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CHAIRMAN’S REPORT

John F. Carlson

Cray Research, Inc.
Eagan, Minnesota

Good morning. Thank you for inviting me to
participate today. I want to take the time available to
review our 1993 performance and discuss where we
plan to go in our strategic plan covering us from now
through 1996.

I am taking some time to review our financial
condition because you are all investors in Cray
Research. Whether or not you own any of our
common stock, you and your colleagues have invested
your efforts and energy and professional challenges in
Cray Research. I want to use this opportunity to
show that your investment is well placed.

Simply stated, we had a very good year in 1993, We
delivered on our 1993 plan by increasing revenue,
improving margins, reducing costs and delivering our
shareholders solid profits for the year of $2.33 per
share versus a loss for 1992,

Our financial performance enables us to continue
investing at least 15 percent of our revenues into
research and development. No matter what changes
the market brings or we bring to the market, that
commitment will not change.

We achieved those financial results while also
delivering two major hardware platforms and a number
of software advances -- including the creation of
CraySoft -- our initiative to make Cray software
available on non-Cray platforms, right down to PCS.

I am pleased to note, also, that we delivered our new
hardware and software products on time, as promised.

Clearly, we have recovered from our 1992 restructuring
and are realizing the operating savings we hoped would
result from those difficult actions.

For a few specifics, our 1993 revenue grew 12 percent
to $895 million from $798 million in 1992. This
substantial increase resulted principally from strong
sales of large C90 systems. We sold 12 C916
systems in 1993 -- double the number sold a year
earlier. And having moved on from the C90's
introductory stages, we achieved better margins --
which certainly helped our earnings results.

Copyright © 1994. Cray Research Inc. All rights reserved.

We also improved our balance sheet along the way.
We grew our total assets by 15 percent to about $1.2
billion from 1992, generated about $170 million in
cash, improved stockholder's equity by $56 million
and our book value at year-end 1993 was roughly $30
a share.

Return to shareholder's equity was eight percent for the
year and return on capital employed rose to 11 percent.
While these figures are relatively good, they do not yet
hit the levels we have targeted for the company. Our
targets, long term, are to deliver 18 to 20 percent
improvements in stockholder's equity and 15 percent
improvement on our return on capital employed.

Also, we ended 1993 with an increase in inventories of
about $52 million. That increase is one figure going
the wrong direction and reflects the ramp-up
investments we made to launch both the T3D and
CS6400 and also the high level of deliveries we
anticipate completing this quarter.

In 1993 we signed a total net contract value of orders
of $711 million compared with $598 million for
1992. This 19 percent increase really reflects the
strong demand for C916s and T3Ds. Our order
backlog at year-end was $409 million, just shy of the
record $417 million we reported in 1992. And, yes,
the delayed acceptance of a C916 from December 1992
to January, 1993 was included in the 1992 record
number. Backing out that system for comparison
purposes confirms that our backlog number for 1993
is going in the right direction, upward.

Today, we have about 500 systems installed around the
world. Those systems are broadening out
geographically and by industry. In 1993, we added
new first-time customers in Malaysia and
Czechoslovakia and installed our first system in Africa
at the South African weather bureau. We also received
orders for our first systems to China -- in both the
PVP and SMP line. Three Superserver systems are
now installed at Chinese universities. The PVP
mainline system will be installed at the Chinese
Weather service, assuming the export license is granted
as we expect.

Right now we have systems installed in 30 countries.



The orders break out by market sector to: 44 percent
government customers, 29 percent commercial and 27
percent with universities.

Our commercial and industrial customers continue to
use our systems to deliver solutions for their technical
and scientific computing needs. I expect this sector to
continue to grow and increase its overall percentage of
total orders.

Insofar as our product mix is concerned, 1993 was a
very good year. As you know we stepped up deliveries
of our C916 systems. We also announced the
availability of extended C90 family ranging in size
from two to 16 processors. This range of availability
helps make the C90 product more flexible and
available to our customers in convenient
configurations. Convenient in size to fit your mission
and, hopefully, your budget.

The C90 continues to set the performance pace for our
customers. As you may know, more than 20 key
codes used by our customers run at sustained speeds
exceeding six gigaflops. Five of these 20 codes
reached speeds of more than 10 gigaflops each. And as
we speak, more performance records are being set.
These records are far more than bragging points. They
are the ultimate measures of getting real work done on
real problems. That will remain a corporate priority
for all our systems.

In the MPP arena, we had a very good launch for the
T3D system in September. On announcement day we
figure we captured third place in the MPP market and
expect to be the number one supplier by the end of
this year.

By year-end we had 15 orders in hand. Iam
particularly pleased to note that this week we are able
to announce our first commercial and first petroleum.
customer for the T3D -- Exxon Corporation. It was
particularly gratifying to read their news release in
which they described the T3D as a critical tool to their
growth strategies because it is the first production
quality MPP system in the market. As1I said with the
C90 line, that means Exxon will be doing real work
on real problems day in and day out on the T3D.

We're also announcing this week some significant
benchmark results for the T3D on the NAS parallel
benchmark suite. Now I know that there has been a
rush to claim moral or technical victory by any
number of MPP companies using NAS results and I
promise not to enter into that debate. ButI do want to
bring two points to your attention.

First point has little to do with MPP benchmarks.
Rather, it has to do with the results they are compared

to. The 256-processor system is the first of the MPP
crowd to approach the C916's performance on any of
the NAS parallel benchmarks beyond the
Embarrassingly Parallel test. So the C916, the
workhorse of the supercomputing field continues to be
the performance leader on these benchmarks. But at
256 processors the T3D is starting to give the C916 a
run for its money on highly parallel computing, and
since the T3D is showing near-linear scalability we're
confident it will widen its performance and scalability
leadership as we move to 512-processors and larger
configurations. We're also glad it took another system
from Cray to approach the C916's performance.

Second point is to note that these results arrived just
six months after the T3D was introduced. We all
know that we were late to the MPP party. But I think
it is even more important to note what is being
accomplished following our arrival. Some of our
competitors have had two years or more to improve
their performance against the C916. I can only
assume that they have not announced their complete
256 results to date because they can't efficiently scale
up that far.

The strength of the T3D -- and those systems to
follow -- reflects the input received from many of you
here. This system stands as an example of what can
be accomplished when we listen to our customers.

The strength of the T3D will be enhanced by another
program that had an excellent year -- the Parallel
Applications Technology Partners program, or PATP.
When MPP performance shows steady, consistent
improvement in a wide range of applications, it will
be in part due to the efforts underway between Cray
and its PATP partners, PSC, EPFL, JPL and Los
Alamos and Livermore labs. Great things are coming
from these collaborations.

The third sibling of the Cray architecture family is our
Superservers operation, based in Beaverton, Oregon.
They also delivered a beautiful, bouncing and robust
baby in 1993 -- the CS6400. The CS6400 is a binary
compatible extension of the Sun product line. It
serves as a high performance server for networks of
workstations and smaller servers running the huge
range of Sun applications. Any program that runs on
a Sun system will run on the CS6400 without
modification and the current product is Solaris 2.3
compatible.

We expect this newest arrival to create opportunities
for us in markets where we have not traditionally had a
presence. They include mainstream commercial
applications in financial services, banking,
telecommunications, government data processing
applications, et cetera. It is proving to be an excellent



alternative to a mainframe in the so-called
"rightsizing" market. It is also important to note that
the CS6400 is an excellent alternative to small-
configuration MPP systems for both the commercial

- and scientific and technical markets.

Introduction of the Superserver subsidiary brings me to
an important point and sets the stage to discuss our
strategic direction. First the important point: Cray
Research is focused on its mission of providing the
highest performing systems to its customers. We are
not architecture constrained. In fact, we are the only
firm that can provide top-performing systems in all
three major architectures -- Parallel Vector; Massively
Parallel and Symmetric Multiprocessing.

You and your colleagues want solutions. We want to
help you get them. It matters little to us whether your
ideal solution comes from one specific architecture or

another. What matters is that Cray Research continue
as a technical partner in finding the solutions.

‘We don't have to -- nor do we want to -- make two
sales every time we talk with you. We don't have to
sell you on one architecture or another and then, next
sell you on our product over a competitor's. We
remain focused on helping deliver the highest
performance possible in each architecture. We are
certain that if we continue to stick to our knitting with
that focus, we will be successful as you become
successful with our systems.

Now I want to tie this together to our strategic plan.
Our plan is simple. We have to grow in order to
accomplish the things that are important to you and to
us.

If we want to remain at the head of the performance
class, we must continue to invest huge sums each year
" in R&D. Those sums are only available if we
continue to grow revenues, earnings, margins and
backlogs. We wouldn't have to change anything in our
strategy if the technical and scientific market was
growing, say 30 to 40 percent as it did in the 1970s.
But the reality is that the market is flat and, depending
on how you measure it, has been for four consecutive
years.

At the same time, we don't want to change who we
are. We are a technology driven company. We will
always be a technology driven company committed to
achieving the highest performance possible at the best
price.

So, while our focus can't change, our tactics can. As
we maintain our marketshare leadership at a relatively
flat level in the scientific market -- for now, at least --
we see that a growing need for efficient, price/effective

systems to solve big problems in other markets.
Commercial entities of all sizes and shapes are
recognizing that they have done a great jobin
accumulating huge data bases, but are limited in how
well they can manipulate or mine these data bases to
their advantage.

Some businesses have said they forgot the second part
of the equation -- "what are we going to do with all
this information and how, pray tell, are we going to
use it to grow our businesses?"

Here's where we believe Cray Research can help.

We believe that our technologies can help. Across all
three of the important high performance architectures
our products are distinguished by their technical
balance. Balance that unlocks the problem-solving
potential of increasingly fast microprocessors --
regardless of the architecture in which they are
embedded.

'We combine fast processors with high-performance
memory and I/O subsystems and robust, proven
software to deliver unsurpassed balance right to your
desktop. That won't change. But we may be able to
add new applications in other parts of a commercial
enterprise.

We plan to use this unique strength to grow our
volume and market reach. Instead of finding a Cray
system at the R&D center only, I can picture one
being used by the marketing or finance functions as
well.

Just this last year we've seen new customers emerge
from non-traditional fields. Like Wall Street, I expect
to see more and more utilization at new locations.

In doing so, much like the early successes of the
superserver product, we'll probably draw some
attention. Some of our nervous competitors will
whisper that we've "lost focus" as we compete for and
win commercial business. Quite the contrary, I
believe our move to add customers in non-traditional
supercomputing areas is an example of our unique
focus. We see this approach as the best way to ensure
that we don't blink when we face the future. We
remain committed to the top of the performance
pyramid. We remain focused on the need to invest at
least 15 percent of our revenues in to R&D so we can
move our performance up the scale to match your
demands. And we remain focused on the importance of
long-term, cooperative relationships with our
customers. And that may be the best single
investment we've ever made.

Thank you again for inviting me today.



Cray Research Corporate Report

Robert H. Ewald

Cray Research, Inc.
900 Lowater Road

Chippewa Falls, WI 54729

ABSTRACT

This paper provides an overview of Cray Research’s business in 1993, an update on progress

in 1994, and a vision of Cray in the future,

1 1993 Results

1993 proved to be a very good year for Cray Research,
Inc. We achieved our 1993 plan by delivering a broad
mix of high performance systems and software, and
achieved a return to solid profitability. 1993 was also a
year of substantial change for Cray Research, but before
describing the changes, I will review some terminology.
The “Supercomputer Operations” business unit is
focused on high performance, cost effective computa-
tional tools for solving the world’s most challenging
scientific and industrial problems and produces our par-
allel vector and highly-parallel products.

In this technical computing world we have defined three
segments that encompass different customer character-
istics. The “Power” segment can be recognized as those
with “grand” challenge problems. These customers are
typically from the government and university sector and
require the highest performance solutions of scientific
and engineering problems. Most of the applications are
mathematically-oriented and are created by the cus-
tomer. This segment typically invests more than $10
million in computer products. The “Endurance” seg-
ment can be characterized as customers with production
problems to be solved. There are a combination of
industrial, government, and academic customers each
solving high performance production engineering, sci-
entific, and data-oriented problems. In this segment,

Copyright © 1994. Cray Research Inc. All rights reserved.

applications are frequently from third party providers.
Price/Performance is of major concem for these prod-
ucts, ranging from about $3 million to $10 million. The
“Agile” market segment is comprised of industrial, gov-
emment, and academic customers with engineering, sci-
entific, and data-oriented problems. The applications
are generally third party and their price/performance is
of paramount importance for the production capability.
The hardware investment here is less than $3 million.

The “Superserver” business unit addresses applications
that require rapid manipulation and analysis of large
amounts of data in a networked production environ-
ment, and produces products based on Sun Microsys-
tem’s SPARC architecture. Many of the applications
are at non-traditional Cray customers in the business or
commercial segment.

As shown in Figure 1, we are changing our organization
to reflect these concepts. Les Davis and I share the
office of Chief Operating Officer and we have two
major business units: Supercomputer Operations and
Superserver Operations. Changes within the organiza-
tion since the last CUG meeting include:

- Gary Ball, Vice President of Government Marketing
and General Manager of “Power” Systems - in addition
to his previous job, Gary is leading our efforts to con-
tinue to lead in the high-end of supercomputing.



- Rene Copeland, General Manager of “Endurance”
Systems - Rene is leading our efforts to ensure that we
provide products and services for the industrial, pro-
duction-oriented customers.

- Dan Hogberg, General Manager of “Agile” Systems -
Dan is leading our work with deskside and departmen-
tal systems.

- Dave Thompson, Vice President of Hardware
Research & Development - Dave has moved from the
Software Division to lead our hardware development
and engineering efforts. Dave is teamed with Tony
Vacca who also leads the Triton and other projects.

- Don Whiting, Sr. Vice President, Operations - we
have combined all product operational divisions (Inte-
grated Circuits, Printed Circuits, Manufacturing, and
Systems Test & Checkout) under Don to improve our
operational processes and efficiency.

- Larry Betterley, Vice President of Finance & Admin-
istration - Larry leads the operational Finance and
Administration groups within the business units.

The Superservers business unit remains the same, and
in addition, Paul Iwanchuk and Penny Quist are acting
leaders of new initiatives in Government Systems &
Technology and Data Intensive computing.

Figure 2 shows the progression of orders and the results
for 1993, indicating our best year ever for orders for our
larger products and a good base of orders for Agile and
Superserver products.

During 1993 we installed half of the systems shipped in
North and South America and one-third in Europe. As
shown in Figure 3, that brings the total installed base to
54 percent North and South America, 30 percent
Europe, and 11 percent Japan. We expect that more of
our future business will come from non-U.S. based cus-
tomers, so the U.S. percentage will continue to decline.

The Agile installs in 1993 were distributed 45 percent
to the Americas, 33 percent to Europe, and 14 percent
to Japan. This brings the total Agile installed base to 40
percent Americas, 33 percent Europe, and 19 percent
Japan, as shown in Figure 4. This again reflects the
increasing “internationalization” of our business.

Figure 5 shows the installed base at year-end 1993 by
industry. The most significant changes in the distribu-
tion that occurred during the year were increases in the
university, acrospace, and environmental segments,
and a decrease in the government research Iab business
reflecting changing government spending.

Figure 6 shows the distribution of the 500 systems
installed at customer sites. The Y-MP and EL products
are dominant with C-90s and T3Ds just beginning to
ramp up.

There were 38 new customers in the Supercomputer
business unit and 12 in the Superserver business unit.
We welcome all of you to the growing Cray family and
hope you will share with us your ideas for the future of
computing.

We ended 1993 with the strongest offering of products
we have ever fielded. We offer three architectures,
each with superior price/performance: parallel vector,
massively parallel, and symetric multiprocessing. The
parallel vector product line was expanded by extending
the Cray C-90 to configurations ranging from 2 to 16
processors. We began shipping the C-92, C-94, and
C-98 at mid-year. All the C-90 series systems feature
the newest, fastest memory technology available - four
megabit SRAM (static random access memory). We
also introduced the big memory machines - D-90 with
up to 4 billion words of memory.

Two new departmental supercomputers were intro-
duced - the EL92 and EL98. The EL92 is the com-
pany’s smallest, lowest-priced system to date with a
U.S. starting price of $125,000 and a footprint of about
four square feet. The Cray EL92 is designed to extend
Cray Research compatibility to office environments at
attractive prices. The ELL98 is available with two, four,
six, or eight processors, offering up to 512 million
words of central memory and providing a peak perfor-
mance of one gigaflops (billion floating point opera-
tions per second).

During 1993 we expanded our product offerings for the
scientific and technical market by introducing our first
massively parallel supercomputer - the Cray T3D. We
now have five installed and are expecting to install over
thirty this year. Reaching that target will make us the
leading MPP vendor in 1994.

In addition to these products, the CS6400, a
SPARC-based symmetric multiprocessing system, was
introduced with configurations ranging from 4 to 64
processors. This platform is for commercial data man-
agement applications as well as scientific and technical
users. We expect to install over 50 of these new
machines in 1994,

New announcements in software include the release of
Network Queing Environment (NQE) and our Fortran
compiler (CF90). Our new business entity “CraySoft”
was successfully initialized to provide Cray software
products and technologies to the non-Cray platforms.

2 1994 Plans

As we start 1994, we have set some aggressive goals for
ourselves that include:



- Continuing to have a strong financial foundation with
some growth over 1993.

- Continue to invest about 15 percent of revenue in
R&D to develop hardware and software products and
services.

- Continue with R&D work on all three product fami-
lies: parallel vector, MPP, symmetric multiprocessing.

- Continue to unify our UNICOS software base across
our PVP and MPP platforms.

- Continue to make more software available on work-
stations_and Servers.

- Improve the application availability, performance,
and price/performance on our systems.

- Continue our reliability improvements.

- Better understand the “cost of ownership” of our prod-
ucts and make improvements.

3 Strategic Summary

Cray Research is one of the world’s leading technology
companies. At the heart of our company are four core
technology competencies (Figure 7) which set us apart
from others, and upon which we will build our future:

1) Hardware and manufacturing technology to create
fast, balanced computers.

2) Applications and software that support production
computing.

3) The ability to solve problems in parallel.

4) Distributed computing skills that allow us to deliver
results directly to the user via a network.

We will focus on these four technology strengths to cre-
ate a set of products and services that help solve our
customers’ most challenging problems. We will lever-
age our technology to provide hardware products that
range from deskside systems to the world’s most pow-
erful computers as shown in Figure 8. Our software
products and services will enable us to deliver produc-
tion computing results to the user anytime, anywhere.
To enable this, some of our software and services will
be applied to other vendors systems - primarily work-
stations. Our CraySoft initiative addresses this market.

We will also expand our service offerings to better help
our customers solve their problems. We will develop
new distribution mechanisms in the form of service
products that enable us to package our hardware, soft-
ware, and application products as total solutions to our

customer’s problems. We will develop plans to enable
our customers to buy total computational services on
demand, in ways that are consistent with their needs
and their internal budget constraints (shown as Any-
time, Anywhere Solutions in Figure 9).

Spanning all of our systems is the key element that
allows the customer to buy and use our systems - the
application programs that solve the customer’s prob-
lem. We will port, adapt, optimize, create, or attract the
applications that the customers require. We will lead
the industry in converting applications to run in parallel
and deliver the performance inherent in parallel sys-
tems.

We also recognize that our core competencies, prod-
ucts, and services can be applied to problems which are
more “commercial” in nature. We will focus our super-
computing business on technically-based problems,
and will focus our Superserver business and some new
efforts on helping solve open system, performance-ori-
ented commercial problems. Typically, these commer-
cial problems will require the rapid manipulation and
analysis of large amounts of data in a networked, pro-
duction environment as businesses seek to better under-
stand their data and business processes and make better
decisions more rapidly. Within both technical and
commercial segments, we will also become more cus-
tomer driven.

We will also open a pipeline between our technology
and selected government customers with our govern-
ment systems and technology effort. As the govern-
ment customers require, we may:

1) Tailor existing products to better suit application
needs.

2) Perform custom R&D work.

3) License selected core technologies for new applica-
tions.

In the commercial markets, we will also tailor our prod-
ucts to meet a new set of problems - those that are more
“data intensive.” We will build our Superserver busi-
ness on top of Sun’s business. We will understand the
market requirements for extracting and creating new
information from databases for commercial, industrial,
and scientific applications. We will then apply our
technology and products to that marketplace, and con-
sider partnerships to strengthen our position, particu-
larly at the high-end of the commercial business.

Putting all of these pieces together yields a customer
driven, technology company as depicted in Figure 10.

4 References

[CRI93] Cray Research, Inc. Annual Report, Febru-
ary, 1994. Cray Research, Inc.
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CRI Software Report

Irene M. Qualters
Senior Vice President

Cray Research, Inc.
655F Lone Oak Drive
Eagan, Minnesota 55121

This paper describes the Cray Research Software Division plans and strategies for

1994 and beyond.

1 Introduction

Since the last CUG, CRI improved the software reliabil-
ity while increasing the installed base by 30%, improv-
ing performance, and increasing functionality. We also
changed our organization to create smaller groups,
allowing greater focus and agility. This paper covers
these topics as well as recent and planned product
releases for operating systems, storage systems, con-
nectivity, and programming environments.  The
progress by CraySoft is presented and product retire-
ments are noted. At the end of this paper, the status of
the recent CRAY T3D installations are highlighted.

2 Software Division Reorganization

Our two largest groups, UNICOS and Networking,
were reorganized into three new groups: Operating Sys-
tems, Networks, and Storage Systems. Dave Thompson
(the former UNICOS group leader) was promoted to
Vice President, Hardware R&D in Chippewa Falls.
Paul Rutherford is the leader for the new Storage Sys-
tems group. Wayne Roiger is the group leader for Net-
working. Kevin Matthews is acting as the group leader
for Operating Systems, until a permanent leader is cho-
sen. (See figure 1 for the updated organization chart.)

3 Reliability

From August 1993 through February 1994 the Software
Problem Report (SPR) backlog, incoming rate and fix
rates improved (see figure 2). The six-month rolling
software and system MTTI also improved over this
period (see figure 3). The box plot metric (figure 4)
confirmed this improvement, but shows stability is still
an issue at some sites. The dashed lines at the bottom of
the chart indicate sites with stability substantially below
the mean. The number of sites with low stability has
decreased considerably over this period, nevertheless in

1994 we will emphasize reliability improvements at
sites with low MTTTs.

) Operating Systems
4.1 UNICOS 8.0 Features (3/10/94)

UNICOS 8.0 was released on March 10, 1994, Its
themes include robustness and resiliency, performance,
security, standards, and new hardware. On March 9,
1994, UNICOS 8.0 received an official DoD
Orange/Red Book B1 MDIA rating. This culminates
four years of effort, making CRI the sole supercomputer
vendor evaluated as a network node. UNICOS 8.0
improves our compliance with standards with direct
FDDI connectivity and improved POSIX 1003.2
compatibility.

The new platforms supported include M90, C90, EL98,
EL92 (UNICOS support for T3D), J90, DA-60/62/301,
DD-301 and ND-12/14 disks, DD-5, RAID 10 disks for
EL, EMASS ER90 D2 and Datatower, 3490E tapes,
SSD-E 128i and FCA-1 channel adapter. UNICOS 8.0
will also be supported on CRAY X-MP systems (with
EMA support) and CRAY-2 systems.

4.2 Field Tests - UNICOS 8.0

Extensive field tests were completed. We ran six field
tests, installed four prereleases, and have nine additional
installs in progress. We tested the widest variance of
platforms to date: CRAY X-MP, CRAY Y-MP, CRAY
C90, and CRAY Y-MP/EL platforms. We included a
production tape site—with excellent results. Stability
improved, compared to 7.0; the SPR count was reduced
and the severity of SPRs declined.

UNICOS 8.0 multithreading performance measure-
ments at NASA/Ames showed a 60% reduction in sys-
tem overhead, compared with UNICOS 7.0.

4.3 UNICOS 9.0 (3Q95)

UNICOS 9.0 will support Triton and IOS-F hardware. It
will support additional standards: X/Open XPG4 brand-



ing, ATM, and ONC+ (NFS V3). It will improve the
heterogeneous computing capabilities with the Shared
File System (SFS) and UNICOS MAX.

A major theme for UNICOS 9.0 is Reliability, Avail-
ability, and Serviceability (RAS). Specific RAS fea-
tures are UNICOS under UNICOS and checkpointing
tapes.

UNICOS 9.0 potentially will support additional periph-
erals: Escon/FCA-2, Redwood Autoloader, and IBM
NTP.

44 UNICOS MAX Releases

UNICOS MAX 1.1 will be released in 2Q94. It
includes improvements in resiliency and interactive
scheduling. It supports the CRAFT programming
model.

UNICOS MAX 1.2 is planned to be released in 4Q94.
It will support phase-1I IO and job rolling (coarse-grain
timesharing). Phase-II I/O adds HISP channels that act
as direct data channels between IOCs and the MPP.
The control remains on the host and the IOCs maintain
physical HISP/LOSP connections to the host. This
generally increases the number of I/O gateways that can
function in parallel.

UNICOS MAX 1.3 is planned to be released in 2Q95,
with support for phase-III I/0. Phase-III I/O allows
IOCs to attach to the MPP, without physical connec-
tions to the host. Control remains on the host; the host
controls the remote IOCs through virtual channels that
pass through the MPP. This allows the number of IOCs
to exceed the number that will physically connect to the
host.

5 Storage Systems

Several new file systems will be available in 1994 and
1995. All of these features are unbundled and must be
ordered separately. The DCE/DFS (Distributed File
System) will be released for UNICOS 8.0 in 3Q94.
ONC+/NFS3 will be available with UNICOS 9.0. The
Shared File System (SFS) will first be available in UNI-
COS 8.2 and then in UNICOS 9.0. SFS will support
multiple UNICOS hosts sharing ND disks.

Planned hierarchical storage management improve-
ments include DMF 2.2, UniTree, and FileServ sup-
port. With the introduction of DMF 2.3, we plan to
offer client/server for SFS. This means a DMF host
could act as a DMF server for systems that share the
SFS disks.

On Y-MP ELs we will offer the following peripheral
upgrades: SCSI disks (DD-5s), IPI disks (DD-5i),

Metrum tape library, and SCSI tape and disk controller
(SI-2).

6 Connectivity
6.1 ATM

ATM pilot tests will run from 2Q94 through 4Q94. The
ATM will be connected to CRAY Y-MP and CRAY
C90 hosts through Bussed Based Gateways (BBGs)
and with native connections on CRAY Y-MP EL sys-
tems. The BBGs will support OC3 and OC12 (622
Mb/s). The native CRAY Y-MP EL connections will
support OC3 (155 Mb/s).

Software support for ATM will be in UNICOS 9.0.
Long term plans are to prototype OC48 (2.6 Gb/s) in
1995 on IOS-F and to prototype OC192 (8 Gb/s) in this
decade on IOS-F.

62  NOX

NQX helps NQS on UNICOS to interoperate with
NQE. When one adds NQX to NQS and FTA, the
result is the NQE capabilities on a UNICOS host. NQE
will replace RQS and Stations.

7 Cray Application
Programming Environment

7.1 Cray Programming Environment 1.0

The CF90 Programming Environment 1.0 was released
in December 1993. Cray Research was the first vendor
to release full native Fortran 90. Twenty-six CF90
licenses have been purchased.

On average, CF90 compiled code runs within 10% of
the speed of CF77 code. Some codes run faster, some
slower.

A SPARC version of CF90 will be available in 3Q94.

The CF77 6.1 Programming Environment for the
CRAY T3D will be released in 2Q94. Its main feature
is support for the CRAFT programming environment.

The C++ Programming Environment 1.0 for the CRAY
T3D is will also be released in 2Q94. With this release,
the MathPack.h++ Tools.h++ class libraries will be
available. These libraries are unbundled and must be
purchased separately.

7.2 Programming Environment 2.0

The CF90 Programming Environment 2.0 for all plat-
forms (PVP, MPP, and SPARC) will be released in
2Q95. A goal we expect to meet for CF90 2.0 is to
exceed the performance of CF77.

The C++/C Programming Environment 2.0 for PVP
and MPP platforms will be released 2Q95. Note: the

15
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C++/CProgramming Environment 2.0 is intended to
replace the Cray Standard C Programming Environ-
ment 1.0 and the C++ Programming Environment 1.0,
C++/C is both an ANSI Standard C compiler and a C++
compiler.

7.3 Distributed Programming Environments

The Distributed Programming Environment (DPE) 1.0
is scheduled for release in 3Q94 with support for the
SunOS and Solaris platforms. It includes the front-end
for CF90 that allows test compiles on the workstation
and dpe_f90, which performs remote compiles on the
host. It provides ATExpert and Xbrowse locally on the
workstation linked through ToolTalk to the host.

DPE 2.0 is planned to be released in 2Q95 for the
Solaris platform. It will add a full CF90 2.0 cross com-
piler and native Cray TotalView support through
ToolTalk. With DPE 2.0, the compiler will produce
host object code on the workstation and the dpe_{90
command will upload the data to the host and link it on
the host with transparent remote commands.

8 CraySoft™

CraySoft released its first product in December 1993;
NQE for Solaris. This included NQS, a load balancer,
queuing clients, and the File Transfer Agent (FTA.)

In 3Q94, CraySoft plans to release NQE 1.1 for multi-
ple vendors including workstations and servers from
IBM, SGI, HP, Sun and Cray Research.

Also in 3Q94, CraySoft plans to release DPE 1.0 for
Solaris. (See the Distributed Programming Environ-
ments section above.)

In addition, in 3Q94, CraySoft plans to release CF90
1.0 for Solaris.

9 Product Retirement

Ada and Pascal will be placed in maintenance mode one
year from now. The last feature development for these
products is complete. They will be supported on
CRAY Y-MP, CRAY MY0, and CRAY C90 platforms
through UNICOS 9.0. They will not be offered on new
hardware, such as the CRAY J90 series.

CrayDoc will replace DocView; DocView will be
placed in maintenance mode one year from now.
The final OS platform on which DocView will be sup-
ported is UNICOS 9.0. CrayDoc will be available with
UNICOS 8.0.3

10 CRAY T3D Product Status

Six sites have installed CRAY T3D systems, and we
have received fifteen additional orders. The user base
is diverse, including industry, government, and univer-
sity customers. The hardware in the field has been
highly reliable. The software is stable and maturing.
The I/0 is performing as expected: over 100 MB/s on
one I0G to SSD and over 350 MB/s on four I0Gs to
SSD.

The CRAY T3D system is the only MPP that has run all
eight of the NAS Parallel Benchmarks on 256 proces-
sors. All other vendors have been unable to scale all
eight benchmarks to this level of parallelism. The
CRAY (916 system runs all but one of the benchmarks
faster than a 256 processor CRAY T3D system, but the
CRAY T3D system is approaching the CRAY C916
performance on many of these benchmarks and is
expected to exceed the CRAY C916 performance when
scaled to 512 processors. The scaling has been excel-
lent; the performance on 256 processors was almost
double that of 128 processors (see figure 5).

The CRAY T3D system is proving to be an excellent
graphics rendering engine. Microprocessors excel at
this task, compared with vector processors. The 256
processor CRAY T3D system runs a ray-tracing appli-
cation 7.8 times faster than a CRAY C916 system.

The heterogeneous nature of the CRAY T3D system is
proving to be an advantage for some codes. The
SUPERMOLECULE code is a good example. It con-
tains a mixture of serial and parallel code. Running the
serial code on a fast CRAY Y-MP processor substan-
tially improves the scalability. If all the code, including
the serial portion, is run on the MPP, the code runs only
1.3 times faster on 256 processors than on 64 proces-
sors. When the serial portion of the code is run on a
CRAY Y-MP CPU, the program runs 3.3 times faster
on 256 processors than on 64 processors (see figure 6).

11 Summary

Cray Research remains committed to an Open Super-
computing strategy.

We build our systems using standards, such as POSIX,
System V, Solaris, X/Open, ANSI, and COSE. We
concentrate on performance such as scalable parallel
processing and automatic parallelizing compilers. We
excel in resource management such as comprehensive
accounting and NQS production batch facilities. We



have the most comprehensive UNIX security on a
major computing platform, including “Trusted UNI-
COS”, with an official Orange/Red book B1 MDIA rat-
ing. ‘These seccurity features are very useful for
commercial sites,

We are constantly improving our data accessibility with
features such as ONC+/NFS3, DCE/DFS, hierarchical
storage management (DMF, UniTree, FileServ), FDDI,
HiPP], and ATM. Finally, we will continue improve-
ments in providing a cohesive environment, including
COSE (CDE), the CraySoft Network Queueing Envi-
ronment, Fortran 90, and technology agreements with
workstation vendors such as Sun Microsystems, Inc.

We will continue our investments in Open Supercom-
puting to constantly improve methods for bringing
supercomputing to the desktop.

12 Appendix:
Explanation of Box Plots
(Figure 4)

12.1  Comparing Estimated Software
and System Time Between Failures

Figure 4 compares the distributions of customer Soft-
ware and System MTTI estimates. The solid line repre-
sents the median customer Software MTTI, and the
dotted line represents the median customer System
MTTI. The boxplots allow us to see how these distri-
butions change over time. The graph compares the
MTTI distributions for Software and Systems for of all
customer machines.

122 Boxplots

Boxplots are often used to give an idea of how a popu-
lation or sample is distributed, where it is centered,
how spread out it is, and whether there are outliers.
The box itself contains the middle 50% of the data.
The line in the middle represents the median. The
whiskers extend outward to cover all non-outlier data.
Outliers are plotted as small dashes. An outlier is a
point that “lies out” away from the main body of the

group.

The median is a “measure of location.” That means it
is a nice metric for telling “where we are.” (Where we
are centered.) The boxes help show us how spread out
we are.

While boxplots do not display everything there is to
know about a data set, they are quite useful in allowing
us to compare one data set to another. By lining box-
plots up side by side we can often tell whether two or
more data sets are located around the same central

value, or whether they have the same amount of
spread.

We use log paper in the Y axis, since otherwise we
would not be able to observe what is happening in the
lower quartile, and this is probably where we would
like to focus our attention.

123 Where does the Data Come From?

For each site a list was obtained from the IR database
of times when Software or System crashes occurred.
From this information we were able to estimate the
MTTI for each site at any moment in time. In each
graph the most recent month is not included. (We
expect data that will be reported late to bring the lower
part of the last month’s box down.) For more informa-
tion please feel free to contact David Adams by email
(dadams @cray.com) or phone (612) 683-5332.

124 Analysis

All of the medians seem to be fairly stable. (They are
not moving up or down significantly.) The shaded
notch in the middle of each box is a 95% confidence
interval on the median for the box. If any two boxes
have shaded notches that do not overlap horizontally,
then those boxes have significantly different medians in
the statistical sense.
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Unparalleled Horizons: Computing in
Heterogeneous Environments

Reagan W. Moore

San Diego Supercomputer Center
San Diego, California

Abstract

The effective use of scalable parallel
processors requires the development
of heterogeneous hardware and
software systems. In this article, the
Intel Paragon is used to illustrate
how heterogeneous systems can
support interactive, batch, and
dedicated wusage of a parallel
supercomputer. Heterogeneity can
also be exploited to optimize
execution of task decomposable
applications.  Conditions for super-
linear speedup of applications are
derived that can be achieved over
both loosely and tightly coupled
architectures.

Introduction

Scalable heterogeneous parallel
architectures are a strong contender
for future Teraflop supercomputers.
From the systems perspective,
heterogeneous architectures are
needed to support the wide range of
user requirements for interactive
execution of programming tools, for
production execution of parallel
codes, and for support for fast disk
I/0. From the application
perspective, heterogeneity can also
lead to more efficient execution of
programs. On heterogeneous
systems, applications can be
decomposed into tasks that are
executed on the appropriate
hardware and software systems. For

a certain class of applications,
superlinear speedups can be
achieved. The execution rate of the
application can be increased by a
factor greater than the number of
decomposed tasks.

To demonstrate the viability of
heterogeneous parallel
architectures, a comparison will be
presented between the job mixes
supported on the Cray C90 and the
Intel Paragon XP/S-30 at the San
Diego Supercomputer Center. The
observed C90 workload cannot be

efficiently executed on a
homogeneous massively parallel
computer. The heterogenous

hardware and software systems on
the Paragon, however, do provide
support for a job mix similar to that
of the C90. The operating system
software that controls the
heterogeneous resources on the
Paragon will be described.
Conditions for achieving
superlinear speedup will be derived
that are valid for both tightly
coupled architectures such as the
C90/T3D, and for loosely coupled
architectures such as a Paragon and
C90 linked by a high-speed network.

Heterogeneity in  Application
Resource Requirements
The Cray C90 supercomputer

supports a job mix with widely
varying application resource
requirements. In addition, the
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resource demands can  vary
significantly between the CPU time,
memory size, and disk space required
by a job. Jobs that need a large
fraction, from one-quarter to one-
half, of any of these resources are
"boulders" that can dramatically
affect the performance of the C90.
Examples of these types of resource
demands are support for fast turn-
around for interactive job
development, execution of large
memory production jobs, and
execution of jobs requiring large
amounts of disk space. "Boulders"
constitute the dominant need for
support for heterogeneity on the
C90.

At SDSC, "boulders" are controlled

scheduler [1-3]. The scheduler
automatically packs jobs in the C90
memory while satisfying scheduling
policy constraints. The turn-around
time of particular classes of jobs is
enhanced while maintaining high
system utilization. The limiting
resource that is controlled on the C90
is memory. Enough jobs are kept in
memory to ensure that no idle time
occurs because of I/O wait time.

Job mix statistics for the C90 and the
Paragon for the month of January,
1994 are given in Table 1. The C90 at
SDSC has 8 CPUs, 128 MWords of
memory, and 189 GWords of disk
space.

through a dynamic job mix
Table 1
Interactive and batch workload characteristics for the C90 and the Paragon for
the month of January, 1994
C90 Paragon
Number of Interactive jobs 101,561 4,731
Number of Batch jobs 8,279 1,111
CPU time interactive (processor-hrs) 410 13,409
CPU time batch (processor-hrs) 3,595 145,860
Average batch CPU time (processor-hrs) 0.43 131

There are several noteworthy items
about the job mix on the C90. Users
rely on the C90 to support
interactive job development. These
jobs constitute over 90% of the jobs,
but use less than 10% of the CPU
time. Thus the dominant use of the
C90 by number of jobs is for fast
interactive support of researcher
development efforts. The dominant
use by execution time is for deferred
execution of batch jobs. Even for
jobs submitted to the batch queues,
typically half of the runs are for
short execution times of less than
five minutes. Excluding these short
execution time batch jobs, the long-
running batch jobs execute for
about one hour.

Typical types of support needed for
job development on the C90 are
shown in Table 2.

On the C90, these development
support functions are run in
competition with the batch
production jobs. Although they
comprise a small fraction of the total
CPU time, their need for fast turn-
around times does impose a heavy
load on the operating system. On a
heterogeneous architecture, these
functions could be executed on a
separate set of resources. Another
characteristic of the development
tasks is their need for a
comprehensive set of UNIX system
calls. Excluding file I/0
manipulation, most production batch



jobs use a relatively small fraction of complete set provided for

the UNIX system call set. A development tasks may also allow
heterogeneous system that provides optimization of use of system
minimal UNIX system call resources.

functionality for batch jobs, with a

Table 2
Development Functionality Used on Vector Supercomputers
Function Percent Wall-clock time
Archival storage 1.08%
Compilation 1.05%
Shell commands 0.73%
Accounting 0.57%
Editing 0.45%
Resource Management 0.17%
Heterogeneous Parallel (denoted by S for service), 9 MIO
Computers nodes to support RAID disk arrays

(denoted by M), a HIPPI node to
The Intel Paragon in use at SDSC is a support access to the 800
heterogeneous system. It is shown Mbit/second HIPPI backbone at SDSC

schematically in Figure 1. The (denoted by H), an Ethernet node for
different node types include 400 interactive access to the Paragon
compute nodes with varying (denoted by E), and a boot node
amounts of memory (denoted by a (denoted by B). The positions labeled
circle), S5 nodes to support with an asterisk are open slots in the
interactive job development system.

Figure 1

Node Organization for the Paragon
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On the Paragon, traditional UNIX
interactive development tasks are
executed on the service nodes, while
parallel compute jobs are executed
on the 400 compute nodes. Note that

in  Table 2, the two dominant

development efforts in terms of CPU
time are archiving of data and
compilation of codes. At SDSC, these
functions are migrated off of the
Service nodes onto compute nodes
for execution in parallel.  Parallel
MAKE jobs are typically executed on
4 compute nodes on the Paragon.
The compute nodes to the right of
the solid vertical line in Figure 1
have 32 MBytes of memory, while
the remaining compute nodes have
16 MBytes of memory. The nodes to
the left of the dashed vertical line
are reserved for interactive
execution of parallel compute jobs;
the other nodes are controlled by the
batch system.

The statistics presented in Table 1
indicate that this heterogeneous
system supports a workload whose
characteristics are similar to that of
the C90. The number of interactive
jobs on the Paragon only includes
those jobs explicitly run in the
interactive  compute  partition.
Adding the traditional UNIX tasks
executed on the service nodes would
significantly increase this number.
As on the C90, the amount of CPU
time used by batch jobs is over 90%
of the total time used. The number of
interactive jobs on the Paragon
exceeds the number of batch jobs by
over a factor of 4. Thus the Paragon
is supporting a large interactive job
mix with a concommittant need for
fast turn-around, in addition to a
production  workload that is
processed through batch. The
preferred number of nodes for the
batch jobs is 64. Thus the average
batch job execution time is about two
hours.

Up to 25 login sessions are
simultaneously supported on a single

service node on the Paragon. To
support more users, additional
service nodes are added to the
system. Similar scaling is used for
disk support, with a separate MIO
node used to control each 5§ GByte
RAID array. Adding more disk to the
Paragon is accomplished by adding
more MIO nodes.

Since batch compute jobs tend to
require a smaller subset of the UNIX
system call functionality, one
important feature of the Paragon is
the ability to run different
operating system  kernels on
different nodes. The Sandia National
Laboratory and the University of
New Mexico have developed a
"nanokernel” (called SUNMOS) that
is less than 256 kBytes in size that
supports high-speed message
passing between nodes. Bandwidths
as high as 160 MB/sec have been
reported for the SUNMOS operating
system [4]. The reduced size of the
operating system allows larger in-
core problems to be run.

Operating System Support for
Heterogeneous Systems

The Paragon architecture can
consist of nodes with both varying
hardware and software capabilities.
Hence a job mix scheduling system
must recognize different node types
and schedule jobs accordingly. At
SDSC, such a system is in production
use. Modifications have been made
to the NQS batch system to support
scheduling policies and packing of
jobs onto the 2-D mesh. Job packing
is done by a modified 2-D buddy
algorithm.  Scheduling is controlled
by organizing nodes into uniform
node sets, with assignment of lists of
node sets to each NQS queue. Jobs
submitted to a particular queue are
then scheduled to run on only those
nodes belonging to the node sets
associated with the queue. This
allows jobs to be scheduled to use
large memory nodes, or to use nodes



that are executing the SUNMOS
operating system. The scheduling
policy picks the highest priority job
for execution. If not enough nodes
are available, nodes may be held idle
until the job can fit on the mesh.

Superlinear Speedup

Heterogeneous systems can be used
to improve individual application
performance, as well as to support
productivity requirements. For
applications that can be decomposed
into multiple tasks, performance can
be increased by assigning each task
to hardware/software systems that
execute that task the quickest. An
example is assigning sequential set-
up tasks to nodes with very fast
execution rates, while assigning
highly parallel solution algorithms
to parallel systems. For problems
that iterate between job setup and
job solution, it is possible to pipeline
the calculations and do most of the
work in parallel. If the execution
rate of each task is sufficiently
faster on  different compute
platforms, a superlinear speedup can
be achieved. The solution time
obtained by  distributing the
application can be faster by a factor
larger than the number of tasks into
which the application is decomposed.

Simple algebraic equations can be
derived to illustrate this effect.
Consider two tasks, a sequential task,
1, and a highly parallel task, 2, that
are executed iteratively on two
compute platforms, a fast sequential
platform, A, and a fast parallel
platform, B. After the initial setup
for task 1, data is pipelined through
multiple interations until
convergence is reached. Thus on
average, task 1 and task 2 can
execute in parallel. The execution
time on platform A is given by

TA = TA1 + TA2

where TAl is the time to execute task

1 on platform A and TA2 is the time
to execute task 2 on platform A. With
similar definitions, the time for
execution on platform B is

TB = TB1 + TB2

Assume that task 1 executes faster on
platform A, and task 2 executes faster
on platform B. The execution time
for the application distributed
between the two platforms and
executing in parallel is the

maximum of TA1 and TB2.

The speedup, S, is the ratio of the
minimum of the stand alone
execution times on the two
platforms, divided by the execution
time on the distributed system. The

speedup is then given by
S = min (SA, SB)
SA = TA / max (TA1, TB2)

SB =TB / max (TA1, TB2)

Each execution time can be modeled
as the amount of work (N1 is the

number of operations for task 1)
divided by the execution rate of the

particular platform (RA1 is the

execution rate of task 1 on platform
A). Thus

TA1=N1/RA1
TB2 = N2 /RB2
The speedup can be calculated as a

scaled function of the relative

amount of work, h, of the two tasks,
where

h=N1/N2*RB2/RAl
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The maximum obtainable speedup
can then be shown to depend only
on the relative execution rates of the
two tasks on the two platforms. A
plot of the dependence of the
speedup versus the relative amount
of work between the two tasks is
shown in Figure 2 when the ratio

RA1/RB1 is greater than the ratio
RB2/RA2.

The maximum attainable speedup is
given by

S =1+ RB2/RA2.

When RB2 is greater than R A2, then
S > 2, and superlinear speedups are
achievable. Note that there can be a
substantial range in the relative load
balance over which superlinear
speedup is attainable. The speedup is
given by the lower peak and
corresponds to the slower running
task on platform A being processed
on platform B in the same amount of
time as the faster task on platform A.

The maximum speedup corresponds
to perfect load balancing, which
occurs when both of the distributed
tasks execute in the same amount of
time. Thus, the maximum speedup
occurs when

TA1=TB2

or

Summary

Scalable heterogeneous parallel
architectures are able to support the
heterogeneous workloads seen on
present vector supercomputers.
They achieve this by assigning
different types of work to different
hardware resources. On the
Paragon, the ability to schedule jobs
in an environment with nodes with
different amounts of memory and
even different operating systems is

necessary for handling
heterogeneous work loads. By
decomposing applications into
multiple tasks, it is possible to take
advantage of heterogeneous
architectures and achieve
superlinear speedups, with

applications decomposed into two
tasks executing over twice as fast as
the original.
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CRAY T3D Project Update

Steve Reinhardt
Cray Research, Inc.
655F Lone Oak Drive
Eagan, MN 55121 USA
spr@cray.com

This paper describes significant CRAY T3D project events which have
occurred since the last CUG meeting, emphasizing those events which
will effect how programmers or users will use the machine and the

performance they can expect.

1.0 Introduction’!

At the time of the last CUG meeting, in September, 1993,
in Kyoto, the first customer CRAY T3D system had been
shipped to the Pittsburgh Supercomputing Center. Hard-
ware was stable, software was growing out of its infancy,
and performance results were available beyond common
industry kernels. Currently the CRAY T3D system is ship-
ping in volume, and customers are using the CRAY T3D
successfully for production computing and MPP applica-
tion development. Topics covered in this paper include:
shipments, reliability, CRAY T3D hardware plans, soft-
ware plans, performance (kernel, I/0, and application),
and third-party application work.

2.0 Shipments

The CRAY T3D architecture spans system sizes from 32
to 2048 processing elements (PEs). As of March 1994, we
have shipped nine systems to customers, Those customers

1. The work described in this paper was supported in part by the
Advanced Research Projects Agency (ARPA) of the U.S. Gov-
emment under Agreement No. MDA972-92-H-0002 dated 21
January, 1992.

Copyright © 1994. Cray Research Inc. All rights reserved.

include governmental, industrial, and academic organiza-
tions. The industrial shipments include seismic and elec-
tronics customers. Machines reside in Europe, Japan, and
the United States. Shipments include all of the chassis
types which will be built: multi-chassis liquid-cooled
(MC), single-chassis liquid-cooled (SC), and multi-chassis
air-cooled (MCA). The largest customer system contains
256 PEs.

3.0 Reliability

CRI developed and delivered the CRAY T3D in 26
months, and some customers expressed concerns about the
reliability of a machine developed so quickly. Given the
small amount of total CRAY T3D experience we have, we
cannot call the data conclusive, but some trends are
already emerging. Overall the reliability of CRAY T3D
systems is growing quickly. We plan to end the year 1994
with an MTTI of 1 month.

Effect on Y-MP host. Many current CRI customers wish
to add an MPP component to their production system, but
are extremely attentive to any impact this may cause to
their existing CRAY Y-MP or CRAY Y-MP C90 produc-
tion workload. Because of these concerns, we designed the
CRAY T3D hardware and software to be isolated from the
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normal functions of the host, in order to minimize reliabil-
ity problems. In practice this has worked well. We have
had some early growing pains, which we believe are now
behind us. Even including these early growing pains, our
data shows that for every six interruptions caused by host
hardware and software, the CRAY T3D system has caused
one extra interruption.

CRAY T3D itself. In isolation, the reliability of the CRAY
T3D system has been about 1 week. The hardware MTTI
has been about 7 weeks. The software MTTI has been
about one week.

Many customers were concerned about the binary-only
release policy for CRAY T3D software because of the
potential for slow response to problems observed on site.
In practice, this has turned out not to be an issue. The OS
has a handful of different packages, each of which can
usually be upgraded separately. This allows us to deliver
tested changes quickly. The infrastructure (tools and pro-
cesses) is based on that being used by CRI compilers,
which have been binary-only for several years, and hence
is well proven.

4.0 Hardware Update

When we announced the CRAY T3D two memory sizes
were quoted, 16MB (2MW) and 64MB (8MW). Several of
the early systems were shipped with 16MB memories. We
have now shipped a 64MB memory system.

We plan to allow the follow-on system to the CRAY Y-
MP/EL to be a host to a CRAY T3D system during 1995.

5.0 Software Plans

The software for the early shipments enabled users to run
production jobs effectively and to develop further MPP
applications. Future software releases will provide better
performance, ease of use, and flexibility.

5.1 UNICOS MAX operating system

Release 1.1. (2Q94) Improvements to UNICOS MAX are.

being released in monthly updates. By the time of release
1.1, all OS support for the CRAFT programming model
will be in place. Resilience will be improved by the ability

to switch in the redundant hardware nodes more easily.
Scheduling will be improved by allowing small programs
to leap-frog in front of large programs which are waiting
for resources; large programs will wait only a finite time.

Release 1.2 (4Q94) I/O connectivity and performance will
be improved by the delivery of Phase II I/O, which allows
a “back-door” channel from a Model E I/O cluster to con-
nect directly to a CRAY T3D I/O gateway. This will espe-
cially improve the 1/0 picture for CRAY T3D customers
who have host systems with few processors. Machine
sharing will be improved by the implementation of rolling.
Rolling enables a running program to be suspended,
“rolled” out of its partition to secondary storage and all
resources freed, another program to be run in the partition,
and then finally for the original program to be rolled in and
resumed. With rolling, very large, long-running “hog” jobs
can co-exist with many small development programs.

Release 1.3 (1H95) The delivery of Phase III I/O will
increase the 1/O connectivity and performance again,
enabling Model E IOCs to be connected directly to the
CRAY T3D for both data and control, and thus allowing I/
O to scale with the size of the CRAY T3D and be less con-
trolled by the size of the host.

5.2 Compilers/Programming Environments

Release 1.1 (2Q94) The CRAFT programming model will
enable users to program the CRAY T3D as a global-
address-space machine, with data parallel and work-shar-
ing constructs. We expect that many applications can be
ported to the CRAY T3D more quickly with CRAFT than
with a message-passing decomposition. The 1.1 release
will allow C++ users to exploit the power of the CRAY
T3D system for their programs, with compilation and
debugging abilities and the class libraries most frequently
used for scientific computations. Access to multi-PE oper-
ation from C++ will be via the PVM message-passing

library.

3Q94 Users whose applications are dominated by opera-
tions that need only 32-bit data and operation will gain a
significant performance improvement from the release of a
signal processing option in Fortran in the third quarter of
1994. A subset of the Fortran 90 language and the mathe-
matical intrinsic functions, suitable for signal processing,
will be provided, along with visual tool support. Access to
multi-PE operation will be via PVM.
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4Q94 Users who do I/O which is spread across the mem-
ory of multiple processors will be able to do this more eas-
ily with the release of global I/0, which simplifies the task
of doing 1/0 on shared objects and synchronizing access to
files which are shared among PEs.

CF90 2.0 (1H95) The full Fortran 90 language will be
delivered to CRAY T3D users with release 2.0 of the CF90
programming environment. Access to multi-PE operation
will be via PVM. Implementation of the CRAFT model
within CF90 is being scheduled.

Users will see improving application performance
throughout this period as a consequence of further com-
piler and library optimizations. (See below under Kernel
performance.)

The CRAFT programming model will deliver, we believe,
an appropriate balance between the programmer’s ease of
use and the compiler’s ability to deliver high perfor-
mance.[Pase94] Many researchers believe that the HPF
language will deliver good portability. [HPF93] Each of
these languages is a global-address-space model for dis-
tributed memory computers. Widespread MPP applica-
tions development depends on the emergence of a standard
language. We believe that the implementation of each of
these languages will add to the body of knowledge about
languages of this type. We will expect that these efforts
will both contribute to the Fortran 95 standard committee,
and that is where we will expect to resolve any conflicts
between the two.

6.0 Performance

6.1 Livermore loops

The Livermore Fortran Kemels measure the performance
of a processor for certain common operations. Figure 1
displays the performance of the CRAY T3D single-PE and

Performance

compiler in September of 1993 in the front row and the
current performance in the back row.

Livermore Loops

6.2 I/O performance

For 2 MB transfers, the CRAY T3D system can sustain
across one HISP/LOSP channel pair more than100 MB/s
to a disk file system. When using 4 channel pairs in paral-
lel, 4MB transfers can sustain more than 350 MB/s to disk.

6.3 Seismic Application Performance

Three-dimensional pre-stack depth migration describes the
Grand Challenge of seismic computing. The application
requires a high computational rate, but especially a high I/
O rate. A CRAY Y-MP C90 implementation of this
method was one of the 1993 Gordon Bell Award winners.
The 3DPSDM program implements this technique for the
CRAY T3D in Fortran and message-passing with some
assembly code used [Wene93]. The absolute performance
of 64 CRAY T3D PEs is 42% of the performance of a
C90/16. The CRAY T3D is about 3.5 times more cost-

3D Prestack Migration Absolute Performance

100%

80%

60%

Relative Performance

20%

0%

C90 16 CPUs
Machine Size

T3D 64 PEs



Performance

effective for this application.
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The application scales very well on many PEs.
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6.4 Climate Modeling Application Performance

The Parallel Ocean Program (POP) performs climate mod-
eling calculations on scalable computers. [Duko093,
Duko094] The program is structured as an SPMD computa-
tion, with the overall domain being decomposed into a
block on each PE. Its basic structure is representative of
many problems which devolve to the solution of partial
different equations. On other MPPs, POP has spent more
than 25% of its time communicating; on the CRAY T3D it
spends less than 5% of its time communicating. POP run-

ning on 256 PEs of a CRAY T3D runs about 27% as fast
as it does on a C90/16.

Relative Performance

POP Absolute Performance

€90 16 CPUs T3D 256 PEs

The price-performance of the CRAY T3D is 88% of the
C90/16.

Relative Performance per Dollar

POP Performance Per Dollar

€0%
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0% —
CRAY C90 CRAY T3D

POP scales very well up to 256 PEs.

Relative Performance Per PE

POP Scaling on CRAY T3Ds

Number of PEs

31



32

6.5 Chemistry Application Performance

The SUPERMOLECULE program is a public domain
code whose structure and function is representative of
third-party chemistry applications. [Sarg93, Feye93] It
implements the Hartree-Fock method and is used to under-
stand the interaction of drug molecules. The absolute per-
formance of a 64-PE CRAY T3D is 45% of a C90/16.

SUPERMOLECULE Absolute Performance

100%
80%
60%
40%
20%

0%

Relative Performance

C90 16 CPUs

T3D 64 PEs

Machine Size

The price-performance of a CRAY T3D is almost four
times that of the C90.

SUPERMOLECULE Performance Per Dollar
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The scaling of SUPERMOLECULE, however, is not
good, and in fact the time to solution does not decrease

CRAY T3D Project Update

Performance

noticeably by using more than 64 processors. A matrix

SUPERMOLECULE Scaling
on CRAY T3Ds

120%,
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Relative Performance Per PE

Number of PEs

diagonalization step is being performed serially on the
CRAY T3D; Amdahl’s Law limits the speedups which are
possible. However, because of the close linkage between
the CRAY T3D and its parallel vector host, the serial por-
tion of the code can be executed on a single processor of
the host, and at much higher speed than a single processor
of the CRAY T3D. When that portion of the code is run on
a CRAY Y-MP processor, the program can use effectively
more PEs on the CRAY T3D side. In this way a large pro-

SUPERMOLECULE Heterogeneous
Performance

slowest run)

w

64 128 . 256

Relative Performance (1.0

gram can exploit the coupled system for faster time to
solution than either system could provide by itself.



Third-Party Application Work

7.0 Third-Party Application Work

The success of the CRI MPP project depends heavily on
the availability of third-party applications programs to
enable many users to ignore the complexity of a distrib-
uted memory computer and yet tap the very high perfor-
mance of the CRAY T3D system. CRI is working with
vendors of the following applications programs, with a
goal of having some of these applications available from
the vendor for the CRAY T3D system by the end of 1994.

CHARMm
Discover
Gaussian
X-PLOR
LS-DYNA3D
PAMCRASH
FIRE

FLO67
STAR-CD
DaVinci

Medici
TSuprem
DISCO
GEOVECTEUR
IMSL

NAG

Elegant Mathematics

chemistry

structural analysis
CFD

electronics

petroleum

mathematical libraries

8.0 Summary

The CRAY T3D computer system has been delivered to
customers working in several scientific disciplines, and is
enabling production MPP computing for those customers.
Development of new MPP applications on the CRAY T3D
system is fueling greater exploitation of the latent perfor-
mance of the system.
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1 Background

Early in 1993 it was decided that the Pittsburgh Supercom-
puting Center would acquire the first Cray T3D MPP super-
computer to be delivered to a customer site. Shortly after
that decision was made we began a project to implement a
number of widely used third-party packages on the new plat-
form with the goal that they be available for production use
by the time the hardware was made available to the PSC
user community.

The wide use of such packages on the Center’s Cray C90
(C916/512) led us to appreciate the importance of their avail-
ability. Approximately 30 to 40 percent of the cycles on the
C90 are delivered to users of applications packages. Pre-
viously acquired massively parallel supercomputers at the
Center had seen less widespread use than the vector super-
computers, probably because of the lack of such packages.
These other MPP’s were not underutilized but they were
used by a relatively smaller set of users, who had developed
their own codes.

In selecting the targets for the porting effort we took into
account: demand for the package on the C90; whether we
had a source license and the right to modify the program
and make the result available to users; and, whether message
passing parallel versions already existed which would give us
a headstart on a T3D version. Based on these criteria we
selecting the following packages:

* GAMESS

* Amber 4

* CHARMM
* MaxSegs

* Gaussian 92

In addition, later in the year we began evaluating FIDAP
and X-PLOR as additional candidates for porting.

Although we did not have access to T3D hardware until later
in the summer extensive porting began early in the year
by means of access to T3D emulators running at CRI and
shortly thereafter on PSC’s own C90. The emulator proved
to be an excellent tool for validating program syntax and

correctness of results. Its usefulness for program optimiza-
tion was limited in that performance data was restricted to
information about locality of memory references. Since sev-
eral programs worked correctly on the emulator before the
hardware became available we turned to the T3D simulator,
running on a Y-MP at CRI, as a means of testing perfor-
mance. Although the simulator was important in operating
system development it was not as useful as we had hoped
since for testing applications programs it ran too slowly to
permit realistic runs. The hardware became available shortly
after these attempts to use the simulator so this was not a
significant impediment to progress.

By the time of delivery of the 32 PE T3D to PSC in Au-
gust 1993 all of the five initially selected packages ran in
one version or another on the emulator. Some of them ran
“heterogeneously” between the C90 and the emulator and
some ran “standalone” within the emulator. Since Heteroge-
neous PVM was not available at that time, a PSC developed
communications package, DHSC (for Distributed High Speed
Communication), was used for communication between the
two platforms. Within a few weeks after delivery of the hard-
ware versions of all five packages were running either on the
T3D or distributed between the T3D and the C90. Again,
DHSC was used for the heterogeneous programs. There were
various problems with the run time system and with the
CF77 compiler (for instance, incorrect handling of dynamic
arrays) which prevented the programs from running imme-
diately on the hardware even though they had run on the
emulator. CRI was very responsive to the discovery of these
software problems and as a result of our efforts and support

from Cray personnel we were pleased with the progress we
had made.

We have recently begun to place more emphasis on perfor-
mance as opposed to establishing program correctness. As
the focus has moved to performance we have been getting
regular hardware upgrades. The latest occurred in early
March of the current year, and we now have 256 PE’s and
four I/O gateways on the T3D; an additional 256 PE’s are
scheduled to be installed in the early summer of 1994.

Before presenting the current status of several of the port-
ing projects we should comment on some general themes.
First, performance figures given below should be understood
in context. The CRAFT FORTRAN programming model
is not yet available to us. All parallel implementations have
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been done using explicit message passing. The compiler does
not yet produce fully optimized code nor have the applica-
tions themselves been fully reorganized to exploit the power
of the T3D at this time. The PE’s currently have 16 MB
of memory which has made it necessary to compensate in
ways which may adversely affect performance. For the het-
erogeneous programs, performance has been impacted by the
relatively slow speed of the C90 to T3D connection (the I/O
gateways); this is especially true for Heterogeneous PVM
but also for DHSC. The hardware is capable of 200 MB/sec
but we have realized process-to-process throughput of only
about 10 MB/sec. We expect this to improve substantially
as Heterogeneous PVM is expanded and improved.

2 CHARMM and the Molecular Dynamics

Kernel

CHARMM (Chemistry at HARvard Macromolecular Me-
chanics) is a widely used program to model and simulate
molecular systems using an empirical energy function. In
the 10 years since CHARMM was developed by Brooks [1]
and co-workers, a great deal of work has gone into develop-
ing optimized versions for a large number of computer sys-
tems including vector [2] and parallel [3], [4], [5] machines.
Because of its heavy usage at PSC and the nature of the al-
gorithms used by CHARMM we felt that it was an excellent
candidate for porting to the T3D.

The principal focus of most CHARMMS-based research done
by PSC users is simulating poly-peptides and proteins in an
aqueous environment. As a starting point we developed a
specialized version of CHARMM for this problem and are
currently running production calculations while we explore
algorithms and methods for developing a full-featured ver-
sion of CHARMM. This initial port extends ideas in hetero-
geneous computing previously explored at the PSC [6] using
a Cray Y-MP and a Thinking Machines Corporation CM-2
and CM-5. This heterogeneous computing approach cou-
ples a highly-optimized code to simulate molecular solvents
[7] over a high-speed channel using either DHSC routines or
network PVM (8].

In previous computational experiments in distributed com-
puting we were able observe good performance in small
demonstration calculations. But in scaling these calcula-
tions up for production we faced a large number of technical
problems, including those related to data format conversion.
With the arrival of the T3D and its pairing with the C90,
we had a heterogeneous computing system from a single ven-
dor and were hopeful that these issues could be resolved. At
present, many of those issues have been resolved and we are
currently running production calculations. For a wide range
of benchmark problems we currently see speedups of 2 to 3
in run time using a single C90 CPU and 32 T3D PE’s over
the same calculation done on a single C90 CPU alone.
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3 GAMESS

GAMESS (General Atomic and Molecular Electronic Struc-
ture System) [9] [10] is a quantum chemistry code currently
being developed at Iowa State University. It is written in
standard Fortran 77 and runs on a variety of platforms. The
program exhibits poor performance on Cray vector hardware.
However, as distributed by the author, it provides support for
message-passing parallelism. This is accomplished through
calls to the TCGMSG message passing library [11]. Because
most computation is done in parallel regions and these re-
gions are scattered through the code, GAMESS is better
suited to a standalone T3D implementation than it is to the
heterogeneous C90/T3D platform.

Because PVM is the natural message-passing mechanism on
the Cray T3D, the TCGMSG library was replaced by a set
of wrappers to call the appropriate PVM routines. The code
would not run under the T3D emulator, so it was necessary
to do development work on the PSC workstation cluster.
Once the T3D hardware arrived and the software stabilized,
GAMESS ran. However, because of current memory limita-
tions on the T3D, it is limited to direct (in memory) calcu-
lations with about 200 basis functions. This is marginally
enough to handle interesting problems.

GAMESS running on the T3D scales well with the number of
processors. Communications accounts for about two percent
of the total time and load balancing is at the five-percent
level. On a 110 basis-function direct SCF gradient calcula-
tion with 32 PEs, the two-electron gradient routine is over
99.5% parallel and the overall efficiency is just over 50%. Di-
rect calculations run in about the same time on four PEs on
the T3D as on one processor of a C90.

4 Amber 4

Amber 4[12] is a suite of programs designed for molecular
modeling and simulations. It is a robust package promi-
nent in the toolkits of computational chemistry and biology
researchers, and it methods, tailored to the study of macro-
molecules in solution, have found widespread applicability in
modeling complex biochemical processes and in the pharma-
ceuticals industry. Amber’s genesis was in the application
of classical mechanics (i.e. integration of Newton’s equa-
tions of motion) to large molecular assemblies using fitted
potentials to determine low-energy conformations, model bi-
ological processes, obtain bulk properties, etc. New versions
of Amber have since introduced capabilities to treat nuclear
magnetic resonance data, support free energy perturbation
calculations, and otherwise implement the functionality re-
quired by its research audience.

The Amber 4 package consists of sixteen individual pro-
grams, loosely categorized as preparatory programs (prep,
link, edit, and parm), energy programs (minmd, gibbs,
sander, nmode), and utility programs (anal, mdanal,
nmanal, Imanal, nucgen, pdbgen, geom, and a set of tutorial



shell scripts). The preparatory programs address the con-
struction of Amber 4 input. They generally consume a small
amount of computational resources and are run a small num-
ber of times as the first step of any given calculation. The
energy programs perform the real work of minimizing struc-
tures and propagating trajectories through time. Computa-
tionally they are the most demanding programs in the Am-
ber 4 system, and they are often run multiple times to model
different environments and initial conditions. The four en-
ergy programs together, including library routines shared be-
tween them, comprise only 53% of Amber 4 package’s source
code. The utility programs analyze configurations, compute
various properties from the system’s normal modes, and in-
teract with Brookhaven Protein Data Bank([13, 14] (PDB)
files. As with the preparatory programs, the utility programs
consume an relatively insignificant portion of computational
resources when compared with the energy programs.

4.1 Parallel implementations

The clear association of heavy CPU requirements with the
energy programs suggests them as ideal candidates for im-
plementation on distributed and parallel computers. Dis-
tributing even moderate-sized programs such as these can
be laborious, so the PSC was fortunate to receive distributed
versions of minmd and gibbs based on PVM([8] from Professor
Terry P. Lybrand and his research group at the University
of Washington. (Work is also underway at the University of
Washington on sander.)

The PSC’s initial choice for conversion to the Cray T3D
was minmd because its relevance to computational chemistry
and biology, the number of CPU cycles it consumes, its size,
and the time frame in which the PVM version was obtained.
Minmd performs minimization, in which the atoms’ positions
are iteratively refined to minimize the energy gradient, and
molecular dynamics, in which the atoms’ coordinates are in-
tegrated in time according to Newton’s equations of motion.
Typical system sizes in contemporary research range from on
the order of 102 to upwards of 10° atoms. Realistic simula-
tions can entail up to on the order of 10° integration time
steps, rendering the integration phase of the simulation dom-
inant and also daunting.

Lybrand’s PVM-based version of minmd, subsequently re-
ferred to as the distribuied implementation, embodies a
host/node model to partition a simulation across a networked
group of workstations. One process, designated as the host,
spawns a specified number of node processes to compute non-
bonded interactions. All other aspects of the calculation are
performed on the host, which efficiently overlaps its own com-
putation with communication to and from the nodes.

Work on two distinct implementations minmd is well under-
way: a standalone implementation which runs solely on the
Cray T3D, and a heterogeneous version which distributes
work between the Cray C90 and the Cray T3D. The stan-
dalone version employs Cray T3D PVM to exchange data
between processing element (PE) 0 and all other PE’s. There

is occasional synchronization between the nodes, but no ex-
plicit node-node data transfer. The heterogeneous version
of minmd uses CRI Network PVM (also known as “Hetero
PVM”) to communicate between the Cray C90 (host) and
the T3D PE’s (nodes). Again, no node-node data transfer is
necessary.

The standalone and heterogeneous implementations of minmd
each have their own advantages and disadvantages. The
standalone version offers the greatest potential performance
because of the low-latency, high-bandwidth I/O available on
the Cray T3D hardware. Its principal disadvantage is that
conversion from distributed host/node code to standalone
code is tedious and error-prone because two separate sets of
source code must be merged. This results in a high mainte-
nance cost for a package such as Amber 4 which is constantly
evolving. The heterogeneous implementation currently suf-
fers from the low efficiency of the C90-T3D communications
mechanism, but it is very easily derived from the distributed
source code. The changes to PVM are trivial, and the only
extensive changes required concern file I/O and the process-
ing of command line arguments. Commounications rates be-
tween the C90 and the T3D are expected to improve with
time, so for now development and instrumentation of both
implementations of minmd will continue.

Preliminary timing data has already been obtained for dis-
tributed minmd running on the PSC’s DEC Alpha worksta-
tion cluster and for the heterogeneous minmd running be-
tween the Cray C90 and T3D. Debugging of the standalone
Cray T3D implementation of minmd is in its final stages, and
timings are expected shortly.

4.2 Acknowledgements

The initial PVM-based implementations of minmd and gibbs
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5 MaxSegs

MaxSegs [15] is a program written by the PSC for genetic
sequence analysis. MaxSegs is designed to take a experi-
mental DNA/RNA or protein query sequence and compare
it with a library of all categorized DNA/RNA or protein
sequences. Searching categorized sequences with an experi-
mental sequence is useful because it helps the researcher lo-
cate sequences that might share an evolutionary, functional,
or a biochemical relationship with the query sequence 1. The
MaxSegs program is written in standard FORTRAN-77 and
is highly optimized to run on Cray vector supercomputers.
For a typical protein the MaxSegs program operates at about

! There are currently about 40,000 categorized protein sequences
ranging in length from 2 to 6000 characters. The average size of a
typical protein sequence is approximately 300 residues. There are ap-
proximately 170,000 DNA/RNA sequences with lengths ranging from
100 to 200,000. The length of a typical DNA sequence is about 1000.
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230 million vector operations per second on the PSC’s C90
2

MaxSegs was also one of the first programs distributed be-
tween the Cray YMP and the Thinking Machine Corpora-
tion’s CM-2 supercomputer at the Center [16]. This project
helped to show that for large problems, two supercomputers
could indeed cooperate to achieve results faster than either
supercomputer alone could achieve. The CM2 code was im-
plimented using data parallel methods; each virtual proces-
sor on the CM2 received a unique library sequence residue
to compare with a broadcast query sequence residue. In this
implementation, many library sequences could be compared
with a query sequence simultaneously. In addition to com-
paring many library sequences with a query sequence at once,
this implementation also requires the use of very little per-
processor memory. The disadvantages of this implementa-
tion include an enormous amount of nearest neighbor com-
munication, a startup and finishing penalty in which nodes
process zeros and the pre-processing of enormous, frequently
updated sequence libraries 3. Although programming in this
style has a number of disadvantages, the results have been
impressive enough to allow sequence analysis software imple-
mented on SIMD machines, to gain acceptance within the
sequence analysis community.

Both published research [17], [18] and unpublished research
by the biomedical group at the PSC have shown that if node
processors have sufficient memory, a MIMD style of program-
ming can be applied to the sequence comparison problem
yielding performance superior to the performance reported
on machines using data parallel approaches. In this style
each processor is given the experimental query sequence and
unique library sequences to compare. The results of these
comparisons are collected by a single host processor. One
advantage to this implementation is that superior load bal-
ancing can be achieved, without having to pre-sort the fre-
quently updated sequence databases. The increased load
balancing capabilities also make this implementation suit-
able for a wide selection of sequence comparison algorithms,
such as Gribskov’s profile searching algorithm [19]. In addi-
tion to providing superior load balancing overall communi-
cation is also reduced; communication only occurs when the
sequences are sent to the processors, and the results of the
comparisons are collected back at the host. The disadvan-
tages of this method are that the communication patterns
are irregular, there is the potential for a bottleneck to oc-
cur at the host processor, and the nodes must have sufficient
memory to perform the comparison.

‘We have decided to implement the code on the T3D using the
MIMD approach in two different ways. The first way uses the
C90 as the host processor, directing the T3D to perform the
work of comparing the sequences. The second method uses
PEO on the T3D as the host processor, leaving the remaining
T3D processors to compare the sequences. Preliminary re-

2The C90 version of MaxSegs is available upon request.

3The startup and finishing penalties result from the recursive nature
of the sequence comparison algorithms; to improve efficiency on a STIMD
machine, categorized sequences must be sorted according to size. See
[16].
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sults indicate that the overall communication speed between
the T3D and the C90 is currently insufficient to consider the
first approach as a viable alternative to using the native C90
code. However, the second approach is very promising, pre-
liminary results indicate that 32 T3D processors take only
25% more time than a single C90 CPU and that 64 T3D
processors can match the performance of a single C90 cpu.
These performance results are on preliminary code, and re-
sults indicate that communication, rather than computation
is the main bottleneck. Using some simple communication
reduction techniques, we expect the results to improve dra-
matically.
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6 Conclusion

Based on our experience we would say that the problem of
porting “dusty decks”, or, more accurately, large pre-existing
packages to a modern, high performance MPP platform is
difficult but possible. The difficulty varies depending on the
structure of the code, the intrinsic nature of the algorithms,
the existence of other message passing versions, and several
other factors. In the best cases, the effort is clearly worth-
while. We have seen impressive performance even in the
absence of obvious optimizations of both the compilers and
the applications programs themselves. It seems clear that
in many cases the throughput, measured in the amount of
scientific research accomplished per unit time, realized at
the PSC will be substantially increased by the availability of
these packages either on the T3D or on the heterogeneous
platform (C90/T3D).
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Abstract

Loop collapsing has limited application as a technique to
improve the efficiency of vectorization; however, when aplied to a
nest of loops in which Autotasking is taking place, the resulting
transformed loop structure can perform much more efficiently.
This paper describes the loop structures that can be collapsed,
discusses the techniques for collapsing these loops, and measures
the efficiencies of the transformations.

1.0 Introduction

The Cray Research Autotasking Compiling System rec-
ognizes several forms of vectorizable, parallelizable work in For-
tran code. These forms fit the general Concurrent-Outer-Vector-
Tmner (COVI) model, where outer loop iterations are executed
concurrently on separate CPUs and inner loop iterations are exe-
cuted in vector mode on each CPU. The kinds of iterative struc-
tures that cannot be recognized as parallelizable or that cannot be
efficiently parallelized have been classified into groups according
to their characteristics [1,2]. The descriptions of some of these
groupings are as follows:

a. The parallelized loop contains an insufficient amount
of work over which to amortize the cost of initiating and terminat-
ing parallel processing (BPEP);

b. The number of iterations in the parallelized loop is not
sufficiently high to permit the use of all (or a large majority) of the
machine’s CPUs (LI);

c. The parallel efficiency of the parallelized loop is lim-
ited by an ineffective work distribution scheme (LI);

d. The amount of work being done on each iteration of
the parallelized loop is so large that delays in task scheduling can
result in significant reductions in achieved speedup (LI);

e. The amount of work being done on each iteration of
the parallelized loop varies greatly from one iteration to the next,

causing high overhead to distribute and synchronize tasks (VW);

f. The parallel region is itself inside a loop that also con-
tains a significant amount of serial work; this kind of code can
potentially result in high overhead as the operating system repeat-
edly gives CPUs to the process for execution of the parallel
region, then takes them away during execution of the serial
region (RESCH).

The techniques described in this paper address these
types of structures. Section 2 introduces the concept of iteration
space, and how looping structures can be described by the shape
of their iteration spaces. Section 3 describes coding techniques
for collapsing nests of loops and gives intuitive explanations of
why the transformations provide performance benefits. Section 4
covers the results of performance-testing the various collapse
transformations. Conclusions and areas of future work are pre-
sented in Section 5.

2.0 Geometric Characterization of Iterative
Structures

The number of different looping structures that can be
constructed is literally infinite; the number that have actually been
constructed is probably as large as the number of computer appli-
cations. But the vast majority of looping constructs can be
grouped into a handful of categories. For the purposes of this
paper, the best system for classifying loops is the geometric sys-
tem. In this system, iterative structures are described by the shape
of the iteration space. The shape will have as many dimensions as
the iterative structure has loop nests. The shape is constructed by
projecting it outward by one dimension for every loop in the loop
nest. The following helps to illustrate this process:

The outermost loop in the structure (call it L1) is repre-
sented by a line; its length, in geometric units, is equal to the trip
count of the loop (N1); this is represented in Figure 2.1.

Copyright (C) 1994, Cray Research, Inc. All Rights Reserved.
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Figure 2.1

The next outermost loop (L2), inside of L1, is repre-
sented by projecting the shape to two dimensions.. The width of
the shape at a point I1 units along the edge formed by L1 is equal
to the trip count of L2 (N2) on iteration I1 of L1; this is shown in
Figure 2.2.
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Figure 2.2

The next outermost loop (L3), inside of L2, is repre-
sented by projecting the shape to three dimensions. The depth of
the shape at a point I1 units along the edge formed by L1 and 12
units along the edge formed by L2 is equal to the trip count of L3
(N3) on iteration I1 of L1 and I2 of L2; this is depicted in Figure
2.3. Quite often, the shape of the iteration space matches the
shape of the data upon which the iterative structure operates, but
this is not always necessarily the case. Some examples will help
reinforce the concept of representing iterative structures geomet-
rically

2.1 Linear Iteration Space

In a simple iterative structure consisting of only one
loop, the iteration space is said to have a linear shape. The length
of the line is equal to the trip count of the loop.
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Figure 2.3

2.2 Rectangular Iteration Space

Consider the iterative structure of Figure 2.2. The itera-
tion space of this structure has a rectangular shape. Its length is
equal to N1, and its width at all points along its length is equal to
N2.

2.3 Triangular Iteration Space

A structure whose iteration space is right-triangular
would appear as shown in Figure 2.4. There are several different
variations of the triangular iteration space, and each variation cor-
responds to a triangle with different spatial orientation and a spec-
ification of whether or not the triangle includes the “main
diagonal.” These variations can be distinguished by the form of
the DO statement for the inner loop, as shown in Table 2.1.

2.4 Nevada Iteration Space

A more generalized expression for both the rectangular
and triangular iteration spaces is that of the “Nevada” iteration
space. This shape has both rectangular and triangular compo-
nents, such that it is shaped like the state of Nevada. The coding
structure that corresponds to this shape is shown in Figure 2.5. In
this structure, the shape has a length of N1 and a width that varies
from N2+N2D to N2+N1*N2D. N2D represents the magnitude
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of the slope of the hypotenuse of the triangular component of the
shape. If N2 is zero, then the shape degenerates into that of a tri-
angle; if N2D is zero, then the shape degenerates into that of a

rectangle.
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Figure 2.4
12 index values | Orientation | Inc. Main Diag
1,11 Upper Right Yes
1,11-1 Upper Right No
I1, N1 Lower Left Yes
I1+1, N1 Lower Left No
N1+1-I1, N1 Lower Right Yes
N1+1-I1, N1-1 | Lower Right No
1, N1+1-11 Upper Left Yes
1, N1-I1 Upper Left No

TABLE 2.1: Variations of Triangular Iteration Space

2.5 Histogram Iteration Space

Another shape commonly encountered is that of a histo-
gram. For this structure, the width of the shape at a given point
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along its length is dependent upon the contents of some data struc-
ture that has been built prior to entering the coding structure. The
histogram iteration space is shown in Figure 2.5. Here, the iden-
tifier N2 is an integer array of extent (1:N1), and each element of
N2 specifies the trip count of the inner loop. Geometrically, this
corresponds to the notion that for a given “bar” I1, the “bar height”
is equal to N2(I1).
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2.6 Porous Iteration Space

There is another characteristic of iterative structures that is
worth considering for the purposes of this study. Recall from the
previous section that the iterative structures that pose problems for
Autotasking include those that have low trip counts and low
amounts of work in the body. So far we have focused primarily on
characterizing loops based on their trip counts. Now we consider
how to describe loops in terms of the amounts of work contained
within. Consider the iterative structure of Figure 2.7. Notice that
the iteration space is rectangular, but the work is confined to a trian-
gular subspace.
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Figure 2.7

Now consider a more generic case, as depicted in Figure
2.8. Here, work is done only on iterations where the control vari-
ables suit some condition. The shape of the iteration space is rect-
angular, but its interior is porous; that is, certain cells of the space
have substance while others do not. An iterative coding structure
that executes varying amounts of work from one iteration to the next
is analogous to a shape that varies in density from one cell to the
next. In this work, we will restrict our study to structures that exe-
cute either some work or no work depending on the iteration, much
like the one in Figure 2.8.

3.0 Loop Collapse Techniques

Loop collapsing is one of several loop transformation tech-
niques for optimizing the performance of code. Some of the others
include loop splitting, loop fusion, loop unrolling, and loop inter-
change. Each technique is suitable for its own class of loop struc-
wures, but loop collapsing is done primarily to increase the number
of iterations that can be made available to the optimizing stage of

the compiler at one time. Collapsing nested loops can improve the
vector performance of a loop structure because it increases the trip
count of the vector loop, and hence increases the vector length
[3,4]. For Autotasking, a collapsed nest of loops can perform bet-
ter because the entire iteration space is handled in one parallel
region, rather than just individual sections; furthermore, the pro-
grammer has more control over the granularity of the parallelism
in a collapsed loop.

V17 %, %
2|

3
12

Yy N Z

123 N1
- I -

N\
\\i

N\
N

Figure 2.8

3.1 Collapsing the Rectangle

Probably the simplest loop structure to collapse is one
with a rectangular shape, such as the one below:

DOIl=1,N1
DOI2=1,N2
work
END DO
END DO

Suppose that N1 = 17 and N2 = 3. If we chose to direct
the compiling system to autotask the loop varying I1, and we
wanted to use all 8 CPUs of a CRAY Y-MP, then we could poten-
tially suffer a high LI overhead when 7 CPUs had to wait for the
8th CPU to finish the 17th iteration. On the other hand, if we
direct the compiling system to autotask the loop varying 12, then
we could only make effective use of 3 CPUs in the parallel region
(LI overhead again), plus we would suffer a high cost for initiat-
ing and terminating the parallel region 17 times (BPEP over-
head).

If we collapse the two loops into one, the resulting code
appears as shown below:
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DO 112=0, N1*N2-1
I1=112/N2+1
12=MOD (I112,N2) + 1
work

END DO

Here, the amount of work to be done by the structure
essentially has not changed. The trip count has been increased to
17 * 3 = 51. If we let C,,o be the cost of executing the work
inside the loop body, then the worst case LI cost is C,,n/51,
because out of 51 iterations to do, we might have to wait for one
iterations’ worth of work to be completed; by comparison, in the
previous case, if the outer loop is Autotasked, the worst case LI
cost is 3Cy,ok /17, because out of 17 outer-loop iterations to do,
we might have to wait for 3 inner-loop iterations’ worth of work
to be completed (each task does an entire DO 12 loop). The dif-
ference in LI cost is therefore a factor of 9.

Another point worth emphasizing here, on the subject of
load balancing, is that the collapsed structure offers more flexibil-
ity in terms of specifying work distribution parameters to the
Autotasking compiling system [5], thus further increasing the par-
allel efficiency of the collapsed structure relative to the original.

One of the dangers of collapsing loops is that the scope
of the data dependency analysis must be widened to include the
bodies of the outer and inner loops. If, for example, we had a
structure like the one below,

DOI1=1,N1
DOI2=1,N2
TEMP = A(12-1,11)
work
A(I12,11) = TEMP
END DO
END DO

Autotasking the loop varying I1 is safe, but Autotasking
the loop varying 12 is not, because of the data dependency involv-
ing A. This data dependency would persist through the collapse
of the loops, rendering the collapsed loop unparallelizable. In a
case like this, it might be worthwhile to code the transformed loop
so that the value of I1 varies fastest, if the logic within the body of
the loop allows this; otherwise, it might be better just to leave the
structure alone, since the loop varying I1 can Autotask.

Another potential danger occurs when collapsing a loop
structure in which the inner loop has a trip count that is lower than
the number of CPUs that could be working concurrently on the
collapsed loop. In this case, there might be more than one task
working on an iteration of the structure with the same value for the
inner loop index. This may or may not be a problem, depending
on the contents of the loop body. To illustrate, consider the fol-
lowing collapsed rectangle structure:

DOI1=1,Nl1
DOI2=1,N2
work
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SUM(I2) = SUM(I2) + A(I2,11)
END DO
END DO

. In this example, if N2 were equal to 4 and the collapsed
structure were Autotasked across more than 4 CPUs then more
than one task will execute concurrently with the same value for 12,
Thus, a race condition on SUM(12) could occur. Techniques to
protect against this danger include installing GUARD directives
in the loop body or interchanging the loops before collapsing.

3.2 Collapsing the Triangle

Collapsing a loop structure that corresponds to a triangu-
lar iteration space is a little more complicated. First we note that
the number of cells NC,; in the triangular iteration space of length
N1 is given by

N1
NCrri(N1) = Y i

i=1

_ N1x (N1+1)
- 2

So we define a statement function NC_TRI which will
aid in the readability of the transformed code. Given the follow-
ing original loop structure:

DOI1=1,N1
DOI2=1,11
work
END DO
END DO

The transformation would then look like this:

DO 112 =0, NC_TRI(N1) -1
ISEEK=N1-1
DO WHILE (NC_TRI(ISEEK) .GT. 112)
ISEEK = ISEEK - 1
END DO
I1 =1ISEEK + 1
12 =112 - NC_TRI(ISEEK) + 1
work
END DO

The sole purpose of the code at the top of the collapsed
loop is to determine, given the collapsed loop index 112, the val-
ues of the “original” loop indices I1 and 12. The first impulse of
many programmers would be to create counters that get incre-
mented on every iteration of the loop varying 112, and occasion-
ally zero one of the counters when a new strip of the triangle is
begun. This kind of logic is probably easier to understand, but in
order for it to be run Autotasked, it would have to be GUARDed
to ensure that only one task at a time updates the counters. The
logic shown here makes use of the collapsed loop index 112 and a



private variable ISEEK; its primary advantage is that it requires no
such protection as a critical section of the loop.

There are a few noteworthy aspects of this structure.
First of all, observe that on the first few iterations of the outer loop
in the original structure, the trip count of the inner loop is going to
be low. Therefore, you are guaranteed to encounter the situation
described above in the discussion of collapsing rectangular struc-
tures, namely several tasks running concurrently with the same
value for I2. Furthermore, one of the techniques to circumvent
this potential problem, that of interchanging the loops, is not an
option here, because the inner loop trip count depends on the outer
loop index: you can’t iterate from 1 to I1 on the outside because
you don’t know what I1 is yet!

The second thing worth noting is that when the outer
loop is Autotasked in the original version of the code, the itera-
tions will contain variable amounts of work (VW); this corre-
sponds to the variation in the height of the triangle at various
points along the base. This phenomenon will produce added over-
head in this kind of loop. The best way to avoid this situation, if
the loops cannot be collapsed, is to arrange the iterations of the
outer, Autotasked loop so that the amount of work performed on
each iteration decreases as the iteration number increases. This
VW problem occurs in essentially all non-rectangular iteration
spaces.

3.3 Collapsing the Nevada

For the Nevada-shaped iteration space, it is best to make
use of a statement function to compute the indices, much like that
used for the triangle space discussed above. When the statement
function is used, the collapsed loop looks very much like that for
the triangle case. The number of cells in a Nevada structure is:

NCnev (N1,N2,N2D) = N1xN2+N2D xNCtri(N1)

The function computes the number of cells in a Nevada-
shaped space with a rectangular component of size N1 by N2 and
a triangular component whose base is N1 and whose hypotenuse
has a slope N2D. The original Nevada iterative structure looks
like this:

DOI1=1,N1
DOI2=1,N2 +11*N2D
work
END DO
END DO

The transformation to collapse the Nevada space to a lin-
ear space appears below.

DO112=0,NC_NEV (N1,N2,N2D) - 1
ISEEK=N1-1
DO WHILE ( NC_NEV (ISEEK,N2,N2D) &
.GT.112)
ISEEK =ISEEK - 1
END DO
I1 =ISEEK + 1
12=112 - NC_NEV(ISEEK,N2,N2D) + 1
work
END DO

In this case, so long as N2 is large enough, there is no
need to worry about the possibility of two concurrent tasks having
the same value for their inner loop index 12.

3.4 Collapsing the Histogram

Considering now the histogram iteration space, the same
kind of transformation technique can be applied, but first, a special
data structure must be built to assist in the collapse. The data
structure is an integer array of extent (0:N1), where N1 is equal to
the number of bars in the histogram, and the value of each element
of the array is equal to the height of the histogram bar correspond-
ing to the element’s index, plus the value of the preceding element
(the value of the zero-th element is zero). Hence, the data struc-
ture represents a running sum of the number of cells in the histo-
gram up to a certain point:

N1
NChist(N1) =  N2(i)

i=1

We can call this data structure NC_HIST. The code to
construct the NC_HIST data structure, prior to entering the loop
structure, looks like this:

NC_HIST(0)=0
DOI1=1,NI1
NC_HIST(1) = NC_HIST(1-1) + N2(I1)
END DO

Equipped with this data structure, we can now collapse
the histogram iterative structure. The original histogram loop
structure looks like this:

DOI1=1,N1

DOI2=1,N2(11)
work
END DO
END DO

The collapsed histogram loop structure is as shown
below:
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DO112=0,NC_HIST(N1)- 1
ISEEK =N1-1
DO WHILE (NC_HIST(SEEK) .GT. 112)
ISEEK = ISEEK - 1

END DO
I1=ISEEK + 1
12 =112 - NC_HIST(ISEEK) + 1
work

END DO

As with the triangle iteration space, we will see here the
potential for more than one task running at a time with the same
value forI2. And as is also the case for the triangle, the loop inter-
change remedy is not available to us because of the dependency
between the loops. But it is worth remembering that this potential
problem is only a real problem whenever there is code within the
body of the loop that updates some data structure element using 12
as an index. In this case, the only good remedy is to create a crit-
ical section in the loop body that prevents 12-indexed data struc-
tures from being updated by one task while being referenced by
another task.

3.5 Collapsing the Porous Shape

The last iterative structure we will consider in this sec-
tion is that of the porous shape, representing a structure with con-
ditional work inside. In this scenario, what we would like to do is
eliminate VW overhead. We are also interested in eliminating the
iteration overhead of distributing to the CPUs iterations that
essentially have no work in them. The technique involves essen-
tially skipping the iterations for which the porosity condition
holds true, and distribute only those iterations for which real work
will be done. To accomplish this, we must build a data structure
before entering the parallel region, much like that used for the his-
togram above:

NCONDA =0
DOIl =1,Nl
DOI2=1,N2
IF (CONDA (11, 12)) THEN
NCONDA = NCONDA + 1
ICONDA(1,NCONDA) = I1
ICONDA(2,NCONDA) = I2
END IF
END DO
END DO

CONDA is a function that takes as arguments the loop
structure indices, and returns a logical result; it is essentially the
porosity function. The data structure ICONDA is an integer array;
its size in the first dimension must be equal to the nesting depth of
the iterative structure; here it is 2. The size of ICONDA in the sec-
ond dimension must be large enough to represent the completely
non-porous iterative structure; in this case, NCONDA could get as
large as N1 * N2, so ICONDA must be equipped to store that
many entries. (Of course, if the programmer knows a priori what

50

the degree of porosity of the structure is likely to be, he can dimen-
sion ICONDA accordingly). The ICONDA array keeps track of
those non-porous cells within the structure where there is work to
be done. Its use in the transformation of the porous iterative struc-
ture is shown below. First, the original porous loops:

DOIl1=1,Nl1
DOI2=1,N2
IF (CONDA (11, 12)) THEN
work
END IF
END DO
END DO

Now, the collapsed porous structure:

DO 112 =1,NCONDA

I1 = ICONDA(1,112)

12 =ICONDA(2,112)
work
END DO

Note that, unlike the other loop collapse transformations,
this collapsed loop itcrates fewer times than the original structure,
so the possibility exists that the collapsed loop will not have a high
enough trip count to warrant Autotasking. The effects of this con-
dition, and techniques for accounting for it, will be covered in the
section on testing.

It is important to keep in mind that the shape of a struc-
ture and its porosity are two totally independent characteristics. In
fact, the technique for collapsing a porous structure can be applied
to any kind of loop nest, regardless of its shape. This makes the
porous collapse technique the most general of all the techniques.

4.0 Performance Testing of Collapsed
Loops

For each of the five collapse techniques discussed in the
previous sections (rectangle, triangle, Nevada, histogram,
porous), four test runs were performed. Two of the four test runs
compare wall clock times, and two compare CPU times. Of the
two wall clock tests, one compares the performance of the col-
lapsed loop against the original with the inner loop Autotasked,
and the other compares the performance of the collapsed loop
against the original with the outer loop Autotasked. The same two
comparisons are done in the two CPU time tests. The test pro-
grams were compiled and executed on a 16-CPU Cray Y-MP C90
installed in the Corporate Computing Network at Cray Research,
Inc. in Eagan, MN. All tests were executed during SJS time,
which is essentially equivalent to dedicated time. CPU timing
tests used the SECOND function, and wall clock timing tests used
the RTC intrinsic [6].

The CPU timing plots should reveal gains achieved by
collapsing, specifically in the area of reducing BPEP overhead;
they may also show costs associated with collapsing, specifically



in the areas of executing code to generate supporting data struc-
tures or to compute original index values. The wall clock timing
plots should reveal gains achieved by collapsing, specifically in
the area of reducing LI and VW overhead.

The bodies of the loops in all cases were the same, essen-
tially:
CALL WORK (A(12,11))

where A is an appropriately-dimensioned array and the
subroutine WORK looks like this:

SUBROUTINE WORK (A)
A=27181
DOI=1,512
A =EXP (LOG (A))
END DO
END

Thus, the WORK routine does nothing useful, but does
exercise the hardware and accumulate CPU time. Notice also that
memory traffic is minimal in the loop body. This makes the test
results essentially unbiased by memory contention issues. In a
real loop body, however, memory contention could be a very big
issue,

The results of these tests are depicted in the 20 plots that
make up the Appendix. Each will be discussed in the sections that
follow.

4.1 Speedup from Collapsing the Rectangle

The graphs that describe the results of the rectangle tests
are all 3-D mesh plots, with speedup shown on the vertical axis,
as a function of the rectangle’s length and width. In these tests,
the outer loop of the original structure iterates over the width of
the rectangle, and its trip count varies from 1 to 30; the inner loop
iterates over the length, and its trip count is varied from 1 to 50.

4.1.1 Inner/CPU

In this plot, we see that the speedup of the collapsed
structure is high where the length of the rectangle is small, and
decreases to an asymptotic value around 1.0 as length increases.
In the original version of this test code, the length dimension of the
shape is being processed in the inner loop , and the inner loop is
the one being Autotasked, so a small value for length means a high
ratio of BPEP code execution to user code execution.

The plot also shows that the collapsed structure performs
slightly better than the original when the width of the shape is
large. This can be explained by the fact that an increase in width
means, for the original code, increasing BPEP overhead. This
overhead cost is not present in the collapsed structure.

4.1.2 Inner/Wall

This plot has the same general shape as the previous

Inner/CPU plot, but the scales are much different. In this case, the
speedup to be obtained by collapsing the loops is quite dramatic if
the shape is short and wide. This speedup is due to improved load
balancing.

Notice also that this plot is more “bumpy” than the pre-
vious plot. This is presumably due to the fact that the LI overhead
of the original code is highly dependent on the trip count of the
Autotasked loop; further, there is always an inherent slight vari-
ability in wall-clock timings.

4.1.3 Outer/CPU

This plot shows that collapsing the rectangle yields
essentially no benefit in CPU time over Autotasking the outer
loop.

4.1.4 Outer/Wall

In this plot, we see only slight speedups for the collapsed
code over the original. There appears to be a significant drop in
speedup at width = 16. This is probably because the original code
performs most efficiently there, since the trip count is exactly
equal to the number of CPUs in the machine.

4.2 Speedup from Collapsing the Triangle

The graphs that describe the results of the triangle tests
are all 2-D line graphs, with speedup shown on the vertical axis,
as a function of the triangle’s base and height. In these tests, base
and height were always equal, and they were allowed to vary from
1 to 50.

4.2.1 Inner/CPU

This graph shows speedup to be moderate when the size
of the triangle is small, and decreasing as the triangle increases in
size.

4.2.2 Inner/Wall

Speedups for this case are quite significant, as shown in
this graph. Like the Inner/CPU case above, payoffs are highest for
the small shape, and tapering off as the size of the shape increases.
This graph is quite jagged, perhaps indicating that the LI over-
head is, in the original version of this test case, highly dependent
upon small changes in the size of the problem.

4.2.3 Outer/CPU

In this case, the speedup is negligible over essentially the
entire test space. Notice the scale of the vertical axis.

4.2.4 Outer/Wall

Speedups here are significant for small and moderate-
sized problems. The spikes in the graph are evidence of LI over-
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head in the original version of the code, which are exacerbated by
VW conditions.

4.3 Speedup from Collapsing the Nevada

The plots that describe the results of the Nevada tests are
all 3-D mesh plots, with speedup shown on the vertical axis, as a
function of the shape’s rectangular dimensions (N1 and N2) and
diagonal slope (N2D). In these tests, N1 and N2 were always
equal, and they were allowed to vary from 1 to 50. N2D was
allowed to vary from 1 to 20. The test program iterates over the
length of the shape in the outer loop, and over the (variable) width
in the inner loop.

4.3.1 Inner/CPU

For this case, the speedup obtained by collapsing is neg-
ligible.

4.3.2 Inner/Wall

Here, the speedups are moderate (around 1.5) over most
of the test space. The plot shows that speedups are quite variable
when the iteration space is small, and more steady when the shape
is large. The variation in the performance of the small test cases
may be due to differences in task scheduling.

4.3.3 Outer/CPU

This is an interesting plot. Speedups take on a stair-step
behavior based on the length of the iteration space. The steps
occur at length values that are multiples of 16, the number of
CPUs in the machine being used. In this test, the outer loop, iter-
ating over the length of the shape, is Autotasked. Presumably,
when an Autotasked loop has a trip count that is some integer mul-
tiple of the number of CPUs in the machine, the iterations will be
distributed evenly and the efficiency will be near optimal. The
plot seems to support this hypothesis.

4.3.4 Outer/Wall

Speedups are dramatic in this case, in the region where
the rectangular component of the shape (given by N1 and N2) is
small and the slope of the hypotenuse of the triangular component
(given by N2D) is steep. The Autotasked loop in the original code
iterates over N1, so when N1 is small, the ratio of overhead to use-
ful work is high. Further, when N2D is large, that means that the
trip count of the inner loop varies greatly with respect to N1; this
results in a very high amount of VW overhead. As in the Outer/
CPU plot discussed above, there is a stair-step effect at length val-
ues of 16, 32, and 48; however, these effects are very subtle here.

4.4 Speedup from Collapsing the Histogram

The plots that describe the results of the histogram tests
are all 3-D mesh plots, with speedup shown on the vertical axis,
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as a function of the length (number of bars) and the variation in
bar height. The average bar height is 25, and the bar height range
is allowed to vary from 2 to 50. Before a histogram is processed,
the length and average bar height are chosen, then the bars are
assigned random heights within the allowable range. The effi-
ciency with which the original coding structure can process the
histogram space should depend strongly on the variance in the his-
togram’s bar heights. It is important to note that even though this
series of tests used random numbers to generate the iteration
spaces, the same series of shapes was generated in each test run,
because each test started with the same (default) random number
seed.

4.4.1 Inner/CPU

Speedups in this case are negligible. Any gains made in
reducing the BPEP overhead are perhaps being offset by the cost
of constructing the NC_HIST data structure.

4.4.2 Inner/Wall

This plot shows the wall-clock speedups to gather around
the 1.5 value, but to vary between 1.0 and 2.0. The variation
seems to be independent of both the length of the histogram and
the variation in bar height. The random jaggedness of the plot is
most likely due to the randomness of the shape of the iteration
space itself. It is interesting to note, however, that the variation
seems to be greater in the left rear comer of the plot and smaller
in the right front corner.

4.4.3 Outer/CPU

This plot shows that very little is gained in terms of CPU
time from collapsing the histogram versus simply Autotasking the
outer loop.

4.4.4 Outer/Wall

Speedups in wall-clock time from collapsing the histo-
gram can be quite dramatic, especially where the length of the
shape is small and the bar height variation is high. In this test, the
outer loop iterates along the length of the shape. Since each bar
being processed in an iteration of the outer loop has a random
height, the potential for VW overhead is very high; and the larger
the variation, the higher the overhead. Then there is the LI over-
head that can arise when parallelizing in the large grain, especially
when the length of the histogram is low. These factors together
can severely impact the parallel efficiency of the original struc-
ture.

4.5 Speedup from Collapsing the Porous Rectangle

The plots that describe the results of the porous rectangle
tests are all 3-D mesh plots, with speedup shown on the vertical
axis, as a function of the size of the rectangle and the degree of



porosity. The rectangle is actually a square, because length and
width are always equal; they are allowed to vary from 1 to 50. The
porosity of the shape is varied from 0% to 95%, in intervals of 5%.
The “holes” in each shape are placed at random before the pro-
cessing of the shape; as in the histogram tests described above, the
series of shapes that are used in each test are all the same. The
porosity of the shape should have a direct impact on the original
coding structure’s ability to process the shape efficiently.

4.5.1 Inner/CPU

Speedups in this test are significant only in the cases
where the size of the rectangle is small, or when the porosity is
very high. The higher the porosity, the more frequently we are
executing concurrent iterations for no useful purpose. The col-
lapsed structure has been designed in such a way that this over-
head does not occur.

4.5.2 Inner/Wall

As in the Inner/CPU case described above, speedups are
greatest where length is small or porosity is high. Since iterations
of the inner loop will do either much work or no work, the VW
overhead of high-porosity structures is extreme.

4.5.3 Outer/CPU

This plot shows that speedups are negligible in all but the
most pathological of cases. The BPEP overhead saved by col-
lapsing is offset by the cost of building the ICONDA data struc-
ture.

4.5.4 Outer/Wall

For this test, the speedups were modest across the major-
ity of the test space. The outer loop in the original code iterates
across the length of the structure, and each iteration processes one
row along the width. Although these rows are porous, they are all
equally porous, so the load here is fairly well balanced. The qual-
ity of uniform porosity across the rows of the structure is an arti-
fact of the way in which the test was constructed; it should not be
presumed to be a quality of all porous structures. In general, it is
probably reasonable to assume that the less uniform the porosity,
the better the speedup from collapsing will be.

5.0 Conclusions and Future Work

The loop collapse technique can be applied to a wide
variety of iterative structures, with performance benefits that
range from modest (25%) to remarkable (over 500%). A collapsed
loop offers the advantages of small-grain parallelism, such as
good load balance, with the advantages of large-grain parallelism,
such as low parallel-startup costs. In most cases the code trans-
formations are trivial; the type of transformation needed is gov-
erned by the geometric characterization of the iterative structure.

Several common geometries were presented, corresponding trans-
formation strategies developed, and performance characteristics
were measured.

There are several areas that remain to be explored,
including:

a. More work needs to be done to characterize loops with
varying amounts of work, and the performance impact of splitting
these loops into separate structures that each contain fixed body
sizes;

b. It would be interesting to study the degree to which
performance is impacted by body size in structures that have low
trip counts;

¢. The memory efficiency of collapsed loops versus their
un-collapsed counterparts should be studied;

d. Some thought should be given to the feasibility of
making these kinds of collapse transformations automatically,
within the compiler;

e. It is not clear how transformations such as these fit
into the MPP Fortran Programming Model [7]. Itis possible that
a DOSHARED directive with multiple induction variables speci-
fied can do the same job as, or perhaps a better job than, loop-col-
lapse transformations on some kinds of loops.
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Collaborative Evaluation Project Of Ingres On The Cray (CEPIC)
C. B. Hale, G. M. Hale, and K. F. Witte

Los Alamos National Laboratory
Los Alamos, NM

Abstract

At the Los Alamos National Laboratory, an evaluation project has been done that explores the
utility a commercial database management system (DBMS) has for supercomputer-based
traditional and scientific applications. This project studied application performance, DBMS
porting difficulty, and the functionality of the supercomputer DBMS relative to its more well-
known workstation and minicomputer hosts. Results indicate that the use of a commercial DBMS
package with a scientific application increases the efficiency of the scientist and the utility of the
application to its broader scientific community.

Introduction

Ingres is a relational distributed database
management system that makes it possible to
quickly transform data into useful
information in a secure environment using
powerful database access and development
tools. It has the architecture for true
client/server performance.

Ingres offered Los Alamos a ninety day trial
evaluation of the Cray/Ingres product on a
Los Alamos Cray. This included the use of
the base product, ABF, C, FORTRAN,
Knowledge Management, TCP/IP Interface,
Net, Vision, and STAR. To insure the
success of the project, they provided Los
Alamos with the Premium level of support
(required for a Cray platform) during the trial
period.

CRI also was very supportive of Los Alamos'
interest in putting Ingres on Crays, because
they see the potential for entering a new
market. Sara Graffunder, senior director of
Applications at Cray Research, said that with
Ingres functionality on Cray systems, users
will be able to apply the world's largest
memories and superior computational
performance of Cray systems to data
management. They wanted Los Alamos to
demonstrate that this is true. They offered
the one-processor YMP-2E (BALOO) in the
Advanced Computing Laboratory (ACL) for
Los Alamos to use for the Ingres/Cray trial
evaluation. Having a machine dedicated to

this effort allowed us to run basic tests on the
product for evaluation without affecting the
user community. They provided consulting
to go with the installation.

This project was an effective way of using
Los Alamos scientific and computational
expertise in collaboration with CRI and
Ingres to generate interest in the scientific
community in database management on
supercomputers.

Project Description

Members of Client Services and Marketing
(C-6), Internal Information Technology
(ADP-2), and Nuclear Theory and
Applications (T-2) Groups at Los Alamos
National Laboratory (LANL) collaborated
with representatives from Cray Research, Inc.
(CRI) and Ingres Corporation to successfully
complete the Collaborative Evaluation
Project of Ingres On The Cray (CEPIC). The
project objectives were to determine:

» how easy it is to use Ingres on Cray
computers and if Ingres runs in a
reasonable time similar to current utilities
in an environment that people like and will
use;

» whether current standard database
applications could be ported to the Cray
and the level of effort required to
accomplish such porting;
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» how well Ingres performs on the Cray in
managing data used in and generated by
large scientific codes;

 what additional hardware is required to use
Ingres on the Cray;

» whether Ingres is compatible with Los
Alamos UNICOS.

Project Plan
The CEPIC project plan was to:
» install Ingres on the Cray;

* port an existing traditional database and its
three applications from a VAX to the Cray
and run compatibility and performance
tests;

» create an Ingres database (NUCEXPDAT)
and its application (EDAAPPL) to manage
the data and results for an existing
scientific code (EDA);

» run performance tests on the Cray and other
machines;

» install Ingres on machine RHO, a Cray Y-
MP8/128 in the Los Alamos ICN

 port the NUCEXPDAT database and the
EDAAPPL application to machine RHO
and run Los Alamos UNICOS
compatibility and performance tests on
machine RHO

Installation Of Ingres On A Cray Y-MP

After deciding on the system configuration
and Ingres file location, Ingres 6.3 was
installed on a Cray Y-MP, named BALOO.
It was configured as follows:

Cray CPU: Y-MP2E/116, S/N 1620

1 Central Processor

16 Million 64-bit words of central memory
1 HISP channel to I0S

1 LOSP channel to IOS

I/O Subsystem (IOS): Model E, serial
number 1620

- 1T/O Cluster

1 Million words of buffer memory

1 HISP channels to mainframe memory
1 LOSP channel to CPU

2 HIPPI channels

Disks: 15.68 GBytes on-line storage
8 DD-60 drives

1.96 GB (formatted) per drive

20 MB/s peak transfer rate per drive

Because BALOO was located in the ACL test
environment and was being used for non-
database work, no database performance
tuning was done on the machine.

EDA Physics Code

The Los Alamos code EDA (Energy
Dependent Analysis) was chosen for this
study because it has data management
requirements representative of many of the
scientific codes used at the Laboratory. EDA
is the most general, and among the most
useful, programs in the world for analyzing
and predicting data for nuclear reactions
among light nuclei. In its present form, the
code can be used only on Cray computers,
where all of its data files reside. These data
files are represented by the boxes shown in
Fig. 1; the ones in the upper part of the figure
are input files, and those in the lower part are
output files (results) of the analysis. Because
of the size and complexity of the data files
that are used and produced by the program,
the data management tasks associated with
EDA are quite challenging.

The primary data are the results of
experimental measurements (upper left-hand
box of Fig. 1) for reactions that can occur
between light nuclei. Because this
information also has the most complex data
structure, we decided to concentrate on these
files for the CEPIC demonstration project.
An experimental data library containing on
the order of 50,000 measured points had
already been assembled in the specific form
required by the code before the project
began. These data entries are classified
according to several identifiers, including
those for compound system, reaction, energy,
observable type, and reference source. At
run time, the user selects a subset of these



data to be used for a particular problem. This associated with different compound systems
was being done mainly by grouping data in separate files.

Energy Dependendent Analysis

Experimental R-Matrix
Nuclear Data parameters
A
adjust to fit data
Predicted Structure data,
Nuclear Data phase shifts

Figure 1. Schematic Of EDA Physics Code Files
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We anticipated that putting the experimental
information into an Ingres-based data
management system would allow far more
selectivity in the choice of data (e.g., by
energy ranges or data type) than was possible
with the existing system. Also, for purposes
of experimental data compilation, which is an
aspect of the EDA activity that is of great
potential interest to outside users, it would
provide the capability to sort the entire
experimental data file according to any
hierarchy of the identifiers listed above.
However, we also obtained some unexpected
benefits, related to the ease and accuracy
with which new data could be entered into
the system, and publication-quality

bibliographies of the experimental data
references could be generated in a variety of
formats.

NUCEXPDAT Database

The nine tables and four views in the
NUCEXPDAT database are summarized in
Table 1. A schematic of the table
relationships, showing the number of rows
and columns in each table, is given in Fig. 2.
Unique identifiers join all tables except
NEXTKEYS and TIMENOW. Single and
double arrows indicate one-to-many and
many-to-many relationships.

NAME TYPE DESCRIPTION

BIBLIO table Bibliographic data

CSREACTION table Compound System Reaction data

DATAHIST table Date and data identifiers of EDA runs

ENERGY table Energy data

EXPDATA table Experimental data (angle, value, error)

NEXTKEYS table Next keys for BIBID, RNO, ENO, and OBSID

OBSERVABLES table Observables data

RUNHIST table History of EDA runs (date, energy range, notes)

TIMENOW table Time stamp

BIBLIOVW view Join of CSREACTION, ENERGY, OBSERVABLES, and
BIBLIO tables used for BIBLIORPT, BIBNPLTRPT,
BIBNPRPT, BIBPRLTRPT, BIBPRRPT reports

EDADATAVW view Join of CSREACTION, ENERGY, OBSERVABLES,
EXPDATA, and BIBLIO tables used for EDADATARPT and
EXPDATARPT reports

RENOBBIBVW view Join of CSREACTION, ENERGY, OBSERVABLES tables
used for BLBIBIDRPT report

RENOBDATVW  view Join of CSREACTION, ENERGY, OBSERVABLES, and

EXPDATA tables used to view all data through QBF

Table 1. NUCEXPDAT Tables And Views



NUCEXPDAT DATABASE

CSREACTION ENERGY OBSERVABLES EXPDATA
181 rows [ G497 rows —P—P> 6886 rows [P 24,367 rows
7 cols 9 cols 13 cols 4 cols
\ DATAHIST \ BIBLIO
457 236
Sools [ > 0 cols
NEXTKEYS 3 TIMENOW
1 row RUNHIST 1 row
3 cols 1 row 1 col
4 cols

Total: 22.5 Mbytes
Figure 2. Schematic Of NUCEXPDAT Table Relationships

EDAAPPL Application entry and update frames are BIBLIOFRM,

DATENTFRM, DATUPDFRM,
Shown in Fig. 3 is a flow chart of the FIXANGLEFRM, FIXENERGYFRM,
EDAAPPL application, while Table 2 RESEFRM, and RESERNGFRM. Report
describes its frames and procedure. Data frames end in RPT.

| BIBLIOFRM
| DATENTFRM --> | FIXANGLEFRM
l | FIXENERGYFRM --> | RESEFRM
I

| BIBLIOFRM I NEXTLETPRC

I

| RESERNGFRM

I | BIBLIORPT
MAINMENU --> I | BIBNPLTRPT

I | BIBNPRPT

| RPTMENU ----> | BIBPRLTRPT

I | BIBPRRPT

I | BLBIBIDRPT

I | EDADATARPT

| | EXPDATARPT

| DATUPDFRM

| RUNHISTFRM

Figure 3. Flow Chart Of EDAAPPL
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NAME TYPE DESCRIPTION

BIBLIOFRM user Add data to the BIBLIO table

BIBLIORPT report Generate report of data in BIBLIO table with system,
reaction, and observable

BIBNPLTRPT report Generate bibliography in Nuclear Physics form with
LaTex command for bold face type

BIBNPRPT report Generate bibliography in Nuclear Physics form

BIBPRLTRPT report Generate bibliography in Physical Review form with
LaTex commands for bold face type

BIBPRRPT report Generate bibliography in Physical Review form

BLBIBIDRPT report Generate a list of blank BIBIDs

DATENTFRM user

Add data to CSREACTION, ENERGY, OBSERVABLES,

and EXPDATA tables

DATUPDFRM user

Update data in

CSREACTION, ENERGY,

OBSERVABLES, and EXPDATA tables

EDADATARPT
EXPDATARPT

report
report

FIXANGLEFRM  user
FIXENERGYFRM user

MAINMENU user
NEXTLETPRC procedure
RESEFRM user

Generate EDA input data file

Generate file of experimental data with bibliographic
references

Add excitation function data (energy, value, and error)
Add angular distribution data (angle, value, error)

Select menu choices for application

Take a character and return the next greatest one

Update blank resolution data fields in ENERGY for a

given compound system, energy, and reaction

RESERNGFRM user
RPTMENU user
RUNHISTFRM user

Add resolution data to ENERGY for an energy range
Select menu choices for report
Keep a history of data files used in EDA runs

Table 2. Description Of EDAAPPL Frames And Procedure

What was done

In the analysis phase, we specified the data,
their relationships in the various tables, the
kinds of forms needed to cover all possible
types of experimental data that would be
input to the database, and the reports,
including the format of the EDA data file.
Then, the database and its application were
designed and created to meet these
specifications.

Code was written that was based on that part
of EDA that processes the input data. This
allowed existing EDA data files to be read
directly into the database tables. Even
though the EDA input code and input file
format are extremely complex, in less than
two weeks this code was written and used to

load about half of the existing data into the
NUCEXPDAT database.

We located, with the help of an earlier
bibliographic file, many complete references
to the experimental data and put them into
the database. We obtained, for the first time,
a complete set of references for the data that
had been used in an analysis of reactions in
the 5He nuclear system.

Many different types of reports were
generated from the database, including EDA
run files, bibliographic files in standard-text
and TeX format, using the style of either of
the two major nuclear physics journals, and
annotated listings of experimental data. The
run files were checked by using them in
actual EDA calculations, and verifying that
the answers duplicated the results of previous




runs. By entering qualification data and then
pressing just one key, we were able to
generate the EDA data file for the SHe
compound system in eleven seconds (clock
time).

After installing Ingres on RHO, we unloaded
the database and copied the application from
BALQOO. The entire procedure required less
than fifteen minutes and was straightforward
to do because both Cray machines were
running the same version of Ingres.
Operations on the database and using the
application gave identical results as on
BALOO. We had no problems running
Ingres nor did we have to modify any code
because of Los Alamos UNICOS. Using
Ingres on RHO was frustrating because of
delayed responses when there were many
users on the machine. Machine time was
comparable on the two Crays.

Discussion

Creating an application using ABF was
identical to creating one on a VAX or a SUN
only much faster. Because compilation and
report saving times were so short and because
reports using complicated queries of lots of
data could be run in real time, application
development time was greatly diminished.
The EDA code is an extreme case of program
complexity for reading input. Therefore,
rewriting the relevant code to process
existing data files and entering the data in the
database in less than two weeks suggests a
very short conversion time for codes with
more usual data reading requirements.

The EDA experimental data application
(EDAAPPL):

» makes the existing experimental data files
more uniform, especially in labeling and
bibliographic information;

» allows rapid and easy editing of data files
(by reaction, energy ranges, data type, etc.);

« simplifies and speeds up the task of entering
new data, and provides some error
checking;

» produces readable listings of experimental
data for outside distribution; and

« greatly facilitates the generation of
bibliographies for reports, articles, etc.,
which reduces the time it takes to document
research for publication;

« creates data files so quickly that there is no
reason to save these files on CFS to reuse,
thereby reducing long-term mass storage
requirements.

These capabilities could make significant
changes in the way one of the authors (G. H.)
does his work. He could spend more time on
physics and less on editing, file management,
and looking for the right data decks. One of
the most tedious parts of writing his papers,
compiling the bibliography of experimental
data references, can now be done
automatically, using the BIBID as a bibitem
label in a LaTeX-formatted bibliographic
file. The fact that there are no longer funds
to hire specialists that enter and help manage
data can be off-set in some cases by the ease
of using a well-designed, automated DBMS.

If Ingres becomes available on the ICN Cray
computers, we would first put the remaining
data from the existing data files into the
NUCEXPDAT system, along with their
associated bibliographical references. Any
new data, of course, would be added to the
system using the data-entry forms.

Then we would address the other input- and
output-file questions. The files containing
the parameter values and covariances should
be fairly straight-forward to put into a DBMS
sytem, because they are relatively small and
have a fixed format. Using these files, the
code can predict the results of any
measurement and their associated
uncertainties. In many applications, large
files of these predicted quantities, produced
in a complicated and rigid data format, are
the desired output of the analysis.

In other cases, resonance parameters and/or
phase-shifts that are of more fundamental
interest are produced. Some of the requests
received for information from EDA analyses
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are delayed because of difficulties in
retrieving and reconstructing the information
used in the analysis at its last stage
(especially if it was done some time ago).
Implementing the same type of sophisticated
data-base system that was used for the
experimental data files to manage the many
types of information that are produced as
output files would benefit all aspects of the
EDA work at Los Alamos.

Many of the data management problems
solved by using a database management
system are similar to those of scientific
applications involving gigabytes or terabytes
of data. For these applications a DBMS
could be used to query the metadata, load the
files containing the full data set needed for a
particular run, and keep track of runs and
their resulting output files. The database
could contain metadata of three types: user
administrative data; internal data
management data; and storage information
data. A menu-driven 4GL application could
be written to get, list, update, and put files on
a storage system and to run analysis codes
including those producing images.

Conclusions

Project participants feel that Ingres worked
well on the Cray computers in a reasonable
time in an environment that people will like
and will use.

It was no more difficult or time-consuming to
port an existing database and applications to
the Cray than it has been to port them to
other platforms.

For both scientific and traditional database
applications, Ingres looked, acted, felt, and
ran the same on the Cray as on other
platforms, only it was faster. Because the
database and target execution machines are
the same, accuracy when going from one
machine to another is not an issue.

It was possible to create a useful scientific
database application on the Cray in a
reasonably short time. Application
development time was less because the
developer was able to try things without long

waits for compilation of code, reports, and
forms. Queries for reports were able to be
coded in a single SQL statement instead of in
steps because queries, even with aggregates,
were fast.

No additional hardware was required to use
Ingres on the Cray.

Ingres was compatible with Los Alamos
UNICOS.

The availability of a database management
system like Ingres on a Cray greatly enhances
the efficiency and flexibility of users and
producers of large quantities of scientific data
on supercomputers.



PROVIDING BREAKTHROUGH GAINS:
CRAY RESEARCH MPP FOR COMMERCIAL APPLICATIONS
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Abstract

Since announcin§ plans to build the CRAY T3D
massively parallel processor (MPP), Cray
Research, Inc. has been approached b
numerous customers who have enormous nee
for database mining. Many are not our
traditional science and engineering customers.
These customers want to mine information
about, for example buyin%‘trends, from their
terabyte-sized databases. hey are not asking
for help with their payroll or accounting
systems. They are not asking for COBOL.
They want to build huge decision support

stems. They want to search for reports and

rawzggs done ten years and seven million pages
ago. These customers are looking for MPP to
provide breakthrough gains for competitive
advantage. They have hit the computational
brick wall with their traditional mainframes and
the current MPP offerings. They have come to
the supercomputer company for help.

Background

According to Bob Rohloff, Mobil Exploration &
Producing Division vice president, Mobil Qil
cannot tolerate the “data dilemma of the
geoscientist who spends as much as 60 percent
of his time simply looking for data”, not
working with it. (Source: Open Systems
Today, July 20, 1992, “Mobil's Collaboration™)

One of the reasons Cray Research originall
ported database management systems ( BMS}S
to our computers was to address the concerns of
scientists and engineers who spent much of their
time just looking for data — and possibly having
to recreate the data when it cannot be found -
rather than working with the data. Our
customers have asked us to provide database
management systems on Cray Research systems
th%td will help address their data management
needs.

Copyright © 1994.

Historically, Cray Research parallel vector
processing (PVP) systems have provided
numerous strengths for DBMS processinyg,
including: large memories (e.§., the CRAY Y-
MP M90 series with up to 32 GBytes of real
memory); fast memory (250 GBytes/sec for
CRAY C(90); fast and configurable I/O
subsystems for connecting to many different
kinds of peripherals; ICOS for UNIX
compatibility; network supercomputer protocols
required for implementing client-server
architectures; and the ability to embed SQL (the
ANSI-standard structural query language of
most DBMS) in vectorized and parallelized C
and FORTRAN codes.

Third party DBMS products now available on

Cra esearch PV ssystems are INGRES,
ORACLE, and EMPRESS.

New Market Needs

There is a new class of customer that has
approached Cray Research in the past year with
needs that are often quite different from those of
scientists and engineers. These needs are in the
commercial area of ‘database mining’—
searching the contents of databases looking for
relationships and trends that are not readily
apparent from the data structure.

These customers want to find sales trends, do
marketing analysis, and look for drawings that
they have stored a million pages and many years
ago. They present a wide spectrum of
requirements (see Figure 1) such as decision
support; report generation; data_ visualization;
econometric modeling; and traditional
scientific/engineering applications.

Cray Research, Inc.
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MPP-DBMS Is Core Requirement

Figure 1

The consistent core requirement for these
customer inquiries is an MPP database.

These customers have run into performance
‘brick walls’ with their current systems. They

have larﬁ,ela AT&T-GIS/Teradata systems and
many IBM 3090s and ES-9000s. They came to

Cray Research for help — even before we
announced the CRAY T3D. These customers
are moving to Oﬁen Systems, which right now
means UNIX. They sought out the high-end
suppliers of UNIX systems and, as Figure 2
shows, found Cray Research.

Percentage of the Market
for Large Unix Systems

Cray Research
- m] 5%

Unisys

Other 129,

40%

Sequent
5%

B

* Hitachi

Hewlett- 1%

Packard
10%

Total estimated 1993 market: $3.5 billion
Source: InfoCorp. and September ‘93 Electronic Business Buyer

Figure 2

Cray Research’s UNIX market share and
experience gives these customers a level of
comfort about a major player in this market
being able to provide their UNIX needs.

These commercial customers are not asking for
COBOL or payroll systems or traditional data
Eroccssing applications. Many are asking Cray

esearch for help with Decision Support
%ystems_(DSS) not the time-critical OnLine

ransaction Processing (OLTP) or Point-Of-
Sales (POS) systems. They need fault-
resistance not fault-tolerance. There are a limited
number of sophisticated users on-line — not the
hundreds of users that might be required for
banking or reservation systems. There are also
significant ‘number crunching’ components to
their applications— in concert with the database
processing they want to do.

Requirements for MPP-DBMS

A technical overview of the CRAY T3D is
beyond the scope of this paper and is adequately
covered in other CUG papers. But briefly,
when studying hardware requirements for
running databases on MPP platforms, the
following features must be examined:

« CPU performance. The 150-MHz Alpha
RISC microprocessors from Digital
Equipment can provide the required
horsepower needed for running scalar, CPU-
intensive, MPP-DBMS applications.

Latency. Low latency is important for MPP-
DBMS codes that currently rely on message-
passing models. The CRAY T3D provides
industry-leading low latency.

+ Bandwidth., MPP databases need to move
massive amounts of data. The CRAY T3D
provides unrivaled bisection bandwidth.

+ 1/0. The CRAY T3D's Model E I0S
subsystem provides a wealth of peripheral
capagilities for disks, production tapes and a
large spectrum of standard networking
protocols.



Conclusion

Cray Research's activities in providing MPP
databases for Cray Research systems are part of
a Data Intensive .Sﬁstems (DIS) focus. We are
in discussions with numerous customers who
have DIS and MPP-DBMS needs. These

customers span a wide spectrum of industries
from petroleum, to government, to retailers.

Cray Research is studying the hardware and
“software requirements for MPP-DBMS, and is
establishing requirements for our follow-on
products. We are also in discussions with
various system inte%]rators who can_provide
great synergy and help us move into the
commercial marketplace.

Customers and prospects continue to come to
Cray Research for help because it is clear from
what they are telling us that there is no MPP-
DBMS ‘winner’ to date.
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Asynchronous Double-Buffered I/O Applied to Molecular
Dynamics Simulations of Macromolecular Systems

Richard J. Shaginaw, Terry R. Stouch, and Howard E. Alper

Bristol-Myers Squibb Pharmaceutical Research Institute
P.0. Box 4000
Princeton, NJ 08543-4000

shaginaw@bms.com stouch@bms.com

ABSTRACT

Researchers at the Bristol-Myers Squibb Pharmaceutical Research Institute use a locally modified Discover (tm
Biosym Technologies, Inc.) to simulate the dynamics of large macromolecular systems. In order to contain the
growth of this code as problem size increases, we have further altered the program to permit storage of the atomic-
neighbor lists outside of central memory while running on our Y-MP2E/232 with no SSD. We have done this
efficiently by using BUFFER OUT and BUFFER IN to perform asynchronous double-buffered 1/0 between
neighbor-list buffers and DD-60 disk storage. The result has been an improvement in turnaround for systems
currently under study (because of reduced swapping) and enablement of much larger simulations.

1.0 Introduction

Each atom in a molecular dynamics simulation of a
very large molecule or of a macromolecular system
must sense the attractive/repulsive forces of neighbor-
ing atoms in the system. These atomic neighbors
include the atoms covalently bonded to the atom in
question as well as those not bonded to it but lying
within a prescribed cutoff distance. Faced with the
choice of either identifying all neighbors each time
step or maintaining a periodically updated list of
neighbors, researchers ordinarily choose the latter
approach.

The size of such a neighbor list is linearly propor-
tional to atom count and geometrically proportional to
cutoff length. For researchers interested in treating
very large systems as accurately as possible, the phy-
sical limitation of computer memory is a handicap.
Especially in the Y-MP environment, with expensive
central memory and no virtual paging, the hardware
limits the size of the problem. On less powerful plat-
forms, these computationally intensive problems
require so much time as to be intractable. Moreover,
a virtual-memory system without ability to advise the
system to pre-fetch pages cannot accommodate an
extremely large program.

We have solved this dilemma by using the BUFFER
IN and BUFFER OUT statements in FORTRAN on

the Y-MP to achieve asynchronous transfer of very

large neighbor lists to high-speed disk as the program
creates the neighbor list, and from disk each time step
when the neighbor list is needed. This paper details
the implementation strategy and our results. Section 2
is a more complete statement of the problem. Section
3 discusses our programming strategy in detail. Sec-
tion 4 presents the FORTRAN specifics of the imple-
mentation. Section 5 is a summary of our results and
conclusions.

2.0 Statement of Problem

Numerical simulation of a biological system using
molecular dynamics techniques requires repeated cal-
culation (each time step along a numerically
integrated trajectory) of the force exerted on each
atom in the system by every other atom within a
specified cutoff radins. Each atom then moves once
per time step in response to these forces. The atoms
whose electronic forces affect the motion of a given
atom are considered "neighbors" of that atom. Most
of an atom’s neighbors are not chemically bonded
directly to that atom; nevertheless, their position,
charge, and motion are vital pieces of information.

All atoms in a system under study are indexed using
positive integers. One approach to molecular dynam-
ics involves tracking every atom’s neighbors by keep-
ing a list of neighbors’ indices in an integer array. In

y T

tum, two other integer arrays maintain for each atom



a pointer to its first neighbor’s position in the list and
another pointer to the last. The program reconstructs
the neighbor list at a interval specified by the
researcher based on his or her expectations for the
movement of atoms into and out of cutoff range.

Obviously, a large macromolecular system contains
many atoms; the neighbor list grows approximately
linearly with atom count. Moreover, accurate simula-
tion requires a long cutoff distance; the neighbor list
grows geometrically with cutoff distance. Therefore
the real memory available to a program limits the size
and accuracy of any simulation.

At BMSPRI, researchers are interested in the structure
and dynamics of lipid bilayers as instantiated in
animal cell membranes. The membrane’s structure
and dynamics control the transport and diffusion of
compounds in their vicinity, especially those which
cross the membrane into or out of the cell interior.
The compounds of interest include drug molecules,
toxins, antigens, nutrients, and others. The cell mem-
brane incorporates a variety of embedded proteins,
some which function as receptors for a variety of
stimuli, and others which act as ion channels.

As they have focused their resources on the lipid
bilayer, BMSPRI scientists have increased the size
and accuracy of the simulations they use in their
research. This increase has led to a non-bond neigh-
bor list approaching 7 million Cray words in size.
Added to an already large, complex program, this
memory requirement has pushed the size of the pro-
gram beyond 14 megawords (roughly half of our Y-
MP2E/232). Research progress dictates that future
simulations must embrace much larger systems with
longer cutoffs. In order to achieve this, the research-
ers have decided to try to reduce the strong depen-
dency of program size on molecular system size and
cutoff distance.

3.0 Solution Strategy

Multiple-buffered asynchronous I/O is in common use
in graphical animation, in numerical modeling of very
large physical systems, and in other computer applica-
tions. The basic approach is to create and open at
- least one file, using specialized I/O library functions
or subroutines. These calls permit data to bypass the
1/O buffers that are ordinarily part of user data space
(in the FORTRAN or C library) and to bypass the
buffers that are maintained by the system in kernel
space. In other words, these I/O calls permit data

transfer directly between the user program’s data
space and unstructured files on the storage medium.
The programmer uses at least two program arrays as
I/O buffers, and the program must include the book-
keeping needed to make well-formed I/O requests
(I/O transfers that are integer multiples of the disk
device’s physical block size). Avoiding library and
system buffers permits program execution to continue
while I/O proceeds. Special calls then permit block-
ing of execution in order to synchronize data transfers
before writing to or reading from the program arrays
functioning as buffers, to protect data integrity.

Cray Research supports several techniques for asyn-
chronous I/O. Table 1 outlines these.

Table 1. Cray Research Asynchronous I/O Options.

Technique Description

AQREAD/AQWRITE queued 1/O
BUFFERIN/OUT  unbuffered, unblocked J/O

READDR/WRITDR record-addressable random-access I/O
GETWA/PUTWA word-addressable random-access I/O

As structured at the start of this effort, BMSPRI-
modified Discover generates three neighbor lists; two
of these are subject to rapid growth with cutoff dis-
tance, and so these two are our candidates for disk
storage. Our strategy is to store both lists of neigh-
bors on disk at the time of list creation, and then to
read up this list each time step in the routines that
compute the non-bond energies of the system. We
have no need for record- or word-addressable random
access, because we know a priori that the energy rou-
tines require the data to be read sequentially. Like-
wise, the random-access capability of the queved I/O
calls is unnecessary. We have decided to use
BUFFER IN and BUFFER OUT to achieve asynchro-
nous transfer.

For efficiency, the ratio of transfer time to the quan-
tity (transfer time + latency) must be close to unity;
therefore the buffer size must be sufficiently large to
overwhelm latency. In contrast, for /O to overlap
execution completely, the buffer size must be
sufficiently small to permit completion of the transfer
before the buffer is needed again.

Our fastest filesystems reside on unstriped logical
devices built on DD-60 drives, with one drive per I/O
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channel. The fastest user-writable filesystem is one
we call /tmp/people, a continuous scratch area of
about 5 GB, where every user with an account owns a
directory. The worst-case maximum rotational
latency for DD-60 devices is 26 milliseconds, accord-
ing to Cray Research. We have found that unbuffered
writes to existing unblocked DD-60 files run at about
19 megabytes per second, while unbuffered reads
from the same files proceed at about 16 megabytes
per second. This asymmetry may be due to the fact
that each read requires a seek operation, while the
drives when idle are positioned for writing.

At 16 MB per second, the smallest I/O request size
that permits 90% efficiency is 490,734 words. The
loop timing in the non-bond-energy routines (under a
system load of four simultaneous batch jobs) averages
0.18 seconds, and so the maximum transfer size to
achieve overlap is 377,487 words. These limiting
values clearly eliminate the possibility of 90%
efficient asynchronous I/O in our case. Nevertheless,
we have chosen to accept an efficiency level of less
than 90% in order to test our strategy. We have
chosen a buffer size of 409,600, which is exactly 200
DD-60 sectors in length. This buffer size leads to an
efficiency of 88%, but may lead to incomplete overlap
on the read side under typical load. In the case of
heavy load, overlap on both read and write will be
complete.

We have decided to employ two files, each
corresponding to one buffer, for each list, in order to
maximize overlap in end cases. In other words, we
use four files in the current implementation. We use
the same buffers for reading and for writing, and for
both neighbor lists.

4.0 FORTRAN Implementation

BMSPRI uses the program Discover from Biosym
Technologies, Inc, to carry out its lipid bilayer simu-
lations. The Institute holds a source license for
Biosym, and researchers have modified the program
substantially, to include theory useful in their specific
problem area. Two neighbor-generation routines use
several criteria to determine the relationship of each
atom in the system to every other atom in the system.
These routines create two separate integer lists of
neighbor indices. Two nonbond-energy routines read
through these neighbor lists each time step; these
integer lists point into an array containing charge and
position data for each atom. Four routines contain all
the code modifications made in the double-buffering

effort.

Two COMMON blocks contain six control variables
necessary for bookkeeping and the buffers them-
selves, dimensioned (LBUF,2) where LBUF = LREC
+ LPADD; LREC = 409,600 and LPADD is a pad-
region length, set to 10,000 words.

Each neighbor-generating routine has two loops that
iterate across all "atom groups" in the system. The
first of these loops is operative in the case where all
atoms in the system are permitted to move; the second
loop, when some atoms are held fixed in space. The
energy routines each contain three exclusive loops in
which the neighbor list is read, one atom at a time.

In the list-generation routines, the first action taken is
to synchronize both files used by each of the two
neighbor lists, using the FORTRAN extension
LENGTH. Then the program repositions both files
into which it is about to write to the beginning of data.
Then we initialize all control variables. During each
iteration of the main loop, the program stores each
atom’s neighbor indices sequentially into the
"current” buffer and advances the buffer pointer. At
the end of each iteration, the program tests the buffer
pointer, and if the buffer has overflowed into the pad
region, it initiates a BUFFER OUT for the current
buffer. If this is a second or subsequent write, it uses
LENGTH to synchronize the write of the alternate
buffer. Then it moves the content of the pad region to
the start of the alternate buffer. At this point, the pro-
gram switches the alternate buffer to current status.
Then, whether the "buffer full" test has passed or
failed, if this is the last loop iteration, the program ini-
tiates a BUFFER OUT of the current buffer; other-
wise it continues iterating.

The first action in the non-bond energy routines is to
synchronize all four files and to initialize local control
variables. Then we reposition both files about to be
read to the beginning of data. Then the program ini-
tiates reads into both buffers and then blocks execu-
tion, using LENGTH, to synchronize the read into the
current buffer. The program uses buffer-swapping
techniques analogous to those in the generation rou-
tines to manage the buffers during loop iteration.

To achieve asynchronous I/0O, the files in use must be
typed as "unblocked" files. The UNICOS command
"assign" with the option "-s u" creates a file of type
"unblocked”. We name these files uniquely to each
batch job by including the C-shell process-ID substi-
tution string "$$" in each of the four file names. At



the end of the job, we remove all four files.

5.0 Results and Conclusions

Implementation of these code changes has led to a
reduction in the size of the executable code for a
30,000-atom case with a cutoff of 12 Angstroms by
3.4 Megawords. Moreover, no longer is program size
dependent on cutoff length.

The overhead incurred by BUFFER IN/OUT and the
additional bookkeeping in the program has led to an
increase in CPU time of 1% to 2%. This will cause in
our environment a worst-case increase in turnaround
time of one day (out of 6 weeks of wallclock time) for
a nanosecond of simulated time. This turnaround
delay is acceptable to Institute researchers. More-
over, the improvement in turnaround time due to a
reduction in swap-in-queue residency more than com-
pensates for this disimprovement in most cases. On
the other hand, at this point this code sustains an
increase of I/O wait time from effectively zero to
between 3% and 5% of CPU time. We expect this
wait time to increase turnaround time to an unaccept-
able level. Profiling of the effected routines reveals
that essentially all of these I/O waits occur on the read
side, in the non-bond energy calculation routines. We
believe that this reflects the lower speed of a typical
read. Writing the contents of a 409,600-word buffers
to an unblocked file resident on unstriped DD-60
takes an average of 0.16 seconds; reading a 409,600-
word unit of data from the same file into a buffer
takes about 0.19 seconds. With our typical system
load of four simultaneous batch jobs, our I/O scheme
tries to do a read or write every 0.17 to 0.18 seconds,
on average. This asymmetry between read and write
performance can explain the additional I/O wait time.

Our next modification to this program will be to add a
third buffer to accommodate a read-ahead of the data
chunk beyond the "next" in the energy routines. This
should nearly eliminate the I/O wait overhead. We
also plan to experiment further with the queued asyn-
chronous I/O strategies.
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A PVM Implementation of a Conjugate Gradient Solution
Algorithm for Ground—-Water Flow Modeling
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SUMMARY

This paper concerns the application of a conjugate—gradient
solution method to a widely available U.S. Geological Survey
(USGS) ground—water model called MODFLOW which was
used to solve a ground—water flow management problem in
North Carolina.

The performance of the MODFLOW model incorporating a
polynomial preconditioned conjugate gradient (PPCG) algorithm
is presented on the Cray C90, and a PVM implementation of the
algorithm on the Cray T3D emulator is outlined. For this
large~scale hydrologic application on a shared memory
supercomputer, the polynomial preconditioned conjugate gradient
(PPCG) method is the fastest of several solution methods which
were examined. Further work is needed to ascertain how well
PPCG will perform on distributed memory architectures.

The sections in this paper first introduce the USGS MODFLOW
model and its application to a North Carolina ground—water
flow problem. Next the PPCG algorithm and similar CRAY
library routines are discussed, followed by tables of CPU timing
results and the ratio of parallel speed—up attained by the
MODFLOW model on the Cray C90.

The final section discusses the distributed memory
implementation of the PPCG algorithm using PVM on the Cray
T3D emulator followed by a summary and plans for future work.

ABSTRACT

There is a need for additional computing power for modeling
complex, long term, real-world, basin—scale hydrologic
problems, Two examples which illustrate the computational
nature of ground-water modeling are:

1. the stochastic nature of the model input data may require a
sensitivity analysis for each model input parameter and/or a

number of monte—carlo simulations

2. optimal wellfield pumping scenarios for minimizing
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drawdown or for control of contaminant plumes or saltwater
intrusion can require many independent simulations

The need to model larger more complex problems is coupled with a
need for applying more efficient parallel algorithms which

can take advantage of supercomputer hardware and reduce the
wall—clock time to get a solution.

INTRODUCTION

This paper examines replacements for the matrix solution algorithm
used in a USGS ground-water model, MODFLOW. MODFLOW is
the short name for the Modular Three—Dimensional Finite
Difference Ground-Water Flow Model [10], a publically—available
model which is widely used in industry, academia, and government.
MODFLOW simulates transient ground~water flow and can
include the influence of rivers, drains, recharge/discharge wells, and
precipitation on both confined and unconfined aquifers.

A WATER RESOURCE MANAGEMENT APPLICATION

The application presented in this paper is a water resources
management study conducted by Eimers [2,3] with the MODFLOW
model to determine the influence of pumping on a 3,600
square~mile study area that is a subset of the ten—vertical-layer
aquifer system composing the 25,000 square-mile North Carolina
Coastal Plain. The aquifer model consists of 122,400 finite
difference cells on a 10 x 120 x 102 grid. This is a transient problem
with 120 time steps representing a total simulation time of 87 years.
The number of wells in the model ranges from 1,416 to 1,680,
although some of these are not actual well sites but are
pseudo—wells needed to constrain the hydraulic condition at certain
political boundaries where there is no corresponding hydrogeologic
boundary. Vertical conductance, transmissivity, and storage
coefficients can vary by node within each layer but are assumed to
have no directional component.

GROUND-WATER SOLUTION ALGORITHMS

Many algorithms are available to solve the ground-water flow
equations and there is certainiy not one best algorithm for all



problems on all computers. MODFLOW constructs a sparse
matrix called the A matrix from the discrete form of the flow
equations, then solves the matrix. The matrix is symmetric,
positive definite, and has three off—diagonals. In MODFLOW,
97% of the total CPU time is spent in the A matrix solution.

A direct linear equation solver such as banded Gauss elimination
computes an explicit factorization of the matrix and in general
guarantees an accurate solution. Iterative matrix solvers, such as
the strongly implicit procedure supplied with MODFLOW,
begin with an initial approximate solution and then converge
toward the solution, thus improving the approximate solution
with each iteration.

Used appropriately, iterative algorithms can be as accurate and
much faster than direct methods applied to these kinds of
problems. Dubois [1], Hill [5], Jordan [8], Van der Vorst [15] and
many others have confirmed the desirable properties of iterative
conjugate gradient (CG) solvers on vector computers. Johnson [7]
suggested polynomial preconditioners for CG solvers and Oppe,
et.al.[12] implemented a general non-symmetric preconditioned
CG package on a CRAY.

Specifically for ground-water modeling, Kuiper [9] compared the
incomplete Cholesky CG method with the strongly implicit
procedure (SIP) described by Weinstein, et.al.[16], and Scandrett
[14] extended the work and included timings on the CDC Cyber
205, reporting that PPCG has very good convergence and that the
iteration sequence is completely vectorizable. Morrow and
Holter [11] implemented a single—CPU vectorized PPCG solver
for MODFLOW on the Cyber 205. Saad [13] discussed the steps
needed to implement a parallel version of the PPCG algorithm
and Holter, et.al.[6] attained 1.85 gigaflops on a CRAY Y-MPS§
with a multitasked PPCG solver for a two—dimensional
ground-water diffusion problem.

PPCG

The PPCG algorithm provides an efficient, vector—parallel
solution of AX=B, where A is symmetric, banded, and diagonally
dominant. It is assumed that A has been normalized (by a
straightforward procedure) so that all its diagonal elements are
equal to unity.

The algorithm utilizes a least squares polynomial approximation
to the inverse of A, and calls for the repeated multiplication of
this inverse and a vector of residuals, R. [11]

The steps in the PPCG algorithm can be summarized as follows:

1. Set an initial estimate of the groundwater pressure heads in
the aquifer.

2. Compute the vector of residuals

. Form two auxiliary vectors from the residuals

4. Iteratively cycle through a six—step process which updates the
heads and residuals until convergence

w

CRAY SCIENTIFIC LIBRARY ROUTINES

As mentioned previously, several variations of preconditioned CG
matrix solvers perform well on vector computers. Several of these
methods are incorporated into a single routine in the CRAY
UNICOS Math and Scientific Library (SCILIB). The routine is
called SITRSOL and it is a general sparse matrix solver which
allows the selection of a preconditioned conjugate gradient—like
method. SITRSOL has many selections for the combination of
preconditioner and iteration method. The six options for iterative
method (accelerators) are:

—
H

(BCG) — Bi-conjugate gradient method

2. (CGN) — Conjugate gradient method applied with Craig’s
Method

3. (CGS) —- Conjugate gradient squared method

4. (GMR) — Generalized minimum residual method

5. (OMN) — Orthomin/generalized conjugate residual method

6. (PCG) —- Preconditioned conjugate gradient method

For preconditioners, there are also six options:

1. No preconditioning

2. Diagonal (Jacobi) preconditioning

3. Incomplete Cholesky factorization

4. Incomplete LU factorization

5. Truncated Neumann polynomial expansion

6. Truncated least squares polynomial expansion

Not all combinations of preconditioners work with all the
selections for accelerators. For instance, Incomplete LU
factorization cannot be used with a symmetric matrix in
half-storage mode. PCG cannot be used unless the matrix
resulting from MODFLOW is always positive definite (it is).

The performance of several of these SITRSOL matrix solution
routines is compared for solving a test problem of similar size as
the North Carolina ground—-water modeling problem (see Table
1.). All the runs were made on one CPU of a YMP-2E.

10x125x125 cell MODFLOW problem
Pre- memory  algorithm CPU
Algorithm conditioner Mwords _megaflops seconds
PPCG* polynomial 1,435 232 190
BCG least squares 11,400 45 956
CGS least squares 3,650 106 275
PCG least squares 3,156 98 232
PCG Neumann 5,774 127 441
PCG Cholesky 18,342 16 951
*not a part of SITRSOL

Table 1. PPCG and SITRSOL timing comparisons.

The column headed memory is the CPU memory integral time
reported by the UNICOS ja command. This indicates an average
memory requirement for for the duration of execution of the entire
code. The numbers can be used to infer a comparative memory
requirement for the solution algorithms. 81



For the SITRSOL solution routines, the least squares
preconditioner combined with the PCG iterative method had the
lowest time and memory requirement of the five attempted
SITRSOL combinations, but PPCG was the overall best. The
PPCG algorithm is coded to take advantage of the specific
sparse—~diagonal matrix structure in the MODFLOW model.

SHARED MEMORY PARALLEL-VECTOR STRATEGY

Compiler-level strip mining of DO loops was the data—parallel
approach used to implement the PPCG algorithm on multiple
processors of the Cray C90. Several modifications to the
single—cpu PPCG algorithm were made to accomplish this. Some
of these modifications also improved the performance of the
single-cpu implementation of the algorithm.

The MODFLOW code has a large scratch array dimensioned in the
main program and individual variables are referenced by pointers to
locations within the scratch array. In some cases, this degrades
data locality. To accomplish data locality and to avoid unnecessary
references to memory, MODFLOW variables which were a part of
the matrix solution were removed from the large scratch array and
recast as arrays which were /ocal to the PPCG solution routine.
Also, some variables were removed from DATA and SAVE
statements in order to have as many variables as possible stored on
the stack.

Next, the lengths of the off-diagonals were padded by
zero—filling to match the length of longest diagonal of the matrix
(the main diagonal). This allowed the elimination of some IF
tests associated with the shorter diagonals. Also several DO
LOOPS of varying lengths could now be collapsed into a single DO
LOOP, thus organizing lots of work into a single parallel region.
For the North Carolina water management problem, loop lengths
were fixed by parameter statements to 122,400 to eliminate the
need for execution~time checking of loop lengths prior to
strip—mining.

Tables 2. presents the Y-MP-C98 timing results for the entire
MODFLOW model solving the North Carolina water management
problem (122,400 groundwater cells for the 87 year simulation
period) with the shared memory implementation of PPCG.

10x120x102 cells (122,400 equns.)
Y-MP- c98

# Wall CPU Mflops Concurrent Total
CPUs sec. sec. /CPU avg.cpus Gflops

1 61 57 641 1.0 0.64
2 40 62 589 16 0.94
4 31 65 558 2.2 1.2
8 28 67 541 24 13
8" 15 78 466 52 2.4

*dedicated run
82 Table 2. Timing results for Modflow model

All the listed computer runs were made during the day on
production systems and none of the results are benchmark runs
though, as noted, one of the runs was made in the
single~job—streaming queue (only one batch job is allowed to ru
at a time). The reported wall-clock times will vary depending o
the number of jobs in the system. The listed CPU times and
megaflop rates are fairly independent of system load.

The CPU times increase slightly with additional CPUs, and the
reduction in wall clock time illustrates that multitasking can cu
the turnaround time on a production system.

DISTRIBUTED MEMORY MESSAGE PASSING
STRATEGY

Parallel Virtual Machine (PVM) was used to implement the
distributed version of the PPCG algorithm on the T3D emulator
running on the multiple processors of the Cray C90.

PVM is a public domain set of library routines originally
developed for explicit communication between heterogeneous
systems tied to a network [4]. PVM was developed at Oak Ridg
National Laboratory, and it has become a de—facto message passit
standard.

Message passing is a parallel programming paradigm which is
natural for network based or (in this case) distributed memory
systems. An additional benefit of the message passing paradigm :
that it is portable. A message consists of a user—defined message
tag and the accompanying data. Messages may be either
point—to—point or global (broadcast). In point—to—point
message passing, the sender specifies the task to which the messag
is to be sent, the data to be sent, and the unique message tag to lat
the message. Then the message is packed into a buffer and sent to
the interconnection network. The receiver specifies the task from
which the message is expected, the unique message tag which is
expected, and where to store the data which is received from the
network.

In actual PVM implementation in FORTRAN, the sending task
makes three PVM calls which (1) create the send buffer, (2) pacl
the data into the send buffer, and (3) send the message. Similarly
the receiving task makes two PVM calls which (1) receive the
message from the network, and (2) unpack the data into the loca
memory user space. '

A general observation is that message passing is to parallel systei
as assembly language is to mainframes. Considerable modificatic
of the shared—memory version of the PPCG algorithm was
necessary to accomplish the implementation with message passin
The explicit nature of message passing can also be tedious (unique
message tags, five FORTRAN routine calls to send/receive any
piece of data, etc). This discourages frequent communications.
Avoiding unnecessary communication is an important part of

distributed compnting
4 L=

The message passing strategy for implementing the PPCG
algorithm on the T3D emulator began with equally distributing



the data contained in FORTRAN arrays among the total number of
processors. All four diagonals of the A matrix (the matrix to be
solved) are copied from the master processor (PE0), so that each
processor has a local copy of its part of the matrix. This is
necessary because the A matrix is set up by the MODFLOW model
and passed to the matrix solution routine and, to date, only the
PPCG solution routine has been implemented in PVM. In the
program, the arrays W1, WM1, P, R, SQINV, and B can all be
distributed equally across the processors. For example, Figure 1.
shows three of these six arrays distributed across four processors.

PeQ0 Peit Pe2 Ped

R, SQINV, B

Figure 1. Distributed Linear arrays R, SQINV, and P

A second part of the message passing strategy for implementing
the PPCG algorithm was to accomplish communication between
processors by making and distributing offset copies of the A matrix
and the temporary work vectors needed in the iterative solution.
There are six regular communication patterns which trace back to
the three dimensions of the groundwater problem being solved.
These six patterns involve offsetting the data by either plus or
minus 7, plus or minus ND, or plus or minus NX, where for this
particular groundwater problem, ND=12,240 and NX=102.

This communication is similar to the End-Off Shift (EOSHIFT)
operation where data does not wrap around from the last processor
to the first. Two of these communication patterns are shown in
Figure 2.

Pe0 Pel1 Pe2 Pe3

A S S
Pe0 Pel Pe2 Pe3

v ™

Figure 2. EOSHIFT Operation

Figure 3. shows a complete pattern involving all six offsets.
Note that not all offsets will result in off-processor
communication. In Figure 3, the —1 offset on PEL1 is an
on-processor communication. The mix between on and off
processor communication also will change with the total number
of processors.

Pe0 Pel Pe2 Pe3

Figure 3. Communication Pattern

Also, there are a number of reduction operations that are
accomplished using PVM to communicate the partial sums from
each processor back to PEO using a standard library—like routine.

RESULTS and FUTURE PLANS

For the MODFLOW ground-water modeling application, CPU
times for several shared—memory sparse matrix solution
algorithms are compared. The PPCG algorithm on a Cray
YMP-C98 ran at 2.4 gigaflops and attained a speedup ratio of
5.2. The distributed~memory version of the PPCG algorithm
was implemented on the emulator and the next step is to port the
code to the CRAY T3D.

CONCLUSIONS

Supercomputers and efficient vector—parallel solution
algorithms can speed processing and reduce turn—around time for
large hydrologic models, thus allowing for more accurate
simulations in a production environment where wall-clock
turnaround is important to the ground~water model user.

SUMMARY

A data—parallel shared memory implementation and a PVM
distributed memory implementation of a polynomial
preconditioned conjugate gradient solution algorithm for the U.S.
Geological Survey ground-water model MODFLOW were
presented. The PVM solution is accomplished on multiple
processors and can be ported to the T3D.

Performance on the Cray C90 is presented for a three-dimensional
122,400 cell anisotropic ground-water flow problem
representing a transient simulation of pumping a North Carolina
aquifer for 87 years.
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Decimation of Triangle Meshes

William J. Schroeder

General Electric Company
Scenectady, NY

1.0 INTRODUCTION

The polygon remains a popular graphics primitive for
computer graphics application. Besides having a simple
representation, computer rendering of polygons is widely
supported by commercial graphics hardware and software.
However, because the polygon is linear, often thousands
or millions of primitives are required to capture the details
of complex geometry. Models of this size are generally
not practical since rendering speeds and memory require-
ments are proportional to the number of polygons. Conse-
quently applications that generate large polygonal meshes
often use domain-specific knowledge to reduce model
size. There remain algorithms, however, where domain-
specific reduction techniques are not generally available
or appropriate.

One algorithm that generates many polygons is march-
ing cubes. Marching cubes is a brute force surface con-
struction algorithm that extracts isodensity surfaces from
volume data, producing from one to five triangles within
voxels that contain the surface. Although originally devel-
oped for medical applications, marching cubes has found
more frequent use in scientific visualization where the size
of the volume data sets are much smaller than those found
in medical applications. A large computational fluid
dynamics volume could have a finite difference grid size
of order 100 by 100 by 100, while a typical medical com-
puted tomography or magnetic resonance scanner pro-
duces over 100 slices at a resolution of 256 by 256 or 512
by 512 pixels each. Industrial computed tomography, used
for inspection and analysis, has even greater resolution,
varying from 512 by 512 to 1024 by 1024 pixels. For
these sampled data sets, isosurface extraction using
marching cubes can produce from 500k to 2,000k trian-
gles. Even today’s graphics workstations have trouble
storing and rendering models of this size.

Other sampling devices can produce large polygonal
models: range cameras, digital elevation data, and satellite
data. The sampling resolution of these devices is also
improving, resulting in model sizes that rival those
obtained from medical scanners.

This paper describes an application independent algo-
rithm that uses local operations on geometry and topology
to reduce the number of triangles in a triangle mesh.
Although our implementation is for the triangle mesh, it
can be directly applied to the more general polygon mesh.
After describing other work related to model creation
from sampled data, we describe the triangle decimation

process and its implementation. Results from two differ-
ent geometric modeling applications illustrate the
strengths of the algorithm.

2.0 THE DECIMATION ALGORITHM

The goal of the decimation algorithm is to reduce the
total number of triangles in a triangle mesh, preserving
the original topology and a good approximation to the
original geometry.

21 OVERVIEW

The decimation algorithm is simple. Multiple passes are
made over all vertices in the mesh. During a pass, each
vertex is a candidate for removal and, if it meets the spec-
ified decimation criteria, the vertex and all triangles that
use the vertex are deleted. The resulting hole in the mesh
is patched by forming a local triangulation. The vertex
removal process repeats, with possible adjustment of the
decimation criteria, until some termination condition is
met. Usually the termination criterion is specified as a
percent reduction of the original mesh (or equivalent), or
as some maximum decimation value. The three steps of
the algorithm are:

1. characterize the local vertex geometry and topology,
2. evaluate the decimation criteria, and
3. triangulate the resulting hole.

2.2 CHARACTERIZING LOCAL
GEOMETRY / TOPOLOGY

The first step of the decimation algorithm characterizes
the local geometry and topology for a given vertex. The
outcome of this process determines whether the vertex is
a potential candidate for deletion, and if it is, which crite-
ria to use.

Each vertex may be assigned one of five possible clas-
sifications: simple, complex, boundary, interior edge, or
corner vertex. Examples of each type are shown in the

figure below.
N A2 L N Sh
vy ] VY WY
Boundary  Interior  Corner

Simple  Complex
Edge

A simple vertex is surrounded by a complete cycle of
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triangles, and each edge that uses the vertex is used by
exactly two triangles. If the edge is not used by two trian-
gles, or if the vertex is used by a triangle not in the cycle of
triangles, then the vertex is complex. These are non-mani-
fold cases.

A vertex that is on the boundary of a mesh, i.e., within a
semi-cycle of triangles, is a boundary vertex.

A simple vertex can be further classified as an interior
edge or comer vertex. These classifications are based on the
local mesh geometry. If the dihedral angle between two
adjacent triangles is greater than a specified feature angle,
then a feature edge exists. When a vertex is used by two fea-
ture edges, the vertex is an interior edge vertex. If one or
three or more feature edges use the vertex, the vertex is clas-
sified a corner vertex.

Complex vertices are not deleted from the mesh. All other
vertices become candidates for deletion.

2.3 EVALUATING THE DECIMATION
CRITERIA

The characterization step produces an ordered loop of verti-
ces and triangles that use the candidate vertex. The evalua-
tion step determines whether the triangles forming the loop
can be deleted and replaced by another triangulation exclu-
sive of the original vertex. Although the fundamental deci-
mation criterion we use is based on vertex distance to plane
or vertex distance to edge, others can be applied.

Simple vertices use the distance to plane criterion (see
figure below). If the vertex is within the specified distance
to the average plane it may be deleted. Otherwise it is

<IN

Boundary and interior edge vertices use the distance to
edge criterion (figure below). In this case, the algorithm
determines the distance to the line defined by the two verti-
ces creating the boundary or feature edge. If the distance to
the line is less than d, the vertex can be deleted.

&

It is not always desirable to retain feature edges. For
example, meshes may contain areas of relatively small tri-
angles with large feature angles, contributing relatively little
to the geometric approximation, Or, the small triangles may
be the result of “noise” in the original mesh. In these situa-
tions, corner vertices, which are usually not deleted, and
interior edge vertices, which are evaluated using the dis-
tance to edge criterion, may be evaluated using the distance
to plane criterion. We call this edge preservation, a user
specifiable parameter.

If a vertex can be eliminated, the loop created by remov-
ing the triangles using the vertex must be triangulated. For

average plane

boundary

interior edge vertices, the original loop must be split into
two halves, with the split line connecting the vertices form-
ing the feature edge. If the loop can be split in this way, i.c.,
so that resulting two loops do not overlap, then the loop is
split and each piece is triangulated separately.

24 TRIANGULATION

Deleting a vertex and its associated triangles creates one
(simple or boundary vertex) or two loops (interior edge ver-
tex). Within each loop a triangulation must be created
whose triangles are non-intersecting and non-degenerate. In
addition, it is desirable to create triangles with good aspect
ratio and that approximate the original loop as closely as
possible.

In general it is not possible to use a two-dimensional
algorithm to construct the triangulation, since the loop is
usually non-planar. In addition, there are two important
characteristics of the loop that can be used to advantage.
First, if a loop cannot be triangulated, the vertex generating
the loop need not be removed. Second, since every loop is
star-shaped, triangulation schemes based on recursive loop
splitting are effective. The next section describes one such
scheme.

Once the triangulation is complete, the original vertex and
its cycle of triangles are deleted. From the Euler relation it
follows that removal of a simple, comner, or interior edge
vertex reduces the mesh by precisely two triangles. If a
boundary vertex is deleted then the mesh is reduced by pre-
cisely one triangle.

3.0 IMPLEMENTATION

3.1 DATA STRUCTURES

The data structure must contain at least two pieces of infor-
mation: the geometry, or coordinates, of each vertex, and
the definition of each triangle in terms of its three vertices.
In addition, because ordered lists of triangles surrounding a
vertex are frequently required, it is desirable to maintain a
list of the triangles that use each vertex.

Although data structures such as Weiler’s radial edge or
Baumgart’s winged-edge data structure can represent this
information, our implementation uses a space-efficient ver-
tex-triangle hierarchical ring structure. This data structure
contains hierarchical pointers from the triangles down to the
vertices, and pointers from the vertices back up to the trian-
gles using the vertex. Taken together these pointers form a
ring relationship. Our implementation uses three lists: a list
of vertex coordinates, a list of triangle definitions, and
another list of lists of triangles using each vertex. Edge defi-
nitions are not explicit, instead edges are implicitly defined
as ordered vertex pairs in the triangle definition.

3.2 TRIANGULATION

Although other triangulation schemes can be used, we chose
a recursive loop splitting procedure. Each loop to be trian-
gulated is divided into two halves. The division is along a
line (i.e., the split line) defined from two non-neighboring
vertices in the loop. Each new loop is divided again, until



only three vertices remain in each loop. A loop of three ver-
tices forms a triangle, that may be added to the mesh, and
terminates the recursion process.

Because the loop is non-planar and star-shaped, the loop
split is evaluated using a split plane. The split plane, as
shown in the figure below, is the plane orthogonal to the
average plane that contains the split line. In order to deter-
mine whether the split forms two non-overlapping loops,
the split plane is used for a half-space comparison. That is,
if every point in a candidate loop is on one side of the split
plane, then the two loops do not overlap and the split plane
is acceptable. Of course, it is easy to create examples where
this algorithm will fail to produce a successful split. In such
cases we simply indicate a failure of the triangulation pro-
cess, and do not remove the vertex or surrounding triangle
from the mesh,

Typically, however, each loop may be split in more than
one way. In this case, the best splitting plane must be
selected. Although many possible measures are available,
we have been successful using a criterion based on aspect
ratio. The aspect ratio is defined as the minimum distance of
the loop vertices to the split plane, divided by the length of
the split line. The best splitting plane is the one that yields
the maximum aspect ratio. Constraining this ratio to be
greater than a specified value,.e.g., 0.1, produces acceptable
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meshes,

Certain special cases may occur during the triangulation
process. Repeated decimation may produce a simple closed
surface such as a tetrahedron. Eliminating a vertex in this
case would modify the topology of the mesh. Another spe-
cial case occurs when “tunnels” or topological holes are
present in the mesh. The wnnel may eventually be reduced
to a triangle in cross section. Eliminating a vertex from the
tunnel boundary then eliminates the tunnel and creates a
non-manifold situation,

These cases are treated during the triangulation process.
As new triangles are created, checks are made to insure that
duplicate triangles and triangle edges are not created. This
preserves the topology of the original mesh, since new con-
nections to other parts of the mesh cannot occur.

4.0 RESULTS

Two different applications illustrate the triangle decimation
algorithm. Although each application uses a different
scheme to create an initial mesh, all results were produced
with the same decimation algorithm.

41 VOLUME MODELING

The first application applies the decimation algorithm to
isosurfaces created from medical and industrial computed
tomography scanners. Marching cubes was run on a 256 by
256 pixel by 93 slice study. Over 560,000 triangles were
required to model the bone surface. Earlier work reported a
triangle reduction strategy that used averaging to reduce the
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number of triangles on this same data set. Unfortunately,
averaging applies uniformly to the entire data set, blurring
high frequency features. The first set of figures shows the
resulting bone isosurfaces for 0%, 75%, and 90% decima-
tion, using a decimation threshold of 1/5 the voxel dimen-
sion. The next pair of figures shows decimation results for
an industrial CT data set comprising 300 slices, 512 by 512,
the largest we have processed to date. The isosurface cre-
ated from the original blade data contains 1.7 million trian-
gles. In fact, we could not render the original model because
we exceeded the swap space on our graphics hardware,
Even after decimating 90% of the triangles, the serial num-
ber on the blade dovetail is still evident.

4.2 TERRAIN MODELING

We applied the decimation algorithm to two digital eleva-
tion data sets: Honolulu, Hawaii and the Mariner Valley on
Mars. In both examples we generated an initial mesh by cre-
ating two triangles for each uniform quadrilateral element in
the sampled data. The Honolulu example illustrates the
polygon savings for models that have large flat areas. First
we applied a decimation threshold of zero, eliminating over
30% of the co-planar triangles. Increasing the threshold
removed 90% of the triangles. The next set of four figures
shows the resulting 30% and 90% triangulations. Notice the
transitions from large flat areas to fine detail around the
shore line.

The Mars example is an appropriate test because we had
access to sub-sampled resolution data that could be com-
pared with the decimated models. The data represents the
western end of the Mariner Valley and is about 1000km by
500km on a side. The last set of figures compares the shaded
and wireframe models obtained via sub-sampling and deci-
mation. The original model was 480 by 288 samples. The
sub-sampled data was 240 by 144, After a 77% reduction,
the decimated model contains fewer triangles, yet shows
more fine detail around the ridges.
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ABSTRACT

Ash clouds resulting from volcanic eruptions pose a serious hazard to aviation safety. In Alaska alone, there are over 40 active
volcanoes whose eruptions may affect more than 40,000 flights using the great circle polar routes each year. Anchorage International
Airport, a hub for flights refueling between Europe and Asia, has been closed due to volcanic ash on several occasions in recent years.
The clouds are especially problematic because they are invisible to radar and nearly impossible to distinguish from weather clouds. The
Arctic Region Supercomputing Center and the Alaska Volcano Observatory have used AVS to develop a system for predicting and
visualizing the movement of volcanic ash clouds when an eruption occurs. Based on eruption parameters obtained from geophysical
instruments and meteorological data, a model was developed to predict the movement of the ash particles over a 72 hour period. The
output from the model is combined with a digital elevation model to produce a realistic view of the ash cloud, which may be examined
interactively from any desired point of view at any time during the prediction period. This paper describes the visualization techniques
employed in the system and includes a video animation of the Mount Redoubt eruption on December 15 that caused complete engine

failure on a 747 passenger jet when it entered the ash cloud.

1. Introduction

Alaska is situated on the northern boundary of the Pacific Rim.
Home to the highest mountains in North America, the mountain
ranges of Alaska contain over 50 active volcanoes. In the past
200 years most of Alaska's active volcanoes have erupted at least
once. Alaska is a polar crossroads where aircraft traverse the great
circle airways between Asia, Europe and North America.
Volcanic eruptions in Alaska and the resulting airborne ash
clouds pose a significant hazard to the more than 40,000
transpolar flights each year.

The ash clouds created by volcanic eruptions are invisible to radar
and are often concealed by weather clouds. This paper describes a
system developed by the Alaska Volcano Observatory and the
Arctic Region Supercomputing Center for predicting the
movement of ash clouds. Using meteorological and geophysical
data from volcanic eruptions, a supercomputer model provides
predictions of ash cloud movements for up to 72 hours. The
AVS visualization system is used to control the execution of the
ash cloud model and to display the model output in three
dimensional form showing the location of the ash cloud over a
digital terrain model.
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Eruptions of Mount Redoubt on the morning of December 15,
1989, sent ash particles more than 40,000 feet into the
atmosphere. On the same day, a Boeing 747 experienced
complete engine failure when it penetrated the ash cloud. The ash
cloud prediction system was used to simulate this eruption and to
produce an animated flyby of Mount Redoubt during a 12 hour
period of the December 15 eruptions including the encounter of
the 747 jetliner with the ash cloud. The animation combines the
motion of the viewer with the time evolution of the ash cloud
above a digital terrain model.

2. Ash Plume Model

The ash cloud visualization is based on the output of a model
developed by Hiroshi Tanaka of the Geophysical Institute of the
University of Alaska and Tsukuba University, Japan. Using
meteorological data and eruption parameters for input, the model
predicts the density of volcanic ash particles in the atmosphere as
a function of time. The three dimensional Lagrangian form of the
diffusion equation is employed to model particle diffusion, taking
into account the size distribution of the ash particles and
gravitational settling described by Stokes' law. Details of the
model are given in Tanaka [2] [3].



The meteorological data required are winds in the upper
atmosphere. These are obtained from UCAR Unidata in NetCDF
format. Unidata winds are interpolated to observed conditions on
12 hour intervals. Global circulation models are used to provide
up to 72 hour predictions at 6 hour intervals.

The eruption parameters for the model include the geographical
location of the volcano, the time and duration of the event,
altitude of the plume, particle density, and particle density
distribution.

The model has been implemented in both Sun and Cray
environments. An AVS module was created for the Cray version
which allows the model to be controlled interactively from an
AVS network. In this version, the AVS module executes the
model on the Cray, reads the resulting output file and creates a
3D AVS scalar field representing the particle densities at each
time step.

The raw output from the model for each time step consists of a
list of particles with an (x,y,z) coordinate for each particle. The
AVS module reads the particle data and increments the particle
counts for the cells formed by an array indexed over (x,y,z). We
chose a resolution of 150 x 150 x 50 for the particle density
array, which equals 1.1 million data points at each solution point
in time. For the video animation, we chose to run the model
with a time step of 5 minutes. For 13 hours of simulated time,
the model produced 162 plumes, amounting to approximately
730 MB of integer valued volume data.

3. Ash Cloud Visualization

The ash cloud is rendered as an isosurface with a brown color
approximating volcanic ash. The rendering obtained through this
technique gives the viewer a visual effect showing the boundaries
of the ash cloud. Details of the cloud shape are highlighted
through lighting effects and, when viewed on a computer
workstation, the resulting geometry can be manipulated
interactively to view the ash cloud from any desired direction.

eometry viewer

Figure 1. AVS plume isosurface network

At any point in time, the particle densities in the ash cloud are
represented by the values in a 150 x 150 x 50 element integer
array. The limits of the cloud may be observed using the
isosurface module in the network shown in Figure 1 with the
isosurface level set equal to 1. As the cloud disperses, the
particle concentrations in the array decrease and holes and isolated
cells begin to appear in the isosurface around the edges of the
plume where the density is between zero and one particle. These
effects are readily apparent in the plume shown in Figure 2 and
are especially noticeable in a time animation of the plume
evolution. To create a more uniform cloud for the video
animation, without increasing the overall particle counts, the
density array was low pass filtered by an inverse square kerel
before creating the isosurface. An example of a filtered plume
created by this technique is shown in Figure 8.

Figure 2. Unfiltered plume data displayed as an isosurface.

4. Plume Animation

The plume model must use time steps of 5 minutes or greater
due to limitations of the model. Plumes that are generated at 5
minute intervals may be displayed to create a flip chart animation
of the time evolution of the cloud. However, the changes in the
plume over a 5 minute interval can be fairly dramatic and shorter
time intervals are required to create the effect of a smoothly
evolving cloud. To accomplish this without generating
additional plume volumes we interpolate between successive
plume volumes. Using the field math module, we implemented
linear interpolation between plume volumes in the network
shown in Figure 3.
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Figure 3. AVS interpolation network.

The linear interpolation formula is:
PO)=P; + (Pj41-Ppt, 0<t<1, ™M

where Pj is the plume volume at time step i and t is time. The
difference term in (1) is formed in the upper field math module.
The lower field math module sums its inputs. Normally, a
separate field math module would be required to perform the
multiplication by t. However, it is possible to multiply the
output port of a field math module by a constant value when the
network is executed from a CLI script and this is the approach
we used to create the video animation of the eruption. If it is
desired to set the interpolation parameter interactively, it is
necessary to insert a third field math module to perform the
multiplication on the output of the upper module. This can be
an extremely effective device for producing smooth time
animation of discrete data sets in conjunction with the AVS
Animator module.

One additional animation effect was introduced to improve the
appearance of the plume at the beginning of the eruption. The
plume model assumes that the plume reaches the specified
eruption height instantaneously. Thus, the plume model for the
first time step produces a cylindrical isosurface of uniform
particle densities above the site of the eruption. To create the
appearance of a cloud initially rising from the ground, we defined
an artificial plume for time 0. The time O plume isosurface
consists of an inverted cone of negative plume densities
centered over the eruption coordinates. The top of the plume
volume contains the most negative density values. When this
plume volume is interpolated with the model plume from time
step 1, the resulting plume rises from the ground and reaches the
full eruption height at t=1.

5. Terrain Visualization

The geographical region for this visualization study is an area in
south-central Alaska which lies between 141° - 160° west
longitude and 60° - 67° north latitude. Features in the study area
include Mount Redoubt, Mount McKinley, the Alaska Range,
Cook Inlet and the cities of Anchorage, Fairbanks, and Valdez.
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The comers of the region define a Cartesian coordinate system
and the extents of the volcano plume data must be adjusted to
obtain the correct registration of the plume data in relation to the
terrain. The terrain features are based on topographic data
obtained from the US Geological Survey with a grid spacing of
approximately 90 meters. This grid was much too large to
process at the original resolution and was downsized to a 1426 x
1051 element array of terrain elevations, which corresponds to a
grid size of approximately 1/2 mile. As shown in Figure 4, the
terrain data were read in field format and were converted to a
geometry using the field to mesh module. We included a
downsize module

downsize

generate colomm

fieldtomesh M

i
geometry viewer

Figure 4. AVS terrain network.

ahead of field to mesh because even the 1426 x 1051 terrain
exceeded available memory on all but our largest machines. For
prototyping and animation design, we typically downsized by
factors of 2 to 4 in order to speed up the terrain rendering.

The colors of the terrain are set in the generate colormap
module according to elevation of the terrain and were chosen to
approximate ground cover during the fall season in Alaska. The
vertical scale of the terrain was exaggerated by a factor of 60 to
better emphasize the topography.

The resulting terrain is shown Figure 5 with labels that were
added using image processing techniques. To create the global
zoom sequence in the introduction to the video animation, this
image was used as a texture map that was overlaid onto a lower
resolution terrain model for the entire state of Alaska. This
technique also allowed the study area to be highlighted in such a
way as to create a smooth transition into the animation sequence.



Figure 5. Study area with texture mapped labels.

6. Flight Path Visualization

The flight path of the jetliner in the animation was produced by
applying the tube module to a polyline geometry obtained
through read geom as shown in Figure 6. The animation of the
tube was performed by a simple program which takes as its input
a time dependent cubic spline. The program evaluates the spline
at specified points to create a polyline geometry for read geom.
Each new point added to the polyline causes a new segment of
the flight path to be generated by tube. In Figure 7, the entire
flight path spline function is displayed. Four separate tube
modules were employed to allow the flight path segments to be
colored green, red, yellow, and green during the engine failure and
restart sequence.

geometry viewer

Figure 6. AVS flight path network.

The path of the jetliner is based on flight recorder data obtained
from the Federal Aviation Administration. The flight path was
modeled using three dimensional time dependent cubic splines.
The technique for deriving and manipulating the spline functions
is so powerful that we created a new module called the Spline
Animator for this purpose. The details of this module are
described in a paper by Astley [1]. A similar technique is used to
control the camera motion required for the flyby in the video
animation.

By combining the jetliner flight path with the animation of the
ash plume described earlier, a simulated encounter of the jet with
the ash cloud can be studied in an animated sequence. The
resulting simulation provides valuable information about the
accuracy of the plume model. Because ash plumes are invisible
to radar and may be hidden from satellites by weather clouds, it is
often very difficult to determine the exact position and extent of
an ash cloud from direct observations. However, when a jetliner
penetrates an ash cloud, the effects are immediate and
unmistakable and the aircraft position is usually known rather
accurately. This was the case during the December 15 encounter.

Thus, by comparing the intersection point of the jetliner flight
path with the plume model to the point of intersection with the
actual plume, one can determine if the leading edge of the plume
model is in the correct position. Both the plume model and the
flight path must be correctly co-registered to the terrain data in
order to perform such a test. Using standard transformations
between latitude-longitude and x-y coordinates for the terrain, we
calculated the appropriate coordinate transformations for the
plume model and jet flight path. The first time the animation
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was run we were quite amazed to observe the flight path turn red,
denoting engine failure, at precisely the point where the flight
‘path encountered the leading edge of the modeled plume.

Figure 7. Flight path geometry created by spline animator.

Apparently this was one of those rare times when we got
everything right. The fact that the aircraft position is well
known at all times, and that it encounters the ash cloud at the
correct tilme and place lends strong support for the correctness of
the model. Figure 8 shows a frame from the video animation at
the time when the jetliner landed in Anchorage. The ash cloud in
this image is drifting from left to right and away from the
viewer.

7. Satellite Image Comparison

Ash clouds can often be detected in AVHRR satellite images.
For the December 15 events, only one image recorded at 1:27pm
AST was available. At the time of this image most of the study
area was blanketed by clouds. Nevertheless, certain atmospheric
features become visible when the image is subjected to
enhancement, as shown in Figure 9. A north-south frontal
system is moving northeasterly from the left side of the image.
To the left of the front, the sky is generally clear and surface
features are visible. To the right of the front, the sky is
completely overcast and no surface features are visible. One
prominent cloud feature is a mountain wave created by Mount
McKinley. This shows up as a long plume moving in a north-
northeasterly direction from Mount McKinley and is consistent
with upper altitude winds on this date.

Figure 8. Flight path through ash plume.

96



Figure 10. Position of simulated plume at 1:30pm AST.

The satellite image was enhanced in a manner which causes ash this plume indicates that it is less than an hour old. Thus, it
clouds to appear black. There is clearly a dark plume extending could not be the source of the plume which the jet encountered
from Mount Redoubt near the lower edge of the image to the approximately 2 hours before this image was taken.

northeast and ending in the vicinity of Anchorage. The size of
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There are additional black areas in the upper right quadrant of the
image which are believed to have originated with the 10:15am
"eruption. These are the clouds which the jet is believed to have
penetrated approximately 2 hours before this image was taken.
The image has been annotated with the jetliner flight path
entering in the top center of the image and proceeding from top
to bottom in the center of the image. The ash cloud encounter
occurred at the point where the flight path reverses course to the
north and east. However, the satellite image does not show any
ash clouds remaining in the vicinity of the flight path by the
time of this image.

When the satellite image is compared with the plume model for
the same time period, shown at approximately the same scale in
Figure 10, a difference in the size of the ash cloud is readily
apparent. While the leading edge of the simulated plume
stretching to the northeast is located in approximately the same
position as the dark clouds in the satellite image, the cloud from
the simulated plume is much longer. The length of the
simulated plume is controlled by the duration of the eruption,
which was 40 minutes.

Two explanations for the differences have been proposed. The
first is that the length of the eruption was determined from
seismic data. Seismicity does not necessarily imply the
emission of ash and therefore the actual ash emission time may
have been less than 40 minutes. The second possibility is that
the trailing end of the ash cloud may be invisible in the satellite
image due to cloud cover. It is worth noting that the ash cloud
signatures in this satellite image are extremely weak compared to
cloudless images. In studies of the few other eruptions where
clear images were available, the ash clouds are unmistakable in
the satellite image and the model showed excellent agreement
with the satellite data.

8. Flyby Animation

One of the great advantages of three dimensional animation
methods is the ability to move around in a simulated 3D
environment interactively, or to create a programmed tour or
flyby. For the ash cloud visualization, we wanted to follow the
moving ash clouds in relation to the terrain and to look at them
from different distances and different directions. AVS allows
fully interactive manipulation of the views of the ash cloud, but
the rendering process is too slow (minutes per frame) to allow
for realtime animation. For this reason we decided to create a
flyby of the events on December 15 by combining camera
animation with the time dependent animations of the plume and
jet flight path.

In our initial attempts, we used the AVS Animator module and
found that it worked well for the linear time dependent portions
of the animation. However, the camera animation was a different
story altogether because camera motion in a flyby situation is
seldom linear. When we attempted to use the Animator in its
"smooth" mode, we found it was only possible to control the
camera accurately when we introduced dozens of key frames in
order to tightly constrain the frame acceleration introduced by the
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sinusoidal interpolation technique used in the Animator.
Having to use a large number of key frames makes it very time
consuming to construct a flight path, because changing the flight
path requires all the key frames near the change to be modified in
a consistent manner. We eventually realized that a minor
extension to the flight path spline algorithm already developed
could easily provide the desired camera coordinates. In essence,
the camera coordinates could be determined from the flight path
of the viewer in the same manner that we computed the flight
path of the jetliner,

The first version of the Spline Animator used a text file for
input which contained the key frame information. The output
was a sequence of camera coordinates which were edited into a
CLI script which could be played back interactively or in batch
mode. In this first effort we were able to define a flight path
using about a half dozen key frames in place of the dozens
required by the AVS Animator and the smoothness and
predictability of results were far superior. After the video
animation of the eruption visualization was completed, a second
version of the Spline Animator was created with a Motif
interface and a module is now available for use in AVS
networks. For more information about this module, the reader is
referred to Astley [1].

9. Conclusions

An ash plume modeling and prediction system has been
developed using AVS for visualization and a Cray supercomputer
for model computations. A simulation of the December 15
encounter with ash clouds from Mount Redoubt by a jetliner
provides strong support for the accuracy of the model. Although
the satellite data for this event are relatively limited, agreement
of the model with satellite data for other events is very good.
The animated visualization of the eruption which was produced
using AVS demonstrates that AVS is an extremely effective tool
for developing visualizations and animations. The Spline
Animator module was developed to perform flybys and may be
used to construct animated curves or flight paths in 3D.
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Abstract

SDSC_NetV is a networked volume rendering package developed at
the San Diego Supercomputer Center. Its purpose is to offload compu-
tationally intensive aspects of three-dimensional data image rendering
to appropriate rendering engines. This means that SDSC_NetV users
can transparently obtain network-based imaging capabilities that may
not be available to them locally. An image that might take minutes to
render on a desktop computer can be rendered in seconds on an SDSC
rendering engine. The SDSC_NetV graphical user interface (GUI),
a Motif-based application developed using a commercially available
tool TeleUSE, was recently ported to SDSC’s CRAY C90. Because
TeleUSE is not available on the C90, the interface was developed on
a SUN SPARC workstation and ported to the C90. Now, if users
have an account on the C90, they can use SDSC_NetV directly on the
CRAY platform. All that is required is a terminal running XWindows,
such as a Macintosh running MacX, the SDSC_NetV graphical user
interface runs on the C90 and displays on the terminal.

1 Introduction

Volume rendering is the process of generating a two-dimensional image of
a three-dimensional data-set. The inputs are a data-set representing either
a real world object or a theoretical model, and a set of parameters such
as viewing angle, substance opacities, substance color ranges and lighting



values. The output is an image which represents the data as viewed under
these constraints. The user of a volume rendering program will want to be
able to input these parameters in an easy fashion and to get images back
quickly.

The task of generating the image is usually compute intensive. Three-
dimensional objects are represented as three-dimensional arrays where each
cell of the array corresponds to a sample value for the object at a point in
space. The size of the array depends on the size of the object and the sam-
pling rate. Data collected from tomographic devices such as CT scanners
are often 256*256*256 real numbers. Grids with 1024 sample points per di-
mension are becoming common. As sampling rates increase due to improved
technology, the data sizes will grow proportionally. Data generated from a
theoretical model can also be very large.

There are several algorithms that traverse such sample point grids to
generate images. Two of the most popular are splatting and ray-casting.
Both of these involve visiting each cell in the array and building up an image
as the array is traversed. Without going into the details of the algorithms,
it will be apparent that their theoretical time complexity is order

O(Nl * Ng * Na)

where Ni is the size of the ith dimension. When large arrays are considered,
the actual run time on a workstation class CPU may be quite long. The CPU
speed and memory limitations of the typical scientific workstation make it
unsuitable for interactive speed rendering.

If we were to characterize an ideal rendering machine, it would be; inex-
pensive, so everyone could have one; very fast to allow interactive exploration
of large three-dimensional datasets; and it would sit on the desktop to allow
researchers to do their visualizations without traveling.

SDSC_NetV, a networked volume rendering tool developed at the San
Diego Supercomputer Center, addresses the needs of researchers who have
limited desktop power. SDSC_NetV distributes CPU intensive jobs to the
appropriate rendering resources. At SDSC these resources include fast ren-
dering engines on the machine floor. Researchers access these resources via a
graphical user interface (GUI) running on their desktop machines. The GUI
allows the researcher to enter viewing parameters and color classifications in
an easy, intuitive way. The GUI also presents the image when the result is
sent back over the network.
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The GUI itself is quite powerful. It allows the user to interactively exam-
ine slices of the data-set and to do substance property classification without
requesting services via the network. Up to eight data ranges can each be
associated with a color and opacity values.

Once the user has set all the parameters to his/her satisfaction, a render
request causes the render job to be spawned on the appropriate rendering
engine at SDSC. The optimized renderer subsequently sends images to the
GUL

The design of such a network GUI is a significant software engineering
task, actually as complicated as the coding of the rendering algorithms. Pro-
grammers can write GUIs for X-window based applications in raw X/Motif
or with a GUI building utility. The second approach is the most reasonable
one when the envisioned GUI is large and complex.

2 A C90 GUI

Recently, the SDSC_NetV GUI was ported to the SDSC CRAY C90. The
goal was to extend the availability of SDSC_NetV. Previously, the GUI only
ran on workstation class platforms. Specifically, Sun SPARC, SGI, DEC and
DEC Alpha workstations. The porting challenge proved to be significant
due to the fact that we needed to preserve I/O compatibility between the
different platforms. Also, there is no GUI builder program on the SDSC
C90. An examination of SDSC_NetV’s architecture highlights the need for
I/O compatibility. SDSC_NetV is a distributed program. The GUI usually
runs on the user’s workstation. This first component sends requests across
the network to a second component, running on an SDSC server which ac-
cepts incoming requests for render tasks, and delegates these tasks to a third
class of machines, the rendering engines. This means that any time a new
architecture is added to the mix, communication protocols between the var-
ious machines must be established. Typically, this sort of problem is solved
by writing socket level code which reads and writes ASCII data between the
machines. Communication via a more efficient and compact binary protocol
requires each machine to determine what type of architecture is writing to its
port and decoding the input based on what it knows about the sender’s data
representations. Among a network of heterogeneous machines, establishing
all the correct protocols can become a big programming job.



3 A Better Solution

The GUI for SDSC_NetV was developed on workstation platforms using
TeleUse. TeleUse is a commercially available GUI builder that allows one
to quickly define widget hierarchies and call-back functions. A GUI that
might take several days to develop in raw X/Motif can be implemented in
a few hours using TeleUse. TeleUse generates source code in C with calls
to the X-Motif library. To get SDSC_NetV’s GUI running on the C90, we
ported the TeleUse generated source code and compiled it. Although this
source code compiled almost without modification, the object produced was
not executable because of pointer arithmetic unsuitable to the C90’s 64 bit
word. Programmers in C on 32 bit word machines often treat addresses and
integers interchangeably. Of course this will not work on a machine with an
address word length different from the integer representation length. These
sorts of problems were easily corrected.

As described in the previous section, the GUI has to communicate across
the network to request a render. The GUI has to be I/O compatible with the
SDSC machines in order for this communication to take place. The problem
of I/O compatibility is one that has been encountered before at SDSC. In
response to this problem, we have built a library called the SDSC Binary
I/0 library for compatible I/O between heterogeneous architectures. A net-
work version allows the data to be written across the network with a call to
SNetWrite. This results in conversion of the data representation the appro-
priate format for the target architecture. When the data are read in at the
other end, using SNetRead, they are reassembled into the correct represen-
tation for the receiver. SDSC_NetV and SDSC Binary I/O are available via
ftp from ftp.sdsc.edu. :

Once the SDSC_NetV GUI was linked with the SDSC Binary I/O library,
a more subtle problem arose. The main window widget was responsive to
user input, but none of the sub-windows brought up in response would take
input. Eventually it was discovered that an X application structured as
groups of cooperating top level widgets would not function. The X-Motif
library installed on the C90 expected one widget to be the designated top
level manager. The exact reason for this remains unclear as the version of X
on the CRAY is the same as the version on the workstations. Once this fact
was discovered, the GUI was restructured on our development workstations
and re-ported to the C90. With the new widget hierarchy the GUI worked
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fine.

Considering the description of rendering given in the introduction, we
can form an idea of the attributes for an ideal rendering machine. It would
be very fast to allow interactive exploration of large three-dimensional data
sets. It would sit on the desktop to allow researchers to do their visualiza-
tions without traveling. It would be inexpensive so everyone could have one.
SDSC_NetV gives many CRAY users a virtual ideal machine.

4 Results

The goal of SDSC_NetV is to provide cutting edge rendering technology to
the researcher on the desktop. Porting SDSC_NetV to the C90 has helped
to realize this goal. The GUI runs quickly on the C90. Graphically inten-
sive operations such as slice examination and classification run at interactive
speed. The availability of SDSC_NetV has been extended. Now a user with
an account on the C90 can display the GUI on a Mac or even an X terminal.
The performance of the GUI over the network depends on the speed of the
the link. However, the basic functions of setting parameters and displaying
images are now available on a platform where such functionality was not
available before. SDSC_NetV is used by scientists in a number of disciplines.

5 Images

Art Winfree, a researcher at The University of Arizona, is using SDSC_NetV
to gain intuition into stability in chemically reactive environments. Figure
1. shows the main window of the SDSC_NetV GUI with an image of a
theoretical model known as an equal diffusion meander vortex. It represents
a compact organizing center in a chemically excitable medium (or really, a
math model thereof.) The main feature is that all substances involved diffuse
at the same rate. The organizing center, in this case, is a pair of linked rings,
which you can see only as the edges of iso-value fronts you colored with the
Classifier. The key thing about this, besides equal diffusion, is that the rings
are not stationary, but are forever wiggling in a way discovered only a couple
years ago, called meander. Despite their endless writhing, which precludes
adjective stable, the rings and their linkage persist quite stably. A picture



allows reasoning about such structures which may not be apparent from an
equational model.

6 Conclusion

The accessibility of the C90 and the versatility of SDSC_NetV work together
to provide a state-of-the-art tool for scientists involved in a wide range of
disciplines. Visualization of data representing natural phenomena and theo-
retical models is now available on more scientist’s desk tops.
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Figure 1: An Equal Diffusion Meander Vortex.
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HETEROGENOUS COMPUTING USING THE CRAY Y-MP AND T3D

Bob Carruthers

Cray Research (UK) Ltd.
Bracknell, England

Introduction

Two applications which use a CRAY Y-MP and a T3D in a
heterogenous environment will be described. The first
application is a chemistry code that was ported from the
Y-MP to the T3D, and then distributed between the two
machines. The combined solution using both machines ran
the test cases faster than either the Y-MP or T3D
separately.

The second application is slightly different, since the
complete problem could not be run on the T3D because of
memory limitations imposed by the design of the code
and the strategy used to generate a parallel version.
Distributing the problem across the Y-MP and T3D
allowed the application to run, and produced a time
faster than that on the Y-MP.

Both these applications were encountered as part of two
benchmark efforts, and thus show how real user problems
can be adapted to heterogenous computing.

Application 1

The first application is a large chemistry code, that is
regularly used in a production environment, and runs on
both CRAY Y-MP's and on several MPP platforms. The
version that was included in the benchmark used PVM for
message passing, and was initially run on a Y-MP in this
form to validate the code. Following this, the code was
ported to the T3D, and various optimisations to the I/O
and message passing implemented to improve the
performance. In this form, the T3D ran the code
considerably faster than the Y-MP.

As part of the benchmark activity, we were looking for
ways to improve the performance of the code, and to
demonstrate the benefits of the Cray Research
Heterogenous Computing Environment. This particular
code had sections that were not well suited to an MPP, but
were known to run well on a vector machine. With this in
mind, a strategy was evolved to do the well vectorised
part on the Y-MP, and leave the rest on the T3D were it
could take advantage of the MPP architecture. The
strategy for this is outlined below.

First, a master control program had to be written that
executed on the Y-MP. This was responsible for
establishing contact with PVM, reading in the number of
PE's to be used on the T3D, and then spawning the
necessary tasks on the T3D via PVM. The Fortran code for
this part of the operation is shown below:

include '../sizes’

common/wordlen/nrbyte,nibyte
common/pvm/npvm,ipvm

print *,' Input the Number of Processes Required ',
2 'on the CRAY T3D'
read(*,*)npvm

call pvm_control()
stop 'End of Solver'
end

subroutine pvm_control()

include '../sizes’
include '../fpvm3.h'
include '../jrc_buf_sizes'

common/wordlen/nrbyte,nibyte
common/pvm/npvm,ipvm
character*8 mess_buff
dimension itids(npvm)

call pvmfmytid(itid)
if(jrc_debug.eq.1) then
write(0,¥)"
write(0,2000) itid
2000 format("TID of SOLVER Process on the °,
2 'CRAY Y-MP is ',z16)

endif
C
call pvinfspawn("a.out”, PvmTaskArch,
2 'CRAY’, npvm, itids,numt)
c

if(numt.ne.npvm) then
write(0,*)'Response from PVMFSPAWN’,
2 'was ''numt,' rather than ',npvm

Copyright (C) 1994. Cray Research Inc. All rights reserved.
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stop 'Error in PVMFSPAWN'
else
doi=1,npvm
if(itids(i).ne.1) then
itid_pe0=itids(i)
ntid_pel=i
goto 1000
endif
end do
write(0,*)’'All T3D TID"s are 1 - PE 0 is absent'
stop 'TID Error’
1000 continue
if(jrc_debug.eq.1) write(0,2100) itid_pe0
2100 format('T3D Initialised by SOLVER - PE 0 ',
2 ‘"has TID ',z17)
endif

The main program begins by asking the user for the
number of PE’s to be used on the T3D, and then calls the
main control routine, pvin_control. This enables the
latter routine to accurately dimension the array ‘itids’
which holds the PVM Task Identifiers (TID’s) of the PE's
on the T3D.

This routine finds the TID of the Y-MP process and prints
it out, and then spawns the T3D processes. The variable
‘numt’ contains the number of processes actually spawned
by PVM, which is checked against the number requested.
The final part of the set up procedure involves the Y-MP
searching for the TID of PE 0 on the T3D. By default only
PE 0 can communicate with the Y-MP, and PE’s that
cannot communicate with the Y-MP have their TID’s set
to unity. This can be modified if required by an
environment variable.

The control routine then enters a state where it waits for
the T3D to send it work to do.

C
1100 continue
call pvmfrecv(itid_pe0, 9971, ibufid)
call pvmfunpack(BYTE1, mess_buff, 8, 1, info)

if(jrc_debug.eq.1) write(0,*)'SOLVER ',
2 ‘Received Message "' ,mess_buff,” from PE ('

if(mess_buff(1:5).eq.'Solve') then
call bob_do_work(itid_pe(, jrc_debug)
else if(mess_buff(1:8).eq. Finished') then
return
else
write(0,*)'Illegal Message Found in ',
2 'SOLVER - 'mess_buff
stop "Protocol Error’
endif
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goto 1100
end

The control routine can interpret two messages from the
T3D - ‘Solve’ indicating that it should do some work, and
‘Finished” indicating that the T3D has finished its work,
and that the Y-MP process should clean up and terminate.

Further data is exchanged between the T3D and Y-MP
via both PVM and the UNICOS file system. Control
parameters are sent via PVM, while the main data array
is sent over as a file. The Y-MP is responsible for
performing the necessary data format conversion from
IEEE to Cray Research Floating Point format, and
performing the reverse operation when it has finished
computing and wishes to return information back to the
T3D. This is done using IEG2CRAY and CRAY2IEG
respectively with conversion type 8.

While the Y-MP is working, the T3D enters a wait loop
similar to that on the Y-MP, and waits for the signal
‘Done’ from the Y-MP. At this point it picks up the new
data file. Note that both the T3D and the Y-MP must
have set up their data files before signalling that there
is work to do.

The final point to remember is that any task spawned by

by PVM will use the directory pointed to by the shell
variable $HOME in which to create and search for files.

If the Y-MP executes in any other directory than $HOME,

the exchange of files with the T3D will not take place.

This can be controlled by changing $HOME prior to

starting the Y-MP process so that it points to the correct

directory while the tasks are running.

This heterogenous approach enabled the time for the
complete job to be reduced, so that it was less than either
the time on the Y-MP or the T3D.

Apnplication

Like the first code, this application is a large user
program that regularly runs on a Y-MP. The owners of the
code funded one of the universities in the UK to produce a
parallel, distributed version which could be run on a
group of workstations.

We started to look at this version of the code when we
received a benchmark containing it. The initial part of
the work consisted of converting the code from its 32-bit
version using a local message passing language to a 64-bit
version that used PVM. This PVM version was
eventually ported to both the Y-MP and the T3D, and ran
the small test cases provided.

However, the design of the program and the parallel



implementation constrained the maximum size problem
that could be run on the T3D, and meant that the large
problems of greatest interest could not be run. The
underlying method of locating data in memory used the
“standard” Fortran technique of allocating most of the
large data arrays in one large common block via a memory
manager. The strategy to generate a parallel version of
the code relied on one master processor doing all the input
and data set up, and then distributing the data to the
other processors immediately before running the parallel,
compute-intensive part of the code. Similarly at the end,
the results were collected back into the master processor
for output and termination processing. This meant that
the master processor needed sufficient space to store all
the data at the start and the end of the compute phase.
For the problems of interest, this space is typically over
30 Mwords on the Y-MP, well beyond the capacity of
single PE on the T3D.

The strategy to solve this dilemma was to split the
computation into three distinct phases. The first, which
is the initialisation, runs on the Y-MP, and instead of
distributing the data to other processors prior to the
parallel section, outputs the required arrays to a series of
files and then terminates. The second phase which runs
on the T3D picks up the required data from the UNICOS
file system, completes the parallel compute-intensive
part of the calculation, and then outputs the results to a
second set of files. The third phase runs on the Y-MP and
performs the merging of the resultant arrays and outputs
the results.

In this approach, those phases that require a large
amount of memory are run on the Y-MP, while the T3D

executes the parallel part which contains the heavy

computation. Although the scheme sounds simple in
outline, the implmentation was actually quite tricky for
a number of reasons:

*  The arrays to be distributed for parallel processing
are defined by the user in the input data, as are
those required to be saved after the parallel
processing. This means that all three phases must
be able to read the input data, but only select those
commands that are necessary to perform their
operations.

»  Data other than the arrays mentioned above need to
be passed between the various phases - for example,
control variables and physical constants that define
the problem. These are typically stored in separate
common blocks, and do not have to be selected via
the user input for distribution and merging.

For the transition between the input processing and
the parallel computation phases, this proved easy
to sort out, since the original parallel code had had
to distribute most of this information from the

master processor as well. At the end of the parallel
processing, however, the master processor was
assumed to have all the data it needed, and the
other PE’s only sent back their share of the
distributed arrays. The merge process thus needed
careful analysis to ensure that all the relevant data
was regenerated in the master processor.

e Although the problem is defined above in terms of
the T3D performing phase 2, there is no reason why
any other machine running PVM could not perform
the parallel part, in particular several processors of
a Y-MP or C90. To allow this to happen, the T3D
specific code had to compiled in or out
conditionally, and data conversion only applied
when strictly necessary.

. For small problems, there is no need for three
separate images to be run. The code therefore
needed an option to allow all three phases to be
executed during one pass through the code, either on
the T3D or any other platform. This imposes some
extra logic in the code, but means that it can be run
as originally intended.

» For a given hardware platform, the same binary
executes any of the phases, or all three phases
together. The logic for this is embedded in the code,
and controlled by input variables.

¢ To simplify code maintenance, it was decided that
there would be only one version of the source.
Different hardware platforms are selected via
conditional compilation.

The progress through the various stages is made
transparent to the user via the use of shell scripts. The
user can submit a problem for execution to the Y-MP, and
the various phases are executed on the appropriate
hardware. Restart facilties can be included if necessary.

This approach also offers considerable flexibility when
either running or testing the program. Unlike the first
application, it is not necessary to run each part
immediately after the preceding one, nor do the Y-MP
and T3D have to wait for messages from each other. It is
simply necessary to preserve the files between the
various phases, so that each phase can be started when
convenient. Finally, code can be tested or developed on
either the Y-MP, T3D or both.

This approach allows what seems at first glance to be
intractable problem to be solved using the heterogenous
environment available with the Cray Research T3D.
The Y-MP component is used for the pieces that it is best
suited to, while the T3D performs the heavy computation
for which is was designed.
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FUTURE OPERATING SYSTEM DIRECTION

Don Mason
Cray Research, Inc.
Eagan, MN

INTRODUCTION

The UNICOS operating system has been under
development since UNIX System V was ported to Cray
Research hardware in 1983. With ten years of
development effort, UNICOS has become the leading
UNIX implementation in a supercomputing
environment, in all aspects important to our customers:
functionality, performance, stability and ease of use.

During these ten years, we have matured from a system
architecture supporting only four processor CRAY-2s or
X-MPs, to the complexity of 16 processors of the C90,
and hundreds of processors on a T3D. We invented and
implemented new I/O structures, multiprocessing
support, including automatic parallelization, and a host
of industry leading tools and utilities to help the users
to solve their problems, and the system administrators
to maximize their investment.

The system, which initially was simple and small,
grew in both size and complexity.

The evolution of hardware architectures towards
increasing number of processors in both shared and
distributed memory systems and the requirements of
open, heterogeneous environments, present challenges
that will be difficult to meet with current operating
system architecture. We decided that it was time for us
to revise our operating system strategy, and to define a
new path for the evolution of UNICOS. This evolution
should enable us to face the challenges of the future,
and at the same time preserve our customers’ and our
own software investments,

After two years of careful evaluation and studies, in
1993 we decided to base the future architecture of
UNICOS on microkernel technology, and we selected
Chorus Systems as the technology provider.

This evolution will preserve all the functionality and
applications interfaces of the current system, and the
enhancements that will come in the meantime.

MICROKERNEL/SERVER ARCHITECTURE
Figure 1 compares the current UNICOS architecture
to the future one, that we refer to as “serverized.”

The current system architecture is depicted on the left
side. It is characterized by a relatively large, monolithic
system kernel, that executes in the system address

UNICOS 7.0

Serverized UNICOS

Figure 1

space, and that performs system work on behalf of
user’s applications, on the top part of the figure. The
applications interact with the system via a “system call
interface,” represented on the figure by the “interface”
area. The kernel, to perform its tasks, uses “privileged”
instructions, that can only be executed in the system

space.

The right side of Figure 1 represents the new
architecture. Nothing changes in the upper part of the
figure: the users applications are exactly the same, and
they use the same system interface as before. The
monolithic kernel is now replaced by a “microkernel”
and a set of new entities, called “servers.” The
microkemel provides the “insulation” of the system
software from the particular hardware architecture, and
provides a message passing capability for transferring
messages between applications and servers, as well as
between servers themselves.

System tasks that previously were performed by the
system kernel will be executed by the specialized
servers. Each of them is assigned a particular and well
defined task: “memory manager”, “file manager”,
“process manager” etc... The servers, in their majority,
operate in the system space. However, some of them,
which do not require access to privileged instructions,
can perform in user space. Each of the servers is
“firewalled” from the others, and can communicate with
the others only through a well defined message passing
interface, under the microkernel’s control.

Microkernels can also communicate from one physical
system to another, across a network. This is the
situation represented by the Figure 2. In a configuration
like the one depicted, not all systems need to have all
the servers. Certain systems can be specialized for
particular tasks, and therefore might require only a
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subset of the available servers. In the case of a CRAY
MPP system, each of the processing elements contains
a microkernel, and few servers, only those that are
necessary for executing applications. Most of the
system services can be provided either by some other
PEs of the system, which have the appropriate server,
or even by a different system on the network.

For an MPP in particular, this frees the PEs memory
space for user applications, rather than using it for
the system.

A long-term objective with the new architecture is to
provide a single UNICOS Operating System which will
manage the resources of diverse hardware architectures.
This is called “Single System Image” (SSI) in the
industry. From an administrator’s point of view SSI
will facilitate management of computing resources as if
they were a single platform; for example, an MPP and
a C90. From an applications point of view SSI means
OS support for scheduling computing resources such
that components of the application can efficiently
utilize diverse platform characteristics.

There are several advantages of adopting a serverized
architecture:

0 Most of the system software is “insulated” from the
hardware. Therefore, porting to new architectures is
made much easier, and safer.

o System functions can be distributed across platforms.

o Servers are easier to maintain, since each of them is
relatively small and self-contained. Interactions between
the server and the “external world” are done via clear
interfaces. A change to a server should not have any
impact on other parts of the systems.

o Servers can be made more reliable, precisely because
of their smaller size, and well defined functions and
interfaces. They can be “cleanly” designed, and well
tested.

0 A serverized system can evolve in a “safer” way than
a monolithic kernel.

o Systems can be customized by introduction of
custom servers, designed to perform a particular task,
not required by other customers.

o If an industry agreement on microkernel interfaces is
achieved, this would open the way for leveraging
servers across different platforms and architectures.

THE CHORUS TECHNOLOGY CHOICE
Before selecting Chorus technology, we conducted a
comprehensive study of the technologies available in

Parallel Vector Platform MPP Platform

tion
w:

Figure 2

the market, and their adaptability to Cray Research
hardware architectures. Several options were examined,
including Mach. There are more similarities than
differences among the available microkernel
technologies. All microkernels attempt to mask
hardware uniqueness and manage message passing. The
differences become evident only when looking at the
application of the technology to specific hardware
platforms such as the CRAY Y-MP or CRAY T3D
series. The selection criteria included the following:

o The adaptability to a real memory architecture
o Performance

o Ease of implementation — time-to-market

o Existence of programming tools

o Serverization model (existence of a multi-server
implementation)

The technology from Chorus Systems was selected,
since it perfectly satisfied all of our selection criteria. In
particular, this choice will allow us to deliver a stand-
alone MPP capability approximately 18 months sooner
than with any other technology. Also, the same
technology can be used on both real and virtual
memory architectures.

TIMETABLE

The transition from current UNICOS and UNICOS
MAX to the new architecture will take from two to four
years, depending on hardware platforms. Initial
implementation will become available on the MPP
systems. In parallel with the development of current
structure of UNICOS, we will work on a serverized
version for parallel vector platforms.
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Future Operating System Directions - Serverized Unicos

Jim Harrell

Cray Research, Inc.
655-F Lone Oak Drive
Eagan, Minnesota 55121

ABSTRACT

This paper is the technical component of a discussion of plans for changes in operating system
design at Cray Research. The paper focuses on the organization and architecture of Unicos in
the future. The Unicos operating system software is being modified and ported to this new ar-

chitecture now.

1 Introduction

Over the past several years the Unicos Operating Sys-
tem Group has been studying the needs and require-
ments for changes in Unicos to provide support for new
Cray hardware architectures, and new software features
as required by Cray customers. At previous Cray User
Group Meetings and in Unicos Advisory Meetings there
have been open discussions of the requirements and
choices available. In 1993 a decision was made to move
forward with the Chorus microkernel and Unicos as the
feature base and application interface. This talk
describes some of the technical components of the new
operating system architecture, explains how the new
system is organized, and what has been learned so far.

The talk is composed of five parts. The first part
describes the Chorus microkernel and the server model.
This is the base architecture we have chosen to use in
the future. We reviewed the choices at the Cray User
Group Meeting in Montreaux in March of 1993. The
second part of this talk describes our experiences in
porting Chorus to a Cray YMP architecture. This phase
of the program was an important step in proving the
technology is capable of supporting high performance
computing. The third part of the talk explains how we
expect Unicos will “map” onto the Chorus model. We
have chosen to move Unicos forward as the feature base
and application interface. Our goal remains to provide
full application compatibility with Unicos. The fourth
part describes the technical milestone for 1993 and the
status of that milestone. The final part of the talk dis-
cusses our interest in interfaces for servers and micro-
kernels that can allow vendors and users with different
operating system bases to provide heterogeneous dis-
tributed systems in the future.

Copyright © 1994. Cray Research Inc. All rights reserved.

2 The Chorus Model

The Chorus model is based on decomposing a monolithic
system into a microkernel and a set of servers. The micro-
kernel manages the hardware and provides a basic set of
operations for the servers. The servers implement a user
or application interface and, in Chorus, are usually bound
into the same address space as the microkernel. This
binding of servers is done for performance. Servers can
run in user mode. This allows flexibility in the operating
system organization and can add resiliency. An important
component of the Chorus model is the Remote Procedure
Call (RPC) support. Traditionally RPCs require a context
switch, and message or data copies. In the Chorus model
this is referred to as Full Weight RPC (FWRPC). Chorus
provides a Light Weight RPC (LWRPC) that can be used
to communicate between servers in kernel space, that is,
servers bound in the same address space as the microker-
nel. LWRPC does not context switch, or change stacks.
Instead of copying message data, a pointer to the message
is passed. The result is a significant reduction in the cost
of communication between servers. The offset to the per-
formance improvement is that servers in the same address
space are not protected from random memory stores.
There is no “firewall” between the servers. There is an
obvious requirement for FWRPC across a network, and
for servers running in user mode, user space. But when
servers are in the same address space the requirement is
not as obvious.

3 Porting Chorus to a YMP

In 1992 we worked with Chorus Systems to port a mini-
mal Chorus operating system to a YMP machine. The
purpose of this test was to determine if the software archi-
tecture was viable on a YMP hardware architecture.
There were concerns about Chorus memory management
on a YMP. Most microkernel based systems use virtual



memory extensively. Chorus claimed to be architecture
neutral in memory management. There were other con-
cerns about machine dependent differences. Chorus is
normally ported to smaller machines. The port would
provide answers to these concerns and allow us real
hands-on experience with Chorus. Use of the code
would make the evaluation and comparison with other
systems real. We set a goal of demonstrating at the end
of six months.

The Chorus components of the port were the microker-
nel, a Process Manager (PM), and a very simplified
Object Manager (OM), or filesystem server. The
machine-dependent parts of the microkernel were mod-
ified to support the YMP, and a simple memory man-
agement scheme was put in place to support the YMP.
The Chorus PM was modified to use Unicos system call
numbering so we could run Unicos binaries. This
greatly simplified what had to be done to run tests. The
Chorus OM was greatly simplified. The support for
Unix filesystems was removed and in its place was put
a table of files that would be “known” to this OM. All
of the disk device support was removed from Chorus,
and replaced with code to access files from YMP mem-
ory. This dispensed with the need for a filesystem, driv-
ers, and IOS packet management.

The ported system was booted on a YMP and simple
tests run from a standard Unicos shell, /bin/sh. This
confirmed our view that Unicos could be used as the
operating system personality. The Unicos shell had
been built under standard Unicos and yet under the test
system it functioned exactly as it did under Unicos. The
tests that were run did a variety of very simple system
operations. The test results were compared to Unicos
results using the same tests. The Unicos system was run
on the same YMP and configured to use a memory file-
system. The results showed two important facts. Using
FWRPC the performance of Chorus was 2 times slower
than Unicos for the same system call. Using LWRPC
the performance was comparable to Unicos.

Cray Research is not planning on using all of the Cho-
rus product. We had previously decided, in conjunction
with our customers, that we should use Unicos as the
base of any future systems. We want to use certain fea-
tures from Chorus to help split Unicos into components.
The primary Chorus technology that is being used in the
restructuring of Unicos is the microkernel. It is much
the same as the Chorus version, with the exception of
the machine dependent portions. We are augmenting it
to provide support for some other services like swap-
ping and enhancements to scheduling and monitoring.
We are also using the Chorus Process Manager (PM) as
the basis for our PM. We are modifying the way that the
system calls, signalling, etc., work to match Unicos.

The last major piece of Chorus technology we are using
is the server “wrappers”. This is a series of routines that
provide two capabilities. The first is a model for the
interfaces needed to get a server to communicate with
another server. The second is as a model for how to
mimic Unix or Unicos internal kernel requests or con-
vert the kernel requests to microkernel requests.

4 Mapping Unicos onto the Chorus Model

The restructuring of Unicos will maintain complete
user compatibility. At a very early stage of the project
we determined that the best way to provide this compat-
ibility is to use as much Unicos code directly as possi-
ble. This has a side effect, in that we can move more
quickly to serverize Unicos without having to rewrite
code. We have chosen to have a large number of serv-
ers, aggressively trying to modularize Unicos wherever
possible. We believe that there are at least a dozen dif-
ferent potential servers. For example the device drivers
for disk, tape, and networking will form three separate
servers. The IOS packet management code has already
been made into a server. The terminal or console sup-
port is also already a separate server.

5 1993 Milestone - Some Progress

At the end of 1993 we completed one of the formal
project milestones. We ran a system composed of a
Chorus based microkernel, our PM, an OM or filesys-
tem server that implements the NC1 filesystem, a disk
server for disk device support and a packet server. We
also added a terminal server for console communica-
tions. The system was run on a YMP using an 8.0 file-
system on Model E IOS connected disks. This
milestone verified that several major servers were func-
tioning together and that device access worked. This
milestone also continues to monitor progress with the
goal of Unicos application compatibility.

6 Future Interfaces

In the computer industry there are several companies
and research facilities that are studying microkernels
and serverized systems. We expect that a number of
distributed systems will take a similar form to the direc-
tion we have chosen. Cray Research believes that in the
future heterogeneous systems will depend on different
operating systems from different vendors being able to
interact and interoperate at a deeper level than currently
exists. This interoperation is required to support Single
System Image and system resource management in dis-
tributed systems. In order to facilitate this communica-
tion Cray is taking a leadership role in trying to find

115



116

ways to standardize server and microkernel interfaces.
This work has met with some success, but will require
the interest and participation of our customers to con-
vince computer vendors that Single System Image is a
serious requirement in the future.

7 Summary

We have shown progress towards the reorganization of
Unicos into a more modular form. We expect that this
new system will be capable of supporting all Cray hard-
ware architectures, and capable of supporting all Cray
customer requirements by providing a better base for
new functionality and compatibility for current Unicos
applications.
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ABSTRACT

This paper presents an update to the status of UNICOS Storage Management products and
projects at Cray Research. Status is reported in the areas of Hierarchical Storage Manage-
ment products (HSMs), Volume Management products, and Transparent File Access prod-
ucts. The paper concludes with a timeline indicating the approximate introduction of several

Storage Management products

1 Topics

Work on Storage Management products and projects at
Cray Research is currently focused in three major areas.
The first area is Hierarchical Storage Management
products, or HSMs. These products are designed to
allow sites to increase the effective size of their disks by
transparently moving, or migrating, data between disks
and cheaper media, such as tape. These products allow
sites to make their disk storage pool appear larger than
they actually are. The second area where Cray Research
is currently doing Storage Management work is in Vol-
ume Management. Volume Management products
allow users and administrators to use and manage a
large set of logical and physical tape volumes in an easy
manner. Finally, Cray Research is very active in the
area of Remote Transparent File Access products.
These are products which allow users and applications
to access files which physically reside on another sys-
tem as if they were on the local system. These products
are often called “Remote File System” products,
because of the way they effectively extend the local
physical file system across the network. Each of these
three areas will be discussed in terms of current product
availability, and in terms of development projects cur-
rently active and underway. The paper concludes with a
timeline designed to indicate the relative times in which
Storage Management products are expected to be intro-
duced into the UNICOS system.

Copyright © 1994. Cray Research Inc. All rights reserved.

2 Hierarchical Storage Management Prod-
ucts (HSMs)

21 Data Migration Facility (DMF)

211 DMF21

A new version of the CRAY Data Migration Facility, or
DMF, version 2.1, is now available. DMF 2.1 is de-
signed to run on top of UNICOS 7.0, UNICOS 7.C, and
UNICOS 8.0. DMF 2.1 provides several important new
features in DMF, a few of which will be described be-
low.

DMF 2.1 adds support for Multi-Level Security, or
MLS. This means that sites running with UNICOS MLS
can use DMF to provide their HSM solution. DMF is
even part of the “Evaluated System,” which means that
sites running Trusted UNICOS can run DMF without vi-
olating the security rating of their system.

DMF 2.1 also provides support for a multi-tiered data
management hierarchy, in that data may be moved be-
tween Media Specific Processes (or MSPs). This means
that sites can configure their systems to migrate data
from, for example, one tape format to another.

DMF 2.1 also adds support for gathering a variety of
dmdaemon statistics. These statistics may then be ana-
lyzed using the new dmastat(1) utility.
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2,12  Client/Server DMF Project

One of the DMF development projects currently under-
way at Cray Research is called Client/Server DMF.,
This project adds the functionality which will allow
sites to use DMF to manage their data which are stored
on Shared File Systems, or SFSs. The Shared File Sys-
tem is an evolving product, not yet available, which al-
lows multiple UNICOS systems to share direct access
to disk devices. The Client/Server DMF project allows
a single DMF server to manage all the data in a UNI-
COS Shared File System environment.

Each UNICOS machine in the SFS complex needs to
run a copy of the DMF Client. One or more UNICOS
hosts with access to the secondary storage media
(tapes) needs to run the DMF Server. The system can
also be configured to provide redundancy, should one
particular DMF Server process fail.

The Client/Server DMF project internal goal is to dem-
onstrate the functionality by year-end. More informa-
tion on Client/Server DMF will be available at the
“Clusters BOF,” hosted by Dan Ferber.

2,13  New Tape Media Specific Process (MSP)
Project

The other major DMF development project currently
underway is that which is developing a new tape MSP.
This is the tape MSP that was originally planned to be
available in DMF 2.1, but has since slipped into DMF
2.2. This new tape MSP is designed to provide a variety
of important improvements. Several of these are listed
below.

* Support for Improved Data Recording Capability
(IDRC). Some tape devices have controllers which pro-
vide on-the-fly data compression. This feature is called
Improved Data Recording Capability, or IDRC. The
new tape MSP will provide support for controllers us-
ing IDRC.

* Improved Media Ultilization. The current tape MSP
design does not support the function of “append” to par-
tially written tapes. The new tape MSP will support
appending to tapes, and will thereby obtain greater uti-
lization of tape media.

* Much Improved Media Recovery. The new tape MSP
writes to tapes in blocks. The new tape MSP is designed
to be able to read and recover all blocks which do not
contain unrecoverable media errors. Thus, only data in
blocks which contain unrecoverable media errors
would be lost. This is a major improvement to the cur-
rent design, which is unable to retrieve data written be-
yond bad spots on the tape.

» Absolute Block Positioning. Some new tape devices
support high speed tape positioning to absolute block
addresses. The new tape MSP will utilize this feature
whenever it is available.

» Asynchronous, Double-Buffered I/0. To fully utilize
the greater bandwidth available on some tape devices,
the new tape MSP will use asynchronous, double buff-
ered I/O. We expect this will yield very near full chan-
nel I/O rates for these devices.

« New Tape and Database Formats. To provide some of
the new functionality, changes were made to the tape
format, and to the MSP database format. The new tape
MSP will support reading tapes in the old format. Con-
version utilities will be supplied to convert databases
from the old format to the new format.

» Availability. The new tape MSP will be available in
DMF 2.2. We expect this release to be available in the
fourth quarter of 1994, ‘

2.2 UniTree

The UniTree HSM product has now been ported to the
Y-MP EL platform by Titan Client/Server Technolo-
gies. We are currently awaiting a Titan installation of
UniTree at our first customer site. The UniTree version
ported to UNICOS 7.0.6 is version 1.7. Titan has not
shared their plans to port version 1.8 to UNICOS.

2.3 FileServ

A port of the FileServ HSM product to UNICOS is cur-
rently underway. This port is being done by EMASS.
Cray Research has cooperated with EMASS by provid-
ing “hooks” into the UNICOS kernel which allows
FileServ to obtain the information it needs more easily.
These hooks are integrated into UNICOS 8.0. Since the
porting work is being done by EMASS, persons inter-
ested in obtaining more detailed information, or project
schedules, should contact them directly.

24 “Open HSM” Project

Although DMF provides an excellent, high-perfor-
mance HSM solution on UNICOS platforms, some of
our customers have indicated that the proprietary nature
of DMF is a disadvantage to them. They would prefer a
solution that is more “open,” in the sense of being avail-
able on more than one hardware platform. In this way,
the customer’s choice of HSM solution would not nec-
essarily dictate their choice of hardware platform. In re-
sponse to this requirement, Cray Research has begun a
project with the goal of providing an HSM product on
UNICOS which is close to DMF in performance and



functionality, yet which is also available on other hard-
ware platforms.

We have been evaluating potential candidates to be-
come our open HSM product for about six months.
Much of our work has been analyzing product designs,
to see which ones have the potential for being integrat-
ed into our unique supercomputing environment. As
one might imagine, there are many challenges to ad-
dress when attempting to integrate an HSM product
with our Tape Daemon, Multi-Level Security, and very
large, high performance peripherals. Moreover, most of
the products we evaluated were not designed for multi--
processor architectures, so there is a significant amount
of design work required to determine just where we can
add parallelism into these products.

Despite these hurdles, we feel we have made significant
progress on the project. Indeed, we feel we are close to
a decision point for selecting the product we will use as
our base. Our target is to have an open HSM product
running on UNICOS in 1995. Depending on which
product we choose, and the platforms on which it al-
ready runs, it may be possible that a version-of the open
HSM product will be available on the Cray Research
SuperServer platform before a UNICOS-based product
is available.

3 Volume Management Products
31 CRAY/REELlibrarian (CRL)
3.1.1 CRL2.0.5 Complete and Available

Release 2.0.5 of CRAY/REELlibrarian is now avail-
able. There are several important changes and improve-
ments to the product, including MLS support, ER90
tape device support, and support for 44-character file
ids. The database format for CRL 2.0.5 is incompatible
with the format used in CRL 1.0.x, but a conversion
utility is supplied with CRL 2.0.5. Because CRL 2.0.5
takes advantage of Tape Daemon interface enhance-
ments in UNICOS 8.0, CRL 2.0.5 will only run on
UNICOS 8.0 or higher. CRL 2.0.5 is not supported on
UNICOS 7.0 or UNICOS 7.C.

3.1.2 CRL Database Study Project

The primary CRL project currently underway is a study
which is examining the feasibility of incorporating an
improved database technology into CRL. The motive
for this study is to improve the reliability and the scal-
ability of the CRL product. No decision has yet been
made as to whether or not we will proceed with this da-
tabase upgrade.

4 Remote Transparent File Access Products

4.1 Open Network Computing/ Network File Sys-
tem (ONCINFS)

4.1.1  NFS§Improvementsin UNICOS 8.0

A great deal of effort went into improving the NFS
product Cray Research released in UNICOS 8.0. Im-
provements include the implementation of server side
readaheads, improved management techniques of the
mbufs used by the Y-MP EL networking code, new op-
tions for the mount(8) and exportfs(8) commands
which can provide dramatically improved performance
in the appropriate circumstances, and the support for
B1 level MLS.

Much more information about the NFS changes intro-
duced in UNICOS 8.0 is was given in the CUG presen-
tation given in Kyoto last September. Please refer to
that presentation for further details.

412 ONC+ Project

The primary active development project in the NFS
area is ONC+. ONC+ is a set of enhancements to the
current set of ONC protocols. Features of our ONC+
product are listed below.

* NES Version 3 is an enhancement to the current NFS
protocol, NFS Version 2. NFS Version 3 provides
native support for 64-bit file and file system sizes, pro-
vides improved support for files with Access Control
Lists (ACLs), and provides a wide range of perfor-
mance improvements.

» Support for Version 3 of the LockManager protocol,
which provides advisory record locking for NFS Ver-
sion 3 files.

« Support for the AUTH_KERB flavor of Remote Pro-
cedure Call (RPC) authentication. AUTH_KERB
implements Kerberos Version 4 authentication to RPC
on a per-request basis. This component of the project
adds AUTH_KERB to both user-level RPC calls, and
to the kernel-level RPC calls that are used by NFS. The
result is a much greater level of RPC security than is
offered by either AUTH_NONE, AUTH_UNIX, or
AUTH_DES, the current supported RPC authentication
types.

» Support for NIS+, the enhanced version of the Net-
work Information Services (NIS) protocols. These are
important enhancements which add security, function-
ality, and performance to NIS.

The CRAY ONC+ product will be a separately licensed
product, available in UNICOS 9.0.

4.2 Open Software Foundation/ Distributed File
System (OSFIDFS)
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An important project in the area of Remote Transparent
File Access software is OSF/DFS. The DFS product
provided by Cray Research will provide most of the
important features of DFS, including support for both
client and server, as well as for file caching. However,
the Episode file system is not provided with DFS, so
certain Episode file system specific functions, such as
support for filesets, is not yet supported by our DFS
implementation.

The DFS server will be available as the CRAY DCE
DFS Server. The DFS client will be available as part of
the CRAY DCE Client Services product. Both of these
products are separately licensed, and both will be avail-
able 3Q94.

More detailed information about the Cray Research
DFS product will be given by Brian Gaffey in his talk
“DFS on UNICOS,” scheduled for Thursday, 3/17/94
at 9:30.

5 Approximate Timeline
1994 1995 1996

| l I
I i I
“Open HSM”

ONC+
lient/Server DMF

ew Tape MSP

DFS
UNICOS 8.0, DMF 2.1, CRL 2.0.5, UniTree
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Abstract

The Redundant Array of Inexpensive Disks (RAID) technol-
ogy has finally made its way into the supercomputing market.
CRI has recently made available software for UNICOS to
support this. This paper discusses the experiences over the
past twelve months of integrating a Maximum Strategy RAID
into the C90 environment. Initial performance and reliability
were poor using the early release Cray driver. Over time, per-
Jormance and reliability have risen to expected levels albeit
with some caveats. Random i/o tests show that RAID is much
Jaster than expected compared to CRI DD60s.

1.0 Introduction

The Numerical Aerodynamic Simulation facility at NASA
Ames Research Center provides a large scale simulation capa-
bility that is recognized as a key element of NASA’s aeronau-
tics program, augmenting both theory and experimentation
[cooper93]. As a pathfinder in advanced large scale computing,
the NAS program tests and evaluates new hardware and soft-
ware to provide a unique national resource. This role provided
the basis for NAS entering into a development/integration
project using HiPPI connected RAID. As such, NAS was the
first site to use the CRI IPI-3 driver to access a HiPPI con-
nected RAID from the C90.

Maximum Strategy Incorporated (MSI) began manufacturing a
HiPPI attached RAID beginning with the Gen-3 system in
early 1990. These systems cost $15/megabyte. Comparable
CRI disk was available at $50/megabyte (DD40), with their top
of the line disk offered at a hefty $200/megabyte (DD49). With
such a difference in cost and the potential of high performance,
the MSI systems were extremely attractive.

The availability of the first Gen-3 systems, led to the prospect
of providing inexpensive directly attached disks which trans-
ferred data at over eighty megabytes/second. IDA Princeton
led the first integration project of this technology into a Cray
environment [cave92], connecting a Gen-3 system to a

CRAY?2. They developed a software driver which was the start-
ing point for that available on CRI Model-E IOS systems
today. NAS considered attaching the Gen-3 to a YMP8-8/256
IOS-D system, but development time, loss of production, and
short expected lifetime negated any cost savings. At that time
the CRI solution cost $39/megabyte while MSI RAID was
$13/megabyte. These prices included all required hardware
(e.g., $250,000 for a CRI I0S-D HiPPI channel).

Understandably, CRI has been extremely slow to integrate this
cost effective storage into their product offerings, choosing
instead to build their own narrow stripe RAID product from
Single Large Expensive Disks (SLEDs) [badger92]. This
largely ignores the calls of customers to provide fast inexpen-
sive media. Thus, the procurement for High Speed Processor 3
(HSP3) contained a requirement that potential vendors supply
support for IPI-3 over HiPPI.

Better performance would be achieved with direct support of
the MSI RAID system in CRI IOS hardware, yet even with the
20%-30% overhead of IPI-3 over HiPPI, performance is still
very good.

In late 1992, a separate procurement for HiPPI attached RAID
awarded MSI a contract to supply 75 gigabytes of storage. The
cost was approximately $9/megabyte. Since that time, compe-
tition has fostered falling prices with Gen-4 systems available
in quantity today at around $5/megabyte.

After the installation of HSP3 (C916/1024) in March 1993,
twelve months of testing were required before RAID provided
a reliable low cost and high performance alternative to CRI
proprietary disks.

2.0 Overview

The original RAID papers came out of the University of Cali-
fornia at Berkeley in late 1987 [patterson87, patterson88]. It
was clear the gains in capacity and performance of SLEDs was
modest compared to that achievable from RAID. At the time of
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[patterson87], Maximum Strategy had already built and mar-
keted its first RAID product and completed the design of its
second. MSI introduced the Strategy-1 in mid 1987, a RAID
level O system capable of a sustained 10 megabytes/second
over VME. August 1988 marked the Strategy-2 introduction, a
RAID level 3 product capable of 20 megabytes/second over
VME. In June 1990, MSI introduced the Gen-3, also RAID
level 3, that sustained a transfer rate of over 80 megabytes/sec-
ond via HiPPL Gen-4 became available in August 1992.

2.1 Gen-4

2.2 Overview

The MSI Gen-4 product is composed of a main processor,
HiPPI channel interface, ethernet interface and 1 or 2 facilities.
At NAS, each facility has 20 1.3 gigabyte drives. Two drives
are combined into a module and are striped either 4, 8 or 9
wide. Optimal conditions can produce transfer rates of over 80
megabytes/second. A hot standby module is available in the 8
wide stripe configuration for automatic substitution should any
drive fail within the facility. We chose the 8+1+1 (8 data, 1 par-
ity, 1 spare) configuration for the best transfer rate and reliabil-
ity.

The Gen-4 supports RAID levels 1, 3, and 5, and the capability
to partition facilities into different RAID levels. We configured
the entire system as RAID level 5.

The MSI RAID achieves fault tolerance in several ways. Data
reads cause an access to 8 modules. A read that fails on any
drive (because of ECC, time-out, etc.) is retried up to five
times. Successful retries result in successful reads. A soft error
is then logged and its sector address optionally saved in the
suspect permanent flaw table. If the data cannot be successfully
read after S retries, the data is reconstructed using the XOR of
the remaining 7 drives and the parity drive, called “parity
replacement”, In this case, a firm etror is logged and the sector
address saved in the suspect permanent flaw table. A read fail-
ure occurs when more than one firm error occurs at the same
sector offset (2 or more of 9), This results in a hard error being
logged.

A higher failure level is the loss of an entire disk. If, in the pro-
cess of any operation, a drive fails, an immediate automatic hot
spare replacement and reconstruction is initiated. This opera-
tion is transparent but requires approximately half of the band-
width of the RAID (i.e., throughput drops by 1/2 during
reconstruction). Reconstruction takes approximately 15 min-
utes. If there are firm errors on any of the remaining drives,
reconstruction will fail for those sectors and data loss occurs.
With the effective system MTBF of a drive at eight months, it

is not unrealistic to imagine such a scenario. For this reason,
MSTI has agreed to add automatic reallocation. Automatic real-
location will map out bad sectors which cause firm errors the
first time they are encountered. This will lessen the likelihood
of data loss. Failed drives are easily replaced by operations
staff. For a further description of the MSI RAID sece
[homan92]. For a discussion of Cray directions in disk technol-
ogy, see [badger92] or [anderson93].

2.3 System Maintenance Console (SMC)

The SMC monitors activity on the system, supports configura-
tion modification, and maintenance. It is accessible by a direct
vt100/rs232 connection or Telnet. The SMC, while providing
robust control over the RAID, is non-intuitive and cumber-
some to use at times. It is time for MSI to redesign this soft-
ware.

2.4 Status and Preventative Maintenance

Operations-staff must perform preventative maintenance regu-
larly. While some operations are inherently manual, others lend
themselves to automation. MSI needs to automate some of
these functions, such as the ones described below. While not a
big problem for a few systems, a center considering the instal-
lation of a large number of systems will find it necessary to do
S0.

2.4.1 Daily RAID Preventative Maintenance

UNICOS Kernel Log - Inspect the UNICOS kernel log for
“hdd.c” errors. These indicate problems detected on the CRI
side. Look to the SMC to diagnose the problem.

Response Error Log - Accessible via the SMC, messages in the
response log indicate the nature of the problem with an error
code and a text description.

Real Time Status - On the Main display of the SMC (Real Time
Status display) counters indicate accumulated errors (e.g., soft,
firm, hard).

2.4.2 Weekly RAID Preventative Maintenance

Read Scrub - Reading all sectors on the RAID is necessary to
check for disk flaws. A utility program provided for this pur-
pose can be run during production. This operation takes
approximately 20 minutes per facility and should be done dur-
ing periods of low activity.

Reallocation - Manual reallocation of suspected permanent
flaws is necessary to prevent data loss. This operation does not
use significant bandwidth.
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2.4.3 Monthly RAID Preventative Maintenance

Flaw Management - The sudden occurrence of a large number
of permanent flaws on a drive may indicate a failing drive. To
monitor this accumulation, one must download the information
to a 3 1/2” floppy, and inspect the logs on a system capable of
reading DOS floppies.

3.0 Product Impressions

During the past 18 months, there have been a number of goals
met, problems encountered and obstacles overcome. The
appendix contains a chronological listing of these events. Con-
sistent throughout the process of testing the MSI RAID was:

1. MSI always responded immediately to problems.

2. MSI diagnosed hardware'problems rapidly and replaced
boards immediately.

3. MSI added software functionality as requested.
4. MSI fixed software bugs immediately.

5. CRI would respond to problems expeditiously, in that prob-
lems were acknowledged and duplicated.

6. CRI did not experience any hardware problems.
7. CRI software functionality not added when requested.

8. CRI software bugs fixed at the leisure of CRI. Fixes for crit-
ical bugs (e.g., corrupted data) took as long as 6 weeks.

3.1 Reliability

Overall reliability of the RAID system for the first 10 months
has been poor. This is due exclusively to the support and qual-
ity of the CRI driver. RAID reliability has been 100% over the
two months since the last bug fix was installed.

Other than the initial board failure, the MSI hardware has been
stable and reliable. A visual inspection of the boards indicates
that they are well constructed and cleanly engineered. The fin-
ish work on the cabinets and other mechanical aspects of the
construction is also well done. Overall I would rate the quality
of the MSI RAID product as excellent.

4.0 Performance Analysis

Several tests were done to test the performance of the MSI
RAID under various configurations. When possible, compara-
tive performance numbers are provided for CRI proprietary
disks. All tests were run under UNICOS 8.0. All data was gen-
erated on a dedicated machine, except those shown in figure

10, and those of the random /o test (figures 16, 17, 18 and 19).
Tests were run to simulate unix functions, applications, and
administration.

4.1 Key to figures

Below is a description of the test configurations used for the
results shown in section 4.2. Tests were.conducted to evaluate
the performance of the MSI RAID system against CRI propri-
etary disks and the effectiveness of combing the two.

4.1.1 Filesystem types

RAID-H - this “hybrid” filesystem was composed of two slices,
a primary and a secondary. The primary was a CRI DD60 and
the secondary was one facility of an MSI RAID (approxi-
mately 24 gigabytes). This configuration is such that inodes
and small data blocks are allocated on the primary, while files
that grow over 65k are allocated on the secondary. This feature
of the CRI software is extremely useful in enhancing the per-
formance of the MSI RAID. As testing will show, small block
transfers on RAID are slow compared to the proprietary CRI
DD60 disks. Peak performance of the DD60 is approximately
20 megabytes/second while that of the MSI RAID is approxi-
mately 80 megabytes/second. The following mkfs command
was used to create the filesystem:

mkfs -A 4 -B 65536 -P 4 -S 64 -p 1 -q /devldsKraid

RAID-P - this filesystem was composed of one primary slice, a
single facility of the MSI RAID. All inodes and data blocks are
stored directly on the MSI RAID. Peak performance of the
MSI RAID is approximately 80 megabytes/second. The fol-
lowing mkfs command was used to create the filesystem:

mkfs -A 64 -B 65536 -P 16 -q /devidskiraid

DD60-SP - This filesystem consisted of 2 primary slices. Each
slice was composed of 4 DD60 drives that were software
stripped via UNICOS. This was used as the gold standard
against which to the measure others. Peak performance is
approximately 80 megabytes/second.

DD42-P - This filesystem consisted of one primary slice, a por-
tion of a DD42 disk subsystem (approximately 8 gigabytes).
The DD42 is based on a previous generation technology, the
DDA40. Big file throughput should be no better that 9 megabyt-
es/second.

4.1.2 Idcaching

Several tests were run to show the benefit of ldcache on filesys-
tem operations. Three levels of cache were used. The first
level, was no, which simply means that there was no cache

RAID Integration on Model-E I0S
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used in the test. The second level of cache was sm, which con-
sisted of 20 Idcache units, where the size of the cache unit was
128 for RAID-H and RAID-P, 92 for DD60-SP, and 48 for
DD42-P. This resulted in a total amount of ldcache of 10.0
megabytes for the RAID-H and RAID-P filesystems, 7.19
megabytes for the DD60-SP filesystem, and 3.75 megabytes
for the DD42 filesystem. The objective of the sm cache was to
provide a minimal amount of buffer memory so that commands

number of small files occupy a small portion of space used.
This mimics the home directory structure. In fact, the bigfs was
a copy of our NAS C90 /u/va filesystem. Figure 9 is annotated
along the x-axis at the base of each bar graph to indicate the file
data set associated with the results.

Fsck Times

could be more effectively queued and/or requests coalesced, if @

the OS was so inclined. The third level of cache was Ig, which £
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alous behavior. Figures 3 through 8 and 16 through 19 are L O RN

annotated along the x-axis at the base of the bar graph to indi-

cate the ldcache level associated with the results.

4.1.3 TestFilesystems ‘ DD60-SP
In tests for the fsck, find and Is -IR, two different data sets were Figore 2

duplicated over the 4 different filesystems described in section

4.1.1. The smfs filesystem consisted of 11,647 files, and 639
directories, totaling 1 gigabyte of data. The bigfs filesystem
consisted of 33,051 files and 2,077 directories, totaling 3
gigabytes of data. Figure 1 shows the distribution of files and
their sizes. Smfs count and bigfs count graph lines represent the
distribution by size as a function of the running total percent-
age of the total number of files. Smfs size and bigfs size repre-

sent the distribution by size as a function of the running total

percentage of all outstanding bytes. The data show that a large

4.2 Tests
4.2.1 /etc/fsck

Several tests were run to compare the difference in time
required to perform filesystem checks. /etc/fsck(1) was run on
the RAID-H, RAID-P, and DD60-SP filesystems using the smfs
data set (figure 2). The ranking and magnitude of the results are
as expected. The 6x performance differential between RAID--
H/DD60-SP and RAID-P is attributed to the 3x average latency
of the RAID (25 ms) and the 4x sector size (64k). Of interest is

find $FS -print
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how effectively the RAID-H filesystem is able to take advan-
tage of the DD60 primary partition. /etc/fsck times are further
analyzed in the section below that compares bigfs vs. smfs per-
formance.

4.2.2 /bin/find

A /binlfind . -print was executed on the smifs data set for each
of the 4 filesystems at 3 1dcache levels. Shown in figure 3, we g
take the performance of the DD60-SP filesystem at face value.
It is interesting to note the factor of 3 improvement in wall
clock achieved of sm cache over no in both the DD60-SP and
RAID-H filesystems. An additional option to ldcache to cache
filesystem metadata only is justified from these results. The
RAID-P filesystem is showing one of its weaknesses here in the
greater latency that cannot be amortized with small block
reads. A 3x margin at the no cache level stretches to 6x for the
sm cache. A large amount of cache is effective only for the
RAID-P and DD42-P filesystems. Again, note the effectiveness

onds

of RAID-H. 120~ e g
4.2.3 /bin/is -IR ot I ) o
A /bi’l/ls _lR was executed on the mfs data Set for the MID_H ecessecetcnattcenscasans 4eetscasecanccsanacasanes PP CETPURS FPoNN
and RAID-P filesystems with 3 different cache levels (figure 4).  , 807~ e [ e R I I I
The results are quite similar to the /bin/find results above, % i R R i B ETE 71 ey It R el
except that the sm ldcache has much better performance for the 3 A R B R
RAID-P filesystem. Confusing is the observation that the =~ @ o[ s mmmmmmmm——
Ibin/ls -IR test requires more processing than the /bin/find . “ B Tmmm— T
-print test, and it execution time on RAID-H bears this out. * al | 6l e 75 1
However, the RAID-P test completes in less time in all cases! ?z e l_—]_l T
4.2.4 /bin/dd © mRE momE 1'5’1lé"6 }S? W m g
This test was run twice, once to write a 1 gigabyte file to the Figure 5 RAID-P pbaz-P
filesystem under test, and once to read a 1 gigabyte file from
the filesystem under test. The source for the write test and the /bin/dd bs=16meg Read Test
destination for the read test was an SSD resident filesystem -
(RAM disk). In figures S through 8, the transfer rate in mega- :f: —9 9
bytes/second is shown along the top of each bar graph. THDRe | | | 1.1
S SO TOTPURRTOTROTP BRI SSOROIUUIGUURIRRTIOR SUOUON U N N
block transfer size for each of the tests was 16 megabytes. [~~~ Ul 11
Figure 5 shows the perfomlatlce achieved while Writing tO tl,le " F- 01 SRR e e (M I S Rt
filesystem under test. The RAID-P, DD60-SP and DD42-P con- g 707w A il
figurations performed at expected levels, however the RAID-H § 7ot FOTORPUAOIOPTUORORUOTSRRTIRIEY cidiucos it JUORPROSSURRPEN SHPPPR RSO U WO
filesystem showed dramatic performance degradation when 92 SO] s e e e
Idcache is used. This clearly indicates a problem which needs Aprmmm—" N
to be addressed by CRI B S "
Figure 6 shows the performance achieved while reading from TS I—_ ------ i— i—i_i_i ------
the filesystem under test. Each configuration performed at sat- 0 P — ra— pr— e
isfactorily close to the peak sustainable rate for the underlying RAID-H RAID-P DD60-SP DD42-P
Figure 6
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hardware, although sm cache degrades RAID-H and RAID-P
performance by 10%.

4.2.5 /bin/cp

This test was run twice, once to write a 1 gigabyte file the file-
system under test, and once to read a 1 gigabyte file from the
filesystem under test. The source for the write test and the des-
tination for the read test was an SSD resident filesystem.

/bin/cp Write Test
SO T R,
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1507 e eefeeemre e rerneenninnnas —'r,m:,d .....................................................
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Figure 7 shows the performance achieved while writing to the
filesystem under test. A combination of factors, a 32k i/o
library buffer size, inability of the kernel to coalesce or other-
wise optimize embarrassingly sequential requests, and the
25ms average latency of the MSI RAID system all lead to
extremely poor performance for both the RAID-H and RAID-P

tests with no cache. Accounting for the latency, the perfor-
mance of the no cache DD60-SP exceeds expected perfor-
mance. This leads to the conclusion that UNICOS is
performing additional optimization beyond that which is done
for the RAID. These shortcomings can largely be overcome
with sm cache on the RAID-P filesystem. In particular, this
shows the benefit of write-behind optimization, boosting the
RAID-P performance from 5 megabytes/second to over 69
megabytes/second. Consistent with the dd write test is the
severe performance problem with sm and lg cache with
RAID-H performance at 10% of its potential. Again the CRI
proprietary filesystems DD60-SP and DD42-P, perform well.

Figure 8 shows the performance achieved while reading from
the filesystem under test. The data clearly shows the optimiza-
tion effort which CRI has put into their proprietary disks sys-
tems. At the other end of the spectrum, the worst performing
filesystem was RAID-P. Although performance is somewhat
enhanced with a small amount of ldcache, it is still far below
what should be obtainable from the device. Doing far better is
RAID-H which performed at about 1/2 of its potential, but
could be substantially improved with read-ahead optimization.
The fact that the RAID-H filesystem outperforms the RAID-P
filesystem is very interesting, given that the file primarily
resides on the RAID disk in both tests. Is the OS possibly
doing read-ahead here or is it simply inode/extent caching?

4.2.6 Bigfs vs. smfs

This test attempts to gauge the relative increase in time
required to perform certain operations, based upon the size and
number of files and directories in a filesystem.

RAID-P Bigfs vs Smfs Times

200

Times

...................................... - U O SR R
1251 ey

7,0 FE W JUTIY ST R,
NoCache|] $M Cache] Nd Cache] SM]Cache
Y N SIS Tz waeesed [T P

smfs bigfs smfs bigfs smfs bigfs smfs bigfs
/bin/find /bin/ls -IR

smfs  bigfs
letc/fsck
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All tests were run on RAID-P with one set under the smfs file/-
directory collection and the other under the bigfs file/directory
collection.

Figure 9 shows run times for a /bin/find . -print, /binlls -IR .,
and /etc/fsck -u. The results are consistent with those shown in
figures 2, 3 and 4. The application of a small amount of ldcache
gives some benefit, which is also consistent with other results.
The caveat being that the performance of RAID-P is still
between 1/6 and 1/3 of the performance of DD60-SP.

The increase in elapsed time for the /bin/find test when going
from the smfs to the bigfs tests with no cache is somewhat less
than expected since the increase in complexity between the two
data sets is about 3. The /etc/fsck and /bin/ls -IR test complete
in about the expected time.

Because of the comparable performance on these and other
tasks between DD60-SP and RAID-H, it would be most advan-
tageous to utilize RAID-H in production.

4.2.7 Well formed vs. lll formed /O test

The next series of figures (10-15) contrasts the significant per-
formance differential for applications that make i/o requests on
boundaries that map well to the allocation unit of the device
and those that do not. Each figure consists of 4 graph lines, a
read and write request that is well formed, and a read and write
request that is ill formed. Well formed requests in this case are
successive synchronous sequential i/o accesses with a block
size of 2" where n ranges from 15 (32k) to 24 (16 megabytes).
11l formed requests are also successive synchronous sequential
i/o accesses with a block size of 2" + 1024 where n ranges from
15 (33k) to 24 (16 megabytes + 1024 bytes). The blocks are

" RAID-P Wel_]/Ill Formed I/Q Performanqe (no ldcache)

© RAID-H Well/Ill Formed /O Performanc;: (no ldcache)
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DD60-SP Well/Ill Formed I/O Performance (no Idcache)
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passed directly to the system using the read(2) and write(2)
system call. The test case results are shown for block size 2 by
the horizontal line running from 2" to 2™*!, Block size refer-
ence points are shown along the read well graph line.

Figure 10 shows the RAID-H filesystem with no ldcache. With-
out the benefit of read ahead or write behind, these graphs
depict worst case performance for the range tested. In fact, due
to CRI’s implementation, the performance results should be
identical for an i/o test that was random instead of sequential
(see section 4.2.9 on random /0 test results)! Also shown is the
dramatic degradation (a factor of 2 to 3) that occurs with the ill
formed requests.

Figure 11 shows the RAID-H filesystem with sm ldcache. The
results are consistent with those in figures 5 and 7 in that there

is an apparent problem in using ldcache effectively with
RAID-H. In all instances, performance is lower than expected
and worse than those obtained from RAID-P (figure 13).

Figure 12 shows RAID-P with no ldcache. The results are con-
sistent with those of RAID-H (figure 10) again representing
throughputs indicative of a random i/o test. It is confounding
that CRI would insist that read ahead and write behind would
not be advantageous (see June 17, 1993 entry in the chronol-
ogy appendix).

Figure 13 shows RAID-P with sm ldcache. The sm ldcache
configuration provides an insight into what write behind opti-
mization can actually do. For 64k byte transfers, RAID-P
shows a remarkable 72 megabytes/second. Write behind allows
for stacking commands in the MSI RAID controller and allows
the application to continue on asynchronously to the i/o pro-
cessing. Similar performance gains are possible from read-a-
head optimization, which could be implemented utilizing
Idcache. In fact, contrasting figures 12 and 13 shows this. For
all transfers (read/write, well/ill) less than a megabyte, utilizing
ldcache boosts performance by as much as a factor 10 for reads
and a factor of 40 for writes. To better illustrate the problem for
reads, the amount of time required to return 32k to an applica-
tion is approximately 0.022 seconds. It takes 0.039 seconds to
return 1 megabyte to an application. For a 56% increase in
time, a 32 fold increase in data is achieved.

Consistent in figures 10 through 13, is the unexplained degra-
dation when going from 8 to 16 megabyte transfers.

Figures 14 and 15 are included for completeness and show that
CRI disks are also subject to degradation with ill formed
requests but to much less an extent.

4.2.8 Workload Test

Table 2 shows the results of a simulated workload run on
RAID-P and RAID-H configurations. Both were configured
with 170 units of 1dcache at a size of 128. The test consisted of
the simultaneous execution of 12 data streams all on the tested

TABLE1.
Rate User System Megabytes Duration
mby/sec Time Time Transferred (Hours)
RAID-H 15,51 129.65 100.89 66,998 1.20
RAID-P 51,78 410.66 28498 210,634 1.13

filesystem. Block transfer sizes ranged from 32k to 8 mega-
bytes. The ratio of well-formed to ill-formed i/o requests was 6
to 1. The tests were run over the period of approximately 1
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hour. With the RAID-P filesystem, good performance is main-
tained even with the mixing of small and large requests. Again,
the problem of ldcaching the RAID-H filesystem is apparent

4.2.9 Random l/O Test

This test was added in an effort to highlight how much better
CRI’'s DD60 disks were at handling random small block trans-
fers than the MSI RAID. Given that there is a 2x to 3x differ-
ence in average latency, one would expect quite a performance
differential. As it turns out, this may be the coup de grace for
SLED’s.

Dedicated machine time was unavailable to run these tests. To
report best case results for each configuration, each test was
run 10 times and the test yielding the least elapsed time was
selected as representative.

This test takes a randomly generated set of numbers which are
offsets into a 64 megabyte test file. The range of the numbers
potentially span the entire file. The program reads in a number,
calls Iseek(2) to position itself in the file to the specified offset,
and then either does a read or write (depending on the test) of
block-size bytes at that offset. This is done 1024 times for each
execution of the test. The test was run for a block-size of 4096,
16384, and 65536. The test was executed against RAID-H,
RAID-P, and a filesystem created on a single DD60.

Two different sets of input lseek numbers were used. One set
was completely random in that the offset into the file could be
at any byte address. These are the “Off Boundary” results
shown in figures 16 and 17. The other set was also random, but
the offset was restricted to be an integer multiple of the block-
size used in the test. These are the “On Boundary” results

Off Boundary Random Read I/O Test

shown in Figures 18 and 19. Block-size is annotated at the base
of each bar graph.

Figure 16 shows the read results for the off boundary test. With
the sector size of the MSI RAID at 64k, the 4k and 16k tests
are likely to require access to only one sector. The 64k test will
likely require access to 2 sectors, which justifies the additional
time required for the operation. The sm cache is quite useful in
this test in negating this effect while only slightly degrading
the 4k and 16k results. Most unexpected are the results of the
DD60 test. Averaging the 4k, 16k and 64 k results and compar-
ing the best RAID configuration against the best DD60 config-
uration, the DD60 only performs 28% faster than RAID! For
some reason, the CRI disks are taking at best, 17ms to return a
4k block. This has not been a substantial problem in produc-
tion, as no one has noticed either here or at CRI. Since most file
accesses are sequential [ousterhout85], sequential performance
tends to dominate, thus latency from random i/o0 may not be a
problem, which would imply that optimizing sequential access
is most important. The primary advantage that CRI disks have
over the RAID is in filesystem metadata access (e.g., inodes)
which is not a factor with RAID-H.

Figure 17 shows the read results for the on boundary test.
Cache has a typically negative (minor at that) effect on the
results. This is expected in that the on boundary tests only
require access to one sector (except the DD60 64k test that
requires 4). Here, the DD60 is only 16% faster than RAID-P.

Figure 18 shows the write results for the off boundary test.
Notice that the y-axis scale has been increased to 90 seconds
for these tests. The results are expected with the 64k RAID
tests requiring up to two read/modify/write operations for each

On Boundary Read Random I/O Test
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Off Boundary Random Write I/O Test

On Boundary Write Random I/O Test

o0
[0 5 SR ER e Rt 55 S
— 02 S —?‘Pﬂd ..............................
...... wendaes R T T LT T - stem
70- _:l"gl:e;“d 45 gmreenenen o ooee - U’;er
-~ System ]
60 ...... . Use' ----------------------- 40— . esechensensesconne
2]
351 bk
'§50, SOOI N VOSSR U AT 1. g s g
8 | 830 i
0401~ e 1T T 1 [T} eresonnnnnnaan oeeennees o ) 1 ]
w — w25
30+ ezzend STy § [ 705 L TECS. TS PO APURY NP W FAFSIIN VR DO WS RN R DN PR N
2 157
104 oo -
1
el
0 4k 16k 64k 4k 16k 64k 4k 16k 64k 4k 16k 64k 4k -l-6k 64k 4k 16k 64k v 4k 16k 64k 4k 16k 64k 4k 16k 64k 4k 16k 64k 4k 16k 64k 4k 16k 64k
no sm no sm no sm no sm no sm no sm
RAID-H RAID-P DD60 RAID-H RAID-P DD60
Figure 18 Figure 19

user level write. The best DD60 configuration is only 13%
faster than the RAID-P in this test.

Figure 19 shows the write results for the on boundary test. For
both RAID based filesystems, sm cache significantly improves
performance at the 64k level. The 4k and 16k tests are as
expected because of the read/modify/write that occurs with
transfers less than 64k on the RAID ‘based systems. Note also
that the RAID based filesystems are 3x faster than the DD60
for the 64k test! Overall the DD60 is only 32% faster in this
test.

Given this information, one can say with some certainty, that
the DA60 RAID product from CRI which is a RAID level 3
system with a 64k sector size, should perform worse than the
DD60 used for this test, especially with the 16k test from figure
19, which is the only test that the DD60 was significantly bet-
ter.

The overall random i/o performance advantage that the best
DD60 configuration (no cache) has over the best RAID config-
uration (RAID-H sm cache) is 24% faster for writes and 29%
faster for reads.

4.2.10 Suggested Additions
On the MSI Side:

» Reallocation - As previously discussed, data loss can occur
when a drive fails and there are bad sectors on other drives.
Having the capability to automatically reallocate bad sec-
tors on the fly would all but eliminate this potential for data
loss.

* SMC - The addition of a mode that the SMC can be placed
into that prevents any unintended modification of opera-

tional parameters. As is stands now, anyone who has physi-
cal access to the SMC effectively has unlimited power to
change anything at will, or by mistake.

+ Remote Status - A command that could be run from a
remote workstation that would tell an operator whether or
not someone actually needed to take further action. This
could then be put into a cron script to status the system sev-
eral times per day and fire off email if a problem is indi-
cated. This could be extended to for such maintenance
activities as read scrub and flaw management.

+ Rewrite SMC software - This software needs to be
rethought. Many common operations are not intuitive and
or awkward. For example, it takes approximately 200 key-
strokes to examine suspect permanent flaws.

On the CRI Side:

» Buffer Alignment/grouping - As shown in the performance
section, some operations performed utilizing ldcache cause
unexplained and significant degraded performance, most
notably with the RAID-H configuratioh.

¢ Read Ahead into ldcache - When read-ahead is indicated,
perform the read-ahead into ldcache.

o Default Buffer Sizes - Evaluate the potential for enhancing
performance by modifying the default buffer size for library
routines, and elsewhere that it is indicated. Matching this to
better suit the MSI RAID should help to improve perfor-
mance while requiring only a modest increase in the
amount of main memory.

» Metadata Cache - Add an option to Idcache so that filesys-
tem metadata and data can be cached separately. A meta-
data write-though cache should improve performance
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without degrading filesystem integrity when recovering
from crashes.

« Metadata Access - The results of the random i/o test indi-
cate that the DD60 outperforms the RAID by 25% to 30%.
Why then are the /bin/find times 3x and the /etc/fsck times
6x that of a DD60?

5.0 Summary

It has taken much longer than expected to get the MSI RAID
up to production quality standards. There are still some perfor-
mance problems that need to be addressed. Overall, the perfor-
mance and reliability of the MSI RAID system is good and it is
certainly the least expensive high performance alternative.

The RAID-H filesystem is advantageous for several reasons.
Combining this configuration with some amount of ldcache is
the desired configuration for NAS, given that the ldcache
buffer problems can be resolved.

The results from the random i/o test indicate that CRI propri-
etary disks work better primarily because UNICOS optimizes
their access. The same optimization techniques applied to the
RAID should bring all performance to within 10% to 20% of
the DD60-SP configuration. They also show that DD60s do not
significantly outperform the RAID. It then follows that ques-
tions concerning RAID latency cannot serve as an excuse to
prevent optimization efforts any longer. Direct hardware sup-
port (e.g., eliminating IPI-3) would all but eliminate the small
DD60 performance advantage.

RAID technology is already an attractive option. With fast
SCSI-2 drives approaching $0.50 per megabyte, there is still a
10 fold markup to build a fast RAID controller that integrates
commodity disks and supercomputers, leading to the expecta-
tion of even lower prices.
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7.0 Appendix

Over the past 18 months, there have been a number of goals
met, problems encountered and obstacles overcome. This is a

partial chronological listing of these events and their eventual
outcome.

« Nov 5 1992 - Product Performance Demo

As arequirement for the procurement of the RAID, the
potential vendors were required to demonstrate perfor-
mance. The testing was performed at the Maximum Strat-
egy facility in Milpitas, CA. The test environment consisted
of a Gen-3 RAID serving as the testing client and the IFB
bid hardware consisting of a Gen-4 controller and 20
Seagate IPI-2 drives with a storage capacity of 27
gigabytes. Results shown in Table 2

o Mar 25 1993 - First Instalied
HSP-3 (C9016-1024/256) installed. Cabled up MSI RAID.
Able to access RAID with the alpha release of the CRI
IPI-3/HiPPI driver. Having problems talking to more than
one facility.

o Mar 31 1993 - Software Problem
Due to a minor device number conflict, we are unable to
access both facilities of the MSI RAID. Ldcache give an
ENXIO (ermo 6) error when trying to ldcache a RAID file-
system.

TABLE 2.
Requirement MSI Gen-4
read 720 mbit/sec 740 mbit/sec
(92.4 mby/sec)
write 680 mbit/sec 701 mbit/sec
(87.6 mby/sec)

o April 9, 1993 - Hardware Problem
Data corruption is detected on reads, further diagnosis
shows a parity error over HiPPI. Replaced HiPPI cable and
MSI HiPPI controller board. ‘

+ April 12, 1993 - Hardware Problem
More data corruption errors on read. MSI replaces HiPPI
controller board again. Diagnosis at MSI shows a hardware
failure on the first replacement board.

o April 23, 1993 - Software Problem
Ldcaching on the MSI RAID now crashes the C90.

o April 28, 1993 - Software Problem
Utilizing the primary and secondary allocation on RAID
causes the root filesystem to hang (i.e., Is -1 / never returns)
and eventually requires a re-boot to fix.

¢ May 19, 1993 - Software Problem
Inappropriate handling of soft errors on the CRI side. When
a conditional success is sent to the Cray, it is interpreted as
a failed request, The Cray then does this 5 times and quits -
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propagating the problem to the application. It is suggested
that the Cray attempt some type of error recovery.

Jun 9, 1993 - Software Problem

Ldcache still not working. Primary/secondary allocations
also still not working. No error recovery is done. No read
ahead/write behind. I/o requests must be VERY well
formed to extract performance from the RAID disk.

Jun 15, 1993 - Software Fix
Kernel mod installed to fix Idcache problem.

Jun 17, 1993 - CRI Response to issues

Primary/secondary allocations are not supported in the cur-
rent HiPPI/IPI-3 implementation under UNICOS 7.C.2.
This capability is available in Unicos 7.C.3, which is cur-
rently scheduled for release August 6th.

CRI declines to do any error processing (other than retries)
on the C90 side. They do make a reasonable argument.

The issue of read ahead/write behind for an IPI-3 driver
came up during the HSP-3 contract negotiations. Cray
Research replied in a letter dated November 4, 1992:

“Cray Research has investigated implementing read-ahead
and write-behind in either the mainframe itself or in the
IOS and believes that such an implementation would be
ineffective in enhancing performance of a HIPPI-based
IPI-3 driver. This is because both the mainframe and the
IOS are too far away from the disk device itself to provide
meaningful improvement in transfer rates. The appropriate
place to put read-ahead and write-behind, in our view, is in
the controller of the RAID device itself. This has not yet
been done in Maximum Strategy products.”

July 12, 1993 - Upgraded UNICOS
Primary/Secondary mods from 7.C.3 are added into 7.C.2
in an attempt to create the hybrid filesystem.

July 19, 1993 -Fell back to plain 7.C.2

System time the has increased greatly. Experiencing lost
mount points with mixed device filesystems. Returning to
unmodified 7.C.2 system. Since we will be beta testing
UNICOS 8.0 in August, no upgrade to the official 7.C.3
release is planned.

Sep 17, 1993 - Software Problem

Duplicated the auto-reconstruct failure that occurred 2
weeks ago after several tries. Occasionally when powering
off a drive, multiple retry failures cause an EIO (errno 5 -
i/o error) to be propagated to applications. Two problem are
apparent here;

1.CRI driver is not appropriately handling conditional suc-

Cess eITors. -

2.When a drive fails AND there are active flaws on other

drives, correct data cannot reconstructed and the read fails.
A request is made to MSI to add the capability to automat-
ically reallocate suspected permanent flaws that occur dur-
ing operation.

Sep 28, 1993 - Software Fix

New driver available to fix the inappropriate handling of

conditional success status.

Sep 30, 1993 -Software Problem

Installed new CRI software and New MSI software to fix
all current known problems. On the positive side, perfor-
mance increased by almost 30% with the new software (80
mby/sec reads and 73 mby/sec writes). Testing has however
uncovered a serious problem that causes corrupted data to
be propagated to applications when a drive is powered off.

Oct 1, 1993 - Response
MSI and CRI are investigating the problem.

Oct 1, 1993 - Software Problems
Duplicated data corruption problems without powering off
drives.

Oct 7, 1993 - UNICOS 8.0
Began beta UNICOS 8.0 testing, primary/secondary alloca-
tions are still not operating correctly.

Nov 17, 1993 - Software Fix

Installed a new IOS and a new HiPPI driver on the CRI side
and a new driver on the MSI side Nov 10. Testing over the
last week has not turned up any problems. Performance has
dropped somewhat (about 10%) for both reads and writes

Dec 3, 1993 - Production UNICOS 8.0
Primary/Secondary allocations functioning correctly. Per-
formance is mixed yet consistent with 7.C.2/3.

Jan 2, 1994 - Hardware Problem

Machine powered off for several days during facility main-
tenance, when power returned, RAID will not boot. MSI
able to give instructions over the phone to return system
back on-line. Problem traced to battery failure that has been
fixed in subsequent systems. MSI provides upgraded sys-
tem processor board.

Jan 30, 1994 - Limited Production

Extensive testing has turned up no further problems with
the MSI RAID. The system will now be put into limited
production

Mar 10. 1994 - Every Thing OK

No errors reported. No outstanding problems.
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Abstract

SCIS has a YMP/264 (until recently a XMP-EA/264) with a
4000 slot STK 4400 silo that is mainly used to hold DMF and
backup tapes. Since running DMF uscrs have tended to regard
the file systems as an infinite resource and have been very lax
about deleting unwanted files. Eightcen months ago it was
apparent that our DMF pools would grow beyond the capacity
of our silo, so it was necessary to implement a file expiration
date for DMF that could be set by users on their files. The
system has significantly reduced our DMF pools. This paper
describes the external and internal workings of the file
expiration system.

Background

SCIS is a Royal Dutch Shell Group company that provides a
range of computing services to other members of the Shell
group in the UK and the Netherlands. The SCIS Cray is used
for petrolenm engineering applications, mainly reservoir
modelling. A typical model will consist of a 10MB cxecutable
and a number of data files cach up to 100MB. There arc
approximately 400 users in 30 different groups. The majority of
users are located at various sites around the UK, but a
diminishing number are in locations as far apart as Canada.
New Zealand and the Middle East. Many users access the Cray
infrequently and only by batch. and the large geographic
spread of users makes it very difficult to manually ask people
using large amounts of storage to delete unwanted files.

For the purpose of disk organisation users are split into two
5GB file systems, /u2 and /u4, depending on whether they are
UK or non-UK based. DMF is run on these file systems and a
few others such as the support staff's file system and a file
system used for archiving old log files and accounting data. In
July 1992 the DMF tape pools had grown to 900 cartridges
each. The rate of growth was lincar. consistent with users not
deleting old files, and indicating that we would run out of
space in the silo early in 1993. 1t was clcarly necessary to
implement a system whereby files would be deleted afler a pre-
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determined length of time (a 'retention period') unless a user
had explicitly requested that a file should be kept for longer.
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Requirements For The Automatic Expiration
System

It was considered important that the system must:
e Becasy o usec.

e Recquire little or no maintenance or administration once
installed.

¢ Require the minimum amount of local code.

o Integrate cleanly with Unicos, i.e. have a Unix flavour
interface and be completely application independent.

e Not compromise any existing security mechanism, i.e.
users can only set retention periods on files they have write
access to.

e  Work with subsequent versions of Unicos. At the time we
were running Unicos 6.1.6 and 7.0 was still in Beta.



Design Considerations
Two routes to achieving the requircments were considered:
e A 'database' type system whereby users execute locally

written commands to read and write lists of files into a
database. The database could then be regularly

interrogated by a cron job that would delete any files that .

had passed their 'best before' date. This system would
require no modifications to Unicos source to write, and if it
went wrong it would not interfere with Unicos itself.
However, a large amount of local code would be needed to
check file permissions and ownerships, cope with files
restored from backup, delete the database entry if the file is
deleted by the user rather than the system. etc.

¢ Modify Unicos commands to provide the tools to enable a
simple file expiration facility to be written. The inodc
contains three time stamps, cdi_atmsec. cdi_ctmsec and
cdi_mtmsec (atime. ctime and mtime) which correspond to
date last accessed. date inode last modified and date file
last modified respectively. Under Unicos 7.0 and above
there is a site modifiable member of the inode structure,
cdi_sitebits, which can be written to with fentl(2) and read
with stat(2) system calls. The sitebits inode member can be
used to store an additional time stamp corresponding 1o
how long the file should be kept for. Commands such as
touch(1), Is(1) and find(1) can be modificd to read and writc
time stamps into the inode sitebits member.

This method has the advantage of being an clegant and
totally secamless enhancement to Unicos requiring little
local code, and utilising all of the security checking
mechanisms already coded into the commands. The
disadvantages are that a source licence would always be
required and the mods would have to be carried forwards
to each Unicos release. Additionally. under Unicos 6.1
whilst the sitebits member was present in the inode. the
fentl(2) and stat(2) system calls were missing the code to
read and write to it. so kernel mods were necessary (o
provide this functionality until Unicos 7.0 was available.

Implementation Details

The second method of implementing a relention system was
chosen. Kernel mods were made to Unicos 6.1.6 to provide the
extra functionality in the fentl(2) and stat(2) system calls that is
available in Unicos 7.0. Whilst doing this it was apparent that
it would have been better if Cray had not implemented the
facility to write into the inode sitebits member through fenti(2),
but had rather written another system call that would function
similarly to utime(2). This is because fentl(2) principally
performs file locking and other operations on the data of a file
and so takes a file descriptor as an argument. therefore the file

must first be opened with open(2). utime(2) takes a path name as
an argument and does not require that the file is open, which is
more sensible since only the inode is being updated, not the
data block.

The following commands were modified so that users could set
and read retention times. The 'd' flag was chosen to be a
mnemonic for 'detention’ since the Is command already has 'e'
and 'r' flags.

e To set a retention period the touch{1) command was
modified:

touch [-a] [-c] [-m] [-d] [mmddhhmmlyy]] [-D dd]

where -d is the detention (retention) time as a time stamp
and -D is the detention time in 'days from now'. The
default for touch is still -am. Using the -d or -D options on
their own does not cause the modification time to be
altered. Unicos sets the sitebits member of the inode
structure to be 0 on every file by default, and hence the
retention time stamp for all files will be 0 by default. It is
not possible to set a retention time on a directory as the
touch(1) command must open(2) the file first and it is not
possible to open{fd, O_WRONLY) a directory.

It is interesting to note an 'undocumented feature' of
touch(1): because utime(2) is used to change the actime and
modtime time stamps on a file it is not possible to touch a
file you don't own even if you have write permission. This
is not the case for the retention time since the open(2) and
fentl(2) system calls are used to update the retention time
stamp.

e To cnable users to list the retention time on their files both
Is(1) and Is(1BSD) commands were modified to accept a -D
option which, when used in conjunction with - or -t
options, lists the retention time in the same format as the -¢
and -u options. The code generates an error message if the
-D option is used in conjunction with either -c or -u. If the
retention time is zero, i.e. has not been set on a file, the
mtime is used in the default manner of Is(1) and Is{(1BSD).
The -D option used on it's own is valid but meaningless, as
are -¢ and -U options.

¢ In order to search file systems for files that have exceeded
their retention period, the find(1) command was modified to
accept a -dtime argument in the manner of -atime -ctime and
-mtime. If the retention time is zero, i.e. has not been set on
a file, the last date of modification is used in the manner of
the -mtime option.

Sites implementing a system such as this could give
consideration to modifying other commands such as fck(1) to
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report the retention time, or perhaps rm(1) to warn users trying
to delete files with an unexpired retention time.

The mods to commands described above provided the necessary
tools with which to implement a 'file expiration' system. Users
were forewarned, run stream generators for user jobs were
modified to allow batch users the option of touch'ing their files
with a retention time, and a shell script was written to dclete
files past their retention time. The shell script could have been
run from cron, but in order to enable us to mail users who only
read VAX mail the script is run from a batch job submitted
from a VAX front end once every month. It was decided to
delete all files more than 93 days past both their retention time
and date of last modification. Date of last access was not used
as it is updated by commands such as dmget(1) dmput(1) and
file(1). The shell script essentially just docs:

find $FS -dtime +93 -mtime +93 -type f -exec rm {} \; / -print

Note that the above command leaves directory structures in
place in case this is necessary for some applications (o run, A
list of the files deleted is mailed to the user. along with a list of
files that will be deleted next month unless a new retention
time is set upon them.

Effect Of Implementation On DMF

The system went live on February Ist 1993, The first delction
removed approximately 80GB of files. A month later when the
files were hard deleted utilisation of our DMF tape pools was
reduced by nearly 50%. Having made a large number of tapes
free we wanted to remove a contiguous range of higher VSN
tapes from the dmf pools rather than just removing random
VSNs as they became free. This was time consuming and
messy, and could only be done by setting the hold read only
(bro) flag on the VSNs with the dmvdbgen(8) command. and
then waiting until more files were hard deleted from the tapes
before merging them. Multi-volume files that were not due to
be deleted had to be manually recalled, touch(1)'ed to make
DMF think they had been modified and so put them back
somewhere else, and then re-migrated. Tidving the tape pools
up after the start of the file expiration system (ook several
months.

One initial problem was caused by the fact that the modified
touch(1) command uses the fentl(2) system call to write the
retention date, and so must open(2) a file first. This means that
if a user sets a retention time on a migrated file, the file is
needlessly recalled. As a result of this there was some
thrashing of tapes during the month before the first delete as
users set retention periods on old migrated files. Fortunately
the act of touch'ing the retention time on the file does not
update the modification time, else a subsequent dmput(1) of the
file would create yet another copy! On the 2nd of December
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1992 Design SPR No 58900 was submitted suggesting that a
new system call should be written to allow cdi_sitebits to be
updated without recalling migrated files.

The system has been running for over a year now. It had been
anticipated that some users would try to circumvent the
retention system by setting very long retention periods on all
their files by default, but so far this has not happened. We also
anticipated being deluged by requests to restore deleted files
but apart from a small number of genuine mistakes this has not
happened either.

Some users do unfortunately consider the retention system to be
an alternative to the m(1) command and just leave files lying
around until the retention system deletes them. This causes a
problem because the files are held in DMF for three months
before the retention system deletes them and then a further
month before they are hard deleted from DMF. In the worst
case this can result in garbage being held in DMF for nearly
five months.

First Problems

In July '93 a disk problem caused a user file system to be
restored from a backup tape. Shortly afterwards it was noticed
that all of the retention periods set on files had been lost. This
was due to a bug in the restore(8) command. The dump(8)
command correctly dumps the value of cdi_sitebits but there is
no code in restore(8) to put it back again. Dump and restore had
been inadvertently omitted during testing of the retention
system! Cray confirmed that the bug was present in 7.0.

Since restore(8) runs as 'user code' i.e. does everything through
the system call interface rather than accessing the file system
directly. it was not possible to fix this bug in Unicos 7.0 -
restore would have 1o open(2) and unmigrate every restored file!
Design SPR No 66926 was submitted on the 8th July 1993
against this problem. The Cray reply was that a new system
call would have to be written which would not be available for
some time. The Design SPR suggesting that a new system call
should be used to set cdi_sitebits had been submitted over six
months previously but no action had been taken by Cray. This
reinforces a general concern of the author that Cray pay
insufficient attention to Design SPRs.

Fortunately Cray did suggest a work-around to the problem. A
script was written to read a dump tape and produce a list of
inode numbers and file names. A program then re-reads the
dump tape and produces a list of inode numbers and cdi_sitebits
values. The two lists are read by an awk program that matches
path names to cdi_sitebits values and pipes the result into fsed(8)
to reset the values. Finally the file system must be umounted
and mounted again before Unicos recognises the cdi_sitebits



values. The whole process is a kludge and requires multiple
reads of the dump tapes, but it works.

Where Are We Now?

Our DMF pools are still growing and are now. at 900 tapes
each, the same size as before we introduced the retention
system. This is due to three main factors.

e The users in the /u2 file system have gencrated a large
number of files which legitimately must be kept for several
months, This is unavoidable and the main cause of the
growth,

e We keep more log files and accounting data on the ‘other’
file systems than we used to.

e Systems support staff themsclves are untidv and are
keeping ever increasing amounts of data.
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Outstanding Problems
The following problems are outstanding:

e Itis necessary to unmigrate a file in order to sel a retention
time on it.

e Restoring a dump tape is a convoluted process.

Both of the above problems would be solved if Cray were
to implement a new system call for writing into cdi_sitebits.
According to CRAY PRIVATE PRE-RELEASE
information (liable to change). there will be a new system
call, Isetattr(2), in 8.2 which will allow all user-accessible
meta-data associated with a file to be set in a single system
call. The system call takes a pointer to a file name and a
structure containing the desired changes as arguments. and
does not require the file to be open.

However, due to the internal workings of the Unicos 8.x
virtual file system, the initial implementation will be

restricted to super-user. This should allow the bug in
restore(8) to be fixed but may cause problems with our local
mods to touch(1): it may be necessary to make touch(1) a
suid program to allow users to set retention periods. The
restriction on super-user may be lifted in a later release
and the functionality of fentl(2) will remain indefinitely
should we decide to stick with the current limitations.
Unicos 8.2 is scheduled for release fourth quarter 1994,

e  Unwanted files can still remain on DMF tapes for several
months.

The only way to prevent this is to reduce the time after
which expired files are deleted, and/or reduce the time
after which files are hard deleted.

Future Plans

We plan to run the retention system on support staff file
systems in the near future, and will look at reducing the
amount of log files kept. These changes should remove up to
10 GB of migrated data.

Files more than one day (rather than 93 days) past their
retention period will be deleted provided they are more than 93
days past the date of last modification. This change will delete
21 GB of migrated data.

Conclusions

It is very easy to implement a simple and reliable method of
removing unwanted files and preventing DMF tape pools from
growing indefinitely. From Unicos 8.2 existing problems with
having to unmigrate files to set a retention time on them, and
the failure of restore(8) to reset the retention times on restored
files should be fixed.

The system is not, however, a magical remedy for all storage
space limitations. and good storage management is still
required to ensure that users (and systems stafft) do not abuse
the retention system or carelessly keep unnecessarily large
amounts of data.
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Abstract

This paper provides an architectural overview of the EMASS®
ER90% data storage peripheral, a DD-2 tape storage subsystem.
The areas discussed cover the functionality of tape formatting,
tape drive design, and robotics support. The design of the ER90
transport is an innovative approach in helical recording. The unit
utilizes proven technology developed for the video broadcast
industry as core technology. The remainder of the system is
designed specifically for the computer processing industry.

Introduction

In 1988, E-Systems initiated a project which required a high
performance, high capacity tape storage device for use in a mass
storage system. E-Systems performed an extensive, worldwide
search of the current technologies. That search resulted in the
identification of the Ampex broadcast recorder that utilized D-2
media as the best transport. E-Systems then initiated a joint
development effort with Ampex to use their proven video
transport technology and design the additional electronics
required to produce a computer peripheral device. The result of
this development was the EMASS ER90 tape drive which
connects to computers using the IPI-3 tape peripheral interface.

Core Technology

The ER90 transport design meets the stringent requirements for
long media life in its approach to tape handling. A simplified
threading mechanism, a simplified tape path, and automatic scan
tracking along with a proven head-to-tape interface are all features
that lead to selection of the Ampex transport for the ER90 drive.

The ER90 transport uses this direct-coupled capstan hub similar to
high performance reel-to-reel tape drives instead of the usual
pinch-roller design. Advantages include fast accelerations and
direction reversal without tape damage, plus elimination of the
scuffing and stretching problems of pinch roller systems. Since a
direct drive capstan must couple to the backside of the tape, it
must be introduced inside the loop extracted from the cassette. In
order to avoid a “pop up” or moving capstan and the problems of
precise registration, the capstan was placed under the cassette
elevator, so that it is introduced into the threading cavity as the
cassette is lowered onto the turntables.

In order to prevent tension buildup and potential tape damage,
none of the tape guides within the transport are conventional fixed
posts. Air film lubricated guides are used throughout; one
exception is the precision rotating guide which is in contact with
the backside of the tape.
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All motors are equipped with tachometers to provide speed,
direction, or position information to the servo system, including
the gear motors which power the cassette elevator and the
threading apparatus. There are no end position sensors; instead,
the servo learns the limit positions of the mechanisms and

‘subsequently applies acceleration profiles to drive them rapidly

and without crash stops. This approach also permits the machine
to recover from an interruption during any phase of operation
without damage to the machine or tape.

The tape transport also features a functional intermediate tape
path that allows high speed searches and reading or writing of the
longitudinal tracks without the tape being in contact with the
helical scan drum.

The ER90 tape drive architecture and media provides several
unique functions that enhance the ability to achieve high media
space utilizations and fast access. Access times are enhanced
through the implementation of multiple areas (called system
zones) on the media where the media may be unloaded. This
feature reduces positioning time in loading and unloading the
cassette. Access times are reduced through high speed positioning
in excess of 800 megabytes per second. These core technology
designs support a set of advantages unique to tape transports.
Figure 1 depicts the ER90 transport and associated electronics.
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Figure 1. ER90 transport and associated electronics.



Head Life

Helical heads are warranted for 500 hours; however, experience
with helical head contact time exceeds 2000 hours. Because of
the system zones and the ability to move between system zones
without tape loaded to the helical scanner drum, the actual head
life with tape mounted on the drive may be substantially longer.
In addition, when heads do need to be replaced, service personnel
may quickly install new heads on-site, without shipping any
transport subassemblies off-site, in about 20 minutes.

Safe Time on Stopped Tape

Whenever the flow of data to or from the tape drive is interrupted,
the media is moved to a system zone and unloaded from the
helical drum. When data is being written, this should be a rare
occurrence because each drive has a 64 megabyte buffer. When in
retrieval mode, returning to a system zone whenever the access
queue is zero should be standard practice. In this way, if the drive
is needed for a different cassette, it is available sooner and if
another access is directed at the same cassette, the average access
time is not affected by where the tape now rests. With this type of
drive management, the cassette may remain mounted indefinitely
without exposure to the tape or heads.

Data Processing Design

An ER90 cassette can be partitioned into fixed size units which
can be reclaimed for rewriting without invalidated other recorded
data on the tape cassette. Most tape management systems achieve
space reclamation by deleting an entire tape volume, then
allowing users to request a “scratch tape” or “non-specific”
volume when they wish to record data to tape. Physical cassette
sizes of 25, 75, or 165 gigabytes will make this existing process
inefficient or unusable. The ER90 cassette partitioning capability
provides an efficient mechanism for addressing the tape space
utilization problem.

ER90 cassette formatting provides for three levels of Reed-
Solomon error correction. In addition, data is shuffled across the
32 tracks that make up a physical block, and interleaved within
the physical track so that each byte of a block has maximum
separation from every other byte that make up an error correction
code word. Data is then recorded using a patented process called
Miller Squared. This process is a self checking, DC free, rate 1/2
coding process that has a 100% probability of flagging a burst
error. This has the effect of doubling the efficiency of a Reed-
Solomon code by knowing where the power of the code should be
applied. A data rate of 15 MB/sec is achieved with all error
correction applied, resulting in no loss of drive performance for
maximum data reliability.

An error rate of 1013 should be achieved without factoring in the
effect of the interleave, write retry, and write bias. C3 error
correction is disabled during read back check when writing in
order to bias the write process. If C2 is unable to correct the error
of any one byte, a retry is invoked. Table 1 summarizes the error
management system.

Table 1: Summary of the Error Management System

Format Item

Format Description

Bytes Per Track

48,972

User Bytes Per Track

37,495

C1 Dimensions

RS(228,220,8) T=4

C2 Dimensions

RS(106,96,10) T=5

C3 Dimensions

RS(96,86,10) T=5

Channel Code

Miller-Squared (rate 1/2)

C1-C2 Product Code Array

In-track block interleaver
with dimensions 456 x 106
(two C1 words by one C2
word)

C3 Code Cross-Track
Interleave Description

C3 codewords interleaved
across a 32-track physical
block

Outer CRC Error Detection
of C1-C2-C3 Failure

Four 64 parity bit CRC
codewords interlaced over
32 tracks which provide
undetected error probability
of 1020

Write Retry

Yes

Coding Overhead

28%

Erasure Flagging Capability
of Channel Code

Excellent: probability of
flagging a burst error is
near 1.0

Maximum Cross-Track Burst
Correction

3.3 tracks (139,520 bytes)

Maximum Length of Tape
Defect Affecting 4 Adjacent
Tracks that is Correctable

35,112 bytes

Maximum Raw Byte Error 0.021

Rate Which Maintains

Corrected Error Rate < 10713

Maximum Width of 4,560 bytes

Longitudinal Scratch that is
Correctable

Drive Configuration

The Drive configuration allows for physical separation of the
electronics from the transport module at distances up to 100 feet if
desired. This allows users to maximize the transport density in
robotic environments, and to place the electronics modules in
close proximity to host computers.
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Media Usage Life

One of the major applications for ER90 technology is a backstore
for a Disk/Tape hierarchy. As such, the number of tape load and
unload cycles, thread/unthread cycles and searches may be
significant. The expected usage capabilities for the ER90 media
should exceed 50,000 load/unload cycles, 50,000 tape thread/
unthread cycles per system zone, and 5,000 end-to-end shuttle
forward and rewind cycles. The number of end-to-end reads using
incremental motion (less that 15 MB/sec) should exceed 2,000
while the number of reads of 1 gigabyte files using incremental
motion should exceed 5,000. The operating environment should
be maintained between 12 to 20 degrees centigrade with relative
humidity between 30 and 70% to achieve best results.

Archival Stability

Assuming cassettes are stored within temperature ranges of 16 to
32 degrees centigrade with relative humidity between 20 and 80%
non-condensing, storage of over 10 years is expected. For even
longer archival stability, an environment maintained between 18.3
and 26.1 degrees centigrade with relative humidity between 20
and 60% non-condensing should result in archival stability
exceeding 14 years.

Recent testing by Battelle Institute on D-2 metal particle tapes
from four vendors revealed no detectable change after 28 days
of exposure to accelerated testing in a mixed gas environment,
equivalent to 14 years of typical storage in a computer facility.
The following results were determined:

* No evidence was found of localized surface imperfections.

 Improved surface formulations provided a protective coating
for the metal particles.

¢ The D-2 cassette housing protected the tape against damage
by absorbing (gettering) corrosive gases.

¢ Change of magnetic remanence does not differ significantly
when compared to other tape formulations in use today.]

High Speed Search

ER90 data formats include full function use of the longitudinal
tracks that can be read in either the forward or reverse direction.
One of these tracks contains the geometric address of each
physical block of data. This track can be searched at speeds of
greater than 300 inches per second, equivalent to searching user
data at more than 800 megabytes per second. Another longitudinal
track is automatically recorded on tape which provides either
addressability to the user data block or to a byte offset within a
user file. No user action is required to cause these tracks to be
written and they provide high speed search to any point in the
recorded data, not just to points explicitly recorded at the time of
data creation.

1. Fraser Morrison and John Cororan, “Accelerated Life testing
of Metal Particle Tape”, SMPTE Journal, January 1994
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Multiple Unload Positions

Access times are enhanced through the implementation of
multiple system zone areas where the media may be loaded and
unloaded. Full rewind is therefore unnecessary. This reduces
positioning time when loading and unloading the cassette, while
eliminating mechanical actions of threading and unloading over
recorded data, as well as eliminating the wear that is always
inherent in any design that requires a return to beginning of tape.

Robotics

Full robotics support is provided for the ER90 drives by the
EMASS DataTower® and DataLibrary, archives with storage
capacities up to 10 petabytes. Both robotics are supported by
EMASS VolServms volume management software which is
interfaced to tape daemon in the UNICOS operating system.

The DataTower archive uses proven robotics to transfer D-2 small
cassettes between 227 storage bins and up to four ER90 drives.
This yields a capacity of almost six terabytes of user data in a
footprint of only 27 square feet. A bar code reader on the robot
scans a bar code on each cassette for positive identification and
manageability. Under VolServ software control, the robot inside
the DataTower archive rotates on a vertical pole, grabs the
designated D-2 cassette from its bin, moves it to an available drive
where it is automatically loaded into an ER90 drive. This load
operation completes in less than a minute. When the application
completes its use of the D-2 cassette, VolServ software will
instruct the robot to return the cassette to a storage bin.

For larger storage needs, the DataLibrary archive offers a modular
solution that can be expanded to contain petabytes of user data.
The DataLibrary archive stores D-2 small and medium cassettes
in shelves that make up the cassette cabinets. Each four foot wide
cassette cabinet can hold up to 14.4 terabytes of user data. Up to
20 cabinets can be added together to form a row of storage. Rows
are placed parallel to each other to form aisles in which the robot
travels to access the cassettes. A added benefit of this architecture
is that cassettes on interior rows are accessed by two robots.
ER90 drives are placed on the ends of the rows to complete the
DataLibrary archive. As demand for robotic-accessed storage
grows, a DataLibrary archive can be expanded by adding more
storage cabinets, more robots, or more ER90 drives. As with the
DataTower archive, VolServ software provides complete mount
and dismount services through the UNICOS tape daemon.

Conclusions

The ER90 tape drive, by borrowing innovative techniques used in
high-resolution video recording, provides the computer process-
ing industry with a helical scan tape format that delivers data from
a high density 19 mm metal particle tape. With a sustained rate of
15 MB/sec, input/output intensive applications now have a device
that complements the processing speeds of Cray supercomputers.
The implementation of system zones allows safe load and unload
at other than BOT, providing improved access times. The dense
DD-2 format means that the cost of storage media is dramatically
reduced to less than $2 per megabyte.



EMASS/CRAY EXPERIENCES
AND PERFORMANCE ISSUES

Anton L. Ogno

Exxon Upstream Technical Computing Company

Introduction

At the Exxon Upstream Technical Computing
Company (EUTeC) we have recently purchased an
Emass Data Tower from E-Systems. The Data
Tower is capable of holding 228 D2 tapes, with each
tape having a capacity of 25 Gigabytes for a grand
total of approximately 6 Terabytes of storage. The
Tower also provides a robotics system to mount the
tapes, a cabinet with room for four ER90 recorders,
and a SparcStation System (VolServ) for managing
media, drive and other component statuses. IPI
Channels connect our Tower directly to the Cray, and
each recorder is capable of sustaining 15 MB/s. We
intend to harness the storage capacity of the Data
Tower to provide a centralized repository for
managing our large tape library. In the future, we
may expand its usage to our IBM MVS machines and
our UNIX workstations.

We faced two challenges in making the ER90 drives
available for production use. The first challenge was
to make the ER90 drives available to our users. To
do so, we decided to extend the functionality of Data
Migration (DMF) to include muitiple Media Specific
Processes (MSPs) solely for D2 media. This
approach gave us a simple mechanism for storage
and retrieval of data, as well as archival and
protection services for our data files. DMF allows us
to support ER90 use with minimal programming
effort, but at the expense of some flexibility and
some performance. The hurdles involved in making
ER90s available through DMF include configuration
and operational issues with VolServ and the Data
Tower network, configuration of the tape daemon,
formatting of the tape media, configuration of DMF,

and some modifications to DMF to work with
multiple MSPs.

Performance has been our second major challenge.
Each drive in the tower is capable of sustaining 15
MB/s from Cray memory to tape on a dedicated
system. At the moment, Data Migration is giving us
at most 7 MB/s per drive or about 20 MB/s
aggregate. By improving the I/O algorithm used by
DMF in a standalone program, we have been able to
achieve a rate of 13.5 MB/s from a single drive to
disk and a rate of 26 MB/s with two drives reading or
writing concurrently.  With such a significant
performance gain, we concluded that the
performance loss seen in Data Migration was due to
the I/O algorithm of the DMF code. An explanation
of these findings follows later.

DMF/ER90 Experiences

Hardware Hookup and Configuration
of a Standalone ER90

Initially, EUTeC opted to have one ER90 drive on
site until a Data Tower became available for
installation. Before we could make the ER90
available to the Cray, we had to rebuild and
reconfigure the tape daemon with ER90 software
support, which Cray distributed as an asynchronous
product. These drivers -installed without incident;
however, there were changes to the Tape
Configuration File that did not install so easily.
ER90 Tape Daemon Support Technical Note (SG-
2137) gave us a rough outline of configuring a tape
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loader for the ER90. Unfortunately, the
documentation was insufficient to steer us around
issues such as appropriate time-out values, maximum
block size configuration and operator confirmation of
"blp" tape mounts!. As the technology matures, we
expect that this document will mature
commensurately. (All sites)

Installing and Configuring DMF

After we had established communication between the
tape daemon and the ER90, we focused on
configuring DMF to use the D2 MSPs. Because we
needed to make the ER90s available quickly, we
realized that only two packages could satisfy our data
integrity requirements - Data Migration or Cray Reel
Librarian (CRL). Unfortunately, CRL had to be
abandoned because it cannot coexist with IBM Front
End Servicing (a site requirement). Thus, we
decided to allow access to the ER90s through DMF
only. We had been running DMF with 3490 tapes for
a year, which significantly lowered the learning
curve for EUTeC and our clients. Before the first
ER90 arrived, we were running DMF 2.04. To gain
ER90 support, we upgraded to DMF 2.05, and with
the installation of Unicos 8.0, we upgraded to DMF
2.10, all of which caused us no problems.

The following paragraphs outline the customizations
we have made or expect to make to DMF:

Multiple MSP Selection

To allow our users to migrate to the D2 MSP while
continuing to use the 3490 MSP, we made local
mods to the dmmfunc routine, which Cray provides
for just such a purpose.2 At EUTeC, if a user sets the
sitebit in the inode to a number between 1000 and
1010, our modified dmmfunc returns an appropriate
MSP index from 0 to 10. This approach has several
disadvantages, including a lack of access control to
the ER90s. We have submitted a design SPR with

IWhen formatting tapes and labelling tapes, the
tpformat and tplabel commands use bypass label
processing (see below)

2Dmmfunc receives a stat structure, and returns an
MSP index for the specified file.

CRI to add a UDB field for controlling access to each
MSP. (DMF sites with more than one MSP)

No tape unload

To leave cartridges mounted after DMF performs an
operation, we have also added a "no unload" option
to the ER90 tape mounts for DMF. If a program
accesses files from the same cartridge sequentially,
then this measure greatly decreases the number of
tape mounts required. (DMF sites)

Hard Deletes and Default Copies.

Other issues concerning Multiple MSPs include the
lack of hard delete and default copy parameters on a
per MSP basis or per file system basis. We have
submitted design SPRs for both of these parameters.
(DMF sites with more than one MSP)

Read access equals dmput access.

Another problem that we ran into as users shared
these D2 files, was that, while a user could retrieve
files he did not own with dmget, he could not release
their space with dmput. At EUTeC, we modified
dmput to allow users with read or write access to
dmput those files. (DMTF sites)

Configuring the Tape Daemon and
VolServ for the Data Tower

When the tower arrived, with the two additional
ER90s, we had to set up the VolServ Sun to
communicate with both the Data Tower and the Cray.
Also, with the addition of the Data Tower, we added
another set of mods to the tape daemon, and
configured another tape configuration file. In this
file, we configured the ER90 loader to use VolServ
as the Front End Service. We have made only minor
changes to VolServ, increasing the time-out values
for RPC messages, and sending VolServ log
messages to an alternate display. (All sites)

Formatting and Labelling tapes

Before the tape daemon uses a D2 tape, the tape must
be formatted with tpformat. This. process encodes



cartridge identification onto the tape, and divides
each tape into logical partitions, which the tape
daemon treats as separate volumes. For performance
reasons, these logical partitions should be sized
appropriately to the user's file sizes>.

You must run tpformat on every cartridge in the
tower. Initializing all 228 tapes in a Data Tower is a
time consuming process and could take several days
utilizing all three recorders simultaneously. If you
require labels on each partition, then the time for
initialization doubles. Tape labelling is optional, and,
if used, must be done for every partition on every
tape. Labelling will also slow each tape mount by
about 30 seconds, and for that reason is not
recommended by CRI. We have written a script to
perform this onerous task, but have run into problems
because tpformat and tplabel perform their own rsv
command, thus forcing the script to be single
threaded. Also, our users' average file sizes may
change over time, which may require us to reformat
the remaining free tapes to achieve peak
performance. One site has written a C program to
format and label their entire archive by formatting on
several drives at one time. I recommend that
approach heartily. (All sites)

Emass Training and Establishing

Operational Procedures

When installing a Data Tower, consider the training
required for its support and administration. Several
members of our staff have attended the VolServ
Class offered by E-Systems. This class gives an
overview of VolServ only. It does not cover
configuring a Data Tower attached to a Cray, or Data
Migration with ER90s, performance, or tape daemon
configuration. Most of what we have learned in
those areas has been through first hand experience,
talking to Cray personnel and hashing out problems
with E-Systems onsite support. (All sites)

Along with the burden of learning the ins and outs of
the system ourselves, we have spent considerable
effort training our operators to handle emergency
situations, cycling the drives and the VolServ
software, and monitoring skills. (All sites)

3An appendix to the DMF 2.05 Administrator's
Guide helps you choose the optimum partition sizes.

Hardware Errors

Since the installation of the Data Tower, we have had
a handful of hardware outages. Due to two recent
computer room blackouts, we have lost two power
supplies. We have also had a card in one drive
controller go bad and some failures with unmounting
tapes. Onsite support has been available to fix these
problems, and E-Systems is working to improve its
support at Cray installations. (All sites)

Media Recognition Problem

We have seen cases where tapes, that we had
formatted and labeled, become unmountable. In
some of these cases, when DMF mounts a tape, the
tape daemon returns a recoverable error and attempts
another mount, in other cases, the drive goes down
and our hardware technician must manually remove
the tape from the drive.. Worse yet, we have seen a
case where a formatted tape that DMF has written
data to is sporadically unmountable. In this case,
DMF has written 8 out of 11 partitions on one
cartridge, and tape mounts of that cartridge still fail
with the message "Unable to position to partition X."
This problem was fixed in an upgrade of VolServ .
(All sites)

Transition to FileServ

There are many potential advantages to switching to
FileServ. To start, FileServ allows users to write
directly to D2 tape. Second, FileServ allows variable

~ partition sizes, which will optimize tape usage (see

Formatting and Labeling Tapes). Third, FileServ
backs up the data inodes to tape when migrating files.
Lastly, FileServ will use Asynchronous /O (See
DMF/ER90  Performance). Overall, these
enhancements will be an improvement over DMF in
performance, functionality and recoverability.
FileServ is due to be released in 3Q94, and we will
consider it as an alternative to DMF. (Sites
considering FileServ)

DMF/ER90 Performance

With a high performance tape subsystem and high
performance disks come high expectations for I/O
performance. Unfortunately, accessing the ER90s
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through DMF did not give us the 15 MB/s transfer
rate that we expected. By simulating DMF's I/O
methodology in a standalone program, we were able
to benchmark transfer rates for DMF and then
improve upon the algorithm. Ultimately, we found
that the ER90 caching features, combined with
DMF's synchronous I/O, caused a transfer rate of
between 4 to 8 MB/s. We also found that a program
using buffered, asynchronous I/O could produce
nearly 14 MB/s on a loaded system. Because of this
study, we believe that our I/O methods could
generically improve DMF/ER90 performance by
100%. To test our theory about buffering, we wrote
several C programs using Unbuffered Raw 1/O,
Flexible File I/0O (FFIO), and Asynchronous,
Buffered 1/0.

Unbuffered, Raw 1/O

First, we wrote a program to simulate DMF's
dmtpput and dmtpget operations. This program
opened a disk file with the O_RAW attribute to
bypass system buffers?. As with DMF, this program
looped - reading 4 MB at a time from a striped DD60
disk file and writing that block of data to D2 tape (or
vice versa for tape reads). As with DMF, reads and
writes occurred synchronously, and the program
achieved a peak performance in the 7 MB/s range,
significantly lower than the maximum speed of the
ER90s and the DD60 drives.

Running this program we noticed a distinct pattern in
our read and write times to and from tape.5 When
writing to tape, the first write generally takes about
2,800,000,000 clocks, which is two orders of
magnitude larger than most other writes. Since the
first write includes drive ramp up, tape positioning,
and label processing time, we rewrote the program to
throw away this the time (see Appendix). After the
first write, the program wrote the next 4 MB chunks
in about 40,000,000 clocks each, until about the 13th
write, which was generally about 400,000,000

4Note that we did not use the O_SYNC option that
DMF uses.

SBetween each read and write we called rtclock() to
give us an approximate time for reads verses time for
writes. We used time() to time the entire transfer
from start to finish.

clocks. After that, writes to tape followed a pattern
of 10-14 writes at 40,000,000 clocks, and one write
at 400,000,000 clocks.

Here is a sample of the timing;:

(Last result repeated 12-13 times)

(Last result repeated 12-13 times)

readtime 25000000 clocks, writetime 2800000000 clocks
readtime 25000000 clocks, writetime 40000000 clocks

readtime 25000000 clocks, writetime 400000000 clocks
readtime 25000000 clocks, writetime 40000000 clocks

readtime 25000000 clocks, writetime 400000000 clocks

After some digging, we found that there were two
causes for this pattern, both associated with the ER90
caching mechanism. Each ER90 drive buffer inputs
into a 64 MB cache before sending it to tape. When
the buffer fills to 45 MB, the drive ramps up and
starts writing to tape. Because the buffer is initially
empty, the Cray must write about 11 x 4 MB blocks
before the transport starts. Ramp up for the drive and
the transfer from buffer to tape then accounts for the
slow write after the first series of writes. After that,
we found that the ER90 actually reads its cache faster
than the Cray disk could write. This would cause the
drive buffer to empty, which caused the transport to
stop until the buffer filled up and the transport started
again. The combined effects of synchronous I/O,
drive buffering and drive ramp up caused the entire
transfer to be sluggish.



FFIO Program

Based on the results of the first program, we decided
to rewrite the program to allow us the flexibility to
experiment with various I/O methods without
recoding. The tool of choice was Flexible File 1/O
(FFIO), which allowed us to change the /O method
of the program by assigning attributes to a file with
the "asgcmd” command. A sample "asgcmd"
command, assigning 2 x 4 MB library buffers would
be:

asgemd -F bufa:1024:2 diskfile |

For our tests, we used 1024 blocké buffers to
correspond with the 4 MB tape block size.’

The following diagram illustrates the data path from
disk to tape with FFIO library buffering. Notice that
12 MB of mainframe memory is required to hold the
library and user buffers and that the ER90 cache is
several times larger than the tape block size:

Results from the FFIO code showed a dramatic
overall transfer rate increase when we used FFIO
buffering with the disk files. The pattern of reads
and writes between disk and tape also changed
dramatically. When writing to tape, the first write
still takes about two orders of magnitude longer than
most other writes, and the first 13 writes behave the
same as in the unbuffered I/O case. But after the
drive ramps up once, reads and writes occur
consistently in under 40,000,000 clocks, until the end
of the transfer.

Because the disk I/O is sufficiently fast to fill or
empty the drive cache, the drive transport never
stops, which nearly doubles the transfer rate to 13.6
MB/s.

Here is a sample of the timing (note that the read
times from disk are significantly faster than the write
times to tape.):

readtime 800000 clocks, writetime 40000000 clocks
(Last result repeated 12-13 times)

readtime 800000 clocks, writetime 2800000000 clocks

Files Striped accross
DD&0 Disk Drives
At 256 Blocks / Stripe

User Memory
Library Buffers ~ Buffer
(4MB each)  (4MB)

K —

ER90 Buffer
(~65MB)

ER90
Recorder

Q

readtime 800000 clocks, writetime 400000000 clocks
readtime 800000 clocks, writetime 40000000 clocks

(Last result repeated until end of transfer)

61024 blocks *
Bytes =4 MB.

512 words

8 bytes

block ' word

= 4,194,304

See Appendix A for a listing of the FFIO Code

TVarying buffer sizes did not produce significant
performance changes and varying the number of
buffers produced marginal changes
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Asynchronous 1/0 Program

Finally, once we found the optimal buffering scheme
via our FFIO program, we wrote an asynchronous
I/O program with the same algorithm to benchmark
against the FFIO program. We wanted to eliminate
any overhead in CPU time, memory usage, and
memory to memory copies that the FFIO buffering
layer may have added.

In the Asynchronous I/O code, we hard coded the
double buffering algorithm. Using the reada and
recall system calls, we used a double buffering
scheme that most closely approximated the FFIO
example with 2 x 4 MB buffers (asgemd -F
bufa:1024:2 diskfile).

The results from transferring 2 GB of data were
similar to the FFIO program at 13.6 MB/s, but we
managed to eliminate one 4 MB buffer and most of
our user CPU time. The elimination of an additional
memory to memory copy between the FFIO library
space and user space easily accounts for this decrease
in CPU overhead.

See Appendix B for a listing of the Asynchronous
I/O code.

Recommendations

Because ER90 tape performance is so dependent
upon disk performance, I believe that Cray should
consider writing separate I/O routines for ER90 tapes
using the fastest and cheapest I/O method available.
Because of the enhanced speed, low memory
overhead and low CPU overhead of the
Asynchronous I/O cases, the results of our testing at
EUTeC clearly support Asynchronous I/O as the
preferred I/O method. I feel that, although recoding
may not produce 13.6 MB/s consistently from DMF,
it would speed file transfers to consistently over 10
MB/s from DD60s.

Further tests that I would recommend are running
transfers from unstriped files residing on DD60s, and
running transfers from DDA40 series disks. Other
experiments could include concurrent ER90 testing
and a bottleneck analysis of the data flow.
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Appendix A - FFIO Program Partial Listing

#define AMEG (long) 1024*1024
#define BSZ (long) BLOCKS * 16384 /* 2097152 bytes */

/* do first write without timexr on */
RETl=read (tapefd, buf, BSZ);

RET2=ffwrite (diskfd, buf, BSZ, &diskstb, FULL);
tfwrite=time ((long *) 0);

do {
bef_read=rtclock();
RET1l=read (tapefd, buf, BSZ);
aft_read=rtclock() ;
RET2=ffwrite (diskfd, buf, BSZ, &diskstb, FULL);
aft_write=rtclock();
bytes_w+=(long) RET2;
printf ("readtime %d clocks, writetime %d clocks\n",
aft_read-bef read, aft write-aft read);
} while ( RET1 == BSZ && RET2 == BSZ );

tfinish=time ((long *) 0);

speed=( (float)bytes w / ((float)AMEG* ((float)tfinish- (float)tfwrite)
printf ("Wrote %d bytes in %d seconds at %7.3f MB/s\n",
bytes w, tfinish-tfwrite, speed);

))

.
’
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Appendix B - Asynchronous I/O Program Partial Listing

#define BUFF_SIZE (4 * 1024 * 1024 )

/*
* Priming Read
*/
statlist[0] = &rswl[O];
rc = read(in_£d, buffer[curr buffer] ,BUFF SIZE);
if (rc < BUFF_SIZE) {
finished = 1;
write_ count = rc;

}

while (!finished)

{ rc = reada(in_fd, buffer|[(curr_buffer+l) % 2 ],BUFF_SIZE, &rsw[0], 0);
rc = write(out_£fd, buffer[curr buffer],BUFF_SIZE) ;
rc = recall(in_fd, 1, statlist);

if (rswl0] .sw_count < BUFF_SIZE)
write_count = rsw([0].sw_count;

finished = 1;

}

bread += rsw[0].sw_count;
curr_buffer =(curr buffer+l) % 2;

/* Start timer after first write */
if (loops == 1 ) tfwrite=time((long *) 0);

loops++;

rc = write(out_£d, buffer[curr buffer],write_count) ;
tfinish=time((long *) 0);
printf ("Wrote %d bytes in %d seconds at %10.3f MB/s\n",

bread, tfinish-tfwrite,
(float)bread/ (1024*1024* (tfinish-tfwrite)) );

150



Appendix C - Write Results

For easier comparison, we always used two Gigabyte files, user striped accross four disks for transfers.

Since these tests were run on a loaded system, the results were slightly lower than the 15MB/s rate we had acheived

from memory to tape on an idle system.

Read from Disk or Memory / Write to Tape

Buffer Size

I/0 methodology Tape Number of | FFIO? CPU MAX Transfer Rate

Block Buffers seconds to

size transfer

~2GB

Like DMF, open(disk,0_RAW), | 4MB n/a 1 User No 2.48 sys/ 7.117 MB/s
syncronous read/write 0.05 usr
Like DMF, but using FFIO. 4MB n/a 1 User Yes 1.12 sys/ 7.299 MB/s
ffopen(disk,0O_RAW), 0.06 usr
asgemd -F system disk,
syncronous read/write
Double buffered using FFIO 4MB 1024 Blocks | 2 Library Yés 1.04sys/ 13.699 MB/s
ffopen(disk,0_RAW), (4MB) + 1 User 1.79user
asgemd -F bufa:1024:2 disk
Double buffered using FFIO 4MB 1024 Blocks | 4 Library Yes 1.07sys/ 13.605 MB/s
ffopen(disk,0_RAW), (4MB) + 1 User 1.79user
asgemd -F bufa:1024:4 disk
Double buffered using Async. | 4MB 1024 Blocks | 2 User No 0.85sys/ 13.644 MB/s
o (4MB) 0.01usr
opena(disk, O_RAW)
Memory to Tape, 4MB n/a 1 User Yes 0.18sys/ 13.699 MB/s
open(tape,0_RAW) 0.02usr
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Appendix D - Read Results

For easier comparison, we always used two Gigabyte files, user striped accross four disks for transfers.

Since these tests were run on a loaded system, the results were slightly lower than the 15MB/s rate we had acheived

from tape to memory on an idle system.

Read from tape / Write to Disk or Memory

I/O methodology Tape Buffer Size Number of | FFIO? CPU MAX Transfer
Block Buffers seconds to | Rate
size transfer
~2GB
Like DMF, open(disk,0O_RAW), | 4MB n/a 1 User No 1.61sys/ 6.770 MB/s
syncronous read/write 0.05usr
Like DMF, but using FFIO. 4MB n/a 1 User Yes 2.58sys/ 6.549 MB/s
ffopen(disk, O_RAW), 0.06usr
asgemd -F system disk,
syncronous read/write
Double buffered using FFIO 4MB 1024 Blocks | 2 Library Yes 1.03sys/ 13.184 MB/s
(4MB)
ffopen(disk, O_RAW), + 1 User 1.86user
asgemd -F bufa:1024:2 disk
Double buffered using FFIO 4MB 1024 Blocks | 4 Library Yes 1.17sys/ 13.098 MB/s
(4MB)
ffopen(disk, O_RAW), + 1 User 1.85user
asgemd -F bufa:1024:4 disk
Double buffered using Async | 4MB 1024 Blocks | 2 User No 1.05sys/ 13.132 MB/s
I/0 (4MB)
0.01usr
opena(disk, O_RAW)
Tape to memory, 4MB n/a 1 User Yes 0.15sys/ 13.158 MB/s
open(tape,0_RAW) 0.02usr
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AFS EXPERIENCE AT THE PITTSBURGH SUPERCOMPUTING CENTER

Bill Zumach

Pittsburgh Supercomputing Center
Pittsburgh, Pennsylvania

Intrdoduction

The Pittsburgh Supercomputing Center is one of four
supercomputing centers funded by the National Science
Foundation. We serve users across the country on projects
ranging from gene sequencing to modeling to graphics
simulation. Their data processing is done on either our C90,
T3D, CM 2 Connection Machine, MASPAR, or our DEC-
Alpha workstation farm. We have an EL/YMP for a file server
using Cray DMF.

To support the data needs of our external users as well as our
support staff, we use AFS, a distributed file system, to provide
uniform, Kerberos secure access to data and for ease of
management. To store the high volume of data, PSC designed a
hierarchical mass storage system to provide access to DMF as
well as other mass storage systems through AFS. We refer to
this as multi-resident AFS.

This paper discusses this mass storage solution and how we use
multi-resident AFS to provide access to data for our users. This
presentation is done in the form of a chronology of our need for
an ever larger and more flexible mass storage system. Also
described are the other sites using our ports of the AFS client
and multi-resident AFS. Lastly, a brief description of future
work with both AFS and DFS.

AFS at PSC

PSC uses the Andrew File System to serve the binaries for
upwards of 120 workstations and the home directories of about
100 staff. AFS provides a location transparent global name
space. This gives users the same view of the directory structure
no matter where they log in. It also makes workstation
administration much easier as the programs need only be located
in a single location. AFS also scales well, allowing for the huge
amount of data that needs to be managed at the PSC.

We chose AFS over the defacto standard NFS for several
reasons. First, NFS does not scale well. Most of the system
binaries, all home directories and many project areas, totaling
about 40 gigabytes, are currently stored in AFS. NFS has two
main difficulties dealing with this amount of data spread across
this many workstations. First, an NFS server becomes
overloaded with requests with a sufficiently large number of
clients. Second, administering the file name space quickly
becomes cumbersome if many partitions are being exported.

An NFS client needs to contact the server for each read or write
of a file. This quickly bogs down an NFS server. AFS on the
other hand caches the pieces of a file which are in use on the
client. The server grants a callback promise to the client,
guaranteeing the data is good. This guarantee holds until some
other client writes to the file. Thus, the AFS client only needs
to talk to the server for a significant change of state in a file. At
the same time, repeated reads and writes to a file by a single
client occur at near local disk speeds.

With NFS, each client can mount an NFS partition anywhere in
the directory structure. At PSC, most of the system binaries for
all workstation architectures are in the distributed file system.
This makes updating operating system software and data
processing packages extremely easy. But, for NFS this makes it
incumbent upon system administrators to be extremely careful
in setting up each NFS client. When the number of
workstations gets sufficiently high, this task becomes
cumbersome and subject to error. AFS has a location
independent, uniform global name space. So wherever a user
logs in from, they see the same directory structure. An AFS
client finds a file by looking in an AFS maintained database for
the server offering the file and then goes to that server for the
file. This all happens as part of the file file name lookup and
nothing is explicitly mounted on the client.

One other significant feature of AFS is security. This comes in
two forms. First a user is authenticated using Kerberos security
and file transfers from server to client depend on that
authentication. This is a major improvement over NFS.
Secondly, AFS supports the notion of access control lists.
These lists apply to directories and give explicit permissions
based on the Kerberos authentication.

AFS also has the concept of a volume which is a logically
related set of files. Volumes are mounted in a manner similar to
disk partitions, that is, at directories in the AFS name space.
Volumes are typically used to house users' home directories, sets
of binaries such as /ust/local/bin and for space for projects. They
can have quotas attached to them for managing disk usage and
since they are mounted on directories, access control lists apply
to volumes as well. There can be be several volumes per disk
partition, so they provide a finer control of disk quota allocation.
As quotas can be dynamically changed, disk usage can be
modified as well. Volumes can also be moved from partition to
partition and across servers, making data distribution
manageable. Dumps are done on a per volume basis, giving
more control over what gets backed up and when.

Volumes can also have backup volumes, which are read only
snapshots of the volume at a given time. One use of this at the
PSC is to maintain an OldFiles directory in each users home
directory, which contains a copy of the home directory as it
appeared the previous day. This makes it extremely easy for the
user to get back that file they decided they should not have
deleted yesterday.

Volumes can also be cloned. These are also read only snapshots
of a volume and can reside on a different file server than the read
write original. This is useful for distributing the read load for
data across several machines. An AFS client randomly chooses
which read only clone to access if one is available when reading
a file. This is typically used for operating system binaries.

One last major concept in AFS is that of a cell. An AFS cell is
an administrative domain. A user authenticates to an AFS cell to
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access the files in that cell. A cell is delimited by a given set of
file servers. This allows individual sites to maintain their own
set of secure file servers and to restrict access to a selected set of
users. At the PSC, we currently have two cells. One is a stock
production cell and the other is the cell which implements our
solution to the mass storage problem. We are currently looking
into merging these two cells. :

AFS is produced by Transarc, and is supported on a wide variety
of platforms. Among the manufacturers supported are IBM, Sun,
DEC, HP and SGI. In addition, Convex and CDC provide AFS
for their machines. This list is by no means exhaustive.
Through the work at PSC, the AFS client has been available for
some time for Cray C90s and YMPs. We have recently ported
the multi-resident AFS file server as well.

From its inception, the PSC used AFS to store binaries and
users' home directories. AFS also served as the home directory
and project space for the Sun front ends to the CM-2 Connection
Machine. As stated earlier, this provided us with a uniform view
of the file system. Since almost all of our users are off site, they
could create their data on any AFS based client, and immediately
work with it at the center without having to explicitly move any
data to a particular machines local file system. Thus, they could
examine their data on any of the front ends or their own work
station, process it on the CM-2 and view the results on their
own system. :

This provided the impetus to port the AFS 3.1 client to the
Cray, a YMP at the time. This not only tied our main
processing computer into the distributed file system, but allowed
for user's to easily split their processing tasks based on which
machine, CM-2 or YMP which was best suited to the task
without having to move their data.

As is usual, data storage demands began to outstrip our capacity.
The PSC decided to acquire a RAID disk system for fast, reliable
access to data. We settled on a RAID-3 system from Maximum
Strategy running on a Sun. The problem was that AFS does not
support anything other than native local file systems and the
RAID disks only had a user mode file system. To support this
file system, the file I/O sub-system of the AFS file server was
generalized to be a generic I/O system. We then had an AFS file
server running on a Sun which was able to use the RAID disk
bank as it's local file system.

We soon found that as the RAID disks stored data in 8 kilobytes
blocks, the RAID disks were too inefficient at storing many of
the files generated by a typical user. To this end we wanted to
split the data up between SCSI disks, which are faster for
writing and reading small files, and the RAID disks, which are
more efficient at storing large files. Standard AFS only
determines where a file should be stored based on where the
volume is. That is, a volume's files are stored on the same
partition as where the volume was created. The idea was to
separate the idea of a file from the storage medium. This gives
rise to the concept of a file's residency. That is, a file is in a
volume, but we also store information as to where the file's data
resides. In this case, files in a single volume could reside on
either the RAID disk or the SCSI disk. The location information
is stored in the meta-data in the volume. To determine where a
file should reside, one needs a stored set of characteristics for the
storage device. We call this a residency database. There is one
entry in the database for each storage device. Each entry
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contains, among other things, the desired minimum and
maximum file size for that storage device. So, when the
modified AFS file server wants to store a file the residency
database is consulted to determine which storage device wants
files of that particular size.

As demands for storage continued to grow, we realized that we
needed some type of mass storage system. For some time, we
had been using Los Alamos’ Common File System (CFS) for
our needs. This provided a simple get and put interface for user's
files, but is also rather cumbersome for users as one needs to
explicitly obtain one's files prior to using them in a program.

In order to tie CFS into AFS, several new concepts were
required. We needed to get files into and out of CFS from an
AFS file server. We needed to be able to move files
automatically into CFS so that they got archived. And we
needed to be able to free up disk space.

CFS did not run on any of our file server machines. We did not
want to port the AFS file server to Unicos and we did not want
to impact the performance of the YMP by making it a file
server. The solution was to have a small server running on the
YMP which handled file requests from an AFS file server. We
refer to this small server as a remote I/O server. So, AFS clients
would request a file from the file server. The volume meta data
indicates the file is remote and the file server sends an RPC to
the remote I/O server to deliver the file to the file server, which
in turn delivers the file to the AFS client. In this case, a file in
CFS would be spooled onto the Cray by the remote I/O server
which would hand it back to the AFS file server who sends the
data to the client. This made CFS access transparent to the user.

In order to migrate files from the disks local to the AFS server
we needed a mechanism which would do this automatically and
on a timely basis. This data migration process is accomplished
by a daemon running on the AFS file server machine which
periodically scans the disk, looking for older files which are
candidates for migration to slower storage devices. In our case
this meant scanning the SCSI and RAID disks, looking for files
to migrate to CFS. This also meant that the residency data base
entries needed an entry which indicated how old a file should be
before being migrated to that storage system. We decided that if
a file had not been accessed in 6 hours, it was a candidate for
migration to mass storage. When the scanning daemon finds
files which are 6 hours old it informs the AFS file server on the
same machine and the file server is in charge of moving that file
to CFS using the remote I/O server.

Now just because a file is old, that alone does not mean it
should be deleted from faster storage media. So we leave the
original copy of the file on the faster media. This means there
are now two copies of the file. One on either SCSI or RAID
disks and the other copy in CFS. This is called multiple
residency and gave rise to the name multi-resident AFS. A
residency is defined to be a storage device along with the list of
file servers which can access that storage device on behalf of an
AFS client. We store a list of all residencies for a given file in
the volume's meta-data so the file server knows where it can go
to find the file an AFS client requests. Note that one does not
want to go to CFS if the file is on local disk. This gives rise to
the concept of a priority for a residency, and each residency
entry in the database contains a priority. While priorities can be
arbitrary, we set priorities based on speed of file access. This
means that if a file is both on a disk local to the AFS file server



as well as in CFS, the local disk copy would be obtained for a
client, since it's at a higher priority.

Since we don't automatically delete a file from a given residency
once it has been moved to tape, it is quite likely that the local
disks would soon fill up. To avoid this problem, each fileserver
machine has a scanning daemon running on it which ensures
that older, migrated files are removed from the disk, once a free
space threshold is reached. The removal algorithm is based on
file age and file size.

We shortly encountered a major problem using CFS for mass
storage. While CFS works well for storing files, the transaction
overhead on each file update is quite high, on the order of 3
seconds. This causes problems with backup volumes in AFS.
When a backup is made, the volume is first cloned and the
volume is off line until the clone is complete in order to ensure
a consistent image of the volume. Also, in multi-resident AFS,
if a file is not on the local disk, it is not explicitly copied. Its
reference count is incremented instead This means that if the file
is in CFS, CFS takes 3 seconds to increment the file's reference
count. So cloning a volume with 1200 files in CFS would
mean that the volume would be offline for an hour.

It was not possible to fix this transaction time overhead problem
in CFS. As a result we investigated other mass storage systems
and settled on Cray's Data Migration Facility (DMF). DMF
provided us_with simple access to the tape media simply by
placing the files on a DMF backed partition. As multi-resident
AFS is already taking care of migration policy, data landing on
this DMF backed partition is already considered to be on slow
media, so we explicitly call dmput to flush the data to tape and
dmget to retrieve required files upon demand.

Current Usage and Performance

RS6000

RS6000
560

580

Cray C90 Cray EL

DMF DMF Local

Disk

Disk  pap
Disk

Figure 1. Current multi-resident system

A part of our current multi-resident AFS configuration is
presented in figure 1. This figure shows two RS6000s for fast
storage. Both have SCSI disks for small files and Maximum
Strategy RAID disks for larger files. For archival storage we are
currently sending the data to either the C90 or the EL/YMP,
both using DMF for tape storage. We are in the process of
migrating our all DMF usage from the C90 to the EL. DMF
originally only wrote files larger than 4 kilobytes to tape, so we

only archive files larger than this. The small files are backed up
using standard AFS backup practices. We have modified the
standard AFS dump routines so that only files actually present
on the local disk are backed up. Our AFS mass storage system
currently contains approximately 383,000 files and about 98.7
gigabytes of data used by 100 users.

AFS Server Media Network Read Speed
DS 3100 SCSI drive Ethernet 360 KB/sec
DS 5000200 SCSIdrive  FDDI 726 KB/sec
Sun 4/470 IPI drive Ultranet 20 KB/sec
Sun 4/470 IPI drive Ethernet 554 KB/sec
Sun 4/470 RAID drives FDDI 906 KB/sec
Sun 4/470 IPI drive FDDI 986 KB/sec
IBM RS6000  IPI drive FDDI 1667 KB/sec
EL/'YMP IPI drive HIPPI 497 KB/sec

Table 1. Cray AFS client read performance.

Table 1 presents the read performance we see on our C90 AFS
client from a variety of servers. Note that, while the EL file
server performance is not spectacular, it is reasonable. The
performance is somewhat slow due to the fact that we are using
the Unix file system as the interface to the disk. This involves a
lot of system overhead in opening and reading meta-data files
which contain file location and access information. It would be
possible to develop an interface for the Cray similar to the one
standard AFS uses to obtain an appreciable improvement in file
server performance. This would require modifying the fsck
program in a fairly straightforward manner and adding S system
call entry points to the kernel.

PSC Ports to Unicos of AFS

What follows is a brief technical discussion of the details of
porting the AFS 3.1 client and multi-resident AFS to Unicos.
As mentioned earlier, we ported the AFS 3.1 client early on in
order to give uniform access to data to users using the YMP. We
ported multi-resident AFS for use by the Max Plank Institute in
Garching, Germany.

The initial AFS client port was to Unicos 6.0.on the YMP This
port has since been upgraded to Unicos 7.C.on our C90 There
were several substantive porting issues. First, Unicos until
version 8.0, uses a file system switch, whereas AFS is vnode
based. This meant a fake vnode system needed to be designed to
map AFS vnodes for the cache files and the server files to
Unicos NC1 inodes. There are also a large number of problems
associated with the 64 bit word size and structure alignment.
These problems appear in the packets which get sent across the
network, AFS directory layout, and data encryption algorithms.
In addition, since a Crays is a physical memory machines, a
buffer pool needed to be devised to handle malloc'ing data areas.
Lastly, we had to find every place where the kernel could sleep
and ensure that either none of the variable in use across the sleep
we stack variables, or fix the stack addresses once the kernel
came back from the sleep. This is another problem which has
been fixed in Unicos 8.0.

We are now in the process of porting the AFS 3.3 client to
Unicos 7.C as part of the final plan to port the AFS 3.3 client
to Unicos 8.0. The AFS 3.3 client is expected to run much
faster than the AFS 3.1 client owing to improvements in the
network layer, developed initially here by Jonathan Goldick.
Further performance enhancements have also been added by
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Transarc for AFS 3.3 and we also are beginning to investigate
making further performance enhancements to the client.

Multi-resident AFS was written with Unicos in mind, so
combined with the effort that had gone into the port of the AFS
client, this port was much easier. Multi-resident AFS is based
on AFS 3.2, whereas the Unicos client is based on AFS 3.1.
The client and server share several common libraries, including
the RPC layer, AFS directories, and data encryption for
authentication. Porting these involved bringing the Cray port of
AFS 3.1 up to AFS 3.2. There remained a number of 64 bit
issues for the file server, including handling internet addresses in
the hostent structure as well as a few word alignment issues. In
addition, we need to lock a Unix file system when salvaging
(AFS version of fsck for volumes). Multi-resident AFS depended
on locking a directory using flock which is not possible with
Unicos. The AFS vnode structure needed integer data types
converted to bitfields and is now twice the size of the vnode for
standard AFS. But this helped us optimize the file server as well
as allowing volumes to move between Cray AFS file servers
and AFS inode based file servers. One additional modification
was to port the dump and restore routines to correctly dump
access control lists. These were previously dumped as blobs of
data. But with the change from 32 to 64 bit word size, we needed
to ensure we converted during reads and writes of the dump.

We are currently in the process of porting multi-resident AFS
3.2 to the AFS 3.3 code base. Most of the port is complete and
we are now in the process of testing multi-resident AFS 3.3 on
several platforms.

Other Sites Using Multi-Resident AFS

The Max Planck Institute, IPP, in Garching, Germany recently
purchased a Cray EL to serve as a multi-resident AFS file server
and to support DMF for mass storage. This is currently
beginning operation and should be a full production environment
this summer.

NERSC is currently testing multi-resident AFS at their facility
and intends to use the Unix file system interface to connect to
Unitree. In addition Transarc is evaluating multi-resident AFS
and if they decide to make a product of it, it will be available by
the end of 1994. This Transarc product will not provide direct
support for Unicos, but will retain the modifications we have
made.

Several sites use our port of the AFS client in a production
environment. Among them are NCSA in Illinois, SDSC in San
Deigo, MP/IPP, LRZ in Munich, ETH in Zurich, RUS in
Stuttgart, and EPFL in France. These sites appear to be satisfied
with the AFS client.

DFS projects at PSC

As part of our close working relationship with Cray, we did the
initial port of the DFS client for Unicos 8.0. During the course
of this work we have also assisted in debugging the DFS file
server.

We are beginning to think about the design of a multi-resident
version of DFS. This will be backwards compatible with multi-
resident AFS and will be able to use the same AFS to DFS
translator that Transarc is supplying. DFS is still immature and
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there are several basic design questions which need to be
answered, particularly with regard to DFS filesets before we can
devote a lot of time to this project.

Next Generation of Multi-resident AFS

As noted above, network performance is improved dramatically
in AFS 3.3 as a result of initial work done here at the PSC with
respect to packet size over FDDI. Our initial tests indicate a
doubling in file trasnfer rate with a doubling of the packet size
for FDDI. This provided the initial spark to consider adding
alternate methods of delivering file data from a storage device to
an AFS client. If one had the full bandwidth of HIPPI available
and both the residency and the AFS client were on the same
HIPPI switch, spectacular improvements in data transmission
speeds could be achieved. So the means of asking for the data
needs to be separated from the actual delivery of the data. In this
scenario, the AFS file server serves as an arbitrator, deciding
what is the best network transport (and storage device) to use to
get data to the client. This notion is referred to as third party
transport, the third party in this case being the storage system
offering the file's data, with the first two parties being the client
and the file server. Most of the software is written for this
generation and we are at the point of beginning to debug it.
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AFS Experience
at the University of Stuttgart

Uwe Fischer, Dieter Mack

Regionales Rechenzentrum der Universitit Stuttgart
Stuttgart, Germany

Since late 1991 the Andrew File System (AFS) is in use
at the University of Stuttgart. For the Centers Service
Cluster comprising more than 15 RISC workstations, it
is a key component in providing a single-system-image.
In addition, new services like distribution of public
domain or licensed software are using AF'S wherever it
is appropriate. On the long run, the introduction of
AFS was one of the first steps into the emerging OSF/
DCE technologies.

1. About the Center

The University of Stuttgart Regional Computer Center
(RUS) provides computing resources and related services to the
academic users of the university. Especially the supercomputing
service is available to all other state universities in Baden-Wiirt-
temberg and to corporations under public law as well as industrial
customers.

2. Chronology

Back in 1989/90 the Center started the process to replace
its midrange-type mainframes front-ending the CRAY-2 super-
computer. Focusing on UNIX-derivates as the major operating
system was a joint intension. As a result, in 1991 this effort lead
to the challenging task to investigate, whether and how a RISC-
based workstation cluster could cover the typical mainframe-
based services within an university environment,

OSF/DCE - and DME - were a name and a concept at that time,
but product availability was not expected within the next two
years. And this was far too long ahead in the future. Thus the Cen-
ter formed a DCE project to investigate and evaluate the forth-
coming technologies of distributed computing. RUS asked
vendors for support, and only IBM was capable of providing this.

As DCE is not built from scratch in evolving and melting existing
technologies, wherever the functional components existed as
independent products, they could be used to start with. AFS being

the predecessor of the Distributed File Service (DFES), one of the
extended DCE services, which might also be regarded as one of
the major DCE applications, is one of them. Thus it is obvious,
that our AFS- and DCE-related milestones are tightly coupled.

The first tasks after the DCE project had been formed in
August 1991 were to work with the xntp time service and the Ker-
beros security system. In November 1991 the RUS cell rus.uni-
stuttgart.de was the first AFS cell installed in Germany. During
summer 1992 RUS took part in IBMs AIX - DCE Early Participa-
tion Program. At that time the SERVus workstation cluster was
installed and AFS run in a preproduction mode. In November
1992 the DCE cell dce.rus.uni-stuttgart.de was configured and the
port of an AFS-Client to the CRAY Y-MP 2E file server was
completed. In January 1993, the service cluster joint with AFS
went into full production, replacing the midrange-type main-
frames which have finally been shutdown by end of March 1993.
Since summer 1993 a DFS prototype is running, and in September
1993 the attempts to port the AFS-Client to the CRAY-2 have been
dropped.

3. Configurations

Since late 1986 the Center runs a CRAY-2 as its main
supercomputer resource. As shown in figure 1, this will be
replaced in April 1994 by a CRAY C94D. The CRAY Y-MP 2E is
used for high-end visualization applications and as a base for the
mass storage service. In the middle layer, the SERVus workstation
cluster consists of IBM RS/6000 systems with models ranging
from a 580 down to 220s. Today, the cluster is going heteroge-
neous by incorporating a multi-processor SUN/Sparcserver. Often
neglected in such a picture drawn from a centers perspective is
that the workstations on campus are now several thousands in
number.

The shadowed area shows the AFS file space, with the
AFS server machines tightly coupled to the SERVus cluster. The
CRAY file server in the AFS context is acting only as a client, and
it distributes its mass storage service to all requesting systems on
the campus using NFS.
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Figure 1: RUS Configuration

AFS Cells

As of today, the University of Stuttgart has 4 registered
AFS cells. There is the main cell rus.uni-stuttgart.de, which
houses all the HOME directories for the workstation cluster:
machines. In addition, public domain and licensed software is dis-
tributed using AFS for those platforms where AFS clients are
available. And one particular university department placed its
AFS file server in this cell.

There is a second cell rus-cip.uni-stuttgart.de dedicated
to a workstation pool, to which students have public access.

Due to the deficiencies in delegating the administration
of dedicated file servers, two university departments are running
their own AFS cells ikf.uni-stuttgart.de and mathematik.uni-stut-
tgart.de. And there are more departments which show interest in
using or running AFS file servers.

rus AFS Cell Configuration

The main cell has been upgraded to AFS 3.3 last month.
It is based on a total of 4 file server machines. Three of them are
provided by the Center, and the AFS database services are repli-
cated on them. One is owned by a university department and run
as their dedicated file server. All servers are IBM RS/6000 work-
stations, and the total disk capacity controled by AFS is 19 + 8

158

Terminal-Sever

GB. By a campus license agreement, AFS client software for a

Terminals

BelWii
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variety of platform - OS combinations is available:

DEC DECStation Ultrix4.0,4.3

DEC VAXStation Ultrix4.0, 4.3

HP 9000 Series 700 HP-UX 9.0

IBM RS/6000 AIX 3.2

NEXT NeXTStation NeXT 0OS 3.0

SGI 3000, 4000 Series  IRIX 5.0

SGI Indigo IRIX5.0,IRIX 5.1

SUN 3,4, 4c Sun0OS4.1.1-4.13

SUN 4m Sun0S§4.1.2,Solaris2.2,2.3
4. Purpose

Key Component for the Service Cluster

As stated above, AFS is of strategic use for the SERVus
workstation cluster in providing a single-system-image. First, the
login authentication is done using only the Kerberos authentica-
tion service, which is part of AFS. Second, all the HOME directo-

" ries of about 1600 users are within AFS. Thus every user has a

consistent view and access to all his data, regardless of the single
machine of the cluster he is using. In addition, the NQS batch sub-
system running on the batch worker machines of the cluster has
been modified to support that an users NQS job gets authenticated



and gains the appropriate authorization for file access.
Software Distribution

The basic software products available on the service
cluster RS/6000 machines are installed only once in AFS, e. g. C
and Fortran compiler, X 11 and application software. That is essen-
tially all except the software needed to bring up a single system.

During 2nd half of 1993, RUS developed a concept to
distribute software to workstation users. The basic idea is that not
every user or system administrator has to care about software
installation and maintenance, instead this is done only once at the
Center. All platform-OS specific executables are available for
direct access by linking a specific directory into the users search
PATH, and in addition the software is ready to be pulled and
unfolded at the client side. As underlying technology AFS is used
where appropriate, else NFS.

Thus without any big effort a huge variety of Public
Domain Software will be available at every workstation. Licensed
Software could be made available as well, using the AFS access
control mechanism to restrict access to the authorized users. Cur-
rently this scheme is introduced to distribute PC software.

Statistics

The three rus AFS file server machines have allocated 17
disks (partitions) with 19 GB capacity. There are about 1500 user
HOME directory volumes spread over 7 partitions with an
assigned disk quota of 15 GB and an effective usage of 3,7 GB.
For the purpose of software distribution there are about 280 vol-
umes in use with an assigned disk quota of 9,4 GB and a data vol-
ume of 6,2 GB.

5. UNICOS Client

The AFS client installation on the CRAY Y-MP 2E hap-
pened at the time of the UNICOS upgrade from 6.1 to 7.0. Thus
the first tests used a Pittsburgh Supercomputing Center code for a
UNICOS 6 system, but finally a derivate of PSCs UNICOS 7.C
AFS client went into production. The port itself was a minor
effort.

Because the CRAY Y-MP 2E as a file server runs neither
a general interactive nor batch service, the AFS client is used
mainly for AFS backups. Every night, all AFS volumes are
checked and for modified ones the backup clone is "vos dumped"
into a special file system on the CRAY Y-MP 2E which purpose is
to store backup data. This file system is subject to Data Migration
Facility, thus the tape copies to 3480 cartridges stored in two ACS
4400 silos are handled by DMFs tape media specific processes.

This solution replaced the previous procedures, which
took the volume dumps on a RS/6000 based AFS client and wrote
the dump files via NFS to the file server. Todays procedures are
more reliable and robust, using AFSs RX protocol rather than
UDP/IP. Better transfer rates are assumed as well, but an honest

comparison is not possible, because at the time of change serious
NES bottlenecks at the file server side had been detected and
eliminated.

The Center intended to integrate the CRAY-2 supercom-
puter into its AFS environment. But due to major differences in
UNICOS internal structures the port of the AFS client code
turned out to be a complicated and time-consuming task. With
respect to the imminent replacement of the CRAY-2 this effort has
been dropped.

6. Key Concepts

Security

AFS security comprises authentication, which is based
on a Kerberos variant, and authorization via access control lists
(ACLs), placed on directories.

The proof of an users identity is not guaranteed by local
authentication but by a Kerberos token, which has to be acquired
from a server on the network. Authorization to access data can be
granted to individual users as well as user-defined groups. This
allows for much finer granularity of access rights than the UNIX
mode bits. ’

Volume ( Fileset ) Concept

One of the fundamental technologies of AFS is the vol-
ume concept. The name of these conceptual containers for sets of
files changes to fileset in DFS. A volume corresponds to a direc-
tory in the file tree, and all data underneath this subtree, except for
other volume mount directories, is kept in that volume,

Volumes are the base for location transparency. AFS is
able to determine, on which file server and physical partition a
volume resides. Thus once an AFS client has been set up, the user
is fine. Something like registering new NFS file servers and file-
systems at every client side is not necessary.

Volumes disconnect the files from the physical media.
There are mechanisms to move, transparently to the user, volumes
from one partition to another, even between different file servers.
Thus disk usage balancing will be a manageable task. In the NFS
context, assigning user directories to new file systems could not be
realized without impacting the users.

Volumes represent a new intermediate granularity level.
Running data migration on file systems, the disk space is not the
limiting factor any more. Approaching 1 million files on the
CRAY Y-MP 2E mass storage file system, as expected it turns out
that the number of files (i-nodes) is the critical resource.

Volumes can be cloned for replication or backup pur-
poses. Through replication high availability of basic or important
data is achievable. In addition, network and access load could be
balanced.
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Global File System

Server and client machines are grouped into organisa-
tional units called cells. But it is possible to mount volumes which
belong to foreign cells. This allows for the construction of a truely
global file system. The AFS file space on the Internet currently
comprises about 100 cells.

PSCs Multiple-Residency Extensions

There is a great potential in this feature. First, it provides
the hooks to integrate hierarchical storage management schemes
into the distributed file system. In addition, the separation of file
data from file attributes is the first step into third party transfers.
Thus functionality similiar to NSL UniTree might be achieved.

7. User Barriers

Todays users are used to work with NFS. And in small
configurations using NFS is quite straightforward, especially
when the user is reliefed of system adminstration tasks, and the
system administrator has done a good job. Starting with AFS
requires some additional setup work and extra knowledge.

File Access Control

First, the user has to acquire a token. Although this can
be achieved transparently by the login process, the token has a
finite lifetime. This has to be considered and taken care of. Access
control is governed not only by the UNIX mode bits, but also by
the ACLs. The user has to be aware of this and to familiarize him-
self with some new procedures and commands.

AFS Cache Configuration

An AFS client has to provide some cache space, either
memory-resident or disk-based. It’s highly recommended that the
disk cache is provided in a seperate file system. That’s due to the
fact that the cache manager relies on the specified cache capacity.
And if the file system that contains the cache runs out of space, the
results are unpredictable.

But in most cases the available disks are completely
divided into used partitions, thus providing a seperate file system
for the AFS cache often requires disk repartitioning. And this is
not an easy task.

8. Direction

Consulting Transarcs worldwide CellServDB gives an
indication about the presence of AFS. Although an AFS cell has
not to be registered there, in some sense representative numbers
can be derived using that information. As of March 1993, a total
of 12 AFS cells have been in place in Germany, all running at uni-
versities except for one at a research laboratory. Seven of those
cells are based in the local state Baden-Wiirttemberg - Germany
consists of 16 states -, five of them in the capital Stuttgart. Taking
those numbers it becomes quite obvious that there are focal points.
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The general trend, that workstation clusters are replacing
general purpose mainframes, might be more common in univer-
sity-like environments than at commercial sites. And distributed
computing technologies are of key importance for the success of
integrating not only the clusters itself but linking all general and
specialized computers together. Having this functionality in place,
distributed computing will not stay restricted to single site loca-
tions. As an example, the state universities started collaborated
efforts on software distribution and a "state-wide" file system, the
latter can be provided by OSF/DCE:s Distributed File Service.

Provided DCE/DFS is mature enough, and supported by
a sufficient number of vendors, RUS might decide to switch from
AFS to DFS servers by end of this year. One of the major argu-
ments is to use the CRAY Y-MP 2E as a file server in the DCE/
DES context.
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CRAY Research Status of the DCE/DFS Project

Brian Gaffey
CRAY Research, Inc.
Eagan, Minnesota

DCE is an integrated solution to distributed computing.
It provides the services for customers to create distri-
buted programs and to share data across a network.
These services include: timing, security, naming, remote
procedure call and a user space threads package. A key
component of DCE is the Distributed File System
(DFS). This talk will review CRI’s plans for DCE,
relate our early experiences porting DCE to UNICOS
and describe the issues related to integrating DCE into
UNICOS.

1. Distributed Computing Program

DCE is part of the Distributed Computing Pro-
gram. The Distributed Computing Program defines the
overall requirements and direction for many sub-
programs. These sub-programs cover the major areas of
the system needed to support the distributed computing
model. More detail for each can be found in the pro-
gram roadmaps. The intent is to show how each of these
sub-programs supports the goals of distributed comput-
ing. The highest level description is called the Distri-
buted Computing RoadMap. It is the highest-level
description of the entire Program. A RoadMap exists for
each of the sub-programs which in turn is a summary of
product presentations. The other roadmaps are as fol-
lows:

Distributed Job
Distributed Data
Connectivity

Distributed Programming
Network Security
Visualization

Distributed Administration

OSF DCE is covered in three of the RoadMaps :
Distributed Programming which includes threads,
RPC/IDL and naming; Distributed Data which includes
the Distributed File System (DFS); and in Network
Security which includes the DCE Security Services.

Copyright © 1994. Cray Research Inc. All rights reserved.

2. Distributed Computing Framework

This Framework represents a future CRI architec-
ture that meets the needs of Distributed Computing. All
Programs are represented but not necessarily in com-
plete detail. Components of Federated Services
(X/Open Federated Naming and Generic Security
Switch [GSS]) such as NIS and Kerberos also exist
today but are not federated. Distributed System
Administration will track industry standards such as
OSF’s DME or COSE’s working group. Meanwhile
CRI will provide products to address the needs of custo-
mers in a heterogeneous environment. Nearly every-
thing in our Framework is a standard or a de-facto stan-
dard. Nearly all of the software in our Framework was
obtained from outside CRI or will be obtained from out-
side. The Framework represents the elements which are
essential to high performance supercomputing and to
our strategy of making connections to Cray systems
easy.

OSF DCE is a key element in the Framework.
DCE services will co-exist with ONC and ONC+ ser-
vices at the RPC, Distributed File System, Security and
Namaing levels of the model. New services, such as
CORBA will be built on top of DCE services.

3. Product Positioning

Architecturally DCE lies between the operating
system and network services on one hand, and the dis-
tributed applications it supports on the other. DCE is
based on the client/server model of distributed comput-
ing. DCE servers provide a variety of services to
clients. These services are of two types: Fundamental
Services: Tools for software developers to create the
end-user services needed for distributed computing, i.e.
the distributed applications and Data Sharing Services:
Distributed file services for end-users and software
developers. Clients and servers require common net-
working protocol suites for communication; they may
run DCE on the same or different operating systems.

CRI will support all of the client services of DCE.
CRI will also support the DFS server facility. CRI has
no plans to support security, directory or time servers on
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UNICOS.

4. DCE Component Review

The DCE source is a integrated set of technolo-
gies. The technologies rely upon one another to provide
certain services. For example, all of the services rely on
threads and most of the services make use of rpc to
accomplish their task. The following is a review of the
major components of DCE.

4.1. Threads in user space

In many computing environments, there is one
thread of control. This thread of control starts and ter-
minates when a program is started and terminated.
With DCE threads, a program can make calls that start
and terminate other threads of control within the same
program. Other DCE components/services make calls
to the threads package and therefore depend on DCE
threads.

Cray already provides the following mechanisms
which allow for additional threads of control:

1. Autotasking
2. Multitasking (macrotasking)
3. Multitasking (microtasking)

4. UNICOS libc.a multitasking

Autotasking allows a programmer to automati-
cally insert directives that use items 2 and 3. Items 2
and 3 are a set of UNICOS library routines which pro-
vide multiple threads of execution. They may or may
not use 4 to manage the multiple threads of execution.
Item 4 is a low level set of UNICOS system calls and
library routines which provide a multithreaded environ-
ment. The interfaces provided by these 4 mechanisms
are Cray proprietary and therefore not a "standard."

The DCE threads interface is based on the Port-
able Operating System Interface (POSIX) 1003.4a stan-
dard (Draft 4). This interface is also known as the
Pthreads interface. DCE threads has also implemented
some additional capabilities above and beyond the
Pthreads interface.

In CRI’s product, the DCE thread interface rou-
tines are mapped directly to existing Multitasking
(macrotasking) routines. This could be configured to
restrict all threads to be within one real UNICOS thread
or to allow for multiple UNICOS threads. With this
approach, existing Multitasking (macrotasking) imple-
mentations function correctly. The downside to this
approach is that all of the DCE Threads functionality

cannot be provided (in the short term). For example,
multiple scheduling algorithms cannot be requested.

4.2. Threads in the kernel

In addition to threads in user space, the DFS ker-
nel components require threads in the kernel. Actually,
DFS relies on rpc runtime libraries which use the
pthreads interface. The pthreads interface in the kernel
maps into newproc() which creates a new process in the
kernel. This process is scheduled as a normal process
not as a thread.

4.3. RPC and IDL

RPC, "Remote Procedure Calls" allows program-
mers to call functions which execute on remote
machines by extending the procedure interface across
the network. RPC is broken into kernel RPC, used only
by DFS, and user-space RPC which is used by most
other DCE components. DCE provides a rich set of
easy to use interfaces for creating remote processes,
bind to them and communicating between the com-
ponents.

Interfaces to RPC functions are written in a C-like
language called the "Interface Definition Language".
These interfaces are then compiled with the IDL com-
piler to produce object or C source code stubs. The
stubs in turn are linked with the programmers code and
the RPC libraries to produce client and server execut-
ables.

A few technical items to note:

-- communication, naming and security are handled
transparently by the RPC runtime library

-- the network encoding is negotiable, but currently
only Network Data Representation (NDR) is supported

-- "receiver makes right" which means that machines
with similar network data types will not need to do data
conversions

-- DCE RPC supports three types of execution
semantics : "at most once", idempotent (possibly many
times) and broadcast

-- RPC will run over TCP/IP or UDP (with DCE
RPC providing transport mechanisms)

CRI plans to rely on ONC’s NTP protocol for
clock synchronization since it is already implemented
and a single system can not have two daemons changing
the system clock.

4.4, Directory Services

Directory services is the naming service of DCE.
It provides a universally consistent way to identify and
locate people and resources anywhere in the network.
The service consists of two major portions, the Cell
Directory Service (CDS) which handles naming within



a local network or cell of machines and the Global
Directory Agent (GDA) which deals with resolution of
names between cells.

Applications requiring directory information will
initiate a CDS client process on the local machine called
a Clerk. The Clerk resolves the application’s query by
contacting one or more CDS Servers. The Servers each
physically store portions of the namespace with
appropriate redundancy for speed and replication for
handling host failures. Queries referencing objects
external to the local cell will access the GDA to locate
servers capable of resolving the application’s request.

When the GDA is resolving inter-cell queries, it
uses either the Global Directory Service (GDS) or
Domain Name Service (DNS). GDS is a X.500 imple-
mentation that comes with the DCE release while DNS
is the Internet distributed naming database. Both of
these services will locate a host address in a remote cell
and pass this value back to the CDS Clerk who will then
use it to resolve the application’s query.

4.5. Security Services

DCE security services consist of three parts : the
Registry service, the authentication service and
privilege service. The Registry maintains a database of
users, groups, organizations, accounts and policies. The
authentication service is a "trusted third party" for
authentication of principals. The authentication service
is based on Kerberos version five with extensions from
HP. The Privilege Service certifies the credentials of
principals. A principal’s credential consist of its identity
and group memberships which are used by a server
principal to grant access to a client principal. The
authorization checking is based on POSIX Access Con-
trol Lists (ACLs). The security service also provides
cryptographic checksums for data integrity and secret
key encription for data privacy.

Supporting DCE security on UNICOS can lead to
compatibility problems with current and future
UNICOS products. Specifically, DCE ACLs are a
superset of POSIX ACLs and DCE’s Kerberos is based
on version five whereas UNICOS’s Kerberos is based
on version four. We don’t believe an application can be
part of a V4 realm and a V5 realm. Also, the two proto-
cols aren’t compatible, but it is possible to run a Ker-
beros server that is capable of responding to both ver-
sion 4 and version 5 requests.

4.6. Distributed File System

The Distributed File System appears to users as a
local file system with a uniform name space, file loca-
tion transparency, and high availability. A log-based
physical file system allows quick recovery from server

failures. Replication and caching are used to provide
high availability. Location transparency allows easier
management of the file system because an administrator
can move a file from one disk to another while the sys-
tem is available.

DFS retains the state of the file system through
the use of tokens. Data can be cached on the clients by
granting the client a token for the appropriate access
(read/write). If the data is changed by another user of
the file, the token can be revoked by the server, thus
notifying the client that the cached data is no longer
valid. This can’t be accomplished with a stateless file
system, which caches data for some period of time
before assuming that it is no longer valid. If changes
are made by another user, there is no mechanism for the
server to notify the client that its cached data is no
longer valid.

DFS supports replication, which means that mul-
tiple copies of files are distributed across multiple
servers. If a server becomes unavailable, the clients can
be automatically switched to one of the replicated
servers. The clients are unaware of the change of file
server usage.

DFS uses Kerberos to provide authentication of
users and an access control list mechanism for authori-
zation. Access Control Lists allow a user to receive
permission from the file server to perform operation on
a particular file, but at the same time access to other
files can be denied. This is an extension of UNIX file
permissions, in that access can be allowed or denied on
a per user basis. UNIX allows authorization based on
group membership, but not to a list of individual users.

DFS is a log-based file system which allows quick
recovery from system crashes. Most file systems must
go through a file system check to ensure that there was
no corruption of the file system. This can occur because
much of the housekeeping information is kept in main
memory and can be lost across a system crash. In con-
trast, DFS logs every disk operation which allows it to
check only the changes made to the disk since the last
update. This greatly reduces the file system check
phase and consequently file server restarts.

To summarize, the use of a token manager
ensures shared data consistency across multiple clients.
A uniform name space is enforced to provide location
transparency. Kerberos authentication is used and
access control lists provide authorization. DFS allows

its databases and files to be replicated, which provides

for reliability and availability. It can interoperate with
NFS clients through the use of protocol gateways.

Cray’s initial port of DFS won’t include the
Episode file system. This means that log-based
recovery and cloning won’t be available. Cloning is the
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mechanism used for replication.

4.7. LFS

OSF has selected the Episode file system to be the
local file system for the OSF/DCE product. In the initial
port of DCE it was decided to retain the UNICOS file
system instead of LFS. However, there are significant
features of the Episode file system that when used with
DFS provide reliability and performance enhancements.
The most important feature is the ability to support mul-
tiple copies of data. This provides redundancy for
reliability/availability, and increased throughput and
load balancing

CRI will evaluate different log based file systems.
Decide on the best alternative for Cray from available
log base file systems. The current possibilities include
Episode from Transarc, Veritas, write our own, Polys-
center from DEC, and others. This evaluation must first
produce a clear set of requirements which will be used
to select the best choice for Cray Research, Inc.

5. Comparison to ONC Services

Almost all components of DCE have correspond-
ing ONC services. This section is a quick overview of
the technologies available on UNICOS which can be
used now to support distributed computing and distri-
buted data.

Both DCE and ONC have an RPC mechanism,
which have different protocols. To write a program
using ONC RPC, a user makes use of a tool called
RPCGEN, which produces stubs. To write a program
using DCE RPC, a user makes use of an IDL compiler
which also produces stubs. ONC RPC uses XDR for
data translation, while DCE RPC uses IDL. DCE RPC
has an asynchronous option. User programs may use
either DCE RPC or ONC RPC, but not both. The client
and server portions of an application must both use
either DCE RPC or ONC RPC.

NFS is a stateless file system. DFS relies on state
information and uses tokens to control file access. A
user program could access files that exist in a DFS file
system and files in an NFS file system, however a file
must reside in only one file system.

Network Information Service (NIS) is ONC’s
directory service. It interfaces to the Domain Name
Server to extract internet naming and addressing infor-
mation for hosts. DCE’s CDS is similar in this respect.
The protocols for NIS and CDS are incompatible.

DCE’s User Registry doesn’t have a correspond-
ing ONC service, but it will have to coexist or be
integrated with the UNICOS User Data Base. Both
environments support Kerberos for network security.

ONC’s time service is called Network Time Protocol
(NTP). DCE’s time protocol, DTP isn’t compatible at
the protocol level. It is possible to tie together an NTP
time service with a DTP time service by having the
DTP server get its time from NTP.

6. CRYI’s DCE Plans

The DCE Toolkit has been released. It supports
the client implementation of the DCE core services
(threads, rpc/idl, security and directory). We rely on
ONC’s NTP to provide the correct time. The Toolkit
passes over 95% of the OSF supplied tests. The test
failure are in the area of threads scheduling. Our Toolkit
is built on top of libu muiti-tasking. Since libu has its
own scheduler we removed the OSF supplied scheduler.

CRI does not provide documentation or training
for DCE. Both of these services can be obtained from
OSF or from third parties.

CRI’s next release of the OSF technology will be
in two parts : the DCE Client and the DFS Server. The
DCE Client will incorporate an updated version of the
Toolkit and the DFS client. The DCE DFS Server
includes the full OSF/DCE DFS server, providing tran-
sparent access to remote files that are physically distri-
buted across systems throughout the network. Imple-
mentation of DFS requires UNICOS support for the fol-
lowing new features: pthreads, krpc, and vnodes. These
features are available in UNICOS 8.0. Cray DCE DFS
Server is planned to be available in mid 1994. In addi-
tion to UNICOS 8.0, Cray DCE Client Services is a
prerequisite for this product.

The Cray DCE Client Services product provides
all of the functionality of the toolkit as well as DFS
client capabilities, With the introduction of the Cray
DCE Client Services, the Cray DCE Toolkit is no longer
be available to new customers. Since Cray DCE Clients
Services requires UNICOS 8.0, a transition period has
been established for the upgrade of existing Cray DCE
Toolkit customers to Cray DCE Client Services. The
transition period extends from the release of Cray DCE
Client Services until one year after the release of
UNICOS 8.0. During this transition period, the Cray
DCE Toolkit will continue to be supported on UNICOS
7.0 and UNICOS 7.C systems. Cray DCE Toolkit
licenses includes rights to DCE Client Services on a
"when available" basis. There is no upgrade fee.

In future product releases, CRI will provide sup-
port for a log-based file system (LFS). We will investi-
gate Episode; the OSF supplied file system, and other
log based file systems which support the advanced
fileset operations. CRI will also integrate DFS will other
components of UNICOS (eg. DMF, SFS, accounting
etc). Finally, we intend to track all major releases of the



DCE technology from OSF.

7. DFS Advantages

In the DFS distributed file environment, users
work with copies of files that are cached on the clients.
DEFS solves problems that arise when multiple users on
different clients access and modify the same file. If file
consistency is to be controlled, care must be taken to
ensure that each user working with a particular file can
see changes that others are making to their copy of that
file. DFS uses a token mechanism to synchronize con-
current file accesses by multiple users. A DFS server
has a token manager which manages the tokens that are
granted to clients of that file server. On the clients it is
the cache manager’s responsibility to comply with token
control.

Caching of information is transparent to users.
DES ensures that users are always working with the
most recent version of a file. A DFS file server keeps
track of which clients have cached copies of each file.
Servers such as DFS servers that keep such information,
or ’state’ about the clients and are said to be ’stateful’
(as opposed to ’stateless’ servers in some other distri-
buted file systems). Caching file data locally improves
DFS performance. The client computer does not need to
send requests for data across the network every time the
user needs a file; once the file is cached, subsequent
access to it is fast because it is stored locally.

Replication improves performance by allowing
read-only copies to be located close to the user of the
data. This load balancing of data locations reduces net-
work overhead. All DFS databases (fileset location,
backup, update) use an underlying technology which
allows replication. This further improves performance
and allows more relability. DFS allows for multiple
administrative domains in a cell. Each domain is con-
trolled via a number of administrative lists which can be
distributed.

8. DCE and UNICOS Subsystems

8.1.
DMF

Since DFS uses NCI1 has its local file system and
has its cache the integration is transparent. DMF can
migrate and unmigrate DFS files at any time. In future
releases we will study the possibility of a special com-
munications path between DMF and DFS.

8.2. NQS

In a future NQS release, NQS will be able to
access and use DFS files for retrieving job scripts and
returning output.

8.3. SFS

In future releases the Shared File System and
DFS will be integrated in order to maintain high perfor-
mance and network wide consistency. Our initial work
will be to synchronize DFS tokens and SFS semaphores.
This will ensure that users outside the cluster can access
files in the cluster while maintaining data integrity.
Next, we will extend a facility already within DFS
called the Express path. The Express path will allow
DES clients within the cluster to access data in the clus-
ter without moving the data.

8.4. Security

Our initial release requires users to validate them-
selves to DCE before using DCE services. This valida-
tion occurs during the initial entry into the DCE. If that
entry occurs on UNICOS then a second is required. If
the entry occurs in the network then no second
UNICOS login is required. DCE security is separate
and distinct from MLS. However, since DCE makes use
of the standard network components that are part of
MLS, some of the benefits of MLS apply to DCE. Later
releases of DCE will makes use of other components of
MLS.

9. DCE?’s impact on UNICOS

Since the reference implementation of DFS is
based on the latest file system technology in System V
(vnodes), It was necessary to change UNICOS to sup-
port vnodes. To support vnodes, all of the old FSS (file
system switch) code had to be removed and replaced
with vnode code. This required all existing file systems
(eg. NC1 and NFS) to change from FSS calls to VFS
calls. DFS also requires rpc and threads in the kernel.
The rpc code is a copy of some of the user space rpc
code. The threads support in UNICOS is completely dif-
ferent from the user space threads code. In the kernel,
we implemented threads through direct system calls.
DFS and rpc contain large amounts of code. This is
much more of an issue for real memory system like
CRAYs than it is for other systems. The other com-
ponents of DCE also contain large amounts of code but
since they are in user space they can swap out. The user
space libraries require threads. We implemented DCE
threads on top of libu multitasking. This has the advan-
tage of easier integration with existing libraries and
tools (eg. cdbx). However, there are some restrictions.

10. Current Status

The DCE toolkit is released. The Toolkit supports
client implementations of all core components except
DFS. The Toolkit allows UNICOS systems to partici-
pate in a DCE environment. The Toolkit is at the OSF
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1.0.1 level. The components include :
Threads
Rpc/idl
Directory
Security
Time API

UNICOS 8.0 contains the infrastructure to sup-
port DFS. All DFS products will require 8.0. The infras-
tructure includes vnodes, kernel rpc and kernel threads.

The DCE client product will includes all of the
Toolkit components (updated to the 1.0.2 level) and the
DFS client. Currently, the DCE Client passes all of the
Toolkit tests and the NFS Connectathon tests. More
than 90% of the DFS tests are working. The DCE DFS
Server product will include support for the DFS servers.
It currently passes Connectathon as well. A major
undertaking, in conjunction with other OSF members, is
underway to multi-thread DFS. LFS (aka Episode) has
been evaluated but will not be part of the initial release.

11. Summary

CRI has a DCE Toolkit available and plans for a
DFS product in third quarter 1994. CRI is committed to
track DCE and enhance it.
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SCinet ‘93 at the Supercomputing ‘93 Conference in Portland, Oregon

SCinet ‘93 — An Overview
SCinet ‘93

SCinet ‘93 got underway during SUPERCOMPUTING ‘92. Bob Borchers had asked me
to help locate someone locally (in Oregon) that could handle the SCinet ‘93
responsibilities. At that point, I was just beginning to understand requirements for the
Local Arrangements responsibilities and had not quite received a commitment from Dick
Allen to take the Education Chair. I decided to spend time during SUPERCOMPUTING
‘92 at the SCinet booth in Minneapolis with Dick Kachelmeyer and the SCinet ‘92 crew.
I was most impressed with the level of service that Dick and his crew were able to give to
all of the exhibitors and researchers at SC’92. The conference period went well for me
but I admit that I was buried in more information than I could handle, especially the
SCinet participants and the Local Arrangements scope and organization. I also attended
meetings with the SC’92 Education folks, along with Borchers, Crawford, Allen and
others, to better understand what they were doing. Basically, my time was spent
collecting a lot of information.

Time track

During December 1992, thing got even more interesting. Dona Crawford, Bill Boas, and
several other folks began organizing the whole idea of the National Information
Infrastructure Testbed, spawned out of the success of SCinet ‘92 and a desire to establish
a testbed with the attributes of SUPERCOMPUTING experimentation in terms of
industry, academia, and government research participation.. This NIIT idea became an
active meeting just before Christmas 1992. On December 17, 1992, Dona Crawford and
several interested folks met in Albuquerque to discuss a permanent network testbed and,
what that would mean, who might be interested, who would benefit, who and how could
such an idea be funded, and so forth. Because demonstrations could result from the NIIT
idea that might be showcased at SC'93 on SCinet '93, Dona invited me to participate. I
had other commitments and was unable to make the meeting. Clearly, it was a productive
meeting.

The NIIT showcase demonstrations for SCinet ‘93 were massive, impressive, and
technically superior. The showcase of technology for ATM over the NIIT infrastructure
and SCinet ‘93 was impressive enough that ATM, as a protocol and technology, moved
ahead in its deployment schedule by at least 18 month during 1993, perhaps even more,
in my view.

Starting in March 1993, Mike Cox and I began the process of collecting requirements by
survey for SCinet ‘93. The survey was sent by fax, email, U.S. Mail, and by phone to all
participants in SUPERCOMPUTING ‘92, specifically to all of the folks involved in
networking or SCinet. The survey was thought, at this early date, to magically collect all
of the information that we would need to begin the network design process for all of the
networks planned. The survey included questions about Ethernet™, FDDI, ATM, HiPPI,
Serial HiPPI, Fibre Channel, and SONET. Some conference calls were made.

Perhaps the next major event for SCinet ‘93 came in June 1993. Dona Crawford planned
a SC’93 Program Committee meeting in Portland for June and it seemed convenient and
pertinent that we have the organizing committee meeting for SCinet participants as well,
especially since some were traveling to Dona’s meeting already. The meeting at the
Benson Hotel started at 8:30a with about 30 SCinet folks attending in the morning. Bob
Borchers introduced the meeting and gave the group a overview of SUPERCOMPUTING



in general, the expected number of attendees at SC’93, and other general information. I
gave an overview of how I planned to organize and run the SCinet ‘93 committce. We
reviewed preliminary plans including permanent infrastructure at the Oregon Convention
Center and the fund raising requirements to make such an idea possible.

We heard from Jim McCabe (who committed to be vice chair technology at this meeting),
Mark Wilcop, U.S. West (telephone long lines and other issues), Doug Bird, Pacific
Datacomm on Ethernet and FDDI, Mark Clinger, Fore Systems on ATM, Bill Boas,
Essential Communications on HiPPI, Dona Crawford, Sandia on NIIT, and the Intel folks
on experiences at SCinet ‘92. The meeting was a great success and got the team working
on all of the serious issues. Other ideas were represented including the National Storage
Labs (NSL) plans and of course, Tom Kitchens, DoE and Fran Berman, UCSD presented
the Heterogeneous Computing Challenge and the Le Mans FunRun ideas. A massive
amount of activity was initiated and specifically, the connectivity data collection
functions went into high gear.

The next major “event” was a meeting two months later in Minneapolis (August.).
NetStar was our host and I paid for lunch for around 35-40 people. At the NetStar
meeting, we were able to reach consensus on many of the major functions and tasks for
SCinet ‘93. Connectivity requirements were proving hard to come by (no one knows
what they will do at a SUPERCOMPUTING conference until a few (very) weeks before
the conference (in terms of equipment, projects, etc.). Before the NetStar meeting, email
surveys were sent a total of three times, faxes were sent twice (to everyone not yet
responding. Finally, in late August, Linda Owen at Peek & Associates, Inc. began the
telephone process and called everyone that we knew to collect additional requirements.
Jim McCabe and the various project leaders were also calling each participant.

During September and specifically on Labor Day, Jim McCabe and his crew from NASA
spent the weekend at the Oregon Convention Center making a physical inventory of the
conduits system, inspecting all aspects of the center layout, and getting preliminary
implementation plans in place for the physical networks defined at that point.

An October meeting was held in Albuquerque at the same time as the SC’93 steering
committee meeting in Portland on October 22 -23, 1993. I was unable to attend due to
the Steering Committee meeting in Portland. The purpose of the meeting was final
review on all network designs for the conference. Each of project leaders (for Ethernet,
FDDI, ATM, HiPPI, FCS, plus external connectivity) gave final reports on the design of
their specific network. Issues and problems were discussed, especially those that related
to interfaces between networks and those issues dependent on loaned equipment from the
many communication vendors that were participants. McCabe reported that the meeting
was very productive. Meeting reports were received from most of the project leaders
outlining problems, proposed solutions, and unfilled requirements.

Prestaging was also planned for October at Cray Research, Superservers Division in
Beaverton, OR. The space was donated, power was arranged, facilities were organized,
and no one showed up. Prestaging is just not a concept that will work for SCinet, in my
view. The elements of the conference do not come together clearly, in enough time, for
the big players in the network like Cray Research, IBM, HP, MasPar, Intel, Thinking
Machines, etc. to take advantage of prestaging. The network exhibitors and vendors
seemed much more prepared to take advantage of the early timeframe. However, not all
of them. There is also the logistics problem of getting all of the people scheduled for a
prestaging activity, at the same time. It does not do a lot of good to prestage equipment
that must talk to other equipment if the “other folks” cannot be there.
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As we moved into mid-October, it became clear that the size, scope, and complexity of
SCinet '93 was perhaps four times SCinet '92. T expect a step function for SCinet '94 as
well. The costs have also exploded due to the cost of single and multimode connectors,
fiber optic cable (the volume of it continues to increase), and the labor (very skilled and
expensive) to install and test such networks. Fiber optic installation is also slower than
conventional network technology. Rushing a fiber optic installation just results in
rework. During October, Peek & Associates, Vertex and RFI were installing networks at
the Oregon Convention Center at every available time slot. The convention center had
many other conferences that made working in the center really difficult. We would work
for 2-4 hours at a time, generally from midnight to early morning, between events.

The real press started the first week of November. We were in t