

COMPUTER

ENGIN

EERING

A DEC VIEW OF HARDWARE SYSTEMS DESIGN

C. GORDON BELL - J. CRAIG MUDGE - JOHN E. McNAMARA

DIGITAL PRESS

Copyright © 1978 by Digital Equipment Corporation.

All rights reserved. Reproduction of this book, in
part or in whole, is strictly prohibited. For copy in-
formation contact Digital Press, Educational Ser-
vices, Digital Equipment Corporation, Bedford,
Massachusetts 01730.

Printed' in U.S.A.

Ist Printing, September 1978

2nd Printing, December 1978

3rd Printing, January 1979

4th Printing, August 1979

Documentation Number JB066-A

Library of Congress Catalog Card Number 77-91677
ISBN 0-932376-00-2

The manuscript was created on a DEC Word Pro-
cessing System and, via a translation program, was
typeset on Digital’s DECset-8000 Typesetting Sys-
tem.

Cover and display pages designed by Elliott N.
Hendrickson.

To the people at Digital, especially
the engineers, and Ben

FOREWORD

The progress which has brought the number of computers in use in the world
from dozens to millions within a generation has not been the result of a single
discovery or the work of a single inventor or company. Rather, men and women
from fields as diverse as semiconductor physics and mechanical engineering have
studied long hours and worked with various measures of inspiration and per-
spiration to make the discoveries and develop the technologies needed to advance
the state of the art in computer technology.

There are several aspects of the progress in computer technology which have
made it an exceptionally exciting and rewarding field for the people involved.
First of all, a great many of the major steps forward, such as the invention of the
transistor, have taken place within our lifetimes. Secondly, there has been an
opportunity to associate with many fine colleagues whose brilliance, courage of
conviction, and capacity for endless work have been a great inspiration. Finally,
there has been the great promise of computers - their ability to free men’s minds
of repetitive and boring tasks, their ability to reduce the cost of producing goods,
their ability to improve the lives of so many people in so many ways — and the fun
and excitement of working with them.

In the chapters of this book, various authors relate some of their experiences in
the past twenty years, draw some conclusions about how computer technology
got to where it is, and project into the future from some of the trends they have
seen. While it is impossible in a single book to capture all of the excitement and
challenge of these years, they have done an admirable job for which they are to be
commended. Hopefully, this glimpse into the past and present will encourage the
students of the future to enter the computer engineering field and bring with them
ideas, ambition, and courage.

Kenneth H. Olsen
President
Digital Equipment Corporation

PREFACE

This book has been written for practicing computer designers, whether their
domain is microcomputers, minicomputers, or large computers, and for those
who by their contact with computer are students of design - users, programmers,
designers of peripherals and memories, and students of computer engineering and
computer science.

Computer engineering is a collage of different activities and disciplines, only
one of which - the technical aspects (multiplier design, the behavior of synchro-
nizer circuits, and series/parallel tradeoffs, for example) - is covered by conven-
tional texts. This book uses the case study method to show how all the different
factors (technology push, the marketplace, manufacturing, etc.) form the real-
world constraints and opportunities which influence computer engineering.

Computer engineering can be thought of as a multivariable mathematical prob-
lem in which the engineer searches for an optimum within certain constraints.
Unfortunately, an optimum in one variable is rarely an optimum in another, and
thus a major portion of computer engineering is the search for reasonable com-
promises. A common method used to aid the search is to assign weights to various
system variables and to seek a weighted optimum. The weights vary with the
intended application. In one situation, speed might receive the maximum weight;
in another, instruction set compatibility might be the most important; and in yet
another, reliability might be paramount. The number of dimensions to the prob-
lem is large, and the meaningful measures for them are few. For example, the cost
variable is multidimensional and includes manufacturing, development, and field
support costs. In addition, there are numerous interdependencies among the vari-
ables such as the relationships between instruction set, machine organization,
logic design, and circuit design. These relationships and the contraints that con-
trol the weighting of the variables change with time. For example, the cost func-
tion changes when different subsystems use different technologies, and this
influences the relationships. In addition, constraints such as maintainability and

vii

viii PREFACE

compatibility vary in importance from year to year. Finally, while some of the
relationships, such as the time-space tradeoff in adder design, are well under-
stood, others, particularly those involving marketing factors, are not.

Because no theory exists to undergird this multidimensional design problem,
we believe that there is no substitute for an extensive, critical understanding of the
existing examples of designed and marketed systems. Therefore, this book uses
the case study approach. For examples, we have used the thirty DEC computers
that have been built over the twenty years that the company has existed, plus
some PDP-11-based machines built at Carnegie-Mellon University. Carnegie-
Mellon’s machines explore interconnect structures that we feel will form the basis
of future generations.

The association between DEC and Carnegie-Mellon has produced not only
some interesting machines to examine but also some of the written material for
this book. People in universities can and do write, whereas engineers directly
involved in design work are less inclined or encouraged to publish their work.

A substantial portion of the material contributed by DEC authors is historical.
We strongly believe that historical information is worth the expense in terms of
writing, reading, and learning; machine design principles and techniques change
slowly. In fact, the machines currently being designed are based on principles that
have been understood and used for years, and we are often asked, ‘““Are we run-
ning out of design issues?” Yes, we feel technology provides the forcing function
for new designs, not new principles.

Learning about design is always important. Although new designs often appear
to be a reapplication of old principles, in the process of being reapplied they
change and go beyond their first application. Design is learned by examining and
emulating previous designs plus incorporating general principles, new use, and
new technology. Indeed, the microcomputer developments draw (or should draw)
extensively from the minicomputers. As we build new structures, we should be
able to avoid the pitfalls of the immediate past design.

We have intentionally restricted our scope to DEC computers. The reason is
obvious: we can speak with first-hand knowledge. If we had used other com-
panies’ designs, our data would have been less accurate, and some factors, e.g.,
design styles, would have been omitted. The main reason, however, is a key part
of the philosophy of the book. To understand machine design evolution, the
effects of changes in the underlying technologies, and time-invariant principles,
we must analyze a family beginning at birth and follow it over several generations
of technology. Four series of DEC computers allow such an analysis. DEC com-
puters also provide an opportunity to study another dimension of computer engi-
neering - the coexistence of complementary (and sometimes competing) products.
Particular design efforts must compete for resources (design talent, manufac-
turing-plant capacity, and software, marketing, and sales support). DEC com-
puters have, in general, been designed to be complementary and to avoid
overlapping or redundant products. Thus, another set of constraints can be seen
at work in the design space.

PREFACE ix

The book concerns itself with general purpose computers which are intended to
be widely available commercially. The engineering of computers for highly spe-
cialized applications, for which only a few copies are built, is not treated. More-
over, because not all major principles of computer architecture and computer
engineering are embodied in the DEC computers, the reader may want to examine
other designs, as well. For example, the reader cannot learn about descriptor
architectures, array processors, list-processing machines, or general purpose
emulators from this book.

At one time consideration was given to postponing the publication of a book
until 1982, at which time DEC will celebrate its twenty-fifth anniversary. This
idea was rejected because another five years would further impede the collection
of data about the early machines. More importantly, the twenty-year period of
DEC modules and computers (1957-1977) has extended from the early second
generation to the fourth generation. Today, the processor of several DEC com-
puters occupies a single large-scale integrated circuit consisting of several thou-
sand transistors, whereas in 1957 only one transistor could be fabricated on a
single piece of germanium. In another five years, the design, manufacture, and
distribution of computers will be radically different - so much so as to merit a new
book.

We expect an increasingly larger number of people to be involved in computer
engineering and hence students of this material, because we expect computers as
we know them today will disappear within ten years! With the processor-on-a-
chip, the number of computer systems designers (users) has risen by several orders
of magnitude.

In the area of large computer systems, the buyers and users are also clearly the
computer designers: they select components (from the set of available com-
ponents) and interconnect them to form specific structures. It is essential for us all
to have a model of the price, performance, and reliability parameters and how
they vary with time. Previous generations have focused first on the invention of
the computer, next on the understanding of price/performance tradeoffs, and
most recently on manufacturing - especially the fabrication of the semiconductors
that now drive computer evolution. In the next five years, design will focus on
applications: conventional applications will be more efficient, computers will be
extended to reach new applications, and life-cycle costs will receive more atten-
tion. For the computer engineer, the evolution of DEC machines provides an
excellent perspective on the influence of applications on design. For those of us
who must deal with design goals, constraints, and objective functions to improve
reliability, availability and maintainability, & is imperative that we first clearly
understand previous design problems.

For the programmers who use computers and are a part of the computer design
process, understanding this material is mandatory in order to know the rules of
the game. We say comparatively little about software, other than how it has
influenced hardware design. The increasing role of software functions in the hard-
ware domain is a clear process that has allowed (and forced) computer archi-
tecture to change. The engineering of DEC software will be treated in subsequent

X PREFACE

volumes, perhaps one on language translators and one on operating systems. We
hope also that future volumes will be devoted to mass storage devices, terminals,
and applications.

Two notations, ISP and PMS, were introduced in the book, Computer Struc-
tures [Bell and Newell, 1971]. We continue to use them in this book, especially
since they have left the realm of notations and have become working design tools.
ISP was introduced to describe the instruction set processor of a computer - the
machine seen by the program (and programmer). ISP is now used for machine
description, simulation, verification of diagnostics, microprogramming, auto-
matic assembler generation, and the comparison of computer architectures. The
evolution and improvement of ISP is principally due to needs of the Army/Navy
Computer Family Architecture (CFA) project and the work of Mario Barbacci.
The latest version, ISPS, is being used within DEC for implementing processors,
simulators, etc. ISPS language descriptions of current DEC machines (PDP-8,
PDP-10, PDP-11, VAX-11) and several terminals have been made. We hope that
these will be made widely available and so further stimulate the use of machine-
description languages. The widespread application of good languages would help
alleviate two current design problems: first, that of hand-crafted design tooling
keeping up with the rate of introduction of new technologies and second, the
problem of managing the ever-increasing complexity of computer structures. The
PDP-8 description presented in Appendix 1 has been verified by machine diagnos-
tics, in contrast to conventional descriptions.

PMS (processor-memory-switch) notation (given in Appendix 2) has not yet
been widely used in formal methods to aid design. It has, however, been used
extensively to describe computer structures. A prototype system which recognizes
PMS and performs several performance analysis functions was constructed by
Knudsen [1972]. Currently, ISPS is being extended to include the interconnection
of computational blocks so that PMS and ISPS form a single system describing
structure and behavior. In this book, we use PMS to describe functional blocks.
However, all PMS components are enclosed to form a block diagram, unlike the
original stick notation.

The book begins with three introductory chapters. The first presents the major
themes to be illustrated by the book. We show that computer evolution has been
based primarily on semiconductor and magnetic recording technologies. These
technologies determine costs, and therefore price, performance, reliability, size,
weight, power, and other dimensions which constitute the physical characteristics
of the machines. The major theme of the book is that technology has enabled (or
forced) three types of computers to be built:

1. Machines with constant performance and decreasing cost.

2. Machines with contant cost and increasing performance.

3. Radically new (large or small) structures, often research machines, which
create new computer classes outside the evolution possibilities.

PREFACE Xi

Chapter 2 traces the evolution of memory and logic technology. Engineering is
firmly rooted in economics and inherently practical. Packaging (including com-
ponent interconnections) is covered in Chapter 3 for a very pragmatic reason: of
the total product cost of a small computer system, 50 percent is due to packaging
and power, and these costs are rising. To further emphasize the practical aspects
of engineering in Chapter 3, a section on high-volume manufacturing is included;
the result of a designer’s creativity must not only work but be buildable by pro-
duction-line methods.

Following the introductory chapters are five parts:

L. In the Beginning
II. Beginning of the Minicomputer
III. The PDP-11 Family

IV. The Evolution of Computer Building Blocks

V. The PDP-10 Family

The introductions to each part describe what to look for in the evolution of
each machine: its interaction with designers, technology, and use (marketplace).
More importantly, we have tried to point out the classic (timeless - so far) design
principles. Data that has become available since the original papers were pub-
lished is also included.

Part 1 describes modules, the product on which DEC was initially founded.
Chapter 5 shows how modules evolved and assimilated semiconductor technology
in order to build computers.

The PDP-1 and other 18-bit machines and the PDP-8 began the minicomputer
phenomenon as described in Part II. Although six computers form the 18-bit
family, there is only one chapter devoted to them, primarily because there has
been a dearth of written papers; this chapter was written for Computer Engineer-
ing. Chapter 7 shows the historical development of the 12-bit machines, and
Chapter 8 explores the structure of the PDP-8 in detail.

Part III, nearly two-thirds of the book, is based on the PDP-11. The PDP-11
has been implemented with multiple technologies and multiple design goals at a
given time, i.e., a set of machines to span a performance range. Because of cost
and performance goals, a number of problems have had to be solved to permit
subsetting (for the LSI-11) and supersetting (for the larger memory PDP-11/70
and for VAX-11).

Part IV is devoted to module set evolution. Chapter 18 describes the Register
Transfer Modules (RTMs, also called PDP-16), a set of modules for building

xii PREFACE

digital systems. Although these modules were unsuccessful in the marketplace,
they were the forerunner of the bit-slice approach now widely used for implement-
ing mid-range processors and special-purpose digital systems. Chapter 20 de-
scribes a set of modules based on the PDP-11 computer, called Computer Mod-
ules, which grew out of the original RTM research and were used to construct
Cm*, a multi-microprocessor system.

Part V covers the PDP-10. Prior to the publication of the paper reproduced
here as Chapter 21, very little had been published at the engineering level. The
published literature had emphasized operating systems, languages, networks, and
applications.

Computer Engineering is modeled after Computer Structures [Bell and Newell,
1971] and is intended to complement the subject matter therein. Computer Struc-
tures treats the design of instruction set architectures; Computer Engineering treats
the design of machines which implement instruction sets. Computer Structures
covers a broad range of ISP structures and PMS structures, from early stack
machines and bit-serial machines, through list processors and higher level lan-
guage machines, to supercomputers. By giving the seminal Burks, Goldstine, and
von Neumann paper and the Whirlwind paper, it reaches far back into history.
Computer Engineering on the other hand, takes a much narrower set of ISPs (four)
and examines their implementations in detail. Instruction set design is mentioned
only as it interacts with implementation. We focus on four computer families
from both the designer and the historical viewpoint. In particular, we emphasize
the lower level technological, economic, organizational, and environmental forces
affecting the evolution of DEC computer families.

Although this book is principally for designers and students, it will also be of
interest (as an historical record) to DEC employees who have been involved in the
design, manufacture, distribution, and servicing of the computers.

Our recommendations for the use of this text in university curricula are based
on teaching experience, requests from academic colleagues for material to teach
design, and our participation in curriculum development. The book directly ad-
dresses the philosophy of the IEEE Computer Society Task Force on Computer
Architecture [Rossman et al., 1975]: “To appreciate how the architectures of
computer systems develop, one must analyze complete systems.” As such, Com-
puter Engineering serves to complement Buchholz [1962], Bell and Newell [1971],
and Blaauw and Brooks [in preparation] in a course on computer architecture, for
example, IEEE course CO-3.*

For undergraduate courses on computer organization, such as IEEE CO-1*
and the ACM courses 13 and A2}, we believe that the book could be used as a
supplementary text. In a course on computer engineering, using the style given in

***A Curriculum in Computer Science and Engineering-Committee Report,” Model Curricula Sub-
committee, IEEE Computer Society, EHO119-8, January 1977.
F*Curriculum 68, Commun. ACM. /1, 3. pp. 151-197, March 1968.

PREFACE xiii

the syllabus of CO-2* (I/C and Memory Systems) as a model, this couid be a
primary text, provided that material on other manufacturers’ computers is made
available to show different viewpoints.

ACKNOWLEDGEMENTS

We gratefully acknowledge our contributing authors, whose insights have
greatly enhanced the scope of this book, and our colleagues at DEC, who assem-
bled information, and provided subject matter expertise and advice.

We would like to thank R. Eckhouse, R. Glorioso, S. Fuller, J. Lipovski, and P.
Jessel whose critiques of the preliminary drafts of the introductory chapters and
book outline proved very helpful. We would also like to thank J. Cudmore, R.
Doane, R. Elia-Shaoul, S. Fuller, L. Gale, L. Hughes, R. Peyton, and S. Teicher,
who provided data for Chapter 2 and valuable critiques of earlier drafts. We also
acknowledge the reviewers of the second draft of the manuscript, to whose criti-
cisms we have especially tried to respond. We received instructive comments and
evaluations from D. Aspinall, G. Blaauw, R. Clayton, D. Cox, J. Dennis, P.
Enslow, D. Freeman, J. Grason, J. Gray, W. Heller, G. Korn, J. Lipcon, J. Mar-
shall, E. McCluskey, C. Minter, M. Moshell, E. Organick, W. Schmitt, B.
Schunck, I. Sutherland, J. Wakerly, and J. Wipfli. We would like to extend special
thanks to H. Stone for his extensive and particularly useful review comments.

We are also indebted to many for their support in producing Computer Engi-
neering. We are particularly indebted to Heidi Baldus of Digital Press who coordi-
nated the production of Computer Engineering and whose encouragement kept us
going through a number of difficult times. For their expertise and patience, we
thank the Technical Documentation group, especially Denise Peters. We also
thank Mary Jane Forbes and Louise Principe for their constant support in the
course of this book’s development and production. The manuscript creation and
preparation on the DEC Word Processing System, followed by transmission to
the DECset-8000 Typesetting System, permitted numerous drafts and rapid crea-
tion of the final typeset material.

C.G.B.
J.CM.
JEM.

August 1978

ACKNOWLEDGEMENTS

CG.

C.G.

C.G.

K.H.

R.L.

C.G.

C.G.

Bell, J.C. Mudge, and J.E. McNamara: Seven Views of Computer Systems.
C.G. Beli, Digital Equipment Corporation and Carnegie-Mellon Univer-
sity; J.C. Mudge and J.E. McNamara, Digital Equipment Corporation.

Bell, J.C. Mudge, and J.E. McNamara: Technology Progress in Logic and
Memories. C.G. Bell, Digital Equipment Corporation and Carnegie-Mellon
University; J.C. Mudge and J.E. McNamara, Digital Equipment Corpo-
ration.

Bell, J.C. Mudge, and J.E. McNamara: Packaging and Manufacturing.
C.G. Bell, Digital Equipment Corporation and Carnegie-Mellon Univer-
sity; J.C. Mudge and J.E. McNamara, Digital Equipment Corporation.

Olsen: Transistor Circuitry in the Lincoln TX-2. Copyright © 1957 by
AFIPS. Reprinted, with permission, from the Proceedings of the Western
Computer Conference, 1957, pp. 167-171. This work was supported jointly
by the U.S. Army, Navy, and Air Force under contract with M.I.T. K.H.
Olsen, Lincoln Laboratory M .I.T. (currently with Digital Equipment Cor-
poration).

Best, R.C. Doane, and J.E. McNamara: Digital Modules, the Basis for
Computers. R.L. Best, R.C. Doane, and J.E. McNamara, Digital Equip-
ment Corporation.

Bell, G. Butler, R. Gray, J.E. McNamara, D. Vonada, and R. Wilson: The
PDP-1 and Other 18-Bit Computers. C.G. Bell, Digital Equipment Corpo-
ration and Carnegie-Mellon University; G. Butler et al., Digital Equipment
Corporation.

Bell and J.E. McNamara: The PDP-8 and Other 12-Bit Computers. C.G.
Bell, Digital Equipment Corporation and Carnegie-Mellon University; J.E.
McNamara, Digital Equipment Corporation.

XV

Xvi ACKNOWLEDGEMENTS

C.G. Bell, A. Newell and D.P. Siewiorek: Structural Levels of the PDP-8. Revised
and updated version of Chapter 5, “The DEC PDP-8,”” Computer Struc-
tures: Reading and Examples, C.G. Bell and A. Newell, McGraw-Hill Book
Co., New York, 1971. C.G. Bell, Digital Equipment Corporation and Car-
negie-Mellon University; A. Newell and D.P. Siewiorek, Carnegie-Mellon
University.

C.G. Bell et al.: A New Architecture for Minicomputers - The DEC PDP-11.
Copyright © 1970 by AFIPS. Reprinted, with permission, from the Pro-
ceedings of the Spring Joint Computer Conference, 1970, pp. 657-675. C.G.
Bell, Digital Equipment Corporation and Carnegie-Mellon University.
Those who have contributed subject matter expertise include R. Cady, H.
McFarland, B.A. Delagi, J.F. O’Loughlin, R. Noonan, and W.A. Wulf.

W.D. Strecker: Cache Memories for PDP-11 Family Computers. Copyright €
1976 by the Institute of Electrical and Electronics Engineers, Inc. Reprinted,
with permission, from the Proceedings of the 3rd Annual Symposium on
Computer Architecture, 1976, pp. 155-158. W.D. Strecker, Digital Equip-
ment Corporation.

J.V. Levy: Buses, The Skeleton of Computer Structures. J.V. Levy, Digital Equip-
~ment Corporation (currently with Tandem Computers, Inc.).

M.J. Sebern: A Minicomputer-Compatible Microcomputer System: The DEC
LSI-11. Copyright © 1976 by the Institute of Electrical and Electronics Engi-
neers, Inc. Reprinted, with permission, from the Proceedings of the IEEE,
June 1976, Vol. 64, No. 6. Manuscript received by IEEE on October 10,
1975; revised December 12, 1975. M J. Sebern, Digital Equipment Corpo-
ation (currently with Sebern Engineering, Inc.).

J.C. Mudge: Design Decisions for the PDP-11/60 Mid-Range Minicomputer.
Copyright © 1977 by the Computer Design Publishing Corp. Reprinted,
with permission, from Computer Design, August 1977, pp. 87-95. Appears
under title *‘Design Decisions Achieve Price/Performance Balance in Mid-
Range Minicomputers” in Computer Design issue. J.C. Mudge, Digital
Equipment Corporation.

E.A. Snow and D.P. Siewiorek: Impact of Implementation Design Tradeoffs on
Performance: The PDP-11, A Case Study. Copyright © 1978 by Edward A.
Snow and Daniel P. Siewiorek. This research was supported in part by the
National Science Foundation under grant GJ-32758X and by an IBM fel-
lowship. Engineering documentation was supplied by the Digital Equip-
ment Corporation. E.A. Snow (currently with Intel Corp.) and D.P.
Siewiorek, Carnegie-Melion University.

R.F. Brender: Turning Cousins into Sisters: An Example of Software Smoothing
of Hardware Differences. R.F. Brender, Digital Equipment Corporation.

C.G.

ACKNOWLEDGEMENTS xvii

Beil and J.C. Mudge: The Evolution of the PDP-11. Chapter includes mate-
rial from “What Have We Learned From the PDP-11?” by C.G. Bell, in
Perspectives on Computer Science: From the 10th University Symposium at
the Computer Science Department, Carnegie-Mellon University, A. Jones
(Ed.), Academic Press, Inc., 1978. C.G. Bell, Digital Equipment Corpo-
ration and Carnegie-Melion University; J.C. Mudge, Digitai Equipment
Corporation.

W.D. Strecker: VAX-11/780: A Virtual Address Extension to the DEC PDP-11

CG.

T.M.

S.H.

Family. Copyright © 1978 by American Federation of Information Process-
ing Societies, Inc. Reprinted, with permission, from the Proceedings of the
National Computer Conference, June 1978, pp. 967-980. W.D. Strecker,
Digital Equipment Corporation.

Bell, J. Eggert, J. Grason, and P. Williams: The Description and Use of
Register Transfer Modules (RTMs). Copyright © 1972 by the Institute of
Electrical and Electronics Engineers, Inc. Reprinted, with permission, from
the IEEE Transactions on Computers, May 1972, Vol. C-21, No. 5, pp.
495-500. Manuscript received by IEEE February 19, 1971; revised May 11,
1971. C.G. Bell, Digital Equipment Corporation and Carnegie-Mellon Uni-
versity; J. Eggert, Digital Equipment Corporation (currently with Eggert
Engineering); J. Grason, Carnegie-Mellon University (currently with Bell
Laboratories); P. Williams, Digital Equipment Corporation (currently with
Data Terminal Systems, Inc.).

McWilliams, S.H. Fuller, and W.H. Sherwood: Using LSI Processor Bit-
Slices to Build a PDP-11 - A Case Study in Microcomputer Design. Copy-
right © 1977 by AFIPS. Reprinted, with permission, from the Proceedings of
the National Computer Conference, 1977, pp. 243-253. This work was par-
tially supported by the Advanced Research Projects Agency (ARPA) of the
Department of Defense under contract F44620-73-C-0074, monitored by
the Air Force Office of Scientific Research. T.M. McWilliams, Carnegie-
Mellon University (currently with Stanford University and Lawrence Liver-
more Laboratory, University of California); S.H. Fuller, Carnegie-Mellon
University (currently with Digital Equipment Corporation); W.H. Sher-
wood, Carnegie-Mellon University (currently with Digital Equipment Cor-
poration).

Fuller, J.K. Ousterhout, L. Raskin, P. Rubinfeld, P.S. Sindhu, and R.J.
Swan: Multi-Microprocessors: An Overview and Working Example. Copy-
right © 1978 by Institute of Electrical and Electronics Engineers, Inc. Re-
printed, with permission, from the Proceedings of the IEEE, February 1978,
Vol. 61, No. 2, pp. 216-228. Manuscript received by IEEE November 11,
1977. This work was supported in part by the Advanced Research Projects
Agency of the Department of Defense under Contract F44620-73-C-0074,
which is monitored by the Air Force Office of Scientific Research, and in

xviil

C.G.

ACKNOWLEDGEMENTS

part by the National Science Foundation under Grant GJ 32758X. The LSI-
11s and related equipment were supplied by Digital Equipment Corpo-
ration. S.H. Fuller, Carnegie-Mellon University (currently with Digital
Equipment Corporation); J.K. Ousterhout ez al., Carnegie-Mellon Univer-
sity.

Beli, A. Kotok, T.N. Hastings, and R. Hill: The Evolution of the DECsys-
tem-10. Copyright © 1978 by the Association for Computing Machinery.
Reprinted, with permission, from the Communications of the ACM, January
1978, Vol. 21, No. I, pp. 44-63. C.G. Bell, Digital Equipment Corporation
and Carnegie-Mellon University; A. Kotok, T.N. Hastings, and R. Hill,
Digital Equipment Corporation.

M. Barbacci: Appendix 1 -~ An ISPS Primer for the Instruction Set Processor. M.

Barbacci, Carnegie-Mellon University.

J.C. Mudge: Appendix 2 ~ The PMS Notation. J.C. Mudge, Digital Equipment

Corporation.

C.G. Beli, J.C. Mudge, and J.E. McNamara: Appendix 3 - Performance. C.G.

Bell, Digital Equipment Corporation and Carnegie-Mellon University; J.C.
Mudge and J.E. McNamara, Digital Equipment Corporation.

TRADEMARKS

The following trademarks appear in Computer Engineering: A DEC View of Hard-
ware Systems Design.

Company Trademark
Computer Automation Corporation Naked Mini
Digital Equipment Corporation DEC DECsystem-10
DECSYSTEM-20 DECtape
DECUS DDT
DIBOL DIGITAL
Fastbus Flip Chip
FOCAL LSI-11
Massbus PDP
RSTS RSX
TOPS-10 TOPS-20
Unibus
Fairchild Camera and Instrument Macrologic
Corporation
Friden Company - A Division Flexowriter
of Singer Company
Gardner-Denver Company Wire-wrap
Teletype Corporation Teletype

Xerox Corporation

Xerox 6500 color graphics printer

CONTENTS

Forewordccoooimiiiiiiiei e, v
Prefacecoocooviiiiiiiiiiiiie e vii
Acknowledgementscccoocciiiiiiiiniiiiiiiencee e, XV
Seven Views of Computer Systemscccceeeveennneen.. 1

C. Gordon Bell, J. Craig Mudge, and
John E. McNamara

Technology Progress in
Logic and MEMOTIESccccoevrvveveieeieeeerinnrerenreeeneeeeeeas 27

C. Gordon Bell, J. Craig Mudge, and
John E. McNamara

Packaging and Manufacturingcccccceveviviieeiiinnennne. 63

C. Gordon Bell, J. Craig Mudge, and
John E. McNamara

PART I
INTHEBEGINNINGcccccooiiiiiiiiii e 93

Transistor Circuitry
inthe Lincoln TX-2 oot 97

Kenneth H. Olsen

Digital Modules,
The Basis for COmpUtersccoecveeecieerveesieniiieeeeeeae 103

Richard L. Best, Russell C. Doane, and
John E. McNamara

Xix

XX

10

m

12

CONTENTS

PART II
BEGINNING OF THE MINICOMPUTER 119

The PDP-1 and Other
18-Bit COMPULETS ...evvvviviiieriiiieiererireeiereerereerrrerennenraanee 123

C. Gordon Bell, Gerald Butler, Robert Gray,
John E. McNamara, Donald Vonada, and
Ronald Wilson

The PDP-8 and Other
12-Bit COMPULETS .eeoviiieeiiicieiiiiiiereeeeeee e eeee e s e 175
C. Gordon Bell and John E. McNamara

Structural Levels of the PDP-8ooireieiieieieeeeieen 209

C. Gordon Bell, Allen Newell, and
Daniel P. Siewiorek

PART III
THE PDP-11 FAMILY ... 229

A New Architecture
for Minicomputers
—The DECPDP-11 oo 241

C. Gordon Bell, Roger Cady,

Harold McFarland, Bruce A. Delagi,
James F. O’Loughlin, Ronald Noonan, and
William A. Wulf

Cache Memories for PDP-11
Family COMPULETS ...ccccvvvreeiiiiiiiieeeee e e 263

William D. Strecker

Buses, The Skeleton of
ComPpUuter StIUCLUTES oeevieeieeeeeiiciicreiirereeereeeeeeeeanes 269
John V. Levy

A Minicomputer-Compatible
Microcomputer System:
The DEC LSI-11 ooiiiiii e 301

Mark J. Sebern

I3

15

16

17

18

19

20

Design Decisions for the

PDP-11/60 Mid-Range Minicomputer

J. Craig Mudge

Impact of Implementation
Design Tradeoffs on Performance:

The PDP-11, A Case Studyccocvvvvvvreeennne.

Edward A. Snow and Daniel P. Siewiorek

Turning Cousins into Sisters:
An Example of Software Smoothing

of Hardware Differencesoovovevveveevveennnn.

Ronald F. Brender

The Evolution of the PDP-11cocevnn......

C. Gordon Bell and J. Craig Mudge

VAX-11/780:
A Virtual Address Extension

to the DEC PDP-11 Family

William D. Strecker

PART 1V
EVOLUTION OF

COMPUTER BUILDING BLOCKS

The Description and Use of

Register Transfer Modules (RTMs)

C. Gordon Bell, John Eggert, John Grason,
and Peter Williams

Using LSI Processor Bit-Slices
to Build a PDP-11 — A Case Study

in Microcomputer Designccccoceeerennne

Thomas M. McWilliams, Samuel H. Fuller,
and William H. Sherwood

Multi-Microprocessors:

An Overview and Working Example

CONTENTS xxi

Samuel H. Fuller, John K. Ousterhout, Levy Raskin,

Paul I. Rubinfeld, Pradeep S. Sindhu,
and Richard J. Swan

XXii

2]

CONTENTS

PART V
THEPDP-10 FAMILY

The Evolution of the DECsystem-10

C. Gordon Bell, Alan Kotok,
Thomas N. Hastings, and Richard Hill

Appendix 1
An ISPS Primer for the

Instruction Set Processor Notationceceeeevvvvnneerinnan. 519

Mario Barbacci

Appendix 2

The PMS NOLAtION ..vvveeeriiiiieeeeieiee et e e eeeeeeeeieeeeeeanns 537

J. Craig Mudge

Appendix 3

PerfOrMANCE .ooooiiiiiiiieeeee e eeeeeeene e 541

C. Gordon Bell, J. Craig Mudge, and
John E. McNamara

Seven Views of Computer Systems

A computer is determined by many factors,
including architecture, structural properties, the
technological environment, and the human as-
pects of the environment in which it was de-
signed and built. In this book various authors
reflect on these factors for a wide range of DEC
computers — their goals, their architectures,
their various implementations and realizations,
and occasionally on the people who designed
them.

Computer engineering is the complete set of
activities, including the use of taxonomies, the-
ories, models, and heuristics, associated with
the design and construction of computers. It is
like other engineering, and the definition that
Richard Hamming (then at Bell Laboratories)
gave is especially appropriate: engineers first
turn to science for answers and help, then to
mathematics for models and intuition, and fi-
nally to the seat of their pants.

In the few decades since computers were first
conceived and built, computer engineering has
come from a set of design activities that were
mostly seat-of-the-pants based to a point where
some parts are quite well understood and based

C. GORDON BELL, J. CRAIG MUDGE,
and JOHN E. McNAMARA

on good models and rules of thumb, such as
technology models, and other parts are com-
pletely understood and employ useful theories
such as circuit minimization.

In this chapter, seven views are presented that
the authors have found useful in thinking about
computers and the process that molds their
form and function. They are intentionally inde-
pendent; each is a different way of looking at a
computer. A computer scientist or mathemati-
cian sees a computer as levels-of-interpreters.
An engineer sees the computer on a structural
basis, with particular emphasis on the logic de-
sign of the structure. The view most often taken
by a buyer is a marketplace view. While these
people each favor a particular view of com-
puters, each typically understands certain as-
pects of the other views. The goals of Chapter |
are to increase this understanding of other
views and to increase the number of representa-
tions used to describe the object of study and,
hence, improve on its exposition. Thus, “The
Seven Views of Computer Systems” forms a
useful background for the subsequent chapters
on past, present, and future computers.

2 COMPUTER ENGINEERING

VIEW 1: STRUCTURAL LEVELS OF A
COMPUTER SYSTEM

In Computer Stuctures [Bell and Newell,
1971], a set of conceptual levels for describing,
understanding, analyzing, designing, and using
computer systems was postulated. The model
has survived major changes in technology, such
as the fabrication of a complete computer on a
single silicon chip, and changes in architecture,
such as the addition of vector and array data-
types.

As shown in Figure 1, there are at least five
levels of system description that can be used to

PMS LEVEL

£1

REGISTER
TRANSFER
LEVEL

|

I

|
/
/

COUNTER CONTROL

SWITCHING
CIRCUIT

I \ DATA QP
LEVEL

CONTROL

ELECTRICAL
CIRCUIT
LEVEL

TRANSISTOR

DEVICE
LEVEL DEVICE

P AREA N AREA

‘ METAL
AREA

P AREA N AREA

Figure 1. Hierarchy of computer levels, adapted from
Bell and Newell [1971].

describe a computer. Each level is characterized
by a distinct language for representing the com-
ponents associated with that level, their modes
of combination, and their laws of behavior.
Within each level there exists a whole hierarchy
of systems and subsystems, but as long as these
are all described in the same language, they do
not constitute separate levels. With this general
view, one can work up through the levels of
computer systems, starting at the bottom.

The lowest level in Figure 1 is the device level.
Here the components are p-type and n-type
semiconductor materials, dielectric materials,
and metal formed in various ways. The behav-
ior of the components is described in the lan-
guages of semiconductor physics and materials
science.

The next level is the circuit level. Here the
components are resistors, inductors, capacitors,
voltage sources, and nonlinear devices. The be-
havior of the system is measured in terms of
voltage, current, and magnetic flux. These are
continuously varying quantities associated with
various components; hence, there is continuous
behavior through time, and equations (includ-
ing differential equations) can be written to de-
scribe the behavior of the variables. The
components have a discrete number of termi-
nals whereby they can be connected to other
components.

Above the circuit level is the switching circuit
or logic level. While the circuit level in digital
technology is very similar to the rest of elec-
trical engineering, the logic level is the point at
which digital technology diverges from elec-
trical engineering. The behavior of a system is
now described by discrete variables which take
on only two values, called 0 and 1 (or + and —,
true and false, high and low). The components
perform logic functions called AND, OR,
NAND, NOR, and NOT. Systems are con-
structed in the same way as at the circuit level,
by connecting the terminals of components,
which thereby identify their behavioral values.

After a system has been so constructed, the laws
of Boolean algebra can be used to compute the
behavior of the system from the behavior and
properties of its components.

In addition to combinational logic circuits,
whose outputs are direcily related to the inputs
at any instant of time, there are sequential logic
circuits which have the ability to hold values
over time and thus store information. The prob-
lem that the combinational level analysis solves
is the production of a set of outputs at time ¢ as
a function of a number of inputs at the same
time t. The representation of a sequential
switching circuit is basically the same as that of
a combinational switching circuit, although one
needs to add memory components. The equa-
tions that specify sequential logic circuit struc-
ture must be difference equations involving
time, rather than the simple Boolean algebra
equations which describe purely combinational
logic circuits.

The level above the switching circuit level is
called the register transfer (RT) level. The com-
ponents of the register transfer level are regis-
ters and the functional transfers between those
registers. The functional transfers occur as the
system undergoes discrete operations, whereby
the values of various registers are combined ac-
cording to some rule and are then stored (trans-
ferred) into another register. The rule, or law, of
combination may be almost anything, from the
simple unmodified transfer (A « B) to logical
combination (A « B A (AND) C) or arithmetic
combination (A « B + (PLUS) C). Thus, a
specification of the behavior, equivalent to the
Boolean equations of sequential circuits or to
the differential equations of the circuit level, is a
set of expressions (often called productions)
that give the conditions under which such trans-
fers will be made.

The fifth and last level in Figure 1 is called
the processor-memory-switch (PMS) level. This
level, which gives only the most aggregate be-
havior of a computer system, consists of central
processors, core memories, tapes, disks, in-

SEVEN VIEWS OF COMPUTER SYSTEMS 3

put/output processors, communications lines,
printers, tape controllers, buses, teleprinters,
scopes, etc. The computer system is viewed as
processing a medium, information, which can
be measured in bits (or digits, characters,
words, eic.). Thus, the components have capaci-
ties and flow rates as their operating character-
istics.

The program level from the original set of
levels shown in Bell and Newell has been
dropped because it is a functional rather than a
structural level.

Many notations are used at each of the five
structural levels. Two of the less common ones
are the processor-memory-switch (PMS) and
instruction set processor (ISP) notations. A
complete description of these notations is given
in Bell and Newell [1971: Chapter 2]. Those as-
pects of PMS that are used in this book are de-
scribed in Appendix 2. The ISP notation has
evolved to the ISPS language, which is de-
scribed in Appendix 1.

VIEW 2: LEVY'S LEVELS-OF-
INTERPRETERS

In contrast to the Structural View, this view is
functional. According to this view, presented by
John Levy [1974], a computer system consists
of layers of interpreters, much like the layers of
an onion.

An interpreter is a processing system that is
driven by instructions and operates upon state
information. The basic interpretive loop, shown
in Figure 2, is most familiar at the machine lan-
guage level but also exists at several other levels.

To formalize the notion of Levels-of-Inter-
pretation, one can represent a processing sys-
tem by the diagram in Figure 3.

The state information operated on by an in-
terpreter is either internal or external. This can
best be understood by considering the ‘“‘onion
skin” levels of the five processing systems that
form a typical airline reservation system. These
levels are listed in Table 1.

4 COMPUTER ENGINEERING

The Level 0 system is the logic that sequences
the Level 1 micromachine. The Level 1 system is
a microprogrammed processor implemented in
real hardware. It is the machine seen by the
logic designer. The Level 2 system is the central
processing unit (CPU). It is the machine seen by
the machine language programmer. The Level 3
system shown here is a FORTRAN language
processing system. The Level 4 system is an air-
line reservation system. Four of these five sys-
tems form the hierarchy shown in Figure 4,
where each system is an interpreter that se-
quences through multiple steps in order to per-
form a single operation for the next level
interpreter. The highest level system, the airline
reservation system, is an interpreter operating
on messages received from outside of the sys-
tem. It tests and modifies states and generates

| !

FETCH INSTRUCTION
POINTED TO BY
INSTRUCTION COUNTER

‘

UPDATE
INSTRUCTION
COUNTER

:

DECODE
INSTRUCTION

EXECUTE INSTRUCTION

Figure 2. The basic interpretive
loop [Levy, 1974].

INSTRUCTIONS

INTERPRETER

P u—
pu——

STATE =
’—’

Figure 3. A processing system [Levy, 1974].

messages to send back outside the system, thus
performing a single operation for the outermost
interpreter.

In practice, few systems are levels of pure in-
terpreters, although layers are present. Devia-
tions from the model have occurred for both
hardware and software reasons. In the hard-
ware deviation case, the micromachine shown
in Level 1 is often not present, but rather the
Level 2 central processing unit is implemented
directly using Level 0 sequential controllers.
This practice of skipping Level 1 was initially
due to the lack of adequate read-only memories
but is now generally limited to the case of very
high speed machines such as the Cray 1 and the
Amdahl V6 which cannot tolerate the fetch and
execute cycle times associated with a control
store.

REQUEST
FOR
SERVICE

LEVEL 4
(APPLICATION}

LEVELO
(SEQUENTIAL
MACHINE-
NOT SHOWN)

TRANSACTION
PROCESSING b
SYSTEM
FORTRAN LEVEL 3
STATEMENTS (FORTRAN)
FORTRAN FORTRAN
RUN-TIME RUN-TIME
INTERPRETER j—] ENVIRONMENT
MACHINE
LANGUAGE LEVEL 2
INSTRUCTIONS {PROCESSOR)
cPu [“—] rrocram OPERATOR
STATE CONSOLE
MICROCODE LEVELY
{MICRO-MACHINE}
e—]
MACHINE MAINTENANCE
MICROPROGRAM STATE CONSOLE

Figure 4. A hierarchy of interpreters [Levy, 1974].

SEVEN VIEWS OF COMPUTER SYSTEMS

Tabie 1. Five Leveis-of-interpreters for an Airiine Reservation System [Levy, 1974]
Level 4 Instruction: Seat allocation request message
interpreter: Airline reservation system
Irternal state: Number of requests pending at this moment
Location of passenger list on a disk file
Number of lines connected to system
Exterrse.. state: Number of reserved seats on a given flight
Airline name for a given flight
Level 3 Instructions: FORTRAN statement codes
Interpreter: FORTRAN execution system
Internal state: Memory management parameters
User name
Main storage size
Location of disk files
Interrupt enable bits
Expression evaluation stack
Dimensions of arrays
External state: Subroutine names
Values of data in arrays
Statement number
Program size
Value of an expression
DO-loop variable value
Printed characters on line printer
Level 2 Instructions: Machine language instructions
Interpreter: Processor
Internal state: Program registers
Condition codes
Program counter
External state: Data in main memory
Disk controller registers
Level 1 Instructions: Microcode
Interpreter: Micromachine
Internal state: Instruction register
Flip-flops holding error status
Stack of microprogram subroutine links
External state: Program registers
Condition codes
Program counter
Level O Instructions: Hardwired combinational network

Interpreter:

Internal state:

External state:

Sequential machine controlling the
micromachine

Clock, counters, etc., controlling
micromachine timing

Micromachine, console

6 COMPUTER ENGINEERING

There are two primary software driven depar-
tures from the pure interpreter model: (1) high
level languages are usually executed by a com-
piler rather than by an interpreter, and (2) some
layers are bypassed when more ideal primitives
exist at deeper levels. Figure 5 illustrates this
bypassing process. A pure interpreter imple-
mentation of FORTRAN would use an object
time system (OTS) for all FORTRAN C oper-
ations designated in the figure. The object time
system would require an operating system
(OPSYS) for the interpretation of some of its
operations, and the operating system in turn

Figure 5. Levels-of-interpreters with “pipes” that by-
pass levels. FORTRAN operation C is interpreted by an
OTS function which in turn is interpreted by the oper-
ating system which is interpreted by the ISP. FORTRAN
operation A has a pipe directly to the ISP interpreter.

would be interpreted by the instruction set in-
terpreter (ISP interpreter). However, the 4 op-
erations in the figure would be directly
interpreted by the instruction set interpreter.
In the final analysis, the number of levels is
just another tradeoff. Performance consid-
erations lead to the deletion of levels; com-
plexity leads to the addition of levels. Having
presented the pure interpreter model, one can
now return to the Onion-Skin-Layered Model

to better understand how the different layers re-
late.

- The macromachine hardware can be thought
of as a base level interpreter. It is most often
extended upward with an operating system.
There may be several operating system levels so
that the machine can be built up in an orderly
fashion. A kernel machine might manage and
diagnose the hardware components (disks, ter-
minals) and provide synchronizing operations
so that the multiple processes controlling the
physical hardware can operate concurrently.
Next, more complex operations such as the file
system and basic utilities are added, followed by
policy elements such as facilities resource man-
agement and accounting. As viewed through
the operating system, one sees a much different
machine than that provided by the basic in-
struction set architecture. In fact, the resultant
machine is hardly recognizable as the archi-
tecture most usually given by a symbolic assem-
bler. It includes the basic machine but has more
capable I/O and often the ability to be shared
by many programs (or tasks).

Operating systems designers believe all these
facilities are necessary in order to implement
the next higher level interpreter - the standard
language. The language level may include inter-
preters or compilers to translate back to the ma-
chine architecture for ALGOL, BASIC,
COBOL, FORTRAN, or any of the other
standard languages and their dialects.

VIEW 3: PACKAGING LEVELS-OF-
INTEGRATION

This is a structural view that packages the
various components (hardware and software)
into levels. The levels for DEC computers in
1978 were as follows:

Applications
Applications components
Special languages
Standard languages

N N 00 \O

5 Operating systems

Cabinets (to hold complete hardware
systems)

Boxes

Modules (printed circuit boards)

PSR
Circuits

BN

N W

—
-
3

-

This view is the most important in the book,
because it shows how computer systems are ac-
tually structured and, hence, how their costs are
structured. As a structural view of the object
being sold, however, it is completely a function
of the technology, the organization building the
system, and the marketplace, all of which are
changing so rapidly that the view could better
be titled “Dynamic Levels-of-Integration.”
There are three major changes taking place:

1. Changes in the hardware levels, where
the shrinking in physical size of func-
tions has three effects:

a. Lower levels subsume higher levels.

b. The semiconductor component sup-
plier is forced to assume higher and
higher level design responsibilities.

c. Levels disappear.

2. Changes in the software levels, again
with three effects:

a. Each level grows in size as more
functionality is added over time.

b. More levels are added as mini-
computers are applied to a broader
range of applications.

c¢. Functions migrate downward from
level to level.

3. Changes in the hardware/software inter-
face, where software functions migrate
into hardware for higher performance.

For the first of these areas of change, hard-
ware levels, it is interesting to note that inter-
connection and packaging now constrain and
limit design more than any other factor, exclud-
ing the basic lowest level component (semi-
conductor) technology.

SEVEN VIEWS OF COMPUTER SYSTEMS 7

The constraint caused by the interconnection
and packaging takes place because most manu-
facturing costs are associated with the physical
structure. As interconnection levels must be in-
troduced to build complex structures, many
usually undesirabie side effects occur. Electrical
interconnection requires cables which require
space and interfere with cooling airflow. Long
interconnections increase signal transmission
delays, and these reduce performance. Signal
transmission not only makes the computer sus-
ceptible to electromechanical interference but
also may radiate electromagnetic waves that
need to be controlled.

Figure 6 shows the costs of various levels-of-
integration versus time for small computers.
The cost depends partly on implementation and
architecture word length. As the word length is
made shorter, there are some savings, particu-
larly for very small computers, because some
levels-of-integration cease to exist. For ex-
ample, most hand-held calculators are imple-
mented using 4-bit, stored program computers
with fixed programs that occupy a single in-
tegrated circuit. There are associated modules,
backplanes, boxes, and cabinets — but all are
contained in a single package that fits in the
hand.

Semiconductors, the lowest level of tech-
nology, have had the greatest price decline (Fig-
ure 6). Modules have a lesser price decline
because they are a mix of integrated circuits,
printed circuit boards, component insertion la-
bor, and testing labor. The price decline for the
integrated circuit portion of the module cost is
moderated by the labor-intensive nature of
module fabrication, thus producing a price de-
cline for modules that is markedly less than that
for integrated circuits. At the box level-of-in-
tegration, power supplies and metal or plastic
boxes are also labor-intensive and further mod-
erate the price decline provided by the in-
tegrated circuits. Finally, as boxes are
integrated (by people) and applied at a system

8 COMPUTER ENGINEERING

THE MINI COSTS LESS THAN $50,000 DEFINITION

Svsy
3

M LEVEL
10K |— 16-18 BIT

12 BIT

RANGE FOR A “MINI""

PRICE ($)

8 NAKED MINI

BEGIN FOURTH
GENERATION
- 1 Pc ON A CHIP

1004—

10 1 1
1960 1975 1980

TIME —————p

Figure 6. Machine price for various levels-of-
integration versus time.

level (by people), the price decline almost dis-
appears.

Many of the cost improvements brought
about by new technology are derivative. They
are by-products of using less power and less
space, thus avoiding the labor-intensive levels
of packaging integration.

An astute marketing-oriented person might
ask, “How, with all the technology, can we do
something unique so that we can maximize the
benefit from the technology without having to
pay so much for labor-intensive items such as
packaging?” One answer: “Reduce prices by
not providing a power supply and mounting
hardware. Let the user provide all added-on
parts and mount the computer as needed. In

this way, the price, though not necessarily the
total cost to the user, is reduced. We’ll sell at the
board level.” Computer Automation followed
this philosophy when it introduced the Naked
Mini so that users could supply more added
value (packaging and power technology).

A similar effect can be seen in the PDP-11
series since the PDP-11/20s introduction in
1970. At that time, the 4,096-word PDP-11/20
(mounted in a box) sold for $9,300. In 1976, the
boxed version of an LSI-11 cost $1,995, reflect-
ing a factor of 4.7 improvement over the PDP-
11/20. The 4,096-word core memory module
used in the PDP-11/20 sold for $3,500, while a
16,384-word metal-oxide semiconductor (MOS)
memory module for an LSI-11 sold for $1,800,
reflecting a factor of 7.8 improvement.

The changing levels-of-integration have also
changed the domain of the semiconductor sup-
pliers. In the early 1970s, Intel, North American
Rockwell, and other semiconductor companies
began to use the higher semiconductor densities
to reduce the number of levels-of-integration by
packaging a complete processor-on-a-chip.
These organizations had assimilated logic de-
sign, but were frustrated because their custom-
ers could really not identify higher functionality
units (beyond memory) requiring on the order
of 1,000 gates on a chip. Also, the speed of these
high density units was quite low.

They discovered that the best finite state ma-
chine to make was just a simple computer, be-
cause it provided the finite state machine plus
the useful functions that were not covered by
switching circuit theory. It was “‘simply a small
matter of programming” to do something use-
ful. Whereas programs for these simple com-
puters cost $1 to $100 per instruction to write,
the prices for processors-on-a-chip have fol-
lowed a very steep decline of up to 50 percent
price reduction per year.

Robert Noyce of Intel developed Figure 7 in
October 1975. 1t illustrates what has been hap-
pening in the semiconductor industry and has
been modified slightly to show the technology

COMPUTATION
SERVICE

SYSTEM
TASKS
SYSTEM A
INTEGRATION &
SOFTWARE / MICRO-

COMPUTER

APPLICATIONS 1

ARCHITECTURE

DEC
SEMICONDUCTOR
LOGIC DESIGN msi SUPPLIER TASKS
CIRCUIT DESIGN c
DEVICE DESIGN
1 1
1960 1970 1980

YEAR

NOTE:
Each change of level of integration has forced
the co lier to iti responsibilities

Figure 7. Semiconductor (Noyce) manufacturer’s
levels-of-integration versus time.

that DEC has assimilated with time. It indicates
the breadth that semiconductor manufacturers
now have in technology, starting from the semi-
conductor device level, through Noyce’s view of
the various levels-of-integration, and contin-
uing into end-user applications.

The Levels-of-Integration View can be sum-
marized as components of one level being com-
bined into a system at the next highest level in a
hierarchy. A level denotes a single conceptual
design discipline or set of interacting disciplines
which determine the function, structure, per-
formance, and cost of the constituent level.
“Level” is a deceptive word, because as Figure
8 shows, the structure is actually a lattice, or
network, style of hierarchy rather than the clas-
sical tree style of hierarchy. In Figure 8 various
standard languages can be used on any of sev-
eral different hardware/software systems,
which in turn can be implemented on several
different processors. Each processor is available
in several different boxes.

SEVEN VIEWS OF COMPUTER SYSTEMS 9

APPLICATION
LANGUAGE

HARDWARE/
SOFTWARE
SYSTEM

HARDWARE
SYSTEM

BEAVSS

L/IY/N

(J ()
—

MOS BIPOLAR

Figure 8. A computer system is a network,
not just a tree-structured hierarchy of
eight distinct levels.

VIEW 4: A MARKETPLACE VIEW OF
COMPUTER CLASSES

Because it is the complete marketplace pro-
cess that produces the computer, this view is the
most complex. In terms of marketability, a
computer can be characterized as a function of
price, performance, and time of introduction in
what might appear to be a commodity-like envi-
ronment.

Because various computers operate at differ-
ent performance rates and at various costs,
computation can be purchased in multiple
ways, and price/performance ratios will thus af-
fect marketability. For example, computation
can be supplied by a shared large, central batch
computer; each organizational entity can own

10 COMPUTER ENGINEERING

and operate a shared minicomputer; an individ-
ual can operate a single desk-top system; or
each individual can operate a programmable
calculator.

The price/performance ratio is not the sole
factor determining marketability, however.
Program compatibility with previous machines
is important. Compatibility considerations are
based on the economic necessity of using a com-
mon software base. The computer user’s invest-
ment in software dwarfs that of the computer
manufacturer, if the machine is successful. For
example, if there is only one man-year of soft-
ware investment associated with each of the
50,000 PDP-11s, and each man-year costs about
$40,000 and produces something on the order
of 5,000 instructions, there is then a cumulative
investment of $2 billion and 250 million lines of
program for the PDP-11. This investment is
roughly the same scale as the original hardware
cost.

Thus, while rapidly evolving technology per-
mits new designs to be more cost-effective —
even radical - in a price/performance sense,
there must be backward (in time) compatibility
in order to build on and preserve the user’s pro-
gram base. The user must be able to operate
programs unchanged to take advantage of the
improvements brought about by technology
changes.

In a similar way, compatibility over a range
of machines at a given time allows a user to se-
lect a machine that matches his problem set
while having the comfort that the problems can
change and there will be a sufficiently large or
small machine available to solve the new prob-
lems.

For these reasons, nearly all modern com-
puter designs are part of a compatible computer
family which extends over price and time. Tech-
nology provides basic improvements with each
new generation at approximately six-year inter-
vals, and most new designs usually provide in-
creased performance at constant price.

The influence of technology on the com-
puters that are built and taken to the market-
place is so strong that the four generations of
computers have been named after the tech-
nology of their components: vacuum-tubes,
transistors, integrated circuits (multiple transis-
tors packaged together), and large-scale in-
tegrated (LSI) circuits.

Each electronic technology has its own set of
characteristics, including cost, speed, heat dis-
sipation, packing density, and reliability, all of
which the designer must balance. These factors
combine to limit the applicability of any one
technology; typically, one technology is used
until either a limit is reached or another tech-
nology supersedes it.

Design Alternatives

When an improved basic technology becomes
available to a computer designer, there are four
paths the designs can take to incorporate the
technology:

1. Use the newer technology to build a
cheaper system with the same perform-
ance.

2. Hold the price constant and use the tech-
nological improvement to get an in-
crease in performance.

3. Push the design to the limits of the new
technology, thereby increasing both per-
formance and price.

4. Find a drastically new structure using
the computer as a basic archetype (e.g.,
calculators) such that the design can be
considered off the evolutionary path.

Figure 9 shows the trajectory of the first three
design alternatives. In general, the design alter-
natives occur in an evolutionary fashion as in
Figure 10 with a first (base) design, and sub-
sequent designs evolving from the base.

DESIGN STYLE 3

-

T_ DESIGN STYLE 2

N

PRICE

DESIGN STYLE 1

>

TIME

Figure 9. Three design styles on the
evolutionary path.

In the first design style, the performance is
held constant, and the improved technology is
used to build lower price machines which at-
tract new applications. This design style has as
its most important consequence the concept of
the minimal computer. The minimal computer
has traditionally been the vehicle for entering
new applications, since it is the smallest com-
puter that can be constructed with a given tech-
nology. Each year, as the price of the minimal
computer declines, new applications become
economically feasible.

The second, constant cost alternative uses the
improved technology to get better performance
at a constant price and will usually yield the
best increase in total system cost and effective-
ness, for reasons which will be discussed
shortly.

The third alternative is to use the new tech-
nology to build the most powerful machine pos-
sible. New designs using this alternative often
solve previously unsolved problems and, in
doing so, advance the state-of-the-art. This de-
sign alternative must be used cautiously, how-
ever, because going too far in price or
performance (i.e., building beyond the tech-
nology) is dangerous and can lead to a zero per-
formance, high-cost product. There are usually
two motivations for operating at this leading
edge: preliminary research motivated by the
knowledge that the technology will cajch up;
and national defense, where an essentially in-

SEVEN VIEWS OF COMPUTER SYSTEMS 1

L
®
.4

[s

-~
"o \
< ——

@ St @

SN,

O

™~

TIME

PRICE

Figure 10. Evolution from the base

design B.

finite amount of money is available because the
benefit — avoiding annihilation - is infinite.

Table 2 shows the effect of pursuing the two
design strategies of: (1) constant performance at
decreased price, and (2) constant price at in-
creased performance. The first column gives the
base case at a given time ¢. Because this is the
base case, the price, performance, and
price/performance ratio of the computer are all
1. As the computer is applied to a particular en-
vironment, operational overhead is added at a
cost of 2 to 4 times the original cost of the com-
puter; the total cost to operate the computer be-
comes 3 to 5 times higher, and the
performance/total cost ratio is reduced to be-
tween 0.33 and 0.2 (depending on the total
cost).

Now assume the same operating environ-
ment, with the same fixed (overhead) costs to
operate, at a new time ¢ + 1, when technology
has improved by a factor of 2. Two alternative
designs are carried out; one is at constant
price/higher performance, and the other is at
constant performance/lower price (columns 2
and 3). The application is constant in three
cases (columns 1-3), and a new application is
discovered for the fourth case (column 4). Both
the constant-cost and constant-performance de-
signs give the same basic performance/cost im-
provement - when only the cost of the
computer is considered. However, when one

12 COMPUTER ENGINEERING

Table 2. Using New Technology for Constant Price and Constant Performance Designs

Introduction Time

(generation) t t+1 t+1 t+1

Design style Base case Constant price/ Constant Constant
increased performance/ performance/
performance decreased decreased

price price

Application Base Base Base New base

Computer price 1 1 0.5 0.5

Operating costs 2-4 2-4 2-4 1-2

{range)

Total cost 3-5 3-5 25-45 1.6-2.5

Performance 1 1 1

(and improvement)

Improvement 1 1 0.83-0.9 05

{in total cost)

Performance/price 1 2 2 2

(computer only

and improvement)

Performance/ 0.33-0.2 0.66-0.4 0.4-0.22 0.66-0.4

total cost

Improvement 1 2 1.21-11 2

(in performance/total cost)

considers the high fixed overhead costs associ-
ated with the application (columns 1-3), there is
a relatively small improvement in perform-
ance/cost, although there has been a cost sav-
ings of 17 to 10 percent. The greatest gains
come in applying the computer with greater
performance and getting the attendant factor of
2 gain in performance and in price/per-
formance ratio.

To summarize, the constant price/increased
performance design style gives a better gain be-
cause operating costs remain the same. Its gain
can only be equalled by the constant-perform-
ance design style when operating costs are
halved upon its application. This only occurs
when a new application is tackled, such as that
shown in column 4.

Computer Classes

Applying the three design styles shown in
Figure 9 over several generations produces the
plot given in Figure 11. These figures lead to
one of the most interesting results of the Mar-
ketplace View, which is that computer classes
can be distinguished by price and named as fol-
lows: submicro (to come in the next generation -
say by 1980), micro, mini, midi, maxi, and super.
The classes midi and maxi are sometimes re-
ferred to by the single, nondescriptive name,
mainframe.

When one distinguishes computer classes by
price, a new range of price can be made possible
by new technology and create a new class. The

AY
AN MAXIMUM
PERFORMANCE
DESIGNS
b i el 0,
\\ \ N N LINES OF
CONSTANT
\\ \\ \\ /—-PFRFORMANCE
\ \ \ \ R
\ \ MAXI \ \
\ \. ~ \ \
\\ i q \
\
\ OPTIMUM
\ \\ \ \ COST/
\ \ \ \ PERFORMANCE
- \ \ DESIGNS
3] \ \
z \
(&4
S
MIN(MALL \
COST-BASED \
DESIGNS
t-3 t-2 t-1 t t+ 1 t+2
TIME —
Figure 11. Price versus time for each machine class.

new class appears at the low end of the price
scale where the minimal computer is introduced
at a significantly lower price level than existing
computers.

The measure used to define a new class is
price, whereas the measure defining an estab-
lished class is performance. This is because once
a new class has become established in the mar-
ketplace, the users become familiar with what
computers of that class can do for their appli-
cations and tend to characterize that class on a
performance basis. The characterization of ex-
isting classes on a performance basis is impor-
tant to this discussion because at each new
technology time, performance increases by one
category, and midi performance becomes avail-
able on a mini, for example.

SEVEN VIEWS OF COMPUTER SYSTEMS 13

The effect of technology upon computer clas-
ses can be summarized in the following thesis:

Continual application of technology via
the two major design styles results in: (1)
price declines creating new classes of
computers, (2) new classes becoming es-
tablished classes, and (3) established
classes being encroached upon.

Some question may arise as to how much of a
price reduction is necessary to create a new
class. The continuity implied by the thesis is de-
ceptive in that it suggests that new classes come
about by the continual application of the con-
stant performance/decreasing cost style of de-
sign. Viewing the industry as a whole, this is
true. However, a new class is usually not cre-
ated by the same organization that is designing
computers in existing classes. A new company,
or new organization within a company, is usu-
ally required to provide the requisite fresh view-
point needed to create a new class. It is the fresh
viewpoint and not some arbitrary amount of
price reduction that creates a new class.

For both the minicomputer and micro-
computer, a fresh organization broke out. A
fresh viewpoint was needed because existing or-
ganizations, like most human organizations, act
to preserve the status quo, and adopt the in-
creased performance/constant price design al-
ternative for the existing customer base, as
indicated by the analysis given in the discussion
of Table 2. A new organization with a fresh
viewpoint goes after new applications and new
customers with a new minimal computer that
establishes a new class.

As a by-product of the use of new tech-
nology, conflicts occur within the established
computer classes. An established computer
class, which is defined on the basis of perform-
ance, is encroached upon by constant
cost/higher performance successors from the
class below it. Moreover, suppliers within a
class are, by their dominant constant

14 COMPUTER ENGINEERING

price/higher performance evolution, operating
to move up out of their class.

While movement by computer designs and
computer suppliers between and among the var-
ious classes may be encouraged by price and
performance trends, the speed with which that
movement occurs is moderated by the software
compatibility considerations discussed earlier.
The computer class thesis is not meant to imply
that each class implements the same instruction
set processor and processor-memory-switch
configurations with the only difference being
speed. Rather, much specialization occurs in
each class, and many of the attributes of the
higher performance machines appear in sub-
stantially less degree in the lower performance
classes. For example, there are more data-types
in the larger machines, their address spaces
(both physical and virtual) are larger, and the
software support is generally broader. Re-
sources devoted to increasing reliability and
availability are more common in the higher
priced machines. The PDP-11 Family, from the
LSI-11 up to the VAX-11/780, exemplifies
these functionality differences.

Definition of the Minicomputer

The concept of computer classes that can be
distinguished by price and named submicro, mi-
cro, mini, midi, maxi, and super may be of as-
sistance in finding a definition for the
minicomputer, a definition which has thus far
been rather elusive. While the classes suggest
that minicomputers are those computers whose
prices fall between microcomputers and midi-
computers, and thus somewhere near the
middle of the range of computers available, ear-
lier definitions [Bell and Newell, 1971a] use the
term mini to denote minimal.

The Marketplace View defines new computer
classes according to price and established com-
puter classes according to performance. This
wouid suggest that a definition of the mini-
computer should include some historical data

on price and some comments on performance,
or at least some indication of performance by a
discussion of applications and configurations.
In 1977 Gordon Bell provided such a hybrid
definition for the Director of Computer Re-
sources, U. S. Air Force. The definition was as
follows:

MINICOMPUTER: A computer
originating in the early 1960s and predi-
cated on being the lowest (minimum)
priced computer built with current tech-
nology. From this origin, at prices rang-
ing from 50 to 100 thousand dollars, the
computer has evolved both at a price re-
duction rate of 20 percent per year and
has also evolved to have increased func-
tionality and a slightly higher price with
increasing functionality and perform-
ance.

Minicomputers are integrated into
systems requiring direct human and pro-
cess interaction on a dedicated basis (ver-
sus being configured with a structure to
solve a wide set of problems on a highly
general basis).

Minicomputers are produced and dis-
tributed in a variety of ways and levels-
of-integration from: printed circuit
boards containing the electronics; to
boxes which hold the processor, primary
memory, and interfaces to other equip-
ment; to complete systems with periph-
erals oriented to solving a particular
application(s) problem. The price
range(s) for the above levels-of-in-
tegration, in 1978, are roughly: 500 to
2,000; 2,000 to 50,000; and 5,000 to
250,000.

This discussion of the Marketplace View has
been a qualitative explanation of the effect of
technology on the computer industry. It is an
engineering view, rather than one that would be
given by technology historians or economists.
The 20 years described in this book and the in-
dividual cost and performance measures surely
invite analysis by professionals. The studies re-
ported in Phister [1976] and Sharpe [1969] are a
good departure point.

VIEW 5: AN APPLICATIONS/
FUNCTIONAL VIEW OF COMPUTER
CLASSES

Because of the general purpose nature of
computers, all of the functional specialization
occurs at the time of programming rather than
at the time of design. As a result, there is re-
markably little shaping of computer structure
to fit the function to be performed.

The shaping that does take place uses four
primary techniques.

1. PMS level configuration. A con-
figuration is chosen to match the func-
tion to be performed. The user (designer)
chooses the amount of primary memory,
the number and types of secondary
memory, the types of switches, and the
number and types of transducers to suit
his particular application.

2. Physical packaging. Special environmen-
tal packaging is used to specialize a com-
puter system for certain environments,
such as factory floor, submarine, or
aerospace applications.

3. Data-type emphasis. Computers are de-
signed with data-types (and operations
to match) that are appropriate to their
tasks. Some emphasize floating-point
arithmetic, others string handling. Spe-
cial-purpose processors, such as Fast
Fourier Transform processors, belong in
this category also.

4. Operating system. The generality of the
computer is used to program operating
systems that emphasize batch, time shar-
ing, real-time, or transacting processing
needs.

Current Dimensions of Use

In the early days of computers, there were
just two classifications of computer use: scien-
tific and commercial. By the early 1970s, com-
puter use had diversified to seven different

SEVEN VIEWS OF COMPUTER SYSTEMS 15

functional segmentations: scientific, business,
control, communication, file control, terminal,
and timesharing. Since that time, very little has
changed in terms of functional characterization,
but two points are worthy of mention. First, file
conitrol computers stiii have not materialized as
mainstream separate functional entities, despite
isolated cases such as the IBM 3850 Mass Stor-
age System; second, terminal computers have
evolved to a much higher degree than expected.

The high degree of evolution in terminals has
been due to the use of microprocessors as con-
trol elements, thus providing every terminal
with a stored program computer. Given this
generality, it has been simple to provide the ter-
minal user with facilities to write programs. In
turn, this phenomenon has affected the evolu-
tion of timesharing (when using the term to de-
note close man-machine interaction as opposed
to shared use of an expensive resource).

Functional segmentation into categories with
labels such as business, control, communication,
and file control reflects a naming convention
rooted in the old two-category scien-
tific/commercial tradition. An alternative clas-
sification, more useful today, is the
segmentation scheme shown in Table 3. It is
based on the intellectual disciplines and envi-
ronment (e.g., home based) that use and de-
velop the computer systems. It shows the
evolving structures in each of the disciplines,
permitting one to see that nearly all the environ-
ments evolve to provide some form of direct,
interactive use in a multiprogrammed environ-
ment. The structures that interconnect to me-
chanical processes are predominately for
manufacturing control. Other environments,
such as transportation, are also basically real-
time control. Another feature of discipline-
based functional segmentation is that each of
the disciplines operates on different symbols.
For example, commercial (or financial) envi-
ronments hold records of identifier names for
entities (e.g., part number) and numbers which
are values for the entity (e.g., cost, number in
inventory).

16 COMPUTER ENGINEERING

Table 3. Discipline/Environment-Based
Functional Segmentation Scheme

Commercial environment

e Financial control for industry, retail/wholesale. and
distribution

¢ Billing, inventory, payroll, accounts receivable/

payable

Records storage and processing

Traditional batch data entry

Transaction processing against data base

Business analysis {includes calculators)*

e o o o

Scientific, engineering, and design

e Numbers, algorithms, symbols, text, graphs, storage.
and processing

Traditional batch computation*

Data acquisition

Interactive problem solving*

Real time {includes calculators and text processing)
Signal and image processing*

Data base {notebooks and records)

e e o o o o

Manufacturing

Record storage and processing
Batch*”

Data logging and alarm checking
Continuous real-time control
Discrete real-time control
Machine based

People/parts flow

Communications and publishing

Message switching

Front-end processing

Store and forward networks

Speech input/output

Terminals and systems

Word processing. including computer conferencing
and publishing

Transportation systems
* Network flow control
¢ On-board control

Education

* Computer-assisted instruction

* Algorithms, symbols, text storage, and processing
¢ Drill and practice

* Library storage

Home using television set
* Entertainment, record keeping, instruction, data base
access

*Implies continuous program development

The scientific, engineering, and design dis-
ciplines use various algorithms for deriving
symbols or evaluating values. Texts, graphs,
and diagrams, the major ways of representing
objects, have to be processed. For these envi-
ronments, the computer has changed from a
calculator (it was initially funded to do tra-
jectory calculations for ballistic weapons) to a
sophisticated notebook for keeping specifica-
tions, designs, and scientific records. Whereas
the minicomputer was initially only used as a
transducer to collect data to be analyzed on
larger machines, it has since evolved to direct
recording and analysis of time-varying signals
and images and even to direct analysis and con-
trol. With minicomputers taking on such addi-
tional capabilities, connections to larger
computers are used solely in a network fashion
to handle graphic display and control functions.

The function of computers in both the manu-
facturing and the commercial environments has
evolved from simple record keeping to direct
on-line human control.

Process control computers have evolved from
their initial use of assisting human operators
(controllers) with data logging and alarm condi-
tion monitoring to full control of processes with
either human or secondary computer backup.
The structure of the computer and the control
task vary widely depending on whether the pro-
cess is continuous (e.g., refinery, rolling mill) or
discrete (e.g., warehouse, automotive, appliance
manufacturing).

Transportation applications for aircraft,
trains, and eventually automotive vehicles are
forms of real-time control that use both discrete
and continuous control. Control is carried out
in two parts: on board the vehicle and in the
network (airspace, highway) that carries the ve-
hicles. The transportation control function dic-
tates three unique characteristics for the
computer structure: ’

1. Very high reliability. Society has placed
such a high value on a single human life

that all computers in this environmen
cannot appreciably raise the likelihood
of a fatality.
2. Very small size for on-board computers.
3. Extreme operating and storage temper-
ature range for on-board computers - es-
pecially for automotive vehicles.

Communications and message-based com-
puters have evolved from telephone switching
control, message switching, and front ends to
other computers to become the dominant part
of communications systems. With these evolv-
ing systems, the communications links have
changed from analog-based transmission to
sampled-data, digital transmission. By using
digital transmission, data and voice (and video)
can ultimately be used in the same system.

Word processing (i.e., creation, editing, and
reproduction) together with long term storage
and retrieval and transmission to other sites
(i.e., electronic mail) have evolved from several
systems:

1. Conventional teletypewriter messages
and torn-tape message switching (e.g.,
TWX, Western Union, Telex).

2. Terminals with local storage and editing
(e.g., Flexowriters, Teletype (with paper
tape reader and punch), magnetic card/
magnetic tape automatic typewriters,
and the evolving stand-alone word pro-
cessing terminals for office use).

3. Large, shared text preparation systems
for centralized documentation prepara-
tion, newspaper publication, etc.

4. Large systems with central filing and
transmission (distribution). These will
negate the need for substantial hard
copy. With these systems, text can be
prepared either centrally with the system
or with local intelligent word processing
systems.

5. Computer conferencing. People can sit
at terminals and converse with others
without leaving their office.

SEVEN VIEWS OF COMPUTER SYSTEMS 17

The education-based environment implies a
system which is a combination of transaction
processing (for the human interaction part), sci-
entific computation as the computer is required
to simulate real world conditions (i.e., phys-
ical/natural phenomena), and information re-
trieval from a data base. These systems are
evolving from the simple drill-and-practice sys-
tems which use a small simple algorithm,
through simulation of particular real world
phenomena, to knowledge-based systems which
have a limited, but useful, natural language
communications capability.

Home-based computers are beginning to
emerge. The dominant use to date is in provid-
ing entertainment in the form of games that
model simple, real world phenomena, such as
ping-pong. Appliances are beginning to have
embedded computers that have particular
knowledge of their environments. For example,
computer-controlled ranges can cook in fairly
standard ways. Alternatively, cooking can be
controlled by embedded temperature sensors.
Simple calculators to record checkbooks have
existed for quite some time. These will soon
evolve to provide written transactions for re-
cording and control purposes. Many domestic
activities are in essence scaled-down versions of
commercial, scientific, educational, and mes-
sage environments.

With the evolution of each computer class,
one can see several cases of machine structures
which begin as highly specialized and evolve to
being quite general. This evolution is driven by
applications in accordance with the Appli-
cations/Functional View of Computer Classes.

The applications-driven evolution toward
generality applies to both hardware and soft-
ware. As a hardware example, consider the case
of a computer installations using large, highly
general computers, where minicomputers are
applied to offload the large computers. The first
application of the minicomputer is thus on a
well-defined problem, but then more problems
are added, and the minicomputer system is soon

18 COMPUTER ENGINEERING

performing as a general computation facility
with the help of a general purpose operating
system. A similar effect occurs in software,
where operating systems take on multiple func-
tions as they evolve with time because users
specify additional needs, and operating systems
designers like to add function. Thus, a COBOL
run-time environment might be added to a
simple FORTRAN-based real-time operating
system. At the next stage, a comprehensive file
system might be added. In the hardware system,
the next step in the evolution is usually offload-
ing the minicomputer; in the software case, the
next step is often the development of a new
small, simple, and fast operating system.

Part of this evolution is due to the inherent
generality of a computer, and part is a con-
sequence of constant-cost design philosophy.
The evolution is observable in computers of all
classes, including calculators. The early scien-
tific calculators evolved from just having logs,
exponentials, and transcendental functions to
include statistical analysis, curve fitting, vec-
tors, and matrices.

Machines, then, evolve to carry out more and
more functions. Since a prime discriminant is
data-type, Figure 12 is presented to show an es-
timate of data-type usage for various appli-
cations, using mostly high level data-types, e.g.,
process descriptions. The estimates shown are
very rough, because attempts to measure such
distributions to date have not shown marked
differences across applications (except for nu-
merical versus non-numerical) because the
data-types have not been of a sufficiently high
level.

VIEW 6: THE PRACTICE OF DESIGN

Whereas previous views emphasized the ob-
ject being designed, this is a view of the design
process which gives rise to the object. Two
models of design, those of Asimow and Simon,
are presented, followed by some remarks on
factors that particularly influence computer de-
sign.

<o
3 ~
F S A & S &
4 &8 Q9 & T4 S
& o & &8 N & O &
& N <0 Q
&& ([N§ N & <

NUMERICAL COMPUTATION

1 —

WORD PROCESSING

I —
COMMUNICATIONS
—
PROGRAM DEVELOPMENT
REAL-TIME PROCESS CONTROL
TRANSACJTION PROCESSING l
I

Figure 12. Data-type usage by application.

In Introduction to Design [1962], Asimow
gives a general perspective of engineering design
and how the formal alternative generators and
evaluating procedures are used. He also in-
dicates where these formalisms break down and
where they do not apply. He defines engineering
design as an activity directed toward fulfilling
human needs, based on the technology of our
culture.

Asimow distinguishes two types of design:
design by evolution and design by innovation.

GENERAL
PRINCIPLE

COURSE OF
EVALUATIVE ACTION
FUNCTION
|

FEEDBACK |

DISCIPLINE
OF DESIGN

,INFORMATION - == an J——~

asouta 1 { AearTICULAR DESIGN)

\PA;;'IS(IJIGJ'L‘AN L
\s’/

Figure 13. Philosophy of design. The feedback be-

comes operable when a solution is judged to be in-
adequate and requires improvement. The dotted
elements represent a particular application [Asimow,
1962:5].

While there are examples of both in this book,
design by evolution predominates both in this
book and in the computer industry. Asimow’s
first diagram (Figure 13), called Philosophy of
Design, shows the basic design process. Asi-
mow lists the following principles [Asimow,
1962: 5-6].

1. Need. Design must be a response to indi-
vidual or social needs which can be satis-
fied by the technological factors of
culture.

2. Physical realizability. The object of a de-
sign is a material good or service which
must be physically realizable.

3. Economic worthwhileness. The good or
service, described by a design, must have
a utility to the consumer that equals or
exceeds the sum of the proper costs of
making it available to him.

4. Financial feasibility. The operations of
designing, producing, and distributing
the good must be financially suppor-
table.

5. Optimality. The choice of a design con-
cept must be optimal among the avail-
able alternatives; the selection of a

10.

L1

12.

13.

SEVEN VIEWS OF COMPUTER SYSTEMS 19

manifestation of the chosen design con-
cept must be optimal among all per-
missible manifestations.

Design criterion. Optimality must be es-
tablished relative to a design criterion
which represents the designer’s com-
promise among possibly conflicting
value judgments that include those of the
consumer, the producer, the distributor,
and his own.

Morphology. Design is a progression
from the abstract to the concrete. (This
gives a vertical structure to a design proj-
ect.)

Design process. Design is an iterative
problem-solving process. (This gives a
horizontal structure to each design step.)

Subproblems. In attending to the solu-
tion of a design problem, there is uncov-
ered a substratum of subproblems; the
solution of the original problem is de-
pendent on the solution of the sub-
problem.

Reduction of uncertainty. Design is a pro-
cessing of information that results in a
transition from uncertainty about the
success or failure of a design toward cer-
tainty.

Economic worth of evidence. Information
and its processing has a cost which must
be balanced by the worth of the evidence
bearing on the success or failure of the
design.

Bases for decision. A design project (or
subprobject) is terminated whenever
confidence in its failure is sufficient to
warrant its abandonment, or is contin-
ued when confidence in an available de-
sign solution is high enough to warrant
the commitment of resources necessary
for the next phase.

Minimum commitment. In the solution of
a design problem at any stage of the pro-
cess, commitments which will fix future

20 COMPUTER ENGINEERING

design decisions must not be made be-
yond what is necessary to execute the im-
mediate solution. This will allow the
maximum freedom in finding solutions
to subproblems at the lower levels of de-
sign.

14. Communication. A design is a descrip-
tion of an object and a prescription for
its production; therefore, it will have ex-
istence to the extent that it is expressed
in the available modes of commu-
nication.

Asimow goes on to define the phases of a
complete project.

1. Feasibility study. The purpose is to deter-
mine some useful solutions to the design
problem. It also allows the problem to
be fully defined and tests whether the
original need which initiated the process
can be realized. Here the general design
principles are formulated and tested.

2. Preliminary design. This is the sifting,
from all possible alternatives, to find a
useful alternative on which the detailed
design is based.

3. Detailed design. This furnishes the engi-
neering description of a tested and pro-
ducible design.

While the above are the primary design
phases, there are four succeeding phases result-
ing from the need for production and con-
sumption by the outside world.

4. Planning the production process. This is
really another design process which is
simply a special case of design. The goal
is to design and build the system that will
produce the object.

5. Planning for distribution. This activity in-
cludes all aspects related to sales, ship-
ping, warehousing, promotion, and
display of the product.

6. Planning for consumption. This includes
maintenance, reliability, safety, use, aes-
thetics, operational economy, and the
base for enhancements to extend the
product life.

7. Retirement of the product.

Obviously all of these activities overlap one
another in time and interact as the basic design
is carried out. Phister [1976] posits a model of
this process (Figures 14 and 15) and gives the
amount of time spent in each activity (Figure
16) for a hardware product.

Simon uses a more abstract model of design
for human problem solving, which he calls gen-
erate and test. In The Sciences of the Artificial,
Simon [1969] discusses the science of design and
breaks the problem into representing the design
problem alternatives, searching (i.e., generating
alternatives), and computing the optimum.
When it is too expensive to search for the opti-
mum, as is often the case, satisfactory alterna-
tives (which Simon calls satisficing alternatives)
must be selected and tested. For most parts of
computer design, the design variables are se-
lected on the basis of satisfactory rather than
optimal choice. Simon also discusses the tools

TECHNOLOGY DEVELOPMENT '

TECHNOLOGY
SPECIFICATION

C PLANNING
PRODUCT
SPECIFICATION
‘ PRODUCT DEVELOPMENT)

MARKETING

| |
o 1 2 3 4
TIME (YEARS)

Figure 14. Hardware product development
schedule |, comprehensive view [Phister, 1976].

i TECHNOLOGY DEVELOPMENT '

CIRCUIT
Logic REQUIREMENTS
SPECIFI- CIRCUIT
PRODUCT
CATIONS
DESIGN VERIFICATION
DETAILED DESIGN TEST j
H
R ED ..
PRODUCT L] LN (XL
SPECIFI-
CATIONS
y
PROJECT DOCUMENTATION }
PLAN
LN}
.o
PROTOTYPE
DEVELOPMENT CONSTRUCTION
———— ———— - o - — o o -
MANUFACTURING o e o
PURCHASING ‘ PILOT RUN
-
REWORK
1
L 1] | 1 I J
0 3 6 9 12 15 18 21 24
TIME (MONTHS)
Figure 15. Hardware product development schedule Il,

development organization details [Phister, 1976}.

DIAGNOSTICS (26%) PRODUCT

VERIFICATION

DETAILED DESIGN
(33%)

ENGINEERS ASSIGNED

DOCUMENTATION

SYSTEM

D MENTATI
DESIGN. OCUMEN ON

{16%)

-1"”"
X | 1]
] 4 8 12 16 20 24
ELAPSED TIME FROM START OF PROJECT (MONTHS)
PROJECT
PLANNING
NOTE:
Excludes 40 m of technology engineering
to develop ten plug-in dul
Figure 16. Hardware development costs for developing

a $50,000 processor in 1974 [Phister, 1976].

SEVEN VIEWS OF COMPUTER SYSTEMS 21

of design, including the use of simulation both
as an alternative to building the complete sys-
tem and as a method to evaluate the behavior of
various alternatives.

In addition to his contribution of the gener-
ate and test design model to the Practice of De-
sign View, Simon’s work has also contributed
indirectly to the first three views discussed ear-
lier in the chapter. In his discussion of the im-
portance of the design hierarchy, Simon
introduced the notion of architecture of com-
plexity.

In the search for design optima, whether it be
by generate and test or some other algorithm,
the problem of design representation is often
encountered. The more representations one has,
the larger the number of design problems that
can be tackled and, hence, the closer one can get
to a global optimum. Most disciplines have at
least two representations: schematic and visual.
In chemical engineering, heat balance is ob-
tained by thermodynamic equations, not from a
plant piping diagram. In the design of power
supplies, transformer design is accomplished
using equivalent circuits, not by using physical
representations. In the design of computer
buses, most designers work with timing dia-
grams, although state diagrams and Petri nets
are alternative representations.

In general, the importance of alternative rep-
resentations in computer engineering is not well
understood. The large number of representa-
tions that exist at the programming level is de-
ceptive. There are many different algorithmic
languages, but they differ mostly in syntax, not
in semantics.

It is too simplistic to think that computer de-
sign should be a well-defined activity in which
mathematical programming can be employed to
obtain optimum solutions. There are major
problems, five of which are listed below:

1. The cost function is multivariable.
2. The primary measure, performance, is
not well understood.

22

COMPUTER ENGINEERING

The objective function that relates cost

and performance is not understood.

Objectives are not as objective as they

look.

There is a dynamic aspect (because the
technology changes rapidly) which is

hard to quantify.

These problems are explored in the following
extract from a discussion of design given in Bell

et al., [1972a:23-24].

Objectives can often be stated as max-
imizing or minimizing some measure on
a system. A system should be as reliable
as possible, as cheap as possible, as small
as possible, as fast as possible, as general
as possible. as simple as possible, as easy
to construct and debug as possible, as
easy to maintain as possible - and so on,
if there are any system virtues that have
been left out.

There are two deficiencies with such
an enumeration. First, one cannot, in
general, maximize all these aspects at
once. The fastest system is not the
cheapest system. Neither is it the most
reliable. The most general system is not
the simplest. The easiest to construct is
not the smallest, and so on. Thus, the
objectives for a system must be traded
off against each other. More of one is
less of another and one must decide
which of all these desirables one wants
most and to what degree.

The second deficiency is that each of
these objectives is not so objective as it
looks. Each must be measured, and for
complex systems there is no single satis-
factory measurement. Even for some-
thing as standardized as costs there are
difficulties. Is it the cost of the materials
- the components? Does one use a listed
retail cost or a negotiated cost based on
volume order? What about the cost of
assembly? And should this be measured
for the first item to be built, or for sub-
sequent items if there are to be several?
What about the costs of design? That is
particularly tricky, since the act of de-
signing to minimize costs itseif costs

money. What about cost measured in
the time to produce the equipment?
What about the cost of revising the de-
sign if it isn’t right; this is a cost that may
or may not occur. How does one assign
overhead or indirect costs? And so on.
In a completely particular situation one
can imagine an omniscient designer
knowing exactly which of these costs
count and being able to put dollar fig-
ures on each to reduce them all to a com-
mon denominator. In fact, no one
knows that much about the world they
live in and what they care about.

The dilemma is real: there is no reduc-
ing the evaluation of performance in the
world to a few simple numbers. The so-
lution is to understand what systems ob-
jectives are: they are guides to
understanding and assessing system be-
havior in various partial aspects. Vari-
ous measures for each type of objective
are developed, and each shows some-
thing useful. Since all measures are par-
tial and approximate (even
conceptually), rough and ready mea-
sures that are easy to make, display and
understand are often to be preferred to
more exact and complex measures.
Standard measures are to be developed
and used, even if not perfect. Experience
with how a measure behaves on many
systems is often to be preferred to a bet-
ter, but unique, measure with which no
experience exists.

Although this book does not systematically
treat all the different system measures, many of
them are illustrated throughout the book. Table
4 provides a guideline, listing in one place the
components that contribute to overall cost and
performance.

The following list points out some tradeoffs,
taken from experience, among the various ac-
tivities.

System Cost Versus Component Cost.
DEC sells products at each of the packaging
levels-of-integration - from chips to turnkey ap-
plication systems. Because each product is con-
structed from lower packaged levels, and
because the levels model (View 3: Packaging

Table 4. Cost and Performance Components
for a System [Bell et al., 1972a:24]

Cost Components

Arising from the design effort

* Specifying

Designing {drawing. checking, verifying)
Prototyping

Packaging design

Describing (documenting)

Production system design
Standardizing

Arising from production
* Buying (parts)

¢ Assembling

¢ Inspecting

e Testing

Arising from selling and distribution
¢ Understanding

Configuring (i.e., user designing)
Purchasing

Applying

Operating in the environment (heat, humidity, vibra-
tion, color, power, space)
Repairing

Remodeling

Redesigning

Retiring

Performance Components
Arising from designing, producing, and selling environ-
ment
* For a single task
e For a set of tasks
operation times
operation rate
memory size and utilization

* Reliability, availability, maintainability, and error rate
mean time between failures (MTBF)
availability (percent)
mean time to repair (MTTR)
error rate {(detected, undetected)

Levels-of-Integration) strictly applies, it is very
difficult to have designs that are optimally com-
petitive at every level. For example, if DEC sold
just hardware systems (cabinet level) it would
not need a boxed version of its central proces-

SEVEN VIEWS OF COMPUTER SYSTEMS 23

sors. The box level couid then be deleted and
the price of the systems product would be pro-
portionately lower. When primitives are to be
used as building blocks, there is a cost associ-
ated with providing generality. For example,
some boxes have too much power for most of
their final applications because the powering
was designed for the worst possible con-
figuration of modules within the box. (Some
boxes have too little power because increased
logic density was accompanied by increased
power density, permitting new worst-case con-
figurations in existing boxes.)

Initial Sales Price Versus User Life Cycle
Cost. There is a cost associated with parts that
break and have to be repaired and maintained.
Nearly every part of the computer can be im-
proved over a range of a maximum of a factor
of 10 to provide increased reliability (extended
mean time between failure) for a price. To the
extent that these costs are added, the product
will be less competitive in terms of a higher pur-
chase price. However, if the total life cycle costs
are considered, the product may still be better
even at the higher initial cost.

Reliability, Availability, Maintainability
(and Producibility) Versus Performance. By
designing to take advantage of the fastest com-
ponents and operating them at the limit of their
capability, one is able to have increased per-
formance. In doing so, the tradeoff is clear: pro-
ducibility, reliability (error rate), and
maintainability (ease of fixing) all generally suf-
fer.

Performance Versus Cost. This is the most
traditional design tradeoff. In addition to the
conventional product selection, the planning of
a computer family further increases the selec-
tion/tradeoff process.

Early Shipment Versus Product Life and
Quality. Delivering products before they are
fully engineered for manufacture is risky. If
faults are found that have to be corrected in the
factory or field, the cost far outweighs any early
product availability.

24 COMPUTER ENGINEERING

Length of Time to Design Versus Product
Life. By allowing more time for design, a prod-
uct can be designed in such a way that it is eas-
ier to enhance. On the other hand, if
prospective customers, especially new custom-
ers, are faced with a choice between the com-
petitor’s available nonoptimum product and
your unavailable optimum product, they may
not be willing to wait.

Operating Environment Versus Cost. Here
there are numerous tradeoffs even within a con-
ventional environment. In each of the packag-
ing dimensions (heat, humidity, altitude, dust,
electromagnetic interface (EMI), etc.), there are
similar tradeoffs that may appeal to unique
markets or may simply translate to increased re-
liability in a given setting. The Norden 11/34M
is an example of packaging to provide a PDP-11
for the aerospace environment.

The principles of computer design and the
optimization efforts associated with those prin-
ciples are parts of computer science and elec-
trical engineering, the responsible disciplines.
From computer science come many of the tech-
nical aspects (such as instruction set archi-
tecture), much of the theory (such as algorithms
and computational complexity), and almost all
of the software design (such as operating sys-
tems and language translators) applied in the

Table 5. Vonada’s Engineering Maxims

practice of computer engineering. However, in
their construction, computers are electrical; and
the discipline that has fundamental responsi-
bility is electrical engineering. Thus, discussion
of the Practice of Design View concludes with
Table 5, a set of maxims compiled by Don Vo-
nada, an experienced DEC engineer. Many
other engineers in many other companies have
developed similar sets of maxims.

VIEW 7: THE BLAAUW
CHARACTERIZATION OF COMPUTER
DESIGN

Another view is based on the work of Blaauw
[1970]. He distinguishes between architecture,
implementation, and realization as three sepa-
rable levels in the construction of anything, in-
cluding computer structures.

The architecture of a computer system de-
fines its functionality (behavior) as it appears to
the machine level programmer and can be char-
acterized by the instruction set processor (ISP).
The implementation of a computer system is the
actual hardware structure - the register transfer
(RT) level behavior and data-flow organization.
This also includes various algorithms for con-
trolling a machine as it interprets an archi-
tecture. Realization encompasses the actual

There is no such thing as ground.
Digital circuits are made from analog parts.
Prototype designs always work.

RN ARWN=

Asserted timing conditions are designed first; unasserted timing conditions are found later.
When all but one wire in a group of wires switch, that one will switch also.

When all but one gate in a module switches, that one will switch also.

Every little pico farad has a nano henry all its own.

Capacitors convert voltage glitches to current glitches (conservation of energy).
Interconnecting wires are probably transmission lines.

10. Synchronizing circuits may take forever to make a decision.

11. Worse-case tolerances never add — but when they do, they are found in the best customer’s machine.
12. Diagnostics are highly efficient in finding solved problems.

13. Processing systems are only partially tested since it is impractical to simulate all possible machine states.
14. Murphy's Laws apply 95 percent of the time. The other 5 percent of the time is a coffee break.

technologies used and includes the kind of logic
and how it is packaged and interconnected. Re-
alization includes all the details associated with
the physical aspects of the machine.

Modern architectures (ISPs) usually have
multiple (RT) implementations. For example,
the LSI-11, PDP-11/40, and PDP-11/60 are dif-
ferent implementations of the same basic PDP-
11 instruction set. Sometimes, although rarely,
a particular implementation has more than one
realization. For example, the IBM 7090 has the
same architecture and implementation (i.e., the
same ISP and RT structure) as the IBM 709.
The difference lies in realization: the 709 used
vacuum tubes, the 7090 transistors. For a more
recent example, two models of the PDP-11 ar-
chitecture that share the same implementation
are the DEC PDP-11/34 and Norden’s
11/34M. The realization differs, however, as
the latter uses militarized semiconductor com-
ponents and component mountings, and a dif-
ferent packaging and cooling system. Table 6
attempts to clarify the distinguishing character-
istics of architecture, implementation, and reali-
zation.

Table 6.
in preparation: Chapter 1]

SEVEN VIEWS OF COMPUTER SYSTEMS 25

This book concentrates on the realization
and implementation columns in Table 6. In-
struction set architecture is discussed only in-
sofar as it interacts with the other two
chara@teristics. There are also some differences
between the views of Blaauw and Brooks [in
preparation] and those expressed in this book.
It is important to try to reconcile these differen-
ces, because everyone engaged in computer en-
gineering uses the words ‘‘architecture,”
“implementation,” and ‘realization” - quite
often to mean different things. This book will
not limit the definition of architecture to just a
machine as seen by a machine language pro-
grammer. Instead, it will use architecture to
mean the ISP associated with any of the ma-
chine levels described in View 2, Levels-of-In-
terpreters. Therefore, architecture standing
alone will mean the machine language, the ISP.
This book will also use architecture of the micro-
programmed machine as seen by a micro-
programmed machine’s microprogrammer,
architecture of the operating system as the com-
bined machine of operating system and ma-
chine language, and architecture of a language

Characteristics of Design Areas [Blaauw and Brooks,

Architecture Implementation Realization
Purpose Function Cost and Buildable and
performance maintainable
Product Principles of Logic design Release to
operation manufacturing
Language Written Block diagram, Lists and
algorithms expressions diagrams
Quality Consistency Broad scope Reliability
measure
Meanings ISP RT level machine: Physical
(used herein) Machine ISP microprogrammed realization;
sequential machine physical

(at logic level)

implementation

26 COMPUTER ENGINEERING

for each language machine. For example, AL-
GOL, APL, BASIC, COBOL, and FORTRAN
all have as separate and distinct architectures as
a PDP-10 and a PDP-11 do. This use of archi-
tecture, because it describes behavior, is quite
consistent with that of Blaauw. Moreover,
when applied to software structures, Blaauw’s
framework fits well. There are two implementa-
tions, FORTRAN IV-PLUS (an optimizing
compiler) and the initial FORTRAN IV of the
one ANSI FORTRAN architecture. Moreover,
different implementations use different realiza-
tion techniques: some use BLISS, others use as-
sembler language.

Although Blaauw and Brooks define imple-
mentation and realization clearly, these defini-
tions are not widely used. The main problem is
that both terms are sensitive to technology
changes and, hence, interact closely. Computer
engineers tend to overuse and intermix them so
that the two words are used interchangeably.
This is reflected in this book, where they are
used to have roughly the same meaning (e.g.,
“The KI10 processor for the PDP-10 was im-
plemented using high-speed (H-Series) transis-
tor-transistor logic.””). In Table 6, definitions
are given for the two words so that the reader
may further relate descriptions back to these
definitions. “Implementation™ is the register
transfer level machine, roughly the micro-

programmed machine; ‘‘realization” is the
physical realization, the physical implementa-
tion in terms of packaging and technology.

The most useful distinction is between archi-
tecture, on the one hand, and implementation
(subsuming realization), on the other. Seeing
the distinction clearly enables one to preserve
architectural compatibility between machine
models, and this is crucial if users’ and manu-
facturers’ software investments are to be pre-
served. Implementation can then be as dynamic
as desired, being continually changed by tech-
nology. Architecture must remain static for
long periods (10 years is a common goal).

In 1949 Maurice Wilkes, only one month af-
ter his EDSAC computer was operational and
before any stored program computers in the
United States were operating, had already per-
ceived the value in having a series, or set, of
computers share the same instruction set:

When a machine was finished, and a
number of subroutines were in use, the
order code could not be altered without
causing a good deal of trouble. There
would be almost as much capital sunk in
the library of subroutines as the machine
itself, and builders of new machines in
the future might wish to make use of the
same order code as an existing machine
in order that the subroutines could be
taken over without modification.

It is customary when reviewing the history of
an industry to ascribe events to either market
pull or technology push. The history of the auto
industry contains many good examples of mar-
ket pull, such as the trends toward large cars,
small cars, tail fins, and hood ornaments. The
history of the computer industry, on the other
hand, is almost solely one of technology push.

Technology push in the computer industry
has been strongest in the areas of logic and
memory, as the case studies in the following
chapters indicate. Where the following chapters
give examples of the effects of the technology
push in these areas, this chapter explores indi-
vidual elements of that push, with particular
emphasis on the role of semiconductors.

Semiconductor devices are discussed from
the viewpoint of the user because, until recently,
DEC has always bought its semiconductors (es-
pecially integrated circuits) from semiconductor
manufacturers, and its engineers (users of in-
tegrated circuits) have viewed the integrated cir-
cuit as a black box with a carefully defined set
of electrical and functional parameters. Most
design engineers will probably continue to hold
that view (and be encouraged to do so), even

Technology Progress in
Logic and Memories

C. GORDON BELL, J. CRAIG MUDGE,
and JOHN E. McNAMARA

though some integrated circuits will be supplied
by an in-house design and manufacturing facil-
ity. The advantages and disadvantages of in-
house integrated circuit design will be discussed
later in the chapter.

The portion of the discussion dealing with
semiconductors begins by presenting a family
tree of the possible technologies, arranged ac-
cording to the function each carries out and
showing how these have evolved over the last
two or three generations to affect computer en-
gineering. The cost, density, performance, and
reliability parameters are briefly reviewed; the
application of semiconductors, using various
logic design methods, is then discussed with
particular emphasis on how the semiconductor
technology has pushed the design methods.

The discussion of the use of semiconductors
in logic applications is followed by a section on
memories for primary, secondary, and tertiary
storage. While semiconductors have been a
dominant factor in technology push within the
computer industry. for both logic and memory
applications, magnetic recording density on
disks and tapes has evolved rapidly, too, and
must be understood as a component of cost and
as a limit of system performance.

27

28 COMPUTER ENGINEERING

The section on memory is followed by a sec-
tion containing some general observations
about technology evolution: how technology is
measured, why it evolves (or does not), cases of
it being overthrown, and a general model for
how its use in computers operates and is man-
aged.

SEMICONDUCTOR LOGIC TECHNOLOGY

A single transistor circuit performing a primi-
tive logic function within an integrated circuit is
among the smallest and most complex of man-
made objects. Alone, such a circuit is in-
trinsically trivial, but the fabrication process re-
quired for a set of structures to form a complete
integrated circuit is complex. For users of
digital integrated circuits there are several rele-
vant parameters:

1. The function of an individual circuit in
the integrated circuit, the aggregate
function of the integrated circuit, and
the functions of a complete integrated
circuit family such as the 7400-series.

2. The number of switching circuit func-
tions per integrated circuit. This quan-
tity and density is a measure of the
capability of the integrated circuit and
the ingenuity of the designers.

3. Cost.

4. The speed of each circuit and the speed
of the integrated circuit and set of in-
tegrated circuits within a family. The
semiconductor device family (transistor-
transistor logic = TTL, Schottky TTL =
TTL/S, emitter-coupled logic = ECL,
metal oxide semiconductor = MOS,
complementary MOS = CMOS, silicon
on saphire = SOS, integrated injection
logic = I2L) usually determines this per-
formance.

5. The number of interconnections (pins)
to communicate outside the integrated
circuit,

6. The reliability. This is a function of the
circuit technology, the density, the num-
ber of pins, the operating temperature,
the use (or misuse), and the maturity (ex-
perience) of the manufacturing process.

7. Power consumption and speed-power
product. A frequently used metric is the
speed-power product, where the delay
through a typical gate is multiplied by
the power consumption of the gate. For
a particular technology, the speed-power
product tends to be constant because
short gate delays usually are accom-
panied by high power consumption. A
technical advance that lowers the speed-
power product is considered note-
worthy.

Figure 1 shows a family tree (taxonomy) of
the most common digital integrated circuits.
The least complex functions are in the upper
portion of the figure, and the most complex are
at the bottom. In addition, the circuits are or-
dered by generation, starting with the second
generation on the left side of the figure and
progressing to the fifth generation on the right
side. The circuits are clustered roughly by the
regularity of the function and whether memory
is associated with the function. Circuit regu-
larity is important in large-scale integrated cir-
cuits because it is desirable to implement
regular structures to minimize area-consuming
interconnections and, thus, to simplify layout
and understanding and to aid testing.

As indicated in Figure 1, the branching of the
integrated circuit family tree began in earnest at
the beginning of the third generation. At that
time, advances in integrated-circuit technology
permitted collections of basic logic primitives
(AND, NAND, etc.) and sequential circuit
components (flip-flops, registers, etc.) to oc-
cupy a single integrated circuit rather than an
entire module. This had the benefit of providing
a drastic reduction in size between the second
and third generation computer designs, as

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 29

SECOND THIRD FOURTH FiFTH
GENERATION GENERATION GENERATION GENERATION
I T [1
SEQUEN
TIAL

FLIP-FLOP
REGISTER

GATE

cOomBI-
NATIONAL

UNSTRUCTURED

GATE ARRAY
SINGLE

TRAN X :PLA

SISTOR FPLA

MEMORY-LESS

BY CONTENT
cAM

RAM (HIGH SPEED)
READ/ RAM (HIGH DENSITY}
RANDOM WRITE

SWRAM (SLOW WRITE)

ACCESS
ROM
READ ONLY
PROM
EAROM

SEQUENTIAL

031‘!(\131’\815

MEMORY

LOGIC

AND

MEMORY
SIMPLE

COUNTER
FUNCTIONS
LPC, ENCRYPTION
RT-LEVEL ARITHMETIC

— 2.BIT SLICE
COMPONENTS

4-BIT SLICE
MULTIPLIER

COMPLETE
PROCESSOR
STRUCTURES

32-BIT

L | I J
SECOND THIRD FOURTH FIFTH
GENERATION GENERATION

GENERATION GENERATION

Figure 1. Family tree of digital integrated circuit

functions.

shown most vividly by comparing the PDP-9
and PDP-15 (Chapter 6), but it also had the
drawback that modules contained a wide vari-
ety of functions and were thus specialized.

As the densities began to approach 100 gates,
the construction of complete arithmetic units
on a single chip became possible. The earliest
and most famous function, the 74181 arithmetic
logic unit (ALU) shown in Figure 2, provided
up to 32 functions of two 4-bit variables. By the

fourth generation, it became possible to con-
struct on a single chip very large combinational
circuits, such as a complete 16 X 16-bit multi-
plication circuit (e.g., the TRW Corp. multi-
plier) requiring about 5,000 gates.

Progress during the fourth and fifth gener-
ations has not been without its problems, how-
ever. Without well defined functions such as
addition and multiplication, semiconductor
suppliers cannot provide high density products
in high volume because there are few large-
scale, general purpose universal functions. The
alternative for users is to interconnect simple
logic circuits (AND gates, flip-flops), but that
does not permit efficient use of the technology,
and the cost per function remains high (about
that of the third generation) because the printed
circuit board and integrated circuit packaging
costs (pins) limit the cost reduction.

To address these problems, two methods of
effectively customizing large-scale integrated’
circuit logic are included in Figure 1 and dis-
cussed in greater detail later in the chapter.
These are the programmable logic array (PLA)
and the gate array (also called master slice). The
programmable logic array (PLA) is an array of
AND-OR gates that can be interconnected to
form the sum-of-products terms in a com-
binational logic design. Gate arrays are simply
a large number of gates placed on the chip in
fixed locations where they can be inter-
connected during the final metalization stages
of semiconductor manufacture.

There is a special branch of the tree shown in
Figure 1 purely for memory functions. Memory
is used in the processor as conventional mem-
ory, but it can also be used as an alternative to
conventional logic for performing com-
binational logic functions. For example, the in-
puts to a combinational function can be used as
an address, and the output can be obtained by
reading the contents of that address. Memory
can also be used to implement sequential logic
functions. For example, it can be used to hold
state information for a microprogram. Because

30 COMPUTER ENGINEERING

s3 (3)
PO
518
sote)
LLIE
| J 1 —1
B3 0OR saLS)r4{> ==
. ue) Cpte
= Cata
A3 or a1 L_ 05 5 on x
] 13 25 on £3
T
/=
B2 OR Bzﬂ =
1
A2 oR az21)
—~
- > " & oR k2
=
H
510R 51%
H (14)
1 =~
X1 oR a123 L
L]
1> np: 19 £1 or F1
B0 OR B0; i] I
— i
91
| —(—o OR FO
. [Fi]
&0 OR AQ——————— w8
cn 08 &, 4L
Table 1 Table 2
Active Low Data R Active High Data
Selection " n Selection " " -
M=H M = L; Arithmetic Operations M=H M = L; Arithmetic Operations
Logic C, =1 C,=H Logic T.=H Ch=1L
$3 S2 S$1 80| pyactions {No Carry) (With Carry) S3 82 81 80| punctions {No Carry) {With Carry)
L L L L F=Aminus 1 F=A L L L L|F=7A F=A F=Aplus1
L L L H F = AB minus 1 F=AB L L L HiF=A+B F=A+E F=iA+E)plus1
L L H L F = ABminus 1 F=AB L L H L |F=AB F=A+B F=(A+ B)plus 1
L L H H F = Minus 1 F = Zero L L H H|F=0 F = Minus 1 F = Zero
{2’s comp.) _ _ (2's complement) _
L H L L A+B F=Aplus[A+BL F = Aplus (A + B) plus 1 L H L L|F=AB F = Aplus AB F=AplusABp!us_1
L H L H B F = ABplus{A + B) F = ABplus (A +B) plus 1 L H L H|F=B F = {A + B) plus AB F = (A + B} plus AB plus 1
L H H L |F=A®B |F=AminusBminus1i|F=AminusB L H H L|F=A®B|F=AminusBminus1|F=AminusB
L H H H|F=A+B|F=A+8 F={A+Blplus1 L H H H|F=AB F = AB minus 1 F=AB
H L L L|F= 78 F=Aplus{A + B) F = Aplus (A + B} plus 1 H L L L|{F=A+B|F=AplusAB F = Aplus AB plus 1
H L L H|F=A®8 |F=AplusB F=AplusBplus 1 H L L HIF=A®B|F=AplusB F=Aplus_BpIL|s1
H L H L |[F=8B F = ABplus (A + B) F = ABplus (A + Bl plus 1 H L H LIF=8 F = (A + B} plus AB F = (A + B) plus AB plus 1
H L H H|F=A+B|F=(A+B8B) F=(A+B)plus 1 H L H H|F=AB F = AB minus 1 F=AB
H H L LJF=0 F = Aplus A% F=Aplus Aplus 1 H H L LJ}F=1 F = Aplus A¥* F = Aplus Aplus 1
H H U H|F=AB F=A_BplusA F = AB plus Aplus 1 H H L HIF=A+B F=(A+_§)plusA F=(A+_B)p|usAp\us1
H H H L |F=AB F = ABplus A F = AB plus A pius 1 H H H L|F=A+B|F=(A+BlplusA F=(A+ B)plus Aplus 1
H H H H|F=A F=A F = Aplus 1 H H H H}F=A F = Aminus 1 F=A
*¥Each bit is shifted to the next more significant position # Each bit is shifted to the next more significant position.

Figure 2. A functional block diagram of the 181 arithmetic logic unit {courtesy of Texas Instruments, Inc., from 77L
Data Book 2nd edition, 1976, p. 7-273, 7-280).

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES

memories have so many uses, this branch is dis-
cussed separately in the memory section of this
chapter.

The remainder of the interesting logic func-
tions include combinations of logic and mem-
ory. There are various special functions such as
linear predictive coding algorithms for use in
real-time applications and data encryption al-
gorithms for use in communication systems.
One of the most useful communications func-
tions, and the first one to use large-scale in-
tegration, is the Universal Asynchronous
Receiver/Transmitter (UART).

There is a special branch for bit-slice com-
ponents that can be combined to form data
paths of arbitrary widths. These are being used
to construct most of today’s high speed digital
systems, mid-range computers, and computer
peripherals. Although there have been several
bit-slice families, the AMD Corp. 2900-series
whose register transfer diagram is shown in Fig-
ure 3 has become the most widely used. Note
that all the primitives of this series were present
in the Register Transfer Module Family (Chap-
ter 18), including the microprogrammed control
unit referred to as the Programmed Control Se-
quencer.

The final branch of the tree in Figure 1 is the
most complex and is used to mark the fourth
{(microprocessor-on-a-chip) generation of tech-
nology and the beginning of the fifth (com-
puter-on-a-chip) generation. The fourth
generation is marked by the packaging of a
complete processor on a single silicon die; by
this standard, the fifth generation has already
begun since a complete computer (processor
with memory) now occupies a single die. The
evolution in complexity during each generation
simply permits larger word length processors or
computers to be placed on one chip. At the be-
ginning of the fourth generation, a 4-bit proces-
sor was the benchmark; toward the end of the
fourth generation, a complete 16-bit processor
such as the PDP-11 could be placed on a single
chip.

31

L
s|7[e[s]afza]2[1]0
DESTINATION ALU ALY
CONTROL FUNCTION SOURCE
MICROINSTRUCTION DECODE
AM
RAMg SHIFT RAM2 oo
Qo Q3
cLoc 1+
\LJ, Q-SHIFT
“B” DATA IN
“A” (READ) A" cp!
ADDRESS ADDRESS RAM NgX
e 16 ADDRESSABLE s S
“'I’HI‘T“EE)“D/ 8 REGISTERS
ADDRESS N ISTER
ADDRESS AT ~B" 0-ReG
DATA DATA CP a
ouT OUuT l
LOGIC
DIRECT o
DATA
{1« ~J N
D A B8 E Q
ALU DATA SOURCE
SELECTOR
R s
1 s ——» G
CARRY
N N — 7
—> Cn+a
8-FUNCTION ALU - F2(SIGN)
|—> overFLOwW
£ — r = o000
L 1 | L
OUTPUT A F
ENABLE OuTPUT DAyrA SELECTOR

u DATA OUT

Figure 3. AMD2900 four-bit microprocessor slice
block diagram (registers and data path).

Gates per Chip

The function performed by a chip is clearly
dependent on the number of gates that can be
placed on a chip. Thus, density in gates per chip
is the single most important parameter deter-
mining chip functionality. By this measure, one
can predict the functions likely to be imple-
mented by just following the tree. It should be
noted that the whole tree is relatively alive and
has dense areas of new branches everywhere ex-
cept at the top, where unconnected gate and
register structures have been relatively static. In

32 COMPUTER ENGINEERING

the growing areas, as density increases suf-
ficiently, a new branch grows. For example, the
processor-on-a-chip started out as a 4-bit pro-
cessor (or rather as 2 chips for a single proces-
sor) and then progressed to 8-bit and then 16-
bit processors on a single chip. Similar effects
can be observed with the arithmetic logic unit
and with memories.

The number of gate circuits per chip not only
determines chip functionality, it also is the mea-
sure of density as seen by a user (Figure 4). This
metric is the product of the circuit area and the
number of circuits per unit area. Progress in
lithography has led to a reduction of conductor
linewidths and a corresponding reduction of
circuit size to yield higher speeds and higher
densities. Linewidths have decreased from 10
microns in early large-scale integrated circuit
chips to 6 microns in the LSI-11 chips, and
more recently to 3 or 4 microns in Intel’s 8086.
Linewidths of less than a micron have been
achieved at the research level, but they require
electron beam techniques instead of present
photographic methods of production. The pro-
cessing techniques to create semiconductor ma-
terials have also been improved for better man-
ufacturing yields (and lower costs). Circuit and
device innovation (such as reducing the number
of transistors per memory cell) have also con-
tributed to density and yield increases.

The result given in Figure 4 is exponential
and indicates that the number of bits per chip
for a metal oxide semiconductor (MOS) mem-
ory doubles every two years according to the
relationship:

Number of bits per chip = 2!~ 1962

There are separate curves, each following this
relationship, for read-only memories in pro-
totype quantities, read-only memories in pro-
duction quantities, read-write memories in
prototype quantities, and read-write memories
in production quantities. Thus, depending on
the product and the maturity of its production
process, products lead or lag behind the above

$S1 MsI Lst

262,144
{262K)

65K CHARGE-COUP
DEVICE MEMORY
65536 |
(65K)

16.384
{16K)

4,096
(4K)

1024 |
1K)

256 p—

7l
~

COMPONENTS PER CIRCUIT

64 [— 1
@ DUALTRANSIS'

LOGIC FLIP-FLO
16 p— ! :
RESISTOR-

g TRANSISTOR
4 — LOGICGIATE

. L]

1959 1964 1969 1974 1979
YEAR

Figure 4. Components per single integrated circuit die
versus time. Number of components per circuit in the
most advanced integrated circuits has doubled every
year since 1959, when the planar transistor was devel-
oped. Gordon E. Moore, then at Fairchild Semiconductor,
noted the trend in 1964 and predicted that it would con-
tinue (from [Noyce, 1977:67]; courtesy of Scientific
American).

state-of-the-art time line by one to three years
according to the following rules:

¢ Bipolar read-write memories lag by two to
three years.

¢ Bipolar read-only memories lag by about
one year.

¢ MOS read-only memories lead by one
year.

This model gives the availability of various
sizes of semiconductor memories as shown in
Figure S. The significance of various size mem-
ory availabilities is that they determine (tech-
nology push) when certain architectures and
implementations can occur. The chapter dis-
cussing the PDP-11 (Chapter 16) uses this
model to show how semiconductors accomplish
this push.

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES

33

TIME (BITS/CHIP) (BITS/| (BITS/CHIP)
1930 CHiP)
I 65.536
2 2020 SUPER
<} vax11¢ o HEX
£
56 < 12
= 16.384 4,096 8192 PDP-11/60. roso 0 ()
w 040, 5¢
a2 sos PDP-11/55
] 4096 POP-11/03, 04§ 7 OF 11734 Nwos
. ECL10K
z 1975 120 4,096 1,024 2,048 POP-11/708 o 8/a
=
E ECL-100K 1.024
I cmos
NHOS 1,024 256 PDP-11/40
I ki0. §7OP-11/05 .
— TTL/LS PDP-11/86 Hexsize
' 64 256 PDP-8/EF EXTENDED
z PMOSS /s PDP-11/204 QUAD SIZEgm.sERIES
5 1970 ECL10K oDP-15 (10.4 X 8.5)
2 16 PoP.9/LE 2
< ' POP-8/L —
z PDP-8/)
z TTUL KA10 (SWITCH TO
@ + POLARITY
a TTL/H POP.9 PDP.-8/S LoGIC)
z ROPE PDP-9
z MEMORY
- PDP-3 2 MHz-R
1965 VARIOUS PDP.7 10 MHz-B
g 1 VARIOU: 1BM FLIP CHIP| 1 mhzom
SYSTEM/ P 25%5
P SI.TRANS FORMERS 360 INTRO. $PDP.6 5 <5)410MHz
3 DTL AND
o CAPACITORS PDP-5
c IC PATENT RonMS CoR PDP.4 1 MH2z
i 1BM/360 (CD-GATE"
z
© PDP-1
2 PDP-1
z 1960 PROTO
S T™>2 MIT LINCOLN
w 38 X 256 X 256 LABS TX 2
CORE
' SILICON-
- CONTROLLED MIT LINCOLN SYSTEMS 500 kH2
RECTIFIER LABS TX-0 AND LAB ¢ 5 MH:z
BELLLABS MODULES
LEPRECHAN
(TRANSISTOR)
1955
=3
o MIT WHIRLWIND
g WHIRLWIND
E: 16 X 32 X 32
] CORE
2
Q
=
&
3
e 1950 Hg DELAY, CAMBRIDGE
LINE
MANCHESTER
TRANSISTOR STORAGE MARK 1
(POINT WILLIAMS
CONTACT) Ryt
DEC
LIS ENIAC
MoDuLE |LOSIC
1945 cLock
SPEED
SEMICONDUCTOR MEMORY MACHINES DEC
LOGIC TECH READ/ FAST READ ONLY {ESP. DEC) MODULES
WRITE READ/WRITE (BIPOLAR)

Figure 5.

Cost

After density, the most important character-
istic of integrated circuits is cost. The cost of
integrated circuits is probably the hardest of all
the parameters to identify and predict because it
is set by a complex marketplace. For circuits
that have been in production for some time, and

Logic and memory technology evolution timeline.

for memory arrays, the price is set in essentially
the same way as the price of a commodity like
eggs or bacon is set; and users generally con-
sider these integrated circuits as very similar to
commodities, with the attendant benefits, costs,
and problems (having a sufficient supply). In
low volumes, integrated circuit prices are pro-
portional to the die cost (which is proportional

34 COMPUTER ENGINEERING

to the die area); but at higher volumes, assem-
bly, testing, packaging, and distribution be-
come the dominant cost factors. Furthermore,
for those low volume circuits that have not yet
reached commodity status, the prices also de-
pend on the strategy of the supplier - whether
he is willing to encourage competition.

Two curves are presented to reflect the price
of various components (transistors) imple-
mented in integrated circuits. Figure 6 shows
the price per gate for MOS and TTL circuits as
a function of time and scale of integration.
Table 1 gives some idea of how circuit density
(in elements) relates to actual function.

The cost history of integrated circuits is re-
flected very dramatically in the cost history of a
special class of integrated circuits, semi-
conductor memory. The semiconductor mem-
ory cost curves, given in Figure 7, are also
interesting because of the important role of
memory in past and future computer structures.
As shown in the figure, the 1978 cost per bit was
roughly 0.08¢ and 0.07¢ per bit for the 4-Kbit
and 16-Kbit integrated circuit chips, respec-
tively, giving costs of $3.30 and $11.50.

Two factors influence the cost of integrated
circuits: density in bits per integrated circuit
and cost per bit. The two factors have not had
equal influence in reducing costs because, while
chip density has improved by a factor of 2 each
year (Figure 4) [Noyce, 1977], the cost per bit
(at the integrated circuit level) has not declined
by a factor of 2 every two years. The equation
for the line drawn in Noyce’s [1977] Figure 7 is:

Cost/bit (¢) = 0.3 X 0.721-1974

It is interesting to note that the cost decline
compares favorably with the price decline in
core memory over the period since 1960-1970
for the 18-bit computers (Chapter 6), and with
the memory price declines in both the PDP-8
(Chapter 7) and the PDP-10 (Chapter 21).

100.0 |—

NUSSBAUM [1975]

NOTE

38%
DECREASE
PER YEAR

NOYCE [1977]

GATE COST {CENTS/GATE)

1965 1970 1975 1980 1985
YEAR

Figure 6. Price per gate versus time.

0.3 x 0.721-1974

005 [—

COST PER BIT (CENTS}

cco
MEMORY
IBHAND AKAR,
1978

1973 1978 1977 1979 1981 1983
YEAR

Figure 7. Cost per bit of integrated circuit memory ver-
sus time. Cost per bit of computer memory has declined
and should continue to decline as is shown here for suc-
cessive generations of random-access memory circuits
capable of handling from 1,024 (1 K) to 65.536 (65 K)
bits of memory. Increasing complexity of successive cir-
cuits is primarily responsible for cost reduction, but less
complex circuits also continue to decline in cost {adapted
from [Noyce, 1977:69}; courtesy of Scientific American).

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 35

Table 1. The Number of Areal Elements to Implement Logic Functicns in Different Techniclogies
MOS Bipolar

Function NMOS PMOS CMOS ECL TTL 12L
Inverter 2 2 2 7 3 1
2-input gate 3 3 3or4d 8 3 1
8-input gate 9 9 Sor16 14 3 2

R/S latch 6 6 6or8 12 6 -2
Memory cell {dynamic) 2 2 2 - - 2
Memory cell {static) 6 6 6 4-6 4-6 4

D flip-flop 20 20 20 or28 28 20 9

JK flip-flop 20 20 20 0r 36 - 26 1
Performance parable with low power Schottky (TTL/LS)

The performance for each semiconductor
technology evolves at different rates depending
on the cumulative learning associated with the
design and manufacturing processes together
with marketplace pressure to have higher per-
formance for the particular technology. One
may hypothesize that each technology can be
looked at as being relatively appealing or rele-
vant to the particular design(er) styles associ-
ated with various computer marketplaces. One
would then expect the evolution to continue
along the lines shown in Table 2.

DEC’s use of the various integrated circuit
technologies shown in Table 2 is probably typi-
cal of most of the computer industry: TTL for
mid- and high-sized minicomputers; ECL for
the larger scale machines (PDP-10); MOS for
memories, microprocessors, and specialized
high density circuits; and CMOS for special mi-
crocomputers, especially those intended for bat-
tery operation.

Some of the lesser used technologies such as
I’L (integrated-injection logic) and SOS (silicon
on saphire) have been omitted from the table.
I2L features high density and very low power
consumption, but it is slow as initially imple-
mented. SOS MOS enhances CMOS speed by
removing stray capacitance, making it com-

speed while retaining MOS complexity capabili-
ties. Both I2LL and SOS have been touted as re-
placements for various technologies shown in
the table. But, if an entrenched technology has
evolved for some time and continues to evolve,
it is difficult for alternative technologies to dis-
place it because of the investment in process
technology and understanding. Semiconductors
appear to be characteristic of other technologies
in that usually only a single technology is used
for a given problem.

The early technologies, RTL (resistor transis-
tor logic), TRL (transistor resistor logic), and
DTL (diode transistor logic) have also been
omitted from the table. These technologies are
important historically because they were used in
the first integrated circuits. However, many
manufacturers, including DEC, did not use
them in computers (RTL was used in DEC in-
dustrial control modules) because they did not
represent a sufficient advance over the discrete
transistor circuits already being used. In addi-
tion, early circuits were packaged in flat pack-
ages and metal cans rather than in the dual in-
line package used today, and automated manu-
facture using the components was thus not eco-
nomically feasible.

Table 3 gives the speed-power product and
the gate delay, the two most useful measures of

36 COMPUTER ENGINEERING

Table 2. Characteristics of Dominant (1978) Semiconductor Technologies
Type Evolution Use
TTL (transistor-transistor logic) TTL Logic, bus interfacing
TTL/Schottky Higher speed than TTL
TTL/LS Same speed as TTL, but low power
ECL (emitter-coupled logic) MECL II, 1l High and higher performance

MOS (metal oxide semiconductor)

CMOS (complementary MOS)

MECL 10K, 100K

p-channel
n-channel

CMOS

Easier to work with
Evolving to gate array design

Low cost

Greater densities, cost

Evolving to performance (memory)
Evolving to shorter channels:
VMOS

Low power, higher speed
Better noise immunity

HMOS,

DMOS,

Table 3. Gate Delay of Various Semiconductor Technologies [Luecke, 1976:53]*
Type Gate Power Speed-Power
of Delay Dissipation Product

Year Logic (nanoseconds) (milliwatts) (picojoules)

{1963 DTL - - 200]

11964 RTL - - 180j

1965 TTL 10 10 100

1967 TTL/H-series 5 20 100

1968 TTL 30 1 30

1970 TTL (Schottky) 3 20 60

1972 TTL (low power Schottky} 10 2 20

1967 ECL 2 30 60

1974 ECL 0.7 43 30

1970 PMOS 200 0.1 20

1973 NMOS 100 0.1 10

1973 CMOS 30 1.0 30

1974 SOs 15 0.05 7.5

(1976 NMOS 4 1 4]

[1978 HMOS 0.9 1 0.9]

1975 12L 35 0.085 30

1976 2L 20 0.05 1.0

*The four entries in brackets have been added by the authors.

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 37

performance, for the various technologies as
they have evolved with time. The speed-power
product metric for a technology at a given time
indicates what performance versus power trade-
offs the user can make. There are limits to this
tradeoff. Only about one watt can be dissipated
by the off-the-shelf integrated circuit package,
and tradition in integrated circuit package de-
sign has been strong. The table was formulated
by Jerry Luecke of Texas Instruments (TI) at a
time when I2L technology had just been in-
troduced (October, 1975) by TI.

Reliability

Over the past 15 years, the failure rate for
standard integrated circuits has been reduced
by two orders of magnitude to the neighbor-
hood of 0.01 percent per 1,000 hours. This cor-
responds to 107 hours (about a millenium) mean
time to failure (MTTF) per component. Figure
8, from a recent survey article by Hodges
[1977:63], shows the trend. The lower curves
show the higher reliability obtained when more
extensive testing and screening are employed.
The improved MTTF of between 10% and 10°
are obtained at a cost increase of 4 to 100 times
per component.

RANGE FOR
STANDARD DEVICES

«
2
E
o
2
=3
8
8
s
z o01f
]
g — S— — t—
H
@
= 001
hd WITH HI-REL
§ SCREENING
w 0.001~ ——
5 1
2 —_—
< 0.0001f- — —
WITH CAPTIVE/CONTROLLED
LINE ASSEMBLY
o I [1 L L I
1961 1963 1965 1967 1969 1971 1873 1975 1877
YEAR

Figure 8. Failure rate of silicon integrated circuits.

(Rate of 0.0001 percent per 1,000 hours is 10° hours
mean time to failure.) [Hodges, 1977:63]

1/0 Connections

The number of pins per integrated circuit
package has risen relatively slowly because of
the mechanical handling equipment (e.g., sort-
ers, bonders, testers, inserters) to the point
where 48 pins has just become accepted in 1978.
The packages of the 1980s will no doubt go be-
yond 100 with the ability for multiple die per
package.

The Large-Scale Integrated Circuit
Dilemma

As indicated in the discussion of Figure I, a
dilemma involving a search for universal cir-
cuits has developed in the manufacture of large-
scale integrated (LSI) circuits. The economics
of the LSI industry make it essential that in-
tegrated circuit suppliers produce circuits with a
high degree of universality. This is because the
learning curve of a manufacturing process
causes cost to be inversely proportional to vol-
ume, and for a design to be sold in high volume,
it must be usable in a large number of appli-
cations. However, the trend in circuit com-
plexity, which allows semiconductor
manufacturers to put more transistors on a con-
stant die area each year, tends to increase spe-
cialization of function, lowering the volume and
raising the price.

The LSI product designer is therefore contin-
ually in search of universal primitives or build-
ing blocks. For a certain class of applications,
such as controller applications, the micro-
processor is a fine primitive and has been so ex-
ploited [Noyce, 1977]. For other applications,
circuit complexity can embrace even higher
functionality at the processor-memory-switch
level. The Intel 827X is an interesting example:
two processors, a 1.25-microsecond byte-pro-
cessor and a 250-nanosecond bit-processor, are
combined in one large-scale integrated circuit
[Louie et al., 1977].

38 COMPUTER ENGINEERING

Moore [1976] discusses the LSI dilemma in a
paper on the role of the microprocessor in the
evolution of microelectronic technology. He
points out that a similar situation existed when
integrated circuits were first introduced. Users
were reluctant to relinquish the design pre-
rogative they had when they built circuits from
discrete components. It was not until sub-
stantial price reductions were made that the im-
passe was broken. Then the cost advantages
were sufficient to force users to adopt the new
technology circuits.

The first high functionality, high universality
circuit that comes to mind is the micro-
processor-on-a-chip. For many applications, in-
cluding most computer systems, the
microprocessor-on-a-chip is not a cost-effective
building block, and other solutions to the di-
lemma are used. For example, micro-
programming is a highly general way of
generating control signals for data path ele-
ments, and table lookup using read-only memo-
ries is a highly general technique. Both methods
are attractive because they use memory, an in-
herently low cost LSI circuit. Micro-
programming, however, does have limitations.
The extra level of interpretation extracts a per-
formance penalty, and some potential data path
parallelism is often given up to reduce cost. A
more subtle, but practical, limitation is the de-
velopment cost of microcode. Assuming the
writing rate to be 700 microwords per man-year
for wide-word, unencoded (horizontal) micro-
machines, a desire to limit the effort to 20-24
man-years would limit the maximum control
store size to about 16 Kwords. This maximum
will tend to increase in the future, when the use
of better microprogramming tools increases the
microcode writing rate beyond 700 microwords
per man-year.

At the register transfer level, the standard mi-
croprogramming design method is (conserva-
tively) twice as expensive per instruction as
conventional programming. Moreover, because
microinstructions are usually not as powerful as

conventional instructions, more micro-
instructions than conventional instructions are
usually required to solve a given problem.
These two factors, more expense per instruction
and more instructions, cause a microprogram
to be five to ten times as expensive to design as a
conventional program to solve the same prob-
lem. However, the instruction execution speeds
of a microprogrammed controller are at least 10
times faster than the instruction execution
speeds of a conventional mini.

The characteristics of microprocessor and
read-only memory design methods of creating
customized results from universal large-scale in-
tegrated circuits are summarized, along with the
characteristics of a number of other methods, in
Table 4.

Table 4. Design Techniques for Various LSI
Building Blocks

Technique Degree
Building for Varying of Permanence
Block Function Generality of Change
Computer Program Very None
module high
Micro- Program High Low to
processor medium
Bit-slice Microprogram Medium Medium
ROM Factory mask Very Irreversible
change high
PROM Field change Very Irreversible
high
EAROM, Field change Very Low
EPROM high
PLA Factory mask Medium Irreversible
change
FPLA Field change Medium Irreversible
Gate Factory mask Medium Irreversible
array change
RAM Write Very high None

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 39

The increased basic circuit functionality
available at each new generation has not only
been an important part of semiconductor de-
sign, but has also caused design methods to
change with the generations. This book pro-
vides examples, as summarized in Table 5.

The design of most relatively high speed
digital systems (including low- to mid-range
minicomputers) is carried out using standard
register transfer integrated circuits complete
with data path and memory. For higher per-
formance computers, there is no alternative to
using either tightly packed standard integrated
circuits or building a unique set of integrated
circuits using some form of customization. The
high performance IBM and Amdahl machines,
for example, use custom ECL circuits or gate

arrays to improve packaging. Aithough Sey-
mour Cray continues to build his high speed
computers (the CDC 6600, 7600 and Cray 1)
with no custom logic, he does so by using im-
pressively dense modules with high density in-
terconnection and freon cooling.

The current spectrum of integrated circuits
and their use is summarized in Table 6.

The Changing Nature of System Design

With the advent of the processor-on-a-chip,
digital system design has been, or soon will be,
converted completely to computer system de-
sign (design at the processor-memory-switch
level of Chapter 1, View 1). Problems such as
controlling a CRT, controlling a lathe, building

Table 5. Design Method versus Generation

Generations R

Examples in

Design Method First Second Third Fourth Fifth this Book
Combinational and sequential; use of s s - - 18-bit;
“'standard” modules, integrated circuits PDP-8
Read-only memory and PLA; micro- - s m - PDP-9;
programming PDP-11
Microprogramming with standard RT ele- - - s m CMU-11
ments (high performance) minor logical
design
Programming using micros and logic for - p s X LSI-11
interfaces
PMS design using completely specified - - - s Cm*
and predesigned microcomputer com-
ponents
Customized chip design and standard - m m m LSI-11

(logic) design (high performance)

s - The standard method for most digital systems
m - Done by manufacturers of basic equipment

x - Also used

p - Prelude to micros, also done using minis

40 COMPUTER ENGINEERING

Table 6. Integrated Circuit Organization and Use in Various Computers
Unique Performance .
Organization Technology Chips (MIPS) Cost Examples
Microcomputer MOS, very 1 0.1 Lowest Intel 8048, MOSTEK
large-scale 3870
integration
(VLSI)
Microprocessor MOS 1 Intel 8080, Zilog Z80.
Motorola 6800
Microprocessor MOS 2-4 DECLSI-11,
Fairchild F-8
Microprocessor MOS >4 Burroughs B80,
National IMP 16
Bit-slice TTL Few DEC 11/34
{micro- Floating-Point
programmed) Processor
Gate array TLL Most Raytheon RP16,
IBM Series 1
Medium-scale TTL Few DEC VAX 11/780, 11/70,
integration HP 3000
Gate array ECL All 1BM 370/168,
Amdahl 470/v6
Small-scale ECL Std. 80 Highest CRAY 1
integration

a billing machine, or implementing a word pro-
cessing system become computer system design
problems similar to those attacked over the first
three generations. The hardware part of the de-
sign, the interface to the particular equipment,
is straightforward. The major part of the design
is the programming. Since the late 1940s, three
generations have learned about computer de-
sign, especially programming. The first gener-
ation discovered and wrote about it. Then it
was rediscovered and applied to minicomputer
systems. This time, it is being learned by every-
one who must use and program the micro-
computer. Each time, for each individual or
organization, the story is about the same:
people start off by programming (using binary,

octal, or hexadecimal codes) small tasks, using
no structure or method of synchronizing the
various multiple processes; the interrupt mecha-
nism is learned, and the symbolic assembler is
employed; and finally some more structured
system, possibly an operating system, is em-
ployed. Occasionally, users move to high level
languages or macroassemblers.

In view of this cyclical history, it seems likely
that current digitai systems design practice,
which consists of building simple hardware in-
terfaces to relatively poorly defined buses to-
gether with programming the application, will
be relatively short lived. The design method of
the future (fifth generation) will be at the PMS
level component, although at the moment there

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 41

£,
1

i factors that prevent this from being
done reliably and cheaply by large numbers of
engineers.

One factor which impedes this progress to the
fifth generation is the (fundamental) inter-
connect problem, Currently, many small-scale
integration components are required to handle
the mismatch between microprocessor chips
and memory and I[/O subsystems. Further-
more, buses are hard to specify, as will be dis-
cussed in Chapter 11.

Another impediment is that system level be-

“havior (the interaction of processors, memories,
and transducers via switches and links) is less
understood than is interaction at the register
transfer level.

Of substantial assistance in easing the transi-
tion to the fifth generation would be base level
operating systems that were embedded in hard-
ware. These should be placed in read-only
memory to give a feeling of permanence so that
users would be less likely to embark on the ex-
pensive, unreliable rediscovery path.

In summary, standard components must be
built that can be interfaced to a wide range of
external systems, via clearly defined links, using
parameters that are specified by a field pro-
gramming method (instead of using logic design
and building with interconnection on modules).
In this way, the complexity of individual in-
tegrated circuits can be increased; and with a
standard method for interconnection, higher
volume and lower costs will result.

ar¢ severa

Design Costs versus Unit Costs

Before discussing the alternatives associated
with integrated circuit design, it is important to
characterize the various costs. Figure 9 shows,
at a crude level, what the relative design costs
might be for various inter- and intra-integrated
circuit design methods. The design cost is highly
variable depending on the project size, its goals,
the manufacturing volumes expected, and most
important, the computer aided design programs
that are available.

CUSTOM 3
DESIGN

USER
DESIGNED
> ICs =
INTRA-IC
DESIGN

STANDARD

/ CELL
7 GATE ARRAY
Z STANDARD Ckts . LOGIC DESIGN

e _ROM/PLA DRIVEN DESIGNS
MICROPROGRAMMING STANDARD
MASKED ROM MICROPROGRAMMING [CIRCUITS
mnm— P ROGRAMMING - USING

MICROPROCESSORS

HYPOTHETICAL
7/ UNIVERSAL LOGIC
7/ ARRAYS {SEE NOTE)

DESIGN TIME ~ DESIGN COST

—

£ MSi LSI VLSI
CIRCUIT DENSITY ——»
NOTE
None exist to date.
Figure 9. Current design cost (or time) versus circuit

density using various design methods.

The lowest design cost is achieved by staying
completely away from modifying the integrated
circuits, except for programming read-only
memories. There are two elements to the cost of
read-only memories, programming cost and
parts cost. The programming cost has already
been discussed, so this discussion is limited to
parts cost. There are two kinds of read-only
memories, the programmable read-only mem-
ory (PROM) and the masked read-only mem-
ory (ROM). PROM chips have a higher initial
cost than ROMs, but they provide some inven-
tory advantages in a manufacturing environ-
ment because a common stock of unpro-
grammed parts can be divided into various pro-
grammed parts rather than stocking a full sup-
ply of each required part. In many high volume
applications, however, the cost of the extra test-
ing steps involved in the common stock ap-
proach, plus the extra piece part costs for
PROMs, make masked ROMs preferable.

The design costs discussed in the preceeding
paragraphs are summarized in Figure 10, which
shows the costs for conventional programming,
costs for microprogramming, and the design

42 COMPUTER ENGINEERING

CUSTOM DESIGN

\/ STANDARD CELL
GATE ARRAY
{ASSUME A FAMILY)
STANDARD CIRCUITS,
LOGIC DESIGN
\ ROM/PLA DESIGN

USING COMBINATIONAL
DESIGN

DESIGN COST/FUNCTION

MICROPROGRAMMING
STANDARD PARTS
DESIGN

\ PROGRAMMING

!] i

SsSI MsI Lst VLS|

CIRCUIT DENSITY ———»

Figure 10. Manufacturing costs versus LSI circuit
density for various design techniques.

costs for methods which use combinational
techniques rather than programming tech-
niques. These latter methods, employing read-
only memories and programmable logic arrays,
will be discussed shortly. The most costly ap-
proach of all shown in Figure 10, excluding in-
tra-IC design, is design using standard circuits
and associated design techniques.

Design of Integrated Circuits (Intra-I1C
Design)

Despite the prospects of higher design cost
with custom integrated circuits than with stand-
ard integrated circuits, and, in some cases,
higher manufacturing cost, there are numerous
reasons that a designer is often forced to design
integrated circuits. These are summarized in
Table 7.

There are some drawbacks to custom in-
tegrated circuit design. These are listed in Table
8.

The use of custom integrated circuits to re-
duce the number of discrete components or to
reduce the total number of integrated circuits in
a machine improves the reliability because the
reliability of a system is mostly a function of the

number of explicit physical connections, includ-
ing the bonds to the semiconductor die. Thus,
the anticipated reliability of two equal function-
ality designs can be compared by counting dis-
crete circuit pins, integrated circuit pins,
module pins, and connector pins.

Gate Array Design

The most straightforward and extensively
used intra-integrated circuit design method is to
modify an existing design. If this approach can-
not be used, the next most straightforward
method is to use arrays of gates and inter-
connect them to form the desired function. De-
sign with gate arrays occurs in a completely
defined environment because there is only one
circuit from which the gate is formed and the
gate can be completely characterized. The man-
ufacture of gate arrays is fairly simple because
the fabrication technique of all but the last few
semiconductor processing steps is identical for
all designs. The customization, accomplished
by interconnection of the gates by metal, is car-
ried out last. Interconnection is a well under-
stood aspect of logic design and is used to form
the more complex macrostructures (various
flip-flop types, adders, etc.) and then to form
the higher levels of design by using arrays of
gate arrays. A disadvantage of gate arrays is
that gate array design methods do not permit
the high density possible with the more custom
methods because device placement is fixed.

It should be noted that gate array design is
not a new idea brought about by the need for a
simple method of customizing large-scale in-
tegrated circuits. Instead, it was one of the de-
sign philosophies advocated in the first few
generations. The concept then was to have a
single module containing a set of gates, and all
subsequent logic design would be done in terms
of that module. For example, flip-flops would
be constructed by interconnecting the gates. A
design predicated on a single module type im-
mensely simplifies the spare stocking and ser-
vicing aspects, and it is possible to troubleshoot

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 43

Table 7. Reasons To Do Custom Integrated Circuit Design

A performance advantage can be gained.
Product life cycle costs can be lower if diagnosability and reliability features are added.

Diagnostic labor can be a high percentage of printed circuit board manufacturing cost. Diagnosis to the chip level
can be sped up by features within the chip, and by a lower chip count, with a resultant lower manufacturing cost.

Data buses can be absorbed entirely within a chip to avoid bus interface costs. Even shortening a data bus from
multi-board to single-board length may reduce cost and/or improve performance by reducing stored energy and its
attendant drive/speed penalties.

Innovations conceakad within a chip are difficult for competitors to study and duplicate.

Performance barriers may be breakable only through custom large-scale integration. In central processor design
especially, and perhaps for certain memory interface applications, a custom integrated circuit approach may be the
only practical way to get around conflicting issues of size, power, capacitance, etc.

In some engineering environments there are extremely small amounts of space or very little power.

Table 8. Reasons Not To Do Custom Integrated Circuit Design

1.

For designs in the 100-500 equivalent gate complexity range, it may take up to a year to do the design with
primitive design tools.

For designs in the 100-500 equivalent gate complexity range, it may take up to $100.000 to do the design.
Unless substantial product volumes are obtained, the chip cost will be high relative to off-the-shelf chips.

A decision will have to be made whether to have the design done by an outside vendor or within the company. This
can be a very complicated and expensive decision.

The logic design and logic partitioning for large-scale integrated circuit design is different from that of conventional
logic design, and designers used to dealing with conventional design will have to assimilate new knowledge to
design large-scale integrated circuits themselves or even to talk with integrated circuit designers.

a problem by simply replacing circuits accord- Type 1

ing to a pattern. Designers did not find these * 3 external driver gates (4-input NAND)
advantages important enough at that time, e 5 internal driver gates (3-input NAND)
however, so the gate array concept was set aside e 5 internal expansion gates (3-input
until it was rediscovered by integrated circuit NAND)
designers. Type 2

A representative gate array is a Raytheon e 2 external driver gates (4-input NAND)
RA-116. It has 300 TTL Schottky gates, of two e 5 internal driver gates (3-input NAND)
cluster configurations, each repeated twelve * 5 internal expansion gates (3-input

times within the 160 mil X 160 mil chip: NAND)

44 COMPUTER ENGINEERING

Within each cluster, the expansion gates may
be combined with the driver gates to form 7 or 8
input NAND gates and AND-OR-INVERT
circuits with up to six product terms. The gates
have a typical propagation delay of 5-6 nanose-
conds and dissipate 5.5-6 milliwatts per driver
and 1 milliwatt per OR expander. Two metal
layers are used for interconnect, and the result-
ing circuitry can be connected to the outside
world by means of 56 external pins, including
power and ground.

Because the use of integrated circuit gate ar-
rays is recent, data on package count reduction
is scarce, but one informal study for the Ray-
theon RP-16 aerospace computer measured a
nine to one replacement ratio and an overall im-
provement by a factor of 2 over a system con-
structed with standard components [Parke,
1978].

A 920-gate MOS array of 3 input NOR gates
has been reported by Nakano et al., [1978]. Its
3-nanosecond gate delay illustrates the per-
formance potential as the metal oxide semi-
conductor process continues to progress toward
smaller, faster gates. For truly high speed appli-
cations, an ECL gate array can be used. These
devices, with subnanosecond speeds, exploit the
inherent properties of current mode logic to ob-
tain a particularly flexible element [Gaskill et
al., 1976].

Standard Cell Design

An alternative to gate array design is stand-
ard cell design. Standard cell design is identical
to the logical design of the first few generations
because there is a previously designed, well
characterized set of primitive components
(AND gates, flip-flops) in which the design is
carried out. The advantage of the standard cell
design methods is that special functions can be
mixed on the chip in greater variety. There may
also be a density advantage over gate arrays.
However, in some schemes each cell occupies a
different space and has a fixed shape. Careful

planning of the cell arrangements is necessary
to minimize loss of space. Hence, the improve-
ment in packing density is not as substantial as
direct comparisons between standard cell tech-
nology and gate array technology might at first
indicate. In addition, if there are a large number
of circuit types, their interconnection rules may
not be characterized well enough to achieve a
quick, chpap design that works the first time.

Custom Design

Custom design is in some ways a variant of
the standard cell because designers typically
have a set of favorite circuits which they inter-
connect to create designs for specified appli-
cations. With custom design, the designer can
(theoretically) specify a circuit for each use
within a particular logic design. For example,
upon observing that a particular gate or flip-
flop only drives a certain load, the designer can
modify that gate or flip-flop to provide only the
appropriate driving capability. Therefore, with
custom design, the whole integrated circuit can
theoretically be an optimum size, since each
part is no larger than it need be. The advantages
are clearly size, cost, and speed. The design
costs are high because each part can, in prin-
ciple, be customized. The quality of the circuit
design is totally dependent on the designer, who
must analyze each circuit geometry in terms of
his expectation of performance, operating mar-
gins, etc. To the extent that this analysis is car-
ried out, the circuit is clearly optimal.

Universal Logic Arrays, PROMs, and ROMs

Also shown in Figure 9 is a hypothetical line
for universal logic arrays. For at least 15 years,
academicians have studied the possibility of de-
signing a single array of logical design elements,
or a collection of such arrays, that could be in-
terconnected on a custom basis to carry out a

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 45

given function. The gate array can be looked at
as the simplest example of this type of design.
While many are skeptical that such a device ex-
ists, a line representing it is placed on the graph
as a target for those who search for the one
truly universal logic array.

Both programmable read-only memories and
masked read-only memories are commonly
used, but trivial, forms of the truly universal ar-
rays, because they can be used in a table lookup
fashion to create several functions of a number
of input variables. For example, a 1,024 word
read-only memory arranged in a 256 X 4-bit
fashion can generate 4 independent functions of
8 variables. This is a distinct alternative for us-
ing a conventional gate structure to carry out
combinational functions. A disadvantage of
this method is that the required read-only mem-
ory size doubles for each additional input vari-
able.

Programmable Logic Arrays

The progammable logic array (PLA) is a
combinational circuit which remedies the dis-
advantages of the read-only memory implemen-
tation of combinational functions by allowing
the use of product terms rather than completely
decoding the input variables. Figure 11 shows a
typical circuit, which consists of separate AND
and OR arrays. Inputs are connected to the
AND array, and outputs are drawn from the
OR array. Each row in the programmable logic
array can implement an AND function of se-
lected inputs or their complements, thus form-
ing a Boolean product term, and the OR array
can combine the product terms to implement
any Boolean function.

A simple application is operation-code de-
coding. For the PDP-11, the 16-bit Instruction
Register could be directly connected to a pro-
grammable logic array and the output thereof
used to specify the address of the microprogram
that executed that instruction. Three different

types of operation-code decoding are cusiom-
arily applied to PDP-11 instructions: source
mode decoding, destination mode decoding,
and instruction decoding. With a program-
mable logic array implementation, a PLA could
be used for each of these deccding operations

WIVU 1VL Vavil Ul uiwy vpvlaiwivis
?

and only three chips would be required. A read-
only memory implementation, on the other
hand, would require 128 K X 8 bits for address
mode decoding and 64 K X 8 bits for instruc-
tion decoding. Using 2 K X 8-bit read-only
memories, 33 chips would be required. For this
reason, modern minicomputers, such as the
PDP-11/34, use programmable logic arrays
rather than read-only memories or com-
binational logic for instruction decoding. The
technique is also extended downward into mi-
crocomputers such as the LSI-11, where pro-
grammable logic arrays are used to conserve the
die area used by the microcomputer control
units.

The programmable logic array becomes an
even more useful building block when it is made
field programmable - the FPLA. The program-
mable connectors shown in Figure 11 are fu-
sible nichrome links that are burned out when
the unit is programmed.

When a register is added to the outputs of the
programmable logic array and incorporated in
the same integrated circuit, a simple sequential
machine is obtained in one package. Since regis-
ter circuit packages are pin intensive, adding
registers to programmable logic arrays (or to
read-only memories) permits about a factor of 2
package count reduction in typical applications.

The first programmable logic arrays had
propagation times of the order of 150 nanose-
conds and were thus suitable building blocks
for slow, low-cost computers. Propagation
times of 45 nanoseconds are quite common to-
day, and the programmable logic array is now
more widely used. An attractive application
with these higher speed components is the re-
placement of the small-scale integration and

46 COMPUTER ENGINEERING

FPLA

AND
MATRIX

NOR

! P i MATRIX

OR .
MATRIX |

vy

PROGRAMMABLE
CONNECTORS

Figure 11. Signetics field programmable logic array
(FPLA) (courtesy of Signetics Corporation, from Signetics
Field Programmable Logic Arrays - An Applications
Manual, February 1977, copyright © 1977 by Signetics
Corporation).

medium-scale integration packages used to im-
plement the control logic for Unibus arbitration
in PDP-11 computers.

A more complex application than instruction
decoding has been documented [in Logue et al.,
1975]. An IBM 7441 Buffered Terminal Con-
trol Unit was implemented using program-
mable logic arrays and compared with a version
implemented with small- and medium-scale in-
tegration. The programmable logic array design
included two sets of registers fed by the OR ar-
ray (PLA outputs): one set fed back to the
AND array (PLA inputs); the other set held the
PLA outputs. A factor of 2 reduction in printed
circuit board count was obtained with the pro-
grammable logic array version. The seven pro-
grammable logic arrays used in the design
replaced 85 percent of the circuits in the small-
and medium-scale intregration version. Of these
circuits, 48 percent were combinational logic
and 52 percent were sequential logic.

MEMORY

MAGNETIC MECHANICAL

cnnﬂ\npen

PAPER
TAPE

ELECTRONIC

OPTICAL

PROM
cCp EPROM
EAROM

JOSEPHSON

JUNCTION ELECTRON
BEAM

STATIC TAPE ROTATING

RIGID FLEXIBLE

MEDIA MEDIA

MICROBIT § BUBBLE
CROSSTIE

HOLAFILE LASER

OPEN

DIGITAL ANALOG FLEXI BLE RIGID

CARDS
CASSE‘I‘IE

HIERARCHY OPEN

FLDPPV 0V|NG FIXED

STORE REEL BERNOULLI HEAD HEAD
CASSETTE upIo VIDEO
INSTRUMENTATION A
CARTMDGE FIXED MOVING DISK DRUM
HEAD HEAD
Figure 12. Family tree of memory technology (courtesy

of Memorex Corporation and S.H. Puthuff, 1977).

MEMORY TECHNOLOGY

The previous section discussed the use of
memory for microprogramming and table
lookup in logic design, but that is not the princi-
pal use of memory in the computer industry.
The more typical use of memory components is
to form a hierarchy of storage levels which hold
information on a short-term basis while a pro-
gram runs and on a longer term basis as per-
manent files. Figure 12 shows the various
technologies employed in these memory appli-
cations. Although the principal focus of this
section is on core and semiconductor memories,
slower speed electromechanical memories
(drums, disks, and tapes) are considered super-
ficially, as their performance and price im-
provements have pushed the computer
evolution. Because the typical uses for memory
usually require read and write capabilities,
write-once or read-only memory such as video
disks is excluded from the discussion.

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES a7

Measurement Parameters

Because memory is the simplest of com-
ponents, it should be possible to discuss mem-
ory using a minimal number of measurement
parameters. One of the most important parame-
ters is the state of development of the memory
technology at the time the other parameters are
measured, relative to the likely life span of that
technology. Unfortunately, this is one of the
most difficult parameters to quantify, although
its effects are readily observable, principally in
the rate of change of the other parameters asso-
ciated with that technology. Thus, in new tech-
nologies many of the parameters vary rapidly
with time. This is particularly true of semi-
conductor memory price, which has declined at
a compound rate of 28 percent per year (which
amounts to about 50 percent in two years). The
price is expressed only as price/bit, but it is im-
portant to know the price (or size) of the total
memory system for which that price applies. To

get the lowest price per bit, a user may be forced -

to a large system because of economy of scale.

Performance for cyclical memories, both the
electromechanical types such as disks and the
electronic types such as bubbles, is expressed in
two parameters: the time to access the start of a
block of memory and the number of bits that
can be accessed per second after the transfer be-
gins. Other parameters, such as power con-
sumption, temperature sensitivity, space
consumption, and weight, affect the utility of
memories in various applications. In addition,
reliability measures are needed to see how much
redundancy must be placed in the memory sys-
tem to operate at a given level of availability
and data integrity.

In summary, the relevant parameters for a
given memory are:

1. State of development of the technology
at the time the measurements are taken
relative to the likely life span of the tech-
nology.

_I\)

Price per bit.
3. Total memory size or total memory
price.
4. Performance.
a. Access time to the first word of the
block.
b. Time to transfer each word (data
rate) in the block.
5. Operational power, temperature, space,
weight.
6. Volatility.
7. Reliability and repairability.

As indicated by the rapidity of the parameter
changes, a good example of a technology that is
young relative to its expected total lifetime is
semiconductor memory. Figure 7 gives past
prices and expected future prices of semi-
conductor memory. As mentioned above, these
memories have declined in price every two years
by 50 percent, and that rate of decline is ex-
pected to continue well into the 1980s because
of continued increases in semiconductor den-
sities. Figure 13, a graph by Dean Toombs of
Texas Instruments, shows memory size versus
performance with time for random-access mem-
ories, and cyclically accessed charge-coupled
devices (CCDs) and magnetic bubbles.

Core and Semiconductor Memory
Technology for Primary Memory

The core memory was developed early in the
first generation for Whirlwind (1953) and re-
mained the dominant primary memory com-
ponent for computers until it began to be
superseded by semiconductor technology. The
advent of the 1-Kbit memory chip in 1972
started the demise of core as the dominant
primary memory medium, and the crossover
point occurred for most memory designs with
the availability of the 4-Kbit semiconductor
chip in 1974.

Over the period since the early 1960s, the
price of core memory declined roughly at a rate

48 COMPUTER ENGINEERING

RANDOM ACCESS SERIALACCESS

256 |- @ o052 BUBBLE
79-80 78-78
BUBBLE,

76-77
77-78

74-75

SIZE (Kbits)

BUFFER

R. MAINFRAME
.SCP:;!:H_."—ADD»ON‘—"‘—PERIPHERAL——,
1 1 1 o

0.01 0.1 1 100 1.000 10,000
ACCESS TIME (MICROSECONDS)

Figure 13. Memory size versus access time for various
memories and yearly availability (courtesy of Dean
Toombs, Texas Instruments, Inc.).

7.0
6.0

5.0 —

® CORE/SEMICONDUCTOR
MEMORY CROSS-OVER
TIME

PRICE
(NOT

T
ITURN. 1974] cosT)

COST/BIT (CENTS)

05 e

\m&—#

/—SEMICONDUCTOR
COST/BIT

\ (NOYCE, 1977a}

0.4

03—

20—

{1972

0.1 O N O S S B |
1965 1970 1975 1980
YEAR
Figure 14. Cost per bit of core memory estimated by

various market surveys and future predictions.

of 19 percent per year. This decline can be seen
in the DEC 12-bit machine memory prices, the
DEC 18-bit machine memory prices, and in the
IBM 360/370 memory prices (since 1964). The
price of PDP-10 memory has declined at 30 per-
cent per year, although it is unclear why. A pos-
sible reason is that the modular memory
structure had a high overhead cost; with sub-
sequent implementations, the memory module
size was increased, thereby giving an effective
decrease in overhead electronics and packaging
costs and a greater decrease in the cost per bit.

The cost of various memories was projected
by several technology marketing groups in the
period 1972-1974. Each study attempted to
analyze and determine the core/semiconductor
memory crossover point. Three such studies are
plotted in Figure 14 along with Turn’s [1974]
memory price data and Noyce’s [1977a] semi-
conductor memory cost (less overhead electron-
ics) projection. Most crossover points were
projected to be in 1974, whereas one study
showed a 1977 crossover. Even though all stud-
ies were done at about the same time, the varia-
tion in the studies shows the problem of getting
consistent data from technology forecasts.

While these graphs of core and semi-
conductor prices and performance permit an
understanding of trends in the principal use
areas for these devices, additional information
is needed for disk and tape memory in order to
complete the collection of memory technologies
that can be used to form a single memory hier-
archy.

Disk Memories

Disk memories are a significant part of most
systems costs in the middle-range minicomputer
systems; in larger systems, they dominate the
costs.

Although access time is determined by the
rotational delays and the moving head arm
speed, the single performance metric that is
most often used is simply memory capacity and
the resultant cost/bit. In the subsequent section

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 49

on memory hierarchies, it will be argued that
performance parameters are less important
than cost because more higher speed memory
can be traded off to gain the same system level
performance at a lower cost.

Memory capacity is measured in disk surface
areal density (i.e., the number of bits per in2)
and is the product of the number of bits re-
corded along a track and the number of tracks
of the disk. Figure 15 shows the progress in
areal recording densities using digital recording
methods. Figure 16 shows the price of the state-
of-the-art large, multiple platter, moving head
disks. Note that the price decline is a factor of
10 in 9 years, for a price decline of 22 percent
per year.

Figure 17 shows the performance plotted
against the price per bit for the technology in
1975 and 1980.

10M

MOVING-
7/ HEAD
DISK

/

o’

7
V.

FLEXIBLE
’ DISK
’

o S
/ O TAPE
—_
100K |— o

/ 6250
o
/ 1600 ,
o \% s
9-TRACK /A_
T gy
<

556

AREAL DENSITY (bits/in2}

1/4-INCH
7 CARTRIDGE
4

- ~CASSETTE

10K —

]
2K L—o 200 |] { | H
1955 1960 1965 1970 1975 1980 1988
YEAR
Figure 15. Areal density of various digital magnetic

recording media (courtesy of Memorex Corporation,

1978).

PRICE (CENTS/BIT)
o
2

MHD
MOVING
O

o001 — HEAD
\\ DISK
\\
~
~N
SPORS RN T T O O O O R A
1972 1974 1976 1978 1980 1882 1984
YEAR
Figure 16. Price per bit of large, moving head disks and

semiconductor memories {courtesy of Memorex
Corporation, 1977).

BIPOLAR
o)

. “"}”P
s
2

PRICE (CENTS/BIT)

102
103}~ \
TAPE
104 b— 0\1980 O\ CARTRIDGE
1975
105 1us 1ms 1s
| | |
10-9 10°6 10-3 1 1000
ACCESS TIME (SECONDS)
Figure 17. Memory trends, 1975-1980 (courtesy of

Memorex Corporation, 1978).

50 COMPUTER ENGINEERING

Magnetic Tape Units

Figure 18 shows the relevant performance
characteristics of magnetic tape units. The data
is for several IBM tape drives between 1952 and
1973. It shows that the first tape units started
out at 75 inches per second and achieved a
speed of 200 inches per second by 1973. Al-
though this amounts to only a 5 percent im-

pata-rate []
1000 | (29%/YEAR)
110,000}
RECORDING
DENSITY
] (23%/YEAR)
gfs -
TAPE SPEED
(S%/YEAR)
> 100
z -
I3 |1.000}
z
&
a
<
s
w
]
I
o
<
=
<
=}
=]
w L]
o
0
/ .
10
(100] ﬂ
LEGEND
o TAPE UNIT SPEED
{inches/second)}
TAPE RECORDING DENSITY
{characters/inch}
TAPE DATA RATE
D (Kbytes/second)
1 I i L
1950 1960 1970 1980
YEAR
Figure 18. Characteristics of various IBM magnetic

tape units versus time.

provement per year in speed over a 2l-year
period, this is a rather impressive gain consid-
ering the physical mass movement problems in-
volved. It is akin to a factor of 3 improvement
in automobile speed.

The bit density (in bits per linear inch) has
improved from 100 to 6,250 in the same period,
for a factor of 62.5, or 23 percent per year. With
the speed and density improvements, the tape
data rate has improved by a factor of 167, or 29
percent per year.

Tape unit prices (Figure 19) are based on the
various design styles. Slow tape units (mini-
tapes) are built for lowest cost. The most cost
effective seem to be around 75 inches per sec-
ond (the initial design), if one considers only the
tape. High performance units, though dis-
proportionately expensive, provide the best sys-
tem cost effectiveness.

Memory Hierarchies

A memory hierarchy, according to Strecker
[1978:72], *‘is a memory system built of a num-
ber of different memory technologies: relatively
small amounts of fast, expensive technologies
and relatively large amounts of slow, in-
expensive technologies. Most programs possess
the property of locality: the tendency to access a

1125; 6250]

3 175 6250]
|75:1600] @

145; 1600|

RELATIVE COST

[SPEED: RECORDING DENSITY (char/in)|

Ll 1 L1111l

! !
10 kHz 100 kHz 1 MHz

TRANSFER RATE (Kbytes/second}

Figure 19. Relative cost versus transfer rate for various
tape drives and controllers (1978).

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 51

small, slowly varying subset of the memory lo-
cations they can potentially access. By exploit-
ing locality, a properly designed memory
hierarchy results in most processor references
being satisfied by the faster levels of the hier-
archy and most memory locations residing in
the inexpensive levels. Thus, in the limit a mem-
ory hierarchy approaches the performance of
the fastest technology and the per bit cost of the
least expensive technology.”

The key to achieving maximum performance
per dollar from a memory hierarchy is to de-
velop algorithms for moving information back
and forth between the various types of storage
in a fashion that exploits locality as much as

possible. Two examples of hierarchies which de-
pend on program locality for their effectiveness
are the one level store (demand paging), first
seen on the Atlas computer [Kilburn er al.,
1962], and the cache, described by Wilkes
[1965] and first seen on the IBM 360/85 [Lip-
tay, 1968]. Because both of these are automat-
ically managed (exploiting locality), they are
transparent to the programmer. This is in con-
trast to the case where a programmer uses sec-
ondary memory for file storage: in that case, he
explicitly references the medium, and its use is
no longer transparent.

Table 9 lists, in order of memory speed, the
memories used in current-day hierarchies.

Table 9. Computer System Memory Component and Technology
Transparency
{To Machine Characteristics on
Language Which Its Use Is
Part Programs) Based
Microprogram memory Yes Very fast
Processor state No Very small, very fast register set (e.g.. 16 words)
Alternative processor state Yes Same (so speed up processor context swaps)
context
Cache memory Yes Fast. Used in larger machines for speed.
Program mapping and Yes Small associative store
segmentation
Primary (program) memory No Relatively fast, and large depending on proces-
sor speed
Paging memory Yes Can be electromechanical, e.g., drum, fixed head
disk, or moving head disk. Can be CCD or bub-
bles.
Local file memory No Usually moving head disk, relatively slow, low
cost.
Archival files memory Yes (preferably) Very slow, very cheap to permit information to

be kept forever.

52 COMPUTER ENGINEERING

There is a continuum based on need together
with memory technology size, cost, and per-
formance parameters.

The following sections discuss the individual
elements of the heirarchy shown in Table 9.

Microprogram Memories. Nearly every
part of the hierarchy can be observed in the
computers in this book. Part III describes PDP-
11 implementations that use microprogram-
ming. These microprogram memories are trans-
parent to the user, except in machines such as
the PDP-11/60 and LSI-11 which provide user
microprogramming via a writable control store.
Mudge (Chapter 13) describes the writable con-
trol storage user aspects associated with the
11/60 and the user microprogramming.

In retrospect, DEC might have built on the
experience gained from the small read-only
memory used for the PDP-9 (1967) and ex-
ploited the idea earlier. In particular, a read-
only memory implementation might have pro-
duced a lower cost PDP-11/20 and might have
been used to implement lower cost PDP-10s
earlier.

In principle, it is possible to have a cache to
hold microprograms; hence, there could be an-
other level to the hierarchy. At the moment, this
would probably be used only in high cost/high
performance machines because of the overhead
cost of the loading mechanism and the cache
control. However, like so many other technical
advances, it will probably migrate down to
lower cost machines.

Processor State Registers. To the machine
language program, the number of registers in
the processor state is a very visible part of the
architecture. This number is solely dictated by
the availability of fast access, low cost registers.
It is also occasionally the means of classifying
architectures (e.g., single accumulator based,
general register based, and stack based).

In 1964, even though registers were not avail-
able in single integrated circuit packages, the
PDP-6 adopted the general register structure

because the cost of registers was only a small
part of the system cost. In Chapter 21 on the
PDP-10, there is a discussion of whether an ar-
chitecture should be implemented with general
registers in an explicit (non-transparent) fash-
ion, or whether the stack architecture should be
used. Although a stack architecture does not
provide registers for the programmer to man-
age, most implementations incur the cost of reg-
isters for the top few elements of the stack. The
change in register use from accumulator based
design to general register based design and the
associated increase in the number of registers
from 1 to 8 or 16 can be observed in com-
parisons of the 12-bit and 18-bit designs with
the later PDP-10 and PDP-11 designs.

Alternative Processor State Context
Registers. As the technology improved, the
number of registers increased, and the proces-
sor state storage was increased to provide mul-
tiple sets of registers to improve process context
switching time.

Cache Memory. In the late 1960s, the cache
memory was introduced for large scale com-
puters. This concept was then applied to the lat-
est PDP-10 processor (KL10). It was applied to
the PDP-11/70 in 1975 when the relatively large
(1 Kbit), relatively fast (factor of 5 faster than
previously available) memory chip was in-
troduced. The cache is described and discussed
extensively in Chapter 10. It derives much
power by the fact that it is an automatic mecha-
nism and is transparent to the user. It is the best
example of the use of the principle of memory
locality. For example, a well designed cache of 4
Kbytes can hold enough local computational
memory so that, independent of program size,
90 percent of the accesses to memory are via the
cache.

Program Mapping and Segmentation. A
similar memory circuit is required to manage
(map) multiprogrammed systems by providing
relocation and protection among various user
programs. The requirements are similar to the

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 53

cache and may be incorporated in the caching
structure. The PDP-10 models with the KI10
processor use an associative memory for this
mapping function, and the VAX 11/780 uses a
64-entry, 2-way associative memory.

Paging Viemory. The Atlas computer [Kil-
burn, et al., 1962] was designed to have a single,
one level, large memory. This structure ulti-
mately evolved so that multiple users could
each have a large virtual address and virtual
machine. The paging mechanism works because
of the locality exhibited by program references.
Denning pointed out the clustering of pages for
a given program at a given time and introduced
the notion of the working set [1968]. For most
programs, the number of pages accessed locally
is small compared with the total program size.
Initially, a magnetic drum was used to irmgie-
ment the paging memory; but as disk tech-
nology began to dominate the drum, both fixed
head and moving head disks (backed up with
larger primary memories) were used as the pag-
ing memories. Denning’s tutorial article [1970]
is an excellent discussion of this section of the
memory hierarchy. In the next few years, the
relatively faster and cheaper charge coupled de-
vice semiconductor memories and bubble mem-
ories are clearly the candidates for paging
memories. Hodges [1975] compares the candi-
dates for paging memory in terms of reliability,
power, cost per bit, and packaging.

Local File Memory and Archival File
Memory. For local file memory in medium-
sized to large-scale systems there is no alterna-
tive to disks. Archival files, however, are usu-
ally kept on magnetic tapes, which permit files
to be stored cheaply on an indefinite basis.
There are usually fewer memory technologies
used in smaller systems than in larger systems
because the smaller systems cannot afford the
overhead costs (disk drives, tape drives, etc.) as-
sociated with the various technologies. At most,
two levels of storage would probably exist as
separate entities in smaller systems.

Alternatively, one might expect a com-
bination of floppy disk, low cost tape, and mag-
netic bubbles to be used to reduce the primary
memory size and to provide file and archival

memory. Currently, the floppy disk operates as
a single level memory. Here there are two alter-
natives for technology tradeoff using parts in
the hierarchy: a tape or floppy disk can be used
to provide removability and archivability,
whereas bubbles or charge-coupled devices can
be used to provide performance. The Strecker
paper [1978] quoted at the beginning of this sec-
tion on memory hierarchies elaborates on these
concepts.

MEASURING (AND CREATING)
TECHNOLOGY PROGRESS

The previous sections have presented tech-
nology in terms of exponentially decreasing
prices and/or exponentially increasing perform-
ance. This section presents a basis for this con-
stant change rate. The progress of a particular
technology as a function of time, 7{z), has been
classically observed to be:

T(t) = K X et

where K = the base technology at the beginning
of the time frame, and ¢ = a learning constant.

This can be converted to a yearly improvement
rate, r, by changing the base of the exponential
to:

T(1)= T X r+10
where T = the base technology at 70, and r =

yearly increase (or decrease) in the technology
metric.

This is the same form used for declining (or in-
creasing) cost from base c:

C=cxrtt0

54 COMPUTER ENGINEERING

Clearly there are manufactured goods that
neither improve nor decrease in price exponen-
tially, although many presumably could with
the proper design and manufacturing tooling
investments. The notion of price decline is com-
pletely tied to the cumulative learning curves of:
(1) people building a product for a long time,
(2) process improvement based on learning to
build it better, and (3) design improvement by
engineers learning from the history of design.
Production learning per se is inadequate to
drive cost and prices down because, after an ex-
tremely long time in production, more units
contribute little to learning. With inflation in la-
bor costs, the costs actually rise when the learn-
ing is flat. In order to provide a base for
predicting the inflationary effect, the consumer
price index has been plotted in Figure 20.

Learning curves do not appear to be under-
stood beyond intuition. They are (empirical)
observations that the amount of human energy,
En, required to produce the nth item is:

En=KXnd

where K and d are learning constants. Thus, by -

producing more items, the repetitive nature of a
task causes learning, and the time {(and perhaps

30
8%
w
3 — 6%
R
©
o 20—
5 =
a =
z
s |
(5]
2 |
« 10 p—
g
] n
2
[z =
P-4
Q -
o
0 | 1 |
1960 1970 1980
YEAR
Figure 20. Consumer Price Index using

1967 as base.

cost) to produce an item decreases with the
number produced and not with the calendar
time in which an object is produced.

In his study of technology progress, Fusfeld
[1973] took six items, chose a measure of prog-
ress in the production thereof, and plotted that
measure against cumulative units produced. In
each case, he found a relationship of the form:

Ti=aXib

where i is the number of units produced and Ti
is the value of his selected technology progress
measure at the ith unit — the same as the learn-
ing curves would predict.

The graph for turbojet engines, where he used
fuel consumed per pound as the technology
measure, is reproduced in Figure 21. The results
for all six items studied are shown in Table 10.

Where two values are given for the tech-
nology progress constant, a second rate of prog-
ress was observed after a significant shift in the
industry occurred. For example, such a shift oc-
curred in the automobile industry in the late
1920s when the acceptance of the automobile,
the development of a new tire, and the expan-
sion of the public road network operated con-
currently to change the nature of the industry.

10.0

80—
RECIPROCAL OF

6.0 — SPECIFIC WEIGHT

*
a— ."‘(
/. T = ail 08
e @

40—

20— RECIPROCAL OF SPECIFIC

FUEL CONSUMPTION

TECHNOLOGY MEASURE

-
Qo0
10— /o/
fe) CUMULATIVE JET
08— ENGINE PRODUCTION
0] | 1]
8.000 10,000 12,000 14,000 16.000
NUMBER PRODUCED
Figure 21. Technology progress functions for

turbojet engines [Fusfeld, 1973].

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES

Examination of the table will reveal sub-
stantial variations in the technology progress
constant from item to item. This is probably be-
cause most of the technologies represented
above are mechanically oriented with associ-
ated phy ts. Computer technology is
electronically oriented and has not yet reached
its limits. In essence, the table is comparing sys-
tems constrained by Newton’s Laws with those
constrained by Maxwell’s Equations.

Using the two formulas,

sical limi

T() = K X et
and
Ti=aXib

Fusfeld [1973] related the unit learning curve
concept to the more conventional, timely view
of technology progress when the number of
units produced increases exponentially with
time, that is, relations expressed in the first two
formulas are equivalent when the condition ex-
pressed by the following formula holds:

i = ec/bXt

This previous formula indicates that the pro-
duction rate is a constant fraction of the total
production to date - i.e., production occurs
with exponential growth.

While the Fusfeld information shows inter-
esting results, it does not explain why tech-
nology improves exponentially, nor does it

55

explain why cost deciines exponentially. Learn-
ing curves and an exponential increase in the
quantity of items produced may depress cost,
but simple production learning does not ac-
count for the rapid technology changes in the
ated circuit, for example, where totally
different production processes have been
evolved to support the greater technology.

In the computer industry, the mobility of
technical personnel from company to company
has certainly been a significant factor in tech-
nology innovation. The strongest force toward
technology innovation in the computer in-
dustry, however, has been the computer users.
They have been doing a significant portion of
the inventing, both in hardware development
and in software development. Although the
case studies in this book indicate several specific
places where users have influenced hardware
design, it would be a substantial oversight not
to mention the profound effect users had on the
creation of PL/1 and COBOL. Furthermore, all
applications work is done first by users and
then developed by manufacturers at a later date
along the lines of the above model.

intagr
1 I.\dsl

The Influence of Technology Innovation on
Cost

The cost of computing is the sum of the costs
which correspond to the various levels-of-in-
tegration described in Chapter 1, plus the oper-
ational costs. The levels are integrated circuits,

Table 10. Fusfeld’'s [1973] Measures of Technology Progress
Change

Quantity Technology Observed Total
Item Measure, Ti Produced (i)} Progress (b) In Study Change
Light bulbs Lumens/bulb 1010 0.04;0.19 33 80
Automobiles Vehicle h.p. 3X107;108 0.11:0.74 10 6;13
Titanium Psi/$/16 3X108 0.3:1:1.04 10 350
Aircraft Maximum speed 2 X108 0.33-1.2 6 56
Turbojet engines Fuel consumed, weight 1.6 X 104 1.06 2 29 X 104
Computers Memory size X rate 108 2.51 109 3.5 X 1012

56 COMPUTER ENGINEERING

boards, boxes, cabinets, operating systems,
standard languages, special languages, appli-
cations components, and applications. In prac-
tice, each additional level-of-integration is often
looked at as overhead. Using standard account-
ing practice, the basic hardware cost, at the low-
est level, is then multiplied by an overhead
factor at each subsequent outer level. While an
overhead-based model may work operationally
for a stable set of technologies, such a model
will not adequately allow for rapidly evolving
technologies or the elimination of levels. By ex-
amining each level, observations can be made
about the use and substitution of technology.
More importantly, conclusions can be drawn
about how structures are likely to evolve.

Cost, Performance, and Economy of Scale

For most technologies used in the computer
industry, there is a relationship between cost,
performance, and economy of scale:

Performance = k X cost’ X r!

where k = base case performance, s = economy
of scale coefficient, r = rate of improvement of
technology, and ¢ = calendar time.

There are four possibilities for the effect of
economy of scale on the production of any de-
vice. These are:

1. Economy of scale holds. A particular
object can be implemented at any price,
and the performance varies exponen-
tially with price.

Performance = k X price 5; 5 > 1

2. Linear price performance relationship.
a. Performance = k X price
b. Performance = base + K X price

3. Constant performance, price independ-
ent.

Performance = k

4. Only a particular device has been imple-
mented. The performance (or size) is a
linear sum of such devices.

Performance = n X (k X price)

Sometimes, economy of scale effects are ob-
served in situations where they would not nor-
mally be expected. For example, assume a
performance improvement feature exists that
costs the same whether it is added to a large
computer or added to a small computer. Add-
ing that feature to a product that is already high
priced will have a modest effect (say 5 percent)
on the cost but a substantial effect (say 100 per-
cent) on the performance. Adding the same
constant cost feature to a lower cost product
will have a substantial effect (say 200 percent)
on the cost but only a performance effect (again
100 percent) similar to that obtained with the
higher cost system. This condition is especially
true in disks and computer systems. Use of a
particular recording method employing costly
logic for encoding/decoding, or addition of a
cache memory, is often employed to the high
priced systems first. With time and learning, the
technique can then be applied to lower cost sys-
tems. For example, cache, a nearly perfect ex-
ample of the constant cost add-on, first
appeared in such large machines as the IBM
360/85 in 1968 and later migrated down to large
minicomputers such as the PDP-11/70 in 1975.
On a research basis, cache even reached the
small minicomputer, the cache-based PDP-§/E
at Carnegie-Mellon University (Chapter 7).

In Figure 22, the cost of the lowest price unit
is kept to a minimum and decreases, while the
cost of the mid-range product continues to in-
crease. The cost of the highest performance
product increases the most, because it can af-
ford the overhead costs. Looking at the basic
technology metric, there are really three curves,
as shown in Figure 23. The first curve repre-
sents the application of new technology to a
high cost/high performance product to get a
substantial performance improvement. With
time, the technology evolves and is reapplied to
the mid-range products (the first level copy),
and finally, several years later, the technique be-
comes commonplace and is applied to low cost

BEST
osT/

CPERFORMP‘NCE

INC. ECONOMY

OF SCALE e ——

LOG (NET COST)

-~ — SMALL
~ — _(MIN.cosT)
COST = C.base X C.rate! —~—

! I I |

t—

Figure 22. Cost versus time.

LOG (TECHNOLOGY) (T)

Figure 23. Technology versus time.

cost _ Cbase C.rate!

tech Tbase T.ratel

t
= k x C.rate
T.rate

LOG COST/TECHNOLOGY

Figure 24. Cost/technology versus time.

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 57

products (second level copies). The resultant
cost/performance ratios are shown in Figure
24.

The management of technology by applying
it to products in various price and performance
ranges occurs in a more or less ordered fashion
in most industries, but has not occurred to the
extent that it has in the computer industry. This
is probably because no other industries have
evolved in the same rapid and broad fashion as
have the computer and semiconductor in-
dustries. The computer industry is fundamen-
tally driven by the semiconductor technology
push on the one hand, and by IBM on the
other. IBM follows the strategy of applying
technology on an economy of scale basis. This
permits the technology to be first tested at the
high performance/high price lower volume sys-
tems before being introduced in higher volume
production. The following examples (from
IBM) show this at work. In printing, the high
price/low volume to low price/ high volume in-
troduction cycle was followed in the use of dot
matrix printing, chain printing, ink-jet printing,
and computer printing as a precursor to systems
products using xerography. In magnetic stor-
age, the cycle saw the basic technology for large
disks as a precursor to the use of similar tech-
nology on smaller disks.

Technology Substitution

The cost and performance of a computer sys-
tem are roughly the additive and multiplication
functions, respectively, of the parts. The tech-
nologies represented in those parts each evolve
at their own rates. Usually, when one com-
ponent begins to dominate the cost (e.g., pack-
aging) or constrain the performance, then
pressure occurs to more rapidly change and im-
prove the associated technology to avoid the
cost or performance bottleneck. Sometimes a
slowly evolving technology is just eliminated as

58 COMPUTER ENGINEERING

a substitute is found. The following is a list of
some of the substitutions that have occurred:

1. Semiconductor memories are now used
in place of core memories. Since the lat-
ter has evolved more slowly in terms of
price decline, semiconductors are now
used to the exclusion of cores. (This has
not occurred where information must be
retained in the memory during periods
of time without power.}

2. Read-only semiconductor memories are
now substituted for semiconductor logic
elements.

3. Inasimilar way, programmable logic ar-
rays can be potentially substituted for
read-only memories, and true content
addressable memories can replace vari-
ous read-write and read-only memories.

4. The judicious use of charge-coupled de-
vices or bubble memories can cause
drastic reduction (and quite possibly the
elimination) of the use of MOS random-
access memories for primary memory.
The fixed head disk could be eliminated
at the same time.

5. For small systems, the main operational
memories could be completely nonelec-
tromechanical; electromechanical mem-
ories (e.g., tape cassettes and floppies)
would be used for loading files into the
system and for archives. For even lower
cost systems, semiconductor read-only
memories could replace cassettes and
floppies for program storage, as in pro-
grammable calculators.

After a while those components of computer
system cost which are decreasing less rapidly
than other components, remaining static, or are
rising (like the packaging and power) may be-
come a significant fraction of the total cost. Be-
cause costs are additive, the exponential
decrease in some costs, such as those for semi-
conductor logic and memories, will cause the

costs that are not similarly decreasing to be
more evident. This causes pressure for struc-
tural change and may cause new packaging, for
example, to become an especially important at-
tribute of a new design. For instance, although
the PDP-8 is normally considered to be the first
minicomputer, it postdates the CDC 160 (1960)
and DEC’s PDP-5 (1963). However, the PDP-8
was unique in its use of technology because:

1. Tteliminated the full frame cabinets used
by other systems. This also presented a
new computer style such that users could
embed the computer in their own cabi-
nets. A separate small box held the pro-
cessor, memory, and many options.

2. Automatic wire-wrap technology was
used to reduce printed circuit board in-
terconnection cost. This also eliminated
errors and reduced checkout time.

3. Printed circuit board costs were reduced
by using machine insertion of com-
ponents.

4. The Teletype Corporation Model 33
Automatic Send Receive (ASR) tele-
printer (also used on PDP-5) was con-
nected as the peripheral. &t had a
combined printer, keyboard, and paper
tape I/O device (for program loading). It
eliminated the paper tape reader and
punch.

Technology Progress, Product
Development, and the State-of-the-Art Line

If there were no such thing as technological
progress, there would be no such thing as an
obsolete product. In such a situation, it would
not matter when a product was introduced into
the market, as it would be technically equal to
the other products available. In the computer
industry, this is far from the case: for computer
processors, peripherals, and systems, there is a
state-of-the-art line that indicates the average
technological level at which present products

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 59

are being offered. Since higher technology has
generally meant better price/performance, new
products introduced in the market must have a
proper relationship to the state-of-the-art line.
The following paragraphs elaborate on the in-
teraction between technology progress, product

development, and the state-of-the-art line.

The complete development process can be en-
visioned as a pipeline process with the following
stages: research, applied research, advanced de-
velopment (product breadboard), development,
test, sell/build, and use. In this model, ideas
and information flow through the various or-
ganizations in a process-like fashion, culminat-
ing in a product. Each product type has a
different set of delays associated with the parts
of the pipeline. At the end of the pipeline, the
“education of use” delay occurs while the pros-
pective customers are taught how the product
meets their needs; this delay culminates in mar-
ket demand. For well defined, commodity-like
products such as disks and primary memory,
the education of use delay is zero, as each user
“knows” the product. For a new language, on
the other hand, there is a large education of use
delay, and the market demand usually develops
slowly.

The disk supply process is a good example of
the pipeline nature of the development process.
The technology (as measured by the number of
bits per areal inch) doubles about every two
years (i.e., the density improves 41 percent per
year). IBM is estimated to invest about 100 mil-
lion dollars per year in the development and as-
sociated manufacturing process pipelines.
Because of this massive investment, the IBM
disks essentially establish the state-of-the-art
line in a structure that is typified by Figure 23.
Using the pipeline development process, devel-
opment of competitive disks by other com-
panies would lie somewhere about four to six
years behind the state-of-the-art line. This can
be seen by looking at the development process
and taking into account the delays through each

stage. To be more competitive, the disk industry
short circuits various delays by engaging in re-
verse engineering; this results in only two-year
lags. In reverse engineering, the tools are mi-
crometers and reverse molds. At the time of the
first shipment of a new product by the tech-
nology leader, the product is purchased by com-
petitors and basically copied on a function per
function basis. The more successful designs use
pin for pin compatibility to take maximum ad-
vantage of the leader’s design decisions.

From the process, it is also easy to see how
merely copying competitive products guaran-
tees products that will be at least two years be-
hind leadership products and lagging behind
the state-of-the-art. Nonetheless, if there is a
strong market function which operates to define
products based on existing product use, and if
the design and manufacturing process at the
copying company is quite rapid, such a strategy
can be effective. The copying process can also
be very effective for software products because,
while there are no delays associated with manu-
facture, the time to learn about the product pro-
vides a time window in which copiers can catch
up with the leaders.

A high technology, exponentially increasing
(volume) product is denoted by:

1. Exponential yearly cost improvement
(price decline) rates through product
technology improvements as measured
by price decline of greater than 20 per-
cent (e.g., disk price this year = 0.8 last
year’s disk price, CPU = 0.79, primary
memory = 0.7).

2. Short product life (less than 4 years).

3. Various types of learning curves. Some
products require very little learning,
while others require a great deal of learn-
ing or require re-learning because of per-
sonnel turnover or the frequent hiring of
additional personnel.

60 COMPUTER ENGINEERING

The Product Problem (Behind the State-of-
the-Art)

Typical product situations, including com-
petitive “‘problems,” can be seen in Figure 25.
When a product is introduced to the market, it
has a relationship to the state-of-the-art line.
There are five possible situations:

1. Ideal (on the state-of-the-art line).
Advanced (moves below the line).

Late (slip in time to the right).

v

Expensive (more than expected in cost,
straight above the line).

5. Late and expensive (to the right and
above the line).

Situations 3, 4, and 5 are product problems
because they are behind the state-of-the-art line
and, hence, less competitive. This implies in-
creased sales costs, lower margins, loss of sales,
and so on. Note that a late product could be
acceptable if somehow the cost were lower.
Similarly, an expensive product is acceptable if
it appears earlier in time.

EFFECTIVE LATENESS
V—A—

dt EXPENSIVE
LATE AND EXPENSIVE

®
LAt do
e, o~ ATE } } EFFECTIVE

10—
09} /.\ OVER COST
[+X:] of .\

IDEAL ~

~
06~ apvancep \o‘/

¢ = base Xrt, eg.c = 08t

LOG (COST)

Sea,
ipeaLnext "7 ok,
04 PRODUCT UNNE,
N8

I 1 | I] A1

[} 1 2 3 4 5 6

TIME (YEARS)

Figure 25. Use of the state-of-the-art line to model
product cost problems and timing problems.

Time Is Money (and vice versa)

Thus, product problems can be solved by ei-
ther:

1. Movement in time (left) to get on the
line.

2. Movement in cost (straight down) to get
on the line.

With exponential price declines, a family of
products over a long time will follow a cost
curve, ¢

c=bXr!

where ¢ = cost at time, ¢ (in years), # = base
cost, and r = rate of price decline.

With dc = change in cost above (or below) to
get back to the state-of-the-art line and dr = de-
lay (or advance) in time to get back to the state-
of-the-art line, let:

f=dc/c = fraction of cost away from line

f=1- rdt = (poor cost, expressed as
project slip)

and:

dt =In (1 = f) /In(r) = (poor timing, ex-
pressed as poor cost)

These formulas permit the interchange of time
and money (cost). For example, in disks or cen-
tral processors where » = 0.8 and In.8 = 0.22,
note:

f=1-0.8

A one-year slip is equal to a 20 percent cost
overrun.

di=—445X1In(1 - f)

A 10 percent cost increase is equal to a 0.47-
year slip.

TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES 61

Engineering, Manufacturing, and Inflation
Effects

Engineering, by establishing the product di-
rection, has the greatest effect on the product.

”n\xu-‘ver’ since most nroduct nroblems mav

12 UWOY SiLC INRUSL plOUGuly PIrOOICIns ay

have multiple components, it is worth looking
at each.

1. Timing.

a. [Engineering. Schedule slips translate
into a competitive cost problem as a
sub state-of-the-art, late product.

b. Manufacturing. Building up the
learning curve base quickly by mak-
ing many units before the design is
mature is risky, but it has a high
payoff when considering the appar-
ent cost and/or delay.

2. Cost.
A number of components and organiza-
tions contribute to the total product cost
in an evolutionary fashion, as shown in
Figure 26.

\ NET = f (LEARNING, TECHNOLOGY,

INFLATION, FUNCTIONALITY}

\ MANUFACTURING ASSEMBLY

(LEARNING)
NEW TECHNOLOGY,

MATERIALS

INFLATION FACTOR

/ INCREASE IN FUNCTIONALITY
/ (ENGINEERING)

T

LOG (COST OF VARIOUS COMPONENTS)

Figure 26. The various components that contribute to
product cost.

.SD

Engineering. Perhaps the major de-
terminant of cost by the product de-
sign - number of parts, ease of
assembly, etc. The most common
cost problems occur by continued
product enhancement during the de-
sign stage to provide increased func-
tionality (called “one-plussing the
design”). One-plussing often occurs
because the market had not been
modeled before the design was be-
gun, and without a model of the
market, engineering is a ship with-
out a rudder.

Manufacturing. Direct labor and
manufacturing overhead really mat-
ter when determining productivity.
Making major changes in the design
of a product or the location of man-
ufacture for a product starts a new
learning curve and serves to stretch
the production time out, and the in-
creased costs associated therewith
put false pressure on engineering to
design new products. One curve in
Figure 26 shows the direct costs as-
sociated with manufacturing assem-
bly. Some learning should take place
as long :as product volumes increase
expongentially, to get a net lower
cost. New technology materials
show the greatest cost improvement
for computers, assuming that semi-
conductors and other electronic ma-
terials continue to improve with
time. By capital equipment invest-
ment (tooling), there can be stepwise
cost reductions in materials costs.

Inflation. While not a direct cost
function, it combines with labor cost
to negate the downward cost trends
that were obtained from learning ef-
fects.

62 COMPUTER ENGINEERING

d. Compound Cost. The costs are taken
altogether. In terms of a sub state-
of-the-art product, the costs are
compound.

3. Manufacturing learning. Learning curves
and forgetting curves really matter. Left
alone, a typical product may go down
three alternative paths (Figure 27):

a. ¢=bX095
(a decrease of 5 percent/year)
b. ¢=b
(staying constant with little atten-
tion)
c. c¢=bX1.06
(increasing with inflation as little
learning occurs after many units are
produced)
Where ¢ = cost at time, ¢ (in years), and
b = base cost.

Mid-Life Kicker for Product Rejuvenation

By enhancing an existing product (the “mid-
life kicker’’), one can improve the
cost/performance metric of a given product.
This is non-trivial, and for certain products
must be inherent (i.e., designed in). Under these
conditions, improvements in cost go immedi-
ately to get the product back onto the state-of-
the-art line. For example, a factor of 2 in per-
formance halves cost/performance. The effect

OBSOLESCENCE, At,

ATT PRODUCT WITH:
\\) FORGETTING
= ~
2 CONSTANT COST | COST GAP
53 PRODUCT PROBLEM
g [(ATINTRODUCTION] N LEARNING AT TIME, T
S
~
~
~

Figure 27. Product cost versus time within
manufacturing learning.

of doubling the density of a disk is to move the
product back to the state-of-the-art line by a
time shift. The preceding formula gives:

dt = 4.45 X In (0.5) = 3.1 years

This situation is shown in Figure 28 and is com-
pared with a 5 percent per year learning curve.

SUMMARY

The discussions above have attempted to
show how technology progress, particularly in
the areas of semiconductor logic, semi-
conductor memories, and magnetic memory
media, have influenced progress in the com-
puter industry and have provided choice and
challenge for computer design engineers.

As was implied in the Structural Levels-of-
Integration and Packaging Levels-of-In-
tegration Views of Chapter 1, computer engi-
neering is not a one-dimensional undertaking
and is not simply a matter of taking last year’s
circuit schematics and this year’s semi-
conductor vendor catalogues and turning some
kind of design process crank. Instead, it is much
more complicated and includes many more di-
mensions.

Two additional dimensions with which a dis-
cussion of computer engineering must deal, be-
fore going on the DEC computers as case
studies, are packaging and manufacturing.
These are discussed in Chapter 3.

p

/

~
\gTRODUCTION

03
08

07
06 \\ FACTOR OF 2

-~)/—ENHANCEMENT
0.5 o e c— c— — c— — am— -~

0.4} \\c = 08!

~ 0.95!

TT 11T
/

LOG (COST/FUNCTION}

TIME

Figure 28. Product cost improvement by enhancement
of cost/function.

Packaging and Manufacturing

As indicated in the previous chapter, com-
puter engineering is more complicated than
simply applying new technology to existing de-
signs or designing new structures to exploit new
technology. To design a successful new com-
puter, the engineer must often deal with issues
of packaging, manufacturing, software com-
patibility, marketing, and corporate policy.
Some of these issues have been briefly referred
to in the first two chapters, and some are be-
yond the scope of this text. However, two issues
that can and should be discussed before explor-
ing the case studies are packaging and manufac-
turing. Both of these are crucial to DEC, as well
as to the computer industry in general.

GENERAL PACKAGING

Packaging is one of the most important ele-
ments of computer engineering, but also one of
the most complex. The importance of packag-
ing spans the size and performance range of
computers from the super computers (CDC
6600, CDC 7600, Cray 1) to the pocket calcu-
lator. Seymour Cray, the designer of the super
computers cited, has described packaging as the
most difficult part of the computer designer’s

C. GORDON BELL, J. CRAIG MUDGE,
and JOHN E. McCNAMARA

job. The two major problems he cites are heat
removal and the thickness of the mat of wires
covering the backplane. (The length of the wires
is also important.) His rule of thumb indicates
that with every generation of large computer
(roughly five years), the size decreases by
roughly a factor of 5, making these problems
yet worse. In his latest machine, the Cray 1, the
C-shaped physical structure is an effort to re-
duce the time-consuming length of backplane
wires while providing paths for the freon cool-
ing system by having wedge-shaped channels
between the modules.

At the opposite end of the size and perform-
ance range, pocket calculators are also greatly
influenced by packaging. In fact, they are deter-
mined by packaging. The first hand-held scien-
tific calculator, the Hewlett-Packard HP35, was
simply a new package for a common object, the
calculator, which had been around for about a
hundred years. It was not until semiconductor
densities were high enough to permit implemen-
tation of a calculator in a few chips, and not
until those chips could be repackaged in a par-
ticular fashion, that the hand-held calculator
came into existence. Currently this embodiment
is synonymous with the calculator name, but

63

64 COMPUTER ENGINEERING

other forms are appearing. The calculator
watch, the calculator pencil, the calculator
alarm clock, and the calculator checkbook have
all been advertised.

Between the two extremes of super computers
and calculators, packaging has also been impor-
tant in minicomputers and large computers. In
particular, packaging seems to be the dominant
reason for the success of the PDP-8 and the
minicomputer phenomenon, although market-
ing, the coining of the name, and the ease of
manufacture (also part of packaging) are alter-
native explanations. The principal packaging
advantage of the PDP-8 over predecessor ma-
chines was the half-cabinet mounting which
permitted it to be placed on a laboratory bench
or built into other equipment, both locations
being important to major market areas.

The Packaging Design Problem

The importance of packaging is equalled only
by its complexity. The complexity stems from
the range of engineering disciplines involved.
Packaging is the complete design activity of in-
terconnecting a set of components via a me-
chanical structure in order to carry out a given
function. To package a large structure such as a
computer, the problem is further broken into a
series of levels, each with components that carry
out a given function. Figure 1 shows the hier-
archy of levels that have evolved in the last
twenty years for the DEC computers. There are
eight levels which describe the component hier-
archy resulting in a computer system.

For each packaging level there is a set of in-
terrelated design activities, as shown in Figure
2. The activities are almost independent of the
level at which they are carried out, and some
design activities are carried out across several
levels.

While the initial design activities indicated in
Figure 2 are each aimed at solving a particular
problem, the solving of one problem in com-
puter engineering usually creates other prob-

HOLDING
STRUCTURE

INTERCONNECTION COMPONENT
COMPUTER
SYSTEM

EXT. CABLES CABINETS ROOM, FLOOR

BOXES

INT. CABLES (NOTES 1.2) CABINET CONSOLE POWER

FRAME

BACKPLANES (BP)

INT. CABLES (NOTE 2} BOX/FRAME

PCB AND MODULES MODULE HOLDERS,

WIRE-WRAP BACKPLANES CONNECTORS
(NOTE 3)
COMPONENT PACKAGES
DISCRETEORIC

PCB ETCH PRINTED
(NOTE 4) CIRCUIT BOARD
(PCB)

CHIPS

WIRE BOND (NOTE 4)

DUAL-IN-LINE
PACKAGE

(DIP)

METAL, DIFFUSION TRANSISTORS

POLYSILICON

SILICON
SUBSTRATE

NOTES
1. Not present in second generation
2. Can be taken together as a single level in later generations
3. Sometimes hand wired
4. Third and fourth generations only

Figure 1. Eight-level packaging hierarchy for second to
fourth generation computer systems.

lems as side effects. For example, the integrated
circuits and other equipment that do informa-
tion processing require power to operate. Power
creates a safety hazard and is provided by
power supplies that operate at less than 100 per-
cent efficiency. These side effects create a need
for designing insulators and providing methods
of carrying the heat away from the power sup-
ply and the components being powered. In this
way, cooling problems are created. Cooling can
be accomplished by conducting heat to an out-
side surface so that it may be carried away by
the air in a room. Alternatively, cooling can be
done by convection: a cabinet fan draws air
across the components to be cooled and then
carries the heated air out of the package into the

—}+ cLecTROMAGNETIC
3 ‘!—* SAFETY
~}» mechanicaL cHaracTERISTICS
I (E. G.. VIBRATION, SIZE. WEIGHT)
ACOUSTIC NOISE
cosT TO:
© DESIGN o OPERATE
I ® MANUFACTURE ® SERVICE
o BUY * MODIFY
| esme * DISCARD
[packace] VISUAL IMPRESSION
| (sHape. coLon. TexTURE)
L——+» HUMAN INTERFACE

® COMPONENTS }

® INTERCONNECTION l
® HOLDING STRUCTURE FUNCTIONAL BEHAVIOR AND
' PERFORMANCE FOR TASK
{MAINLY LOGICAL AND
I MEMORY SYSTEM DESIGN)
RELIABLE SIGNAL TRANSMISSION

e | COOLING, HEATING.
HUMIDITY, ENVIRONMENT

{E.G., WATERTIGHT}

POWER CONVERSION |
{ AND CONTROL PART } ‘T POWER

Figure 2. Packaging - a set of closely interrelated
design activities.

room. In either case, the air conditioning sys-
tem is left with the problem of carrying the heat
away, and the fans associated with that system
are added to the fans associated with the com-
puter to create acoustical noise pollution in the
room, making it more difficult for people to
work. Furthermore, if the computer is used in
an unusually harsh environment, a special heat
exchanger is required in order to avoid con-
tamination of the components within the com-
puter by the pollutants present in the cooling
airflow.

Finally, the mechanical characteristics of a
particular package such as weight and size

PACKAGING AND MANUFACTURING 65

directly affect manufacturing and shipment
costs. They determine whether a system can be
built and whether it can be shipped in a certain
size airplane or carried by a particular distribu-
tion channel such as the public postal system.
The mechanical vibration sensitivity character-
istics determine the type of vehicle (ordinary or
special air ride van) in which equipment can be
shipped.

It is also necessary to examine the particular
design parameter in order to determine whether
it is a constraint (such as meeting a particular
government standard), a goal (such as min-
imum cost), or part of a more complex objective
function (such as price/performance). Table 1
lists the various kinds of design activities and
constraints, goals, or parts of more complex ob-
jective functions that they determine. The table
also gives the dimensions of various metrics
(e.g., cost, weight) available to measure the de-
signs; many of these metrics are used in sub-
sequent comparisons.

Given the basic design activities, one may
now examine their interaction with the hier-
archy of levels (i.e., the systems) being designed
(see Table 2). This is done by looking at each
level and examining the interaction of the de-
sign activities for that level with other design
activities (e.g., function requires power, power
requires cooling, cooling requires fans, fans cre-
ate noise, and noise requires noise suppression).

Computer Systems Level. The topmost
level in Table 2 is the computer system, which
for the larger minicomputers and PDP-10 com-
puters consists of a set of subsystems (proces-
sor, memories, etc.) within cabinets, housed in a
room, and interconnected by cables. The func-
tional design activity is the selection and inter-
connection of the cabinets, with a basic
computer cabinet that holds the processor,
memory, and interfaces to peripheral units.
Disks, magnetic tape units, printers, and termi-
nals occupy free standing cabinets. The func-
tional design is usually carried out by the user
and consists of selecting the right components

66 COMPUTER ENGINEERING

Table 1. Design Activities, Metrics, and Environment Goals and Constraints

Design Activity

Environment and [Metrics]

Primary function and
performance (e.g.. memory)

Human engineering
Visual/aesthetics

Acoustic noise

Mechanical

Electromaghetic radiation

Power

Cooling and environment

Safety

Cost
Cost/metric ratios

Density metrics
Power metrics

Reliability

Market, the consumer of the system
[Memory size in bits, operation rate in bits/sec]

Human factors criteria, competitive market factors

Market, other similar objects, the environment in which the object is to exist

Government standards, operating environment, market
[Decibels in various frequency bands}

Shippability by various carriers, handling, assembly/disassembly time
[Weight. floor area, volume, expandability, acceleration, mechanical frequency

response|

Government standards, must operate within intended environment
[Power versus frequency]

Operating environment, market
|watts, voltage supply range]

Market, intended storage and operating environment, government standards
[Heat dissipation, temperature range, airflow, humidity range, salinity, dust par-
ticle, hazardous gas]

Government standards

[Cost/performance (its function) — cost/bit and cost/bit/sec, cost/weight,
cost/area, cost/volume, cost/watt]

[Weight/volume, watts/volume, operation rate/volume]
[Operation rate/watt; efficiency = power out/power in)

[Reliability ~ failure rate (mean time between failures), availability - mean time
to repair)

to meet cost, speed, number of users, data base
size, language (programming), reliability, and
interface constraints. Aside from the functional
design problem, cooling and power design are
significant for larger computers. For smaller
computers, accessibility, acoustic noise, and vis-
ual considerations are significant because these
machines become part of a local environment
and must “fit in.”

Cabinet Level. Since the cabinet is the low-
est level component that users interface to and
observe, physical design, visual appearance,
and human factors engineering are important
design activities. For the computer hardware
designer, on the other hand, the component
mounted in the cabinet is usually the largest sys-
tem. Functional design efforts ensure that the
various components (i.e., boxes) that make up a

PACKAGING AND MANUFACTURING 67

Table 2. Interrelationship of Hierarchy of Levels and Design Activities
Level of Packaging
Design Chip Computer
Activity Chip Carrier Module Backplane Box Cabinet System
Functional Logic = Configuration Selection of
electrical options right
components
by user
Circuit design Physical Physical What fits Boxes and
physical layout layout and operates operable
layout configurations
Human Location of Placement
Interface console, size for use
for use
Visual Visible, Determines Set of cabs,
bought for system attractive
integration appearance place to be
Acoustic Airflow > Quiet for
vibration operators
and users
Mechanical Buildable Shippable Floor load
and signal and room size
transmission serviceable
Electromagnetic Noise coupling Inter/intra- RFl ———» Away from
interface and rejection module noise containment, RF1 input
of radio coupling, RF} external RFI (outside
frequency containment shield operating
interference and shielding range)
(RF1)
Power Special Dist. and Dist. and Controt, Interconnect By user
on-chip regulation regulation dist. and with computer special power
regulation system supplies for
high
availability
Cooling and Chip to IC module ICto Module Cooling and Source Interbox
other cooling cooling cooling covering coupling to
environment special special room air
environment environment environment
Safety Power for ————— 5 Determines Determines
various safety if user safety
systems used at
this level
Dominant Circuit Logic > Mechanical, Configuration User
design logic power, visual, configuration
activities cooling, EMI, shipping design
acoustic EMI, safety

The box and backplane levels can be considered as a single level (alternatively, the box level may be eliminated in large systems).

68 COMPUTER ENGINEERING

cabinet level system will operate correctly when
interconnected. Safety and electromagnetic in-
terference characteristics are important because
the cabinet serves as the outermost place in
which shielding can be installed. Cooling and
power distribution must be considered, since a
number of different boxes may be mounted
within the same cabinet. Finally, the mechani-
cal structure of a cabinet must be designed to
maintain its physical integrity when shipped.
Box Level. Box level functional design con-
sists of taking one or more backplanes, the
power supplies for the box, and any user inter-
face such as an operator’s console and inter-
connecting them mechanically (see Figure 3).
For systems that are not sold at the box level,
no separate box is required, and the power sup-
ply and backplanes are mounted directly in a
cabinet (see Figure 4) or other holding structure

such as a desk or terminal case, so that box and
backplane design merge. If systems are sold at
the box level, then the visual characteristics may
be important; otherwise, the design is basically
mechanical and consists of cooling, power dis-
tribution, and control of acoustic noise. The
structure must be sound to protect the unit dur-
ing shipment.

Of all the dimensions to consider in the de-
sign, perhaps the most important is how the box
(or module mounting structure) is placed in a
cabinet. This placement affects airflow, ship-
pability, configurability, cable placement, and
serviceability, and is a classical case of design
tradeoffs. The scheme that provides the best
metrics, such as packaging density and weight,
may have the poorest access for service and the
most undesirable cable connection character-
istics. These characteristics are given in Table 3.

Table 3. Fixed, Drawer, and Hinged Box/Cabinet Mounting
Mounting Service Access Cabling Density Cooling Applicability
Fixed Good for either Best (i.e., Good for thin Best Box not needed;
backplane or module, shortest) or rear (known) box can be used
but not both unless a cabinet
thin cabinet is used power supply
mounting
Drawer One-side access Long and Very high Can be High density, self-
movable cooled* contained
Drawer (with tilt) Good Longer and Very high Can be
for service more movable cooled*
than non-tilt
version
Drawer vertical Very good Long and High
mounting modules movable
Hinged (module Very good Short Medium Good (if Separate box is
backplane) fans are awkward
fixed to
cage)

* Density restricts cabinet airflow.

PACKAGING AND MANUFACTURING

REMOVABLE SIDE PANEL

SLIDE GUIDE DECORATIVE PANEL

(a) Front view {with top cover).

BACKPLANE UNIT MODULE SIDE

COMPUTER
FAN

POWER
CONTROL
CHASSIS

1
POWER SUPPLY FAN POWER SUPPLY INTERNAL SCL CABLE

(b) Side view (with top cover removed).

Figure 3. PDP-11/05 computer box.

69

70 COMPUTER ENGINEERING

ELAPSED
TIME

METER =

POWER SUPPLY

CPU CABINET
FAN HOUSING

e ees] =
/

W

/
/

WITH REGULATORS

POWER SUPPLY
WITH REGULATORS:

/ //
AN

CONNECTOR FOR
CPU MOUNTING
BOX FAN POWER

AND THERMAL *

SENSOR

\
—%

CONNECTOR FOR '
PANEL

MOUNTING SPACE
FOR CONTROLLERS
(UPTO 4) AND
SMALL PERIPHERAL
CONTROLLERS
(UPTO5)

o
Ve

POWER CONTROL

/
o
y/A

N

Vi

Srd
it

LOWER LOGIC FANS
(HIDDEN)

MODULES INSTALLED IN CPU
BACKPLANE ASSEMBLY

CABLE SUPPORT STRAP
AND CABLE HARNESS

BASIC

|~ MEMORY FRAME

CPU
MOUNTING BOX

UPPER LOGIC
FANS

CONSOLE

MOUNTING SPACE
FOR OPTIONAL
FLOATING POINT
PROCESSOR

Figure 4. Major components and assemblies of PDP-11/70 mounted in standard DEC cabinet.

Backplane Level. This level of design is the
final level of interconnection for the computer
components that are designed to stand alone,
such as a basic computer disk or terminal.
Backplane design is part of the computer’s log-
ical design. In second generation machines such
as the PDP-7 (Figure 24a, Chapter 6), the back-
plane was wire-wrapped. In the early 1970s
printed circuit boards were used to interconnect
modules (Figure 5). Secondary design activities
include holding, powering, and cooling the
modules so they will operate correctly. Since the
signals are transmitted on the backplane, there
is an electromagnetic design problem. For in-
dustrial control systems whose function is to
switch power mains voltages, additional safety
problems are created.

Module Level. In the second generation,
module level design was a circuit design activity
taking discrete circuits and interconnecting
them to provide a given logic function. In the
third and fourth generations, this interface be-
tween circuit and logic design moved within
chip level design, so that module level design
became the process of dealing with the physical
layout problems associated with logic design.

BACKPANEL PINS
\ LAYER 4
Yo,
I AEY
| h AT
A n g
1

(PLATED THROUGH

TO LAYER 1)
(GROUND)

LAYER1
(-5V)

(PLATED THROUGH
TO LAYER 1)

Figure 5.
backplane.

Cross-section of a printed circuit

PACKAGING AND MANUFACTURING 71

Module level design is basically electronic, so
power, cooling, and electromagnetic inter-
ference (cross talk) considerations dominate.

Integrated Circuit Package and Chip
Level. Most integrated circuits used in the com-
puter industry today are sold in a plastic or ce-
ramic package configuration that has two rows
of pins and is called a dual inline package
(DIP). The majority of the integrated circuits in
the module shown in Figure 6 are 16-pin DIPs.
Because of the popularity of this packaging
style, the terms “integrated circuit,” “chip,”
and “DIP” are often used interchangeably. This
is not strictly correct; an integrated circuit is ac-
tually a 0.25- X 0.25-inch portion of semi-
conductor material (die or chip) from a 2- to 4-
inch diameter semiconductor wafer. Except for
cases where multiple die are packaged within a
single DIP, the integrated circuit, chip, and DIP
can be discussed as a single level.

Design considerations at the integrated cir-
cuit level include power consumption, heat dis-
sipation, and electromagnetic interference.
Because some integrated circuits are designed to
operate in hostile environments, there is consid-
erable mechanical design activity associated

Figure 6. LSI-11 processor with 8 Kbytes of memory
and microcode for commercial instruction set.

72 COMPUTER ENGINEERING

with packaging, interconnection, and manufac-
turing.

The Packaging Evolution

Figure 7 shows the relation of packaging and
the computer classes for the various computer
generations. For each new generation there is a
short, evolutionary transition phase. Ulti-
mately, however, the new technology is re-
packaged such that a complete information
storage or processing component (bit, register,
processor) occupies a small fraction of the space
and costs a small fraction of the amount it did

in the prior generation. Discrete events mark
packaging characteristics of each generation,
starting from 1 bit per vacuum tube chassis in
the first generation and evolving to a complete
computer on a single integrated circuit chip in
the fifth generation. Not only the size of the
packaging changed, but also the mounting
methods. In the first generation, logic units
were permanently mounted in racks, where they
were removable for ease in servicing in later
generations.

While the timeline of Figure 7 shows the
packaging evolution of a complete computer,
Table 4 shows how a particular component,

45 55 60

r

GENERATION :1
VACUUM
TUBE

FIRST

TRANSISTOR

SECOND e

la
<

THIRD

|4— FOURTH s

LSt

ic

I‘-FIFTH -

PACKAGING
HOLDING g ale
structure € ROOM >l CABINET+ BOX _*— BOARD _H‘_ CHIP
FOR MINIMAL 1BIT/CHASSIS 1 BIT/MODULE 1REG/MODULE REG-ON-A-CHIP P-ON-A-CHIP C-ON-A-CHIP
COMPUTER (FIXED)
SUPER ERA 1101 UNIVAC 1103 CDC 1604 CDC 6600 CDC7600 CRAY 1
MAINFRAME ENIAC EDSAC 704 7090 $/360; PDP-6 $/370
MINI WHIRLWIND LGP-30 PDP-1 PDP-8 PDP-11/70 VT78
MICRO 8008 Lsi-11
HAND-HELD HP35 STORED PROGRAM
TERMINAL pumBs INTELLIGENT
(DESK TOP)
Figure 7. Timeline evolution of packaging.
Table4. Packaging Hierarchy Evolution for Universal Asynchronous Receiver/Transmitter (UART)

Telegraph Line Controller

Generation
Early Second Late Second Early Third Late Third Late Fourth
Backplane,
Modules, 2 modules Module,
Discrete Discrete IC, IC,
Circuit Circuit Chip Chip Chip area

now called the Universal Asynchronous Re-
ceiver/Transmitter (UART), has evolved.

The UART logic carries out the function of
interfacing to a communications line that car-
ries serial data and transforms the data to paral-
lel on a character-by-character basis for entry
into the rest of the computer system. The
UART has three basic components: the se-
rial /parallel conversion and buffering, the in-
terfaces to both the computer and to the
communication line, and the sequential con-
troller for the circuit.

The UART is probably the first fourth gener-
ation computer component, since it is some-
what less complex than a processor yet rich
enough to be identifiable with a clean, standard
interface.*

THE DEC COMPUTER PACKAGING
GENERATIONS

With this general background on packaging,
one can examine the DEC packaging evolution
more specifically and against the general arche-
type of Figure 1. Figure 9 shows how the hier-
archies have changed with the technology
generations. The figure is segmented into the
different product groupings. A product is iden-
tified as being at a unique level if it is sold at the
particular packaging level. The first DEC com-
puters (i.e., PDP-1 to PDP-6) were sold at the
cabinet level as complete hardware systems. Al-
though the PDP-8 was available at the cabinet
level for complete systems, it was significantly
smaller than the previous machines and was
principally sold at the mechanical box level.

PACKAGING AND MANUFACTURING 73

Figure 8. 4707 transmitter line unit
of the late second generation.

* Historically, DEC played a significant part in the development of the UART technology. With the PDP-1, the first UART
function was designed using 500-KHz systems modules and was used in a message switching application as described in
Chapter 6. The interface was called a line unit and was subsequently repackaged in the late second generation as two
extended systems modules (Figure 8). The UART function was also built into the PDP-8/1 using two modules that were
substantially smaller than those for the PDP-1. In the 680/1, a PDP-8/I-driven message switch, the UART function was
accomplished by programmed bit sampling. Late in the third generation (or at the beginning of the fourth generation), some
designers from Solid State Data Systems of Long Island, N.Y .. worked with Vince Bastiani at DEC and developed a UART
that occupied a single chip. This subsequently evolved into the standard integrated circuit and is used throughout the

industry.

74 COMPUTER ENGINEERING

GENERATIONS SECOND »} THIRD »} FOURTH s>
COMPUTER 1]
(NOTE 1)
IS HELD BY: CABINET(S) casiner(s) | == = =P casineris) CABINET(S) A <
CABINET BACKPLANES BOX BACKPLANE(S) BOX [BOX
MODULES MODULES
DISK CKT PDP-8, 8/S, IC CHIP PDP-11V03
LINC-8
PDP-1,4,5 PDP-15, KI10,
LINC [SYSTEM] KLio,
PDP-6, 7. 8, VAX-11/780
o \ TERMINAL
PDP-9,9/L MODULE
{EARLY FLIP CHIP| Y=
SEE NOTE 2 SEE NOTE 2
BOX BOX WITH BOX WITH
(SLIDE OR BACKPLANE(S) BACKPLANE
FIXED IN MODULES MODULES | BOX WITH
CABINET) — e e e e e | | L CKPLANE
PDP-8, 8/S, PDP8/I L E. W\ PDP-11/03
LINC 8, F. M. A \ N (80X)
PDP-14 PDP-11/04 ~
11/70 N
[R SERIES |M-SERIES \
FLIP CHIP -
! FLIP CHIPS]
\ BACKPLANE
BACKPLANE MODULES
IC CHIP
NOTES LEGEND \ St
e J basi IMODULE SERIES] (PDP-11/03)
.Frocessor, rrllemor‘{. an asic - e ane EVOLUTION \
1/0 controller logic) PART OF HIERARCHY
2.Evolution from box with multiple backplanes
interconnected by cables to a single
box and backplane {i.e., 1 level).
MODULE MODULE
IC CHIP
cMOs 8
(BOARD ONLY)
Figure 9. DEC physical structure (packaging) hierarchies by technology generation.

Subsequently, computer systems became avail-
able at the backplane level (LSI-11), and at the
module level (CMOS-8).

The original packaging hierarchy for most of
DEC’s second generation computers used a rel-
atively common packaging scheme based on the
PDP-1. The most significant change occurred
late in the second generation when Flip Chip
modules (Figure 9) were introduced so that
backplanes could be wire-wrapped automat-
ically.

The change to wire-wrap technology not only
reduced costs and increased production line
throughput, it also enabled the box-level pro-
duction of computers. The change to wire-wrap
and two level products (box and cabinet) is
clear in the second generation. The offering of

products at these two levels continued into and
through the third generation.

With the advent of the fourth generation,
large-scale integration permitted the construc-
tion of a complete minicomputer processor on a
single module. Although components are sold
as separate modules (e.g., processor, commu-
nications line interfaces, additional primary
memory), a complete system requires a back-
plane; thus, the lowest level for the product is
the backplane. For larger systems, a power sup-
ply is combined and placed in a metal box. A
typical example of such a product is the LSI-11,
which is marketed at three levels as shown in
Figure 9.

The late fourth generation has brought the
processor-on-a-chip, and another packaging

level to the price list. An example of the proces-
sor-on-a-chip is the CMOS-8, described in
Chapter 7. The new packaging level offered to
the customer is the CMOS-8 module, which is a
single-board complete computer with proces-
sor, 16-Kword memory, and all the optional
controllers to directly interface up to five pe-
ripheral options.

DEC Boxes and Cabinets

Since the function of the cabinet and box is to
hold backplanes that in turn hold modules that
in turn hold circuit level components, the metric
of electronic enclosures is the number of printed
circuit boards they hold. The earliest DEC
method of mounting was to place the back-
planes directly in a 6-foot-high cabinet which
held 19-inch-wide equipment in a 22- X 30-inch
floor space and weighed about 185 pounds. Fig-
ure 10 shows the top view of the various cabi-
nets used to hold module backplanes and boxes
for minicomputers since 1960. The changes to
the basic DEC 6-foot cabinet have mainly been
for improved producibility. The latest (circa
1973) was to use riveted upright supporting
members so the cabinet could be assembled eas-
ily without requiring bulk space for shipment
and storage. '

The original cabinet used the entire cabinet as
an air plenum so that air was forced between
the modules and out the front doors. When the
PDP-7 used the same cabinet and the module
mounting frame cut off the airflow, it was nec-
essary to add fans to the back doors to blow air
at the modules. Since cooling was one of the
weak points in the PDP-7, the PDP-9 used a
self-contained mounting and cooling structure
in which air was circulated between the modules
with air pulled in from outside without going
through the cabinet.

A second, later packaging method, initiated
with the PDP-8, packaged the metal-boxed
minicomputer inside the 6-foot cabinet. Figure
11 shows the significant boxes that have been

PACKAGING AND MANUFACTURING 75

used to package minicomputers both within the
6-foot cabinet and freestanding. The box pack-
aging history begins with the PDP-8. The rows
of Figure 11 indicate the four ways that are
available to access the circuitry (fixed, book,
slides, and tilt for access). The PDP-8 design
was followed by the PDP-8/S design which ori-
ented the modules with the pins up for access to
the backplane. By tilting (rotating) the box, the
handle side of the modules could be accessed.
For the PDP-8/I (not shown), modules were
mounted in a vertical plane.

Several fixed backplane module mounting
structures were formed beginning with the
PDP-8/A (1975), which was the first DEC mini-
computer since the PDP-5 to be mounted in a
fixed structure in a cabinet.

DEC Backplanes

Backplanes provide the next level-of-in-
tegration packaging below cabinets and boxes;
they are used to hold and interconnect a set of
modules which form a computer or an option
(e.g., processor, memory, or peripheral con-
troller). Figure 12 gives the relative cost of in-
terconnecting backplane module pins. Here the
cost per interconnection is roughly the same as
with a printed circuit module interconnection
(Figure 13). This can be somewhat misleading
because backplanes require a negligible cost for
testing and few failures occur during testing.

Figure 12 shows various kinds of inter-
connection technologies. Even though there are
exponential increases in quantities produced,
the cost continues to increase in the long run
with only occasional downward steps. The
greatest cost decline occurred when inter-
connections were carried out using automatic
wire-wrap machinery, but the PDP-8/E was
equally significant by being the first DEC com-
puter to use a completely wave-soldered back-
plane. Figure 12 also shows how effectively the
module pins were used (i.e., whether all avail-
able pins were used).

COMPUTER ENGINEERING

} 3
/

PS AND PC

76

° / SE=IE= o

PS AND PC
PS AND PC

1 125 X 12)
SYSTEMS MODULES (60-64)

PDP-1. 4, 5, 6;: ORIGINAL CABINET

(32X 24)

FLIP CHIP MODULES

(64) PDP-7

(3 X 8X44) 31
ALLLL e a2 b)e)

1
Lill

IIIIIT]1IIIIII'1IJ

(>
&

PS

e

166-68)
PDP-9, LINC-8, PDP-12

FLIP CHIP (67-72)
KA10, KI, KL

H950
CABINET
TO HOLD

METAL BOXES

67-)
ALL PDP-11s

60 INCHES HIGH

50 INCHES HIGH
PS/PC PS/PC CABLING AREA
NN TN NN NN
I S O O R
SNERERETNNRERRA] INSEERATERTRUTN " " "
IMESEEERANERNEN T O T
LD 1> ' 7
NN ol XV
[k} 29 1 ¥ 2
HEX FLIP CHIPS:; PDP-11/60 (77} SUPER HEX FLIP CHIP: VAX-11/780 (78}
NOTE:
60 INCHES HIGH Air enters
at top: PS

""lmcsﬁssl"_

ALL CABINETS 72 INCHES HIGH

TOP VIEWS

PS = POWER SUPPLY
PC = POWER CONTROLLER

PS

under modules

SUPER HEX (78}
DECSYSTEM-2020

Figure 10. Cabinets used to hold various DEC computers (in fixed, book, and box configurations).

PACKAGING AND MANUFACTURING 77

SLIDES AND BOOK

32 iINCHES HIGH

FIXED
PS UNDER I 1
LoGIC
6 X 32/ SIDE %/—-P;——-F 21 INCHES HIGH

NES
a

- — — — — 10; 20 g "‘
\ J | mooues PL!CJ] 1 ‘9’

1@ 6;231

\a¥:3:Va¥

@ @ HittHitiiti g HHttH | o cvao
N L/

B

29
FLIP CHIP HEX AND (FRONT OR BACK) EXT. HEX
(65) QuAaD an o
POP-8 (75:76) POP-11/03; PDP-11/60
PDP-8/A BAT1-N BA11-P

SLIDES AND TILT

[
10-1/2 INCHES HIGH
Q ===
5 * PS
| ° Q o 1
.
Q . J/] H 0 | e
»—Q- Ps Q PS
0] 4 oelo
0] 0 —= : \z2]
FLIP CHIP
(67) EXT.QUAD EXT HEX
PDP-8/S 721 74)
PDP-11/20 PDP-11/04, 34, 70 (MEMORY)
(SIMILAR TO PDP-8/E) OPTIONS
BA11-K
31 INCHES HIGH
1A
(D
ps | 9 HEX
S
i
{NCHES 5-1/4in
HIGH
PS = POWER SUPPLY
PC = POWER CONTROLLER
[- |
EXT. HEX
EXT. HEX - BA11.F (76) BA11-L
(SIMILAR TO PDP-8/1 - 68) PDP-11/04 {BASED ON PDP-11/05)
PDP-11/45, 40, 70 (PROCESSOR)
(72}
L oes]

Figure 11. Boxes used to hold various DEC PDP-8 and PDP-11 series minicomputers.

78 COMPUTER ENGINEERING

53
=4 @ 45
[
38 (— PDP-4
HANDWIRED
36 |- AND KL10
SOLDERED (TWISTED PAIR AND
WAVE SOLDERED
34 |— PC BOARD!
32 [—
LEGEND
30 |— emsmmm— COST/AVAILABLE PIN
= e == COST/ACTUAL PIN
28 |— °
- semmn PINS/IN2 ON BACKPLANE o 1
= 26 — I‘ 1
5 /
2 /]
g 24 — ° ‘ 1
o | | I
. 22 |— ‘
w PDP-11/70 I I
z \
E 20 — ‘ '
- i ® |, @VAX-11/780
Q
18—
WAV
g 16 — L] '
3 ry I .
H MACHINE \
14 |- wiRe- \]
WRAPPED '
12 = o\ PDP-11/45
pops\, \ ’ ®
_o PDP-11/34
10 [— *”
poP.8/1 @,
s |- \
L]
PDP-8/E @ (OMNIBUS -
&= ALLWAVE
SOLDERED
a b PC BOARD)
2
] | | I 1
1960 1965 1870 1975 1980
YEAR
Figure 12. Relative cost per possible and actual inter-

connection versus time for various DEC computer back-
planes; also pin density {in pins per in?) versus time.

20

RELATIVE COST/INTERCONNECTION

| I 1 1
1960 1965 1970 1975 1980
YEAR

Figure 13. Relative cost per interconnection on DEC
printed circuit board modules versus time.

DEC Modules

Since the function of modules is to inter-
connect and hold components, the metrics for
modules are the area for mounting the com-
ponents and the cost of each circuit inter-
connection. For minicomputers, the emphasis
has been to have larger modules with more
components packed on a module as a means to
lower the interconnection cost. Figure 14 shows
the area of DEC modules and the number of
external pins per module versus time. Because
integrated circuit densities have been increas-
ing, in effect providing lower interconnection
costs, a given module automatically provides
increased interconnects simply by packaging
the same number of integrated circuits on a
module. Obviously, one does not want to credit
this effect to improved module packaging. By
increasing the components per module, the cost
per interconnect can be reduced provided the
cost to test the module increases less rapidly
than the increase in components. The emphasis
on module size is usually most intense for larger
systems, where a relatively large number of
modules are needed to form a complete system.

Until recently, the increase in module area
was accompanied by increases in the number of
pins available to interconnect to the backplane.
In the case of the VAX-11/780 and the DEC-
SYSTEM 2020, the number of pins did not in-
crease significantly over previous designs,
although the board area was 50 percent larger.
In these cases, the number of integrated ciruits
that could be cooled limited the density. In
other cases, either the number of pins or the
module size limited the module’s functionality.
There are similar effects throughout the gener-
ations.

In the early second generation Systems Mod-
ule designs, the number of pins and the circuit
board area (in square inches) were about the
same. Components were fairly large and loosely
packed on modules. With the Flip Chip series,
circuits were modified to pack a larger number

PACKAGING AND MANUFACTURING 79

l SYST } LIP CHI IL XTENDED *L—I ARGE=
F— — e e \
200 |-
./
/ SUPER
HEX @ .
/ VAX-11/780
ol /
USABLE A
@ MODULE AREA I
T
£ /\ NUMBER GF PINS
I (INTERCONNECTIONS TO / EXTENDED
o
BACKPLANE
< HEX oV
= PDP-11/05
«<
g /
o
2 100f-
2 PDP-6 b B ,
z MEM.
P - PIN LIMITED A ,
M - MODULE LIMITED
B - BALANCED PDP-eAB s # EXTENDED
REG. @ DOUBLE-PIN ® auap A
PDP-11/20
50 — ®
UAR, UAT P-8/1 P
EXTENDED
DOUBLE
[] b
PDP-4 REG. 6 LSI-11/2
3 VAN
SYSTEM °
3 PDP-1 FLIP
LABORATORY CHIP
0 1 1 | | | 1 | 1 | | 1l

1958 1960 1962 1964 1966 1968

1970 1972 1974 1976 1978 1980

YEAR

Figure 14. Module printed circuit board area and number of pins per module versus time for DEC modules.

of smaller components on a single module, us-
ing automatic component insertion equipment,
and some of the space-consuming components
(e.g., pulse transformers) of the earlier circuits
were removed so that a module design was a
better balance between area and pins. As a re-
sult, the early second generation Flip Chip
modules had higher packing densities than
comparable Systems Modules.

With the beginning of the third generation,
the need for more printed pins to the backplane
was clear because so many interconnections

were made on the computer’s backplane. The
PDP-8/1 was the first DEC integrated circuit
computer, and the packaging philosophy
strictly followed that of the second generation.
As a result, the sudden increase in component
functions meant that the modules were drasti-
cally lacking in pins. By putting pins on both
sides of the module, the number of pins for a
double-height module (20 in?) was increased
from 36 to 72, which was still inadequate. As-
suming that each integrated circuit has 14 signal
pins and a module has 70 signal pins, only 5

80 COMPUTER ENGINEERING

integrated circuits could be placed on a board
and still have pins brought out to the backplane
pins, although the 20-in? area of the module
could potentially hold 20 integrated circuits.

Although the 8/1 was packaged using the 20-
in2 72-pin modules, it was clear that another
packaging scheme was necessary to utilize in-
tegrated circuits, modules, pins, and back-
planes. Thus, when the PDP-11/20 and the
PDP-8/E were designed (about 1970), they used
larger modules in order to carry the large num-
ber of intramodule interconnections required
when many integrated circuits were placed on a
single module.

It is interesting to note that in a recent case of
a processor using high density integrated cir-
cuits, the LSI-II/2, the module area was too
large to have a single option on a module, and
since the LSI-11 Bus only required a few sig-
nals, the number of pins was more than ade-
quate. Here, the modules were functionality
limited rather than pin limited. Figure 14 in-
dicates situations in which either pins or mod-
ules limited the design.

Although the size of the module is important
in determining the systems that can be built,
how they are serviced, and how they are manu-
factured, the important module metric is the
cost per interconnection on the printed circuit
board (and remainder of the system). Figure 13
shows how this has varied with time. Here one
can see that the introduction of Flip Chip mod-
ules initially increased costs (because learning
had to start almost anew).

Interconnection costs consist of the costs of
the printed circuit board, the insertion of the
components on the module, and the testing of
the module. Printed circuit board costs have
been decreasing with time, reflecting benefits
both of learning and of placing more integrated
circuits on a single module, giving a compound
economy-of-scale effect. The cost to assemble
the components on the module have decreased
rapidly, reflecting the increasing use of auto-
matic component insertion machines. Testing

has not been a significant cost component in
module manufacturing, although it does repre-
sent a substantial cost by the time the module
has been integrated into a system and delivered
to the customer’s site. The total cost per inter-
connection has been decreasing, but the trend
may either remain constant or even increase as
greater use of large-scale integration decreases
the number of total connections in a system but
makes the remaining interconnections more ex-
pensive to assemble and test.

Many of the important problems in packag-
ing, specifically heat and electromagnetic inter-
ference, originate not from a computer’s logic
but rather from the power supplies that power
the logic.

POWER SUPPLIES

Although logic functions can be performed
using small quantities of electrons and can thus
be accommodated in very small physical struc-
tures, the power to move those electrons at use-
ful speeds comes from power supplies which do
not scale down in size as readily as the logic
functions they support. Power supply tech-
nology has not provided the impressive in-
creases in capability per dollar or capability per
cubic foot that semiconductor technology has.
Power supplies involve such materials proper-
ties as voltage breakdown limits, dielectric con-
stants, magnetic permeability, and heat
conductivity. Since these properties vary with
physical dimension, increased capabilities in
terms of voltage breakdown rating, capaci-
tance, inductance, or heat dissipation are
gained by making the component physically
larger.

The performance criteria for power supplies
are predominantly determined by the appli-
cation for which they are designed. These cri-
teria are given in terms of various efficiencies of
volume, weight, power conversion, and cost. It
is somewhat difficult to compare the various
supplies because all are available at different

PACKAGING AND MANUFACTURING 81

Table 5. Characteristics of Powsr Supply Types
Processor and Memory Disk and Tape Terminal
Power (watts) 250-2500 100-500 0-150
Use Leogic Very low ncise for head High voltage for CRT. high

Quantity in system Low to medium
Cost sensitivity Low

Size Important, especially in
boxed computers

Weight Relatively unimportant
Reliability Very important
Features Power line sensing,

battery backup

electronics; high current for
servos

1tage 1ofr Lnii, nign
current for mechanical
motions

Medium High

Medium High

Not important Very important

Not important Very important

Important Important

times, produced in different quantities, de-
signed for different reliabilities, and available
with different features.

For the computer industry, power supplies
can be divided into three main categories: pro-
cessor and memory power supplies, disk and
tape power supplies, and terminal power sup-
plies. Each of these product categories has a
unique set of requirements, which are summa-
rized in Table 5.

Three of the four efficiency measures, cost (in
relative cost per watt), weight (in watts per
pound), and volume (in watts per in3), are
plotted for processor power supplies in Figures
15 and 16. The plots in Figure 15 use a time
axis; those in Figure 16, a watts-of-output axis.
The fourth efficiency measure, power con-
version (watts out per watts in), is given in Fig-
ure 17 using a time axis.

The cost of a power system is very dependent
on the unit’s electrical size and technology. The
features required on the units such as power line
monitoring (ac low, dc low), battery backed-up

power, and servicing aids also significantly in-
fluence the cost. Since the cost is size depend-
ent, a relative metric, dollars per watt, is chosen
for processor power supplies.

In the cost characteristics the different bands
of cost curves are technology dependent: they
span new, mature, and obsolete technologies.
For example, the cost of power supply tech-
nology until just recently depended on iron and
copper prices and labor costs. Now, costs of
power supply technology tend to track semi-
conductor costs as a result of the widespread
use of line switching power supplies. Bands
within the cost curves represent the size depend-
ency; larger power supplies are the most cost-
effective, with one exception (Figures 154 and
16a).

The size of power supplies for minicomputers
has been important, especially for the boxed
versions. The volume occupied by logic has de-
creased for the constant functionality com-
puter; however, power requirements have
declined far less than logic volume, and hence

82 COMPUTER ENGINEERING

10

oo [0 =250 watTs 0
o8l /\ <200 watTs o
E O >400 WATTS
% o7k
g
£ o8|~
° o]
S osp— O
a _ O A
2 o4 O
= o © o ©
3 o3 [m] [}
(-4
02}
01—
oLl] | S S SUP & L L L
1962 1964 1966 1968 1970 1972 1974 1976 1978 1980
YEAR

{a} Cost efficiency (in relative cost per watt).

30
25 | a
LINE SWITCHING A
20 p— o]
@
3
@ 15 2STAGE
|~ LOW-VOLTAGE
2 O SWITCHING
10 p— [m} o “_0—/
g S04 A
5 O

I \Fennonssounm {PDP-1)
[

| | | | I 1 I 1 I
1962 1964 1966 1968 1970 1972 1974 1976 1978 1980

YEAR

(b) Weight efficiency {in watts per Ib).

LINE SWITCHING []

05 PHISTER [1974]
MODEL
- amm

waATTS/IN3

0.1 [—
oLl 1 1 | | | | 1 I
1962 1964 1966 1968 1970 1972 1974 1976 1978 1980

YEAR

(c) Volumetric efficiency (in watts per in3).

Figure 15. Cost, weight, and volumetric efficiencies
versus time for various DEC computer power supplies.

10
09 }—
08—
0.7 —
06 |—
0.5 p—

04—

03 }—

RELATIVE COST/WATT

02 p—

o}— -1

o I] I]] 1

0 100 200 300 400 500 600 700
WATTS

—

(a) Cost efficiency (in relative cost per watt).

25
A LINE SWITCHING
20 b— A
3 15 p—
3
£
2 w0 an sTAREiR_E_-AA——-A
A
s B
0] 1]]] |
0 100 200 300 400 500 600 700
WATTS
(b} Weight efficiency (in watts per Ib).

o8
Bswitcring

07

0.6 -
%
Z - DICATED PHISTER |1974
3 °° A o MODEL
E 04 ——A4=-A— — —f\ e c— ey

A
2 os £\ MoDULE A
- An

02 |- N [

o1 |-

0 1] |] | |

o 100 200 300 400 500 600 700

WATTS

(c) Volumetric efficiency (in watts per in3).

Figure 16. Cost, weight, and volumetric efficiencies
versus size for various DEC computer power supplies.

b UNREGULATED
80 / \D

[0 =250 watrs

30 /\ <200 watts
n 20 QO =400 wATTS

EFFICIENCY (PERCENT)

8§ 838

m]

m]
(m]
[o]

o

>

o SR (N NN SR NN N | |
1962 1964 1966 1968 1970 1972 1974 1976 1978 1980
YEAR

Figure 17. Power supply efficiency (watts out per
watts in) versus time for various DEC computer power
supplies.

0.6

05 [— [)
PDP-8/A

[

P

oN
03—

HEAT DENSITY

[J
POP-8/A

02 p—

0.1 p—

1972 1974 1976 1978
YEAR

Figure 18. Heat density (kilowatts per ft3) of various
DEC computer boxes.

PACKAGING AND MANUFACTURING 83

power densities have increased. Where 250
watts used to suffice for a 10.5 X 19 X 25-inch
box, 800 watts is now required, and the space
for the power supply has barely increased. This
has put substantial constraints on the weight
and efficiency of power systems; and, at times,
space utilization has been (inadvertently) traded
for cost, manufacturability, and serviceability.

In response to these space pressures, there
has been a constant gain in volumetric effi-
ciency (Figure 15¢) over the years with the
highly dense power supplies on the top of the
band and the modular packaged units on the
bottom. With the introduction of line switching
power supplies, this curve made a quantum
jump. The increase in volumetric efficiency,
plotted relative to time in Figure 15¢, is plotted
relative to power output in Figure 16¢.

Power supply technology determines not only
volumetric efficiency but also the weight of the
unit. Here again the use of high frequency line
switcher technology rather than low frequency
transformer technology has produced marked
results - in this case, two distinct curves.

The weight efficiency (watts per pound) has
been fairly constant over time but has shown a
slight improvement as larger supplies were built
(Figure 15b).

Finally, Figure 17 shows how power supply
efficiency is improving with time. Note that
with direct line switching, efficiencies of 70 per-
cent are expected. This efficiency permits the in-
crease in volumetric efficiency because there is
less heat to dissipate.

HEAT

Although the volumetric measures of module
area and the size of the cabinet are also impor-
tant, the amount of heat that the enclosure is
capable of dissipating is the most important
metric of reliability. Table 6 gives some of the
important metrics of several of the recent DEC
computer boxes.

Figure 18 gives the heat density for the vari-
ous boxes. The amount of heat dissipated by the

84 COMPUTER ENGINEERING

Table 6. Expansion Box Characteristics

Module Heat Heat
Box Used Weight Size Volume In Density Space
Model On Year (Ib) (ft3) Modules ft3 (kW) {(kW/#t3) Efficiency
BA11-D 11/35 1974 100 2.6 24 hex 0.93 0.7 0.27 0.35
BA11-E 11/45 1972 100 26 27 quad 0.7 0.7 0.27 0.27
BA11-F 11/40% 1972 260 5.3 44 hex 1.7 2.2 0.42 0.32
BA11-K 11/04% 1974 110 2.6 24 hex 0.93 1.0 0.38 0.36
BA11-L 11/04 1976 50 1.3 9 hex 0.35 0.55 0.43 0.27
BA11-M 11/03 1976 25 0.5 4 quad 0.1 0.25 0.54 0.24
BA11-N 11/03 1977 40 1.0 9 guad 0.23 0.24 0.31 0.22
BA11-P 11/60 1977 100 3.0 29 hex 1.1 1.1 0.36 0.22
BA8-CA 8/A 1975 117 24 20 quad 0.52 1.2 0.50 0.22
H9300 8/A 1977 55 1.1 10 quad 0.26 0.3 0.26 0.24
H9500% 11/780 1978 344 434 67 exthex 3.7 6.0 0.15 0.10

*Also 11/45 and 11/70.
TAlso 11/34 and 11/70 memory.
JActually a cabinet.

box (in kilowatts per cubic foot) has been rela-
tively constant with time. There has been great
variation about the norm, and the very high
heat dissipation of the first PDP-8/A (due to
high packing density and a relatively inefficient
power supply) resulted in the next design being
of lower density. The space utilization follows a
similar path, although the efficiency appears to
be declining (Figure 19). This decline is hardly
noticeable and is even surprising in light of
more efficient power supplies which make it
possible to place more components in a given
enclosure. The cost-effectiveness of the average
enclosure, as measured by the material cost, is
declining with time as measured by the relative
cost of materials per cubic foot of modules held
(Figure 20).

The time chart gives a completely erroneous
view of the situation because economy of scale
is not considered. Figure 21 shows how the rela-
tive cost of box materials varies with the volume
(in number of hex modules). Here the upward
trend of the previous figure is not apparent, but
it merely occurs because later packages are for
smaller numbers of modules.

AN OVERVIEW OF MANUFACTURING

Although the result of a design project is an
entity which is manufactured, very little is writ-
ten about manufacturing in the computer engi-
neering literature. Such literature generally
discusses algorithms, logic design, and circuit
technology. Yet for a computer to be com-
mercially successful, it must be manufacturable,
economically operable, and serviceable. More-
over, for most of the computer engineering dis-
cussed in this book, because the designs are
intended for volume production, engineering
costs are small (1 to 10 percent) compared with
other product and life cycle costs. The product
cost is determined by the price of the com-
ponents and the manufacturing process; the life
cycle cost includes the purchase price, the oper-
ational costs, and service costs.

For production, machines must be easy to as-
semble and test, repair must be rapid, engineer-
ing changes must be introduced smoothly, and
the production line cannot be held up because
of shortages of components - all parts of tradi-
tional manufacturing considerations.

04

K eoP

D ..
oF
®E L
= ™M ®PDP-8/A
=] L]
2 .
5 on
3 .
E PDP-8/A
5 02 f— /
w
Q
<
z
«
01—
0
1972 1974 1976 1978

YEAR

Figure 19. Space utilization (ft> of modules per cubic
foot) of various DEC computer boxes.

CE
s L
z
3 ot
-4
L]
oK PDP-8/A
De
oF
1 b—
0 | 1 |
1972 1974 1976 1978
YEAR

Figure 20. Cost payload (relative cost of materials per

ft3 of modules held) of various DEC computer boxes.

PACKAGING AND MANUFACTURING 85

oN oP

RELATIVE COST

43

8ca D.\’
11— oF

0 l |
10 20 30 40 50
NO. OF HEX MODULES
Figure 21. Relative cost of box materials versus num-

ber of hex size modules for various DEC minicomputer
boxes.

The Life Cycle of a Product

Figure 22 shows a simplistic process flow for
the major phases and milestones in the life of a
product. In reality, planning and designs for
many of the phases go on concurrently. The
early research, advanced development, and def-
initional phases are not shown. Often, products
proceed from the idea stage to the engineering
breadboard and are then terminated because
they do not meet original goals or because bet-
ter ideas arise.

To facilitate changes, the engineering
breadboard is usually built with wire-wrapped
rather than printed circuit boards if the circuit
technologies used permit the long wire lengths
characteristic of wire-wrapped boards. At or
before the breadboard stage, manufacturing
start-up schedules are made. Other organiza-
tions formulate and execute plans: systems engi-
neering, for product test/verification; software
engineering, for special software and veri-
fication; marketing, for promotion and product
distribution; sales, for training; field service, for
training and parts logistics; and software sup-
port.

86 COMPUTER ENGINEERING

PAPER DESIGN ENGINEERING ENGINEERING

IDEA | > o |
DESIGN PRODUCT BREADBOARD PROTOTYPE
LIMITED
RELEASE OF
PRODUCT DESIGN PILOT BEGIN
DOCUMENTATION |} MATURITY J=81 PRODUCTION =8 Lo s eti0n
To TesT RUN

MANUFACTURING

MID-LIFE
FIRST PROCESS PRODUCT
cusTOMER |—p MATURITY] VOLUME PRODUCT L o o) nse.
SHIPMENT TEST SHIPMENTS ENHANCE- ouT
MENTS
Figure 22. A simplified process flow for the major

phases and milestones in the life of a product.

After the engineering breadboard has been
debugged, construction of engineering pro-
totypes begins. The engineering prototypes test
the design using the actual printed circuit mod-
ules that will be used in manufacturing. Usually
a number of prototypes are constructed, the
number varying from 10 to 100 depending on
the complexity, cost, and anticipated product
volume. All processors and peripherals in the
planned systems configurations are tested in
conjunction with the prototypes. The complete
system must meet the product specifications
and must run all of the system software.

The requirement that all of the system soft-
ware be run is an excellent supplement to the
normal testing of prototypes. It is especially
useful when the product being designed is a pro-
cessor with a mature architecture because more
system software is then available. Because the
number of possible states and state sequences in
a computer system is very large, a diagnostic
test which exercises every one is impractical. Di-
agnostic programs and microdiagnostics there-
fore test a judiciously chosen subset of all states.
Such programs are not perfect in their coverage,
however, and system software is run as well.
Thus, the more software that is available to test

a prototype, the less likely it is that a design er-
ror will go unfound. The general problem of
testing requires much more work before it can
be considered mature. One would like to see,
for example, the automatic generation of veri-
fication programs from an ISP description of
the architecture being built.

Design maturity testing with a number of en-
gineering prototypes verifies the design and jus-
tifies the risk of releasing the design to
manufacturing. Tests for reliability and func-
tionality are conducted. Environmental tests for
shock, temperature, humidity, static discharge,
radiation, power interrupt, and safety are also
conducted at this stage.

The release to manufacturing is a major mile-
stone. The product is placed under formal engi-
neering change control to ensure that everyone
knows what version of the documentation is
current; specifications and documentation are
available for the product and manufacturing
process. For the integrated circuits, sources of
supply and testing procedures are in place. Pro-
cess control tapes are ready for the numerically
controlled machine tools, such as component
insertion, backplane wiring, and printed circuit
board drilling machines. Any special tooling for
the mechanical packaging has been obtained.
Testing at all levels has been specified; test pro-
grams for computer-controlled testers have
been written, special test equipment has been
built, and diagnostic programs are ready.

For some products, particularly processors, a
pilot run is manufactured. The pilot run shakes
down and verifies the actual manufacturing
process by building a small number of units, us-
ing the product, and processing documentation
at the manufacturing plant.

Product announcement usually occurs during
the design maturity testing period but can occur
at any time - often as early as when the
breadboard works or as late as the first cus-
tomer shipment, depending on the marketing
strategy. This strategy is clearly a function of
the volume, novelty, and competitive needs.

PACKAGING AND MANUFACTURING 87

PERIPHERALS

SOFTWARE.
MANUALS. AND
DOCUMENTATION

\ 720, R

NG NG

Ge R6e
Tl Y!
INTEGRATED Pam:&?‘:cuﬁ CPU w;::x.son SHIPPING USER
CIRCUITS MANUFACTURING MANUFACTURING (FA&T) DOCK
BOXES
suomties AND memontes | | camners | | ISTERNAL
CARRIERS

Figure 23. Overview of manufacturing computer system flow.

Process maturity testing verifies that the
product is being manufactured with the desired
cost, quality, and production rate. After process
maturity testing, the steady state phase of man-
ufacturing continues (with possible per-
turbations due to the introduction of product
enhancements, engineering change orders, or
process changes to lower product costs) until
the product is phased out.

Manufacturing Process Flows

An overview of a manufacturing process is
given in Figure 23 which shows how a product
moves through the various factories. There are
often different plants for boards, peripherals,
memories, and central processors. Integration
from the other stages and stock storage occurs
at the stage called ““final assembly and test”
(Figure 24). Here, the software system that is to
be run, operations manuals, and other docu-
mentation are also integrated and tested.

Figure 25 gives the complete flow for a typi-
cal volume manufacturing line, the PDP-11/60
central processor facility in Aguadilla, Puerto
Rico.

Testing

Since testing occurs at each stage in the man-
ufacturing process, dedicated logic must be
added to the design to provide physical access
probes for the test equipment. To test a particu-
lar function, it must be specifiable, invokable,
and observable. For example, the function of an
adder can be clearly specified, but it cannot be
easily invoked or observed if its inputs and out-
puts are etch runs on a printed circuit board.
Several testing strategies are used: add signal
lines from the adder to the backplane where
there are adequate probe access points, probe
directly onto the module etch or pins, and sub-
sume the adder in a function whose inputs and
outputs can be more easily controlled and ob-
served. The problems of observation and con-
trol exist at all levels-of-integration. Examples
of observation points at each level for the PDP-
11/60 are given in Table 7.

The problem of testability must be addressed
at design time. Providing access for testing al-
ways incurs added product cost (extra logic and
module pins or circuit pins) but lowers manu-
facturing cost and field service costs. As gate

88 COMPUTER ENGINEERING

Table 7. Examples of Observation Points at Each Structural Level for the PDP-11/60

Level in
Computer
Hierarchy

Observation
Point

Stage in
Manufacture
of Computer

Example

Electrical circuit

Switching circuit

Register transfer

Register transfer
Central processor

Central processor

Computer

Computer

Transistor contacts on

metallization layer

Leads on IC
package

Etch run

Backplane
Unibus

Contents of memory

Contents of memory

Unibus

Semiconductor
fabrication

Incoming inspection
of ICs

Module

Module
Central processor

Central processor

System integration

System integration

Wafer test with microprobe

IC tester

Probe on module
{module-specific tester)

Memory exerciser for cache
Unibus voltage margin tester

Diagnostic programs at subsystem
level, e.g., memory management unit
or processor instruction

set tests

Peripheral diagnostic programs

Bus exerciser

Figure 24.

Final assembly and test (FA&T) for computer systems.

CPU
SCREEN

PASS

PACKAGING AND MANUFACTURING 89

cpu MODULE
scansu Ld DIAGNOSTIC ac
MODULES TEST INSPECTION
FROM

BOARD PLANT T ‘ I ‘
e 2224 (REPAIR) (REPAIR) |
GR 1) S) S i
DIAGNOSTICS ME“‘;:(;?,EFEST)
|
TESTED MODULES _

—_—— e —— ——— [N S —— —— — e A e — — e e .
f— T T

CONSOLE I

AND \ 4

ASSEMBLY
MODULE

INTEGRATION

ASSEMBLY

TEST

F

OPTION
MODULES

OPTION
INTEGRATION

3

| |
t t
I
l

THERMAL (d

P
STOCK
CYCLE

F \ LOOSE-PIECE

I
ISOLATION ‘_J

Qc
REPAIR

I
|
I
ISOLATION ‘_I

t

OF CARRIER |
FAULT FAULT FAULT | s"":M_ENTs.
ISOLATION
AND MODULE AND MODULE AND MODULE l
REPLACEMENT REPLACEMENT REPLACEMENT +
|
BACKPLANE, I
CAGE, BOX
ASSEMBLY —_—————.——— [—_— - OPTION -TESTED MODULES |
r - T - '
\ v
CPU P TOUCH-UP INTER-PLANT
MEMORY |— |\ reGRATION | | AND REPAIR ACCEPTANCE TRANSFER
POWER I l
SUPPLIES FAULT | FAULT I
(BURNED IN ISOLATION | ISOLATION
AND TESTED) AND MODULE AND MODULE ‘J
REPLACEMENT REPLACEMENT
(Loerae) «@<»
—® TO STOCK
Figure 25. The process flow for the PDP-11/60 manufacturing plant in Aguadiila, P.R.

density per chip continues to increase, the prob-
lem worsens. One solution, which is economical
in I/O connections, is to design every storage
element as a shift register which can be loaded
in parallel (normal mode) or serially loaded
(with an invoking state) or serially read (with
the state to be observed). Eichelberger and Wil-
liams [1977] report on such a scheme for gate
array designs. The individual shift register
latches are connected to form one or more inde-

pendent shift registers which are connected to
the leads of the gate array package.

The testing which occurs at the various stages
of the manufacturing process can be classified
into three types according to the different fail-
ure modes anticipated. Type 1, a static test, is
intended to find process-related faults. Exam-
ples are solder shorts, open-circuit etch con-
nections, dead components, and incorrectly
valued resistors. Figure 26 shows a GenRad

90 COMPUTER ENGINEERING

Figure 27. Quick-Verify {QV) station to verify that

Figure 26. GenRad Corp. {GR) tester for modules. tested modules operate within a system.

Figure 28. Chambers for thermal cycling operating modules.

Corp. (GR) tester of the type first used (Figure
25) to detect this type of fault. A module-spe-
cific program in the tester guides the operator
through a fault-finding procedure. Approx-
imately 95 percent of all Type 1 failures are di-
agnosed and repaired at this step.

Type 2 is dynamic. It seeks to detect faults

which are caused- by timing parameters being

out of specification range, by logic in-
compatibilities, and by other functional prob-
lems. Figure 27 shows a tester (Figure 25)
performing this type of test.

Type 3 is the reliability or burn-in test. The
manufacturing process includes extensive ther-
mal cycling to ensure that component “‘infant
mortality” cases are discovered early during
manufacturing because it is more expensive to
find defective components at the later, more in-
tegrated systems level. For some components,

PACKAGING AND MANUFACTURING 91

notably integrated circuits, thermai cycling is
done when the components are received from
the vendor. In addition, thermal cycling and
burn-in are done near the end of the production
process for entire processors and options. The
temperature/humidity environmental chambers
used, which house twelve or sixteen processors
each, are shaown in Figure 28. Test chambers to
heat entire computer systems are also used.

ACKNOWLEDGEMENTS

We gratefully acknowledge the following col-
leagues who provided data for this chapter and
valuable critiques of earlier drafts: Jim Cud-
more, Russ Doane, Sam Fuller, Lorrin Gale,
Dick Gonzales, Jim Scanlan, Henk Schalke, Joe
Smith, Steve Teicher, and Dave Widder.

Opposite:
e DEC Systems Modules.

PART

IN TIHIE
BEGINNING

In the Beginning

Because modules were DEC’s first product, and for many years their major
product, it is appropriate to study the history of DEC’s modules and the influence
of technology on their development. The history of modules is a subset of the
history of computers, and many of the views of computers expressed in Chapter 1
apply as readily to modules. In particular, the Structural View and the Packaging
Levels-of-Integration View plainly apply. Further, a study of module history
shows the effects of progress in semiconductor technology, as discussed in Chap-
ter 2, and demonstrates on a small scale many of the packaging and manufac-
turing concepts discussed in Chapter 3.

With the advent of microprocessors, the distinction between a module and a
computer has become blurred, and complete computer systems have become
available at the printed circuit board/module level of packaging integration. The
structural levels (Chapter 1, Figure 1) found on a single module have changed
from solely circuit level to logic level, then to register transfer level, and finally to
processor-memory-switch level. These developments will be explored more fully
in Part IV, “The Evolution of Computer-BuildingBlocks™;the-discussiom here is
limited to the simpler modules that characterized the first 18 years of DEC’s
computers.

The two chapters in this part consist of a 1957 paper by Ken Olsen and a
historical review by Dick Best. Both of these papers, but in particular the Olsen
paper, give a glimpse of how early computer design was heavily weighted toward
the electrical circuit level shown in Figure 1 of Chapter 1. As indicated above, the
capability of modern technology to package complete switching circuit level and
register transfer level systems into single chips has been a motivating force moving
computer design toward the PMS level. There has also been increased activity
“downward” however, as is also shown in Figure 1 of Chapter 1. To fit the mod-
ern, more complex systems into chips, increased attention to the lowest level (the
device level) has also been required. Since this has been more the domain of the
materials scientist than the computer scientist, it is not discussed in detail here.

While module design and computer design have evolved a great deal in the past
18 to 20 years, certain aspects of the Olsen paper reflect design methods which
have counterparts today. In particular, convenient maintenance was plainly one
of the important goals in the TX-2 circuit design effort. The use of a single, stand-
ard type of flip-flop and the use of a minimum number of different plug-in units
were important elements in meeting that goal. These features simplified the de-
sign, simplified maintenance training, and reduced the variety of spare modules

95

96 IN THE BEGINNING

that needed to be stocked. A voltage adjusting (margining) system for identifying
marginal circuits was another important feature of the TX-2 circuit design.

Today, computer engineers generally try to use a limited number of flip-flop
types (or RAM types, etc.) because they have certain favorites whose character-
istics they understand well and because the cost of bringing new parts into a com-
pany is very high. The old reasons - to simplify design, training, and stocking of
spares — continue to apply as well. Even though keeping the number of different
plug-in units (modules) to a minimum continues to have these advantages, this
cannot be done as easily as it once was, principally because the increased func-
tionality now available has customized modules to such a great degree. For ex-
ample, in the case of an LSI-11, the computer is a single module.

Modern designs do not use margining except in special cases where the refresh
clock cycles of dynamic memories are altered to detect failures. However, special
maintenance logic is often included in current designs. The idea of built-in main-
tenance features is in some ways similar to the old margining idea: in other ways it
is a substantial deviation because additional parts are required, and the old de-
signers were extremely careful of the parts count. The emphasis on low com-
ponent cost and parts count expressed in these chapters may seem odd to modern
designers, but the gradual lessening of this concern (as discussed in Chapter 4)
serves as an excellent example of the declining cost of electronic technology and of
semiconductor technology in particular.

In summary, the modules chapters which follow form a starting point, both in
time and in technology, for a study of how the views, concepts, and trends de-
scribed in the first two chapters have applied in the development of DEC modules
and computers.

CIRCUIT CONFIGURATIONS

Only two basic circuits are needed to perform
most of the logical operations in the TX-2 com-
puter: a saturated transistor inverter and a satu-
rated emitter follower. To the logical designer
who works with them, these circuits can be con-
sidered as simple switches that are either open
or closed.

The schematic diagram of an emitter follower
and the symbol used by the logical designers is
shown in Figure 1. With a negative input, the
output is ‘‘shorted” to the -3 V supply as
through a switch. When several of these emitter
followers are combined in parallel, as in Figure

v +10v

OUTPUT ouT

INPUT:

Figure 1. Emitter follower.

Transistor Circuitry
in the Lincoln TX-2

KENNETH H. OLSEN

2, any one of them will clamp the output to ~3
V. We then have an OR circuit for negative sig-
nals and an AND circuit for positive signals.
The transistor inverter is shown in Figure 3 with
its logic symbol. Basic AND, OR circuits result
from the connection of these simple switches in
series or parallel (Figures 4 and 5). More com-
plex networks like the TX-2 carry circuit use
these elements arranged in series-parallel (Fig-
ure 6).

In Figure 3 the resistor R; is chosen so that
under the worst combinations of stated com-
ponent and power supply variations, the drop

+10Vv

P
SEEEN

Figure 2.

Parallel emitter follower.
97

98 IN THE BEGINNING

across the transistor will be less than 200 mV
during the “on-condition.” R, biases the tran-
sistor base positive during the off condition to
provide greater tolerance to noise, Iyo, and sig-
nal variations. Capacitance C was selected to
remove all of the minority carriers from the
base when the transistor is being turned off. The
effect of C on a test circuit driven by a fast step
is shown in Figure 7. Note that the delay due to
hole storage is only a few millimicroseconds.

We run the circuits under saturated condi-
tions to achieve stability and a wide tolerance to

+10v

GND
R2
Ry =
INPUT = out
A OUTPUT
RT3V
R3

-0V

Figure 3. Inverter.
GlfD
A% ‘o% ‘¢+ i .
+10v
Figure 4. Parallel inverters.

GND

-0V

Figure 5. Series inverters.

parameters without the need for clamp diodes.
Unlike vacuum tubes, which always need an ap-
preciable voltage across them for operation, a
transistor requires practically no voltage across
it. In spite of the delay in turning off saturated
transistors, these circuits are faster than most
vacuum tube circuits. Faster circuit speed is not
due to the fact that the transistors are faster
than vacuum tubes, but because they operate at
much lower voltage levels. A vacuum tube takes
several volts to turn it from fully “on” to fully
““off’’; a transistor takes less than 1 V.

GND

FROM
ACCUMULATOR

CARRY FROM
PREVIOUS DIGIT

FROM CARRY
FLIP-FLOP
CARRY TO
NEXT DIGIT

-0V

Figure 6. TX-2 carry circuits.

J4

To e

OUTPUT

OUTPUT WITH C

|4

0 T,

-3V
T, = TURN-OFF TIME

OUTPUT WITHOUT C

Figure 7. Turn-off time.

FLIP-FLOP

On the basis of previous experience, we de-
cided that the advantages of having one stan-
dard flip-flop were worth some complication in
TX-2 circuitry. The circuit diagram of the flip-
flop package in Figure 8 is basically an Eccles-
Jordan trigger circuif with a 3-transistor ampli-
fier on each output. The input amplifiers isolate
the pulse input circuits and give high-input im-
pedance. The amplifiers give enough delay to
allow the flip-flop to be set at the same time that
it is being sensed. Figure 9 shows the waveforms
of this flip-flop package when complemented at
a 10-megapulse rate. The rise and fall times,
about 25 millimicroseconds, are faster than one
normally sees in a single inverter or an emitter
follower because on each output there is an in-

O ZERO IN

TRANSISTOR CIRCUITRY IN THE LINCOLN TX-2

99

verter that pulls to ground and an emitter fol-
lower that pulls to -3 V. Figure 10 is a plot of
the pulse amplitude necessary to complement
the flip-flop at various frequencies. Note the in-
dependence of trigger sensitivity to pulse repeti-
tion rate. This 10-
megapulse rate, twice the maximum rate at
which' it will be used in TX-Z.

The TX-2 circuits reproduced most often
were designed with a minimum number of com-
ponents to achieve economies in manufacture
and maintenance. The design of less frequently
reproduced circuits made liberal use of com-
ponents — even redundancy - to achieve long
life and broad tolerance to component varia-
tions. The goal was system simplicity and high
performance with a lower total number of com-
ponents than might otherwise be possible. For

111 Amarata

. . .
circuit win opfrai¢ ai a

vilvuie

ONE IN
MCB

(+10Vv)
MC A

(+10V)

e m —— e ew— ‘1

| sooxs CASCODE | 2ok |

l 39K l l

| 1 |

120 I

our o) | $ss |

I ||| L|neurameuces) §
| |
Myl N N

| INVERTER
— — — —

—OGROUND

00K

©
»
@
v}
8|
o
"l
L
PR |

ZERO
out

_____ -

L_l>=Z_J

I
I
L nweeren

0 -10V

NOTE:
All capacitances in pufd.

Figure 8. TX-2 flip-flop.

~0 -3V

100 IN THE BEGINNING

OUTPUT
(UNLOADED)
OUTPUT LOADED
WITH 100 MMFD,

1000 {}

TRIGGER

PULSES

{10 MCS)
§ 1 | 1 I

0 100 200 300 400 500 600
MILLIMICROSECONDS

Figure 9. Flip-flop waveforms.
30

@ 25

5 20

3 2

2 1

w

2 1.0

2

2 o5
0 2 4 6 8 10

FREQUENCY (MCS)
Figure 10. Trigger sensitivity.

example, the number of flip-flops in the TX-2 is
small compared to the gates which transfer in-
formation from one group of flip-flops to an-
other. So the flip-flops were allowed to be
relatively complicated, but the TX-2 transfer
gates were made very simple. A transfer gate is
only a single inverter. The emitter is connected
to the output of the flip-flop being read, and the
collector is connected to the input of the flip-
flop being set. The output impedance of the
flip-flop is so low that, when the output is at the
ground level, a pulse on the base of the transfer
gate shorts the input of the other flip-flop to
ground and sets its condition.

MARGINAL CHECKING

We planned, of course, to incorporate mar-
ginal checking in the design of these circuits so

20

[
o—e
@
@ o
3
5
o
E /0
O
[])
“1” SIDET7=70
-20
20 40 60 30
“0” SIDE, T
Figure 11. Tau margins.
20
Pl L8—5"S[es ®
- g
2|4
go
Q
g o
& L]
,'_,—." ®
"“1"SIDE 4 =20
-20
10 20 30 40
0" SIDE, 3
Figure 12. Beta margins.

that, under a program of regularly scheduled
maintenance, deteriorating components could
be located before they caused failure in the sys-
tem. We also found it practical to use the tech-
nique during the design of the circuits to locate
the design center of the various parameters and
to indicate the tolerance of circuit performance
to these parameters. A further application of
marginal checking has been found in other sys-
tems during shakedown and initial operation to
pinpoint noise and other system faults not
serious enough to cause failure and therefore
very difficult to isolate by other means.

The operating condition of the inverters is in-
dicated by varying the +10 V bias. In the flip-
flop schematic in Figure 8, the inverters were
divided into two groups for marginal checking,
and the two leads labeled MCA and MCB were

T
i
20) ®
/ll—.—‘_': -
& @® OPERATING
£) POINT
o0 @
2
2 | T~ 0meci—e—o—o—0—"
-20
5 7) 1 13 15

MARGIN SUPPLY (VOLTS)

Figure 13. —10 V supply margins.
20
—o—R_ o
@ ~
[} o OPERATING ®,
o ’ POINT ~Ne
2 o
2
o
s T g, -
-20
[} 1.0 20 3.0 4.0 5.0
VOLTS
Figure 14. -3 V supply margins.
20
*—® . o ——o—0
5 10
5
2 o
o
s -10 — — Y
o=t —) od
205 20 40 60 80 90
TEMPERATURE (° C}
Figure 15. Temperature margins.

varied one at a time for most critical checking
of the circuit. The following curves show the
locus of failure points for various parameters as
a function of the marginal checking voltage.
Figure 11 shows the tolerance to tau, a measure
of hole storage, and Figure 12 shows the toler-
ance to beta, the current gain. Operating mar-
gins for supply voltages, temperature, and pulse
amplitude are shown in Figures 13 through 16.

TRANSISTOR CIRCUITRY IN THE LINCOLN TX-2 101

20
& *—0
5 ® operatinG
2 ‘ POINT
o 0 { @
g |
%
o—0
-20
2 4 6
PULSE AMPLITUDE (VOLTS)

Figure 16. Pulse margins.

TX-2 plug-in unit.

Figure 17.

PACKAGING

The number of types of plug-in units was
kept small for ease of production and to keep
the number of spares to a minimum. The cir-
cuits are built on dip-soldered etched boards,
and the components are hand soldered in solid
turret lugs. The boards are mounted in steel
shells shown in Figure 17 to keep the boards

102 IN THE BEGINNING

Figure 18. TX-2 back panel.

from flexing. The male and female contacts are
machined and gold plated. The sockets are
hand wired and soldered in panels (Figure 18).

CONCLUSION

The result of these design considerations is a
S5-megapulse control and arithmetic element
that will take less than 40 square feet of space
and dissipate less than 800 watts of power. The

simplicity of the circuits has encouraged a de-
gree of logical sophistication that would not
have been chanced before.

ACKNOWLEDGEMENTS

A number of people took part in the work
reported here. Major contributions were made
by B. M. Gurley, J. R. Fadiman, R. A. Hughes,
K. H. Konkle, and M. E. Petersen.

The circuits and design concepts described in
Chapter 4 were the basis for the subsequent de-
velopment of DEC modules. In Chapter 5, the
discussion of this development is broadened to
include not only circuits and design concepts
but also packaging and the effects of progress in
semiconductor technology. DEC modules are
important because the progress in semi-
conductor technology that has formed the ma-
jor element of the technology push driving the
computer industry is evident in the history of
DEC modules on a scale convenient for close
examination and understanding.

The first modules produced by DEC were
called Digital Laboratory Modules and were in-
tended to sit on an engineer’s workbench or be
mounted in a scientist’s equipment rack. To fa-
cilitate the rapid construction of logic systems
using these modules, interconnection was ac-
complished with simple cords equipped with
banana plugs. As shown in Figure 1, the mod-
ules were mounted in aluminum cases 1-3/4 X
4-1/2 X 7 inches in size. All of the logic signals
were brought out to the front of the case, where
they appeared on miniature banana jacks
mounted in a schematic diagram of the logic
function performed by the module. The mod-

Digital Modules,
The Basis for Computers

RICHARD L. BEST, RUSSELL C. DOANE,
and JOHN E. McNAMARA

ules were offered in three speed ranges with
compatible signal levels. The three speed ranges
were 5 MHz (1957), 500 kHz (1959), and 10
MHz (1960).

The Digital Laboratory Module product line
was supplemented by the Digital Systems Mod-
ules. These modules, samples of which are

Figure 1.

Digital Laboratory Modules.

103

104 IN THE BEGINNING

Figure 2.

Digital System Modules.

-3v -15V

COLLECTOR

BASE —0—'\N\r———q

% EMITTER

+10 v

|

!

|
CIRCUIT ‘_1___

Figure 3. Schematic drawing of an
inverter used in digital system modules.

shown in Figure 2, were identical to the Labora-
tory Modules in circuitry, signal levels, and
speed range, but they had a different packaging
scheme. The System Module packaging was de-
signed for rack mounting and used 22-pin Am-
phenol connectors at the backs of the modules
rather than banana plugs at the front. The 22-
pin connectors were originally available only in
a soldered connection version, but a taper pin
version was later offered. The System Module

mounting method was chosen for the PDP-1
computer, as it permitted a wired panel of 25
modules to be mounted in a 5-1/4-inch section
of standard 19-inch rack.

The circuits used in both module series were
based on the M.I.T. Lincoln Laboratory TX-2
computer circuits described in Chapter 4. All of
the TX-2 basic circuits were used, except those
gates which used emitter followers. The emitter
follower gates were not short circuit proof, and
it was felt that misplaced patch cords in Labo-
ratory Module configurations or slipping scope
probes in System Module configurations would
cause a high fatality rate for those circuits.

What follows is a brief review of some of the
circuits to indicate how much present day logic
design differs from the logic design of 20 years
ago. Today designers deal with arithmetic logic
units and microprocessors as units, whereas in
the early 1960s, single gates and flip-flops were
units.

In the early module designs, most logical op-
erations were performed using saturating PNP
germanium transistors. While the use of transis-
tors in radios and television sets relies on the
linear relationship between base current and
emitter-to-collector current to provide the am-
plification of radio frequency and audio fre-
quency signals, the use of transistors in
computer circuits (except those using emitter-
coupled logic (ECL)) relies primarily on the be-
havior of transistors in either the saturated state
or the cutoff state. The use of transistors in such
circuits can best be appreciated from the simple
example shown in Figure 3.

Figure 3 is a schematic drawing of an in-
verter. When the emitter is at ground and the
base lead is brought to a sufficiently negative
voltage, the resulting base current will saturate
the transistor, effectively connecting the emitter
to the collector. If, on the other hand, the base
is grounded, then no base current flows, no
emitter-to-collector current flows, and the tran-
sistor is in the cutoff state. The collector would
then assume the voltage of the negative voltage

DIGITAL MODULES, THE BASIS FOR COMPUTERS 105

| cowLecToR

BASE

EMITTER

] S—

Figure 4. Symbolic drawing of an inverter.

source, were it not for the clamp diode which
limits the voltage of the collector to —3 volts.

To facilitate maintenance, the +10-volt bias
supply shown in Figure 3 was adjustable for
margin checking, a feature which had been used
in the TX-2 and which is discussed in Chapter 4.

To simplify the logic drawings, a symbolic
drawing like that in Figure 4 was customarily
used to represent the inverter circuit. Note that
neither Figure 3 nor Figure 4 shows the emitter
directly connected to ground or the collector
directly connected to the negative supply.
Rather, a dotted line is used on the drawings to
indicate that Laboratory Modules and System
Modules often used a series connection of up to
three inverter gates between the negative supply
and ground to accomplish various logic func-
tions. Parallel and series-parallel arrangements
were also used, as shown in the sample circuits
in Figure 5.

The Digital Laboratory Modules and the
Digital System Modules used a dual polarity
logic system employing both levels and pulses.
The logic voltage levels were —3 volts and
ground. Correspondence between the logic
state, ONE or ZERO, and the voltage levels of
—3 and ground were indicated at each point in
the logic diagram by a diamond. The diamond

||'—

H=C+(B+A D "(E+F" G H=C-'[B-(A+D)+E"F+G|

Figure 5. Sample circuits using series and parallel
arrangements of inverters.

defined the necessary voltage level for the ac-
tion desired. A solid diamond denoted that a
—3-volt level was an assertion, and a hollow di-
amond indicated that a ground level was an as-
sertion. This convention gave two signal names
to one physical signal: if a given asserted signal
A was passed through an inverter, four signals
resulted, as shown in Figure 6.

A logic function lower in cost yet equivalent
to both the series and parallel inverter arrange-
ments used diodes added to the circuit of Figure
3 to form AND or OR gates, as shown in Fig-
ures 7 and 8.

Except for very small amounts of delay, the
inputs and outputs of these circuits changed si-
multaneously; thus, no information was stored.
The storage of information was accomplished
by bistable devices called “flip-flops” whose
state was controlled by the application of pul-
ses. Before discussing the construction of flip-
flops, it is therefore necessary to briefly describe
pulses, which were an important type of logic
signal.

A pulse, as the name implies, was a very well
controlled, short event in which a logic signal
was asserted. Pulses were used for computer
clocks and for carrying out the register transfer
operations between the registers. Pulses were

106 IN THE BEGINNING

generated by pulse amplifiers which were block-
ing oscillator circuits employing pulse trans-

— formers. The pulse transformer had both

- o terminals of its secondary winding available so

that either positive or negative pulses could be

= obtained, depending upon which terminal was
Le——> nNOoT A

grounded. A negative pulse (ground to —3 volts

° and back to ground) was represented in the

logic drawings by a solid triangle, and a positive

pulse (ground to +3 volts and back to ground)

el imVong hn o Biong was represented by a hollow triangle. These sig-

e A B e nals were normally distributed on twisted pair

and could travel the long distances needed in

large digital systems like the PDP-1 without
Figure 6. Signal naming convention for DEC degradation. ;)

dual polarity logic. Pulse amplifiers were important elements be-

cause they produced high energy (high fan-out),

standardly shaped pulses which could be used

oy any to gate a complete 18-bit register as a single log-

{% ical signal. The use of pulses and buf-
|

SAME SIGNAL —sje— INVERTED SIGNAL

fered/delayed output flip-flops is emphasized
because the concept of gating a pulse at the
source and using the gated pulse to transfer
l data from register to register on a parallel basis

[
I
A used a minimum of logic compared to other
¢ "4$. ! methods in use at that time. Some other meth-
L

|
—pt
R | - | ods used a common clock and dual rank flip-
v YMBOL .
oY L flops for register output delays or used clocked
= - serial logic and delay lines to store register con-
tents.

Figure 7. AND gate for negative signals. Returning to the discussion of gates and flip-

flops, a primitive flip-flop can be obtained by
interconnecting two grounded emitter inverters
av) sy as shown in Figure 9. When one inverter is cut
off, its output is negative. This holds the other
inverter on, which in turn holds the first in-

i verter off. If another inverter circuit is added to
A | the circuit in Figure 9, the circuit in Figure 10 is
. obtained.

The application of a negative pulse to the in-
put of the additional inverter changes the state
svmzoL of the flip-flop. In the actual implementations
of DEC Laboratory Module flip-flops, buffer
amplifiers were added to the outputs to permit a
Figure 8. OR gate for negative signals. single flip-flop to drive the inputs of many other

+10vV

fp———
-

CIRCUIT

DIGITAL MODULES. THE BASIS FOR COMPUTERS 107

-

Primitive flip-flop.

Figure 9.

<>— <
A B c

<

Figure 10. Primitive flip-flop with inverter.

gates. The buffer amplifiers also provided de-
lays at the outputs of the flip-flops such that the
output did not change until after the activating
pulse was over. This permitted the state of the
flip-flop to be sensed while the flip-flop was
being pulsed, a necessary feature for the simple
implementation of shift registers, simultaneous
data exchange between two registers, counters,
and adders.

Collections of the inverters, gates, and flip-
flops just described were packaged in appropri-
:ate quantities (i.e., as many as would fit within
the module size and pin constraints) and sold as
Laboratory Modules and System Modules.

There were a relatively small number of module
types available in the Laboratory Module
Series. For example, the first product line, the
100 Series, included:
103 6 inverters
110 2 6-input negative diode NORs
201 1 buffered flip-flop
302 1 one-shot
402 1 clock pulse generator
406 1 crystal clock
410 1 Schmitt trigger circuit pulse gener-
ator
501 3 level standardizers
602 2 pulse amplifiers
650 1 tube pulser (15 volt, 100 nanosecond
pulses)
667 4 level amplifiers (0 to —15 volts)
801 1 relay

By contrast, there were many System Module
types developed. With their higher packing den-
sity, lower cost, and fixed backplane wiring,
they were used for computers, memory testers,
and other complex systems of logic.

It is interesting to note that a large percentage
of the modules on the above list were designed
for generating and conditioning of the pulses
and levels used in the relatively small number of
logic circuits. Reference to a present day in-
tegrated circuit catalog reveals few pulsing and
clocking circuits but a great many logic circuits.
The emphasis on pulses was one of economy, as
previously noted.

Register transfer level structures and the Sys-
tem Module logic diagrams can easily be corol-
lated, both because of the use of pulse
amplifiers to evoke operations and because of
the buffered/delayed flip-flops. Figure 11
shows in simplified form the interconnection of
two PDP-1 registers and lists some of the regis-
ter transfer commands that could be used in
conjunction with these registers. Typical exam-
ples of such register arrangements in the PDP-1
were the Accumulator (AC), which was the

108 IN THE BEGINNING

D - AC

CARRY (MB, AC}
AC

7AC — AC

AC © MB — AC
AC + 1 AC
ETC. ———-———«»I MB<0:17>]

L[] [=]
L]

SIMPLIFIED

WITH REGISTER TRANSFER
CONTROLSIGNALS SHOWN

Figure 11. Register transfer representation of PDP-1
Accumulator (AC).

——
TR
AC<j>
-~ 0— AC f ~
T] C2
w CARRY QU CARRY IN .
g | Toac <ji+1> FROM AC<j-1>
E {SEE NOTE} s
ox o
2w I
£ 3
@ ﬁ L3
E g 9 CARRY (AC, MB) — Q
ig ac]
[-
g s
[4
2 | ~ac-ac =]
G2 °
it
B L
AC © MB = AC B e |
" (1/2 ADD) e
.
o8 Of

MB<j+1>

NOTE:
Input at least significant bit generates AC + 1 —AC.

Figure 12. Logic diagram of PDP-1 Accumulator bit,

AC<>.

basic register in which all arithmetic operations
were carried out, and the Memory Buffer (MB)
register.

Figure 12 shows the logic diagram for one bit
of the Accumulator and Memory Buffer for op-
erations given in the register transfer diagram.
The operation to clear the Accumulator is car-
ried out by a pulse amplifier connected to all 18
bits of the Accumulator, with logic at the input

of the pulse amplifier to specify the conditions
under which the Accumulator is to be set to
ZERO. Complementing the Accumulator " is
done by a transistor at one of the com-
plementing inputs, C/, which receives a nega-
tive control pulse. Addition is a two-step
process in which the Accumulator and Memory
Buffer are half-added to the Accumulator using
an exclusive-OR operation (where an Accu-
mulator bit is complemented if the correspond-
ing Memory Buffer bit is a ONE), and then the
carry operation is performed. A carry at a given
bit position is initiated to the next bit if the
Memory Buffer is ONE and the Accumulator is
ZERO. Once a carry is started as a bit, it will
continue to propagate if each bit of the Accu-
mulator is a ONE. The propagation is done via
a standard pulse at the propagation output P2.
In a similar way, a ONE can be added to the
Accumulator by pulsing the least significant bit
of the Accumulator which, if it is a ONE, will
create a carry that will propagate along all the
digits that are ONE, complementing each bit of
the Accumulator to ZERO as it propagates.

In 1960 DEC began building modules with
slightly different circuitry than that described
above. While transistor inverters, buf-
fered/delayed flip-flops, and their associated
pulse logic were the best choice for 5- and 10-
MHz logic, capacitor-diode (C-D) gates and
unbuffered flip-flops were found to be prefer-
able for low speed logic because greater logic
density and lower cost could be achieved.

A positive capacitor-diode gate is illustrated
in Figure 13. With both the level input and the
pulse input at ground for sufficent time to allow
the capacitor charge to reach 3 volts, a negative
level change or a negative pulse at the pulse in-
put will cause a positive pulse to appear at the
output. Such gates could drive the direct set in-
put of any flip-flop which required a positive
pulse and were built into some unbuffered flip-
flop inputs to be used for shifting and counting,
using the capacitor as a delay element. Often

DIGITAL MODULES, THE BASIS FOR COMPUTERS 109

one inverter would drive many capacitor-diode
combinations in the same module.

A negative capacitor-diode gate is illustrated
in Figure 14. With the level input at —3 and the
capacitor input at ground for a sufficient time
to allow the charge on the capacitor to become
stable, a negative level change or a negative
pulse at the capacitor input will cause the tran-
sistor to conduct. The conducting transistor
grounds the output for an amount of time de-
termined by the gate time constant or the input
pulse width, whichever is shorter. Gates of this
type could be used to set and clear unbuffered
flip-flops by momentarily grounding the correct
flip-flop outputs in a fashion similar to the in-
verter gate that was added to Figure 9 to obtain
Figure 10.

The principal advantages of the capacitor-
diode gates were:

1. The level input to the gate was used to
charge a capacitor and was isolated from
the rest of the circuit by a diode. Thus,
no dc load was presented to the circuit
driving the level input of a capacitor-
diode gate.

2. The resistor-capacitor time constant of
the gate required that the conditioning
level be present a certain amount of time
before the pulse input occurred. This in-
troduced a delay between the application
of a new gate level and the time the gate
was conditioned, and allowed the sam-
pling of unbuffered flip-flop outputs at
the same time that the flip-flop was
being changed.

3. The resistor-capacitor combination dif-
ferentiated level changes, permitting a
level change to create a pulse.

The use of saturating micro alloy diffused
transistor (MADT) transistors and toroidal
pulse transformers appeared to be nearing an
operating limit at 10 MHz. The pulses needed
to operate the circuits shown in the previous di-

; QUTPUT

INPUT
INPUT g

OUTPUT

LEVEL
LEVEL INPUT
INPUT

CIRCUIT SYMBOL

Figure 13. Positive C-D gate.

! OUTPUT
'H'-L—i':l
!! INPUT ©
]

INPUT %h
3

LEVEL
INPUT
LEVEL
INPUT

CIRCUIT SYMBOL

Figure 14. Negative C-D gate.

agrams were 40 percent of the cycle time of 10-
MHz logic (40 nanoseconds), which tightly con-
strained transformer recovery time and made it
difficult to design circuits that were not exces-
sively sensitive to repetition rate. Furthermore,
gate delays were large enough to prevent some
needed logic configurations from propagating
within the 100 nanosecond interval implied by
the 10-MHz rating.

A major break with previous circuit geo-
metries appeared necessary. The use at IBM (in
the IBM 7030 “STRETCH” machines) of non-
saturating logic encouraged an exploration in

110 IN THE BEGINNING

that direction. The project was called the “VHF
Logic™ project because operation at 30 MHz or
better (the bottom end of the very high fre-
quency (VHF) radio band) was the goal.

The complex 30-MHz flip-flops were pack-
aged one to a module (Figure 15), with the re-
sult that a great many interconnections were
needed to implement logic functions. In systems
designed for 30-MHz operation, the use of leads
longer than a few centimeters was expected to
require special care; hence, it was thought es-
sential for ease of use that a satisfactory trans-
mission line hookup medium be available. A
new solid wall coaxial cable had just been in-
troduced, the 50-ohm impedance version of
which was chosen to hook up the VHF mod-
ules. It appeared to have a strong enough center
conductor for practical hookup between mod-
ules without being too bulky for easy hand-
bending.

Due to the low impedance needed for the
coaxial cable connections, substantial driving
current was necessary to achieve adequately
high signal voltages, and considerable power
had to be dissipated. The ability to drive a load
at any point along the transmission line was
deemed necessary for practical hookup, and 3-
volt swings had to be available to insure com-
patibility with existing modules. These needs
were met by choosing a 60-milliampere output
current, producing a 1.5-volt swing on a
double-terminated 50-ohm line and a 3-volt
swing with a 50-ohm load when interfacing to
existing slower logic. These voltage and current
levels required the addition of heat sinks to the
output transistors. This was accomplished by
installing spring clips that fastened thecases of
the transistors directly to the connector pins,
exploiting the connectors as heat sinks and at
the same time providing a minimum inductance
connection from the transistor collector (com-
mon to the case) out of the module.

The VHF modules contained a novel delay
line implementation which has reappeared in
recent days in the emitter-coupled logic boards

used in the latest PDP-10 processor (KL10).
Flip-flop output delay was provided by a 10-
nanosecond stripline etched onto the printed
circuit board. A meander pattern was selected
with a degree of local coupling between the
loops to achieve a 7 to 1 delay-to-risetime ratio.
Both the delayed and undelayed ends of this 50-
ohm stripline were made available at the mod-
ule pins. The undelayed outputs switched sim-
ultaneously with the flip-flop outputs, allowing
a subsequent gate to subtract a delayed flip-flop
output from the undelayed complement output
side of the flip-flop and produce a 10-nanose-
cond pulse when the flip-flop changed state.

The performance of the VHF modules was
rated at 30 MHz, which was the limit of the
module testers used on the production floor.
Bench testing demonstrated 40-MHz capability
with the promise of 50-MHz performance if ad-
equate testing apparatus could be found. Rise-
times were better than 1 nanosecond.

Modules delivered to customers were used to
build satisfactory high performance systems,
but the need for such high performance was not
widespread. In addition, the product devel-
opment cycle was, by the standards of the time,
quite long (two years) and enthusiasm for the
VHF modules among DEC engineers waned,
further slowing product momentum. Despite
their failure as a product, with only eight mod-
ules in the series, the VHF modules eventually
made a contribution to computer progress. To
produce timesharing systems, the PDP-6
needed a way of comparing relocated addresses
at very high speed. A high speed register com-
parator was quickly designed using current
mode logic similar to that in the VHF modules.

As a series of general purpose products for
engineers to use, the VHF modules were too
costly and their wiring too inconvenient. Fur-
ther developments in general purpose logic
modules were to lie in the opposite direction:
toward cheaper, more compact, easier to use,
and slower units.

D1
Qa6.100

-

E

Y
O DELAYED

DELAYED
QUTPUT ouTPUT A+10V{A)
0
B+10V(B)
O
D.P.Z
GND
R20 R13 _L ca
R22 3 1500 5% 1500 5% I4 R21 c7 cn
470 < [S0 0022 0022
12w € j’!/zo MFD /T\ MFD
2 R19 > R1 R4
< < < R16
3 Qa0 L 470 470 < 70 <£ L L
2w 9§ 172w 1/2W 1209 ce | c12 c13
0022 ST~ 0022 ranid
PRINTED PRINTED MFD MFD MFD
WIRE :0 NS WIRE 10NS
— —_— !! D9
e Y
D-862
g Rz our ouT 0 S ;2'7 REEAN
S8 c R ca > .0022
] Y e
’ ! D10
]\ D8 D-662
D2 b7 L Qs5-100
D-662 D-662 D11
» >} ¥ > 4 b 4 D-662
Ll l[SDA-8 ¢
< R14 t D12
;. 70 S D662
a1 02 a3 a4 as Q9 Q10 an Q12 Q13 yo
H 3 m L T s v w x D-862
VAVAV AVAVA
R7 R10 014
220 220) 4 D662
» X "
b] lad -4 5V
D3 b6
Q6-100 6_ Q5100
R8 f.‘;’o R11 R23 S AB
22 MMFD 22 R15 R18 78 & TYPE
— 1720 12w 68 68 aw € HM
5% 5% w w c10
2% 2% I/
. —M AN —C
cia
UNLESS OTHERWISE INDICATED: RS R12 T C-15V
RESISTORS ARE 1/4W; 10% a7 47 —Q
TRANSISTORS ARE DEC 2894-1 ————— AN AAN
R16 AND R18 ARE CORNING TYPE C A 2w
C1.C3. C4. C10. AND C14 ARE ERIE D4 05
390.000 X6VO 102P .001 MFD 20% Q5100 Q5-100 1 g
Ll L
-0.7v
Q14
CLEAR SET ais
K
mmmmeemm—e———————— ----1

Figure 15.

30-MHz VHF flip-flop module.

SHILNdWOI HO4 SISvE IHL 'S3ITNAOW Tv1IDId

Ll

112 IN THE BEGINNING

By 1964, because of the decreasing cost of
semiconductors during the early 1960s, the cost
of System Module mounting hardware and of

Single and double Flip Chip modules used in
PDP-7 and PDP-8.

Figure 16.

wiring had become a significant portion of the
total system cost. In response to this trend, a
new type of module was developed which was a
2.5- X 5-inch printed circuit card with a color-
coded plastic handle (Figure 16). The printed
circuit card provided its own mechanical sup-
port — there was no metal frame around it as
there had been in the System Module design.
The new modules, called Flip Chip modules,
plugged into 144-pin connector blocks that
could support eight such modules, providing 18
pins per module. While the improvements in the
cost of module mounting hardware realized
with the new modules were important, the ma-
jor advantage of the new Flip Chip modules
was that automatic Gardner-Denver Wire-wrap
equipment could be used to wire the module
mounting blocks.

The first series of the new modules was desig-
nated the R-Series and was identified by using
red handles. The R-Series circuits were a reac-
tion to the rather complicated set of rules devel-
oped for using the previous products. The goal
was to make these modules easy to use and in-
expensive. Integrated circuits were not used be-
cause they were more expensive than discrete
components, and the computer industry had
not yet decided on the type of integrated circuit
to use. The building block for R-Series logic
was the diode gate, an example of which is
shown in Figure 17. The other basic circuit was
the diode-capacitor-diode (D-C-D) circuit
shown in Figure 18. The diode-capacitor-diode
gate was used to standardize inputs to active de-
vices such as flip-flops and to produce the logic
delay necessary to sense and change flip-flops at
the same time.

A second series of the new modules was de-
veloped for the first PDP-8s. This series was
called the S-Series, although it also had red han-
dles. The S-Series modules used the same cir-
cuits as their R-Series counterparts, but with
variations in the values of the load resistors and
diode-capacitor-diode gate storage capacitors
to obtain greater speed.

DIGITAL MODULES, THE BASIS FOR COMPUTERS 113

-15v

1
é ouTPUT

+10V
—b—e

OUTPUT

neuts ————Pp——]

___H

& NODE

DIODE GATE SYMBOL

Figure 17. Diode gate.

The B-Series with blue handles was essen-
tially the same as the 6000 Series of 10-MHz
System Modules, except that it was repackaged
on new 2.5- X 5-inch cards and used silicon
transistors rather than germanium transistors.
The new silicon transistors were a mixed bless-
ing. While they had temperature sensitivity
characteristics superior to those of the germa-
nium transistors, and their voltage drop charac-
teristics permitted the elimination of the bias
resistor to +10 volts, they did not saturate as
well as the germanium transistors. Because they
did not saturate well, the voltage between the
collector and the emitter in the saturated state
was not as low as it was with germanium tran-
sistors. This meant that the series arrangement
of three inverters discussed in conjunction with
the dotted lines in Figure 4 could not be used.
Instead, only two of the silicon transistor in-

ouTPUT

Y ¥

PULSE
INPUT

h 4
._IL
T~

) 4

A
v

—A

j
LEVEL
l INPUT
-15v

OUTPUT

PULSE
INPUT

LEVEL
INPUT

Figure 18. D-C-D gate.

be connected in series if the output was in-
tended to drive another inverter. The first com-
puter to use the B-Series modules was the PDP-
7, and the series was heavily used and extended
by the first PDP-10 processor (KA10).
Analog applications were the target market
for the A-Series modules, which had amber
handles. This series, still being manufactured
today, includes analog multiplexers, oper-
ational amplifiers, sample and hold circuits,
comparators, digital-to-analog converters, ref-
erence voltage supplies, analog-to-digital con-
verters, and various accessory modules. The
development rate of analog modules peaked in
1971 with 38 new types and declined to 5 new
types in 1977. :
While all of the preceding modules had bee
designed as user-arrangeable building blocks,
the green handled G-Series was intended for

114 IN THE BEGINNING

modules that would be sold only as part of a
system. For example, all of the DEC core mem-
ory circuits have been in the G-Series because a
core memory system is sufficiently complex that
a cookbook approach using a standard series of
modules is not appropriate. The G-Series is still
actively used today for circuits other than logic,
generally in peripheral devices such as disks,
tapes, and terminals.

Like the A-Series and G-Series, the W-Series
(white handle) is still manufactured and is used
to provide input/output capability between
Flip Chip modules and other devices. Lamp
drivers, relay drivers, solenoid drivers, level
converters, and switch filters are included in
this family, but the only modules used widely
today are those modules which include cable
termination modules and blank boards upon
which the user can mount integrated circuits
and wire-wrap them together.

While the W-Series modules provided a vari-
ety of interface capabilities, their circuitry was
still too fast for typical industrial applications.
Computer logic, by its very nature, is high speed
and provides noise immunity far below that re-
quired in small-scale industrial control systems
located physically close to the process they con-
trol.

Unfortunately, industrial electrical noise is
not predictable to the nearest order of magni-
tude. Thus, attempts to solve noise problems
with high level logic, whose voltage thresholds
were merely a few times greater than computer
logic thresholds, did not work weil.

A new series of modules was developed, the
K-Series (with blac(K) handles), which relied
on a combination of voltage, current, and time
thresholds to protect storage elements such as
flip-flops and timers from false triggering. Since
industrial controls typically interact with phys-
ically massive equipment which moves slowly
relative to electronic speeds, time thresholds are
particularly attractive. There are four ways of
exploiting these:

1. Using basic 100 KHz slow-down circuits
everywhere.

2. Making optional 5 KHz slow-down cir-
cuits available.

3. Providing transition-sensitive (edge-de-
tecting) circuits with hysteresis to allow
additional discrete capacitor loading of
the input when all else fails.

4. Replacing the conventional monostable
multivibrator or “one-shot” circuit with
a timing circuit which has both a low im-
pedance and hysteresis at the input.

The hardware for the K-Series was specifi-
cally designed to fit the NEMA (National Elec-
trical Manufacturers Association) enclosures
traditionally used with relay implemented in-
dustrial controls. The K-Series used the same
connectors as the other Flip Chip modules,
however. Sensing and output terminals were
provided with screw terminals and indicator
lights, and appropriate arrangements were
made to interface with 120-volt ac devices.
Wire-wrap terminals were protected from exter-
nal voltages but were available for oscilloscope
probes. Magnetically latched reed relays and
diode arrays that could be programmed by
snipping out diodes were provided as memory
elements that would retain data during power
failures.

Gating in early K-Series modules was accom-
plished with discrete diode-transistor circuits
such as that shown in Figure 19. Other K-Series
modules used integrated circuits for the logic
functions. In these designs the inputs to the in-
tegrated circuits were protected with fil-
ter/trigger circuits which filtered out the noise
and then restored the fast risetimes required by
the integrated circuits. Outputs were protected
from output-induced noise and converted to
standard K-Series signals by circuits similar to
those used in the discrete logic gates.

oV

“AND"
EXPANSION z

~OR"
EXPANSION

Figure 19. K-Series circuit.

Unlike other DEC modules, the K-Series
modules were not directly useful for construct-
ing computers or computer data processing
subsystems due to their low speed and high
cost. They did play an important part in bring-
ing digital logic into industrial applications, and
the noise protection techniques developed for
these modules were useful in the design of the
PDP-14 Industrial Controller (Chapter 7).

By 1967 the electronics world had settled on
transistor-transistor logic (TTL) and the dual
in-line package (DIP) as the technology and
package of choice for integrated circuits. In ad-
dition, the cost for logic functions implemented
in TTL integrated circuits had dropped below
that of discrete circuit implementations. With
much more logic fitting into the same printed
circuit board area, a single Flip Chip card could
now accommodate much more complicated
functions. However, there were not enough
connector pins available to get the necessary
signals on and off the card. The answer to the
problem was to keep the cards the same size,
but to have etch and associated contacts on
both sides of the printed circuit board. This in-
creased the number of contacts from 18 to 36,
and a new series with magenta handles (the M-
Series) was born. Subsequently, some G-Series
and W-Series modules were also designed with
integrated circuits and double-sided boards.

The advent of transistor-transistor logic
brought the first power supply and signal level

DIGITAL MODULES, THE BASIS FOR COMPUTERS 115

A
INPUTS
B

Y

CIRCUIT SYMBOL

Figure 20.

Basic TTL NAND gate circuit.

change in DEC’s history. The —15-volt and
+10-volt supplies were no longer required.
Only a single +5-volt supply was needed to sup-
ply the logic signals which were now O and +3
volts. The packaging was kept consistent, how-
ever, as the old single-sided modules could be
plugged into the new connector blocks. Careful
attention to pinning arrangements allowed half
of the circuits of a double-sided module to be
used in a single-sided block.

The basic TTL circuit is the NAND gate
shown in Figure 20. Since the change to TTL
logic brought a change in logic symbols, a
sample of the new symbology is also shown in
Figure 20.

The input of the TTL gate is a multiple emit-
ter transistor. If either input is at or near
ground (0 to 0.8 volts), transistor Q! becomes
saturated, bringing the base voltage of transis-
tor Q2 low, turning off transistor Q3 while turn-
ing on transistor @4, and making the output
high (+2.4 to +3.6 volts). If both inputs are
high (above 2 volts), Q2 has base current sup-
plied to it through the collector diode of QI,
turning Q2 on. This in turn provides base cur-
rent to @3, saturating it and cutting off 04,
making the output low (0 to 0.4 volts).

Like the transistor inverter circuits discussed
in conjunction with System Modules, TTL
NAND gates can be cross-connected to form
flip-flops.

116 IN THE BEGINNING

The first generation of M-Series modules was
used in a redesign of the PDP-8, called the
PDP-8/I. The circuits used in these modules
used TTL integrated circuits which were called
7400 series integrated circuits because of a
growing tendency in the semiconductor in-
dustry to standardize part numbers for TTL cir-
cuits, calling a package of 4 NAND gates a
7400, a package of 6 inverters a 7404, etc. Soon
there was a need in the computer industry for
higher speed circuits. This need led to the devel-
opment of the 74HOO series. The 74H00 circuits
were similar to those in the earlier 7400 series,
but they were faster and used much more
power. The first PDP-11 (the PDP-11/20), the
second PDP-10 processor (K110), and the PDP-
8/E used both 7400 and 74HO00 series integrated
circuits. The PDP-11/45, designed between
1970 and 1972, used Schottky TTL, a circuitry
with such rapid switching speeds and high
power consumption that four-layer boards had
to be used such that the inner layers of power
and ground etch could provide both shielding
and an adequate supply of power and ground.

In 1972 work began on a new PDP-10 proces-
sor, the KL10. This used current switching non-
saturating logic from several vendors, including
the MECL (Motorola Emitter Coupled Logic)
10,000 series. This line of circuits is in some
ways an integrated circuit version of the VHF
modules. The basic gate is shown in Figure 21.

In the circuit shown in Figure 21, transistor
06 has a temperature compensated, internally
generated reference voltage of —1.3 volts on its
base. The outputs drive 50-ohm terminated
transmission lines returned to —2 volts. There is
a complementary pair of outputs so that the cir-
cuit is both an OR and a NOR gate. At 25 de-
grees Celsius the upper level will be between
—0.81 and —0.96 volts, while the lower level
will be between —1.65 and —1.85 volts. The cir-
cuits, like the Schottky circuits, are so fast that
multi-layer boards are required. In addition, a
great deal of care in signal line termination is
required. As with the previous logic families
studied, flip-flops can be created. The ECL
master-slave flip-flops are quite complex, typi-
cally requiring 32 transistors and 7 diodes.

Vee2(GND) Veet(GND)

N9

307 é as
<

—>
| 5
a7

OR
OuUTPUT

a6
as p NOR
ouTPuT

RE
6.1 4.98 k
779 ki

c D
/

L L g &
Rp Rp Rp Rp
50 k 50 k 50 k 50 k

B8

rb

\4
INPUTS

Figure 21. ECL circuit.

. DIGITAL MODULES, THE BASIS FOR COMPUTERS 117

58 &0 62 64 66 68 70 72 74 76 78

T ! { ! T ! I 1 | ! l l I] T | I I T
100-SERIES

— Lae —
§ MHz 20 MODULES
cLock

E 1000-SERIES SYSTEMS |

PDP-4, PDP-5

P
@
o
3
o
4]
H
3000-SERIES 2
- LAB 500 kHz 4 3
AND 1 MHz a
z
<
— — =
o
&
4000-SERIES SYSTEMS ey g
5000-SERIES LAB 6000-SERIES
SYSTEMS
— : 10 MHz —
8000-SERIES SYSTEMS 30 MHz
— | —
PDP-7 (B) BLUE-SERIES
_ = FLIP CHIP
SPECIAL
— PDP-8 (R) RED —
pa—_ Y
(A) AMBER
. ANALOG |
{G) GREEN

SPECIAL PURPOSE

FLIP CHIP MODULES

(W) WHITE

INTERFACE

(B) BLACK
— K-SERIES —

INDUSTRIAL

(M) MAGENTA

M-SERIES IC
(NOT DRAWN TO SAME SCALE}

! trtr

TECHNOLOGIES USED: TTL TTL/H TS ECL NMOS CMOs

Figure 22. Modules introduced each year at DEC.

18 IN THE BEGINNING

As the various module circuit technologies
developed, more logic functionality fit in a
given space, and the space provided on individ-
ual logic modules was increased. The modules
used in the PDP-8/1, PDP-8/L, PDP-10 (K110
processor), and PDP-15 were single (2.5 X 5-
inch) and double (5 X 5-inch) general purpose
modules, and these machines had relatively low
packing densities because most inter-
connections were carried out on the wired back-
plane. The PDP-8/E (and, to a lesser extent, the
PDP-11/20) used 8.5 X 10.4-inch “extended
quad” modules which were functionally special-
ized and eliminated many of the backplane con-
nections required in previous designs. By 1973,
the “hex” module (8.5 X 15.6 inches) was
widely used, principally in the PDP-11 family.
By 1978 two DEC computers, the VAX 11/780
(1977) and the DECSYSTEM 2020 (1978), were
using 12 X 15.6-inch “‘super hex” modules to-

further reduce interconnection cost by placing
more logic on a single module.

An evolution in circuits has continued as the
technology has changed. As integrated circuits
have become more functional by the reduction
of the size of their active elements, each new
computer introduced is smaller, faster, and less
costly than its predecessor. While only DEC ex-
amples have been mentioned here, the trend to-
ward smaller, faster, and less costly computers
has been consistent for all computer manufac-
turers.

The chart in Figure 22 shows the number of
module types introduced each year from 1957
to 1977.

ACKNOWLEDGEMENTS
We gratefully acknowledge the review assist-

ance offered by Allan Kent, Tom Stockebrand,
Phil Tays, and Don White.

Opposite:
e PDP-8.

PART

BEGINNING OF
COMPUTER

Beginning of the Minicomputer

In November 1960, the first PDP-1 computer was delivered. This machine and
the 49 other PDP-1s that followed established Digital Equipment Corporation in
the compater business. Four and a half years later, in April 1965, the first PDP-8
was delivered. This machine, and the 40,000 PDP-8s that followed, established the
concept of minicomputers, leading the way to a multibillion dollar industry. In
the chapters of Part II, the development of DEC’s 12-bit and 18-bit computers are
explored in detail, with special attention paid to the factors influencing their de-
velo