprv("all")

3. Define some simple status codes for the application.

xda __ status
xda __ success
xda __ ctrly

%x10428000
xda __ status + %x0001
xda status + %xOOOC

10.3 The Main Procedure 113

$!
$!
$
$
$
$
$
$!
$
$

$
$
$!
$
$
$
$

$

$
$
$
$

4. Establish the interrupt and error handlers. Make sure the
summary status indicates success if we exit normally.

status = xda __ success
on control_y then goto control_y
on warning then goto error

5. Establish the message and privilege environment.

set message/facility/severity/identifier/text
junk = f$setprv(saved_privs+"PRMMBX,SYSPRV")

6. Set up some useful symbols for the application.

ask
define
libcall
false
display
true
undefine

"read sys$command /prompt="
"define/nolog"
"@xda_system:subroutine-library"
o
"write sys$output"
1
"deassign"

. begin the application

$ goto exit
$
$! The interrupt handler sets the summary status to indicate
$! that <CTRL/y> was pressed and then joins the cleanup code.
$

$control_y:
$ status = xda __ ctrly
$ goto exit
$
$!
$!
$

The error handler sets the summary status to the "offending"
status and also joins the cleanup code.

$error:
$
$
$

status = $status
goto exit

114 Application Structure

$!
$!

The exit
original

routine first performs cleanup. Then it restores the
DCL environment. Finally it exits with the summary

$! status.
$
$exit:
$ set noon

. cleanup code

$ set message 'saved_message
$ junk = f$setprv(saved_privs)
$ exit status .or. %x10000000

The application environment is initialized by perfonning the following steps in
order (numbers refer to comments in the code):

1. Personal commands are defined for "dangerous" VMS commands, so that
any personal commands defined outside the procedure are effectively hidden
and will not interfere with the application.

2. The current settings of DeL environment items, such as the message fonnat
and privileges, are saved.

3. Basic status values needed by the error and interrupt handlers are defined.

4. The error and interrupt handlers are established. Up to this point, errors and
interrupts will cancel the procedure hannlessly. From this point on, they will
cause the appropriate handler to be invoked.

5. The settings of DeL environment items are altered as required by the appli­
cation.

6. Various symbolic constants, personal commands, and other useful symbols
are defined. These can be used by the rest of the application.

Once these steps are completed, the actual application can commence. The re­
mainder of the main procedure, along with all subprocedures of the application,
run in the environment established by the initialization code.

The interrupt and error handlers are identical to those illustrated in previous
chapters. They set the 8T ATU8 symbol to the appropriate status and join the
cleanup code at the EXIT label. The cleanup code perfonns application-specific
cleanup operations, such as closing open files or deleting temporary ones. It then
reestablishes the DeL environment as it was prior to the application and exits
with the summary status. Another procedure that invokes the XDA application
can use this status to detennine the success or failure of its request.

10.3 The Main Procedure 115

10.4 A Subprocedure

When a DCL application is complex, it is difficult to organize all the necessary
code in one procedure. Just as large programs written in conventional languages
are broken down into modules and subroutines, so are large DCL programs. One
of the application procedures is the main procedure and the rest are subproce­
dures. The subprocedures are designed to run in the environment established
by the main procedure. All the procedures must cooperate to allow error and
interrupt handling to proceed smoothly.

The application procedures invoke one another using the logical name referring
to the directory containing the procedures. For example, the main procedure in
our application invokes subprocedure XDA_SEARCH as follows:

$ @xda_system: xda_search parameter ...

The skeletal structure of a subprocedure depends upon whether it requires any
cleanup code. Cleanup code consists of commands that must be executed re­
gardless of the manner in which the subprocedure exits. It might close open
files, delete temporary files, or deassign logical names. A subprocedure without
cleanup code is organized as follows:

$! A subprocedure for the XDA application.
$

$ on control_y then exit xda __ ctrly
$ on warning then exit $status .or. %x10000000

$

. initialization

$

. body of subprocedure

$ exit xda success

The subprocedure establishes a CTRL/Y interrupt handler, which simply exits
with the XDA __ CTRLY status. This status has a fatal error severity, so the caller's
error handler is invoked and the procedure stack is unwound. The subproce­
dure also establishes an error handler, which exits with the offending status (the
inhibit-display bit is set to prevent display of the corresponding message). The
error handler traps warnings, errors, and fatal errors, returning them to the caller,
so that again its error handler is invoked. Both interrupts and errors cancel the

116 Application Structure

subprocedure and allow its caller to detennine subsequent actions. The initial­
ization section and subprocedure body perfonn the actions attributed to the sub­
procedure. Once complete, the subprocedure exits with a success status and its
caller continues execution.

The organization of a subprocedure with cleanup code is a bit more elaborate.
The interrupt and error handlers must arrange to execute the cleanup code before
the procedure exits. The normal paths through the subprocedure must do the
same:

$! A subprocedure for the XDA application.
$

$ status = xda __ success
$ on control_y then goto control_y
$ on warning then goto error
$

· initialization

$

· body of subprocedure

$

$ goto exit
$
$control_y:
$ status = xda __ ctrly
$ goto exit
$

$error:
$ status = $status
$ goto exit
$
$exit:
$ set noon

· cleanup code

$ exit status .or. %x10000000

A subprocedure with cleanup code is organized almost identically to the main
procedure. The symbol STATUS must be set to the desired exit status before
joining the cleanup code at the EXIT label. In the nonnal case, STATUS is set
to the success status, the subprocedure executes, and eventually it branches to
the EXIT label. If an interrupt or error occurs, the handler resets the STATUS

symbol to the appropriate status and then branches to the EXIT label. In all

70.4 A Subprocedure 7 77

JO.5

cases, the cleanup code is executed and the status is returned to the caller with
the inhibit-display bit set.

Variations on the preceding themes are certainly possible. In Chapter 9, for
example, interrupt handling was modified to allow a display to be canceled in
the middle without terminating the application. You may find that other vari­
ations are required by your application; do not hesitate to devise new proce­
dure organizations to accept these variations. Just keep in mind the following
requirements:

• Every procedure must exit with a success or error status that accurately re­
flects what happened in the procedure.

• Unintentional errors and interrupts must be detected and cause the procedure
to exit with the appropriate error status.

• Cleanup code must be executed regardless of the reason for procedure exit.

If you are diligent in the application of these rules, your application will behave
in a predictable manner through all execution paths and regardless of any errors
or interrupts that might occur.

The Subroutine Library

A large DCL application often includes a handful of subprocedures that perform
general operations needed by all parts of the application. A good example is the
SIGNAL subroutine, which is called to display an informational or error message
in the standard format used by all VMS software. This operation is performed
in quite a few places in the application, and many lines of code are necessary to
implement it, so it is a perfect candidate for a subroutine. Section 10.6 describes
the SIGNAL subroutine in detail. Rather than creating a separate procedure file for
each of these general subroutines, it is easier to group them together into a single
large procedure, which serves as the subroutine "library" for the application.
The subroutine library is not a VMS library in the technical sense, but it serves
a similar purpose: to collect a set of useful subroutines in a single place for easy
access and maintenance.

The library resides in a single procedure file named SUBROUTINE-LIBRARY. A
subroutine is called by invoking the procedure with certain parameters. The
first parameter is always the name of the desired subroutine. The remaining
parameters act as "arguments" to the subroutine; they specify information the
subroutine needs to perform its assigned function. Here is a skeletal procedure
library that might be included in the XDA sample application:

7 78 Application Structure

$ on control_y then exit xda __ ctrly
$ on warning then exit $status .or. %xl0000000
$
$ goto 'pl
$
$ASK: ! Pl:ASK P2:symbol P3:prompt P4:data-type P5:default
$ P6:options

· pe/j'orm ask function

$
$SIGNAL: ! Pl:SIGNAL P2:severity P3:identifier P4:text ...

· perform signal function

$
$UNIQUE_NAME: ! Pl:UNIQUE_NAME P2:symbol P3:pattern

· perform unique name function

After establishing the usual interrupt and error handlers, the procedure perfonns
a GO TO to the label specified by Pl, the first parameter. The apostrophe substi­
tution causes the value of Pi, the subroutine name, to be substituted in the GOTO

command. The target of the branch thus becomes the name of the subroutine.

Each subroutine begins with the label that names the subroutine (e.g., SIGNAL)

and acts as the target of the initial GOTO. A comment is provided to describe
the subroutine's parameters. The subroutine is responsible for perfonning the
requested function and finally exiting with a summary status: a success status if
the operation succeeded or some error status if it failed. The success status will
cause the calling procedure to continue executing, but an error status will trigger
its error handler. (The library illustrated here includes subroutines named ASK,

SIGNAL, and UNIQUE_NAME.)

The easiest way to call subroutines in the library is to set up a personal com­
mand. Assuming that the logical name XDA_SYSTEM has been established prior
to invoking the application, the following personal command can be established
in the main procedure's initialization code:

$ libcall = "@xda_system:subroutine-library"

1 0.5 The Subroutine Library 119

10.6

I> Ch. 8

Once this personal command is established, individual subroutines can be called
as follows:

$ libcall ask xda_ans s "What is your name: II

-or-

$ libcall signal xda e baddev IIInvalid device specified. 1I

-or-

A general-purpose DCL subroutine library is presented in Appendix C. This
subroutine library is not specific to anyone application, but contains subroutines
useful to all applications. The library procedure is self-initializing and thus does
not rely on any symbols or logical names defined by the application. The au­
thor hopes that you will find the subroutine library useful for your own DCL
programming.

The SIGNAL Subroutine

The SIGNAL subroutine is the first subroutine introduced in this book, and it is
perhaps the most important one. SIGNAL provides the means for a procedure
to display a success or error message and then invoke its error handler if ap­
propriate. The term signal is borrowed from the VMS run-time library routine
LIB$SIGNAL, which is the routine called by programs written in conventional
languages to perform a similar function. The SIGNAL subroutine performs two
major steps:

1. It displays one or more messages based upon its parameters. These messages
are formatted according to the VMS convention for informational and error
messages.

2. It exits with a status whose severity depends upon one of its parameters. If
the severity is an error or fatal error, the caller's error handler will be invoked.

The content of the messages and the severity of the exit status are determined
by the subroutine's parameters. At least five parameters must be specified, more
are allowed:

P1. As with all subroutines in the library, the first parameter is the name of the
subroutine: SIGNAL.

P2. The second parameter is the facility code of the facility signaling the error.

720 Application Structure

P3. The third parameter is the severity of the signaled message. A single letter
is used: S for success, I for informational, W for warning, E for error, F for
fatal error.

P4. The fourth parameter is the identification code for the message. It is com­
posed of letters, digits, and underscores C).

P5. The fifth parameter is the text of the message. It must be enclosed in quo­
tation marks.

P6-P8. If multiple messages are desired, additional text parameters can be spec­
ified. Each message is displayed on a separate line.

The following examples illustrate calls to the SIGNAL subroutine and the result­
ing messages.

$ libcall signal xda i copydone "All files have been copied."
%XDA-I-COPYDONE, All files have been copied.

-or-

$ libcall signal xda i copydone "Copying is complete." -
""file_count files were processed."

%XDA-I-COPYDONE, Copying is complete.
-XDA-I-COPYDONE, 37 files were processed.

-or-

$ libcall signal xda e nodisk -
"The specified disk does not exist."

%XDA-E-NODISK, The specified disk does not exist.

-or-

$ libcall signal xda f nosuchfil -
"The file "file_spec does not exist."

%XDA-F-NOSUCHFIL, The file SYS$MANAGER:SPECIAL.DAT does not exist.

The SIGNAL subroutine treats warning messages in a special fashion. Instead of
returning a warning status to correspond to the warning message, it returns an
informational status. This prevents the caller's error handler from being invoked
and allows warning messages to be issued as a matter of course.

The SIGNAL subroutine is fully documented in Appendix C, Subroutine Library.

70.6 The SIGNAL Subroutine 727

10.7 Captive Accounts

VMS supports a special type of user account called a captive account. The idea
behind a captive account is that a user logs in to the account and is then held
"captive" by a login procedure that begins execution immediately after the user
name and password are verified. This procedure completely controls which ap­
plications the user can run. In order to maintain this tight control, the procedure
must not allow the user to escape to DeL and enter arbitrary commands.

DeL provides the features necessary to write a captive procedure from which
the user cannot escape. Here is a skeleton captive procedure:

$ on control_y then continue
$ on warning then logout/brief

. procedure actions

$ logout

This procedure does not establish an interrupt handler as described in the pre­
vious sections. Instead it specifies the CONTINUE command as the handler. The
CONTINUE command effectively ignores interrupts and continues execution of
the procedure and any image that may be running at the time. Thus CTRL/Y

interrupts are disabled.

The procedure also does not handle errors in the normal fashion. Instead, the
error handler executes a LOGOUT command, which immediately logs the user
out of the system. More sophisticated error handling is certainly possible in a
captive procedure, but you run the risk of opening a hole through which the user
can escape to DeL.

Any application programs invoked from a captive procedure must also take care
to hold the user captive. An application that allows the user to execute arbitrary
DeL commands, as some editors do, is certainly not safe for captive accounts.

122 Application Structure

Chapter 1 1

I> Ch. 20

Obtaining User Input

VMS is an interactive operating system, so it is not surprising that many of the
programs written for it are also interactive. The dialog between a computer
program and a user flows in two directions, from the program to the user, and
from the user to the program. Chapter 6 explained how to format and display
output for the benefit of the user. This chapter discusses how to obtain input
from the user.

A video terminal consists of an output device, the screen, and an input de­
vice, the keyboard. In addition to the process-permanent files SYS$OUTPUT and
SYS$ERROR, which are used to write information to the screen, VMS maintains
two process-permanent files from which input can be obtained. These files are
accessed via the logical names SYS$COMMAND and SYS$INPUT. Exactly which
files are accessed depends upon the current environment, as follows:

At the DCL prompt. Both SYS$COMMAND and SYS$INPUT refer to the terminal
keyboard.

During execution of an interactive procedure. SYS$COMMAND refers to the ter­
minal keyboard while SYS$INPUT refers to the procedure file.

During execution of a batch procedure. Both SYS$COMMAND and SYS$INPUT

refer to the procedure file.

123

J J. J

At the DeL prompt or during interactive procedure execution, keyboard in­
put can be obtained by reading from SYS$COMMAND. During batch procedure
execution, there is no keyboard from which to obtain input.

The INQUIRE Command

The INQUIRE command is the simplest method of obtaining input from the user.
Unfortunately, the command has many quirks, which diminish its usefulness.
The command requires two parameters: a symbol and a prompt string. The
prompt string cannot be an expression but must be a simple literal string en­
closed in quotation marks. The prompt string is displayed, a line is read from
SYS$COMMAND, and the symbol is set to a character string containing the text of
the line. The character string does not include the carriage return at the end of
the line. The following behavior should b~noted:

• The prompt string is actually optional. The INQUIRE command uses the
symbol name as the prompt if the string is omitted.

• A colon and a space are appended to the prompt string in an effort to make
it pretty (this can be suppressed with the /NOPUNCTUATION qualifier, as de­
scribed below).

• An apostrophe in the input causes substitution to take place before the symbol
is set to the input line. This is potentially dangerous, because the user can
"sneak in" the value of any symbol whose name is known.

• Leading and trailing whitespace is removed from the input, and each oc­
currence of embedded whitespace is collapsed to a single space. The term
whitespace refers to a sequence of one or more spaces or tabs.

• The input is converted to uppercase letters.

• The previous two actions do not take place for portions of the input enclosed
in quotation marks, but the quotation marks themselves are removed.

This complex behavior makes the content of the input difficult to predict and
control.

The format of the prompt can be controlled using the /NOPUNCTUATION qual­
ifier. When this qualifier is present, the colon and space are not appended to
the prompt; the prompt will be displayed exactly as it appears in the command.
There are other qualifiers, which are described in the VMS DeL Dictionary.

Because of the idiosyncratic nature of the INQUIRE command, it should only be
used in personal command procedures that perform simple input operations.

124 Obtaining User Input

11.2 The READ Command

The READ command is the preferred means of obtaining input from the user. The

READ command can do everything that the INQUIRE command can, yet it has

none of the latter's idiosyncracies. The READ command requires two parameters:

a logical name identifying the file from which input is to be read, and a symbol

that is set to the input. A line is read from the file and the symbol is set to

a character string containing the text of the line. Terminal input is obtained

by reading from the file SYS$CO~MAND. In addition, the /PROMPT qualifier is

necessary in order to specify a prompt string. Here are a few examples of the

READ command, along with the resulting prompts:

$ read sys$command/prompt="Name: " line
Name:

-or-

$ read sys$command/prompt="Do you want to delete the file? " -
answer

Do you want to delete the file?

-or-

$ prompt = f$fao("(!5%T) Command: ", 0)
$ read sys$command/prompt='" 'prompt'" command
(9:28) Command:

The third example demonstrates how the F$FAO lexical function can be used to

create a prompt string containing the current time, which is then substituted in

the READ command line. Unlike the INQUIRE command, the READ command

does not alter the prompt string or input text in any way. Unfortunately, there

is no way to use the READ command to obtain single keystrokes, cursor control

keys, or editing keys like those on the application keypad.

A personal command can be used to make READ commands more concise:

$ ask = "read sys$command/prompt="

$ ask "Name: " line
$ ask "Are you sure you want to delete the file? II answer
$ ask ""f$fao("(!5%T) Command: " 0)' " command ,

77.2 The READ Command 725

J J.3

It is a VMS convention to use the CTRL/Z character to signify end-of-file when
reading from a terminal. Of course, there is no physical end-of-file on a terminal;
the user can always type more characters. However, it makes sense to rely on a
logical end-of-file to terminate a series of related input lines. For example, most
interactive VMS programs will exit when the user enters <CTRL/z>, because the
<CTRL/z> marks the end of the input related to the program. If you are creat­
ing a procedure to look like any other VMS program, this behavior should be
emulated.

The READ command accepts an lEND_OF _FILE qualifier that specifies a label.
If (and only if) <CTRL/z> is pressed while the read is in progress, DCL transfers
control to the command containing the label. This is an "arbitrary goto" and
should be used with care so as not to adversely affect the readability of the
program.

$ ask "Command: " command lend_of_file=15

. process command

$ goto 19
$15:

. process end-oj-file

$19:

If some input is typed on the line before <CTRL/z> is pressed, the symbol is set
to the input typed so far, and then control is transferred to the end-of-file label.
The code at that label may need to process the characters in the symbol before
performing end-of-file cleanup.

Default Answers

It is common practice to associate a default answer with a question. The de­
fault answer is the answer the program will assume if the user presses <RETURN>

without entering any information. The default answer should be the most likely
answer to the question, unless that answer is potentially dangerous. For example,
the default answer to the question "Do you want to delete all your files?" should
be no. By convention, the prompt string for a question contains the default an­
swer in square brackets at the end of the question, before the trailing punctuation
character.

It is quite simple to implement default answers in DCL. If the user presses
<RETURN> without entering any other characters, the symbol specified in the

126 Obtaining User Input

11.4

READ command will be set to the null string. This condition can be determined
and the symbol set to the default answer.

$ ask IIAre you sure you want to delete the file [NO]? II delete
$ if delete .eqs. 1111 then delete = false

-or-

$ ask IIWhich directory is to be listed [working]: II dir
$ if dir .eqs. 1111 then dir = f$environment(IIDEFAULT II)

-or-

$ ask IINumber of copies to print [1]: II copies
$ if copies .eqs. 1111 then copies = 1

In each case, a check is made to see if the input symbol is set to the null string.
If so, it is reset to the default answer.

Editing Input

In some circumstances, it is necessary to edit the user's input before processing
it. For example, if the input is a product name that is to be compared to a set of
valid names, it is necessary to convert the name to uppercase letters so that it will
compare correctly with the valid choices. The F$EDIT lexical function provides
a set of editing capabilities that make it quite easy to perform most common input
editing. The F$EDIT function takes two arguments: the string to be edited and
a string containing a keyword or list of keywords, which determine the exact
editing performed. The function returns the edited string.

Assume that some input has been read into the symbol LINE. The following are
examples of some of the editing you can perform:

$! Convert the line to uppercase.
$ line = f$edit(line,IIUPCASE II)

-or-

$! Remove leading and trailing whitespace from the line.
$ line f$edit(line,IITRIM II)

-or-

7 7.4 Editing Input 727

11.5

11.5.1

$! Remove leading and trailing whitespace, and compress
$! occurrences of whitespace to a single space.
$ line = f$edit(line,"TRIM,COMPRESS")

-Of-

$! Remove leading and trailing whitespace, compress
$! whitespace, and convert to uppercase.
$ line = f$edit(line,"TRIM,COMPRESS,UPCASE")

As the examples illustrate, the various editing operations can be performed singly
or in any combination.

Checking the Validity 01 Input

Once a procedure accepts input from the user, it is often necessary to check
the input for errors. For example, if the input is supposed to be an integer, the
procedure must ensure that the characters entered form a valid integer and that
the integer is in the desired range. It is a mark of a well-written procedure that
all user input is checked as carefully as possible, as soon as possible. The longer
a procedure waits to check its input, the more out-of-context the resulting error
messages will be. The following sections discuss input checking for each type
of data.

Integers

Whenever a procedure expects an integer value in response to a query, it must
check the user's input to ensure that it represents a valid integer. Because the
READ command always reads its input as a character string, the user's input
will be represented as a string even though it is intended to be an integer. The
F$TYPE lexical function is used to check the type of the input: if the input string
contains the valid external representation of an integer, the function will return
"INTEGER", otherwise it will return "STRING".

After it is determined that the input is a valid integer, the input is converted to
an integer data type. Once this is done, any additional validation such as range
checking, can be performed. If any of the tests fail, an appropriate message is
issued and the question is asked again. The following loop illustrates a method
for checking an integer that is intended to be a year number:

128 Obtaining User Input

11.5.2

$ input_ok = false
$10: ask "Which year do you want to report on: " year_string
$ if f$type(year_string) .eqs. "INTEGER"
$ then
$ year = f$integer(year_string) ! Convert year to an integer.
$ input_ok = year .ge. 1900 . and. year .le. 2100
$ if .not. input_ok then libcall signal xda w badyear -
$ "The year must be in the range 1900--2100."
$ else
$ libcall signal xda w badint "Please enter an integer."
$ endif
$ if .not. input_ok then goto 10

The loop is controlled by the boolean variable INPUT _OK, which is initialized to
FALSE before the loop is entered and tested at the bottom of the loop to determine
whether another iteration is necessary. On each iteration the user is prompted for
a year. If the input is a valid integer and the integer is in the required range, then
INPUT _OK is set true. Otherwise an appropriate warning message is displayed
and INPUT _OK remains false. The loop is continuously executed until valid input
is received.

After the loop terminates, the symbol YEAR will be set to the desired year, stored
as an integer. Note the use of the F$INTEGER lexical function to convert the year
from a string to an integer.

Character Strings

Strings are generally the easiest kind of input to check. Sometimes no checking
is required at all, because any string is valid. Often the length of the string must
be checked to ensure that it is within a required range. At other times, the content
of the string must be inspected because only certain characters are allowed. The
following loop asks the user to enter a comment for a history file:

$10: ask "History comment: " comment
$ input_ok = f$length(comment) .ge. 1 .and. -

f$length(comment) .le. 80
$ if .not. input_ok then libcall signal xda w commlen -

"The comment must contain 1--80 characters."
$ if .not. input_ok then goto 10

This loop uses the INPUT _OK variable in the same fashion as the previous ex­
ample. No data type checking is required, because the input is guaranteed to be
a string. The length of the input is checked to ensure that it is in the required

7 7.5 Checking the Validity of Input 729

11.5.3

t> Tab. 3.1

range 1-80. The COMMENT symbol contains the comment string after the loop
terminates.

The following example illustrates the situation where the input must be chosen
from among a fixed set of valid strings:

$10: ask IIPrint DETAIL or SUMMARY report [SUMMARY]: II report_type
$ if report_type .eqs. 1111 then report_type = IISUMMARY II

$ report_type = f$edit(report_type,IIUPCASE II)
$ input_ok = report_type .eqs. IIDETAILII .or. -

report_type .eqs. II SUMMARY "
$ if .not. input_ok then libcall signal xda w badtype -

IIPlease enter DETAIL or SUMMARY."
$ if .not. input_ok then goto 10

The checking methodology is similar to the one in the previous example, except
that the input must be one of two particular strings. The input is converted to
uppercase letters before it is checked against the two strings; this allows the
user to enter input in uppercase or lowercase. The query also provides a default
answer ("SUMMARY").

Boo/eons

Strictly speaking, validation of a boolean response is unnecessary because any
string is a valid boolean value. In spite of this, you should do the user a favor
and accept only the words YES or NO and their abbreviations. Otherwise the user
can accidentally enter TO when NO was meant, and DeL will interpret this as a
true value because it begins with T.

The following loop asks a yes/no question and validates the answer:

$10: ask "Do you want to clear the directory [NO]? " clear_dir
$ if clear_dir .eqs. "" then clear_dir = "NO"
$ clear_dir = f$edit(clear_dir,"UPCASE")
$ input_ok = f$locate(clear_dir,"YES") .eq. 0 .or. -

f$locate(clear_dir,"NO") .eq. 0
$ if .not. input_ok then libcall signal xda w badyesno -

"Please enter YES or NO."
$ if .not. input_ok then goto 10

A default answer of NO is provided, and the input is converted to uppercase letters
for comparison purposes. The F$LOCATE function is used to ensure that the input
is YES, NO, or an abbreviation thereof. To test that the input is an abbreviation of
YES, the input must match the string "YES" beginning at position zero. The only

130 Obtaining User Input

11.6

inputs that pass the test are "Y", "YE", and "YES". A similar test is used for NO,

allowing only the inputs "N" and "NO". All other inputs are rejected.

Main Procedure Arguments

A procedure often requires input values before it can determine the exact op­
erations to perform. These input values must be obtained before the procedure
can begin its intended task. For example, a procedure that copies a file from the
local network node to another node requires two input values: the file spec and
the remote node name. One method of passing these values to the procedure is
via procedure parameters. Unfortunately, this requires that the user remember
both the order and the syntax of the parameters. Another method of obtaining
the values is to prompt the user and read the values from the keyboard at the
beginning of the procedure. This solves the first problem but fails to work when
the procedure is submitted to batch because there is no keyboard. A combination
of both techniques offers the maximum flexibility.

Assume that the procedure expects two parameters: the file to be copied and the
remote node name. The following code will check for the parameters, and if
either one is missing, prompt for it and read it from the keyboard:

$! This procedure accepts two parameters, as follows:
$! Pi: the file to be copied
$! P2: the remote node to receive the copy

$
$

if pi .eqs.
if p2 .eqs.

then ask "File: " pi
then ask "Remote node: " p2

For each Aarameter in tum, the procedure determines whether the parameter was
specified when the procedure was invoked by testing it for the null string. If the
parameter is missing, an ASK command is used to prompt and obtain a value for
it (remember that the personal command ASK is short for READ SYS$COMMAND

/PROMPT=). The user can pass a required value as a parameter or choose to be
questioned for the value. When submitting the procedure to batch, the values
must be supplied as parameters. If they are not, the ASK command fails and the
procedure terminates with an error.

77.6 Main Procedure Arguments 737

11.7 A Sophisticated Input Subroutine

As demonstrated in the previous sections, the operation of asking a question is
both a common and a complex one. For this reason, it is useful to embody the
techniques for asking questions in a subroutine that can be invoked whenever a
question needs to be asked. This subroutine is included in the subroutine library
listed in Appendix C, where it is fully documented. Only some of its features
are described here.

The subroutine is called ASK and requires at least three parameters: a global
symbol that will be set to the answer, a data type specifier, and a prompt string.
There are optional parameters, the first of which is the default answer (if omitted,
there is no default and the user must input a value). The procedure performs the
following steps, shown here in simplified form:

1. Display the prompt, including the default answer if specified.

2. Read the answer from SYS$COMMAND.

3. If <RETURN> was pressed without entering any data:

- Go back to step 1 if no default was specified.

Assume the default answer if one was specified.

4. Check the answer to ensure that it conforms to the data type specifier. If not,
display a message and go back to step 1.

5. Set the global symbol to the answer.

6. Exit.

Once the subroutine exits, the answer is available in the global symbol provided
as the first parameter.

The data type specifier is a single letter that restricts the type of data the user can
enter: I for integer, S for string, B for boolean (yes/no).

Here are a few examples:

$! Ask for the user name of the person to whom the mail
$! is sent. The answer must be a string.
$

$ libcall ask xda_user s "User to receive mail: II

-Of-

732 Obtaining User Input

t>Ch. 10

11.B

$! Ask for the number of copies to be printed. The answer
$! must be an integer, the default being 1.
$
$ libcall ask xda_copies i "Number of copies to print:"

-or-

$! Determine if the user really wants to delete the file.
$! The answer must be a boolean, the default being NO.
$
$ libcall ask xda_delete b -

1

"Do you really want to delete the file?" no

-or-

$! Wait for the user to press RETURN.
$

$ libcall ask xda_ s "Press RETURN when ready:" continue

Notice how the global symbols used in the ASK calls confonn to the VMS con­
vention for naming global symbols. When the user's answer is just discarded, as
in the last example, the "throw-away" symbol XDA_ is specified.

Redirecting Program Input

An interactive VMS program nonnally obtains its input from SYS$INPUT. This
works fine when the program is run from the DeL prompt but has an unexpected
consequence when the program is run from a procedure. Because SYS$INPUT

is directed to the procedure file while a procedure is executing, the program
attempts to read its input from the procedure file. This is why the procedure
examples in this chapter read from SYS$COMMAND: it is directed to the tenninal
keyboard during procedure execution. There is a way to force a program image
to read from SYS$COMMAND.

Before tackling that problem, however, it is interesting to point out some uses
for the standard behavior. If a procedure runs an interactive program but wants
to provide "canned" answers to all the questions asked by the program, these
answers can be placed directly in the procedure file. For example, assume you
want to extract message number 1 from the mail folder named BOILERPLATES

and place it in a temporary file:

77.8 Redirecting Program Input 733

t>Ch. 14

11.9

$ mail
read boilerplates 1
extract/noheader sys$scratch:xda_boilerplate.tmp
exit
$

. process the boilerplate file

Because SYS$INPUT is directed to the procedure file, the MAIL utility will read
its commands from the procedure. The three commands (READ, EXTRACT, EXIT)

accomplish the task of extracting the message into a temporary file, just as if an
interactive user had typed them in. The EXIT command is not strictly necessary,
because the first line containing a dollar sign signals end-of-file to the program.
Program input data included directly in a procedure is called image data. The
technique of placing input in the procedure works only when the input is entirely
static. Apostrophe substitution is not performed on the input lines, so they cannot
be customized the way normal DeL commands can be.

When an interactive program needs to read its input from the terminal, it must
be forced to read from SYS$COMMAND. This is accomplished with the DEFINE

command. Suppose, for example, you want to run the PHONE utility as part of a
procedure and have it read from the terminal:

$ define/user_mode sys$input sys$command
$ phone

The DEFINE command redefines the SYS$INPUT logical name so that it refers
to the SYS$COMMAND logical, which in turn is directed at the terminal keyboard.
The /USER_MODE qualifier makes this redefinition temporary, lasting only for the
next image execution. Therefore the PHONE utility will obtain its input from the
terminal, even though it is invoked by a procedure.

Displaying Large Amounts of Text

During the execution of a command procedure, SYS$INPUT refers to the proce­
dure file. If a procedure displays large amounts of text whose content does not
vary from one time to the next, it is easier to use a single TYPE command than
multiple DISPLAY commands. In the following example, a lengthy help message
is displayed:

734 Obtaining User Input

$ type sys$input:
This is a lengthy help message. It doesn't change from one use
to the next, so symbol values aren't used and substitution is
unnecessary. Because SYS$INPUT refers to the procedure file, the
TYPE command displays lines directly from the file. The command
will display lines until it encounters the next procedure command
(i.e., a line beginning with a dollar sign).

We can even have blank lines for paragraph separation. This is
much easier than a series of DISPLAY commands with strings in
double quotes.
$

$ next command

11.9 Displaying Large Amounts of Text 135

Chapter 12

12.1

136

Debugging

The task of program debugging is an integral part of developing DeL applica­
tions, just as it is with every programming project. Unfortunately, the compre­
hensive collection of VMS debugging facilities is of no help to the DeL pro­
grammer. There is no symbolic debugger, no backtrace upon program failure,
and no program analysis tools. You are forced to use "old-fashioned" debug­
ging techniques, such as printing the values of variables at critical points in the
program.

DeL does have one advantage over most other programming languages. Be­
cause it is strictly interpreted, the edit/compile/link/test cycle is simplified to an
edit/test cycle. Making simple modifications to a procedure so it will display de­
bugging information is not particularly painful, because you do not have to wait
for a compile and link. The following sections describe the various techniques
for debugging DeL procedures.

Verification

Procedure verification is the most powerful debugging tool available to the DeL
programmer. There are two types of verification, each of which can be indepen­
dently enabled or disabled:

Procedure verification. When this is enabled, DeL displays each command line
in the procedure as it is executed. The command line is displayed after

apostrophe and personal command substitution is performed.

C> Ch. 11

12.1.1

12.1.2

Image verification. When this is enabled, DeL displays each image data line
as it is read by an executing image. Image data is program input data that
appears directly in a command procedure.

When verification is enabled, command and data lines are displayed at the termi­
nal (specifically, to SYS$OUTPUT), intermixed with the normal output from the
procedure.

Enabling Verification before Invoking the Procedure

The easiest way to verify a procedure is to enable verification before the proce­
dure is invoked. This is accomplished with the SET VERIFY command:

$ set verify

This simple form of the command will enable both procedure and image ver­
ification. To enable only one type of verification, leaving the other type in its
current state, use the following commands:

$ set verify=procedure

-0[-

$ set verify=image

Once the SET VERIFY command is entered, all subsequent procedures and sub­
procedures will be verified. To disable verification when the debugging session
is over, use the SET NOVERIFY command:

$ set noverify

Enabling Verification in a Procedure

When an entire procedure is verified, the volume of output may be so large that
it becomes overwhelming. In this case, you can enable verification for a portion
of the procedure, but this requires that you modify the procedure by inserting
some temporary command lines. One line is inserted before the commands to be
verified, and one after:

$ saved_verify = f$verify(true) !! !

. commands to be verified

$ junk = f$verify(saved_verify) !! !

72. 7 Verification 737

The F$VERIFY lexical function enables or disables both procedure and image
verification according to its boolean argument, enabling them if the argument is
true, disabling if false. The function returns a boolean value that reflects the state
of procedure verification before the function was called. The SAVED_VERI FY

symbol is therefore set to the prior state of procedure verification. Note that the
function enables or disables both procedure and image verification but returns
the prior state of procedure verification only, an interesting inconsistency, which
is addressed in the next section. Once verification is enabled, the existing com­
mands are displayed at the terminal as they are executed. Finally, procedure
verification is reset to its former state by using the SAVED_VERIFY symbol as
an argument to the F$VERIFY function. In this case, the return value from the
function is uninteresting, so it is discarded.

The former state of verification is saved and restored so that the verification of
one sequence of command lines is independent of the verification of any other
sequence. If, in a subprocedure, verification were enabled and then indiscrimi­
nately disabled, any verification in progress in a caller of the subprocedure would
be thwarted. The minimal extra work to make each verification independent is
well worth the effort.

The two temporary debugging commands are flagged with a triple exclamation
point so they can be found and removed when debugging is complete. Triple
exclamation points stand out when you read the procedure and are easily located
when searching with an editor or the SEARCH utility. The author recommends
that all debugging lines be flagged with a unique marker of your own choosing.

Some experienced DeL programmers advocate using SET NOVERIFY or the
F$VERIFY function at the beginning of main procedures to disable verification
in case the "innocent" user accidentally has it enabled when the procedure is
invoked. The author believes this is usually a mistake, because there are legiti­
mate reasons to see the procedure verification. One of the few reasons to disallow
verification arises in situations where a user might learn something about system
security by seeing the contents of a procedure.

738 Debugging

12.1.3 Advanced Verilication Features

As mentioned in the previous section, the F$VERIFY lexical function exhibits
some inconsistent behavior. It sets both procedure and image verification ac­
cording to its argument but only returns the prior state of procedure verification.
In fact, F$VERIFY will accept two arguments, the first specifying the new setting
for procedure verification and the second the new setting for image verification:

$ saved_verify = f$verify(true, false)

In this example, procedure verification is enabled, but image verification is dis­
abled. If F$VERIFY is given one argument, the argument is used to set the state
of both types of verification. If it is given two arguments, then the first is used
for procedure verification and the second for image.

This additional feature still does not remove the inconsistency. Regardless of
the number and value of its arguments, F$VERIFY returns only the prior state of
procedure verification. If this single value is saved and used to reset verification
after a sequence of commands, both procedure and image verification will be
reset to the original state of procedure verification. The original state of image
verification is lost. You can work around this inconsistency by employing the
F$ENVIRONMENT lexical function in addition to F$VERIFY:

$ saved_image f$environment(IVERIFY_IMAGE") ! ! !
$ saved_proc f$verify(true) ! ! !

. commands to be verified

$ junk = f$verify(saved_proc, saved_image) !!!

The additional first line uses the F$ENVIRONMENT function to obtain the cur­
rent state of image verification and saves the state in SAVED_IMAGE. The sec­
ond line enables both types of verification and saves the previous state of pro­
cedure verification. The final line correctly restores the state of both types of
verification.

Nine times out of ten it is unnecessary to distinguish the two types of verification.
The simpler method illustrated in the previous section will almost always suffice.

72. 7 Verification 739

12.2

12.3

Temporary Debugging Output

There are circumstances in which procedure verification is overkill or does not
display the necessary information. In particular, verification displays only com­
mand lines, not the values of symbols used in those command lines. In the case of
assignment or IF commands, the values of symbols in the evaluated expression
may be important. Such values are easy to display using temporary debugging
lines:

$ show symbol count !!! Count seems to be way off.
$ blocks = 50 + count*20

-Of-

$ show symbol blocks ! !! Something is wrong.
$ show symbol threshold !!!
$ if blocks .It. threshold then blocks = threshold

Any DCL commands that produce pertinent output can certainly be employed
to display temporary debugging information. Just remember to remove such
commands before installing the DCL application for public use. A marker like
the triple exclamation point is invaluable for finding and removing temporary
debugging commands.

Permanent Debugging Output

Sometimes it is advantageous to leave debugging output commands in a proce­
dure even when it is available for public use. This might be true, for example,
during the "field test" of a new application. Under normal operation, the proce­
dure must not display the debugging output. But there should be a way to enable
debugging output when a problem is suspected. This can be accomplished using
a global debug flag.

A global symbol is designated as the debug flag. The debug flag for the example
application is XDA_DEBUG. If the symbol is undefined or set to false, debugging
output is suppressed. If the symbol is set to true, debugging output is produced.
The following initialization lines are needed in the main procedure to establish
the debugging environment:

140 Debugging

12.4

$

$

if f$type(xda_debug) .eqs. "" then xda_debug
if_debug = "if xda_debug"

false

The first line uses the F$TYPE lexical function to determine whether the global
symbol XDA_DEBUG is defined. If not, it is defined but set false to prevent de­
bugging output. The second line establishes the personal command IF _DEBUG,

which is used to prefix debugging output lines.

When a command is prefixed with IF _DEBUG, it becomes conditional, executed
only if debugging is enabled:

$ if_debug then display "This is some debugging output." !!!

After personal command substitution, the line becomes:

$ if xda_debug then display "This is some debugging output."

Output is produced only if the XDA_DEBUG symbol is true. The symbol is true if
it was explicitly set true by a knowledgeable person interested in tracking down
a bug. If the symbol is undefined, it will be defined and set false by the first
initialization line shown above. The personal command can also be used with a
block IF command when multiple debugging lines are needed:

$ if_debug !! !

$ then
$ display "This is some debugging output. "
$ display "This is some more debugging output. "
$ endif

U sing the scheme presented here, debugging commands can be left in a proce­
dure permanently. They are rendered harmless unless explicitly enabled by an in­
formed user. Even when disabled, however, debugging commands use up some
execution time. Procedure execution slows down in proportion to the number of
command lines contained in the procedure.

Capturing Procedure Output

It is difficult to debug a procedure that displays a lot of information quickly. The
information tends to flash by, scroll off the terminal screen, and disappear. The
problem is exacerbated when a procedure is displaying significant amounts of
debugging information intermixed with normal output.

There are two ways to capture the output of a procedure in a text file. The first is
to use the /OUTPUT qualifier on the at-sign command that invokes the procedure.

72.4 Capturing Procedure Output 747

This qualifier specifies a file into which all the output of the procedure and its
subprocedures is placed:

$ @xda_display/output=debug.lis

Any output written to SYS$OUTPUT is placed instead into the file DEBUG. LIS in
the working directory. Note that it does not appear on the screen.

Because the output does not appear on the screen, this method of capturing pro­
cedure output may be of little use in debugging an interactive DCL application.
The second method of capturing output produces a log of the entire terminal ses­
sion, while still allowing output to appear on the screen. This method requires
the use of DECnet. Use the SET HOST command to log in to your local node,
creating a second interactive session:

$ set host 0 /log=debug.log

The SET HOST command usually creates a connection from the local DECnet
node to a remote node, allowing you to log in at the remote node. In this case,
however, the remote node is specified as O. Node 0 is always the local node, so
this command creates a second terminal session on the same node. The /LOG

qualifier specifies that a log file of the entire session is to be kept in the file
DEBUG. LOG in the working directory.

Once the second terminal session is initiated, you can log in and test the applica­
tion in a normal fashion. All output appears at the terminal; everything behaves
as usual. When the second session is terminated, a complete log of keyboard
input and screen output can be found in the log file.

142 Debugging

Chapter 13

13.1

13.1.1

Files and Directories

This chapter begins the discussion of VMS files. A file is a collection of in­
formation stored on some physical medium, such as magnetic disk or magnetic
tape. All permanent information available to a VMS system and its applications
ultimately resides in files, so every VMS programmer must understand files.
This understanding is even more critical for DCL programmers because DCL
applications are often centered on the manipulation of files and their contents.

File Specifications

A file specification is a character string that identifies an individual file or set
of files on a VMS system. A similar kind of specification can also be used to
name a device or a disk directory, without reference to any particular files. In
this book, the term file spec refers to all manner of device, directory, and file
specifications, even though some do not identify individual files.

The format of a file spec was reviewed in Chapter 1, but it will be presented here
in greater detail. A complete VMS file spec has the following format:

node: : device: [directory .. .J name. type; version

Node

The node component serves to specify a file on a particular DECnet node. The
name of the node is included in the spec, followed by a double colon to distin-

743

13.1.2

[>Ch.19

guish it from a device name. Multiple nodes can be included, each one followed
by a double colon. In this case, the final node names the location of the file, with
preceding nodes specifying the path to be taken from the local node to the final
node. For example, BOSTON: : STLOUS : : LADUE: : results in a path from the lo­
cal node through node BOSTON, through node STLOUS, and finally to the target
node LADUE. Whether intermediate nodes must be specified or can be inferred by
DEenet depends upon the network organization. Talk to your system manager
to find out.

DEenet nodes are actually identified by integers; the node names are a conve­
nience to the user. Do not be surprised if you see file specs with numeric node
components, such as 17:: or 12639: :. This usually occurs when information
is sent from a remote node and the local node does not know its name. In order to
determine the equivalence between names and numbers, you must again consult
your system manager.

It is perfectly valid for a file spec to include the local node as its target DEe net
node. In this case, DEenet simply makes a connection "to itself" to access the
file. The node component is not ignored: a real connection is established, albeit
to the local node. Therefore, specifying the local node on a file spec is not without
network overhead. Instead of specifying the local node name you can always
refer to the local node via the number zero, as in 0: :. This still makes a DEenet
connection; it is just easier to specify.

Device

When a file is being accessed, the device component specifies the disk or tape on
which the file resides. If the file spec refers to the device by itself and does
not contain a directory or file name, then the device can also be a terminal,
card reader, or any other device that is not file-structured (Le., does not contain
individual files). Device names have various formats depending upon the type of
device, how many of them there are, whether the device is attached to the local
VAXcluster node or another one, and so on. It is sheer folly to assume you know
the format of a device name.

It is a common and well-advised practice to refer to devices with logical names.
When a procedure refers to a device with a logical name, it is quite easy to
substitute one device for another by simply redefining the logical name. If the
procedure refers directly to the device, the procedure will have to be modified
when a different device is substituted.

744 Files and Directories

J 3. J.3

The logical name SYS$DISK -always refers to the disk containing the working
directory, as established with the SET DEFAULT command.

A handy device is the null device, referred to as NL:. Any output to this de­
vice is discarded. Any attempt to read from the device results in an end-of-file
condition, as if it represented an empty file.

Directory

The directory component specifies the directory containing the file. A directory
is itself a file, but its purpose is to act as a catalog for a collection of files. Every
file on a disk is cataloged in some directory (possibly more than one) so that it
can be easily located.

Because a directory is a file, it can appear in another directory. This allows a "tree
structure" of directories, with each directory containing some files and possibly
some other directories, which are called subdirectories of the original directory.
The original directory is called the parent directory, and the subdirectories are its
child directories. The entire directory tree is rooted in a special directory called
the master file directory. The master file directory has the name 000000 (six
zeros). Here is a possible directory tree on a disk referred to by the logical name
DISK1:

disk1: [000000]
disk1: [j ones]
disk1:[jones.project]
disk1: [jones.project.data]
disk1:[jones.personal]
disk1 : [smith]

The master file directory.
The directory for user JONES.
Jones' project directory,
with a subdirectory for data.
Jones' personal directory.
The directory for user SMITH.

The directory portion of a file spec is enclosed in square brackets. Each subdi­
rectory is separated from its parent with a dot. It is not necessary to specify the
master file directory except when referring precisely to that directory.

The empty directory specification [] stands for the working directory, as estab­
lished with the SET DEFAULT command. When used with the SYS$DISK logical
name, as in SYS$DISK: [] , a complete specification of the working disk and di­
rectory results. This specification allows you to be explicit in commands that
manipulate files in the working directory (see Section 13.6).

13. 1 File Specifications 145

13.1.4

13.1.5

The directory specification [. DATA] stands for the DATA subdirectory under the
working directory. In general, any subdirectory of the working directory can be
accessed by beginning the directory portion of the file spec with a dot.

The directory specification [-] stands for the parent directory of the working
directory. The dash can be followed by a subdirectory, as in [-. OTHER] , which
refers to the directory named OTHER under the parent directory of the working
directory (i.e., OTHER is a directory parallel to the working directory).

A little-known fact about directory specifications is that they can also be enclosed
in angle brackets, such as in DISKl : <JONES. PROJECT>. This is because angle
brackets are international characters and appear on more terminals than do square
brackets. Angle brackets must be taken into account when performing various
manipulations of file specs, as illustrated in Section 13.2.1.

Name

The name component, taken together with the file type, identifies a particular file
in a directory. The purpose of the file name is to assign a meaningful identifier
to the file. The name can be composed of letters, digits, and the dollar sign ($),

underscore C), and hyphen (-) characters. Its length is restricted to a maximum
of 39 characters, but that allows plenty of room for meaningful names. Because
a directory is just a file, directory names follow the same rules as file names.

Type

The type component is used with the file name to uniquely identify a file in a
directory. This two-level name/type scheme allows the file name to identify a
family of related files, while the file type identifies particular kinds of files within
the family. For example, a small application written in Fortran may include a set
of files all having the name BUDGET, but with the following file types:

FOR. The Fortran source file.

OBJ. The object file produced by the Fortran compiler.

LIS. The listing file produced by the compiler.

EXE. The executable image produced by the linker.

MAP. The image map produced by the linker.

146 Files and Directories

J3. J.6

The standard file types have been chosen over the years to be meaningful abbre­
viations for the contents of the file. The type OBJ stands for "object" and EXE for
"executable." The restrictions on character set and length for file types are the
same as those for file names. Most of the standardized file types are three letters,
because they were once limited to three characters in length.

Version

On many computer systems, the device/directory/name/type is sufficient to iden­
tify any individual file. Such systems do not allow multiple copies of the same
file and thus run into trouble when a modified version of a file is created. The
modified version replaces the original version, which cannot be recovered if an
error or program bug corrupts the modified version. VMS supports the concept
of multiple file generations or versions. More than one version of the "same file"
can exist in a given directory. The term same file is in quotes because each ver­
sion is an autonomous file, entirely distinct from the other versions, but all the
versions represent successive generations of the same information.

Every file is assigned a version number. When a file with a new name and type
is created in a directory, it receives version number 1. When another file with
the same name and type is created in that directory, it receives version number
2. The version 1 file is not deleted. Whenever a new generation of an existing
file is created, it is assigned the first available version number that is higher than
all of its ancestors in the directory. Version numbers range from 1 to 32767.

An existing version of a file is accessed by including its unique version number
in the file spec. For example:

$disk1: [smith]login.com;3

This file spec accesses version 3 of the file LOGIN. COM. If version 3 does not
exist, an error is signaled. It does not matter which other versions exist.

Because certain versions of a file, most notably the latest one, are accessed
frequently, VMS provides some special version number syntax. If an exist­
ing file is being accessed and the version number is missing or specified sim­
ply as a semicolon (e.g., LOGIN. COM or LOGIN. COM;) or as version number 0
(e.g., LOGIN. COM; 0), the latest version of the file is accessed. This is the file
with the highest version number. If the version number is specified as -1 (e.g.,
LOG IN. COM; -1), then the second-latest version of the file is accessed. This is the
file with the next highest version number (not necessarily 1 less than the highest).
Versions numbers -2, -3, and so on are also allowed, and access successively

73. 7 File Specifications 747

13.2

older versions of the file. The version number -32768 can be used to access
the file with the lowest version number (e.g., LOGIN. COM; -32768). The lowest
version number is not necessarily 1, because some of the original versions of the
file may have been deleted.

Parsing

The process of preparing a file spec to access a directory or file is called parsing
the file spec. The goal of parsing is to take a file spec that may have some missing
components and flesh it out into a complete spec with all components included.
VMS parses a file spec whenever the spec is used to access a file for any kind
of input, output, or control operation. The complete file spec returned by the
parsing operation is called the resultant file spec. The algorithm used to parse
a spec is made available to the DeL programmer through the F$PARSE lexical
function.

The general form of the lexical function is shown here:

f$parse (base-spec, default-spec, related-spec, component, options)

The only required argument is the first one; the rest are optional. The base-spec
is the file spec to be parsed and expanded into a complete file spec. It may be
missing certain components, such as the directory or version number. Rarely
does a user enter a complete file spec with all components specified explicitly.
The function parses the base file spec, expands it into a resultant file spec with
all components, and returns part or all of the resultant file spec. The parsing
algorithm can make use of two additional file specs, the default-spec and the
related-spec. These files specs may be complete, or, as with the base spec, they
may include only some components. The parsing algorithm is as follows:

1. Examine the base spec. If any components are missing, use the components
from the default spec (if it was specified).

2. If components are still missing, use the components from the related spec (if
it was specified).

3. If any of the node, device, or directory components are still missing, use the
components from the user's current working directory.

4. If any components are missing from this complete spec, do not fill them in.

5. If the component argument is not specified, return the complete resultant
file spec. If it is specified, extract the specified component and return it by
itself. The component argument is one of the following keywords: "NODE",
"DEVICE", "DIRECTORY", "NAME", "TYPE", "VERSION".

148 Files and Directories

t>Ch.14

To summarize, the base spec is completed using three levels of defaults: the
default spec, the related spec, and the working directory. The lexical func­
tion then returns either the entire resultant spec or an individual component of
it. (The complete algorithm used by the parse system service is actually more
complicated because of logical names.)

In the process of parsing the file spec, VMS checks for the existence of the device
and directory. If either does not exist, the parse fails and the lexical function
returns the null string. You may wish to disable this checking, particularly when
assembling a file spec that will be used to create a new directory. To disable the
check, specify the keyword string "SYNTAX_ONLY" as the options argument to
the lexical function. This option also results in a faster parse operation.

Here are examples of file spec parsing. The examples assume that a file spec has
been obtained from the user and saved in the symbol USER_SPEC.

$! Parse the file spec, filling in the device and directory
$! from the user's working one.
$

$ parsed_spec = f$parse(user_spec)

-Of-

$! Parse the file spec, filling in unspecified components
$! from the default spec SYS$SCRATCH:XDA_DATA.TMP
$
$ parsed_spec = f$parse(user_spec,"sys$scratch:xda_data.tmp")

-Of-

$! Create a spec for the new directory [XDA_WORK] on the
$! working disk. Make sure VMS doesn't check for prior
$! existence of the directory.
$
$ dir f$parse(l[xda_work]I""ISYNTAX_ONLY")
$ dir f$parse(dir",IDEVICE") + f$parse(dir",IDIRECTORY")

-Of-

$!
$

$

$

Obtain the file name and type from the spec.

name f$parse(user_spec",INAME")
type f$parse(user_spec",ITYPE")

13.2 Parsing 149

13.2.1

c>Ch. 14

13.2.2

When you obtain an individual component from the resultant spec, as in the last
example above, the resulting string contains the punctuation that accompanies
the component. A node contains the double colon, a device the single colon, a
directory the brackets, a file type the dot, and a version number the semicolon.
The file name does not include any punctuation.

Parent and Child Directories

There are two file spec manipulations that cannot be performed by the F$P ARSE

lexical function. The first one takes a directory spec and a subdirectory name and
produces the merged spec naming the subdirectory. Given an arbitrary file spec
containing the directory [JONES. PROJECT] and the subdirectory name DATA,

it must produce [JONES. PROJECT. DATA]. Assume that the symbol SPEC con­
tains a directory spec and the symbol CHILD contains the name of the desired
subdirectory. The merge is easily accomplished with the following commands:

$ parent = f$parse(spec","DIRECTORY")
$ subdir = "[" + (parent - "["_"]"_"<"_">") + II II + child + IIJII

The first line extracts the directory portion of the file spec. The second line
strips the brackets off the directory (be they square brackets or angle brackets)
and builds a new directory spec identifying the desired subdirectory. The result­
ing directory spec uses square brackets regardless of the brackets present in the
original spec.

Another file spec manipulation that you might be tempted to perform is that
of determining the parent of a given arbitrary directory. This manipulation is
virtually impossible and should be avoided at all costs. Almost insurmountable
problems arise when the file spec includes a rooted directory.

Changing the File Type

The individual files in a related family of files often have the same name but
different types. For example, a Fortran source file has the type FOR, while the
object and listing files generated by the compiler have the types oBJ and LIS.

The Fortran compiler must construct the object and listing file specs by replacing
the file type of the source file with the new types OBJ and LIS. This "retyping"
operation is common in sophisticated procedures.

7.50 Files and Directories

13.3

The F$PARSE function does the work quite easily:

$ source_file = f$parse(source_file)
$ obj_file f$parse ('I. oBJ" ,source_file)
$ lis_file = f$parse ('I. LIS" ,source_file)

The source file spec is parsed first in order to fill in missing components from
the working directory. The resultant file spec is stored back in the same symbol.
The related object file spec is created by parsing a base spec containing only the
desired file type, using the source spec to fill in all other components. The listing
file spec is created similarly. Note that the base specs . OBJ and. LIS include the
dot punctuation for file types. If they did not, the strings OBJ and LIS would be
mistaken for file names.

This same technique can be used to replace any other component of a file spec.

Searching Directories

A VMS user frequently needs to locate an individual file or group of files in a
directory. Sometimes the user is not sure how a file name is spelled or which di­

rectory the file is in. The wildcard facility allows the user to search a directory
or directory tree for a set of files. The wildcard facility provides special char­
acters, which can be inserted in a normal file spec at various points. A file spec
containing wildcard characters is presented to VMS and a search operation is
requested. Instead of locating a single file, as it does when given a normal file
spec, VMS locates one or more files whose specs match the wildcard spec.

A file spec can include the following wildcard characters:

* An asterisk can be used in the directory name, file name, type, or version.
It matches any number of characters, including none.

% A percent sign can be used in the directory name, file name, or type. It
matches exactly one character.

An ellipsis can be appended to a directory name in a directory spec. It
matches the entire directory subtree below the named directory.

The simplest way to perform a search operation is with the DIRECTORY com­
mand. This command accepts a wildcard file spec and lists all of the files match­
ing the spec:

13.3 Searching Directories 151

$ directory *.dat

-or-

$ directory $disk1: [smith ...]xda*.com

-or-

$ directory [project* ...]*.%

The file spec in the first example matches all the files with type DAT in the working
directory, regardless of name. The asterisk in the name position matches any
characters and therefore any name.

The file spec in the second example searches the subdirectory tree under the
[SMITH] directory of disk $DISK1. The ellipsis specifies that the subdirectory
tree is to be searched. The spec matches any files in the subdirectory tree whose
name begins with XDA and whose type is COM.

The file spec in the third example causes a search of the subdirectory trees under
any directory beginning with PROJECT. The directory spec PROJECT* matches
any directory beginning with PROJECT and the ellipsis causes the subdirectories
under those directories to be searched. The spec matches any file regardless of
name, as long as the type is exactly one character in length.

As you can see, wildcards provide a powerful tool for searching directories and
selecting files within them.

DeL provides a lexical function that a procedure can use to perform directory
searches. The F$SEARCH lexical function requires one argument, which must be
a file spec. The spec can name a single file or it can contain wildcards. When
F$SEARCH is called with a file spec that does not contain wildcards, it determines
whether or not the specified file exists. First it parses the file spec using the
working device and directory as the default. It then checks to see whether the
file exists, and if so, returns the resultant, fully expanded file spec. If the file spec
is invalid or the file does not exist, F$SEARCH returns the null string.

Here is an example using F$SEARCH to check whether a specified file exists:

$10: libcall ask xda_file s "Enter a file spec:"
$ if f$search(xda_file) .nes. "" then goto 19
$ libcall signal xda w filnotfnd -

"File "xda_file does not exist."
$ goto 10
$19:

752 Files and Directories

This procedure asks the user for a file spec. It then uses the F$SEARCH function
to check for the existence of the file. If the function returns an expanded file
spec, the file exists. If the function returns the null string, a message is displayed
and the user is asked for another file spec. Note that this procedure does not
distinguish the case of a nonexistent file from the case of an invalid file spec. If
you want to distinguish these two cases, use the F$PARSE function in conjunction
with F$SEARCH:

$10: libcall ask xda_file s "Enter a file spec:"
$ if f$parse(xda_file, , ,,"SYNTAX_ONLY") .nes.
$ then
$ if f$search(xda_file) .nes. "" then goto 19
$ libcall signal xda w filnotfnd -

"File "xda_file does not exist."
$ else
$ libcall signal xda w invspec -

"File spec "xda_file is invalid."
$ endif
$ goto 10
$19:

This procedure first checks the validity of the file spec with the F$PARSE func­
tion. If the spec is valid, it goes on to search for the file. If the spec is invalid, it
displays a message and requests another spec.

When the F$SEARCH function is called with a wildcard file spec, it searches for
the first file matching the spec and returns its resultant spec. If there are no files
matching the spec, the null string is returned. An additional matching file spec
is obtained by calling F$SEARCH again with the same wildcard spec. Each call
returns the next matching file spec. When there are no more matching files, the
null string is returned. The following code displays the name of every data file
in the working directory, each on its own line:

$10: file = f$search("*.dat;")
$ if file .eqs. "" then goto 19
$ display f$parse (file, , , "NAME")
$ goto 10
$19:

The F$SEARCH function is called with the wildcard spec" * . DAT ; ". The asterisk
matches every file name. A semicolon is specified for the version number, so
that only the latest version is located. If no version number is given, F$SEARCH

locates all versions.

73.3 Searching Directories 753

The following procedure asks the user for a file spec and counts the number of
files matching the spec:

$ libcall ask xda_file s "Files to count:"
$ count = 0
$10: file = f$search(xda_file)
$ if file .eqs. "" then goto 19
$ count = count + 1
$ goto 10
$19:
$ display "Count of files found: ", count

There is a special precaution you must take when programming a search loop
if you are not sure whether the file spec will contain wildcards. The preceding
example loops forever if the user enters a file spec without wildcards, because
the F$SEARCH function never returns the null string. It continually locates the
single file and returns its resultant spec. To prevent an infinite loop, extra code
is needed:

$ libcall ask xda_file s "Files to count:"
$ count = 0
$10: file = f$search(xda_file)
$ if file .eqs. "" then goto 19
$ count = count + 1
$ if f$locate("*",xda_file) .ne. f$length(xda_file) .or. -

f$locate("%",xda_file) .ne. f$length(xda_file) .or. -
f$locate(" ... ",xda_file) .ne. f$length(xda_file) then­

goto 10
$19:
$ display "Count of files found: ", count

The procedure no longer performs an unconditional loop back to label 10. In­
stead, it checks to see if the file spec contains any wildcard characters and only
loops back if it does. The loop is executed exactly once for file specs without
wildcards, multiple times for file specs with wildcards.

754 Files and Directories

J3.3. J Simultaneous Searches

The F$SEARCH function begins a new search whenever it is presented with a new
wildcard file spec. In the previous examples, the same file spec was used on each
call to F$SEARCH, so the function carried on the search from the previous call.
Once there are no more matching files, the function returns the null string and
resets its search context so that the next call will begin a new search regardless
of the file spec. This is reasonable behavior, which you can rely on whenever
you are performing one search at a time. However, when multiple searches must
be performed simultaneously, another feature of F$SEARCH is required.

The F$SEARCH function accepts a second argument, called the stream ID. The
stream ID is an arbitrary integer that identifies a particular search context and dis­
tinguishes it from other search contexts that may be in progress simultaneously.
Whenever the F$SEARCH function is used to perform more than one search at
a time, a unique stream ID is required for each different search. There are two
common cases where multiple searches are performed simultaneously:

• A single procedure needs to match two sets of files at the same time. For
example, a procedure searches the master file directory of a disk for every
top-level directory beginning with PROJECT. Then, for each such directory,
the procedure locates all the data files in that directory tree. Two searches
are progressing in parallel: the search for top-level project directories and
the search within each such directory.

• A procedure locates each file that matches a wildcard spec and then calls
another procedure that operates on the file. If the second procedure uses
F$SEARCH as part of its file processing, then two searches are in progress
simultaneously.

Whenever multiple searches are in progress at the same time, each one must use
a different stream ID in its calls to F$SEARCH.

73.3 Searching Directories 755

13.4

The following example illustrates the first scenario:

$10: dir = f$search("$disk1: [000000]project*.dir;",10)
$ if dir .eqs. "" then goto 19
$ file_spec = "$disk1: [II + f$parse(dir" ,"NAME") + " ...]*.dat;"
$20: file = f$search(file_spec,ll)
$ if file . eqs. "" then goto 29
$ display file
$ goto 20
$29: goto 10
$19:

The outer loop searches for directories whose names begin with PROJECT. The
stream ID for the directory search is 10. The inner loop searches for data files
in the directory tree found by the outer loop. The stream ID for the file search is
11. The file spec for the inner search is constructed using the name of a directory
found by the outer search. For example, if directory PROJECT _DRIVER is found,
the file spec $DISKl : [PROJECT _DRIVER ...] * . DAT; is constructed. This spec
will locate all the data files in the directory tree under the PROJECT _DRIVER

directory.

Each stream ID is an arbitrary positive integer. The only requirement is that each
simultaneous search use a different ID.

File Protection

VMS provides a comprehensive scheme for protecting files fr8m unauthorized
access. This scheme is called file protection and is complex enough to require
its own chapter (Chapter 18).

756 Files and Directories

J3.5

Table 13.1 F$FILE~nRIBUTES Items

Keyword Type

"BDT" String

"CDT" String

"EDT" String

"EOF" Integer

"MRS" Integer

"ORG" String

"PRO" String

"RDT" String

"RVN" Integer

"urc" String

File Affributes

Description of Result

Backup date/time.

Creation date/time.

Expiration date/time.

Number of blocks occupied by data.

Maximum record size.

Organization: "SEQ" for sequential, "REL" for relative, "IDX"
for indexed.

Protection mask.

Revision date/time.

Number of times file has been modified.

Owner VIC string.

Each file has a set of descriptive infonnation associated with it. These items
of information are called file attributes. The file attributes include some well­
known items like the file's creation time and owner VIC. There are also many
items that are rarely used by DeL procedures.

The F$FILE_ATTRIBUTES lexical function can be used to obtain the attributes of
a file. It requires two arguments: a file spec and an item keyword. The file spec
must identify a single existing file. The item keyword is chosen from among a
fixed set of keywords that specify the file attributes. Table 13.1 describes some
of the common file attributes.

The following example requests a file spec from the user and displays important
dates associated with the file.

73.5 File Attributes 757

13.6

$10: libcall ask xda_file s "File spec:"
$ if f$search(xda_file) . nes. '"' then goto 19
$ libcall signal xda w filnotfnd -

"File "xda_file does not exist."
$ goto 10
$19:
$
$
$
$
$

display "Creation time:
display "Revision time:
display "Revision count:
display "Backup time:
display "Expiration time: "

f$file_attributes(xda_file, "CDT")
f$file_attributes (xda_file , "RDT")
f$file_attributes(xda_file, "RVN")
f$file_attributes(xda_file, "BDT")
f$file_attributes (xda_file , "EDT")

After asking the user for a file spec, the procedure uses the F$SEARCH function to
check that the file exists. If not, the user is asked again. The check is important
because the F$FILE_ATTRIBUTES function signals an error if given a file that
does not exist.

A complete list of the attributes of a file can be displayed with the DeL command
DIRECTORY/FULL.

File Operations

VMS provides a comprehensive set of utilities for manipulating files and directo­
ries. These utilities are described in detail in the VMS DeL Dictionary, and you
are advised to consult that book to learn about the utilities and their various fea­
tures. The Dictionary will sometimes refer you to another VMS document when
the utility is complicated and requires many pages of description. Table 13.2
summarizes the operations performed by the file utilities. The descriptions are
given in terms of a single file, but most utilities can operate on a set of files using
wildcard file specs.

758 Files and Directories

Table 1 3.2 VMS File Utilities

Command Description

ANALYZE/RMS_FILE Allows you to interactively peruse the structure and contents of
a file. Has a mode that checks the structural integrity of a file.
Has another mode that generates a File Definition Language
description of the file.

APPEND Appends a file to the end of an existing file.

BACKUP Performs various kinds of disk and file backup operations.

CONVERT Copies one file to another, changing the organization and
structure of the file in the process.

COpy Makes a copy of a file, placing the new file on the same disk or
another one. Can also concatenate a set of files into one output
file.

CREATE Creates a sequential file.

CREATE/DIRECTORY Creates a new directory on a disk.

DELETE Deletes a file.

DIFFERENCES Determines the differences between the contents of two files.

DIRECTORY Displays a list of files and various file attributes.

MERGE Combines two or more sorted files, producing an output file
with all records sorted.

PURGE Deletes older (lower-numbered) versions of a file, leaving only
the newest version or versions.

RENAME

SEARCH

SET DEFAULT

SET DIRECTORY

SET FILE

SHOW DEFAULT

SORT

TYPE

Changes a file's name or type. Can also move a file from one
directory to another on the same disk.

Searches the contents of a file for records matching certain
patterns and displays the matching records.

Changes the working device and directory.

Changes the attributes of a directory.

Changes the attributes of a file.

Displays the working device and directory.

Sorts the records in a file according to various criteria, producing
a new file of sorted records.

Displays the contents of a file.

13.6 File Operations 159

Table 13.3 File Selection Qualifiers

Qualifier Description

/BACKUP Selects files based on their backup time. Used in conjunction
with the /BEFORE and /SINCE qualifiers.

/BEFORE=time Selects files that are dated before a given time. Used in
conjunction with the /BACKUP, /CREATED, /EXPIRED, or
/MODIFIED qualifiers.

/BY _OWNER=uic Selects files owned by a particular UIe.

/CREATED Selects files based on their creation time. Used in conjunction
with the /BEFORE and /SINCE qualifiers.

/EXCLUDE=file-spec Does not select files that match the excluded file spec. A list of
file specs may be specified, and they may contain wildcards.

/EXPIRED Selects files based on their expiration time. Used in conjunction
with the /BEFORE and /SINCE qualifiers.

/MODIFIED Selects files based on their revision time. Used in conjunction
with the /BEFORE and /SINCE qualifiers.

/SINCE=time Selects files that are dated after a given time. Used in conjunction
with the /BACKUP, /CREATED, /EXPIRED, or /MODIFIED
qualifiers.

In addition to wildcard file specs, file utilities accept a standard group of com­
mand qualifiers, which further select and restrict the target files. These quali­
fiers provide a powerful facility for selecting files according to single or multiple
criteria. Table 13.3 describes these file selection qualifiers.

I> Ch. 15 VMS also has a set of commands for creating, reading, and writing files from a
I> Ch. 17 DeL procedure.

760 Files and Directories

Chapter 14

Log;cal Names

A logical name is a named entity that you can create and assign a value. The
name then stands for the value when the logical name is used in certain contexts,
such as file specifications. In these contexts, VMS automatically replaces the
logical name with its value. A logical name may appear to be the same as a
symbol, but there are important differences:

• Logical names are created, maintained, and deleted using a different set of
VMS commands from those used for symbols.

• Logical names reside in logical name tables. A given logical name table can
be made available to a single process, a family of processes, or every process
on the system. In this way, unlike symbols, logical names can be shared by
multiple processes.

• When a logical name appears in an appropriate context, such as a file spec,
VMS uses its value automatically. This differs from apostrophe substitu­
tion, which must be requested explicitly, although it is similar to personal
command substitution.

The most common use for a logical name is to stand for part or all of a file
spec. For example, the logical name SYS$HELP stands for the system device and
directory containing the help libraries and release notes for VMS and its layered
products. If you want to type the release notes for DEC/eMS Version 2.2, you
can use the following command:

161

14.1

$ type sys$help:cms022.release_notes

The logical name SYS$HELP is used in place of an explicit device and directory
to refer to the file. VMS automatically uses the value of the logical name to
complete the file spec and locate the release notes.

One purpose of logical names in file specs is to save the user from having to
remember the device and directory. Another purpose is to allow the contents of
a directory to be moved to a new directory. Once the logical name is redefined
to refer to the new directory, users can work as usual, unaware that a change has
been made. This technique will only succeed, however, as long as users always
refer to files in the directory via the logical name.

Defining and Using Logical Names

A logical name is created with the DEFINE command. The basic form of the
DEFINE command is as follows:

$ define logical-name value

The first parameter specifies a sequence of characters that name the logical name.
The name can consist of letters, digits, dollar sign ($), and underscore C). The
second parameter specifies the value of the logical name. The value can be
composed of any characters and must be enclosed in double quotes if it contains
characters other than those that may appear in a file spec. The value is sometimes
called the equivalence string.

When a logical name is defined for use in file specs, its value can comprise any
or all of the components of the file spec. Here are some related examples:

$! Define a logical name for the disk used by the marketing
$! department. Such definitions are rarely necessary, since a
$! logical name is automatically defined when a disk is mounted.
$

$ define disk_market dub1:
$
$! Define a logical name for the directory on the marketing disk
$! which contains monthly reports. Notice how one logical name
$! can be defined in terms of another. Define a synonym for the
$! logical name.
$
$ define market_reports disk_market: [reports]
$ define market_documents market_reports

762 Logical Names

I> Ch. 13

$! Define a logical name for the latest monthly report file.
$
$ define market_latest_report market_reports:monthly.txt;

In each of these examples, the value of the logical name consists of some or
all of the components of a file spec: the device; the device and directory; the
device, directory, file name, type, and version. The components may be specified
explicitly or derived in tum from other logical names. Once a logical name
is defined, a file can be accessed using a file spec beginning with the logical
name. In this case, VMS looks up, or translates, the logical name and uses
its value to obtain components missing from the file spec. If the value of the
logical name contains a second logical name, VMS uses the value of the second
name to obtain components for the first, and then uses all the components in
the final file spec. This is called iterative translation. All of this logical name
translation is performed by the VMS file spec parsing service, available to the
DeL programmer through the F$PARSE lexical function. Section 14.2 describes
the complete file spec parsing algorithm.

Here are some sample file specs, shown with the final spec resulting from a
parsing operation:

disk_market: [archive] history. dat
DUB1: [ARCHIVE]HISTORY.DAT;

-Of-

market_reports:history.dat
DUB1: [REPORTS] HISTORY. DAT;

-Of-

market_documents:history.dat
DUB1: [REPORTS] HISTORY. DAT;

-Of-

market_latest_report
DUB1:[REPORTS]MONTHLY.TXT;

The value of a logical name can include components that are not necessarily
adjacent in the file spec. For example:

$! Define a logical name for the monthly report directory and
$! include the file type TXT to refer to text files without
$! a specific name.
$

$ define market_report_texts market_reports:.txt

74. 7 Defining and Using Logical Names 763

I> Ch. 20

This logical name can be used to refer to all the text files in the reports directory,
or to a specific one:

market_report_texts
DUB1: [REPORTS] .TXT;

-Of-

market_report_texts:;-1
DUB1: [REPORTS] .TXT;-1

-Of-

market_report_texts:summary
DUB1: [REPORTS] SUMMARY. TXT;

Every logical name resides in a logical name table. Section 14.10 describes
logical name tables in detail. There are four logical name tables accessible to
every process:

Process. Each process has a private logical name table whose logical names are
used only by the process. The DEFINE/PROCESS command enters logical
names in the process table. If no table qualifier is specified on the DEFINE

command, logical names are entered in the process table by default.

Job. Each job has a logical name table whose logical names are available to the
processes in the job. A job consists of the detached process created when
you log in to VMS, plus any subprocess created by the main process. The
DEFINE/ JOB command enters logical names in the job logical name table.

Group. All processes belonging to a particular UIC group have a group logical
name table whose logical names are shared by those processes. This allows
processes in the same group to communicate with one another via logical
names. The DEFINE/GROUP command enters logical names in the group
logical name table.

System. There is a single system logical name table shared by all processes on
the system. Logical names needed by every process reside in the system
logical name table. This includes the standard VMS logical names and those
defined by Digital and third-party software products. The DEFINE/SYSTEM

command enters logical names in the system logical name table.

Users can define logical names in their process or job tables. The GRPNAM or
SYSPRV privilege is required to define group logical names. The SYSNAM or
SYSPRV privilege is required to define system logical names.

164 Logical Names

14.2

When you use the DEFINE command to define a logical name that already exists,
VMS issues a message to remind you that the old value is being superseded. Such
a message can confuse the user if it appears during the execution of a command
procedure. The /NOLOG qualifier suppresses the message.

The ASSIGN command is a second command that can be used to define logical
names. It expects its parameters in reverse order: first the equivalence string and
then the logical name. The order of parameters to the DEFINE command is more
natural, so people occasionally reverse the parameters to the ASSIGN command
by mistake. The author suggests that you always use the DEFINE command.

Complete File Spec Parsing Algorithm

Chapter 13 included a simplified description of how the parse system service
parses a file spec. A parsing operation is performed whenever a file spec must
be prepared to access a file or group of files. A parse operation can be explicitly
requested by the DCL programmer through the F$P ARSE lexical function. In
either case, parsing involves up to three file specs: the primary spec, which is to
be fleshed out to a full spec; a default spec, which provides components missing
from the primary spec; and a related spec, which provides additional missing
components.

Once logical names are introduced, the parsing algorithm becomes more com­
plicated, because logical names need to be translated and their values used in
the file spec. Here is a slightly simplified description of the complete file spec
parsing algorithm:

• Begin with the primary file spec:

- If a node name is present and is a logical name, replace the logical name
with its translation. If a node name is still present, then the spec must be
parsed on the remote node. This procedure is described below.

- Otherwise, if a device name is present and is a logical name, replace the
logical name with its translation.

- Otherwise, if the primary spec is composed of a logical name by itself,
replace the logical name with its translation.

• Obtain missing components from the default spec:

- Translate any logical names in the default spec, but do not worry about
node names that may appear.

14.2 Complete File Spec Parsing Algorithm 165

14.3

- If any components are missing from the primary spec, use the corre­
sponding components from the defimlt spec (if they are included).

• Obtain additional missing components from the related spec in the same
manner as the default spec.

• Obtain any missing device and directory components as follows:

- Fill in any missing device component from the value of the logical name
SYS$DISK.

- Fill in any missing directory component from SYS$DISK or, if it does not
include a directory, from the working directory.

When the primary file spec includes a node component, then the file spec must
be parsed on the remote node. Components missing from the primary spec are
filled in from the default and related specs, but without translating any logical
names. If the primary spec is being used to access a file, it is then transmitted
to the remote node for final parsing and processing. If the primary spec is being
parsed with the F$PARSE lexical function, the partially parsed spec is simply
returned without further processing.

Displaying Logical Names

The value of a logical name can be displayed with the SHOW LOGICAL command.
This command displays the logical name and its equivalence string:

$ show logical market_reports
"MARKET_REPORTS" = "DISK_MARKET: [REPORTS]" (LNM$PROCESS_TABLE)

-0[-

$ show logical market_documents
"MARKET_DOCUMENTS" = "MARKET_REPORTS" (LNM$PROCESS_TABLE)

1 "MARKET_REPORTS" = "DISK_MARKET: [REPORTS]" (LNM$PROCESS_TABLE)

If the value of a logical name is another logical name, iterative translation is per­
formed and the value of the second logical name is displayed in tum. Therefore,
you can see the true value of a logical name when synonyms have been defined.

By default, the SHOW LOGICAL command looks for the specified logical name in
all four logical name tables in order: process, job, group, system. It displays the
translation for each occurrence ofthe logical name. The logical name table quali­
fiers /PROCESS, / JOB, /GROUP, and /SYSTEM can be used to restrict the search to
a particular logical name table. For example, the logical name SYS$DISK resides

766 Logical Names

14.4

in both the process and system logical name tables. The following command
restricts the display to the logical name in the process table:

$ show logical/process sys$disk
"SYS$DISK" = "DUA2:" (LNM$PROCESS_TABLE)

An asterisk (*) can be used in the logical name as a wildcard to specify all the
logical names beginning with a certain string:

$ show logical market*

(LNM$PROCESS_TABLE)

"MARKET_DOCUMENTS" = "MARKET_REPORTS"
"MARKET_LATEST_REPORT" = "MARKET_REPORTS:MONTHLY.TXT;"
"MARKET_REPORTS" = "DISK_MARKET: [REPORTS]"
"MARKET_REPORT_TEXTS" = "MARKET_REPORTS: .TXT"

(LNM$JOB_802EA710)

(LNM$GROUP_000260)

(LNM$SYSTEM_TABLE)

When an asterisk is_used in the logical name, iterative translation is not per­
formed. Only one level of translation is performed, so that each logical name is
displayed with its own value rather than with the value obtained by translating
through any synonyms. The display is therefore easier to comprehend, because
it illustrates the relations among all the logical names shown.

Access Modes

A VMS process can run in any of four access modes supported by the VAX ar­
chitecture. The four access modes range from least privileged to most privileged,
as follows:

User. Most VMS utilities and user-written programs run in user mode.

Supervisor. Command language interpreters like DCL run in supervisor mode.

Executive. The RMS record management system runs in executive mode.

Kernel. The VMS operating system runs in kernel mode.

When a logical name is defined, it is associated with a particular access mode.
A given logical name table can contain multiple definitions for the same logical
name in different access modes. Table 14.1 describes the commands used by
a DCL procedure to define a logical name at each of the access modes. When

14.4 Access Modes 167

Table 14.1 Defining Logical Names in DiHerent Modes

Access Mode Command Privileges

User DEFINE/USER_MODE (none)

Supervisor DEFINE/SUPERVISOR_MODE (default) (none)

Executive DEFINE/EXECUTIVE_MODE SYSNAM

Kernel Cannot be created from DCL.

a request is made to translate a logical name, the access mode plays a role in
determining which logical name is actually translated:

• If the translation request does not include a specific access mode, then the
logical name table is searched for a logical name in user mode, then super­
visor, executive, and kernel modes.

• If the request includes a specific access mode, the search begins with that
mode, then the next most privileged, then the next, and so on. Logical names
at less privileged modes are ignored.

The four logical name access modes are employed by VMS in the following
manner:

User. A logical name defined in user mode exists until the next program image
completes. All user mode logical names are deleted during image exit. Thus,
user mode logicals provide a means of overriding, for the duration of one
program, a logical name defined at a more privileged mode.

Supervisor. When a logical name is defined with the DEFINE command, it is
entered in supervisor mode by default. These logical names exist for the
duration of the process.

Executive. Many of the logical names defined by the RMS file system are en­
tered in executive mode. These include the process-permanent logical names,
such as SYS$INPUT. They also include the family of logical names that refer
to system directories (e.g., SYS$SYSTEM).

Kernel. Logical names referring to logical name tables are often defined in ker­
nel mode.

168 Logical Names

14.5

I> Ch. 20

14.6

Table 14.2 Standard Process and Job Logical Names

Logical Name Table Description

SYS$COMMAND Process The original source of commands for the process.

SYS$DISK Process The device containing the process's current working
directory. This logical name is redefined whenever a SET
DEF AUL T command is issued. The working directory can
be accessed using the file spec SYS$DISK: []

SYS$ERROR Process

SYS$INPUT Process

SYS$LOGIN Job

SYS$OUTPUT Process

SYS$SCRATCH Job

The device or file to which VMS displays messages.

The default input source for the process.

The login device and directory for the process. A reference
to the login directory can be made with this logical name
regardless of the current working directory.

The default output destination for the process.

The default device and directory in which temporary files
are created. A procedure should always create temporary
files in this directory.

Standard Logical Names

When you log in to VMS, certain process andjob logical names are automatically
defined. These are described in Table 14.2.

The process-permanent logical names SYS$COMMAND, SYS$INPUT, SYS$OUTPUT,

and SYS$ERROR are extremely important to the operation of command proce­

dures. They specify the standard input sources and output destinations for the
procedures.

Other Uses for Logical Names

The following sections describe some additional uses for logical names. These

uses clarify the distinction between logical names and symbols.

74.5 Standard Logical Names 769

14.6.1

t> Ch. 13

Root Directories

A root directory is a directory whose fundamental purpose is to act as the parent
for a related set of subdirectories. The root directory may contain a few data files,
but it exists primarily to "root" a collection of subdirectories that contain the files
for a software product or application. The root directory allows the files to be
accessed or manipulated through a single known point rather than through an
unrelated collection of directories.

A logical name is used to refer to the root directory. It is defined as follows:

$ define xda_root disk$products: [xda.]

The XDA directory on disk DISK$PRODUCTS is the root directory for the XDA

application. The fact that it is a root directory is indicated by the trailing period in
the directory portion of the spec. The trailing period is required when defining a
logical name for a root directory. Assume that three subdirectories exist under the
root directory: PROGRAMS, DATA, and USER. A reference to one of the directories
can be made using the logical name XDA_ROOT:

$ directory xda_root: [user]

Directory DISK$PRODUCTS: [XDA.] [USER]

USER-DATA1.DAT USER-DATA2.DAT USER-DATA3.DAT

Notice how VMS displays the directory spec. There are two directory compo­
nents, [XDA.] representing the root directory and [USER] representing the sub­
directory. This double directory syntax appears whenever rooted directories are
used, and is another reason why file specs must only be parsed with the F$PARSE

lexical function, which knows how to deal with the double directory.

It is possible to hide the equivalence string of the logical name by using the
/TRANSLATION_ATTRIBUTES qualifier on the DEFINE command:

$ define xda_root -
disk$products: [xda.]/translation_attributes=concealed

The CONCEALED attribute specifies that the equivalence string is not to be dis­
played. Instead, VMS displays the root logical name without translation:

770 Logical Names

J4.6.2

$ directory xda_root: [userJ

Directory XDA_ROOT: [USERJ

USER-DATA1.DAT;1 USER-DATA2.DAT;1 USER-DATA3.DAT;1

The CONCEALED attribute is associated with the equivalence string, not with
the logical name as a whole. This is the reason the qualifier appears after the
equivalence string in the DEFINE command.

In order to refer to the root directory itself, you use the convention adopted
for referring to the master file directory of a disk. The special directory name
000000 is reserved to signify that the directory reference is to the root directory
(not to a subdirectory named 000000):

$ directory xda_root: [OOOOOOJ

Directory XDA_ROOT: [OOOOOOJ

DATA.DIR;1 PROGRAMS.DIR;1 USER.DIR;1

Total of 3 files.

The root directory contains the three subdirectories mentioned above.

User Addresses

A llser address is a string that identifies the location and name of a VMS user.
For example, NODE1 : : SMITH specifies that user SMITH resides on DECnet node
NODE1. VMS utilities such as MAIL and PHONE require user addresses as the des­
tination of mail messages and phone calls. Utilities that work with user addresses
are designed to accept a logical name in place of an explicit user address. When
a utility receives a logical name, it translates the name and uses the resulting
equivalence string as the user address.

Because a logical name can be used in place of an address, you can define per­
sonallogical names for your friends and associates:

14.6 Other Uses for Logical Names 171

14.6.3

$ define Bill node1::node2: : Smith
$ define Cynthia node13::Jones
$ define Joe node42::Taylor

Once these logical names are defined, you can use them with the PHONE and MAIL
utilities:

$ phone cynthia

-Of-

$ mail message.txt bill,joe /subject="Here is the info I promised."

Search Lists

A logical name with more than one equivalence string is called a search list.
Here is a logical name used to search two of the XDA subdirectories:

$ define xda_files xda_root: [data],xda_root: [user]

The two equivalence strings are separated by a comma. Once this logical name
is defined, it can be used in a file spec just like any other logical name. When
the file spec refers to a single file, VMS searches the directories in order until the
first matching file is located. Once it is located, the search stops:

$ type xda_files:user-data2.dat

. contents offile XDA_ROOT: [USER] USER-DATA2. DAT; 1

On the other hand, if the file spec contains wildcards, thus naming multiple files,
VMS will process all the files that match in any of the directories:

Directory XDA_ROOT: [DATA]

XDA_DATA.DAT;1 XDA_SUMMARY.DAT;3

Total of 2 files.

Directory XDA_ROOT: [USER]

USER-DATA2.DAT;1

Total of 1 file.

172 Logical Names

14.6.4

Search lists are useful when the files you want to access are spread across mul­
tiple directories whose organization is not obvious. Search lists are also useful
when you want to access files in a public directory but supersede some of them
with files in a personal directory. In this case, a search list can be defined whose
first equivalence string is the personal directory and whose second equivalence
string is the public directory. VMS will locate a file in the public directory unless
a file with the same name exists in the personal directory.

When a search list logical name appears in a file spec being used to create a file,
the file is always created in the first directory. It does not matter whether a file

with the same name and type appears in some other directory in the search list.

Product Parameters

Because system logical names are available to everyone on a VMS system, they
are sometimes used as a repository for product parameters. A product param­
eter is an item of information required by a software product in order to control
its operation. A good example is the time zone required by VAX LISP to sup­
port its time manipulation functions. Because VMS does not provide time zone
information, VAX LISP relies on the system manager to establish a logical name
containing the local time zone. This logical name is called LISP$TIME_ZONE,

and its equivalence string is an integer or floating-point number specifying the
local time zone relative to Greenwich Mean Time (e.g., 5 for Massachusetts,
U.S.A.).

You should give careful consideration to the idea of using logical names for prod­
uct parameters before you embark on such a scheme. There are two problems
inherent in the technique:

• Someone has to ensure that the logical names are defined whenever the sys­
tem is booted. The product installation procedure or the system manager
must create a procedure containing the logical name definitions. The sys­
tem manager must remember to invoke the procedure from the site-specific

startup procedure.

• If the product has many parameters, the system logical name table will be­
come cluttered with logical names. This takes up system memory and can be

annoying when someone is displaying system logical names. When a prod­
uct has more than a few parameters, it might be better to place them in a data
file that the product reads when it starts up.

74.6 Other Uses for Logical Names 773

14.7 Obtaining Logical Name Information

Infonnation about a logical name can be obtained with the F$TRNLNM lexical
function. The acronym TRNLNM stands for "translate logical name." The function
has the following fonnat:

f$trnlrun(logical-name, table, index, mode, case, item)

The only required argument is logical-name. It is a string that specifies the
logical name for which infonnation is desired. When only the first argument
is specified, VMS searches the process, job, group, and system logical name
tables for a definition of the logical name. The equivalence string of the first
definition is returned; iterative translation is not perfonned. If the logical name
is not defined in any table, the null string is returned.

Here is an example:

$! The logical name parameter XDA_MANAGER specifies the user who
$! manages the XDA system.
$
$ xda_manager = f$trnlrun("xda_manager")
$ if xda_manager .eqs. 1111 then xda_manager = "SYSTEM"

The F$TRNLNM function is used to translate the logical name XOA_MANAGER, a
product parameter that specifies the user who manages XOA. If the logical name
is not defined, the SYSTEM user is assumed.

The second argument, table, specifies the logical name table to search for the log­
ical name. By default, the process, job, group, and system tables are searched,
in that order. To restrict the search to a particular table, specify a table argu­
ment of "LNM$PROCESS", "LNM$JOB", "LNM$GROUP", or "LNM$SYSTEM". Sec­
tion 14.10 describes logical name tables in more detail.

The third argument, index, specifies the index of the equivalence string to be
returned. The default value is 0, which is the index of the first or only equivalence
string. When the logical name is a search list, the additional equivalence strings
are numbered 1, 2, and so on. The following code displays all the equivalence
strings for the logical name XOA_FILES:

774 Logical Names

$ i = -1

$10: i = i + 1
$ string = f$trnlnm("xda_files", ,i)
$ if string .eqs. 1111 then gate 19
$ display "#", i, ": ", string
$ goto 10
$19:

The symbol I is used as the index argument to the F$TRNLNM function. Each
equivalence string is displayed. The loop terminates when F$TRNLNM returns
the null string, signifying that there are no more equivalence strings.

The fourth argument, mode, is used to select the access modes that are searched
for the logical name. The argument is a keyword string, one of the following:
"USER", "SUPERVISOR", "EXECUTIVE", or "KERNEL". The lexical function
first looks for a logical name defined at the specified mode, then at the next most
privileged mode, and so on. Logical names defined at less privileged modes
are ignored. The default is user mode, which means that all logical names are
searched and the value of the least privileged one is returned. Access modes are
described in detail in Section 14.4.

The fifth argument, case, determines whether the logical name search is sensitive
to the case of the letters in the logical name. By default, the search is case-blind,
which means that the case of the logical-name argument can be ignored. VMS
first searches for a logical name that matches the case of the first argument. If
this fails, it searches for a logical name ignoring the case of the argument. When
the search is case-sensitive, VMS searches only for a logical name whose case
exactly matches the first argument. The case argument is specified as a keyword
string, either "CASE_BLIND" or "CASE_SENSITIVE".

The sixth argument, item, specifies which item of information about the logical
name is to be returned by the function. This argument is a keyword string; some
choices are described in Table 14.3. The default item is VALUE, which returns
the equivalence string.

Prior to VMS Version 4, logical names were translated with the F$LOGICAL

function. The F$LOGICAL function is superseded by F$TRNLNM and should no
longer be used.

74.7 Obtaining Logical Name Information 775

14.8

Table 14.3 F$TRNLNM Items

Keyword Type Description of Result

"ACCESS_MODE" String One of the following keywords to specify the access
mode of the logical name: "USER", "SUPERVISOR",
"EXECUTIVE", "KERNEL".

"CONCEALED" Boolean "TRUE" or "FALSE" to indicate whether the CONCEALED
attribute was specified on the equivalence string.

"LENGTH" Integer The length of the equivalence string.

"MAX_INDEX" Integer The largest equivalence string index associated with the
logical name. Note that this is 1 less than the number
of equivalence strings, because the index is zero-based.

"TABLE" Boolean "TRUE" or "FALSE" to indicate whether the logi-
cal name is the name of a logical name table (see
Section 14.10).

"TABLE_NAME" String The name of the table where the logical name was
located.

"VALUE" String The equivalence string.

Deleting Logical Names

A logical name is removed from a logical name table with the DEASSIGN com­
mand. The command requires a single parameter, the logical name to be deleted:

$ deassign market_report_texts

The DEASSIGN command accepts the same logical name table qualifiers as the
DEFINE command: /PROCESS, / JOB, /GROUP, /SYSTEM. The process table is
the default.

The DEASSIGN command corresponds to the ASSIGN command, which is not
used in this book. In order to create a command that corresponds more closely
to the DEFINE command, the following personal command can be defined:

$ undefine = "deassign"

Then a logical name can be deleted as follows:

$ undefine market_report_texts

776 Logical Names

14.9 Overview of VMS Directory Organization

The VMS system directories are organized under a root directory on the system
disk. The system disk is referred to with the logical name SYS$SYSDEVICE. The
root directory is actually a search list defined by the logical name SYS$SYSROOT.
Because all VMS files are located under the root directory, SYS$SYSDEVICE is
rarely used, SYS$SYSROOT being the preferred method of accessing the files.

A system disk can contain mUltiple VMS systems, so each is given a number
from 0 through 15. The root directory for system 0 is SYSO; the following ex­
planation will concern itself with system O. The logical name SYS$SYSROOT
is a search list whose equivalence strings are the logical names SYS$SPECIFIC
and SYS$COMMON. These logical names, in tum, refer to two root directories,
one for the system-specific system directories and one for the common system
directories shared by all systems. This double root scheme is quite powerful.

The majority of VMS files reside in subdirectories under the common root di­
rectory. The logical name SYS$COMMON refers to this directory, whose complete
spec is SYS$SYSDEVICE: [SYSO. SYSCOMMON . J. Under the common root di­
rectory are subdirectories, such as SYSEXE and SYSHLP which contain the VMS
files. When your VAX is part of a VAXcluster, it shares the same common root as
the rest of the nodes in the cluster (there are exceptions to this rule). In this way,

all the nodes in the cluster run the same version of VMS and share clusterwide
data files, such as the user authorization file in the SYSEXE directory.

The logical name SYS$SPECIFIC refers to a second root directory whose com­
plete spec is SYS$SYSDEVICE: [SYSO.]. Under the specific root directory is
another complete set of VMS directories, also including SYSEXE, SYSHLP, and
so forth. This is a separate collection of directories from the ones under the com­
mon root. In these directories reside files that are specific to the incarnation of
VMS running on the local node. Because the search listSYS$SYSROOT specifies
SYS$SPECIFIC before SYS$COMMON, a file in the specific directories will super­
sede one with the same name and type in the common directories. This allows

the local node to have a private copy of a file normally found in the common
directories and shared by all nodes. In a VAXcluster, each node has its own set
of specific system directories. The specific directories contain only a few files,
those which are specific to the node and which must supersede the common files.

As an example, assume a VAXcluster with two nodes, HUMPTY and DUMPTY.
HUMPTY is assigned root 0 on the system disk, DUMPTY is assigned root 1. On
both nodes, SYS$SYSROOT is a search list whose equivalence strings are the log­

ical names SYS$SPECIFIC and SYS$COMMON. On HUMPTY, the SYS$SPECIFIC

14.9 Overview of VMS Directory Organization 177

Table 14.4 System Logical Names

Logical Name Description

SYS$COMMON The root directory of the system directories common to all nodes in
a VAXcluster.

SYS$HELP The directory of system help files.

SYS$LIBRARY The directory of system macro and text libraries.

SYS$MANAGER The directory of the system manager files.

SYS$MESSAGE The directory of the system message files.

SYS$NODE The DECnet node name of the local system.

SYS$SPECIFIC The root directory of the system directories specific to the local
node.

SYS$SYSDEVICE The disk containing the system directories.

SYS$SYSROOT The search list used to access all files in the system directories. Its
equivalence strings are SYS$SPECIFIC and SYS$COMMON.

SYS$SYSTEM The directory containing system programs and procedures.

SYS$UPDATE The directory containing system installation and update files.

logical name translates to SYS$SYSDEVICE: [SYSO.], while on DUMPTY it trans­
lates to SYS$SYSDEVICE: [SYS1.]. Under these two specific roots are sepa­
rate sets of the system directories SYSEXE, SYSHLP, and so on. Because the
system directories are separate, each node can have private copies of system
files in them, which will supersede the common files because the specific di­
rectory is mentioned first in the search list. On HUMPTY, SYS$COMMON trans­
lates to SYS$SYSDEVICE: [SYSO. SYSCOMMON.], while on DUMPTY it translates
to SYS$SYSDEVICE: [SYS1. SYSCOMMON.] . These two directories act as the root
for a third, shared set of system directories, which contains the majority of VMS
files. Because both roots share the same subdirectories, both nodes are accessing
the same copy of system files.

Assume that HUMPTY attempts to access the user authorization file SYSUAF . DAT,

which resides in the SYSEXE directory. If it has its own copy of the file in the
specific directory SYS$SYSDEVICE: [SYSO. SYSEXE] , that copy is accessed. If
it does not, the shared copy in SYS$SYSDEVICE: [SYSO. SYSCOMMON . SYSEXE]

is accessed. The shared copy is available to the entire cluster.

This specific/common directory scheme is used on every VMS Version 5 sys­
tem regardless of whether it is a cluster. Each of the system directories SYSEXE,

178 Logical Names

14.10

SYSHLP, and so on has its own logical name defined so that files in these directo­
ries can be accessed without having to understand the whole scheme. Table 14.4
describes many of the system logical names.

Overview 01 Logical Name Tables

Every logical name resides in a logical name table. Each logical name table is
assigned a name so that it can be specified in various commands and system
requests. For example, a logical name can be looked up in a table by specifying
the name of the table and the name of the logical name. There are four standard
logical name tables available to every process:

Process. The process logical name table is called LNM$PROCESS_TABLE.

Job. The job logical name table is called LNM$JOB-.ijj, where jjj is a unique
number for the job.

Group. The group logical name table is called LNM$GROUP _ggg, where ggg is
the group number.

System. The system logical name table, that which is shared by all processes,
is called LNM$SYSTEM_ TABLE.

In order to determine the value of the system logical name SYS$HELP, you must
ask the system to "look up the logical name SYS$HELP in the logical name table
LNM$SYSTEM_ TABLE." This is referred to as translating the logical name. In a
command procedure, logical name translation is performed with the F$TRNLNM

lexical function.

To eliminate the requirement that you know the obscure names of various logical
name tables such as LNM$JOB_8021BC60, four logical names are defined to refer
to the four standard logical name tables. Note the recursive nature of this scheme:
logical names refer to logical name tables, which contain logical names. The
logical names for the standard logical name tables are as follows:

Process. The logical name LNM$PROCESS refers to the process logical name
table.

Job. The logical name LNM$JOB refers to the job logical name table.

Group. The logical name LNM$GROUP refers to the group logical name table.

System. The logical name LNM$SYSTEM refers to the system logical name table.

This scheme, although it is already rather complex, has two shortcomings:

14. 10 Overview of Logical Name Tables 179

• There is no place for the logical names that refer to logical name tables to
reside.

• In order to look up a logical name, the user has to know in which logical
name table it resides.

Both of these shortcomings are eliminated with the introduction of logical name
table directories. A logical name table directory, or simply directory, contains
a list of logical name tables and logical names that refer to logical name tables.
Instead of requesting VMS to "look up this logical name in this table," you can
now request it to "look up this logical name in certain tables listed in this logical
name table directory." This request is inherently easier to formulate, because
there are far fewer directories than there are logical name tables.

In fact, there are two logical name table directories. The first is associated with a
process and contains the name of the process logical name table. It also contains
logical names that refer to the process, job, and group logical name tables. In
addition, it contains the name of the process logical name table directory itself:
LNM$PROCESS_DIRECTORY.

The second directory is the system logical name table directory. There is one
such directory for the entire system, shared by all users. The system directory
contains the name of all the job logical name tables, group logical name tables,
and the system logical name table. It contains various logical names that refer
to collections of logical name tables. And finally, it contains the name of itself:
LNM$SYSTEM_DIRECTORY.

Three of the logical names in the system directory are of particular interest:

LNM$FILE_DEV. This logical name is defined as a search list of logical name
tables that are to be used when parsing a file spec. The default value of this
logical name is the list LNM$PROCESS, LNM$JOB, LNM$GROUP, LNM$SYSTEM.

It is this default list that causes the file spec parsing service to search for
logical names first in the process table, then in the job, group, and system
tables.

LNM$DCL_LOGICAL. This logical name is used by the SHOW LOGICAL command
and F$TRNLNM lexical function to determine which logical name tables to
search for the logical name being translated. By default, LNM$DCL_LO G I CAL

refers in turn to the logical name LNM$FILE_DEV.

LNM$DIRECTORIES. This logical name is defined as a search list ofthe two log­
ical name table directories: first LNM$PROCESS_DIRECTORY and then second
LNM$SYSTEM_DIRECTORY.

180 Logical Names

The logical name table scheme presented here makes logical names relatively
easy for the average user to deal with. But never let it be said that the scheme
is simple. The following is a list of the contents of the two logical name table
directories on a small VMS system:

(LNM$PROCESS_DIRECTORY)

IILNM$GROUp lI = IILNM$GROUP_000260 11

IILNM$JOB II = IILNM$JOB_802E9DDO II

IILNM$PROCESS II = IILNM$PROCESS_TABLE II

IILNM$PROCESS_DIRECTORY" [table] =
IILNM$PROCESS_TABLE II [table]

(LNM$SYSTEM_DIRECTORY)

IILMF$LICENSE_TABLE" [table] = II"
IILNM$DCL_LOGICAL II = IILNM$FILE_DEVII
"LNM$DIRECTORIES II = "LNM$PROCESS_DIRECTORY II

= "LNM$SYSTEM_DIRECTORY II

IILNM$DT_FORMAT_TABLEII [table] = II"
"LNM$FILE_DEVII [super] = IILNM$PROCESS II

"LNM$JOB"
= "LNM$GROUp lI

= IILNM$SYSTEM II

IILNM$FILE_DEVII [exec] = "LNM$SYSTEM"
IILNM$GROUP_000001 11 [table]
IILNM$GROUP_000010 11 [table]
IILNM$GROUP_000201 11 [table]
"LNM$GROUP_000260 11 [table]
IILNM$JOB_802E8EOO II [table]
IILNM$JOB_802E94EO II [table]
"LNM$JOB_802E9DDO" [table]
IILNM$JOB_802E9E80 11 [table]
IILNM$JOB_802E9F30" [table]
IILNM$JOB_802EACFO II [table]
IILNM$JOB_802EBABO II [table]
"LNM$JOB_802FOC80" [table]
IILNM$JOB_802F3880" [table]
IILNM$JOB_802F3EBO II [table]
IILNM$JOB_802F4380 11 [table]

1111

1111

1111

1111

1111

1111

1111

1111

14. 10 Overview of Logical Name Tables 181

"LNM$PERMANENT_MAILBOX" = "LNM$SYSTEM"
"LNM$STARTUP_TABLE" [table] = ""
"LNM$SYSTEM" = "LNM$SYSTEM_TABLE"
"LNM$SYSTEM_DIRECTORY" [table] = ""
"LNM$SYSTEM_TABLE" [table] = ""
"LNM$TEMPORARY_MAILBOX" = "LNM$JOB"
"LOG$GROUP" = "LNM$GROUP"
"LOG$PROCESS" = "LNM$PROCESS"

= "LNM$JOB"
"LOG$SYSTEM" = "LNM$SYSTEM"
"TRNLOG$_GROUP_SYSTEM" = "LOG$GROUP"

= "LOG$SYSTEM"
"TRNLOG$_PROCESS_GROUP" = "LOG$PROCESS"

= "LOG$GROUP"
"TRNLOG$_PROCESS_GROUP_SYSTEM" = "LOG$PROCESS"

= "LOG$GROUP"
= "LOG$SYSTEM"

"TRNLOG$_PROCESS_SYSTEM" "LOG$PROCESS"
= "LOG$SYSTEM"

782 Logical Names

Chapter 15

Sequential File Operations

Chapters 13 and 14 described VMS files and presented methods for manipulating
files as a whole. This chapter begins the presentation of DeL commands that
operate on the contents of files: commands for reading, writing, and updating
files. In particular, this chapter addresses sequential files, which are collections
of data that can only be accessed in order from beginning to end. Chapter 17
addresses indexed files.

When a program performs file operations such as reading and writing, the oper­
ations are carried out by the VMS Record Management System, or RMS. This
chapter and later chapters will refer to RMS when discussing file operations.

A sequential file is a file made up of a sequence of individual records. Each
record contains some logically related information, while all the records taken
together contain the sum total of information in the file. One of the distinguishing
features of sequential files is that the records are arranged in a particular sequence
and can only be accessed in that order. The file is written one record at a time,
from beginning to end, and afterwards can only be read in the same order.

The records in a sequential file can be composed of free-format text, or they
can be layed out in a predefined format called a record structure. This chapter
assumes that sequential files contain free-format text; record structures are de­
scribed in the next two chapters. In a sequential free-format text file, or simply
text file, each record can contain a different amount of text; the length of all

783

JS.l

I> Ch. 20

records need not be the same. Such records are called variable-length records.

A text file can also have fixed-length records, but those files are not as common.

A program source file is one example of a text file. In particular, a DeL procedure

is contained in a text file. Text files can be created and modified using a text

editor, such as TPU or Emacs.

Reading an Existing File

Before the records in an existing file can be read, the file must be opened. The

process of opening a file prepares it for future input operations. In DeL, files are

opened with the OPEN command, which ensures that the file exists and determines

whether the process is allowed to read the file. The OPEN command requires two

parameters, a logical name and the specification of the file to be opened:

$ open/read xda_data_file sys$manager:user-list.dat;

The /READ qualifier specifies that the file is to be opened for read access. Records

can be read from the file, but the file cannot be modified. The first parameter is

a logical name (not a symbol), which is assigned by the OPEN command to refer

to the opened file. The logical name is used in subsequent commands that need

to access the open file (e.g., the READ command to obtain records from the file).

The second parameter is a file spec that identifies the particular file to be opened.

The file is opened as a process-permanent file, which means that it remains open

until it is explicitly closed by a subsequent CLOSE command or until the user logs

out. The logical name is not equated to the full file spec of the open file. Instead

it is equated to a binary-coded string containing an internal reference to the file.

If, after the file is opened, you use the logical name in other DeL commands, the

command will operate on the open file. In particular, the READ command will

read records from the file.

If the file does not exist or cannot be opened for some other reason, an error status

is returned by the OPEN command and the procedure's error handler is invoked.

This fatalistic behavior may not be acceptable in a sophisticated procedure, par­

ticularly if the file spec was entered by the user in response to a query. The

/ERROR qualifier can be used on the OPEN command to specify a label at which

execution should proceed if an error occurs. The following code continually

prompts the user for a file spec until the file can be opened:

784 Sequential File Operations

$10: libcall ask xda_file s "Enter a file spec:"
$ open/read xda_data_file 'xda_file /error=15
$ goto 19
$15: libcall signal xda w badfile -

"File "xda_file cannot be opened." '$status
$ goto 10
$19:

If any error occurs while opening the file, DCL continues execution at label 15
rather than with the command following the OPEN. A warning is signaled and the
user is prompted for another file spec. The warning message includes a second
line containing the RMS status message.

Once a file has been opened successfully, records can be retrieved from it with
the READ command. Each READ command obtains the next sequential record
from the file and stores its contents in a symbol. The command requires two
parameters: the logical name defined by the open operation, and the symbol in
which the retrieved record is stored:

The next record is read from the file specified by logical name XDA_DATA_FILE

and then the record is stored in the symbol LINE. In a fashion identical to the
OPEN command, any errors are returned by the READ command and cause the
procedure's error handler to be invoked. The IERROR qualifier can be used to
override this behavior; it specifies a label at which execution should continue if
an error occurs:

$ read xda_data_file line /error=20

If the entire file has been read and no more records are available, the end-of­
file condition occurs. DCL treats this condition as an error, so an error status is
returned from the READ command or, if the IERROR qualifier is present, execution
continues at the error label. Because end-of-file is a common condition that is
often not treated as an error, a separate qualifier is provided to name a handler for
it. The lEND_OF _FILE qualifier specifies a label to which DeL branches when
end-of-file is detected:

If end-of-file occurs on this read operation, execution continues at label 30. If
any other error occurs, execution continues at label 20.

15. 1 Reading an Existing File 185

I> Ch. 20

Once all the necessary records have been read from a file, it must be closed. The
close operation relinquishes access to the file and deassigns the logical name
defined by the open operation:

The following loop reads and displays the file specified by symbo}:,FILE_SPEC:

$ open/read xda_data_file 'file_spec /error=5
$ goto 10
$5: libcall signal xda W openerr -

"Unable to open file "file_spec'" '$status
$ goto 20
$10: read xda_data_file line /end_of_file=19
$ display line
$ goto 10
$19: close xda_data_file
$20:

It is crucial that an application close every file it opens. If a file is not closed
explicitly by the application, it will not be closed automatically when the main
procedure exits, because files opened by DCL are process-permanent files. The
file remains open until the process terminates; in particular, it is still open if the
application is run again. You might think that the second OPEN command would
"reopen" the file by first closing and then opening it, but in fact the second OPEN
command does absolutely nothing: it does not close the file, it does not open
it a second time, nor does it return any kind of error status. Because a file is
opened as a process-permanent file, DCL assumes that any subsequent OPEN
commands using the same logical name need to access the file that is already
opened. Therefore, the file remains in the state it was when the application
terminated the first time, perhaps partly read or at end-of-file.

To ensure that all files are closed, a procedure that opens a file should close it in
two places. First, the procedure should close the file as soon as it has no further
need for the file. This means that a file is closed as soon as possible so that unused
open files don't take up system resources. Second, the procedure should include
cleanup code to close the file. This guarantees that the file is closed regardless of
whether the procedure terminates normally or due to an error or interrupt. The
CLOSE command in the cleanup code should include the /NOLOG qualifier, which
suppresses any error messages if the file was already closed by the procedure in
its normal course of execution. Here is the preceding example with cleanup code
added:

786 Sequential File Operations

15.2

$ open/read xda_data_file 'file_spec /error=5
$ goto 10
$5: libcall signal xda w openerr -

"Unable to open file "file_spec'" '$status
$ goto 20
$10: read xda_data_file line /end_of_file=19
$ display line
$ goto 10
$19: close xda_data_file
$20:

$exit:
$ set noon
$ close/nolog xda_data_file Close data file if left open.
$ exit status .or. %x10000000

Creating and Writing a New File

A DeL application can create a new sequential file and write records to it. The
create operation is distinct from the write operation. There are many ways to
create a new file, but the simplest way is to let the OPEN command do it:

$ open/write xda_new_file xda_system:xda_user-data.dat;/error=20

When the /WRITE qualifier is specified, the OPEN command either creates the
specified file or returns an error. The rules are simple:

• [f the specified file does not exist, it is created.

• If the specified file does exist:

- If an explicit version is not included in the file spec (as in the preceding
example), then a new version of the file is created with a version number
higher than all existing versions.

- If an explicit version is included and that version of the file does not exist,
it is created.

- If an explicit version is included and that version already exists, an er­
ror status is returned. The OPEN/WRITE command cannot be used to
overwrite an existing file or to add records to it.

Once the file is created, the OPEN/WRITE command behaves exactly like the
OPEN /READ command. The logical name is defined to refer to the file, so that
subsequent WRITE and CLOSE commands can use it.

75.2 Creating and Writing a New File 787

The WRITE command has been covered in previous chapters as it pertains to
displaying information at the terminal. The same command is used to write
records to a sequential file:

The first parameter is the logical name defined by the OPEN command. The
second parameter is an expression or list of expressions whose values are to
be written together as one record. In the preceding example, the symbol LINE

contains the record to be written. A write operation always creates exactly one
record in the file.

The following example creates a new data file containing a list of the files in the
system manager's directory. The list includes the modification dates of the files.

$ open/write xda_new_file sys$manager:file-list.dat
$10: file = f$search("sys$manager:*.*;")
$ if file .eqs. "" then goto 19
$ write xda_new_file file, " ", f$file_attributes(file,"RDT")
$ goto 10
$19:
$ close xda_new_file

Notice that the argument to the F$SEARCH function includes an explicit semi­
colon so that only the latest version of each file is located. This prevents the list
from containing multiple versions of the same file.

The WRITE commands illustrated above are limited to writing records of 1,024
bytes or less. Furthermore, the value of each individual expression is limited to
255 bytes. These limitations can be relaxed by including the /SYMBOL qualifier
on the command, which allows expressions and records of up to 2,048 bytes.
However, use of the /SYMBOL qualifier places another restriction on the WRITE

command: the expressions specified in the command must be symbols; no string
literals, lexical functions, or operators are allowed. When you want to write more
than 1,024 bytes, you must build the output string in a symbol and then specify
the symbol on the WRITE command.

The WRITE command exhibits one quirk when it creates a new file. Programmers
familiar with VMS would expect it to create a standard sequential file with the
carriage return carriage-control attribute, a file normally referred to as a text
file. Such a file can be displayed, printed, edited with all available editors, and
otherwise processed by any VMS utility or application. In fact, however, the
command creates a sequential file containing records in the variable with fixed

788 Sequential File Operations

15.3

control (VFC) format. Each record has a 16-bit header whose contents are not
available to the DCL programmer.

Some editors and utilities cannot deal with VFC files. If you encounter a problem
with VFC files, use the CREATE command to create the file, rather than allowing
the WRITE command to do so. The CREATE command creates a standard text
file and then reads lines from SYS$INPUT to populate the file. During execution
of a procedure, SYS$INPUT is directed to the procedure file, so data lines in the
procedure will end up as records in the file. If there are no data lines, the file will
be empty:

$ create sys$manager:file-list.dat
$! There are no data lines, so the file will be empty.

Once the empty file is created, you can add records by opening the file and
appending new records.

Appending to an Existing File

Additional records can be added to an existing sequential file by opening the file
for append. Once a file is opened for append, write operations cause records to
be added to the end of the file:

$ open/append xda_data_file sys$manager:file-list.dat;

In all other respects, a file opened for append behaves identically to a file opened
for write.

The / APPEND qualifier is particularly useful when writing to an empty file made
with the CREATE command. The file is a standard text file, not a VFC file, and
thus DCL will write standard text records into it. Here is another example of
creating a file list using the CREATE command:

$ create sys$manager:file-list.dat
$ open/append xda_new_file sys$manager:file-list.dat
$10: file = f$search("sys$manager:*.*;")
$ if file .eqs. "" then goto 19
$ write xda_new_file file, " ", f$file_attributes (file, "RDT")
$ goto 10
$19:
$ close xda_new file

75.3 Appending to an Existing File 789

15.4

I> Apx. C

Temporary Files

A DCL application often needs a temporary file to contain data for a short pe­
riod of time. A temporary file is created by the procedure, filled with records,
processed, and then deleted. The file does not exist after the application termi­
nates. There are two important differences between temporary and permanent
files.

The first difference concerns the location and name chosen for the temporary file.
A temporary file should not be placed in the working directory or the directories
dedicated to the VMS system and other software products. Temporary files will
clutter those directories and confuse anyone looking in them. Don't forget that
many users may be running your application or other similar applications. Tem­
porary files should be placed in a directory dedicated to containing short-lived
data. VMS provides a standard logical name, SYS$SCRATCH, which can be de­
fined to refer to such a directory. When you log in, SYS$SCRATCH refers to your
login directory, but you can certainly redefine it to a personal or systemwide
directory created expressly for the purpose of containing temporary files.

The file name of a temporary file must be carefully chosen so that it does not
duplicate the name of another temporary file. If two DCL applications create the
file TEMP. DAT in the same directory, the results will surely be unpredictable. A
unique name must be generated with a zero or diminishingly small probability
of duplication. The process of generating a unique name is performed often
enough so that it deserves a subroutine in the subroutine library. The subroutine
is called UNIQUE_NAME and requires two parameters: a global symbol to be set
to the generated name, and a pattern specifying how the name is formatted. The
pattern can contain arbitrary text, but must include a question mark (?) to specify
the position in which the unique portion of the name is inserted. The unique
portion of the name is a ten-digit number. The subroutine is used in the following
example:

$ libcall unique_name xda_temp sys$scratch:xda_?dat

The global symbol XDA_ TEMP will be set to the unique name, which consists
of the prefix SYS$SCRATCH: XDA_ plus the unique portion plus the suffix . DAT.

The unique portion consists of ten decimal digits, which are generated from the
current time. The preceding subroutine call might return the following file spec:

SYS$SCRATCH:XDA_1643296105.DAT

790 Sequential File Operations

The second difference between temporary and permanent files is that temporary
files must be deleted before the application terminates. It is best to delete them
as soon as they are no longer needed. In order to ensure that a temporary file
is deleted, the DELETE command should be placed in the cleanup code of the
procedure that created it. The following code creates a temporary file containing
the names of the data files in the system manager's directory and mails it to the
system manager:

$ libcall unique_name xda_data_list sys$scratch:xda_?lis
$ directory/output='xda_data_list sys$manager:*.dat;
$ mail 'xda_data_list system -

/subject=IIList of data files in SYS$MANAGER II

. continue processing

$exit:
$ set noon
$ if f$type(xda_data_list) .nes. '"' then -

if f$search(xda_data_list) .nes. 1111 then -
delete 'xda_data_list;*

. more cleanup

A temporary file spec is generated and used in the /OUTPUT qualifier of the
DIRECTORY command. The list of data files is therefore placed in the temporary
file. The MAIL command sends this file to the system manager with an appro­
priate subject. The procedure's cleanup code includes three lines that delete the
temporary file. These lines perform the following functions:

1. The first line ensures that the global symbol XDA_DATA_LIST exists. It is
possible that an interrupt or error occurred before the symbol was created by
the UNIQUE_NAME subroutine and therefore there is no file to delete.

2. The second line ensures that the temporary file does indeed exist. It is pos­
sible that an interrupt occurred between the call to UNIQUE_NAME and the
completion of the DIRECTORY command.

3. The third line deletes the temporary file. Note that it deletes all versions of
the file, just in case more than one was created.

The following example illustrates the technique for handling temporary files
created with the OPEN command:

15.4 Temporary Files 191

15.5

$ libcall unique_name xda_data_file sys$scratch:xda_?tmp
$ open/write xda_data_file 'xda_data_file

: process file

$exit:
$ set noon
$ close/nolog xda_data_file
$ if f$type(xda_data_file) .nes. I'"~ then -

if f$search(xda_data_file) .nes. "" then -
delete 'xda_data_file;*

. more cleanup

A unique file spec is generated and used in the OPEN command to create a tem­
porary file and prepare it for writing. There is no reason to believe that the OPEN

command will fail, so no /ERROR qualifier is specified; an error will cause the
usual error handler to be invoked. Once open, the file is processed and eventu­
ally closed. The cleanup code must perform two operations on the temporary
file. It must close the file if still open, and it must delete the file.

The SYS$SCRATCH directory exists as a standard place in which to put scratch
files. VMS does not automatically delete files in this directory.

Displaying a File

There are two ways in which a procedure can display a sequential file at the
terminal. If the records are to be displayed exactly as they appear in the file, and if
the file is to be displayed in its entirety, then the TYPE command can be used. The
TYPE command writes the file's records to SYS$OUTPUT, which normally refers
to the terminal screen. The records are displayed without pausing, unless the
/P AGE qualifier is included, in which case the records are displayed one screenful
at a time. The following example asks the user for a file spec and displays the
file screen by screen:

$ libcall ask xda_file s "File to display:"

$ type/page 'xda_file

I> Ch. 9 It is courteous to allow the user to cancel the file display with <CTRL/y>. Only
two lines must be added to this example:

192 Sequential File Operations

15.6

$ libcall ask xda_file s "File to display:"
$ on control_y then goto 19
$ type/page 'xda_file
$19: on control_y then goto control_y

Another way to display sequential files is to read them one record at a time and
display each record individually. This method allows much finer control over
which records are displayed, how many are displayed, and the format of the
display. The disadvantage is that the method is significantly slower than using
TYPE. The following code displays the first five nonblank lines in a file:

$10: libcall ask xda_file s "File to summarize:"
$ open/read xda_file 'xda_file /error=20
$ goto 19
$20: libcall signal xda y filnotfnd -

"File "xda_file does not exist."
$ goto 10
$19:
$ n = 0
$20: read xda_file line /end_of_file=29
$ if f$edi t (line, "TRIM") . eqs. "" then goto 20
$ n = n + 1
$ display line
$ if n .It. 5 then goto 20
$29:
$ close xda_file

The F$EDIT function is used to trim the trailing spaces from the line. If this
results in the null string, then the line is blank and another line is immediately
read. The loop terminates after the fifth nonblank line is displayed.

Searching Files

Certain DCL applications, particularly those in the domain of code management,
system building, or system testing, require that text files be searched for oc­
currences of specific character sequences. For example, a procedure may need
to search a set of files generated by a testing procedure for occurrences of the
sequence II ERROR II. VMS provides the SEARCH utility to assist with searching
files. You could read and scan the lines of a text file directly in DCL, but such a
procedure would be unacceptably slow for all but the smallest files.

75.6 Searching Files 793

Table 15.1 How /MATCH AHects Searching

Qualifier Default? Method of Matching

/MATCH=OR

/MATCH=AND

/MATCH=NOR

/MATCH=NAND

.J A text line matches if it contains any of the pattern strings.

A text line matches if it contains all of the pattern strings.

A text lines matches if it contains none of the pattern
strings.

A text lines matches if it contains some but not all of the
pattern strings.

The SEARCH utility requires two parameters: the specification of the files to be
searched, and an indication of what to search for (known as the search pattern).
The utility can' search a single file or any number of files that match a wildcard
spec. The output from the utility consists of a listing of those lines in the files
that match the search pattern. The output is normally directed at the terminal but
can be redirected, as usual, with the /OUTPUT qualifier.

The search pattern is specified as one or more character strings in conjunc­
tion with the /EXACT and /MA TCH qualifiers. The /EXACT qualifier determines
whether the pattern strings must match the text exactly (lEXACT) or may match
without regard to uppercase and lowercase letters (lNOEXACT). The default is
/NOEXACT. Table 15.1 describes how the /MATCH qualifier determines the method
of searching when used in conjunction with the pattern strings.

The SEARCH command accepts various other qualifiers, which control the amount
and format of its output. One important feature of the command is the status code
it returns. If any matches are found, the status code includes a success severity. If
no matches are found, the status code includes an informational severity. Neither
status is an error, but the two cases can be distinguished by the severity of the
status.

The following example repeatedly asks the user for a file spec and tells the user
whether the file contains the sequence "ERROR" or "WARNING":

794 Sequential File Operations

$10: libcall ask xda_file s "File to be searched:"
$ if f$search(xda_file) .nes. 1111

$ then
$ search/output=nl: 'xda_file "error","warning"/match=or
$ match = $severity .eq. 1
$ if match then display liThe file contains errors."
$ if .not. match then display liThe file contains no errors."
$ else
$ libcall signal xda w filnotfnd -

"File "xda_file does not exist."
$ endif
$ goto 10

The /OUTPUT qualifier is used to discard all the output from the SEARCH com­
mand by directing it to the null device. Therefore, the only interesting result of
the command is the status code it returns. If a success status is returned, then the
file contains the pertinent sequences. If an informational status is returned, the
file does not contain the sequences.

15.6 Searching Files 195

Chapter 16

J6. J

196

Data Manipulation

This chapter presents various techniques and tricks for manipulating data in
DeL. The techniques include methods for performing simple arithmetic op­
erations, character string manipulation, and calculations related to dates and
times.

Arithmetic Techniques

DeL provides only rudimentary arithmetic operations on integer values. Ap­
plications often require more sophisticated operations, which must be built up
out of the operations that DeL provides. This section illustrates a few of the
advanced operations and how they can be achieved in DeL.

The "maximum" function examines two or more integers and returns the largest
one. The "minimum" function is similar but returns the smallest integer. These
functions are not provided by DeL but can be implemented as follows:

$! Determine the largest of the values A, B, and C.
$
$ max = a
$ if b .gt. max then max = b
$ if c .gt. max then max = c

-or-

$! The block count is equal to the total file blocks, but can be
$! no larger than 600, i.e., minimum(total-file-blocks, 600).
$
$ block_count = total_file_blocks
$ if block_count .gt. 600 then block_count = 600

Sometimes it is necessary to round a number to a multiple of a particular integer.
For example, when calculating the number of bytes a file will occupy, it makes
sense to round up to a multiple of 512, since disk space is always allocated in
units of 512-byte blocks. The following code rounds up the value in BYTES to a
multiple of 512:

$ bytes = (bytes + 511) / 512 * 512

Because division truncates the quotient towards zero, the result of the division
is always an integer. The multiplication is therefore guaranteed to produce an
integer multiple of 512. By first adding 511, the division operation will round up
rather than down. In general, if the number b is to be rounded up to a multiple
of m, the command is

$ b = (b + m-1) / m * m

A variation on this expression can be used to calculate the remainder upon divid­
ing one number by another. The following command determines the remainder
when dividing A by B:

$ remainder = a - a/b*b

Note that the remainder has the same sign as the dividend.

DeL does not provide floating-point numbers, and it is rather tedious to simulate
them with integers. However, there is one floating-point calculation that is often
useful: determining the ratio of two numbers. This can be accomplished by
multiplying the numerator by 100 and then performing the division:

$ ratio = blocks_used*100 / total_blocks

This command calculates the ratio of disk blocks used to total disk blocks. The
ratio is an integer in the range 0-100, so it can also be displayed as a percentage.
Note that the percentage is rounded down to the nearest integer.

76. 7 Arithmetic Techniques 797

J6.2 Lists

For the purposes of this section, a list is a sequence of data items separated by
commas or some other delimiting character. A character string can contain a list
of items like the following:

"CYNTHIA,PAT,DIRK ,DAVID ,RACHEL ,BILL ,MEREDITH"

-Of-

"TXT,DAT,LIS,EXE,OBJ,CLD"

The first example is a list of people's first names, while the second is a list of file
types. The first list might represent the names of friends to be invited to a party.
The second list might represent the types of files found in a particular directory.

The following code builds a list of all the file types found in the directory whose
file spec is in the symbol DIRECTORY:

$ type_list = ""
$10: file = f$search(directory+"*.*;")
$ if file .eqs. "" then goto 19
$ type = f$parse(file","TYPE") - "."
$ type_list = type_list + "," + type
$ goto 10
$19:
$ type_list = f$extract(1, 9999, type_list)

The list is constructed in the symbol named TYPE_LIST, which is initialized to
the null string before the loop. File types are added to the list by concatenating
each type to the character string in the TYPE_LIST symbol, along with a comma
to separate it from the previous type. When the loop terminates, TYPE_LIST

contains a list of all the file types found in the directory, each separated by a
comma. There will also be a comma at the beginning of the list, which is removed
using the F$EXTRACT function. The function receives a starting index of 1, thus
excluding the first character, and a length of 9999 so that all remaining characters
are included.

The list constructed by the previous example will contain duplicates when there
is more than one file with the same type. Eliminating duplicates requires a little
more code in the loop:

198 Data Manipulation

$

$10:
$
$
$

type_list = 1111

file = f$search(directory+II*.*;II)
if file .eqs. 1111 then goto 19
type = f$parse(file",IITYPE II) - ".11

if f$locate(II,II+type+ II ,II, type_list+II,II)
f$length(type_list)+1 then -

$ type_list = type_list + 11,11 + type
$ goto 10
$ type_list = f$extract(1, 9999, type_list)
$19:

.eq. -

In order to determine whether a type is already in the list, the F$LOCATE function
is used to scan the list for a duplicate type. The F$LOCATE function takes two
arguments: a pattern string and a target string. The target string is scanned for
an occurrence of the pattern string. If the pattern is found, its index in the target
string is returned. If the pattern is not found, the length of the target is returned.
Upon first consideration you might think it would suffice to use the file type as the
pattern and the list as the target, thus scanning for the type in the list. However,
this would fail in the case of two types where one was a substring of the other.

Take the file types DAT and STAR-DATA, for example. If the type list contained
STAR-DATA and a file with type DAT was encountered, it would appear that the
DAT type was already in the list because F$LOCATE would find the "DAT" in
"STAR-DATA". In order to prevent this problem, you must search for the file
type surrounded by commas. Requiring the matches to include a comma on
each end of the file type ensures that only complete file types are matched.

Once a list is constructed, you may want to split it apart into its individual com­
ponents. The F$ELEMENT function is perfect for this task, as illustrated by the
following code, which displays the file types in the list, one per line:

$ i = -1
$20: i = i + 1
$ type = f$element(i, 11,11, type_list)
$ if type .eqs. 11,11 then goto 29
$ display type
$ goto 20
$29:

Imagine the type list as a sequence of types, each with a numerical index. The
leftmost one is number 0, the next 1, and so on. The F$ELEMENT function takes
three arguments: the first is the index of the desired list element; the second,
the delimiter character; and the third, the list itself. The function extracts the
element specified by the index from the list and returns it. If the index specifies

76.2 Lists 799

an element that does not exist, the function returns the delimiter (it does not
return a null string, because a null string is a perfectly valid list element).

The code uses I as the element index, initializing it to -1 before the loop. Each
iteration of the loop increments the index and extracts the next type from the
list. If F$ELEMENT returns a comma, then the list is exhausted and the loop
terminates. If the function does not return a comma, then it returns a file type,
which is displayed. The following table shows the values returned by each call
to F$ELEMENT when the type list is II TXT ,LSP, EXE, STAR-DATA, CLD ,DAT":

Value of I Return Value

0 "TXT"

1 "LSP"

2 "EXE"

3 "STAR-DATA"

4 "CLD"

5 "DAT"

6 " " ,

Do not be tempted to use F$ELEMENT to analyze or split apart such things as file
specs. Assume a file spec is stored in the symbol FILE_SPEC. It is incorrect to
extract the file type and version from the file spec with the following command:

$! Extract everything after the dot preceding the file type.
$
$ type_version = f$element C1, ".", file_spec)

The directory portion of the file spec might contain a dot, and the command
would fail to perform as expected. Even something so foolproof as extracting
the file name/type/version can backfire:

$! Extract everything after the directory's closing bracket.
$

$ name_type_version = f$element(1, "JII, file_spec)

Remember, angle brackets « » are also valid directory delimiters. If they were
present, the command would fail. File specs must be split up using the F$PARSE

I> Ch. 13 lexical function.

200 Data Manipulation

16.3

I> Apx. C

Keywords

A keyword is a character string chosen from among a fixed set of valid strings.
Keywords are used to represent commands or options when the repertoire of such
choices is finite. A keyword is more meaningful than a number (imagine if DCL
commands were chosen by number rather than by verb!). Keywords are used in
lexical functions to control the behavior of the function (e.g., the F$EDIT func­
tion requires keywords to control the kind of string editing performed). Key­
words can also be used by DCL applications when asking the user to choose
among several possible actions. For example, an application that creates many
files in a directory might incorporate a feature to clean up the directory from time
to time. The cleanup function can be controlled by a query such as

$ libcall ask xda_clean_option s -
"Directory cleanup option (DELETE, PURGE, NONE):"

The user must enter DELETE, PURGE, or NONE to choose the desired action. It is
usually helpful if the application allows the keyword to be abbreviated. And a
message should be displayed if the user enters an invalid option. All this "key­
word manipulation" is embodied in the library subroutine LOOKUP _KEYWORD.

This subroutine requires three arguments: a global symbol, which is set to the
result of the lookup; the user's original input; and a list of valid keywords in
alphabetical order. If the user's input is a full or abbreviated keyword in the list,
the global symbol is set to the full keyword. If the user's input is not a valid
keyword or is an ambiguous abbreviation of a keyword, the global symbol is set
to the null string.

Here is the cleanup example expanded to include keyword checking:

16.3 Keywords 201

16.4

$10: libcall ask xda_clean_option s -
"Directory cleanup option (DELETE, PURGE, NONE):II

$ libcall lookup_keyword xda_clean_option -
""xda_clean_option'lI DELETE ,NONE ,PURGE

$ if xda_clean_option .eqs. "II then goto 10
$
$ goto 20_'xda_clean_option
$
$20_DELETE:

. delete files
• I

$ goto 29
$20_NONE:
$ goto 29
$20_PURGE:

. purge files

$29:

Once a valid option is obtained from the user, the keyword is used in a GOTO

command to select the appropriate cleanup code. In the case of the NONE option,
the cleanup code does nothing.

A GOTn command that employs apostrophe substitution to select one of a number
of labels is called a case statement. The value of a symbol is substituted in the
GOTO command to provide part or all of the label name. DCL then alters the
procedure's flow of control to continue at the selected label. The procedure must
be careful to ensure that the label that results after the substitution is present in
the procedure. If not, an error is signaled. When keywords are used to form the
labels, as in the previous example, the use of LOOKUP _KEYWORD guarantees that
the keyword is valid and therefore that the GOTO will work as expected.

Dates and Times

Dates and times are important data items in many applications. VMS uses the
terms time or date interchangeably to refer to dates, times, or combinations of
the two. DCL provides facilities to manipulate times, which are represented as
character strings in the following format:

dd-mon-yyyy hh:mm:ss.cc

202 Data Manipulation

, In this fonnat, dd is the day of the month, mon is a three-letter abbreviation for
the month, yyyy is the year, hh is the hour in 24-hour fonn, mm is the minute, ss is

the second, and cc is the hundredth of a second. This time is called an absolute
time because it denotes a specific time, past, present, or future. There are also
three special absolute times that are relative to the current time. Note that these
are absolute times and therefore represent specific points in time, not time spans:

TODAY. The current day at 00:00:00 (midnight).

TOMORROW. The next day at midnight (24 hours after TODAY).

YESTERDAY. The previous day at midnight (24 hours before TODAY).

The F$TIME lexical function returns the current absolute time. It requires no
arguments and returns the current time as a character string:

$ display "The current time is: ", f$time ()

This command could produce the following display:

The current time is ll-NDV-1988 08:54:36:29

Certain other functions can return times when given the appropriate arguments.
For example, F$FILE_A TTRIBUTES returns the creation time of a file when the
"CDT!! keyword is used:

Occasionally you may want to compare two absolute times to determine which
one is later. To continue the example with F$FILE_ATTRIBUTES, you may want
to determine which of two files was most recently modified. The modifica­
tion time of a file can be obtained with F$FILE_ATTRIBUTES, but it 'will be in
absolute time fonnat. Absolute fonnat is not suitable for comparison because
the fields are not in sort order: the year field is not first and the month field is
alphabetic. The F$CVTIME function can be used to convert an absolute time to a
comparison time, which has the following fonnat:

yyyy-mm-dd hh:mm:ss.cc

A comparison time differs from an absolute time in two ways. The fields are
in sort order, from most signi ficant to least significant. And the month is rep­
resented as a number rather than as an abbreviation. One comparison time A is
greater than another comparison time B if and only if A is later in time than B.

16.4 Dates and Times 203

The F$CVTIME function can accept a rather complex combination of arguments.
In order to convert an absolute time to a comparison time, the first argument
must be the absolute time. The second argument is a keyword string specifying
the type of conversion to be performed; the "COMPARISON" keywbrd requests
that the absolute time be converted to comparison format and returned. The
modification times of two files can be compared as follows:

$ time! = f$cvtime(f$file_attributes(file!, "RDT"), "COMPARISON")
$ time2 = f$cvtime(f$file_attributes(file2,IRDT I),ICOMPARISON")
$ if time! .gts. time2 then action when first later than second

Always convert times to comparison format before trying to compare them.

VMS provides another time format called the delta time. A delta time specifies
the difference between two absolute times. Another way to look at it is that a
delta time specifies a time span, a certain amount of time. The format of a delta
time is as follows:

dddd-hh:mm:ss.cc

In this format, dddd denotes some number of days, hh some number of hours, and
so on. Taken together, the fields specify an amount of time from one hundredth
of a second up to 9,999 days and 24 hours.

Delta times are rarely used by themselves; rather, they are usually used in combi­
nation with absolute times. An absolute time and a delta time specified together
is called a combination time. A combination time has one of the following
formats:

II absolute+delta II
II absolute-delta II

In these formats, absolute represents an absolute time and delta represents a delta
time. The combination time must often be enclosed in quotation marks, so it is
best always to do so. The first format specifies a time that is "delta" later than
the absolute time, that is, a specific time some interval after the absolute time.
The second format specifies a time that is "delta" earlier than the absolute time.

The following example sets the expiration date of a file to be 30 days after
midnight tomorrow:

$ set file/expiration=ltomorrow+30-00:00:00.00" myfile.dat

204 Data Manipulation

16.5

The combination time consists of the absolute time TOMORROW plus the delta time
30-00: 00: 00.00. DCL has a complex set of rules to allow you to omit cer­
tain fields from times when they are unnecessary. In this example, the minutes,
seconds, and hundredths fields can be omitted from the delta time:

~ set file/expiration="tornorrow+30-00" myfile.dat

The author recommends that you specify all time fields until you become familiar
with the rules for forming and abbreviating times. The rules are given in the VMS
DCL Concepts Manual.

The F$CVTIME function can also be used to convert a combination time to an ab­
solute time. The first argument is the combination time and the second argument
is the keyword II ABSOLUTE II. The following example asks the user for a new file
expiration date based on the file's creation date:

$ created = f$file_attributes (file_spec, "CDT")
$ display "The file was created ", created
$ libcall ask xda_delta s -

"How long until it expires (delta time):11
$ expires = f$cvtime(created+II+II+xda_delta, IIABSOLUTE")
$ display liThe file will expire on II, expires
$ set file/expiration=""expires'll file_spec

The file's creation time is obtained and displayed. Then the user is asked for
a delta time, which is used as the file's lifetime. The absolute expiration date
is determined using the F$CVTIME function. Note how the combination time is
constructed by concatenating the absolute time, a plus sign, and the delta time.
The expiration date is then displayed and the file set.

The F$CVTIME function has many other features, which are described in the VMS
DCL Dictionary.

Record Structures

Chapter 15 presented sequential files whose records contain textual information.
Chapter 17 will introduce indexed files whose records are structured. Both se­
quential and indexed files can contain structured records, although such records
are more common in indexed files. A structured record, or simply structure, is
a record whose contents are formatted into fields, each field containing a single
item of information. All the fields, except perhaps for the last one, are of fixed

76.5 Record Structures 205

Table 16.1 Fields in a Record Structure

Position Size Type Description

0 12 bytes String User name.

12 17 bytes Date Date this record was created, in the form
dd-mmm-yyyy hh:mm.

29 17 bytes Date Date this record was last modified.

46 64 bytes String Device/directory owned by this user.

110 32 bits Integer Number of files in the directory.

114 32 bits Integer Block count of files in the directory.

118 8 bits Boolean 1 if the user is a student, 0 if not.

size. The last field can have variable size if the records in the file have vari­
able length. The sizes of all the fields except the last are fixed, and the last field
occupies the rest of the variable-length record.

The records in an index file are almost always structured. The records in a se­
quential file can contain textual information, as was the assumption in Chap­
ter 15, or they can be structured. Sequential files with structured records are not
specifically addressed in this book because the techniques are the same as for
indexed files.

Using structures in DCL is somewhat difficult because there is no direct support
for them. However, with the careful use of features already described, you can
create new structures and access the fields from existing ones. For purposes of
illustration we will use the record structure illustrated in Table 16.1.

In order to access and store the fields in a structure, we need to know the position,
size, and data type of each field. This information is represented using one or
two symbols for each field. The value of the first symbol is the field's position;
the value of the second symbol is the field's size. The name of the first symbol
also contains a one-letter code that identifies the data type of the field. The
conventions for structure symbols are explained below. Here is the code that
sets up the symbols for the sample structure:

206 Data Manipulation

$ ufr t username 0
$ ufr_s_username 12
$ ufr t created 12
$ ufr s created 17
$ ufr t modified = 29
$ ufr_s_modified = 17
$ ufr_t_devdir 46
$ ufr_s_devdir 64
$ ufr_l_count 110*8
$ ufr_l_blocks 114*8
$ ufr b student 118*8

The record contains infonnation about a user's files, so it is called a user file
record, or UFR. This structure has four different types of fields: integer, text,
date, and boolean. The definition symbols required for each type are as follows:

Text. A field containing a text string is described by two symbols. The first
symbol name contains a T to identify a text field, and its value is the byte
position of the beginning of the field. The value of the second symbol is the
size of the field, and the symbol name contains an S to identify it as a size
symbol.

Date. A field containing a date and time is described by two symbols. The first
symbol name contains a T to identify a text field, and its value is the byte
position of the beginning of the field. The second symbol again specifies the
size of the field.

Integer. An integer is a 32-bit integer quantity. A field containing an integer
is described by one symbol. The symbol name contains an L to identify a
longword integer field, and its value is the bit position of the beginning of
the field. The reason for using the bit position will become apparent later. No
size symbol is needed, because an integer field is always a four-byte (32-bit)
field.

Boolean. A field containing a boolean value is described by one symbol. The
symbol name contains a B to identify a boolean field, and its value is the bit
position of the field. No size symbol is needed, because a boolean field is
always a one-byte (eight-bit) field. The field contains a 0 for false, or a 1 for

. true.

The letters used to identify the field type are dictated by the VAX modular pro­
gramming standard, which is described in the Guide to Creating VMS Modular
Procedures.

76.S Record Structures 207

16.5. r

t> Ch. 3

Creating a Strueture

A record is created by storing the values of its constituent fields into a character
string, one at a time, from first to last. The substring and bit-field assignment
statements are used to store the data into the character string. The following
code will construct one of our sample records:

$
$

$
$

$

$

$
$

$

date = f$extract(O,ufr_s_created,f$time(»
record = 1111

record[ufr_t_username,ufr_s_username] "F_SHUBIN"
record [ufr _ t_created, ufr _s_created] . = II" date' II
record [ufr_t_modified,ufr_s_ffiodified] .= 1I"date'"
record [ufr_t_devdir,ufr_s_devdir]
record[ufr_l_count,32]
record [ufr_l_blocks, 32]
record[ufr_b_student,8]

. write record

.= II$DISK3: [F_SHUBIN]II
file count
file blocks
false

Before the record is created, the current time is retrieved, truncated after the
minutes field, and stored in the symbol DATE. The record will be the value of
symbol RECORD, so the symbol is initialized by setting it to the null string. Then
each field is stored in the symbol, beginning with the one at position zero and
continuing until all fields have been stored. Text and date fields are stored using
a substring assignment statement. The substring's byte position and length are
specified by the two symbols that define the field. Note that each assignment
automatically extends the record to the required length so that the field will fit in
it. The value assigned to a text or date field is extended with spaces to occupy
the entire field. In this manner, every character of the record is filled with good
data.

Integer and boolean fields are stored using a bit-field assignment statement. The
field's bit position is specified by the symbol that defines the field. The field's
size is always 32 bits for an integer and eight bits for a boolean. Remember that
a substring position is specified by the starting byte position, while a bit-field
position is specified by the starting bit position~ Once all the fields have been
stored, a complete record exists in the symbol RECORD. The record can now be
written to a file or manipulated in some other fashion.

The character string representing a structure is composed of both textual fields
and binary fields. If you display the string on a terminal, the textual fields will be
apparent, but the binary fields may cause the terminal to behave strangely. This

208 Data Manipulation

J6.5.2

is because the binary fields may appear to the terminal as control sequences or
other nontextual data.

Extracting Fields from a Structure

In order to use the information in an existing record, the data in the record's fields
must be extracted and assigned to symbols. Once the data is assigned to symbols,
it can be manipulated by all the normal DeL facilities. Lexical functions are used
to extract the fields of a record:

$

$

$

$

$

$
$

. read record as described in next chapter

user_name

create date
modify_date
dev_dir

file_count
file_blocks
student

f$edit(f$extract(ufr_t_username,ufr_s_username,-
record) , II TRIM II)

f$extract(ufr_t_created,ufr_s_created,record)
f$extract(ufr_t_modified,ufr_s_modified,record)
f$edit(f$extract(ufr_t_devdir,ufr_s_devdir,-

record),ITRIM")
f$cvsi (ufr_l_count, 32,record)
f$cvsi(ufr_l_blocks,32,record)
f$cvsi (ufr_b_student,8, record)

Text and date fields are extracted with the F$EXTRACT function. The field's
position and size are specified by the two symbols that define the field. If the
data might not fill the field, as is the case with user name and device/directory,
the F$EDIT function is used to trim the trailing spaces present in the field.

Integer and boolean fields are extracted with the F$CVSI function. The acronym
CVSI stands for "convert signed bit-field to integer." This function requires three
arguments: a bit position, a size, and a value. The value is treated as a sequence
of bits, and the bit-field specified by the position and size is extracted, assumed
to represent a signed integer, and converted to an integer. This is exactly what
we need when extracting an integer or boolean field, because the field was stored
as a series of bits with a bit-field assignment statement.

There is a companion to the F$CVSI function, called F$CVUI, which extracts
unsigned bit-fields. The F$CVUI function can be used in place of F$CVSI when
the field is known to be positive. It is not used in this book because all bit-fields
are assumed to contain signed (potentially negative) integers.

76.5 Record Structures 209

Chapter 17

270

Indexed File Operations

This chapter continues the discussion of file operations begun in Chapter 15. It
deals with indexed files, which have a much richer structure than sequential files.

An indexed file consists of a set of records, each of which is composed of indi­
vidual fields. A field is a portion of a record containing one item of information,
such as a user name or a social security number. An indexed file record can con­
tain any number of fields. There is no requirement that all the records in a file
have the same field layout; there can be various types of records, each with its
own layout. If all the records in a file have the same length, then the indexed file
can have fixed-length records. Otherwise the file must contain variable-length
records.

What distinguishes indexed files from sequential files are the key fields in a
record. A key field, or simply key, is a field whose values are to be indexed
for fast lookup. An index for each key field is maintained in a section of the
file separate from the data records. The index for a particular key contains an
entry for each record in the file, the entry matching the record's key with the
record's location in the file. The index is sorted such that a given key can be
found quickly and the corresponding record or records retrieved. The indexes
thus allow records to be retrieved randomly by key.

Every indexed file has at least one key, called the primary key. There may be up
to 254 additional keys, called alternate keys. Information describing the keys

is kept at the beginning of the indexed file in the file prologue. The primary key
has some important attributes associated with it:

Name. A string describing the key. It can be up to 32 characters in length.

Number. An integer that specifies the number of the index. The primary index
is number 0, alternate indexes are numbered starting with 1.

Type. A keyword that specifies the data type of the key. The VMS record man­
agement system supports binary, decimal, and character string keys, but DCL
can only handle files with character string keys.

Position. An integer specifying the starting position of the key in the record.
The first position is zero.

Length. An integer that specifies the length of the key. A string key can be up
to 255 characters in length.

Duplicates. A boolean value that controls whether duplicate keys are allowed.
When true, there can be more than one record with the same key value.

There are additional attributes, not described here. A complete description of all
indexed file attributes can be found in the Guide to VMS File Applications.

Alternate keys have all the attributes of the primary key, plus some additional
ones:

Changes. A boolean value that controls whether the value of the key can be
changed when a record is updated.

Null Key. A boolean value that controls whether a null value is allowed in the
key field. If a null value is present in an alternate key field, that field is not
entered into the index for the key.

Null Value. A character specifying the null value for the key field. The field is
considered null if it is full of this character. Typical null values are the NUL

and space characters.

Indexed File Operations 2 11

17.1

I>Ch.16

Table 17.1 Fields in the Sample Indexed File

Name Position Size Type Description

XUF T USER 0 12 String VMS user name, the primary key.

XUF_T_DEPT 12 16 String Department name, an alternate key.

XUF T PROJECT 28 16 String Project name.

XUF L PEOPLE 44 4 Integer Number of direct reports, if user is
a manager.

Sample File

The remainder of this chapter focuses on index file features that are supported
by DeL. There are other features available in conventional programming lan­
guages that are not described here. The examples in this chapter are based on an
indexed file named XDA_USER-FILE. DAT. The records in this file are formatted
as illustrated in Table 17.1. The file has two keys. The primary key is a VMS
user name, which is a string of 12 characters in length. The alternate key is the
user's department, which is a string of 16 characters in length. Duplicate keys
are not allowed for the user name key, but they are allowed for the department
key.

In order to read and write records in the indexed file, a command procedure
must define the structure of the records. The technique for defining the fields in
a structure can be used to define the fields in a record. One or two assignment
commands are required to define the symbols for accessing each field. These
assignment commands are included in the initialization code of the application's
main procedure:

$! Define the fields in a user file record. The symbols for each
$! field are prefixed with XUF, for "XDA User File".
$

$
$
$

$
$

$

$

xuf_t_user
xuf s user
xuf_t_dept
xuf_s_dept
xuf_t_project
xuf_s_project
xuf_l_people

0
12
12
16
28
16
44*8

212 Indexed File Operations

'7.2 Reading an Existing File

In order to read an existing indexed file, you must first open it. This is accom­
plished with the OPEN command, as with sequential files:

$ open/read xda_user_file xda_system:xda_user-file.dat;

The OPEN command checks that the file exists, determines whether the process
is allowed to read it, and prepares it for reading. The /READ qualifier requests
read access to the file, so writing will not be allowed.

Once an indexed file is open, there are two ways to read records from it: ran­
domly by key or sequentially. In order to read a record by one of its keys, you
must specify the key index number and the key value. If a record exists with that
key, it is read from the file:

$ libcall ask xda_user s "Which user:" "" u
$ user = f$fao("!#AS",xuf_s_user,xda_user)
$ read xda_user_file/index=O/key=""user'" record /error=5
$ goto 9
$5: libcall signal xda e nosuchuser -

"User "xda_user does not exist."
$9:

. display information

In this example, the user is prompted for a user name. The user name is supplied
as the primary key value when reading a record. If the record is found, the
procedure displays information contained in it. If the record is not found, the
error branch is taken and an error is signaled. The procedure's error handler will
be invoked in the latter case.

The /INDEX qualifier specifies the number of the index in which the key lookup
is performed. The /KEY qualifier specifies the value of the key enclosed in quo­
tation marks. In order to find a record whose key exactly matches the specified
key value, the key value must be prepared according to the following rules:

• The key lookup is sensitive to the case of the key. In the sample file, user
names are stored in uppercase letters, so the call to ASK includes the U option
to convert the input to uppercase.

77.2 Reading an Existing File 273

• The value specified with the IKEY qualifier must be of the same length as
the key. In the preceding code, the F$F AD function is used to pad the user
name to a full 12 characters. This is accomplished with the sharp sign (#)

character in the field-width position of the ! AS directive. Instead of using an
explicit width, the sharp sign indicates that the width is specified by the next
argument to the lexical function. In this case, the field width is specified as
the size of the user field: XUF _S_USER.

There are ways to perform key lookup other than by exact match. These are
described in Section 17.2.1.

Once a record is retrieved by key, additional records can be read sequentially.
When the READ command is used without the IINDEX and IKEY qualifiers, DeL
will read the record whose key is next in alphabetical order in the same index.
This is useful if you want to read some or all of the records in alphabetical order.
It is also useful when an index has duplicate keys: you can read all the records
having the same key. The following code prompts the user for a department and
displays all the users in that department:

$ libcall ask xda_dept s "Which department:" "" u
$ dept = f$fao("!#AS",xuf_s_dept,xda_dept)
$ read xda_user_file/index=l/key=""dept'" record /error=5
$ goto 9
$5: libcall signal xda e nodept "There are no users in "xda_dept."
$9:
$ display "Users in department ", xda_dept, "."
$10: display f$extract(xuf_t_user,xuf_s_user,record)
$ read xda_user_file record /end_of_file=19
$ if f$extract(xuf_t_dept,xuf_s_dept,record) .eqs. dept then -

goto 10
$19:

The user is prompted for a department name, which is converted to uppercase
letters and padded with spaces to 16 characters. A random read is performed to
obtain the first record with the requested department. If no such record is found,
an error is signaled. If there is at least one such record, a loop is executed to read
all of them. The loop first displays the user name from the previous record. It
then reads the next record from the file. Because the alternate index has been
established as the current one, RMS tries to read the next record in alphabetical
order by department. There are three possible outcomes:

1. There are no more records in the file. The lEND_OF _FILE qualifier causes a
branch to the end of the loop.

274 Indexed File Operations

17.2.1

2. There is another record and the department field matches the requested one.
The IF command branches to the beginning of the loop.

3. There is another record but the department field does not match. The IF

command does not branch and thus falls through to the end of the loop.

You must concern yourself with these three cases whenever you read duplicate
records from an index.

If a procedure performs a sequential read without first establishing an index and
key, RMS reads records according to the primary index, beginning with the first
record in alphabetical order.

Key Matching

The method used by RMS to select a record by key depends upon the length of
the supplied key and the value of the /MATCH qualifier. The supplied key may
be equal in length to the record keys, or it may be shorter. An error is signaled
if it is longer. The /MATCH qualifier takes the values EQ (equal), GE (greater than
or equal), or GT (greater than). The default is /MATCH=EQ. There is no facility
for matching records whose keys are less than the supplied key, because indexed
files cannot be read backwards.

If the supplied key is equal in length to the record keys, RMS selects a record
based on the full key. If /MATCH=EQ is specified, RMS selects the first (or only)
record with an exactly matching key. If /MATCH=GE is specified, RMS selects
the first record with an exactly matching key, or the next key in order if there is
no exact match. Finally, if /MATCH=GT is specified, RMS selects the next key in
order, skipping any and all exact matches.

If the supplied key is shorter than the record keys, RMS selects records based
on the first n characters of the key, where n is the length of the supplied key.
This is called a generic match. The /MATCH qualifier is used in the same way as
full matches, except that "equal" and "greater than" comparisons are performed
using only the first n characters of the record keys.

If no records match the specified key, an error or end-of -file condition is signaled.

Assume that the sample file contains records with the following department keys:
DEVELOPMENT, SALES, SERVICE, SERVICE. Note that there are two records
for the service department. Here are examples of READ commands that access
records by the department index:

17.2 Reading an Existing File 215

J7.3

$!
$
$

-Of-

$!
$
$

-Of-

$!

$
$

-Of-

Here we read the record for the SALES department:

read xda_user_file /index=1/key="SALES "/match=eq record

Here we read the record for the SALES department:

read xda_user_file /index=1/key="S "/match=ge record

Here we read the first record for the SERVICE department:

read xda_user_file /index=1/key="SALES "/match=gt record

$! Here we use a generic match and read the record for the
$! DEVELOPMENT department:
$

$ read xda_user_file /index=1/key=ID"/match=eq record

-Of-

$! Here we read the record for the SALES department:
$

$ read xda_user_file /index=1/key=IE"/match=ge record

-Of-

$! Here we read the first record for the SERVICE department:
$
$ read xda_user_file /index=1/key=ISA"/match=gt record

Creating a File

Unlike sequential files, indexed files cannot be created with the OPEN command.
DCL does not provide a way to specify all the information needed to create the
file and construct its indexes. The DCL programmer must therefore use the File
Definition Language Facility to characterize and create an indexed file. This
facility is described in the VMS File Definition Language Facility Manual. The
File Definition Language (FDL) is a language in which all the attributes of an
indexed file can be specified. The specification resides in a text file, which is
assigned the file type FDL by convention. The CREATE command can create an
indexed file according to the specifications in such an FDL file.

216 Indexed File Operations

A complete description of FDL is beyond the scope of this book. However, the

following points summarize the steps that must be taken to create an indexed file
in DCL:

1. Use the FDL editor to create the text file, which describes the desired indexed
file. The EDIT /FDL command invokes the FDL editor. It will ask a series
of questions about the indexed file and ultimately generate an FDL file to

describe it.

2. Include the FDL file with your DCL application files.

3. When the application needs to create the indexed file, it uses the CREATE/FDL

command. This command creates an empty indexed file according to the
specifications in the FDL file.

4. The application can then open the empty indexed file and write records in it.

The CREATE/FDL command is used as follows:

$ create/fdl=xda_system:xda_user-file.fdl-
xda_system:xda_user-file.dat

. open file and write records

The /FDL qualifier specifies the FDL file containing the specification of the in­
dexed file. The parameter specifies the indexed file to be created. The new file
has no records in it. The next section describes how to write records in an indexed
file.

Here is the FDL description of the sample file:

TITLE "XDA Sample File"

IDENT " 9-MAY-1988 10:55:09 VAX-11 FDL Editor"

SYSTEM
SOURCE

FILE
ORGANIZATION

RECORD
CARRIAGE_CONTROL
FORMAT
SIZE

VAX/VMS

indexed

carriage_return
fixed
48

77.3 Creating a File 2 17

AREA 0
ALLOCATION 29
BEST_TRY_CONTIGUOUS yes
BUCKET_SIZE 2
EXTENSION 6

AREA 1
ALLOCATION 4
BEST_TRY_CONTIGUOUS yes
BUCKET_SIZE 2
EXTENSION 2

AREA 2
ALLOCATION 13
BEST_TRY_CONTIGUOUS yes
BUCKET_SIZE 1
EXTENSION 3

KEY 0
CHANGES no
DATA_AREA 0
DATA_FILL 100
DATA_KEY_COMPRESSION yes
DATA_RECORD_COMPRESSION yes
DUPLICATES no
INDEX_AREA 1
INDEX_COMPRESSION yes
INDEX_FILL 100
LEVEL1_INDEX_AREA 1
NAME "VMS Username"
PROLOG 3
SEGO_LENGTH 12
SEGO_POSITION 0
TYPE string

KEY 1
CHANGES no
DATA_AREA 2
DATA_FILL 100
DATA_KEY_COMPRESSION yes
DUPLICATES yes
INDEX_AREA 2
INDEX_COMPRESSION yes
INDEX_FILL 100
LEVEL1_INDEX_AREA 2
NAME "Department"
SEGO_LENGTH 16
SEGO_POSITION 12
TYPE string

2 18 Indexed File Operations

17.4

c>Ch.16

c> Ch. 3

Writing a File

Before an application can write records in an indexed file, it must open the file
for write operations:

$ open/read/write xda_user_file xda_system:xda_user-file.dat;

The /WRITE qualifier specifies that write operations will be performed. The
/READ qualifier is also necessary so that DCL will assume that the file already
exists. If just the /WRITE qualifier is specified, DCL will create a new sequential
file, superseding the indexed file. Always open an existing indexed file with an
OPEN /READ /WRITE command.

In order to write a new record in an indexed file, you must first construct a
character string containing the record's contents. Once the record is constructed,
it is written with the WRITE command:

. obtain user name and department

$ record = ""
$ record[xuf_t_user,xuf_s_userJ .= '" 'user'"
$ record[xuf_t_dept,xuf_s_deptJ .= '"'dept'''
$ record[xuf_t_project,xuf_s_projectJ·=
$ record[xuf_l_people,32J 0
$ write/symbol xda_user_file record

The record is constructed in the symbol RECORD. The symbol is first cleared
to make sure that any previous data is removed. Substring and bit-field assign­
ment commands are used to initialize the four fields in the record. The substring
assignment command (: =) requires the use of apostrophe substitution to assign
the user name and department to their respective fields. Once the record is con­
structed, the WRITE command adds it to the indexed file. The /SYMBOL qualifier
allows the symbol RECORD to contain records of up to 2,048 bytes, rather than
restricting it to 255 bytes. Although a particular indexed file may contain short
records, it is best to specify the /SYMBOL qualifier to avoid any future problems
with record length.

If a procedure attempts to write a record with a duplicate key, and the index for
that key does not allow duplicates, an error is signaled.

77.4 Writing a File 279

17.5

17.6

Updating a File

The WRITE command can be used to update an existing record in an indexed file.
A record is updated by first reading it, then altering the data in the record, and
finally rewriting the record. The following example increases by 1 the number
of people reporting to a particular manager:

$ libcall ask xda_user s "Manager with new person:" "" u
$ user == f$fao("!#AS",xuf_s_user,xda_user)
$ read xda~user_file/index=O/key=""user'" record /error=5
$ goto 9
$5: libcall signal xda e nosuchuser -

"User "xda_user does not exist."
$9:
$ people = f$cvui(xuf_l_people,32,record)
$ record[xuf_l_people,32] = people + 1
$ write/symbol/update xda_user_file record

Once the record is read, the people count is extracted with the F$CVUI function.
The people field is then increased by 1. Finally, the record is updated with the
WRITE/UPDATE command. The /UPDATE qualifier specifies that the record just
read should be rewritten with new information. An update operation always
rewrites the record last read.

An alternate key field may be updated with a new value only if the corresponding
index was created with the "changes" attribute. A primary key can never be
changed.

Deleting Records

Records can be individually deleted from an indexed file without the need to
copy the entire file. The READ/DELETE command first reads a record from the
file and then deletes the record. Once a record is deleted, there is no way to
restore it except by rewriting it. The following example deletes a user record
from the sample file:

$ libcall ask xda_user s "User to delete:" "" u
$ user = f$fao("!#AS",xuf_s_user,xda_user)
$ read/delete xda_user_file/index=O/key=""user'" record/error=5
$ goto 9
$5: libcall signal xda e nosuchuser -

"User "xda_user does not exist."
$9:

220 Indexed File Operations

17.7

You must be careful when writing a procedure to delete records from an indexed
file. It is quite easy to delete the wrong record or, when deleting multiple records,
to delete too many records. Avoid using generic matching to delete records;
specify exact key matches whenever possible. The following example deletes
all users in a given department:

$ libcall ask xda_dept s "Delete which department:" "" u
$ dept = f$fao("!#AS",xuf_s_dept,xda_dept)
$ count = 0
$10: read/delete xda_user_file /index=1/key=""dept'" -

record /error=19
$ count = count + 1
$ goto 10
$19:
$ display "Users deleted: ", count

This code uses a loop to delete each record with the given department. Note that
exact key matching is used, even though multiple records are being deleted. As
soon as an error occurs, it is presumed to be a "key not found" error and the loop
is terminated.

File Sharing

RMS provides a facility for file sharing, which allows multiple processes to
access and modify an indexed file simultaneously. If a file contains data that can
potentially be accessed by more than one user at a time, that file must be shared
among all users. It is the OPEN command that determines whether a file can be
shared.

By default, a file is opened so as to disallow file sharing. To allow sharing, you
must specify the /SHARE qualifier on the OPEN command. This qualifier takes
a value, either READ or WRITE. If you specify /SHARE=READ, other users are
allowed to read the file but not to modify it. If you specify /SHARE=WRITE,

other users are allowed to read and modify the file:

$ open/read/write/share=write xda_user_file -
xda_system:xda_user-file.datj

This OPEN command allows other processes to read and modify the file. When
a file is shared, every procedure that opens the file must cooperate by specifying
the / SHARE qualifier. If some procedure does not cooperate, one of two things
can happen:

77.7 File Sharing 221

• If the uncooperative procedure opens the file first, no other procedure will be
able to open it. When a file is opened without sharing, no other process can
open it without signaling an error.

• If the uncooperative procedure attempts to the open the file after some other
procedure has opened it, the former procedure will fail. When a file is opened
with sharing, every process must open it with sharing.

Once a file is opened for sharing, many processes can access and modify it si­
multaneously. This opens up a host of possibilities for damaging the contents
of the file. Suppose two processes attempt to update a record at the same time?
One process will update the record first, but its update will be immediately lost
as the second process performs another update. RMS provides a facility called
record locking, which helps maintain the integrity of shared files.

The concept behind record locking is simple: when a record is read from the
file, it is locked: A locked record cannot be read or written by any other process.
When the record is updated by the original reader, it is unlocked, allowing other
processes to access it again. This simple concept gets more complicated, how­
ever, when all the various combinations of record accessing are considered. The
/LOCK qualifier specifies whether a record is to be locked after it is read. A
record is locked if /LOCK is specified on the READ command (the default). It is
~ot locked if /NOLOCK is specified. When you are reading a record that will not
'be updated, use /NOLOCK to prevent other processes from being locked out of
the record.

Here is the record update example with record locking:

$ libcall ask xda_user s IIManager with new person: II '"' U

$ 'user = f$fao(" !#AS" ,xuf_s...:user,xda_user)
$ read/lock xda_user_file/index=O/key=II"user'lI record /error=5
$ goto 9
$5: libcall signal xda e nosuchuser -

IIUser "xda_user does not exist. 1I

$9:
$ people = f$cvui(xuf_l_people,32,record)
$ record[xuf_l_people,32] = people + 1
$ write/symbol/update xda_user_file record

The record is locked by the READ command and remains locked until updated by
the WRITE c,ommand. No other processes can read or update the record while it
is locked.

222 Indexed File Operations

A record is locked when it is read with the READ/LOCK command (remember,
/LOCK is the default). The record remains locked until the procedure takes one
of the following actions:

• The record is updated with the WRITE/UPDATE command.

• The record is deleted with the READ/DELETE command.

• Another record is read, with or without locking.

• A new record is written to the file with the WRITE command.

• The file is closed.

When a process attempts to read a record that is locked by another process, one of
two things happens. If the record is read with a READ /LOCK command, an error
is signaled. If the record is read with a READ/NOLOCK command, the record is
read in spite of the lock. This latter behavior allows a procedure to read a record
regardless of other process activity, as long as the procedure does not intend to
update the record. If the procedure will update the record, it must lock it first or
the record may be corrupted.

An error is signaled if a process attempts to lock a record that is already locked.
This presents a problem to the procedure that wants to wait until the record is
unlocked. The /ERROR qualifier can be used on the READ command to detect
the lock error and jump to an error handler. However, any error will jump to
the error handler, not just lock errors. The simplest solution to this problem is
to write procedures that do not wait for locked records but rather just allow the
error to be signaled. If this is unacceptable for your application, you must write
an error handler that distinguishes lock errors from other errors.

The error status for locked records is called RMS$_RLK and has the hexadecimal
value %XOOO 182AA. Define this error status in the main procedure as follows:

$ rms$_rlk = %x000182aa

The error handler for the READ command can check for this status and retry the
read operation:

77.7 File Sharing 223

$10: read/lock xda_user_file /index=O/key=""user'" -
record /error=15

$ goto 19
$15: status = $status
$ if status .eq. rms$_rlk then goto 10
$ libcall signal xda e nosuchuser -

"User "xda_user does not exist."
$19:

. update the record

The read loop will repeat until the record is successfully read and locked. Then
the record can be updated.

The sample application in Appendix D illustrates the use of shared indexed files
and record locking.

224 Indexed File Operations

Chapter 18

File Protection

Data security is an important aspect of many applications, particularly those in­
volving the confidential data of your organization. VMS provides a data protec­
tion facility, which allows you to control which users can access a collection of
data and which operations those users can perform on the data. The data pro­
tection facility is composed of two independent protection mechanisms: user
identification code (UIC) protection and access control list (ACL) protection.

The UIC-based protection mechanism was the original data protection mecha­
nism in VMS. It is grounded in the idea that each protected object is owned by a
particular UIe. The relation between the owner UIC and the UIC of the user who
is attempting to access the object determines if and how the user can access the
object. DIC-based protection can be applied to the following kinds of objects:

• Devices

• Data volumes

• Files and directories

• Logical name tables

• Queues

• Global sections

The ACL·based protection mechanism was introduced in VMS Version 3 to
provide a more flexible data security facility. The acronym ACL stands for

225

lB.l

t> Ch. 2

access control list: an arbitrary list of associations between user identifiers and
access capabilities. When the user who is attempting to access the object appears
in the object's ACL, then the ACL determines if and how the user can access the
object. An ACL can be associated with all the kinds of objects listed above
except for data volumes.

This chapter describes those features of the two protection mechanisms that are
most often needed by VMS users, and DCL programmers in particular. The
discussion is restricted to the protection of files and directories because these
objects are the ones most commonly manipulated by DCL applications. The
protection of the other kinds of objects is quite similar and should not pose a
problem for a DCL programmer familiar with the information in this chapter.
The Guide to VMS System Security describes the VMS protection mechanism in
complete detail.

UIC-Based Protection

Every VMS user has a user identification code assigned by the system manager
and specified in the user's record in the user authorization file. Every file and
directory has an associated DIC, called its owner UIC. It is the relation between
the file's owner DIC and the DIC of the user who is attempting to access the file
that determines whether the user can actually access the file and which operations
can be performed on it.

Consider the relation between the file's owner DIC and the accessing user's DIe.
VMS defines four access categories based on the possible relation:

System. The accessor is in a system DIC group or has special privileges (de­
scribed below).

Owner. The accessor is the owner.

Group. The accessor is in the same group as the owner (but is not the owner).

World. The accessor is in a different group than the owner.

The system category is the most privileged, or highest, access category, and the
world category is the lowest. VMS places the accessor in the highest possible
category when determining access capability. For example, if an accessor is the
owner of the file but is also in a system DIC group, VMS places the accessor in
the system category.

Once the accessor is placed in the appropriate category, VMS determines the
operations that the accessor can perform by consulting the protection mask

226 File Protection

Table 18.1 Access Needed for Directory Operations

Operation Grandparent Dirs. Parent Dir. Directory

Create directory RorE W

Create file RorE RorE RandW

Look up single file RorE RorE RorE

Use wildcards or list directory RorE RorE R

Rename file RorE RorE RandW

Change directory attributes RorE RorE C

Delete directory RorE W D

associated with the file. The protection mask contains four access flags for each
of the four access categories, a total of 16 flags. The four access flags and the
operations they permit are as follows:

Read. The accessor can read the file.

Write. The accessor can write or update the file.

Execute. The accessor can execute the file (pertinent to executable images and
DeL procedures).

Delete. The accessor can delete the file.

The accessor can perform an operation on the file if the operation is permitted
by the category to which the accessor was assigned. Furthermore, the accessor
can perform the operation if it is permitted by any lower category. For example,
if the accessor was assigned to the group category and wants to delete the file,
the accessor can do so if either the group or the world category allows delete
access. You must keep in mind, however, that it is not just the protection mask
of the data file that matters. In order to get at the file, VMS must begin at the
device, travel down through the directory hierarchy, and final arrive at the file
itself. The protection masks on the device, directories, and file all play a part
in determining how the file can be accessed. Table 18.1 lists the operations that
can be performed on a directory and describes how the various protection masks
determine whether an accessor can perform the operation. Table 18.2 does the
same for operations on data files.

There is a fifth type of access, called control access, which has no explicit flags
in the protection mask. A user with control access to a file can change the file's
protection or other characteristics just as the owner of the file can. It is inherent in

78. 7 Ule-Based Protection 227

J B. J. J

Table 18.2 Access Needed for File Operations

Operation Grandparent Dirs. Directory File

Read file RorE RorE R

Write ar modify file RorE RorE RandW

Execute file RorE RarE RorE

Change file attributes RorE RorE C

Delete file RorE W D

the DIC-based protection scheme that users in the system and owner categories
have control access, while users in the group and world categories do not. When
you need to grant control access in any other fashion, you must use an access
control list.

If the accessor has certain privileges, DIC-based protection checking is altered
in fundamental ways. The following privileges affect the protection-checking
methodology:

BYPASS. All protection checking is completely bypassed. The accessor can
perform any operation whatsoever on the file.

GRPPRV. If the accessor is in the same group as the owner, the accessor is placed
in the system category (not the group category).

READ ALL. The accessor can read and control the file, regardless of its protection.

SYSPRV. The accessor is placed in the system category regardless of DIe.

Protection Mask Format

The protection mask for a file is specified and displayed in the following format:

(system: rwed, owner: rwed, group: rwed, world: rwed)

The access categories are listed from highest to lowest. In each category, the
letter R indicates read access, W write access, E execute access, and D delete
access. A letter is present if its corresponding access is allowed in that category,
absent if not. Remember that control access is always allowed in the system and
owner categories and disallowed in the group and world categories.

When you specify a protection mask, you can abbreviate the access category
name down to one letter (e.g., G for group). Here is a protection mask that

228 File Protection

18.1.2

18.1.3

allows all access for the system and owner category, read/write access for the
group category, and no access for the world category:

(s:rwed,o:rwed,g:rw,w)

When no access is allowed, the colon is omitted along with the access letters.

Setting the Protection Mask

Some commands allow the protection mask to be specified when a file is created.
These commands include APPEND, BACKUP, CREATE, and COPY. The following
example creates a new file with a specified protection mask:

$ create xda_songs.dat /protection=(s:rwed,o:rwed,g:rwe,w:r)

The /PROTECTION qualifier includes the protection mask that is assigned to the
file.

If a command does not allow a protection mask to be specified, then it must be
established separately with the SET FILE command. The OPEN command does
not accept a protection mask:

$ open/write xda_file xda_songs.dat
$ set file xda_songs.dat /protection=(s:rwed,o:rwed,g:rwe,w:r)

The SET FILE command can be used to change a file's protection mask at any
time. Table 18.2 describes the file access that is required to change its owner or
protection mask.

Displaying the Protection Mask

The DIRECTORY command can be used to display the protection mask for a file.
lt is also useful to display the file's owner at the same time:

$ directory/owner/protection xda_songs.dat

This command will display the file spec, owner, and protection mask.

78. 7 Ule-Based Protection 229

18.1.4

[>Ch.13

[>Ch. 16

18.2

Obtaining the Proteetion Mask

A DCL procedure can obtain the protection mask for a file with the lexical func­
tion F$FILE_ATTRIBUTES. The function returns the mask as a character string
in the following format:

"SYSTEM=rwed, OWNER=rwed, GROUP=rwed, WORLD=rwed"

Note the presence of a space after each comma. Also note the use of an equal
sign (=) rather than a colon after the category names. When a procedure needs to
determine whether a particular type of access is allowed for an access category, it
must parse the protection mask. The following code determines whether delete
access is allowed for the world category:

$ mask = f$file_attributes(file_spec,"PRO")
$ world = f$element(3, ",", mask) - "WORLD"
$ world_can_delete = f$locate("D",world) .ne. f$length(world)

The first line obtains the protection mask for the file whose file spec is stored
in the symbol FILE_SPEC. The second line determines the information for the
world category by extracting the final comma-separated element from the protec­
tion mask (remember that the F$ELEMENT function numbers elements beginning
with zero, so the final one is number 3). The category name "WORLD" is removed
from the element, leaving only the equal sign and the access flags. The third line
attempts to locate a "D" in the flags. If present, the world category has delete
access. If absent, the world category does not have delete access.

The author suggests that you avoid parsing protection masks if at all possible.
The problem with doing so is that the protection mask does not tell the whole
story about the protection of a file, and so the procedure may obtain a false picture
of the access allowed a particular user. The protection mask does not tell the
whole story because the file may also have an access control list.

Aeeess Control Lists

The ACL-based protection mechanism is used to grant or deny access to a file
in a more fine-grained fashion than that allowed by UIC-based protection. An
access control list consists of one or more entries that specify the access allowed
a particular user or set of users. Each entry is called an access control entry
(ACE). What makes the ACL more flexible than the UIC-based protection mask
is the way in which sets of users can be identified.

230 File Protection

Individual users or sets of users are identified by rights identifiers. Rights iden­
tifiers, or simply identifiers, are defined and maintained by the system manager
using the AUTHORIZE utility. There are four kinds of identifiers:

•

•

•

•

Each user is assigned an identifier whose name is usually identical to the user
name. The value of the identifier is the user's VIC.

Each user group is assigned an identifier. The value of the identifier is the
VIC [group-number, *] .
There are some special system identifiers that name the various environments
in which programs can run. These include BATCH, DIALUP, INTERACTIVE,

LOCAL, NETWORK, and REMOTE.

The system manager can define additional identifiers that name various col­
lections of users or that are associated with particular applications.

When a user logs in, VMS creates a process to run the user's programs. Var­
ious identifiers are associated with this process, just as the user's VIC is. The
process identifiers always include the identifier assigned to the user name by the
system manager. The process identifiers also include some of the environment
identifiers. For example, a normal interactive process has the INTERACTIVE and
LOCAL identifiers. In addition, the system manager can assign other identifiers,
which name applications that the user can run or groups of files that the user can
access. This last category of identifier is open-ended: the system manager can
invent all kinds of identifiers to associate with users.

When a user attempts to access a file that has an ACL, the user's process iden­
tifiers are matched against the ACEs making up the ACL. The matching is per­
formed from left to right, starting with the first ACE and ending with the last.
The leftmost ACE whose identifiers are all held by the process is the ACE used
by VMS to determine the access allowed the user. No other ACEs are consid­
ered once a matching one is found. It is possible that no ACEs match any of the
process identifiers. There are three potential outcomes of the matching attempt:

•

•

•

If there is a matching ACE and it allows the access requested by the user,
then the access is granted.

If there is a matching ACE and it does not allow the access, then the access
is denied except in certain special cases. See Section 18.4 for a description
of the special cases.

If there are no matching ACEs, then the VIC-based protection mask is used
to determine whether access is granted.

The following sections describe two types of ACE.

18.2 Access Control Lists 231

J8.2. J Identifier ACEs

An identifier ACE controls the type of access allowed to users with particular
identifiers. The identifier ACE has the following format:

(IDENTIFIER=identifiers , ACCESS=access-types)

The identifiers portion of the ACE specifies one or more rights identifiers that
this ACE matches. The identifiers can be specified in UIC format or as simple
identifier names. The access-types portion of the ACE specifies the type of
access allowed to users with the identifiers listed. The access types are READ,

WRITE, EXECUTE, CONTROL, DELETE, and NONE. If multiple identifiers or access
types are specified, they must be connected with plus signs (+).

Here are some examples of ACEs that might appear on a file. The following
ACEs allow read, write, execute, and control access for all members of group
DEVELOPMENT. A group can be specified in UIC format or simply as the name
of the group.

(identifier=[development,*J,access=read+write+execute+control)

-Of-

(identifier=development,access=read+write+execute+control)

Assume that the system manager has defined an identifier called PAYROLL, which
is associated with the payroll application and assigned to those users who have
access to the application. The following ACE allows those users to read, write,
and control a file:

(identifier=payroll,access=read+write+execute)

The payroll administrator decides that the payroll application can only be used
by people logged in at the office. It cannot be used by people who have dialed
in over a modem or logged in remotely from another node in the network. The
following ACEs can be added to the files to prevent unauthorized access:

(identifier=network,access=none),
(identifier=dialup,access=none),
(identifier=remote,access=none),
(identifier=payroll,access=read+write+execute)

232 File Protection

The first three ACEs disallow access to network processes (Le., to people trying
to access the file from a remote node), users on dialup terminals, and users hosted
from another network node. If an accessor does not match any of the first three
ACEs, then the accessor is logged in at a local terminal. The final ACE matches
users with the PAYROLL identifier, just as in the previous example. The order
of these four ACEs is critical. If the payroll ACE were first, then any user with
the PAYROLL identifier could access the payroll application regardless of how
the user had logged in. Remember, VMS selects the first ACE whose identifiers
match those of the accessor.

The following example allows any batch jobs to read a file, except that users
JONES and SMITH cannot access the file at all:

(identifier=jones,access=none),
(identifier=smith,access=none),
(identifier=batch,access=read)

Again, the order of the ACEs is critical. Specific user identifiers must be matched
before more general identifiers so that access is denied the specific users even if
they have the general identifiers.

A special kind of identifier ACE, called a default identifier ACE, can be placed
in the ACL associated with a directory. This ACE is automatically included on
the ACLs of any files subsequently created in that directory. The format of a
default identifier ACE is as follows:

(IDENTIFIER=identijlers ,OPTIONS=DEF AULT ,ACCESS=access-types)

It is identical to a normal identifier ACE except for the inclusion of the string
OPTIONS=DEFAULT between the identifiers and the access types. Once this ACE
is added to a directory's ACL, any new files created in the directory are auto­
matically assigned the ACE (minus the DEFAULT option). If there are multiple
ACEs with the DEFAULT option, the file is assigned all the default ACEs in order.

Other ACE options are described in the following section and in the Guide to

VMS System Security.

78.2 Access Control Lists 233

18.2.2

18.2.3

Default Protection ACEs

A default protection ACE can reside only on the ACL of a directory. It specifies
the DIC-based protection mask to be assigned to new files in the directory when
no explicit mask is given. The default protection ACE applies to files that are
created in the directory or in any of its subdirectories with no default protection
ACE of their own. A default protection ACE has the following format:

(DEF AULT _PROTECT I ON, protection-mask)

The protection-mask portion of the ACE is specified in the standard system,
owner, group, world format.

The following ACE, appearing on the ACL of a directory, will assign the speci­
fied protection mask to files created in that directory. The mask allows full access
to the system and owner categories, read/write access to members of the group,
and no access to others:

(default_protection,s:rwed,o:rwed,g:rw,w)

Modifying an ACL

There are two ways to modify the ACL of a file. The first method is to use the
ACL editor. The ACL editor allows you to add, modify, and delete ACL entries
interactively, in a manner similar to text editing. You can invoke the ACL editor
with the following command:

$ edi t/acl file-spec

The ACL editor is not described in detail in this book. See the VMS Access
Control List Editor Manual for a description of the ACL editor.

The second method of modifying an ACL is to use the SET ACL command. The
command requires one parameter, a file spec that identifies one or more files
whose ACLs are to be modified. The command also accepts a host of qualifiers,
which specify operations to be performed on the ACLs, along with existing or
new ACEs involved in the operations. The SET ACL command is used in a DCL
procedure to add new ACEs to an ACL or to delete existing ones. Table 18.3
describes many of the qualifiers accepted by the SET ACL command.

Some of the qualifiers to SET ACL specify ACEs that are to be removed from the
ACL. In this case, only the identifier portion of the ACE need be included; the
options and access types do not participate in selecting ACEs to be removed.

234 File Protection

Table 18.3 SET ACL Command Qualifiers

Qualifier

/ ACL=list-of-aces

/AFTER=ace

/DEFAULT

/DELETE

/NEW

/REPLACE=list-of-aces

Description

Specifies a list of ACEs to participate in the operation. If
neither the /DELETE nor the /REPLACE qualifiers are included,
the ACEs are added to the ACL at the position specified by
the / AFTER qualifier.

Specifies the position in the ACL at which the ACEs specified
by the / ACL qualifier are inserted. They are inserted after
the ACE whose identifiers are named by this qualifier. If no
/ AFTER qualifier is included, the ACEs are inserted at the
beginning of the ACL.

If the file being modified is a directory, its ACEs are removed
and replaced with the ACEs of its parent directory. If the file
being modified is not a directory, its ACEs are removed and
replaced with the default ACEs of its parent directory (those
specified with OPTIONS=DEFAULT).

The ACEs specified by the / ACL qualifier are deleted.

All existing ACEs are removed from the ACL before the
operation specified by the other qualifiers is performed.

The ACEs specified by the / ACL qualifier are removed, and
then the ACEs listed in this qualifier are inserted at the position
occupied by the rightmost ACE removed.

In the following example, three ACEs are added to the ACL of a file. They are
added to the beginning of the ACL because the / AFTER qualifier is not included:

$ set acl/acl=((identifier=jones,access=none),­
(identifier=smith,access=none),­
(identifier=batch,access=read» payroll.dat

If these are the first ACEs ever added to the file, everything works fine. However,
assume that the payroll file already had the following ACL:

(identifier=taylor,access=read),
(identifier=payroll_dept,access=read+write+execute+control)

The SMITH and JONES ACEs can be added at the beginning of the ACL. How­
ever, the BATCH ACE must be added at the end so that people in the payroll
department receive full access even when running batch jobs. The following
two SET ACL commands are required to add the new ACEs correctly:

18.2 Access Control Lists 235

$ set acl/acl=«identifier=jones,access=none),­
(identifier=smith,access=none)) payroll.dat

$ set acl/acl=(identifier==batch,access=read) -.
/after=(identifier=payroll_dept) payroll.dat

Here is the data file's ACL so far:

(IDENTIFIER=[AMCDEV,JONES] ,ACCESS=NONE),
(IDENTIFIER=[AMCDEV,SMITH],ACCESS=NONE),
(IDENTIFIER=[AMCDEV,TAYLOR],ACCESS=READ),
(IDENTIFIER=PAYROLL_DEPT,ACCESS+READ+WRITE+EXECUTE+CONTROL),
(IDENTIFIER=BATCH,ACCESS=READ)

If the SET ACL command specifies an ACE that already exists in the ACL, the
old ACE is replaced with the new one. However, its position in the ACL is
not maintained; you must specify the position with the / AFTER qualifier. The
following example replaces the batch ACE to allow both read and execute access:

$ set acl/acl=(identifier=batch,access=read+execute) -
/after=(identifier=payroll_dept) payroll.dat

And now the payroll file's ACL looks like this:

(IDENTIFIER=[AMCDEV,JONES],ACCESS=NONE),
(IDENTIFIER=[AMCDEV,SMITH],ACCESS=NONE),
(IDENTIFIER=[AMCDEV,TAYLOR],ACCESS=READ),
(IDENTIFIER=PAYROLL_DEPT,ACCESS+READ+WRITE+EXECUTE+CONTROL),
(IDENTIFIER=BATCH,ACCESS=READ+EXECUTE)

The payroll department decides to split its personnel into two categories, those
who can read the payroll file and those who can write it. The PAYROLL_DEPT

identifier is replaced with two new identifiers that are named PAYROLL_READ and
P A YROLL_ WRITE. The following command removes the old identifier and adds
the new ones in the same position:

$ set acl/acl=(identifier=payroll_dept) -
/replace=«identifier=payroll_read,access=read+execute) ,­

(identifier=payroll_write,­
access=read+write+execute+control)) -

payroll.dat

236 File Protection

J8.3

J8.3.1

J8.3.2

The final ACL on the payroll data file is:

(IDENTIFIER=[AMCDEV,JONES] ,ACCESS=NONE) ,
(IDENTIFIER=[AMCDEV,SMITH] ,ACCESS=NONE),
(IDENTIFIER=[AMCDEV,TAYLOR] ,ACCESS=READ),
(IDENTIFIER=PAYROLL_READ,ACCESS=READ+EXECUTE),
(IDENTIFIER=PAYROLL_WRITE,ACCESS=READ+WRITE+EXECUTE+CONTROL),
(IDENTIFIER=BATCH,ACCESS=READ+EXECUTE)

Default File Protection

Sections 18.3.1 and 18.3.2 describe how VMS detennines the default protection
mask and ACL for a new directory or file. A default protection mask is only
required when you do not specify one explicitly in the command that creates the
directory or file. A default ACL is always required, because there is no way to
specify one in the commands that create directories and files.

Directories

The default protection mask for a new directory is determined as follows:

• It is always identical to the protection mask of its parent directory .

The default ACL for a new directory is determined as follows:

• It is identical to the ACL of its parent directory, except that ACEs with the
NOPROPAGATE option are not included in the default ACL.

The NOPROPAGATE option can be included in a directory ACE to prevent it from
being propagated to new subdirectories.

Files

The default protection mask for a new file is determined by following these steps:

1. If the file is a new version of an existing file, its protection mask is the same
as the previous version.

2. Otherwise, if the parent directory has a default protection ACE, the protection
mask is taken from the ACE.

3. Otherwise, the process default protection mask is used.

The process default protection mask is specified by the VMS system generation
parameter RMS_FILEPROT, which is established by your system manager. You
can determine its value by using the following command:

78.3 Default File Protection 237

$ show protection
SYSTEM=RWED, DWNER=RWED, GRDUP=RE, WDRLD=ND ACCESS

The protection mask shown in this example is the standard default. You can
change the process default with the SET PROTECTION/DEFAULT command:

$ set protection=(s:rwed,o:rwed,g,w) /default

This new protection mask denies access to users in the same group. Once the
default protection mask is set, it is used in step 3 above.

The author recommends that you do not change the process default protection in a
command procedure. First, it is better to be explicit and to specify the protection
mask on the command that creates the file. Second, if the procedure changes the
default protection, then it is responsible for restoring it to its original value before
the procedure exits. This is more trouble than it is worth. Remember, even if
you do change the default protection mask, the file may still receive its mask
from the parent directory's default protection ACE. If the procedure requires a
particular protection mask, it must specify it explicitly.

The default ACL for a new file is determined by following these steps:

1. If the file is a new version of an existing file, its ACL is the same as the ACL
of the previous version. However, ACEs with the NOPROPAGATE option are
not included in the new ACL.

2. Otherwise, if the parent directory has any identifier ACEs with the DEFAULT

option, these ACEs make up the ACL of the new file.

3. Otherwise, the new file has no ACL.

The NOPROPAGATE option can be included in an ACE to prevent it from being
propagated to new versions of the file.

238 File Protection

J8.4

A special rule is applied when you create a file whose owner is not your own VIC
(e.g., using the /OWNER_UIC qualifier on the CREATE command). In this case, the
file receives an additional ACE, which grants the owner's access capabilities to
your VIC. In addition, it grants control access to your VIC. Therefore, regardless
of the owner of a file, its creator retains control over the file.

The Access Algorithm

The exact algorithm used by VMS to perform VIC-based and ACL-based protec­
tion checking is relatively complex. In particular, there are some not-so-obvious
interactions between the two protection mechanisms. Assume that a particular
user (the accessor) is requesting a particular type of access (e.g., write access) to

. a file. VMS takes the following steps to determined whether access is granted:

l. If the file has no ACL, go to step 2. Otherwise perform the ACL-based
protection check:

a. If the ACL includes an identifier ACE that grants access, then access is
granted.

b. If the accessor is not identified in the ACL, go to step 2.

c. The ACL includes an identifier ACE that denies access. However:

I. If the accessor is the owner of the file and the owner category in the
protection mask grants access, then access is granted. If it does not
grant access, then go to step 3.

II. If the accessor is in the same group as the file's owner, then go to
step 3.

iii. Go to step 3b.

2. Perform the VIC-based protection check:

a. If the accessor is the owner of the file and the owner category of the
protection mask grants access, then access is granted.

b. If the world category of the protection mask grants access, then access is
granted.

c. If the accessor is in the same group as the file's owner and the group
category of the protection mask grants access, then access is granted. If
it does not grant access, then go to step 3.

d. Go to step 3b.

78.4 The Access Algorithm 239

3. Check various privileges that affect access:

a. If the accessor has GRPPRV privilege and the system category of the pro­
tection mask grants access, then access is granted.

b. If the accessor has system access and the system category of the protec­
tion mask grants access, then access is granted.

c. If the accessor has BYPASS privilege, then access is granted.

d. If the accessor has READALL privilege and wants only read and/or control
access, then access is granted.

e. Access is denied.

240 File Protection

Chapter 19

19.1

Devices

In classical terms, a device is a hardware component attached to a computer for
purposes of data storage or input/output. Such devices include disk drives, mag­
netic tape drives, printers, terminals, and so on. In the VMS environment, the
term device includes all these hardware components, along with virtual devices
created by the VMS software. Two examples of virtual devices are mailboxes
used for interprocess communication and windows on a VAXstation monitor.

The purpose of some devices, particularly disk and tape drives, is to store per­
manent information. The magnetic medium on which information is stored is
called a volume. Tape drives and certain disk drives have removable volumes,
so a drive may contain different volumes at different times. Many newer disk
drives have fixed volumes, which cannot be removed.

DeL applications often describe or manipulate devices, usually hardware com­
ponents. For example, an application might display information about the disks
on a system or mount a tape volume on a tape drive. This chapter describes
methods for obtaining device information and manipulating devices in DeL.

Device Names

Each device on a VAX system has a unique device name. The name is used to
refer to the device in file specs and DeL commands that require a device name,
such as MOUNT. In the early days of VMS, the format of device names was quite

247

19.2

242 Devices

simple. The name consisted of two letters, which identified the type of device; a
single letter, which identified the device controller; and an integer, which identi­
fied the particular unit attached to the controller. For example, the device name
TTB3 identified a hard-wired terminal (TT) attached to the B controller and hav­
ing unit number 3. Users began to assume that all device names consisted of
four characters and that the type of device could be deduced from the first two
letters.

With the advent of VAXclusters, terminal servers, workstations, and other inno­
vations, such assumptions about a device name are no longer valid. Here are
some of the developments that render the assumptions obsolete:

•

•

•

Not all devices have physical incarnations. A mailbox, for example, is a
logical device used for communication between processes. A window on a .
VAX station display screen is a logical device, which is similar to a terminal,
but many such devices may be assigned to the same display screen.

Devices that are available to all nodes in a VAXcluster have a segmented
name. The first segment is the name of the node to which the device is
connected or the allocation class of the device. The second segment is a
conventional device name. The segments are separated by a dollar sign. A
disk connected to node BIZET might have the name BIZET$DUA2. A disk
connected to two HSC controllers in allocation class 1 might have the name
1DUA3.

A terminal server supports many physical terminals that are not connected
directly to a VAX. The terminal server is a single device that appears to the
user as multiple devices.

It is not valid to assume that a device name is four characters long, that the
first two characters accurately identify the type of device, or that the device is
physically connected to the local VAX.

Device Information

The characteristics of a device cannot be determined from its name, but they can
be determined using the F$GETDVI lexical function. This function requires two
arguments. The first is a string containing the device name. The second is a
keyword string specifying the item of information desired. The information is
returned as an integer, string, or boolean, depending upon the item requested.

The device name is usually specified as the name by.itself, but you can also
specify a file spec or a logical name that includes the device. The lexical function

Table 19.1 F$GETDVlltems

Keyword Type Description of Result

"ALL" Boolean True if the device is allocated to a user, false if it is
available.

"DEVCLASS" Integer The class of the device. See the VMS DCL Dictionary
for a list of classes.

"DEVNAM" String The name of the device.

"DEVTYPE" Integer The type of the device. See the VMS DCL Dictionary
for a list of types.

"EXISTS" Boolean True if the device exists, false if not.

"FREEBLOCKS" Integer The number of available blocks on a disk device.

"FULLDEVNAM" String The fully qualified device name, which includes the node
name in a VAXcluster environment.

"MAXBLOCK" Integer The number of blocks on a disk device.

"MNT" Boolean True if a volume is mounted on a disk or tape device,
false if not.

"VOLNAM" String The name of the volume mounted on a disk or tape drive.

ignores everything but the device name. Table 19.1 describes a few of the item
keywords; many more are available.

If F$GETDVI is called with an invalid device name, it signals an error. If you are
not absolutely sure that a device name is valid (e.g., it was entered by a user),
call F$GETDVI with the "EXISTS" keyword. This is the one exception to the
rule that the function signals an error for invalid devices. Instead, it returns a
true value if the device exists, a false value if it does not. If the device does not
exist, you cannot use F$GETDVI to obtain any other information about it.

Once you know that a device exists, you can use any of the item keywords to
obtain information about that device. One important item is the device class
("DEVCLASS"). The device class denotes the general category of device, such
as disk, tape, terminal, or line printer. Each class is represented by an integer;
a complete list of device classes is available in the VMS DeL Dictionary. The
device class is useful when the user has entered a device to be used for a specific
purpose, such as the target of a backup operation. In this case, the procedure can
verify that the device is a disk or tape.

19.2 Device Information 243

19.3

244 Devices

Another important item is the device name ("DEVNAM"). It may seem silly to
have an item that returns the device name, but remember that the first argument
to F$GETDVI need not be a device name by itself. It may be a logical name or a
full file spec. In these cases, the device name item is used to extract the actual
device name, by itself, without any other elements of the file spec.

Here is an example of the use of F$GETDVI:

$10: libcall ask xda_dev s "Device on which to perform backup: II

$ dev_ok = f$getdviCxda_dev,IEXISTS")
$ if dev_ok
$ then
$ backup_dev_name = f$getdviCxda_dev, "DEVNAM")
$ backup_dev_class = f$getdviCxda_dev,"DEVCLASS")
$ dev_ok = backup_dev_class .eq. 1 .or. -

backup_dev_class .eq. 2
$ if .not. dev_ok then libcall signal xda i baddevclass -

liThe device must be a disk or tape. II
$ else
$ libcall signal xda i nosuchdev -

"Device "xda_dev does not exist."
$ endif
$ if .not. dev_ok then goto 10
$19:

This example uses a loop to repeatedly ask the user for a backup device until
a valid disk or tape name is entered. Once the loop terminates, the symbol
BACKUP _DEV _NAME contains the device name and BACKUP _DEV _CLASS contains
its class number.

The F$GETDVI lexical function can return an astounding amount of informa­
tion about a device. You should consult the VMS DeL Dictionary for complete
details.

Obtaining a List of the Devices on a System

You may find yourself implementing a particularly sophisticated DCL applica­
tion, which needs to obtain a list of every device on the system or perhaps all
the disks or terminals. For example, an application that monitors the free space
on mounted disks needs a list of all disks. Unfortunately, there is no straightfor­
ward way to obtain such a list in DCL. You must obtain the list using a somewhat
devious technique.

First of all, generate a list of all devices, using the SHOW DEVICE command. The
output from the command can be directed to a file with the /OUTPUT qualifier.
The /MOUNTED qualifier can be used to restrict the list to only those devices with
volumes mounted on them. The file will contain a list in roughly the following
format:

Device Device Error Volume Free Trans Mnt
Name Status Count Label Blocks Count Cnt

DUAO: Mounted 4 MICROVMS 12569 88 1
DUA1: Mounted 0 VXMASTER 13449 7 1
DUA2: Mounted 14 USER 39051 8 1

Device Device Error Volume Free Trans Mnt
Name Status Count Label Blocks Count Cnt

MSAO: Online 5

XQAO: Online 0
XQA1 : Online 0
XQA2: Online 0

Note that there are blank lines, heading lines, and lines describing devices. A
list of devices is obtained by opening the file and reading the lines, one at a time,
looking for those lines that contain a device description. The device name is
extracted from the line and added to the list. The following code builds a list of
all tape drives:

$ libcall unique_name xda_show sys$scratch:xda_?lis
$ show device/output='xda_show
$ open/read xda_show 'xda_show
$ tape_list = 1111

$10: read xda_show line /end_of_file=19
$ i = f$locate(II:II, line)
$ if i .eq. f$length(line) then goto 10
$ dev = f$extract(O, i, line)
$ if f$getdviCdev,IIEXISTS II) then-

if f$getdviCdev, IIDEVCLASS II) . eq. 2 then -

$

tape_list = tape_list + dev +
goto 10

$19: close xda_show
$ delete 'xda_show;*

" " ,

Notice how careful the code is to ensure that what it finds is indeed a tape device.
If the line does not contain a colon, then it is blank or a heading and is ignored.
Once the device name is extracted, F$GETDVI is used both to ensure that the name
represents an existing device and that the device is a tape drive. The existence
check may seem superfluous, but it serves two purposes. First, it guarantees

19.3 Obtaining a List of the Devices on a System 245

J9.4

[> Ch. 6

246 Devices

that a real device name has been extracted from the device listing. Second, it
guards against a device that existed when the SHOW DEVICE was performed but
has subsequently disappeared (e.g., a temporary mailbox or remote terminal).
When the loop terminates, the symbol TAPE_LIST contains a list of the tape
drives available to the system.

Do not extract any additional information from the device listing file; instead
use F$GETDVI. The format of the listing file may change in a future release of
VMS. We are taking enough of a chance that the device name begins in column
zero and ends with a colon. Never extract information from listing files unless
absolutely necessary. VMS makes no guarantee that the format of listings will
remain the same.

The SHOW DEVICE command accepts a generic device name parameter, in which
case it includes only those devices in the listing. For example, SHOW DEVICE T

produces a listing of devices whose name begins with the letter T. It is tempting
to use this command to produce a list of the terminals on the system. Don't
forget, however, that not all terminal names begin with T; DEC server terminals
begin with LT. Always use F$GETDVI to determine the class of a device.

Terminal Characteristics

Associated with each terminal device is information called the terminal char­
acteristics. Some of the characteristics specify features of the terminal, for ex­
ample, whether it accepts ANSI escape sequences or is connected to a modem.
Other characteristics control the behavior of the terminal, for example, whether
line editing is allowed or whether lines wrap when the cursor reaches the right
margin. Terminal characteristics can be modified with the SET TERMINAL com­
mand, and there is an F$GETDVI item keyword that can be used to obtain each
characteristic. Most terminal characteristics do not affect a DCL procedure, be­
cause DCL has only rudimentary facilities for dealing with terminal displays and
keyboards.

One characteristic that a DCL application might use is the "ANSI CRT" char­
acteristic ("TT_ANSICRT"). This is a boolean characteristic, which is true if the
terminal accepts ANSI standard control sequences, false if not. An application
that sends control sequences to the terminal for screen formatting should first
check the terminal to determine whether the sequences will be obeyed:

19.5

$! Make sure we have an ANSI terminal to display on.
$
$ output_dev = f$getdvi("sys$output","DEVNAM")
$ if f$getdvi(output_dev, "DEVCLASS") .eq. 66
$ then
$ if .not. f$getdvi(output_dev,"TT_ANSICRT") then -

libcall signal xda f not ansi -
"This application only runs on ANSI terminals."

$ else
$ libcall signal xda f notterm -

"This application requires a terminal."
$ endif

The code determines the device to which output will be displayed. It then checks
to make sure the device is a terminal, in particular an ANSI terminal. If either
check fails, a fatal error is signaled and the application terminates.

Device Allocation

A procedure can request exclusive use of a device by allocating the device. Once
a device is allocated to a process, no other process can use the device until the
original process deallocates it. The devices most commonly allocated are disk
and tape drives. A procedure might allocate a disk drive in order to initialize a
new disk volume and prepare it for use by some application. A procedure might
allocate a tape drive for use in a disk backup operation.

A device is allocated with the ALLOCATE command. The ALLOCATE command
has three forms, described in the following paragraphs.

In its simplest form, the ALLOCATE command accepts a list of devices, one of
which it allocates. It checks the devices in the order specified and allocates the
first one available. The command also accepts an optional second parameter,
which must be a logical name. This logical name is defined to refer to the allo­
cated device, so you can tell which one was actually allocated. The following
example requests exclusive use of tape drive MTAO or MTA1:

$ allocate mtaO,mta1 xda_tape_drive

VMS first tries to allocate MTAO and then MTA1. The first available drive is
allocated to the process. If neither are available, an error is signaled. The process
logical name XDA_TAPE_DRIVE is defined as MTAO: or MTA1:, as appropriate.

The ALLOCATE command can also accept a group of devices; it will try to allocate
one of the devices in that group. A group can consist of all the devices with a

19.5 Device Allocation 247

248 Devices

particular two-letter type (e.g., MT), or all the devices on a particular controller
(e.g., DUA). The following example attempts to allocate an RX02 floppy diskette
drive:

$ allocate dy xda_floppy_drive

VMS tries to allocate any device whose name contains the device type DY, that is,
any RX02 floppy drive. If one is allocated, the logical name XDA_FLOPPY _DRIVE

is defined to refer to it.

The first two letters of a device name do not always refer to a specific type of
device. For example, DU is used for the name of the entire RA family of disks,
including the RA80 and RA81. If you want to allocate a specific type of device,
use the third form of the ALLOCATE command. Include the /GENERIC qualifier
and a list of device types rather than device names:

$ allocate/generic ra81 xda_disk_drive

VMS tries to allocate any RA81 device, ignoring all other disk types, including
the RA80.

The /LOG qualifier can be used to control information displayed by the ALLOCATE

command. If /LOG is specified (the default), then the command displays the
name of the allocated device. In addition, if the logical name is already defined,
the command displays a message explaining that the logical name's value is
being superseded. The /NOLOG qualifier suppresses both of these messages.

The following example asks the user for the type of a device to be allocated and
performs the allocation:

$10: libcall ask xda_dev s "Type of device to allocate: II

$ set noon
$ allocate/generic/nolog 'xda_dev xda_device
$ status = $status
$ set on
$ if status then goto 19
$ libcall signal xda i cantalloc -

"No "xda_dev can be allocated." 'status
$ goto 10
$19:
$ display "Device "f$trnlnm("xda_device") was allocated."

19.6

The code contains a loop, which asks the user for a device type and attempts to
allocate such a device. Once the allocation is successful, the procedure displays
the name ofthe device by translating the logical name XDA_DEVICE. Note the use
of the /NOLOG qualifier on the ALLOCATE command to prevent its status messages
from being displayed.

A device is deallocated using the DEALLOCATE command. The logical name
defined by the ALLOCATE command is specified as the name of the device to
deallocate:

$ deallocate xda_device

The / ALL qualifier can be used to deallocate all devices allocated by the current
process:

$ deallocate/all

All devices allocated to a process are deallocated when the process is deleted.
In particular, all devices allocated during an interactive session are deallocated
when the user logs out.

Volume Initialization

A new disk or magnetic tape volume must be initialized before data can be
recorded on it. The INITIALIZE command prepares a volume for use by VMS.
The command requires two parameters, the first of which is the name of the de­
vice on which the new volume is mounted. The second parameter is the volume
label for the new volume. The volume label is limited to 12 characters for a disk
volume, six for a magnetic tape volume. The label is recorded on the volume
and identifies it for future use.

The INITIALIZE command formats the volume for use by VMS. By default, a
disk is formatted according to "Files-II Structure Level 2." This is the standard
format for disks that will contain VMS directories and files. Again by default, a
tape is formatted according to "level 3 of the ANSI standard for magnetic tape
labels and file structure for informational interchange" (ANSI X3.27 -1978). This
is the current standard format for magnetic tapes. Within these standards there
are many options, which affect the logical format of the volume. These options
can be specified using a large number of qualifiers to the INITIALIZE command.
These qualifiers are described in the VMS DeL Dictionary.

79.6 Volume Initialization 249

J9.7

250 Devices

The following example allocates a tape drive and initializes a new magnetic tape
volume:

$ allocate mt xda_tape_drive
$ libcall ask xda_label s "Label for new tape volume:" "" u
$ display "Please load a new tape volume on drive ", -

f$trnlnm("xda_tape_drive")
$ libcall ask xda_ s "Press RETURN when ready:" continue
$ initialize/density=1600 xda_tape_drive 'xda_label

This code allocates an MT tape drive. It then asks the user for a label for the new
volume and requests that the volume be mounted on the drive. Finally, the new
volume is initialized. The /DENSITY qualifier specifies the density (in bytes per
inch) at which the volume is written.

A volume cannot be initialized if it has already been mounted with the MOUNT

command, described in the next section.

Volume Mounting

The term mounting refers to the process by which the system recognizes a data
volume on a storage device, such as a disk or magnetic tape drive. Not until a
volume is mounted can its files be created and manipulated by VMS programs.
Before a volume can be mounted it must be physically loaded on the device by
a human being. Be careful to distinguish the physical loading process from the
system's mounting process.

The MOUNT command is used to mount a volume. It has the following general
format:

$ mount device lahel logical-name

The device parameter specifies the device on which the volume is to be mounted.
The parameter can name a specific device, or it can specify a device group,
as in the ALLOCATE command. The label parameter specifies the label of the
volume being mounted. This parameter is only required in some circumstances,
described below. The logical-name parameter specifies a logical name, which is
defined to refer to the device on which the volume is ultimately mounted. All
future references to the device should be made through this logical name.

The MOUNT command accepts a number of qualifiers, some of which are de­
scribed in Table 19.2. You should familiarize'yourself with the qualifiers before
reading further.

Table 19.2 MOUNT Command Qualifiers

Qualifier

/ASSIST

/NOASSIST

/FOREIGN

/GROUP

/LABEL

/OVERRIDE

/SHARE

/SYSTEM

Default? Description

V Operator intervention is requested if a failure occurs during
the mount operation.

The user must intervene if a failure occurs.

The volume is not in standard ANSI format. No volume
label or header checking is performed. Tapes used by the
BACKUP utility are mounted foreign.

The volume is made available to other users in the same
VIC group. This qualifier requires GRPNAM privilege.

The volume is in standard ANSI format. Volume label and
header checking are performed.

This qualifier accepts keyword values, which specify steps
in the mount sequence that are to be bypassed. The keyword
IDENTIFICATION specifies that volume label checking is
not performed. In this case, no label needs to be specified
on the MOUNT command.

The disk volume is made shareable. The device is not
allocated by the current process.

The volume is made public; all system users can access it.
This qualifier requires SYSNAM privilege.

The MOUNT command performs the following steps:

1. If a specific device is named, the command ensures that the device is un­
allocated or already allocated to the current process. If a device group is
specified, the command locates an available device in that group. (The com­
mand does not search for a device containing the volume with the requested
label; it merely locates one that is unallocated.)

2. If the /GROUP, /SHARE, or /SYSTEM qualifiers are specified, the command
deallocates the device if necessary. Otherwise it is allocated to the current
process.

3. The command ensures that a volume is physically loaded on the device.

4. Unless the /FOREIGN or /OVERRIDE=IDENTIFICATION qualifiers are spec­
ified, the command checks the volume label against the label specified on the
MOUNT command.

5. The command prepares the volume for input/output operations.

79.7 Volume Mounting 257

252 Devices

6. The command defines a logical name to refer to the mounted device. The
logical name is defined in the process logical name table by default, the group
table if /GROUP is specified, or the system table if /SYSTEM is specified. The
logical name is chosen as follows:

- If a logical name is specified in the MOUNT command, it is used.

- If a logical name is not specified, the name DISK$label or TAPE$label
is used as appropriate. The label portion of the name is identical to the
volume label.

The MOUNT command has many more options than are described here. The VMS
Mount Utility Manual describes the command in complete detail.

Chapter 20

}

Processes

The VMS environment in which DeL commands are executed and programs
are run is called the process. A process provides the structure and information
necessary to run the program images that make up DeL, VMS utilities, and
application software. A component of VMS called the scheduler is responsible
for periodically choosing a process to run on each VAX processor. The scheduler
must ensure that all processes get their fair share of the VAX execution cycles.
The following components are associated with every VMS process:

• A set of data structures containing control information for the process. These
structures are maintained by VMS in an area of system memory called pool.
Some of the control information is described in the next section.

• A private area of virtual memory called PO space. A program image invoked
with the RUN command or directly with its own command (e.g., PHONE) is
executed in PO space.

• A private area of virtual memory called PI space. When a process is being
controlled by the DeL command interpreter, the DeL program image runs
in PI space. Symbols and process logical names are maintained in PI space.
Information about executing command procedures is also maintained in PI
space.

VMS supports various kinds of processes, four of which you are likely to en­
counter in your adventures with VMS:

253

t>Ch.21

20.1

254 Processes

Interactive. An interactive process is created when you log in to VMS at a
terminal. The DCL command interpreter resides in PI space and reads com­
mands from the terminal. VMS treats an interactive process as an autono­
mous entity, which remains in existence until you log out.

Batch. A batch process is created when you submit a batch job to a job queue
with the SUBMIT command. The batch queues and jobs are controlled by
the VMS job controller.

Network. A network process is created when a process on another DECnet
node attempts to communicate with the local node. This communication may
result from copying a file to or from the local node, sending mail to a user,
or calling the user with the PHONE utility. A network process is also created
when a remote user logs in to the local node with the SET HOST command.
Network processes are not discussed in this book.

Subprocess. A subprocess is a separate VMS process, which is created and
owned by another process. Subprocesses are described in this chapter.

Interactive, batch, and network processes are collectively called detached pro­
cesses because they are not attached to or owned by any other process. A sub­
process is not a detached process because it is owned by some other process.

Information about the Current Process

VMS maintains a plethora of information about each process. The information
is used to identify the process and control its execution. Much of the important
information can be obtained from within a DCL procedure using one of two
techniques.

The primary technique for obtaining information about the current process is the
F$GET JPI lexical function. The acronym GET JPI stands for "get job and process
information." The lexical function requires two arguments. The first is a process
identifier, which for the the current process is the null string. The second is a
keyword string specifying the desired item of information. Table 20.1 describes
some of the commonly used process information items. The F$GET JPI function
returns the current value of the requested item, either as an integer or a character
string. The following code displays the user name, billing account, and login
time for the current process:

Table 20. 1 F $GET JPI Items

Keyword Type

"ACCOUNT" String

"AUTHPRIV" String

"CPUTIM" Integer

"CURPRIV" String

"GRP" Integer

"LOGINTIM" String

"MEM" Integer

"MODE" String

"PRCNAM" String

"TERMINAL" String

"USERNAME" String

Description of Result

The billing account, padded with spaces to eight characters.
The billing account is stored in the user's record in the user
authorization file (UAF).

A list of the authorized privileges of the process. These are
stored in the user's UAF record.

The CPU time used by the process, in hundredths of a
second.

A list of the current privileges of the process.

The group number of the UIC. This is stored in the user's
UAF record.

The date and time the process was created.

The member number of the UIC. This is stored in the user's
UAF record.

The process mode: "INTERACTIVE", "BATCH",
"NETWORK", or "OTHER".

The process name.

The terminal at which an interactive user logged in.

The user name, padded with spaces to 12 characters. This is
the name used to log in to VMS and is the key to the user's
UAF record.

$
$

$

display "User Name:
display "Account:
display "Login Time: "

f$getjpiC"", "USERNAME")
f$getjpiC"", "ACCOUNT")
f$getjpiC"", "LOGINTIM")

One of the items that F$GET JPI can return is the process mode. The mode is
a keyword string: "INTERACTIVE" for an interactive process and its subpro­
cesses; "BATCH" for a batch process and its subprocesses; "NETWORK" for a net­
work process and its subprocesses; "OTHER" for all other kinds of processes.
The mode can be used in a procedure to determine, for example, whether an
interactive user is available to answer questions:

20. 1 Information about the Current Process 255

256 Processes

Table 20.2 F$ENVIRONMENT Items

Keyword Type

"CAPTIVE" Boolean

"DEFAULT" String

"MESSAGE" String

"PROCEDURE" String

"VERIFY_IMAGE" Boolean

"VERIFY_PROCEDURE" Boolean

Description of Result

True if the process was created by logging in to
a captive user account.

The working device and directory, as established
with the SET DEFAULT command.

The current message settings, as established with
the SET MESSAGE command.

The full file spec of the executing command
procedure.

True if the SET VERIFY=IMAGE command is in
effect.

True if the SET VERIFY=PROCEDURE command
is in effect.

$ interactive f$getjpiC"" , "MODE") .eqs. "INTERACTIVE"

$ if interactive
$ then

. ask some questions

$ endif

The F$GET JPI function obtains the mode of the process and the assignment

command sets the symbol INTERACTIVE to true if the mode is interactive, false

otherwise. The symbol is tested later in the procedure to determine whether to

ask questions of the interactive user.

Three items of information available with F$GET JPI can also be obtained with

other lexical functions. The process mode can be obtained with F$MODE, the

name with F$PROCESS, and the UIC with F$USER. These functions were avail­

able before F$GET JPI was introduced into DCL. The author suggests that you

use F$GET JPI rather than the three other lexical functions, both for consistency

and because the names F$PROCESS and F$USER are misleading.

Additional process information, mostly related to the DCL environment, can be

obtained with the F$ENVIRONMENT lexical function. This function takes one

argument, a keyword string specifying the desired item. It returns the current

value of the item as an integer or character string. Table 20.2 describes some

20.2

important items of environment information, most of which have already been

described in previous chapters. The following example uses F$ENVIRONMENT:

$ this_proc = f$environment("PROCEDURE")
$ proc_dir = f$parse(this_proc, ,,"DEVICE") + -

f$parse(this_proc, ,,"DIRECTORY")
$ define xda_system 'proc_dir

$ @xda_system:xda_another-proc

The F$ENVIRONMENT function obtains the file spec of the executing procedure.
The logical name XDA_SYSTEM is defined to refer to the device and directory

containing the procedure. This logical name can then be used to refer to any file

in the procedure directory, such as another procedure that must be invoked by
the current one.

Information about Other Processes

The F$GET JPr lexical function can be used to obtain information about pro­

cesses other than the current one. Its first argument is a process identifier, or

PID. A PID is an integer that uniquely identifies a process from among all the

processes on the system. In fact, on a VAXcluster, the PID uniquely identifies
a process from among all processes on all nodes of the cluster. VMS assigns a

PID during the creation of the process.

If you know the PID of a process, you can obtain information about the process.

However, it is rarely the case that a procedure can determine the PID of some

arbitrary process. It could attempt to ask the user for one, but the user probably
doesn't know either. Instead of trying to determine the PID of a specific process,

the procedure uses the F$prD lexical function to obtain information about every

process, perhaps selecting some subset of the processes to display or alter.

The F$prD function requires a single argument, called the context symbol. The

context symbol must be initialized to the null string before the first call. On

the first call, F$prD returns the PID of the first process in the system's process
table. The PID is returned as a string containing the external representation of

the integer identifying the process (e.g., "%X02000024"). The fact that it is

returned as a string is a holdover from the time when DeL represented integers

as character strings. The F$prD function also updates the context symbol, so on

the next call it returns the PID of the second process in the table. This continues
until there are no more processes, at which point the function returns the null

string.

20.2 Information about Other Processes 257

258 Processes

The F$PID function returns the identifiers of some or all of the processes on the
system, depending upon the privileges of the requesting process. If the process
has WORLD privilege, every PID is returned. If it has GROUP but not WORLD privi­
lege, only the PIDs of processes in the same group are returned. If it has neither,
then only the PIDs of processes with the same UIC are returned.

The F$GET JPI function expects a PID as its first argument (as a special case, it
accepts the null string to identify the current process). The function can accept
either an integer or a string as the PID, which allows the string returned by F$PID

to be used as the first argument to F$GETJPI. In this way, F$GETJPI can obtain
information about a process whose identifier was returned by F$PID.

Suppose you are writing a procedure to shut down the system. As part of the
shutdown sequence, the procedure lists the processes that still exist on the sys­
tem. However, it does not want to list system processes, those in group 0 or 1.
The following code accomplishes this task:

$ display "Non-system processes:"
$ process_count = 0
$ context = ""
$10: pid = f$pid(context)
$ if pid .eqs. "" then goto 19
$ if f$getjpiCpid,"GRP") .le. 1 then goto 10
$ display f$fao("!16AS (!AS)", f$getjpiCpid,"PRCNAM"), -

f$getjpi(pid,"MODE"»
$ process_count = process_count + 1
$ goto 10
$19:
$ if process_count .eq. 0 then -

display "There are no such processes."
$ if process_count .ne. 0 then -

display "Process count: ", process_count

When this example is run, it produces output something like the following: c

20.3

[> Ch. 7

Table 20.3 Commands to Set Process Environment

Environment Item Command

Default directory SET DEFAULT

Message settings SET MESSAGE

Privileges SET PROCESS/PRIVILEGES=list

Process name SET PROCESS/NAME="name"

User identification code (UIC) SET UIC

Verification SET VERIFY

Non-system processes:
VXCAPTIVE1_1 (INTERACTIVE)
OSTERAAS (INTERACTIVE)
OSTERAAS_1 (INTERACTIVE)
BATCH_1922 (BATCH)
LES_1 (INTERACTIVE)
AMC_MAINT (INTERACTIVE)
VXCAPTIVE1 (INTERACTIVE)
GREEK (INTERACTIVE)
LES (INTERACTIVE)
BASE (INTERACTIVE)
BASE_1 (INTERACTIVE)
Process count: 11

Chapter

7

7

20

20

7

12

The F$PID and F$GET JPI functions provide a powerful mechanism for deter­
mining the status of any processes on a VAX system or cluster. There is no way
to obtain the DeL environment information for a process other than the current
one (the F$ENVIRONMENT function does not accept a PID).

Setting Process Information

VMS provides various commands to establish or alter the current process envi­
ronment. These commands are listed in Table 20.3, along with the chapters in
which they are described. All but two have been described in previous chapters.

The SET PROCESS/PRIVILEGES command can be used to set the current process
privileges to a specified list of privileges. This command is rarely used in pro­

cedures because it does not provide a straightforward way to save the user's
privilege settings, alter them, and then restore them to the original settings. The
F$SETPRV lexical function is designed to serve exactly this purpose. It should
be used in place of the SET command to establish the privileges for a procedure.

20.3 Setting Process Information 259

20.4

I>Ch.21
I> Ch. 8

The process name can be altered with the SET PROCESS/NAME command. The
name is composed of any characters, including lowercase letters, but is restricted
to 15 characters in length. VMS chooses a process name for each process as it
is created. In the case of interactive processes, the process name is the same as
the user name for the user's first process and the same as the terminal name for
subsequent processes. In the case of batch processes, the process name consists
of the word BATCH with a numeric suffix.

Subprocesses

A subprocess is a separate VMS process, created by an existing process and
owned by that process. The owner is called the parent and the subprocess is
called the child. A process that is not a subprocess is a detached process: the
interactive process created when you log in is a detached process.

A DCL procedure creates a subprocess using the SPAWN command. The SPAWN

command is complex, and you probably will become comfortable with it only
after some experimentation. The following paragraphs describe the command
in detail. Table 20Alists many of the qualifiers accepted by SPAWN. A process
must have the TMPMBX or PRMMBX privilege in order to use the SPAWN command.

When a subprocess is created with the SPAWN command, it inherits some of the
environment of the parent process. In particular:

•

•

•

•

•

The child always inherits the parent's current process privileges.
\

The child always inherits the working disk and directory.

The child always inherits the message settings established with the DCL
command SET MESSAGE.

The child can inherit the parent's global, prompt-level, and procedure-level
symbols, as controlled by the /SYMBOLS qualifier. The child never inherits
the $RESTART, $SEVERITY, or $STATUS symbols.

The child can inherit the process logical names and name tables, as controlled
by the /LOGICAL_NAMES qualifier.

It is also important to note the environment items that are not inherited by the
subprocess:

• The child never inherits the standard process-permanent files SYS$COMMAND,

SYS$INPUT, SYS$OUTPUT, and SYS$ERROR. These files are established sep­
arately for the subprocess.

260 Processes

Table 20.4 SPAWN Command Qualifiers

Qualifier

/INPUT=jile-spec

/LOGICAL_NAMES

/NOLOGICAL_NAMES

/OUTPUT=jile-spec

/PROCESS=name

/SYMBOLS

/NOSYMBOLS

/WAIT

/NOWAIT

Default? Description

Specifies a procedure file containing commands
to be executed by the subprocess. If neither this
qualifier nor a command string are included on the
SPAWN command, input is taken from the terminal.

The child inherits the parent's logical names.

The child does not inherit the parent's logical
names.

Specifies a file that receives the output from the
subprocess. If not included, output is directed to
the same destination as the parent's SYS$OUTPUT.

Specifies a name for the subprocess. If not
specified, the name consists of the parent's name
with an integer suffix.

The child inherits the parent's global, prompt­
level, and procedure-level symbols.

The child does not inherit the parent's symbols.

The parent suspends execution until the child
terminates.

The parent and child execute simultaneously.

• The child never inherits the parent's current DCL command table. It always
uses the standard table unless changed by the subprocess itself.

• The child does not execute a LOGIN. COM procedure.

The SPAWN command creates a subprocess with the described environment. The
child runs independently of the parent, executing commands determined by the
parameters and qualifiers to the SPAWN command:

• The SPAWN command accepts an optional command string consisting of a
single DCL command to be executed by the child. If the command string
is present, the command is executed immediately after the child process is

created and initialized.

• The SPAWN command accepts an optional/INPUT qualifier, which specifies
a procedure file. The procedure file becomes the child's process-permanent
SYS$INPUT file, thus causing the child to execute the procedure.

20.4 Subprocesses 267

20.4. J

[> Ch. 9

• If both the command string and the !INPUT qualifier are present, the com­
mand string is executed first, then the input procedure.

• If neither are present, the child reads commands from the terminal. In the
case of a subprocess spawned from a batch job, however, the process termi­
nates immediately, having no source of commands to execute.

Subprocess input and output is described in more detail in Section 20.5.

The subprocess executes its commands independently of the parent. The action
taken by the parent during the execution of the child depends on the /WAIT

qualifier. If /WAIT is specified on the SPAWN command (it is the default), then
the parent ceases execution until the child is done. If /NOWAIT is specified, the
parent and child execute simultaneously. When the SPAWN command is entered
at the DeL prompt, both forms of the qualifier are useful. You may want to use
the /WAIT qualifier to suspend the main process while you do some other work
in a subprocess. Or you may want to use the /NOWAIT qualifier to execute a time­
consuming command in a subprocess while continuing to edit a file in the main
process. On the other hand, when the SPAWN command is used in a procedure, the
/NOWAIT qualifier is almost always used so that the two processes can execute
simultaneously.

The use of the /NOWAIT qualifier requires some synchronization between the
parent and child processes; one method of synchronization is described in Sec­
tions 20.6 and 20.7.

Examples

The SPAWN command is one of the DeL commands that can be executed at
the temporary command level created by a CTRL/Y interrupt. When you press
<CTRL/y> during the execution of a program, a temporary command level is cre­
ated by DeL. The SPAWN command can be entered at this level in order to create
a subprocess. The subprocess can execute arbitrary DeL commands without
affecting the parent process. When you log out of the subprocess and enter the
CONTINUE command at the temporary command level, the command level is can­
celed and the original program resumes execution. This technique allows you to
interrupt a lengthy program, perform some other activities (e.g., read a new mail
message), and then resume the program.

Here is an example of a temporary command level:

262 Processes

$ search xda_system:*.com error

· output from search

I Interrupt I

$ spawn
%DCL-S-SPAWNED, process GREEK_1 spawned
%DCL-S-ATTACHED, terminal now attached to process GREEK_1
$ mail

· read your mail

MAIL> exit
$ logout

Process GREEK_1 logged out at 3-AUG-1988 14:21:47.47
%DCL-S-RETURNED, control returned to process GREEK
$ continue

· more output from search

During the search operation, the user presses <CTRLly> to create a temporary
command level. The SPAWN command creates a subprocess in which the MAIL

utility can be used. The subprocess is ultimately terminated with the LOGOUT

command, and the search operation is resumed with the CONTINUE command.

The /NOWAIT qualifier can be used on a SPAWN command entered at the DeL

prompt in order to initiate the simultaneous execution of a time-consuming com­
mand:

$ spawn/nowait/output=error.sea search xda_system:*.com error

In this case, the same search operation is performed in a subprocess executing at
the same time as the parent process. The /OUTPUT qualifier is used to direct the
subprocess output to a file so that the output does not clutter the terminal screen
and also so that it is collected in one place for future reference.

The SPAWN command can be used in a procedure to create a parallel flow of
execution when an application needs to do two things at once. Section 20.7
presents a complete example of this technique. Here are a few examples of just
the SPAWN command:

20.4 Subprocesses 263

20.4.2

$! Create a subprocess to execute the background sampling
$! procedure. Don't let it inherit any symbols.
$

$ spawn/nowait/nosymbols @xda_system:xda_sampler

-or-

$! The same thing can be accomplished using the /INPUT qualifier,
$! but it really isn't as clear to the reader.
$
$ spawn/nowait/nosymbols /input=xda_system:xda_sampler

-or-

$! In particular, if the procedure requires any parameters, they
$! can only be passed using the first form of the command:
$
$ spawn/nowait/nosymbols @xda_system:xda_sampler sys$sysdevice -

1:00:00

Inheriting Symbols and Logical Names

When a subprocess is created with the SPAWN command, the subprocess normally
inherits the symbols and logical names of its parent. The /NOSYMBOLS qualifier
prevents symbols from being inherited, while the /NOLOGICAL_NAMES qualifier
prevents logical names from being inherited.

Symbol inheritance should be avoided if at all possible. A procedure should
not pass information to a subprocess by creating symbols with the infonnation
and then allowing the subprocess to inherit the symbols. This implicit method
of passing information to the subprocess is not at all obvious to a reader of the
procedure and may be difficult to maintain in the future. Instead, the parent
procedure can pass information to the child procedure in the form of procedure
parameters. Another reason to avoid symbol inheritance is that it takes signifi­
cant time during subprocess creation to pass the symbols from the parent to the
child.

Logical name inheritance is also dangerous and inefficient, although it is some­
times the case that the subprocess must rely on logical names defined by the par­
ent. If at all possible, use the /NOLOGICAL_NAMES qualifier to prevent logical
name inheritance and pass the necessary infonnation as procedure parameters.
Section 20.7 contains an example of passing parameters to a subprocess.

264 Processes

20.4.3

20.5

Subprocess Termination

A subprocess created with the SPAWN command terminates when it has no more
commands to execute. There are three possibilities:

• When the SPAWN command includes a command to execute but does not in­
clude the /INPUT qualifier, the subprocess terminates after executing the sin­
gle command. Note, however, that the command can be the at-sign command
to invoke a procedure in the subprocess; in this case, the entire procedure
executes.

• When the SPAWN command includes the /INPUT qualifier, the subprocess
terminates when the specified command procedure exits.

• When neither a command or the /INPUT qualifier are included, the subpro­
cess must be terminated with the LOGOUT command. In the case of a batch
process, however, the spawned subprocess terminates immediately, because
it has no source of commands.

The action taken by the parent process during the lifetime of the subprocess
depends upon the /WAIT qualifier. If /WAIT was specified, the parent process
suspends execution until the subprocess terminates. If /NOWAIT was specified,
both processes execute simultaneously with no automatic synchronization.

Process-Permanent Files

A process-permanent file is a file that is opened by a process and that remains
open until either it is explicitly closed or the process terminates. There are two
common uses for process-permanent files (PPFs). First, the four standard logical
names SYS$COMMAND, SYS$INPUT, SYS$OUTPUT, and SYS$ERROR, which define
the inputs and outputs for a process, are PPFs. Second, any file opened with the
OPEN command is a PPF.

The four standard files listed above are automatically opened by VMS during
the creation of a process. They remain open until the process terminates. The
sources for SYS$COMMAND and SYS$INPUT and the destination of SYS$OUTPUT

and SYS$ERROR are determined by VMS using some standard rules along with
optional information given by the creator of the process. The sources and desti­
nations for these logical names are not always obvious, particularly in the case of
a subprocess spawned from within a DCL procedure. Table 20.5 lists the PPFs
for a procedure running in an interactive process. Table 20.6 lists the PPFs for a
procedure running in a batch process. Remember that these tables pertain only
to a process running a DCL procedure.

20.5 Process-Permanent Files 265

20.6

Table 20.5 Standard PPFs: Interactive Procedure

PPF Detached Process

SYS$COMMAND The terminal.

SYS$INPUT

SYS$OUTPUT

SYS$ERROR

The command procedure exe­
cuting in the detached process.

(1) The terminal; or (2) the
file specified with the /OUTPUT
qualifier on the at -sign command
that invoked the procedure.

The terminal.

Subprocess

(1) The terminal; or (2) the
command procedure specified
with the /INPUT qualifier on the
SPAWN command.

The command procedure ex­
ecuting in the subprocess.

(1) the same as the parent's des­
tination; or (2) the file specified
with the /OUTPUT qualifier on
the SPAWN command.

Same as SYS$OUTPUT.

When a process-permanent file is specified as a source or destination for a pro­
gram, the program performs input/output operations on the file that is already
open. In particular, when a PPF is specified as an output file, data is appended
to the existing file. No new file is created.

Jobs

VMS uses the term job to refer to a detached process and all of its subprocesses.
The detached process can be an interactive, batch, or network process; the word
job has nothing to do with the traditional term batch job. When a procedure uses
the SPAWN command to create a subprocess, both the parent and the child are
members of the same job.

Associated with each job is a job logical name table. Logical names defined in
this table can be accessed by any process in the same job as the defining process.
Thus, if a parent process defines a job logical name, any children created with
SPAWN can access the logical name, and vice versa. The following command
defines the job logical name XDA_JOB_INFO:

266 Processes

20.7

Table 20.6 Standard PPFs: Batch Procedure

PPF

SYS$COMMAND

SYS$INPUT

SYS$OUTPUT

SYS$ERROR

Detached Process

The command procedure exe­
cuting in the detached process.

Same as SYS$COMMAND.

(1) The log file; (2) the null
device (NL:) if no log file was
requested; or (3) the file specified
with the /OUTPUT qualifier on the
at-sign command that invoked
the procedure (subprocedures
only).

(1) The log file; or (2) the null
device (NL:) if no log file was
requested.

Subprocess

(I) The null device (NL:); or (2)
the command procedure speci­
fied with the /INPUT qualifier on
the SPAWN command.

The command procedure ex­
ecuting in the subprocess.

(1) the same as the parent's des­
tination; or (2) the file specified
by the /OUTPUT qualifier on the
SPAWN command.

Same as SYS$OUTPUT.

The job logical name table is deleted when the job's detached process is deleted.

Job logical names can be used to communicate between parent and child subpro­
cesses. The following section presents an example of the SPAWN command used
in conjunction with the job logical name table.

An Example with SPAWN

Suppose you have a procedure that creates and deletes many files on a particular
disk. It might be interesting to monitor the minimum number of free blocks on
the disk as the procedure runs. A subprocess can be used to "watch" the disk as
the parent process executes. At the end of the file manipulation, the subprocess
can report the free block count to the parent. Note that the free block count might
be affected by other users on the system.

Here is the command procedure that is run in the subprocess:

20.7 An Example with SPAWN 267

268 Processes

$! This is the XDA_WATCH-DISK procedure.
$! The first parameter is the disk to be watched.
$

$ min_free = 999999999
$10: if f$trnlnm(" xda_watch_disk_blocks") .eqs. 1111 then goto 19
$ wait 00:00:00.50
$ f = f$getdviCp1,"FREEBLOCKS")
$ if f .It. min free then min_free f
$ goto 10
$19:
$

$ define/job xda_watch_disk_blocks 'min_free
$ exit

Here is part of a DeL application that uses the disk watcher:

$ define/job/nolog xda_watch_disk_blocks in-progress
$ spawn/nosymbols/nological_names/nowait-

@xda_system:xda_watch-disk 'disk

: pelform file manipulation

$ undefine/job xda_watch_disk_blocks
$10: if f$trnlnm(" xda_watch_disk_blocks") .eqs. 1111 then goto 10
$ display "Minimum free blocks: ", -

f$trnlnm(" xda_watch_disk_blocks")
$ undefine/job xda_watch_disk_blocks

The job logical name XDA_WATCH_DISK_BLOCKS provides the communication
and synchronization between the parent process and the subprocess watching the
disk. The following sequence of events occurs when this application runs:

1. The parent process defines the logical name XDA_WATCH_DISK_BLOCKS in
the job logical name table, assigning it an arbitrary value such as the word
IN - PROGRESS.

2. The parent spawns a subprocess. There is no reason for the child to in­
herit the symbols or logical names of the parent, so the /NOSYMBOLS and
/NOLOGICAL_NAMES qualifiers are used. The /NOWAIT qualifier allows the
parent and child to run simultaneously.

3. The parent begins to perform its file manipulation activities.

4. The XDA_WATCH-DISK procedure running in the child repeatedly performs
the following steps:

a. It checks to see whether the parent has deleted the job logical name. If so,
this is the signal to stop watching the disk, report the result to the parent,
and exit.

b. It waits one-half second.

c. It determines the number of free blocks on the disk and resets MIN FREE

if a new low has been attained.

5. Eventually the parent deletes the job logical name. The subprocess ceases
executing the disk-watching loop and redefines the job logical name so that
its value is the minimum number of free blocks. The procedure then exits
and the child is deleted.

6. After the parent deletes the job logical name, it must wait until the child

redefines it. This is done with a simple one-line loop, which just iterates
until the logical name is again defined.

7. The parent determines the minimum free blocks by translating the logical
name.

8. The parent deletes the logical name so that it does not clutter the job logical
name table.

20.7 An Example with SPAWN 269

Chapter 21

21.1

270

Batch Jobs

This chapter describes the batch facility of VMS, which allows a process to run
"unattended," without being connected to an interactive terminal. DCL applica­
tions can take advantage of the batch facility to perform time-consuming tasks
without tying up the user's terminal. It is important for the DCL programmer
to understand the batch environment in order to coordinate the interactive and
batch portions of an application and ensure their consistency.

The Batch Environment

A batch job is a process that runs in the VMS batch environment rather than
in the interactive environment. The batch-processing facility is supported by a
special program called the job controller, which runs in its own VMS process.
The job controller is responsible for maintaining a set of job queues to which
users submit batch and print jobs for processing. The remainder of this chapter
discusses techniques for using the job controller and queues to run batch jobs.

A given VMS system can have one or more batch queues, each with its own
unique name. Associated with a queue is a set of attributes, which determine how
the job controller selects and runs jobs from the queue. It is up to your system
manager to set up the batch queues and define their attributes; this book does not
discuss the creation of queues. Almost every VMS system has a standard batch
queue named SYS$BATCH.

[> Ch. 20

21.2

When you submit a batch job for execution, what you are submitting is a DeL
procedure that the job controller is to execute in a batch process. A batch process
is similar to the interactive process described in this book, but there are important
differences. Once you understand the differences, you can write DeL applica­
tions that run both interactively and in batch. The following points describe the
differences between a batch process and an interactive one:

• There is no terminal associated with a batch process. Its input comes from a
command procedure and its output goes to a log file.

• The logical names .SYS$COMMAND and SYS$INPUT refer to the DeL proce­
dure being run in the batch process.

• The logical names SYS$OUTPUT and SYS$ERROR are directed to a log file. A
log file is a text file whose purpose is to contain all the output generated by
the batch job. The log file can be retained after the job completes.

• The F$GET JPI lexical function can be used to determine whether a proce­
dure is being run interactively or in batch. When called with the item key­
word "MODE", the function returns the string "INTERACTIVE" or "BATCW',

depending upon the current environment.

A fundamental consequence of the batch environment is that a procedure cannot
ask questions of the interactive user. Instead, any information the procedure
requires to operate must be passed to it in the form of parameters.

One important similarity between the batch and interactive environments is the
login procedure. If the procedure LOGIN. COM exists in your login directory,
VMS automatically invokes it when you log in. The same is true when a batch job
is submitted: VMS automatically invokes your LOGIN. COM immediately after it
creates the batch process. If parts of the login procedure should be skipped in
batch, use the F$GET JPI function to check for batch and exclude those parts.

Submitting a Batch Job

A batch job is submitted to a batch queue using the SUBMIT command. The
SUBMIT command accepts many qualifiers, which control how and when the job
is executed. The basic form of the command is as follows:

21.2 Submitting aBatchlob 271

Table 21 .1 SUBMIT Command Qualifiers (Part 1)

Qualifier

/ AFTER=time

/DELETE

/NODELETE

/HOLD

Default? Description

The job is held in the queue and not run until the
specified time.

The command procedure is deleted after the job
finishes.

The command procedure is not deleted.

The job is held in the queue until it is explicitly
released by the SET QUEUE/ENTRY command.

/NOHOLD J The job is not held.

/IDENTIFY J The job name, queue, and entry number are displayed
after the job is submitted.

/NOIDENTIFY The job information is not displayed.

/KEEP (depends) The log file is retained after the job completes. This
is the default if /NOPRINTER is specified.

/NOKEEP (depends) The log file is deleted after the job completes. This
is the default if /PRINTER is specified.

/LOG_FILE=spec J Specifies the file to contain the job log. The default
device/directory is the submitter's login directory.
The default file name is the name of the job. The
default file type is LOG.

/NOLOG_FILE No job log file is produced.

$ submi t procedure-spec

The procedure-spec is a file spec that names the DeL procedure to be run in
batch. The procedure must exist at the time the SUBMIT command is entered.
Tables 21.1 and 21.2 describe many of the important qualifiers for the SUBMIT

command.

Here are a few things to note about the SUBMIT command:

•

•

272 Batch Jobs

Unless you specify the / AFTER qualifier, the job is run as soon as possible,
depending on the jobs queued before it.

By default, a log file is generated, printed to the SYS$PRINT queue, and
deleted. It is usually easier to review the log file with an editor. This is
specified by the following combination of qualifiers:

l>Ch. 15

Table 21.2 SUBMIT Command Qualifiers (Part 2)

Qualifier

/NAME=lname"

/NOTIFY

/NONOTIFY

/PARAMETERS

/PRINTER=queue

/NOPRINTER

/QUEUE=queue

/RESTART

/USER=user

Default? Description

Specifies the name of the job. The name can contain
any characters but is limited to 39 characters in
length. The default name is the name of the command
procedure.

A message is broadcast to your terminal when the job
completes.

No completion message is broadcast.

Provides up to eight parameters to the command
procedure. The parameters are separated by commas
and enclosed in parentheses. If a parameter contains
any characters other than letter or digits, it must be
enclosed in double quotes (").

The log file is queued for printing. The default print
queue is SYS$PRINT. Note that this qualifier is
present by default.

The log file is not printed.

Identifies the batch queue on which the job is queued.
The default queue is SYS$BATCH.

Specifies that the batch job is restartable (see
Section 21.4).

Names the user on whose behalf the job is run. The
default is the submitting user. The CMKRNL privilege
is required to submit a job for another user.

$ submit /log_file=file-spec/keep/noprinter procedure

If the log file spec does not include a directory, the log file is placed in your
login directory. The log file is in VFC (variable with fixed control) format, not
in standard text format.

• If the /LOG_FILE qualifier does not include a log file name, the name of the
command procedure is used. However, if the /NAME qualifier is present, then the
job name is used. In the latter case, the job name must be a valid file name.

• To use the /USER qualifier to submit a job on behalf of another user, you must
have CMKRNL (change mode to kernel) privilege and read access to the user au­
thorization file.

27.2 Submitting a Batch Job 273

21.3

The SUBMIT command is used by a DeL application to run a portion of an appli­
cation in batch. For example, an application that generates accounting reports
might do so in batch because the ACCOUNTING utility takes a long time to for­
mat reports from large accounting files. The application could use the following
SUBMIT command:

$ submit /name=xda_accounting_reports -
/log_file=xda_logs:xda_accounting_reports.log -
/keep/noprinter -
xda_system:xda_accounting /parameters=(all,summary)

Sending Mail about Job Status

The success or failure of a batch job can always be determined by saving a log
file and checking it after the job completes. However, because a batch log is
nothing more than a snapshot of the output produced by the job, it can be difficult
for a naive user to understand. In addition, it may contain a lot of extraneous
information that is not of direct concern to the user. Another way to summarize
the status of a batch job is for the job to produce a succinct log of important
events and mail the log to the user who submitted the job. This status log can be
customized for the task being performed, using terminology and summarizing
events that the user understands.

A status log is relatively easy to produce. The command procedure creates a
temporary file at the beginning of the job. As it proceeds, it writes summary
information to the file. When the procedure is finished, it closes the file, mails it
to the submitter, and deletes it. The following command procedure is designed
to run in batch. It accepts a wildcard file spec, which identifies a set of files
whose internal structure is to be checked with the ANALYZE utility. The output
produced by each analysis is collected in a status log and mailed to the user.

274 Batch Jobs

$'
$
$
$

$

$

$

$

$
$

$

$

$
$

$
$

$
$

$
$
$10:
$
$
$
$
$
$19:
$
$

$
$

$
$
$

$

@XDA_ANALYZE file-spec

analyze = "analyze"
delete = "delete"
mail = "mail"
xda __ status
xda __ success
xda __ ctrly

%x10428000
xda __ status + %x0001
xda __ status + %xOOOc

status = xda __ success
log_file = ""
on control_y then goto control_y
on warning then gate error

libcall = "@xda_system:subroutine-library"
libcall unique_name xda_ sys$scratch:xda_?log;
log_file = xda_
open/write xda_Iog 'log_file
write xda_Iog
write xda_Iog "Analysis performed with ANALYZE/RMS_FILE/CHECK."

file = f$search(p1)
if file .eqs. '"' then goto 19
set noon
analyze/rms_file/check/output=xda_log 'file
set on
goto 10

close xda_Iog
set noon
mail 'log_file 'f$getjpiC"","USERNAME") -

/subject="Batch analysis of "pi'"
set on
delete 'log_file'*

$control_y:
$ status = xda __ ctrly
$ goto exit
$error:
$ status = $status
$ goto exit
$exit:
$ set noon
$ close/nolog xda_Iog
$ if log_file .nes. "" then -

if f$search(log_file) . nes. "" then delete ' log_file' *
$ exit status .or. %x10000000

27.3 Sending Mail about Job Status 275

2J.4

The status log is opened with the logical name XDA_LOG. Any number of WRITE
commands can be used to add lines to the status log. In addition, the logical
name can be specified in the /OUTPUT qualifier of a command so that the output
produced by a utility is directed to the status log. This is the case with the
ANALYZE command in the procedure. The output from each use of the ANALYZE
utility is appended to the status log.

This job is submitted using a command such as the following:

$ submit/nolog_file-
xda_system:xda_analyze /parameter=user_disk: [smith]*.dat

The SUBMIT command specifies that no log file is to be produced; the status log
mailed by the job is sufficient. The /P ARAMETER qualifier specifies the files that
are to be analyzed.

Restartable Batch Jobs

In some applications, it is imperative that a batch job run to completion even if
it is terminated prematurely. There are at least two reasons why a batch job can
terminate prematurely without running its cleanup code. First, the VAX system
might crash. Second, the operator or some other user might cancel the batch job.
A batch job can be made restartable so that it will always run to completion.

The job controller guarantees to resubmit a restartable job if the job does not
complete its execution. The job will be resubmitted if the system crashes while
it is executing. The job will also be resubmitted if the operator cancels it, as long
as it is canceled with the following command:

$ stop! queue! entry=nurnlJcr /requeue queue,~narne

The /REQUEUE qualifier requests that the job be restarted.

A batch job is made restartable by including the /RESTART qualifier on the
SUBMIT command. This single qualifier is all that is required to ensure that the
job is resubmitted if it does not complete the first time. However, if the batch job
does terminate prematurely and restarts, it will run again from the beginning, re­
peating the code that was already executed during the original submission. This
may be harmless, but in many cases it is not. The programmer must design the
batch procedure to be restartable, skipping those portions of the code that have
already been executed and that must not be reexecuted.

276 Batch Jobs

DeL includes some simple features to aid the programmer in designing restart­
able procedures. Two special symbols are involved:

$RESTART. This symbol is always defined. It has a boolean value, false if this
is the original execution of a batch job, true if this is a restarted job. The
symbol does not specify whether the job is restartable, but rather whether it
has in fact been restarted.

BATCH$RESTART. This symbol is only defined during the execution of a re­
started job. Its value is determined by the procedure during its original
execution, as explained below.

A procedure can test the $RESTART symbol to determine whether it has been
restarted. If it has, it can use the value ofBATCH$RESTART to control which parts
are executed and which are skipped. The value ofBATCH$RESTART is established
with the SET RESTART_VALUE command. Upon restart, the symbol has the last
value that was set during the original execution of the procedure. Using the SET
RESTART _ VALUE command, the procedure can be divided into steps as follows:

· procedure initialization

$step1:
$ set restart_value=step1

· perform first step of procedure

$

$step2:
$ set restart_value=step2

· perform second step

$
$step3:
$ set restart_value=step3

· perform third step

$ gata exit
$

$exit:
$ set restart_value=exit

· cleanup code

Each step begins with a SET RESTART_VALUE command, which saves the step
name. The step name is included as a label at the beginning of the code that
performs the step. When the procedure is about to exit, a SET RESTART_VALUE

27.4 Restartable Batch Jobs 277

command saves the label EXIT as an indication that the procedure is effectively
complete. All you need to make this procedure restartable is some code to test
the value of $RESTART and to skip to the appropriate step:

· procedure initialization

$ if $restart then
$ if f$type(batch$restart) .nes. 1111 then goto 'batch$restart
$
$step1 :
$ set restart_value=step1

: perform first step of procedure

$
$step2:
$ set restart_value=step2

: perform second step

$
$step3:
$ set restart_value=step3

· perform third step

$ goto exit
$
$e:x:it:
$ set restart_value=exit

· cleanup code

After procedure initialization, the value of $RESTART is tested. If it is true, the
procedure has been restarted. In this case, the F$TYPE lexical function is used to
determine whether BATCH$RESTART has a value from a SET RESTART_VALUE

command. If so, the procedure skips to that label, effectively bypassing the steps
completed during the original execution of the batch job. If BATCH$RESTART

does not exist, then the original job did not even get to the first step, and execution
takes up at the beginning. In the event that the procedure almost finished during
its original execution, BATCH$RESTART contains the label EXIT and execution
skips immediately to the cleanup code and the procedure exits.

The only difficult aspect of designing restartable jobs is in breaking the procedure
into steps. Here are a few guidelines:

278 Batch Jobs

21.5

•

•

•

•

Do not assume that BATCH$RESTART exists, because the first step might not
be reached before the system crashes. Test BATCH$RESTART with the F$TYPE

function to make sure it is defined.

Each step must be restartable. When the system crashes in the middle of a
step, the job is restarted at the beginning of that step. It must be harmless to
reexecute the step from the beginning.

If a step of the procedure cannot be rerun, then you must arrange for the
procedure never to restart at the beginning of that step. Assume that step 3
cannot be rerun. Instead of performing a SET RESTART_ VALUE=STEP3 at
the beginning of step 3, you can perform a SET RESTART_ VALUE=STEP4 so
that step 3 is skipped in the event of a restart.

After the last step, make sure to set BATCH$RESTART to indicate that the pro­
cedure is effectively complete. Performing a SET RESTART_VALUE=EXIT

command will ensure that the procedure immediately exits if it is restarted
after the last step.

Periodic Batch Jobs

Some applications require that a batch job run periodically, perhaps once an hour
or once a day. The VMS job controller does not provide a facility for easy im­
plementation of periodic batch jobs, so the batch job must take the responsibility
for resubmitting itself. The simplest technique is for the batch job to resubmit
itself just before it exits:

$! Procedure to monitor system resources every 4 hours.
$

$! Remember the time at which the job started.
$

$ start_time = f$time()

· additional initialization

$

· procedure activities

$exit:
$ set noon
$ submit/nolog_file/after=II"start_time+O-04:001l-

'f$environment(IIPROCEDURE II)

· more cleanup

$ exit status .or. %x10000000

21.5 Periodic Batch Jobs 279

At the very beginning of the procedure, the current time is saved in the symbol
START _ TIME. The cleanup code includes a SUBMIT command to resubmit the
job for execution four hours after the starting time. The SUBMIT command is
included in the cleanup code so that it is guaranteed to be executed regardless
of the reason for procedure exit. A combination time is specified on the / AFTER
qualifier: it includes the job starting time as its absolute time component and
the delta time "four hours from now" as its delta time component. The resulting
absolute time is four hours from the original job starting time.

This job rescheduling technique is almost foolproof, but it has one flaw. If the
batch job terminates before it has had a chance to resubmit itself, perhaps be­
cause of a system crash, the periodicity of the job is broken. In order to reduce
the chances of this happening, you could reorganize the procedure to resubmit
itself at the beginning rather than at the end. This may indeed significantly re­
duce the "window" in which termination prevents resubmission, but it does not
eliminate it. The system might crash at the very beginning of the job. In addition,
resubmitting the job at the beginning of the procedure opens up the possibility
that the first job is not finished before the second one begins (what if the first job
occasionally runs for more than four hours?).

You can guarantee that the batch job will resubmit itself by making it restartable.
The technique used to make the procedure restartable is a variation on the scheme
presented in the previous section. Here is the preceding procedure modified to
guarantee that it is resubmitted:

$!

$
$!
$

$
$
$!
$!
$!

$
$

$

$

$
$

280 Batch Jobs

Procedure to monitor system resources every 4 hours.

Remember the time at which the job started.

start time f$time()

If this is a restart and we already resubmitted the procedure,
exit immediately. Otherwise skip to the cleanup code and
resubmit.

if $restart
then

if f$type(batch$restart) .nes. 1111 then -

\

if batch$restart .eqs. "RESUBMITTED" then exit
goto exit ! To resubmit the job.

endif

· additional initialization

$

· procedure activities

$
$exit:
$ set noon
$ submit/nolog_file/after=II"start_time+O-04:00 1l /restart-

'f$environment("PROCEDURE II)
$ set restart_value=resubmitted

· more cleanup

$ exit status .or. %x10000000

During the normal execution of this procedure, nothing special happens until
after the job is resubmitted by the cleanup code. Once the job is resubmitted,
the restart value is set to "RESUBMITTED" to indicate that the resubmittal has
occurred. If the job then exits normally, the restart value is never employed.
Note that the SUBMIT command includes the /RESTART qualifier so that the next
batch job is also restartable.

If the system crashes while the procedure is executing, the batch job is restarted.
Here is what happ~ns:

1. The starting time is saved.

2. The procedure detects that it was restarted.

a. If the symbol BATCH$REST ART exists and has the value II RESUBMITTED II ,

then the original job got far enough to resubmit itself. There is nothing
left to do, so the restarted job exits immediately.

b. If the symbol BATCH$RESTART does not exist or has some other value,
then the original job did not get far enough. The procedure skips to the
exit code to resubmit itself.

3. Under no circumstances does the job execute its initialization code or proce­
dure activities.

With the addition of only a few lines of code, the procedure can guarantee that
the batch job is executed every four hours regardless of how each job terminates.

27.5 Periodic Batch Jobs 287

21.6 Preventing Duplicate Jobs

The previous section demonstrated a method to ensure that a periodic batch job
is resubmitted exactly once every period. This does not rule out the possibility of
duplicate jobs, however, because a user might accidentally submit the job while
it is already active or queued for its next run. Or an operator might submit it after
a system crash, not realizing that the job is restarted after crashes. If you want
to ensure that only one copy of a batch job can ever run at one time, additional
code is needed in the procedure.

The additional code is quite straightforward. It makes use of the group or system
logical name table. The fundamental idea is that a particular group or system
logical name will always be defined while the job is running. This logical name
acts as a "lock" on the batch procedure. If another job detects that the logical
name exists when it starts up, it immediately cancels itself.

The group logical name table can be used if the batch procedure is used only by
the members of a particular UIC group. If anyone can submit the procedure, then
the system logical name table must be used so that all submitters can access the
logical name. The only reason to use a group logical name is that it requires only
GRPNAM privilege, while use of a system logical name requires SYSNAM privilege.

Here is the periodic batch job from the previous section with the addition of a
logical name lock:

$! Procedure to monitor system resources every 4 hours.
$
$! If this procedure is already running, exit immediately.
$! Otherwise define the system logical name to lock the
$! procedure.
$
$ if f$trnlnm("xda_batch_lock") .nes. "" then exit
$ define/system xda_batch_lock running! Value doesn't matter.
$

$! Remember the time at which the job started.
$

$ start time f$time()
$
$! If this is a restart and we already resubmitted the procedure,
$! jump down to EXIT2 to unlock the procedure and quit.
$! Otherwise skip to the cleanup code and resubmit.
$

282 Batch Jobs

$ if $restart
$ then
$ if f$type(batch$restart) .nes. 1111 then -

if batch$restart .eqs. II RESUBMITTED II then goto exit2
$ goto exit ! To resubmit the job.
$ endif

· additional initialization

$

· procedure activities

$

$exit:
$ set noon
$ submit/nolog_file/after=I"start_time+O-04:00"/restart-

'f$environment(IPROCEDURE")
$ set restart_value=resubmitted

· more cleanup

$exit2:
$ undefine/system xda_batch_lock Remove the logical name lock.

$ exit status .or. %x10000000

The first thing the procedure does is check to see if the XDA_BATCH_LOCK logical
name is defined. If so, it assumes that another batch job is running the same pro­
cedure and exits immediately. If the logical name is not defined, the procedure
defines it. These two commands act as a lock to prevent more than one copy
of the batch job from running at the same time. Any copies other than the first
simply fade away without resubmitting themselves.

The cleanup code must delete the logical name so that it does not prevent future
batch jobs from running. If the system crashes during the job, the system logical
name will not be defined after the system reboots. Therefore the restarted batch
job will run normally. The only problem arises when the operator cancels the job
without restarting it. When the job runs again, the logical name is still defined
and the job exits immediately. In this case someone must delete the logical name
by hand.

If the GRPNAM and SYSNAM privileges are not available to the users of a batch job
that must be locked, a file can be used instead of a logical name. The presence
of the "lock file" signifies that the batch job is running; its absence signifies that
the job is not running.

27.6 Preventing Duplicate Jobs 283

Chapter 22

o

22.1

284

Arrays

In most programming languages, an array is a collection of data elements of the
same type. In the C language, for example, you can create an array of integers,
an array of floating-point numbers, or an array of characters. Two items of
information are needed to refer to an individual element of an array. The first
is the name of the array, and the second is an identifier for the particular element
in question. This identifier is called an index or subscript. Most languages, C
included, require that an index be an integer. A few languages, MUMPS being
a notable example, allow an index to be any value whatsoever. The array is
elevated from a simple ordered sequence of elements to an associative array that
maps one value (the index or key) to another value (the data item).

DCL does not provide built-in array facilities. However, using apostrophe sub­
stitution, you can simulate an array with a collection of symbols. A portion ofthe
symbol name serves as the array name and a portion serves as the index. There
is no requirement that all the array elements be of the same type, because each
symbol can contain any type of data.

Arrays with Integer Indexes

Most programming languages provide arrays whose index values are integers.
This can be simulated in DCL with a collection of symbols, one for each array
element, whose names consist of a fixed alphabetic part (the array name) and
an integer part (the index). For example, an array of file specifications might

use the symbols FILE_SPEC1, FILE_SPEC2, FILE_SPEC3, and so on. The array
name is FILE_SPEC and the indexes are the integer suffixes 1, 2, and 3. If the
symbol I is set to the desired index, the correct array symbol is obtained using
the following form of apostrophe substitution:

... file_spec'i ...

When the symbol I is set to the value 2, the symbol named after substitution is

... file_spec2 ...

Note carefully that the apostrophe substitution results in the name of the array
symbol containing the desired value. The substitution does not produce the value
itself. Here is a complete example, which builds a file spec array from all the
data files in the system manager's directory:

i = 0 $
$10:
$

file = f$search(lI sys$manager:*.dat;lI)
if file .eqs. 1111 then goto 19

$

$
$
$19:

i = i + 1
file_spec'i file
goto 10

$ file_count i

Create an array element.

! Remember the size of the array.

The symbol I is used as an index into the FILE_SPEC array. It is initialized to
zero and incremented each time an array element is created. Therefore, the array
elements will be named FILE_SPEC1, FILE_SPEC2, and so on, as desired. The
command that creates an array element is an example of an assignment state­
ment containing apostrophe substitution; array manipulation is one of the few
operations that necessitates substitution in the left-hand side of an assignment
statement.

The following loop scans the file specs in the array and eliminates any spec
containing a dollar sign in its file name by replacing the spec with a placeholder
string:

$ i = 0
$10: i = i + 1
$ if i .gt. file_count then goto 19
$ name = f$parse(file_spec'i, "IINAMEII)
$ if f$locate(II$II,name) .ne. f$length(name) then -

file_spec'i = lI(system file) II
$ goto 10
$19:

22.7 Arrays with Integer Indexes 285

286 Arrays

As in the first example, the symbol I is used to index the array. The loop ter­
minates when I becomes greater than the number of file specs in the array, as
specified by FILE_COUNT. The name portion of the file spec is extracted using
the F$P ARSE lexical function and then examined for a dollar sign. If a dollar sign
is found, the array element is set to the string" (system file)".

It cannot be overemphasized that apostrophe substitution produces the name of
the symbol containing an array element, not the value of the array element. After
substitution in the preceding examples, a command includes the name of the
symbol containing a file spec. It does not include the file spec itself, nor does it
include a string literal containing the file spec. In these examples, it is convenient
that substitution results in the name of the symbol, because it is precisely the
name that is required on the left -hand side of an assignment statement or as an
argument to a lexical function. When you want to assign a value to an array
element or use an existing value in an expression, it is the name of the array
element symbol that must appear after substitution.

But what if you need an array element in a command that does not accept an
expression? If the command does not accept an expression, then it will not take
the name of the array element symbol and automatically extract its value. It must
directly receive the value of the element. You could decide that two substitutions
are required, one to produce the array symbol name and then another one to
substitute the symbol's value in the command. With this in mind, you might
think that the following command would work:

$ delete 'file_spec"i
$!
$!

left substitution
right substitution

Unfortunately, the left substitution is performed first, so DCL attempts to substi­
tute the value of the symbol FILE_SPEC. This symbol has nothing to do with the
array elements, which are named FILE_SPEC1, FILE_SPEC2, and so forth. The
symbol FILE_SPEC probably does not exist, or if it does, it contains a value that
is unrelated to the problem at hand. There is no way to force DCL to perform
the right substitution (of I) first. The solution is to use two commands:

$ file = file_spec'i
$ delete 'file

The appropriate array element is copied to the temporary symbol FILE, and that
symbol is substituted in the DELETE command.

The contrast between substitution in expressions and substitution outside of ex­
pressions can be demonstrated clearly using procedure parameters. One array
that is always present in a procedure is the parameter array. Because the proce­
dure parameters are named P 1-P8, they naturally fonn an array of eight character
strings. The following procedure will display the values of its parameters:

$! Display all the parameters passed to this procedure.
$
$ i = 0
$10:
$
$

$
$19:

i = i + 1
if i .gt. 8 then goto 19
if p'i .nes. "" then display "P", i, II.

goto 10
p'i

The second IF command displays the value of a parameter if it is not null. On
the third cycle through the loop, for example, when I has the value 3, the IF

command becomes:

$ if p3 . nes. '". then write sys$output "P", i, ": , p3

Because the IF and WRITE commands accept expressions, the value of P3 is used
where its name is specified.

Compare the previous procedure to the following one, which assumes its param­
eters are file specs and displays the contents of the files:

$! Display the contents of the files specified as parameters.
$
$ i = 0
$10: i = i + 1
$ if i .gt. 8 then goto 19
$ file = p'i
$ if file .nes. "" then type/page 'file
$ goto 10
$19:

The TYPE command expects a file spec as its parameter, not an expression.
Therefore, two commands are required: one to assign the parameter value to
a temporary symbol, and a second one to test the symbol and type the file. An
attempt to combine the two commands in a fashion similar to the first example:

$ if p'i .nes. "" then type/page p'i

would result in the following line after substitution:

22.1 Arrays with Integer Indexes 287

22.2

c> Ch. 20

288 Arrays

$ if p3 .nes. 1111 then type/page p3

The TYPE command will attempt to display a file named P3, rather than the file
specified by the third procedure parameter. It does not evaluate P3 because it
does not accept an expression.

Arrays with String Indexes

In the previous section, substitution was used to insert the names of array sym­
bols into commands. The symbol names consisted of a fixed alphabetic portion
and a variable integer portion, the index. There is no reason why the index has
to be an integer. It can be an arbitrary string, as long as it is composed of the
alphanumeric characters valid in a symbol name. An array whose indexes are
strings is called a symbolic array, because it associates the index string, which
is presumably meaningful, or symbolic, with some other data item. The index
string is often called the "key" and the associated data item the "value."

A symbolic array can be used to maintain information about the CPU time con­
sumed by users currently logged in to VMS. The information can be stored in
symbols ofthe form CPU_xxx, where xxx is the name of a particular user. Because
user names are composed of alphanumeric characters, they will always form a
valid symbol name. The following loop collects the elapsed CPU time for each
user on the system (assuming the user has WORLD privilege):

$ context = 0
$10: pid = f$pid(context)
$ if pid . eqs. 1111 then goto 19
$ if f$getjpiCpid,IGRP") .le. 1 then goto 10
$ username = f$edit(f$getjpiCpid,IUSERNAME"), "TRIM")
$ if f$type Ccpu_ 'username) . eqs. 1111 then cpu_ 'username 0
$ cpu_'username = cpu_'username + f$getjpiCpid,ICPUTIM")
$ goto 10
$19:

The procedure uses the F$PID lexical function to obtain the process IDs for all
processes on the system, one at a time. System processes in groups 0 and 1 are
ignored. In tum, the process ID is used to obtain the user name, say II JONES ". If
the symbol CPU_JONES does not exist, it is created and initialized to zero. The
value of the symbol CPU_JONES is then incremented by the elapsed CPU time
for the process. After the loop is complete, the total CPU time for each user will
be accumulated, regardless of the number of times each user is logged in.

There are two problems connected with symbolic arrays, which reduce their
usefulness. The first is that the key can be composed only of letters, digits, dollar
sign, and underscore. DeL syntax errors occur if any other characters creep in.
A file name, for example, could be used as a key prior to VMS Version 4.4 but not
thereafter. With the advent of Version 4.4, hyphens were allowed in file names
but not in symbol names. If a file name containing a hyphen were to be used in
a symbol representing one of the symbolic array's elements, the symbol name
would contain a hyphen and a DeL syntax error would result.

The second problem has to do with the collection of symbols that are created
for a symbolic array. In the preceding example, each distinct user name results
in a symbol whose name includes that user name. Because the user names are
arbitrary, there IS no way to predict which symbols are created. Therefore, when
you want to cycle through the array later on, say to print a report, you don't know
which symbols to inspect. How do you know which user names were encoun­
tered? There are two possible solutions. The first is to search all the processes
again and use the resulting user names to index the array. Unfortunately, in the
meantime, some users may have logged out and new ones logged in. There is a
mismatch between your array and reality.

The other solution is to build a separate list of user names as the array is created.
This list can be used later to cycle through the array. Here is the preceding
example, modified to keep a list:

$ user_list = ""
$ context = 0
$10: pid = f$pid(context)
$ if pid .eqs. "" then goto 19
$ if f$getjpiCpid, "GRP") .le. 1 then goto 10
$ username = f$edit(f$getjpiCpid,"USERNAME"), "TRIM")
$ if f$type(cpu_'username) .eqs. ""
$ then
$ cpu_ 'username = f$getjpiCpid, "CPUTIM")
$ user_list = user_list + username + ","
$ else
$ cpu_'username = cpu_'username + f$getjpiCpid,"CPUTIM")
$ endif
$ goto 10
$19:

The logic is similar, but with the addition of one action. Each time a new
user is encountered, the user name is appended to USER_LIST, along with a
comma. When the loop terminates, USER_LIST will contain a list of all the
distinct user names encountered as the processes were searched. For example,

22.2 Arrays with String Indexes 289

22.3

290 Arrays

if JONES, SMITH, and SNORK were logged in, USER_LIST will contain the string
"JONES, SMITH, SNORK,". Note the trailing comma.

The following code will print a simple report showing the total CPU times for
the users:

$ display f$fao("! 12AS ! 10AS", "User", " Total CPU")
$ i = 0
$10: i = i + 1
$ username = f$element(i, ",", user_list)
$ if username .eqs. "" then goto 19
$ display f$fao("!12AS !10UL", username, cpu_'username)
$ goto 10
$19:

After a heading is printed, the symbol I is used to index the list of users. The
F$ELEMENT function extracts each user name, which is assigned to USERNAME.

When USERNAME finally contains the null string, every user name has been ex­
amined and the loop terminates. The value of USERNAME is used in two ways.
First, it is displayed so that the user name is included in the report. Second, it
is used as the index in the CPU array to extract the user's total CPU time and
display it. The USER_LIST symbol contains the definitive list of users who have
an entry in the CPU array.

Symbolic arrays are a powerful tool but must be used with care.

The DeL Symbol Table

All symbols you create using DCL are kept in an area of memory called the
symbol table. Even though VMS is a virtual memory system, the amount of
memory set aside for the symbol table is fixed. This amount is determined by
the system generation (SYSGEN) parameter CLISYMTBL and is measured in units
of 512-byte pages. Whenever VMS creates a process, it uses the parameter to
determine the number of pages to set aside for the symbol table. Once the process
is created, the symbol table cannot be enlarged.

When you develop a complex DCL application that requires many symbols, you
may find that the symbol table space is exhausted during execution of the appli­
cation. In this case, you have two choices: reduce the number of symbols, or ask
the system manager to increase the value of the SYSGEN parameter CLISYMTBL.

Any new processes created after the system manager increases the parameter
will have a larger symbol table.

Appendix A

I> Ch. 8

Hexadecimal Notation

Modern digital computers operate in the binary number system, so they represent
data internally as quantities in base 2. Each binary digit is called a bit. DeL
supports integer quantities, which occupy 32 bits. In the VAX architecture, a
collection of 32 bits is called a longword, so DeL supports longword integers.

Programming languages such as DeL allow integers to be represented exter­
nally as decimal numbers, performing the necessary conversion to binary when
the programs are prepared for execution. Decimal integers are appropriate for
most situations, but occasionally the actual bit patterns within the integer are im­
portant. An example of this is the VMS status code, a long word integer that is
divided into several bit fields. When the bit patterns are important, the decimal
number system is not a particularly useful external representation.

Picture the longword integer 96,877 in binary:

~0000000000000010111101001101101 I

A programming language might allow integers to be specified in binary, but
doing so would require the programmer to type a sequence of 32 ones and zeros.
The chance of making an error in the number is high. In order to reduce the length
of the digit sequence, the base 16, or hexadecimal, number system in employed.
Since the hexadecimal base, 16, is a power of the binary base, 2, the conversion

297

from binary to hexadecimal is nothing more than a grouping operation. Begin
by separating the binary digits into groups of four:

I 0000 I 0000 I 0000 I 0001 I 0111 I 1010 I 0110 1101

Each group contains four binary digits and has one of 16 possible values from 0
through 15. This is exactly the number of possible values of one digit in a base-
16 number. So a 32-digit binary number can be represented as an eight-digit
hexadecimal number.

A single printable character must be chosen to represent each of the 16 hexa­
decimal digit values. The digit characters 0 through 9 are chosen for the digit
values 0 through 9, and the letters A though F are chosen for the digit values 10
through 15. Now the groups of binary digits can be replaced by their equivalent
hexadecimal digits:

The hexadecimal number 00017 A6D is equivalent to the decimal number 96,877.
DCL allows a number to be represented in hexadecimal by preceding its hexa­
decimal digits with a percent sign (%) and an X:

$ value = %x00017a6d

As with decimal numbers, leading zero digits are not required:

$ value = %x17a6d

Both of these assignment commands set the symbol VALUE to the hexadeci­
mal value %X00017 A6D. DCL converts the hexadecimal value to binary before
setting the symbol.

292 Hexadecimal Notation

Appendix B

DEC Multinational Character Set

This appendix contains two tables illustrating the complete DEC Multinational
Character Set. Table B.l1ists the 128 characters in the standard seven-bit ASCII
character set. Table B.2 lists the additional 128 characters in the eight-bit ex­
tended character set. Blank slots in the table have no assigned character and are
reserved for future use by DIGITAL.

To determine the hexadecimal code for a particular character, begin by finding
the character in the tables. The first digit of the hexadecimal code depends on the
column containing the character; look up at the column heading to find the first
digit. The second digit depends on the row containing the character; look to the
left at the row heading to find the second digit. For example, the hexadecimal
code for the question mark (?) is 3F, because the question mark is in column 3,
row F.

A detailed description of the characters in the DEC Multinational Character Set
can be found in the Guide to Using VMS.

293

Table B. 1 Standard ASCII Character Set

I digit 1: o 1 2 3 4 5 6 7

digit 2:

0 NUL DLE SP 0 @ P ,
P

1 SOH DC1 ! 1 A Q a q

2 STX DC2 /I 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ,
7 a w g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i Y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ 1 I

D CR as - = M] m }

E So RS > N A n -
F SI US I ? 0 - 0 DEL

294 DEC ,A,.~ultinational Character Set

Table B.2 DEC Multinational Extension

I digit 1: 8 9 A B C D E F

digit 2:

0 DCS 0 A. a
1 PUI i ± A N a ii

2 PU2 ¢ 2 A 0 a 0

3 STS £ 3 A 6 a 6

4 !ND CCH A D ~ 0

5 NEL MW ¥ I' A 0 ci (5

6 SSA SPA 1f IE 0 ~ 0

7 ESA EPA § ~ CE ~ re

8 HTS ® E 0 e ~

9 HTJ @ 1 E- D e 11

A VTS !! Q E (J e u
B PLD CSI < :> ~ (] e ii

C PLU ST 1 I 0 i u 4

D RI OSC 1 f ? i Y 2

E SS2 PM t i

F SS3 APC l I B i

DEC Multinational Character Set 295

Appendix C

296

Subroutine Library

This appendix contains a complete listing of the subroutine library described
and used throughout this book. The subroutine library resides in a single, self­
sufficient procedure containing a collection of DCL subroutines that can be used
by DCL applications to perform common but nontrivial operations. The library
is yours to modify and expand as required by your applications.

Each subroutine includes a block comment describing its function, parameters,
and any return value. When the library is used for production applications, the
comments should be moved to the end of the procedure so that they do not slow
down its execution.

The general format of a call to a subroutine is as follows:

$ @directory: subroutine-library name parameter ...

The directory portion specifies the disk and directory containing the subroutine
library. The first parameter, name, is the name of the desired subroutine. Addi­
tional parameters are required to specify the exact operation to be performed.

The examples in this book assume that the personal command LIBCALL is de­
fined in the application's initialization code. The command is defined as follows:

$ libcall = "@directory: subroutine-library"

This personal command improves the readability of a subroutine call and takes
up less space on the command line:

$ libcall name parameter ...

The subroutine library is self-sufficient and does not depend on any symbols or
logical names defined by its caller.

File SUBROUTINE-UBRARY-COM

$ sublib __ status = %x10000000
$ sublib __ success = sublib __ status + %x0001
$ on control_y then exit sublib __ status + %x0004
$ on warning then exit $status .or. %x10000000
$
$ display = II write sys$outputll
$ goto 'p1

Subroutine Library 297

$! Title:
$!

Ask a Question

$! Synopsis:
$!

This subroutine asks the user a question and returns
the answer. The prompt for the question is composed
of a query string and optionally a default answer. $!

$!
$! Parameters:
$!

P2: A global symbol to receive the answer.
P3: The data type of the answer. B for boolean

(yes/no); I for integer; S for string. $!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!

P4: The query string for the question. It must end
with a punctuation character and no space.

P5: The default answer (optional; if not specified
then an answer must be entered).

P6: A comma-separated list of options:
H: Display help before asking question.
S: Skip a line before asking question.
U: Upcase the input string.
Z: Allow CTRL/Z as an answer.

P7: The help specifier (optional). It must be in
the form "procedure [parameter ...]". The
procedure is invoked with the at-sign command.

$! Result:
$!

For Boolean data type, a ° (no) or 1 (yes). For
Integer data type, the integer. For String data
type, the string. If CTRL/Z is allowed and entered,
the string "~Z" is returned.

$!
$!
$

$ASK:
$
$
$

$

$
$

$
$a10:
$

signal = "@" + f$environment("PROCEDURE") + II signal ask"
if p3 .eqs. "B" .and. p5 .nes. "" .and. -

f$type(p5) .eqs. "INTEGER" then -
p5 = f$element(p5,"/","NO/YES")

if p5 .nes. "" then p4 = f$extract(O,f$len(p4)-1,p4) + -
" [II + p5 + "]" + f$extract(f$len(p4)-1,1,p4)

if f$locate("S" ,p6) .ne. f$length(p6) then display '"'
if f$locate("H",p6) .ne. f$length(p6) then @'p7

read sys$command /prompt=""p4 " input /end_of_file=a_eof
if input .eqs. "" then input = p5

$
$
$

input = f$edit(input,"TRIM")

$

298 Subroutine Library

if input
then

.eqs. ""

signal w inputreq -
"Please enter a value; there is no default."

$

$

$
$

$
$

$
$

$
$

$
$

$a_I:
$
$
$

$

$
$

$

$
$a_S:

$

$a15:
$

$
$
$a_eof:
$
$

$
$
$a19:
$

$

else if input . eqs. II? II

then
if p7 .nes. 1111 then @'p7
if p7 .eqs. 1111 then display -

"There is no help for this question."
else

goto a_'p3
input = f$edit(input,"UPCASE")
if f$locate(input,IYES") .eq. a .or. -

f$locate(input,"NO") .eq. a
then

input = input .and. 1
goto a19

else
signal w yesnoreq "Please answer YES or NO."

endif
goto a15

if f$type(input) .eqs. II INTEGER II
then

input = f$integer(input)
goto a19

else
signal w intreq liThe input must be an integer."

endif
goto a15

if f$locate("U",p6) .ne. f$length(p6) then -
input = f$edit(input,IUPCASE")

goto a19

endif
endif
goto a1a

input = "-Z"
if f$locate("Z",p6) .ne. f$length(p6) then goto a19
signal i invctrlz "End-of-file is not a v~lid response. II
goto a1a

'p2 == input
exit sublib __ success

Subroutine Library 299

$! Title:
$!
$! Synopsis:
$!
$!
$!
$!
$! Parameters:
$!
$!
$!
$! Result:
$!
$!
$
$LOOKUP_KEYWORD:
$

Look Up a Keyword in a List

This subroutine looks up a keyword or its
abbreviation in a list of valid keywords.
If the keyword exists in the list and is
unique, the full keyword is returned.

P2: A global symbol to receive the result.
P3: The keyword or a unique abbreviation thereof.
P4: A comma-separated list of valid keywords.

If the (abbreviated) keyword is valid and unique,
the full keyword is returned. If the keyword is
invalid or null, the null string is returned.

$

$
$
$
$
$

'p2 == ""
if p3 .eqs. "" then exit sublib
p3 = "," + f$edi t (p3, "UPCASE")

success

p4 = "," + f$edit(p4,"UPCASE") + ","
p4_tail = f$extract(f$locate(p3,p4)+1, 999, p4)
if f$locate(p3,p4_tail) .eq. f$length(p4_tail) then -

'p2 == f$element(O,",",p4_tail)
$ exit sublib success

300 Subroutine Library

$! Title:
$!

Signal an Informational or Error Message

$! Synopsis:
$!

This subroutine "signals" a message, producing one
or more message lines in the standard VMS format.
It also exits with a status whose severity matches
that of the message.

$!
$!
$!
$! Parameters:
$!

P2: The message facility code.
P3: The message severity (S, I, W, E, or F).
P4: The message identification. $!

$!
$!
$!
$!

P5: The message text.
Pn: Optional message lines or status codes whose

corresponding message lines are to be included.

$! Status:
$!

The severity of the exit status is equal to the
message severity, except in the case of warnings.
If the message severity is W, an informational
severity is included in the status so that the
caller's error handler is not invoked.

$!
$!
$!
$
$SIGNAL:
$

$
$
$s10:
$
$

$

$

$
$
$

$

$s19:
$

$

prefix = f$fao("%!AS-!AS-!AS, II p2, p3, p4)
i = 4

i = i + 1
if i .gt. 8 then goto s19
if p'i .eqs. 1111 then goto s19
text = p'i
if f$type(text) .eqs. "INTEGER" then -

text = f$message(text)
if f$ext(O,1,text) .nes. "%" then text
if i .gt. 5 then text[O,1] := "_"

display text
goto s10

if p3 .eqs. "W" then p3 = "1"
exit sublib __ status + f$locate(p3,IWSEIF")

prefix + text

Subroutine Library 307

$! Title:
$!
$! Synopsis:
$!
$!
$! Parameters:
$!
$!
$!
$!
$! Result:
$!
$!
$!
$
$UNIQUE_NAME:
$

Generate a Unique Name

This subroutine generates a unique name suitable for
use in creating a temporary file.

P2: The global symbol to receive the result.
P3: The pattern specifying the format of the unique

name. It must contain a question mark (?), which
is replaced with a unique number.

A unique name consisting of the pattern with the
question mark replaced with a ten-digit number.
The number is composed of eight digits of time and a
two-digit counter.

$ if f$type(sublib_counter) . eqs. 1111 then sublib_counter 0
$ sublib_counter == (sublib_counter+1) - -

(sublib_counter+1)/100*100
$ 'p2 == f$fao(I!AS!8AS!2ZL!AS", f$element(O,"?",p3), -

f$extract(12, 11 ,f$timeO)_11: II_II: "_". ", -

sublib_counter, f$element (1, "?" ,p3))
$ exit sublib __ success

302 Subroutine Library

$! Title:
$!

Check the Validity of a Symbol

$! Synopsis:
$!

This subroutine checks the validity of a string
representing the name of a symbol. It checks the
length and the individual characters. $!

$!
$! Parameters:
$!

P2: The global symbol to receive the result.
P3: The symbol to be checked.

$!
$!
$!
$!

P4: Optional maximum length of symbol (default 31).
P5: Optional valid characters in addition to the

standard letters, digits, dollar, and underscore.

$! Result:
$!

The null string if the symbol is okay. Otherwise a
message fragment describing the error.

$
$VERIFY_SYMBOL:
$

$
$

$
$
$

$
$

$vs10:
$
$

$

p3 = f$edit(p3,ITRIM,UPCASE")
if p4 .eqs. "" then p4 = 31
'p2 == f$fao("is limited to !UL characters", f$integer(p4))
if f$length(p3) .gt. p4 then exit sublib __ success
v = "$0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_" + p5
'p2 == ""
i -1

i = i + 1
if i .ge. f$length(p3) then exit sublib success
if f$locate(f$extract(i,1,p3),v) .It. f$length(v) then -

goto vs10
'p2 == f$fao("contains the invalid character ""!AS""", -

f$extract(i,1,p3))
$ exit sublib __ success

Subroutine Library 303

Appendix 0

304

Sample Application

The Manager for Organized Distribution Lists (MODL) is a DeL application that
helps you manage distribution lists for the MAIL utility. A distribution list is a
text file containing a list of users who are to receive mail about a particular topic.
For example, you might have a distribution list for a software project; the list
contains the user names of all the developers working on the project. You might
have another list containing the names of all the managers in your organization.
Distribution lists tend to proliferate, and the same people can appear in multiple
lists. It quickly becomes difficult to manage the updating of distribution lists,
and it can even take some time to locate the particular list you need.

The MODL system introduces the idea of a single distribution file containing
a record for each user in the organization. The organization might be a project
group, a department, or the entire company. The larger the organization encom­
passed by a MODL distribution file, the fewer distribution files there are. In
addition to user records, the MODL file contains records for keywords, which
are mnemonic identifiers for particular groups or projects. A keyword can be
associated with one or more users who are members of the group or project for
which the keyword stands. For example, the keyword MANAGER might signify
people who are managers in the department. Once this keyword is associated
with the users who are managers, mail can be sent to the managers by asking
MODL to "send mail to all users with keyword MANAGER." Another example is
the keyword CONSULTANT. This keyword can be associated with the users who
are outside consultants rather than employees. Then when you are sending mail

D. J

about a new company policy, you can ask MODL to "send mail to all users who
are not a CONSULTANT."

MODL distribution files are created and maintained through a set of commands
supported by the MODL system.

Using MODL

The MODL system provides a command-oriented interface, which makes MODL
behave like other command-oriented utilities such as MAIL. In order to invoke
MODL, enter the MODL command:

$ modI

Manager for Organized Distribution Lists

MODL>

MODL responds with a prompt. At the prompt you may enter one of the follow­
ing:

•

•

•

•

A MODL command. A command begins with a command verb and may
require some parameters. If a parameter is omitted, MODL will prompt for
it. See Section D.2 for a description of MODL commands.

A VMS command. If the line you enter begins with a dollar sign ($), MODL
assumes the rest of the line contains a VMS command. The command is
executed.

A blank line. A blank line is ignored.

A <CTRL/z>. When <CTRL/z> is pressed, MODL exits. The <CTRL/z> is
equivalent to the EXIT command.

Lines entered at the MODL> prompt may contain comments. A comment begins
with an exclamation point (!); the exclamation point and the rest of the line are
ignored:

MODL> modI add manager shubin ! Phred Shubin just got promoted.

You can also use MODL to execute a single command and then immediately
exit. If, at the DeL prompt, you include a command following the MODL verb,
MODL executes the command and then immediately exits without beginning an
interactive session.

$ modI send policy.txt "not consultant" "New vacation policy."

D. 7 Using MODL 305

0.2

0.2.1

0.2.2

0.2.3

MODL Commands

The following sections describe the commands available with MODL. The com­
mands are described in alphabetical order.

The ADD Command

The ADD command assigns keywords to users.

ADD keyword, ... user, ...

The keyword parameter is a single keyword or a list of keywords to be added
to users. The keywords must have been previously defined with the REGISTER

command.

The user parameter is a single user or a list of users to receive the keywords.
The users must have been previously defined with the REGISTER command. The
word SELF can be used in the list to specify the current user.

The CLOSE Command

The CLOSE command closes the current MODL distribution file.

CLOSE

The current MODL distribution file is closed. After this command is issued, no
MODL file is selected.

The CREATE Command

The CREATE command creates a new MODL distribution file.

CREATE file-spec "title"

The file-spec parameter provides the specification of the new MODL file. If no
device and directory are included, the file is created in the working directory.
MODL provides a default file type of MODL_FILE.

The title parameter specifies a descriptive title for the new distribution file.

The new distribution file contains no registered users or keywords.

306 Sample Application

D.2.4

D.2.5

The DEREGISTER Command

The DEREG ISTER command removes the definitions of users or keywords from
the MODL distribution file.

DEREGISTER USER user [NOVERIFY]

The user parameter is the name of a user to be removed from the distribution
file. The word SELF can be used to signify the current user.

MODL normally verifies the deregistration of a user. The optional parameter
NOVERIFY specifies that MODL should not verify the operation. If the parameter
is not specified, MODL does not prompt for it.

DEREGISTER KEYWORD keyword

The keyword parameter is a keyword to be removed from the distribution file.
MODL requires that the keyword not be assigned to any users.

The DISPLAY Command

The DISPLAY command displays a list of all the users who match given selection
criteria.

DISPLAY "selection"

The selection parameter is a boolean expression that specifies which users are to
be displayed. All users matching the selection are displayed at the terminal.

The selection parameter is a boolean expression composed of keywords and
operators. The keywords must be registered in the distribution file. The boolean
operators are AND, OR, and NOT. The NOT operator is applied first, followed
by AND, followed by OR. Parentheses may be used to alter the order in which
operators are applied. Unless the selection parameter is a single keyword, it
must be enclosed in double quotes.

Here are some examples:

0.2 MODL Commands 307

D.2.6

D.2.7

MOOL> ! Select users who are developers.
MOOL> display developer

-Of-

MOOL> ! Select users who are developers or managers.
MOOL> display "developer or manager"

-Of-

MOOL> ! Select users who are not managers.
MOOL> display "not manager"

-Of-

MOOL> ! Select users who are developers, but exclude consultants.
MOOL> display "developer and not consultant"

-Of-

MOOL> ! Invite all developers along with the marketing managers.
MOOL> display "developer or marketing and manager"

-Of-

MOOL> ! The same expression clarified with parentheses.
MOOL> display "developer or (marketing and manager)"

-Of-

MOOL> ! Invite all development and marketing managers.
MOOL> display "(developer or marketing) and manager"

The EXIT Command

The EXIT command causes MODL to exit back to DeL.

EXIT

The LIST Command

The LIST command creates a VMS MAIL distribution list containing users who
match given selection criteria.

LIST "selection" output-file "heading"

The selection parameter is a boolean expression that selects the users in the
MODL distribution file who are to be included in the MAIL distribution list. See
the DISPLAY command for a description of the selection parameter.

308 Sample Application

D.2.8

D.2.9

The output-file parameter is the file spec for the MAIL distribution list. The
default device/directory is the working directory, and the default file type is DIS.

The heading parameter is a text string to be used as a heading in the MAIL distri­
bution list.

The MODIFY Command

The MODIFY command updates information about users or keywords.

MODIFY USER user II new full name II II new title" new-mail-address

The user parameter specifies the name of the user to be updated. The word SELF

can be used to signify the current user.

The new full name, new title, and new-mail-address parameters specify the new
information about the user. See the REGISTER command for a description of
these items.

MODIFY KEYWORD keyword II new title"

The keyword parameter specifies the keyword to be updated.

The new title parameter specifies a new title for the keyword. See the REGISTER

command for a description of these items.

The OPEN Command

The OPEN commal)d selects a MODL distribution file and prepares it for use.

OPEN file-spec

The file-spec parameter provides the specification of an existing MODL distri­
bution file to be opened.

D.2 MOOL Commands 309

D.2. JO

D.2.1 J

The REGISTER Command

The REGISTER command registers a new user or keyword in the MODL distri­
bution file.

REGISTER USER name "full name" "title" mail-address

The name parameter specifies the name to be associated with the new user. The
name will usually be identical to the person's VMS user name.

The full name, title, and mail-address parameters specify information about the
user. The full name is a string containing the person's full name. The title is
a string containing the person's business title or other identifying information.
The mail-address is the person's DEC net mail address.

REGISTER KEYWORD keyword II title"

The keyword parameter specifies a string that identifies the keyword being reg­
istered. The keyword can be composed of letters, numbers, dollar sign ($),

underscore C), and hyphen (-).

The title parameter specifies a string that describes the meaning of the keyword.

The REMOVE Command

The REMOVE command removes keywords from users.

REMOVE keyword, ... user, ...

The keyword parameter is a single keyword or a list of keywords to be removed
from users.

The user parameter is a single user or a list of users from whom the keywords are
to be removed. The users must have been previously defined with the REGISTER

command. The word SELF can be used in the list to specify the current user. If
this parameter is specified as an asterisk (*), the keywords are removed from all
registered users.

3 70 Sample Application

D.2.12

D.2.13

The SEND Command

The SEND command sends mail to a group of users who match given selection
criteria.

SEND file-spec II selection II II subject II

The file-spec parameter is the spec of the file containing the message to be sent.
The default device/directory is the working directory. The default file type is
TXT.

The selection parameter is a boolean expression that specifies the users in the
MODL distribution file who will receive the message. See the DISPLAY com­
mand for a description of the selection parameter.

The subject parameter is a text string specifying the subject of the message.

The method used to send the message is determined by the SET AGENT and SET

SEND commands.

The SET Command

The SET command establishes various operating characteristics for MODL.

SET AGENT IIstringll

This command establishes the mailing agent for future SEND commands. The
string parameter is the code for the mailing agent followed by a percent sign (%).

For example, the Zipnet agent might be specified as II zp % II. The mailing agent
is stored in the MODL distribution file, so all users of the file will use the same
agent.

SET NOAGENT

This command specifies that future SEND commands will not use a mailing agent.
When there is no mailing agent, the SEND command sends the message by in­
voking the MAIL utility once for each recipient.

When a new MODL distribution file is created, no mailing agent is stored in it.

SET SEND copy-self? batch?

D.2 MODL Commands 37 7

D.2. J4

This command establishes the operating characteristics for future SEND com­
mands. The copy-self? parameter specifies whether an additional copy of each
message should be sent to the user initiating the message. The batch? parameter
specifies whether message sending should be perfonned in batch or interactively.
This command establishes the operating characteristics for the remainder of the
current session; it does not save the characteristics in the MODL distribution file.

If no SET SEND command has been issued during a tenninal session, the default
for copy-self? is false, the default for batch? is true.

The SHOW Command

The SHOW command displays infonnation about various aspects of the MODL
system.

SHOW FILE

This command displays infonnation about the current MODL distribution file,
including its file spec, title, and agent.

SHOW KEYWORD keyword

This command displays infonnation about a registered keyword. The keyword

parameter specifies the keyword in question. The infonnation displayed includes
the keyword and its title. The parameter may also be specified as an asterisk (*),

in which case infonnation about all registered keywords is displayed.

SHOW SEND

This command displays infonnation about the operating characteristics estab­
lished with the SET command. The information includes the mailing agent,
copy-self status, and batch status.

SHOW USER name

This command displays infonnation about a registered user. The name parameter
specifies the user in question. The infonnation displayed includes the user name,
full name, title, mailing address, and keyword list. The parameter can also be
specified as an asterisk (*), in which case infonnation about all registered users
is displayed.

3 72 Sample Application

D.3 File Layout

A MODL distribution file is an indexed file containing three types of records.
The file has a single key, which occupies the first field in every record.

A MODL file has a header record, which describes the file and contains informa­
tion that pertains to the entire file, such as the mailing agent. Table D.I describes
the fields in the header record.

There is a record for each keyword registered in the file. The record contains the
keyword's title. Table D.2 describes the fields in a keyword record.

There is a record for each user registered in the file. The record contains informa­
tion that describes the user, the user's mailing address, and a list of the keywords
associated with the user. Table D.3 describes the fields in a user record.

D.3 File Layout 373

Table D.l MODL File: Header Record

Position Size Type Description

0 16 String The key of the header record is ! HEADER! .

16 12 String The user name of the user who created the file.

28 17 String The date and time when the file was created.

45 32 String The title of the file.

77 32 String The mailing agent, or blank if no agent is used.

Table D.2 MODL File: Keyword Record

Position Size Type Description

0 16 String The key of the keyword record consists of a sharp sign
(#) followed by the keyword.

16 12 String The user name of the user who registered the keyword.

28 17 String The date and time when the keyword was registered.

45 32 String The title of the keyword.

Table D.3 MODL File: User Record

Position Size Type Description

0 16 String The key of the user record consists of the user
name.

16 12 String The user name of the user who registered this user.

28 17 String The date and time when the user was registered.

45 32 String The user's business title.

77 32 String The user's full name.

109 64 String The user's mailing address.

173 up to 200 String A comma-separated list of the keywords associated
with the user .

314 . <;nmn/A Annlirnfinn -_ ... ,.- .. " .. __ .. _ ..

D.4 Listings

File MODL.COM

$

$
$

$
$
$

$

$
$
$

$
$
$
$
$
$

$
$
$
$
$

$
$
$

$
$

$

$

$
$

$
$

define
delete
mail
submit

"define/nolog"
"delete"
"mail/noself"
"submit"

saved_message = f$environment("MESSAGE")
set message/facility/severity/identification/text

modl status %xll088000
modl __ success rnodl __ status + %xOOl
modl __ ctrly rnodl __ status + %xOOc
status = modl success
on control_y then goto control_y
on warning then goto error

check_open_file
"if f$trnlnm(""rnodl_file"") . eqs. """" then " + -
"signal e nofileopen '"'No MODL file has been opened. """

display "write sys$output"
false 0
libcall "@modl_system:subroutine-library"
rnodlcall
read lock
read_lock header
read_nolock
read_nolock_header

true
undefine
update_unlock
write_unlock
ask
signal

"@modl_system:modl_subroutines.com"
"read/lock modl_file"
"read/lock modl_file /key=""!HEADER!"""
"read/nolock modl_file"

"read/nolock modl_file /key=""!HEADER!"""
f$edit(f$getjpiC"", "USERNAME"), "TRIM")
1
"deassign"
"write/update/symbol modl_file"
"write/symbol modl_file"
libcall + " ask"
libcall + " signal modl"

$! Establish defaults for the copy-self? and batch? settings.
$
$ if f$type(modl_batch) .eqs. "" then modl_batch == true
$ if f$type(modl_copy_self) .eqs. "" then -

D.4 Listings 315

$
$
$

$
$
$
$
$
$
$
$
$
$

$
$
$
$

$

$
$

mf_t_key
mf_s_key

mf t doer
mf s doer
mf_t_time
mf s time
mf_t_title
mf s title
mf_t_agent
mf_s_agent
mf t name
mf_s_name
mf t address
mf_s_address
mf_t_keylist
mf_s_keylist

0
16

16
12
28 ' !

17
45
32
77
32
77
32

109
64

173
200

Key: !HEADER! for the header;
#keyword for a keyword record;
Username for a user record.
User who created/updated record.

Date/time of creation/update.

Title (all records).

Mailing agent (header).

Full name (user).

Mailing address (user).

List of keywords (user).

$! If a MODL distribution file has been OPENed by the user,
$! then open the RMS file so we can read and write it.
$

$ if f$trnlnm(lImodl_opened_file ll
) .nes. 1111 then -

open/read/write/share=write modI_file -
modl_opened_file /error=5

$ goto 9
$5: @modl_system:modl_close
$ signal f errselfile -

$9:
$

$

IIError opening MODL file "f$trnlnm(lImodl_opened_file ll)'1I -
'$status

IIADD,CLOSE,CREATE,DEFINE,DEREGISTER," + -

IIDISPLAY,EXIT,HELP,LIST,MODIFY,OPEN,II + -

IIREGISTER,REMOVE,SEND,SET,SHOW,UNDEFINE II

$ if p1 .nes. 1111

$ then ! The command line includes a MODL command.
$ libcall lookup_keyword modl_ 1I"p1'1I 'command_list
$ if modl_ .eqs. 1111 then signal f unkcmd -

liThe command "p1 is unknown or ambiguous. II
$ @modl_system:modl_'modl_ 1I"p2'1I 1I"p3'1I 1I"p4'1I -

II , , p5 '" II" p6 '" II" P 7 '" II" p8 '"

3 76 Sample Application

$

$ else ! No command, so start a session.
$ display
$ display II Manager for Organized Distribution Lists
$ display 1111

$10: read sys$command/prompt="MODL> II command /end_of_file=19
$ command = f$edit(command,ITRIM,UNCOMMENT")
$ if command . eqs. II II then goto 10
$ if f$extract (0,1, command) . eqs. II $"
$ then! It's a VMS command.
$ set noon
$ define/user_mode sys$input sys$command
$ 'f$extract(1,999,command)
$ if f$getdviCISYS$INPUTI,IDEVCLASS") .ne. 1 then -

undefine/user_mode sys$input ! Undo DEFINE/USER.
$ set on
$ display 1111

$
$ else! It's a MODL command.
$ verb = f$element(O," ",command)
$ libcall lookup_keyword modl_ ""verb'" 'command_list
$ if modl_ . eqs. "EXIT" then goto 19
$ if modl_ . eqs. 1111

$ then
$ signal i unkcmdverb -

liThe command "verb is unknown or ambiguous. II

$ else
$ set noon
$ @modl_system:modl_'modl_ 'f$string(command - verb)
$ set on
$ if f$trnlnm("modl_file") .nes. 1111 then -

read_nolock_header junk! Unlock all records.
$ endif
$ endif
$ goto 10
$19:
$ end if

$ goto EXIT

0.4 Listings 377

$
$
$control_y:
$ status = modl __ ctrly
$ goto EXIT

c$
$error:
$
$

$

status = $status
goto EXIT

$exit:
set noon $

$
$
$
$

close/nolog modI_file
set message 'saved_message
exit status .or. %xl0000000

$! Title:
$!
$! Synopsis:
$!
$!
$!
$!
$!
$!
$!
$!
$! Usage:
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$! Author:
$! Created:

3 78 Sample Application

Manager for Organized Distribution Lists (MODL)

MODL is a system that helps manage distribution
lists for the MAIL utility. A MODL distribution
file is an indexed file that cross-references
users and keywords. A mail message can be sent
to some or all of the registered users by specifying
a keyword or boolean combination of keywords. MODL
selects the users who fit the keyword selection and
sends the message to them.

MODL is run by invoking this procedure. It is best
to define a personal command:

modI == n@modl_system:modl n

When MODL is invoked with no parameters, it
initiates a command loop which reads a command
and executes it. When MODL is invoked with
parameters, it executes the single command
specified by the parameters and then exits.

Paul C. Anagnostopoulos
July 1988

File MODLADD.COM

$ on control_y then exit modl __ ctrly
$ on warning then exit $status .or. %x10000000
$ check_open_file
$

$ new_keys = p1
$ users = p2
$ if new_keys .eqs. 1111 then ask modl_ s "_Keyword List: II

$ if new_keys .eqs. 1111 then new_keys = modl_
$ if users .eqs. 1111 then ask modl_ s "_User List: II

$ if users .eqs. 1111 then users = modI
$ new_keys = f$edit(new_keys,ICOLLAPSE,UPCASE")
$ users = f$edit(users,ICOLLAPSE,UPCASE")
$
$ i = -1
$10: i = i + 1
$ keyword = f$element(i,",",new_keys)
$ if keyword .eqs. "," then goto 19
$ key = f$fao(I!#<#!AS!>", mf_s_key, keyword)
$ read_nolock /key=""key'" rec /error=15
$ goto 10
$15: signal e undefkey "Keyword "keyword is not defined."
$19:
$

$ i = -1
$20: i = i + 1
$ username = f$element(i,",",users)
$ if username .eqs. "," then goto 29
$ if username .eqs. "SELF" then username this_user
$ key = f$fao(" !#AS" , mf_s_key, username)
$ read_lock /key=""key'" rec /error=25
$ key_list = f$edit(f$extract(mf_t_keylist,mf_s_keylist,-

rec), "TRIM")
$
$
$

$

gosub add_keywords
rec[mf_t_keylist,mf_s_keylistJ
update_unlock rec
goto 20

"' 'key_list' II

$25: signal w unreguser "User "username is not registered. II

$29:
$ exit modl __ success
$

$add_keywords:
$ k = -1
$80: k = k + 1
$ keyword = f$element(k,",",new_keys)
$ if keyword .eqs. "," then goto 89

0.4 Listings 3 19

320

$

$
$
$

$

$

$
$

if f$locate(","+keyword+",", 1,I+key_Iist+",") .eq. -
f$length(key_Iist)+2

then
if key_list . nes. II II then key_list
key_list = key_list + keyword

else
signal i userhaskey -

key_list +

"User "username already has keyword "keyword."
endif
goto 80

II II ,

$89: return modI success
$

$! Module:
$!
$! Synopsis:
$!
$!
$!
$!
$! Format:
$!

Process the ADD Command

This module processes the ADD command, which is
used to associate keywords with users. Both the
keywords and users must be previously registered
with the REGISTER command.

ADD keyword, ... user, ...

$! Parameters: keyword:
$!

A registered keyword to be associated with
the specified user(s).

$! user:
$!
$!
$!
$! Notes:

A registered user with whom the keyword is
associated. The word SELF can be used to
specify the current user.

File MODL_CLOSE.COM

$ on control_y then exit modl __ ctrly
$ on warning then exit $status .or. %xl0000000
$ check_open_file
$

$ close/nolog modI_file
$ undefine modl_opened_file
$ exit modl __ success

$

$! Module: Process the CLOSE Command
$!
$! Synopsis: This module processes the CLOSE command, which
$! closes the current MODL file. After the command
$! completes, there is no current MODL file.
$!
$! Format: CLOSE
$!
$! Parameters: none
$!
$! Notes:

D.4 Listings 327

322

file MODLCREATE.COM

$
$
$
$

$
$

$
$
$
$
$
$

$

$
$
$

$

$
$
$
$
$
$

$

$
$
$

on control_y then exit modl __ ctrly
on warning then exit$status .or. %xiOOOOOOO

file_spec = pi
title = p2
if file_spec .eqs. 1111 then ask modl_ s -

II_MODL Distribution File: II
if file_spec .eqs. then file_spec = modl_
if title .eqs. 1111 then ask modl_ s II_Title: 1I

if title .eqs. 1111 then title = modl_

file_spec = f$parse(file_spec,lI. modl_file ll ",IISYNTAX_ONLY II)
if f$search(file_spec) .nes. 1111 then signal e fileexists -

liThe MODL file "file_spec already exists. II
create/fdl=modl_system:modl_file.fdl 'file_spec

open/read/write modI_file 'file_spec
hdr = 1111

hdr[rnf_t_key,rnf_s_keyJ
hdr[rnf_t_time,mf_s_tirneJ
hdr[rnf_t_doer,mf_s_doerJ

.= II !HEADER! II

.= 1I"f$time())'"

.= ""this_user'"
hdr [rnf_t_title ,mf_s_titleJ .=
hdr[rnf_t_agent,mf_s_agentJ .=

""title'll
II II

write_unlock hdr
close modI_file

exit rnodl __ success

$! Module:
$!

Process the CREATE Command

$! Synopsis:
$!
$!
$!
$!
$!
$! Format:
$!
$! Parameters:
$!
$!
$!
$! Notes:

This module processes the CREATE command, which is
used to create a new MODL distribution file. The
new file has no registered users or keywords.
There is no mailing agent stored in the file.
The file is automatically opened after creation.

CREATE file-spec IItitle"

file-spec: The file spec for the new MODL file.
The default file type is MODL_FILE.

title: A title for the new MODL file.

File NlODLDEREGISTER.CONI

$
$

$
$

$

$

$

$

$

on control_y then exit modl __ ctrly
on warning then exit $status .or. %xi0000000
check_open_file

what = pi
if what . eqs . then ask modI s-

"_Deregister KEYWORD or USER:"
if what .eqs. then what = modl_
libcall lookup_keyword modl_ ""what'" KEYWORD,USER
if modl_ .eqs. "" then signal e unkwhat -

"The item "what is unknown or ambiguous."
$ goto 'modI
$
$
$KEYWORD:
$ keyword = p2
$ if keyword .eqs. "" then ask modl_ s "_Keyword:"
$ if keyword .eqs. "" then keyword = modl_
$ keyword = f$edit(keyword,"TRIM,UPCASE")
$

$
$

$
$k15:
$k19:
$
$k30:

$

$
$

$k39:
$
$
$
$

$USER:
$
$
$
$

$
$

key = f$fao("!#<#!AS!>", mf_s_key, keyword)
read_nolock /key=""key'" rec /error=k15
goto k19
signal e keynotreg "Keyword "keyword is not registered."

read_nolock /key="$"/match=ge rec /end_of_file=k29
key_list = f$edit(f$extract(mf_t_keylist,mf_s_keylist,­

rec), "TRIM")
if f$locate(","+keyword+",", ","+key_Iist+",") .ne. -

f$length(key_Iist)+2 then -
signal e keyinuse -

"At least one user has keyword "keyword." -
"Use the REMOVE command first."

read_nolock rec /end_of_file=k39
goto k30

read_nolock/delete /key=""key'" rec
exit modl __ success

username = p2
verify = p3 .nes. "NOVERIFY"
if username .eqs. "" then ask modl_ s "_User:"
if username .eqs. "" then username = modI
username = f$edit(username,"TRIM,UPCASE")

D.4 Listings 323

324

$ if username .eqs. "SELF" then username = this_user
$ key = f$fao(I!#AS", mf_s_key, username)
$ read_lock /key=""key'" rec /error=u15
$ goto u19
$u15:
$u19:
$

signal e usernotreg "User "username is not registered."

$
$

if verify
then

$ ask modl b-

$
$
$

"Are you sure you want to deregister "username?" no
if .not. modl_ then exit modl success

endif

$
$
$

read_nolock/delete /key=""key'" rec
exit modl success

$! Module:
$!
$! Synopsis:
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!

$'
$! Format:
$!
$! Parameters:
$!

$'
$!
$!
$!
$' Format:
$'

Process the DEREGISTER Command

This module processes the DEREGISTER command, which
is used to remove registered users and keywords from
the MODL file.

When a user is deregistered, the user record is
removed from the MODL file. No information about
the user remains.

When a keyword is deregistered, the command first
checks to ensure that the keyword is not associated
with any users. Then the keyword record is removed.

DEREGISTER USER user-name [NOVERIFY]

user-name: The user name of the user.
NOVERIFY: If this parameter is not specified, the

command prompts to ensure that you
want to deregister the user. If it is
specified, no prompt occurs.

DEREGISTER KEYWORD keyword

$! Parameters: keyword: The name of the keyword.
$!
$! Notes:

.<;nmn/p. Ann/irntinn - ----r -- - -r,--- ----- - --

File MODLDISPLAY.COM

$ on control_y then exit modl __ ctrly

$ on warning then exit $status .or. %xl0000000
$ check_open_file
$

$ selection = pi
$ if selection .eqs. then ask modI s" Selection:"
$ if selection .eqs. "" then selection modI
$

$ modlcall parse_selection modI_selection ""selection'"
$ read_nolock_header hdr
$ agent = f$edit (f$extract (mf_t_agent ,mf_s_agent ,hdr) ,"TRIM")
$

$ fao = "!12AS !32AS !32AS"
$ display
$ display f$fao(fao, "User", "Full Name", "Mailing Address")
$ display f$fao(fao, "----,, ,,---- ____ II ,,------- -------")

$ count = 0
$ read_nolock /key="$"/match=ge rec /end_of_file=19
$10: kl = ", II + -

f$edit(f$extract(mf_t_keylist,mf_s_keylist,rec),-

"TRIM") + ","
$ if 'modI_selection then gosub display_user
$ read_nolock rec /end_of_file=19
$ goto 10
$19:
$ display f$fao(" !/Users displayed: !UL!/", count)
$ exit modl __ success

$

$
$display_user:
$ user = f$edit (f$extract (mf_t_key,mf_s_key,rec) ,"TRIM")
$ name = f$edit (f$extrac,t (mf_t_name ,mf_s_name,rec) ,"TRIM")
$ address = f$edit(f$extract(mf_t_address,mf_s_address,rec),-

$ display
$ count =
$ return
$

"TRIM")
f$fao(fao, user, name, agent + address)
count + 1

0.4 Listings 325

326

$! Module:
$!
$! Synopsis:
$!
$!
$!
$!
$!
$! Format:
$!
$! Parameters:
$!
$!
$! Notes:
$!

Process the DISPLAY Command

This module processes the DISPLAY command, which is
used to display a list of the users who satisfy a
given selection expression. The users are displayed,
but no mail message is sent. The display includes
the user name, full name, and mailing address.

DISPLAY IIselectionll

selection: The selection expression specifying the
users to be displayed.

See the User's Guide for a description of the
selection expression.

File MODLHELP.COM

$ on control_y then exit modl __ ctrly
$ on warning then exit $status .or. %xiOOOOOOO
$
$ define/user_mode sys$input sys$command
$ help/library=modl_system:modl_helplib.hlb -

/page/noinstruction/prompt -
'pi 'p2 'p3 'p4 'p5 'p6 'p7 'pB

$ exit modl __ success
$
$! Module:
$!
$! Synopsis:
$!
$!
$!
$! Format:
$!
$! Parameters:
$!
$!
$!
$!
$! Notes:

Process the HELP Command.

This module processes the HELP command, which
provides online help for MODL. The help text
is stored and displayed using the VMS HELP.

HELP [topic ... J

topic: A topic or topic hierarchy that selects
specific help information to be displayed.
If this parameter is missing, the help
facility displays the top-level help screen.

The help text is not included in this listing.

D.4 Listings 327

File MODLLIST.COM

$ status = modl __ success
$ on control_y then goto CONTROL_Y
$ on warning then goto ERROR
$ check_open_file
$
$ selection = pi
$ output_file = p2
$ heading = p3
$ if selection .eqs. "" then ask modl_ s "_Selection:"
$ if selection .eqs. "" then selection = modl_
$ if output_file .eqs. "" then ask modl_ s "_Output File:"
$ if output_file .eqs. "" then output_file = modl_
$ if heading . eqs. then ask modI s "_Heading:"
$ if heading .eqs. "" then heading = modl_
$

$ modlcall parse_selection modI_selection ""selection'"
$ read_nolock_header hdr
$ agent = f$edit (f$extract(mf_t_agent ,mf_s_agent,hdr) ,"TRIM")
$ output_file = f$parse(output_file,".DIS", ,,"SYNTAX_ONLY")
$

$ create 'output_file
$ open/append modI_list 'output_file
$ write modI list "! " heading
$ write modI list ""
$ write modI_list "! This is a MODL distribution list."
$ write modI list "! File:

f $trnlnm (llmodl_ opened_f ile ")
$ write modI_list "! Selection: ", selection
$ write modI list 1111

$

$ read_nolock /key="$"/match=ge rec /end_of_file=19
$10: kl = ", II + -

f$edit(f$extract(mf_t_keylist,mf_s_keylist,rec),-
"TRIM") + ","

$ if 'modI_selection then gosub list_user
$ read_nolock rec /end_of_file=19
$ goto 10
$19:
$ goto EXIT
$
$CONTROL_Y:
$ status = modl __ ctrly
$ goto EXIT
$ERROR:
$
$

status = $status
goto EXIT

328 Sample Application

$EXIT:
$
$

$

$

$

set noon
close/nolog modI_list
exit status .or. %x10000000

$list_user:
$ name = f$edit(f$extract(mf_t_name,mf_s_name,rec),IITRIM II)
$ address = agent + -

f$edit(f$extract(mf_t_address,mf_s_address,rec),-
IITRIMII)

$ S = f$length(address)
$ if s .It. 32 then s = 32
$ write modI_list f$fao(II!#AS !! !ASII, s, address, name)
$ return
$
$! Module:
$!
$! Synopsis:
$!
$!
$!
$!
$!
$! Format:
$!
$! Parameters:
$!
$!
$!
$!
$!
$!
$! Notes:
$!

Process the LIST Command.

This module processes the LIST command, which is
used to create a MAIL distribution list. The users
included in the list are those who satisfy a given
selection expression. The distribution list is
created, but no mail message is sent.

LIST IIselectionll output-file IIheadingll

selection:

output-file:

heading:

The selection expression specifying
the user to be included in the list.
The spec of the distribution list.
The default file type is DIS.
A heading to be included at the
beginning of the distribution file.

See the User's Guide for a description of the
selection expression.

D.4 Listings 329

File MODL~OD'FY.COM

$ on control_y then exit modl __ ctrly
$ on warning then exit $status .or. %x10000000
$ check_open_file
$
$ what = p1
$ if what .eqs. "" then ask modl_ s "_Modify KEYWORD or USER:"
$ if what .eqs. "" then what = modI
$ libcall lookup_keyword modl_ ""what'" KEYWORD,USER
$ if modl_ .eqs. then signal e unkwhat -

"The item "what is unknown or ambiguous."
$ goto 'modI
$
$
$KEYWORD:
$ keyword = p2
$ new_title = p3
$ if keyword .eqs. "" then ask modl_ s "_Keyword:"
$ if keyword .eqs. "" then keyword = modI
$ keyword = f$edit(keyword,"TRIM,UPCASE")
$ key = f$fao("!#<#!AS!>", mf_s_key, keyword)
$ read_lock /key=""key'" rec /error=15
$ goto 19
$15: signal e keynotreg -

"The keyword "keyword is not registered."
$19:
$ old_title = f$edit(f$extract(mf_t_title,mf_s_title,rec),-

"TRIM")
$ if new_title .eqs. "" then ask modl_ s "_New Title:" -

$

$
$
$

$
$USER:
$
$
$
$
$
$

$
$
$
$
$

""old_title'"
if new title .eqs. then new_title modI
rec[mf_t_title,mf_s_titleJ .= '1) 'new_title'"
update_unlock rec
exit modl __ success

username = p2
new_full_name = p3
new_title = p4
new_address = p5
if username .eqs. "" then ask modl_ s "_User Name:"
if username .eqs. "" then username = modl_
username = f$edit(username,"TRIM,UPCASE")
if username .eqs. "SELF" then username = this_user
key = f$fao(" !#AS" , mf_s_key, username)
read_lock /key=""key'" rec /error=55
goto 59

330 Sample Application

$55: signal e usernotreg "User "username is not registered."
$59:
$ old_full_name = f$edit(f$extract(mf_t_name,mf_s_name,rec),-

"TRIM")
$ old_title = f$edit(f$extract(mf_t_title,mf_s_title,rec),-

"TRIM")
$ old_address = f$edit(f$extr(mf_t_address,mf_s_address,rec),-

"TRIM")
$ if new_full_name .eqs. "" then ask modI s-

"_New Full Name:" ""old_full_name'"
$ if new_full_name .eqs. "" then new_full_name = modl_
$ if new_title .eqs. "" then ask modI s 11 New Title: 11 -

11, 'old_title' 11

$
$

if new title .eqs.
if new address .eqs.

then new title
1111 then ask modI

modI
s II_New Address: 11 -

11, 'old_address' 11

$ if new_address .eqs. 1111 then new_address = modI
$ rec[mf_t_name,mf_s_nameJ .= lI"new full_name'"
$ rec[mf_t_title,mf_s_titleJ .= 1I"new_title'lI
$ rec[mf_t_address,mf_s_addressJ .= 1I"new_address'lI
$ update_unlock rec
$ exit modI success
$

$! Module:
$!
$! Synopsis:
$!
$!
$!
$! Format:
$!
$!

Process the MODIFY Command

This module processes the MODIFY command, which is
used to modify the information about registered
users and keywords.

MODIFY USER user-name II new full name ll II new title ll
-

new-address

$! Parameters: user-name: The name of the registered user
to be updated. $!

$! new full name:
$!
$!
$!

new title:
new address:

The full name of the user.
The business title of the user.
The VMS mailing address of the user.

$! Format:
$!

MODIFY KEYWORD keyword IInew title"

$! Parameters: keyword:
$!
$! new title:
$!

The name of the registered keyword
to be updated.
A descriptive title for the keyword.

$! Notes:
$!
$!

As usual, if a parameter is omitted, MODL prompts
for it. The default answer is the previous value
of the field.

D.4 Listings 331

File MODLOPEN.COM

$
$
$
$
$

on control_y then exit modl __ ctrly
on warning then exit $status .or. %x10000000

file_spec = pi
if file_spec .eqs. then ask modl_ s -

$
$
$
$

if file_spec .eqs.
II_MODL Distribution File: II

then file_spec = modl_

file_spec = f$parse(file_spec,lI. modl_file ll
, "IISYNTAX_ONLY II)

if f$search(file_spec) .eqs. 1111 then signal e filnotfnd -
IIMODL file "file_spec does not exist. 1I

$
$ if f$trnlnm(lImodl_opened_file ll

) .nes. 1111 then -
@modl_system:modl_close

$

$ open/read/write/share=write modI_file 'file_spec /error=5
$ goto 9
$5: signal e filenotopen IICannot open MODL file "file_spec '" -

$9:
$

'$status

$ read_nolock_header hdr /error=15
$ goto 19
$15: close modI_file
$ signal e notmodlfile IIFile "file_spec is not a MODL file. 1I

$19:
$ define modl_opened_file 'file_spec
$ exit modl __ success
$
$! Module:
$!
$! Synopsis:
$!
$!
$!
$!
$! Format:
$!
$! Parameters:
$!
$!
$! Notes:
$!

332 Sample Application

Process the OPEN Command

This module processes the OPEN command, which is
used to select a MODL distribution file and prepare
it for use. The MODL file must have been previously
created using the CREATE command.

OPEN file-spec

file-spec: The file spec of the MODL
distribution file.

Most other MODL commands require that a MODL
distribution file already be open.

File MODL_REGISTER.COM

$
$
$
$
$

$

on control_y then exit modl __ ctrly
on warning then exit $status .or. %x10000000
check_o,r;en_file

what = p1
if what . eqs. then ask modl_ s -

$
$
$

II_Register USER or KEYWORD: II
if what .eqs. 1111 then what = modl_
libcall lookup_keyword modl_ 1I"what'li KEYWORD,USER
if modl_ .eqs. then signal e unkwhat -

liThe item "what is unknown or ambiguous. 1I

$ goto 'modl_
$

$

$KEYWORD:
$ keyword = p2
$ title = p3
$ if keyword .eqs. 1111 then ask modl_ s II_Keyword: 1I

$ if keyword .eqs. 1111 then keyword = modI
$ if title .eqs. then ask modl_ s II_Title:"
$ if title .eqs. "" then title = modl_
$

$
$

keyword = f$edit(keyword,IITRIM,UPCASE II)
libcall verify_symbol modl_ ""keyword'il -

'f$integer(mf_s_key-1)
$ if modl_ .nes. 1111 then signal e invkey -

II_II

IIKeyword "keyword "modI
$
$ key = f$fao("!#<#!AS!>II, mf_s_key, keyword)
$ read_nolock /key=II"key'li rec /error=19
$ signal e keyalrdydef IIKeyword "keyword is already defined. II
$19:
$
$

$

$
$
$
$

$

$

rec = 1111
rec[mf_t_key,mf_s_keyJ
rec[mf_t_time,mf_s_timeJ
rec[mf_t_doer,mf_s_doerJ
rec[mf_t_title,mf_s_titleJ
write_unlock rec
exit modl __ success

II' 'key' II
""f$time()'11
II' 'this user'lI
II, 'title' II

0.4 Listings 333

$USER:
$
$

$
$

user = p2
full_name = p3
title = p4
address = p5

$
$

if user .eqs. "" then ask modl_ s "_User Name:"
if user .eqs. "" then user = modl_

$
$

if full_name .eqs. "" then ask modl_ s "_Full Name:"
if full_name .eqs. "" then full_name = modl_

$ if title .eqs. "" then ask modl_ s "_Title:"
$ if title .eqs. "" then title = modl_
$ if address .eqs. then ask modl_ s "_Mailing Address:"
$
$
$
$
$

if address .eqs. "" then address = modI

user = f$edit(user,"TRIM,UPCASE")
if user .eqs. "SELF" then user = this_user
if f$length(user) .gt. mf_s_key then -

$
signal e userlen "User name "user is too long."

if f$length(address) .gt. mf_s_address then -
signal e addrlen "Mailing address "address is too long."

$
$ key = f$fao(" !#AS" , mf_s_key, user)
$ read_nolock /key=""key'" rec /error=59
$ signal e useralrdyreg "User "user is already registered."
$59:
$ rec = ""
$ rec[mf_t_key,mf_s_keyJ .= II, 'key'"
$ rec[mf_t_time,mf_s_timeJ .= '" 'f$timeO'"
$ rec[mf_t_doer,mf_s_doerJ .= II, 'this user' "
$ rec[mf_t_title,mf_s_titleJ .= '" 'title'"
$ rec[mf~t_name,mf_s_nameJ .= ""full_name'"
$ rec [mf_t_address ,mf_s_addressJ .= ""address'"
$ write_unlock rec
$ exit modl __ success
$
$! Module:
$!

Process the REGISTER Command

$! Synopsis:
$!
$i

$!

334 Sample Application

This module processes the REGISTER command, which is
used to register information about users and
keywords. Duplicate users/keywords are not allowed.

$! Format:
$!
$! Parameters:
$!
$!
$!
$!
$! Format:
$!
$! Parameters:
$!
$!
$! Notes:

REGISTER USER user-name "full name" "title" address

user-name:
full name:
title:
address:

The name of the user.
The full name of the user.
The business title of the user.
The VMS mailing address of the user.

REGISTER KEYWORD keyword "title"

keyword:
title:

The name of the keyword.
The descriptive title for keyword.

0.4 Listings 335

File MODL_REMOVE.COM

$ on control_y then exit modl __ ctrly
$ on warning then exit $status .or. %x10000000
$ check_open_file
$
$ remove_keys = p1
$ users = p2
$ if remove_keys .eqs. "" then ask modl_ s "_Keyword List:"
$ if remove_keys .eqs. "" then remove_keys = modl_
$ if users .eqs. "" then ask modl_ s "_User List:"
$ if users .eqs. "" then users = modI
$ remove_keys = f$edit (remove_keys , "COLLAPSE,UPCASE")
$ users = f$edit(users,"COLLAPSE,UPCASE")
$

$ if users .eqs. "*"
$ then
$ read_lock /key="$"/match=ge rec /end_of_file=19
$10: kl = f$edit(f$extract(mf_t_keylist,mf_s_keylist,rec),-

"TRIM")

$ modlcall remove_keywords modl_ ""kl'" ""remove_keys'"
$ rec[mf_t_keylist,mf_s_keylistJ .= ""modl_'"
$ update_unlock rec
$ read_lock rec /end_of_file=19
$ goto 10
$19:
$ else
$ i-1
$20:
$

$

$
$

$

$

$

$
$
$

$25:
$
$29:

i = i + 1
username= f$element(i,", " ,users)
if username .eqs. "," then goto 29
if username .eqs. "SELF" then username this_user
key = f$fao("!#AS", mf_s_key, username)
read_lock /key=""key'" rec /error=25
kl = f$edit(f$extract(mf_t_keylist,mf_s_keylist,rec),-

"TRIM")

modlcall remove_keywords modl_ ""kl'" ""remove_keys'"
rec[mf_t_keylist,mf_s_keylistJ .= ""modI ,II
update_unlock rec
goto 20
signal w unreguser "User "username is not registered."
goto 20

$ endif
$ exit modI success
$

336 Sample Application

$! Module:
$!
$! Synopsis:
$!
$!
$! Format:
$!

Process the REMOVE Command

This module processes the REMOVE command, which is
used to disassociate keywords from users.

REMOVE keyword, ... {user, ... I *}

$! Parameters: keyword: A keyword to be disassociated from the
$! specified user(s). A list is allowed.
$! user: A registered user from whom the keyword(s)
$! are removed. A list is allowed. If an
$! asterisk (*) is specified, the keywords
$!
$!
$! Notes:

are removed from all registered users.

D.4 Listings 337

File MODLSEND.COM

$ status = modl __ success
$ on control_y then goto control_y
$ on warning then goto error
$ check_open_file
$ dc$_mailbox = 160
$

$ file_spec p1
$ selection p2
$ subject = p3
$ copy_self = p4
$ batch = p5
$ if file_spec .eqs. "" then ask modl_ s "_File to Send:"
$ if file_spec .eqs. then file_spec modl_
$ if selection .eqs. "" then ask modI s "_Selection:"
$ if selection .eqs. then selection modl_
$ if subject .eqs. "" then ask modl_ s "_Subject:"
$ if subject .eqs. "" then subject = modl_
$ if copy_self .eqs. "" then copy_self = modl_copy_self
$ if batch . eqs. "" then batch = modI_batch
$ if f$getjpiC"","MODE") .eqs. "BATCH" then batch = false
$
$! Parse the message file spec and make sure the file exists.
$! Allow the spec to be NL: by checking for a mailbox device.
$
$ file_spec = f$parse(file_spec, "sys$disk: [].txt;")
$ if f$getdviCfile_spec,"DEVCLASS") .ne. dc$_mailbox then -
$ if f$search(file_spec) .eqs. "" then -

$
$

$
$!
$!
$!
$!
$!
$
$

$

$
$
$

$

$

signal e filnotfnd "File "file_spec does not exist."

if batch
then

Submit a batch job to send the message. First parse the
selection expression to check for errors. Then create a
little procedure that opens the current MODL file, sends
the message, and exits. Submit the procedure so that it
is deleted when done.

modlcall parse_selection modI ""selection'"
libcall unique_name modl_ sys$scratch:modl_?tmp
temp_file = modl_
open/write modl_temp_file 'temp_file
write modl_temp_file "$ modI open ", -

f$trnlnm("modl_opened_file")
write modl_temp_file "$ modI send ", file_spec, " """

selection, """ """, subject, """ ", copy_self
write modl_temp_file "$ exit"

338 Sample Application

$ close modl_temp_file
$ submit/identify/nolog/notify 'temp_file/delete
$
$ else
$! Send the message immediately. Determine whether there is
$! a mailing agent and call the appropriate subroutine. Then
$! send a self-copy if requested.
$

$ signal i sendfile "File to be sent: "file_spec'"
$ read_nolock_header hdr
$ agent = f$edit(f$extract(mf_t_agent,mf_s_agent,hdr),-

"TRIM")
$ if agent .eqs. 1111 then gosub send_no_agent
$ if agent .nes. 1111 then gosub send_agent
$ if copy_self then mail 'file_spec 'this_user -

/subject=""subject (MODL self copy)1I
$ endif
$ goto exit
$
$control_y:
$
$

$error:
$
$

$exit:
$

$
$

$

$
$

$!
$!
$!
$!
$!
$

status = modl __ ctrly
goto exit

status = $status
goto exit

set noon
close/nolog modl_temp_file
close/nolog modl_log_file
exit status .or. %x10000000

This subroutine sends a message without using an agent.
It does so by invoking MAIL once for each user, thus
preventing one problem from messing up the other recipients.
As it goes, it maintains a log file of the results, which
is mailed back to the sender at the end.

$SEND_NO_AGENT:
$
$
$

$
$
$

modlcall parse_selection modI_selection ""selection'"
libcall unique_name modl_ sys$scratch:modl_?log;
log_file = modl_
open/write modl_log_file 'log_file
fao = "!12AS !20AS !40AS"
write modl_log_file -

f$fao(fao, "User", "Mailing Address", II Status ")

0.4 Listings 339

$ write modl_log_file -
f$fao(fao, "----", ,,------- -------" "------")

$ set message sys$message:cliutlmsg
$
$ read_nolock /key="$"/match=ge rec /end_of_file=59
$50: kl = "," + -

f$edit(f$extract(mf_t_keylist,mf_s_keylist,rec),-
"TRIM") +

if 'modI_selection
then

" " ,
$

$

$
$

user = f$edit (f$extract (mf_t_key,mf_s_key,rec) ,"TRIM")
address = f$edit(f$extr(mf_t_address,mf_s_address,rec),­

"TRIM")
$ set noon
$ mail 'file_spec 'address /subject=""subject"·
$ message = f$message($status)
$ set on
$ write modl_log_file f$fao(fao, user, address, -

f$edi t (f$element (1, " , " ,message) , "TRIM"))
$ endif
$55: read_nolock rec /end_of_file=59
$ goto 50
$59:
$ close modl_log_file
$ send_log = true
$ if f$getjpiC"","MODE") .eqs. "INTERACTIVE"
$ then
$ ask modl_ b "Do you want a copy of the mailing log?" no
$ send_log = modl_
$ endif
$ if send_log then mail 'log_file 'this_user -

/subject=""subject (MODL mailing log)"
$ delete 'log_file'*
$ return
$
$
$! This subroutine sends a message using an agent. It creates
$! a MAIL distribution list with the selected users and then
$! sends the message to them with one invocation of MAIL.
$

$SEND_AGENT:
$
$
$

$

libcall unique_name modl_ sys$scratch:modl_?dis;
temp_dis = modl_
@modl_system:modl_list ""selection'" 'temp_dis -

"Temporary list for sending by agent."
mail 'file_spec "@"temp_dis'" /subject=""subject'"

340 Sample Application

$ delete 'temp_dis'*
$ return
$

$! Module:
$!
$! Synopsis:
$!
$!
$!
$!
$!
$!

$!
$!
$!
$!
$!
$!

$!
$!
$!
$!
$!
$!

$!
$!
$!
$! Format:
$!
$!
$!
$!
$!
$!
$!

Parameters:

$! Notes:
$!

Process the SEND Command

This module processes the SEND command, which is
used to send a message to users who satisfy a given
selection expression. There are four modes for
sending the message:

Interactive, no agent: The message is sent while
the user waits. A separate invocation of MAIL is
used for each recipient. Errors appear on the
terminal and a log file can be saved.

Interactive, agent: The message is sent while the
user waits. A distribution list is created and a
single invocation of MAIL is used. Errors appear
on the terminal.

Batch, no agent: A batch job is submitted to send
the mail. In batch, a separate invocation of MAIL
is used for each recipient. An error log is
mailed back to the sender.

Batch, agent: A batch job is submitted to send the
mail. In batch, a distribution list is created and
a single invocation of MAIL is used. Errors are
reported by the agent.

SEND message-file "selection" "subject"

message-file: The file spec of the text file with
the message to be sent.

selection: The selection expression specifying
the users to receive the message.

subject: The subject heading for the message.

See the User's Guide for a description of the
selection expression.

D.4 Listings 347

File MODLSET.COM

$ on control_y then exit modl __ ctrly
$ on warning then exit $status .or. %xiOOOOOOO
$ check_open_file
$
$ what = pi
$ if what .eqs. 1111 then ask modI s-

II_What (AGENT, NOAGENT, SEND):II
$ if what .eqs. 1111 then what = modl_
$ libcall lookup_keyword modl_ '1) 'what' II AGENT , NOAGENT , SEND
$ if modl_ .eqs. 1111 then signal e unkwhat -

$
$
$
$AGENT:
$
$
$

$

$
$
$
$
$

$

liThe item "what is unknown or ambiguous. 1I

goto 'modI

agent = p2
read_Iock_header hdr
old_agent = f$edit(f$extract(mf_t_agent,mf_s_agent,hdr),-

IITRIMII)
if agent .eqs. 1111 then ask modl_ s II_Agent:1I 1I"old_agent'"
if agent .eqs. 1111 then agent = modl_
hdr[mf_t_agent,mf_s_agentJ .= 1I"agent'lI
update_unlock hdr
exit modl __ success

$NOAGENT:
$ read lock_header hdr
$ hdr[mf_t_agent,mf_s_agentJ .=
$ update_unlock hdr
$ exit modl __ success
$

$
$SEND:
$

$
copy _self = p2
batch = p3

$ if cOBy_self .eqs. then ask modI b II_Copy Self?1I -

$
$

$
$

$
$
$

'modl_copy_self
if copy_self .eqs. 1111 then copy_self modI
if batch .eqs. 1111 then ask modl_ b II_Send in Batch?" -

'modI_batch
if batch .eqs. then batch modI
modl_copy_self copy_self
modI_batch == batch
exit modl __ success

342 Sample Application

$! Module:
$!

$! Synopsis:
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$! Format:
$!
$!
$! Parameters:
$!
$!
$!

$!
$! Format:
$!

Process the SET Command

This module processes the SET command, which is
used to specify various parameters for MODL.

The SET AGENT command specifies the mailing agent
for future SEND commands. The agent is stored in
the MODL distribution file. The SET NOAGENT command
specifies that no mailing agent is used.

The SET SEND command specifies various things about
how mail messages are sent. These things are
specific to the current user and are only remembered
for the remainder of the terminal session.

SET AGENT
SET NOAGENT

"string"

string: The string that identifies the mailing
agent (e.g., "zp%"). This string is
prefixed on each mailing address before
mail is sent to it.

SET SEND copy-self? batch?

$! Parameters: copy-self?:
$!

A boolean specifying whether an
additional copy of a message should
be mailed to the sender. $!

$! batch?:
$!
$!
$! Notes:

A boolean specifying whether mailing
should be done with a batch job.

D.4 Listings 343

File MODLSHOW.COM

$ on control_y then exit modl __ ctrly
$ on warning then exit $status .or. %x10000000
$ check_open_file
$
$

$

$

$

what = p1
if what .eqs.

if what .eqs. ""

then

then

ask modI_ s -
" _What (FILE, KEYWORD, SEND, USER):"
what = modI

$ libcall lookup_keyword modI ""what'''-
FILE,KEYWORD,SEND,USER

$ if modl_ .eqs. "" then signal e unkwhat -

$
$

$

$FILE:
$

$
$

$
$
$

$

$

$
$

$

$
$

$
$

"The item "what is unknown or ambiguous."
goto 'modl_

read_nolock_header hdr
doer f$edit(f$extract(mf_t_doer,mf_s_doer,hdr) ,"TRIM")
time f$edit (f$extract (mf_t_time ,mf_s_time ,hdr) ,"TRIM")
title f$edit(f$extract(mf_t_title,mf_s_title,hdr) ,"TRIM")
agent f$edit(f$extract(mf_t_agent,mf_s_agent,hdr) ,"TRIM")
if agent .eqs. "" then agent = "(none)"
display""
display "MODL file: f$trnlnm("modl_opened_file")
display "Title: , title
display "Agent: , agent
display "(Created by: ", doer, ", on: time, ")"
display""
exit modl __ success

$KEYWORD:
$ keyword = p2
$ if keyword .eqs. "" then ask modl_ s "_Keyword or *:"
$ if keyword .eqs. "" then keyword = modl_
$ keyword = f$edit(keyword,"TRIM,UPCASE")
$ if keyword .eqs. "*"
$ then
$ count = 0
$ read_nolock /key="#"/match=ge rec /end_of_file=19
$10: if f$extract(mf_t_key,1,rec) .nes. "#" then goto 19
$ gosub display_keyword
$ count = count + 1
$ read_nolock rec /end_of_file=19
$ goto 10
$19:

344 Sample Application

$ display f$fao("!/Keywords displayed: !UL!/", count)
$ else
$ key = f$fao(II!#<#!AS!)II, mf_s_key, keyword)
$ read_nolock /key=""key'" rec /error=25
$ gosub display_keyword
$ display "II
$ goto 29
$25: signal e keynotdef "Keyword "keyword is not defined. 1I

-

$29:
$ endif
$ exit modI success
$

$display_keyword:

'$status

$ keyword = f$extract(mf_t_key,mf_s_key,rec) - "#"
$ doer = f$edit (f$extract (mf_t_doer,mf_s_doer,rec) ,"TRIW)
$ time = f$edit(f$extract(mf_t_time,mf_s_time,rec) ,"TRIM")
$ title = f$edit(f$extract(mf_t_title,mf_s_title,rec) ,"TRIM")
$ display
$ display "Keyword: , keyword
$ display "Title: , title
$ display "(Defined by: ", doer, "on: time, ")"
$ return
$

$
$SEND:
$

$
$
$

$
$

$

$

$
$

$

$USER:
$
$

read_nolock_header hdr
agent = f$edit(f$extract(mf_t_agent,mf_s_agent,hdr),IITRIM")
if agent .eqs. "" then agent = "(none)"
display""
display "Agent: , agent
display "Copy Self: "

f$element(modl_copy_self," I ","NOIYES")
display "In Batch: ", f$element(modl_batch,"I","NOIYES")
display
exit modl __ success

user = p2
if user .eqs. II" then ask modI s "_User Name or *:" -

'this_user
$ if user .eqs. then user = modI
$ user = f$edit(user,"TRIM,UPCASE")
$ if user .eqs. "*"
$ then

0.4 Listings 345

$ count = 0
$ read_nolock /key=II$"/match=ge rec /end_of_file=39
$30: gosub display_user
$ count = count + 1
$ read_no lock rec /end_of_file=39
$ goto 30
$39:
$ display f$fao(II!/Users displayed: !UL!/II, count)
$ else
$ if user .eqs. IISELF" then user = this_user
$ key = f$fao(" !#AS" , mf_s_key, user)
$ read_nolock /key=II"key'lI rec /error=45
$ gosub display_user
$ display 1111

$ goto 49
$45: signal e usernotreg IIUser "user is not registered. 1I

-

$49:
$ endif
$ exit modl __ success
$
$display_user:

'$status

$ user f$extract(mf_t_key,mf_s_key,rec)
$ doer = f$edit(f$extract(mf_t_doer,mf_s_doer,rec),IITRIM II)
$ time = f$edit(f$extract(mf_t_time,mf_s_time,rec),IITRIM II)
$ title = f$edit(f$extract(mf_t_title,mf_s_title,rec) ,"TRIMII)
$ full_name = f$edit(f$extract(mf_t_name,mf_s_name,rec),-

$

$

$
$
$
$
$
$

$
$
$

IITRIMII)
address f$edit(f$extract(mf_t_address,mf_s_address,rec),­

IITRIMII)
keylist f$edit(f$extract(mf_t_keylist,mf_s_keylist,rec),­

IITRIMII)
display 1111

display "User: , user
display IIFull name: full_name
display IITitle: title
display IIMailing address: II address
if keylist .nes .• 11. then -
display "Keyword list: keylist
display II (Registered by: doer, II, on:
return

time, II) II

$! Module:
$!

Process the SHOW Command

$! Synopsis:
$!
$!
$!

This module processes the SHOW command, which is
used to display the contents of a MODL distribution
file and various other environmental items.

346 Sample Application

$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$! Format:
$!
$! Format:
$!
$! Parameters:
$!
$!
$! Format:
$!
$! Parameters:
$!
$!
$! Format:
$!
$! Notes:

The SHOW FILE command is used to display information
about the current MODL distribution file. The
information includes the full file spec, title, and
mailing agent.

The SHOW KEYWORD and SHOW USER commands are used to
display information about registered keywords and
users. The information includes the title in both
cases, and the full name, mailing address, and
keyword list for a user.

The SHOW SEND command is used to display the mailing
parameters established with the SET SEND command.
The information includes the send-self and batch
parameters.

SHOW FILE

SHOW USER{user I *}

user: The name of a registered user, or an
asterisk (*) to display all users.

SHOW KEYWORD{keyword I *}

keyword: The name of a reg~stered keyword, or an
asterisk to display all keywords.

SHOW SEND

D.4 Listings 347

File MODL_SUBROUTINES.COM

$ on control_y then exit modl __ ctrly
$ on warning then exit $status .or. %x10000000
$

$ goto 'p1
$
$
$! Title:
$!
$! Synopsis:
$!
$!
$!
$!
$!
$!
$!
$!
$!

Parse a Selection Expression

This subroutine parses a selection expression and
builds the corresponding DCL boolean expression.
Each keyword in the expression turns into:

(F$LOC(",keyword,",KL) .NE. F$LEN(KL))
under the assumption that the list of keywords for a
particular user is stored in the symbol KL.
Each boolean operator in the keyword is converted to
a DCL operator by surrounding it with dots.
Parentheses are simply copied to the DCL expression.

$! Parameters: P2:
$!

The symbol to receive the resulting DCL
expression.

$! P3: The selection expression to be parsed.
$!
$! Returns:
$!

The DCL expression representing the selection
expression.

$

$PARSE_SELECTION:
$
$ selection = f$edit(p3,"COMPRESS,TRIM,UPCASE") + "-,,
$ if selection .eqs. "*-"
$ then
$ 'p2 == "true"
$ exit modI success
$ endif
$

$ result
$ i = 0
$ps10:
$

$
$
$
$
$
$

$ps20:
$

348 Sample Application

char f$extract(i,1,selection)
if f$locate(char," 0-") .ne. 4
then

if char .eqs. "-,, then goto ps19
result = result + char
i = i + 1

else
keyword

keyword
""

i = i + 1
keyword + char

char = f$extract(i,1,selection) $

$
$

if f$locate(char," 0-") .eq. 4 then goto ps20
if keyword .eqs. "AND" .or. keyword .eqs. "OR" .or. -

keyword .eqs. "NOT"
then $

$

$

$

$

result = f$fao("!AS.!AS.", result, keyword)
else

gosub check_keyword
result = -

f$fao("!AS(f$loc("", !AS,"",kl) .ne. f$len(kl))",­
result, keyword)

$ endif
$ endif
$ goto ps10
$ps19:
$
$ 'p2 == result
$ exit modl __ success
$

$check_keyword:
$ key = f$fao("!#<#!AS!>", mf_s_key, keyword)
$ read_nolock /key=""key'" rec /error=ps95
$ return modI success
$ps95: signal e undefkey "Keyword "keyword is not defined."

D.4 Listings 349

$! Title:
$!

Remove Keywords from a List

$! Synopsis:
$!

This subroutine removes one or more keywords from an
original list of keywords.

$!
$! Parameters:
$!

P2: The symbol to receive the resulting list.
P3: The original comma-separated list of keywords.
P4: The list ot keywords to be removed. $!

$!
$! Returns:
$

The original list with specified keywords removed.

$REMOVE_KEYWORDS:
$
$
$
$rk10:
$
$

$
$
$

$
$rk19:
$

$

$

original =
k = -1

k = k + 1

" " , + p3 + " " ,

keyword = f$element(k, ",", p4)
if keyword .eqs. "," then goto rk19
1 = f$locate(","+keyword+",", original)
if 1 .ne. f$length(original) then -

original = f$extract(O, 1, original) + -
f$extract(1+f$length(keyword)+1,9999,original)

goto rk10

if f$extract(O,1,original) .eqs. "," then -
original = original - ","

'p2 == f$extract(O,f$length(original)-1, original)
return modI success

350 Sample Application

File MODLFILE.FDL

TITLE "MODL File Description"

IDENT "18-APR-1988 12:36:23 VAX-11 FDL Editor"

SYSTEM
SOURCE VAX/VMS

FILE
ORGANIZATION indexed

RECORD
CARRIAGE_CONTROL carriage_return
FORMAT variable
SIZE 400

AREA 0
ALLOCATION 35
BEST_TRY_CONTIGUOUS yes
BUCKET_SIZE 2
EXTENSION 8

AREA 1
ALLOCATION 4
BEST_TRY_CONTIGUOUS yes
BUCKET_SIZE 2
EXTENSION 2

KEY 0
CHANGES no
DATA_AREA 0
DATA_FILL 100
DATA_KEY_COMPRESSION yes
DATA_RECORD_COMPRESSION yes
DUPLICATES no
INDEX_AREA 1
INDEX_COMPRESSION no
INDEX_FILL 100
LEVEL1_INDEX_AREA 1
NAME "Record Key"
PROLOG 3
SEGO_LENGTH 16
SEGO_POSITION 0
TYPE string

DA Listings 351

352

Glossary

Absolute time. A string representing an exact point in time. The full VMS format is:
dd-mon-yyyy hh:mm:ss.cc.

Access category. A level at which a process accesses a file or other object. The four
levels are system, owner, group, and world.

Access control entry (ACE). An individual entry in an access control list.

Access control list (ACL). A list of access control entries that specify detailed protection
information for VMS objects.

Access mode. The VAX privilege mode at which a process runs or makes requests. The
four access modes are user, supervisor, executive, and kernel.

Allocation. See Device allocation.

Alternate key. A secondary key field in an indexed file.

Ampersand substitution. An explicit form of substitution in a DCL command, which is
specified by the ampersand (&).

Apostrophe substitution. An explicit form of substitution in a DCL command, which is
specified by the apostrophe (,).

Append. See Open for append.

Argument. A value that serves as input data for a particular operation. For example, a
lexical function may require one or more arguments to specify the operation it is to
perform. See also Optional argument.

Arity. The number of operands required by an operator.

Array. A collection of data items stored together under one name. Associated with each
item is an index by which the item is identified from among all other items.

Array index. A number or character string identifying a particular element of an array.

ASCII character set. The character set used by the VAX computer. ASCII stands for
American Standard Code for Information Interchange.

Assignment command. A DCL command that assigns data to a symbol.

Authorized privilege. A privilege that a user is allowed to enable. The system manager
determines the authorized privilege for each user. Most users are authorized for the
NETMBX and TMPMBX privileges.

Automatic substitution. See Personal command substitution.

Batch job. A detached process created by VMS to run a procedure submitted to a batch
queue. A batch job runs without an interactive user at a terminal.

Batch process. A process created by VMS to run programs in a batch job. See also
Interactive process, Network process.

Binary operator. An operator that requires two operands (its arity is 2).

Bit. Short for "binary digit." A single digit of binary information, representing a 0 or 1.

Boolean. A data type that represents the two logical values true and false.

Call. See Invoke.

Captive account. A VMS user account that "captures" users as they log in. A user is
forced to execute the LOGIN. COM procedure and cannot interrupt it with <CTRL/y>.

Once the login procedure is complete, the user is automatically logged out.

Carriage return carriage-control. A file attribute specifying that each record in the file is
assumed to have a carriage retum/line feed pair at the end. This attribute affects how
records are displayed and printed.

Case statement. A fiow-of-control construct that chooses one of several possible execu­
tion paths based on the value of a symbol. There is no case statement in DCL, but it
can be simulated using the GOTO command and substitution.

Character set. The collection of printable and control characters used by a computer or
other device. The VAX uses the ASCII character set.

Character string. A data type that represents a sequence of characters in some character
set. In DCL, the character set is ASCII. A character string may contain zero, one, or
more characters.

Child process. A subprocess owned by some other process, which is called the parent
process.

Cleanup. See Procedure cleanup.

Combination time. A string representing the combination of an absolute time and a delta
time. A combination time represents a particular point some time before or after
another point in time. The full VMS format is:
dd-mon-yyyy hh:mm:ss.ccdddd-hh:mm:ss.cc.

Glossary 353

354 Glossary

Command. See Assignment command, DCL command, Flow-of-control command, Per­
sonal command.

Command language interpreter. A system program that can analyze and perform com­
mands entered by the user. The standard command language interpreter for VMS is
the Digital Command Language (DCL).

Command parameter. An item of information included in a command, which specifies
an object that the command should manipulate. Command parameters are separated
from the command verb and from one another by spaces.

Command procedure. See DCL command procedure.

Command qualifier. A keyword included in a DCL command to specify an option or
modify the standard behavior of the command. Qualifier keywords are preceded by
a slash (/).

Command syntax. The form of a command. Command syntax includes the verb, param­
eter order, qualifiers, and the punctuation used to connect them.

Command verb. A word identifying a particular command to be performed. DCL in­
cludes verbs such as COpy and WRITE.

Comment. A phrase or sentence included in a program to make it more readable by hu­
man beings. Comments are completely ignored by the computer. In DCL, comments
begin with an exclamation point (!) and extend to the end of the line.

Comparison time. An absolute time that has been reformatted so that two times can be
compared as if they were character strings. The full VMS format is:
yyyy-mm-dd hh:mm:ss.cc.

Condition. The boolean expression in an IF statement, which determines whether the
"then" statements or the "else" statements are executed.

Context symbol. A DCL symbol that keeps track of the state of an ongoing request such
as that performed with the F$PID lexical function. The F$PID function obtains the
process identifiers of the system processes, one on each call. The context symbol
keeps track of the last process examined between each call to the function.

Control character. A character used to control the terminal or other device to which it
is sent. For example, the linefeed character causes the cursor on a terminal to move
down to the next line. Contrast with Printable character.

Control sequence. A sequence of characters sent to a terminal in order to perform a
control or formatting action other than displaying a character. For example, most
tenninals accept a control sequence that clears the screen.

Control string. The character string that specifies how data is to be formatted by the
F$F AD lexical function.

Current directory. See Working directory.

Data. The collection of information created and manipulated by a program.

Data item. An individual item of information, such as an integer or a character string.

Data type. The class of infonnation to which a data item belongs. DeL supports integer
and character string types.

Date. See Time.

DeL code. The DeL commands that make up a DeL procedure.

DeL command. A sequence of words and punctuation marks that instructs DeL to per­
fonn some operation. A command consists of a verb, parameters, and qualifiers.

DeL command procedure. A file containing DeL commands, which can be executed
by DeL in place of commands entered at the tenninal.

DeL environment. A collection of infonnation that affects the way DeL operates. En­
vironment items include the working directory and the state of procedure verification.
This infonnation can be inspected and altered by the DeL user.

DeL procedure. See DeL command procedure.

DeL prompt. A character string displayed at the tenninal to signal that the user may
enter a new command. The DeL prompt is the dollar sign ($) unless the user changes
it.

Default answer. The answer to a question, which is automatically provided when the
user does not enter any other answer. It is a VMS convention to include the default
answer in square brackets ([]) after the question.

Default directory. The official VMS tenn for Working directory.

Default value. A value used by a program when no value is explicitly specified.

Delta time. A string representing a certain amount of time, or the difference between
two absolute times. The full VMS fonnat is: dddd-hh:mm:ss.cc.

Detached process. A main process that is not owned by any other process. VMS creates
a detached process for an interactive user, a batch job, or a remote network request.

Device. A hardware component, attached to a computer, which provides input or output
capability. Examples are tenninals, disk drives, tape drives, and communications
controllers.

Device allocation. The act of reserving a device for exclusive use by a process. This is
accomplished with the ALLOCATE command.

Device name. A character string that uniquely identifies a particular device from among
all devices accessible to a system. The device name includes components identifying
the system to which the device is connected, the type of device, its controller letter,
and its device number.

Directory. A VMS file that acts as a catalog for other files. A directory contains a list of
data files and other directories, which are considered to reside in that directory. Using
directories, a hierarchical structure is imposed on all the files on a device. See also
Login directory, Master file directory, Root directory, Working directory.

Distribution list. A text file containing a list of user names. Distribution lists are used
by the MAIL utility to send messages to groups of users.

Glossary 355

356 Glossory

End-of-file. The state of an input file in which all records have been read. In the case of
a disk file, the next read operation will return a "no more records" status.

Equivalence string. The value associated with a logical name.

Error handler. The portion of a DCL procedure that deals with errors detected during the
execution of the procedure.

Escape sequence. See Control sequence.

Evaluate. To determine the final value of an expression. The expression's operators and
operands are combined in a predefined order to produce a new value.

Execute. A term often applied to programs, including DCL procedures. A program is
executed when a computer interprets the statements (commands) in the program and
carries out the actions specified by those statements.

Expression. A combination of operators and operands that specifies a new value to be
computed. For example, A + B produces a new integer by adding the values of the
symbols A and B.

Field. An individual data item in a record or structure. The fields in a structure can be
manipulated as separate items.

File. A collection of data arranged in the form of records. Each record contains a related
portion of the data, and all the records taken together make up the entire file. See also
Log file, Process-permanent file, Sequential file, Temporary file, Text file.

File attributes. A collection of information associated with a file, which identifies the
file, describes its internal format, and specifies its file protection.

File prologue. The portion of an indexed file that contains descriptions of the record keys
and other aspects of the file.

File protection. The scheme used by VMS to safeguard files against unauthorized access
or modification.

File sharing. An RMS facility, which allows multiple processes to access and modify
the same file at the same time.

File spec. Short for "file specification."

File specification. A character string identifying a particular file or a group of files.

Fixed-length record. A record in a sequential or indexed file whose design stipulates that
every record in the file be the same size. Such records are usually formatted according
to one or more predetermined record structures.

Flow-of-control command. A DCL command that enables a procedure to alter its flow
of execution. Such commands include IF and GOTO. Flow-of-control commands
provide the power required to make DCL a general-purpose programming language.

Generic match. An indexed file key lookup based on a partial key rather than on the
whole key. For example, the generic key II K II will match any record whose key begins
with the letter K.

Global symbol. A symbol created at the global symbol level using the double equal sign
(==) assignment statement. Global symbols can be accessed and created from any
procedure level.

Glossary. A list of terms and their definitions.

Group number. The portion of a VIe that identifies a related group of users. See also
Member number.

Home directory. See Login directory.

Image data. Lines in a command procedure that do not contain DeL commands but
rather contain input data for a program (image). This input data is used in lieu of
data read from the terminal. Any procedure lines not beginning with a dollar sign ($)
are considered image data.

Index. In DeL, an identifier used to select an individual character in a character string
or to identify an item in an array. See also Array index, String index.

Infinite loop. A loop in the flow of control of a program that, once initiated, can never
be terminated. Infinite loops are caused by loops with no termination checks or faulty
checks.

Initialization. See Volume initialization.

Integer. A data type that represents whole numbers-negative, zero, or positive. In DeL,
an integer is represented as a 32-bit (longword) quantity, allowing the integer to range
from -2,147,483,648 to +2,147,483,647.

Interactive process. A VMS process created to perform work for an interactive user
logged in at a terminal. See also Batch process, Network process.

Interrupt. A break in execution caused by a system event, which requires immediate
attention when it occurs. If a program is executing when an interrupt takes place,
program execution must be suspended so that the interrupt can be handled as soon as
possible. The only interrupt handled by a DeL procedure is the one caused by the
<CTRL/y> key.

Invoke. To begin the execution of a command procedure or other sequence of command.

Iteration. A single execution of a loop body; one cycle through a loop.

Iterative translation. The process by which a logical name is successively translated until
a final equivalence string is produced.

Job. A detached process and all its subprocesses. The term job is also used to refer to a
batch job.

Job controller. The VMS program that maintains the batch and print queues.

Job logical name table. A logical name table associated with ajob. All the processes in
the job can access the table.

Job queue. A batch or print queue maintained by the job controller. Jobs are submitted
to a batch queue with the SUBMIT command. Files are subfuitted to a print queue with
the PRINT command.

Glossary 357

358 r:;/n<:<:nrv _._--_. /

Key field. In an indexed file record, a field whose values are to be indexed for fast
lookup. Every indexed file has a primary key field and may have additional alternate
keys. Key fields are usually referred to simply as keys.

Keyword. A character string chosen from among a fixed set of valid strings, used to
represent a particular function or option. Keywords are used in some lexical functions
to define the exact action taken by the function.

Label. A name given to a command in a DCL procedure. The name allows the GOTO
command to alter the sequential flow of execution by specifying the named command
as the next one to execute.

Length. See String length.

Lexical function. A built-in DCL subroutine that can be used as an operand in an ex­
pression. Lexical functions compute all kinds of values, from the current time to the
name of the local DECnet node.

List. A sequence of items separated by some delimiter character, often a comma (,).

Literal. A sequence of characters that represents a constant data value, such as 0, -42,
or "my name". A literal specifies a constant value, while a variable stands for a
changing value.

Loading. See Volume loading.

Log file. A file created by a batch job to contain the output of the job. Because there is
no terminal on which to display results, the results are sent to the log file.

Logical name. A named entity that stands for all or part of a file specification or other
value. Logical names are maintained in logical name tables.

Logical name table. A table of logical names and their values. Each process has its own
logical name table. There are also logical name tables available to more than one
process.

Logical name table directory. A system data structure that specifies a set of logical name
tables. There is one directory for each process and one for the system as a whole.

Logical name translation. The process by which a logical name is replaced with its equiv­
alence string.

Login directory. The directory established as the working directory when a user first logs
in. The login directory is usually the root of all the user's directories.

Longword. The VAX term for a collection of 32 bits. A longword is the amount of
memory occupied by a standard VAX integer.

Loop. A sequence of commands that is executed repeatedly until some termination con­
dition occurs. The sequence of commands is called the loop body. See also Infinite
loop.

Loop body. The sequence of commands that is repeatedly executed in a loop.

Main procedure. The command procedure in a DCL application where execution begins
when the application is invoked. The main procedure is the first procedure to be
executed; it may invoke other subprocedures in tum.

Master file directory. The top-level directory on a disk volume. All system and user
directories are accessed through the master file directory.

Member number. The portion of a DIC that identifies a particular member within a user
group. See also Group number.

Message file. A special kind of image file, which contains the codes and text for VMS
messages.

Metalinguistic symbol. A symbolic name that stands for some information to be in­
cluded in a command or other instruction to a computer. For example, in DELETE
file, the wordfile is a metalinguistic symbol standing for any valid file specification.

Mounting. See Volume mounting.

Network process. A process created by VMS to perform a task for a remote network
node. See also Batch process, Interactive process.

Null device. A nonphysical device that serves as a "black hole" for data. All output to
the null device is discarded. An attempt to read from the null device results in an
immediate end-of-file condition. The null device on VMS is named NL : .

Null string. A character string composed of no characters. It has a length of zero.

Null value. A special value stored in an alternate key field of an indexed file. The value
specifies that the field is empty and should not be indexed.

Open a file. To identify and prepare a specific file for input/output operations. A file
must be opened before it can be read or written.

Open for append. To open a sequential file so that new records can be added to the end
of the file.

Operand. A literal, symbol, or other data value used in an expression.

Operator. A character or character sequence that specifies a particular kind of data ma­
nipulation in an expression (e.g., + for addition).

Operator precedence. A number that determines the order in which operators are applied
to operands. An operator with a higher precedence is evaluated before one with a
lower precedence.

Optional argument. A lexical function argument that may be included in the function
call, but need not be. If an optional argument is omitted, the function provides a
common default value.

Optional parameter. A command or procedure parameter that may be included in the
command line but need not be. If an optional parameter is omitted, a common default
is provided.

Glossary 359

360 Glossary

Owner UIC. The user identification code (UIC) of the person who owns a particular
object such as a file. The owner UIC is used to determine whether a particular user
has access to the object.

PO space. The region of process memory in which VMS utilities and application pro­
grams are executed.

PI space. The region of process memory in which the DCL program is executed.

Parameter. See Command parameter, Optional parameter, Procedure parameter, Product
parameter, Required parameter.

Parent process. A process that owns one or more subprocesses, which are called the child
processes.

Parsing a file spec. The process through which a partial file spec entered by the user is
transformed into a complete file spec with all elements filled in. A file spec must be
parsed, either explicitly by a program or implicitly by VMS, before it can be used to
access files.

Pattern. A character string that acts as a template or example for some kind of matching
operation. For example, the SEARCH command requires one or more patterns to tell
it which records are to be matched.

Personal command. A symbol set to a particular combination of DCL command verb,
parameters, and qualifiers. When used as the initial symbol in a command, DCL
performs personal command substitution to replace the symbol with its value.

Personal command substitution. An implicit form of substitution in which DCL auto­
matically replaces the initial symbol in a command with its value.

PID. See Process identifier.

Precedence. See Operator precedence.

Primary key. The main key in an indexed file record. Every indexed file has a primary
key.

Printable character. A character that can be displayed on a terminal or printed on a
printer. Each printable character has a glyph, which represents it visually. Contrast
with Control character.

Procedure. See DCL command procedure, Main procedure.

Procedure call unwind. The mechanism by which a subprocedure unwinds all active
procedure calls so that the main procedure is terminated. During the unwind, the
cleanup code of all active procedures is executed.

Procedure cleanup. The procedure termination code executed to close open files, delete
temporary files, or othewise restore the DCL environment to its normal state.

Procedure exit. The termination of a procedure, which occurs when there are no more
commands to execute or when an EXIT command is encountered.

Procedure level. A level at which DCL reads and executes commands from a procedure.
The procedure invoked at prompt level runs at procedure level 1. A subprocedure
invoked by that procedure runs at procedure level 2, and so on.

Procedure parameter. A value received by a procedure, used to control the procedure or
provide data for it to operate upon. A DCL subprocedure or CALL subroutine can
receive up to eight parameters.

Process. The VMS environment in which programs are run for users. See also Batch
process, Detached process, Interactive process, Network process.

Process identifier. An integer that uniquely identifies a process on a single VAX or a
VAXcluster. A process identifier is often called a PID.

Process mode. A keyword identifying the type of a process: interactive, batch, network,
or subprocess.

Process-permanent file. A file opened by DCL, which remains open until it is explicitly
closed. Two well-known examples are SYS$INPUT and SYS$OUTPUT.

Process privilege. A privilege that a particular process has enabled. A process can only
enable privileges listed in the user's authorized privileges.

Product parameter. An item of information required by a software product for its normal
operation. Product parameters are often specified with logical names.

Prompt level. The level at which DCL accepts commands from the terminal by issuing
a prompt and waiting for user input.

Protection mask. The 16 indicators that determine which of the four access categories
(system, owner, group, world) are allowed which types of access to a file (read, write,
execute, delete).

Qualifier. See Command qualifier.

Record. A group of related data fields, which a program treats as a unit. A file is com­
posed of a collection of records: individual records are read from and written to a file.
This term is often used interchangeably with Structure. See also Fixed-length record,
Variable-length record.

Record locking. The mechanism by which RMS implements file sharing. In simple
terms, a record is locked when it is read and remains locked until it is updated or
until another record is read.

Record Management System (RMS). The subsystem of VMS that handles data files,
both sequential and indexed.

Record structure. The format of the records in a file; the layout of the fields in the record.

Required parameter. A command or procedure parameter that must be specified when
the command is entered.

Restartable batch job. A batch job that can be restarted if the system fails during its
execution. A restarted job can determine that it was in fact restarted and change
its behavior accordingly.

Resultant file spec. The expanded file spec returned by the F$PARSE lexical function.

Glossary 36 7

362 Glossary

Return point. The command in a procedure at which execution continues after a sub­
routine is invoked and returns. When a subroutine is invoked, DCL remembers the
position of the next command in the procedure, the return point. When the subroutine
completes, DCL continues execution at the return point.

Return value. The data item that is the result of a lexical function.

Rights identifier. A name identifying a particular user, category of user, or application.
Rights identifiers are associated with users and are needed to determine whether a
user has access to a system object, such as a file or application.

Root directory. A directory whose fundamental purpose is to act as the parent for a
related set of subdirectories and the files contained in them.

Run. See Execute.

Scheduler. The VMS facility that periodically selects a process to execute on the VAX.
The scheduler guarantees that all processes get a chance to run.

Search list. A logical name that has more than one equivalence string. The strings spec­
ify directories to be searched, in order, for specified files.

Search operation. A file operation in which a parsed file spec is used to locate one or
more files. The search succeeds if at least one file matches the file spec; it fails
otherwise.

Sequential execution. The default method of command procedure execution, in which
DCL executes commands sequentially from beginning to end. Sequential execution
can be altered with fiow-of-control commands.

Sequential file. A file composed of a sequence of individual records. The records can
only be written or read in sequential order.

Signal an error. The means by which a program or procedure notifies the user that an
error has occurred. A signaled error often results in a message being displayed at the
terminal.

Statement. A command or instruction in a programming language. In DCL program­
ming, "statement" is often used in place of the more common "command."

Status code. The means by which VMS returns an indication of the success or failure of
a subroutine, program, or entire application.

Stream ID. An integer that identifies a file search operation performed by the F$SEARCH
lexical function. Multiple stream IDs are needed if more than one search operation
takes place simultaneously.

String. See Character string.

String index. The number assigned to each character in a string. The first character is
index 0, the second 1, and so forth. The string index allows a character string to be
treated as an array of characters.

String length. The number of characters in a character string.

Structure. A data aggregate that consists of multiple fields organized into one collective
data item. The entire structure can be manipulated as one data item, and the fields
can be accessed individually. The fields need not all be of the same data type.

Subdirectory. A file directory subordinate to another directory. A subdirectory is an
ordinary directory, but the prefix "sub" clarifies its relationship to the parent directory.

Subprocedure. A command procedure invoked by another procedure as a subroutine.

Subprocess. A process created and owned by another VMS process. The SPAWN com­
mand can be used to create a subprocess from DeL.

Subroutine. A portion of a program that stands by itself and can be called by other parts
of the program. In DeL, there are three kinds of subroutines: subprocedures invoked
with the at-sign (@) command, CALL subroutines, and GOSUB subroutines.

Subscript (array). See Array index.

Substitution. The alteration of a DeL command by replacing a symbol or lexical func­
tion with its value. See also Ampersand substitution, Apostrophe substitution, Per­
sonal command substitution.

Substring. A portion of an existing character string. For example, 1100 BA II is a substring
of IIFOO BARil.

Symbol. A named entity used as a variable in a DeL procedure. A symbol is created
and assigned a value with an assignment command.

Symbol level. The command level at which a symbol is created. The levels are global
level, DeL prompt level, procedure levell, procedure level 2, and so on.

Symbol name. The sequence of characters that names a DeL symbol.

Symbol table. The data structure in which DeL stores symbols and their values. The
overall symbol table is organized into levels, each with its own symbols.

Symbol value. The integer or character string value of a symbol.

Symbolic array. An array whose data items are identified by a character string index (as
opposed to a numeric index).

System group. A user group with system privilege. System groups are usually the groups
with numbers 0-10 (octal, since UIes are specified in octal).

Temporary command level. The command level created by DeL's default interrupt han­
dler when <CTRLly> is pressed during execution of a command procedure.

Temporary file. A file created for the purpose of storing temporary information for a rel­
atively short time. A program that creates a temporary file is responsible for deleting
the file before it exits.

Terminal characteristics. A set of val ues that determines the appearance and behavior of
a terminal. These values can be displayed with the SHOW TERMINAL command and
altered with the SET TERMINAL command.

Text file. A sequential file whose records contain arbitrary text. Most of the time such
files have variable-length records with the carriage return carriage-control attribute.

Glossary 363

364 Glossary

Time. A general VMS term used to refer to a date, a time, or some combination of the
two. See also Absolute time, Combination time, Comparison time, and Delta time.

Translation. See Iterative translation, Logical name translation.

Unary operator. An operator that requires one operand (its arity is 1).

Update a record. To perform a file operation that modifies the contents of an existing
record.

User address. A string that identifies a user on a VAX system. The user address consists
of a node name and a user name.

User identification code (UIC). A number that identifies the owner of a VMS object.
The UIC is divided into two fields, the group number and the member number.

User name. The symbolic name assigned to a VMS user's account. User names are
typically last names, initials, or nicknames.

Variable-length record. A record in a sequential or indexed file whose design allows each
record in the file to be of a different size. The text files on VMS contain variable­
length records.

Variable with fixed control (VFC). A type of record format in which each record has a
variable length and includes a fixed-size control area at the beginning. This control
area might contain a line number or some other control information common to all
records. The DCL OPEN command creates VFC records.

Verification. A method of debugging a command procedure by tracing its commands as
they are executed by DCL. Verification is enabled with the SET VERIFY command.

Virtual device. A facility provided by VMS software, which acts like a hardware device
and is therefore used by a program as if it were a hardware device. Examples are
mailboxes, virtual terminals, and VAXstation windows.

Volume. The magnetic medium used on a disk or tape drive to store permanent informa­
tion.

Volume initialization. The act of formatting a disk or magnetic tape volume so that it
can accept and store data.

Volume label. The character string that names a particular disk or tape volume.

Volume loading. The action taken when a human being places a data volume on a disk
or tape drive. Once the volume is loaded, it can be mounted to make it available to
the system.

Volume mounting. The process by which VMS recognizes a data volume loaded on a
disk or tape drive. Data transfers cannot be performed until the volume is mounted.

Whitespace. A sequence of spaces or tabs in a command or character string.

Wildcard spec. A file spec containing one or more of the wildcard matching characters
(asterisk, percent sign, or ellipses).

Working directory. The directory in which a user is currently working, as established
with the SET DEFAULT command. Files are located in the working directory if no
other device and directory is specified.

Glossary 365

Index

(special characters are indexed at the end)

abbreviations
caution about using in command proce­

dures,20
DCL verbs

allowed abbreviation of, 13
rules for, II

keywords, building so that they may be
abbreviated, 201

personal commands as, 71
terminal input, using F$LOCATE to allow,

130
absolute time

See also combination time; delta time;
time.

glossary entry, 352
represents specific points in time, 203

access
See also captive accounts; protection;

security.
algorithm, used for UIC- and ACL-based

protection checking, 239
blocking access by route of entry, 232
category

based on relation of owner to user,
226

glossary entry, 352
control entry (ACE)

glossary entry, 352

identifier, format and description of
components, 232

setting working directory protection
using an ACE, 234

use in file protection, 230
control list (ACL)

ACE assigned creator when not
owner of file, 238

compared with user identification
codes (UIC),225

default ACL for new file, steps
determining, 238

default, for directories, 237
default, for files, 237
default identifier entry for directories,

233
file protection use of ACL, 225
format of identifier entries, de­

scription of components,
232

glossary entry, 352
kinds of rights identifiers, 231
matching process when a file has an

ACL,23I
modifying ACLs with editor or SET,

234
NOPROPAGATE used to control default

ACL,238
potential outcomes of matching

process, 231
SET ACL command qualifiers, 235

367

368 Index

access (continued)
control list (ACL) (continued)

use in file protection, 230
warning, order of entries is critical,

233
DCL, controlling with captive accounts,

122
flags for each access category, 227
modes

defining logical names in different
modes, 168

for VAX process, glossary entry, 352
logical names, VMS use of each

mode, 168
privileges assigned to processes, 167

privilege scheme description, 17
/READ access when opening a file, 184
requirements for directory operations

(table), 227
requirements for file operations (table),

228
rights identifier

glossary entry, 362
maintained with AUTHORIZE, 231

accessing
files in personal directories before those

in public directories, using
search lists, 173

ACE
See access, control entry.

ACL
See access, control list.

addition (+)
integer operator, arity, result type, and

value (table), 32
address, user

glossary entry, 364
identifies location and name of user, 171

ALLOCATE
command to request exclusive use of

device, 247
allocating

devices, 247
altering

See modifying.
alternate key

in indexed file, 210
glossary entry, 352

ampersand substitution
See also apostrophe substitution; substi­

tution.
description, 73
explicit substitution of text in DCL

command, glossary entry, 352
used in concert with apostrophe substitu­

tion, 73
ANALYZE/RMS_FILE

file utility, one line description, 159
and (.AND.)

boolean operator, arity, result type, and
value (table), 34

integer operator, arity, result type, and
value (table), 32

annotation
See also documentation.
separator, use of $ alone on line in DCL

command procedures, 19
use of comments to clarify complex

procedures, 19
answer, default

See default answer.
apostrophe substitution

See also ampersand substitution; substi­
tution.

creating DCL arrays, techniques and
problems, 285

explicit substitution of symbol or lexical
function values, 66

explicit substitution of text in DCL
command, glossary entry, 352

interpretation when input to INQUIRE,
124

trailing, when required in apostrophe
substitution, 67

APPEND
file utility, one line description, 159
protection mask setting, 229

appending
See also creating; modifying.
files, OPEN/APPEND allows records to be

added to file, 189
open for append, glossary entry, 359

applications
appropriate for DCL, 3
controlling access with captive accounts,

122
passing commands to applications from

DCL,134
sample, description, and listing, See

MODL.
structure, overview of application design,

111

archiving
files, possible application for DeL, 5

arguments
See also parameters.
allowing for prompts or batch, 131
input for an operation, glossary entry, 352
lexical function

characteristics, 37
in format of lexical functions, 36

optional, glossary entry, 359
arithmetic

techniques built up from rudimentary
operations, 196

arity
defined as number of operands required

by an operator, 31
glossary entry, 352

arrays
See also lists.
glossary entry, 352
handling

procedure parameters as an eight
element array, 287

substitution of array element names,
286

index, glossary entry, 353
integer, arrays with integer indexes, 284
simulation

in DeL, 284
double substitution used for simulat­

ing arrays, 73
symbolic

array, glossary entry, 363
creating, 288
problems connected with symbolic

arrays, 289
warning, arrays may require symbol table

expansion, 290
ASCII (American Standard Code for

Information Interchange)

ASK

character set
appendix with table, 293
glossary entry, 353
used by VAX architecture, 24

output, formatting, 78

features of complex input routine, 132
listing in subroutine library, 298
personal command created using READ,

125
ASSIGN

logical name definition, parameters
reversed from DEFINE, 165

assignment
See also symbols; values.
bit-fields in character strings, 44
command

description, 25
expression use by, 26
glossary entry, 353
symbols are assigned a value with,

22
description of use, 25
substring, 42
summary of assignment commands

(table),47
attributes

complete list returned by DIRECTORY
/FULL, 158

file
attributes, glossary entry, 356
descriptive information (table), 157

AUTHORIZE
See also access; protection; security.
access control rights identifiers defined

with AUTHORIZE, 231
command, accessing with DeL, 4

authorized privileges
description, 17
glossary entry, 353

background execution
SPAWN /NOWAIT allows simultaneous

execution of processes, 263
BACKUP

file utility, one line description, 159
message file handling, 102
protection mask setting, 229

/BACKUP
file selection qualifier, one line descrip­

tion, 160
backups

example of use for DeL, 4
base

numeric, use of octal, decimal, and
hexadecimal, 23

batch
See also interactive.
breaking batch procedures into steps for

possible restart, 278
controlling restart entry point, 276
environment described, 270
glossary entry, 361
jobs

application for DeL, 3
concepts and facilities, 270

Index 369

370 Index

batch (continued)
jobs (continued)

controller responsible for job queue
maintenance, 270

duplicate jobs, preventing occurrence
of duplicate jobs, 282

glossary entry, 353
invoking with SUBMIT command,

271
periodic batch jobs resubmit them­

selves on schedule, 279
queues for running batch jobs, 270
restart able batch jobs, restarting after

STOP IREQUEUE, 276
status report can be tailored and

mailed to user, 274
LOG IN. COM procedure invoked, 271
process

description, 254
glossary entry, 353
versus interactive, 271

BATCH system identifier
description, 231

BATCH$RESTART
controlling restart entry point, 277

IBEFORE
example of use of DCL command

qualifiers, 13
file selection qualifier, one line descrip­

tion,160
beginning DeL command procedures

using @ command, 18
detailed description, 58

binary operators

bit

See also unary operators.
notation, description in relation to

hexadecimal, 291
operators

description and examples, 32
glossary entry, 353

glossary entry, 353
numbering of bits in character string, 44

bit bucket
See null device.

bit-field assignment
altering sequence of bits in value of

symbol, 44
control characters can be created in DCL

command, 46

bitwise
and (. AND.), arity, result type, and value

(table), 34
inclusive or (. OR.), arity, result type, and

value (table), 34
not (. NOT.), arity, result type, and value

(table), 34
boolean

description and use, 25
FALSE, even integers and certain charac­

ter strings are used to represent
FALSE, 25

field type, definition symbol and charac­
teristics, 207

fields in record structures, created with
bit-field assignment, 208

glossary entry, 353
operators, table of operator arity, result

type, and value, 34
responses, limiting to yes or no, 130
TRUE, odd integers and certain character

strings are used to represent
TRUE, 25

Buffett, Jimmy
quotation, xvi, 411

building
software systems from components, use

for DCL, 6
IBY_OWNER

file selection qualifier, one line descrip­
tion,160

BYPASS
privilege that affects protection-checking

scheme, 228

calendar
possible use for DCL, 4

CALL
compared with

@ command, 62
GOSUB command, 62

description and use, 62
new to VMS Version 5, 62
summarized in table of subroutine

facilities, 64
calling

See also subroutines.
DCL applications, methodology for, 112
command procedures, using @ command,

18
command procedures, using @ command,

detailed description, 58
subroutines, 119

canceling
a procedure from temporary command

level,105
captive account

See also access; protection; security.
controlling access to applications with

captive accounts, 122
glossary entry, 353

card reader
specified as device name, 144

carriage return carriage-control
glossary entry, 353
standard, but not guaranteed, record

format, 188
case

characters must be same case before
comparison, 127

DCL converts all symbols to uppercase,
22

statement

catalog

glossary entry, 353
how to emulate case statement in

DCL,202

directory as a catalog of files, 145
cautions

See warnings.
"changes" attribute

See also files, indexed.
required if alternate key fields are to be

updated, 220
changing

See modifying.
characteristics

terminal, description, 246
terminal, glossary entry, 363

characters
ASCII character set, appendix, 294
control

character, glossary entry, 354
component of DCL character set, 24
creating control characters in DCL

command,46
not representable in string literals, 24

glossary entry, 353
multinational character set, appendix,

293
printable

component of DCL character set, 24
glossary entry, 360

set of
ASCII character set used by VAX

architecture, 24

defined as complete collection
of characters and code
numbers, 24

special, sending special characters to
terminal,76

strings
See strings, character.

checking
See also cleanup; debugging; errors;

status, code.
existence of file with F$SEARCH, 152
file specification validity with F$P ARSE,

153
status code

methods for, 92
with ON command, 95

terminal input, character strings, 129
type of symbol values with F$TYPE, 39
validity of integer in input string, 128

child
See also parent; process.
directory, parsing requires special

treatment, 150
process, glossary entry, 353

choosing
DCL, reasons to choose DCL as program­

ming language, 2
cleanup

See also checking; debugging; errors;
status.

closing open files as part of cleanup code,
186

code
example of use in main procedure,

115
use in subprocedures, example

structure, 117
keyword checking in cleanup code, 201
procedure

example of use of EXIT, 62
glossary entry, 360

terminating procedures after errors,
techniques for, 97

CLOSE

necessary for closing open files, 184
open files must be explicitly closed, 186

closing
See also opening.
files, as part of cleanup code, 186

code
See DCL, code; status, code.

.COM

type given file containing DCL command
procedure, 18

Index 377

372 Index

combination time
See also absolute time; delta time; time.
format using absolute and delta times,

204
VMS format, glossary entry, 353

command
See also procedures, command.
DeL command, glossary entry, 355
description of format and use for DeL

commands, 11
execution, controlling in subprocesses,

262
file location of error messages for status

code interpretation, 103
flow-of-control, glossary entry, 356
interpreter, guided by information

concerning DeL environment,
82

language interpreter, glossary entry, 354
level

temporary, canceling a procedure
from, 105

temporary following interrupt, 105
modifying, using the substitution facili­

ties for, 66
parameter, glossary entry, 354
personal

application invocation use of, 112
command substitution, glossary

entry, 360
glossary entry, 360

procedures
See procedures, command.

protection mask, commands that can set
the protection mask, 229

qualifier, glossary entry, 354
sequence, stored in text file as command

procedure, 18
syntax, glossary entry, 354
temporary command level, glossary entry,

363
verbs

description and use in DeL, 11
glossary entry, 354

comments
See also documentation.
description and use in DeL command

procedure, 19
glossary entry, 354
move to end of procedure to avoid slow

down, 296

comparison
See also boolean.
time

format to represent times to be
compared, 203

VMS format, glossary entry, 354
times using DeL commands, 203

computer-supported cooperative work
DeL as a tool for, 5

concatenation (+)
string operator, arity, result type, and

value (table), 33
concealing

root directory logical name values, 170
condition

glossary entry, 354
IF command test, 52

conditional execution
IF command as control structure for, 52

/CoNFIRM
example of use of DeL command

qualifiers, 12
constant

See also symbols.
literal, glossary entry, 358

context symbol
glossary entry, 354
use with F$PID lexical function, 257

continuation lines
See also documentation.
use of hyphen to allow multiple lines in

DeL command, 13
CONTINUE

returning to program after interrupt, 105
control

characters
creating in DeL command with

bit-field assignment, 46
glossary entry, 354
not representable in string literals, 24

flow, See flow-of-control; control,
structures.

keys
<CTRL/y>, program interrupt

handling, 104
sequences

glossary entry, 354
terminals, sending special characters

to terminal, 76
uses for, 77

string, to specify format for F$F AD,
glossary entry, 354

structures
See also flow-of-control.

control (continued)
structures (continued)

concepts and commands, 49
conditional execution, IF, 52
iteration, 56
sequential execution, 49
unconditional goto, GOTO, 50

CONTROL access
description, 227

controller
job, supports batch processing facility,

270
job, glossary entry, 357

conventions
typographic, 7

conversion
data, using F$STRING and F$INTEGER

lexical functions, 39
noninteger strings converted to integers

become zero, 36
rules for matching operators and operand

types, 35
time formats converted using F$CVTIME,

205
CONVERT

file utility, one line description, 159
COpy

file utility, one line description, 159
protection mask setting, 229

CREATE
file utility, one line description, 159
protection mask setting, 229
use in creating indexed file using FDL

file, 216
use to build normal text file, 189

CREATE/DIRECTORY
file utility, one line description, 159

/CREATED
file selection qualifier, one line descrip­

tion,160
creating

See also appending; modifying.
arrays

with integer indexes, 284
with symbolic indexes, 288

boolean fields in record structures, created
with bit-field assignment, 208

control characters in DeL command with
bit-field assignment, 46

date fields in record structures, created
with substring assignment, 208

files
impact of search lists on, 173

using CREATE, 189
using OPEN, 187
using WRITE, 188

global symbols, prevented by NOGL08AL
keyword, 84

indexed files, 216
integer fields in record structures, created

with bit-field assignment, 208
lists, 198
procedure status codes, 93
record structures by storing values in

character string, 208
strings

with multiple characters using
bit-field assignment, 45

with one character using bit-field
assignment, 45

subprocesses, 260
symbols

global, 29
procedure level, 27
prompt level, 27
using assignment command for, 22,

26
text fields in record structures, created

with substring assignment, 208
CSI (control sequence initiator)

eight-bit terminal use of hexadecimal 98

as, 76
<CTRL/c>

procedure interrupt handling, 104
<CTRL/y>

program interrupt handling, 104
use SPAWN to execute commands without

terminating interrupted process,
262

<CTRL/z>
end-of-file when read from terminal, 126

current directory
See also directories.
defined as default file directory, 88

customer
See also status, code.
facility number, required by procedure

status codes, 93

Index 373

374 Index

data
See also symbols.
entry, interactive, obtaining, 123
glossary entry, 354
image

data, input to applications called
from DeL, 134

input data for a program, glossary
entry, 357

internal and external representation of
data, 23

item, glossary entry, 354
manipulation techniques in DCL, 196
structuring, nonexistent in DeL, 2
types

associated with value not symbol, 26
boolean, representation and use, 25
character, representation and use, 23
description, 22
glossary entry, 355
integer, representation and use, 23

volumes, mc protection available, 225
[.DATA]

example of subdirectory under working
directory, 146

date
See also time.
field type, definition symbol and charac­

teristics, 207
fields in record structures, created with

substring assignment, 208
manipulating using DeL commands, 202

DCL (Digital Command Language)
See also command.
application domain, 3
caution about viruses, 6
code

glossary entry, 355
name for commands in DeL com­

mand procedure, 18
commands

format description, 11
glossary entry, 355
interpreter, description of program

that carries out instructions,
11

parameters, description and use, 12
procedure, glossary entry, 355
qualifiers, description and use, 12
syntax, description and use, 13

debugging
See debugging.

defined, 1
environment, glossary entry, 355

preventing escape to, 122
as a programming language, 2
prompt

character, dollar sign ($) as prompt,
11

glossary entry, 355
strong points, 2
uses in

complex file manipulation, 5
environmental extension, 3
software development, 5
system management, 4

weak points, 2
DEALLOCATE

command to release an allocated device,
249

deallocating
devices, 249

DEASSIGN
logical name deletion command, 176

debugging
See also checking; cleanup; errors; status,

code.
capturing

output with /LOG, 142
procedure output with /OUTPUT, 141

concepts and techniques, 136
DCL advantages and disadvantages

compared with conventional
languages, 136

enabling verification
from inside procedure, 137
from outside procedure, 137

! !! flag to help locate temporary
debugging commands, 138

permanent debug lines
activated with flag, 140
cost execution time, 141

SHOW, displaying values of symbols, 140
temporary debug lines marked with ! ! !,

140
tracing procedures using SET VERIFY, 83
verification, glossary entry, 364

decimal base (base 10)

representation and use, 23
decisions

See also control, structures.
flow-of-control commands discussed, 49
IF command discussed, 52

DEC net
node, file specification component, full

description, 143
path specification for reaching nodes, 144
second log session created to record

debug output, 142
default

answer
for READ command, 126
glossary entry, 355

directory
component of DCL environment,

characteristics, 88
do not change in a procedure, 88
glossary entry, 355
importance to VMS user, 15

error handler, See errors.
interrupt handler described, 105
protection ACE, use in setting protection

of new files in a directory, 234
question responses should not contain

dangerous material, 126
value

glossary entry, 355
lexical functions with optional

arguments provide a default
value, 37

working directory, glossary entry, 365
DEFINE

defining logical names with, 165
logical name

creation and value assignment, 15
definition with, 162

redirecting
program input using, 134
screen output to a file, 80

temporary definition of a symbol using
/USER_MODE,80

defining
See also undefining.
logical names

in different access modes (table), 168
with DEFINE command, 162

symbols, with assignment command, 26
DELETE

example of DCL command parameters
and qualifiers, 12

file utility, one line description, 159
DELETE access

description, 227

deleting
duplicates from lists with DCL com­

mands,198
files

temporary, 191
indexed file records, avoid use of generic

matching, 221
logical names using DEASSIGN command,

176
records in an indexed file, 220
symbols using DELETE/SYMBOL com­

mand,47
temporary files, procedure for, 60

delta time
See also absolute time; combination time;

time.
format for showing difference between

two times, 204
glossary entry, 355

detached process
See also process.
description, 254
glossary entry, 355

devices
ALLOCATE command to request exclusive

use, 247
allocating specific devices with /GENERIC

qualifier, 248
characteristics and operations, 241
DEALLOCATE, command to release an

allocated device, 249
device class, integer useful for 'verifica­

tion,243
existence checking with EXISTS keyword

to F$GETDVI, 242
file specification component

full description, 144
overview, 14

glossary entry, 355
information available with F$GETDVI,

242
list of potential devices, 241

logical name use with, 162
messages about allocation using /LOG,

248
MOUNT qualifiers (table), 251
mount, steps performed in mounting a

volume, 251
names

characteristics, 241
format has changed with advent of

new technology, 242
null device, glossary entry, 359

Index 375

376 Index

devices (continued)
specifying with logical names, advan­

tages, 144
system, listing with SHOW DEVICE, 245
terminal server is single device that

appears as many, 242
VIC protection available, 225
virtual

description and examples, 241
glossary entry, 364

volume initialization, description of
parameters and use, 249

DIALUP system identifier
description, 231

difference
integer subtraction operator, arity, result

type, and value (table), 32
time, how to calculate and represent

differences between times, 204
DIFFERENCE

file utility, one line description, 159
using $SEVERITY to analyze its status

code,96
Digital Command Language (DCL)

See DCL.
directories

See also files.
access protection categories, 227
accessing public and private directories

with search lists, 173
as catalog of files, 145
child, parsing requires special treatment,

150
concepts

introduced, 14
and facilities, 143

default
do not change in a procedure, 88
glossary entry, 355
importance to VMS user, 15
protection, how to determine default

protection, 237
determining parent of arbitrary directory

difficult, 150
facility code use for naming compatibility,

112
file specification

component, full description, 145
component, overview, 14
manipulation involving rooted

directory difficult, 150
glossary entry, 355
home

glossary entry, 357

importance to VMS user, 15
<> is alternate symbol for demarcating

directory name, 146
logical name

descriptions of, 180
table directory, glossary entry, 358
use with, 162

login
glossary entry, 358
importance to VMS user, 15

master file directory, glossary entry, 359
operations, table of required access

categories, 227
parent, parsing requires special treatment,

150
protection, setting default protection

using an ACE, 234
root

defining with logical names, 170
glossary entry, 362

searching for files, 151
subdirectory, glossary entry, 363
system directory organization, overview,

177
VIC protection available, 225
wildcards for parts of directory name,

151
working directory, glossary entry, 365

DIRECTORY
command useful in search, 151
file utility, one line description, 159

DIRECTORY/FULL
file attributes display by, 158

DIRECTORY/PROTECTION
displaying values in protection mask, 229

disabling
automatic checking of status codes, 96
predefined personal commands inside of

procedures, 72
discarding output

device NL: used for, 145
from a SEARCH command, 195

disk
specified as device name, 144

DISPLAY
suggested personal command for writing

to screen, 76

displaying
See also output; terminal.
commands and data during program

execution, 137
default process protection mask, 238
logical name values, 166
output during procedure execution, 75
protection mask, 229
sequential files

record at a time is slow but allows
more control, 193

TYPE/PAGE displays text a screenful
at a time, 192

suppressing error message display on
terminal, 80

text, using TYPE command, 134
values of symbols for debugging pur­

poses, 140
distributed applications

using DeL with distributed applications,
5

distribution list
managed by sample application MODL,

304
glossary entry, 355

division
integer operator, arity, result type, and

value (table), 32
documentation

See also comments.
separator, use of $ alone on line in DeL

command procedures, 19
use of comments to clarify complex

procedures, 19
VMS documentation important for DeL

programmer, list of, 8
duplicate jobs

See also jobs.
preventing occurrence of duplicate jobs,

282

editing
terminal input, READ input string editing

with F$EDIT, 127
ELSE

use with IF for listing alternative
commands, 54

end-or-file
<CTRL/z> signal from terminal, 126
glossary entry, 356
handler can be provided for READ, 185
indexed files, signaled by key match

failure, 215

/END_OF_FILE
qualifier specifies end-of-file-handler for

READ, 185
END SUBROUTINE

use with CALL command, 63
environment

batch jobs, 270
DeL

concepts and facilities, 82
environment, glossary entry, 355

main procedure use in establishing DeL
environment, 113

process
commands to establish (table), 259
some information available only for

current process, 259
steps in establishing DeL environment

for a procedure, 115
subprocesses, list of inherited and

not-inherited environment
properties, 260

environmental extension
application for DeL, 3

.EQ.
integer operator, arity, result type, and

value (table), 32
.EQS.

example of use with . OR. , description of
precedence, 58

string operator, arity, result type, and
value (table), 33

equals (. EQ ., . EQS .)
integer operator, arity, result type, and

value (table), 32
string operator, arity, result type, and

value (table), 33
equivalence string

glossary entry, 356
value of logical name, 162

errors
See also checking; cleanup; debugging;

interrupts.
captive account handling of, 122
cleanup before termination of procedure,

97
creating procedure status codes, 93
default error handler

characteristics, 94
modifying, 95
problems, 94

disabling automatic checking with SET
NOON,96

handler, glossary entry, 356

Index 377

378 Index

errors (continued)
handling

concepts and facilities, 90
custom, example of use in main

procedure, 114
integrating with interrupt handling,

106
with cleanup code, example of use in

subprocedures, 117
without cleanup code, example of

use in subprocedures, 116
ignoring error codes using SET NOON, 100
nested procedures require unwinding to

handle errors, 98
SIGNAL

listing in subroutine library, 301
message and error handling subrou­

tine, characteristics and
use, 120

signal on error, glossary entry, 362
suppression of error message display on

terminal, 80
/ERROR

OPEN qualifier specifies handler for open
errors, 184

READ qualifier specifies handler for read
errors, 185, 214

ESC (escape character)
seven-bit terminal use with [, 76

escape sequence
glossary entry, 356
terminals, sending characters to older

terminals, 76
evaluate

See also evaluation.
glossary entry, 356

evaluation
See also substitution.
environments for automatic substitution

of expressions, 70
expressions, how processed by DeL, 31
precedence rules for expression evalua­

tion,33
modifying with parentheses, 34
table, 35

symbols, using apostrophe substitution
in, 66

/EXCLUDE
file selection qualifier, one line descrip­

tion, 160
.EXE

file type for executable file produced by
linker, 146

execute, execution
See also control, structure; ftow-of-

control; invoke; run.
glossary entry, 356
invoking procedures, 58
overview, 18
parallel processes, using SPAWN, 263
sequential, description, 49
sequential, glossary entry, 362

EXECUTE access
description, 227

executive
access mode in which a process may run,

167
existence

exit
symbols, checking using F$TYPE, 39

See also EXIT.
procedure, description, 61
procedure, glossary entry, 360
subroutine invoked with CALL, 62

EXIT
command to force termination of proce­

dure, 61
convention to use explicitly for ease of

understanding, 63
GOSUB requires use of EXIT to avoid

dropping into subroutine, 65
status code parameter for reporting

procedure outcome, 93
expiration date

setting using combination time, 204
/EXPIRED

file selection qualifier, one line descrip­
tion, 160

expressions
arbitrary, substituting the value of, 69
assignment command use of, 26
evaluation precedence rules, 33

modifying with parentheses, 34
table, 35

explicit substitution normally unneces-
sary with, 69

glossary entry, 356
using, 31
where legal, 69
WRITE command use of expressions, 76

extracting
fields from a structure, 209
list items, 199
substrings, using F$EXTRACT, 41

F$
used to begin name of lexical function,

36
F$CVSI

extracts fields from a structure, 209
F$CVTIME

converts between time formats, 203
F$CVUI

reason not used in this book, 209
F$EDIT

edits character strings, 127
trims trailing spaces from a line, 193

F$ELEMENT
extracts items from a list, 199
file specs, do not use to extract compo­

nents, 200
F$ENVIRONMENT

item description table, 256
obtains process environment information,

256
process message settings, 85
process verification settings, 139

F$EXTRACT
extracts fields from a structure, 209
extracts substring from a string, 41

F$FAO
directive description table, 78
formats strings with text and data, 78

F$FILE_ATTRIBUTES
item description table, 157
obtains file information, 157
obtains protection mask values, 230

F$GETDVI
item description table, 243
obtains device information, 242

F$GETJPI
item description table, 255
obtains process information, 254

F$GETSYI
obtains system information, 37

F$INTEGER
converts string to integer, 39
avoids operators with mixed operand

types, 36
substitutes value of arbitrary expression

in command, 69
F$LENGTH

returns length of character string, 40
validates length of input string, 129

F$LOCATE
searches string for pattern, 40
validates boolean input, 130

F$LOGICAL
replaced by F$TRNLNM in VMS Version

5,175
F$MESSAGE

looks up message for status code, 101
F$MODE

use F$GET JPI instead to obtain process
mode, 256

F$PARSE
checks validity of file specification, 153
parses and expands file specs, 148
preferred function to extract file spec

component, 200
F$PID

obtains process IDs of system processes,
257

privileges determine which other pro­
cesses will be located, 258

used to display CPU time of all users, 288
F$PROCESS

use F$GET JPI instead to obtain process
name, 256

F$SEARCH
searches for files that match a given spec,

152
F$SETPRV

enables or disables privileges, 86
F$STRING

converts integer to string, 39
avoids operators with mixed operand

types, 36
substitutes value of arbitrary expression

in command, 69
F$TIME

returns current absolute time, 203
F$TRNLNM

item description table, 176
replaces F$LDGICAL in VMS Version 5,

175
translates logical name, 174

F$TYPE
determines whether symbol exists, 39
returns type of symbol value, 39
validates integer in input string, 128

F$USER
use F$GETJPI instead to obtain VIC, 256

F$VERIFY
enables and disables procedure verifica­

tion, 137
work-arounds for inconsistent behavior,

139

Index 379

380 Index

facility
code, naming compatibility use of, 112
number, required by procedure status

codes,93
FALSE boolean value

even integers and certain strings used to
represent, 25

literal must be established with assign­
ment command, 25

FDL (File Definition Language)
editor, creating indexed files using FDL

editor, 216
use in creating indexed files, 216

field

file

See also records.
extracting fields from a structure, 209
glossary entry, 356
key, glossary entry, 358
structured records are formatted into

fields, 205
types, records, definition symbols, and

characteristics, 207

See also directories.
access

categories, based on relation of
owner to user, 226

protection categories, 227
/READ access requested when

opening a file, 184
appending, OPEN / APPEND allows WRITE

to add records to text file, 189
attributes

complete list displayed with
DIRECTORY /FULL, 158

file descriptive information (table),
157

glossary entry, 356
blocks, free paging, testing with IF

command,53
carriage return carriage-control attribute

set in normal text file, 188
changing file type with F$P ARSE, 151
checking

existence of file with F$SEARCH, 152
validity of file spec with F$P ARSE,

153
CLOSE necessary to close open files, 184
close open files in two places in a

procedure, 186
command

procedure, defined, 1
procedure given type COM, 18

concepts and facilities, 143

counting files of a given type using
F$SEARCH, 154

CREATE not WRITE builds normal text
file, 189

creating
impact of search lists on, 173
using CREATE, 189
using OPEN, 187
using WRITE, 188

default protection, steps to determine
default protection, 237

deleting temporary files, 191
directory, file specification component,

full description, 145
displaying sequential files

record at a time is slow but allows
more control, 193

TYPE/PAGE displays text a screenful
at a time, 192

expiration date, setting using combination
time, 204

F$SEARCH, existence checking with, 152
facility code use for naming compatibility,

112
glossary entry, 356
indexed

alternate key, glossary entry, 352
attributes of primary and alternate

keys, 211
creating alternate key fields using

"changes" attribute for later
updating, 220

creating indexed files using FDL,
216

file operations, 210
file prologue contains information

describing keys, 211
file prologue, glossary entry, 356
generic match using /MATCH quali­

fier, 215
key fields indexed for fast lookup,

210
key lookup by exact match, 214
key iookup, /MATCH quaiifier, 215
limitation on number of alternate

keys, 210
opening an existing indexed file for

reading, 213
opening for writing with /READ

/WRITE qualifier, 219
operations, concepts and operations,

210
reading duplicate records from a file,

214

file (continued)

indexed (continued)

reading randomly by key, 213
reading sequentially, 213
updating, 220
updating a file using WRITE com­

mand,220
warning to avoid generic matching

when deleting records, 221
writing, 219

information, file attributes (table), 157
locked records, ways to unlock records,

223
log, glossary entry, 358
manipulation

complex, using DCL for complex
file manipulation, 5

DCL usefulness for, xiii
master file directory

glossary entry, 359
root of entire directory tree, 145

message, glossary entry, 359
multiple

copies of same file distinguished by
version number, 147

searches requires multiple contexts,
155

opening
a file, glossary entry, 359
existing files, 184
for append, glossary entry, 359

operations
for manipulating files, summary, 158
table of required access categories,

228
output of WRITE may not be normal text

file, 188
overview, 14
owner identification UIC described, 16
parsing file spec

glossary entry, 360
without existence check, 149

permanent files, differences from tempo­
rary files, 190

process-permanent
file for video output, 75
file, glossary entry, 361
standard files and uses, 265

prologue, glossary entry, 356
protection

concepts and facilities, 225
displaying values in protection mask,

229

glossary entry, 356
mask, access flags for each access

category, 227
obtaining values of mask in a

procedure, 230
setting flags in protection mask, 229

reading
existing file, 184
sequential, 183

record format
free-format text versus record

structures, 183
redirecting output from screen to a file,

79
resultant file spec, glossary entry, 361
searching file contents, 194
sequential

concepts and operations, 183
file, glossary entry, 362
file operations, 183
files with structured records, 206

sharing
files over multiple processes, 221
glossary entry, 356

specifications
annotated list of components of DCL

file specification, 14
complete parsing algorithm, 165
full description of each component,

143
glossary entry, 356
logical names in, 163
parsing and completing missing

components, 148
search list for parsing, 180
warning, do not use F$ELEMENT to

extract components, 200
stream ID useful in identifying context of

each search, 155
structured records, introduction and

description, 205
superceding in personal over public

directories using search lists,
173

SYS$COMMAND, process-permanent file
for input from procedure or
keyboard, 123

SYS$INPUT, process-permanent file
for input from procedure or
keyboard, 123

temporary files
deleting temporary files, 191
description and differences from

permanent files, 190

Index 381

382 Index

file (continued)
temporary files (continued)

glossary entry, 363
text, glossary entry, 363
transfer over network at night is good use

for DCL, 5
type, changing, 150
VIC protection available, 225
utilities (table), 158
variable-length versus fixed-length

records, 184
VMS utilities, table of names and

purpose, 159
warning, protection mask does not

include all information about
file protection, 230

writing
sequential, 183
to, 187

File Definition Language (FDL)
See FDL.

fixed-length records

flag

See also records.
glossary entry, 356
uncharacteristic of text files, 184

See also checking; cleanup; debugging;
errors.

global debug flag, allows permanent
debug lines, 140

floating-point numbers
nonexistent in DCL, 2, 197

f1ow-of-control
See also control, structures.
commands, glossary entry, 356
concepts and commands, 49

FOR loops
See also GoTo.
DCL is missing FOR loops, 3

.FoR
file type for FORTRAN source file, 146

formats
DCL command format described, II
disks, standard is Files-II Structure Level

2,249
tapes, standard is Level 3 ANSI, 249

formatting
input prompt lines, using READ and

F$FAo, 125
output to terminal using F$FAo directives

(table),78
formfeed

bit-field assignment to create, 45

French
used in quotations, xvi, 411

functions, lexical
See lexical functions.

.GE.
integer operator, arity, result type, and

value (table), 32
generic match

glossary entry, 356
reading records in an indexed file, 215

.GES.
string operator, arity, result type, and

value (table), 33
global

level, symbol creation and properties, 29
sections, VIC protection available, 225
symbol

assigning the value, 29
creation prevented by NO GLOBAL

keyword,84
deleting, 47
distinguishing from prompt-level

symbols, 29
examples of use, 30
existence limited to login period, 31
facility code use for naming compat-

ibility, 112
flag use to activate permanent debug

lines, 140
glossary entry, 357
level, creation and properties, 29
name for symbols created at global

level,29
obtaining the value, 29
substring assignment on, 44

glossary
glossary entry, 357

glyphs
printable characters in DeL character

strings, 24
goals

writing book, xiv
GoSUB

See also calling.
command, compared with CALL com­

mand,62
description of DCL command, 64
EXIT, importance of EXIT to avoid

dropping into subroutine, 65
limited to 16 GoSUB levels, 65
summarized in table of subroutine

facilities, 64

gotchas
See warnings. GOTO

See also control, structures.
avoid using, reasons discussed, 53
flow-of-control command discussed, 50
how to emulate a case statement with

GOTO,202
subroutine library use of, 119
use in conjunction with IF command, 52

graphics
DCL has no graphics capabilities, 3

greater than (. GT ., . GTS .)
integer operator, arity, result type, and

value (table), 32
string operator, arity, result type, and

value (table), 33
greater than or equal (. GE ., . GES .)

integer operator, arity, result type, and
value (table), 32

string operator, arity, result type, and
value (table), 33

group
access category, who can access, 226
logical name

table described, 164
table, detailed description, 179

number
component of VIC, 16
glossary entry, 357

system group, glossary entry, 363
GRPPRV

privilege that affects protection-checking
scheme, 228

.GT.
integer operator, arity, result type, and

value (table), 32
.GTS.

string operator, arity, result type, and
value (table), 33

handler
See also error handling; interrupt

handling.
error handler, glossary entry, 356

hexadecimal
base 16, used in DCL, 23
notation, appendix, 291

hiding, symbols, 28
appendix describing, 291

hints
See also warnings.
allowed abbreviation of DCL verb, 13
. COM file type may be omitted after @, 18
components of DCL file specification

may be omitted, 14
directory specifications, 146
how to use this book, 6
logical name can include nonadjacent file

spec components, 163
master file directory name may be

omitted, 145
rules of abbreviation in DCL command

verb, II
time functions allow omission of certain

fields, 205
times can be specified with fields omitted,

205
use for DCL to extend user environment,

33
using implicit substitution to write

personal commands, 71
versions, access new and old files, 147
wildcards for parts of file spec compo­

nents,151
home directory

See also directories.
glossary entry, 357
importance to VMS user, 15

identifiers

IF

ACE, format and description of compo-
nents,232

process identifier, glossary entry, 361
rights identifier, glossary entry, 362
stream ID, glossary entry, 362
types of identifiers assigned when user

logs in, 231
VIC, description of components, 16

See also control, structures.
flow-of-control command discussed, 52
lacking compound form prior to VMS

5.0, work-around discussed, 54
simple versus compound forms, 52

IF_DEBUG
conditional debugging with, 141

image data
See also data.
input

data for a program, glossary entry,
357

to applications called from DCL, 134

Index 383

384 Index

index
See also arrays.
arrays can be simulated in DCL, 284
book, 367
identifier for selecting item from string or

array, glossary entry, 357
string index, glossary entry, 362
substring assignment format, 42

/INDEX
qualifier for READ access to indexed file,

213
indexed files

See files, indexed.
infinite loops

See also control, structures.
example using GOTO command, 51
glossary entry, 357
preventing in file searching, 154

inheritance
See also process.
symbols and logical names by subpro­

cesses,264
initialization

code for setting DCL environment in a
procedure, 88

how to block interrupts during initializa­
tion,108

volumes

input

initialization, glossary entry, 364
parameters and use, 249

ASK, listing in subroutine library, 298
checking validity, full description, 128
program, redirecting using DEFINE, 134
spawned processes accept command

string or procedure file, 261
terminal, features of complex ASK routine

discussed, 132
user

converted to uppercase by INQUIRE
unless quoted, 124

obtaining for an interactive program,
123

obtaining with INQUIRE, 124
READ, preferred input command, 125

INQUIRE
description and warnings about using,

124

integer
checking for valid integer in input string,

128
DECnet node name specified by integer,

144
even integers used as boolean FALSE, 25
field type, definition symbol and charac­

teristics, 207
fields in record structures, created with

bit-field assignment, 208
glossary entry, 357
indexes, arrays in DCL, 284
noninteger strings converted to integers

become zero, 36
operators, table of arity, result type, and

value, 32
representation and use, 23
restricted in size to 32 bits in DCL, 23

interactive
See also batch.
processes

description, 254
description, 10
glossary entry, 357
versus batch, 271

programs, obtaining user input, 123
session, description, 10

INTERACTIVE system identifier
description, 231

interpreter
command language interpreter, glossary

entry, 354
DCL command interpreter, description

of program that carries out
instructions, 11

interrupting
processes, SPAWN used to execute

commands without terminating
interrupted process, 262

interrupts
See also errors.
captive account ignoring of <CTRL/y>,

122
custom interrupt handler, how to estab­

lish,106
default

interrupt handler described, 105
interrupt handler, problems dis­

cussed, 106
error handling should also handle

interrupts, 106
glossary entry, 357

interrupts (continued)
handling

<CTRL/y>, concepts and facilities,
104

custom, example of use in main
procedure, 114

integrating with error handling, 106
with cleanup code, example of use in

subprocedures, 117
without cleanup code, example of

use in subprocedures, 116
how to block during initialization, 108
other uses not necessarily terminating

program, 109
subroutine interrupt handler, potential

problems, 105
temporary command level, characteris­

tics, 105
warning about using SET NOCONTROL,

109
invoke, invoking

See also control, structures; execute;
flow-of-control; run.

batch jobs, 271
DeL applications, directory and personal

command conventions for, 112
command procedures, 18,58
glossary entry, 357
subroutines with

@,59
CALL,62
GOSUB,62

use of system logical name and per­
sonal command to invoke an
application, 112

ISAM
See files, indexed.

item
data item, glossary entry, 354

iteration
See also control, structures.
execution of commands in loop, 56
glossary entry, 357

iterative translation
blocked by * wildcard in logical names,

167
glossary entry, 357
logical names look up described, 163

Jennings, Will
quotation, xvi

jobs
batch

concepts and facilities, 270
glossary entry, 353
restartable, glossary entry, 361
restarting, 276
sending mail about status, 274

controller
glossary entry, 357
responsible for job queue mainte­

nance,270
description of uses, 266
detached process or batch, glossary entry,

357
duplicate, preventing occurrence of

duplicate jobs, 282
invoking batch job using SUBMIT

command, 271
logical name table

described, 164
description of uses, 266
detailed description, 179
glossary entry, 357

queues
for running batch jobs, 270
glossary entry, 358

status, sending mail about batch job
status, 274

kernel
See also access; protection; security.
access mode in which a process may run,

167
/KEY

qualifier for READ access to indexed file,
213

keyboard
logical names for keyboard input, 123

keys
See also files, indexed.
alternate key in indexed file, glossary

entry, 352
attributes of primary and alternate keys,

211
field, glossary entry, 358
indexed file

fields to be indexed for fast lookup,
210

matching, 215
primary, glossary entry, 360

Index 385

386 Index

keywords
abbreviation, how to recognize keywords

that may be abbreviated, 201

arguments, character strings used in many
lexical functions, 38

description and suggestions for use, 201

glossary entry, 358
LOOKUP _KEYWORD, listing in subroutine

library, 300

labels
destination for GOIO command, 50
duplicate, second label replaces first, 51
glossary entry, 358
volumes

can be labeled during initialization,
249

label, glossary entry, 364
languages

command language interpreter, glossary
entry, 354

debugging, DeL advantages and dis­
advantages compared with
conventional languages, 136

.LE.
integer operator, arity, result type, and

value (table), 32
length

character string length has upper limit of
about 900 characters, 24

file specification name component,
maximum length, 146

string
glossary entry, 358
length, glossary entry, 362

substring assignment format, 42
terminal input strings, checking, 129

.LES.
string operator, arity, result type, and

value (table), 33
less than (. LT ., . LIS.)

integer operator, arity, result type, and
value (table), 32

string operator, arity, result type, and
value (table), 33

less than or equal'(. LE., . LES.)
integer operator, arity, result type, and

value (table), 32
string operator, arity, result type, and

value (table), 33
letters

See glyphs; strings, character; substrings.

level
global, symbol creation and properties,

29
procedure

creation and properties of symbols at
procedure level, 27

glossary entry, 360
levels as sources of DCL commands,

59
procedures, nesting depth limit for calls

is 32, 59
prompt

creation and properties of symbols at
prompt level, 27

level as source of DCL commands,
59

level, glossary entry, 361
subroutine at same procedure level using

GOSUB,64
symbol

determination and use, 26
level, glossary entry, 363
level, indicates defining context, 21

temporary command level
following interrupt, characteristics,

105
glossary entry, 363

lexical functions
See also individual names.
argument characteristics, 37
description and use, 36
explicit substitution using apostrophe, 67
glossary entry, 358

LIBCALL
personal command

definition, 296
to call library of subroutines, 119

library, subroutine
example of use, 119
library, complete listings, 296
use of large procedure as, 118

limitations
GOSUB, limited to 16 GOSUB levels, 65
procedure calls may only reach depth up

to 32, 59
procedures may only accept up to eight

parameters, 60
.LIS

file type for listing file produced by
Fortran compiler, 146

lists
See also arrays.
creating and manipulating lists with DeL

commands, 198
distribution list, glossary entry, 355
extracting list items with F$ELEMENT,

199
file types, constructing list from a

directory, 198
glossary entry, 358
Manager for Organized Distribution

Lists, sample application, See
MODL.

removing duplicates from lists with DeL
commands, 198

search list, glossary entry, 362
splitting apart, 199

literals
See also symbols.
character string literal represented by use

of double quotes, 24
external representations of data within

programs, 23
glossary entry, 358

LNM$DCL_LOGICAL
search list used by SHOW LOGICAL

command, description, 180
LNM$DIRECTORIES

search list of the two logical name table
directories, description, 180

LNM$FILE_DEV
search list for file specification parsing,

description, 180
LNM$GROUP_TABLE

group logical table description, 179
LNM$JOB_TABLE

job logical table description, 179
LNM$PROCESS_DIRECTORY

logical name table directory, description,
180

LNM$PROCESS_TABLE
process logical table description, 179

LNM$SYSTEM_DIRECTORY
logical name table directory, description,

180
LNM$SYSTEM_TABLE

system logical table description, 179
loading

glossary entry, 358
volume loading, glossary entry, 364

local symbols
See procedure level.

LOCAL system identifier
description, 231

locking records
See also records.
glossary entry, 361
sharing files over multiple processes, 222

fLOG
capturing terminal session output with,

142
example of use of DeL command

qualifiers, 12
log file

See also debugging; errors.
glossary entry, 358

logical data
See boolean.

logical names
See also names.
access modes, use by VMS of each mode,

168
characters allowed in logical name, 162
concepts and facilities, 161
defining

and using, 162
logical names in different access

modes, 168
root directories with, 170

deleting with DEASSIGN command, 176
device specification with, 144
differences between logical names and

symbols, 161
directories of logical name tables, 180
displaying values using SHOW LOGICAL,

166
facility code use for naming compatibility,

112
for keyboard input, 123
glossary entry, 358
inheritance by subprocesses, 264
iterative translation

blocked by * wildcard, 167
described, 163

names of logical name tables, 179
nonadjacent file spec components, 163
overview, 15
privileges required to access each table,

164
purpose in replacement of device and

directory names, 162
search lists are logical names with more

than one value, 172
standard process and job logical names

(table), 169
system logical names (table), 178
tables

description of four types, 164

Index 387

388 Index

logical names (continued)
tables (continued)

detailed descriptions, 179
directory, glossary entry, 358
glossary entry, 358
job, description of use, 266
job, glossary entry, 357
relationship to processes, 161
VIC protection available, 225

translating using F$TRNLNM, 174
translation, glossary entry, 358
user address, identifies location and name

of user, 171
using for product parameters, 173
wildcard * use with logical names, 167

login
directory

glossary entry, 358
importance to VMS user, 15

procedure, description and use of
LDGIN.CoM,20

LoGIN.CoM
description and use of login procedure,

20
LOGOUT command

replacing with a DCL procedure, 3
longword

glossary entry, 358
hexadecimal notation, 291
restriction of size of integers to 32 bits,

23
LOOKUP_KEYWORD

library routine for manipulating key­
words, 201

listing in subroutine library, 300
loops

See also control, structures; GoTo.
body

component of loop, characteristics,
56

glossary entry, 359
description 56
glossary entry, 358
infinite

example using GoTo command, 51
glossary entry, 357
preventing in file searches, 154

terminating
multiple termination tests, 58
techniques for, 57

lowercase
See also strings.
input to INQUIRE must be inside double

quotes to remain lowercase, 124

.LT.
integer operator, arity, result type, and

value (table), 32
.LTS.

string operator, arity, result type, and
value (table), 33

mail
batch job status report can be tailored and

mailed to user, 274
Manager for Organized Distribution

Lists, sample application, 304
user address, glossary entry, 364

MAIL
executing commands in mail utility from

DCL,134
mailbox

virtual device example, 241
main procedure

example of establishing DCL environ­
ment, 113

glossary entry, 359
MAKERooT.CoM

procedure for creating new system roots,
4

management
system management applications for

DCL,4
Manager for Organized Distribution Lists

See MODL.
manipulating

files, DCL usefulness for, xiii
data in DCL, techniques and tricks, 196

.MAP
file type for image map produced by

linker, 146
masks, protection

access flags for each access category, 227
default

for directories, 237
for files, 237

glossary entry, 361
master file directory

glossary entry, 359
/MATCH

qualifier for READ access to indexed file,
215

qualifier for SEARCH patterns (table), 194

matching
access control list, algorithm, 231
generic

glossary entry, 356
match using /MATCH qualifier, 215

indexed file keys, 215
rules used by DCL to match operators

and operand types, 35
maximum

how to compute with DCL arithmetic
commands, 196

member number
component of VIC, 16
glossary entry, 359

memory
system, associated with VMS processes,

253
MERGE

file utility, one line description, 159
messages

conversion of status codes to messages
with F$MESSAGE, 101

customizing VMS messages, 85
enabling components and returning to

entry settings, 85
environment, establishing, example of

use in main procedure, 114
file

glossary entry, 359
containing error messages for status

codes (table), 102
four components of a VMS message, 85
need to explicitly set file to search for

status codes, 101
setting, saving, example of use in main

procedure, 113
metalinguistic symbol

description and typography, 8
glossary entry, 359

minimum
how to compute with DCL arithmetic

commands, 196
/MODIFIED

file selection qualifier, one line descrip­
tion, 160

modifying
See also appending; creating.
access control list, 234
character strings, using bit-field assign­

ment for, 44
commands, using the substitution facili­

ties, 66
default error handler, 95
file type, 150

symbol values
using assignment command for, 22,

26
MODL (Manager for Organized Distribu­

tion Lists)
command descriptions, 306
file layout

description, 313
table of record structures, 314

listings
command procedures, 315
file definition, 351

how to use, 305
introduction, 304
sample application, appendix, 304
selection criteria, how to specify, 307

modulus
how to compute with DCL arithmetic

commands, 197
MOUNT

command to mount a volume, 250
qualifiers (table), 251

mounting volumes
See volume mounting.

multinational character set
appendix, 293

multiple commands
stored in text file as command procedure,

18
multiplication (*)

integer operator, arity, result type, and
value (table), 32

names
component of DCL file specification,

overview, 14
device name, glossary entry, 355
file specification component

characters allowed, 146
full description, 146
maximum length, 146
overview, 14

global symbols, conventions for, 29
job logical name table, glossary entry,

358
logical

inheritance of logical names by
subprocesses, 264

name, overview, 15
name table directory, glossary entry,

358
name table, glossary entry, 358
names for keyboard input, 123

Index 389

names (continued)
process, setting, 259
symbol

description of use, 21
name, glossary entry, 363
rules for composition, 22

terminal name, item of information
associated with VMS process,
11

UNIQUE_NAME, listing in subroutine
library, 302

unique names must be created for
temporary files, 190

user name
glossary entry, 364
item of information associated with

VMS process, 10
VMS process, same as user name for first

interactive process, 10
naming

conventions for compatibility with other
VMS applications, III

.NE.
integer operator, arity, result type, and

value (table), 32
negation (-)

integer operator, arity, result type, and
value (table), 32

.NES.
string operator, arity, result type, and

value (table), 33
network

copying files over a network using DeL,
5

process
description, 254
glossary entry, 359

NETWORK system identifier
description, 231

NL:
null device, used for discarding output,

80
node

file specification component
full description, 143
overview, 14

NoGLoBAL
keyword to hide global symbols in a

procedure, 84
NOLO CAL

keyword to hide predefined local symbols
in a procedure, 84

/NoLoG
DEFINE qualifier to turn off message

concerning previous existence,
165

NOON is not a time of day
See SET NOON.

not (.NoT.)
boolean operator, arity, result type, and

value (table), 34
integer operator, arity, result type, and

value (table), 32
not equal (. NE ., . NES .)

null

integer operator, arity, result type, and
value (table), 32

string operator, arity, result type, and
value (table), 33

device
glossary entry, 359
mechanism for discarding SEARCH

output, 195
NL: used to discard output, 145
used for discarding output, 80

string
character string with no characters,

24
glossary entry, 359

value glossary entry, 359
number

See integers.

.0BJ

file type for object file produced by
FORTRAN compiler, 146

obtaining
protection mask values, 230

octal base
base 8, used in DCL,23

ON CoNTRoL_ Y
establish interrupt handler with, 106

ON ERRoR/SEVERE_ERRoR/WARNING
establish error handler with, 95

OPEN
danger of opening file twice, 186
files must be opened before reading, 184

OPEN/READ
indexed files, preparation for reading,

213
OPEN/READ/WRITE

indexed files, preparation for writing, 219
OPEN/SHARE

sharing file over multiple processes, 221

open for append
used to add records to end of sequential

file, 189
glossary entry, 359

opening files
glossary entry, 359
indexed files, 213
sequential files, 184

operands
associated with operator to create new

values, 31
glossary entry, 359

operations
file manipulation, summary of operations

and qualifiers, 158
search operation, glossary entry, 362

operators
See also individual operators.
arity, number of required operands, 32
binary

description and examples, 32
glossary entry, 353

boolean, arity, result type, and value
(table),34

character string, arity, result type, and
value (table), 33

evaluation precedence rules, 33
modifying with parentheses, 34
table, 35

glossary entry, 359
integer, table of arity, result type, and

value, 32
precedence, glossary entry, 359
rules used by DCL to match operators

and operand types, 35
unary

description and examples, 32
glossary entry, 364

using in expressions to create new values,
31

optional
arguments

glossary entry, 359
lexical functions may accept optional

arguments, 37
parameter, glossary entry, 359

or (. OR.)
boolean operator, arity, result type, and

value (table), 34
example of use with . EQS . , description

of precedence, 58
integer operator, arity, result type, and

value (table), 32
returning status codes with, 95

order of evaluation
precedence rules for expression, 33

modifying with parentheses, 34
table, 35

output
See also displaying.
debugging output using SHOW, 140
discarding, from a SEARCH command,

195
displaying during procedure execution,

concepts and commands, 75
formatting terminal output, 78
procedure, captured with /oUTPUT, 141
program, redirecting, 79

/oUTPUT

capturing procedure output with, 141
utilities qualifier for redirecting output to

files, 79
owner

access category, who can access, 226
identification through VI Cs, 16
VIC

associated with files and directories,
226

glossary entry, 360

PO space
glossary entry, 360
virtual memory in which program image

is run, 253
PI space

glossary entry, 360
virtual memory for processes controlled

by DCL command interpreter,
253

P1-P8

reserved symbols for parameters of a
procedure, 60

padding
blank spaces inserted during substring

replacement, 43
paging file blocks

free, testing with the IF command, 53
parallel execution

among processes, 262
of processes using SPAWN /NoWAIT, 263

Index 391

392 Index

parameters
See also arguments.
allowing for prompts or batch, 131
command parameter, glossary entry, 354
DCL command parameters, description

and use, 12
glossary entry, 360
handling as an eight element array, 287
limited to eight for a procedure, 60
optional, glossary entry 359
P1-P8 parameters not permitted with

GOSUB,359
passing product parameters using logical

names, 173
procedure

concepts and characteristics, 59
parameter, glossary entry, 361

product parameter, glossary entry, 361
required, glossary entry, 361
subroutines use of, 63

parent
See also child; process.
directory, parsing requires special

treatment, 150
process, glossary entry, 360

parsing
controlling default specs with F$P ARSE,

148
file specifications

complete algorithm, 165
completing missing components,

148
glossary entry, 360

protection masks, warning against, 230
subdirectories requires special treatment,

150
SYNTAX_ONLY allows skip of existence

check, 149
path

DEC net specification for reaching nodes,
144

pattern
glossary entry, 360
matching

character string, using F$LOCATE, 40
file searching, 194
wildcard use for searching directo­

ries, 151
percentage

how to use DCL commands to calculate
percentages, 197

periodic batch jobs
resubmit themselves on schedule, 279

permission
to access files, See access.

personal commands
application invocation use of, 112
calling subroutines with, 119
evaluating with implicit substitution, 70
glossary entry, 360
predefined

blocking example of use in main
procedure, 113

dangerous to procedure execution,
72

protecting procedures
from their effects, 83
using SET SYMBOL, 84

substitution, glossary entry, 360
PID (process identifier)

glossary entry, 360
used to specify a process, 257

pool
system memory set aside for data

structures containing control
information, 253

precedence
glossary entry, 360
operator, glossary entry, 359
order in which operators are applied, 33
table of operator precedence, 35

primary key
description of indexed file, 210
glossary entry, 360

print jobs
application for DCL, 3

printable character
character with a corresponding glyph, 24
glossary entry, 360

privileges
access modes assigned to processes, 167
authorized

description and usefulness, 17
glossary entry, 353

description of VMS privilege scheme, 17
effect on protection-checking scheme,

228
environment, establishing, example of

use in main procedure, 114
explicit enabling within procedures, 86
logical name tables, privileges required

to access, 164
process

description and usefulness, 17
glossary entry, 361
setting, 259

privileges (continued)
rights identifier for access, glossary entry,

362
SETPRV, privilege that allows a user to

enable privileges, 17
setting, saving, example of use in main

procedure, 113
SPAWN requires TMPMBX or PRMMBX

privilege, 260
system group, glossary entry, 363
to access files, See access.

procedures, command
See also command.
call unwind, glossary entry, 360
calling with @, 18

detailed description, 58
cleanup, glossary entry, 360
complex, using comments to clarify, 19
DeL command procedures, glossary

entry, 355
debugging using verification, 136
default error handler, problems, 94
disabling predefined personal commands

inside of procedures, 72
error handling, 90

status code checking methods, 92
example of DeL command procedure, 18
exit, glossary entry, 360
file containing DeL program, 1
glossary entry, 360
GOSUB allows subroutine at same proce­

dure level, 64
hiding predefined local or global symbols,

84
input, obtaining user input for an

interactive program, 123
invoking with @, 18

detailed description, 58
level

as sources of DeL commands, 59
creation and properties of symbols at

procedure level, 27
glossary entry, 360
symbols, substring assignment, 42

limitation in number of parameters is
eight, 60

login procedure, description and use, 20
main

example of use in establishing DeL
environment, 113

glossary entry, 359
mechanism to capture DeL command

sequence, 17
message components must be enabled, 85

obtaining values of protection masks, 230
organization requirements, 118
parameters

glossary entry, 361
handling as arrays, 287

passing values, allow for prompts or
batch, 131

personal commands, uses and dangers,
72

privileges may need to be enabled by
procedure, 86

protecting from effects of predefined
personal commands, 83

redirecting a program's input from
SYS$COMMAND, 133

setting DeL environment at beginning
and end, 88

status code
returned by EXIT command, 93
use for reporting outcomes, 91

status must be checked after every
command,92

steps in establishing DeL environment,
115

terminating
automatically, 58
effect on procedure-level symbols,

28
with EXIT, 58

tracing, 20
unwinding nested procedure calls after

errors, techniques, 98
verification as debugging tool for DeL,

136
verifying, 20, 83

process
See also child; parent.
access modes, full description, 167
batch

glossary entry, 353
versus interactive, 271
process described, 254

child, glossary entry, 353
components associated with VMS

processes, 253
concepts and facilities, 253
creating subprocesses, 260
current, obtaining information, 254
default protection

changing with SET PROTECTION,
238

displaying with SHOW PROTECTION,
238

Index 393

394. Index

process (continued)
detached process

described, 254
glossary entry, 355

environment, cannot obtain information
for other than current process,
259

four sets of privileges associated, 17
glossary entry, 361
how to list all processes on the system,

258
identifier

glossary entry, 361
PID is used to specify a process, 257

information associated with VMS
process, 10

interactive
description, 10
glossary entry, 357
versus batch, 271
process described, 254

interrupting, SPAWN to execute commands
without terminating interrupted
process, 262

items of
information associated with a VMS

process, 10
DeL information available using

F$ENVIRONMENT,256
process information available using

F$GET JPI, 255
kinds of processes described, 254
logical name

directory for, 180
table, 169
table described, 164
table, detailed description, 179
tables accessible to, 164, 179
tables relationship to, 161

mode
glossary entry, 361
obtaining to check if process is

interactive, 255
multiple, SPAWN /NOWAIT allows simul­

taneous execution of processes,
263

name, setting, 259
network

glossary entry, 359
process described, 254

owner identification UIe described, 16
parallel execution, 262
parent, glossary entry, 360

privileges
glossary entry, 361
setting, 259

process-permanent files, See process­
permanent, files

scheduler chooses process to run, 253
setting process environment, commands

available (table), 259
SPAWN requires TMPMBX or PRMMBX

privilege, 260
spawned, characteristics, 261
subprocess

described, 254
glossary entry, 363
inheritance of symbols and logical

names, 264
process-permanent

files
batch process (table), 267
glossary entry, 361
interactive process (table), 266
standard files and uses, 265
SYS$COMMAND,123,265
SYS$ERROR,265
SYS$INPUT,123,265
SYS$OUTPUT,75,265

logical names, importance for command
procedures, 169

product
integer multiplication operator, arity,

result type, and value (table), 32
parameters

glossary entry, 361
passing parameters using logical

names, 173
program

input, redirecting from SYS$COMMAND,
133

interrupting, SPAWN to execute commands
without terminating interrupted
process, 262

redirecting output, 79
prologue

file prologue

prompt

glossary entry, 356
information describing an indexed

file,210

character, DeL, dollar sign ($) as, 11
DeL prompt, glossary entry, 355
level

as source of DeL commands, 59
creation and properties of symbols at

prompt level, 27
glossary entry, 361

prompt (continued)
level (continued)

symbols, deleting, 47
symbols, distinguishing from global

symbols, 29
missing parameters can be requested, 131
READ, controlling prompt display, 125

protection
See also access; captive accounts;

security.
access

algorithm for VIC- and ACL-based
protection checking, 239

categories based on owner relation
to user, 226

category, glossary entry, 352
control entries, format and de­

scription of components,
232

blocking access by route of entry, 232
default protection ACE, applies protec­

tion to new files in directory,
234

dialup, access control list, use to deny
dialup access, 232

files, concepts and facilities, 225
masks

access flags for each access category,
227

default, for directories, 237
default, for files, 237
format for specifying protection

mask,228
glossary entry, 361
obtaining values of mask in a

procedure, 230
setting during creation or with SET

FILE,229
mechanism involving

access control list, 225
mc code, 225

networks, access control list, use to deny
network access, 232

objects that can be protected, 225
privileges alter protection-checking

scheme, 228
process default

changing with SET PROTECTION,
238

displaying with SHOW PROTECTION,
238

remote, access control list, use to deny
remote access, 232

rights identifiers defined for access
control with AUTHORIZE, 231

warning, default process protection may
be overridden by ACE, 238

PURGE
file utility, one line description, 159

purging
temporary files, procedure for, 60

qualifiers
command qualifier, glossary entry, 354
DCL commands, description and use, 12

queries, user
ASK, listing in subroutine library, 298
features of complex ASK routine dis­

cussed,132
obtaining user input for an interactive

program, 123
queues

batch job, characteristics, 270
job, glossary entry, 358
VIC protection available, 225

quitting
procedures, 61

quotations
Jimmy Buffett, xvi, 411
technical folklore, 9

quotient
integer division operator, arity, result

type, and value (table), 32

ratios
how to use DCL commands to calculate

percentages, 197
READ

description, 125
obtains records from open file and stores

in symbol, 185
preferred input command, reasons

discussed, 125
READ/DELETE

deleting records in an indexed file, 220
READ access

description, 227
READ ALL

privilege that affects protection-checking
scheme, 228

Index 395

396 Index

reading
duplicate records from indexed files, 214
files

existing, 184
sequential, 183

indexed files, 213
Record Management System (RMS)

SeeRMS.
records

See also fields.
components of sequential files, 183
deleting, in an indexed file, 220
file component, overview, 14
fixed-length, glossary entry, 356
glossary entry, 361
indexed files may contain fixed- or

variable-length records, 210
locked

overriding with READ/NOLOCK, 223
ways to unlock locked records, 223

locking
for use with shared files, 222
glossary entry, 361

sample application records, description
of fields, 314

size limit can be extended with /SYMBOL

qualifier, 219
structures

field types, definition symbols and
characteristics, 207

file format alternative to free-format
text, 183

glossary entry, 361
introduction, 205

/SYMBOL, qualifier for WRITE to allow
larger record size, 219

update a record, glossary entry, 364
updating locked records, how to wait for

them to be unlocked, 223
variable

with fixed control format, glossary
entry, 364

record, glossary entry, 364
versus fixed-iengih records, 184

recursion
DeL permits, 59

redirecting
program input

forcing input from SYS$COMMAND,

133
using DEFINE, 134

program output, 79

reduction (-)
string operator, arity, result type, and

value (table), 33
regression test

DeL good choice in software develop­
ment, 6

remainder
how to compute with DeL arithmetic

commands, 197
REMOTE system identifier

description, 231
removing

See deleting.
RENAME

file utility, one line description, 159
replacement

See substitution.
replacing

symbol values using assignment com­
mand,26

representation
internal and external representation of

data, 23
required parameter

glossary entry, 361
responses

obtaining user input for an interactive
program, 123

$RESTART

batch jobs, controlling restart entry point,
277

restartable batch jobs
glossary entry, 361
$RESTART and BATCH$RESTART control

restart entry, 277
restarting

batch jobs, 276
resubmitting

batch jobs, 279
resultant file spec

file spec returned by parsing operation,
148

glossary entry, 361
return

point
glossary entry, 362
place where DeL continues after

returning from subroutine,
59

value
glossary entry, 362
used in place of lexical function in

expressions, 36

RETURN
use with GOSUB command, 65

rights identifiers
maintained using AUTHORIZE, 231
glossary entry, 362
mnemonic identifiers for urCs, 16

RMS (Record Management System)
facility for reading and writing files, 183
glossary entry, 361

root
directory

defining with logical names, 170
glossary entry, 362

master file directory, root of entire
directory tree, 145

rounding
how to compute with DCL arithmetic

commands, 197
run, running

See also control, structures; execute;
flow-of-control; invoke.

batch jobs, 270
command procedures 18,58
DCL applications, directory and personal

command conventions for, 112
glossary entry, 362

sample application
appendix with listing and description of

use, See MODL.
scheduler

chooses process to run, 253
glossary entry, 362

screens
checking for ANSI control sequence

acceptance before screen
formatting, 246

script
command procedure, defined, 1

search
lists

glossary entry, 362
logical names with more than one

value, 172
operation, glossary entry, 362

SEARCH
file utility, one line description, 159
qualifiers and method of matching, 194
using to search files, 193

searching
directories

F$SEARCH useful in checking for file
existence, 152

stream ID useful in identifying
context of each search, 155

using wildcards to facilitate, 151
files

contents can be searched, 193
loop to count files, precaution against

infinite loop, 154
multiple files, suggested use, 155
string, using F$LOCATE, 40
symbol value

complete DCL algorithm for, 30
partial DCL algorithm for, 28

security
See also access; captive accounts;

protection.
access modes give privileges to processes,

167
captive accounts use to ensure, 122
file protection, 225
concealing root directory logical name

values, 170
description of VMS privilege scheme, 17
disable verification to conceal contents of

procedure, 138
selection

file selection qualifiers (table), 160
separator lines

use of $ alone on line in DeL command
procedure, 19

sequential
execution

SET

files

form of DCL flow of control, 49
glossary entry, 362

concepts and operations, 183
glossary entry, 362

command to set process environment,
259

SET ACL
command qualifiers (table), 235

SET DEFAULT
command to change working directory,

15
extending with a DCL procedure, 3
file utility, one line description, 159

SET DIRECTORY
file utility, one line description, 159

Index 397

398 Index

SET FILE
file utility, one line description, 159
protection mask setting, 229

SET HOST
second log session for recording debug

output, 142
SET MESSAGE

explicitly set file to check for status code
interpretation, 103

SET NoCoNTRoL
blocking interrupts during initialization

with,108
SET NOON

used to disable status checking, 96
SET NoVERIFY

disabling procedure verification, 137
SET ON

used to enable status checking, 96
SET SYMBOL

keywords to hide symbol definitions, 84
SET VERIFY

enabling procedure verification, 137
tracing procedures for debugging, 83

SETPRV
privilege that allows users to enable

privileges, 17
setting

default directory protection using access
control entries, 234

process
environment, 259
name, 259
privileges, 259

protection mask, 229
status codes with ON and . OR. logical

operator, 95
severity

See status code severity.
$SEVERITY

reserved symbol for recording success of
command,92

shadowing
symbols, 28

shareable images
call from DeL procedure not supported,

3
sharing

files over multiple processes, 221
shortcuts

See hints.
SHOW DEFAULT

file utility, one line description, 159
SHOW DEVICE

listing system devices, 245

SHOW LOGICAL
logical names, displaying values, 166

SHOW SYMBOL
use following interrupt, 105

SIGNAL
listing in subroutine library, 301
message and error handling subroutine,

characteristics and use, 120
signal on error

glossary entry, 362
simultaneous

execution of process using SPAWN
/NoWAIT,263

searches, description of, 155
/SINCE

file selection qualifier, one line descrip­
tion, 160

software development
DeL as appropriate management tool, 5

SORT
file utility, one line description, 159

source code management
DeL as appropriate language for, 5

SPAWN
qualifiers (table), 261
temporary command level, use after

interrupt, 105
used to execute commands without

terminating interrupted process,
262

SPAWN /NoWAIT
allows simultaneous execution of pro­

cesses, 263
spawning a subprocess

description, 260
examples, 262

specification
file, See files.
parsing a file spec, glossary entry, 360
resultant file spec, glossary entry, 361
wildcard spec, glossary entry, 364

starting DeL command procedures
using @ command, 18

detailed description, ~R

statements
glossary entry, 362
used to mean commands in most lan­

guages,25

status
See also checking; cleanup; debugging;

errors.
batch job, sending mail about status, 274
code

checking, methods for, 92
checking with ON command, 95
conversion to text message with

F$MESSAGE, 101
defining, example of use in main

procedure, 113
disabling automatic checking with

SET NOON, 96
explicit checking, examples, 96
facility code use for naming compat-

ibility, 112
format of fields described (table), 91
glossary entry, 362
procedure, creating, 93
returned by program to indicate

success or failure, 90
searching message files for status

codes, lOl
severities described (table), 91
SIGNAL, message and error handling

subroutine, characteristics
and use, 120

SIGNAL, listing in subroutine library,
301

command outcome must be checked
within procedures, 92

$STATUS

reserved symbol for recording status of
command,92

STOP

canceling a procedure from temporary
command level, 105

STOP/REQUEUE

batch restart option, 276
stopping

procedure execution, 61
programs, <CTRL/y>, program interrupt

handling, 104
stream ID

glossary entry, 362
multiple file search context identifier for

F$SEARCH, 155

string
assignment of substrings, 42
character

altering bits in, 44
control characters not representable

in, 24
glossary entry, 353
length as number of individual

characters, 24
length has upper limit of about 900

characters, 24
literal represented by use of double

quotes, 24
manipulation of lexical functions, 40
null string has no characters, 24
operators, arity, result type, and value

(table),33
representation and use, 24
terminal input validating, 129

checking for valid integer in input string,
128

concatenation operator (+), arity, result
type, and value (table), 33

creating
more than one character with bit-field

assignment, 45
one-character strings using bit-field

assignment, 45
strings with multiple characters using

bit-field assignment, 45
equivalence string, glossary entry, 356
formatting output using F$F AD directives,

78
glossary entry, 362
hints

about manipulating character strings,
42

about substring assignment, 44
indexes

creating arrays with symbolic
indexes, 288

glossary entry, 362
length, glossary entry, 362
lexical functions to manipulate strings,

40
non integer strings converted to integers

become zero, 36
null, glossary entry, 359
numbering of bits in character strings, 44
operators, arity, result type, and value

(table),33
reduction operator (-), arity, result type,

and value (table), 33
representation and use, 24

Index 399

400 Index

string (continued)
searching, using F$LOCATE, 40
substitution of symbol values using

apostrophe, 67
terminal input, checking length, 129
using loops to remove spaces in a string,

57
structures

application, overview of complex design,
111

extracting fields from, 209
glossary entry, 363
record

creating structures by storing values
in character string, 208

displaying record structure may
cause strange results, 208

structure, glossary entry, 361
structured records, introduction, 205
symbols defining position, size, and type

offield,206
type symbols for fields, 207

subdirectories
glossary entry, 363
parsing requires special treatment, 150
tree structure allowed in directory

specifications, 145
SUBMIT

command
for queueing batch job, 271
qualifiers (tables), 272-273

submitting
batch jobs, 271

subprocedures
custom interrupt handling of, 108
defined, 59
glossary entry, 363
interrupt handler behavior, potential

problems 105
with cleanup code, example of use in

subprocedures, 117
without cleanup code, example of use in

subprocedures, 116
subprocess

creating with SPAWN command, 260
glossary entry, 363
inheritance of symbols and logical names,

264
input at spawn time from command string

or procedure file, 261
list of inherited and not-inherited envi­

ronment properties, 260
parent process execution controlled by

/WAIT,262

process, description, 254
termination, possible conditions, 265

SUBROUTINE
use with CALL command, 63

SUBROUTINE-LIBRARY. COM
complete listing, 297

subroutines
See also calling.
characteristics and commands that

invoke, 63
defined, 59
glossary entry, 363
GOSUB allows subroutine at same proce­

dure level, 64
invoking with

@,58

CALL,62
GOSUB,62

library
complete listings, 296
example of use, 119
use of large procedure as, 118

SUBROUTINE command use with CALL,
63

summary table of facilities, 64
with cleanup code, example of use in

subprocedures, 117
without cleanup code, example of use in

subprocedures, 116
subscript

See also arrays.
array, glossary entry, 363
arrays can be simulated in DeL, 284

substitution
ampersand

explicit substitution of text in DeL
command, glossary entry,
352

used in concert with apostrophe
substitution, 73

apostrophe
creating DeL arrays, techniques and

problems, 285
descripiion, 66
explicit substitution of text in DeL

command, glossary entry,
352

bit-field assignment using integer values,
45

concepts and operators, 66
explicit, using apostrophe substitution

for, 66
glossary entry, 363

substitution (continued)
implicit

in evaluation of personal commands,
70

requirements for, 70
INQUIRE input apostrophe substitution,

124
logical name values substituted, 161
personal command substitution, glossary

entry, 360
principle underlying, 66
substring assignment to replace parts of

strings, 43
textual, contrasted with assembler macros

and C preprocessor, 66
wildcards

file operations use of, 158
logical names allow use of *

wildcard, 167
pattern matching templates for parts

of file spec components,
151

spec, glossary entry, 364
using with F$SEARCH, 153

value of arbitrary expression, 69
substrings

assignment, 42
extracting substring with F$EXTRACT, 41
glossary entry, 363

subtraction (-)
integer operator, arity, result type, and

value (table), 32
suggestions

See hints.
sum

integer addition operator, arity, result
type, and value (table), 32

superceding
files in personal over public directories,

using search lists for, 173
supervisor

access mode in which a process may run,
167

suspending program execution
program interrupt handling, 104

/SYMBOL
qualifier for WRITE to allow larger record

size, 219
symbolic arrays

creation and use, 288
glossary entry, 363

symbols
See also assignment; literals; values.
case, DCL converts all symbols to

uppercase, 22
checking

the type or existence with F$TYPE,
39

validity, VERIFY _SYMBOL, listing in
subroutine library, 303

creating
global,29
procedure level, 27
prompt level, 27
using assignment command for, 22,

26
data type, associated with value not

symbol,26
description and items of information

associated, 21
differences between logical names and

symbols, 161
evaluating, using apostrophe substitution

in, 66
explicit substitution using apostrophe, 67
facility code use for naming compatibility,

112
global

assigning the value, 29
creation prevented by NOGLOBAL

keyword,84
deleting, 47
distinguishing from prompt-level

symbols, 29
examples of use, 30
existence limited to login period, 31
facility code use for naming compat-

ibility, 112
glossary entry, 357
level, creation and properties, 29
name for symbols created at global

level,29
obtaining the value, 29
substring assignment on, 44

glossary entry, 363
inheritance of symbols by subprocesses,

264
level, glossary entry, 363
local, See procedure level.
metalinguistic

description and typography, 8
glossary entry, 359

name
glossary entry, 363
rules for composition, 22

Index 407

402 Index

symbols (continued)
procedure-level

creation and properties of symbols at
procedure level, 27

effect of terminating a procedure on,
28

substring assignment, 42
prompt -level

creation and properties of symbols at
prompt level, 27

deleting, 47
distinguishing from global symbols,

29
keywords to hide symbol definitions, 84
reserved, P1-P8 procedure-level symbols

for procedure parameters, 60
shadowing, 28
SHOW SYMBOL, use following interrupt,

105
table

arrays may require symbol table
expansion, 290

glossary entry, 363
values

assignment using assignment com-
mand,22

complete search algorithm for, 30
glossary entry, 363
modifying using assignment com­

mand, 22, 26
partial search algorithm for, 28
replacing using assignment com­

mand,26
variables, symbols are used as variables

in DCL, 21
syntax

command syntax, glossary entry, 354
format and rules governing format of

DCL commands, 13
SYNTAX_ONLY

parsing without existence check, 149
SYS$BATCH

name of system batch job queue, 270
SYS$COMMAND

forcing program input to use, 133
process logical name, brief description

(table), 169
process-permanent file for input from

procedure or keyboard, 123
READ use of, 125
sources for detached and subprocesses of

batch procedure, 267
interactive procedure, 266

SYS$DISK
working directory device name, 145
process logical name, brief description

(table),169
SYS$ERROR

destinations for detached and subpro­
cesses of

batch procedure, 267
interactive procedure, 266

process logical name, brief description
(table), 169

redirection of screen output using, 80
SYS$INPUT

process logical name, brief description
(table),169

process-permanent file for input from
procedure or keyboard, 123

sources for detached and subprocesses of
batch procedure, 267
interactive procedure, 266

work around for input from procedure,
133

SYS$LOGIN
job logical name, brief description (table),

169
SYS$MESSAGE

directory, status code messages stored in,
101

SYS$OUTPUT
destinations for detached and subpro­

cesses of
batch procedure, 267
interactive procedure, 266

process logical name, brief description
(table),169

process-permanent file for video output,
75

redirecting with DEFINE command, 80
SYS$SCRATCH

job logical name, brief description (table),
169

temporary file logical name, 190
SYSPRV

priviiege ihai affecis pruieciiull-checking
scheme, 228

system
access category, who can access, 226
devices, listing with SHOW DEVICE, 245
directory organization, overview, 177
displaying CPU time of all users, use of

an array, 288
F$GETSYI lexical function to get system

information, 37

system (continued)
groups

access privileges for certain VICs,
16

glossary entry, 363
identifiers, category of rights identifiers,

231
logical names

application naming convention use
of,112

directory for, 180
table, 178
table described, 164
table, detailed description, 179

management, applications for DCL, 4
roots, creating new system roots using

DCL,4

tables
job logical name table, glossary entry,

357
logical name table

directory, glossary entry, 358
glossary entry, 358
described, 161

symbol table, glossary entry, 363
tape

used as device, 144
techniques

See hints.
telephone directory

possible use for DCL, 4
temporary

See also files.
command level, glossary entry, 363
file, glossary entry, 363

terminal
characteristics can be determined with

F$GETDVI, 246
characteristics, glossary entry, 363
checking for acceptance of ANSI control

sequences, 246
controlling the behavior, 246
input

obtaining with INQUIRE, 124
READ, preferred input command, 125

name, item of information associated
with VMS process, II

output, formatting, 78
sending special characters to control a

terminal,76
session output, capturing with LOG, 142
specified as a device name, 144

visual display methods during procedure
execution, 75

terminating
loops

multiple termination tests, 58
techniques for, 57

procedures
automatically, 58
effect on procedure-level symbols,

28
using EXIT, 58

subprocesses, possible conditions, 265
test case library

text

possible use for DCL in software
development, 6

See also image data.
DCL command procedure stored in text

file, 18
displaying

contents of file, 192
large amounts with TYPE command,

134
text on video screen using WRITE

command,75
field type, definition symbol and charac­

teristics, 207
fields in record structures, created with

substring assignment, 208
file, glossary entry, 363
formatting output using F$F AD directives,

78
free-format text, file format alternative to

record structure, 183
oPEN/ APPEND allows WRITE to add

records to text file, 189
THEN

use with IF command, 52
time

See also date.
absolute time

format to represent specific points in
time, 203

VMS format, glossary entry, 352
combination time

format using absolute and delta
times, 204

VMS format, glossary entry, 353
comparison

of two times, 203
time, format to represent times to be

compared, 203
time, VMS format, glossary entry,

354

Index 403

404 Index

time (continued)

converting absolute time to comparison
time, 203

delta time
format for showing difference

between two times, 204
VMS format, glossary entry, 355

difference between times, how to
calculate, 204

displaying CPU time of all users, use of
an array, 288

F$CVTIME, converts between time
formats, 203

glossary entry, 364
manipulating using DCL commands, 202
omission of certain time fields is permit-

ted,205
READ prompt string can display current

time, 125
TODAY, absolute time in DCL, 203
TOMORROW, absolute time in DCL, 203
truncating current time to minutes field,

208
YESTERDAY, absolute time in DCL, 203

TODAY

absolute time in DCL, 203
TOMORROW

absolute time in DCL, 203
tracing

See also debugging; errors.
command procedures, using SET VERIFY,

20
procedures using SET VERIFY for

debugging, 83
translating, logical names

using F$TRNLNM, 174
value look up in, 163

/TRANSLATION_ATTRIBUTES

concealing root directory logical name
values with, 170

translation
iterative, glossary entry, 357
logical name translation, glossary entry,

358
trash

device NL: used to discard output, 145
tricks

See hints.
TRUE boolean value

odd integers and certain strings used to
represent, 25

literal must be established with assign­
ment command, 25

truncations
allowed abbreviation of DCL verbs, 13
rules of abbreviation in DCL command

verbs, 11
types

changing file type, 150
data

associated with value not symbol, 26
boolean, description and use, 25
character string representation and

use, 23
integer representation and use, 23
type, glossary entry, 355
types in DCL, 22

file specification component
full description, 146
overview, 14

noninteger strings converted to integers
become zero, 36

rules used by DCL to match operators
and operand types, 35

standard file types for different file
contents, 146

structures use codes for type of fields,
207

symbols, checking using F$TYPE, 39
TYPE

file utility, one line description, 159
/PAGE qualifier displays text screenful at

a time, 192
text display using TYPE command, 134

typographic conventions, 7

UIC (user identification code)
See user identification code.
glossary entry, 364

unary operators
See also binary operators.
description and examples, 32
glossary entry, 364

unconditional goto
See also control, structures.
GOTO command as control structure, 50

UNDEFINE

suggested personal command for de­
assigning logical names,
176

un defining
See also defining.
logical names using personal command,

176

UNIQUE_NAME
listing in subroutine library, 302
subroutine for creating a name for

temporary file, 190
unwinding

See also calling; cleanup; debugging;
errors.

nested procedure calls after errors,
techniques for, 98

procedure call unwind, glossary entry,
360

updating
alternate key fields requires use of

"changes" attribute at creation,
220

indexed files, updating a file using
WRITE/UPDATE command, 220

locked records, how to wait for them to
be unlocked, 223

records, glossary entry, 364
user

access mode in which a process may run,
167

address
glossary entry, 364
identifies location and name of user,

171
identification code (VIC)

avoid changing VIC within a
procedure, 87

characteristics, 87
compared with access control list

(ACL),225
description of purpose, 16
file protection use of VIC, 225
glossary entry, 364

name
glossary entry, 364
item of information associated with

VMS process, 10
process name for first interactive

process same as user name,
10

/USER_MODE
qualifier to define logical name for

duration of image, 168
temporary redirection of input, 134
temporary redirection of output, 80

utilities
file manipulation (table), 159
passing input to programs from proce­

dure, 134

Utley, Michael
quotation, xvi

validating
See also checking; errors; verification.
checking validity of input, 128
file specification with F$PARSE, 153
terminal input

values

booleans, 130
character strings, 129
integers, 128

See also assignment; symbols.
default

glossary entry, 355
in lexical functions with optional

arguments, 37
global symbols

assigning, 29
obtaining, 29

logical names
displaying with SHOW LOGICAL, 166
equivalence string as, 162

null, glossary entry, 359
prompting for procedure parameters in

batch,131
return value, glossary entry, 362
returned from lexical functions, use in

expression, 36
symbol

characteristics of, 22
complete search algorithm for, 30
modifying using assignment com-

mand, 22,26
partial search algorithm for, 28
value, glossary entry, 363

variable
character matching, wildcard spec,

glossary entry, 364
with fixed control (VFC), record format,

glossary entry, 364
variable-length record

allowed in indexed files, 210
characteristic of text files, 184
glossary entry, 364

variables
See symbols.

VAXcluster
device names are segmented, 242

Index 405

406 Index

verbs
See also command.
command verb, glossary entry, 354
description and use of DCL command

verbs, 11
verification

See also debugging; errors; validating.
command procedures, using SET VERIFY

for tracing, 20
debugging

method, glossary entry, 364
tool for DCL, 136

enabling
before entering procedure, 137
from inside procedure, 137

image
displaying image data lines, 137
verification, setting from inside

procedure, 139
procedure

displaying command lines, 136
verification, setting from inside

procedure, 139
VERIFY_SYMBOL

listing in subroutine library, 303
verifying procedures

See verification.
versions

file
accessing highest and lowest ver­

sions, format, 147
range of version numbers is 1 to

32767, 147
specification component, descrip­

tion, 147
specification component, overview,

14
o gives highest version, 147
-1 gives next highest version, 147
-32768 gives lowest version, 148

VMS
See VMS versions.

VFC (variable with fixed control)
record format, gjossary entry, 364

video screen output methods during
procedure execution, 75

virtual devices
description and examples, 241
glossary entry, 364

viruses
possible problem for DCL, caution, 6

VMS
designing compatible command proce-

dure applications, III
documentation set listed, 8
note about differences in versions, 7
process

items of information associated, 10
review of basic concepts, 10
versions

CALL introduced in Version 5, 62
compound IF introduced in Version

5,52,54
lack of compound IF command prior

to Version 5, work-arounds,
54

lexical function to obtain, 38
replacement of F$LOGICAL by

F$TRNLNM in Version 4,
175

VMS INSTAL

choosing DCL for software installation,
xiii

file manipulation, example of DCL use, 5
lack of second "L" in, annoyance about,

xiii
volume

initialization, to format disk or tape,
glossary entry, 364

label, glossary entry, 364
loading, glossary entry, 364
magnetic medium on which information

is stored, 241
medium to store permanent information,

glossary entry, 364
mounting

to allow system to recognize a
device, 250

glossary entry, 364
owner mc described, 16
steps performed in mounting, 251

warning messages
SIGNAL subroutine treats as informa­

tional, 121
warnings

See also hints.
angle brackets «» must be accepted as

directory delimiters, 146
arrays may require symbol table expan­

sion, 290
avoid

ampersand substitution, list of
problems, 73

warnings (continued)
avoid (continued)

changing VIC within a procedure, 87
SET NOCONTROL, 109
SET NOVERIFY from inside a

procedure, 138
using abbreviations in command

procedures, 20
using operators with mixed operand

types, 36
characters must be same case before

comparison, 127
comments should be moved to end of

procedure to avoid slowdown,
296

common mistakes using apostrophe
substitution, 69

debug commands cost execution time
even when inactive, 141

default
answers should not contain danger­

ous material, 126
directory, do not change in a

procedure, 88
error handler does not always detect

syntax errors, 95
interrupt handler would be confusing

to naive user, 106
DEFINE and ASSIGN have reverse order

of parameters, 165
deleting records from indexed file, avoid

generic matching, 221
determining parent of arbitrary directory

difficult, 150
device names cannot be trusted to show

type of device, 246
displaying record structure on screen may

cause strange results, 208
F$ELEMENT should not be used to extract

component from file spec, 200
file

names with hyphens cannot be used
as symbol names, 289

spec manipulation involving rooted
directory difficult, 150

global symbols, creation prevented by
NOGLOBAL keyword, 84

GOSUB requires EXIT to avoid dropping
into subroutine, 65

GOTO commands shunned, reasons
discussed, 53

indexed file, open for writing with /READ
/WRITE qualifiers, 219

INQUIRE is idiosyncratic and should be
used sparingly, 124

"job" does not necessarily mean batch
job,266

labels, avoid using duplicate labels, 51
limit boolean input to yes or no, 130
P 1-P8 reserved for names of procedure

parameters, 60
passing parameters using logical names,

173
personal commands must be prevented

from influencing a procedure,
83

predefined personal commands may
damage procedures, 72

protection
default process protection may be

overridden by ACE, 238
mask does not include all information

about file protection, 230
record size should always be extended

with /SYMBOL qualifier, 219
SPAWN requires TMPMBX or PRMMBX

privilege, 260
specifying local node on file spec has

network overhead, 144
status codes are not returned by all DCL

commands, 92
subprocesses should inherit symbols and

logical names with caution, 264
SYS$SCRATCH is not automatically

deleted, 192
updating indexed file alternate key fields

requires use of "changes"
attribute during creation, 220

WRITE command does not create normal
text file, 188

WHILE loops
See also GOTO.
DCL is missing WHILE loops, 3

whitespace
F$EDIT can be used to remove, 128
glossary entry, 364
removed from input to INQUIRE unless

double quotes, 124
wildcards

See also substitution.
file operations use of, 158
logical names allow use of * wildcard,

167
pattern matching templates for parts of

file spec components, 151
spec, glossary entry, 364
using with F$SEARCH, 153

Index 407

408 Index

windowing
DCL has no windowing capabilities, 3

windows
virtual device example, 241

working directory
See also directories.
defined as default file directory, 88
glossary entry, 365

world
See also access; protection; security.
access category, who can access, 226

worms
possible problem for DCL, caution, 6

WRITE

displaying text with, 75
files, creating a new file, 188
limitations on record size and expression

values, 188
output of WRITE is not normal text file,

189
WRITE/UPDATE

indexed files, using write command to
update file, 220

WRITE access
description, 227

writing
files

sequential, 183
indexed, 219

XDA (eXample DeL Application)
introduced as fictitous application for

purposes of illustration, 7

YESTERDAY

zero

o· .

absolute time in DCL, 203

local DECnet node is named zero, 144
non integer strings converted to integers

become zero, 36
version number giving highest version,

147

DECnet local node is named zero, 144
[000000]

master file directory, root of entire
directory tree, 145

1B

9B

hexadecimal value of ESC character,
control sequence initiator for
seven-bit terminals, 76

hexadecimal value of CSI character,
control sequence initiator for
eight-bit terminals, 76

(exclamation point)
comment, glossary entry, 354
DCL command procedures, use for

comments in, 19
use in F$F AD directives, 78

! ! ! (triple exclamation point)
flag to help locate temporary debugging

commands, 138
" (double quote)

DCL command parameter use, 13
DCL command qualifier syntax use, 13
rules for use in parameters, 61

"" (paired double quotes)
default answer trigger for READ, 127
INQUIRE, removes quotes but leaves

whitespace and lowercase, 124
matched double quotes used to denote

string literal, 24
used inside double quotes to represent

one double quote, 24
$ (dollar sign)

alone on line ignored in DCL command
procedures, 19

DCL command procedure, use to indicate
command,18

DCL prompt character, use by DCL
command interpreter, 11

device name segment divider, 242
% (percent)

wildcard for one character in a file spec
component, 151

& (ampersand)
explicit substitution of text in DCL

command, giossary eniry, 352
used in concert with apostrophe substitu­

tion,73
, (apostrophe)

explicit substitution of
text in DCL command, glossary

entry, 352
symbol or lexical function values, 66

interpretation when input to INQUIRE,
124

, (apostrophe) (continued)

trailing, when required in apostrophe
substitution, 67

, , (double apostrophe)
use inside string literals to cause substitu­

tion, 67
o (parentheses)

DCL command qualifier syntax use, 13
lexical functions format requirement, 36
modifying operator precedence with, 34

* (asterisk)
integer operator, arity, result type, and

value (table), 32
wildcard

+ (plus)

for characters in file spec compo­
nents, 151

use in logical names blocks iterative
translation, 167

integer operator, arity, result type, and
value (table), 32

string operator, arity, result type, and
value (table), 33

, (comma)
DCLcommand

parameter syntax use, 13
qualifier syntax use, 13

use as placeholder for optional arguments,
38

- (minus)
integer operator, arity, result type, and

value (table), 32
line continuation symbol in DCL, 13
string operator, arity, result type, and

value (table), 33
(period)

separator for subdirectories in file
specification, 146

type component of DCL file specification
syntax use, 14

... (ellipsis)
wildcard for directory subtree, 151

/ (slash)
integer operator, arity, result type, and

value (table), 32
use in DCL command qualifiers, 12

(colon)
appended to prompt by INQUIRE, 124
device component of DCL file specifica­

tion syntax use, 14
label for GOTO command destination,

used in syntax, 50

.. (double colon)
distinguishing DECnet node name, 143
node component, DCL file specification

syntax, 14
: = (colon equal)

substring assignment character for
procedure level, 42

: == (colon double equal)
substring assignment character for global

symbols, 44
; (semicolon)

version component of DCL file specifica­
tion syntax use, 14

<> (angle brackets)
alternate characters for delimiting

directory name, 146
= (equal sign)

assignment command described and
discussed, 25

assignment command for creating
symbols, 22

assignment statement meaning different
from equality comparison, 26

bit-field assignment operator for current
procedure level, 45

DCL command qualifier syntax use, 13
use in setting value to DCL command

qualifiers, 12
== (double equals)

assignment command for symbols at
global level, 29

bit-field assignment operator for global
level,45

@ (at-sign)
command, compared with CALL com­

mand,62
procedure invocation by @ creates

procedure level symbols, 27
summarized in table of subroutine

facilities, 64
use to invoke a DCL command procedure,

18
detailed description, 58

[] (square brackets)
bit-field assignment statement syntax, 45
directory component of DCL file specifi­

cation syntax, 14
substring assignment statement syntax,

42
[] (empty brackets)

[-]

stand for working directory, 145

parent directory of default working
directory, 146

Index 409

Why don't you wander and follow fa vie dansante?

- Jimmy Buffett
Will Jennings
Michael Utley

