
Spring Proceedings
Cray User Group, Inc.

INCORPORATED

PROCEEDINGS

Thirty-Third Semi-Annual
Cray User Group Meeting

San Diego, California
March 14-18, 1994

No part of this publication may be reproduced by any mechanical, photographic, or electronic process
without written permission from the author(s) and publisher. Permission requests should be made in

writing to:

Cray User Group Secretary
c/o Joan Palm

655A Lone Oak Drive
Eagan, MN 55121 USA

The CUG Proceedings is edited and produced by Karen Winget,
Fine Point Editorial Services, 1011 Ridge Valley Court, Shepherdstown, WV 25443

Cover designed by Carol Conway Leigh

Autotasking, CF77, CRAY, Cray Ada, CRAY Y-MP, CRAY-l, HSX, MPGS, SSD, SUPERSERVER, UniChem, UNICOS, and X-MP EA
are federally registered trademarks and CCI, CFT, CFf2, CFf77, COS, CRAY APP, Cray C++ Compiling System, CRAY C9Q, CRAY

EL, Cray NQS, CRA Y S-MP, CRAY TID, CRA Y X-MP, CRAY XMS, CRAY-2, CraylREELlibrarian, CRInform, CRVTurboKiva,
CSIM, CVT, Delivering the power ... , Docview, EMDS, lOS, MPP Apprentice, Network Queuing Environment, Network Queuing

Tools, OLNET, RQS, SEGLDR, SMARTE, SUPERCLUSTER, SUPERUNK, Trusted UNICOS, and UNICOS MAX are trademarks of Cray
Research, Inc.

Cray User Group, Inc.

BOARD OF DIRECTORS

President
Gary Jensen (NCAR)

Vice-President
Jean Shuler (NERSC)

Secretary
Gunter Georgi (Grumman)

Treasurer
Howard Weinberger (TAl)

Director
Claude Lecoeuvre (CEL-V)

Regional Director Americas
Fran Pellegrino (Westinghouse)

Regional Director Asia/Pacific
Kyukichi Ohmura (CRC)

Regional Director Europe
Walter Wehinger (RUS)

PROGRAM COMMITTEE

Jean Shuler, Chair (NERSC)
Robert Price (Westinghouse)

Helene Kulsrud (IDA)
Phil Cohen (Scripps)

LOCAL ARRANGEMENTS

Anke Kamrath
Ange Mason

Mike Vildibill
Jay Dombrowski

Phil Cohen
Dan Drobnis
Gail Bamber
Russ Sinco

Sandy Davey
Jayne Keller

Chairman's Report

John F. Carlson (CRI)

Cray Research Corporate Report

Robert Ewald (CRI)

CRI Software Report

Irene Qualters (CRI)

CONTENTS

GENERAL SESSIONS

Unparalleled Horizons: Computing in Heterogeneous Environments

Reagan Moore (SDSC)

Cray TID Project Update

Steve Reinhardt (CRI)

PARALLEL SESSIONS

Applications and Algorithms
Porting Third-Party Applications Packages to the Cray MPP: Experiences at the

Pittsburgh Supercomputing Center

Frank C. Wimberley, Susheel Chitre, Carlos Gonzales,

Michael H. Lambert, Nicholas Nystrom,

Alex Ropelewski, William Young (PITTSCC)

Some Loop Collapse Techniques to Increase Autotasking Efficiency

Mike Davis (CRI)

Collaborative Evaluation Project of Ingres on the Cray (CEPIC

C.B. Hale, G.M. Hale, and K.F. Witte (LANL)

Providing Breakthrough Gains: Cray Research MPP for Commercial Applications

DentonA. Olson (CRI)

Asynchronous Double-Buffered I10Applied to Molecular Dynamics Simulations of

Macromolecular Systems

3

6

14

21

28

39

44

65

73

Richard J. Shaginaw, Terry R. Stouch, and Howard E. Alper (BMSPRI) 76

A PVM Implementation of a Conjugate Gradient Solution Algorithm for Ground-Water Flow Modeling

Dennis Morrow, John Thorp, and Bill Holter (CRI and NASA/Goddard) 80

Graphics
Decimation of Triangle Meshes

William J. Schroeder (GE-AE) 87

v

vi

Visualization of Volcanic Ash Clouds

Mitchell Roth (ARSC) and Rick Guritz (Alaska Synthetic Aperture Radar Facility)

A Graphical User Interface for Networked Volume Rendering on the Cray C90

Allan Snavely and T. Todd Elvins (SDSC)

Management

Heterogeneous Computing Using the Cray Y -MP and T3D

Bob Carruthers (CRI)

Future Operating Systems Directions

Don Mason (CRI)

Future Operating Systems Directions-Serverized UNICOS

Jim Harrell (CRI)

Mass Storage Systems

Storage Management Update

Brad Strand (CRI)

RAID Integration on Model-E lOS

Bob Ciotti (NASA-Ames))

Automatic DMF File Expiration

Andy Haxby (Shell U.K.)

ER90®Data Storage Peripheral

Gary R. Early and Anthony L. Peterson (ESYSTEMS)

EMSSICray Experiences and Performance Issues

Anton L. Ogno (EXXON)

AFS Experience at the Pittsburgh Supercomputing Center

Bill Zumach (PIITSC)

AFS Experience at the University of Stuttgart

Uwe Fischer and Dieter Mack (RUS)

Cray Research Status of the DCEIDFS Project

Brian Gaffey (CRI)

Networking

SCinet '93-An Overview

Benjamin R. Peek (peek & Associates, Inc.)

Experiences with OSF-DCFJDFS in a 'Semi-Production' Environment

Dieter Mack (RUS)

A 1M-Current Status

Benjamin R. Peek (Peek & Associates, Inc.)

Network Queuing Environment

Robert E. Daugherty and Daniel M. Ferber (CRI)

92

100

109

112

114

119

123

136

140

143

153

157

161

169

175

180

203

Operating Systems

Livennore Computing's Production Control System, 3.0

Robert R. Wood (UNL)

ALACCf: Limiting Activity Based On ACID

Sam West (CR!)

Priority-Based Memory Scheduling

Chris Brady (CR!), Don Thorp (CR!), and Jeff Pack (GRUMMAN)

Planning and Conducting a UNICOS Operating System Upgrade

Mary Ann Ciuffini (NCAR)

UNICOS Release Plans (1994-1995)

Janet Lebens (CR!)

UNICOS 8.0 Experiences

Hubert Bus~h (ZlB)

UNICOS 8.O-Field Test Experiences

Douglas A. Spragg (EUTEC)

Operations

SDSC Host Site Presentation

Daniel D. Drobnis and Michael Fagan (SDSC)

Tools for the Cray Research OWS-E Operator under UNICOS 8.0

Leon Vann (CR!)

Cray Research Product Resiliency

Gary Shorrel (CR!)

Performance Evaluation

UNICOS 7.C versus 8.0 Test Results

C.L. Berkey (CR!)

Workload Characterization of Cray Supercomputer Systems Running UNICOS for the Optimal

Design of NQS Configuration in a Site

Young W. Lee and Yeong Wook Cho (KIST) andAlex Wight (Edinburgh University)

Cray C90D Performance

David Slowinski

Software Tools

Cray File Pennission Support Toolset

David H. Jennings and Mary Ann Cummings (Naval Surface Warfare Center)

Tools for Accessing Cray Datasets on Non-Cray Platfonns

Peter W. Morreale (NCAR)

Centralized User Banking and User Administration on UNICOS

Morris A. Jette, Jr., and John Reynolds (NERSC)

209

212

221

224

231

237

239

247

251

255

260

271

291

295

300

304

vii

Fortran 90 Update

Jon Steidel (CRI)

C and C++ Programming Environments

David Knaak (CRI)

The MPP Apprentice™ Perfonnance Tool: Delivering the Perfonnance of the Cray T3D®

Winifred Williams, Timothy Hoel, and Douglas Pase (CRI)

Cray Distributed Programming Environment

Lisa Krause (CRI)

Cray TotalView™ Debugger

Dianna Crawford (CRI)

Fortran 110 Libraries on T3D

Suzanne LaCroix (CRI)

User Services

User Contact Measurement Tools and Techniques

Ted Spitzmiller (LANL)

Balancing Services to Meet the Needs of a Diverse User Base

Kathryn Gates (MCSR)

Applications of Multimedia Technology for User Technical Support

Jeffrey A. Kuehn (NCAR)

Integrated Perfonnance Support: Cray Research's Online Information Strategy

Marjorie L. Kyriopoulos (CRI)

New and Improved Methods of Finding Information via CRINFORM

Patricia A. Tovo (CRI)

Online Documentation: New Issues Require New Processes

Juliana Rew (NCAR)

MetaCenter Computational Science Bibliographic Infonnation System: A White Paper

Mary Campana (Consultant) and Stephanie Sides (SDSC)

Electronic Publishing:From High-Quality Publications to Online Documentation

Christine Guzy (NCAR)

JOINT SESSIONS

MSSIOperating Systems

Workload Metrics for the NCAR Mass Storage System

313

320

324

333

338

344

349

353

360

365

369

372

376

380

J.L. Sloan (NCAR) 387

Scientific Data Storage Solutions: Meeting the High-Performance Challenge

Daniel Krantz, Lynn Jones, Lynn Kluegel, Cheryl Ramsey, and William Collins (LANL) 392

Beyond a Terabyte System

Alan K. Powers (SS-NAD) 402

viii

/

Operations/Environmental MIG
Overview of Projects, Porting, and Perfonnance of Environmental Applications

Tony Meys (CRI)

Operations/MPP MIG

T3D SN6004 is Well, Alive and Computing

Martine Gigandet, Monique Patron, Francois Robin (CEA-CEL)

System Administration Tasks and Operational Tools for the Cray TID System

Susan J. Crawford (CRI)

Performance Evaluation/Applications and Algorithms

I/O Optimisation Techniques Under UNICOS

Neil Storer (ECMWF)

I/O Improvements in a Production Environment

JejfZnis and John Bauer (CRI)

New Strategies for File Allocation on Multi-Device File Systems

Chris Brady (CRI), Dennis Colarelli (NCAR),

Henry Newman (Instrumental), and Gene Schumacher (NCAR)

Performance Evaluation/MPP MIG
The Performance of Synchronization and Broadcast Communication on the Cray T3D Computer System

411

419

426

433

442

446

F. Ray Barriuso (CRI) 455

High Perfonnance Programming Using Explicit Shared Memory Model on the Cray TID

Subhash Saini, Horst Sinwn (CSC-NASA/Ames) and Charles Grassl (CRI) 465

Architecture and Perfonnance for the Cray TID

Charles M. Grassl (CRI) 482

User Services/Software Tools

Confessions of a Consultant

Tom Parker (NCAR)

SHORT PAPERS

Xnewu: A Client-Server Based Application for Managing Cray User Accounts

Khalid Warraich and Victor Hazlewood (Texas A&M)

QEXEC: A Tool for Submitting a Command to NQS

Glenn Randers-Pehrson (USARL)

A TTENDEE LIST

491'

505

507

513

ix

x

AUTHOR INDEX

Alper, H.E. (Bristol-Meyers Squibb), 76
Barriuso, F.R. (CRI), 455
Bauer,1. (CRI), 442
Berkey, C.L. (CRI), 260
Brady, C. (CRI), 221, 446
Busch, H. (ZIB), 237
Campana, M. (SDSC consultant), 376
Carlson, J.F. (CRI), 3
Carruthers, B. (CRI), 109
Chitre, S. (PITTSC), 39
Cho, Y.W. (KIST), 271
Ciotti, B. (NASAl Ames), 123
Ciuffini, M. (NCAR), 224
Colarelli, D. (NCAR), 446
Collins, W. (LANL), 392
Crawford, D. (CRI), 338
Crawford, S.I. (CRI), 426
Cummings, M., (Naval Surface Warfare

. Center), 295
Daugherty, R.E. (CRI), 203
Davis, M. (CRI), 44
Drobnis, D.D. (SDSC), 247
Early, G.R. (ESYSTEMS), 140
Elvins, T.T. (SDSC), 100
Ewald, R.(CRI), 6
Fagan, M. (SDSC), 247
Ferber, D.M., 203
Fischer, U. (RUS), 157
Gaffey, B. (CRI), 161
Gates, K. (MCSR), 353
Gigandet, M. (CEA-CEL), 419
Gonzales, C. (PITTSC), 39
Grassl, C. (CRI), 465, 482
Guritz, R. (Alaska Synthetic Aperture Radar

Facility), 92
Guzy, C. (NCAR), 380
Hale, C.B. (LANL), 65
Hale, G.M. (LANL), 65
Harrell,1. (CRI), 114
Haxby, A. (Shell U.K), 136
Hazlewood, V. (Texas A&M), 505
Hoel, T. (CRI), 324
Holter, B. NASAlGoddard), 80\
Jennings, D.H. (Naval Surface Warfare

Center), 295
Jette, M.A., Jr. (NERSC), 304
Jones, L. (LANL), 392
Kluegel, L. (LANL), 392
Knaak, D. (CRI), 320
Krantz, D. (LANL), 392
Krause, L. (CRI), 333
Kuehn, J .A. (NCAR), 360
Kyriopoulos, M.L. (CRI), 365
Labens, 1. (CRI)231
LaCroix, S. (CRI), 340
Lambert, M.H. (PITTSC), 39

Lee, Y.W. (KIST), 271
Mack, D. (RUS), 157, 175
Mason, D. (CRI), 112
Meys, T. (CRI), 411
Moore, R. (SDSC), 21
Morreale, P. (NCAR), 300
Morrow, D., (CRI)??, 80
Newman, H. (Instrumental), 446
Nystrom, N. (PITTSC), 39
Ogno, A.L. (EXXON), 143
Olson, D.A. (CRI), 73
Pack, 1. (GRUMMAN)), 221
Parker, T. (NCAR),491
Pase, D. (CRI), 324
Patron, M. (CEA-CEL), 419
Peek, B.R. (peek & Assoc.), 169, 180
Peterson, A.L. (ESYSTEMS), 140
Powers, A.K. (SS-NAD), 402
Qualters, I. (CRI), 14
Ramsey, C. (LANL), 392
Randers-Pehrson, G. (USARL), 507
Reinhardt, S. (CRI), 28
Rew, J. (NCAR), 372
Reynolds, J. (NERSC), 304
Robin, F. (CEA-CEL), 419
Ropelewski, A. (PITTSC), 39
Roth, M. (ARSC), 92
Saini, S. (CSC-NASAI Ames), 465
Schroeder, W.I. (GE-AE), 87
Schumacher, G. (NCAR), 446
Shaginaw, R.I. (Bristol-Meyers Squibb), 76
Shorrel, G. (CRI), 255
Sides, S. (SDSC), 376
Simon, H. (CSC-NASAI Ames), 465
Sloan, J.L. (NCAR), 387
Slowinski, D. (CRI), 291
Snavely, A. (SDSC), 100
Spitzmiller, T. (LANL), 349
Spragg, D.A. (EUTEC), 239
Steidel, 1. (CRI), 313
Storer, N. (ECMWF), 433
Stouch, T.R. (Bristol-Meyers Squibb), 76
Strand, B. (CRI), 119
Thorp, D. (CRI), 221
Thorp, J. (CRI), 80
Tovo, P.A. (CRI), 369
Vann, L. (CRI), 251
Warraich, K. (Texas A&M), 505
West, S. (CRI), 212
Williams, W. (CRI), 324
Wimberley, F.C. (PITTSC), 39
Witte, K.F. (LANL), 65
Wood, R.R. (LLNL), 209
Young, W. (PITTSC), 39
Zais, 1. (CRI), 442
Zumach, B. (PITTSC), 153

GENERAL SESSIONS

CHAIRMAN'S REPORT

John F. Carlson

Cray Research, Inc.
Eagan, Minnesota

Good morning. Thank you for inviting me to
participate today. I want to take the time available to
review our 1993 performance and discuss where we
plan to go in our strategic plan covering us from now
through 1996.

I am taking some time to review our fmancial
condition because you are all investors in Cray
Research. Whether or not you own any of our
common stock, you and your colleagues have invested
your efforts and energy and professional challenges in
Cray Research. I want to use this opportunity to
show that your investment is well placed.

Simply stated, we had a very good year in 1993. We
delivered on our 1993 plan by increasing revenue,
improving margins, reducing costs and delivering our
shareholders solid profits for the year of $2.33 per
share versus a loss for 1992.

Our financial perfonnance enables us to continue
investing at least 15 percent of our revenues into
research and development. No matter what changes
the market brings or we bring to the market, that
commitment will not change.

We achieved those fmancial results while also
delivering two major hardware platfonns and a number
of software advances -- including the creation of
CraySoft -- our initiative to make Cray software
available on non-Cray platforms, right down to PCS.

I am pleased to note, also, that we delivered our new
hardware and software products on time, as promised.

Clearly, we have recovered from our 1992 restructuring
and are realizing the operating savings we hoped would
result from those difficult actions.

For a few specifics, our 1993 revenue grew 12 percent
to $895 million from $798 million in 1992. This
substantial increase resulted principally from strong
sales of large C90 systems. We sold 12 C916
systems in 1993 -- double the number sold a year
earlier. And having moved on from the C90's
introductory stages, we achieved better margins -­
which certainly helped our earnings results.

Copyright © 1994. Cray Research Inc. All rights reserved.

We also improved our balance sheet along the way.
We grew our total assets by 15 percent to about $l.2
billion from 1992, generated about $170 million in
cash, improved stockholder's equity by $56 million
and our book value at year-end 1993 was roughly $30
a share.

Return to shareholder's equity was eight percent for the
year and return on capital employed rose to 11 percent.
While these figures are relatively good, they do not yet
hit the levels we have targeted for the company. Our
targets, long tenn, are to deliver 18 to 20 percent
improvements in stockholder's equity and 15 percent
improvement on our return on capital employed.

Also, we ended 1993 with an increase in inventories of
about $52 million. That increase is one figure going
the wrong direction and reflects the ramp-up
investments we made to launch both the T3D and
CS6400 and also the high level of deliveries we
anticipate completing this quarter.

In 1993 we signed a total net contract value of orders
of $711 million compared with $598 million for
1992. This 19 percent increase really reflects the
strong demand for C916s and TIDs. Our order
backlog at year-end was $409 million, just shy of the
record $417 million we reported in 1992. And, yes,
the delayed acceptance of a C916 from December 1992
to January, 1993 was included in the 1992 record
number. Backing out that system for comparison
purposes confrrms that our backlog number for 1993
is going in the right direction, upward.

Today, we have about 500 systems installed around the
world. Those systems are broadening out
geographically and by industry. In 1993, we added
new fIrst-time customers in Malaysia and
Czechoslovakia and installed our first system in Africa
at the South African weather bureau. We also received
orders for our fIrst systems to China -- in both the
PVP and SMP line. Three Superserver systems are
now installed at Chinese universities. The PVP
mainline system will be installed at the Chinese
Weather service, assuming the export license is granted
as we expect.

Right now we have systems installed in 30 countries.

3

4

The orders break out by market sector to: 44 percent
government customers, 29 percent commercial and 27
percent with universities.

Our commercial and industrial customers continue to
use our systems to deliver solutions for their technical
and scientific computing needs. I expect this sector to
continue to grow and increase its overall percentage of
total orders.

Insofar as our product mix is concerned, 1993 was a
very good year. As you know we stepped up deliveries
of our C916 systems. We also announced the
availability of extended C90 family ranging in size
from two to 16 processors. This range of availability
helps make the C90 product more flexible and
available to our customers in convenient
configurations. Convenient in size to fit your mission
and, hopefully, your budget

The C90 continues to set the performance pace for our
customers. As you may know, more than 20 key
codes used by our customers run at sustained speeds
exceeding six gigaflops. Five of these 20 codes
reached speeds of more than 10 gigaflops each. And as
we speak, more performance records are being set
These records are far more than bragging points. They
are the ultimate measures of getting ~ work done on
~ problems. That will remain a corporate priority
for all our systems.

In the MPP arena, we had a very good launch for the
TID system in September. On announcement day we
figure we captured third place in the MPP market and
expect to be the number one supplier by the end of
this year.

By year-end we had 15 orders in hand. I am
particularly pleased to note that this week we are able
to announce our first commercial and first petroleum
customer for the T3D -- Exxon Corporation. It was
particularly gratifying to read their news release in
which they described the T3D as a critical tool to their
growth strategies because it is the first production
quality MPP system in the market. As I said with the
C90 line, that means Exxon will be doing n:al work
on ~ problems day in and day out on the T3D.

We're also announcing this week some significant
benchmark results for the T3D on the NAS parallel
benchmark suite. Now I know that there has been a
rush to claim moral or technical victory by any
number of MPP companies using NAS results and I
promise not to enter into that debate. But I do want to
bring two points to your attention.

First point has little to do with MPP benchmarks.
Rather, it has to do with the results they are compared

to. The 256-processor system is the first of the MPP
crowd to approach the C916's performance on any of
the NAS parallel benchmarks beyond the
Embarrassingly Parallel test. So the C916, the
workhorse of the supercomputing field continues to be
the performance leader on these benchmarks. But at
256 processors the TID is starting to give the C916 a
run for its money on highly parallel computing, and
since the TID is showing near-linear scalability we're
confident it will widen its performance and scalability
leadership as we move to 512-processors and larger
configurations. We're also glad it took another system
from Cray to approach the C916's performance.

Second point is to note that these results arrived just
six months after the TID was introduced. We all
know that we were late to the MPP party. But I think
it is even more important to note what is being
accomplished following our arrival. Some of our
competitors have had two years or more to improve
their performance against the C916. I can only
assume that they have not announced their complete
256 results to date because they can't efficiently scale
up that far.

The strength of the T3D -- and those systems to
follow -- reflects the input received from many of you
here. This system stands as an example of what can
be accomplished when we listen to our customers.

The strength of the TID will be enhanced by another
program that had an excellent year -- the Parallel
Applications Technology Partners program, or PA TP.
When MPP performance shows steady, consistent
improvement in a wide range of applications, it will
be in part due to the efforts underway between Cray
and its PA TP partners, PSC, EPFL, JPL and Los
Alamos and Livermore labs. Great things are coming
from these collaborations.

The third sibling of the Cray architecture family is our
Superservers operation, based in Beaverton, Oregon.
They also delivered a beautiful, bouncing and robust
baby in 1993 -- the CS6400. The CS6400 is a binary
compatible extension of the Sun product line. It
serves as a high performance server for networks of
workstations and smaller servers running the huge
range of Sun applications. Any program that runs on
a Sun system will run on the CS6400 without
modification and the current product is Solaris 2.3
compatible.

We expect this newest arrival to create opportunities
for us in markets where we have not traditionally had a
presence. They include mainstream commercial
applications in financial services, banking,
telecommunications, government data processing
applications, et cetera. It is proving to be an excellent

alternative to a mainframe in the so-called
"rightsizing" market It is also important to note that
the CS6400 is an excellent alternative to small­
configuration MPP systems for both the commercial
and scientific and technical markets.

Introduction of the Superserver subsidiary brings me to
an important point and sets the stage to discuss our
strategic direction. First the important point: Cray
Research is focused on its mission of providing the
highest perfonning systems to its customers. We are
not architecture constrained. In fact, we are the only
finn that can provide top-perfonning systems in all
three major architectures -- Parallel Vector; Massively
Parallel and Symmetric Multiprocessing.

You and your colleagues want solutions. We want to
help you get them. It matters little to us whether your
ideal solution comes from one specific architecture or
another. What matters is that Cray Research continue
as a technical partner in finding the solutions.

We don't have to -- nor do we want to -- make two
sales every time we talk with you. We don't have to
sell you on one architecture or another and then, next
sell you on our product over a competitor's. We
remain focused on helping deliver the highest
perfonnance possible in each architecture. We are
certain that if we continue to stick to our knitting with
that focus, we will be successful as you become
successful with our systems.

Now I want to tie this together to our strategic plan.
Our plan is simple. We have to grow in order to
accomplish the things that are important to you and to
us.

If we want to remain at the head of the perfonnance
class, we must continue to invest huge sums each year

. in R&D. Those sums are only available if we
continue to grow revenues, earnings, margins and
backlogs. We wouldn't have to change anything in our
strategy if the technical and scientific market was
growing, say 30 to 40 percent as it did in the 1970s.
But the reality is that the market is flat and, depending
on how you measure it, has been for four consecutive
years.

At the same time, we don't want to change who we
are. We are a technology driven company. We will
~ be a technology driven company committed to
achieving the highest perfonnance possible at the best
price.

So, while our focus can't change, our tactics can. As
we maintain our marketshare leadership at a relatively
flat level in the scientific market -- for now, at least -­
we see that a growing need for efficient, price/effective

systems to solve big problems in other markets.
Commercial entities of all sizes and shapes are
recognizing that they have done a great job in .
accumulating huge data bases, but are limited in how
well they can manipulate or mine these data bases to
their advantage.

Some businesses have said they forgot the second part
of the equation -- "what are we going to do with all
this infonnation and how, pray tell, are we going to
use it to grow our businesses?"

Here's where we believe Cray Research can help.

We believe that our technologies can help. Across all
three of the important high perfonnance architectures
our products are distinguished by their technical
balance. Balance that unlocks the problem-solving
potential of increasingly fast microprocessors -­
regardless of the architecture in which they are
embedded.

We combine fast processors with high-perfonnance
memory and I/O subsystems and robust, proven
software to deliver unsurpassed balance right to your
desktop. That won't change. But we may be able to
add new applications in other parts of a commercial
enterprise.

We plan to use this unique strength to grow our
volume and market reach. Instead of finding a Cray
system at the R&D center only, I can picture one
being used by the marketing or finance functions as
well.
Just this last year we've seen new customers emerge
from non-traditional fields. Like Wall Street, I expect
to see more and more utilization at new locations.

In doing so, much like the early successes of the
superserver product, we'll probably draw some
attention. Some of our nervous competitors will
whisper that we've "lost focus" as we compete for and
win commercial business. Quite the contrary, I
believe our move to add customers in non-traditional
supercomputing areas is an example of our unique
focus. We see this approach as the best way to ensure
that we don't blink when we face the future. We
remain committed to the top of the perfonnance
pyramid. We remain focused on the need to invest at
least 15 percent of our revenues in to R&D so we can
move our perfonnance up the scale to match your
demands. And we remain focused on the importance of
long-tenn, cooperative relationships with our
customers. And that may be the best single
investment we've ever made.

Thank you again for inviting me today.

5

6

Cray Research Corporate Report

Robert H. Ewald

Cray Research, Inc.
900 Lowater Road

Chippewa Falls, WI 54729

ABSTRACf

This paper provides an overview of Cray Research's business in 1993, an update on progress
in 1994, and a vision of Cray in the future.

1 1993 Results

1993 proved to be a very good year for Cray Research,
Inc. We achieved our 1993 plan by delivering a broad
mix of high performance systems and software, and
achieved a return to solid profitability. 1993 was also a
year of substantial change for Cray Research, but before
describing the changes, I will review some terminology.
The "s upercomputer Operations" business unit is
focused on high performance, cost effective computa­
tional tools for solving the world's most challenging
scientific and industrial problems and produces our par­
allel vector and highly-parallel products.

In this technical computing world we have defined three
segments that encompass different customer character­
istics. The "Power" segment can be recognized as those
with "grand" challenge problems. These customers are
typically from the government and university sector and
require the highest performance solutions of scientific
and engineering problems. Most of the applications are
mathematically-oriented and are created by the cus­
tomer. This segment typically invests more than $10
million in computer products. The "Endurance" seg­
ment can be characterized as customers with production
problems to be solved. There are a combination of
industrial, government, and academic customers each
solving high performance production engineering, sci­
entific, and data-oriented problems. In this segment,

Copyright © 1994. Cray Research Inc. All rights reserved.

applications are frequently from third party providers.
PriceJPerformance is of major concern for these prod­
ucts, ranging from about $3 million to $10 million. The
"Agile" market segment is comprised of industrial, gov­
ernment, and academic customers with engineering, sci­
entific, and data-oriented problems. The applications
are generally third party and their price/performance is
of paramount importance for the production capability.
The hardware investment here is less than $3 million.

The "Superserver" business unit addresses applications
that require rapid manipulation and analysis of large
amounts of data in a networked production environ­
ment, and produces products based on Sun Microsys­
tem's SP ARC architecture. Many of the applications
are at non-traditional Cray customers in the business or
commercial segment

As shown in Figure 1, we are changing our organization
to reflect these concepts. Les Davis and I share the
office of Chief Operating Officer and we have two
major business units: Supercomputer Operations and
Superserver Operations. Changes within the organiza­
tion since the last CUG meeting include:

- Gary Ball, Vice President of Government Marketing
and General Manager of "Power" Systems - in addition
to his previous job, Gary is leading our efforts to con­
tinue to lead in the high-end of supercomputing.

- Rene Copeland, General Manager of "Endurance"
Systems - Rene is leading our efforts to ensure that we
provide products and services for the industrial, pro­
duction-oriented customers.

- Dan Hogberg, General Manager of "Agile" Systems -
Dan is leading our work with deskside and departmen­
tal systems.

- Dave Thompson, Vice President of Hardware
Research & Development - Dave has moved from the
Software Division to lead our hardware development
and engineering efforts. Dave is teamed with Tony
Vacca who also leads the Triton and other projects.

- Don Whiting, Sr. Vice President, Operations - we
have combined all product operational divisions (Inte­
grated Circuits, Printed Circuits, Manufacturing, and
Systems Test & Checkout) under Don to improve our
operational processes and efficiency.

- Lany Betterley, Vice President of Finance & Admin­
istration - Larry leads the operational Finance and
Administration groups within the business units.

The Superservers business unit remains the same, and
in addition, Paul Iwanchuk and Penny Quist are acting
leaders of new initiatives in Government Systems &
Technology and Data Intensive computing.

Figure 2 shows the progression of orders and the results
for 1993, indicating our best year ever for orders for our
larger products and a good base of orders for Agile and
Superserver products.

During 1993 we installed half of the systems shipped in
North and South America and one-third in Europe. As
shown in Figure 3, that brings the total installed base to
54 percent North and South America, 30 percent
Europe, and 11 percent Japan. We expect that more of
our future business will come from non-U.S. based cus­
tomers, so the U.S. percentage will continue to decline.

The Agile installs in 1993 were distributed 45 percent
to the Americas, 33 percent to Europe, and 14 percent
to Japan. This brings the total Agile installed base to 40
percent Americas, 33 percent Europe, and 19 percent
Japan, as shown in Figure 4. This again reflects the
increasing "internationalization" of our business.

Figure 5 shows the installed base at year-end 1993 by
industry. The most significant changes in the distribu­
tion that occurred during the year were increases in the
university, aerospace, and environmental segments,
and a decrease in the government research lab business
reflecting changing government spending.

Figure 6 shows the distribution of the 500 systems
installed at customer sites. The Y -MP and EL products
are dominant with C-90s and T3Ds just beginning to
ramp up.

There were 38 new customers in the Supercomputer
business unit and 12 in the Superserver business unit.
We welcome all of you to the growing Cray family and
hope you will share with us your ideas for the future of
computing.

We ended 1993 with the strongest offering of products
we have ever fielded. We offer three architectures,
each with superior price/performance: parallel vector,
massively parallel, and symetric multiprocessing. The
parallel vector product line was expanded by extending
the Cray C-90 to configurations ranging from 2 to 16
processors. We began shipping the C-92, C-94, and
C-98 at mid-year. All the C-90 series systems feature
the newest, fastest memory technology available - four
megabit SRAM (static random access memory). We
also introduced the big memory machines - D-90 with
up to 4 billion words of memory.

Two new departmental supercomputers were intro­
duced - the EL92 and EL98. The EL92 is the com­
pany's smallest, lowest-priced system to date with a
U.S. starting price of $125,()()() and a footprint of about
four square feet. The Cray EL92 is designed to extend
Cray Research compatibility to office environments at
attractive prices. The EL98 is available with two, four,
six, or eight processors, offering up to 512 million
words of central memory and providing a peak perfor­
mance of one gigaflops (billion floating point opera­
tions per second).

During 1993 we expanded our product offerings for the
scientific and technical market by introducing our first
massively parallel supercomputer - the Cray TID. We
now have five installed and are expecting to install over
thirty this year. Reaching that target will make us the
leading MPP vendor in 1994.

In addition to these products, the CS6400, a
SP ARC-based symmetric multiprocessing system, was
introduced with configurations ranging from 4 to 64
processors. This platfOtnl is for commercial data man­
agement applications as well as scientific and technical
users. We expect to install over 50 of these new
machines in 1994.

New announcements in software include the release of
Network Queing Environment (NQE) and our Fortran
compiler (CF90). Our new business entity "CrayS oft"
was successfully initialized to provide Cray software
products and technologies to the non-Cray platfOtnls.

2 1994 Plans

As we start 1994, we have set some aggressive goals for
ourselves that include:

7

8

- Continuing to have a strong financial foundation with
some growth over 1993.

- Continue to invest about 15 percent of revenue in
R&D to develop hardware and software products and
services.

- Continue with R&D work on all three product fami­
lies: parallel vector, MPP, symmetric multiprocessing.

- Continue to unify our UNICOS software base across
our PVP and MPP platforms.

- Continue to make more software available on work­
stations and servers.

- Improve the application availability, performance,
and price/performance on our systems.

- Continue our reliability improvements.

- Better understand the "cost of ownership" of our prod-
ucts and make improvements.

3 Strategic Summary

Cray Research is one of the world's leading technology
companies. At the heart of our company are four core
technology competencies (Figure 7) which set us apart
from others, and upon which we will build our future:

1) Hardware and manufacturing technology to create
fast, balanced computers.

2) Applications and software that support production
computing.

3) The ability to solve problems in parallel.

4) Distributed computing skills that allow us to deliver
results directly to the user via a network.

We will focus on these four technology strengths to cre­
ate a set of products and services that help solve our
customers' most challenging problems. We will lever­
age our technology to provide hardware products that
range from deskside systems to the world's most pow­
erful computers as shown in Figure 8. Our software
products and services will enable us to deliver produc­
tion computing results to the user anytime, anywhere.
To enable this, some of our software and services will
be applied to other vendors systems - primarily work­
stations. Our CraySoft initiative addresses this market

We will also expand our service offerings to better help
our customers solve their problems. We will develop
new distribution mechanisms in the form of service
products that enable us to package our hardware, soft­
ware, and application products as total solutions to our

customer's problems. We will develop plans to enable
our customers to buy total computational services on
demand, in ways that are consistent with their needs
and their internal budget constraints (shown as Any­
time, Anywhere Solutions in Figure 9).

Spanning all of our systems is the key element that
allows the customer to buy and use our systems - the
application programs that solve the customer's prob­
lem. We will port, adapt, optimize, create, or attract the
applications that the customers require. We will lead
the industry in converting applications to run in parallel
and deliver the performance inherent in parallel sys­
tems.

We also recognize that our core competencies, prod­
ucts, and services can be applied to problems which are
more "commercial" in nature. We will focus our super­
computing business on technically-based problems,
and will focus our Superserver business and some new
efforts on helping solve open system, performance-ori­
ented commercial problems. Typically, these commer­
cial problems will require the rapid manipulation and
analysis of large amounts of data in a networked, pro­
duction environment as businesses seek to better under­
stand their data and business processes and make better
decisions more rapidly. Within both technical and
commercial segments, we will also become more cus­
tomer driven.

We will also open a pipeline between our technology
and selected government customers with our govern­
ment systems and technology effort. As the govern­
ment customers require, we may:

1) Tailor existing products to better suit application
needs.

2) Perform custom R&D work.

3) License selected core technologies for new applica­
tions.

In the commercial markets, we will also tailor our prod­
ucts to meet a new set of problems - those that are more
"data intensive." We will build our Superserver busi­
ness on top of Sun's business. We will understand the
market requirements for extracting and creating new
information from databases for commercial, industrial,
and scientific applications. We will then apply our
technology and products to that marketplace, and con­
sider partnerships to strengthen our position, particu­
larly at the high-end of the commercial business.

Putting all of these pieces together yields a customer
driven, technology company as depicted in Figure 10.

4 References

[CRI93] Cray Research, Inc. Annual Report, Febru­
ary, 1994. Cray Research, Inc.

CRI OPERATIONAL ORGANIZATION

rebruory 1894

Figure'l

Orders per Year

160 T

140 t
120 t
100 t
80t

mCRS
[;iJAgile
[] Power/End

1986 1987

Sales and Marketing
;vt()94. allde'

'1988 1989 1990 1991

CRI 4Q93 Overview

Figure 2

1992

C::l=liIIOtt.",
_;'441-,;,,;,1\1,

1993

9

10

Cray Installed Base
By Geography

December 31,1993

172(53.6%)

Figure 3

Cray Agile Installed Base
By Geography

December 31, 1993

Figure 4

o N & S America

o Europe

• Japan

o PacificJMDE

o N & S America

o Europe

• Japan

o Paclf,C/MDE

Cray Customer Installed Base
By Industry

As of December 31, 1993

"Includes commercial/government

Figure 5

o UNIVERSITY

• CHEMIPHARM·

o OTHER·

181 PETROLEUM

E:l RES LABS·

rEiJ AUTOMOTIVE

m AEROSPACE·

o ENVIWEA"

cue S.nO'.yo/C.l' IH'tL ." ..

Installed Customer Systems

(1) 0%

6%
(29)

Sales and Marketing
~Q94 •• 1I".12

2%
(12)

32%
(164) ./,/

,,,'''

38% (189)

CAl 4Q93 Overview

Figure 6

(20) ~5 systems ~
4%

14%
(69)

raCRAV-2'1
IllIX-MP

~~-;t J' aC90
I::IT30
oELS
L1CR~

c::::~
1.lilli, i"'W' r.1

11

12

TECHNOLOGY

Fast Computers

Production Oriented

Parallel Computing

Network Delivery

Core Techn%gies

C::~..,A...""'" ... cJe/i"t!flng /fIe performance

Figure 7

Product Core

Figure 8

Technical
Market

ENDURANCE

A2 Sol

Technical
Market

ENDURANCE

A2 Sol

POWER

AGILE

Technical Solution Business

Figure 9

AGILE

Overall Strategy Concepts

Figure 10

Systems &
nology

oft

Commercial
Market

13

14

CRI Software Report

Irene M. Qualters
Senior Vice President

Cray Research, Inc.
655F Lone Oak Drive

Eagan, Minnesota 55121

This paper describes the Cray Research Software Division plans and strategies for
1994 and beyond.

1 Introduction

Since the last CUG, CRI improved the software reliabil­
ity while increasing the installed base by 30%, improv­
ing perfonnance, and increasing functionality. We also
changed our organization to create smaller groups,
allowing greater focus and agility. This paper covers
these topics as well as recent and planned product
releases for operating systems, storage systems, con­
nectivity, and programming environments. The
progress by CraySoft is presented and product retire­
ments are noted. At the end of this paper, the status of
the recent CRA Y T3D installations are highlighted.

2 Software Divi"ion Reorganization

Our two largest groups, UNICOS and Networking,
were reorganized into three new groups: Operating Sys­
tems, Networks, and Storage Systems. Dave Thompson
(the fonner UNICOS group leader) was promoted to
Vice President, Hardware R&D in Chippewa Falls.
Paul Rutherford is the leader for the new Storage Sys­
tems group. Wayne Roiger is the group leader for Net­
working. Kevin Matthews is acting ali the group leader
for Operating Systems, until a pennanent leader is cho­
sen. (See figure 1 for the updated organization chart.)

3 Reliability

From August 1993 through February 1994 the Software
Problem Report (SPR) backlog, incoming rate and fix
rates improved (see figure 2). The six-month rolling
software and system MITI also improved over this
period (see figure 3). The box plot metric (figure 4)
confinned this improvement, but shows stability is still
an issue at some sites. The dashed lines at the bottom of
the chart indicate sites with stability substantially below
the mean. The number of sites with low stability has
decreased considerably over this period, nevertheless in

Copyright © 1994. eray Research Inc. All rightli reserved.

1994 we will emphasize reliability improvements at
sites with low MITIs.

4 Operating Systems

4.1 UN/COS 8.0 Features (3/10/94)

UNICOS 8.0 was released on March 10, 1994. Its
themes include robustness and resiliency, perfonnance,
security, standards, and new hardware. On March 9,
1994, UNICOS 8.0 received an official DoD
Orange/Red Book B 1 MDIA rating. This culminates
four years of effort, making CRI the sole supercomputer
vendor evaluated as a network node. UNICOS 8.0
improves our compliance with standards with direct
FDDI connectivity and improved POSIX 1003.2
compatibility.

The new platfonns supported include M90, C90, EL98,
EL92 (UNICOS support for T3D), J90, DA-60/62/301,
DD~301 and ND-12/14 disks, DD-5, RAID 10 disks for
EL, EMASS ER90 D2 and Datatower, 3490E tapes,
SSD-E 128i and FCA-1 channel adapter. UNICOS 8.0
will also be supported on CRA Y X-MP systems (with
EMA support) and CRAY-2 systems.

4.2 Field Tests - UN/COS 8.0

Extensive field tests were completed. We ran six field
tests, installed four prereleases, and have nine additional
installs in progress. We tested the widest variance of
platfonns to date: CRAY X-MP, CRAY Y-MP, CRAY
C90, and CRA Y Y -MPIEL platfonns. We included a
production tape site-with excellent results. Stability
improved, compared to 7.0; the SPR count was reduced
and the severity of SPRs declined.

UNICOS 8.0 multithreading perfonnance measure­
ments at NASAl Ames showed a 60% reduction in sys­
tem overhead, compared with UNICOS 7.0.

4.3 UN/COS 9.0 (3Q95)

UNICOS 9.0 will support Triton and IOS-F hardware. It
will support additional standards: X/Open XPG4 brand-

ing, AlM, and ONC+ (NFS V3). It will improve the
heterogeneous computing capabilities with the Shared
File System (SFS) and UNICOS MAX.

A major theme for UNICOS 9.0 is Reliability, Avail­
ability, and Serviceability (RAS). Specific RAS fea­
tures are UNICOS under UNICOS and checkpointing
tapes.

UNICOS 9.0 potentially will support additional periph­
erals: EsconIFCA-2, Redwood Autoloader, and IBM
NTP.

4.4 UN/COS MAX Releases

UNICOS MAX 1.1 will be released in 2Q94. It
includes improvements in resiliency and interactive
scheduling. It supports the CRAFf progranuning
model.

UNICOS MAX 1.2 is planned to be released in 4Q94.
It will support phase-II I/O and job rolling (coarse-grain
timesharing). Phase-II I/O adds HISP channels that act
as direct data channels between 10Cs and the MPP.
The control remains on the host and the 10Cs maintain
physical HISP/LOSP connections to the host. This
generally increases the number of I/O gateways that can
function in parallel.

UNICOS MAX 1.3 is planned to be released in 2Q95,
with support for pha'ie-III I/O. Phase-III I/O allows
10Cs to attach to the MPP, without physical connec­
tions to the host. Control remains on the host; the host
controls the remote 10Cs through virtual channels that
pass through the MPP. This allows the number onocs
to exceed the number that will physically connect to the
host.

5 Storage System~

Several new file systems will be available in 1994 and
1995. All of these features are unbundled and must be
ordered separately. The DCEIDFS (Distributed File
System) will be released for UNICOS 8.0 in 3Q94.
ONC+INFS3 will be available with UNICOS 9.0. The
Shared File System (SFS) will first be available in UNI­
COS 8.2 and then in UNICOS 9.0. SFS will support
multiple UNICOS hosts sharing ND disks.

Planned hierarchical storage management improve­
ments include DMF 2.2, UniTree, and FileServ sup­
port. With the introduction of DMF 2.3, we plan to
offer client/server for SFS. This means a DMF host
could act as a DMF server for systems that share the
SFS disks.

On Y -MP ELs we will offer the following peripheral
upgrades: SCSI disks (DD-5s), IPI disks (DD-5i),

Metrum tape library, and SCSI tape and disk controller
(SI-2).

6 Connectivity

6.1 ATM

A TM pilot tests will run from 2Q94 through 4Q94. The
ATM will be connected to CRAY Y-MP and CRAY
C90 hosts through Bussed Based Gateways (BBGs)
and with native connections on CRA Y Y -MP EL sys­
tems. The BBGs will support OC3 and OC12 (622
Mb/s). The native CRA Y Y -MP EL connections will
support OC3 (155 Mb/s).

Software support for ATM will be in UNICOS 9.0.
Long term plans are to prototype OC48 (2.6 Gb/s) in
1995 on 10S-F and to prototype OC192 (8 Gb/s) in this
decade on 10S-F.

6.2 NQX

NQX helps NQS on UNICOS to interoperate with
NQE. When one adds NQX to NQS and FT A, the
result is the NQE capabilities on a UNICOS host. NQE
will replace RQS and Stations.

7 Cray Application
Programming Environment

7.1 Cray Programming Environment 1.0

The CF90 Programming Environment 1.0 was released
in December 1993. Cray Research was the first vendor
to release full native Fortran 90. Twenty-six CF90
licenses have been purchased.

On average, CF90 compiled code runs within 10% of
the speed of eF7? code. Some codes run faster, some
slower.

A SPARC version ofCF90 will be available in 3Q94.

The CF7? 6.1 Programming Environment for the
CRA Y T3D will be released in 2Q94. Its main feature
is support for the CRAFT programming environment.

The C++ Programming Enviromnent 1.0 for the CRA Y
T3D is will also be released in 2Q94. With this release,
the MathPack.h++ Tools.h++ class libraries will be
available. These libraries are unbundled and must be
purchased separately.

7.2 Programming Environment 2.0

The CF90 Progranuning Enviromnent 2.0 for all plat­
forms (PVP, MPP, and SPARC) will be released in
2Q95. A goal we expect to meet for CF90 2.0 is to
exceed the performance of CF7? .

The C++/C Programming Environment 2.0 for PVP
and MPP platforms will be released 2Q95. Note: the

15

16

C++/CProgramming Environment 2.0 is intended to
replace the Cray Standard C Programming Environ­
ment 1.0 and the C++ Programming Environment 1.0.
C++/C is both an ANSI Standard C compiler and a C++
compiler.

7.3 Distributed Programming Environments

The Distributed Programming Environment (DPE) 1.0
is scheduled for release in 3Q94 with support for the
SunOS and Solaris platfonns. It includes the front-end
for CF90 that allows test compiles on the workstation
and dpe_f90, which perfonns remote compiles on the
host. It provides A TExpert and Xbrowse locally on the
workstation linked through ToolTalk to the host.

DPE 2.0 is planned to be released in 2Q95 for the
Solaris platform. It will add a full CF90 2.0 cross com­
piler and native Cray TotalView support through
ToolTalk. With DPE 2.0, the compiler will produce
host object code on the workstation and the dpe_f90
command will upload the data to the host and link it on
the host with transparent remote commands.

8 CraySoftTM

CrayS oft released its first product in December 1993:
NQE for Solaris. This included NQS, a load balancer,
queuing clients, and the File Transfer Agent (FT A.)

In 3Q94, CraySoft plans to release NQE 1.1 for multi­
ple vendors including workstations and servers from
IBM, SGI, HP, Sun and Cray Research.

Also in 3Q94, CraySoft plans to release DPE 1.0 for
Solaris. (See the Distributed Programming Environ­
ments section above.)

In addition, in 3Q94, CraySoft plans to release CF90
1.0 for Solaris.

9 Product Retirement

Ada and Pascal will be placed in maintenance mode one
year from now. The last feature development for these
products is complete. They will be supported on
CRA Y Y -MP, CRA Y M90, and CRA Y C90 platfonns
through UNICOS 9.0. They will not be offered on new
hardware, such as the CRA Y J90 series.

CrayDoc will replace DocView; DocView will be
placed in maintenance mode one year from now.
The final OS platform on which DocView will be sup­
ported is UNICOS 9.0. CrayDoc will be available with
UNICOS 8.0.3

10 CRAY T3D Product Status

Six sites have installed CRA Y T3D systems, and we
have received fifteen additional orders. The user base
is diverse, including industry, government, and univer­
sity customers. The hardware in the field has been
highly reliable. The software is stable and maturing.
The 110 is performing as expected: over 100 MB/s on
one lOG to SSD and over 350 MB/s on four lOGs to
SSD.

The CRA Y T3D system is the only MPP that has run all
eight of the NAS Parallel Benchmarks on 256 proces­
sors. All other vendors have been unable to scale all
eight benchmarks to this level of parallelism. The
CRA Y C916 system runs all but one of the benchmarks
faster than a 256 processor CRA Y T3D system, but the
CRAY T3D system is approaching the CRAY C916
perfonnance on many of these benchmarks and is
expected to exceed the CRA Y C916 performance when
scaled to 512 processors. The scaling has been excel­
lent; the performance on 256 processors was almost
double that of 128 processors (see figure 5).

The CRA Y T3D system is proving to be an excellent
graphics rendering engine. Microprocessors excel at
this task, compared with vector processors. The 256
processor CRA Y T3D system runs a ray-tracing appli­
cation 7.8 times faster than a CRA Y C916 system.

The heterogeneous nature of the CRA Y T3D system is
proving to be an advantage for some codes. The
SUPERMOLECULE code is a good example. It con­
tains a mixture of serial and parallel code. Running the
serial code on a fast CRA Y Y -MP processor substan­
tially improves the scalability. If all the code, including
the serial portion, is run on the MPP, the code runs only
1.3 times faster on 256 processors than on 64 proces­
sors. When the serial portion of the code is run on a
CRA Y Y -MP CPU, the program runs 3.3 times faster
on 256 processors than on 64 processors (see figure 6).

11 Summary

Cray Research remains committed to an Open Super­
computing strategy.

We build our systems using standards, such as pas IX,
System V, Solaris, X/Open, ANSI, and CaSE. We
concentrate on performance such as scalable parallel
processing and automatic parallelizing compilers. We
excel in resource management such as comprehensive
accounting and NQS production batch facilities. We

have the most comprehensive UNIX security on a
major computing platform, including "Trusted UNI­
COS", with an official Orange/Red book B 1 MDIA rat­
ing. These security features are very useful for
commercial sites.

We are constantly improving our data accessibility with
features such as ONC+INFS3, DCFJDFS, hierarchical
storage management (DMF, UniTree, FileServ), FDDI,
HiPPI, and A 1M. Finally, we will continue improve­
ments in providing a cohesive environment, including
CaSE (CDE), the CraySoft Network Queueing Envi­
ronment, Fortran 90, and technology agreements with
workstation vendors such as Sun Microsystems, Inc.

We will continue our investments in Open Supercom­
puting to constantly improve methods for bringing
supercomputing to the desktop.

12 Appendix:
Explanation of Box Plots
(Figure 4)

12.1 Comparing Estimated Software
and System Time Between Failures

Figure 4 compares the distributions of customer Soft­
ware and System MITI estimates. The solid line repre­
sents the median customer Software MTTI, and the
dotted line represents the median customer System
MTTI. The boxplots allow us to see how these distri­
butions change over time. The graph compares the
MTTI distributions for Software and Systems for of all
customer machines.

12.2 Boxplots

Boxplots are often used to give an idea of how a popu­
lation or sample is distributed, where it is centered,
how spread out it is, and whether there are outliers.
The box itself contains the middle 50% of the data.
The line in the middle represents the median. The
whiskers extend outward to cover all non-outlier data.
Outliers are plotted as small dashes. An outlier is a
point that "lies out" away from the main body of the
group.

The median is a "measure of location." That means it
is a nice metric for telling "where we are." (Where we
are centered.) The boxes help show us how spread out
we are.

While boxplots do not display everything there is to
know about a data set, they are quite useful in allowing
us to compare one data set to another. By lining box­
plots up side by side we can often tell whether two or
more data sets are located around the same central

value, or whether they have the same amount of
spread.

We use log paper in the Y axis, since otherwise we
would not be able to observe what is happening in the
lower quartile, and this is probably where we would
like to focus our attention.

12.3 Where does the Data Come From?

For each site a list was obtained from the IR database
of times when Software or System crashes occurred.
From this information we were able to estimate the
MITI for each site at any moment in time. In each
graph the most recent month is not included. (We
expect data that will be reported late to bring the lower
part of the last month's box down.) For more informa­
tion please feel free to contact David Adams by email
(dadams@cray.com) or phone (612) 683-5332.

12.4 Analysis

All of the medians seem to be fairly stable. (They are
not moving up or down significantly.) The shaded
notch in the middle of each box is a 95% confidence
interval on the median for the box. If any two boxes
have shaded notches that do not overlap horizontally,
then those boxes have significantly different medians in
the statistical sense.

17

18

Supercomputer Operations
Software Division

Irene QUllters
Senior Vice President

Software Division

I I

Mike Booth Mark Furtney Paul Rutherford Wayne Rolger
Group Leader Group Leader Group LeIder Group Leader

Compliers TLC and MPP Software Storage Syatems Networking

Pat Donlin Leary GatM Kevin Matthews Janet Lebens
Prolect Leader Program Manager Acting Group Leader Group Leader

ELS Software CraySoft Operating Syatems UNICOS Relea"

I

Nancy Hanna Dick Nelson Pete Sydow BNceWhlte
Group Leader Principal Scientist Group Leader Group Leader

Human ResourcM FortraniC Research Systems Software Operations & Administration

c:: P-IiI~~~~C!i.~~I_'I.~.~:I~/v~e~rln~g~Uw~p~e~rl~~:ma:n~~~ .. ~ ~_ '.I¥i-i§f'·'Fl:NP'FH • ~ ~~.
(Figure 1) ... _, ",MC

~----------------~

Number of
SPRs

1000

800

600

400

200

o
Aug-93

SPR Status

Backlog

Fixed Rate

Sep-93 Oct-93 Nov-93 Dec-93 Jan-94 Feb-94

P!c::ii3~:l'.:!~~I::!l.~t:I:I •• ~ .. ;~;;I;.;lv;;erl.;;.n~g.:uw;;.:p;e;.;.rf,:~.;;.ma=n;.;;~~ .. ~ rnTI_ '.'i--J§f'·"'=8'dFH • ~ ~~.
L-_________ ~ (Figure 2) ... _, ' .. MCU

6000

5000

4000

Hours
3000

~ooo

1000

,,..

,I-

, r--

.

,

,

6 Month Rolling
Software and System MTTI

Software ,......
r-- /MTTI System

MTTI ~

,....;.. r-- r--
r-- r--

V
I

, , .

~

~

--
, ,

" 3183 4183 5183 &In 7/83 1183 8/83 1M3 1111J3 12/83 11M 21M

I
CFfl*i='llI~D'i:J-'f:l1"C:INi:i;"91::,,·f-~de:II~V.:rt.:.:n"g:the:,;"':rl~onnan=~~;._~ ________ ~~ UjJ)-

_ • (Figure 3) , .. _._ ... - _-

Estimated Time Between Failures at Customer Sites

Hours

50,000

20,000

10,000

5,000

2,000

1,000

500

200

100

50

20

10

!
W =

=

Median Software Mnt
Median System Mm

3/93 4/93 5/93 6/93 7/93 8/93 9/93 10/93 11/93 12193 1/94 2194

10 years

6 years

3 years

1 year

6 months

3 months

1 month

2 weeks

1 week

3 days

1 day

12 hours

6 hours

3 hours

1 hour

19

20

NAS Parallel Benchmarks
Highest Performance Reported on Any Size Configuration

30.00 ~~1 L

25.00 .~ ~III!!:"

20.00 ~ -I-~ ~~ ~ ~~ ~ ~ --
C90CPU

Equivalents 15.00

10.00

0.00

I- i ~ ~1l
III! ... ~ ~

.Ai.

5.00

EP FT'MG IS~
CG

Kernels

c: c::

+i ;::-
'--

.: .:-
"'-lI1 --~ I) 1) ~ , .,

BT SP LV

Applications

-CRAYC916
C RA YT3D 256 PEs

Other MPPs

Note: No Other Major MPP Vendor Scaled All 8 Codes to 256 PEs IfTIiJ
~I -f==C-;i*;1;~~.lj--;'~~~:-H;~~.-'i~d:~f·~.M~I~lV~erl~n~g~~~p~e~rl~~~ma=n~~~~~ __________________ ~~~,...
_ _ (Figure 5) ... _ .. _ •• ,.,M· M

SUPERMOLECULE
Homogeneous versus Heterogeneous Performance

3.5 ..,----.,.---.----.,.-------,r--------.
3.1---1--;----+----1

2.5 L-.J---l---r~n
Relative

Peformance 2

1.5

0.5

T3D + 1 Y·MP CPU

256

Number of T3D Processors

Molecule = 18·Crown·6 3·21G tfJJJ
c: -==-~ "t' .. Mllverlng the performan~ Updated 213194

~~~~~----~ ,... 
(Figure 6) 



Unparalleled Horizons: Computing in 
Heterogeneous Environments 

Reagan W. Moore 

San Diego Supercomputer Center 
San Diego, California 

Abstract 

The effective use of scalable parallel 
processors requires the development 
of heterogeneous hard ware and 
software systems. In this article, the 
Intel Paragon is used to illustrate 
how heterogeneous systems can 
support interactive, batch, and 
dedicated usage of a parallel 
supercomputer. Heterogeneity can 
also be exploited to optimize 
execution of task decomposable 
applications. Conditions for super­
linear speedup of applications are 
derived that can be achieved over 
both loosely and tightly coupled 
architectures. 

Introduction 

Scalable heterogeneous parallel 
archi tectures are a strong contender 
for future Teraflop supercomputers. 
From the systems perspective, 
heterogeneous architectures are 
needed to support the wide range of 
user requirements for interactive 
execution of programming tools, for 
production execution of parallel 
codes, and for support for fast disk 
I/O. From the application 
perspective, heterogeneity can also 
lead to more efficient execution of 
programs. On heterogeneous 
systems, applications can be 
decomposed into tasks that are 
executed on the appropriate 
hardware and software systems. For 

a certain class of applications, 
superlinear speedups can be 
achieved. The execution rate of the 
application can be increased by a 
factor greater than the number of 
decomposed tasks. 

To demonstrate the viability of 
heterogeneous parallel 
architectures, a comparison will be 
presented between the job mixes 
supported on the Cray C90 and the 
Intel Paragon XP/S-30 at the San 
Diego Supercomput~ Center. The 
observed C90 workload cannot be 
efficiently executed on a 
homogeneous massively parallel 
computer. The heterogenous 
hardware and software systems on 
the Paragon, however, do provide 
support for a job mix similar to that 
of the C90. The operating system 
software that controls the 
heterogeneous resources on the 
Paragon will be described. 
Conditions for achieving 
superlinear speedup will be derived 
that are valid for both tightly 
coupled architectures such as the 
C90/T3D, and for loosely coupled 
architectures such as a Paragon and 
C90 linked by a high-speed network. 

Heterogeneity in Application 
Resource Requirements 

The Cray C90 supercomputer 
supports a job mix with widely 
varying application resource 
requirements. In addition, the 

21 



22 

resource demands can vary 
significantly between the CPU time, 
memory size, and disk space required 
by a job. Jobs that need a large 
fraction, from one-quarter to one­
half, of any of these resources are 
"boulders" that can dramatically 
affect the performance of the C90. 
Examples of these types of resource 
demands are support for fast turn­
around for interactive job 
development, execution of large 
memory production jobs, and 
execution of jobs requiring large 
amounts of disk space. "Boulders" 
constitute the dominant need for 
support for heterogeneity on the 
C90. 

At SDSC, "boulders" are controlled 
through a dynamic job mix 

scheduler [1-3]. The scheduler 
automatically packs jobs in the C90 
memory while satisfying scheduling 
policy constraints. The turn-around 
time of particular classes of jobs is 
enhanced while maintaining high 
system utilization. The limiting 
resource that is controlled on the C90 
is memory. Enough jobs are kept in 
memory to ensure that no idle time 
occurs because of I/O wait time. 

Job mix statistics for the C90 and the 
Paragon for the month of January, 
1994 are given in Table 1. The C90 at 
SDSC has 8 CPUs, 128 MWords of 
memory, and 189 GWords of disk 
space. 

Table 1 
Interactive and batch workload characteristics for the C90 and the Paragon for 

the month of January, 1994 

Number of Interactive jobs 
Number of Batch jobs 
CPU time interactive (processor-hrs) 
CPU time batch (processor-hrs) 
Average batch CPU time (processor-hrs) 

There are several noteworthy items 
about the job mix on the C90. Users 
rely on the C90 to support 
interactive job development. These 
jobs constitute over 90% of the jobs, 
but use less than 10% of the CPU 
time. Thus the dominant use of the 
C90 by number of jobs is for fast 
interactive support of researcher 
development efforts. The dominant 
use by execution time is for deferred 
execution of batch jobs. Even for 
jobs submitted to the batch queues, 
typically half of the runs are for 
short execution times of less than 
five minutes. Excluding these short 
execution time batch jobs, the long­
running batch jobs execute for 
about one hour. 

C90 
101,561 

8,279 
410 

3,595 
0.43 

Paragon 
4,731 
1,111 

13,409 
145,860 

131 

Typical types of support needed for 
job development on the C90 are 
shown in Table 2. 

On the C90, these development 
support functions are run in 
competition with the batch 
production jobs. Although they 
comprise a small fraction of the total 
CPU time, their need for fast turn­
around times does impose a heavy 
load on the operating system. On a 
heterogeneous architecture, these 
functions could be executed on a 
separate set of resources. Another 
characteristic of the development 
tasks is their need for a 
comprehensive set of UNIX system 
calls. Excluding file 110 
manipulation, most production batch 



jobs use a relatively small fraction of 
the UNIX system call set. A 
heterogeneous system that provides 
minimal UNIX system call 
functionality for batch jobs, with a 

complete set provided for 
development tasks may also allow 
optimization of use of system 
resources. 

Table 2 
Development Functionality Used on Vector Supercomputers 

Function 
Archival storage 
Compilation 
Shell commands 
Accounting 
Editing 
Resource Mana~ement 

Heterogeneous 
Computers 

Parallel 

The Intel Paragon in use at SDSC is a 
heterogeneous system. It is shown 
schematically in Figure 1. The 
different node types include 400 
compute nodes with varying 
amounts of memory (denoted by a 
circle), 5 nodes to support 
interactive job development 

Percent Wall-clock time 
1.08% 
1.05% 
0.73% 
0.57% 
0.45% 
0.17% 

(denoted by S for service), 9 MIO 
nodes to support RAID disk arrays 
(denoted by M), a HIPPI node to 
support access to the 800 
Mbit/second HIPPI backbone at SDSC 
(denoted by H), an Ethernet node for 
interactive access to the Paragon 
(denoted by E), and a boot node 
(denoted by B). The positions labeled 
wi th an asterisk are open slots in the 
system. 

Figure 1 
Node Organization for the Paragon 

*00001000000000000000000000*8 
MO 00 010 0 0 0 0 0 000000 0 000 00000 5 5 
*000000000000000000000000055 
MO 000100 0 0 0 0 000000 0 0 0 0 00000 * 5 
* 0 0 0 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * M 
* 0 0 0 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * E 
MOOOOOOOOOOOOOOOOOOOOOOOOO** 
MO 000100 0 0 0 0 000000 0 0 0 0 0000 cj * * 
* 0 0 0 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * M 
* 0 0 0 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * * 
MO 000

1
00 0 0 0 0 000000 0 0 0 0 0000.0 * * 

*0000000000000000000000000** 
* 0 0 0 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * M 
H 0 0 0 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * * 
H 0 0 0 0

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * * 

MOOOOOOOOOOOOOOOOOOOOOOOOO** 

23 



24 

On the Paragon, traditional UNIX 
interactive development tasks are 
executed on the service nodes, while 
parallel compute jobs are executed 
on the 400 compute nodes. Note that 
in Table 2, the two dominant 
development efforts in terms of CPU 
time are archiving of data and 
compilation of codes. At SDSC, these 
functions are migrated off of the 
Service nodes onto compute nodes 
for execution in parallel. Parallel 
MAKE jobs are typically executed on 
4 compute nodes on the Paragon. 
The compute nodes to the right of 
the solid vertical line in Figure 1 
have 32 MBytes of memory, while 
the remaining compute nodes have 
16 MB ytes of memory. The nodes to 
the left of the dashed vertical line 
are reserved for interactive 
execution of parallel compute jobs; 
the other nodes are controlled by the 
batch system. 

The statistics presented in Table 1 
indicate that this heterogeneous 
system supports a workload whose 
characteristics are similar to that of 
the C90. The number of interactive 
jobs on the Paragon only includes 
those jobs explicitly run in the 
interactive compute partition. 
Adding the traditional UNIX tasks 
executed on the service nodes would 
significantly increase this number. 
As on the C90, the amount of CPU 
time used by batch jobs is over 90% 
of the total time used. The number of 
interactive jobs on the Paragon 
exceeds the number of batch jobs by 
over a factor of 4. Thus the Paragon 
is supporting a large interactive job 
mix with a concommittant need for 
fast turn-around, in addition to a 
production workload that is 
processed through batch. The 
preferred number of nodes for the 
batch jobs is 64. Thus the average 
batch job execution time is about two 
hours. 

Up to 25 login sessions are 
simultaneously supported on a single 

service node on the Paragon. To 
support more users, additional 
service nodes are added to the 
system. Similar scaling is used for 
disk support, with a separate MIO 
node used to control each 5 GByte 
RAID array. Adding more disk to the 
Paragon is accomplished by adding 
more MIO nodes. 

Since batch compute jobs tend to 
require a smaller subset of the UNIX 
system call functionality, one 
important feature of the Paragon is 
the ability to run different 
operating system kernels on 
different nodes. The Sandia National 
Laboratory and the University of 
New Mexico have developed a 
"nanokernel" (called SUNMOS) that 
is less than 256 kBytes in size that 
supports high-speed message 
passing between nodes. Bandwidths 
as high as 160 MB/sec have been 
reported for the SUNMOS operating 
system [4]. The reduced size of the 
operating system allows larger in­
core problems to be run. 

Operating System Support for 
Heterogeneous Systems 

The Paragon architecture can 
consist of nodes with both varying 
hardware and software capabilities. 
Hence a job mix scheduling system 
must recognize different node types 
and schedule jobs accordingly. At 
SDSC, such a system is in production 
use. Modifications have been made 
to the NQS batch system to support 
scheduling policies and packing of 
jobs onto the 2-D mesh. Job packing 
is done by a modified 2-D buddy 
algorithm. Scheduling is controlled 
by organizing nodes into uniform 
node sets, with assignment of lists of 
node sets to each NQS queue. Jobs 
submitted to a particular queue are 
then scheduled to run on only those 
nodes belonging to the node sets 
associated with the queue. This 
allows jobs to be scheduled to use 
large memory nodes, or to use nodes 



that are executing the SUNMOS 
operating system. The scheduling 
policy picks the highest priority job 
for execution. If not enough nodes 
are available, nodes may be held idle 
until the job can fit on the mesh. 

SuperIinear Speedup 

Heterogeneous systems can be used 
to improve individual application 
performance, as well as to support 
productivity requirements. For 
applications that can be decomposed 
into multiple tasks, performance can 
be increased by assigning each task 
to hardware/software systems that 
execute that task the quickest. An 
example is assigning sequential set­
up tasks to nodes with very fast 
execution rates, while assigning 
highly parallel solution algorithms 
to parallel systems. For problems 
that iterate between job setup and 
job solution, it is possible to pipeline 
the calculations and do most of the 
work in parallel. If the execution 
rate of each task is sufficiently 
faster on different compute 
platforms, a superlinear speedup can 
be achieved. The solution time 
obtained by distributing the 
application can be faster by a factor 
larger than the number of tasks into 
which the application is decomposed. 

Simple algebraic equations can be 
derived to illustrate this effect. 
Consider two tasks, a sequential task, 
I, and a highly parallel task, 2, that 
are executed iteratively on two 
compute platforms, a fast sequential 
platform, A, and a fast parallel 
platform, B. After the initial setup 
for task I, data is pipelined through 
multiple interations until 
convergence is reached. Thus on 
average, task I and task 2 can 
execute in parallel. The execution 
time on platform A is given by 

TA=TAI+TA2 

where TAl is the time to execute task 
I on platform A and T A 2 is the time 
to execute task 2 on platform A. With 
similar definitions, the time for 
executi(~)fi on platfonn B is 

TB =TBI +TB2 

Assume that task I executes faster on 
platform A, and task 2 executes faster 
on platform B. The execution time 
for the application distributed 
between the two platforms and 
executing in parallel is the 
maximum of TAl and TB2. 

The speedup, S, is the ratio of the 
minimum of the stand alone 
execution times on the two 
platforms, divided by the execution 
time on the distributed system. The 
speedup is then given by 

S = min (SA, SB) 

SA = TA I max (TAl, TB2) 

SB = TB I max (TAl, TB2) 

Each execution time can be modeled 
as the amount of work (N I is the 
number of operations for task I) 
divided by the execution rate of the 
particular platform (R A I is the 
execution rate of task I on platform 
A). Thus 

TAl =NI IRAI 

TB2 = N2/RB2 

The speedup can be calculated as a 
scaled function of the relative 
amount of work, h, of the two tasks, 
where 

h = NI I N2 * RB2/RAI 

25 



26 

The maximum obtainable speedup 
can then be shown to depend only 
on the relative execution rates of the 
two tasks on the two platforms. A 
plot of the dependence of the 
speedup versus the relative amount 
of work between the two tasks is 
shown in Figure 2 when the ratio 
R A I / RBI is greater than the ratio 
RB2/RA2. 

The maximum attainable speedup is 
given by 

s = 1 + RB2/RA2. 

When RB2 is greater than R A2, then 
S > 2, and superlinear speedups are 
achievable. Note that there can be a 
substantial range in the relative load 
balance over which superlinear 
speedup is attainable. The speedup is 
given by the lower peak and 
corresponds to the slower running 
task on platform . A being processed 
on platform B in the same amount of 
time as the faster task on platfonn A. 

The maximum speedup corresponds 
to perfect load balancing, which 
occurs when both of the distributed 
tasks execute in the same amount of 
time. Thus, the maximum speedup 
occurs when 

TAl =TB2 

or 

h=l 

Summary 

Scalable heterogeneous parallel 
architectures are able to support the 
heterogeneous workloads seen on 
present vector supercomputers. 
They achieve this by assigning 
different types of work to different 
hardware resources. On the 
Paragon, the ability to schedule jobs 
in an environment with nodes with 
different amounts of memory and 
even different operating systems is 
necessary for handling 
heterogeneous work loads. By 
decomposing applications into 
multiple tasks, it is possible to take 
advantage of heterogeneous 
architectures and achieve 
superlinear speedups, with 
applications decomposed into two 
tasks executing over twice as fast as 
the original. 

Acknowledgements 

This work was funded in part by the 
National Science Foundation under 
Cooperative Agreement Number ASC-
8902825 and in part by the National 
Science Foundation and Advanced 
Research Projects Agency under 
Cooperative Agreement NCR-8919038 
with the Corporation for National 
Research Initiatives. The support of 
Mike Vildibill and Ken Steube in 
generating the statistics is 
gratefully acknowledged. 

All brand and product names are 
trademarks or registered trademarks 
of their respective holders. 



Figure 2 

Speedup versus Scaled Load Distribution 

R1=RA1/Rs1 

R2=RS2IRA2 

1 _1-
1 

1 

(R2-1 )/(Fh -1) 

S8 

1 
-1- - - --

1 

1 h 

h=N1/N2 * RB2/RA1 

References 

1. Moore, Reagan W., "UNICOS 
Performance Dependence on 
Submi tted Workload," Proceedings, 
Twenty-seventh Semiannual Cray 
User Group Meeting, London, Great 
Britain (April 1991), GA-A20509. 

2. Moore, Reagan W., Michael Wan, 
and William Bennett, "UNICOS 
Tuning Strategies and Performance 
at the San Diego Supercomputer 
Center," Proceedings, Twenty-sixth 
Semiannual Cray User Group 
Meeting, Austin, TX (Oct. 1990), GA­
A20286. 

3. Wan, Michael and Reagan Moore, 
"Dynamic Adjustment/Tuning of 
UNICOS," Proceedings, Twenty-fifth 
Semiannual Cray User Group 
Meeting, Toronto, Canada ( April 
1990), GA-A20062. 

4. Private communication, Rolf 
Riesen, Parallel Computing Science 
Department, Sandia National 
Laboratories. 

27 



28 

CRAYT3D Project Update 

Steve Reinhardt 
Cray Research, Inc. 

655F Lone Oak Drive 
Eagan, MN 55121 USA 

spr@cray.com 

This paper describes significant CRAY T3D project events which have 
occurred since the last CUG meeting, emphasizing those events which 
will effect how programmers or users will use the machine and the 
performance they can expect. 

1.0 Introduction 1 

At the time of the last CUG meeting, in September, .1993, 
in Kyoto, the first customer CRAY T3D system had been 
shipped to the Pittsburgh Supercomputing Center. Hard­
ware was stable, software was growing out of its infancy, 
and performance results were available beyond common 
industry kernels. Currently the CRAY T3D system is ship­
ping in volume, and customers are using the CRAY TID 
successfully for production computing and MPP applica­
tion development. Topics covered in this paper include: 
shipments, reliability, CRAY T3D hardware plans, soft­
ware plans, performance (kernel, 110, and application), 
and third-party application work. 

2.0 Shipments 

The CRAY TID architecture spans system sizes from 32 
to 2048 processing elements (PEs). As of March 1994, we 
have shipped nine systems to customers. Those customers 

1. The work described in this paper was supported in part by the 
Advanced Research Projects Agency (ARPA) of the U.S. Gov­
ernment under Agreement No. MDA972-92-H-0002 dated 21 
January, 1992. 

Copyright © 1994. Cray Research Inc. All rights reserved. 

include governmental, industrial, and academic organiza­
tions. The industrial shipments include seismic and elec­
tronics customers. Machines reside in Europe, Japan, and 
the United States. Shipments include all of the chassis 
types which will be built: multi-chassis liquid-cooled 
(MC), single-chassis liquid-cooled (SC), and multi-chassis 
air-cooled (MCA). The largest customer system contains 
256 PEs. 

3.0 Reliability 

CRI developed and delivered the CRAY T3D in 26 
months, and some customers expressed concerns about the 
reliability of a machine developed so quickly. Given the 
small amount of total CRAY T3D experience we have, we 
cannot call the data conclusive, but some trends are 
already emerging. Overall the reliability of CRAY T3D 
systems is growing quickly. We plan to end the year 1994 
with an MTTI of 1 month. 

Effect on Y-MP host. Many current CRI customers wish 
to add an MPP component to their production system, but 
are extremely attentive to any impact this may cause to 
their existing CRAY Y-MP or CRAY Y-MP C90 produc­
tion workload. Because of these concerns, we designed the 
CRAY T3D hardware and software to be isolated from the 



Hardware Update 

nonnal functions of the host, in order to minimize reliabil­
ity problems. In practice this has worked well. We have 
had some early growing pains, which we believe are now 
behind us. Even including these early growing pains, our 
data shows that for every six interruptions caused by host 
hardware and software, the CRAY T3D system has caused 
one extra interruption. 

CRAY T3D itself. In isolation, the reliability of the CRAY 
T3D system has been about 1 week. The hardware MITI 
has been about 7 weeks. The software MTTI has been 
about one week. 

Many customers were concerned about the binary-only 
release policy for CRAY T3D software because of the 
potential for slow response to problems observed on site. 
In practice, this has turned out not to be an issue. The OS 
has a handful of different packages, each of which can 
usually be upgraded separately. This allows us to deliver 
tested changes quickly. The infrastructure (tools and pro­
cesses) is based on that being used by CRI compilers, 
which have been binary-only for several years, and hence 
is well proven. 

4.0 Hardware Update 

When we announced the CRAY T3D two memory sizes 
were quoted, 16MB (2MW) and 64MB (8MW). Several of 
the early systems were shipped with 16MB memories. We 
have now shipped a 64MB memory system. 

We plan to allow the follow-on system to the CRAY Y­
MPIEL to be a host to a CRAY TID system during 1995. 

5.0 Software Plans 

The software for the early shipments enabled users to run 
production jobs effectively and to develop further MPP 
applications. Future software releases will provide better 
performance, ease of use, and flexibility. 

5.1 UNICOS MAX operating system 

Release 1.1. (2Q94) Improvements to UNICOS MAX are 
being released in monthly updates. By the time of release 
1.1, alIOS support for the CRAFT programming model 
will be in place. Resilience will be improved by the ability 

to switch in the redundant hardware nodes more easily. 
Scheduling will be improved by allowing small programs 
to leap-frog in front of large programs which are waiting 
for resources; large programs will wait only a finite time. 

Release 1.2 (4Q94) JlO connectivity and perfonnance will 
be improved by the delivery of Phase II JlO, which allows 
a "back-door" channel from a Model E JlO cluster to con­
nect directly to a CRAY TID I/O gateway. This will espe­
cially improve the I/O picture for CRA Y T3D customers 
who have host systems with few processors. Machine 
sharing will be improved by the implementation of rolling. 
Rolling enables a running program to be suspended, 
"rolled" out of its partition to secondary storage and all 
resources freed, another program to be run in the partition, 
and then finally for the original program to be rolled in and 
resumed. With rolling, very large, long-running "hog" jobs 
can co-exist with many small development programs. 

Release 1.3 (IH95) The delivery of Phase III I/O will 
increase the 1/0 connectivity and performance again, 
enabling Model E IOCs to be connected directly to the 
CRAY T3D for both data and control, and thus allowing 1/ 
o to scale with the size of the CRAY T3D and be less con­
trolled by the size of the host. 

5.2 Compilers/Programming Environments 

Release 1.1 (2Q94) The CRAFT programming model will 
enable users to program the CRAY T3D as a global­
address-space machine, with data parallel and work-shar­
ing constructs. We expect that many applications can be 
ported to the CRAY TID more quickly with CRAFT than 
with a message-passing decomposition. The 1.1 release 
will allow C++ users to exploit the power of the CRAY 
T3D system for their programs, with compilation and 
debugging abilities and the class libraries most frequently 
used for scientific computations. Access to multi-PE oper­
ation from C++ will be via the PVM message-passing 
library. 

3Q94 Users whose applications are dominated by opera­
tions that need only 32-bit data and operation will gain a 
significant perfonnance improvement from the release of a 
signal processing option in Fortran in the third quarter of 
1994. A subset of the Fortran 90 language and the mathe­
matical intrinsic functions, suitable for signal processing, 
will be provided, along with visual tool support. Access to 
multi-PE operation will be via PVM. 

29 



30 

4Q94 Users who do I/O which is spread across the mem­
ory of multiple processors will be able to do this more eas­
ily with the release of global /10, which simplifies the task 
of doing I/O on shared objects and synchronizing access to 
files which are shared among PEs. 

CF90 2.0 (lH95) The full Fortran 90 language will be 
delivered to CRAY T3D users with release 2.0 of the CF90 
programming environment. Access to multi-PE operation 
will be via PVM. Implementation of the CRAFT model 
within CF90 is being scheduled. 

Users will see improving application performance 
throughout this period as a consequence of further com­
piler and library optimizations. (See below under Kernel 
performance.) 

The CRAFT programming model will deliver, we believe, 
an appropriate balance between the programmer's ease of 
use and the compiler's ability to deliver high perfor­
mance.[Pase94] Many researchers believe that the HPF 
language will deliver good portability. [HPF93] Each of 
these languages is a global-address-space model for dis­
tributed memory computers. Widespread MPP applica­
tions development depends on the emergence of a standard 
language. We believe that the implementation of each of 
these languages will add to the body of knowledge about 
languages of this type. We will expect that these efforts 
will both contribute to the Fortran 95 standard committee, 
and that is where we will expect to resolve any conflicts 
between the two. 

6.0 Performance 

6.1 Livermore loops 

The Livermore Fortran Kernels measure the performance 
of a processor for certain common operations. Figure 1 
displays the performance of the CRAY T3D single-PE and 

Performance 

compiler in September of 1993 in the front row and the 
current performance in the back row. 

Livermore Loops 

6.2 VO performance 

For 2 MB transfers, the CRAY T3D system can sustain 
across one HISPILOSP channel pair more thanl00 MB/s 
to a disk file system. When using 4 channel pairs in paral­
lel, 4MB transfers can sustain more than 350 MB/s to disk. 

6.3 Seismic Application Performance 

Three-dimensional pre-stack depth migration describes the 
Grand Challenge of seismic computing. The application 
requires a high computational rate, but especially a high 1/ 
o rate. A CRAY Y-MP C90 implementation of this 
method was one of the 1993 Gordon Bell Award winners. 
The 3DPSDM program implements this technique for the 
CRAY T3D in Fortran and message-passing with some 
assembly code used [Wene93]. The absolute performance 
of 64 CRAY T3D PEs is 42% of the performance of a 
C90/16. The CRAY T3D is about 3.5 times more cost-

3D Prestack Migration Absolute Performance 

C90 16 CPUs T3D 64 PEs 

Mlchlne Size 



Performance 

effective for this application. 

'-... 
8 
8. 
~ c ... 
E 
0 
't: 
QI 
no 
QI 

.<: 
~ 
CII 
0: 

3D Prestack Migration Performance 
Per Dollar 

400c)(' 

3 SOc)(' 

3ooc)(' 

2 SOc)(' 

2ooc)(' 

1 SOC)(, 

100c)(' 

SOC)(, 

Oc)(' 

CRAYC90 CRAYT3D 

The application scales very well on many PEs. 

3D Prestack Migration Scaling on CRAY T30s 

UI 
,00% I-

e.. 
'-

SO" 1-QI 
e.. 
QI g 60" 1-(1\ 

E 
0 40" 't: 
QI 
e.. 
QI 

20" > ·zo 
(1\ 

Qi 
0:: 0" 

32 64 

Number of PEs 

6.4 Climate Modeling Application Performance 

The Parallel Ocean Program (POP) performs climate mod­
eling calculations on scalable computers. [Duko93, 
Duko94] The program is structured as an SPMD computa­
tion, with the overall domain being decomposed into a 
block on each PE. Its basic structure is representative of 
many problems which devolve to the solution of partial 
different equations. On other MPPs, POP has spent more 
than 25% of its time communicating; on the CRAY TID it 
spends less than 5% of its time communicating. POP run-

ning on 256 PEs of a CRAY T3D runs about 27% as fast 
as it does on a C90/16. 

POP Absolute Performance 

~ 10% 

! 150% 

QI 
no 
QI 40% .i!: 
19 
& ZO% 

0% 
ClIO 18 CPU. T1OZsePE. 

The price-performance of the CRAY T3D is 88% of the 
C90116. 

POP Performance Per Dollar 

100% 
'-
J! 

8 80% 

K 
QI 60% 0 c ... 
E 

40% 0 
't: 
~ 
QI 20% > ·zo ... 

Gi a: 0% 
CRAY C90 CRAYT3D 

POP scales very well up to 256 PEs. 

W 
0-... 
(1) 
0-
(1) 
U 
r::::: 

§ 
.g 
(1) 
0-
(1) 

> 
"P 
nl 
~ 
c:: 

POP Scaling on CRAY T3Ds 

Number of PEs 

31 



32 

6.5 Chemistry Application Performance 

The SUPERMOLECULE program is a public domain 
code whose structure and function is representative of 
third-party chemistry applications. [Sarg93, Feye93] It 
implements the Hartree-Fock method and is used to under­
stand the interaction of drug molecules. The absolute per­
formance of a 64-PE CRAYT3D is 45% of a C90116. 

SUPERMOLECULE Absolute Performance 

10096 
GI 
~ 8096 
1\1 

E 6096 0 
't: 
GI 4096 n. 
GI 

~ 2096 
1\1 
'ii 096 a: 

C90 16 CPUS T3D 64 PEs 

Machine Size 

The price-performance of a CRAY T3D is almost four 
times that of the C90. 

SUPERMOLECULE Performance Per Dollar 

~ 
40096 

"0 35096 
c 

8. 30096 

GI 25096 I g 
20096 I ~ 

~ 15096 

If 10096 1-GI 
.~ 5096 I S 
GI 096 a: 

CRAYC90 CRAYT3D 

The scaling of SUPERMOLECULE, however, is not 
good, and in fact the time to solution does not decrease 

CRAY T3D Project Update 

Performance 

noticeably by using more than 64 processors. A matrix 

L­
eu 
c.. 
eu 
u 
c 
C'Il 

E .g 
eu 
c.. 
eu 
> 

',p 
C'Il 
~ 
0::: 

4 

SUPERMOLECULE Scaling 
on CRAYT3Ds 

8 16 64 128 

Number of PEs 

256 

diagonalization step is being performed serially on the 
CRAY T3D; Amdahl's Law limits the speedups which are 
possible. However, because of the close linkage between 
the CRAY T3D and its parallel vector host, the serial por­
tion of the code can be executed on a single processor of 
the host, and at much higher speed than a single processor 
of the CRAY T3D. When that portion of the code is run on 
a CRAY Y-MP processor, the program can use effectively 
more PEs on the CRAY T3D side. In this way a large pro-

'2 
2 
U; 

<1> 

== 0 
Cij 

II 
q .,... -<1> 
0 
c 
ctS 

E 
0 

1:: 
<1> 
0.. 

<1> 
> 
~ 
Qi 
a: 

3.5 

3 

2.5 

2 

SUPERMOLECULE Heterogeneous 
Performance 

1.5 

64 128 256 

T3D only 

gram can exploit the coupled system for faster time to 
solution than either system could provide by itself. 



Third-Party Application Work 

7.0 Third-Party Application Work 

The success of the CRI MPP project depends heavily on 
the availability of third-party applications programs to 
enable many users to ignore the complexity of a distrib­
uted memory computer and yet tap the very high perfor­
mance of the CRAY T3D system. CRI is working with 
vendors of the following applications programs, with a 
goal of having some of these applications available from 
the vendor for the CRAY T3D system by the end of 1994. 

chemistry 

structural analysis 

CFD 

CHARMm 
Discover 
Gaussian 
X-PLOR 
LS-DYNA3D 
PAMCRASH 
FIRE 
FL067 
STAR-CD 

electronics Da Vinci 
Medici 
TSuprem 

petroleum DISCO 
GEOVECTEUR 

mathematica1libraries IMSL 
NAG 
Elegant Mathematics 

8.0 Summary 

The CRAY T3D computer system has been delivered to 
customers working in several scientific disciplines, and is 
enabling production MPP computing for those customers. 
Development of new MPP applications on the CRAY T3D 
system is fueling greater exploitation of the latent perfor­
mance of the system. 

9.0 References 

[Duko93] A Reformulation and Implementation of the 
Bryan-Cox-Semtner Ocean Model on the Connection 
Machine, J.K. Dukowicz, R.D. Smith, and R.C. Malone. 
J. Atmos. Ocean. Techn., 10, 195-208 (1993). 

[Duko94] Implicit Free-Surface Methods for the Bryan­
Cox-Semtner Ocean Model, J.K. Dukowicz and R.D. 
Smith. To appear in J. Geophys. Res. 

[Feye93] An Efficient Implementation of the Direct-SCF 
Algorithm on Parallel Computer Architectures, M. Fey­
ereisen and R.A. Kendall. Theoret. Chim. Acta 84, 289 
(1993). 

[Geis93] PVM3 User's Guide and Reference Manual, Al 
Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, 
Robert Manchek and Vaidy Sunderam. Oak Ridge 
National Laboratory ORNLtrM-12187, May 1993 .. 

[HPF93] High Performance Fortran, High Performance 
Fortran Language Specification version 1.0, May 1993. 
Also available as technical report CRPC-TR 92225, Cen­
ter for Research on Parallel Computation, Rice University. 
To appear in "Scientific Programming." 

[MacD92] The Cray Research MPP Fortran Program­
ming Model, Tom MacDonald. Proceedings of the Spring 
1992 Cray Users' Group Meeting, pp. 389-399. 

[Pase94] The CRAFT Fortran Programming Model, Dou­
glas M. Pase, Tom MacDonald, and Andrew Meltzer. To 
appear in Scientific Programming, 1994. 

[Rein93] CRAY T3D System Software, Steve Reinhardt. 
Proceedings of the Fall 1993 Cray Users' Group Meeting, 
pp.36-40. 

[Sarg93] Electronic Structure Calculations in Quantum 
Chemistry, A.L. Sargent, J. Almlof, and M. Feyereisen. 
SIAM News 26(1), 14 (1993). 

[Wene94] Seismic Imaging in a Production Environment, 
Geert Wenes, Janet Shiu, and Serge Kremer. Proceedings 
of the Spring 1994 Cray Users' Group (CUG) Meeting. 

33 





P ARALLELSESSIONS 





Applications and Algorithms 





Porting Third-Party Applications Packages to the Cray MPP: Experiences at 
the Pittsburgh Supercomputing Center 

Frank C. Wimberly, Susheel Chitre, Carlos Gonzalez, Michael H. Lambert, 
Nicholas Nystrom, Alex Ropelewski, William Young 

March 30, 1994 

1 Backgrou nd 

Early in 1993 it was decided that the Pittsburgh Supercom­
puting Center would acquire the first Cray T3D MPP super­
computer to be delivered to a customer site. Shortly after 
that decision was made we began a project to implement a 
number of widely used third-party packages on the new plat­
form with the goal that they be available for production use 
by the time the hardware was made available to the PSC 
user community. 

The wide use of such packages on the Center's Cray C90 
(C916/512) led us to appreciate the importance of their avail­
ability. Approximately 30 to 40 percent of the cycles on the 
C90 are delivered to users of applications packages. Pre­
viously acquired massively parallel supercomputers at the 
Center had seen less widespread use than the vector super­
computers, probably because of the lack of such packages. 
These other MPP's were not underutilized but they were 
used by a relatively smaller set of users, who had developed 
their own codes. 

In selecting the targets for the porting effort we took into 
account: demand for the package on the C90; whether we 
had a source license and the right to modify the program 
and make the result available to users; and, whether message 
passing parallel versions already existed which would give us 
a headstart on a T3D version. Based on these criteria we 
selecting the following packages: 

* GAMESS 

* Amber 4 

* CHARMM 

* MaxSegs 

* Gaussian 92 

In addition, later in the year we began evaluating FIDAP 
and X-PLOR as additional candidates for porting. 

Although we did not have access to T3D hardware until later 
in the summer extensive porting began early in the year 
by means of access to T3D emulators running at CRI and 
shortly thereafter on PSC's own C90. The emulator proved 
to be an excellent tool for validating program syntax and 

correctness of results. Its usefulness for program optimiza­
tion was limited in that performance data was restricted to 
information about locality of memory references. Since sev­
eral programs worked correctly on the emulator before the 
hardware became available we turned to the T3D simulator, 
running on a Y-MP at CRI, as a means of testing perfor­
mance. Although the simulator was important in operating 
system development it was not as useful as we had hoped 
since for testing applications programs it ran too slowly to 
permit realistic runs. The hardware became available shortly 
after these attempts to use the simulator so this was not a 
significant impediment to progress. 

By the time of delivery of the 32 PE T3D to PSC in Au­
gust 1993 all of the five initially selected packages ran in 
one version or another on the emulator. Some of them ran 
"heterogeneously" between the C90 and the emulator and 
some ran "standalone" within the emulator. Since Heteroge­
neous PVM was not available at that time, a PSC developed 
communications package, DHSC (for Distributed High Speed 
Communication), was used for communication between the 
two platforms. Within a few weeks after delivery of the hard­
ware versions of all five packages were running either on the 
T3D or distributed between the T3D and the C90. Again, 
DHSC was used for the heterogeneous programs. There were 
various problems with the run time system and with the 
CF77 compiler (for instance, incorrect handling of dynamic 
arrays) which prevented the programs from running imme­
diately on the hardware even though they had run on the 
emulator. CRI was very responsive to the discovery of these 
software problems and as a result of our efforts and support 
from Cray personnel we were pleased with the progress we 
had made. 

We have recently begun to place more emphasis on perfor­
mance as opposed to establishing program correctness. As 
the focus has moved to performance we have been getting 
regular hardware upgrades. The latest occurred in early 
March of the current year, and we now have 256 PE's and 
four I/O gateways on the T3D; an additional 256 PE's are 
scheduled to be installed in the early summer of 1994. 

Before presenting the current status of several of the port­
ing projects we should comment on some general themes. 
First, performance figures given below should be understood 
in context. The CRAFT FORTRAN programming model 
is not yet available to us. All parallel implementations have 

39 



been done using explicit message passing. The compiler does 
not yet produce fully optimized code nor have the applica­
tions themselves been fully reorganized to exploit the power 
of the T3D at this time. The PE's currently have 16 MB 
of memory which has made it necessary to compensate in 
ways which may adversely affect performance. For the het­
erogeneous programs, performance has been impacted by the 
relatively slow speed of the C90 to T3D connection (the I/O 
gateways); this is especially true for Heterogeneous PVM 
but also for DHSC. The hardware is capable of 200 MB/sec 
but we have realized process-to-process throughput of only 
about 10 MB/sec. We expect this to improve substantially 
as Heterogeneous PVM is expanded and improved. 

2 CHARMM and the Molecular Dynamics 
Kernel 

CHARMM (Chemistry at HARvard Macromolecular Me­
chanics) is a widely used program to model and simulate 
molecular systems using an empirical energy function. In 
the 10 years since CHARMM was developed by Brooks [1] 
and co-workers, a great deal of work has gone into develop­
ing optimized versions for a large number of computer sys­
tems including vector [2] and parallel [3], [4], [5] machines. 
Because of its heavy usage at PSC and the nature of the al­
gorithms used by CHARMM we felt that it was an excellent 
candidate for porting to the T3D. 

The principal focus of most CHARMM-based research done 
by PSC users is simulating poly-peptides and proteins in an 
aqueous environment. As a starting point we developed a 
specialized version of CHARMM for this problem and are 
currently running production calculations while we explore 
algorithms and methods for developing a full-featured ver­
sion of CHARMM. This initial port extends ideas in hetero­
geneous computing previously explored at the PSC [6] using 
a Cray Y-MP and a Thinking Machines Corporation CM-2 
and CM-5. This heterogeneous computing approach cou­
ples a highly-optimized code to simulate molecular solvents 
[7] over a high-speed channel using either DHSC routines or 
network PVM [8]. 

In previous computational experiments in distributed com­
puting we were able observe good performance in small 
demonstration calculations. But in scaling these calcula­
tions up for production we faced a large number of technical 
problems, including those related to data format conversion. 
With the arrival of the T3D and its pairing with the C90, 
we had a heterogeneous computing system from a single ven­
dor and were hopeful that these issues could be resolved. At 
present, many of those issues have been resolved and we are 
currently running production calculations. For a wide range 
of benchmark problems we currently see speedups of 2 to 3 
in run time using a single C90CPU and 32 T3D PE's over 
the same calculation done on a single C90 CPU alone. 
40 

3 GAMESS 

GAMESS (General Atomic and Molecular Electronic Struc­
ture System) [9] [10] is a quantum chemistry code currently 
being developed at Iowa State University. It is written in 
standard Fortran 77 and runs on a variety of platforms. The 
program exhibits poor performance on Cray vector hardware. 
However, as distributed by the author, it provides support for 
message-passing parallelism. This is accomplished through 
calls to the TCGMSG message passing library [11]. Because 
most computation is done in parallel regions and these re­
gions are scattered through the code, GAMESS is better 
suited to a standalone T3D implementation than it is to the 
heterogeneous C90/T3D platform. 

Because PVM is the natural message-passing mechanism on 
the Cray T3D, the TCGMSG library was replaced by a set 
of wrappers to call the appropriate PVM routines. The code 
would not run under the T3D emulator, so it was necessary 
to do development work on the PSC workstation cluster. 
Once the T3D hardware arrived and the software stabilized, 
GAMESS ran. However, because of current memory limita­
tions on the T3D, it is limited to direct (in memory) calcu­
lations with about 200 basis functions. This is marginally 
enough to handle interesting problems. 

GAMESS running on the T3D scales well with the number of 
processors. Communications accounts for about two percent 
of the total time and load balancing is at the five-percent 
level. On a 110 basis-function direct SCF gradient calcula­
tion with 32 PEs, the two-electron gradient routine is over 
99.5% parallel and the overall efficiency is just over 50%. Di­
rect calculations run in about the same time on four PEs on 
the T3D as on one processor of a C90. 

4 Amber 4 

Amber 4[12] is a suite of programs designed for molecular 
modeling and simulations. It is a robust package promi­
nent in the toolkits of computational chemistry and biology 
researchers, and it methods, tailored to the study of macro­
molecules in solution, have found widespread applicability in 
modeling complex biochemical processes and in the pharma­
ceuticals industry. Amber's genesis was in the application 
of classical mechanics (i.e. integration of Newton's equa­
tions of motion) to large molecular assemblies using fitted 
potentials to determine low-energy conformations, model bi­
ological processes, obtain bulk properties, etc. New versions 
of Amber have since introduced capabilities to treat nuclear 
magnetic resonance data, support free energy perturbation 
calculations, and otherwise implement the functionality re­
quired by its research audience. 

The Amber 4 package consists of sixteen individual pro­
grams, loosely categorized as preparatory programs (prep, 
link, edit, and parm) , energy programs (minmd, gibbs, 
sander, nmode), and utility programs (anal, mdanal, 
runanal, lmanal, nucgen, pdbgen, geom, and a set of tutorial 



shell scripts). The preparatory programs address the con­
struction of Amber 4 input. They generally consume a small 
amount of computational resources and are run a small num­
ber of times as the first step of any given calculation. The 
energy programs perform the real work of minimizing struc­
tures and propagating trajectories through time. Computa­
tionally they are the most demanding programs in the Am­
ber 4 system, and they are often run multiple times to model 
different environments and initial conditions. The four en­
ergy programs together, including library routines shared be­
tween them, comprise only 53% of Amber 4 package's source 
code. The utility programs analyze configurations, compute 
various properties from the system's normal modes, and in­
teract with Brookhaven Protein Data Bank[13, 14] (PDB) 
files. As with the preparatory programs, the utility programs 
consume an relatively insignificant portion of computational 
resources when compared with the energy programs. 

4.1 Parallel implementations 

The clear association of heavy CPU requirements with the 
energy programs suggests them as ideal candidates for im­
plementation on distributed and parallel computers. Dis­
tributing even moderate-sized programs such as these can 
be laborious, so the PSC was fortunate to receive distributed 
versions ofminmd and gibbs based on PVM[8] from Professor 
Terry P. Lybrand and his research group at the University 
of Washington. (Work is also underway at the University of 
Washington on sander.) 

The PSC's initial choice for conversion to the Cray T3D 
was minmd because its relevance to computational chemistry 
and biology, the number of CPU cycles it consumes, its size, 
and the time frame in which the PVM version was obtained. 
Minmd performs minimization, in which the atoms' positions 
are iteratively refined to minimize the energy gradient, and 
molecular dynamics, in which the atoms' coordinates are in­
tegrated in time according to Newton's equations of motion. 
Typical system sizes in contemporary research range from on 
the order of 102 to upwards of 105 atoms. Realistic simula­
tions can entail up to on the order of 105 integration time 
steps, rendering the integration phase of the simulation dom­
inant and also daunting. 

Lybrand's PVM-based version of minmd, subsequently re­
ferred to as the distributed implementation, embodies a 
host/node model to partition a simulation across a networked 
group of workstations. One process, designated as the host, 
spawns a specified number of node processes to compute non­
bonded interactions. All other aspects of the calculation are 
performed on the host, which efficiently overlaps its own com­
putation with communication to and from the nodes. 

Work on two distinct implementations minmd is well under­
way: a standalone implementation which runs solely on the 
Cray T3D, and a heterogeneous version which distributes 
work between the Cray C90 and the Cray T3D. The stan­
dalone version employs Cray T3D PVM to exchange data 
between processing element (PE) 0 and all other PE's. There 

is occasional synchronization between the nodes, but no ex­
plicit node-node data transfer. The heterogeneous version 
of minmd uses CRI Network PVM (also known as "Hetero 
PVM") to communicate between the Cray C90 (host) and 
the T3D PE's (nodes). Again, no node-node data transfer is 
necessary. 

The standalone and heterogeneous implementations ofminmd 
each have their own advantages and disadvantages. The 
standalone version offers the greatest potential performance 
because of the low-latency, high-bandwidth I/O available on 
the Cray T3D hardware. Its principal disadvantage is that 
conversion from distributed host/node code to standalone 
code is tedious and error-prone because two separate sets of 
source code must be merged. This results in a high mainte­
nance cost for a package such as Amber 4 which is constantly 
evolving. The heterogeneous implementation currently suf­
fers from the low efficiency of the C90-T3D communications 
mechanism, but it is very easily derived from the distributed 
source code. The changes to PVM are trivial, and the only 
extensive changes required concern file I/O and the process­
ing of command line arguments. Communications rates be­
tween the C90 and the T3D are expected to improve with 
time, so for now development and instrumentation of both 
implementations of minmd will continue. 

Preliminary timing data has already been obtained for dis­
tributed mirund running on the PSC's DEC Alpha worksta­
tion cluster and for the heterogeneous minmd running be­
tween the Cray C90 and T3D. Debugging of the standalone 
Cray T3D implementation of minmd is in its final stages, and 
timings are expected shortly. 

4.2 Acknowledgements 

The initial PVM-based implementations ofminmd and gibbs 
were developed and provided by Professor Terry P. Lybrand 
and his research group at the University of Washington. 

5 MaxSegs 

MaxSegs [15] is a program written by the PSC for genetic 
sequence analysis. MaxSegs is designed to take a experi­
mental DNA/RNA or protein query sequence and compare 
it with a library of all categorized DNA/RNA or protein 
sequences. Searching categorized sequences with an experi­
mental sequence is useful because it helps the researcher lo­
cate sequences that might share an evolutionary, functional, 
or a biochemical relationship with the query sequence 1. The 
MaxSegs program is written in standard FORTRAN-77 and 
is highly optimized to run on Cray vector supercomputers. 
For a typical protein the MaxSegs program operates at about 

1 There are currently about 40,000 categorized protein sequences 
ranging in length from 2 to 6000 characters. The average size of a 
typical protein sequence is approximately 300 residues. There are ap­
proximately 170,000 DNA/RNA sequences with lengths ranging from 
100 to 200,000. The length of a typical DNA sequence is about 1000. 

41 



230 million vector operations per second on the PSC's C90 
2 

MaxSegs was also one of the first programs distributed be­
tween the Cray YMP and the Thinking Machine Corpora­
tion's CM-2 supercomputer at the Center [16]. This project 
helped to show that for large problems, two supercomputers 
could indeed cooperate to achieve results faster than either 
supercomputer alone could achieve. The CM2 code was im­
plimented using data parallel methods; each virtual proces­
sor on the CM2 received a unique library sequence residue 
to compare with a broadcast query sequence residue. In this 
implementation, many library sequences could be compared 
with a query sequence simultaneously. In addition to com­
paring many library sequences with a query sequence at once, 
this implementation also requires the use of very little per­
processor memory. The disadvantages of this implementa­
tion include an enormous amount of nearest neighbor com­
munication, a startup and finishing penalty in which nodes 
process zeros and the pre-processing of enormous, frequently 
updated sequence libraries 3. Although programming in this 
style has a number of disadvantages, the results have been 
impressive enough to allow sequence analysis software imple­
mented on SIMD machines, to gain acceptance within the 
sequence analysis community. 

Both published research [17], [18] and unpublished research 
by the biomedical group at the PSC have shown that if node 
processors have sufficient memory, a MIMD style of program­
ming can be applied to the sequence comparison problem 
yielding performance superior to the performance reported 
on machines using data parallel approaches. In this style 
each processor is given the experimental query sequence and 
unique library sequences to compare. The results of these 
comparisons are collected by a single host processor. One 
advantage to this implementation is that superior load bal­
ancing can be achieved, without having to pre-sort the fre­
quently updated sequence databases. The increased load 
balancing capabilities also make this implementation suit­
able for a wide selection of sequence comparison algorithms, 
such as Gribskov's profile searching algorithm [19]. In addi­
tion to providing superior load balancing overall communi­
cation is also reduced; communication only occurs when the 
sequences are sent to the processors, and the results of the 
comparisons are collected back at the host. The disadvan­
tages of this method are that the communication patterns 
are irregular, there is the potential for a bottleneck to oc­
cur at the host processor, and the nodes must have sufficient 
memory to perform the comparison. 

We have decided to implement the code on the T3D using the 
MIMD approach in two different ways. The first way uses the 
C90 as the host processor, directing the T3D to perform the 
work of comparing the sequences. The second method uses 
PEO on the T3D as the host processor, leaving the remaining 
T3D processors to compare the sequences. Preliminary re-

2The ego version of MaxSegs is available upon request. 
3 The startup and finishing penalties result from the recursive nature 

of the sequence comparison algorithms; to improve efficiency on a SIMO 
machine, categorized sequences must be sorted according to size. See 
[16]. 

42 

suIts indicate that the overall communication speed between 
the T3D and the C90 is currently insufficient to consider the 
first approach as a viable alternative to using the native C90 
code. However, the second approach is very promising, pre­
liminary results indicate that 32 T3D processors take only 
25% more time than a single C90 CPU and that 64 T3D 
processors can match the performance of a single C90 cpu. 
These performance results are on preliminary code, and re­
sults indicate that communication, rather than computation 
is the main bottleneck. Using some simple communication 
reduction techniques, we expect the results to improve dra­
matically. 

5.1 Acknowledgements 

This work was developed in part under the National Insti­
tutes of Health grants 1 p41 RR06009 (NCRR), and ROI 
LM05513 (NLM) to the Pittsburgh Supercomputing Center. 
Additional funding was provided to the Pittsburgh Super­
computing Center by the National Science Foundation grant 
ASC-8902826. 

6 Conclusion 

Based on our experience we would say that the problem of 
porting "dusty decks", or, more accurately, large pre-existing 
packages to a modern, high performance MPP platform is 
difficult but possible. The difficulty varies depending on the 
structure of the code, the intrinsic nature of the algorithms, 
the existence of other message passing versions, and several 
other factors. In the best cases, the effort is clearly worth­
while. We have seen impressive performance even in the 
absence of obvious optimizations of both the compilers and 
the applications programs themselves. It seems clear that 
in many cases the throughput, measured in the amount of 
scientific research accomplished per unit time, realized at 
the PSC will be substantially increased by the availability of 
these packages either on the T3D or on the heterogeneous 
platform (C90/T3D). 

References 

[1] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. 
States, S. Swaminathen, and M. Karplus. Charmm: 
A program for macromolecular energy, minimization, 
and dynamics calculations. J. Compo Chern., 4:187-217, 
1983. 

[2] J. E. Mertz, D. J. Tobias, C. L. Brooks, III, and U. C. 
Singh. Vector and parallel algorithms for the molecular 
dynamics simulation of macromolecules on shared mem­
ory computers. J. Compo Chern., 12:1270-1277,1991. 

[3] B. G. J. P. T. Murray, P. A. Bash, and M. Karplus. 
Molecular dynamics on the connection machine. Tech-



nical Report CB88-3, Thinking Machines Corporation, 
1988. 

[4] S. J. Lin, J. Mellor-Crummey, B. M. Pettitt, and Jr. 
G. N. Phillips. Molecular dynamics on a distributed­
memory multiprocessor. J. Compo Chem., 13:1022-
1035, 1992. 

[5] B. R. Brooks and Milan Hodoscek. Parallelization of 
charmm for mimd machines. Chemical Design A utoma­
tion News, 7:16-21, 1993. 

[6] C. L. Brooks III, W. S. Young, and D. J. Tobias. Molec­
ular simulations on supercomputers. IntI. J. Supercom­
puter App., 5:98-112, 1991. 

[7] W. S. Young and C. L. Brooks III. Optimization of repli­
cated data method for molecular dynamics. J. Compo 
Chem., In preparation. 

[8] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng 
Jiang, Robert Manchek, and Vaidy Sunderam. PVM 3 
user's guide and reference manual. Technical Re­
port ORNL/TM-12187, Oak Ridge National Labora­
tory, Oak Ridge, Tennessee, 1993. 

[9] M. Dupuis, D. Spangler, and J. J. Wendoloski. National 
Resource for Computations in Chemistry Software Cat­
alog, Program QG01. University of California, Berkeley, 
1980. 

[10] Michael W. Schmidt, Kim K. Baldridge, Jerry A. Boatz, 
Steven T. Elbert, Mark S. Gordon, Jan H. Jensen, Shiro 
Koseki, Nikita Matsunaga, Kiet A. Nguyen, Shujun Su, 
Theresa L. Windus, Michel Dupuis, and John A. Mont­
gomery, Jr. General atomic and molecular electronic 
structure system. J. Compo Chem., 14(11):1347-1363, 
1993. 

[11] R. J. Harrison, now at Pacific Northwest Labora­
tory, v. 4.03, available by anonymous ftp in directory 
pUb/tcgmsg from host ftp.tcg.anl.gov. 

[12] David A. Pearlman, David A. Case, James C. Caldwell, 
George L. Seibel, U. Chandra Singh, Paul Weiner, and 
Peter A. Kollman. AMBER 4.0. University of Califor­
nia, San Francisco, 1991. 

[13] F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, E. F. 
Meyer, Jr., M. D. Brice, J. R. Rodgers, O. Kennard, 
T. Shimanouchi, and M. Tasumi. The Protein Data 
Bank: A computer-based archival file for macromolecu­
lar structures. J. Mol. BioI., 112:535-542, 1977. 

[14] E. E. Abola, F. C. Bernstein, S. H. Bryant, T. F. 
Koetzle, and J. Weng. Protein Data Bank. In 
F. H. Allen, G. Bergerhoff, and R. Sievers, editors, 
Crystallograhic Databases - Information Content, Soft­
ware Systems, Scientific Applications, pages 107-132, 
Bonn/Cambridge/Chester, 1987. Data Commission of 
the International Union of Crystallography. 

[15] M. S. Waterman and M. Eggert. A new algorithm for 
best subsequent alignments with applications to trna­
rrna comparisons. J. Mol. BioI., 197:723-728, 1987. 

[16] H. Nicholas, G. Giras, V. Hartonas-Garmhausen, 
M. Kopko, C. Maher, and A. Ropelewski. Distribut­
ing the comparison of dna and protein sequences across 
heterogeneous supercomputers. In Supercomputing '91 
Proceedings, pages 139-146, 1991. 

[17] A. Deshpande, D. Richards, and W. Pearson. A plat­
form for biological sequence comparison on parallel com­
puters. CABIOS, 7:237-347, 1991. 

[18] P. Miller, P. N adkarni, and W. Pearson. Compar­
ing machine-independent versus machine-specific paral­
lelization of a software platform for biological sequence 
comparison. CABIOS, 8:167-175, 1992. 

[19] M. Gribskov, R. Liithy, and D. Eisenberg. Profile anal­
ysis. In R. Doolittle, editor, Methods in Enzymology 
Volume 183, 1990. 

43 



Some Loop Collapse Techniques to 
Increase Autotasking Efficiency 

Mike Davis 
Customer Service Division 

Cray Research, Inc. 
Albuquerque, NM 

Abstract 
Loop collapsing has limited application as a technique to 

improve the efficiency of vectorization; however, when aplied to a 
nest of loops in which Autotasking is taking place, the resulting 
transformed loop structure can perform much more efficiently. 
This paper describes the loop structures that can be collapsed, 
discusses the techniquesfor collapsing these loops, and measures 
the efficiencies of the transformations. 

1.0 Introduction 
The Cray Research Autotasking Compiling System rec­

ognizes several fonns of vectorizable, parallelizable work in For­
tran code. These forms fit the general Concurrent-Outer-Vector­
!!1ner (CO VI) model, where outer loop iterations are executed 
concurrently on separate CPUs and inner loop iterations are exe­
cuted in vector mode on each CPU. The kinds of iterative struc­
tures that cannot be recognized as parallelizable or that cannot be 
efficiently parallelized have been classified into groups according 
to their characteristics [1,2]. The descriptions of some of these 
groupings are as follows: 

a. The parallelized loop contains an insufficient amount 
of work over which to amortize the cost of initiating and terminat­
ing parallel processing (BPEP); 

b. The number of iterations in the parallelized loop is not 
sufficiently high to permit the use of all (or a large majority) of the 
machine's CPUs (LI); 

c. The parallel efficiency of the parallelized loop is lim­
ited by an ineffective work distribution scheme (LI); 

d. The amount of work being done on each iteration of 
the parallelized loop is so large that delays in task scheduling can 
result in significant reductions in achieved speedup (LI); 

e. The amount of work being done on each iteration of 
the parallelized loop varies greatly from one iteration to the next, 

causing high overhead to distribute and synchronize tasks (VW); 

f. The parallel region is itself inside a loop that also con­
tains a significant amount of serial work; this kind of code can 
potentially result in high overhead as the operating system repeat­
edly gives CPUs to the process for execution of the parallel 
region, then takes them away during execution of the serial 
region (RESCH). 

The techniques described in this paper address these 
types of structures. Section 2 introduces the concept of iteration 
space, and how looping structures can be described by the shape 
of their iteration spaces. Section 3 describes coding techniques 
for collapsing nests of loops and gives intuitive explanations of 
why the transformations provide performance benefits. Section 4 
covers the results of performance-testing the various collapse 
transformations. Conclusions and areas of future work are pre­
sented in Section 5. 

2.0 Geometric Characterization of Iterative 
Structures 

The number of different looping structures that can be 
constructed is literally infinite; the number that have actually been 
constructed is probably as large as the number of computer appli­
cations. But the vast majority of looping constructs can be 
grouped into a handful of categories. For the purposes of this 
paper, the best system for classifying loops is the geometric sys­
tem. In this system, iterative structures are described by the shape 
of the iteration space. The shape will have as many dimensions as 
the iterative structure has loop nests. The shape is constructed by 
projecting it outward by one dimension for every loop in the loop 
nest. The following helps to illustrate this process: 

The outermost loop in the structure (call it Ll) is repre­
sented by a line; its length, in geometric units, is equal to the trip 
count of the loop (N1); this is represented in Figure 2.1. 

Copyright (C) 1994, Cray Research, Inc. All Rights Reserved. 

44 



1 2 3 Nl 

... 11 

Figure 2.1 

The next outermost loop (L2), inside of LI, is repre­
sented by projecting the shape to two dimensions.. The width of 
the shape at a point II units along the edge formed by Ll is equal 
to the trip count of L2 (N2) on iteration 11 of L 1; this is shown in 
Figure 2.2. 

The next outermost loop (L3), inside of L2, is repre­
sented by projecting the shape to three dimensions. The depth of 
the shape at a point II units along the edge formed by LI and 12 
units along the edge formed by L2 is equal to the trip count of L3 
(N3) on iteration II of Ll and 12 of L2; this is depicted in Figure 
2.3. Quite often, the shape of the iteration space matches the 
shape of the data upon which the iterative structure operates, but 
this is not always necessarily the case. Some examples will help 
reinforce the concept of representing iterative structures geomet­
rically 

2.1 Linear Iteration Space 

In a simple iterative structure consisting of only one 
loop, the iteration space is said to have a linear shape. The length 
of the line is equal to the trip count of the loop. 

/ N3 

3 
12 

N2 

1 2 3 Nl 

... II 

Figure 2.3 

2.2 Rectangular Iteration Space 

Consider the iterative structure of Figure 2.2. The itera­
tion space of this structure has a rectangular shape. Its length is 
equal to NI. and its width at all points along its length is equal to 
N2. 

2.3 Triangular Iteration Space 

A structure whose iteration space is right-triangular 
would appear as shown in Figure 2.4. There are several different 
variations of the triangular iteration space, and each variation cor­
responds to a triangle with different spatial orientation and a spec­
ification of whether or not the triangle includes the "main 
diagonal." These variations can be distinguished by the form of 
the DO statement for the inner loop. as shown in Table 2.1. 

2.4 Nevada Iteration Space 

A more generalized expression for both the rectangular 
and triangular iteration spaces is that of the "Nevada" iteration 
space. This shape has both rectangular and triangular compo­
nents. such that it is shaped like the state of Nevada. The coding 
structure that corresponds to this shape is shown in Figure 2.5. In 
this structure. the shape has a length of Nl and a width that varies 
from N2+N2D to N2+NI *N2D. N2D represents the magnitude 

45 



of the slope of the hypotenuse of the triangular component of the 
shape. If N2 is zero, then the shape degenerates into that of a tri­
angle; if N2D is zero, then the shape degenerates into that of a 
rectangle. 

r 
1 

2 

3 

12 

t Nl 

123 Nl 

~ 11 • 
Figure 2.4 

12 index values Orientation Inc. Main Diag 

1, 11 Upper Right Yes 

1,11-1 Upper Right No 

11, Nl Lower Left Yes 

11+1, Nl Lower Left No 

Nl+1-ll, Nl Lower Right Yes 

Nl+I-ll, Nl-1 Lower Right No 

1, Nl+I-Il Upper Left Yes 

1, NI-Il Upper Left No 

TABLE 2.1: Variations of Triangular Iteration Space 

2.5 Histogram Iteration Space 

Another shape commonly encountered is that of a histo­
gram. For this structure, the width of the shape at a given point 

46 

along its length is dependent upon the contents of some data struc­
ture that has been built prior to entering the coding structure. The 
histogram iteration space is shown in Figure 2.5. Here, the iden­
tifier N2 is an integer array of extent (l:Nl), and each element of 
N2 specifies the trip count of the inner loop. Geometrically, this 
corresponds to the notion that for a given "bar" II, the "bar height" 
is equal to N2(II). 

t 
12 

1 

2 

3 

N2(ll) 

11 

123 

Figure 2.5 

3 
~ 

4 
~ 

5 
6 ~ 

6 
I.....- ~ 

9 
I.....-

123 

~ 11 

Figure 2.6 

Nl 

1 
~ 

1 

2 

3 

N2 
r 
12 

N2+Nl*N2D 

1 
~ 

5 
~ 

8 
~ 

Nl 



2.6 Porous Iteration Space 
There is another characteristic of iterative structures that is 

worth considering for the purposes of this study. Recall from the 
previous section that the iterative structures that pose problems for 
Autotasking include those that have low trip counts and low 
amounts of work in the body. So far we h.ave focused primarily on 
:;haracterizing loops based on their trip counts. Now we consider 
how to describe loops in terms of the amounts of work contained 
within. Consider the iterative structure of Figure 2.7. Notice that 
the iteration space is rectangular, but the work is confined to a trian­
gular subspace. 

t 
12 

1 

2 

3 

N2 

~~~ 
~ ')

~ :;..

~

123

11

Figure 2.7

~/>...

~ ~
~ ~ -' -' -' -'./A

V/ -' -' -' fA.

Nl

Now consider a more generic case, as depicted in Figure
2.8. Here, work is done only on iterations where the control vari­
ables suit some condition. The shape of the iteration space is rect­
mgular, but its interior is porous; that is, certain cells of the space
have substance while others do not. An iterative coding structure
that executes varying amounts of work from one iteration to the next
lS analogous to a shape that varies in density from one cell to the
Ilext. In this work, we will restrict our study to structures that exe­
:;ute either some work or no work depending on the iteration. much
like the one in Figure 2.8.

3.0 Loop Collapse Techniques
Loop collapsing is one of several loop transformation tech­

Iliques for optimizing the performance of code. Some of the others
lnelude loop splitting, loop fusion, loop unrolling, and loop inter­
;hange. Each technique is suitable for its own elass of loop struc­
tures, but loop collapsing is done primarily to increase the number
)f iterations that can be made available to the optimizing stage of

the compiler at one time. Collapsing nested loops can improve the
vector performance of a loop structure because it increases the trip
count of the vector loop, and hence increases the vector length
[3,4]. For Autotasking, a collapsed nest ofloops can perform bet­
ter because the entire iteration space is handled in one parallel
region, rather than just individual sections; furthermore, the pro­
grammer has more control over the granularity of the parallelism
in a collapsed loop.

t
1
2

3

12

~ N2

t 2 3 Nt

~ 11 •
Figure 2.8

3.1 Collapsing the Rectangle

Probably the simplest loop structure to collapse is one
with a rectangular shape, such as the one below:

DO 11 = 1, NI
DOI2= I,N2

work
END DO

END DO

Suppose that NI = 17 and N2 = 3. If we chose to direct
the compiling system to autotask the loop varying II, and we
wanted to use all 8 CPUs of a CRAY Y-MP, then we could poten­
tially suffer a high LI overhead when 7 CPUs had to wait for the
8th CPU to finish the 17th iteration. On the other hand, if we
direct the compiling system to auto task the loop varying 12, then
we could only make effective use of 3 CPUs in the parallel region
(LI overhead again), plus we would suffer a high cost for initiat­
ing and terminating the parallel region 17 times (BPEP over­
head).

If we collapse the two loops into one, the resulting code
appears as shown below:

47

DO 112 = 0, Nl*N2-1
11 = 112 / N2 + 1
12 = MOD (112, N2) + 1
work

END DO

Here, the amount of work to be done by the structure
essentially has not changed. The trip count has been increased to
17 * 3 = 51. If we let Cwork be the cost of executing the work
inside the loop body, then the worst case LI cost is Cwork/51,
because out of 51 iterations to do, we might have to wait for one
iterations' worth of work to be completed; by comparison, in the
previous case, if the outer loop is Autotasked, the worst case LI
cost is 3Cwork /17, because out of 17 outer-loop iterations to do,
we might have to wait for 3 inner-loop iterations' worth of work
to be completed (each task does an entire DO 12 loop). The dif­
ference in LI cost is therefore a factor of 9.

Another point worth emphasizing here, on the subject of
load balancing, is that the collapsed structure offers more flexibil­
ity in terms of specifying work distribution parameters to the
Autotasking compiling system [5], thus further increasing the par­
allel efficiency of the collapsed structure relative to the original.

One of the dangers of collapsing loops is that the scope
of the data dependency analysis must be widened to include the
bodies of the outer and inner loops. If, for example, we had a
structure like the one below,

DOll = I,Nl
DOI2= I,N2

TEMP = A(l2-1 ,11)
work
A(12,Il) = TEMP

END DO
END DO

Autotasking the loop varying 11 is safe, but Autotasking
the loop varying 12 is not, because of the data dependency involv­
ing A. This data dependency would persist through the collapse
of the loops, rendering the collapsed loop unparallelizable. In a
case like this, it might be worthwhile to code the transformed loop
so that the value of 11 varies fastest, if the logic within the body of
the loop allows this; otherwise, it might be better just to leave the
structure alone, since the loop varying 11 can Autotask.

Another potential danger occurs when collapsing a loop
structure in which the inner loop has a trip count that is lower than
the number of CPUs that could be working concurrently on the
collapsed loop. In this case, there might be more than one task
working on an iteration of the structure with the same value for the
inner loop index. This mayor may not be a problem, depending
on the contents of the loop body. To illustrate, consider the fol­
lowing collapsed rectangle structure:

48

DOll = I,Nl
DOI2= I,N2

work

SUM(I2) = SUM(I2) + A(12,1l)
END DO

END DO

. In this example, if N2 were equal to 4 and the collapsed
structure were Autotasked across more than 4 CPUs then more
than one task will execute concurrently with the same value for 12.
Thus, a race condition on SUM(12) could occur. Techniques to
protect against this danger include installing GUARD directives
in the loop body or interchanging the loops before collapsing.

3.2 Collapsing the Triangle

Collapsing a loop structure that corresponds to a triangu­
lar iteration space is a little more complicated. First we note that
the number of cells NCtri in the triangular iteration space of length
Nl is given by

__ ~ l' -_ N1 x (N
2

1 + 1)
NCtri (Nt) £.J

i = 1

So we define a statement function NC_TRI which will
aid in the readability of the transformed code. Given the follow­
ing original loop structure:

DOI1=I,Nl
DO 12 = 1,11

work
END DO

END DO

The transformation would then look like this:

DO 112 = 0, NC_TRI(Nl) - 1
ISEEK = Nl- 1
DO WHILE (NC_ TRI(lSEEK) .GT. 112)

ISEEK = ISEEK - 1
END DO
11 = ISEEK + 1
12 = 112 - NC_TRI(lSEEK) + 1
work

END DO

The sole purpose of the code at the top of the collapsed
loop is to determine, given the collapsed loop index 112, the val­
ues of the "original" loop indices 11 and 12. The first impulse of
many programmers would be to create counters that get incre­
mented on every iteration of the loop varying 112, and occasion­
ally zero one of the counters when a new strip of the triangle is
begun. This kind of logic is probably easier to understand, but in
order for it to be run Autotasked, it would have to be GUARDed
to ensure that only one task at a time updates the counters. The
logic shown here makes use of the collapsed loop index 112 and a

private variable ISEEK; its primary advantage is that it requires no
such protection as a critical section of the loop.

There are a few noteworthy aspects of this structure.
First of all, observe that on the first few iterations of the outer loop
in the original structure, the trip count of the inner loop is going to
be low. Therefore, you are guaranteed to encounter the situation
described above in the discussion of collapsing rectangular struc­
tures, namely several tasks running concurrently with the same
value for 12. Furthermore, one of the techniques to circumvent
this potential problem, that of interchanging the loops, is not an
option here, because the inner loop trip count depends on the outer
loop index: you can't iterate from 1 to II on the outside because
you don't know what II is yet!

The second thing worth noting is that when the outer
loop is Autotasked in the original version of the code, the itera­
tions will contain variable amounts of work (VW); this corre­
sponds to the variation in the height of the triangle at various
points along the base. This phenomenon will produce added over­
head in this kind of loop. The best way to avoid this situation, if
the loops cannot be collapsed, is to arrange the iterations of the
outer, Autotasked loop so that the amount of work performed on
each iteration decreases as the iteration number increases. This
VW problem occurs in essentially all non-rectangular iteration
spaces.

3.3 Collapsing the Nevada

For the Nevada-shaped iteration space, it is best to make
use of a statement function to compute the indices, much like that
used for the triangle space discussed above. When the statement
function is used, the collapsed loop looks very much like that for
the triangle case. The number of cells in a Nevada structure is:

NCnev(Nl,N2,N2D) = Nl xN2+N2DxNCtri(Nl)

The function computes the number of cells in a Nevada­
shaped space with a rectangular component of size NI by N2 and
a triangular component whose base is NI and whose hypotenuse
has a slope N2D. The original Nevada iterative structure looks
like this:

DOll = I,NI
DO 12 = 1, N2 + II * N2D

work
END DO

END DO

The transformation to collapse the Nevada space to a lin­
ear space appears below.

DO Il2 = 0, NC_NEV (NI,N2,N2D) - I
ISEEK = NI- I
DO WHILE (NC_NEV (ISEEK,N2,N2D) &

.GT. Il2)
ISEEK = ISEEK - 1

END DO
II = ISEEK+ I
12 = Il2 - NC_NEV(ISEEK,N2,N2D) + 1
work

END DO

In this case, so long as N2 is large enough, there is no
need to worry about the possibility of two concurrent tasks having
the same value for their inner loop index 12.

3.4 Collapsing the Histogram

Considering now the histogram iteration space, the same
kind of transformation technique can be applied, but first, a special
data structure must be built to assist in the collapse. The data
structure is an integer array of extent (O:NI), where NI is equal to
the number of bars in the histogram, and the value of each element
of the array is equal to the height of the histogram bar correspond­
ing to the element's index, plus the value of the preceding element
(the value of the zero-th element is zero). Hence, the data struc­
ture represents a running sum of the number of cells in the histo­
gram up to a certain point:

Nl

NChist (N!) = L N2 (i)
i = 1

We can call this data structure NC_HIST. The code to
construct the NC_HIST data structure, prior to entering the loop
structure, looks like this:

NC_HIST(O) = 0
DO II = I,NI

NC_HIST(Il) = NC_HIST(II-I) + N2(Il)
END DO

Equipped with this data structure, we can now collapse
the histogram iterative structure. The original histogram loop
structure looks like this:

below:

DO II = 1, NI
DO 12 = 1, N2(Il)

work
END DO

END DO

The collapsed histogram loop structure is as shown

49

DO 112 = 0, NC_HIST(NI) - I
ISEEK =NI-I
DO WHILE (NC_HIST(lSEEK) .GT. 112)

ISEEK = ISEEK - I
END DO
11 = ISEEK + I
12 = 112 - NC_HIST(lSEEK) + I
work

END DO

As with the triangle iteration space, we will see here the
potential for more than one task running at a time with the same
value for 12. And as is also the case for the triangle, the loop inter­
change remedy is not available to us because of the dependency
between the loops. But it is worth remembering that this potential
problem is only a real problem whenever there is code within the
body of the loop that updates some data structure element using 12
as an index. In this case, the only good remedy is to create a crit­
ical section in the loop body that prevents 12-indexed data struc­
tures from being updated by one task while being referenced by
another task.

3.5 Collapsing the Porous Shape
The last iterative structure we will consider in this sec­

tion is that of the porous shape, representing a structure with con­
ditional work inside. In this scenario, what we would like to do is
eliminate VW overhead. We are also interested in eliminating the
iteration overhead of distributing to the CPUs iterations that
essentially have no work in them. The technique involves essen­
tially skipping the iterations for which the porosity condition
holds true, and distribute only those iterations for which real work
will be done. To accomplish this, we must build a data structure
before entering the parallel region, much like that used for the his­
togram above:

NCONDA=O
DO 11 = I,NI

DO 12= I,N2
IF (CONDA (II, 12» THEN

NCONDA = NCONDA + 1
ICONDA(l,NCONDA) = 11
ICONDA(2,NCONDA) = 12

END IF
END DO

END DO

CONDA is a function that takes as arguments the loop
structure indices, and returns a logical result; it is essentially the
porosity function. The data structure ICONDA is an integer array;
its size in the first dimension must be equal to the nesting depth of
the iterative structure; here it is 2. The size of ICONDA in the sec­
ond dimension must be large enough to represent the completely
non-porous iterative structure; in this case, NCONDA could get as
large as NI * N2, so ICONDA must be equipped to store that
many entries. (Of course, if the programmer knows a priori what

50

the degree of porosity of the structure is likely to be, he can dimen­
sion ICONDA accordingly). The ICONDA array keeps track of
those non-porous cells within the structure where there is work to
be done. Its use in the transformation of the porous iterative struc­
ture is shown below. First, the original porous loops:

DOll = I,Nl
DO 12= I,N2

IF (CONDA (II, 12» THEN
work

END IF
END DO

END DO

Now, the collapsed porous structure:

DO 112 = I, NCONDA
11 = ICONDA(l,Il2)
12 = ICONDA(2,Il2)
work

END DO

Note that, unlike the other loop collapse transformations,
this collapsed loop iterates fewer times than the original structure,
so the possibility exists that the collapsed loop will not have a high
enough trip count to warrant Autotasking. The effects of this con­
dition, and techniques for accounting for it, will be covered in the
section on testing.

It is important to keep in mind that the shape of a struc­
ture and its porosity are two totally independent characteristics. In
fact, the technique for collapsing a porous structure can be applied
to any kind of loop nest, regardless of its shape. This makes the
porous collapse technique the most general of all the techniques.

4.0 Performance Testing of Collapsed
Loops

For each of the five collapse techniques discussed in the
previous sections (rectangle, triangle, Nevada, histogram,
porous), four test runs were performed. Two of the four test runs
compare wall clock times, and two compare CPU times. Of the
two wall clock tests, one compares the performance of the col­
lapsed loop against the original with the inner loop Autotasked,
and the other compares the performance of the collapsed loop
against the original with the outer loop Autotasked. The same two
comparisons are done in the two CPU time tests. The test pro­
grams were compiled and executed on a 16-CPU Cray Y-MP C90
installed in the Corporate Computing Network at Cray Research,
Inc. in Eagan, MN. All tests were executed during SJS time,
which is essentially equivalent to dedicated time. CPU timing
tests used the SECOND function, and wall clock timing tests used
the RTC intrinsic [6].

The CPU timing plots should reveal gains achieved by
collapsing, specifically in the area of reducing BPEP overhead;
they may also show costs associated with collapsing, specifically

in the areas of executing code to generate supporting data struc­
tures or to compute original index values. The wall clock timing
plots should reveal gains achieved by collapsing, specifically in
the area of reducing LI and VW overhead.

The bodies of the loops in all cases were the same, essen-
tially:

CALL WORK (A(l2,Il))

where A is an appropriately-dimensioned array and the
subroutine WORK looks like this:

SUBROUTINE WORK (A)
A= 2.7181
DO I = 1,512

A = EXP (LOG (A))
END DO
END

Thus, the WORK routine does nothing useful, but does
exercise the hardware and accumulate CPU time. Notice also that
memory traffic is minimal in the loop body. This makes the test
results essentially unbiased by memory contention issues. In a
real loop body, however, memory contention could be a very big
issue.

The results of these tests are depicted in the 20 plots that
make up the Appendix. Each will be discussed in the sections that
follow.

4.1 Speedup from Collapsing the Rectangle

The graphs that describe the results of the rectangle tests
are all 3-D mesh plots, with speedup shown on the vertical axis,
as a function of the rectangle's length and width. In these tests,
the outer loop of the original structure iterates over the width of
the rectangle, and its trip count varies from 1 to 30; the inner loop
iterates over the length, and its trip count is varied from 1 to 50.

4.1.1 Inner/CPU

In this plot, we see that the speedup of the collapsed
structure is high where the length of the rectangle is small, and
decreases to an asymptotic value around 1.0 as length increases.
In the original version of this test code, the length dimension of the
shape is being processed in the inner loop , and the inner loop is
the one being Autotasked, so a small value for length means a high
ratio of BPEP code execution to user code execution.

The plot also shows that the collapsed structure performs
slightly better than the original when the width of the shape is
large. This can be explained by the fact that an increase in width
means, for the original code, increasing BPEP overhead. This
overhead cost is not present in the collapsed structure.

4.1.2 Inner/Wall

This plot has the same general shape as the previous

Inner/CPU plot, but the scales are much different. In this case, the
speedup to be obtained by collapsing the loops is quite dramatic if
the shape is short and wide. This speedup is due to improved load
balancing.

Notice also that this plot is more "bumpy" than the pre­
vious plot. This is presumably due to the fact that the LI overhead
of the original code is highly dependent on the trip count of the
Autotasked loop; further, there is always an inherent slight vari­
ability in wall-clock timings.

4.1.3 Outer/CPU

This plot shows that collapsing the rectangle yields
essentially no benefit in CPU time over Autotasking the outer
loop.

4.1.4 Outer/Wall

In this plot, we see only slight speedups for the collapsed
code over the original. There appears to be a significant drop in
speedup at width = 16. This is probably because the original code
performs most efficiently there, since the trip count is exactly
equal to the number of CPUs in the machine.

4.2 Speedup from Collapsing the Triangle

The graphs that describe the results of the triangle tests
are all 2-D line graphs, with speedup shown on the vertical axis,
as a function of the triangle's base and height. In these tests, base
and height were always equal, and they were allowed to vary from
1 to 50.

4.2.1 Inner/CPU

This graph shows speedup to be moderate when the size
of the triangle is small, and decreasing as the triangle increases in
size.

4.2.2 Inner/Wall

Speedups for this case are quite significant, as shown in
this graph. Like the Inner/CPU case above, payoffs are highest for
the small shape, and tapering off as the size of the shape increases.
This graph is quite jagged, perhaps indicating that the LI over­
head is, in the original version of this test case, highly dependent
upon small changes in the size of the problem.

4.2.3 Outer/CPU

In this case, the speedup is negligible over essentially the
entire test space. Notice the scale of the vertical axis.

4.2.4 Outer/Wall

Speedups here are significant for small and moderate­
sized problems. The spikes in the graph are evidence ofLI over-

51

head in the original version of the code, which are exacerbated by
VW conditions.

4.3 Speedup from Collapsing the Nevada

The plots that describe the results of the Nevada tests are
all 3-D mesh plots, with speedup shown on the vertical axis, as a
function of the shape's rectangular dimensions (N1 and N2) and
diagonal slope (N2D). In these tests, N1 and N2 were always
equal, and they were allowed to vary from 1 to 50. N2D was
allowed to vary from 1 to 20. The test program iterates over the
length of the shape in the outer loop, and over the (variable) width
in the inner loop.

4.3.1 Inner/CPU

For this case, the speedup obtained by collapsing is neg-
ligible.

4.3.2 InnerlWall

Here, the speedups are moderate (around 1.5) over most
of the test space. The plot shows that speedups are quite variable
when the iteration space is small, and more steady when the shape
is large. The variation in the perfonnance of the small test cases
may be due to differences in task scheduling.

4.3.3 Outer/CPU

This is an interesting plot. Speedups take on a stair-step
behavior based on the length of the iteration space. The steps
occur at length values that are multiples of 16, the number of
CPUs in the machine being used. In this test, the outer loop, iter­
ating over the length of the shape, is Autotasked. Presumably,
when an Autotasked loop has a trip count that is some integer mul­
tiple of the number of CPUs in the machine, the iterations will be
distributed evenly and the efficiency will be near optimal. The
plot seems to support this hypothesis.

4.3.4 Outer/Wall

Speedups are dramatic in this case, in the region where
the rectangular component of the shape (given by N1 and N2) is
small and the slope of the hypotenuse of the triangular component
(given by N2D) is steep. The Autotasked loop in the original code
iterates over Nl, so when N1 is small, the ratio of overhead to use­
ful work is high. Further, when N2D is large, that means that the
trip count of the inner loop varies greatly with respect to N1; this
results in a very high amount of VW overhead. As in the Outer/
CPU plot discussed above, there is a stair-step effect at length val­
ues of 16, 32, and 48; however, these effects are very subtle here.

4.4 Speedup from Collapsing the Histogram

The plots that describe the results of the histogram tests
are all 3-D mesh plots, with speedup shown on the vertical axis,

52

as a function of the length (number of bars) and the variation in
bar height. The average bar height is 25, and the bar height range
is allowed to vary from 2 to 50. Before a histogram is processed,
the length and average bar height are chosen, then the bars are
assigned random heights within the allowable range. The effi­
ciency with which the original coding structure can process the
histogram space should depend strongly on the variance in the his­
togram's bar heights. It is important to note that even though this
series of tests used random numbers to generate the iteration
spaces, the same series of shapes was generated in each test run,
because each test started with the same (default) random number
seed.

4.4.1 Inner/CPU

Speedups in this case are negligible. Any gains made in
reducing the BPEP overhead are perhaps being offset by the cost
of constructing the NC_HIST data structure.

4.4.2 Inner/Wall

This plot shows the wall-clock speedups to gather around
the 1.5 value, but to vary between 1.0 and 2.0. The variation
seems to be independent of both the length of the histogram and
the variation in bar height. The random jaggedness of the plot is
most likely due to the randomness of the shape of the iteration
space itself. It is interesting to note, however, that the variation
seems to be greater in the left rear comer of the plot and smaller
in the right front corner.

4.4.3 Outer/CPU

This plot shows that very little is gained in terms of CPU
time from collapsing the histogram versus simply Autotasking the
outer loop.

4.4.4 Outer/Wall

Speedups in wall-clock time from collapsing the histo­
gram can be quite dramatic, especially where the length of the
shape is small and the bar height variation is high. In this test, the
outer loop iterates along the length of the shape. Since each bar
being processed in an iteration of the outer loop has a random
height, the potential for VW overhead is very high; and the larger
the variation, the higher the overhead. Then there is the LI over­
head that can arise when parallelizing in the large grain, especially
when the length of the histogram is low. These factors together
can severely impact the parallel efficiency of the original struc­
ture.

4.5 Speedup from Collapsing the Porous Rectangle

The plots that describe the results of the porous rectangle
tests are all 3-D mesh plots, with speedup shown on the vertical
axis, as a function of the size of the rectangle and the degree of

porosity. The rectangle is actually a square, because length and
width are always equal; they are allowed to vary from 1 to 50. The
porosity of the shape is varied from 0% to 95%, in intervals of 5%.
The "holes" in each shape are placed at random before the pro­
cessing of the shape; as in the histogram tests described above, the
series of shapes that are used in each test are all the same. The
porosity of the shape should have a direct impact on the original
coding structure's ability to process the shape efficiently.

4.5.1 Inner/CPU

Speedups in this test are significant only in the cases
where the size of the rectangle is small, or when the porosity is
very high. The higher the porosity, the more frequently we are
executing concurrent iterations for no useful purpose. The col­
lapsed structure has been designed in such a way that this over­
head does not occur.

4.5.2 Inner/Wall

As in the Inner/CPU case described above. speedups are
greatest where length is small or porosity is high. Since iterations
of the inner loop will do either much work or no work, the VW
overhead of high-porosity structures is extreme.

4.5.3 Outer/CPU

This plot shows that speedups are negligible in all but the
most pathological of cases. The BPEP overhead saved by col­
lapsing is offset by the cost of building the ICONDA data struc­
ture.

4.5.4 Outer/Wall

For this test, the speedups were modest across the major­
ity of the test space. The outer loop in the original code iterates
across the length of the structure, and each iteration processes one
row along the width. Although these rows are porous, they are all
equally porous, so the load here is fairly well balanced. The qual­
ity of uniform porosity across the rows of the structure is an arti­
fact of the way in which the test was constructed; it should not be
presumed to be a quality of all porous structures. In general, it is
probably reasonable to assume that the less uniform the porosity,
the better the speedup from collapsing will be.

5.0 Conclusions and Future Work
The loop collapse technique can be applied to a wide

variety of iterative structures, with performance benefits that
range from modest (25%) to remarkable (over 500%). A collapsed
loop offers the advantages of small-grain parallelism, such as
good load balance, with the advantages of large-grain parallelism,
such as low parallel-startup costs. In most cases the code trans­
formations are trivial; the type of transformation needed is gov­
erned by the geometric characterization of the iterative structure.

Several common geometries were presented, corresponding trans­
formation strategies developed, and performance characteristics
were measured.

There are several areas that remain to be explored,
including:

a. More work needs to be done to characterize loops with
varying amounts of work, and the performance impact of splitting
these loops into separate structures that each contain fixed body
sizes;

b. It would be interesting to study the degree to which
performance is impacted by body size in structures that have low
trip counts;

c. The memory efficiency of collapsed loops versus their
un-collapsed counterparts should be studied;

d. Some thought should be given to the feasibility of
making these kinds of collapse transformations automatically,
within the compiler;

e. It is not clear how transformations such as these fit
into the MPP Fortran Programming Model [7]. It is possible that
a DOSHARED directive with multiple induction variables speci­
fied can do the same job as, or perhaps a better job than, loop-col­
lapse transformations on some kinds of loops.

6.0 Acknowledgements
I would like to thank the following people for providing

assistance and inspiration for this work:

Peter Feibelman, Distinguished Member of Technical
Staff, Surface and Interface Science Department 1114, Sandia
National Laboratories. I developed the concepts of collapsing
loops of different shapes while working with Peter on optimizing
and multitaskiT!3 his impurity codes;

Al lacoletti, John Noe, Rupe Byers, and Sue Goudy, Sci­
entific Computing Directorate 1900, Sandia National Laborato­
ries. The comments and suggestions from these reviewers helped
improve the clarity and structure of several important parts of the
paper. All remaining errors, omissions, inaccuracies, inconsisten­
cies, etc., are, of course, my responsibility.

REFERENCES:
1. Cray Research, Inc., CF77 Optimization Guide, SO
3773 6.0, p. 179.

2. Ibid., p. 185.

3. Ibid, pp. 86-87.

4. Levesque J., and Williamson, J. A Guidebook to
Fortran on Supercomputers, Academic Press (1989),
p.91.

53

5. Cray Research, Inc., CF77 Commands and Direc­
tives, SR-3771 6.0, p. 79.

6. Cray Research, Inc., UN/COS Fortran Library Ref­
erence Manual, SR-2079 7.0, pp. 289-291.

7. Cray Research Inc., Programming the Cray T3D
with Fortran, SG-2509 Draft, pp. 45-48.

54

Speedup

2.5 -

2

1.5

1

Speedup
7-
6

5

4

3

2

1

0

Speedup from collapsing rectangle (inner/cpu)

Width

Speedup from collapsing rectangle (inner/wall)

- 30

55


~~~ejUP 

1.15 

1.1 

1.()5 

1 

Speedup 
1-

G 

5 

56 

____ - ,- 30 

.'3it'.)J---- ,.. 30 



Speedup Speedup from collapsing triangle (inner/cpu) 

2----------------~------------~----~------------~----~----~ 

1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

5 10 

Speedup 

15 . 20 25 
Length 

30 35 

Speedup from collapsing triangle (inner/wall) 

40 45 50 

4~--r-----~-----T------r-----~----~------p-----~----__ ----___ 

3.5 

3 

2.5 

2 

1.5 

1~--------------~~----~----~------~----~------~----~----~ 
5 10 15 20 25 

Length 
30 35 40 45 50 

57 



Speedup Speedup from collapsing triangle {outer/cpu} 

1.4~~~----r-----~----~-----r----~----~~----~----~----~ 

1.3 

1.2 

1.1 

1 

0.9 

0.8 
5 10 15 20 25 30 35 40 45 50 

Length 

Speedup Speedup from collapsing triangle {outer/wall} 
3 

2.8 

2.6 

2.4 

2.2 

2 

1.8 

1.6 

1.4 

1.2 

1 
.5 10 15 20 25 30 35 40 45 50 

Length 

58 



speedUP 

1..3 
1.25 

1.2 
1..1.5 

1..1-
1..()5 

1. 
0.95 

0.9 

Speedup 

2.5 

2 

15 20 25 "30 

Length U\l and \,\2) 

S9 



10 

speedUP 

s· 
7 
S 

is 20 2S "30 

\..ensth {~1 and Wi) 

40 

20 25 '30 

\..ensth {Nl and N2) 



Speedup 

4() 

speeduP 

2.5 

iO i5 61 



speedup 

S 
7 
S 
5 

62 



speedup 

S 
4.5 

4 
3.5 

3 
2.5 

'2 
1.5 

1 
0.5 

speedup 

S 
7 
S 
S 

4S 

63 



Speedup 

s-
4.S 

speedup 

4 

3.5 
3 

4() 45 



Collaborative Evaluation Project Of Ingres On The Cray (CEPIC) 

C. B. Hale, G. M. Hale, and K. F. Witte 

Los Alamos National Laboratory 
Los Alamos, NM 

Abstract 
At the Los Alamos National Laboratory, an evaluation project has been done that explores the 
utility a commercial database management system (DBMS) has for supercomputer-based 
traditional and scientific applications. This project studied application performance, DBMS 
porting difficulty, and the functionality of the supercomputer DBMS relative to its more well­
known workstation and minicomputer hosts. Results indicate that the use of a commercial DBMS 
package with a scientific application increases the efficiency of the scientist and the utility of the 
application to its broader scientific community. 

Introduction 

Ingres is a relational distributed database 
management system that makes it possible to 
quickly transform data into useful 
information in a secure environment using 
powerful database access and development 
tools. It has the architecture for true 
client/server performance. 

Ingres offered Los Alamos a ninety day trial 
evaluation of the Cray/lngres product on a 
Los Alamos Cray. This included the use of 
the base product, ABF, C, FORTRAN, 
Knowledge Management, TCP/IP Interface, 
Net, Vision, and STAR. To insure the 
success of the project, they provided Los 
Alamos with the Premium level of support 
(required for a Cray platform) during the trial 
period. 

CRI also was very supportive of Los Alamos' 
interest in putting Ingres on Crays, because 
they see the potential for entering a new 
market. Sara Graffunder, senior director of 
Applications at Cray Research, said that with 
Ingres functionality on Cray systems, users 
will be able to apply the world's largest 
memories and superior computational 
performance of Cray systems to data 
management. They wanted Los Alamos to 
demonstrate that this is true. They offered 
the one-processor YMP-2E (BALOO) in the 
Advanced Computing Laboratory (ACL) for 
Los Alamos to use for the Ingres/Cray trial 
evaluation. Having a machine dedicated to 

this effort allowed us to run basic tests on the 
product for evaluation without affecting the 
user community. They provided consulting 
to go with the installation. 

This project was an effective way of using 
Los Alamos scientific and computational 
expertise in collaboration with CRI and 
Ingres to generate interest in the scientific 
community in database management on 
supercomputers. 

Project Description 

Members of Client Services and Marketing 
(C-6), Internal Information Technology 
(ADP-2), and Nuclear Theory and 
Applications (T-2) Groups at Los Alamos 
National Laboratory (LANL) collaborated 
with representatives from Cray Research, Inc. 
(CRI) and Ingres Corporation to successfully 
complete the Collaborative Evaluation 
Project of Ingres On The Cray (CEPIC). The 
project objectives were to determine: 

• how easy it is to use Ingres on Cray 
computers and if Ingres runs in a 
reasonable time similar to current utilities 
in an environment that people like and will 
use; 

• whether current standard database 
applications could be ported to the Cray 
and the level of effort required to 
accomplish such porting; 

65 



66 

• how well Ingres performs on the Cray in 
managing data used in and generated by 
large scientific codes; 

• what additional hardware is required to use 
Ingres on the Cray; 

• whether Ingres is compatible with Los 
Alamos UNICOS. 

Project Plan 

The CEPIC project plan was to: 

• install Ingres on the Cray; 

• port an existing traditional database and its 
three applications from a V AX to the Cray 
and run compatibility and performance 
tests; 

• create an Ingres database (NUCEXPDAT) 
and its application (EDAAPPL) to manage 
the data and results for an existing 
scientific code (EDA); 

• run performance tests on the Cray and other 
machines; 

• install Ingres on machine RHO, a Cray Y­
MP8/128 in the Los Alamos ICN 

• port the NU CEXPD A T database and the 
EDAAPPL application to machine RHO 
and run Los Alamos UNICOS 
compatibility and performance tests on 
machine RHO 

Installation Of Ingres On A Cray Y -MP 

After deciding on the system configuration 
and Ingres file location, Ingres 6.3 was 
installed on a Cray Y -MP, named BALOO. 
It was configured as follows: 

Cray CPU: Y-MP2E/116, SIN 1620 
1 Central Processor 
16 Million 64-bit words of central memory 
1 HISP channel to lOS 
1 LOSP channel to lOS 

I/O Subsystem (IDS): Model E, serial 
number 1620 

1 I/O Cluster 
1 Million words of buffer memory 
1 HISP channels to mainframe memory 
1 LOSP channel to CPU 
2 HIPPI channels 

Disks: 15.68 GBytes on-line storage 
8 DD-60 drives 
1.96 GB (formatted) per drive 
20 MB/s peak transfer rate per drive 

Because BALOO was located in the ACL test 
environment and was being used for non­
database work, no database performance 
tuning was done on the machine. 

EDA Physics Code 

The Los Alamos code EDA (Energy 
Dependent A nalysis) was chosen for this 
study because it has data management 
requirements representative of many of the 
scientific codes used at the Laboratory. EDA 
is the most general, and among the most 
useful, programs in the world for analyzing 
and predicting data for nuclear reactions 
among light nuclei. In its present form, the 
code can be used only on Cray computers, 
where all of its data files reside. These data 
files are represented by the boxes shown in 
Fig. 1; the ones in the upper part of the figure 
are input files, and those in the lower part are 
output files (results) of the analysis. Because 
of the size and complexity of the data files 
that are used and produced by the program, 
the data management tasks associated with 
EDA are quite challenging. 

The primary data are the results of 
experimental measurements (upper left-hand 
box of Fig. 1) for reactions that can occur 
between light nuclei. Because this 
information also has the most complex data 
structure, we decided to concentrate on these 
files for the CEPIC demonstration project. 
An experimental data library containing on 
the order of 50,000 measured points had 
already been assembled in the specific form 
required by the code before the project 
began. These data entries are classified 
according to several identifiers, including 
those for compound system, reaction, energy, 
observable type, and reference source. At 
run time, the user selects a subset of these 



data to be used for a particular problem. This 
was being done mainly by grouping data 

associated with different compound systems 
in separate files. 

Energy Dependendent Analysis 

Experimental 
Nuclear Data 

Predicted 
Nuclear Data 

EDA 

Figure 1. Schematic Of EDA Physics Code Files 

R-Matrix 
parameters 

adjust to fit data 

Structure data, 
phase shifts 

67 



68 

We anticipated that putting the experimental 
information into an Ingres-based data 
management system would allow far more 
selectivity in the choice of data (e.g., by 
energy ranges or data type) than was possible 
with the existing system. Also, for purposes 
of experimental data compilation, which is an 
aspect of the EDA activity that is of great 
potential interest to outside users, it would 
provide the capability to sort the entire 
experimental data file according to any 
hierarchy of the identifiers listed above. 
However, we also obtained some unexpected 
benefits, related to the ease and accuracy 
with which new data could be entered into 
the system, and publication-quality 

NAME TYPE DESCRIPTION 

BIBLIO table Bibliographic data 

bibliographies of the experimental data 
references could be generated in a variety of 
formats. 

NUCEXPDAT Database 

The nine tables and four views in the 
NUCEXPDAT database are summarized in 
Table 1. A schematic of the table 
relationships, showing the number of rows 
and columns in each table, is given in Fig. 2. 
Unique identifiers join all tables except 
NEXTKEYS and TIMENOW. Single and 
double arrows indicate one-to-many and 
many-to-many relationships. 

CSREACTION 

DATAHIST 

table 

table 

Compound System Reaction data 

Date and data identifiers of EDA runs 

ENERGY table 

EXPDATA table 

NEXTKEYS table 

OBSERV ABLES table 

RUNHIST table 

TIMENOW table 

BIBLIOVW view 

EDADATAVW view 

RENOBBIBVW view 

RENOBDATVW view 

Energy data 

Experimental data (angle, value, error) 

Next keys for BIBID, RNO, ENO, and OBSID 

Observables data 

History of EDA runs (date, energy range, notes) 

Time stamp 

Join of CSREACTION, ENERGY, OBSERVABLES, and 
BIBLIO tables used for BIBLIORPT, BIBNPLTRPT, 
BIBNPRPT, BIBPRLTRPT, BIBPRRPT reports 

Join of CSREACTION, ENERGY, OBSERVABLES, 
EXPDATA, and BIBLIO tables used for EDADATARPT and 
EXPDATARPT reports 

Join of CSREACTION, ENERGY, OBSERVABLES tables 
used for BLBIBIDRPT report 

Join of CSREACTION, ENERGY, OBSERV ABLES, and 
EXPDAT A tables used to view all data throu h QBF 

Table 1. NUCEXPDAT Tables And Views 



CSREACTION 

181 rows 
7cols 

NEXTKEYS 

1 row 
3 cols 

NUCEXPDAT DATABASE 

ENERGY 

6497 rows 
9 cols 

DATAHIST 

457 rows 
5 cols 

RUNHIST 

1 row 
4 cols 

OBSERVABLES 

6886 rows 
13 cols 

Total: 22.5 Mbytes 

Figure 2. Schematic Of NUCEXPDAT Table Relationships 

EXPDATA 

24,367 rows 
4 cols 

BIBLIO 

236 rows 
10 cols 

TIMENOW 

1 row 
1 col 

EDAAPPL Application 

Shown in Fig. 3 is a flow chart of the 
EDAAPPL application, while Table 2 
describes its frames and procedure. Data 

entry and update frames are BIBLIOFRM, 
DATENTFRM, DATUPDFRM, 
FIXANGLEFRM, FIXENERG YFRM, 
RESEFRM, and RESERNGFRM. Report 
frames end in RPT. 

MAINMENU --> 

I BIBLIOFRM 
DATENTFRM --> I FIXANGLEFRM 

BIBLIOFRM 

RESERNGFRM 

I FIXENERGYFRM --> 

I NEXTLETPRC 

I BIBLIORPT 
I BIBNPLTRPT 
I BIBNPRPT 

RPTMENU ----> I BIBPRLTRPT 
I BIBPRRPT 

DATUPDFRM 
RUNHISTFRM 

I BLBIBIDRPT 
I EDADATARPT 
I EXPDA T ARPT 

Figure 3. Flow Chart Of EDAAPPL 

IRESEFRM 

69 



70 

NAME 

BIBLIOFRM 
BIBLIORPT 

BIB NPLTRPT 

BIBNPRPT 
BIBPRLTRPT 

BIBPRRPT 
BLBIBIDRPT 
DATENTFRM 

DATUPDFRM 

EDADATARPT 
EXPDATARPT 

FIXANGLEFRM 
FIXENERGYFRM 
MAINMENU 
NEXTLETPRC 
RESEFRM 

RESERNGFRM 
RPTMENU 
RUNHISTFRM 

TYPE 

user 
report 

report 

report 
report 

report 
report 
user 

user 

report 
report 

user 
user 
user 
procedure 
user 

user 
user 
user 

DESCRIPTION 

Add data to the BIBLIO table 
Generate report of data in BIBLIO table with system, 
reaction, and observable 
Generate bibliography in Nuclear Physics form with 
LaTex command for bold face type 
Generate bibliography in Nuclear Physics form 
Generate bibliography in Physical Review form with 
LaTex commands for bold face type 
Generate bibliography in Physical Review form 
Generate a list of blank BIBIDs 
Add data to CSREACTION, ENERGY, OBSERVABLES, 
and EXPDATA tables 
Update data in CSREACTION, ENERGY, 
OBSERVABLES, and EXPDATA tables 
Generate EDA input data file 
Generate file of experimental data with bibliographic 
references 
Add excitation function data (energy, value, and error) 
Add angular distribution data (angle, value, error) 
Select menu choices for application 
Take a character and return the next greatest one 
Update blank resolution data fields in ENERGY for a 
given compound system, energy, and reaction 
Add resolution data to ENERGY for an energy range 
Select menu choices for report 
Keep a history of data files used in EDA runs 

Table 2. Description Of EDAAPPL Frames And Procedure 

What was done 

In the analysis phase, we specified the data, 
their relationships in the various tables, the 
kinds of forms needed to cover all possible 
types of experimental data that would be 
input to the database, and the reports, 
including the format of the EDA data file. 
Then, the database and its application were 
designed and created to meet these 
specifications. 

Code was written that was based on that part 
of EDA that processes the input data. This 
allowed existing EDA data files to be read 
directly into the database tables. Even 
though the EDA input code and input file 
format are extremely complex, in less than 
two weeks this code was written and used to 

load about half of the existing data into the 
NUCEXPDAT database. 

We located, with the help of an earlier 
bibliographic file, many complete references 
to the experimental data and put them into 
the database. We obtained, for the first time, 
a complete set of references for the data that 
had been used in an analysis of reactions in 
the SHe nuclear system. 

Many different types of reports were 
generated from the database, including EDA 
run files, bibliographic files in standard-text 
and TeX format, using the style of either of 
the two major nuclear physics journals, and 
annotated listings of experimental data. The 
run files were checked by using them in 
actual EDA calculations, and verifying that 
the answers duplicated the results of previous 



runs. By entering qualification data and then 
pressing just one key, we were able to 
generate the EDA data file for the sHe 
compound system in eleven seconds (clock 
time). 

After installing Ingres on RHO, we unloaded 
the database and copied the application from 
BALOO. The entire procedure required less 
than fifteen minutes and was straightforward 
to do because both Cray machines were 
running the same version of Ingres. 
Operations on the database and using the 
application gave identical results as on 
BALOO. We had no problems running 
Ingres nor did we have to modify any code 
because of Los Alamos UNICOS. Using 
Ingres on RHO was frustrating because of 
delayed responses when there were many 
users on the machine. Machine time was 
comparable on the two Crays. 

Discussion 

Creating an application using ABF was 
identical to creating one on a VAX or a SUN 
only much faster. Because compilation and 
report saving times were so short and because 
reports using complicated queries of lots of 
data could be run in real time, application 
development time was greatly diminished. 
The EDA code is an extreme case of program 
complexity for reading input. Therefore, 
rewriting the relevant code to process 
existing data files and entering the data in the 
database in less than two weeks suggests a 
very short conversion time for codes with 
more usual data reading requirements. 

The EDA experimental data application 
(EDAAPPL): 

• makes the existing experimental data files 
more uniform, especially in labeling and 
bibliographic information; 

• allows rapid and easy editing of data files 
(by reaction, energy ranges, data type, etc.); 

• simplifies and speeds up the task of entering 
new data, and provides some error 
checking; 

• produces readable listings of experimental 
data for outside distribution; and 

• greatly facilitates the generation of 
bibliographies for reports, articles, etc., 
which reduces the time it takes to document 
research for publication; 

• creates data files so quickly that there is no 
reason to save these files on CFS to reuse, 
thereby reducing long-term mass storage 
requirements. 

These capabilities could make significant 
changes in the way one of the authors (G. H.) 
does his work. He could spend more time on 
physics and less on editing, file management, 
and looking for the right data decks. One of 
the most tedious parts of writing his papers, 
compiling the bibliography of experimental 
data references, can now be done 
automatically, using the BIBID as a bibitem 
label in a LaTeX-formatted bibliographic 
file. The fact that there are no longer funds 
to hire specialists that enter and help manage 
data can be off-set in some cases by the ease 
of using a well-designed, automated DBMS. 

If Ingres becomes available on the ICN Cray 
computers, we would first put the remaining 
data from the existing data files into the 
NUCEXPDAT system, along with their 
associated bibliographical references. Any 
new data, of course, would be added to the 
system using the data-entry forms. 

Then we would address the other input- and 
output-file questions. The files containing 
the parameter values and covariances should 
be fairly straight-forward to put into a DBMS 
sytem, because they are relatively small and 
have a fixed format. Using these files, the 
code can predict the results of any 
measurement and their associated 
uncertainties. In many applications, large 
files of these predicted quantities, produced 
in a complicated and rigid data format, are 
the desired output of the analysis. 

In other cases, resonance parameters and/or 
phase-shifts that are of more fundamental 
interest are produced. Some of the requests 
received for information from EDA analyses 

71 



72 

are delayed because of difficulties in 
retrieving and reconstructing the information 
used in the analysis at its last stage 
(especially if it was done some time ago). 
Implementing the same type of sophisticated 
data-base system that was used for the 
experimental data files to manage the many 
types of information that are produced as 
output files would benefit all aspects of the 
EDA work at Los Alamos. 

Many of the data management problems 
solved by using a database management 
system are similar to those of scientific 
applications involving gigabytes or terabytes 
of data. For these applications a DBMS 
could be used to query the metadata, load the 
files containing the full data set needed for a 
particular run, and keep track of runs and 
their resulting output files. The database 
could contain metadata of three types: user 
administrative data; internal data 
management data; and storage information 
data. A menu-driven 4GL application could 
be written to get, list, update, and put files on 
a storage system and to run analysis codes 
including those producing images. 

Conclusions 

Project participants feel that Ingres worked 
well on the Cray computers in a reasonable 
time in an environment that people will like 
and will use. 

It was no more difficult or time-consuming to 
port an existing database and applications to 
the Cray than it has been to port them to 
other platforms. 

For both scientific and traditional database 
applications, Ingres looked, acted, felt, and 
ran the same on the Cray as on other 
platforms, only it was faster. Because the 
database and target execution machines are 
the same, accuracy when going from one 
machine to another is not an issue. 

It was possible to create a useful scientific 
database application on the Cray in a 
reasonably short time. Application 
development time was less because the 
developer was able to try things without long 

waits for compilation of code, reports, and 
forms. Queries for reports were able to be 
coded in a single SQL statement instead of in 
steps because queries, even with aggregates, 
were fast. 

No additional hardware was required to use 
Ingres on the Cray. 

Ingres was compatible with Los Alamos 
UNICOS. 

The availability of a database management 
system like Ingres on a Cray greatly enhances 
the efficiency and flexibility of users and 
producers of large quantities of scientific data 
on supercomputers. 



PROVIDING BREAKTHROUGH GAINS: 

CRAv RESEARCH MPP FOR COMMERCIAL APPUCATIONS 

Denton A. Olson 

Cray Research, Inc. 
Eagan, Minnesota 

Abstract 

Since announcing plans to build the CRAY T3D 
massively parallel processor (MPP), Cray 
Research, Inc. has been approached by 
numerous customers who have enormous needs 
for database mining. Many are not our 
traditional science and engineering customers. 
These customers want to mine information 
about, for example

b 
buyinJL trends, from their 

terabyte-sized data ases. They are not asking 
for help with their payroll or accounting 
systems. They are not asking for COBOL. 
They want to build huge decision support 
systems. They want to search for reports and 
drawings done ten years and seven million pages 
ago. These customers are looking for MPP to 
provide breakthrough gains for competitive 
advantage. They have hit the computational 
brick wall with their traditional mainframes and 
the current MPP offerings. They have come to 
the supercomputer company for help. 

Back2round 

According to Bob Rohloff, Mobil Exploration & 
Producing Division vice president, Mobil Oil 
cannot tolerate the "data dilemma of the 
geoscientist who spends as much as 60 percent 
of his time simply looking for data", not 
working with it. (Source: Open Systems 
Today, July 20, 1992, "Mobil's Collaboration") 

One of the reasons Cray Research ori~inal!y 
ported database management systems (DBMS) 
to our computers was to address the concerns of 
scientists and engineers who spent much of their 
time just looking for data - and possibly having 
to recreate the data when it cannot be found -
rather than working with the data. Our 
customers have asked us to provide database 
management systems on Cray Research systems 
that will help address their data management 
needs. 

Copyright © 1994. 

Historically, Cray Research parallel vector 
processing (PVP) systems have provided 
numerous strengths for DBMS processiI!g, 
including: large memories (e.g., the CRA Y Y­
MP M90 series with up to 32 GBytes of real 
memory); fast memory (250 GBytes/sec for 
CRA Y C90); fast and configurable I/O 
subsystems for connectiI}g JO many different 
kinds of peripherals; UNICOS for UNIX 
compatibilIty; network supercomputer protocols 
required for implementing client-server 
architectures; and the ability to embed SQL (the 
ANSI-standard structural query language of 
most DBMS) in vectorized and parallelized C 
and FORTRAN codes. 

Third party DBMS products now available on 
Cray Research PVP ~stems are INGRES, 
ORACLE, and EMPRESS. 

New Market Needs 

There is a new class of customer that has 
approached Cray Research in the past year with 
needs that are often quite different from those of 
scientists and engineers. These needs are in the 
commercial area of 'database mining'­
searching the contents of databases looking for 
relationships and trends that are not readily 
apparent from the data structure. 

These customers want to find sales trends, do 
marketing analysis, and look for drawings that 
they have stored a million pa~es and many years 
ago. They present a WIde spectrum of 
requirements (see Figure 1) such as decision 
support; reI?0rt genera~ion; data visuali.z~tioni· 
econometnc modelIng; and traditIona 
scientific/engineering applIcations. 

Cray Research, Inc. 

73 



74 

MPP-DBMS Is Core Requirement 

Figure 1 

The consistent core r~guirement for these 
customer inquiries is an MPP database. 

These customers have run into performance 
'brick walls' with their current systems. They 
have large AT&T -GISrreradata ~ystems and 
many IBM 3090s and ES-9000s. They came to 
Cray Research for help - even before we 
announced the CRA Y T3D. These customers 
are moving to Open Systems, which ri~ht now 
means UNIX. Th~y sought out the hIgh-end 
suppliers of UNIX systems and, as Figure 2 
shows, found Cray Research. 

Percentage of the Market 
for Large Unix Systems 

Other 
40% •.. -... -•.. -... -•.. -... 1 

Sequent 
12% 

Total estimated 1993 market: $3.5 billion 
Source: InfoCorp. and September '93 Electronic Business Buyer 

Figure 2 

Cray Research's UNIX market share and 
experience gives these customers a level of 
comfort about a major player in this market 
being able to provide their UNIX needs. 

These commercial customers are not asking for 
COBOL or payroll systems or traditional data 
processing applications. Many are asking Cray 
Research for help with Decision Support 
SYstems (DSS) not the time-critical OnLine 
Transaction Processing (OLTP) or Point-Of­
Sales (POS) systems. They need fauIt­
resistance not fault-tolerance. There are a limited 
number of sophisticated users on-line - not the 
hundreds of users that might be required for 
banking or reservation systems. There are also 
significant 'number crunching' components to 
their applications - in concert with the database 
processIng they want to do. 

Requirements for MPP-DBMS 

A technical overview of the CRA Y T3D is 
beyond the scope of this paper and is adequately 
covered in oUier CUG papers. But briefly, 
when studying hardware requirements for 
running . databases on MPP platforms, the 
following features must be examined: 

• CPU performance. The ISO-MHz AIJ?ha 
RISC microprocessors from DigItal 
Equipment can provide the required 
horsepower needed for running scalar, CPU­
intensive, MPP-DBMS applications. 

• Latency. Low latency is important for MPP­
DBMS codes that currently rely on message­
passing models. The CRA Y T3D provides 
Industry-leading low latency. 

• Bandwidth. MPP databases need to move 
massive amounts of data. The CRA Y T3D 
provides unrivaled bisection bandwidth. 

• I/O. The CRA Y T3D's Model E lOS 
subsystem provides a wealth of peripheral 
capabilities for disks, production tapes and a 
large spectrum of standard networking 
protocols. 



Conclusion 

Cray Research's activities in providing MPP 
databases for Cray Research systems are part of 
a Data Intensive Systems (DIS) focus. We are 
in discussions with numerous customers who 
have DIS and MPP-DBMS needs. These 
customers span a wide spectrum of industries 
from petroleum, to g0v.emment, to retailers. 

Cray Research is studying the hardware and 
software requirements for MPP-DBMS, and is 
establishing requirements for our follow-on 
products. We are also in discussions with 
various system integrators who can provide 
great synergy and llelp us move into the 
commercial marketplace. 

Customers and prospects continue to come to 
Cray Research for help because it is clear from 
what they are telling us that there is no MPP­
DBMS 'winner' to date. . 

75 



76 

Asynchronous Double-Buffered I/O Applied to Molecular 
Dynamics Simulations of Macromolecular Systems 

Richard J. Shaginaw, Terry R. Stouch, and Howard E. Alper 

Bristol-Myers Squibb Pharmaceutical Research Institute 
P.O. Box 4000 

Princeton, NJ 08543-4000 

shaginaw@bms.com stouch@bms.com 

ABSTRACf 

Researchers at the Bristol-Myers Squibb Pharmaceutical Research Institute use a l(lcally modified Discover (tm 
Biosym Technologies, Inc.) to simulate the dynamics of large macromolecular systems. In order to contain the 
growth of this code as problem size increases, we have further altered the program to permit storage of the atomic­
neighbor lists outside of central memory while running on our Y-MP2E1232 with no SSD. We have done this 
efficiently by using BUFFER OUT and BUFFER IN to perform asynchronous double-buffered lID between 
neighbor-list buffers and DD-60 disk storage. The result has been an improvement in turnaround for systems 
currently under study (because of reduced swapping) and enablement of much larger simulations. 

1.0 Introduction 

Each atom in a molecular dynamics simulation of a 
very large molecule or of a macromolecular system 
must sense the attractive/repulsive forces of neighbor­
ing atoms in the system. These atomic neighbors 
include the atoms covalently bonded to the atom in 
question as well as those not bonded to it but lying 
within a prescribed cutoff distance. Faced with the 
choice of either identifying all neighbors each time 
step or maintaining a periodically updated list of 
neighbors. researchers ordinarily choose the latter 
approach. 

The size of such a neighbor list is linearly propor­
tional to atom count and geometrically proportional to 
cutoff length. For researchers interested in treating 
very large systems as accurately as possible. the phy­
sical limitation of computer memory is a handicap. 
Especially in the Y -:MP environment. with expensive 
central memory and no virtual paging. the hardware 
limits the size of the problem. On less powerful plat­
forms. these computationally intensive problems 
require so much time as to be intractable. Moreover. 
a virtual-memory system without ability to advise the 
system to pre-fetch pages cannot accommodate an 
extremely large program. 

We have solved this dilemma by using the BUFFER 
IN and BUFFER OUT statements in FORTRAN on 
the Y-:MP to achieve asyncbionous transfer of Very 

large neighbor lists to high-speed disk as the program 
creates the neighbor list. and from disk each time step 
when the neighbor list is needed. This paper details 
the implementation strategy and our results. Section 2 
is a more complete statement of the problem. Section 
3 discusses our programming strategy in detail. Sec­
tion 4 presents the FORmAN specifics of the imple­
mentation. Section 5 is a summary of our results and 
conclusions. 

2.0 Statement of Problem 

Numerical simulation of a biological system using 
molecular dynamics techniques requires repeated cal­
culation (each time step along a numerically 
integrated trajectory) of the force exerted on each 
atom in the system by every other atom within a 
specified cutoff radius. Each atom then moves once 
per time step in response to these forces. The atoms 
whose electronic forces affect the motion of a given 
atom are considered "neighbors" of that atom. Most 
of an atom's neighbors are not chemically bonded 
directly to that atom; nevertheless. their position. 
charge. and motion are vital pieces of information. 

All atoms in a system under study are indexed using 
positive integers. One approach to molecular dynam­
ics involves tracking every atom's neighbors by keep­
ing a list of neighbors' indices in an integer array. In 
tum .• two other integer arrays maintain for each atom 



a pointer to its first neighbor's position in the list and 
another pointer to the last. The program reconstructs 
the neighbor list at a interval specified by the 
researcher based on his or her expectations for the 
movement of atoms into and out of cutoff range. 

Obviously, a large macromolecular system contains 
many atoms; the neighbor list grows approximately 
linearly with atom count. Moreover, accurate simula­
tion requires a long cutoff distance; the neighbor list 
grows geometrically with cutoff distance. Therefore 
the real memory available to a program limits the size 
and accuracy of any simulation. 

At BMSPRI, researchers are interested in the structure 
and dynamics of lipid bilayers as instantiated in 
animal cell membranes. The membrane's structure 
and dynamics control the transport and diffusion of 
compounds in their vicinity, especially those which 
cross the membrane into or out of the cell interior. 
The compounds of interest include drug molecules, 
toxins, antigens, nutrients, and others. The cell mem­
brane incorporates a variety of embedded proteins, 
some which function as receptors for a variety of 
stimuli, and others which act as ion channels. 

As they have focused their resources on the lipid 
bilayer, BMSPRI scientists have increased the size 
and accuracy of the simulations they use in their 
research. This increase has led to a non-bond neigh­
bor list approaching 7 million Cray words in size. 
Added to an already large, complex program, this 
memory requirement has pushed the size of the pro­
gram beyond 14 megawords (roughly half of our Y­
:MP2FJ232). Research progress dictates that future 
simulations must embrace much larger systems with 
longer cutoffs. In order to achieve this, the research­
ers have decided to try to reduce the strong depen­
dency of program size on molecular system size and 
cutoff distance. 

3.0 Solution Strategy 

Multiple-buffered asynchronous I/O is in common use 
in graphical animation, in numerical modeling of very 
large physical systems, and in other computer applica­
tions. The basic approach is to create and open at 
least one file, using specialized I/O library functions 
or subroutines. These calls permit data to bypass the 
I/O buffers that are ordinarily part of user data space 
(in the FORmAN or C library) and to bypass the 
buffers that are maintained by the system in kernel 
space. In other words, these I/O calls permit data 

transfer directly between the user program's data 
space and unstructured files on the storage medium. 
The programmer uses at least two program arrays as 
I/O buffers, and the program must include the book­
keeping needed to make well-formed I/O requests 
(I/O transfers that are integer multiples of the disk 
device's physical block size). Avoiding library and 
system buffers permits program execution to continue 
while I/O proceeds. Special calls then permit block­
ing of execution in order to synchronize data transfers 
before writing to or reading from the program arrays 
functioning as buffers, to protect data integrity. 

Cray Research supports several techniques for asyn­
chronous I/O. Table 1 outlines these. 

Table 1. Cray Research Asynchronous I/O Options. 

Technique Description 

READDR/WRITDR record-addressable random-access I/O 
GEIW A/PUTW A word-addressable random-access I/O 
AQREAD/AQWRITE queued I/O 
BUFFER IN/our unbuffered, unblocked I/O 

As structured at the start of this effort. BMSPRI­
modified Discover generates three neighbor lists; two 
of these are subject to rapid growth with cutoff dis­
tance. and so these two are our candidates for disk 
storage. Our strategy is to store both lists of neigh­
bors on disk at the time of list creation, and then to 
read up this list each time step in the routines that 
compute the non-bond energies of the system. We 
have no need for record- or word-addressable random 
access, because we know a priori that the energy rou­
tines require the data to be read sequentially. Like­
wise, the random-access capability of the queued I/O 
calls is unnecessary. We have decided to use 
BUFFER IN and BUFFER our to achieve asynchro­
nous transfer. 

For efficiency, the ratio of transfer time to the quan­
tity (transfer time + latency) must be close to unity; 
therefore the buffer size must be sufficiently large to 
overwhelm latency. In contrast, for I/O to overlap 
execution completely, the buffer size must be 
sufficiently small to permit completion of the transfer 
before the buffer is needed again. 

Our fastest filesystems reside on unstriped logical 
devices built on DD-60 drives. with one drive per I/O 

77 



78 

channel. The fastest user-writable file system is one 
we call /tmp/people. a continuous scratch area of 
about 5 GB. where every user with an account owns a 
directory. The worst-case maximum rotational 
latency for DD-60 devices is 26 milliseconds. accord­
ing to Cray Research. We have found that unbuffered 
writes to existing unblocked DD-60 files run at about 
19 megabytes per second. while unbuffered reads 
from the same files proceed at about 16 megabytes 
per second. This asymmetry may be due to the fact 
that each read requires a seek operation, while the 
drives when idle are positioned for writing. 

At 16 :MB per second. the smallest I/O request size 
that permits 90% efficiency is 490.734 words. The 
loop timing in the non-bond-energy routines (under a 
system load of four simultaneous batch jobs) averages 
0.18 seconds. and so the maximum transfer size to 
achieve overlap is 377.487 words. These limiting 
values clearly eliminate the possibility of 90% 
efficient asynchronous I/O in our case. Nevertheless. 
we have chosen to accept an efficiency level of less 
than 90% in order to test our strategy. We have 
chosen a buffer size of 409.600. which is exactly 200 
DD-60 sectors in length. This buffer size leads to an 
efficiency of 88%. but may lead to incomplete overlap 
on the read side under typical load. In the case of 
heavy load. overlap on both read and write will be 
complete. 

We have decided to employ two files. each 
corresponding to one buffer. for each list. in order to 
maximize overlap in end cases. In other words. we 
use four files in the current implementation. We use 
the same buffers for reading and for writing. and for 
both neighbor lists. 

4.0 FORTRAN Implementation 

BMSPRI uses the program Discover from Biosym 
Technologies. Inc. to carry out its lipid bilayer simu­
lations. The Institute holds a source license for 
Biosym. and researchers have modified the program 
substantially. to include theory useful in their specific 
problem area. Two neighbor-generation· routines use 
several criteria to determine the relationship of each 
atom in the system to every other atom in the system. 
These routines create two separate integer lists of 
neighbor indices. Two nonbond-energy routines read 
through these neighbor lists each time step; these 
integer lists point into an array containing charge and 
position data for each atom. Four routines contain all 
the code modifications made in the double-buffering 

effort. 

Two COMMON blocks contain six control variables 
necessary for bookkeeping and the buffers them­
selves. dimensioned (LBUF.2) where LBUF = LREC 
+ LPADD; LREC = 409.600 and LPADD is a pad­
region length. set to 10.000 words. 

Each neighbor-generating routine has two loops that 
iterate across all "atom groups" in the system. The 
first of these loops is operative in the case where all 
atoms in the system are permitted to move; the second 
loop. when some atoms are held fixed in space. The 
energy routines each contain three exclusive loops in 
which the neighbor list is read. one atom at a time. 

In the list-generation routines. the first action taken is 
to synchronize both files used by each of the two 
neighbor lists. using the FORmAN extension 
LENGTH. Then the program repositions both files 
into which it is about to write to the beginning of data. 
Then we initialize all control variables. During each 
iteration of the main loop. the program stores each 
atom's neighbor indices sequentially into the 
"current" buffer and advances the buffer pointer. At 
the end of each iteration. the program tests the buffer 
pointer. and if the buffer has overflowed into the pad 
region, it initiates a BUFFER our for the current 
buffer. IT this is a second or subsequent write. it uses 
LENGTH to synchronize the write of the alternate 
buffer. Then it moves the content of the pad region to 
the start of the alternate buffer. At this point. the pro­
gram switches the alternate buffer to current status. 
Then. whether the "buffer full" test has passed or 
failed. if this is the last loop iteration. the program ini­
tiates a BUFFER our of the current buffer; other­
wise it continues iterating. 

The first action in the non-bond energy routines is to 
synchronize all four files and to initialize local control 
variables. Then we reposition both files about to be 
read to the beginning of data. Then the program ini­
tiates reads into both buffers and then blocks execu­
tion. using LENGTH. to synchronize the read into the 
current buffer. The program uses buffer-swapping 
techniques analogous to those in the generation rou­
tines to manage the buffers during loop iteration. 

To achieve asynchronous I/O. the files in use must be 
typed as "unblocked" files. The UNICOS command 
"assign" with the option "-s u" creates a file of type 
"unblocked". We name these files uniquely to each 
batch job by including the C-sheU process-ID substi­
tution string "$$" in each of the four file names. At 



the end of the job. we remove all four files. 

5.0 Results and Conclusions 

Implementation of these code changes has led to a 
reduction in the size of the executable code for a 
30.000-atom case with a cutoff of 12 Angstroms by 
3.4 Megawords. Moreover. no longer is program size 
dependent on cutoff length. 

The overhead incurred by BUFFER IN/OUT and the 
additional bookkeeping in the program has led to an 
increase in CPU time of 1 % to 2%. This will cause in 
our environment a worst-case increase in turnaround 
time of one day (out of 6 weeks of wallclock time) for 
a nanosecond of simulated time. This turnaround 
delay is acceptable to Institute researchers. More­
over. the improvement in turnaround time due to a 
reduction in swap-in-queue residency more than com­
pensates for this disimprovement in most cases. On 
the other hand. at this point this code sustains an 
increase of I/O wait time from effectively zero to 
between 3% and 5% of CPU time. We expect this 
wait time to increase turnaround time to an unaccept­
able level. Profiling of the effected routines reveals 
that essentially all of these I/O waits occur on the read 
side. in the non-bond energy calculation routines. We 
believe that this reflects the lower speed of a typical 
read. Writing the contents of a 409.600-word buffers 
to an unblocked file resident on unstriped DD-60 
takes an average of 0.16 seconds; reading a 409.600-
word unit of data from the same file into a buffer 
takes about 0.19 seconds. With our typical system 
load of four simultaneous batch jobs. our I/O scheme 
tries to do a read or write every 0.17 to 0.18 seconds. 
on average. This asymmetry between read and write 
performance can explain the additionalI/O wait time. 

Our next modification to this program will be to add a 
third buffer to accommodate a read-ahead of the data 
chunk beyond the "next" in the energy routines. This 
should nearly eliminate the I/O wait overhead. We 
also plan to experiment further with the queued asyn­
chronous I/O strategies. 

79 



A PVM Implementation of a Conjugate Gradient Solution 
Algorithm for Ground-Water Flow Modeling 

by 

Dennis Morrow, John Thorp, and Bill Holter 

Cray Research, Inc. and NASA Goddard Space Flight Center 

SUMMARY 

This paper concerns the application of a conjugate-gradient 
solution method to a widely available U.S. Geological Swvey 

(USGS) ground-water model called MODFLOW which was 
used to solve a ground-water flow management problem in 

North Carolina. 

The performance of the MODFLOW model incorporating a 
polynomial preconditioned conjugate gradient (pPCG) algorithm 

is presented on the Cray C90, and a PVM implementation of the 
algorithm on the Cray T3D emulator is outlined. For this 
large-scale hydrologic application on a shared memory 
supercomputer, the polynomial preconditioned conjugate gradient 
(pPCG) method is the fastest of several solution methods which 
were examined. Further work is needed to ascertain how well 

PPCG will perform on distributed memory architectures. 

The sections in this paper flI'St introduce the USGS MODFLOW 
model and its application to a North Carolina ground-water 
flow problem. Next the PPCG algorithm and similar CRA Y 
library routines are discussed, followed by tables of CPU timing 

results and the ratio of parallel speed-up attained by the 
MODFLOW model on the Cray C90. 

The fmal section discusses the distributed memory 
implementation of the PPCG algorithm using PVM on the Cray 
T3D emulator followed by a summary and plans for future work. 

ABSTRACT 

There is a need for additional computing power for modeling 
complex, long term, real-world, basin-scale hydrologic 
problems. Two examples which illustrate the computational 

nature of ground-water modeling are: 

1. the stochastic nature of the model input data may require a 

sensitivity analysis for each model input parameter and/or a 
number of monte-carlo simulations 

2. optimal wellfield pumping scenarios for minimizing 

80 

drawdown or for control of contaminant plumes or saltwater 

intrusion can require many independent simulations 

The need to model larger more complex problems is coupled with a 

need for applying more efficient parallel algorithms which 
can take advantage of supercomputer hardware and reduce the 
wall-clock time to get a solution. 

INTRODUCTION 

This paper examines replacements for the matrix solution algorithm 
used in a USGS ground-water model, MODFLOW. MODFLOW is 
the short name for the Modular Three-Dimensional Finite 

Difference Ground-Water Flow Model [10], a publically-available 
model which is widely used in industry, academia, and government. 
MODFLOW simulates transient ground-water flow and can 

include the influence of rivers, drains, recharge/discharge wells, and 
precipitation on both confmed and unconfmed aquifers. 

A WATER RESOURCE MANAGEMENT APPLICATION 

The application presented in this paper is a water resources 
management study conducted by Eimers [2,3] with the MODFLOW 
model to determine the influence of pumping on a 3,600 
square-mile study area that is a subset of the ten-vertical-layer 
aquifer system composing the 25,000 square-mile North Carolina 
Coastal Plain. The aquifer model consists of 122,400 fmite 
difference cells on a 10 x 120 x 102 grid. This is a transient problem 

with 120 time steps representing a total simulation time of 87 years. 
The number of wells in the model ranges from 1,416 to 1,680, 
although some of these are not actual well sites but are 

pseudo-wells needed to constrain the hydraulic condition at certain 

political boundaries where there is no corresponding hydrogeologic 
boundary. Vertical conductance, transmissivity, and storage 

coefficients can vary by node within each layer but are assumed to 
have no directional component. 

GROUND-WATER SOLUTION ALGORITHMS 

Many algorithms are available to solve the ground-water flow 

equations and there is certainiy not one best algorithm for all 



problems on all computers. MODFLOW constructs a sparse 
matrix called the A matrix from the discrete form of the flow 
equations, then solves the matrix. The matrix is symmetric, 
positive defmite, and has three off-diagonals. In MODFLOW. 
97% of the total CPU time is spent in the A matrix solution. 

A direct linear equation solver such as banded Gauss elimination 
computes an explicit factorization of the matrix and in general 
guarantees an accurate solution. Iterative matrix solvers. such as 
the strongly implicit procedure supplied with MODFLOW. 
begin with an initial approximate solution and then converge 
toward the solution, thus improving the approximate solution 
with each iteration. 

Used appropriately. iterative algorithms can be as accurate and 
much faster than direct methods applied to these kinds of 
problems. Dubois [1]. Hill [5]. Jordan [8]. Van der Vorst [15] and 
many others have confirmed the desirable properties of iterative 
conjugate gradient (CG) solvers on vector computers. Johnson [7] 
suggested polynomial preconditioners for CG solvers and Oppe. 
et.al.[12] implemented a general non-symmetric preconditioned 
CG package on a CRAY. 

Specifically for ground-water modeling. Kuiper [9] compared the 
incomplete Cholesky CG method with the strongly implicit 
procedure (SIP) described by Weinstein. et.al.[16]. and Scandrett 
[14] extended the work and included timings on the CDC Cyber 
205, reporting that PPCG has very good convergence and that the 
iteration sequence is completely vectorizable. Morrow and 
Holter [11] implemented a single-CPU vectorized PPCG solver 
for MODFLOW on the Cyber 205. Saad [13] discussed the steps 
needed to implement a parallel version of the PPCG algorithm 
and Holter, et.a1.[6] attained 1.85 gigaflops on a CRAY Y-MP8 
with a multitasked PPCG solver for a two-dimensional 
ground-water diffusion problem. 

The PPCG algorithm provides an efficient, vector-parallel 
solution ofAX=B, where A is symmetric, banded, and diagonally 
dominant. It is assumed that A has been normalized (by a 
straightforward procedure) so that all its diagonal elements are 
equal to unity. 

The algorithm utilizes a least squares polynomial approximation 
to the inverse of A, and calls for the repeated multiplication of 
this inverse and a vector of residuals, R. [11] 

The steps in the PPCG algorithm can be summarized as follows: 

1. Set an initial estimate of the groundwater pressure heads in 
the aquifer. . 

2. Compute the vector of residuals 
3. Form two auxiliary vectors from the residuals 
4. Iteratively cycle through a six-step process which updates the 

heads and residuals until convergence 

CRA Y SCIENTIFIC LIBRARY ROUTINES 

As mentioned previously, several variations of preconditioned CG 
matrix solvers perform well on vector computers. Several of these 
methods are incorporated into a single routine in the CRA Y 
UNICOS Math and Scientific Library (SCILIB). The routine is 
called SITRSOL and it is a general sparse matrix solver which 
allows the selection of a preconditioned conjugate gradient-like 
method. SITRSOL has many selections for the combination of 
preconditioner and iteration method. The six options for iterative 
method (accelerators) are: 

1. (BCG) -- Bi-conjugate gradient method 
2. (CGN) - Conjugate gradient method applied with Craig's 

Method 
3. (CGS) -- Conjugate gradient squared method 
4. (GMR) -- Generalized minimum residual method 
5. (OMN) -- Orthomin/generalized conjugate residual method 
6. (pCG) -- Preconditioned conjugate gradient method 

For preconditioners. there are also six options: 

1. No preconditioning 
2. Diagonal (Jacobi) preconditioning 
3. Incomplete Cholesky factorization 
4. Incomplete LU factorization 
5. Truncated Neumann polynomial expansion 
6. Truncated least squares polynomial expansion 

Not all combinations of preconditioners work with all the 
selections for accelerators. For instance. Incomplete LU 
factorization cannot be used with a symmetric matrix in 
half-storage mode. PCG cannot be used unless the matrix 
resulting from MODFLOW is always positive definite (it is). 

The performance of several of these SITRSOL matrix solution 
routines is compared for solving a test problem of similar size as 
the North Carolina ground-water modeling problem (see Table 
1.). All the runs were made on one CPU of a YMP-2E. 

1 Ox125x125 cell MODFLOW problem 

Algorithm 
PPCG* 
BCG 
CGS 
PCG 
PCG 
PCG 

Pre- memory 
conditioner Mwords 

polynomial 1.435 
least squares 11 .400 
least squares 3,650 
least squares 3,156 

Neumann 5,774 
Cholesky 18,342 

*not a part of SITRSOL 

algorithm CPU 
megaflops seconds 

232 190 
45 956 

106 275 
98 232 

127 
16 

441 
951 

Table 1. PPCG and SITRSOL timing comparisons. 

The column headed memory is the CPU memory integral time 
reported by the UNICOS ja command. This indicates an average 
memory requirement for for the duration of execution of the entire 
code. The numberS can be used to infer a comparative memory 
requirement for the solution algorithms. 8 1 



For the SI1RSOL solution routines, the least squares 
preconditioner combined with the PCG iterative method had the 
lowest time and memory requirement of the five attempted 
SITRSOL combinations, but PPCG was the overall best. The 

PPCG algorithm is coded to take advantage of the specific 
sparse-diagonal matrix structure in the MODFLOW model. 

SHARED MEMORY PARALLEL-VECTOR STRATEGY 

Compiler-level strip mining of DO loops was the data-parallel 
approach used to implement the PPCG algorithm on multiple 
processors of the Cray C90. Several modifications to the 
single-cpu PPCG algorithm were made to accomplish this. Some 
of these modifications also improved the performance of the 
single-cpu implementation of the algorithm. 

The MODFLOW code has a large scratch array dimensioned in the 

main program and individual variables are referenced by pointers to 

locations within the scratch array. In some cases, this degrades 
data locality. To accomplish data locality and to avoid unnecessary 
references to memory, MODFLOW variables which were a part of 

the matrix solution were removed from the large scratch array and 
recast as arrays which were local to the PPCG solution routine. 
Also. some variables were removed from DATA and SAVE 
statements in order to have as many variables as possible stored on 

the stack. 

Next, the lengths of the off-diagonals were padded by 
zero-filling to match the length of longest diagonal of the matrix 
(the main diagonal). This allowed the elimination of some IF 
tests associated with the shorter diagonals. Also several DO 
LOOPS of varying lengths could now be collapsed into a single DO 
LOOP, thus organizing lots of work into a single parallel region. 
For the North Carolina water management problem, loop lengths 
were fixed by parameter statements to 122,400 to eliminate the 
need for execution-time checking of loop lengths prior to 

strip-mining. 

Tables 2. presents the Y - MP-C98 timing results for the entire 

MODFLOW model solving the North Carolina water management 
problem (122,400 groundwater cells for the 87 year simulation 
period) with the shared memory implementation of PPCG. 

1 Ox120x1 02 cells (122.400 equns.) 
Y-MP- e98 

# Wall CPU Mflops Concurrent Total 
CPUs sec. sec. ICPU avg. cpus Gflops 

1 61 57 641 1.0 0.64 

2 40 62 589 1.6 0.94 
4 31 65 558 2.2 1.2 

8 28 67 541 2.4 1.3 

* 8 15 78 466 5.2 2.4 

*dedicated run 

82 Table 2. Timing results for Modflow model 

All the listed computer runs were made during the day on 
production systems and none of the results are benchmark runs 

though, as noted, one of the runs was made in the 

single-job-streaming queue (only one batch job is allowed to ru 

at a time). The reported wall-cloek times will vary depending 0 

the number of jobs in the system. The listed CPU times and 
megaflop rates are fairly independent of system load. 

The CPU times increase slightly with additional CPUs, and the 
reduction in wall clock time illustrates that multitasking can Cll' 

the turnaround time on a production system. 

DISTRIBUTED MEMORY MESSAGE PASSING 

STRATEGY 

Parallel Virtual Machine (PVM) was used to implement the 

distributed version of the PPCG algorithm on the TID emulator 
running on the multiple processors of the Cray C90. 

PVM is a public domain set of library routines originally 
developed for explicit communication between heterogeneous 
systems tied to a network [4]. PVM was developed at Oak Ridgl 
National Laboratory, and it has become a de-facto message passu 
standard. 

Message passing is a parallel programming paradigm which is 

natural for network based or (in this case) distributed memory 

systems. An additional benefit of the message passing paradigm: 
that it is portable. A message consists of a user-defined message 
tag and the accompanying data. Messages may be either 

point-to-point or global (broadcast). In point-to-point 
message passing, the sender specifies the task to which the messa!l 
is to be sent, the data to be sent, and the unique message tag to lat 
the message. Then the message is packed into a buffer and sent to 
the interconnection network. The receiver specifies the task from 
which the message is expected, the unique message tag which is 

expected, and where to store the data which is received from the 
network. 

In actual PVM implementation in FOR 1RAN, the sending task 
makes three PVM calls which (1) create the send buffer, (2) pac1 

the data into the send buffer. and (3) send the message. Similarl) 
the receiving task makes two PVM calls which (1) receive the 
message from the network, and (2) unpack the data into the loea 
memory user space. 

A general observation is that message passing is to parallel syste, 
as assembly language is to mainframes. Considerable modificatic 
of the shared-memory version of the PPCG algorithm was 

necessary to accomplish the implementation with message passin 
The explicit nature of message passing can also be tedious (uniqm 

message tags, five FORTRAN routine calls to send/receive any 
piece of data, etc). This discourages frequent communications. 
Avoiding unnecessary communication is an important part of 
nlc:tributed c.omputing. 

The message passing strategy for implementing the PPCG 

algorithm on the TID emulator began with equally distributing 



the data contained in FORlRAN arrays among the total number of 
processors. All four diagonals of the A matrix (the matrix to be 
solved) are copied from the master processor (PEO). so that each 
processor has a local copy of its part of the matrix. This is 
necessary because the A matrix is set up by the MODFLOW model 
and passed to the matrix solution routine and, to date. only the 
PPCG solution routine has been implemented in PVM. In the 
program, the arrays WI, WMl, p. R, SQINV. and B can all be 
distributed equally across the processors. For example, Figure 1. 
shows three of these six arrays distributed across four processors. 

Pe 0 Pe 1 Pe 2 Pe 3 

I I I I III I I I III I I I III I I I I 

R, SQINV, B 

Figure 1. Distributed Linear arrays R. SQINV, and P 

A second part of the message passing strategy for implementing 
the PPCG algorithm was to accomplish communication between 
processors by making and distributing offset copies of the A matrix 
and the temporary work vectors needed in the iterative solution. 
There are six regular communication patterns which trace back to 
the three dimensions of the groundwater problem being solved. 
These six patterns involve offsetting the data by either plus or 
minus 1, plus or minus ND, or plus or minus NX, where for this 
particular groundwater problem. ND=12,240 and NX=l02. 

This communication is similar to the End-Off Shift (EOSHIFf) 
operation where data does not wrap around from the last processor 
to the first. Two of these communication patterns are shown in 
Figure 2. 

Pe 0 Pe 1 Pe 2 Pe 3 

~111~91111 
Pe 0 Pe 1 Pe 2 Pe 3 

11~1]~IIcq;g 
Figure 2. EOSHIFT Operation 

Figure 3. shows a complete pattern involving all six offsets. 
Note that not all offsets will result in off-processor 
communication. In Figure 3, the -1 offset on PEl is an 
on-processor communication. The mix between on and off 
processor communication also will change with the total number 
of processors. 

Pe 0 

Figure 3. Communication Pattern 

Also, there are a number of reduction operations that are 
accomplished using PVM to communicate the partial sums from 
each processor back to PEO using a standard library-like routine. 

RESULTS and FUTURE PLANS 

For the MODFLOW ground-water modeling application, CPU 
times for several shared-memory sparse matrix solution 
algorithms are compared. The PPCG algorithm on a Cray 
YMP-C98 ran at 2.4 gigaflops and attained a speedup ratio of 
5.2. The distributed-memory version of the PPCG algorithm 
was implemented on the emulator and the next step is to port the 
code to the CRAY T3D. 

CONCLUSIONS 

Supercomputers and efficient vector-parallel solution 
algorithms can speed processing and reduce tum-around time for 
large hydrologic models, thus allowing for more accurate 
simulations in a production environment where wall-clock 
turnaround is important to the ground-water model user. 

SUMMARY 

A data-parallel shared memory implementation and a PVM 
distributed memory implementation of a polynomial 

preconditioned conjugate gradient solution algorithm for the U.S. 
Geological Survey ground-water model MODFLOW were 
presented. The PVM solution is accomplished on multiple 
processors and can be ported to the T3D. 

Performance on the Cray C90 is presented for a three-dimensional 
122,400 cell anisotropic ground-water flow problem 
representing a transient simulation of pumping a North Carolina 
aquifer for 87 years. 

83 



ACKNOWLEDGEMENTS 

CRAY, CRAY Y-:MP, and UNICOS are federally registered 
trademarks and Autotasking and CRA Y EL are trademarks of 
Cray Research, Inc. The UNICOS operating system is derived 
from the UNIX System Laboratories, Inc. UNIX System V 
operating system. UNICOS is also based in part on the Fourth 
Berkeley Software Distribution under license from The Regents 
of the University of California. 

REFERENCES 

1. Dubois, P .F. et al.. "Approximating the Inverse of a Matrix 
for Use in Iterative Algorithms on Vector Processors", 
Computing, 22,257-268, 1979. 

2. Eimers, J .• Lyke, W., and Brockman, A., "Simulation of 
Ground-water Flow in Aquifers in Cretaceous Rocks in the 
Central Coastal Plain, Nonh Carolina", Water Resources 
Investigations Report, Doc 119.42/4:89-4153, USGS Raleigh, 
NC 1989. 

3. Eimers, J. and Morrow, D., "The Utility of Supercomputers 
for Ground-Water Flow Modeling in the North Carolina 
Coastal Plain ", Proceedings of the ASCE Water Resources 
Conference, Sacramento, CA May 1989. 

4. Grant and SIgellum, "The PVM Systems: An In-Depth 
Analysis and Documenting Study - Concise Edition", The 1992 
:MPCI Yearly Report: Harnessing the Killer Micros, LLNL # 
UCRL-ID-I07022-92. 

5. Hill, Mary, "Preconditioned Conjugate Gradient (pCG2) -­
A Computer Program for Solving Ground-Water Flow 
Equations", Water Resources Investigations Report # Doc 
119.42/4:90-4048, USGS Denver, CO 1990 

6. Holter. B., et.al., "1990 Cray Gigaflop Performance Award". 

7. Johnson, D.G. et aI., "Polynomial Preconditioners for 
Conjugate Gradient Calculations ", SIAM J. Numer. Anal., 20(2), 
362-376, 1983. 

8. Jordan, T.L., "Conjugate Gradient Preconditioners for Vector 
and Parallel Processors ", Elliptic Problem Solvers II, Academic 
Press Inc .• 127-139. 1984. 

9. Kuiper, L.K., "A Comparison of the Incomplete 
Cholesky-Conjugate Gradient Method With the Strongly 
Implicit Method as Applied to the Solution of Two-Dimensional 
Groundwater Flow Equations ", Water Resources Research, 
17(4), 1082-1086, August 1981. 

10. McDonald, M.G. and Harbaugh, A.W., "A Modular 
Three-Dimensional Finite-Difference Ground-Water Flow 

84 

Model ". Open-File Report 83-875, U.S. Geological Survey, 
1984. 

11. Morrow, D. and Holter, B., "A Vectorized Polynomial 
Preconditioned Conjugate Gradient Solver Package for the USGS 
3-D Ground-Water Model", Proceedings of the ASCE Water 
Resources Conference, Norfolk, VA. June 1988. 

12. Oppe. T., et.al.. "NSPCG User's Guide. Version 1.0". Center 
for Numerical Analysis. The University of Texas at Austin. Apri 
1988. 

13. Saad. Y., "Practical Use of Polynomial Preconditionings for 
the Conjugate Gradient Method ". SIAM J. Sci. Stat. Comput., 
6(4). 865-881. 1985. 

14. Scandrett, C. "A Comparison of Three Iterative Techniques it 
Solving Symmetric Systems of Linear Equations on a CYBER 205' 
Supercomputer Computations Research Institute, Florida State 
Univ., Report # FSU-SCRI-87-44. August 1987. 

15. Van Der Vorst, H .• "A Vectorizable Variant of Some ICCG 
Methods ". SIAM J. Sci. Stat. Comput., 3(3). 350-356. 1982. 

16. Weinstein. H.G .• Stone, H.L .. and Kwan. T.V. "Iterative 
Procedure for Solution of Systems of Parabolic and Elliptic 
Equations in Three Dimensions", Industrial and Engineering 
Chemistry Fundamentals. 8(2). 281-287. 1969. 



Graphics 





Decimation of Triangle Meshes 

William J. Schroeder 

General Electric Company 
Scenectady, NY 

1.0 INTRODUCTION 

The polygon remains a popular graphics primitive for 
computer graphics application. Besides having a simple 
representation, computer rendering of polygons is widely 
supported by commercial graphics hardware and software. 
However, because the polygon is linear, often thousands 
or millions of primitives are required to capture the details 
of complex geometry. ModelS of this size are generally 
not practical since rendering speeds and memory require­
ments are proportional to the number of polygons. Conse­
quently applications that generate large polygonal meshes 
often use domain-specific knowledge to reduce model 
size. There remain algorithms, however, where domain­
specific reduction techniques are not generally available 
or appropriate. 

One algorithm that generates many polygons is march­
ing cubes. Marching cubes is a brute force surface con­
struction algorithm that extracts isodensity surfaces from 
volume data, producing from one to five triangles within 
voxels that contain the surface. Although originally devel­
oped for medical applications, marching cubes has found 
more frequent use in scientific visualization where the size 
of the volume data sets are much smaller than those found 
in medical applications. A large computational fluid 
dynamics volume could have a finite difference grid size 
of order 100 by 100 by 100, while a typical medical com­
puted tomography or magnetic resonance scanner pro­
duces over 100 slices at a resolution of 256 by 256 or 512 
by 512 pixels each. Industrial computed tomography, used 
for i~spection and analysis, has even greater resolution, 
varymg from 512 by 512 to 1024 by 1024 pixels. For 
these sampled data sets, isosurface extraction using 
marching cubes can produce from 500k to 2,OOOk trian­
gles. Even today's graphics workstations have trouble 
storing and rendering models of this size. 

Other sampling devices can produce large polygonal 
models: range cameras, digital elevation data, and satellite 
data. The sampling resolution of these devices is also 
improving, resulting in model sizes that rival those 
obtained from medical scanners. 

This paper describes an application independent algo­
rithm that uses local operations on geometry and topology 
to reduce the number of triangles in a triangle mesh. 
Although our implementation is for the triangle mesh it 
can be dire:tl! applied to the more general polygon m'esh. 
After descnbmg other work related to model creation 
from sampled data, we describe the triangle decimation 

process and its implementation. Results from two differ­
ent geometric modeling applications illustrate the 
strengths of the algorithm. 

2.0 THE DECIMATION ALGORITHM 

The goal of the decimation algorithm is to reduce the 
total number of triangles in a triangle mesh, preserving 
the original topology and a good approximation to the 
original geometry. 

2.1 OVERVIEW 

The decimation algorithm is simple. Multiple passes are 
made over all vertices in the mesh. During a pass, each 
vertex is a candidate for removal and, if it meets the spec­
ified decimation criteria, the vertex and all triangles that 
use the vertex are deleted. The resulting hole in the mesh 
is patched by forming a local triangulation. The vertex 
removal process repeats, with possible adjustment of the 
decimation criteria, until some termination condition is 
met. Usually the termination criterion is specified as a 
percent reduction of the original mesh (or equivalent), or 
as some maximum decimation value. The three steps of 
the algorithm are: 
1. characterize the local vertex geometry and topology, 

2. evaluate the decimation criteria, and 

3. triangulate the resulting hole. 

2.2 CHARACTERIZING LOCAL 
GEOMETRY/TOPOLOGY 

The first step of the decimation algorithm characterizes 
the local geometry and topology for a given vertex. The 
outcome of this process determines whether the vertex is 
a potential candidate for deletion, and if it is, which crite­
ria to use. 

Each vertex may be assigned one of five possible clas­
sifications: simple, complex, boundary, interior edge, or 
comer vertex. Examples of each type are shown in the 
figure below. _.,--

Simple Complex Boundary Interior Comer 
Edge 

A simple vertex is surrounded by a complete cycle of 

87 



88 

triangles, and each edge that uses the vertex is used by 
exactly two triangles. If the edge is not used by two trian­
gles, or if the vertex is used by a triangle not in the cycle of 
triangles, then the vertex is complex. These are non-mani­
fold cases. 

A vertex that is on the boundary of a mesh, i.e., within a 
semi-cycle of triangles, is a boundary vertex. 

A simple vertex can be further classified as an interior 
edge or comer vertex. These classifications are based on the 
local mesh geometry. If the dihedral angle between two 
adjacent triangles is greater than a specifiedfeature angle, 
then afeature edge exists. When a vertex is used by two fea­
ture edges, the vertex is an interior edge vertex. If one or 
three or more feature edges use the vertex, the vertex is clas­
sified a comer vertex. 

Complex vertices are not deleted from the mesh. All other 
vertices become candidates for deletion. 

2.3 EVALUATING THE DECIMATION 
CRITERIA 

The characterization step produces an ordered loop of verti­
ces and triangles that use the candidate vertex. The evalua­
tion step determines whether the triangles fonning the loop 
can be deleted and replaced by another triangulation exclu­
sive of the original vertex. Although the fundamental deci­
mation criterion we use is based on vertex distance to plane 
or vertex distance to edge, others can be applied. 

Simple vertices use the distance to plane criterion (see 
figure below). If the vertex is within the specified distance 
to the average plane it may be deleted. Otherwise it is 
retained. 

~,\ageplme 

Boundary and interior edge vertices use the distance to 
edge criterion (figure below). In this case, the algorithm 
determines the distance to the line defined by the two verti­
ces creating the boundary or feature edge. If the distance to 
the line is less than d, the vertex can be deleted. 

It is not always desirable to retain feature edges. For 
example, meshes may contain areas of relatively small tri­
angles with large feature angles, contributing relatively little 
to the geometric approximation. Or, the small triangles may 
be the result of "noise" in the original mesh. In these situa­
tions, corner vertices, which are usually not deleted, and 
interior edge vertices, which are evaluated using the dis­
tance to edge criterion, may be evaluated using the distance 
to plane criterion. We call this edge preservation, a user 
specifiable parameter. 

If a vertex can be eliminated, the loop created by remov­
ing the triangles using the vertex must be triangulated. For 

interior edge vertices, the original loop must be split into 
two halves, with the split line connecting the vertices form­
ing the feature edge. If the loop can be split in this way, i.e., 
so that resulting two loops do not overlap, then the loop is 
split and each piece is triangulated separately. 

2.4 TRIANGULATION 

Deleting a vertex and its associated triangles creates one 
(simple or boundary vertex) or two loops (interior edge ver­
tex). Within each loop a triangulation must be created 
whose triangles are non-intersecting and non-degenerate. In 
addition, it is desirable to create triangles with good aspect 
ratio and that approximate the original loop as closely as 
possible. 

In general it is not possible to use a two-dimensional 
algorithm to construct the triangulation, since the loop is 
usually non-planar. In addition, there are two important 
characteristics of the loop that can be used to advantage. 
First, if a loop cannot be triangulated, the vertex generating 
the loop need not be removed. Second, since every loop is 
star-shaped, triangulation schemes based on recursive loop 
splitting are effective. The next section describes one such 
scheme. 

Once the triangulation is complete, the original vertex and 
its cycle of triangles are deleted. From the Euler relation it 
follows that removal of a simple, corner, or interior edge 
vertex reduces the mesh by precisely two triangles. If a 
boundary vertex is deleted then the mesh is reduced by pre­
cisely one triangle. 

3.0 IMPLEMENTATION 

3.1 DATA STRUCTURES 

The data structure must contain at least two pieces of infor­
mation: the geometry, or coordinates, of each vertex, and 
the definition of each triangle in terms of its three vertices. 
In addition, because ordered lists of triangles surrounding a 
vertex are frequently required, it is desirable to maintain a 
list of the triangles that use each vertex. 

Although data structures such as Weiler's radial edge or 
Baumgart's winged-edge data structure can represent this 
information, our implementation uses a space-efficient ver­
tex-triangle hierarchical ring structure. This data structure 
contains hierarchical pointers from the triangles down to the 
vertices, and pointers from the vertices back up to the trian­
gles using the vertex. Taken together these pointers form a 
ring "relationship. Our implementation uses three lists: a list 
of vertex coordinates, a list of triangle definitions, and 
another list of lists of triangles using each vertex. Edge defi­
nitions are not explicit, instead edges are implicitly defined 
as ordered vertex pairs in the triangle definition. 

3.2 TRIANGULATION 

Although other triangulation schemes can be used, we chose 
a recursive loop splitting procedure. Each loop to be trian­
gulated is divided into two halves. The division is along a 
line (i.e., the split line) defined from two non-neighboring 
vertices in the loop. Each new loop is divided again, until 



only three vertices remain in each loop. A loop of three ver­
tices forms a triangle, that may be added to the mesh, and 
tenninates the recursion process. 

Because the loop is non-planar and star-shaped, the loop 
split is evaluated using a split plane. The split plane, as 
shown in the figure below, is the plane orthogonal to the 
average plane that contains the split line. In order to deter­
mine whether the split foons two non-overlapping loops, 
the split plane is used for a half-space comparison. That is, 
if every point in a candidate loop is on one side of the split 
plane, then the two loops do not overlap and the split plane 
is acceptable. Of course, it is easy to create examples where 
this algorithm will fail to produce a successful split. In such 
cases we simply indicate a failure of the triangulation pro­
cess, and do not remove the vertex or surrounding triangle 
from the mesh. 

~Ihllire ~~ 
'::::::::::::" average plane 

.. ;::( 

Typically, however, each loop may be split in more than 
one way. In this case, the best splitting plane must be 
selected. Although many possible measures are available, 
we have been successful using a criterion based on aspect 
ratio. The aspect ratio is defined as the minimum distance of 
the loop vertices to the split plane, divided by the length of 
the split line. The best splitting plane is the one that yields 
the maximum aspect ratio. Constraining this ratio to be 
greater than a specified value,.e.g., 0.1, produces acceptable 

(569K Gouraud shaded triangles) 

75% decunated 
(142K flat shaded triangles) 

meshes. 
Certain special cases may occur during the triangulation 

process. Repeated decimation may produce a simple closed 
surface such as a tetrahedron. Eliminating a vertex in this 
case would modify the topology of the mesh. Another spe­
cial case occurs when "tunnels" or topological holes are 
present in the mesh. The tunnel may eventually be reduced 
to a triangle in cross section. Eliminating a vertex from the 
tunnel boundary then eliminates the tunnel and creates a 
non-manifold situation. 

These cases are treated during the triangulation process. 
As new triangles are created, checks are made to insure that 
duplicate triangles and triangle edges are not created. This 
preserves the topology of the original mesh, since new con­
nections to other parts of the mesh cannot occur. 

4.0 RESULTS 

1\vo different applications illustrate the triangle decimation 
algorithm. Although each application uses a different 
scheme to create an initial mesh, all results were produced 
with the same decimation algorithm. 

4.1 VOLUME MODELING 

The first application applies the decimation algorithm to 
isosurfaces created from medical and industrial computed 
tomography scanners. Marching cubes was run on a 256 by 
256 pixel by 93 slice study. Over 560,000 triangles were 
required to model the bone surface. Earlier work reported a 
triangle reduction strategy that used averaging to reduce the 

75% decimated 
(l42K Gouraud shaded triangles) 

90% decimated 
(57K flat shaded triangles) 

89 



90 

number of triangles on this same data set. Unfortunately, 
averaging applies uniformly to the entire data set, blurring 
high frequency features. The first set of figures shows the 
resulting bone isosurfaces for 0%, 75%, and 90% decima­
tion, using a decimation threshold of 1/5 the voxel dimen­
sion. The next pair of figures shows decimation results for 
an industrial CT data set comprising 300 slices, 512 by 512, 
the largest we have processed to date. The isosurface cre­
ated from the original blade data contains 1.7 million trian­
gles. In fact, we could not render the original model because 
we exceeded the swap space on our graphics hardware. 
Even after decimating 90% of the triangles, the serial num­
ber on the blade dovetail is still evident 

4.2 TERRAIN MODELING 

We applied the decimation algorithm to two digital eleva­
tion data sets: Honolulu, Hawaii and the Mariner Valley on 
Mars. In both examples we generated an initial mesh by cre­
ating two triangles for each uniform quadrilateral element in 
the sampled data. The Honolulu example illustrates the 
polygon savings for models that have large flat areas. First 
we applied a decimation threshold of zero, eliminating over 
30% of the co-planar triangles. Increasing the threshold 
removed 90% of the triangles. The next set of four figures 
shows the resulting 30% and 90% triangulations. Notice the 
transitions from large flat areas to fine detail around the 
shore line. 

The Mars example is an appropriate test because we had 
access to sub-sampled resolution data that could be com­
pared with the decimated models. The data represents the 
western end of the Mariner Valley and is about l000km by 
500km on a side. The last set of figures compares the shaded 
and wireframe models obtained via sub-sampling and deci­
mation. The original model was 480 by 288 samples. The 
sub-sampled data was 240 by 144. After a 77% reduction, 
the decimated model contains fewer triangles, yet shows 
more fine detail around the ridges. 

5.0 REFERENCES 

[1] Baumgart, B. G., "Geometric Modeling for Computer Vision," 
Ph.D. Dissertation, Stanford University, August 1974. 

[2] Bloomenthal, 1., "Polygonalization of Implicit Surfaces," 
Computer Aided Geometric Design, Vol. 5, pp. 341-355, 1988. 

[3] Cline, H. E., Lorensen, W. E., Ludke, S., Crawford, C. R., and 
Teeter, B. C., "Two Algorithms for the Three Dimensional Con­
struction of Tomograms, " Medical Physics, Vol. 15, No.3, pp. 
320-327, June 1988. 

[4] DeHaemer, M. 1., Jr. andZyda, M. J., "Simplification of Objects 
Rendered by Polygonal Approximations," Computers & 
Graphics, Vol. 15, No.2, pp 175-184, 1992. 

[5] Dunham, J.G., "Optimum Uniform Piecewise Linear Approx­
imation of Planar Curves," IEEE Trans. on Pattern Analysis 
and Machine Intelligence, Vol. PAMI-8, No.1,pp. 67-75, Jan­
uary 1986. 

[6] Finnigan, P., Hathaway, A., and Lorensen, W., "Merging CAT 
and FEM," Mechanical Engineering, Vol. 112, No.7, pp. 32-
38, July 1990. 

[7] Fowler, R. J. and Little, J. J., "Automatic Extraction of Irregular 
Network Digital Terrain Models," Computer Graphics, Vol. 
13, No.2, pp' 199-207, August 1979. 

[8] Ihm, I. and Naylor, B., "Piecewise Linear Approximations of 
Digitized Space Curves with Applications," in Scientific VlSU-

alization o/Physical Phenomena, pp. 545-569, Springer-Ver­
lag, June 1991. 

[9] Kalvin, A. D., Cutting, C. B., Haddad, B., and Noz, M. E., 
"Constructing Topologically Connected Surfaces for the Com­
prehensive Analysis of 3D Medical Structures," SPIE Image 
Processing, Vol. 1445, pp. 247-258, 1991. 

[10] Lorensen, W. E. and Cline, H. E., "Marching Cubes: A High 
Resolution 3D Surface Construction Algorithm," Computer 
Graphics, Vol. 21, No.3, pp. 163-169, July 1987. 

[11] Miller, J. V., Breen, D. E., Lorensen, W. E., O'Bara, R. M., and 
Womy, M. 1., "Geometrically Deformed Models: A Method 
for Extracting Closed Geometric Models from Volume Data," 
Computer Graphics, Vol. 25, No.3, July 1991. 

[12] Preparata, F. P. and Shamos, M. I., Computational Geometry, 
Springer-Verlag, 1985. 

[13] Schmitt, F. J., Barsky, B. A., and Du, W., "An Adaptive Sub­
division Method for Surface-Fitting from Sampled Data," 
Computer Graphics, Vol. 20, No.4, pp.179-188, August 1986. 

[14] Schroeder, W. J., "Geometric Triangulations: With Application 
to Fully Automatic 3D Mesh Generation," PhD Dissertation, 
Rensselaer Polytechnic Institute, May 1991. 

[15] Terzopoulos, D. and Fleischer, K., "Deformable Models," The 
VISual Computer, Vol. 4, pp. 306-311, 1988. 

[16] Turk. G., "Re-Tiling of Polygonal Surfaces," Computer Graph­
ics, Vol. 26, No.3, July 1992. 

[17] Weiler, K., "Edge-Based Data Structures for Solid Modeling 
in Curved-Surface Environments," IEEE Computer Graphics 
and Applications, Vol. 5, No. I, pp. 21-40, January 1985. 

75% decimated 
(425K flat shaded triangles) 

90% decimated 
(170K flat shaded triangles) 



32% decimated 
(276K flat shaded triangles) 

90% decimated 
(40K Gouraud shaded triangles) 

(68K Gouraud shaded triangles) 

77% decimated 
(62K Gouraud shaded triangles) 

(shore line detail) 

90% decimated 
(40K wireframe) 

(68K wireframe) 

(62K wirefrmae) 

91 



VISUALIZATION OF VOLCANIC ASH CLOUDS 

Mitchell Roth 
Arctic Region Supercomputing Center 

University of Alaska 
Fairbanks, AK 99775 
roth@acad5.alaska.edu 

Rick Guritz 
Alaska Synthetic Aperture Radar Facility 

University of Alaska 
Fairbanks, AK 99775 

rguritz@iias.images.alaska.edu 

ABSTRACT 

Ash clouds resulting from volcanic eruptions pose a serious hazard to aviation safety. In Alaska alone, there are over 40 active 
volcanoes whose eruptions may affect more than 40,000 flights using the great circle polar routes each year. Anchorage International 
Airport, a hub for flights refueling between Europe and Asia, has been closed due to volcanic ash on several occasions in recent years. 
The clouds are especially problematic because they are invisible to radar and nearly impossible to distinguish from weather clouds. The 
Arctic Region Supercomputing Center and the Alaska Volcano Observatory have used AVS to develop a system for predicting and 
visualizing the movement of volcanic ash clouds when an eruption occurs. Based on eruption parameters obtained from geophysical 
instruments and meteorological data, a model was developed to predict the movement of the ash particles over a 72 hour period. The 
output from the model is combined with a digital elevation model to produce a realistic view of the ash cloud, which may be examined 
interactively from any desired point of view at any time during the prediction period. This paper describes the visualization techniques 
employed in the system and includes a video animation of the'Mount Redoubt eruption on December 15 that caused complete engine 
failure on a 747 passenger jet when it entered the ash cloud. 

1. Introduction 

Alaska is situated on the northern boundary of the Pacific Rim. 
Home to the highest mountains in North America, the mountain 
ranges of Alaska contain over 50 active volcanoes. In the past 
200 years most of Alaska's active volcanoes have erupted at least 
once. Alaska is a polar crossroads where aircraft traverse the great 
circle airways between Asia, Europe and North America. 
Volcanic eruptions in Alaska and the resulting airborne ash 
clouds pose a significant hazard to the more than 40,000 
transpolar flights each year. 

The ash clouds created by volcanic eruptions are invisible to radar 
and are often concealed by weather clouds. This paper describes a 
system developed by the Alaska Volcano Observatory and the 
Arctic Region Supercomputing Center for predicting the 
movement of ash clouds. Using meteorological and geophysical 
data from volcanic eruptions, a supercomputer model provides 
predictions of ash cloud movements for up to 72 hours. The 
A VS visualization system is used to control the execution of the 
ash cloud model and to display the model output in three 
dimensional form showing the location of the ash cloud over a 
digital terrain model. 

92 

Eruptions of Mount Redoubt on the morning of December 15, 
1989, sent ash particles more than 40,000 feet into the 
atmosphere. On the same day, a Boeing 747 experienced 
complete engine failure when it penetrated the ash cloud. The ash 
cloud prediction system was used to simulate this eruption and to 
produce an animated flyby of Mount Redoubt during a 12 hour 
period of the December 15 eruptions including the encounter of 
the 747 jetliner with the ash cloud. The animation combines the 
motion of the viewer with the time evolution of the ash cloud 
above a digital terrain model. 

2. Ash Plume Model 

The ash cloud visualization is based on the output of a model 
developed by Hiroshi Tanaka of the Geophysical Institute of the 
University of Alaska and Tsukuba University, Japan. Using 
meteorological data and eruption parameters for input, the model 
predicts the density of volcanic ash particles in the abnosphere as 
a function of time. The three dimensional Lagrangian form of the 
diffusion equation is employed to model particle diffusion, taking 
into account the size distribution of the ash particles and 
gravitational settling described by Stokes' law. Details of the 
model are given in Tanaka [2] [3]. 



The meteorological data required are winds in the upper 
~tmosphere. These are obtained from UCAR Unidata in NetCDF 
format. Unidata winds are interpolated to observed conditions on 
12 hour intervals. Global circulation models are used to provide 
up to 72 hour predictions at 6 hour intervals. 

The eruption parameters for the model include the geographical 
location of the volcano, the time and duration of the event, 
altitude of the plume, particle density, and particle density 
distribution. 

The model has been implemented in both Sun and Cray 
environments. An A VS module was created for the Cray version 
which allows the model to be controlled interactively from an 
A VS network. In this version, the A VS module executes the 
model on the Cray, reads the resulting output file and creates a 
3D A VS scalar field representing the particle densities at each 
time step. 

The raw output from the model for each time step consists of a 
list of particles with an (x,y,z) coordinate for each particle. The 
AVS module reads the particle data and increments the particle 
counts for the cells formed by an array indexed over (x,y,z). We 
chose a resolution of 150 x 150 x 50 for the particle density 
array, which equals 1.1 million data points at each solution point 
in time. For the video animation, we chose to run the model 
with a time step of 5 minutes. For 13 hours of simulated time, 
the model produced 162 plumes, amounting to approximately 
730 MB of integer valued volume data. 

3. Ash Cloud Visualization 

The ash cloud is rendered as an isosurface with a brown color 
approximating volcanic ash. The rendering obtained through this 
technique gives the viewer a visual effect showing the boundaries 
of the ash cloud. Details of the cloud shape are highlighted 
through lighting effects and, when viewed on a computer 
workstation, the resulting geometry can be manipulated 
interactively to view the ash cloud from any desired direction. 

Figure 1. A VS plume isosurface network 

At any point in time, the particle densities in the ash cloud are 
represented by the values in a 150 x 150 x 50 element integer 
array. The limits of the cloud may be observed using the 
isosurface module in the network shown in Figure 1 with the 
isosurface level set equal to 1. As the cloud disperses, the 
particle concentrations in the array decrease and holes and isolated 
cells begin to appear in the isosurface around the edges of the 
plume where the density is between zero and one particle. These 
effects are readily apparent in the plume shown in Figure 2 and 
are especially noticeable in a time animation of the plume 
evolution. To create a more uniform cloud for the video 
animation, without increasing the overall particle counts, the 
density array was low pass filtered by an inverse square kernel 
before creating the isosurface. An example of a filtered plume 
created by this technique is shown in Figure 8. 

Figure 2. Unfiltered plume data displayed as an isosurface. 

4. Plume Animation 

The plume model must use time steps of 5 minutes or greater 
due to limitations of the model. Plumes that are generated at 5 
minute intervals may be displayed to create a flip chart animation 
of the time evolution of the cloud. However, the changes in the 
plume over a 5 minute interval can be fairly dramatic and shorter 
time intervals are required to create the effect of a smoothly 
evolving cloud. To accomplish this without generating 
additional plume volumes we interpolate between successive 
plume volumes. Using the field math module, we implemented 
linear interpolation between plume volumes in the network 
shown in Figure 3. 

93 



Figure 3. A VS interpolation network. 

The linear interpolation fonnula is: 

(1) 

where Pi is the plume volume at time step i and t is time. The 
difference tenn in (1) is fonned in the upper field math module. 
The lower field math module sums its inputs. Nonnally, a 
separate field math module would be required to perfonn the 
multiplication by 1. However, it is possible to multiply the 
output port of a field math module by a constant value when the 
network is executed from a CLI script and this is the approach 
we used to create the video animation of the eruption. If it is 
desired to set the interpolation parameter interactively, it is 
necessary to insert a third field math module to perfonn the 
multiplication on the output of the upper module. This can be 
an extremely effective device for producing smooth time 
animation of discrete data sets in conjunction with the A VS 
Animator module. 

One additional animation effect was introduced to improve the 
appearance of the plume at the beginning of the eruption. The 
plume model assumes that the plume reaches the specified 
eruption height instantaneously. Thus, the plume model for the 
rrrst time step produces a cylindrical isosurface of unifonn 
particle densities above the site of the eruption. To create the 
appearance of a cloud initially rising from the ground, we defined 
an artificial plume for time O. The time 0 plume isosurface 
consists of an inverted cone of negative plume densities 
centered over the eruption coordinates. The top of the plume 
volume contains the most negative density values. When this 
plume volume is interpolated with the model plume from time 
step 1, the resulting plume rises from the ground and reaches the 
full eruption height at t=l. 

5. Terrain Visualization 

The geographical region for this visualization study is an area in 
south-central Alaska which lies between 141 0 

- 1600 west 
longitude and 600 

- 670 north latitude. Features in the study area 
include Mount Redoubt, Mount McKinley, the Alaska Range, 
Cook Inlet and the cities of Anchorage, Fairbanks, and Valdez. 

94 

The comers of the region define a Cartesian coordinate system 
and the extents of the volcano plume data must be adjusted to 
obtain the correct registration of the plume data in relation to the 
terrain. The terrain features are based on topographic data 
obtained from the US Geological Survey with a grid spacing of 
approximately 90 meters. This grid was much too large to 
process at the original resolution and was downsized to a 1426 x 
1051 element array of terrain elevations, which corresponds to a 
grid size of approximately 112 mile. As shown in Figure 4, the 
terrain data were read in field format and were converted to a 
geometry using the field to mesh module. We included a 
downsize module 

Figure 4. A VS terrain network. 

ahead of field to mesh because even the 1426 x 1051 terrain 
exceeded available memory on all but our largest machines. For 
prototyping and animation design, we typically downsized by 
factors of 2 to 4 in order to speed up the terrain rendering. 

The colors of the terrain are set in the generate colormap 
module according to elevation of the terrain and were chosen to 
approximate ground cover during the fall season in Alaska. The 
vertical scale of the terrain was exaggerated by a factor of 60 to 
better emphasize the topography. 

The resulting terrain is shown Figure 5 with labels that were 
added using image processing techniques. To create the global 
zoom sequence in the introduction to the video animation, this 
image was used as a texture map that was overlaid onto a lower 
resolution terrain model for the entire state of Alaska. This 
technique also allowed the study area to be highlighted in such a 
way as to create a smooth transition into the animation sequence. 



Figure 5. Study area with texture mapped labels. 

6. Flight Path Visualization 

The flight path of the jetliner in the animation was produced by 
applying the tube module to a polyline geometry obtained 
through read geom as shown in Figure 6. The animation of the 
tube was performed by a simple program which takes as its input 
a time dependent cubic spline. The program evaluates the spline 
at specified points to create a polyline geometry for read geom. 
Each new point added to the polyline causes a new segment of 
the flight path to be generated by tube. In Figure 7, the entire 
flight path spline function is displayed. Four separate tube 
modules were employed to allow the flight path segments to be 
colored green, red, yellow, and green during the engine failure and 
restart sequence. 

Figure 6. A VS flight path network. 

The path of the jetliner is based on flight recorder data obtained 
from the Federal Aviation Administration. The flight path was 
modeled using three dimensional time dependent cubic splines. 
The technique for deriving and manipulating the spline functions 
is so powerful that we created a new module called the Spline 
Animator for this purpose. The details of this module are 
described in a paper by Astley [1]. A similar technique is used to 
control the camera motion required for the flyby in the video 
animation. 

By combining the jetliner flight path with the animation of the 
ash plume described earlier, a simulated encounter of the jet with 
the ash cloud can be studied in an animated sequence. The 
resulting simulation provides valuable information about the 
accuracy of. the plume model. Because ash plumes are invisible 
to radar and may be hidden from satellites by weather clouds, it is 
often very difficult to determine the exact position and extent of 
an ash cloud from direct observations. However, when a jetliner 
penetrates an ash cloud, the effects are immediate and 
unmistakable and the aircraft position is usually known rather 
accurately. This was the case during the December 15 encounter. 

Thus, by comparing the intersection point of the jetliner flight 
path with the plume model to the point of intersection with the 
actual plume, one can determine if the leading edge of the plume 
model is in the correct position. Both the plume model and the 
flight path must be correctly co-registered to the terrain data in 
order to perform such a test. Using standard transformations 
between latitude-longitude and x-y coordinates for the terrain, we 
calculated the appropriate coordinate transformations for the 
plume model and jet flight path. The frrst time the animation 

95 



was run we were quite amazed to observe the flight path tum red, 
denoting engine failure, at precisely the point where the flight 
. path encountered the leading edge of the modeled plume. 

Figure 7. Flight path geometry created by spline animator. 

Apparently this was one of those rare times when we got 
everything right. The fact that the aircraft position is well 
known at all times, and that it encounters the ash cloud at the 
correct titlle and place lends strong support for the correctness of 
the model. Figure 8 shows a frame from the video animation at 
~e time when the jetliner landed in Anchorage. The ash cloud in 
this image is drifting from left to right and away from the 
viewer. 

7. Satellite Image Comparison 

Ash clouds can often be detected in A VHRR satellite images. 
For the December 15 events, only one image recorded at 1:27pm 
AST was available. At the time of this image most of the study 
area was blanketed by clouds. Nevertheless, certain atmospheric 
features become visible when the image is subjected to 
enhancement, as shown in Figure 9. A north-south frontal 
system is moving northeasterly from the left side of the image. 
To the left of the front, the sky is generally clear and surface 
features are visible. To the right of the front, the sky is 
completely overcast and no surface features are visible. One 
prominent cloud feature is a mountain wave created by Mount 
McKinley. This shows up as a long plume moving in a north­
northeasterly direction from Mount McKinley and is consistent 
with upper altitude winds on this date. 

Figure 8. Flight path through ash plume. 

96 



Figure 9. Enhanced A VHRR satellite image taken at 1:27pm AST. 

Figure 10. Position of simulated plume at 1:30pm AST. 

The satellite image was enhanced in a manner which causes ash 
clouds to appear black. There is clearly a dark plume extending 
from Mount Redoubt near the lower edge of the image to the 
northeast and ending in the vicinity of Anchorage. The size of 

this plume indicates that it is less than an hour old. Thus, it 
could not be the source of the plume which the jet encountered 
approximately 2 hours before this image was taken. 

97 



There are additional black areas in the upper right quadrant of the 
image which are believed to have originated with the 10:15am 

. eruption. These are the clouds which the jet is believed to have 
penetrated approximately 2 hours before this image was taken. 
The image has been annotated with the jetliner flight path 
entering in the top center of the image and proceeding from top 
to bottom in the center of the image. The ash cloud encounter 
occurred at the point where the flight path reverses course to the 
north and east. However, the satellite image does not show any 
ash clouds remaining in the vicinity of the flight path by the 
time of this image. 

When the satellite image is compared with the plume model for 
the same time period, shown at approximately the same scale in 
Figure 10, a difference in the size of the ash cloud is readily 
apparent. While the leading edge of the simulated plume 
stretching to the northeast is located in approximately the same 
position as the dark clouds in the satellite image, the cloud from 
the simulated plume is much longer. The length of the 
simulated plume is controlled by the duration of the eruption, 
which was 40 minutes. 

Two explanations for the differences have been proposed. The 
first is that the length of the eruption was determined from 
seismic data. Seismicity does not necessarily imply the 
emission of ash and therefore the actual ash emission time may 
have been less than 40 minutes. The second possibility is that 
the trailing end of the ash cloud may be invisible in the satellite 
image due to cloud cover. It is worth noting that the ash cloud 
signatures in this satellite image are extremely weak compared to 
cloudless images. In studies of the few other eruptions where 
clear images were available, the ash clouds are unmistakable in 
the satellite image and the model showed excellent agreement 
with the satellite data. 

8. Flyby Animation 

One of the great advantages of three dimensional animation 
methods is the ability to move around in a simulated 3D 
environment interactively, or to create a programmed tour or 
flyby. For the ash cloud visualization, we wanted to follow the 
moving ash clouds in relation to the terrain and to look at them 
from different distances and different directions. A VS allows 
fully interactive manipulation of the views of the ash cloud, but 
the rendering process is too slow (minutes per frame) to allow 
for realtime animation. For this reason we decided to create a 
flyby of the events on December 15 by combining camera 
animation with the time dependent animations of the plume and 
jet flight path. 

In our initial attempts, we used the A VS Animator module and 
found that it worked well for the linear time dependent portions 
of the animation. However, the camera animation was a different 
story altogether because camera motion in a flyby situation is 
seldom linear. When we attempted to use the Animator in its 
"smooth" mode, we found it was only possible to control the 
camera accurately when we introduced dozens of key frames in 
order to tightly constrain the frame acceleration introduced by the 

98 

sinusoidal interpolation technique used in the Animator. 
Having to use a large number of key frames makes it very time 
consuming to construct a flight path, because changing the flight 
path requires all the key frames near the change to be modified in 
a consistent manner. We eventually realized that a minor 
extension to the flight path spline algorithm already developed 
could easily provide the desired camera coordinates. In essence, 
the camera coordinates could be determined from the flight path 
of the viewer in the same manner that we computed the flight 
path of the jetliner. 

The fIrSt version of the Spline Animator used a text file for 
input which contained the key frame information. The output 
was a sequence of camera coordinates which were edited into a 
CLI script which could be played back interactively or in batch 
mode. In this fust effort we were able to define a flight path 
using about a half dozen key frames in place of the dozens 
required by the A VS Animator and the smoothness and 
predictability of results were far superior. After the video 
animation of the eruption visualization was completed, a second 
version of the Spline Animator was created with a Motif 
interface and a module is now available for use in A VS 
networks. For more information about this module, the reader is 
referred to Astley [1]. 

9. Conclusions 

An ash plume modeling and prediction system has been 
developed using A VS for visualization and a Cray supercomputer 
for model computations. A simulation of the December 15 
encounter with ash clouds from Mount Redoubt by a jetliner 
provides strong support for the accuracy of the model. Although 
the satellite data for this event are relatively limited, agreement 
of the model with satellite data for other events is very good. 
The animated visualization of the eruption which was produced 
using A VS demonstrates that A VS is an extremely effective tool 
for developing visualizations and animations. The Spline 
Animator module was developed to perform flybys and may be 
used to construct animated curves or flight paths in 3D. 

10. Acknowledgments 

The eruption visualization of Mount Redoubt Volcano was 
produced in a collaborative effort by the University of Alaska 
Geophysical Institute and the Arctic Region Supercomputing 
Center. Special thanks are due Ken Dean of the Alaska Volcano 
Observatory and to Mark Astley and Greg Johnson of ARSC. 

This project was supported by the Strategic Environmental 
Research and Development Program (SERDP) under the 
sponsorship of the Army Corps of Engineers Waterways 
Experiment Station. 



11. References 

[1] Astley, M. and M. Roth, Spline Animator: Smooth camera 
motion for AVS animations, AVS '94 Conference 
Proceedings, May 1994. 

[2] Tanaka, H., K.G. Dean, and S. Akasofu, Predicti()n of the 
movement of volcanic ash clouds, submitted to EOS 
Transactions, Am. Geophys. Union, Dec. 1992. 

[3] Tanaka, H., Development of a prediction scheme for the 
volcanic ash fall from Redoubt Volcano, First International 
Symposium on Volcanic Ash and Aviation Safety, Seattle, 
Washington, July 8-12 1991, U. S. Geological Survey 
Circular 165, 58 pp. 

99 



100 

A Graphical User Interface for Networked 
Volume Rendering on the CRAY C90 

Allan Snavely 
T. Todd Elvins 

San Diego Supercomputer Center 

Abstract 

SDSC_NetV is a networked volume rendering package developed at 
the San Diego Supercomputer Center. Its purpose is to ofRoad compu­
tationally intensive aspects of three-dimensional data image rendering 
to appropriate rendering engines. This means that SDSC_NetV users 
can transparently obtain network-based imaging capabilities that may 
not be available to them locally. An image that might take minutes to 
render on a desktop computer can be rendered in seconds on an SDSC 
rendering engine. The SDSC-.NetV graphical user interface (GUI), 
a Motif-based application developed using a commercially available 
tool TeleUSE, was recently ported to SDSC's CRAY C90. Because 
TeleUSE is not available on the C90, the interface was developed on 
a SUN SPARC workstation and ported to the C90. Now, if users 
have an account on the C90, they can use SDSC-.NetV directly on the 
CRAY platform. All that is required is a terminal running XWindows, 
such as a Macintosh running MacX, the SDSC_NetV graphical user 
interface runs on the C90 and displays on the terminal. 

1 Introduction 

Volume rendering is the process of generating a two-dimensional image of 
a three-dimensional data-set. The inputs are a data-set representing either 
a real world object or a theoretical model, and a set of parameters such 
as viewing angle, substance opacities, substance color ranges and lighting 



values. The output is an image which represents the data as viewed under 
these constraints. The user of a volume rendering program will want to be 
able to input these parameters in an easy fashion and to get images back 
quickly. 

The task of generating the image is usually compute intensive. Three­
dimensional objects are represented as three-dimensional arrays where each 
cell of the array corresponds to a sample value for the object at a point in 
space. The size of the array depends on the size of the object and the sam­
pling rate. Data collected from tomographic devices such as CT scanners 
are often 256*256*256 real numbers. Grids with 1024 sample points per di­
mension are becoming common. As sampling rates increase due to improved 
technology, the data sizes will grow proportionally. Data generated from a 
theoretical model can also be very large. 

There are several algorithms that traverse such sample point grids to 
generate images. Two of the most popular are splatting and ray-casting. 
Both of these involve visiting each cell in the array and building up an image 
as the array is traversed. Without going into the details of the algorithms, 
it will be apparent that their theoretical time complexity is order 

O(Nl * N2 * N3 ) 

where Ni is the size of the ith dimension. When large arrays are considered, 
the actual run time on a workstation class CPU may be quite long. The CPU 
speed and memory limitations of the typical scientific workstation make it 
unsuitable for interactive speed rendering. 

If we were to characterize an ideal rendering machine, it would be; inex­
pensive, so everyone could have one; very fast to allow interactive exploration 
of large three-dimensional datasets; and it would sit on the desktop to allow 
researchers to do their visualizations without traveling. 

SDSC~etV, a networked volume rendering tool developed at the San 
Diego Supercomputer Center, addresses the needs of researchers who have 
limited desktop power. SDSC_Net V distributes CPU intensive jobs to the 
appropriate rendering resources. At SDSC these resources include fast ren­
dering engines on the machine floor. Researchers access these resources via a 
graphical user interface (GUI) running on their desktop machines. The GUI 
allows the researcher to enter viewing parameters and color classifications in 
an easy, intuitive way. The GUI also presents the image when the result is 
sent back over the network. 

101 



102 

The QUI itself is quite powerful. It allows the user to interactively exam­
ine slices of the data-set and to do substance property classification without 
requesting services via the network. Up to eight data ranges can each be 
associated with a color and opacity values. 

Once the user has set all the parameters to his/her satisfaction, a render 
request causes the render job to be spawned on the appropriate rendering 
engine at SDSC. The optimized renderer subsequently sends images to the 
QUI. 

The design of such a network GUI is a significant software engineering 
task, actually as complicated as the coding of the rendering algorithms. Pro­
grammers can write GUls for X-window based applications in raw X/Motif 
or with a QUI building utility. The second approach is the most reasonable 
one when the envisioned GUI is large and complex. 

2 A e90 GUI 

Recently, the SDSC_NetV QUI was ported to the SDSC CRAY C90. The 
goal was to extend the availability of SDSC_NetV. Previously, the QUI only 
ran on workstation class platforms. Specifically, Sun SPARC, SGI, DEC and 
DEC Alpha workstations. The porting challenge proved to be significant 
due to the fact that we needed to preserve I/O compatibility between the 
different platforms. Also, there is no GUI builder program on the SDSC 
C90. An examination of SDSC_N et V's architecture highlights the need for 
I/O compatibility. SDSC_NetV is a distributed program. The QUI usually 
runs on the user's workstation. This first component sends requests across 
the network to a second component, running on an SDSC server which ac­
cepts incoming requests for render tasks, and delegates these tasks to a third 
class of machines, the rendering engines. This means that any time a new 
architecture is added to the mix, communication protocols between the var­
ious machines must be established. Typically, this sort of problem is solved 
by writing socket level code which reads and writes ASCII data between the 
machines. Communication via a more efficient and compact binary protocol 
requires each machine to determine what type of architecture is writing to its 
port and decoding the input based on what it knows about the sender's data 
representations. Among a network of heterogeneous machines, establishing 
all the correct protocols can become a big programming job. 



3 A Better Solution 

The GUI for SDSC_NetV was developed on workstation platforms using 
TeleUse. TeleUse is a commercially available aUI builder that allows one 
to quickly define widget hierarchies and call-back functions. A GUI that 
might take several days to develop in raw X/Motif can be implemented in 
a few hours using Tele Use. Tele U se generates source code in C with calls 
to the X-Motif library. To get SDSC~et V's GUI running on the C90, we 
ported the TeleUse generated source code and compiled it. Although this 
source code compiled almost without modification, the object produced was 
not executable because of pointer arithmetic unsuitable to the C90's 64 bit 
word. Programmers in C on 32 bit word machines often treat addresses and 
integers interchangeably. Of course this will not work on a machine with an 
address word length different from the integer representation length. These 
sorts of problems were easily corrected. 

As described in the previous section, the GUI has to communicate across 
the network to request a render. The GUI has to be I/O compatible with the 
SDSC machines in order for this communication to take place. The problem 
of I/O compatibility is one that has been encountered before at SDSC. In 
response to this problem, we have built a library called the SDSC Binary 
I/O library for compatible I/O between heterogeneous architectures. A net­
work version allows the data to be written across the network with a call to 
SN et Write. This results in conversion of the data representation the appro­
priate format for the target architecture. When the data are read in at the 
other end, using SN etRead, they are reassembled into the correct represen­
tation for the receiver. SDSC~etV and SDSC Binary I/O are available via 
ftp from ftp.sdsc.edu. 

Once the SDSC_Net V GUI was linked with the SDSC Binary I/O library, 
a more subtle problem arose. The main window widget was responsive to 
user input, but none of the sub-windows brought up in response would take 
input. Eventually it was discovered that an X application structured as 
groups of cooperating top level widgets would not function. The X-Motif 
library installed on the C90 expected one widget to be the designated top 
level manager. The exact reason for this remains unclear as the version of X 
on the CRAY is the same as the version on the workstations. Once this fact 
was discovered, the aUI was restructured on our development workstations 
and re-ported to the C90. With the new widget hierarchy the aUI worked 

103 



104 

fine. 
Considering the description of rendering given in the introduction, we 

can form an idea of the attributes for an ideal rendering machine. It would 
be very fast to allow interactive exploration of large three-dimensional data 
sets. It would sit on the desktop to allow researchers to do their visualiza­
tions without traveling. It would be inexpensive so everyone could have one. 
SDSC..Net V gives many CRAY users a virtual ideal machine. 

4 Results 

The goal of SDSC_Net V is to provide cutting edge rendering technology to 
the researcher on the desktop. Porting SDSC..NetV to the C90 has helped 
to realize this goal. The GUI runs quickly on the C90. Graphically inten­
sive operations such as slice examination and classification run at interactive 
speed. The availability of SDSC_NetV has been extended. Now a user with 
an account on the C90 can display the GUIon a Mac or even an X terminal. 
The performance of the GUI over the network depends on the speed of the 
the link. However, the basic functions of setting parameters and displaying 
images are now available on a platform where such functionality was not 
available before. SDSC_Net V is used by scientists in a number of disciplines. 

5 Images 

Art Winfree, a researcher at The University of Arizona, is using SDSC..NetV 
to gain intuition into stability in chemically reactive environments. Figure 
1. shows the main window of the SDSC_NetV GUI with an image of a 
theoretical model known as an equal diffusion meander vortex. It represents 
a compact organizing center in a chemically excitable medium (or really, a 
math model thereof.) The main feature is that all substances involved diffuse 
at the same rate. The organizing center, in this case, is a pair of linked rings, 
which you can see only as the edges of iso-value fronts you colored with the 
Classifier. The key thing about this, besides equal diffusion, is that the rings 
are not stationary, but are forever wiggling in a way discovered only a couple 
years ago, called meander. Despite their endless writhing, which precludes 
adjective stable, the rings and their linkage persist quite stably. A picture 



allows reasoning about such structures which may not be apparent from an 
equational model. 

6 Conclusion 

The accessibility of the C90 and the versatility of SDSC-NetV work together 
to provide a state-of-the-art tool for scientists involved in a wide range of 
disciplines. Visualization of data representing natural phenomena and theo­
retical models is now available on more scientist's desk tops. 

Acknowledgements 

This work was supported by the National Science Foundation under grant 
ASC8902825 to the San Diego Supercomputer Center. Additional support 
was provided by the State of California and industrial partners. 

Thanks to the network volume rendering enthusiasts at SDSC, in partic­
ular, Mike Bailey, Max Pazirandeh, Tricia Koszycki, and the members of the 
visualization technology group. 

105 



Figure 1: An Equal Diffusion Meander Vortex. 

106 



Management 





HETEROGENOUS COMPUTING USING THE CRA Y Y-MP AND T3D 

Bob Carruthers 

Cray Research (UK) Ltd. 
Bracknell, England 

Introduction 

Two applications which use a CRAY Y-MP and a T3D in a 
heterogenous environment will be described. The first 
application is a chemistry code that was ported from the 
Y-MP to the T3D, and then distributed between the two 
machines. The combined solution using both machines ran 
the test cases faster than either the Y -MP or T3D 
separately. 

The second application is slightly different, since the 
complete problem could not be run on the T3D because of 
memory limitations imposed by the design of the code 
and the strategy used to generate a parallel version. 
Distributing the problem across the Y -MP and T3D 
allowed the application to run, and produced a time 
faster than that on the Y -MP. 

Both these applications were encountered as part of two 
benchmark efforts, and thus show how real user problems 
can be adapted to heterogenous computing. 

Application 1 

The first application is a large chemistry code, that is 
regularly used in a production environment, and runs on 
both CRAY Y-MP's and on several MPP platforms. The 
version that was included in the benchmark used PVM for 
message passing, and was initially run on a Y-MP in this 
form to validate the code. Following this, the code was 
ported to the T3D, and various optimisations to the I/O 
and message passing implemented to improve the 
performance. In this form, the T3D ran the code 
considerably faster than the Y-MP. 

As part of the benchmark activity, we were looking for 
ways to improve the performance of the code, and to 
demonstrate the benefits of the Cray Research 
Heterogenous Computing Environment. This particular 
code had sections that were not well suited to an MPP, but 
were known to run well on a vector machine. With this in 
mind, a strategy was evolved to do the well vectorised 
part on the Y -MP, and leave the rest on the T3D were it 
could take advantage of the MPP architecture. The 
strategy for this is outlined below. 

First, a master control program had to be written that 
executed on the Y-MP. This was responsible for 
establishing contact with PVM, reading in the number of 
PE's to be used on the T3D, and then spawning the 
necessary tasks on the T3D via PVM. The Fortran code for 
this part of the operation is shown below: 

c 

c 

c 

c 

c 

c 

2000 

c 

c 

include ' .. /sizes' 

common/ wordlen/ nrbyte,nibyte 
common/pvm/npvm,ipvm 

print *,' Input the Number of Processes Required " 
2 'on the CRA Y T3D' 

2 

read(*, *)npvm 

call pvm_controlO 
stop 'End of Solver' 
end 

subroutine pvm_controlO 

include ' .. /sizes' 
include ' .. /fpvm3.h' 
include ' .. ljrc_buf_sizes' 

common/wordlen/ nrbyte,nibyte 
common/pvm/npvm,ipvm 
character*8 mess_buff 
dimension itids(npvm) 

call pvmfmytid(itid) 
if(jrc_debug.eq.l) then 

write(O,*), , 
write(0,2000) itid 
format(,TID of SOLVER Process on the " 
'CRAY Y-MP is ',z16) 

end if 

call pvmfs pawn("a.out", PvmTaskArch, 
2 'CRAY', npvm, itids,numt) 

if(numt.ne.npvm) then 
write(O,*),Response from PVMFSPAWN', 

2 'was ',numt,' rather than ',npvm 

Copyright (C) 1994. Cray Research Inc. All rights reserved. 

109 



1000 

2100 
2 

stop 'Error in PVMFSPAWN' 
else 

do i=l,npvm 
if(itids(i).ne.1) then 

i tid_peO=itids(i) 
ntid_peO=i 
goto 1000 

endif 
end do 
write(O,*)'All T3D TID"s are 1 - PE 0 is absent' 
stop 'TID Error' 
continue 
if(jrc_debug.eq.1) write(O,2100) itid_peO 
format(,T3D Initialised by SOLVER - PE 0 " 
, has TID ',z17) 

endif 

The main program begins by asking the user for the 
number of PE's to be used on the T3D, and then calls the 
main control routine, pvm_controI. This enables the 
latter routine to accurately dimension the array 'itids' 
which holds the PVM Task Identifiers (TID's) of the PE's 
on the T3D. 

This routine finds the TID of the Y -MP process and prints 
it out, and then spawns the T3D processes. The variable 
'numt' contains the number of processes actually spawned 
by PVM, which is checked against the number requested. 
The final part of the set up procedure involves the Y-MP 
searching for the TID of PE 0 on the T3D. By default only 
PE 0 can communicate with the Y-MP, and PE's that 
cannot communicate with the Y-MP have their TID's set 
to unity. This can be modified if required by an 
environment variable. 

The control routine then enters a state where it waits for 
the T3D to send it work to do. 

c 
1100 continue 

c 

c 

110 

call pvmfrecv(itid_peO, 9971, ibufid) 
call pvmfunpack(BYTE1, mess_buff, 8, I, info) 

if(jrc_debug.eq.1) write(O,*)'SOLVER " 
2 'Received Message '" ,mess_buff,'" from PE 0' 

if(mess_buff(1:5).eq.'Solve') then 
call bob_do_work(itid_peO, jrc_debug) 

else if(mess_buff(1:8).eq.'Finished') then 
return 

else 
write(O,*),Illegal Message Found in " 

2 'SOLVER - ',mess_buff 
stop 'Protocol Error' 

end if 

goto 1100 
end 

The control routine can interpret two messages from the 
T3D - 'Solve' indicating that it should do some work, and 
'Finished' indicating that the T3D has finished its work, 
and that the Y -MP process should clean up and terminate. 

Further data is exchanged between the T3D and Y-MP 
via both PVM and the UNICOS file system. Control 
parameters are sent via PVM, while the main data array 
is sent over as a file. The Y -MP is responsible for 
performing the necessary data format conversion from 
IEEE to Cray Research Floating Point format, and 
performing the reverse operation when it has finished 
computing and wishes to return information back to the 
T3D. This is done using IEG2CRAY and CRAY2IEG 
respectively with conversion type 8. 

While the Y-MP is working, the T3D enters a wait loop 
similar to that on the Y -MP, and waits for the signal 
'Done' from the Y-MP. At this point it picks up the new 
data file. Note that both the T3D and the Y -MP must 
have set up their data files before signalling that there 
is work to do. 

The final pOint to remember is that any task spawned by 
by PVM will use the directory pointed to by the shell . 
variable $HOME in which to create and search for files. 
If the Y-MP executes in any other directory than $HOME, 
the exchange of files with the T3D will not take place. 
This can be controlled by changing $HOME prior to 
starting the Y -MP process so that it points to the correct 
directory while the tasks are running. 

This heterogenous approach enabled the time for the 
complete job to be reduced, so that it was less than either 
the time on the Y -MP or the T3D. 

Application 2 

Like the first code, this application is a large user 
program that regularly runs on a Y-MP. The owners of the 
code funded one of the universities in the UK to produce a 
parallel, distributed version which could be run on a 
group of workstations. 

We started to look at this version of the code when we 
received a benchmark containing it. The initial part of 
the work consisted of converting the code from its 32-bit 
version using a local message passing language to a 64-bit 
version that used' PVM. This PVM version was 
eventually ported to both the Y-MP and the T3D, and ran 
the small test cases provided. 

However, the design of the program and the parallel 



implementation constrained the maximum size problem 
that could be run on the T3D, and meant that the large 
problems of greatest interest could not be run. The 
underlying method of locating data in memory used the 
"standard" Fortran technique of allocating most of the 
large data arrays in one large common block via a memory 
manager. The strategy to generate a parallel version of 
the code relied on one master processor doing all the input 
and data set up, and then distributing the data to the 
other processors immediately before running the parallel, 
compute-intensive part of the code. Similarly at the end, 
the results were collected back into the master processor 
for output and termination processing. This meant that 
the master processor needed sufficient space to store all 
the data at the start and the end of the compute phase. 
For the problems of interest, this space is typically over 
30 Mwords on the Y-MP, well beyond the capacity of 
single PE on the T3D. 

The strategy to solve this dilemma was to split the 
computation into three distinct phases. The first, which 
is the initialisation, runs on the Y -MP, and instead of 
distributing the data to other processors prior to the 
parallel section, outputs the required arrays to a series of 
files and then terminates. The second phase which runs 
on the T3D picks up the required data from the UNICOS 
file system, completes the parallel compute-intensive 
part of the calculation, and then outputs the results to a 
second set of files. The third phase runs on the Y-MP and 
performs the merging of the resultant arrays and outputs 
the results. 

In this approach, those phases that require a large 
amount of memory are run on the Y-MP, while the T3D 
executes the parallel part which contains the heavy 
computation. Although the scheme sounds simple in 
outline, the implmentation was actually quite tricky for 
a number of reasons: 

• The arrays to be distributed for parallel processing 
are defined by the user in the input data, as are 
those required to be saved after the parallel 
processing. This means that all three phases must 
be able to read the input data, but only select those 
commands that are necessary to perform their 
operations. 

• Data other than the arrays mentioned above need to 
be passed between the various phases - for example, 
control variables and physical constants that define 
the problem. These are typically stored in separate 
common blocks, and do not have to be selected via 
the user input for distribution and merging. 

For the transition between the input processing and 
the parallel computation phases, this proved easy 
to sort out, since the original parallel code had had 
to distribute most of this information from the 

master processor as well. At the end of the parallel 
processing, however, the master processor was 
assumed to have all the data it needed, and the 
other PE's only sent back their share of the 
distributed arrays. The merge process thus needed 
careful analysis to ensure that all the relevant data 
was regenerated in the master processor. 

• Although the problem is defined above in terms of 
the T3D performing phase 2, there is no reason why 
any other machine running PVM could not perform 
the parallel part, in particular several processors of 
a Y -MP or C90. To allow this to happen, the T3D 
specific code had to compiled in or out 
conditionally, and data conversion only applied 
when strictly necessary. 

• For small problems, there is no need for three 
separate images to be run. The code therefore 
needed an option to allow all three phases to be 
executed during one pass through the code, either on 
the T3D or any other platform. This imposes some 
extra logic in the code, but means that it can be run 
as originally intended. 

• For a given hardware platform, the same binary 
executes any of the phases, or all three phases 
together. The logic for this is embedded in the code, 
and controlled by input variables. 

• To simplify code maintenance, it was decided that 
there would be only one version of the source. 
Different hardware platforms are selected via 
conditional compilation. 

The progress through the various stages is made 
transparent to the user via the use of shell scripts. The 
user can submit a problem for execution to the Y -MP, and 
the various phases are executed on the appropriate 
hardware. Restart facilties can be included if necessary. 

This approach also offers considerable flexibility when 
either running or testing the program. Unlike the first 
application, it is not necessary to run each part 
immediately after the preceding one, nor do the Y -MP 
and T3D have to wait for messages from each other. It is 
simply necessary to preserve the files between the 
various phases, so that each phase can be started when 
convenient. Finally, code can be tested or developed on 
either the Y-MP, T3D or both. 

This approach allows what seems at first glance to be 
intractable problem to be solved using the heterogenous 
environment available with the Cray Research T3D. 
The Y-MP component is used for the pieces that it is best 
suited to, while the T3D performs the heavy computation 
for which is was designed. 

111 



112 

FUTURE OPERATING SYSTEM DIRECTION 

Don Mason 
Cray Researc~ Inc. 

Eagan,MN 

INTRODUCTION 
The UNICOS operating system has been under 
development since UNIX System V was ported to Cray 
Research hardware in 1983. With ten years of 
development effort, UN! COS has become the leading 
UNIX implementation in a supercomputing 
environment, in all aspects important to our customers: 
functionality, perfonnance, stability and ease of use. 

During these ten years, we have matured from a system 
architecture supporting only four processor CRA Y -2s or 
X-MPs, to the complexity of 16 processors of the C90, 
and hundreds of processors on a T3D. We invented and 
implemented new I/O structures, multiprocessing 
support, including automatic parallelization, and a host 
of indusUy leading tools and utilities to help the users 
to solve their problems, and the system administrators 
to maximize their investment. 

The system, which initially was simple and small, 
grew in both size and complexity. 

The evolution of hardware architectures towards 
increasing number of processors in both shared and 
distributed memory systems and the requirements of 
open, heterogeneous environments, present challenges 
that will be difficult to meet with current operating 
system architecture. We decided that it was time for us 
to revise our operating system strategy, and to define a 
new path for the evolution of UNICOS. This evolution 
should enable us to face the challenges of the future, 
and at the same time preserve our customers' and our 
own software investments. 

After two years of careful evaluation and studies, in 
1993 we decided to base the future architecture of 
UNICOS on microkernel technology, and we selected 
Chorus Systems as the technology provider. 

This evolution will preserve all the functionality and 
applications interfaces of the current system, and the 
enhancements that will come in the meantime. 

MICROKERNEL/SERVER ARCHITECTURE 
Figure 1 compares the current UNICOS architecture 
to the future one, that we refer to as "serverized." 

The current system architecture is depicted on the left 
side. It is characterized by a relatively large, monolithic 
system kernel, that executes in the system address 

Copyright © 1994. emy Research Inc. All rights reserved. 

UNICOS7.0 

(·:~~:~~B"!!iI:~::~1 
1~,.;:;Ip.pm~!gn:::~1 

Serverized UNICOS 

Figure 1 

space, and that performs system work on behalf of 
user's applications, on the top part of the figure. The 
applications interact with the system via a "system call 
interface," represented on the figure by the "interface" 
area. The kernel, to perform its tasks, uses "privileged" 
instructions, that can only be executed in the system 
space. 

The right side of Figure 1 represents the new 
architecture. Nothing changes in the upper part of the 
figure: the users applications are exactly the same, and 
they use the same system interface as before. The 
monolithic kernel is now replaced by a "microkernel" 
and a set of new entities, called "servers." The 
microkernel provides the "insulation" of the system 
software from the particular hardware architecture, and 
provides a message passing capability for transferring 
messages between applications and servers, as well as 
between servers themselves. 

System tasks that previously were performed by the 
system kernel will be executed by the specialized 
servers. Each of them is assigned a particular and well 
defined task: "memory manager", "file manager", 
"process manager" etc ... The servers, in their majority, 
operate in the system space. However, some of them, 
which do not require access to privileged instructions, 
can perform in user space. Each of the servers is 
"frrewalled" from the others, and can communicate with 
the others only through a well defined message passing 
interface, under the microkemel's control. 

Microkernels can also communicate from one physical 
system to another, across a network. This is the 
situation represented by the Figure 2. In a configuration 
like the one depicted, not all systems need to have all 
the servers. Certain systems can be specialized for 
particular tasks, and therefore might require only a 



subset of the available servers. In the case of a CRA Y 
J\1PP system, each of the processing elements contains 
a micro kernel, and few servers, only those that are 
necessary for executing applications. Most of the 
system services can be provided either by some other 
PEs of the system, which have the appropriate server, 
or even by a different system on the network. 

For an J\1PP in particular, this frees the PEs memory 
space for user applications, rather than using it for 
the system. 

A long-term objective with the new architecture is to 
provide a single UNICOS Operating System which will 
manage the resources of diverse hardware architectures. 
This is called "Single System Image" (SSI) in the 
industry . From an administrator's point of view SSI 
will facilitate management of computing resources as if 
they were a single platform; for example, an MPP and 
a C90. From an applications point of view SSI means 
OS support for scheduling computing resources such 
that components of the application can efficiently 
utilize diverse platform characteristics. 

There are several advantages of adopting a serverized 
architecture: 

o Most of the system software is "insulated" from the 
hardware. Therefore, porting to new architectures is 
made much easier, and safer. 

o System functions can be distributed across platforms. 

o Servers are easier to maintain, since each of them is 
relatively small and self-contained. Interactions between 
the server and the "external world" are done via clear 
interfaces. A change to a server should not have any 
impact on other parts of the systems. 

o Servers can be made more reliable, precisely because 
of their smaller size, and well defined functions and 
interfaces. They can be "cleanly" designed, and well 
tested. 

o A serverized system can evolve in a "safer" way than 
a monolithic kernel. 

o Systems can be customized by introduction of 
custom servers, designed to perform a particular task, 
not required by other customers. 

o If an industry agreement on microkernel interfaces is 
achieved, this would open the way for leveraging 
servers across different platforms and architectures. 

TIlE CHORUS TECHNOLOGY CHOICE 
Before selecting Chorus technology, we conducted a 
comprehensive study of the technologies available in 

Parallel Vector Platform 

~::::::~I!I!I:::::::::I 

1::,:::·1_1::;::::::1 

1;::~i&l_::,ji~!:1 

MPP Platform 

Figure 2 
the market, and their adaptability to Cray Research 
hardware architectures. Several options were examined, 
including Mach. There are more similarities than 
differences among the available microkernel 
technologies. All microkernels attempt to mask 
hardware uniqueness and manage message passing. The 
differences become evident only when looking at the 
application of the technology to specific hardware 
platforms such as the CRA Y Y -MP or CRA Y T3D 
series. The selection criteria included the following: 

o The adaptability to a real memory architecture 

o Perfonnance 

o Ease of implementation - time-to-market 

o Existence of programming tools 

o Serverization model (existence of a multi-server 
implementation) 

The technology from Chorus Systems was selected, 
since it perfectly satisfied all of our selection criteria. In 
particular, this choice will allow us to deliver a stand­
alone J\1PP capability approximately 18 months sooner 
than with any other technology. Also, the same 
technology can be used on both real and virtual 
memory architectures. 

TIMETABLE 
The transition from current UNICOS and UNICOS 
MAX to the new architecture will take from two to four 
years, depending on hardware platforms. Initial 
implementation will become available on the MPP 
systems. In parallel with the development of current 
structure of UNICOS, we will work on a serverized 
version for parallel vector platforms. 

113 



114 

Future Operating System Directions - Serverized Unicos 

Jim Harrell 

Cray Research, Inc. 
655-F Lone Oak Drive 

Eagan, Minnesota 55121 

ABSTRACT 

This paper is the technical component of a discussion of plans for changes in operating system 
design at Cray Research. The paper focuses on the organization and architecture of Unicos in 
the future. The Unicos operating system software is being modified and ported to this new ar­
chitecture now. 

1 Introduction 

Over the past several years the Unicos Operating Sys­
tem Group has been studying the needs and require­
ments for changes in Unicos to provide support for new 
Cray hardware architectures, and new software features 
as required by Cray customers. At previous Cray User 
Group Meetings and in Unicos Advisory Meetings there 
have been open discussions of the requirements and 
choices available. In 1993 a decision was made to move 
forward with the Chorus microkernel and Unicos as the 
feature base and application interface. This talk 
describes some of the technical components of the new 
operating system architecture, explains how the new 
system is organized, and what has been learned so far. 

The talk is composed of five parts. The first part 
describes the Chorus microkernel and the server model. 
This is the base architecture we have chosen to use in 
the future. We reviewed the choices at the Cray User 
Group Meeting in Montreaux in March of 1993. The 
second part of this talk describes our experiences in 
porting Chorus to a Cray YMP architecture. This phase 
of the program was an important step in proving the 
technology is capable of supporting high performance 
computing. The third part of the talk explains how we 
expect Unicos will "map" onto the Chorus model. We 
have chosen to move Unicos forward as the feature base 
and application interface. Our goal remains to provide 
full application compatibility with Unicos. The fourth 
part describes the technical milestone for 1993 and the 
status of that milestone. The final part of the talk dis­
cusses our interest in interfaces for servers and micro­
kernels that can allow vendors and users with different 
operating system bases to provide heterogeneous dis­
tributed systems in the future. 

Copyright © 1994. Cray Research Inc. All rights reserved. 

2 The Chorus Model 

The Chorus model is based on decomposing a monolithic 
system into a micro kernel and a set of servers. The micro­
kernel manages the hardware and provides a basic set of 
operations for the servers. The servers implement a user 
or application interface and, in Chorus, are usually bound 
into the same address space as the microkernel. This 
binding of servers is done for performance. Servers can 
run in user mode. This allows flexibility in the operating 
system organization and can add resiliency. An important 
component of the Chorus model is the Remote Procedure 
Call (RPC) support. Traditionally RPCs require a context 
switch, and message or data copies. In the Chorus model 
this is referred to as Full Wefght RPC (FWRPC). Chorus 
provides a Light Weight RPC (L WRPC) that can be used 
to communicate between servers in kernel space, that is, 
servers bound in the same address space as the microker­
nel. L WRPC does not context switch, or change stacks. 
Instead of copying message data, a pointer to the message 
is passed. The result is a significant reduction in the cost 
of communication between servers. The offset to the per­
formance improvement is that servers in the same address 
space are not protected from random memory stores. 
There is no "firewall" between the servers. There is an 
obvious requirement for FWRPC across a network, and 
for servers running in user mode, user space. But when 
servers are in the same address space the requirement is 
not as obvious. 

3 Porting Chorus to a YMP 

In 1992 we worked with Chorus Systems to port a mini­
mal Chorus operating system to a YMP machine. The 
purpose of this test was to determine if the software archi­
tecture was viable on a YMP hardware architecture. 
There were concerns about Chorus memory management 
on a Ylv!P. ~.1ost microkernel based systems use virtual 



memory extensively. Chorus claimed to be architecture 
neutral in memory management. There were other con­
cerns about machine dependent differences. Chorus is 
normally ported to smaller machines. The port would 
provide answers to these concerns and allow us real 
hands-on experience with Chorus. Use of the code 
would make the evaluation and comparison with other 
systems real. We set a goal of demonstrating at the end 
of six months. 

The Chorus components of the port were the microker­
nel, a Process Manager (PM), and a very simplified 
Object Manager (OM), or filesystem server. The 
machine-dependent parts of the microkernel were mod­
ified to support the YMP, and a simple memory man­
agement scheme was put in place to support the YMP. 
The Chorus PM was modified to use Unicos system call 
numbering so we could run Unicos binaries.· This 
greatly simplified what had to be done to run tests. The 
Chorus OM was greatly simplified. The support for 
Unix filesystems was removed and in its place was put 
a table of files that would be "known" to this OM. All 
of the disk device support was removed from Chorus, 
and replaced with code to access files from YMP mem­
ory. This dispensed with the need for a filesystem, driv­
ers, and lOS packet management. 

The ported system was booted on a YMP and simple 
tests run from a standard Unicos shell, Ibinlsh. This 
confirmed our view that Unicos could be used as the 
operating system personality. The Unicos shell had 
been built under standard Unicos and yet under the test 
system it functioned exactly as it did under Unicos. The 
tests that were run did a variety of very simple system 
operations. The test results were compared to Unicos 
results using the same tests. The Unicos system was run 
on the same YMP and configured to use a memory file­
system. The results showed two important facts. Using 
FWRPC the performance of Chorus was 2 times slower 
than Unicos for the same system call. Using LWRPC 
the performance was comparable to Unicos. 

Cray Research is not planning on using all of the Cho­
rus product. We had previously decided, in conjunction 
with our customers, that we should use Unicos as the 
base of any future systems. We want to use certain fea­
tures from Chorus to help split Unicos into components. 
The primary Chorus technology that is being used in the 
restructuring of U nicos is the micro kernel. It is much 
the same as the Chorus version, with the exception of 
the machine dependent portions. We are augmenting it 
to provide support for some other services like swap­
ping and enhancements to scheduling and monitoring. 
We are also using the Chorus Process Manager (PM) as 
the basis for our PM. We are modifying the way that the 
system calls, signalling, etc., work to match Unicos. 

The last major piece of Chorus technology we are using 
is the server "wrappers". This is a series of routines that 
provide two capabilities. The first is a model for the 
interfaces needed to get a server to communicate with 
another server. The second is as a model for how to 
mimic Unix or Unicos internal kernel requests or con­
vert the kernel requests to micro kernel requests. 

4 Mapping Unicos onto the Chorus Model 

The restructuring of Unicos will maintain complete 
user compatibility. At a very early stage of the project 
we determined that the best way to provide this compat­
ibility is to use as much Unicos code directly as possi­
ble. This has a side effect, in that we can move more 
quickly to serverize Unicos without having to rewrite 
code. We have chosen to have a large number of serv­
ers, aggressively trying to modularize Unicos wherever 
possible. We believe that there are at least a dozen dif­
ferent potential servers. For example the device drivers 
for disk, tape, and networking will form three separate 
servers. The IDS packet management code has already 
been made into a server. The terminal or console sup­
port is also already a separate server. 

5 1993 Milestone - Some Progress 

At the end of 1993 we completed one of the formal 
project milestones. We ran a system composed of a 
Chorus based microkernel, our PM, an OM or filesys­
tem server that implements the NCI filesystem, a disk 
server for disk device support and a packet server. We 
also added a terminal server for console communica­
tions. The system was run on a YMP using an 8.0 file­
system on Model E lOS connected disks. This 
milestone verified that several major servers were func­
tioning together and that device access worked. This 
milestone also continues to monitor progress with the 
goal of U nicos application compatibility. 

6 Future Interfaces 

In the computer industry there are several companies 
and research facilities that are studying microkernels 
and serverized systems. We expect that a number of 
distributed systems will take a similar form to the direc­
tion we have chosen. Cray Research believes that in the 
future heterogeneous systems will depend on different 
operating systems from different vendors being able to 
interact and interoperate at a deeper level than currently 
exists. This interoperation is required to support Single 
System Image and system resource management in dis­
tributed systems. In order to facilitate this communica­
tion Cray is taking a leadership role in trying to find 

115 



116 

ways to standardize server and microkemel interfaces. 
This work has met with some success, but will require 
the interest and participation of our customers to con­
vince computer vendors that Single System Image is a 
serious requirement in the future. 

7 Summary 

We have shown progress towards the reorganization of 
Unicos into a more modular form. We expect that this 
new system will be capable of supporting all Cray hard­
ware architectures, and capable of supporting all Cray 
customer requirements by providing a better base for 
new functionality and compatibility for current Unicos 
applications. 



Mass Storage Systems 





Storage Management Update 

Brad Strand 

Section Leader, UNICOS Storage Management Products 

Cray Research, Inc. 
655-F Lone Oak Drive 

Eagan, Minnesota 55121 

bstrand@cray.com 

ABSTRACT 

This paper presents an update to the status of UNICOS Storage Management products and 
projects at Cray Research. Status is reported in the areas of Hierarchical Storage Manage­
ment products (HSMs), Volume Management products, and Transparent File Access prod­
ucts. The paper concludes with a timeline indicating the approximate introduction of several 
Storage Management products 

1 Topics 

Work on Storage Management products and projects at 
Cray Research is currently focused in three major areas. 
The fIrst area is Hierarchical Storage Management 
products, or HSMs. These products are designed to 
allow sites to increase the effective size of their disks by 
transparently moving, or migrating, data between disks 
and cheaper media, such as tape. These products allow 
sites to make their disk storage pool appear larger than 
they actually are. The second area where Cray Research 
is currently doing Storage Management work is in Vol­
ume Management Volume Management products 
allow users and administrators to use and manage a 
large set of logical and physical tape volumes in an easy 
manner. Finally, Cray Research is very active in the 
area of Remote Transparent File Access products. 
These are products which allow users and applications 
to access fIles which physically reside on another sys­
tem as if they were on the local system. These products 
are often called "Remote File System" products, 
because of the way they effectively extend the local 
physical fIle system across the network. Each of these 
three areas will be discussed in terms of current product 
availability, and in terms of development projects cur­
rently active and underway. The paper concludes with a 
timeline designed to indicate the relative times in which 
Storage Management products are expected to be intro­
duced into the UNICOS system. 

Copyright © 1994. Cray Research Inc. All rights reserved. 

2 Hierarchical Storage Management Prod-
ucts (HSMs) 

2.1 Data Migration Facility (DMF) 

2.1.1 DMF 2.1 

A new version of the CRA Y Data Migration Facility, or 
DMF, version 2.1, is now,available. DMF 2.1 is de­
signed to run on top ofUNICOS 7.0, UNICOS 7.C, and 
UNICOS 8.0. DMF 2.1 provides several important new 
features in DMF, a few of which will be described be­
low. 

DMF 2.1 adds support for Multi-Level Security, or 
MLS. This means that sites running with UNICOS MLS 
can use DMF to provide their HSM solution. DMF is 
even part of the "Evaluated System," which means that 
sites running Trusted UNICOS can run DMF without vi­
olating the security rating of their system. 

DMF 2.1 also provides support for a multi-tiered data 
management hierarchy, in that data may be moved be­
tween Media Specific Processes (or MSPs). This means 
that sites can configure their systems to migrate data 
from, for example, one tape format to another. 

DMF 2.1 also adds support for gathering a variety of 
dmdaemon statistics. These statistics may then be ana­
lyzed using the new dmastat(l) utility. 

119 



120 

2.1.2 Client/Server DMF Project 

One of the DMF development projects currently under­
way at Cray Research is called Client/Server DMF. 
This project adds the functionality which will allow 
sites to use DMF to manage their data which are stored 
on Shared File Systems, or SFSs. The Shared File Sys­
tem is an evolving product, not yet available, which al­
lows multiple UNICOS systems to share direct access 
to disk devices. The Client/Server DMF project allows 
a single DMF server to manage all the data in a UNI­
COS Shared File System environment. 

Each UNICOS machine in the SFS complex needs to 
run a copy of the DMF Client. One or more UNICOS 
hosts with access to the secondary storage media 
(tapes) needs to run the DMF Server. The system can 
also be configured to provide redundancy, should one 
particular DMF Server process fail. 

The Client/Server DMF project internal goal is to dem­
onstrate the functionality by year-end. More informa­
tion on Client/Server DMF will be available at the 
"Clusters BOF," hosted by Dan Ferber. 

2.1.3 New Tape Media Specific Process (MSP) 
Project 

The other major DMF development project currently 
underway is that which is developing a new tape MSP. 
This is the tape MSP that was originally planned to be 
available in DMF 2.1, but has since slipped into DMF 
2.2. This new tape MSP is designed to provide a variety 
of important improvements. Several of these are listed 
below. 

• Support/or Improved Data Recording Capability 
(IDRC). Some tape devices have controllers which pro­
vide on-the-fly data compression. This feature is called 
Improved Data Recording Capability, or IDRC. The 
new tape MSP will provide support for controllers us­
ingIDRC. 

• Improved Media Utilization. The current tape MSP 
design does not support the function of "append" to par­
tially written tapes. The new tape MSP will support 
appending to tapes, and will thereby obtain greater uti­
lization of tape media. 

• Much Improved Media Recovery. The new tape MSP 
writes to tapes in blocks. The new tape MSP is designed 
to be able to read and recover all blocks which do not 
contain unrecoverable media errors. Thus, only data in 
blocks which contain unrecoverable media errors 
would be lost. This is a major improvement to the cur­
rent design, which is unable to retrieve data written be­
yond bad spots on the tape. 

• Absolute Block Positioning. Some new tape devices 
support high speed tape positioning to absolute block 
addresses. The new tape MSP will utilize this feature 
whenever it is available. 

• Asynchronous. Double-Buffered I/O. To fully utilize 
the greater bandwidth available on some tape devices, 
the new tape MSP will use asynchronous, double buff­
ered I/O. We expect this will yield very near full chan­
nel I/O rates for these devices. 

• New Tape and Database Formats. To provide some of 
the new functionality, changes were made to the tape 
format, and to the MSP database format. The new tape 
MSP will support reading tapes in the old format. Con­
version utilities will be supplied to convert databases 
from the old format to the new format. 

• Availability. The new tape MSP will be available in 
DMF 2.2. We expect this release to be available in the 
fourth quarter of 1994. 

2.2 UniTree 

The UniTree HSM product has now been ported to the 
Y -MP EL platform by Titan Client/Server Technolo­
gies. We are currently awaiting a Titan installation of 
UniTree at our first customer site. The UniTree version 
ported to UNICOS 7.0.6 is version 1.7. Titan has not 
shared their plans to port version 1.8 to UNICOS. 

2.3 FileServ 

A port of the FileServ HSM product to UNICOS is cur­
rently underway. This port is being done by EMASS. 
Cray Research has cooperated with EMASS by provid­
ing "hooks" into the UNICOS kernel which allows 
FileServ to obtain the information it needs more easily. 
These hooks are integrated into UNICOS 8.0. Since the 
porting work is being done by EMASS, persons inter­
ested in obtaining more detailed information, or project 
schedules, should contact them directly. 

2.4 1l0pen HSM" Project 

Although DMF provides an excellent, high-perfor­
mance HSM solution on UNICOS platforms, some of 
our customers have indicated that the proprietary nature 
of DMF is a disadvantage to them. They would prefer a 
solution that is more "open," in the sense of being avail­
able on more than one hardware platform. In this way, 
the customer's choice of HSM solution would not nec­
essarily dictate their choice of hardware platform. In re­
sponse to this requirement, Cray Research has begun a 
project with the goal of providing an HSM product on 
UNICOS which is close to DMF in performance and 



functionality, yet which is also available on other hard­
ware platforms. 

We have been evaluating potential candidates to be­
come our open HSM product for about six months. 
Much of our work has been analyzing product designs, 
to see which ones have the potential for being integrat­
ed into our unique supercomputing environment. As 
one might imagine, there are many challenges to ad­
dress when attempting to integrate an HSM product 
with our Tape Daemon, Multi-Level Security, and very 
large, high performance peripherals. Moreover, most of 
the products we evaluated were not designed for multi-­
processor architectures, so there is a significant amount 
of design work required to determine just where we can 
add parallelism into these products. 

Despite these hurdles, we feel we have made significant 
progress on the project. Indeed, we feel we are close to 
a decision point for selecting the product we will use as 
our base. Our target is to have an open HSM product 
running on UNICOS in 1995. Depending on which 
product we choose, and the platforms on which it al­
ready runs, it may be possible that a version of the open 
HSM product will be available on the Cray Research 
SuperServer platform before a UNICOS-based product 
is available. 

3 Volume Management Products 

3.1 CRAYIREELlibrarian (CRL) 

3.1.1 CRL 2.0.5 Complete and Available 

Release 2.0.5 of CRA Y /REEL librarian is now avail­
able. There are several important changes and improve­
ments to the product, including MLS support, ER90 
tape device support, and support for 44-character file 
ids. The database format for CRL 2.0.5 is incompatible 
with the format used in CRL 1.0.x, but a conversion 
utility is supplied with CRL 2.0.5. Because CRL 2.0.5 
takes advantage of Tape Daemon interface enhance­
ments in UNICOS 8.0, CRL 2.0.5 will only run on 
UNICOS 8.0 or higher. CRL 2.0.5 is not supported on 
UNICOS 7.0 or UNICOS 7.C. 

3.1.2 CRL Database Study Project 

The primary CRL project currently underway is a study 
which is examining the feasibility of incorporating an 
improved database technology into CRL. The motive 
for this study is to improve the reliability and the scal­
ability of the CRL product. No decision has yet been 
made as to whether or not we will proceed with this da­
tabase upgrade. 

4 Remote Transparent File Access Products 

4.1 Open Network Computing! Network File Sys-
tem (ONC!NFS) 

4.1.1 NFS Improvements in UNICOS B.O 

A great deal of effort went into improving the NFS 
product Cray Research released in UNICOS 8.0. Im­
provements include the implementation of server side 
readaheads, improved management techniques of the 
mbufs used by the Y-MP EL networking code, new op­
tions for the mount(8) and exportfs(8) commands 
which can provide dramatically improved performance 
in the appropriate circumstances, and the support for 
B 1 level MLS. 

Much more information about the NFS changes intro­
duced in UNICOS 8.0 is was given in the CUG presen­
tation given in Kyoto last September. Please refer to 
that presentation for further details. 

4.1.2 ONe + Project 

The primary active development project in the NFS 
area is ONC+. ONC+ is a set of enhancements to the 
current set of ONC protocols. Features of our ONC+ 
product are listed below. 

• NFS Version 3 is an enhancement to the current NFS 
protocol, NFS Version 2. NFS Version 3 provides 
native support for 64-bit file and file system sizes, pro­
vides improved support for files with Access Control 
Lists (ACLs), and provides a wide range of perfor­
mance improvements. 

• Support for Version 3 of the LockManager protocol, 
which provides advisory record locking for NFS Ver­
sion 3 files. 

• Support for the AUTH_KERB flavor of Remote Pro­
cedure Call (RPC) authentication. AUTH KERB 
implements Kerberos Version 4 authentication to RPC 
on a per-request basis. This component of the project 
adds AUTH_KERB to both user-level RPC calls, and 
to the kernel-level RPC calls that are used by NFS. The 
result is a much greater level of RPC security than is 
offered by either AUTH_NONE, AUTH_UNIX, or 
AUTH_DES, the current supported RPC authentication 
types. 

• Support for NIS+, the enhanced version of the Net­
work Information Services (NIS) protocols. These are 
important enhancements which add security, function­
ality, and performance to NIS. 

The CRA Y ONC+ product will be a separately licensed 
product, available in UNICOS 9.0. 

4.2 Open Software Foundation! Distributed File 
System (OSFIDFS) 

121 



122 

An important project in the area of Remote Transparent 
File Access software is OSF/DFS. The DFS product 
provided by Cray Research will provide most of the 
important features of DFS, including support for both 
client and server, as well as for file caching. However, 
the Episode file system is not provided with DFS, so 
certain Episode ftIe system specific functions, such as 
support for filesets, is not yet supported by our DFS 
implementation. 

The DFS server will be available as the CRA Y DCE 
DFS Server. The DFS client will be available as part of 
the CRA Y DCE Client Services product. Both of these 
products are separately licensed, and both will be avail­
able 3Q94. 

More detailed information about the Cray Research 
DFS product will be given by Brian Gaffey in his talk 
"DFS on UNICOS," scheduled for Thursday, 3/17/94 
at 9:30. 

5 Approximate Timeline 

1994 1995 1996 

ew Tape MSP 

FS 

COS 8.0, DMF 2.1, CRL 2.0.5, UniTree 



RAID Integration on Model-E lOS 

Bob Ciotti 
Numerical Aerodynamic Simulation 

NASA Ames Research Center 
Moffett Field, CA 94035, USA 

ciotti@nas.nasa.gov 

Abstract 

The Redundant Array of Inexpensive Disks (RAID) technol­
ogy has finally made its way into the supercomputing market. 
CRI has recently made available software for UNICOS to 
support this. This paper discusses the experiences over the 
past twelve months of integrating a Maximum Strategy RAID 
into the C90 environment. Initial performance and reliability 
were poor using the early release Cray driver. Over time, per­
formance and reliability have risen to expected levels albeit 
with some caveats. Random i/o tests show that RAID is much 
faster than expected compared to CRI DD60s. 

1.0 Introduction 

The Numerical Aerodynamic Simulation facility at NASA 
Ames Research Center provides a large scale simulation capa­
bility that is recognized as a key element of NASA's aeronau­
tics program, augmenting both theory and experimentation 
[cooper93]. As a pathfinder in advanced large scale computing, 
the NAS program tests and evaluates new hardware and soft­
ware to provide a unique national resource. This role provided 
the basis for NAS entering into a development/integration 
project using RiPPI connected RAID. As such, NAS was the 
first site to use the eRI IPI-3 driver to access a RiPPI con­
nected RAID from the C90. 

Maximum Strategy Incorporated (MSI) began manufacturing a 
RiPPI attached RAID beginning with the Gen-3 system in 
early 1990. These systems cost $15/megabyte. Comparable 
CRI disk was available at $50/megabyte (DD40), with their top 
of the line disk offered at a hefty $200/megabyte (DD49). With 
such a difference in cost and the potential of high performance, 
the MSI systems were extremely attractive. 

The availability of the fIrst Gen-3 systems, led to the prospect 
of providing inexpensive directly attached disks which trans­
ferred data at over eighty megabytes/second. IDA Princeton 
led the fIrst integration project of this technology into a Cray 
environment [cave92], connecting a Gen-3 system to a 

CRAY2. They developed a software driver which was the start­
ing point for that available on CRI Model-E lOS systems 
today. NAS considered attaching the Gen-3 to a YMP8-8/256 
IOS-D system, but development time, loss of production, and 
short expected lifetime negated any cost savings. At that time 
the CRI solution cost $39/megabyte while MSI RAID was 
$13/megabyte. These prices included all required hardware 
(e.g., $250,000 for a CRI IOS-D RiPPI channel). 

Understandably, CRI has been extremely slow to integrate this 
cost effective storage into their product offerings, choosing 
instead to build their own narrow stripe RAID product from 
Single Large Expensive Disks (SLEDs) [badger92]. This 
largely ignores the calls of customers to provide fast inexpen­
sive media. Thus, the procurement for High Speed Processor 3 
(HSP3) contained a requirement that potential vendors supply 
support for IPI-3 over RiPPI. 

Better performance would be achieved with direct support of 
the MSI RAID system in CRI lOS hardware, yet even with the 
20%-30% overhead of IPI-3 over RiPPI, performance is still 
very good. 

In late 1992, a separate procurement for RiPPI attached RAID 
awarded MSI a contract to supply 75 gigabytes of storage. The 
cost was approximately $9/megabyte. Since that time, compe­
tition has fostered falling prices with Gen-4 systems available 
in quantity today at around $5/megabyte. 

After the installation of HSP3 (C916/1024) in March 1993, 
twelve months of testing were required before RAID provided 
a reliable low cost and high performance alternative to CRI 
proprietary disks. 

2.0 Overview 

The original RAID papers came out of the University of Cali­
fornia at Berkeley in late 1987 [patterson87, patterson88]. It 
was clear the gains in capacity and performance of SLEDs was 
modest compared to that achievable from RAID. At the time of 

123 



Overview 

[patterson87], Maximum Strategy had already built and mar­
keted its first RAID product and completed the design of its 
second. MSI introduced the Strategy-l in mid 1987, a RAID 
level 0 system capable of a sustained 10 megabytes/second 
over VME. August 1988 marked the Strategy-2 introduction, a 
RAID level 3 product capable of 20 megabytes/second over 
VME. In June 1990, MSI introduced the Gen-3, also RAID 
level 3, that sustained a transfer rate of over 80 megabytes/sec­
ond via HiPP!. Gen-4 became available in August 1992. 

2.1 Gen-4 

2.2 Overview 

The MSI Gen-4 product is composed of a main processor, 
HiPPI channel interface, ethemet interface and 1 or 2 facilities. 
At NAS, each facility has 20 1.3 gigabyte drives. Two drives 
are combined into a module and are striped either 4, 8 or 9 
wide. Optimal conditions can produce transfer rates of over 80 
megabytes/second. A hot standby module is available in the 8 
wide stripe configuration for automatic substitution should any 
drive fail within the facility. We chose the 8+ 1 + 1 (8 data, 1 par­
ity, 1 spare) configuration for the best transfer rate and reliabil­
ity. 

The Gen-4 supports RAID levels 1,3, and 5, and the capability 
to partition facilities into different RAID levels. We configured 
the entire system as RAID levelS. 

The MSI RAID achieves fault tolerance'in several ways. Data 
reads cause an access to 8 modules. A read that fails on any 
drive (because of BCC, time-out, etc.) is retried up to five 
times. Successful retries result in successful reads. A soft error 
is then logged and its sector address optionally saved in the 
suspect permanent flaw table. If the data cannot be successfully 
read after 5 retries, the data is reconstructed using the XOR of 
the remaining 7 drives and the parity drive, called "parity 
replacement". In this case, a firm error is logged and the sector 
address saved in the susp~t permanent flaw table. A read fail­
ure occurs when more than one fInn error occurs at the same 
sector offset (2 or more of 9), This results in a hard error being 
logged. 

A higher failure level is the loss of an entire disk. If, in the pro­
cess of any operation, a drive fails, an immediate automatic hot 
spare replacement and reconstruction is initiated. This opera­
tion is transparent but requires approximately half of the band­
width of the RAID (i.e., throughput drops by 112 during 
reconstruction). Reconstruction takes approximately 15 min­
utes. If there are firm errors on any of the remaining drives, 
reconstruction will fail for those sectors and data loss occurs. 
With the effective system MTBF of a drive at eight months, it 

124 

is not unrealistic to imagine such a scenario. For this reason, 
MSI has agreed to add automatic reallocation. Automatic real­
location will map out bad sectors which cause fIrm errors the 
fIrst time they are encountered. This will lessen the likelihood 
of data loss. Failed drives are easily replaced by operations 
staff. For a further description of the MSI RAID see 
[homan92]. For a discussion of Cray directions in disk technol­
ogy, see [badger92] or [anderson93]. 

2.3 System Maintenance Console (SMC) 

The SMC monitors activity on the system, supports configura­
tion modifIcation, and maintenance. It is accessible by a direct 
vt100/rs232 connection or Telnet. The SMC, while providing 
robust control over the RAID, is non-intuitive and cumber­
some to use at times. It is time for MSI to redesign this soft­
ware. 

2.4 Status and Preventative Maintenance 

Operations· staff must perform preventative maintenance regu­
larly. While some operations are inherently manual, others lend 
themselves to automation. MSI needs to automate some of 
these functions, such as the ones described below. While not a 
big problem for a few systems, a center considering the instal­
lation of a large number of systems will find it necessary to do 
so. 

2.4.1 Daily RAID Preventative Maintenance 

UN/COS Kernel Log - Inspect the UNICOS kernel log for 
"hdd.c" errors. These indicate problems detected on the CRI 
side. Look to the SMC to diagnose the problem. 

Response Error Log - Accessible via the SMC, messages in the 
response log indicate the nature of the problem with an error 
code and a text description. 

Real Time Status - On the Main display of the SMC (Real Time 
Status display) counters indicate accumulated errors (e.g., soft, 
firm, hard). 

2.4.2 Weekly RAID Preventative Maintenance 

Read Scrub - Reading all sectors on the RAID is necessary to 
check for disk flaws. A utility program provided for this pur­
pose can be run during production. This operation takes 
approximately 20 minutes per facility and should be done dur­
ing periods of low activity. 

Reallocation - Manual reallocation of suspected permanent 
flaws is necessary to prevent data loss. This operation does not 
use significant bandwidth. 

RAID Integration on Model-E lOS 



Product Impressic:ms 

2.4.3 Monthly RAID Preventative Maintenance 

Flaw Management - The sudden occurrence of a large number 
of permanent flaws on a drive may indicate a failing drive. To 
monitor this accumulation, one must download the information 
to a 3 112" floppy, and inspect the logs on a system capable of 
reading DOS floppies. 

3.0 Product Impressions 

During the past 18 months, there have been a number of goals 
met, problems encountered and obstacles overcome. The 
appendix contains a chronological listing of these events. Con­
sistent throughout the process of testing the MSI RAID was: 

1. MSI always responded immediately to problems. 

2. MSI diagnosed hardware problems rapidly and replaced 
boards immediately. 

3. MSI added software functionality as requested. 

4. MSI fixed software bugs immediately. 

5. CRI would respond to problems expeditiously, in that prob-
lems were acknowledged and duplicated. 

6. CRI did not experience any hardware problems. 

7. CRI software functionality not added when requested. 

8. CRI software bugs fixed at the leisure of CRI. Fixes for crit­
ical bugs (e.g., corrupted data) took as long as 6 weeks. 

3.1 Reliability 

Overall reliability of the RAID system for the first 10 months 
has been poor. This is due exclusively to the support and qual­
ity of the CRI driver. RAID reliability has been 100% over the 
two months since the last bug fix was installed. 

Other than the initial board failure, the MSI hardware has been 
stable and reliable. A visual inspection of the boards indicates 
that they are well constructed and cleanly engineered. The fin­
ish work on the cabinets and other mechanical aspects of the 
construction is also well done. Overall I would rate the quality 
of the MSI RAID product as excellent. 

4.0 Performance Analysis 

Several tests were done to test the performance of the MSI 
RAID under various configurations. When possible, compara­
tive performance numbers are provided for CRI proprietary 
disks. All tests were run under UNICOS 8.0. All data was gen­
erated on a dedicated machine, except those shown in figure 

RAID Integration on Model-E lOS 

10, and those of the random i/o test (figures 16, 17,18 and 19). 
Tests were run to simulate unix functions, applications, and 
administration. 

4.1 Key to figures 

Below is a description of the test configurations used for the 
results shown in section 4.2. Tests were, conducted to evaluate 
the performance of the MSI RAID system against CRI propri­
etary disks and the effectiveness of combing the two. 

4.1.1 Filesystem types 

RAID-H - this "hybrid" filesystem was composed of two slices, 
a primary and a secondary. The primary was a CRI DD60 and 
the secondary was one facility of an MSI RAID (approxi­
mately 24 gigabytes). This configuration is such that inodes 
and small data blocks are allocated on the primary, while files 
that grow over 65k are allocated on the secondary. This feature 
of the CRI software is extremely useful in enhancing the per­
formance of the MSI RAID. As testing will show, small block 
transfers on RAID are slow compared to the proprietary CRI 
DD60 disks. Peak performance of the DD60 is approximately 
20 megabytes/second while that of the MSI RAID is approxi­
mately 80 megabytes/second. The following mkfs command 
was used to create the filesystem: 

mkfs -A 4 -B 65536 -P 4 -S 64 -p 1 -q /dev/dskfraid 

RAID-P - this filesystem was composed of one primary slice, a 
single facility of the MSI RAID. All inodes and data blocks are 
stored directly on the MSI RAID. Peak performance of the 
MSI RAID is approximately 80 megabytes/second. The fol­
lowing mkfs command was used to create the filesystem: 

mkfs -A 64 -B 65536 -P 16 -q /dev/dskfraid 

DD60-SP - This filesystem consisted of 2 primary slices. Each 
slice was composed of 4 DD60 drives that were software 
stripped via UNICOS. This was used as the gold standard 
against which to the measure others. Peak performance is 
approximately 80 megabytes/second. 

DD42-P - This filesystem consisted of one primary slice, a por­
tion of a DD42 disk subsystem (approximately 8 gigabytes). 
The DD42 is based on a previous generation technology, the 
DD40. Big file throughput should be no better that 9 megabyt­
es/second. 

4.1.2 Idcaching 

Several tests were run to show the benefit of Idcache on filesys­
tern operations. Three levels of cache were used. The first 
level, was no, which simply means that there was no cache 

125 



P~rformance Analysis 

used in the test. The second level of cache was sm, which con­
sisted of 20 ldcache units, where the size of the cache unit was 
128 for RAID-H and RAID-P, 92 for DD60-SP, and 48 for 
DD42-P. This resulted in a total amount of ldcache of 10.0 
megabytes for the RAID-H and RAID-P filesystems, 7.19 
megabytes for the DD60-SP filesystem, and 3.75 megabytes 
for the DD42 filesystem. The objective of the sm cache was to 
provide a minimal amount of buffer memory so that commands 
could be more effectively queued and/or requests coalesced, if 
the OS was so inclined. The third level of cache was Ig, which 
consisted of 1438 cache units for the RAID-H and RAID-P file­
system, 2000 cache units for the DD60-SP filesystems, 3833 
cache units for the DD42-P filesystem. The cache unit size was 
the same as that of the sm cache configuration. This resulted in 
approximately 719 megabytes of ldcache for each of the 4 file­
system types. The objective of Ig cache was to check for anom­
alous behavior. Figures 3 through 8 and 16 through 19 are 
annotated along the x-axis at the base of the bar graph to indi­
cate the ldcache level associated with the results. 

4.1.3 Test Filesystems 

In tests for the fsck, find and Is -IR, two different data sets were 
duplicated over the 4 different filesystems described in section 
4.1.1. The smfs filesystem consisted of 11,647 files, and 639 
directories, totaling 1 gigabyte of data. The bigfs filesystem 
consisted of 33,051 files and 2,077 directories, totaling 3 
gigabytes of data. Figure 1 shows the distribution of files and 
their sizes. Smfs count and bigfs count graph lines represent the 
distribution by size as a function of the running total percent­
age of the total number of files. Smfs size and bigfs size repre­
sent the distribution by size as a function of the running total 
percentage of all outstanding bytes. The data show that a large 

File Dis tribu tions 

Ie! 

Figure 1 

10' HI 
File Size (bytes) 

Hj 1(1' H/ 

126 

number of small files occupy a small portion of space used. 
This mimics the home directory structure. In fact, the bigfs was 
a copy of our NAS C90 lulva filesystem. Figure 9 is annotated 
along the x-axis at the base of each bar graph to indicate the file 
data set associated with the results. 

Fsck Times 

35- •.••.....••..............................................................•.............................................. 

00 : ::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::J=.ii:t:::::: 
'ij 
d 8 20" .•••••.•.••.....•....•.....•...•...••.•.••....••...•..••••••••..•.. --------------------.--.------.--••••••• -••••••• -•• 

d) 
CI) 

15 •...•.....•.•............•...............................•......... -.......•...............• -..... -..•.••......•...•.. 

10" •••••••••••••••.••••••••••••••••••••••••••••••••••..••.•••••••••••• -•.••• -••• -••••..•.•• -••••••••••••••••••••••••••••• 

5 •••••••••••••• .. L~·~~~·~~j················ ~~~~~~~~~~~~~~~~ ············-····~.~.~.~.~.~.~.~.~l················ 
v 

Figure 2 
RAID-H 

4.2 Tests 

4.2.1 letc/fsck 

RAID-P DD60-SP 

Several tests were run to compare the difference in time 
required to perform filesystem checks. letc/fsck(1) was run on 
the RAID-H, RAID-P, and DD60-SP filesystems using the smfs 
data set (figure 2). The ranking and magnitude of the results are 
as expected. The 6x performance differential between RAID-­
HIDD60-SP and RAID-P is attributed to the 3x average latency 
of the RAID (25 ms) and the 4x sector size (64k). Of interest is 

fmd $FS -print 

.................................................................. .----~ .................................... . 

no sm Ig 

RAID-H 
Figure 3 

RAID-P DD60-SP DD42-P 

RAID Integration on Model-E lOS 



Performance Analysis 

how effectively the RAID-H filesystem is able to take advan­
tage of the DD60 primary partition. /etc/fsck times are further 
analyzed in the section below that compares bigfs vs. smfs per­
formance. 

4.2.2 Ibin/find 

A/bin/find. -print was executed on the smfs data set for each 
of the 4 filesystems at 3 ldcache levels. Shown in figure 3, we 
take the performance of the DD60-SP filesystem at face value. 
It is interesting to note the factor of 3 improvement in wall 
clock achieved of sm cache over no in both the DD60-SP and 
RAID-H filesystems. An additional option to ldcache to cache 
filesystem metadata only is justified from these results·. The 
RAID-P filesystem is showing one of its weaknesses here in the 
greater latency that cannot be amortized with small block 
reads. A 3x margin at the no cache level stretches to 6x for the 
sm cache. A large amount of cache is effective only for the 
RAID-P and DD42-P filesystems. Again, note the effectiveness 
of RAID-H. 

4.2.3 Ibin/ls -IR 

A /binlls -lR was executed on the smfs data set for the RAID-H 
and RAID-P file systems with 3 different cache levels (figure 4). 
The results are quite similar to the /bin/find results above, 
except that the sm ldcache has much better performance for the . 
RAID-P file system. Confusing is the observation that the 
/binlls -IR test requires more processing than the /bin/find . 
-print test~ and it execution time on RAID-H bears this out. 
However, the RAID-P test completes in less time in all cases! 

4.2.4 Ibin/dd 

This test was run twice, once to write a 1 gigabyte file to the 
filesystem under test, and once to read a 1 gigabyte file from 
the fIlesystem under test. The source for the write test and the 
destination for the read test was an SSD resident filesystem 
(RAM disk). In figures 5 through 8, the transfer rate in mega­
bytes/second is shown along the top of each bar graph. The 
block transfer size for each of the tests was 16 megabytes. 

Figure 5 shows the performance achieved while writing to the 
filesystem under test. The RAID-P, DD60-SP and DD42-P con­
figurations performed at expected levels, however the RAID-H 
file system showed dramatic performance degradation when 
ldcache is used. This clearly indicates a problem which needs 
to be addressed by CRI. 

Figure 6 shows the performance achieved while reading from 
the filesystem under test. Each configuration performed at sat­
isfactorily close to the peak sustainable rate for the underlying 

RAID Integration on Model-E lOS 

/bin/ls -IR Times 

3 ..................................................................................................................... . 

2 ....•.....•..•.........................•.•.•..........................•...............•.......•............••..••. 

no sm Ig 

RAID-H RAID-P 

Figure 4 

Ibin/dd bs=16meg Write Test 
12 ················9·············································································9·····9······· ........ . 

··io········ 

9 ................................................................................................................. . 

................................................. '= .. ............,...,..,....! ••••••••••••••••••••••••••••••••••••••••••••••••• 

..................... ?9 ......................................................................................... . 
3 ..•......................•..........................•................................•.....•......•....•....•.•. 

2 ..•...... ~!. ..................... ~! .... ~~ ................... ?~ ..... ?~ ....................................... . 

no sm Ig no sm Ig no sm Ig no sm Ig 

RAID-H RAID-P DD60-SP DD42-P 
Figure 5 

Ibin/dd bs=16meg Read Test 
...................................................... ·········································cr····~······9········· 

~ ........... "'"'i ••••••••••••••••••••••••••••••••••••••••••••••••• 

no sm Ig no sm Ig no sm Ig no sm Ig 

RAID-H RAID-P DD60-SP DD42-P 

Figure 6 

127 



Performance Analysis 

hardware, although sm cache degrades RAID-H and RAID-P 
perfonnance by 10%. 

4.2.5 Ibin/cp 

This test was run twice, once to write a 1 gigabyte file the file­
system under test, and once to read a 1 gigabyte file from the 
filesystem under test. The source for the write test and the des­
tination for the read test was an SSD resident filesystem. 

/hinlcp Write Test 

2 ...•.•... ~ ..•••.....•...•...•••...... ~ .••......................•.............•.............................•..•........ 

75 ............................................................................................................. . 

5 ................................................................................................. ··28········ 

69 75 68 
2S •••••••••••..•••••••••••••••••••••• ·········i6ii························i·69"······· ............ ~~.~ ..... . 

o+--=~~~~-~s~~-~i=;~~oo~=sm~l~g~~n~o~s=m~lg~~=n=o~s~m~lg~~ 

RAID-H RAID-P DD60-SP DD42-P 

Figure 7 

/hin/cp Read Test 

2 .............................•.........................•................................................................ 

17 ...•.•.••••....•.•...•...••...••..••.•••••.........•..•...•.....•............••...........•..••............•............ 

Cfl 
] 1 •••••••••••••••••••••••••••••••••••••••••••••••.•. "'--_--1.···························9······9······9········· 
o 
gl 10 

C'/l 
16 16 .................................................................................................................. 

36 34 
38 74 75 74 2S ......................................................................................................... . 

OI+--=~no~sm~l~g~~oo~~sm~l~g~~n~o~sm~lg~~=~~~~-=s~~--~~=-~ 

Figure 8 RAID-H RAID-P DD60-SP DD42-P 

Figure 7 shows the perfonnance achieved while writing to the 
filesystem under test. A combination of factors, a 32k i/o 
library buffer size, inability of the kernel to coalesce or other­
wise optimize embarrassingly sequential requests, and the 
25ms average latency of the MSI RAID system all lead to 
extremely poor perfonnance for both the RAID-H and RAID-P 

128 

tests with no cache. Accounting for the latency, the perfor­
mance of the no cache DD60-SP exceeds expected perfor­
mance. This leads to the conclusion that UNICOS is 
perfonning additional optimization beyond that which is done 
for the RAID. These shortcomings can largely be overcome 
with sm cache on the RAID-P filesystem. In particular, this 
shows the benefit of write-behind optimization, boosting the 
RAID-P performance from 5 megabytes/second to over 69 
megabytes/second. Consistent with the dd write test is the 
severe performance problem with sm and 19 cache with 
RAID-H performance at 10% of its potential. Again the CRI 
proprietary filesystems DD60-SP and DD42-P, perform well. 

Figure 8 shows the performance achieved while reading from 
the filesystem under test. The data clearly shows the optimiza­
tion effort which CRI has put into their proprietary disks sys­
tems. At the other end of the spectrum, the worst performing 
filesystem was RAID-P. Although performance is somewhat 
enhanced with a small amount of ldcache, it is still far below 
what should be obtainable from the device. Doing far better is 
RAID-H which performed at about 112 of its potential, but 
could be substantially improved with read-ahead optimization. 
The fact that the RAID-H filesystem outperforms the RAID-P 
filesystem is very interesting, given that the file primarily 
resides on the RAID disk in both tests. Is the as possibly 
doing read-ahead here or is it simply inode/extent caching? 

4.2.6 Bigfs vs. smfs 

This test attempts to gauge the relative increase in time 
required to perform certain operations, based upon the size and 
number of files and directories in a filesystem. 

RAID-P Bigfs vs Smfs Times 
w·~----~----------------------------------~ 

IS .........•..•....................•..........•..••...........•.•..•.....•••........•.•..........•.•.•.•.........•.•... 

5 ...................................................................................•........................ 

Figure 9 

N Cache S Cach 

smfs bigfs smfs bigfs 

Ibin/fmd 

N Cache S Cache 

smfs bigfs smfs bigfs 

Ibin/Is -lR 
smfs bigfs 
letc/fsck 

RAID Integration on Model-E lOS 



Performance Analysis 

All tests were run on RAID-P with one set under the smfs file/­
directory collection and the other under the bigfs file/directory 
collection. 

Figure 9 shows run times for a / hin/find . -print, /binlls -IR ., 
and / etclfsck -u. The results are consistent with those shown in 
figures 2, 3 and 4. The application of a small amount of ldcache 
gives some benefit, which is also consistent with other results. 
The caveat being that the performance of RAID-P is still 
between 1/6 and 113 of the performance of DD60-SP. 

The increase in elapsed time for the /bin/find test when going 
from the smfs to the bigfs tests with 1W cache is somewhat less 
than expected since the increase in complexity between the two 
data sets is about 3. The /etclfsck and /bin/ls -IR test complete 
in about the expected time. 

RAID-H Well/Ill Formed 110 Performance (no ldcache) 

Because of the comparable performance on these and other 
tasks between DD60-SP and RAID-H, it would be most advan­
tageous to utilize RAID-H in production. 

4.2.7 Well formed VS. III formed 1/0 test 

The next series of figures (10-15) contrasts the significant per­
formance differential for applications that make i/o requests on 
boundaries that map well to the allocation unit of the device 
and those that do not. Each figure consists of 4 graph lines, a 
read and write request that is well formed, and a read and write 
request that is ill formed. Well formed requests in this case are 
successive synchronous sequential i/o accesses with a block 
size of 2D where n ranges from 15 (32k) to 24 (16 megabytes). 
III formed requests are also successive synchronous sequential 
i/o accesses with a block size of 2n + 1024 where n ranges from 
15 (33k) to 24 (16 megabytes + 1024 bytes). The blocks are 

10 
RAID-P WelVIlI Formed I/O Performance (no ldcache) 

32k 

let 

Figure 10 

1(i Hf 10' lei let 10' Hf lei lei 
Block Size (bytes) 

Figure 12 
Block Size (bytes) 

RAID-HWelllIll Formed I/O Performance (sm ldcache) RAID-P Well/Ill Formed I/O Performance (sm ldcache) 

·····························1······························f·····························i··············· ............. . 
...... ::-\fJ~We1fi ···1······························;·····························i····························· 

::::::.~.~.~ .... ::r::::::::::::::::::::::::::t::::::::::::::::::::::::::::1::::::::::::::::::::::::::: 

.------. ....... ; .............................. ; ............................. ; ............................ . 

:::~:~!:~:::i~~F:-:-:-:·-:-:-:-:·~~~t":~:~~~~:":~":"::t~~~§:i::::::::::: 
: ~ ~ ; 
I : : : 

:::::::::::::::::::::::::::::r::::::::::::::::::::::::::::r:::::::::::::::::::::::::::r::::::::::::::::::::::::::: 
........................ ( .... : .............................. ~................... ........ . 

I : : : 
I : : : ......................... ~ .... : ........................... ····t· ... ...... ....... .. ......... ! ........................... . 

............................. ~ ........................ ······~·····························1········~·~~~···· ......... . 
2 •.•.•.•••••.•••.••••••••..••. 1. ............................. t .. !~.~~ ................... .i ........................... . 

32k: 256k: : 

···············,-·~0~:::~t~:~~:~~~:-:~-:t::::;::::~~·~~·~1¥·;i~~~~:;~;·~;·~···· 
o 

I : : : 

2 ::::::::::::::f:~~:'=r:_~,:;:~~~P:f-~::~~-~i~~i~~;:~:::: 
let 

Figure 11 

Hi let 
Block Size (bytes) 

10' lei let 

Figure 13 

uf 
Block SIZe (bytes) 

lei lei 10' 

RAID Integration on Model-E lOS 

129 



Performance Analysis 

is an apparent problem in using ldcache effectively with 
DD60-SP Well/Ill Formed I/O Performance (no ldcache) RAID-H. In all instances, performance is lower than expected 

9 •••••..•••.....•..••••.•.•..• j ........................ ······i·····························j················· ........... . 
............................. J.. ............................ L.~~~ ..................... i ......... ~~.~I;! ••••...••...•• 

1...-_ ....... ~::::::::::::::::::~~~J::::::::~~ ~j::::~:' :L;;;C:::-:::i:::::: ::::::. 

and worse than those obtained from RAID-P (figure 13). 

Figure 12 shows RAID-P with no ldcache. The results are con­
sistent with those of RAID-H (figure 10) again representing 
throughputs indicative of a random i/o test. It is confounding 
that CRI would insist that read ahead and write behind would 
not be advantageous (see June 17, 1993 entry in the chronol­
ogy appendix). 

Figure 13 shows RAID-P with sm ldcache. The sm ldcache 
configuration provides an insight into what write behind opti­
mization can actually do. For 64k byte transfers, RAID-P 
shows a remarkable 72 megabytes/second. Write behind allows 

ICf lei let HY Hf for stacking commands in the MSI RAID controller and allows 
Block Size (bytes) 

Figure 14 

DD60-SP Well/Ill Fonned I/O Performance (sm ldcache) 
10 

the application to continue on asynchronously to the i/o pro­
cessing. Similar performance gains are possible from read-a­
head optimization, which could be implemented utilizing 
ldcache. In fact, contrasting figures 12 and 13 shows this. For 
all transfers (read/write, wel1Jill) less than a megabyte, utilizing 
ldcache boosts performance by as much as a factor 10 for reads 
and a factor of 40 for writes. To better illustrate the problem for 
reads, the amount of time required to return 32k to an applica­
tion is approximately 0.022 seconds. It takes 0.039 seconds to 
return 1 megabyte to an application. For a 56% increase in 
time, a 32 fold increase in data is achieved. 

Consistent in figures 10 through 13, is the unexplained degra­
dation when going from 8 to 16 megabyte transfers. 

Figures 14 and 15 are included for completeness and show that 
CRI disks are also subject to degradation with ill formed 

ICf let 
Block Size (bytes) 

HY Hf requests but to much less an extent. 

Figure 15 

passed directly to the system using the read(2) and write(2) 
system call. The test case results are shown for block size 2° by 
the horizontal line running from 2° to 2°+ 1. Block size refer­
ence points are shown along the read well graph line. 

Figure 10 shows the RAID-H filesystem with no ldcache. With­
out the benefit of read ahead or write behind, these graphs 
depict worst case performance for the range tested. In fact, due 
to CRI's implementation, the performance results should be 
identical for an i/o test that was random instead of sequential 
(see section 4.2.9 on random i/o test results)! Also shown is the 
dramatic degradation (a factor of 2 to 3) that occurs with the ill 
formed requests. 

Figure 11 shows the RAID-H filesystem with sm ldcache. The 
results are consistent with those in figures 5 and 7 in that there 

130 

4.2.8 Workload Test 

Table 2 shows the results of a simulated workload run on 
RAID-P and RAID-H configurations. Both were configured 
with 170 units of ldcache at a size of 128. The test consisted of 
the simultaneous execution of 12 data streams all on the tested 

TABLE"1. 

Rate User System Megabytes Duration 
mby/sec Time Time Transferred (Hours) 

RAID-H 15.51 129.65 100.89 66,998 1.20 

RAID-P 51.78 410.66 284.98 210,634 1.13 

filesystem. Block transfer sizes ranged from 32k to 8 mega­
bytes. The ratio of well-formed to ill-formed i/o requests was 6 
to 1. The tests were run over the period of approximately 1 

RAID Integration on Model-E lOS 



Performance'Analysis 

hour. With the RAID-P filesystemt good performance is main­
tained even with the mixing of small and large requests. Againt 
the problem of ldcaching the RAID-H filesystem is apparent 

4.2.9 Random I/O Test 

This test was added in an effort to highlight how much better 
CRrs DD60 disks were at handling random small block trans­
fers than the MSI RAID. Given that there is a 2x to 3x differ­
ence in average latencYt one would expect quite a performance 
differential. As it turns outt this may be the coup de grace for 
SLED's. 

Dedicated machine time was unavailable to run these tests. To 
report best case results for each configurationt each test was 
run 10 times and the test yielding the least elapsed time was 
selected as representative. 

This test takes a randomly generated set of numbers which are 
offsets into a 64 megabyte test file. The range of the numbers 
potentially span the entire file. The program reads in a number, 
calls Iseek(2) to position itself in the file to the specified offset, 
and then either does a read or write (depending on the test) of 
block-size bytes at that offset. This is done 1024 times for each 
execution of the test. The test was run for a block-size of 4096, 
16384, and 65536. The test was executed against RAID-H, 
RAID-P, and a filesystem created on a single DD60. 

Two different sets of input lseek numbers were used. One set 
was completely random in that the offset into the file could be 
at any byte address. These are the "Off Boundaryn results 
shown in figures 16 and 17. The other set was also randomt but 
the offset was restricted to be an integer multiple of the block­
size used in the test. These are the "On Boundary" results 

6v 
Off Boundary Random Read I/O Test 

55 ....................................................................................................................... . 

:;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::li~I::::::::::::::::::::::::::::::; 
40- .............. :.:::, .................................. = ............................................................ .. 

~35 .......................................................................................................... --- .. . 

~ -830- .............................. ;.:.= ................................ ,..- ....................... = ......... . 
~25 ......... r-- ... .... r""""f"'= ............ r.:":':' ........ r::::r:::: ........................................ . 

~ ~ ---20- ............................................................... :.:.:.: .. ;.::. ..................... . 

15 ......................................................................................... . 

10- .......................................................................................... . 

5 .......................................................................................... . 

O-+-'-4Ic-:-Ll~6k .... 6-14k--'--4k'-I6k~64Ic...L....-'-4k~I6k..L.6~4k--:-L4-kL=I6k"?-64Ic""---r::..::4k~16k=64~k--:-L-4k ...... I6k-'-64...L..k-l 

no sm no sm no sm 

RAID-H RAID-P DD60 

Figure 16 

RAID Integration on Model-E lOS 

shown in Figures 18 and 19. Block-size is annotated at the base 
of each bar graph. 

Figure 16 shows the read results for the off boundary test. With 
the sector size of the MSI RAID at 64kt the 4k and 16k tests 
are likely to require access to only one sector. The 64k test will 
likely require access to 2 sectorst which justifies the additional 
time required for the operation. The sm cache is quite useful in 
this test in negating this effect while only slightly degrading 
the 4k and 16k results. Most unexpected are the results of the 
DD60 test. Averaging the 4k, 16k and 64 k results and compar­
ing the best RAID configuration against the best DD60 config­
uration, the DD60 only performs 28% faster than RAID! For 
some reasont the CRI disks are taking at best, 17ms to return a 
4k block. This has not been a substantial problem in produc­
tion, as no one has noticed either here or at CRI. Since most file 
accesses are sequential [ousterhout85], sequential performance 
tends to dominate, thus latency from random i/o may not be a 
problemt which would imply that optimizing sequential access 
is most important. The primary advantage that CRI disks have 
over the RAID is in filesystem metadata access (e.g. t inodes) 
which is not a factor with RAID-H. 

Figure 17 shows the read results for the on boundary test. 
Cache has a typically negative (minor at that) effect on the 
results. This is expected in that the on boundary tests only 
require access to one sector (except the DD60 64k test that 
requires 4). Here, the DD60 is only 16% faster than RAID-P. 

Figure 18 shows the write results for the off boundary test. 
Notice that the y-axis scale has been increased to 90 seconds 
for these tests. The results are expected with the 64k RAID 
tests requiring up to two read/modify/write operations for each 

On Boundary Read Random I/O Test 
5S ....................................................................................................................... . 

:; :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::1i'~~I:::::::::::::::::::::::::::::: 
40" ....................................................................................................................... . 

~35" ............................................................................................................... ~ .. . 
~ ~ 
030" ................................................................................................................... . 
g --- ~ ~ 

00: :::::=.~.::::.~= :::: ::::=~.=.::::.~~ :::: :::::::::::::';.':::: :::: :::: ::: ::: 
15" ........................................................... .... =r:":":': ............ ......... . 

10" .......................................................................................... . 

5 .......................................................................................... . 

4Ic 16k 641c 4Ic 16k 64k 4Ic 16k 64k 4Ic 16k 641c 4k 16k 64Ic 4Ic 16k 64k 
no 1m no sm no sm 

RAID-H RAID-P DD60 

Figure 17 

131 



Performance Analysis 

9v 
Off Boundarv Random Write I/O Test 

80-············· _ .................................................................................................... . 

..--
70- ............. .... ................................. .... ....................... Times ...................... . 

_Elapsed 

60- ............. . .............................................................. ::~. f(",~m ...................... . 

~ ~ 
"g5IT ...................................................................................................... ..-- ., .... . 
o r-

g4(} ....•••• ...- ...•..••.........•••.. •..••••. 0:-::-: •••••••••••••••••• I":":"!" •••••••••••••••••••••••• '"'"'" ••••• , •••• 

~ ~ ~ 
~. r--r- r--

3IT····~···························~···· ...................................................... . 
r-

2IT ....................................................................................... , .... . 

lIT ............................................................................................. . 

o+-~~~~~~~~~~~~~~~4-~~=-~ 
4k 16k 64k 4k 16k 64k 4k 16k 64k 4k 16k 64k 4k 16k 64k 4k 16k 64k 

no sm no 8m no 1m 

RAID-H RAID-P DD60 

Figure 18 

user level write. The best DD60 configuration is only 13% 
faster than the RAID-P in this test. 

Figure 19 shows the write results for the on boundary test. For 
both RAID based fllesystems, sm cache significantly improves 
performance at the 64k level. The 4k and 16k tests are as 
expected because of the read/modify/write that occurs with 
transfers less than 64k on the RAID ·based systems. Note also 
that the RAID based filesystems are 3x faster than the DD60 
for the 64k test! Overall the DD60 is only 32% faster in this 
test. 

Given this information, one can say with some certainty, that 
the DA60 RAID product from CRI which is a RAID level 3 
system with a 64k sector size, should perform worse than the 
DD60 used for this test, especially with the 16k test from figure 
19, which is the only test that the DD60 was significantly bet­
ter. 

The overall random i/o performance advantage that the best 
DD60 configuration (no cache) has over the best RAID config­
uration (RAlD-H sm cache) is 24% faster for writes and 29% 
faster for reads. 

4.2.10 Suggested Additions 

On the MSI Side: 

• Reallocation - As previously discussed, data loss can occur 
when a drive fails and there are bad sectors on other drives. 
Having the capability to automatically reallocate bad sec­
tors on the fly would all but eliminate this potential for data 
loss. 

• SMC - The addition of a mode that the SMC can be placed 
into that prevents any unintended modification of opera-

132 

6v 
On Boundary Write Random I/O Test 

5S •••••••••••••••••••.••.•••.•••••••••••••••••••••.•••••••••.•••••••••.•.••••••••••••••••••••••....•...••.•••••.•••••••••• 

:; ::::::::::::::=:::::::::::::::::::::::::::::::::::=::::::::::::::::1=:::T~~:I:::::::::::::::::::::::::::::: 
r-

4(} ••••.••••..•••••.•••••••••••..•.•.••.•.••••••••••.•...••••••••••••••••••••••.•••••••••.••...•••••...••••••••••••. 

~35 ••••••••••••••••••••••••• ;:.:.:.: •••••••••••••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••.••••••••••••• = r-- .--r-
03!} ..................................•........................•....•......•.....••••...............•.......... 
g r-- f-- r-I--
~2S •••••••••.•.•...•.••••••.•••••.•.. " ••••.•••.•••.••.••..•••••••••••••••••••.•.....•.•••.•••••..•••••. 

20" ...................................................................................................... . 

. IS •••••••••••••.••••••••••.••••••••.••••••••••.••••••••••••••••••••••.••••••••••••••.•••. "::":" .,. 
:--

'; :::: ~~ ~~ ::: :::: :::: :~: ~r::~ ::: ::::::: :::: :::::='F :::~ :::: :::: ::: :::: :::::: 
4k 16k 64k 4k 16k 64k 4k 1& 64k 4k 16k 64k 4k 16k 64k 4k 16k 64k 

no sm no 1m no sm 

RAID-H RAID-P DD60 

Figure 19 

tional parameters. As is stands now, anyone who has physi­
cal access to the SMC effectively has unlimited power to 
change anything at will, or by mistake. 

• Remote Status - A command that could be run from a 
remote workstation that would tell an operator whether or 
not someone actually needed to take further action. This 
could then be put into a cron script to status the system sev­
eral times per day and fire off email if a problem is indi­
cated. This could be extended to for such maintenance 
activities as read scrub and flaw management. 

• Rewrite SMC software - This software needs to be 
rethought. Many common operations are not intuitive and 
or awkward. For example, it takes approximately 200 key­
strokes to examine suspect permanent flaws. 

On the CRI Side: 

• Buffer Alignment! grouping - As shown in the performance 
section, some operations performed utilizing ldcache cause 
unexplained and significant degraded performance, most 
notably with the RAID-H configuration. 

• Read Ahead into ldcache - When read-ahead is indicated, 
perform the read-ahead into ldcache. 

• Default Buffer Sizes - Evaluate the potential for enhancing 
performance by modifying the default buffer size for library 
routines, and elsewhere that it is indicated. Matching this to 
better suit the MSI RAID should help to improve perfor­
mance while requiring only a modest increase in the 
amount of main memory. 

• Metadata Cache - Add an option to ldcache so that filesys­
tern metadata and data can be cached separately. A meta­
data write-though cache should improve performance 

RAID Integration on Model-E lOS 



Summary 

without degrading filesystem integrity when recovering 
from crashes. 

• Metadata Access - The results of the random i/o test indi­
cate that the DD60 outperforms the RAID by 25% to 30%. 
Why then are the /bin/find times 3x and the /etc/fsck times 
6x that of a DD60? 

5.0 Summary 

It has taken much longer than expected to get the MSI RAID 
up to production quality standards. There are still some perfor­
mance problems that need to be addressed. Overall, the perfor­
mance and reliability of the MSI RAID system is good and it is 
certainly the least expensive high perfonnance alternative. 

The RAID-H filesystem is advantageous for several reasons. 
Combining this configuration with some amount of ldcache is 
the desired configuration for NAS, given that the ldcache 
buffer problems can be resolved. 

The results from the random i/o test indicate that CRI propri­
etary disks work better primarily because UNICOS optimizes 
their access. The same optimization techniques applied to the 
RAID should bring all perfonnance to within 10% to 20% of 
the DD60-SP configuration. They also show that DD60s do not 
significantly outperform the RAID. It then follows that ques­
tions concerning RAID latency cannot serve as an excuse to 
prevent optimization efforts any longer. Direct hardware sup­
port (e.g., eliminating IPI-3) would all but eliminate the small 
DD60 perfonnance advantage. 

RAID technology is already an attractive option. With fast 
SCSI-2 drives approaching $0.50 per megabyte, there is still a 
10 fold markup to build a fast RAID controller that integrates 
commodity disks and supercomputers, leading to the expecta­
tion of even lower prices. 

6.0 Acknowledgments 

I would like to thank Bob Cave and the others involved in the 
IDA Princeton project that proved this type of technology was 
usable in a supercomputer environment. Ken Katai and Neal 
Murry of MSI also deserve recognition for providing excellent 
support of their Gen-4 system. 

7.0 Appendix 

Over the past 18 months, there have been a number of goals 
met, problems encountered and obstacles overcome. This is a 

RAID Integration on Model-E lOS 

partial chronological listing of these events and their eventual 
outcome. 

Nov 5 1992 - Product Performance Demo 
As a requirement for the procurement of the RAID, the 

potential vendors were required to demonstrate perfor­
mance. The testing was perfonned at the Maximum Strat­
egy facility in Milpitas, CA. The test environment consisted 
of a Gen-3 RAID serving as the testing client and the IFB 
bid hardware consisting of a Gen-4 controller and 20 
Seagate IPI-2 drives with a storage capacity of 27 
gigabytes. Results shown in Table 2 

• Mar 25 1993 - First Installed 
HSP-3 (C9016-10241256) installed. Cabled up MSI RAID. 
Able to access RAID with the alpha release of the CRI 
IPI-3/HiPPI driver. Having problems talking to more than 
one facility. 

• Mar 31 1993 - Software Problem 
Due to a minor device number conflict, we are unable to 
access both facilities of the MSI RAID. Ldcache give an 
ENXIO (ermo 6) error when trying to ldcache a RAID file­
system. 

TABLE 2. 

Requirement MSIGen-4 

read 720 mbitlsec 740 mbitlsec 
(92.4 mby/sec) 

write 680 mbitlsec 701 mbitlsec 
(87.6 mby/sec) 

• April 9, 1993 - Hardware Problem 
Data corruption is detected on reads, further diagnosis 
shows a parity error over HiPPI. Replaced HiPPI cable and 
MSI HiPPI controller board. 

• April 12, 1993 - Hardware Problem 
More data corruption errors on read. MSI replaces RiPPI 
controller board again. Diagnosis at MSI shows a hardware 
failure on the first replacement board. 

• April 23, 1993 - Software Problem 
Ldcaching on the MSI RAID now crashes the C90. 

• April 28, 1993 - Software Problem 
Utilizing the primary and secondary allocation on RAID 
causes the root filesystem to hang (i.e., Is -1/ never returns) 
and eventually requires a re-boot to fix. 

• May 19, 1993 - Software Problem 
Inappropriate handling of soft errors on the CRI side. When 
a conditional success is sent to the Cray, it is interpreted as 
a failed request, The Cray then does this 5 times and quits -

133 



Appendix 

propagating the problem to the application. It is suggested 
that the Cray attempt some type of error recovery. 

• Jun 9, 1993 - Software Problem 
Ldcache still not working. Primary/secondary allocations 
also still not working. No error recovery is done. No read 
ahead/write behind. I/o requests must be VERY well 
formed to extract performance from the RAID disk. 

• Jun 15, 1993 - Software Fix 
Kernel mod installed to fix Idcache problem. 

• Jun 17,1993 - CRI Response to issues 
Primary/secondary allocations are not supported in the cur­
rent HiPPIIIPI-3 implementation under UNICOS 7.C.2. 
This capability is available in Unicos 7.C.3, which is cur­
rently scheduled for release August 6th. 
CRI declines to do any error processing (other than retries) 
on the C90 side. They do make a reasonable argument. 
The issue of read ahead/write behind for an IPI-3 driver 
came up during the HSP-3 contract negotiations. Cray 
Research replied in a letter dated November 4, 1992: 

"Cray Research has investigated implementing read-ahead 
and write-behind in either the mainframe itself or in the 
lOS and believes that such an implementation would be 
ineffective in enhancing performance of a HIPPI-based 
IPI-3 driver. This is because both the mainframe and the 
lOS are too far away from the disk device itself to provide 
meaningful improvement in transfer rates. The appropriate 
place to put read-ahead and write-behind, in our view, is in 
the controller of the RAID device itself. This has not yet 
been done in Maximum Strategy products." 

• July 12, 1993 - Upgraded UNICOS 
Primary/Secondary mods from 7.C.3 are added into 7.C.2 
in an attempt to create the hybrid filesystem. 

• July 19, 1993 -Fell back to plain 7.C.2 
System time the has increased greatly. Experiencing lost 
mount ~oints with mixed device filesystems. Returning to 
unmodIfied 7 .. ~.2 system. Since we will be beta testing 
UNICOS 8.0 ill August, no upgrade to the official 7.C.3 
release is planned. 

• Sep 17, 1993 - Software Problem 

134 

Duplicated the auto-reconstruct failure that occurred 2 
weeks ago after several tries. Occasionally when powering 
off a drive, multiple retry failures cause an EIO (ermo 5 -
i/o error) to be propagated to applications. 1\vo problem are 
apparent here; 

1.CRI driver is not appropriately handling conditional suc­
cess errors .. 

2.When a drive fails AND there are active flaws on other 
drives, correct data cannot reconstructed and the read fails. 
A request is made to MSI to add the capability to automat­
ically reallocate suspected permanent flaws that occur dur­
ing operation. 

• Sep 28, 1993 - Software Fix 
New driver available to fix the inappropriate handling of 
conditional success status. 

• Sep 30, 1993 -Software Problem 
Installed new CRI software and New MSI software to fix 
all current known problems. On the positive side, perfor­
mance increased by almost 30% with the new software (80 
mby/sec reads and 73 mby/sec writes). Testing has however 
uncovered a serious problem that causes corrupted data to 
be propagated to applications when a drive is powered off. 

• Oct 1, 1993 - Response 
MSI and CRI are investigating the problem. 

• Oct 1, 1993 - Software Problems 
Duplicated data corruption problems without powering off 
drives. 

• Oct 7, 1993 - UNICOS 8.0 
Began beta UNICOS 8.0 testing, primary/secondary alloca­
tions are still not operating correctly. 

• Nov 17, 1993 - Software Fix 
Installed a new lOS and a new HiPPI driver on the CRI side 
and a new driver on the MSI side Nov 10. Testing over the 
last week has not turned up any problems. Performance has 
dropped somewhat (about 10%) for both reads and writes 

• Dec 3,1993 - Production UNICOS 8.0 
Primary/Secondary allocations functioning correctly. Per­
fonnance is mixed yet consistent with 7.C.2J3. 

• Jan 2,1994 - Hardware Problem 
Machine powered off for several days during facility main­
tenance, when power returned, RAID will not boot. MSI 
able to give instructions over the phone to return system 
back on-line. Problem traced to battery failure that has been 
fixed in subsequent systems. MSI provides upgraded sys­
tem processor board. 

• Jan 30, 1994 - Limited Production 
Extensive testing has turned up no further problems with 
the MSI RAID. The system will now be put into limited 
production 

• Mar 10. 1994 - Every Thing OK 
No errors reported. No outstanding problems. 

RAID Integration on Model-E lOS 



References 

8.0 References 

[anderson93] Anderson, "Mass Storage Industry Directions," 
Proceedings of the Cray User Group, Montreux Switzer­
land, Spring 1993. pp307-310. 

[badger92] Badger, "The Future of Disk Array Products at 
Cray Research," Proceedings of the Cray User Group, 
Washington D.C., Fall 1992. ppI77-190. 

[cave92] Cave, Kelley, Prisner, "RAID Disk for a Cray-2 Sys­
tem," Proceedings of the Cray User Group, Berlin, Ger­
many, Spring 1992. ppI26-129. 

[cooper93] Cooper, et aI, "Numerical Aerodynamic Simulation 
Program Plan," NASA Communication, September 93. 

[homan92] Homan, "Maximum Strategey's Gen-4 Storage 
Server," Proceedings of the Cray User Group, Washington 
D.C., Fall 1992. ppI91-194. 

[ousterhout85] Ousterhout, Da Costa, Harrison, Kunze, 
Kupfer, Thompson, "A Trace Driven Analysis of the UNIX 
4.2 BSD File System," ACM Operating Systems Review, 
Vol 19, No.5 (1985), ppI5-24. 

[patterson87] Patterson, Garth, Gibson, Katz, "A case for 
Redundant Arrays of Inexpensive Disks(RAID)," Univer­
sity of California Technical Report UCB/CSD 871391, Ber­
keley CA, December 1987, preprint of [patterson88]. 

[patterson88] Patterson, Garth, Gibson, Katz, "A case for 
Redundant Arrays of Inexpensive Disks(RAID)," Proceed­
ings of the 1988 ACM SIGMOD Conference on Manage­
ment of Data, Chicago IL, June 1988, ppl09-116 

RAID Integration on Model-E lOS 

135 



Automatic DMF File Expiration 

Andy Haxby (andy@tnllnpet.demon.co.uk) 

SCIS - Shell Common Information Services 

(Formerly Shell UK Information and Computing Services) 

Wythenshawe, Manchester M22 5SB England 

Abstract 

SCIS has a YMP/264 (until recently a XMP-EAJ2(4) with a 
4000 slot STK 4400 silo that is mainly used to hold DMF and 
backup tapes. Since nmning DMP users have tended to regard 
the :file systems as an infinite resource and have been very lax 
about deleting unwanted :files. Eighteen months ago it was 
apparent that our DMF pools would grow beyond the capacity 
of our silo, so it was necessary to implement a file expiration 
date for DMF that could be set by users on their files. The 
system has significantly reduced our DMF pools. This paper 
describes the external and internal workings of the file 
expiration system. 

Background 

SCIS is a Royal Dutch Shell Group company that provides a 
range of computing services to other members of the Shell 
group in the UK and the Netherlands. The SCIS Cray is used 
for petroleum engineering applications, mainly reservoir 
modelling. A typical model will consist of a 10MB executable 
and a number of data files each up to I nOMB. There arc 
approximately 400 users in 30 different groups. The majority of 
users are located at various sites around the UK. but a 
diminishing number are in locations as far apart as Canada. 
New Zealand and the Middle East. Many users access the Cray 
infrequently and only by batch. and the large geographic 
spread of users makes it very difficult to manually ask people 
using large amounts of storage to delete unwanted files. 

For the purpose of disk organisation users are split into two 
5GB file systems, lu2 and lu4. depending on whether they are 
UK or non-UK based. DMF is run on these file systems and a 
few others such as the support staffs file system and a file 
system used for archiving old log files and accounting data. In 
July 1992 the DMF tape pools had grown to 900 cartridges 
each. The rate of growth was linear. consistent with users not 
deleting old files, and indicating that we would mn out of 
space in the silo early in 1993. It was clearly necessary to 
implement a system whereby Jiles would be deleted after a pre-

136 

determined length of time (a 'retention period') unless a user 
had explicitly requested that a file should be kept for longer. 

Requirements For The Automatic Expiration 
System 

It was considered important that the system mllst: 

• Be easy to use. 

• Require little or no maintenance or administration once 
installed. 

• Require the minimum amount of local code. 

• Integrate cleanly with Unicos, i.e. have a Unix flavour 
interface and be completely application independent. 

• Not compromise any existing security mechanism, i.e. 
llsers can only set retention periods on files they have write 
access to. 

• Work with subsequent versions of Unicos. At the time we 
were running Unicos 6.1.6 and 7.0 was still in Beta. 



Design Considerations 

Two routes to achieving the requirements were considered: 

• A 'database' type system whereby users execute locally 
written commands to read and write lists of files into a 
database. The database could then be regularly 
interrogated by a cron job that would delete any files that· 
had passed their 'best before' date. This system would 
require no modifications to Unicos source to write, and if it 
went wrong it would not interfere with Unicos itself. 
However, a large amount of local code would be needed to 
check file permissions and ownerships, cope with files 
restored from backup, delete the database entry if the file is 
deleted by the user rather than the system. etc. 

• Modify Unicos commands to provide the tools to enable a 
simple file expiration facility to be written. The inode 
contains three time stamps. cdi_atmsec. cdi_ctmsec and 
cdi_mtmsec (atime. ctime and mtime) which correspond to 
date last accessed. date inode last modified and date file 
last modified respectively. Under Unicos 7.0 and above 
there is a site modifiable member of the inode stmcture. 
cdi_sitebits, which can be written to with fcntl(2) and read 
with stat(2) system calls. The sitebits inode member can be 
used to store an additional time stamp corresponding to 
how long the file should be kept for. Commands such as 
touch(1), Is(1) and find(1) can be modified to read and write 
time stamps into the inode sitebits member. 

This method has the advantage of being an elegant and 
totally seamless enhancement to Unicos requiring little 
local code, and utilising all of the security checking 
mechanisms already coded into the commands. The 
disadvantages are that a source licence would always be 
required and the mods would have to be carried forwards 
to each Unicos release. Additionally. under Unicos 6.1 
whilst the sitebits member was present in the inode. the 
fcntl(2) and stat(2) system calls were missing the code to 
read and write to it. so kernel mods were necessary to 
provide this functionality until Unicos 7.0 was available. 

Implementation Details 

The second method of implementing a retention system was 
chosen. Kernel mods were made to Unicos 6.1.6 to provide the 
extra functionality in the fcntl(2) and stat(2) system calls that is 
available in Unicos 7.0. Whilst doing this it was apparent that 
it would have been better if Cray had not implemented the 
facility to write into the inode sitebits member through fcntl(2), 
but had rather written another system call that would function 
similarly to utime(2). This is because fcntl(2) principally 
performs file locking and other operations on the data of a file 
and so takes a file descriptor as an argument. therefore the file 

must first be opened with open(2). utime(2) takes a path name as 
an argument and does not require that the file is open, which is 
more sensible since only the inode is being updated, not the 
data block. 

The following commands were modified so that users could set 
and read retention times. The 'd' flag was chosen to be a 
mnemonic for 'detention' since the Is command already has Ie' 
and 'r' flags. 

• To set a retention period the touch(1) command was 
modified: 

touch [-a] [-c) [-m] [-d) [mmddhhmm[yy)) [-0 dd] 

where -d is the detention (retention) time as a time stamp 
and -0 is the detention time in 'days from now'. The 
default for touch is still -am. Using the -d or -0 options on 
their own does not cause the modification time to be 
altered. Unicos sets the sitebits member of the inode 
structure to be 0 on every file by default, and hence the 
retention time stamp for all files will be 0 by default. It is 
not possible to set a retention time on a directory as the 
touch(1) command must open(2) the file first and it is not 
possible to open(fd, O_WRONLY) a directory. 

It is interesting to note an 'undocumented feature' of 
touch(1): because utime(2) is used to change the actime and 
modtime time stamps on a file it is not possible to touch a 
file you don't own even if you have write permission. This 
is not the case for the retention time since the open(2) and 
fcntl(2) system calls are used to update the retention time 
stamp. 

• To enable users to list the retention time on their files both 
Is(1) and Is(18S0) commands were modified to accept a -0 
option which. when used in conjunction with -lor -t 
options. lists the retention time in the same format as the -c 
and -u options. The code generates an error message if the 
-0 option is used in conjunction with either -c or -u. If the 
retention time is zero, i.e. has not been set on a file, the 
mtime is lIsed in the default manner of Is(1) and Is(18S0). 
The -0 option used on it's own is valid but meaningless, as 
are -c and -u options. 

• In order to search file systems for files that have exceeded 
their retention period. the find(1) command was modified to 
accept a -dtime argument in the manner of -atime -ctime and 
-mtime. If the retention time is zero, i.e. has not been set on 
a file. the last date of modification is used in the manner of 
the -mtime option. 

Sites implementing a system such as this could give 
consideration to modifying other commands such as fck(1) to 

137 



report the retention time, or perhaps rm(1) to warn users trying 
to delete files with an unexpired retention time. 

The mods to commands described above provided the necessary 
tools with which to implement a 'file expiration' system. Users 
were forewarned, run stream generators for user jobs were 
modified to allow batch users the option of touch'ing their files 
with a retention time, and a shell script was written to delete 
files past their retention time. The she1l script could have been 
nm from cron, but in order to enable us to mail users who only 
read VAX mail the script is nUl from a batch job submitted 
from a VAX front end once every month. It was decided to 
delete all files more than 93 days past both their retention time 
and date of last modification. Date of last access was not used 
as it is updated by commands such as dmget(1) dmput(1) and 
file(1). The shell script essentially just does: 

find $FS -dtime +93 -mtime +93 -type f -exec nn {} \; I -print 

Note that the above command leaves directory stl1lctures in 
place in case this is necessary for some applications to rtlll. A 
list of the files deleted is mailed to the user. along with a list of 
files that will be deleted next month unless a new retention 
time is set upon them. 

Effect Of Implementation On DMF 

The system went live on February 1st 1993. The first deletion 
removed approximately 80GB of files. A month later when the 
files \vere hard deleted utilisation of our DMF tape pools was 
reduced by nearly 50%. Having made a large number of tapes 
free we wanted to remove a contigllolls range of higher VSN 
tapes from the dmf pools rather than just removing random 
VSNs as they became free. This was time consuming and 
messy, and could only be done by setting the hold read only 
(hro) flag on the VSNs with the dmvdbgen(8) command. and 
then waiting until more files were hard deleted from the tapes 
before merging them. Multi-volume files that were not due to 
be deleted had to be manually recalled, touch(1)'ed to make 
DMF think they had been modified and so put them back 
somewhere else, and then re-migrated. Tidying the tape pools 
up after the start of the file expiration system took several 
months. 

One initial problem was caused by the fact that the modified 
touch(1) command uses the fcntl(2) system call to write the 
retention date, and so must open(2) a file first. This means that 
if a user sets a retention time on a migrated file, the file is 
needlessly recalled. As a result of this there was some 
thrashing of tapes during the month before the first delete as 
users set retention periods on old migrated files. Fortunately 
the act of touch'ing the retention time on the file does not 
update the modification time. else a subsequent dmput(1) of the 
file would create yet another copy! On the 2nd of December 

138 

1992 Design SPR No 58900 was submitted suggesting that a 
new system call should be written to allow cdi_sitebits to be 
updated without recalling migrated files. 

The system has been nmning for over a year now. It had been 
anticipated that some users would try to circumvent the 
retention system by setting very long retention periods on all 
their files by default, but so far this has not happened. We also 
anticipated being deluged by requests to restore deleted files 
but apart from a small number of genuine mistakes this has not 
happened either. 

Some users do unfortunately consider the retention system to be 
an alternative to the rm(1) command and just leave files lying 
around until the retention system deletes them. This causes a 
problem because the files are held in DMF for three months 
before the retention system deletes them and then a further 
month before they are hard deleted from DMF. In the worst 
case this can result in garbage being held in DMF for nearly 
five months. 

First Problems 

In July '93 a disk problem caused a user file system to be 
restored from a backup tape. Shortly afterwards it was noticed 
that all of the retention periods set on files had been lost. This 
was due to a bug in the restore(8) command. The dump(8) 
command correctly dumps the value of cdi_sitebits but there is 
no code in restore(8) to put it back again. Dump and restore had 
been inadvertently omitted during testing of the retention 
system! Cray confirmed that the bug was present in 7.0. 

Since restore(8) nms as 'user code' i.e. does everything through 
the system call interface rather than accessing the file system 
directly. it was not possible to fix this bug in Unicos 7.0 -
restore would have to open(2) and unmigrate every restored file! 
Design SPR No 66926 was submitted on the 8th July 1993 
against this problem. The eray reply was that a new system 
call would have to be written which would not be available for 
some time. The Design SPR suggesting that a new system call 
should be used to set cdi_sitebits had been submitted over six 
months previously but no action had been taken by Cray. This 
reinforces a general concern of the author that Cray pay 
insufficient attention to Design SPRs. 

Fortunately Cray did suggest a work-around to the problem. A 
script was written to read a dump tape and produce a list of 
inode numbers and file names. A program then re-reads the 
dump tape and produces a list of inode numbers and cdi_sitebits 
values. The two lists are read by an awk program that matches 
path names to cdi_sitebits values and pipes the result into fsed(8) 
to reset the values. Finally the file system must be umounted 
and mounted again before Unicos recognises the cdi_sitebits 



values. The whole process is a kludge and requires multiple 
reads of the dump tapes, but it works. 

Where Are We Now? 

Our DMF pools are still growing and are now, at 900 tapes 
each, the same size as before we introduced the retention 
system. This is due to three main factors. 

• The users in the /1l2 file system have generated a large 
number of files which legitimately must be kept for several 
months. This is unavoidable and the main cause of the 
grmvth. 

• We keep more log files and accounting data on the 'other' 
file systems than we used to. 

• Systems support staff themselves are untidy and are 
keeping ever increasing amounts of data. 

Giga Bytes of migrated data 

Outstanding Problems 

The following problems are outstanding: 

• It is necessary to unmigrate a file in order to set a retention 
time on it. 

• Restoring a dump tape is a convoluted process. 

Both of the above problems would be solved if Cray were 
to implement a new system call for writing into cdi_sitebits. 
According to eRA Y PRlV ATE PRE-RELEASE 
information (liable to change), there will be a new system 
call, Isetattr(2), in 8.2 which will allow all user-accessible 
meta-data associated with a file to be set in a single system 
call. The system call takes a pointer to a file name and a 
stmcture containing the desired changes as arguments, and 
does not require the file to be open. 

However, due to the internal workings of the Unicos 8.x 
virtual file system. the initial implementation ,viII be 

restricted to super-user. This should allow the bug in 
restore(8) to be fixed but may cause problems with our local 
mods to touch(1): it may be necessary to make touch(1) a 
suid program to allow users to set retention periods. The 
restriction on super-user may be lifted in a later release 
and the functionality of fcntl(2) will remain indefinitely 
should we decide to stick with the current limitations. 
Unicos 8.2 is scheduled for release fourth quarter 1994. 

• Unwanted files can still remain on DMF tapes for several 
months. 

The only way to prevent this is to reduce the time after 
which expired files are deleted, and/or reduce the time 
after which files are hard deleted. 

Future Plans 

We plan to mn the retention system on support staff file 
systems in the near future, and will look at reducing the 
amount of log files kept. These changes should remove up to 
10 GB of migrated data. 

Files more than one day (rather than 93 days) past their 
retention period will be deleted provided they are more than 93 
days past the date of last modification. This change will delete 
21 GB of migrated data. 

Conclusions 

It is very easy to implement a simple and reliable method of 
removing unwanted files and preventing DMF tape pools from 
growing indelinitely. From Unicos 8.2 existing problems with 
having to unmigrate files to set a retention time on them, and 
the failure of restore(8) to reset the retention times on restored 
files should be fixed. 

The system is not. however, a magical remedy for all storage 
space limitations. and good storage management is still 
required to ensure that users (and systems staff!) do not abuse 
the retention system or carelessly keep unnecessarily large 
amounts of data. 

Acknowledgements 

I would like to thank: my colleague Guy Hall who wrote the 
code to run the monthly file deletion from the VAX and send 
mail to users: Neil Storer at ECMWF for assistance with the 
kernel mods to 6.1.6: the staff at eray UK, in particular Barry 
Howling, who provided much help during early discussions 
about how to implement a file retention system, and who 
endured endless 'phone calls and complaints about design SPRs 
and the way Cray implemented the sitebits facility. 

139 



ER90® DATA STORAGE PERIPHERAL 

Gary R. Early 
Anthony L. Peterson 

EMASS Storage System Solutions 
From E-Systems 

Dallas, Texas 

Abstract 

This paper provides an architectural overview of the EMASS® 
ER90® data storage peripheral, a DD-2 tape storage subsystem. 
The areas discussed cover the functionality of tape formatting, 
tape drive design, and robotics support. The design of the ER90 
transport is an innovative approach in helical recording. The unit 
utilizes proven technology developed for the video broadcast 
industry as core technology. The remainder of the system is 
designed specifically for the computer processing industry. 

Introduction 

In 1988, E-Systems initiated a project which required a high 
performance, high capacity tape storage device for use in a mass 
storage system. E-Systems performed an extensive, worldwide 
search of the current technologies. That search resulted in the 
identification of the Ampex broadcast recorder that utilized D-2 
media as the best transport. E-Systems then initiated a joint 
development effort with Ampex to use their proven video 
transport technology and design the additional electronics 
required to produce a computer peripheral device. The result of 
this development was the EMASS ER90 tape drive which 
connects to computers using the IPI-3 tape peripheral interface. 

Core Technology 

The ER90 transport design meets the stringent requirements for 
long media life in its approach to tape handling. A simplified 
threading mechanism, a simplified tape path, and automatic scan 
tracking along with a proven head-to-tape interface are all features 
that lead to selection of the Ampex transport for the ER90 drive. 

The ER90 transport uses this direct-coupled capstan hub similar to 
high performance reel-to-reel tape drives instead of the usual 
pinch-roller design. Advantages include fast accelerations and 
direction reversal without tape damage, plus elimination of the 
scuffing and stretching problems of pinch roller systems. Since a 
direct drive capstan must couple to the backside of the tape, it 
must be introduced inside the loop extracted from the cassette. In 
order to avoid a "pop up" or moving capstan and the problems of 
precise registration, the capstan was placed under the cassette 
elevator, so that it is introduced into the threading cavity as the 
cassette is lowered onto the turntables. 

In order to prevent tension buildup and potential tape damage, 
none of the tape guides within the transport are conventional fixed 
posts. Air film lubricated guides are used throughout; one 
exception is the precision rotating guide which is in contact with 
the backside of the tape. 

140 

All motors are equipped with tachometers to provide speed, 
direction, or position information to the servo system, including 
the gear motors which power the cassette elevator and the 
threading apparatus. There are no end position sensors; instead, 
the servo learns the limit positions of the mechanisms and 
subsequently applies acceleration profiles to drive them rapidly 
and without crash stops. This approach also pennits the machine 
to recover from an interruption during any phase of operation 
without damage to the machine or tape. 

The tape transport also features a functional intermediate tape 
path that allows high speed searches and reading or writing of the 
longitudinal tracks without the tape being in contact with the 
helical scan drum. 

The ER90 tape drive architecture and media provides several 
unique functions that enhance the ability to achieve high media 
space utilizations and fast access. Access times are enhanced 
through the implementation of mUltiple areas (called system 
zones) on the media where the media may be unloaded. This 
feature reduces positioning time in loading and unloading the 
cassette. Access times are reduced through high speed positioning 
in excess of 800 megabytes per second. These core technology 
designs support a set of advantages unique to tape transports. 
Figure 1 depicts the ER90 transport and associated electronics. 

• 111111111111111111111111111111 
111IIIII 1111111111 11111111 

Figure 1. ER90 transport and associated electronics. 



Head Life 

Helical heads are warranted for 500 hours; however, experience 
with helical head contact time exceeds 2000 hours. Because of 
the system zones and the ability to move between system zones 
without tape loaded to the helical scanner drum, the actual head 
life with tape mounted on the drive may be substantially longer. 
In addition, when heads do need to be replaced, service personnel 
may quickly install new heads on-site, without shipping any 
transport subassemblies off-site, in about 20 minutes. 

Safe Time on Stopped Tape 

Whenever the flow of data to or from the tape drive is interrupted, 
the media is moved to a system zone and unloaded from the 
helical drum. When data is being written, this should be a rare 
occurrence because each drive has a 64 megabyte buffer. When in 
retrieval mode, returning to a system zone whenever the access 
queue is zero should be standard practice. In this way, if the drive 
is needed for a different cassette, it is available sooner and if 
another access is directed at the same cassette, the average access 
time is not affected by where the tape now rests. With this type of 
drive management, the cassette may remain mounted indefinitely 
without exposure to the tape or heads. 

Data Processing Design 

An ER90 cassette can be partitioned into fixed size units which 
can be reclaimed for rewriting without invalidated other recorded 
data on the tape cassette. Most tape management systems achieve 
space reclamation by deleting an entire tape volume, then 
allowing users to request a "scratch tape" or "non-specific" 
volume when they wish to record data to tape. Physical cassette 
sizes of25, 75, or 165 gigabytes will make this existing process 
inefficient or unusable. The ER90 cassette partitioning capability 
provides an efficient mechanism for addressing the tape space 
utilization problem. 

ER90 cassette fonnatting provides for three levels of Reed­
Solomon error correction. In addition, data is shuffled across the 
32 tracks that make up a physical block, and interleaved within 
the physical track so that each byte of a block has maximum 
separation from every other byte that make up an error correction 
code word. Data is then recorded using a patented process called 
Miller Squared. This process is a self checking, DC free, rate 112 
coding process that has a 100% probability of flagging a burst 
error. This has the effect of doubling the efficiency of a Reed­
Solomon code by knowing where the power of the code should be 
applied. A data rate of 15 MB/sec is achieved with all error 
correction applied, resulting in no loss of drive perfonnance for 
maximum data reliability. 

An error rate of 10-15 should be achieved without factoring in the 
effect of the interleave, write retry, and write bias. C3 error 
correction is disabled during read back check when writing in 
order to bias the write process. If C2 is unable to correct the error 
of anyone byte, a retry is invoked. Table I summarizes the error 
management system. 

Table 1: Summary of the Error Management System 

Format Item Format Description 

Bytes Per Track 48,972 

User Bytes Per Track 37,495 

C I Dimensions RS(228,220,8) T=4 

C2 Dimensions RS(106,96,10) T=5 

C3 Dimensions RS(96,86, 10) T=5 

Channel Code Miller-Squared (rate 112) 

C l-C2 Product Code Array In-track block interleaver 
with dimensions 456 x 106 
(two Cl words by one C2 
word) 

C3 Code Cross-Track C3 codewords interleaved 
Interleave Description across a 32-track physical 

block 

Outer CRC Error Detection Four 64 parity bit CRC 
of C l-C2-C3 Failure codewords interlaced over 

32 tracks which provide 
undetected error probability 
of 10-20 

Write Retry Yes 

Coding Overhead 28% 

Erasure Flagging Capability Excellent: probability of 
of Channel Code flagging a burst error is 

near 1.0 

Maximum Cross-Track Burst 3.3 tracks (139,520 bytes) 
Correction 

Maximum Length of Tape 35,112 bytes 
Defect Affecting 4 Adjacent 
Tracks that is Correctable 

Maximum Raw Byte Error 0.021 
Rate Which Maintains 
Corrected Error Rate < 10-13 

Maximum Width of 4,560 bytes 
Longitudinal Scratch that is 
Correctable 

Drive Configuration 

The Drive configuration allows for physical separation of the 
electronics from the transport module at distances up to 100 feet if 
desired. This allows users to maximize the transport density in 
robotic environments, and to place the electronics modules in 
close proximity to host computers. 

141 



Media Usage Life 

One of the major applications for ER90 technology is a backstore 
for a Disk/fape hierarchy. As such, the number of tape load and 
unload cycles, thread/un thread cycles and searches may be 
significant. The expected usage capabilities for the ER90 media 
should exceed 50,000 load/unload cycles, 50,000 tape thread! 
unthread cycles per system zone, and 5,000 end-to-end shuttle 
forward and rewind cycles. The number of end-to-end reads using 
incremental motion (less that 15 MB/sec) should exceed 2,000 
while the number of reads of 1 gigabyte files using incremental 
motion should exceed 5,000. The operating environment should 
be maintained between 12 to 20 degrees centigrade with relative 
humidity between 30 and 70% to achieve best results. 

Archival Stability 

Assuming cassettes are stored within temperature ranges of 16 to 
32 degrees centigrade with relative humidity between 20 and 80% 
non-condensing, storage of over 10 years is expected. For even 
longer archival stability, an environment maintained between 18.3 
and 26.1 degrees centigrade with relative humidity between 20 
and 60% non-condensing should result in archival stability 
exceeding 14 years. 

Recent testing by Battelle Institute on D-2 metal particle tapes 
from four vendors revealed no detectable change after 28 days 
of exposure to accelerated testing in a mixed gas environment, 
equivalent to 14 years of typical storage in a computer facility. 
The following results were determined: 

• No evidence was found of localized surface imperfections. 

• Improved surface formulations provided a protective coating 
for the metal particles. 

• The D-2 cassette housing protected the tape against damage 
by absorbing (gettering) corrosive gases. 

• Change of magnetic remanence does not differ significantly 
when compared to other tape formulations in use today. I 

High Speed Search 

ER90 data formats include full function use of the longitudinal 
tracks that can be read in either the forward or reverse direction. 
One of these tracks contains the geometric address of each 
physical block of data. This track can be searched at speeds of 
greater than 300 inches per second, equivalent to searching user 
data at more than 800 megabytes per second. Another longitudinal 
track is automatically recorded on tape which provides either 
addressability to the user data block or to a byte offset within a 
user file. No user action is required to cause these tracks to be 
written and they provide high speed search to any point in the 
recorded data, not just to points explicitly recorded at the time of 
data creation. 

1. Fraser Morrison and John Cororan, "Accelerated Life testing 
of Metal Particle Tape", SMPTE Journal, January 1994 

142 

Multiple Unload Positions 

Access times are enhanced through the implementation of 
multiple system zone areas where the media may be loaded and 
unloaded. Full rewind is therefore unnecessary. This reduces 
positioning time when loading and unloading the cassette, while 
eliminating mechanical-actions of threading and unloading over 
recorded data, as well as eliminating the wear that is always 
inherent in any design that requires a return to beginning of tape. 

Robotics 

Full robotics support is provided for the ER90 drives by the 
EMASS DataTower® and DataLibrarYTM, archives with storage 
capacities up to 10 petabytes. Both robotics are supported by 
EMASS VolServTM volume management software which is 
interfaced to tape daemon in the UNICOS operating system. 

The DataTower archive uses proven robotics to transfer D-2 small 
cassettes between 227 storage bins and up to four ER90 drives. 
This yields a capacity of almost six terabytes of user data in a 
footprint of only 27 square feet. A bar code reader on the robot 
scans a bar code on each cassette for positive identification and 
manageability. Under VolServ software control, the robot inside 
the DataTmyer archive rotates on a vertical pole, grabs the 
designated D-2 cassette from its bin, moves it to an available drive 
where it is automatically loaded into an ER90 drive. This load 
operation completes in less than a minute. When the application 
completes its use of the D-2 cassette, VolServ software will 
instruct the robot to return the cassette to a storage bin. 

For larger storage needs, the DataLibrary archive offers a modular 
solution that can be expanded to contain petabytes of user data. 
The DataLibrary archive stores D-2 small and medium cassettes 
in shelves that make up the cassette cabinets. Each four foot wide 
cassette cabinet can hold up to 14.4 terabytes of user data. Up to 
20 cabinets can be added together to form a row of storage. Rows 
are placed parallel to each other to form aisles in which the robot 
travels to access the cassettes. A added benefit of this architecture 
is that cassettes on interior rows are accessed by two robots. 
ERgO drives are placed on the ends of the rows to complete the 
DataLibrary archive. As demand for robotic-accessed storage 
grows, a DataLibrary archive can be expanded by adding more 
storage cabinets, more robots, or more ER90 drives. As with the 
DataTower archive, VolServ software provides complete mount 
and dismount services through the UNICOS tape daemon. 

Conclusions 
The ER90 tape drive, by borrowing innovative techniques used in 
high-resolution video recording, provides the computer process­
ing industry with a helical scan tape format that delivers data from 
a high density 19 mm metal particle tape. With a sustained rate of 
15 MB/sec, input/output intensive applications now have a device 
that complements the processing speeds of Cray supercomputers. 
The implementation of system zones allows safe load and unload 
at other than BOT, providing improved access times. The dense 
DD-2 format means that the cost of storage media is dramatically 
reduced to less than $2 per megabyte. 



EMASS/CRA Y EXPERIENCES 

AND PERFORMANCE ISSUES 

Anton L. Ogno 

Exxon Upstream Technical Computing Company 

Introduction 

At the Exxon Upstream Technical Computing 
Company (EUTeC) we have recently purchased an 
Emass Data Tower from E-Systems. The Data 
Tower is capable of holding 228 D2 tapes, with each 
tape having a capacity of 25 Gigabytes for a grand 
total of approximately 6 Terabytes of storage. The 
Tower also provides a robotics system to mount the 
tapes, a cabinet with room for four ER90 recorders, 
and a SparcStation System (VolServ) for managing 
media, drive and other component statuses. IPI 
Channels connect our Tower directly to the Cray, and 
each recorder is capable of sustaining 15 MB/s. We 
intend to harness the storage capacity of the Data 
Tower to provide a centralized repository for 
managing our large tape library. In the future, we 
may expand its usage to our IBM MVS machines and 
our UNIX workstations. 

We faced two challenges in making the ER90 drives 
available for production use. The fIrst challenge was 
to make the ER90 drives available to our users. To 
do so, we decided to extend the functionality of Data 
Migration (DMF) to include multiple Media SpecifIc 
Processes (MSPs) solely for D2 media. This 
approach gave us a simple mechanism for storage 
and retrieval of data, as well as archival and 
protection services for our data fIles. DMF allows us 
to support ER90 use with minimal programming 
effort, but at the expense of some flexibility and 
some performance. The hurdles involved in making 
ER90s available through DMF include confIguration 
and operational issues with VolServ and the Data 
Tower network, confIguration of the tape daemon, 
formatting of the tape media, confIguration of DMF, 

and some modifIcations to DMF to work with 
multiple MSPs. 

Performance has been our second major challenge. 
Each drive in the tower is capable of sustaining 15 
MB/s from Cray memory to tape on a dedicated 
system. At the moment, Data Migration is giving us 
at most 7 MB/s per drive or about 20 MB/s 
aggregate. By improving the 110 algorithm used by 
DMF in a standalone program, we have been able to 
achieve a rate of 13.5 MB/s from a single drive to 
disk and a rate of 26 MB/s with two drives reading or 
writing concurrently. With such a signifIcant 
performance gain, we concluded that the 
performance loss seen in Data Migration was due to 
the I/O algorithm of the DMF code. An explanation 
of these fmdings follows later. 

DMF/ER90 Experiences 

Hardware Hookup and Configuration 
of a Standalone ER90 

Initially, EUTeC opted to have one ER90 drive on 
site until a Data Tower became available for 
installation. Before we could make the ER90 
available to the Cray, we had to rebuild and 
reconfIgure the tape daemon with ER90 software 
support, which Cray distributed as an asynchronous 
product. These drivers· installed without incident; 
however, there were changes to the Tape 
ConfIguration File that did not install so easily. 
ER90 Tape Daemon Support Technical Note (SG-
2137) gave us a rough outline of confIguring a tape 

143 



144 

loader for the ER90. Unfortunately, the 
documentation was insufficient to steer us around 
issues such as appropriate time-out values, maximum 
block size configuration and operator confirmation of 
"blp" tape mounts1. As the technology matures, we 
expect that this document will mature 
commensurately. (All sites) 

Installing and Configuring DMF 

After we had established communication between the 
tape daemon and the ER90, we focused on 
configuring DMF to use the D2 MSPs. Because we 
needed to make the ER90s available quickly, we 
realized that only two packages could satisfy our data 
integrity requirements - Data Migration or Cray Reel 
Librarian (CRL). Unfortunately, CRL had to be 
abandoned because it cannot coexist with IBM Front 
End Servicing (a site requirement). Thus, we 
decided to allow access to the ER90s through DMF 
only. We had been running DMF with 3490 tapes for 
a year, which significantly lowered the learning 
curve for EUTeC and our clients. Before the first 
ER90 arrived, we were running DMF 2.04. To gain 
ER90 support, we upgraded to DMF 2.05, and with 
the installation of Unicos 8.0, we upgraded to DMF 
2.10, all of which caused us no problems. 

The following paragraphs outline the customizations 
we have made or expect to make to DMF: 

Multiple MSP Selection 

To allow our users to migrate to the D2 MSP while 
continuing to use the 3490 MSP, we made local 
mods to the dmmfunc routine, which Cray provides 
for just such a purpose.2 At EUTeC, if a user sets the 
sitebit in the inode to a number between 1000 and 
10 I 0, our modified dmmfunc returns an appropriate 
MSP index from 0 to 10. This approach has several 
disadvantages, including a lack of access control to 
the ER90s. We have submitted a design SPR with 

1 When formatting tapes and labelling tapes, the 
tpformat and tplabel commands use bypass label 
processing (see below) 

2Dmmfunc receives a stat structure, and returns an 
MSP index for the specified file. 

CRI to add a UDB field for controlling access to each 
MSP. (DMF sites with more than one MSP) 

No tape unload 

To leave cartridges mounted after DMF performs an 
operation, we have also added a "no unload" option 
to the ER90 tape mounts for DMF. If a program 
accesses files from the same cartridge sequentially, 
then this measure greatly decreases the number of 
tape mounts required. (DMF sites) 

Hard Deletes and Default Copies. 

Other issues concerning Multiple MSPs include the 
lack of hard delete and default copy parameters on a 
per MSP basis or per file system basis. We have 
submitted design SPRs for both of these parameters. 
(DMF sites with more than one MSP) 

Read access equals dmput access. 

Another problem that we ran into as users shared 
these D2 files, was that, while a user could retrieve 
files he did not own with dmget, he could not release 
their space with dmput. At EUTeC, we modified 
dmput to allow users with read or write access to 
dmput those files. (DMF sites) 

Configuring the Tape Daemon and 
VolServ for the Data Tower 

When the tower arrived, with the two additional 
ER90s, we had to set up the VolServ Sun to 
communicate with both the Data Tower and the Cray. 
Also, with the addition of the Data Tower, we added 
another set of mods to the tape daemon, and 
configured another tape configuration file. In this 
file, we configured the ER90 loader to use VolServ 
as the Front End Service. We have made only minor 
changes to VolServ, increasing the time-out values 
for RPC messages, and sending VolServ log 
messages to an alternate display. (All sites) 

Formatting and Labelling tapes 

Before the tape daemon uses a D2 tape, the tape must 
be formatted with tpformat. This. process encodes 



cartridge identification onto the tape, and divides 
each tape into logical partitions, which the tape 
daemon treats as separate volumes. For performance 
reasons, these logical partitions should be sized 
appropriately to the user's file sizes3. 

You must run tpformat on every cartridge in the 
tower. Initializing all 228 tapes in a Data Tower is a 
time consuming process and could take several days 
utilizing all three recorders simultaneously. If you 
require labels on each partition, then the time for 
initialization doubles. Tape labelling is optional, and, 
if used, must be done for every partition on every 
tape. Labelling will also slow each tape mount by 
about 30 seconds, and for that reason is not 
recommended by CRI. We have written a script to 
perform this onerous task, but have run into problems 
because tpformat and tplabel perform their own rsv 
command, thus forcing the script to be single 
threaded. Also, our users' average file sizes may 
change over time, which may require us to reformat 
the remammg free tapes to achieve peak 
performance. One site has written a C program to 
format and label their entire archive by formatting on 
several drives at one time. I recommend that 
approach heartily. (All sites) 

Emass Training and Establishing 
Operational Procedures 

When installing a Data Tower, consider the training 
required for its support and administration. Several 
members of our staff have attended the VolServ 
Class offered by E-Systems. This class gives an 
overview of VolServ only. It does not cover 
configuring a Data Tower attached to a Cray, or Data 
Migration with ER90s, performance, or tape daemon 
configuration. Most of what we have learned in 
those areas has been through first hand experience, 
talking to Cray personnel and hashing out problems 
with E-Systems onsite support. (All sites) 

Along with the burden of learning the ins and outs of 
the system ourselves, we have spent considerable 
effort training our operators to handle emergency 
situations, cycling the drives and the VolServ 
software, and monitoring skills. (All sites) 

3 An appendix to the DMF 2.05 Administrator's 
Guide helps you choose the optimum partition sizes. 

Hardware Errors 

Since the installation of the Data Tower, we have had 
a handful of hardware outages. Due to two recent 
computer room blackouts, we have lost two power 
supplies. We have also had a card in one drive 
controller go bad and some failures with unmounting 
tapes. Onsite support has been available to fix these 
problems, and E-Systems is working to improve its 
support at Cray installations. (All sites) 

Media Recognition Problem 

We have seen cases where tapes, that we had 
formatted and labeled, become unmountable. In 
some of these cases, when DMF mounts a tape, the 
tape daemon returns a recoverable error and attempts 
another mount, in other cases, the drive goes down 
and our hardware technician must manually remove 
the tape from the drive. Worse yet, we have seen a 
case where a formatted tape that DMF has written 
data to is sporadically unmountable. In this case, 
DMF has written 8 out of 11 partitions on one 
cartridge, and tape mounts of that cartridge still fail 
with the message "Unable to position to partition X." 
This problem was fixed in an upgrade of VolServ . 
(All sites) 

Transition to FileServ 

There are many potential advantages to switching to 
FileServ. To start, FileServ allows users to write 
directly to D2 tape. Second, FileServ allows variable 
partition sizes, which will optimize tape usage (see 
Formatting and Labeling Tapes). Third, FileServ 
backs up the data inodes to tape when migrating files. 
Lastly, FileServ will use Asynchronous I/O (See 
DMFlER90 Performance). Overall, these 
enhancements will be an improvement over DMF in 
performance, functionality and recoverability. 
FileServ is due to be released in 3Q94, and we will 
consider it as an alternative to DMF. (Sites 
considering FiIeServ) 

DMF/ER90 Performance 

With a high performance tape subsystem and high 
performance disks come high expectations for I/O 
performance. Unfortunately, accessing the ER90s 

145 



146 

through DMF did not give us the 15 MB/s transfer 
rate that we expected. By simulating DMF's I/O 
methodology in a standalone program, we were able 
to benchmark transfer rates for DMF and then 
improve upon the algorithm. Ultimately, we found 
that the ER90 caching features, combined with 
DMF's synchronous I/O, caused a transfer rate of 
between 4 to 8 MB/s. We also found that a program 
using buffered, asynchronous I/O could produce 
nearly 14 MB/s on a loaded system. Because of this 
study, we believe that our I/O methods could 
generically improve DMFlER90 performance by 
100%. To test our theory about buffering, we wrote 
several C programs using Unbuffered Raw I/O, 
Flexible File I/O (FFIO), and Asynchronous, 
Buffered I/O. 

Unbuffered, Raw 1/0 

First, we wrote a program to simulate DMF's 
dmtpput and dmtpget operations. This program 
opened a disk file with the ° RAW attribute to 
bypass system buffers4. As with DMF, this program 
looped - reading 4 MB at a time from a striped DD60 
disk file and writing that block of data to D2 tape (or 
vice versa for tape reads). As with DMF, reads and 
writes occurred . synchronously, and the program 
achieved a peak performance in the 7 MB/s range, 
significantly lower than the maximum speed of the 
ER90s and the DD60 drives. 

Running this program we noticed a distinct pattern in 
our read and write times to and from tape.5 When 
writing to tape, the first write generally takes about 
2,800,000,000 clocks, which is two orders of 
magnitude larger than most other writes. Since the 
first write includes . drive ramp up, tape positioning, 
and label processing time, we rewrote the program to 
throwaway this the time (see Appendix). After the 
first write, the program wrote the next 4 MB chunks 
in about 40,000,000 clocks each, until about the 13th 
write, which was generally about 400,000,000 

4Note that we did not use the O_SYNC option that 
DMF uses. 

5Between each read and write we called rtclockO to 
give us an approximate time for reads verses time for 
writes. We used timeO to time the entire transfer 
from start to finish. 

clocks. After that, writes to tape followed a pattern 
of 10-14 writes at 40,000,000 clocks, and one write 
at 400,000,000 clocks. 

Here is a sample of the timing: 

readtime 25000000 clocks, writetime 2800000000 clocks 

readtime 25000000 clocks, writetime 40000000 clocks 

(Last result repeated 12-13 times) 

readtime 25000000 clocks, writetime 400000000 clocks 

readtime 25000000 clocks, writetime 40000000 clocks 

(Last result repeated 12-13 times) 

readtime 25000000 clocks, writetime 400000000 clocks 

After some digging, we found that there were two 
causes for this pattern, both associated with the ER90 
caching mechanism. Each ER90 drive buffer inputs 
into a 64 MB cache before sending it to tape. When 
the buffer fills to 45 MB, the drive ramps up and 
starts writing to tape. Because the buffer is initially 
empty, the Cray must write about 11 x 4 MB blocks 
before the transport starts. Ramp up for the drive and 
the transfer from buffer to tape then accounts for the 
slow write after the first series of writes. After that, 
we found that the ER90 actually reads its cache faster 
than the Cray disk could write. This would cause the 
drive buffer to empty, which caused the transport to 
stop until the buffer filled up and the transport started 
again. The combined effects of synchronous I/O, 
drive buffering and drive ramp up caused the entire 
transfer to be sluggish. 



FFIO Program 

Based on the results of the fIrst program, we decided 
to rewrite the program to allow us the flexibility to 
experiment with various I/O methods without 
recoding. The tool of choice was Flexible File I/O 
(FFIO), which allowed us to change the I/O method 
of the program by assigning attributes to a fIle with 
the "asgcmd" command. A sample "asgcmd" 
command, assigning 2 x 4 MB library buffers would 
be: 

I asgcmd -F bufa:l024:2 diskfIle 

For our tests, we used 1024 block6 buffers to 
correspond with the 4 MB tape block size.7 

The following diagram illustrates the data path from 
disk to tape with FFIO library buffering. Notice that 
12 MB of mainframe memory is required to hold the 
library and user buffers and that the ER90 cache is 
several times larger than the tape block size: 

Files Striped accross 

0060 Disk Drives 

At 256 Blocks I Stripe 

User Memory 
Library Buffers Buffer ERgO Buffer 

(4MB each) (4MB) (-65MB) 

ERgO 
Recorder 

Q 

61024 blocks * 512 words * 8 bytes _ 
block word - 4,194,304 

Bytes =4 MB. 

Results from the FFIO code showed a dramatic 
overall transfer rate increase when we used FFIO 
buffering with the disk fIles. The pattern of reads 
and writes between disk and tape also changed 
dramatically. When writing to tape, the fIrst write 
still takes about two orders of magnitude longer than 
most other writes, and the fIrst 13 writes behave the 
same as in the unbuffered I/O case. But after the 
drive ramps up once, reads and writes occur 
consistently in under 40,000,000 clocks, until the end 
of the transfer. 

Because the disk I/O is suffIciently fast to fIll or 
empty the drive cache, the drive transport never 
stops, which nearly doubles the transfer rate to 13.6 
MB/s. 

Here is a sample of the timing (note that the read 
times from disk are signifIcantly faster than the write 
times to tape.): 

readtime 800000 clocks, writetime 2800000000 clocks 

readtime 800000 clocks, writetime 40000000 clocks 

(Last result repeated 12-13 times) 

readtime 800000 clocks, writetime 400000000 clocks 

readtime 800000 clocks, writetime 40000000 clocks 

(Last result repeated until end of transfer) 

See Appendix A for a listing of the FFIO Code 

7Varying buffer sizes did not produce signifIcant 
performance changes and varying the number of 
buffers produced marginal changes 

147 



148 

Asynchronous 1/0 Program 

Finally, once we found the optimal buffering scheme 
via our FFIO program, we wrote an asynchronous 
I/O program with the same algorithm to benchmark 
against the FFIO program. We wanted to eliminate 
any overhead in CPU time, memory usage, and 
memory to memory copies that the FFIO buffering 
layer may have added. 

In the Asynchronous I/O code, we hard coded the 
double buffering algorithm. Using the reada and 
recall system calls, we used a double buffering 
scheme that most closely approximated the FFIO 
example with 2 x 4 MB buffers (asgcmd -F 
bufa: 1 024:2 diskfile). 

The results from transferring 2 OB of data were 
similar to the FFIO program at 13.6 MB/s, but we 
managed to eliminate one 4 MB buffer and most of 
our user CPU time. The elimination of an additional 
memory to memory copy between the FFIO library 
space and user space easily accounts for this decrease 
in CPU overhead. 

See Appendix B for a listing of the Asynchronous 
I/O code. 

Recommendations 

Because ER90 tape performance is so dependent 
upon disk performance, I believe that Cray should 
consider writing separate I/O routines for ER90 tapes 
using the fastest and cheapest I/O method available. 
Because of the enhanced speed, low memory 
overhead and low CPU overhead of the 
Asynchronous I/O cases, the results of our testing at 
EUTeC clearly support Asynchronous I/O as the 
preferred I/O method. I feel that, although recoding 
may not produce 13.6 MB/s consistently from DMF, 
it would speed file transfers to consistently over 10 
MB/s from DD60s. 

Further tests that I would recommend are running 
transfers from unstriped files residing on DD60s, and 
running transfers from DD40 series disks. Other 
experiments could include concurrent ER90 testing 
and a bottleneck analysis of the data flow. 

Acknowledgements 

I would like to thank the many people who 
contributed to the success of this investigation. I am 
especially grateful to Bryan White from Cray 
Research, Kent Johnson and Barney Norton from E­
Systems, and Doug Spragg, Troy Brown and John 
Cavanaugh from EUTeC for their insight and 
guidance in conducting the transfer tests and in 
critiquing this paper. Thank you. 



Appendix A - FFIO Program Partial Listing 

#define AMEG 
#define BSZ 

(long) 1024*1024 
(long) BLOCKS * 16384 /* 2097152 bytes */ 

/* do first write without timer on */ 
RET1=read(tapefd, buf, BSZ}; 
RET2=ffwrite(diskfd, buf, BSZ, &diskstb, FULL}; 
tfwrite=time((long *} o}; 

do 
bef_read=rtclock(} ; 
RET1=read(tapefd, buf, BSZ}; 
aft_read=rtclock(} ; 
RET2=ffwrite(diskfd, buf, BSZ, &diskstb, FULL}; 
aft_write=rtclock(} ; 
bytes_w+=(long} RET2; 
printf("readtime %d clocks, writetime %d clocks\n", 

aft_read-bef_read, aft_write-aft_read}; 
} while ( RET1 == BSZ && RET2 == BSZ ); 

tfinish=time((long *} o}; 

speed=( (float}bytes_w / ((float}AMEG*((float}tfinish-(float}tfwrite) )} 
printf ("Wrote %d bytes in %d seconds at %7. 3f MB/s\n", 
bytes_w, tfinish-tfwrite, speed); 

149 



150 

Appendix B - Asynchronous 1/0 Program Partial Listing 

#define BUFF SIZE (4 * 1024 * 1024 ) 

/* 
* Priming Read 
*/ 

statlist[O] = &rsw[O]; 
rc = read{in fd, buffer [curr_buffer] ,BUFF_SIZE); 
if (rc < BUFF_SIZE) { 

} 

finished = 1; 
write count = rc; 

while (!finished) 

rc reada{in_fd, buffer[{curr_buffer+1) % 2 ] ,BUFF_SIZE, &rsw[O] , 0); 

rc write {out_fd, buffer [curr_buffer] ,BUFF_SIZE); 

rc recall {in_fd, 1, statlist); 

if (rsw[O] .sw_count < BUFF_SIZE) 

} 

write count = rsw[O] .sw_count; 
finished = 1; 

bread += rsw[O] .sw_count; 
curr_buffer =(curr_buffer+1) % 2; 

/* Start timer after first write */ 
if (loops == 1 ) tfwrite=time{(long *) 0); 

loops++; 

rc = write {out_fd, buffer [curr_buffer] ,write_count); 

tfinish=time{{long *) 0); 

printf ("Wrote %d bytes in %d seconds at %10. 3f MB/s\n", 
bread, tfinish-tfwrite, 
(float)bread/{1024*1024*{tfinish-tfwrite)) ); 



Appendix C - Write Results 

For easier comparison, we always used two Gigabyte files, user striped accross four disks for transfers. 

Since these tests were run on a loaded system, the results were slightly lower than the ISMB/s rate we had acheived 

from memory to tape on an idle system. 

Read from Disk or Memory I Write to Tape I 
110 methodology Tape Buffer Size Number of FFIO? CPU MAX Transfer Rate 

Block Buffers seconds to 
size transfer 

-2GB 

Like DMF, open(disk,O_RAW), 4MB nla I User No 2.48 sysl 7.117 MB/s 

syncronous read/write O.OS usr 

Like DMF, but using FFIO. 4MB nla I User Yes 1.12 sysl 7.299 MB/s 

ffopen( disk,O _RAW), 0.06 usr 

asgcmd -F system disk, 

syncronous read/write 

Double buffered using FFIO 4MB 1024 Blocks 2 Library Yes 1.04sysl 13.699 MB/s 

ffopen( disk,O _RAW), 
(4MB) + I User 1.79user 

asgcmd -F bufa: 1024:2 disk 

Double buffered using FFIO 4MB 1024 Blocks 4 Library Yes 1.07sysl 13.60S MB/s 

ffopen( disk,O _RAW), 
(4MB) + I User 1.79user 

asgcmd -F bufa:1024:4 disk 

Double buffered using Async. 4MB 1024 Blocks 2 User No 0.8Ssysl 13.644 MB/s 
I/O (4MB) 

O.Olusr 
opena( disk, 0_ RA W) 

Memory to Tape, 4MB nla I User Yes 0.18sysl 13.699 MB/s 

open(tape,O _RAW) 0.02usr 

151 



Appendix D - Read Results 

For easier comparison, we always used two Gigabyte files, user striped accross four disks for transfers. 

Since these tests were run on a loaded system, the results were slightly lower than the 15MB/s rate we had acheived 

from tape to memory on an idle system. 

Read from tape I Write to Disk or Memory I 
I/O methodology Tape Buffer Size Number of FFIO? CPU MAX Transfer 

Block Buffers seconds to Rate 
size transfer 

.... 2GB 

Like DMF, open(disk,O_RAW), 4MB nla 1 User No 1.61sysl 6.770 MB/s 

syncronous read/write 0.05usr 

Like DMF, but using FFIO. 4MB nla 1 User Yes 2.58sysl 6.549 MB/s 

ffopen( disk, 0_ RA W), 0.06usr 

asgcmd -F system disk, 

syncronous read/write 

Double buffered using FFIO 4MB 1024 Blocks 2 Library Yes 1.03sysl 13.184 MB/s 
(4MB) 

ffopen( disk, 0_ RA W), + 1 User 1. 86user 

asgcmd -F bufa:1024:2 disk 

Double buffered using FFIO 4MB 1024 Blocks 4 Library Yes 1.17sysl 13.098 MB/s 
(4MB) 

ffopen( disk, 0 _RA W), + 1 User 1.85user 

asgcmd -F bufa: 1 024:4 disk 

Double buffered using Async 4MB 1024 Blocks 2 User No 1.05sysl 13.132 MB/s 
110 (4MB) 

0.01usr 
opena( disk, 0_ RA W) 

Tape to memory, 4MB nla 1 User Yes 0.15sysl 13.158 MB/s 

open(tape,O _RAW) 0.02usr 

152 



AFS EXPERIENCE AT THE PITTSBURGH SUPERCOMPUTING CENTER 

Bill Zumach 

Pittsburgh Supercomputing Center 
Pittsburgh, Pennsylvania 

Intrdoduction 

The Pittsburgh Supercomputing Center is one of four 
supercomputmg centers funded by the National Science 
Foundation. We serve users across the country on projects 
ranging from gene sequencing to modeling to graphics 
simulation. Their data processing is done on either our C90, 
T3D, CM 2 Connection Machine, MASP AR, or our DEC­
Alpha workstation farm. We have an EL/YMP for a file server 
using Cray DMF. 

To support the data needs of our external users as well as our 
support staff, we use AFS, a distributed file system, to provide 
uniform, Kerberos secure access to data and for ease of 
management. To store the high volume of data, PSC designed a 
hierarchical mass storage system to provide access to DMF as 
well as other mass storage systems through AFS. We refer to 
this as multi-resident AFS. 

This paper discusses this mass storage solution and how we use 
multi-resident AFS to provide access to data for our users. This 
presentation is done in the form of a chronology of our need for 
an ever larger and more flexible mass storage system. Also 
described are the other sites using our ports of the AFS client 
and multi-resident AFS. Lastly, a brief description of future 
work with both AFS and DFS. 

AFS at PSC 

PSC uses the Andrew File System to serve the binaries for 
upwards of 120 workstations and the home directories of about 
100 staff. AFS provides a location transparent global name 
space. This gives users the same view of the directory structure 
no matter where they log in. It also makes workstation 
administration much easier as the programs need only be located 
in a single location. AFS also scales well, allowing for the huge 
amount of data that needs to be managed at the PSC. 

We chose AFS over the defacto standard NFS for several 
reasons. First, NFS does not scale well. Most of the system 
binaries, all home directories and many project areas, totaling 
about 40 gigabytes, are currently stored in AFS. NFS has two 
main difficulties dealing with this amount of data spread across 
this many workstations. First, an NFS server becomes 
overloaded with requests with a sufficiently large number of 
clients. Second, administering the file name space quickly 
becomes cumbersome if many partitions are being exported. 

An NFS client needs to contact the server for each read or write 
of a file. This quickly bogs down an NFS server. AFS on the 
other hand caches the pieces of a file which are in use on the 
client. The server grants a callback promise to the client, 
guaranteeing the data is good. This guarantee holds until some 
other client writes to the file. Thus, the AFS client only needs 
to talk to the server for a significant change of state in a file. At 
the same time, repeated reads and writes to a file by a single 
client occur·at near local disk speeds. 

With NFS, each client can mount an NFS partition anywhere in 
the directory structure. At PSC, most of the system binaries for 
all workstation architectures are in the distributed file system. 
This makes updating operating system software and data 
processing packages extremely easy. But, for NFS this makes it 
incumbent upon system administrators to be extremely careful 
in setting up each NFS client. When the number of 
workstations gets sufficiently high, this task becomes 
cumbersome and subject to error. AFS has a location 
independent, uniform global name space. So wherever a user 
logs in from, they see the same directory structure. An AFS 
client finds a file by looking in an AFS maintained database for 
the server offering the file and then goes to that server for the 
file. This all happens as part of the file file name lookup and 
nothing is explicitly mounted on the client. 

One other significant feature of AFS is security. This comes in 
two forms. First a user is authenticated using Kerberos security 
and file transfers from server to client depend on that 
authentication. This is a major improvement over NFS. 
Secondly, AFS supports the notion of access control lists. 
These lists apply to directories and give explicit permissions 
based on the Kerberos authentication. 

AFS also has the concept of a volume which is a logically 
related set of files. Volumes are mounted in a manner similar to 
disk partitions, that is, at directories in the AFS name space. 
Volumes are typically used to house users' home directories, sets 
of binaries such as lusr/local/bin and for space for projects. They 
can have quotas attached to them for managing disk usage and 
since they are mounted on directories, access control lists apply 
to volumes as well. There can be be several volumes per disk 
partition, so they provide a finer control of disk quota al1ocation. 
As quotas can be dynamically changed, disk usage can be 
modified as well. Volumes can also be moved from partition to 
partition and across servers, making data distribution 
manageable. Dumps are done on a per volume basis, giving 
more control over what gets backed up and when. 

Volumes can also have backup volumes, which are read only 
snapshots of the volume at a given time. One use of this at the 
PSC is to maintain an OldFiles directory in each users home 
directory, which contains a copy of the home directory as it 
appeared the previous day. This makes it extremely easy for the 
user to get back that file they decided they should not have 
deleted yesterday. 

Volumes can also be cloned. These are also read only snapshots 
of a volume and can reside on a different file server than the read 
write original. This is useful for distributing the read load for 
data across several machines. An AFS client randomly chooses 
which read only clone to access if one is available when reading 
a file. This is typically used for operating system binaries. 

One last major concept in AFS is that of a cell. An AFS cell is 
an administrative domain. A user authenticates to an AFS cell to 

153 



access the files in that cell. A cell is delimited by a given set of 
file servers. This allows individual sites to maintain their own 
set of secure file servers and to restrict access to a selected set of 
users. At the PSC, we currently have two cells. One is a stock 
production cell and the other is the cell which implements our 
solution to the mass storage problem. We are currently looking 
into merging these two cells. 

AFS is produced by Transarc, and is supported on a wide variety 
of platforms. Among the manufacturers supported are IBM, Sun, 
DEC, HP and SGl. In addition, Convex and CDC provide AFS 
for their machines. This list is by no means exhaustive. 
Through the work at PSC, the AFS client has been available for 
some time for Cray C90s and YMPs. We have recently ported 
the multi-resident AFS file server as well. 

From its inception, the PSC used AFS to store binaries and 
users' home directories. AFS also served as the home directory 
and project space for the Sun front ends to the CM-2 Connection 
Machine. As stated earlier, this provided us with a uniform view 
of the file system. Since almost all of our users are off site, they 
could create their data on any AFS based client, and immediately 
work with it at the center without having to explicitly move any 
data to a particular machines local file system. Thus, they could 
examine their data on any of the front ends or their own work 
station, process it on the CM-2 and view the results on their 
own system. 

This provided the impetus to port the AFS 3.1 client to the 
Cray, a YMP at the time. This not only tied our main 
processing computer into the distributed file system, but allowed 
for user's to easily split their processing tasks based on which 
machine, CM-2 or YMP which was best suited to the task 
without having to move their data. 

As is usual, data storage demands began to outstrip our capacity. 
The PSC decided to acquire a RAID disk system for fast, reliable 
access to data. We settled on a RAID-3 system from Maximum 
Strategy running on a Sun. The problem was that AFS does not 
support anything other than native local file systems and the 
RAID disks only had a user mode file system. To support this 
file system, the file I/O sub-system of the AFS file server was 
generalized to be a generic I/O system. We then had an AFS file 
server running on a Sun which was able to use the RAID disk 
bank as it's local file system. 

We soon found that as the RAID disks stored data in 8 kilobytes 
blocks, the RAID disks were too inefficient at storing many of 
the files generated by a typical user. To this end we wanted to 
split the data up between SCSI disks, which are faster for 
writing and reading small files, and the RAID disks, which are 
more efficient at storing large files. Standard AFS only 
determines where a file should be stored based on where the 
volume is. That is, a volume's files are stored on the same 
partition as where the volume was created. The idea was to 
separate the idea of a file from the storage medium. This gives 
rise to the concept of a file's residency. That is, a file is in a 
volume, but we also store information as to where the file's data 
resides. In this case, files in a single volume could reside on 
either the RAID disk or the SCSI disk. The location information 
is stored in the meta-data in the volume. To determine where a 
file should reside, one needs a stored set of characteristics for the 
storage device. We call this a residency database. There is one 
entry in the database for each storage device. Each entry 

154 

contains, among other things, the desired mInImum and 
maximum file size for that storage device. So, when the 
modified AFS file server wants to store a file the residency 
database is consulted to determine which storage device wants 
files of that particular size. 

As demands for storage continued to grow, we realized that we 
needed some type of mass storage system. For some time, we 
had been using Los Alamos' Common File System (CFS) for 
our needs. This provided a simple get and put interface for user's 
files, but is also rather cumbersome for users as one needs to 
explicitly obtain one's files prior to using them in a program. 

In order to tie CFS into AFS, several new concepts were 
required. We needed to get files into and out of CPS from an 
AFS file server. We needed to be able to move files 
automatically into CFS so that they got archived. And we 
needed to be able to free up disk space. 

CFS did not run on any of our file server machines. We did not 
want to port the AFS file server to Unicos and we did not want 
to impact the performance of the YMP by making it a file 
server. The solution was to have a small server running on the 
YMP which handled file requests from an AFS file server. We 
refer to this small server as a remote I/O server. So, AFS clients 
would request a file from the file server. The volume meta data 
indicates the file is remote and the file server sends an RPC to 
the remote I/O server to deliver the file to the file server, which 
in turn delivers the file to the AFS client. In this case, a file in 
CFS would be spooled onto the Cray by the remote I/O server 
which would hand it back to the AFS file server who sends the 
data to the client. This made CFS access transparent to the user. 

In order to migrate files from the disks local to the AFS server 
we needed a mechanism which would do this automatically and 
on a timely basis. This data migration process is accomplished 
by a daemon running on the AFS file server machine which 
periodically scans the disk, looking for older files which are 
candidates for migration to slower storage devices. In our case 
this meant scanning the SCSI and RAID disks, looking for files 
to migrate to CFS. This also meant that the residency data base 
entries needed an entry which indicated how old a file should be 
before being migrated to that storage system. We decided that if 
a file had not been accessed in 6 hours, it was a candidate for 
migration to mass storage. When the scanning daemon finds 
files which are 6 hours old it informs the AFS file server on the 
same machine and the file server is in charge of moving that file 
to CFS using the remote I/O server. 

Now just because a file is old, that alone does not mean it 
should be deleted from faster storage media. So we leave the 
original copy of the file on the faster media. This means there 
are now two copies of the file. One on either SCSI or RAID 
disks and the other copy in CFS. This is called multiple 
residency and gave rise to the name multi-resident AFS. A 
residency is defined to be a storage device along with the list of 
file servers which can access that storage device on behalf of an 
AFS client. We store a list of all residencies for a given file in 
the volume's meta-data so the file server knows where it can go 
to find the file an AFS client requests. Note that one does not 
want to go to CFS if the file is on local disk. This gives rise to 
the concept of a priority for a residency, and each residency 
entry in the database contains a priority. While priorities can be 
arbitrary, we set priorities based on speed of file access. This 
means that if a file is both on a disk local to the AFS file server 



as well as in CFS, the local disk copy would be obtained for a 
client, since it's at a higher priority. 

Since we don't automatically delete a file from a given residency 
once it has been moved to tape, it is quite likely that the local 
disks would soon fill up. To avoid this problem, each fileserver 
machine has a scanning daemon running on it which ensures 
that older, migrated files are removed from the disk, once a free 
space threshold is reached. The removal algorithm is based on 
file age and file size. 

We shortly encountered a major problem using CFS for mass 
storage. While CFS works well for storing files, the transaction 
overhead on each file update is quite high, on the order of 3 
seconds. This causes problems with backup volumes in AFS. 
When a backup is made, the volume is first cloned and the 
volume is off line until the clone is complete in order to ensure 
a consistent image of the volume. Also, in multi-resident AFS, 
if a file is not on the local disk, it is not explicitly copied. Its 
reference count is incremented instead This means that if the file 
is in CFS, CFS takes 3 seconds to increment the file's reference 
count. So cloning a volume with 1200 files in CFS would 
mean that the volume would be offline for an hour. 

It was not possible to fix this transaction time overhead problem 
in CFS. As a result we investigated other mass storage systems 
and settled on Cray's Data Migration Facility (DMF). DMF 
provided us. with simple access to the tape media simply by 
placing the files on a DMF backed partition. As multi-resident 
AFS is already taking care of migration policy, data landing on 
this DMF backed partition is already considered to be on slow 
media, so we explicitly call dmput to flush the data to tape and 
dmget to retrieve required files upon demand. 

Current Usage and Performance 

Figure I. Current multi-resident system 

A part of our current multi-resident AFS configuration is 
presented in figure 1. This figure shows two RS6000s for fast 
storage. Both have SCSI disks for small files and Maximum 
Strategy RAID disks for larger files. For archival storage we are 
currently sending the data to either the C90 or the EL/YMP, 
both using DMF for tape storage. We are in the process of 
migrating our all DMF usage from the C90 to the EL. DMF 
originally only wrote files larger than 4 kilobytes to tape, so we 

only archive files larger than this. The small files are backed up 
using standard AFS backup practices. We have modified the 
standard AFS dump routines so that only files actually present 
on the local disk are backed up. Our AFS mass storage system 
currently contains approximately 383,000 files and about 98.7 
gigabytes of data used by 100 users. 

AFS Server 
DS 3100 
DS 5000/200 
Sun 4/470 
Sun 4/470 
Sun 4/470 
Sun 4/470 
IBM RS6000 
EUYMP 

Media 
SCSI drive 
SCSI drive 
IPI drive 
IPI drive 
RAID drives 
IPI drive 
IPI drive 
IPI drive 

Network 
Ethernet 
FDDI 
Ultranet 
Ethernet 
FDDI 
FDDI 
FDDI 
HIPPI 

Read Speed 
360 KB/sec 
726 KB/sec 

20 KB/sec 
554 KB/sec 
906 KB/sec 
986 KB/sec 

1667 KB/sec 
497 KB/sec 

Table 1. Cray AFS client read performance. 

Table 1 presents the read performance we see on our C90 AFS 
client from a variety of servers. Note that, while the EL file 
server performance is not spectacular, it is reasonable. The 
performance is somewhat slow due to the fact that we are using 
the Unix file system as the interface to the disk. This involves a 
lot of system overhead in opening and reading meta-data files 
which contain file location and access information. It would be 
possible to develop an interface for the Cray similar to the one 
standard AFS uses to obtain an appreciable improvement in file 
server performance. This would require modifying the fsck 
program in a fairly straightforward manner and adding 5 system 
call entry points to the kernel. 

PSC Ports to Unicos of AFS 
What follows is a brief technical discussion of the details of 
porting the AFS 3.1 client and multi-resident AFS to Unicos. 
As mentioned earlier, we ported the AFS 3.1 client early on in 
order to give uniform access to data to users using the YMP. We 
ported multi-resident AFS for use by the Max Plank Institute in 
Garching, Germany. 

The initial AFS client port was to Unicos 6.0.on the YMP This 
port has since been upgraded to Unicos 7.C.on our C90 There 
were several substantive porting issues. First, Unicos until 
version 8.0, uses a file system switch, whereas AFS is vnode 
based. This meant a fake vnode system needed to be designed to 
map AFS vnodes for the cache files and the server files to 
Unicos NCI inodes. There are also a large number of problems 
associated with the 64 bit word size and structure alignment. 
These problems appear in the packets which get sent across the 
network, AFS directory layout, and data encryption algorithms. 
In addition, since a Crays is a physical memory machines, a 
buffer pool needed to be devised to handle malloc'ing data areas. 
Lastly, we had to find every place where the kernel could sleep 
and ensure that either none of the variable in use across the sleep 
we stack variables, or fix the stack addresses once the kernel 
came back from the sleep. This is another problem which has 
been fixed in Unicos 8.0. 

We are now in the process of porting the AFS 3.3 client to 
Unicos 7.C as part of the final plan to port the AFS 3.3 client 
to Unicos 8.0. The AFS 3.3 client is expected to run much 
faster than the AFS 3.1 client owing to improvements in the 
network layer, developed initially here by Jonathan Goldick. 
Further performance enhancements have also been added by 

155 



Transarc for AFS 3.3 and we also are beginning to investigate 
making further performance enhancements to the client. 

Multi-resident AFS was written with Unicos in mind, so 
combined with the effort that had gone into the port of the AFS 
client, this port was much easier. Multi-resident AFS is based 
on AFS 3.2, whereas the Unicos client is based on AFS 3.1. 
The client and server share several common libraries, including 
the RPC layer, AFS directories, and data encryption for 
authentication. Porting these involved bringing the Cray port of 
AFS 3.1 up to AFS 3.2. There remained a number of 64 bit 
issues for the file server, including handling internet addresses in 
the hostent structure as well as a few word alignment issues. In 
addition, we need to lock a Unix file system when salvaging 
(AFS version of fsck for volumes). Multi-resident AFS depended 
on locking a directory using flock which is not possible with 
Unicos. The AFS vnode structure needed integer data types 
converted to bitfields and is now twice the size of the vnode for 
standard AFS. But this helped us optimize the file server as well 
as allowing volumes to move between Cray AFS file servers 
and AFS inode based file servers. One additional modification 
was to port the dump and restore routines to correctly dump 
access control lists. These were previously dumped as blobs of 
data. But with the change from 32 to 64 bit word size, we needed 
to ensure we converted during reads and writes of the dump. 

We are currently in the process of porting multi-resident AFS 
3.2 to the AFS 3.3 code base. Most of the port is complete and 
we are now in the process of testing multi-resident AFS 3.3 on 
several platforms. 

Other Sites Using Multi-Resident AFS 

The Max Planck Institute, IPP, in Garching, Germany recently 
purchased a Cray EL to serve as a multi-resident AFS file server 
and to support DMF for mass storage. This· is currently 
beginning operation and should be a full production environment 
this summer. 

NERSC is currently testing multi-resident AFS at their facility 
and intends to use the Unix file system interface to connect to 
Unitree. In addition Transarc is evaluating multi-resident AFS 
and if they decide to make a product of it, it will be available by 
the end of 1994. This Transarc product will not provide direct 
support for Unicos, but will retain the modifications we have 
made. 

Several sites use our port of the AFS client in a production 
environment. Among them are NCSA in Illinois, SDSC in San 
Deigo, MP/IPP, LRZ in Munich, ETH in Zurich, RUS in 
Stuttgart, and EPFL in France. These sites appear to be satisfied 
with the AFS client. 

DFS projects at PSC 

As part of our close working relationship with Cray, we did the 
initial port of the DFS client for Unicos 8.0. During the course 
of this work we have also assisted in debugging the DFS file 
server. 

We are beginning to think about the design of a multi-resident 
version of DFS. This will be backwards compatible with multi­
resident AFS and will be able to use the same AFS to DFS 
translator that Transarc is supplying. DFS is still immature and 

156 

there are several basic design questions which need to be 
answered, particularly with regard to DFS filesets before we can 
devote a lot of time to this project. 

Next Generation of Multi-resident AFS 

As noted above, network performance is improved dramatically 
in AFS 3.3 as a result of initial work done here at the PSC with 
respect to packet size over FDDI. Our initial tests indicate a 
doubling in file trasnfer rate with a doubling of the packet size 
for FDDI. This provided the initial spark to consider adding 
alternate methods of delivering file data from a storage device to 
an AFS client. If one had the full bandwidth of HIPPI available 
and both the residency and the AFS client were on the same 
HIPPI switch, spectacular improvements in data transmission 
speeds could be achieved. So the means of asking for the data 
needs to be separated from the actual delivery of the data. In this 
scenario, the AFS file server serves as an arbitrator, deciding 
what is the best network transport (and storage device) to use to 
get data to the client. This notion is referred to as third party 
transport, the third party in this case being the storage system 
offering the file's data, with the first two parties being the client 
and the file server. Most of the software is written for this 
generation and we are at the point of beginning to debug it. 

References 

Collins Bill, Debaney Marjorie, and Kitts David, 
Profiles in Mass Storage: A Tale of Two Systems , IEEE 

M. Satyanarayanan, Scalable, Secure, and Highly Available 
Distributed File Access, IEEE Trans. Computers, May, 1990. 
pp.9-21. 

M. Satyanarayanan, A Survey of Distributed File Systems, 
CMU-CS-89-116. 

Nydick, D. et aI., An AFS-Based Mass Storage System at the 
Pittsburgh Supercomputing Center, Proc. Eleventh IEEE 
Symposium on Mass Storage Systems, October, 1991. 

Jonathan Goldick. et al., An AFS-Based Supercomputing 
Environment Proc. Twelfth IEEE Symposium on Mass Storage 
Systems, April, 1993. 



AFS Experience 
at the University of Stuttgart 

Uwe Fischer, Dieter Mack 

Regionales Rechenzentrum der Universitat Stuttgart 
Stuttgart, Germany 

Since late 1991 the Andrew File System (AFS) is in use 
at the University of Stuttgart. For the Centers Service 
Cluster comprising more than 15 RISC workstations, it 
is a key component in providing a single-system-image. 
In addition, new services like distribution of public 
domain or licensed software are using AFS wherever it 
is appropriate. On the long run, the introduction of 
AFS was one of the first steps into the emerging OSF/ 
DCE technologies. 

1. About the Center 
The University of Stuttgart Regional Computer Center 

CRUS) provides computing resources and related services to the 
academic users of the university. Especially the supercomputing 
service is available to all other state universities in Baden-Wtirt­
tern berg and to corporations under public law as well as industrial 
customers. 

2. Chronology 
Back in 1989/90 the Center started the process to replace 

its midrange-type mainframes front-ending the CRAY-2 super­
computer. Focusing on UNIX-derivates as the major operating 
system was a joint intension. As a result, in 1991 this effort lead 
to the challenging task to investigate, whether and how a RISC­
based workstation cluster could cover the typical mainframe­
based services within an university environment. 

OSFjDCE - and DME - were a name and a concept at that time, 
but product availability was not expected within the next two 
years. And this was far too long ahead in the future. Thus the Cen­
ter formed a DCE project to investigate and evaluate the forth­
coming technologies of distributed computing. RUS asked 
vendors for support, and only IBM was capable of providing this. 

As DCE is not built from scratch in evolving and melting existing 
technologies, wherever the functional components existed as 
independent products, they could be used to start with. AFS being 

the predecessor of the Distributed File Service (DFS), one of the 
extended DCE services, which might also be regarded as one of 
the major DCE applications, is one of them. Thus it is obvious, 
that our AFS- and DCE-related milestones are tightly coupled. 

The first tasks after the DCE project had been formed in 
August 1991 were to work with the xntp time service and the Ker­
beros security system. In November 1991 the RUS cell rus.uni­
stuttgart. de was the first AFS cell installed in Germany. During 
summer 1992 RUS took part in mMs AIX - DCE Early Participa­
tion Program. At that time the SERVus workstation cluster was 
installed and AFS run in a preproduction mode. In November 
1992 the DCE cell dce.rus.uni-stuttgart.de was configured and the 
port of an AFS-Client to the CRAY Y-MP 2E file server was 
completed. In January 1993, the service cluster joint with AFS 
went into full production, replacing the midrange-type main­
frames which have finally been shutdown by end of March 1993. 
Since summer 1993 a DFS prototype is running, and in September 
1993 the attempts to port the AFS-Client to the CRAY-2 have been 
dropped. 

3. Configurations 
Since late 1986 the Center runs a CRAY-2 as its main 

supercomputer resource. As shown in figure 1, this will be 
replaced in April 1994 by a CRAY C94D. The CRAY Y-MP 2E is 
used for high-end visualization applications and as a base for the 
mass storage service. In the middle layer, the SERVus workstation 
cluster consists of IBM RS/6000 systems with models ranging 
from a 580 down to 220s. Today, the cluster is going heteroge­
neous by incorporating a multi-processor SUN/Sparcserver. Often 
neglected in such a picture drawn from a centers perspective is 
that the workstations on campus are now several thousands in 
number. 

The shadowed area shows the AFS file space, with the 
AFS server machines tightly coupled to the SERVus cluster. The 
CRAY file server in the AFS context is acting only as a client, and 
it distributes its mass storage service to all requesting systems on 
the campus using NFS. 

157 



File 
Server 

Compute 
Server 

Massively­
Parallel 

Distributed­
Parallel 

M IPVR c p IPVR 
ICAII 
RUS MasPar 

MP·1216 

Figure 1: RUS Configuration 

AFS Cells 

As of today, the University of Stuttgart has 4 registered 
AFS cells. There is the main cell rus.uni-stuttgart.de, which 
houses all the HOME directories for the workstation cluster· 
machines. In addition, public domain and licensed software is dis­
tributed using AFS for those platforms where AFS clients are 
available. And one particular university department placed its 
AFS file server in this cell. 

There is a second cell rus-cip.uni-stuttgart.de dedicated 
to a workstation pool, to which students have public access. 

Due to the deficiencies in delegating the administration 
of dedicated file servers, two university departments are running 
their own AFS cells ihJ.uni-stuttgart.de and mathematik.uni-stut­
tgart.de. And there are more departments which show interest in 
using or running AFS file servers. 

rus AFS Cell Configuration 

The main cell has been upgraded to AFS 3.3 last month. 
It is based on a total of 4 file server machines. Three of them are 
provided by the Center, and the AFS database services are repli­
cated on them. One is owned by a university department and run 
as their dedicated file server. All servers are IBM RS/6000 work­
stations, and the total disk capacity controled by AFS is 19 + 8 

158 

Intel 

GB. By a campus license agreement, AFS client software for a 
variety of platform - as combinations is available: 

DEC DECStation Ultrix 4.0, 4.3 
DEC VAXStation Ultrix 4.0,4.3 
HP 9000 Series 700 HP-UX 9.0 
IBM RS/6000 AIX 3.2 
NEXT NeXTStation NeXT OS 3.0 
SGI 3000,4000 Series IRIX 5.0 
SGI Indigo IRIX 5.0, IRIX 5.1 
SUN 3,4, 4c SunOS 4.1.1 - 4.1.3 
SUN 4m Sun OS 4.1.2, Solaris 2.2,2.3 

4. Purpose 
Key Component/or the Service Cluster 

As stated above, AFS is of strategic use for the SERVus 
workstation cluster in providing a single-system-image. First, the 
login authentication is done using only the Kerberos authentica­
tion service, which is part of AFS. Second, all the HOME directo-

. ries of about 1600 users are within AFS. Thus every user has a 
consistent view and access to all his data, regardless of the single 
machine of the cluster he is using. In addition, the NQS batch sub­
system running on the batch worker machines of the cluster has 
been modified to support that an users NQS job gets authenticated 



and gains the appropriate authorization for file access. 

Software Distribution 

The basic software products available on the service 
cluster RSj6000 machines are installed only once in AFS, e. g. C 
and Fortran compiler, X 11 and application software. That is essen­
tially all except the software needed to bring up a single system. 

During 2nd half of 1993, RUS developed a concept to 
distribute software to workstation users. The basic idea is that not 
every user or system administrator has to care about software 
installation and maintenance, instead this is done only once at the 
Center. All platform-OS specific executables are available for 
direct access by linking a specific directory into the users search 
PATH, and in addition the software is ready to be pulled and 
unfolded at the client side. As underlying technology AFS is used 
where appropriate, else NFS. 

Thus without any big effort a huge variety of Public 
Domain Software will be available at every workstation. Licensed 
Software could be made available as well, using the AFS access 
control mechanism to restrict access to the authorized users. Cur­
rently this scheme is introduced to distribute PC software. 

Statistics 

The three rus AFS file server machines have allocated 17 
disks (partitions) with 19 GB capacity. There are about 1500 user 
HOME directory volumes spread over 7 partitions with an 
assigned disk quota of 15 GB and an effective usage of 3,7 GB. 
For the purpose of software distribution there are about 280 vol­
umes in use with an assigned disk quota of9,4 GB and a data vol­
ume of 6,2 GB. 

5. UNICOS Client 
The AFS client installation on the CRAY Y-:MP 2E hap­

pened at the time of the UNICOS upgrade from 6.1 to 7.0. Thus 
the first tests used a Pittsburgh Supercomputing Center code for a 
UNICOS 6 system, but finally a derivate of PSCs UNICOS 7.C 
AFS client went into production. The port itself was a minor 
effort. 

Because the CRAY Y-:MP 2E as a file server runs neither 
a general interactive nor batch service, the AFS client is used 
mainly for AFS backups. Every night, all AFS volumes are 
checked and for modified ones the backup clone is "vos dumped" 
into a special file system on the CRAY Y-:MP 2E which purpose is 
to store backup data. This file system is subject to Data Migration 
Facility, thus the tape copies to 3480 cartridges stored in two ACS 
4400 silos are handled by DMFs tape media specific processes. 

This solution replaced the previous procedures, which 
took the volume dumps on a RSj6000 based AFS client and wrote 
the dump files via NFS to the file server. Todays procedures are 
more reliable and robust, using AFSs RX protocol rather than 
UDPjIP. Better transfer rates are assumed as well, but an honest 

comparison is not possible, because at the time of change serious 
NFS bottlenecks at the file server side had been detected and 
eliminated. 

The Center intended to integrate the CRAY-2 supercom­
puter into its AFS environment. But due to major differences in 
UNICOS internal structures the port of the AFS client code 
turned out to be a complicated and time-consuming task. With 
respect to the imminent replacement of the CRAY-2 this effort has 
been dropped. 

6. Key Concepts 
Security 

AFS security comprises authentication, which is based 
on a Kerberos variant, and authorization via access control lists 
(ACLs), placed on directories. 

The proof of an users identity is not guaranteed by local 
authentication but by a Kerberos token, which has to be acquired 
from a server on the network. Authorization to access data can be 
granted to individual users as well as user-defined groups. This 
allows for much finer granularity of access rights than the UNIX 
mode bits. 

Volume ( Fileset ) Concept 

One of the fundamental technologies of AFS is the vol­
ume concept. The name of these conceptual containers for sets of 
files changes to fileset in DFS. A volume corresponds to a direc­
tory in the file tree, and all data underneath this subtree, except for 
other volume mount directories, is kept in that volume. 

Volumes are the base for location transparency. AFS is 
able to determine, on which file server and physical partition a 
volume resides. Thus once an AFS client has been set up, the user 
is fine. Something like registering new NFS file servers and file­
systems at every client side is not necessary. 

Volumes disconnect the files from the physical media. 
There are mechanisms to move, transparently to the user, volumes 
from one partition to another, even between different file servers. 
Thus disk usage balancing will be a manageable task. In the NFS 
context, assigning user directories to new file systems could not be 
realized without impacting the users. 

Volumes represent a new intermediate granularity level. 
Running data migration on file systems, the disk space is not the 
limiting factor any more. Approaching 1 million files on the 
CRAY Y-:MP 2E mass storage file system, as expected it turns out 
that the number of files (i-nodes) is the critical resource. 

Volumes can be cloned for replication or backup pur­
poses. Through replication high availability of basic or important 
data is achievable. In addition, network and access load could be 
balanced. 

159 



Global File System 

Server and client machines are grouped into organisa­
tional units called cells. But it is possible to mount volumes which 
belong to foreign cells. This allows for the construction of a truely 
global file system. The AFS file space on the Internet currently 
comprises about 100 cells. 

PSCs Multiple-Residency Extensions 

There is a great potential in this feature. First, it provides 
the hooks to integrate hierarchical storage management schemes 
into the distributed file system. In addition, the separation of file 
data from file attributes is the first step into third party transfers. 
Thus functionality similiar to NSL UniTree might be achieved. 

7 . User Barriers 
Todays users are used to work with NFS. And in small 

configurations using NFS is quite straightforward, especially 
when the user is reliefed of system adminstration tasks, and the 
system administrator has done a good job. Starting with AFS 
requires some additional setup work and extra knowledge. 

File Access Control 

First, the user has to acquire a token. Although this can 
be achieved transparently by the login process, the token has a 
finite lifetime. This has to be considered and taken care of. Access 
control is governed not only by the UNIX mode bits, but also by 
the ACLs. The user has to be aware of this and to familiarize him­
self with some new procedures and commands. 

AFS Cache Configuration 

An AFS client has to provide some cache space, either 
memory-resident or disk-based. It's highly recommended that the 
disk cache is provided in a seperate file system. That's due to the 
fact that the cache manager relies on the specified cache capacity. 
And if the file system that contains the cache runs out of space, the 
results are unpredictable. 

But in most cases the available disks are completely 
divided into used partitions, thus providing a seperate file system 
for the AFS cache often requires disk repartitioning. And this is 
not an easy task. 

8. Direction 
Consulting Transarcs worldwide CellServDB gives an 

indication about the presence of AFS. Although an AFS cell has 
not to be registered there, in some sense representative numbers 
can be derived using that information. As of March 1993, a total 
of 12 AFS cells have been in place in Germany, all running at uni­
versities except for one at a research laboratory. Seven of those 
cells are based in the local state Baden-Wiirttemberg - Germany 
consists of 16 states -, five of them in the capital Stuttgart. Taking 
those numbers it becomes quite obvious that there are focal points. 

160 

The general trend, that workstation clusters are replacing 
general purpose mainframes, might be more common in univer­
sity-like environments than at commercial sites. And distributed 
computing technologies are of key importance for the success of 
integrating not only the clusters itself but linking all general and 
specialized computers together. Having this functionality in place, 
distributed computing will not stay restricted to single site loca­
tions. As an example, the state universities started collaborated 
efforts on software distribution and a "state-wide" file system, the 
latter can be provided by OSF/DCEs Distributed File Service. 

Provided DCE/DFS is mature enough, and supported by 
a sufficient number of vendors, RUS might decide to switch from 
AFS to DFS servers by end of this year. One of the major argu­
ments is to use the CRAY Y-I\.1P 2E as a file server in the DCE/ 
DFS context. 

References 

Goldick, J. S., Benninger, K., Brown, W., Kirby, Ch., 
Nydick, D. S., Zumach, B. "An AFS-Based Supercom­
puting Environment." Digest of Papers, 12th IEEE Sym­
posium on Mass Storage Systems, April 1993. 

Lanzatella, T. W. "An Evaluation of the Andrew File 
System." Proceedings, 28th CRAY User Group meeting, 
Santa Fe, September 1991. 

Mack, D. "Distributed Computing at the Computer Cen­
ter of the University of Stuttgart." Proceedings, 29th 
CRAY User Group meeting, Berlin, April 1992. 

Mack, D. "Experiences with OSF-DCE/DFS in a 'Semi­
Production' Environment." Proceedings, 33rd CRAY 
User Group meeting, San Diego, March 1994. 

Nydick, D., Benninger, K., Bosley, B., Ellis, J., Goldick, 
J., Kirby, Ch., Levine, M., Maher, Ch., Mathis, M. "An 
AFS-Based Mass Storage System at the Pittsburgh 
Supercomputing Center." Digest of Papers, 11 th IEEE 
Symposium on Mass Storage Systems, October 1991. 

OSP. "Introduction to DCE" Preliminary Revision 
(Snapshot 4) - for OSF Members only, June, 1991. 

Transarc. "AFS System Administrator's Guide" 
FS-D200-00.10.4, 1993. 

Wehinger, W. "Client - Server Computimg at RUS." 
Proceedings, 31th CRAY User Group meeting, Mon­
treux, March/April 1993. 

Zeller, Ch., Wehinger, W. "SERVus - Ein RISC-Cluster 
flir allgemeine Dienstleistungen am Rechenzentrum der 
Universitat Stuttgart." 
to be published 



CRA Y Research Status of the DCElDFS Project 

Brian Gaffey 
CRA Y Research, Inc. 

Eagan, Minnesota 

DCE is an integrated solution to distributed computing. 
It provides the services for customers to create distri­
buted programs and to share data across a network. 
These services include: timing, security, naming, remote 
procedure call and a user space threads package. A key 
component of DCE is the Distributed File System 
(DFS). This talk will review CRI's plans for DCE, 
relate our early experiences porting DCE to UNICOS 
and describe the issues related to integrating DCE into 
UNICOS. 

1. Distributed Computing Program 

DCE is part of the Distributed Computing Pro­
gram. The Distributed Computing Program defines the 
overall requirements and direction for many sub­
programs. These sub-programs cover the major areas of 
the system needed to support the distributed computing 
model. More detail for each can be found in the pro­
gram roadmaps. The intent is to show how each of these 
sub-programs supports the goals of distributed comput­
ing. The highest level description is called the Distri­
buted Computing RoadMap. It is the highest-level 
description of the entire Program. A RoadMap exists for 
each of the sub-programs which in tum is a summary of 
product presentations .. The other roadmaps are as fol­
lows: 

Distributed Job 
Distributed Data 
Connectivity 
Distributed Programming 
Network Security 
Visualization 
Distributed Administration 

OSF DCE is covered in three of the RoadMaps : 
Distributed Programming which includes threads, 
RPCIIDL and naming; Distributed Data which includes 
the Distributed File System (DFS); and in Network 
Security which includes the DCE Security Services. 

Copyright © 1994. Cray Research Inc. All rights reserved. 

2. Distributed Computing Framework 

This Framework represents a future CRI architec­
ture that meets the needs of Distributed Computing. All 
Programs are represented but not necessarily in com­
plete detail. Components of Federated Services 
(XlOpen Federated Naming and Generic Security 
Switch [GSSD such as NIS and Kerberos also exist 
today but are not federated. Distributed System 
Administration will track industry standards such as 
OSF's DME or COSE's working group. Meanwhile 
CRI will provide products to address the needs of custo­
mers in a heterogeneous environment. Nearly every­
thing in our Framework is a standard or a de-facto stan­
dard. Nearly all of the software in our Framework was 
obtained from outside CRI or will be obtained from out­
side. The Framework represents the elements which are 
essential to high performance supercomputing and to 
our strategy of making connections to Cray systems 
easy. 

OSF DCE is a key element in the Framework. 
DCE services will co-exist with ONC and ONC+ ser­
vices at the RPC, Distributed File System, Security and 
Namaing levels of the model. New services, such as 
CORBA will be built on top of DCE services. 

3. Product Positioning 

Architecturally DCE lies between the operating 
system and network services on one hand, and the dis­
tributed applications it supports on the other. DCE is 
based on the client/server model of distributed comput­
ing. DCE servers provide a variety of services to 
clients. These services are of two types: Fundamental 
Services: Tools for software developers to create the 
end-user services needed for distributed computing, i.e. 
the distributed applications and Data Sharing Services: 
Distributed file services for end-users and software 
developers. Clients and servers require common net­
working protocol suites for communication; they may 
run DCE on the same or different operating systems. 

CRI will support all of the client services of DCE. 
CRI will also support the DFS server facility. CRI has 
no plans to support security, directory or time servers on 

161 



162 

UNICOS. 

4. DCE Component Review 

The DCE source is a integrated set of technolo­
gies. The technologies rely upon one another to provide 
certain services. For example, all of the services rely on 
threads and most of the services make use of rpc to 
accomplish their task. The following is a review of the 
major components of DCE. 

4.1. Threads in user space 

In many computing environments, there is one 
thread of control. This thread of control starts and ter­
minates when a program is started and terminated. 
With DCE threads, a program can make calls that start 
and terminate other threads of control within the same 
program. Other DCE components/services make calls 
to the threads package and therefore depend on DCE 
threads. 

Cray already provides the following mechanisms 
which allow for additional threads of control: 

1. Autotasking 

2. Multitasking (macrotasking) 

3. Multitasking (microtasking) 

4. UNICOS libc.a multitasking 

Autotasking allows a programmer to automati­
cally insert directives that use items 2 and 3. Items 2 
and 3 are a set of UNICOS library routines which pro­
vide multiple threads of execution. They mayor may 
not use 4 to manage the multiple threads of execution. 
Item 4 is a low level set of UNICOS system calls and 
library routines which provide a multithreaded environ­
ment. The interfaces provided by these 4 mechanisms 
are Cray proprietary and therefore not a "standard." 

The DCE threads interface is based on the Port­
able Operating System Interface (POSIX) 1003.4a stan­
dard (Draft 4). This interface is also known as the 
Pthreads interface. DCE threads has also implemented 
some additional capabilities above and beyond the 
Pthreads interface. 

In CRI's product, the DCE thread interface rou­
tines are mapped directly to existing Multitasking 
(macrotasking) routines. This could be configured to 
restrict all threads to be within one real UNICOS thread 
or to allow for multiple UNICOS threads. With this 
approach, existing Multitasking (macrotasking) imple­
mentations function correctly. The downside to this 
approach is that all of the DCE Threads functionality 

cannot be provided (in the short term). For example, 
multiple scheduling algorithms cannot be requested. 

4.2. Threads in the kernel 

In addition to threads in user space, the DFS ker­
nel components require threads in the kernel. Actually, 
DFS relies on rpc runtime libraries which use the 
pthreads interface. The pthreads interface in the kernel 
maps into newprocO which creates a new process in the 
kernel. This process is scheduled as a normal process 
not as a thread. 

4.3. RPC and IDL 

RPC, "Remote Procedure Calls" allows program­
mers to call functions which execute on remote 
machines by extending the procedure interface across 
the network. RPC is broken into kernel RPC, used only 
by DFS, and user-space RPC which is used by most 
other DCE components. DCE provides a rich set of 
easy to use interfaces for creating remote processes, 
bind to them and communicating between the com­
ponents. 

Interfaces to RPC functions are written in a C-like 
language called the "Interface Definition Language". 
These interfaces are then compiled with the IDL com­
piler to produce object or C source code stubs. The 
stubs in tum are linked with the programmers code and 
the RPC libraries to produce client and server execut­
abIes. 

A few technical items to note: 
-- communication, naming and security are handled 

transparently by the RPC runtime library 
-- the network encoding is negotiable, but currently 

only Network Data Representation (NDR) is supported 
-- "receiver makes right" which means that machines 

with similar network data types will not need to do data 
conversions 

-- DCE RPC supports three types of execution 
semantics: "at most once", idempotent (possibly many 
times) and broadcast 

-- RPC will run over TCPIIP or UDP (with DCE 
RPC providing transport mechanisms) 

CRI plans to rely on ONC's NTP protocol for 
clock synchronization since it is already implemented 
and a single system can not have two daemons changing 
the system clock. 

4.4. Directory Services 

Directory services is the naming service of DCE. 
It provides a universally consistent way to identify and 
locate people and resources anywhere in the network. 
The service consists of two major portions, the Cell 
Directory Service (CDS) which handles naming within 



a local network or cell of machines and the Global 
Directory Agent (GDA) which deals with resolution of 
names between cells. 

Applications requiring directory information will 
initiate a CDS client process on the local machine called 
a Clerk. The Clerk resolves the application's query by 
contacting one or more CDS Servers. The Servers each 
physically store portions of the namespace with 
appropriate redundancy for speed and replication for 
handling host failures. Queries referencing objects 
external to the local cell will access the GDA to locate 
servers capable of resolving the application's request. 

When the GDA is resolving inter-cell queries, it 
uses either the Global Directory Service (GDS) or 
Domain Name Service (DNS). GDS is a X.500 imple­
mentation that comes with the DCE release while DNS 
is the Internet distributed naming database. Both of 
these services will locate a host address in a remote cell 
and pass this value back to the CDS Clerk who will then 
use it to resolve the application's query. 

4.5. Security Services 

DCE security services consist of three parts : the 
Registry service, the authentication service and 
privilege service. The Registry maintains a database of 
users, groups, organizations, accounts and policies. The 
authentication service is a "trusted third party" for 
authentication of principals. The authentication service 
is based on Kerberos version five with extensions from 
HP. The Privilege Service certifies the credentials of 
principals. A principal's credential consist of its identity 
and group memberships which are used by a server 
principal to grant access to a client principal. The 
authorization checking is based on POSIX Access Con­
trol Lists (ACLs). The security service also provides 
cryptographic checksums for data integrity and secret 
key encription for data privacy. 

Supporting DCE security on UNICOS can lead to 
compatibility problems with current and future 
UNICOS products. Specifically, DCE ACLs are a 
superset of POSIX ACLs and DCE's Kerberos is based 
on version five whereas UNICOS's Kerberos is based 
on version four. We don't believe an application can be 
part of a V4 realm and a V5 realm. Also, the two proto­
cols aren't compatible, but it is possible to run a Ker­
beros server that is capable of responding to both ver­
sion 4 and version 5 requests. 

4.6. Distributed File System 

The Distributed File System appears to users as a 
local file system with a uniform name space, file loca­
tion transparency, and high availability. A log-based 
physical file system allows quick recovery from server 

failures. Replication and caching are used to provide 
high availability. Location transparency allows easier 
management of the file system because an administrator 
can move a file from one disk to another while the sys­
tem is available. 

DFS retains the state of the file system through 
the use of tokens. Data can be cached on the clients by 
granting the client a token for the appropriate access 
(read/write). If the data is changed by another user of 
the file, the token can be revoked by the server, thus 
notifying the client that the cached data is no longer 
valid. This can't be accomplished with a stateless file 
system, which caches data for some period of time 
before assuming that it is no longer valid. If changes 
are made by another user, there is no mechanism for the 
server to notify the client that its cached data is no 
longer valid. 

DFS supports replication, which means that mul­
tiple copies of files are distributed across multiple 
servers. If a server becomes unavailable, the clients can 
be automatically switched to one of the replicated 
servers. The clients are unaware of the change of file 
server usage. 

DFS uses Kerberos to provide authentication of 
users and an access control list mechanism for authori­
zation. Access Control Lists allow a user to receive 
permission from the file server to perform operation on 
a particular file, but at the same time access to other 
files can be denied. This is an extension of UNIX file 
permissions, in that access can be allowed or denied on 
a per user basis. UNIX allows authorization based on 
group membership, but not to a list of individual users. 

DFS is a log-based file system which allows quick 
recovery from system crashes. Most file systems must 
go through a file system check to ensure that there was 
no corruption of the file system. This can occur because 
much of the housekeeping information is kept in main 
memory and can be lost across a system crash. In con­
trast, DFS logs every disk operation which allows it to 
check only the changes made to the disk since the last 
update. This greatly reduces the file system check 
phase and consequently file server restarts. 

To summarize, the use of a token manager 
ensures shared data consistency across multiple clients. 
A uniform name space is enforced to provide location 
transparency. Kerberos authentication is used and 
access control lists provide authorization. DFS allows 
its databases and files to be replicated, which provides 
for reliability and availability. It can interoperate with 
NFS clients through the use of protocol gateways. 

Cray's initial port of DFS won't include the 
Episode file system. This means that log-based 
recovery and cloning won't be available. Cloning is the 

163 



164 

mechanism used for replication. 

4.7. LFS 

OSF has selected the Episode file system to be the 
local file system for the OSFIDCE product. In the initial 
port of DCE it was decided to retain the UNICOS file 
system instead of LFS. However, there are significant 
features of the Episode file system that when used with 
DFS provide reliability and performance enhancements. 
The most important feature is the ability to support mul­
tiple copies of data. This provides redundancy for 
reliability/availability, and increased throughput and 
load balancing 

CRI will evaluate different log based file systems. 
Decide on the best alternative for Cray from available 
log base file systems. The current possibilities include 
Episode from Tran s arc , Veritas, write our own, Polys­
center from DEC, and others. This evaluation must first 
produce a clear set of requirements which will be used 
to select the best choice for Cray Research, Inc. 

s. Comparison to ONC Services 

Almost all components of DCE have correspond­
ing ONC services. This section is a quick overview of 
the technologies available on UNICOS which can be 
used now to support distributed computing and distri­
buted data. 

Both DCE and ONC have an RPC mechanism, 
which have different protocols. To write a program 
using ONC RPC, a user makes use of a tool called 
RPCGEN, which produces stubs. To write a program 
using DCE RPC, a user makes use of an IDL compiler 
which also produces stubs. ONC RPC uses XDR for 
data translation, while DCE RPC uses IDL. DCE RPC 
has an asynchronous option. User programs may use 
either DCE RPC or ONC RPC, but not both. The client 
and server portions of an application must both use 
either DCE RPC or ONC RPC. 

NFS is a stateless file system. DFS relies on state 
information and uses tokens to control file access. A 
user program could access files that exist in a DFS file 
system and files in an NFS file system, however a file 
must reside in only one file system. 

Network Information Service (NIS) is ONC's 
directory service. It interfaces to the Domain Name 
Server to extract internet naming and addressing infor­
mation for hosts. DCE's CDS is similar in this respect. 
The protocols for NIS and CDS are incompatible. 

DCE's User Registry doesn't have a correspond­
ing ONC service, but it will have to coexist or be 
integrated with the UNICOS User Data Base. Both 
environments support Kerberos for network security. 

ONC's time service is called Network Time Protocol 
(NTP). DCE's time protocol, DTP isn't compatible at 
the protocol level. It is possible to tie together an NTP 
time service with a DTP time service by having the 
DTP server get its time from NTP. 

6. CRI's DCE Plans 

The DCE Toolkit has been released. It supports 
the client implementation of the DCE core services 
(threads, rpc/idl, security and directory). We rely on 
ONC's NTP to provide the correct time. The Toolkit 
passes over 95% of the OSF supplied tests. The test 
failure are in the area of threads scheduling. Our Toolkit 
is built on top of libu multi-tasking. Since libu has its 
own scheduler we removed the OSF supplied scheduler. 

CRI does not provide documentation or training 
for DCE. Both of these services can be obtained from 
OSF or from third parties. 

CRI's next release of the OSF technology will be 
in two parts : the DCE Client and the DFS Server. The 
DCE Client will incorporate an updated version of the 
Toolkit and the DFS client. The DCE DFS Server 
includes the full OSFIDCE DFS server, providing tran­
sparent access to remote files that are physically distri­
buted across systems throughout the network. Imple­
mentation of DFS requires UNICOS support for the fol­
lowing new features: pthreads, krpc, and vnodes. These 
features are available in UNICOS 8.0. Cray DCE DFS 
Server is planned to be available in mid 1994. In addi­
tion to UNICOS 8.0, Cray DCE Client Services is a 
prerequisite for this product. 

The Cray DCE Client Services product provides 
all of the functionality of the toolkit as well as DFS 
client capabilities. With the introduction of the Cray 
DCE Client Services, the Cray DCE Toolkit is no longer 
be available to new customers. Since Cray DCE Clients 
Services requires UNICOS 8.0, a transition period has 
been established for the upgrade of existing Cray DCE 
Toolkit customers to Cray DCE Client Services. The 
transition period extends from the release of Cray DCE 
Client Services until one year after the release of 
UNICOS 8.0. During this transition period, the Cray 
DCE Toolkit will continue to be supported on UNICOS 
7.0 and UNICOS 7.C systems. Cray DCE Toolkit 
licenses includes rights to DCE Client Services on a 
"when available" basis. There is no upgrade fee. 

In future product releases, CRI will provide sup­
port for a log-based file system (LFS). We will investi­
gate Episode; the OSF supplied file system, and other 
log based file systems which support the advanced 
fileset operations. CRI will also integrate DFS will other 
components of UNICOS (eg. DMF, SFS, accounting 
etc). Finally, we intend to track all major releases of the 



DCE technology from OSF. 

7. DFS Advantages 

In the DFS distributed file environment, users 
work with copies of files that are cached on the clients. 
DFS solves problems that arise when multiple users on 
different clients access and modify the same file. If file 
consistency is to be controlled, care must be taken to 
ensure that each user working with a particular file can 
see changes that others are making to their copy of that 
file. DFS uses a token mechanism to synchronize con­
current file accesses by multiple users. A DFS server 
has a token manager which manages the tokens that are 
granted to clients of that file server. On the clients it is 
the cache manager's responsibility to comply with token 
control. 

Caching of information is transparent to users. 
DFS ensures that users are always working with the 
most recent version of a file. A DFS file server keeps 
track of which clients have cached copies of each file. 
Servers such as DFS servers that keep such information, 
or 'state' about the clients and are said to be 'stateful' 
(as opposed to 'stateless' servers in some other distri­
buted file systems). Caching file data locally improves 
DFS performance. The client computer does not need to 
send requests for data across the network every time the 
user needs a file; once the file is cached, subsequent 
access to it is fast because it is stored locally. 

Replication improves performance by allowing 
read-only copies to be located close to the user of the 
data. This load balancing of data locations reduces net­
work overhead. All DFS databases (fileset location, 
backup, update) use an underlying technology which 
allows replication. This further improves performance 
and allows more relability. DFS allows for multiple 
administrative domains in a cell. Each domain is con­
trolled via a number of administrative lists which can be 
distributed. 

8. DCE and UNICOS Subsystems 

8.1. 
DMF 

Since DFS uses NCt has its local file system and 
has its cache the integration is transparent. DMF can 
migrate and unmigrate DFS files at any time. In future 
releases we will study the possibility of a special com­
munications path between DMF and DFS. 

8.2. NQS 

In a future NQS release, NQS will be able to 
access and use DFS files for retrieving job scripts and 
returning output. 

8.3. SFS 

In future releases the Shared File System and 
DFS will be integrated in order to maintain high perfor­
mance and network wide consistency. Our initial work 
will be to synchronize DFS tokens and SFS semaphores. 
This will ensure that users outside the cluster can access 
files in the cluster while maintaining data integrity. 
Next, we will extend a facility already within DFS 
called the Express path. The Express path will allow 
DFS clients within the cluster to access data in the clus­
ter without moving the data. 

8.4. Security 

Our initial release requires users to validate them­
selves to DCE before using DCE services. This valida­
tion occurs during the initial entry into the DCE. If that 
entry occurs on UNICOS then a second is required. If 
the entry occurs in the network then no second 
UNICOS login is required. DCE security is separate 
and distinct from MLS. However, since DCE makes use 
of the standard network components that are part of 
MLS, some of the benefits of MLS apply to DCE. Later 
releases of DCE will makes use of other components of 
MLS. 

9. DCE's impact on UNICOS 

Since the reference implementation of DFS is 
based on the latest file system technology in System V 
(vnodes), It was necessary to change UNICOS to sup­
port vnodes. To support vnodes, all of the old FSS (file 
system switch) code had to be removed and replaced 
with vnode code. This required all existing file systems 
(eg. NCt and NFS) to change from FSS calls to VFS 
calls. DFS also requires rpc and threads in the kernel. 
The rpc code is a copy of some of the user space rpc 
code. The threads support in UNICOS is completely dif­
ferent from the user space threads code. In the kernel, 
we implemented threads through direct system calls. 
DFS and rpc contain large amounts of code. This is 
much more of an issue for real memory system like 
CRA Y s than it is for other systems. The other com­
ponents of DCE also contain large amounts of code but 
since they are in user space they can swap out. The user 
space libraries require threads. We implemented DCE 
threads on top of libu multitasking. This has the advan­
tage of easier integration with existing libraries and 
tools (eg. cdbx). However, there are some restrictions. 

10. Current Status 

The DCE toolkit is released. The Toolkit supports 
client implementations of all core components except 
DFS. The Toolkit allows UNICOS systems to partici­
pate in a DCE environment. The Toolkit is at the OSF 

165 



166 

1.0.1 level. The components include: 
Threads 
Rpc/idl 
Directory 
Security 
Time API 

UNICaS 8.0 contains the infrastructure to sup­
port DFS. All DFS products will require 8.0. The infras­
tructure includes vnodes, kernel rpc and kernel threads. 

The DCE client product will includes all of the 
Toolkit components (updated to the 1.0.2 level) and the 
DFS client. Currently, the DeE Client passes all of the 
Toolkit tests and the NFS Connectathon tests. More 
than 90% of the DFS tests are working. The DCE DFS 
Server product will include support for the DFS servers. 
It currently passes Connectathon as well. A major 
undertaking, in conjunction with other aSF members, is 
underway to multi-thread DFS. LFS (aka Episode) has 
been evaluated but will not be part of the initial release. 

11. Summary 

CRI has a DCE Toolkit available and plans for a 
DFS product in third quarter 1994. CRI is committed to 
track DCE and enhance it. 



Networking 





Seinet '93 - An' Overview 

March 14, 1994, San Diego California 
Cray User's Group Meeting 

By: Benjamin R. Peek 

Peek & Associates, Inc. 
5765 SW 161st Avenue 

Beaverton, OR 97007-4019 
(503) 642-2727 voice 
(503) 642-0961 fax 

169 



170 

SCinet '93 at the Supercomputing '93 Conference in Portland, Oregon 

SCinet '93 - An Overview 

SCinet '93 

SCinet '93 got underway during SUPERCOMPUTING '92. Bob Borchers had asked me 
to help locate someone locally (in Oregon) that could handle the SCinet '93 
responsibilities. At that point, I was just beginning to understand requirements for the 
Local Arrangements responsibilities and had not quite received a commitment from Dick 
Allen to take the Education Chair. I decided to spend time during SUPERCOMPUTING 
'92 at the SCinet booth in Minneapolis with Dick Kachelmeyer and the SCinet '92 crew. 
I was most impressed with the level of service that Dick and his crew were able to give to 
all of the exhibitors and researchers at SC'92. The conference period went well for me 
but I admit that I was buried in more information than I could handle, especially the 
SCinet participants and the Local Arrangements scope and organization. I also attended 
meetings with the SC'92 Education folks, along with Borchers, Crawford, Allen and 
others, to better understand what they were doing. Basically, my time was spent 
collecting a lot of information. 

Time track 

During December 1992, thing got even more interesting. Dona Crawford, Bill Boas, and 
several other folks began organizing the whole idea of the National Information 
Infrastructure Testbed, spawned out of the success of SCinet '92 and a desire to establish 
a testbed with the attributes of SUPERCOMPUTING experimentation in terms of 
industry, academia, and government research participation.. This NUT idea became an 
active meeting just before Christmas 1992. On December 17, 1992, Dona Crawford and 
several interested folks met in Albuquerque to discuss a permanent network testbed and, 
what that would mean, who might be interested, who would benefit, who and how could 
such an idea be funded, and so forth. Because demonstrations could result from the NUT 
idea that might be showcased at SC'93 on SCinet '93, Dona invited me to participate. I 
had other commitments and was unable to make the meeting. Clearly, it was a productive 
meeting. 

The NUT showcase demonstrations for SCinet '93 were massive, impressive, and 
technically superior. The showcase of technology for ATM over the NUT infrastructure 
and SCinet '93 was impressive enough that ATM, as a protocol and technology, moved 
ahead in its deployment schedule by at least 18 month during 1993, perhaps even more, 
in my view. 

Starting in March 1993, Mike Cox and I began the process of collecting requirements by 
survey for SCinet '93. The survey was sent by fax, email, U.S. Mail, and by phone to all 
participants in SUPERCOMPUTING '92, specifically to all of the folks involved in 
networking or SCinet. The survey was thought, at this early date, to magically collect all 
of the information that we would need to begin the network design process for all of the 
networks planned. The survey included questions about Ethernet™, FDDI, ATM, RiPPI, 
Serial RiPPI, Fibre Channel, and SONET. Some conference calls were made. 

Perhaps the next major event for SCinet '93 came in June 1993. Dona Crawford planned 
a SC'93 Program Committee meeting in Portland for June and it seemed convenient and 
pertinent that we have the organizing committee meeting for SCinet participants as well, 
especially since some were traveling to Dona's meeting already. The meeting at the 
Benson Rotel started at 8:30a with about 30 SCinet folks attending in the morning. Bob 
Borchers introduced the meeting and gave the group a overview of SUPERCOMPUTING 



in general, the expected number of attendees at SC'93, and other general information. I 
gave an overview of how I planned to organize and run the SCinet '93 committee. We 
reviewed preliminary plans including permanent infrastructure at the Oregon Convention 
Center and the fund raising requirements to make such an idea possible. 

We heard from Jim McCabe (who committed to be vice chair technology at this meeting), 
Mark Wilcop, U.S. West (telephone long lines and other issues), Doug Bird, Pacific 
Datacomm on Ethernet and FOOl, Mark Clinger, Fore Systems on ATM, Bill Boas, 
Essential Communications on HiPPI, Dona Crawford, Sandia on NIIT, and the Intel folks 
on experiences at SCinet '92. The meeting was a great success and got the team working 
on all of the serious issues. Other ideas were represented including the National Storage 
Labs (NSL) plans and of course, Tom Kitchens, DoE and Fran Berman, UCSD presented 
the Heterogeneous Computing Challenge and the Le Mans FunRun ideas. A massive 
amount of activity was initiated and specifically, the connectivity data collection 
functions went into high gear. 

The next major "event" was a meeting two months later in Minneapolis (August.). 
NetStar was our host and I paid for lunch for around 35-40 people. At the NetStar 
meeting, we were able to reach consensus on many of the major functions and tasks for 
SCinet '93. Connectivity requirements were proving hard to come by (no one knows 
what they will do at a SUPERCOMPUTING conference until a few (very) weeks before 
the conference (in terms of equipment, projects, etc.). Before the NetStar meeting, email 
surveys were sent a total of three times, faxes were sent twice (to everyone not yet 
responding. Finally, in late August, Linda Owen at Peek & Associates, Inc. began the 
telephone process and called everyone that we knew to collect additional requirements. 
Jim McCabe and the various project leaders were also calling each participant. 

During September and specifically on Labor Day, Jim McCabe and his crew from NASA 
spent the weekend at the Oregon Convention Center making a physical inventory of the 
conduits system, inspecting all aspects of the center layout, and getting preliminary 
implementation plans in place for the physical networks defined at that point. 

An October meeting was held in Albuquerque at the same time as the SC'93 steering 
committee meeting in Portland on October 22 -23, 1993. I was unable to attend due to 
the Steering Committee meeting in Portland. The purpose of the meeting was final 
review on all network designs for the conference. Each of project leaders (for Ethernet, 
FOOl, ATM, HiPPI, FCS, plus external connectivity) gave final reports on the design of 
their specific network. Issues and problems were discussed, especially those that related 
to interfaces between networks and those issues dependent on loaned equipment from the 
many communication vendors that were participants. McCabe reported that the meeting 
was very productive. Meeting reports were received from most of the project leaders 
outlining problems, proposed solutions, and unfilled requirements. 

Prestaging was also planned for October at Cray Research, Superservers Division in 
Beaverton, OR. The space was donated, power was arranged, facilities were organized, 
and no one showed up. Prestaging is just not a concept that will work for SCinet, in my 
view. The elements of the conference do not come together clearly, in enough time, for 
the big players in the network like Cray Research, mM, HP, MasPar, Intel, Thinking 
Machines, etc. to take advantage of prestaging. The network exhibitors and vendors 
seemed much more prepared to take advantage of the early timeframe. However, not all 
of them. There is also the logistics problem of getting all of the people scheduled for a 
prestaging activity, at the same time. It does not do a lot of good to prestage equipment 
that must talk to other equipment if the "other folks" cannot be there. 

171 



172 

As we moved into mid-October, it became clear that the size, scope, and complexity of 
SCinet '93 was perhaps four times SCinet '92 .. I expect a step function for SCinet '94 as 
well. The costs have also exploded due to the cost of single and multimode connectors, 
fiber optic cable (the volume of it continues to increase), and the labor (very skilled and 
expensive) to install and test such networks. Fiber optic installation is also slower than 
conventional network technology. Rushing a fiber optic installation just results in 
rework. During October, Peek & Associates, Vertex and RFI were installing networks at 
the Oregon Convention Center at every available time slot The convention center had 
many other conferences that made working in the center really difficult. We would work 
for 2-4 hours at a time, generally from midnight to early morning, between events. 

The real press started the first week of November. We were in the Oregon Convention 
Center installing networks almost continuously from October 30 until November 15 with 
the pace becoming more intense with each passing day. 

External Networks 

SCinet was connected to the outside world in many ways including DS3, OC3, gigabit 
fiber optics (HiPPI and FOOl), SONET, etc. External networks were developed, 
managed and setup primarily by Mark Wilcop. Mark worked with many phone 
companies, research organizations such as NUT and Sandia, ANS for the Internet 
connection, and with the SCinet team to establish the finest set of external networks that 
have been established to date for a technical conference such as SUPERCOMPUTING 
'93. 

The Sandia "Restricted Production Computing Network" connected Sandia, New Mexico 
to Sandia, California over a 1100 mile DS3 truck. This network was terminated at both 
ends with AT&T BNS-2000 switching equipment that integrated both local FOOl 
networks and A TMlSONET testbeds. An additional link was developed at OC3 that 
covered 1,500 miles of connectivity from Albuquerque to Portland. This connectivity 
included several players and was arranged primarily by Mark Wilcop (U.S. West). 

The NIIT experiment was massive. It included connections to the University of New 
Hampshire; the Earth, Ocean, Space Institute in Durham; Ellery Systems in Boulder, 
CO; Los Alamos; Sandia in Albuquerque; Sandia in Livermore, CA; and Oregon State 
University in Corvallis, OR. 

An AT&T Frame Relay capability connected NUT to University of Berkeley, CA; 
University of California, Santa Barbara; NASA/Jet Propulsion Lab, Pasadena, CA; High 
Energy Astrophysics Div., Smithsonian Astrophysical Observatory, Cambridge, MA; and 
AT&T in Holmdel, NJ. 

Private Boeing ATM network to Seattle, WA with Fore Systems equipment and 
participation. This experiment developed and used switched virtual circuits (SVCs) for 
the first time in a trial over the switched public network. 

Fiber Optic Backbone Network at Oregon Convention Center 

A backbone network was installed in the Oregon Convention Center. The backbone 
network is described elsewhere in this document (Oregon Convention Center Support 
Infrastructure Letters section). The backbone has from 12 - 48 single and multimode 
fiber optic connections running throughout the convention center. 



The diagram attached shows the network details. 

Ethernet 

The Ethernet network was very extensive and had hundreds of connections. Ethernet 
connected to both the FDDI networks and to the ATM backbone. The Ethernet 
equipment was supplied by ODS with conference support from both Pacific Datacomm in 
Seattle and ODS in Dallas. 

Fiber Distributed Data Interface (FDDI) 

FDDI networks interfaced with the ATM backbone. The FDDI equipment was supplied 
by ODS with conference support from both Pacific Datacomm in Seattle and ODS in 
Dallas. 

Asynchronous Transfer Mode (A TM) 

ATM was one of the most interesting A TM experiments to date. The A TM network 
served as the backbone network for the conference. The A TM activity was managed by 
Marke Clinger with Fore Systems, Inc. There were many firsts, specifically the first use 
of switched virtual circuits (SVCs) over the public switched network, the most extensive 
backbone network based on ATM, and in general, the use of production A TM equipment 
from a mixed set of vendors over a mixed set of media including the public switched 
network, private networks, the OCC backbone network, etc. 

SCinet'93 Network Diagrams 

On the following pages are detail diagrams of each of the networks from SCinet'93 as 
well as figures describing the network experiments. 
All of the diagrams go in here. This page number will be used appending A, B, C, D, etc. 
to each diagram. 
High Performance Parallel Interface (HiPPI) 

HiPPI is a suite of communications protocols defining a very high-speed, 800 M1bps 
channel and related services. Using crosspoint switches, multiple HiPPI channels can be 
combined to form a LAN architecture. 

The HiPPI protocol suite consists of the HiPPI Physical Layer (HiPPI-PH), a switch 
control (HiPPI-SC), HiPPI Framing Protocol (HiPPI-FP), and three HiPPI Upper Layer 
Protocols (UPLs). The UPLs define HiPPI services such as IEEE 802.2 Link 
Encapsulation (HiPPI-LE), HiPPI Mapping to Fibre Channel (HiPPI-FC), and HiPPI 
Intelligent Peripheral Interface (HiPPI -IPI). 

SCinet '93 implemented both HiPPI-IPI and HiPPI-LE. There was the possibility of 
HiPPI-FC but no experiment was conducted due to lack of time. It would have been an 
interesting experiment and there was a convenient Fibre Channel network that could have 
been used. 

The HiPPI team was headed by Randy Butler with NCSA. Randy did an outstanding job 
of designing, building and operating the largest HiPPI network built to date. The network 
extended approximately 28 miles to Beaverton, OR connecting a Paragon at Intel SSD to 
the Oregon Convention Center with three separate fiber optic networks. There were 
several private RiPPI networks dedicated to a specific application or demonstration. In 

173 



174 

all, there were more than 30 HiPPI connections over single mode fiber, multimode fiber, 
25 and 50 meter HiPPI cables, connected by a wide assortment of HiPPI switches, 
routers, and extenders. The system operated flawlessly throughout the conference. 

See the attached figure from Network System describing the HiPPI networks for SC'93. 

HiPPI Serial 

In addition to the above, there were two separate HiPPI Serial links and one FOOl 
connection to Intel in Beaverton, approximately 24 miles one way, over three dedicated 
fiber optic private networks configured using both U S West and General Telephone dark 
fiber connecting the Oregon Convention Center to Intel in Beaverton, OR. These serial 
experiments used BCP extenders everywhere. The results were impressive. Thirteen 
terabytes of information per day moved between Intel's Paragon configuration in 
Beaverton and Intel equipment at the Supercomputing conference within the Oregon 
Convention Center. 

These fiber optic networks experienced unusually low bit error rates and were functional 
throughout four days of the conference. Much of the "impossibility" of doing gigabit 
networks at the WAN level evaporated during the experiment. Engineers and 
management, across a spectrum of companies and organizations, were convinced that 
such technology could be implemented 



Experiences with OSF-DCEIDFS 
in a 'Semi-Production' Environment 

Dieter Mack 
Computer Center of the University of Stuttgart 

Talk presented at CUG, San Diego, March 1994 

Abstract: RUS has been running a DCE cell since late 1992, and DFS since summer 1993. What was originally a mere 
test cell is now being used as the day-to-day computing environment by volunteering staff members. The 
expressed purpose is to obtain the necessary skills and prepare for the transition from an AFS based 
distributed environment to OSF-DCE. We describe experiences made, difficulties encountered, tools being 
developed and actions taken in preparation for the switch to DCEIDFS. 

Introduction. 

The Computer Center of the University of Stuttgart is a regional computer center and its purpose 
is to provide computing resources to the University of Stuttgart, the other universities of the state 
of Baden-Wiirttemberg, and to commercial customers. 

Client-Server Configuration 
Computer Center University of Stuttgart (RUS) 

File 

IPVR 

Fig. 1: Central Systems 

Compute 
Server 

Masslvely­
Parallel 

Dlstrlbuted­
Parallel 

2.12.93 

Figure 1 outlines the central services offered to the user community. The Cray 2, which serves the 
need for supercomputer power, will be replaced by a C94 shortly. General services and scalar 

175 



176 

batch are now being served by the SERVus cluster, a cluster of RISC servers(IBM RS/6000), as 
shown in figure 2. This cluster has successfully replaced a mainframe based timesharing system 
at the beginning of last year. 

There are about 2800 registered 
users of the central computers. 
The LAN of the University of 
Stuttgart comprises 3200 
computer nodes, including more 
then 1600 workstations. As the 
users and owners of these local 
systems become aware of the 
work involved in their 
administration and maintenance, 
they start to demand new central 
services to take this work off 
their shoulders. 

Service-Cluster 

The RUS-DCE project. 

In response to these needs, in 
summer 1991, with some support 
from IBM, we started a project to 
investigate the technologies of 
distributed computing. At this 
time OSF-DCE was but an 
interesting blue print, so we 
decided to look into and evaluate 
the available technologies, and to 
make them available to the 
members of the project team. The 
ultimate goal of course was and 
still is to offer these as new 
services to the users. 

The main parts of the project 
were: 

SERVus 

~ijJS Systemtechnlk 

• Time-Services - xntpd 
• Kerberos 

Fig. 2: SERVus RISC Cluster 

• AFS - Andrew File System 
• NQS - Network Queuing System 
• Distributed Software Maintenance 

and Software Distribution 

17 CPU's 

Linpack: 
255 MFlops 

SPECmark: 
846 

Platten: 
51 GB 

-Scalar Batch 
-Program Dev. 
-Libraries 
-lID Server 
-X-Server 
-Data Bases 
-Word Proces. 
-Network Servo 
-Software-Lic. 
-User Admin. 
-Security 
-Dist. Data 

Cluster 

fUI.lY·WthJze IIrvcl3 8IQ3 

The time service is just a part of the infrastructure of distributed computing, without any directely 
visible impact on the users. 

The AFS cell rus.uni-stuttgart.de was installed in November 1991 as the first cell in Germany. 
AFS is one of the key components of the SERVus cluster in order to achieve a 'single system 
image'. Today AFS is in full production use at the university, and it is hard to imagine, how we 
could get our work done without it. AFS is the mature and widely used production Distributed 
Computing Environment available today. 

But AFS lacks a finer granularity of administrative rights, as would be desirable at a university 
in order to keep departments under a 'common roof, but give them as much autonomy as possible 



without sacrificing security. This is the reason for having multiple AFS cells (currently 4) on the 
campus, as departments have to run their own cell, if they want to run and administer their own 
file servers. 

OSF-DCE and DFS at Stuttgart. 

While the main component technologies of OSF-DCE are in production use at RUS, it was 
obviously desirable to get hold of DCE at an early stage. We had the opportunity to take part in 
IBM's EPP (beta test) for AIX-DCE. We first configured our DeE test cell in November 1992, and 
we have DFS running since summer 1993. One does not expect everything to run absolutely 
smooth in a beta test, but one hopes to get ones hands onto a new product at an early stage. So 
we started off with one server machine and a handfull of clients, the working machines of 
participating project members. 

Today we have three server machines with the following roles: 
rusdce: CDS, DTS, DFS simple file server 
zerberus: Security, CDS, DTS 
syssrv2: DTS, DFS file server, FLDB server, system control machine 

The clients are essentially the same, but besides the RS/6000's there now is a Sun Sparc machine. 

There are 30 user accounts in the registry, and these people have their own DFS filesets, 
containing their home directories. We plan to install the DFS/ AFS translator as soon as we can 
get hold of it. 

Experiences with DCE and DFS. 

The first impression with DCE is that this is a really monolithic piece of software. Nevertheless 
configuring server and client machines is relatively straight forward with the supplied shell 
scripts and especially with the SMIT interface supplied by IBM. 

Next one realizes that the security is much more complex to administer, but on the other hand 
this offers one the finer granularity, which AFS is lacking. The cell_admin account of course still 
is master of the universe, but there are numerous ways to delegate well defined administrative 
tasks. This is mostly due to fact that one can put ACLs on almost everything from files to 
directories in the security space. 

The Cell Directory Service (CDS) is intended to locate resources transparently. From this it is 
clear, that it is one of the key components of DCE. If the CDS is not working properly, all the 
other services may no longer be found and contacted, and everything will eventually grind to a 
halt. Its performance should be improved, before one can really use DCE in large production 
environments. 

DFS essentally still is AFS with different command names. From the users perspective it is as 
transparent as AFS or, may be, even more transparent due to the synchronisation between ACL's 
and mode bits. And the administration is still the same. As an example: I just replaced the 
command names etc. in an old AFS administrative shell script of mine, and it just ran on DFS. 
And DFS appears to be quite stable and robust, but we have not yet really stressed it. 

Nevertheless it is a good idea to copy ones files from DFS back to AFS, just to be on the safe side. 
This has proven to be a wise measure, not because of DFS failure but due to CDS problems, which 
can prevent one from getting at ones data. Mounting a DFS fileset locally on the file server can 
also help in case of problems. 

Another problem worth mentioning was encountered, when we tried to move the security server 

177 



178 

to a new machine. We succeeded in the end, but only by having the old and the new security 
server running simultaneously for takeover. Had the old security server been broken, we would 
not have been able to bring up a new security server from a database backup, and would have had 
to reconfigure the cell. 

This brings us to one very important remark: as all objects in DCE are internally not represented 
by their names,. but by their UUID, it is crucial to have the cells UUID written down somewhere. 
It is possible to configure a cell with a given UUID. Reconfiguring a cell with a new UUID makes 
all data in DFS inaccessible, until one forcibly changes the ACLs by hand. 

What is missing in DCE. 

There are a some features missing in DCE, which are absolutely necessary. 

The most important of these is a Login program, which allows a user to log into DCE and the local 
machine in one step. This is the only way to be able to have ones home directory in DFS, and thus 
have the very same home directory on every machine one works on. AFS has this indispensable 
feature, without which a single system image on a workstation cluster may not be achieved. 

We are currently using a 'single login' program developed by IBM banking solutions, which has 
some very interesting features for limiting access to machines to specified users. 

DCE versions of utilities like ftp and telnet (or rlogin) are needed. As long as there are machines 
which are not DCEIDFS clients, there will be a need for shipping files the conventional way. And 
there will always be a need for running programs on the computer most suited for the problem at 
hand. One of the goals of distributed computing is for the user to see the same data on whichever 
computer he deems appropriate for solving his problems, and to. allow him access to these in a 
secure manner, i.e. no passwords on the network, etc. 

Batch processing in a distributed environment. 

The other field which appears to have been forgotten by those developing DCE and DME, is batch 
processing. Despite the personal computing revolution most computing is still done in batch. Users 
use their desktop systems for program development etc., but the long production runs are usually 
beeing done on more powerful systems in batch. 

Batch in the context of DCE faces two problems: 
1. credential liftetime 
2. distributed queue management 

The lifetime problem can be overcome by renewable tickets, and by a special 'batch ticket granting 
service', which hands a new ticket for the batch user to the batch system in return for a ticket 
granted for the 'batch service' (possibly valid only for this jobs UUID), ignoring this tickets 
lifetime. This is, at least in the given framework, the only way to overcome the problem of a job 
being initiated after the ticket of the user, who submitted it, has already expired. This means 
accepting an expired ticket, but if, hours later, I do no longer believe, that this user submitted the 
job, I should better not run it anyway. Batch processing means doing tasks on behalf of the user 
in his absence, this is the very nature of it. 

The second problem, namely distributed queue management, is at the heart of all currently 
available distributed batch systems. Their problem is: how to get the job input to the batch 
machine, and how to get the output back to the user. In 1976 we ran two Control Data 
mainframes with shared disks and, due to special software developed at RUS, shared queues. In 
its very essence this was a distributed file system, if only shared between two machines. The 



existence of a distributed file system makes the problem of sending input and output obsolete. The 
data is there, at least logically, no matter from where you look at it. Queues then are essentially 
special directories in the distributed file system, with proper ACLs to regulate who is allowed to 
submit jobs to which queues. On the other side the batch initiating service on a batch machine 
knows in which queues to look for work, like on a stand alone system. And it anyway is best 
suited to have each machine decide when to schedule a new job. The only thing necessary might 
be a locking mechanism to prevent two machines from starting the same job at the same time. A 
centralized scheduler, which decides which batch machine should run which jobs, and then sends 
them there, is no longer needed, thus eliminating an other single point of failure. 

A model for a campuswide DCE cell. 

The envisaged goal of a campuswide DCE cell is to provide a transparent single system image to 
the users of computing equipment on the whole university campus. Of course the Computer 
Center cannot force departments into becoming part of this cell, but if we offer and provide them 
with a good service without too much administrative hassle, they will accept our offer. This is at 
least our experience from offering the AFS service to the campus. 

There are two requirements for campuswide distributed computing: The user should be registered 
in only one place, with one user name, one password, one home directory, but be able to get at all 
available resources, for which he is authorised. And departments should be able register there own 
users and run their own servers, without opening their services to uncontrolled access. 

The requirements on user management can easily be achieved in DCE due to the fact that the 
object space of the security service is not flat, but a true tree structure. Principals can be grouped 
in directories in the security space, and ACLs on these directories allow for the selective 
delegation of the rights to create or remove principals from a specific directory. Hence, by creating 
a separate directory for each university department under the principal and groups branches of 
the security space, it is possible to have department administrators do their own user 
administration, and still have a common campuswide security service. 

In the same fashion it is possible to have departments mount their DFS file sets in a common file 
tree. By using DFS administrative domains, departments wanting to run their own file servers 
can safely do so, and still be part of the same cell. They may thus use centrally maintained 
software, share data with users in other departments, even other universities, and do so in a 
secure manner. And they may nevertheless have their file sets backed up centrally. This is a 
definite improvement of DFS over AFS, where the only way to securely run departmental file 
servers was to have multiple cells. 

One of the principles of DCE, to which one should stick under all circumstances, is that 
authorisation should be regulated by ACLs. A DCE single login, whether invoked directely or via 
a DCE telnet, should thus grant access only to principals listed in an ACL for the machines 
interactive service. The hooks for this may be found by defining appropriate attributes for the 
corresponding objects in the CDS name space. 

Conclusion. 

To summarize our experiences thus far: DCEIDFS is a good secure system with great potential, 
but it is not yet mature and stable enough to be used in a true production environment. But we 
can use it today to learn about all its new and rich features, especially its powerfull security 
mechanisms. When it will be more mature, and supported by more vendors, we will be ready to 
use it as a truely distributed environment for scientific computing at the university. 

179 



180 

ATM - Current Status 

March 14, 1994, San Diego California 
Cray User's Group Meeting 

By: Benjamin R. Peek 

Peek & Associates, Inc. 
5765 SW 161st Avenue 

Beaverton, OR 97007-4019 
(503) 642-2727 voice 
(503) 642-0961 fax 



ASYNCHRONOUS TRANSFER MODE (ATM) 

Overview 

Today's Local Area Networks (LANs) do not support emerging high-bandwidth 
applications such as visualization, image processing, and multimedia communications. 
Asynchronous Transfer Mode (ATM) techniques brings computational visualization, 
video and networked multimedia to the desktop. With A TM, each user is guaranteed a 
nonshared bandwidth of 622M bps or 155M bps. ' 

Conceived originally for Wide Area Network (WAN) carrier applications, ATM's 
capability to multiplex information from different traffic types, to support different 
speeds, and to provide different classes of service enables it to serve both LAN and W AN 
requirements. A detailed specification for developing very high-speed LANs using ATM 
technology was published in 1992. The UNI Specification is now at V.3.0, as of last fall. 
It describes the interface between a workstation and an ATM hub/switch and the interface 
between such a private device and the public network. Signaling is being developed to 
enable multipoint-to-multipoint conferencing. 

Local ATM products are available now, and many more are expected by mid- to late-
1994. In fact, 1994 is the year that ATM comes of age. UNI V.3.0 will allow the 
technology to be deployed into large scale production environments. 

Bandwidth-intensive applications including multimedia, desk-to-desk videoconferencing, 
computational visualization, and image processing are now appearing as business 
applications. Existing 1M to 16M bps LANs (Ethernet and token-ring), and 100M bps 
LANs (Fiber Distributed Data Interface - FDDI, FDDI II), can marginally support these 
applications and their expected growth. Peek & Associates, Inc. forecasts indicate that 
there could be 1,000,000 multimedia PCs in business, manufacturing, education, and 
other industries by 1995. 

Peek & Associates, Inc. estimates that the total market for ATM-based equipment and 
services will grow from approximately $50 million in 1992 to more than a $1.3 billion 
market by mid- to late-1995. 

The shortcomings of these shared-medium LANs are related to the limited effective 
bandwidth per user, and to the communication delay incurred by users. A more serious 
problem involves the potential delay variation. For example, a 10M bps LAN may have 
an effective throughput of only 2M to 4M bps. Sharing that bandwidth among 10 users 
would provide a sustained throughput of only 200K to 400K bps per user, which, even if 
there was no delay variation, is not adequate to support quality video or networked 
multimedia applications. 

Originally developed for Wide Area Network (WAN) carrier applications, A TM's 
capability to effectively multiplex signals carrying different network traffic and support 
different speeds makes it ideal for local (LAN) and for remote (WAN) applications. The 
term private A TM has been used to describe the use of A TM principles to support LAN 
applications. 

181 



182 

Progress is being made on two fronts: 

1. Within the Exchange Carriers Standards Association (ECSA) Tl Committee, 
ANSI, and Consultative Committee on International Telephony and Telegraphy 
(CCITT), for WAN and carrier applications; and 

2. Within the ATM Forum for LAN applications. In general, good harmonization 
exists between the CCITTIECSA work and the ATM Forum's work. If the ATM 
Forum is an example, vendors are very interested ATM. There are now (3/94) 
485 member organizations internationally cooperating together in the A TM 
Forum. 

Current Status 

ATM and related standards have been developed in the past eight years under the 
auspices of Broadband Integrated Services Digital Network (BISON), as the blueprint for 
carriers' broadband networks for the mid-1990s and beyond. BISON is positioned as the 
technology for the new fast packet WAN services, such as cell relay and frame relay. 
Vendors have selected ATM-based systems for three key reasons: 

• 

• 

• 

Local ATM enables major synergies between the LAN and the WAN, since both 
networks rely on the same transport technology. This allows a LAN to be 
extended through the public switched network, transparently. With seamless 
transparency, the LAN extends to the WAN, then to the GAN. This idea has the 
power to integrates communication protocols globally establishing a ubiquitous 
marketplace of private virtual networks (PVN s). 

ATM and related standards are nearly complete. ATM has already had an eight­
year life. By 1993, the carrier-driven standards were fully published, and through 
the activities of the ATM Forum, a full complement of Local ATM specs was 
published in the fall of 1993. The ATM standard itself was stable as of December 
1990, but support standards such as signaling (to enable call control, such as setup 
and teardown), are still being developed though much progress was made in 1993. 
The other (non-ATM) standards are only beginning to be developed, and it might 
take several years for them to reach maturity, particularly FFOL. 

Local ATM allows the delivery of 155M bps signals to the desktop over twisted­
pair cable. FDDI has only recently made progress in that arena, and FCS relies on 
fiber of coax cables. Several documented technical studies have shown the 
viability of 155M bps on twisted pair, without exceeding the FCC's radiation 
limits. Chipsets exist today (3/94), priced at $20 each in quantities of 1000, that 
implement ATM 155M bps over Class V copper infrastructure. 



ATM 
Workstations 

ATM LANIW AN PVN 

ATM 
Workstations 

The ATM Forum provides the focal point for this activity. The Forum is a consortium of 
equipment vendors and other providers with a mandate to work with official A TM 
standards groups, such as ECSA and CCITT, to ensure interoperability among ATM­
based equipment. Vendors supporting the development include manufacturers of 
workstations, routers, switches, and companies in the local loop. The Forum was formed 
in late 1991, and membership has grown to the current level of 485 organizations in the 
short intervening time. Based on these activities, a number of proponents claim that 
ATM will become a dominant LAN standard in the near future. 1 

BISON standards address the following key aspects: 

• User-Network Interface (UN!) 
• Network-Node Interface (NNJ) 
• ATM 
• ATM Adaptation Layer (AAL), to support interworking ("convergence" with 

other systems (such as circuit emulation) 
• Signaling, particularly for point-to-multipoint and multipoint-to-multipoint 

(conferencing) calls 
• End-to-end Quality of Service (QoS) 
• Operations and maintenance 

Connections can either be supported in a Permanent Virtual Circuit (PVC) mode or in a 
Switched Virtual Circuit (SVC) mode. In the former case, signaling is not required, and 
the user has a permanently assigned path between the sending point and the receiving 
point. In the latter case, the path is activated only for the call's duration; signaling is 
required to support SVC service. 

ATM-based product vendors realize that the market will go flat if the inconsistencies 
characteristic of early ISDN products resurface in the broadband market. The first 

M. Fahey, "A1M Gains Momentum," Lightwave, September 1992, pp. 1 ff. 

183 



184 

"implementers' agreement" to emerge from the ATM Forum was the May 1992 UNI 
Specification.1 The interface is a crucial first goal for designing ATM-based equipment 
that can interoperate with equipment from other developers. The development of a 622M 
bps UNI is also important for applications coming later in the decade. 

A related start-up consortium is the SONET-ATM User Network (Saturn). Saturn's 
mandate was to create an ATM UNI chipset. The goal was achieved during 1993 and 
there are now several chipsets from which to select. 

The ATM Forum's UNI Specification 

ATM is a telecommunications concept defined by ANSI and CCITT standards for 
carrying voice, data, and video signals, on any UNI. On the basic of its numerous 
strengths, A TM has been chosen by standards committees (such as ANSI T1 and CCITT 
SO XVllI) as an underlying transport technology for BISDN. "Transport" refers to the 
use of ATM switching and multiplexing techniques at the data link layer (OSI Layer) to 
convey end-user traffic from a source to a destination. 

The ATM technology can be used to aggregate user traffic from existing applications 
onto a single access linelUNI (such as PBX trunks, host-to-host private lines, or video­
conference circuits) and to facilitate multimedia networking between high-speed devices 
(such as supercomputers, workstations, servers, routers, or bridges) at speeds of 155M to 
622 M bps range. An A TM user device, to which the specification addresses itself, may 
be either of the following: 

• An IP router that encapsulates data into ATM cells, and then forwards the cells 
across an ATM UNI to a switch (either privately owned or within a public 
network). 

• A private network ATM switch, which uses a public network ATM service for 
transferring A TM cells (between public network UNIs) to connect to other A TM 
user devices. 

The initial Local A TM Specification covers the following interfaces: 

1. Public UNI - which may typically be used to interconnect an A TM user with an 
ATM switch deployed in a public service provider'S network; and 

2. Private UNI - which may typically be used to interconnect an ATM user with an 
ATM switch that is managed as part of the same corporate network. 

The major distinction between these two types of UNI is physical reach. Both UNIs 
share an A TM layer specification but may utilize different physical media. Facilities that 
connect users to switches in public central offices must be capable of spanning distances 
up to 18,000 feet. In contrast, private switching equipment can often be located in the 
same room as the user device or nearby (such as within 100 meters) and hence can be 
limited-distance transmission technologies. 

ATM Forum, UNI Specification, May 1992. 



A TM Bearer Service Overview 

Carrying user infonnation within ATM fonnat cells is defined in standards as the ATM 
bearer service involves specifying both an ATM protocol layer (Layer 2) and a 
compatible physical media (Layer 1). 

The ATM bearer service provides a connection-oriented, sequence-preserving cell 
transfer service between source and destination with a specified QoS and throughput. 
The ATM physical (PHY) layers are service independent and support capabilities 
applicable to (possibly) different layers residing immediately above them. Adaptation 
layers, residing above the ATM layer, have been defined in standards to adapt the ATM 
bearer service to provide several classes of service, particularly Constant Bit-Rate (CBR) 
and Variable Bit-Rate (VBR) service. 

An ATM bearer service at a public UNI is defmed to offer point-to-point, bi-directional 
virtual connections at either a virtual path (VP) level and/or a virtual channel (VC) level; 
networks can provide either a VP or VC (or combined VP and VC) level services. For 
ATM users desiring only a VP service from the network, the user can allocate individual 
VCs within the VP connection (VPC) as long as none of the VCs are required to have a 
higher QoS than the VP connection. A VPC's QoS is determined at subscription time and 
is selected to accommodate the tightest QoS of any VC to be carried within that VPC. 
For VC level service at the UNI, the QoS and throughout are configured for each virtual 
channel connection (VCC) individually. These penn anent virtual connections are 
established or released on a subscription basis. 

ATM will initially support three categories of virtual connections: 

1. Specified QoS Detenninistic 
2. Specified QoS Statistical 
3. Unspecified QoS 

The two specified categories differ in the Quality of Service provided to the user. 
Specified Detenninistic QoS connections are characterized by stringent QoS 
requirements in terms of delay, cell delay variation, and loss and are subject to Usage 
Parameter Control (UPC) of the peak rate at the A TM UNI. Specified Detenninistic QoS 
connections could be used to support CBR service (TIff3 circuit emulation) or VBR 
services with minimal loss and delay requirements. Specified Statistical QoS connections 
are characterized by less stringent QoS requirements and are subject to Usage Parameter 
Control of the peak rate at the ATM UNI. Typically, Specified Statistical QoS 
connections would be used to support variable bit rate services (data) that are tolerant to 
higher levels of network transit delay compared to applications such as voice, which may 
require CBR. 

When ATM equipment evolves to require dynamically established ("switched") virtual 
connections, the ATM bearer service definition must be augmented to specify the ATM 
Adaptation Layer protocol (in the Control Plane - C-plane), required for User-Network 
signaling. 

185 



186 

The ATM bearer service attributes to be supported by network equipment conforming to 
the Local ATM UNI specification are summarized in the following table. 

Summary of Required A TM Functionality 

A TM Bearer Service Attribute Private UNI 

Support for Point-to-Point VPCs Optional 
Support for Point-to-Point VCCs Required 
Support for Point-to-Multipoint VPCs Optional 
Support for Point-to-Multipoint VCCs/SVC Optional 
Support for Point-to-Multipoint VCCslPVC Optional 
Support for Permanent Virtual Connections Required 
Support for Switched Virtual Connections Required 
Support for Specified QoS Classes Optional 
Support of an unspecified QoS Class Optional 
Multiple Bandwidth Granularities for 

ATM Connections 
Peak RateTraffic Enforcement via UPC 
Traffic Shaping 
ATM Layer Fault Management 
Interim Local Mana ement Interface 

Physical Layer Specification 

Optional 
Optional 
Optional 
Optional 
Re uired 

Public UNI 

Required 
Required 
Optional 
Optional 
Optional 
Required 
Required 
Required 
Required 

Required 
Required 
Optional 
Required 
Re uired 

The private UNI connects customer premises equipment, such as computers, bridges, 
routers, and workstations, to a port on an A TM switch and/or ATM hub. Local A TM 
specifies physical layer ATM interfaces for the public and private UNI. Currently, a 
44.736M bps, a 100M bps, and two 155.52M bps interfaces are specified. Physical layer 
functions in the "User Plane" are grouped into the Physical Media Dependent (PMD) 
sublayer and the Transmission Convergence (TC) sub layer. The PMD sublayer deals 
with aspects that depend on the transmission medium selected. The PMD sublayer 
specifies physical medium and transmission characteristics (such as bit timing or line 
coding) and does not include framing or overhead information. The transmission 
convergence sublayer deals with physical layer aspects that are independent of the 
transmission medium characteristics. 

SONET Physical Layer Interface 

The physical transmission system for both the public and private User-Network Interface 
is based on the Synchronous Optical Network (SO NET) standards. Through a framing 
structure, SONET provides the payload envelope necessary for the transport of ATM 
cells. The channel operates at 155.52M bps and conforms to the Synchronous Transport 
Signal Level 3 Concatenated (STS-3C) frame. The UNIts physical characteristics must 
comply with the SONET PMD criteria specified in ECSA TIE1.2/92-020. Given that 
SONET is an international standard, it is expected that SONET hierarchy-based interfaces 
will be a means for securing interoperability in the long term for both the public and 
private UNI. For various availability and/or economic reasons, however, other physical 
layers have been specified to accelerate the deployment of interoperable ATM equipment. 



The following table depicts the Physical Layer functions which need to be supported by 
ATM-based equipment, such as private switches and hubs. 

Physical Layer Functions Required for SONET -Based A TM Equipment 

Transmission Convergence Sublayer 

Physical Media Dependent Sublayer 

Header Error Control generation/verification 

Cell scrambliIlgldescrambling 
Cell delineation 
Path signal identification 
Frequency justification and pointer processing 
Multiplexling 
Scramblingldescrambling 
Transmission frame generation/recovery 

Bit timing 
Line coding 
PhysiCal interface 

Most of the functions comprising the TC sublayer are involved with generating and 
processing overhead bytes contained in the SONET STS-3c frame. The "B-ISDN 
independent" TC sublayer functions and procedures involved at the UNI are defined in 
the relevant sections of ANSI T1.105-1991, ECSA TIE1.2/92-020, and ECSA TlSal92-
185. The "B-ISDN specific" TC sublayer contains functions necessary to adapt the 
service offered by the SONET physical layer to the service required by the A TM layer 
(these are the top four functions depicted in the previous table under the TC sublayer). 

OR 

SONET Frame Format 

Payload Options 

TRANSPORT 
OVERHEAD 
3 COLUMNS 

STS-1 FRAME FORMAT 
90 COLUMNS 

STS-1 SYNCHRONOUS PAYLOAD 
ENVELOPE 

87 COLUMNS 

187 



188 

Physical Layer Functions Required to Support DS3-Based Local A TM Equipment 

Transmission Convergence Sublayer 

Physical Media Dependent Sublayer 

Header Error Control generation/verification 
Physical layer convergence protocol framing 
Cell delineation 
Path overhead utilization 
Physical layer convergence protocol timing 
Nibble stuffing 

Bit timing 
Line coding 
Physical interface 

The 44.736M bps interface format at the physical layer is based on asynchronous DS3 
using the C-Bit parity application (CCITI G.703, ANSI T1.101, ANSI T1.107, ANSI 
T1.107a, and Bellcore TR-TSY-000499). Using the C-Bit parity application is the 
default mode of operation. If equipment supporting C-Bit parity interface with 
equipment that does not support C-Bit parity, however, then the equipment supporting C­
Bit parity must be capable of "dropping 'back" into a clear channel mode of operation. 

To carry ATM traffic over existing DS3, 44.736M bps communication facilities, a 
Physical Layer Convergence Protocol (PLCP) for DSC is defined. This PLCP is a subset 
of the protocol defined in IEEE P802.6 and Bellcore TR-TSV-000773. Mapping ATM 
cells into the DS3 is accomplished by inserting the 53-byte A TM cells into the DS3 
PLCP. 

Extracting A TM cells is done in the inverse manner; that is, by framing on the PLCP and 
then simply extracting the ATM cells directly. 

Physical Layer for 100M bps MuItimode Fiber Interface 

The Local A TM specification also describes a physical layer for a 100M bps multimode 
fiber for the private UNI. The motivation is to re-utilize FDDI chip sets at the physical 
layer (with ATM at the Data Link Layer). The private UNI does not need the link 
distance and the operation and maintenance complexity provided by telecom lines; 
therefore, a simpler physical layer can be used, if desired. The Interim Local 
Management Interface (ILMI) specification provides the physical layer Operations and 
Maintenance functions performed over the local fiber link. As with the previous case, the 
physical layer (U-plane) functions are, grouped into the physical media dependent 
sublayer and the transmission convergence sublayer. The network interface unit (NIU), 
in conjunction with user equipment, provides frame segmentation and reassembly 
functions and includes the local fiber link interface. 

The ATM Forum document specifies the rate, format, and function of the 100M bps fiber 
interface. The fiber interface is based on the FOOl physical layer. The bit rate used 
refers to the logical information rate, before line coding; the term line rate is used when 
referring to the rate after line coding (such as a 100M bps bit rate resulting in a 125M 



baud line rate if using 4B/5B coding). This physical layer carries 53-byte ATM cells 
with no physical layer framing structure. 

This physical layer follows the FOOl PMD specification. The link uses 62.5-micrometer 
multimode fiber at 100M bps (125M baud line rate). The optical transmitter and fiber 
bandwidth adheres to the specification ISO DIS 9314-3. The fiber connector is the MIC 
duplex connector specified for FOOl, allowing single-connector attachment and keying if 
desired. 

The fiber link encoding scheme is based on the ANSI X3T9.5 (FOOl) committee 4 Bitl5 
Bit (4B/5B) code. An ANSI X3T9.5 system uses an 8-bit parallel data pattern. This 
pattern is divided into two 4-bit nibbles, which are each encoded into a 5-bit symbol. Of 
the 32 patterns possible with these five bits, 16 are chosen to represent the 16 input data 
patterns. Some of the others are used as command symbols. Control codes are formed 
with various combinations of FOOl control symbol pairs. 

Physical Layer for 155M bps MuItimode Fiber Interface Using 8B/10B 

The ATM specification also supports an 8B/10B physical layer based on the Fiber 
Channel Standard. This PMO provides the digital baseband point-to-point 
communication between stations and switches in the ATM LAN. The specification 
supports a 155M bps (194.4M baud), 1300-nm. multimode fiber (private) UNI. 

The PMO provides all the services required to transport a suitably coded digital bit 
stream across the link segment. It meets the topology and distance requirements of 
building and wiring standards EIAffIA 568. A 62.5/125-micron, graded index, 
multimode fiber, with a minimum modal bandwidth of 500 MH:zJkrn., is used as the 
communication link (alternatively, a 50-micron core fiber may be supported as the 
communication link). The interface can operate up to 2 km. maximum with the 62.5/125-
micron fiber; the maximum link length may be shortened when 50-micron fiber is 
utilized. The non-encoded line frequency is 155.52M bps, which is identical to the 
SONET STS-3c rate. This rate is derived from the insertion of one physical layer for 
every 26 data cells (the resultant media transmission rate is 194.40M baud). 

A TM Cell Structure and Encoding at the UNI 

Equipment supporting the UNI encodes and transmits cells according to the structure and 
field encoding convention defined in T1S1.5/92-002R3. 

A TM Cell Fields 

Generic Flow Control (GFC): This field has local significance only and can be used to 
provide standardized local functions (such as flow control) on the customer site. The 
value encoded in the OFC is not carried end to end and can be overwritten in the public 
network. Two modes of operation have been defined for operation of the OFC field: 
uncontrolled access and controlled access. The uncontrolled access mode of operation is 
used in the early A TM environment. This mode has no impact on the traffic which a host 
generates. 

189 



190 

Virtual PathNirtual Channel Identifier (VPVVCI): The actual number of routing bits 
in the VPI and VCI sub fields used for routing is negotiated between the user and the 
network, such as on a subscription basis. This number is determined on the basis of the 
lower requirement of the user or the network. Routing bits within the VPI and vel fields 
are allocated using the following rules: 

• The VPI subfield's allocated bits are contiguous 
• The VPI subfield's allocated bits are its least significant, beginning at bit 5 of octet 2 
• The VCI subfield's allocated bits are contiguous 
• The VCI subfield's allocated bits are the least significant, beginning at bit 5 of octet 4 

Any VPI subfield bits that are not allocated are set to O. 

Payload Type (PT): This is a 3-bit field used to indicate whether the cell contains user 
information or Connection Associated Layer Management information. It is also used to 
indicate a network congestion state or for network resource management. 

Cell Loss Priority (CLP): This is a I-bit field allowing the user or the network to 
optionally indicate the cell's explicit loss priority. 

Header Error Control (BEC): The HEC field is used by the physical layer for 
detection/correction of bit errors in the cell header. It may also be used for cell 
delineation. 

Generic Flow Control Virtual Path Id. (VPI) 
ATM VPI VPI/VCI 

Header Virtual Channel Identifier (VCI) VCI 
VCI Payload Type IReserved 

Header Error Check (HEC) 

ATM Payload 
Payload 

ATM Cell Structure 

Late Breaking News 

Federal legislation enabling communications companies to develop a national 
information highway made its first step through Congress March 2, 1994. The House 
telecommunications subcommittee unanimously backed a bill that would overhaul the 



nation's 1934 Communications Act now that industry alliances and technological 
advances are blurring boundaries between telephone and cable industries, Joanne Kelley 
of Reuters news service reported. 

The information superhighway, championed by Vice President AI Gore, could link the 
nation's homes, businesses and public facilities on high-speed networks to allow them to 
quickly send and receive information. "This is the most significant change in 
communications policy in 60 years," said Massachusetts Democrat Edward Markey, who 
heads the House panel. "This legislation will pave the way for the much-anticipated 
information superhighway." 

The bill, which next faces a vote by the Energy and Commerce committee, would break 
down barriers that currently separate the phone and cable television industries, freeing 
them to invade each other's turf. Several revisions to the bill dealt with issues raised by 
various industry factions and consumer groups during lengthy hearings during the past 
several weeks, Kelley reported. 

"Legislation to create a competitive telecommunications marketplace should and can be 
completed this year," said Decker Anstrom, president of the National Cable Television 
Association. Lawmakers left some key issues unresolved in hopes of maintaining the 
tight schedule they set to ensure passage of the leg~lation this year. Two lawmakers were 
persuaded to withdraw controversial amendments until the full committee takes up the 
legislation. 

The deferred measures include a provision that would allow broadcasters to use existing 
spectrum licenses to provide new wireless communications services. That raised fears 
among some lawmakers that this spring's first ever auctions of spectrum for such services 
might command lower bids by rivals. The lawmakers also supported a measure pending 
before another House judiciary panel that would relax restrictions on regional telephone 
companies, which are currently barred from entering long distance and equipment making 
businesses. 

191 



192 

Broadband Network Future - 1996 

CENTRAL OFFICE OR 
REMOTE UNIT 

A TM Nationally and Internationally 

RESIDENCE OR OFFICE 

MFS Datanet, Inc., an operating company of MFS Communications Company, Inc., 
launched the first end-to-end international ATM service in February 1994, making it 
possible to send data globally. Availability of MFS Datanet's ATM service solves the 
problem for multinational businesses of how to address increasing requirements for speed 
and reliability. More than half of all communications by international companies today 
are data, rather than voice. 

MFS Datanet -- which launched the first national ATM service on Aug. 4, 1993 -- will 
initially offer the service between the U.S. and the United Kingdom, with expansion 
planned in Western Europe and the Pacific Rim.! 

MFS Datanet's High-speed Local Area Network Interconnect services (HLI), a range of 
services allowing personal computer networks to intercommunicate, will now be offered 
on an international basis. "MFS Datanet's global expansion will mean customers around 
the world will have access to a flexible, economical, high-speed medium to accommodate 
emerging high-volume applications such as multimedia," said AI Fenn, president of MFS 
Datanet. . 

! Lightwave, September 1993. 



The international network will be managed and controlled by the Network Control Center 
in MFS Datanet's headquarters office in San Jose, Calif., with parallel control for the 
U.K. operation in the London offices ofMFS Communications Limited. In the U.S., the 
ATM service is offered in 24 metropolitan areas. 

Sprint A TM Service 

SCinet '93 was the prototype for the NIITnet and all of the facilities that were prototyped 
are currently a part of the NIIT. This briefing was delivered at this conference in a 
different session. Additional detail is available in the conference proceedings. 

Workstations: 
Hewlett·Packard 

Routers: 
Network Systems - T3 

AT&T - T1 

FOOl & Ethernet: 
Synoptics 

Pacific Bell 
Services 

Sprint ATM Service - T3 

ATM· Frame· RelaySenlice~T~ 

NllTnet Topology 1993 

Dial Access 
Service 

950-1ATI 

193 



194 

ATM Links Supercomputing and Multimedia in Europe 

A cluster using ATM (Asynchronous Transfer Mode) technology has been put into 
operational use at Tampere University of Technology, Finland'! "We have tested ATM 
technology with real applications," said project manager Mika Uusitalo. "The results 
show the good feasibility and scalability of ATM. It really seems to offer a new way to 
distribute and use supercomputing facilities." 

Used together, high-speed ATM networks and clustering give a platform for the new 
generation of scientific applications in which visual information plays the key role, 
Uusitalo said. He added that ATM is a solution for distributed audio-visual 
communication applications requiring high network bandwidth and also low predictable 
delays, satisfying the requirements by transferring data extremely fast in small, fixed­
length packets called cells. A TM also has properties that guarantee real time transmission 
of data, video, and audio signals. 

Tampere University of Technology's cluster, connected directly to an ATM network, can 
be used for traditional supercomputing and running distributed multimedia applications. 
Currently, the ATM network at the university operates at 100 Mb/sec., and the cluster 
consists of eight Digital Equipment (DEC) Alpha AXP machines. Users noted that the 
ATM cluster has much better price/performance than traditional supercomputers. 

Among the first applications run at Tampere University of Technology was the 
computation and visualization of 3D magnetic and electrical fields, an application typical 
of today's needs: computationally very demanding and generating a lot of data for 
visualization. 

"Earlier, the visualization of simulations included two phases," said Jukka Helin, senior 
research scientist. "First, the results of the simulation were generated on a supercomputer 
and later post processed and visualized by a workstation. Now the user in the ATM 
network sees how the solution evolves in real time." For further information, contact 
Jukka Helin at helin@cc.tut.fi or Mika Uusitalo at uusitalo@cc.tut.fi. 

1 2130 A1M Links Supercomputing and Multimedia in Finland Oct. 4, 1993 HPCwire 



APPENDIX 

Background 

A number of special interest groups address broadband services and technologies, serving 
the information needs of both end users and vendors. Four important groups are the 
ATM forum, Frame Relay Forum, the Fibre Channel Association and the SMDS Special 
Interest Group. The primary function of these groups is to educate, not to set standards. 
Their objective is to promote their respective technologies by expediting the development 
of formalized standards, encouraging equipment interoperability, actuating 
implementation agreements, disseminating information through published articles and 
information. These groups also provide knowledgeable speakers. These groups were 
seldom chartered with defining technology standards. However, some of these groups 
have become more active in the standards process. The ATM Forum has become most 
active in making specifications work, according to Fred Sammartino, President and 
Chairman of the Board of the ATM Forum. 

Established Forums Sponsored by INTEROP 

Three of these four separate forums, Asynchronous Transfer Mode (ATM), Switched 
Multi-megabit Data Service (SMDS), and frame relay, selected INTEROP Co. (Mountain 
View, CA) to perform as their secretary. INTEROP Co. was founded in 1985 as an 
educational organization to further the understanding of current and emerging networking 
standards and technologies. INTEROP sponsors the annual INTEROP Conference and 
Exhibition in the spring (Washington, DC) and in the fall (San Francisco, CA). 
Additionally, INTEROP publishes the technical journal ConneXions. The Fibre Channel 
Association is a separate organization and functions differently. 

Interop's Director of Associations, Elaine Kearney, is responsible for the strategic 
development of each new forum. Each new forum must be formally incorporated and 
seek legal support so that antitrust laws are not violated. INTEROP handles membership 
databases, mailings, and trade show representation, and participates on each forum's 
Board of trustees as a nonvoting member. 

The ATM, SMDS, and Frame Relay Forums, with the assistance of INTEROP Co., 
perform as conduits for distributing information relating to their representative 
technologies. Additionally, these forums promote cooperative efforts between industry 
members and technology users. 

All of these groups are described in more detail in the Appendix. These descriptions 
include a location (address) to acquire more information, the structure of the management 
team (where available) and a short description of the charter and organization objectives 
available. 

195 



196 

ATMForum 

ATMForum 
480 San Antonio Road 
Suite 100 
Mountain View, CA 94040 
Phone: (415) 962-2585; Fax: (415) 941-0849 
Annual Membership Dues: Full membership $10,000 per company. 
Auditing membership: $1,500 (observers may attend general meetings free of charge). 

Board of Directors 

Chairman and President - Fred Sammartino, Sun Microsystems 
Vice President, Business Development - Charlie Giancarlo, ADAPTIVE Corp., an 
N.E.T. Company 
Vice President, Committee Management - Steve Walters, Bellcore 
Vice President, Marketing & Treasurer - Irfan Ali, Northern Telecom 
Vice President, Operations & Secretary - Dave McDysan, MCI Communications. 
Executive Director - Elaine Kearney, INTEROP Co. 

Charter 

The ATM Forum's charter is to accelerate the use of ATM products and services through 
a rapid convergence and demonstration of interoperability specifications, and promote 
industry cooperation and awareness. It is not a standards body, but instead works in 
cooperation with standards bodies such as ANSI and CCITI. 

Overview of the ATM Forum 

The ATM Forum was announced in October 1991 at INTEROP 91 and currently 
represents 350+ member organizations. The ATM Forum's goal is to speed up the 
development and deployment of ATM products and services. Its initial focus was to 
complete the ATM User Network Interface (UNI), which was accomplished June 1, 
1992. The UNI isolates the particulars of the physical transmission facilities from upper­
layer applications. The A TM Forum Specification was based upon existing and draft 
ANSI, CCITT, and Internet standards. 

The ATM forum has two principal committees: Technical and Market Awareness and 
Education. The Technical committee meets monthly to work on ATM specifications 
documents. Areas targeted include Signaling, Data Exchange Interface (DXI), Network­
to-Network Interface, Congestion Control, Traffic Management, and additional physical 
media (such as twisted-pair cable). The ATM Market Awareness and Education 
committee's goal is to increase vendor and end-user understanding of, and promote the 
use of ATM technology. 

In response to an increasing European interest in ATM technology and the ATM Forum, 
the Forum is expanding its activities outside of North America to the European 



Community. It held a meeting in Paris in November 1992 to form its European activities. 
More meetings occurred in 1993. 

Frame Relay Forum 

The Frame Relay Forum 
480 San Antonio Road 
Suite 100 
Mountain View, CA 94040 
Phone: (415) 962-2579; Fax: (415) 941-0849 
Annual Membership Dues: Full membership $5,000 per company. 
Joint membership for company affiliates: $2,000. 
Auditing level: $1,000 per year, reserved for universities, consultants, users, and 
nonprofit organizations. 

Board of Trustees and Officers 

Chairman and President - AlaI Taffel, Sprint 
Vice President - Sylvie Ritzenthaler, OST 
Treasurer - John Shaw, NYNEX 
Secretary - John Valentine, Northern Telecom 
Trustees - Richard Klapman, AT&T Data Comm. Services; Lawrence 1. Mauceri, 
Hughes Network Systems; Holger Opderbeck, Netrix 
Executive Director - Elaine Kearney, INTEROP Co. 

Publications 

The Frame Relay Forum News 
UNI Implementation Agreement 
NNI Implementation Agreement 

Charter 

The Frame Relay Forum is a group of frame relay service providers, equipment vendors, 
users, and other interested parties promoting frame relay acceptance and implementation 
based on national and international standards. 

Overview of the Frame Relay Forum 

The Frame Relay Forum was established in January 1991 and currently has 107 member 
organizations. It is a nonprofit corporation dedicated to promoting the acceptance and 
implementation of frame relay based on national and international standards. The 
Forum's activities include work on technical issues associated with implementation, 
promotion of interoperability and conformance guidelines, market development and 
education, and round tables on end-user experiences. Forum membership is open to 
service providers, equipment vendors, users, consultants, and other interested parties. By 
participating in the Forum, members can have an active role in developing this new 
technology. 

197 



198 

The Frame Relay Forum is organized with a Board of Trustees and four committees. The 
committees are the following: 

• Technical Committee 
• Interoperability & Testing 
• Market Development and Education 
• Inter-Carrier Committee 

In addition, the Forum maintains an International branch (FRF International), with 
European and Australian Chapters: 

European Chapter 
Paris, France 
Contact: Sylvie Ritzenthaler 
Phone: +33-99-32-50-06; Fax: +33-99-41-71-75 

AustralialNew Zealand Chapter 
Allambie Heights, New South Wales 
Contact: Linda Clarke 
Phone: +612-975-2577; Fax: +612-452-5397 

The Frame Relay Forum has organized User Roundtables so that users of frame relay can 
exchange experiences and ideas among each other. The Frame Relay Forum intends User 
Roundtables to serve as the basis for a wide array of other user activities. 

The Frame Relay Forum Speakers Program 

The Frame Relay Forum sponsors a speaker program free of charge. An expert on frame 
relay will be made available to visit a company's site and present a 30- to 45-minute 
presentation on frame relay. The presentation will introduce frame relay technology, 
products, and services. Contact the Frame Relay Forum for further details and 
scheduling. 

SMDS Special Interest 

The SMDS Interest Group 
480 San Antonio Road 
Suite 100 
Mountain View, CA 94040-1219 
Phone: (415) 962-2590; Fax: (415) 941-0849 
Annual Membership Dues: $4,999. 
Annual Mfiliate Membership: $3,000. 
Annual Associate Membership: $800. 
Annual Observer Membership: Free. 

Board of Trustees & Officers 

Chairman and President - Steve Starliper, Pacific Bell 
Vice President - Scott Brigham, MCI 



Treasurer - Robyn Aber, Bellcore 
Executive Director - Anne M. Ferris, INTEROP Co. 
Board Members: Tac Berry, Digital Link; Bill Buckley, Verilink; Joe DiPeppe, Bell 
Atlantic; Jack Lee, ADC Kentrox; Hanafy Meleis, Digital Equipment Corp.; Allen C. 
Millar, IBM; Connie Morton, AT&T Network Systems; David Yates, Wellfleet 
Communications 

Publication 

SMDS News (published quarterly) 
Sharon Hume, Editor 
3Com Corporation 
5400 Bayfront Plaza 
Santa Clara, CA 95052 
Phone: (408) 764-5166; Fax: (408) 764-5002 

Charter 

The SMDS Interest Group is a group of SMDS providers, equipment vendors, users, and 
other interested parties working toward the proliferation and interoperability of SMDS 
products, applications, and services. The group's activities include advancing SMDS and 
providing SMDS education, fostering the exchange of information, ensuring worldwide 
interoperability, determining and resolving issues, identifying and stimulating 
applications, and ensuring the orderly evolution of SMDS. 

Overview of the SMDS Interest Group 

The SMDS Interest Group (SIG) was established in the fall of 1990 and currently has 58 
member organizations. The SIG provides a central point for discussing and focusing on 
SMDS. Members who are SMDS users can influence products and services, gain 
exposure to a wide array of vendor offerings, and receive timely information for network 
planning. Likewise, SMDS vendors receive timely information for planning and 
developing products and services. Vendors also benefit from having the SIG's marketing 
efforts to supplement their own. Each SIG member can participate in resolving issues 
raised in SIG forums by exercising their membership voting privileges. Each SIG 
membership is allowed one vote. Besides having a vote, members can help shape the 
direction of SIG activities by participating in several working groups which the SIG 
sponsors. These working groups include the following: 

• Technical Working Group 
• Inter-Carrier Working Group 
• PR and Market Awareness Working Group 

Each of these working groups meet at the quarterly SIG meeting and at various other 
times. The meetings are open to all interested parties. 

Members receive meeting minutes outlining the discussions and actions taken at these 
forums. Members are kept informed of industry developments via a monthly clipping 
service dedicated to tracking published news items on SMDS and competitive services 

199 



200 

that appear in the trade press. A quarterly newsletter tracks the SMDS activities of SIG 
members. Members can use the newsletter for product announcements and profiles. 

The SIG is planning several projects that will further SMDS market awareness. These 
activities include the development of a speakers package, an SMDS training course, and a 
compendium of SMDS applications. 

Fibre Channel Association 

Fibre Channel Association 
12407 MoPac Expressway North 100-357 
P.O. Box 9700, Austin, TX 78766- 9700 
(800) 272-4618. 

Initiation Fee: $2,500 
Annual Principal Membership Dues: $5,000. 
Annual Associate Membership: $1,500. 
Annual Documentation Fee: $1,000. 
Annual Observer Membership: $400 per meeting 
Annual Educational Membership: $250. 

Board of Trustees & Officers 

President - Jeff Silva (needs to be verified). 
Vice President - no information. 
Treasurer - no information. 
Executive Director - no information. 
Board Members: Jeff Silva, no information. 

Publication 

No information. 

Charter 

Promote industry awareness, acceptance and advancement of Fibre Channel. Encourage 
article publication, educational seminars and conferences along with trade shows, round 
tables, and special events. Accelerate the use of Fibre Channel products and services. 
Distribute technical and market-related information and maintain a products and services 
database. Foster a Fibre Channel infrastructure that enables interoperability. Develop 
application-specific profiles and test specifications and environments. 

Committees 

• Marketing Committee 
• Strategic Committee 
• Technical Committee 



Information About the Fibre Channel Association 

Twenty organizations were originally involved in the formation of the Fibre Channel 
Association (FCA) in January 1993. The idea is to promote Fibre Channel technology as 
a high-perfonnance interconnect standard for moving large amounts of information. 
Fibre Channel can transmit large data files bi-directionally at one gigabit per second. 1 

"While computer processors have become increasingly faster and capable of handling 
larger amounts of data, the interconnects between these systems, and the input/output 
devices that feed them data, are unable to run at speeds necessary to take advantage of 
these more powerful products," said Jeff Silva, FCA board member. 

"Fibre Channel offers an excellent solution for these data-intensive environments. At the 
same time, when links within and between companies, schools, hospitals, governments 
and other organizations are created, Fibre Channel will provide standards-based, high­
speed on-ramps necessary for these digital information highways of the future." 

Under development for more than four years, the Fibre Channel standard was initially 
endorsed by the Fibre Channel Systems Initiative (FCSI), a joint effort of Hewlett­
Packard, IBM and Sun Microsystems Computer Corp. "One of the primary missions of 
the FCSI was to kick-start the development of profiles and use of Fibre Channel 
technology for the workstation arena," said Ed Frymoyer, FCSI's program manager. "The 
FCA's wide spectrum of industry players and their varied interests helps ensure the 
development of a broad array of Fibre Channel profiles for products aimed at a multitude 
of applications." 

Dataquest, a San Jose-based market research firm, estimates that total revenue for the 
Fibre Channel adapter market alone will grow from under $2 million in 1993 to $1.2 
billion in 1998. It estimates that by 1998, Fibre Channel adapter shipments will reach 
more than 500,000 units for workstations, PCs, midrange, mainframe and supercomputer 
systems. Similar trends are forecasted for other Fibre Channel products, like ports and 
switches. 

INTEROP is not the key sponsor of the Fibre Channel Association. For this reason, it 
looks and acts a bit different from those Forums that are sponsored by INTEROP. The 
following information should give the reader an overview of the Fibre Channel Systems 
Initiative. 

Fibre Channel Systems Initiative (FCSI) 

The Fibre Channel Systems Initiative, a joint effort between Hewlett-Packard, IBM and 
Sun Microsystems, announced the first prototype implementation of the high-speed Fiber 
Channel standard in August, 1993. The companies said the new fiber-optic technology 
"dramatically reduces the time it takes to transfer large, complex files between 
computers." The first implementation of the prototype technology is at Lawrence 

1297 Fibre Channel Association to Advance Interconnect Standard Aug. 16, 1993, HPCwire. 

201 



202 

Livermore National Laboratory, the interoperability test site for the Fibre Channel 
Systems Initiative (FCSI).1 

Launched in February, 1993, the FCSI is working toward the advancement of Fibre 
Channel as an affordable, high-speed interconnection standard for workstations and 
peripherals. Because the results of its efforts will be open and available to the public, the 
companies said the eventual impact of the technology will enhance the way all computers 
are used in business, medicine, science, education and government. 

Fibre Channel simplifies the connection between workstations and supercomputers, and 
its speed is not affected by additional connections. It allows data to be transmitted bi­
directionally at 1 gigabit per second at distances up to 10 kilometers. 

"I wanted an interconnect technology that could transfer data as fast as the human eye 
could visualize it, and Fibre Channel was exactly what I was looking for," said Paul R. 
Rupert, manager of the Advanced Telecommunications Program at Lawrence Livermore 
National Laboratory. 

Lawrence Livermore is planning to use Fibre Channel in complex computer simulations 
of occurrences such as fusion experiments. Because these models are so complex, they 
often cannot be completed on a supercomputer without first being manipulated on a 
workstation. This requires transferring the data from the supercomputer to a workstation 
for manual correction and then back to the supercomputer for completion. 

Transferring this data takes up to 40 minutes using an Ethernet connection. With the 
prototype Fibre Channel interconnect, it will take eight minutes; with future gigabit-speed 
interconnects, it will take two seconds, the companies said. 

"Lawrence Livermore's needs were ideally suited for Fibre Channel interconnects 
because their applications involve so many different computers, ranging in scale from 
workstations to supercomputers, and include several major brands," said Dr. Ed 
Frymoyer, program manager for the Fibre Channel Systems Initiative. 

Frymoyer said that Livermore's wide-ranging workstation inventory has given the FCSI 
much-needed input for developing "profiles," or specifications, that will be available to 
the public. These specifications will assist computer manufacturers in designing products 
that have Fibre Channel technology built into them, he said. 

1 1280 Livennore Hosts First Fibre Channel Gigabit Implementation Aug. 11, 1993, HPCwire. 



Network Queuing Environment 

Robert. E.Daugherty 

Daniel M. Ferber 

Cray Research, Inc. 
655-F Lone Oak Drive 

Eagan, Minnesota 55121 

ABSTRACT 

This paper describes the Cray Network Queuing Environment. N QE consists of four compo­
nents - Network Queuing System (NQS), Network Queuing Clients (NQC), Network Load Bal­
ancer(NLB), and File transfer Agent (FT A). These are integrated to promote scheduling and 
distribution of jobs across a network of systems. The systems can be clustered or mixed over 
a wide area network or both. The Network Queuing Environment offers an integrated solution 
that covers an entire batch complex - from workstations to supercomputers. 

Topics covered include features, platforms supported, and future directions. 

CraySoft's Network Queuing Environment (NQE) is a 
complete job management facility for distributing work 
across a heterogenous network of UNIX workstations. 
NQE supports computing in a large network made up of 
clients and servers. Within this batch complex, the NQE 
servers provide reliable, unattended batch processing and 
management of the complex. The NQE clients (NQC) sub­
mit jobs to the NQE batch and monitor the job status. The 
Network Load Balancer (NLB) provides status and control 
of work scheduling seeking to balance the network load 
and route jobs to the best available server. The File Trans­
fer Agent (FTA) provides intelligent unattended file trans...; 
fer across a network using the f t P protocol. 

NQE Configuration 
From an administrative standpoint, an NQE configuration 

NQG 

cload 
cqstat 
ftad 

NQE Clients 

NQE Master Server 

Figure 1: Sample NQE configuration 
could be represented by the figure above. The NQE Mas­
ter Server is the host which runs all of the software. Cray 

Copyright © 1994. Cray Research Inc. All rights reserved. 

NQS, the Network Load Balancer, FfA, and the collectors 
used by NLB to monitor machine workload. The NQE Exe­
cution servers which are replicated on several machines in 
the network contain everything needed to execute jobs on 
the host. The NQE clients, running on numerous machines, 
provide all the necessary interface commands for job sub­
mission and control. 

NQE license manages the server hosts but provides you 
with unlimited access to NQE clients. Configuration 
options allow you to build redundancy in your system. 
Multiple NLB servers may be installed in order to provide 
access to the entire system in the event of the failure of on 
NLB server. 

Network Queuing System 
Cray NQS provides a powerful, reliable batch processing 
system for Unix networks. The systems can be clustered 
(tightly coupled) or mixed over a wide area network 
(loosely coupled) or both. NQE offers an integrated solu­
tion covering an entire batch network, from workstations 
to supercomputers. 

Using the qmgr command, the NQE manager defines the 
systems in the network and the system operators, creates 
NQS queues, and defines other system parameters related 
to queues and how the jobs are processed. 

NQS operates with batch and pipe queues. Batch queues 
accept and process batch job requests. Pipe queues receive 

203 



batch job requests and route the requests to another desti­
nation for processing. In creating queues, options are pro­
vided to allow control over queue destinations, the 
maximum number of requests that can processed at one 
time, and the priority in which the queues are processed. 
Permissions can be created to give user access/restriction 
to specified queues. Limits can be set up for each queue to 
control the number of requests allowed in a queue at one 
time, the amount of memory that can be requested by jobs 
in the queue, the number of requests than can be run con­
currently, and the number of requests one user can sub­
mit. Queues may be configured into queue complexes. In 
addition to the limits that may be specified in each queue, 
global limits can be implemented to restrict activity 
throughout the NQS system. 

NQE provides both command-based and graphical user 
interfaces for job submission/control information. The 
cqstat utility provides status information of requests 
throughout the batch complex. 

@) CClmplex q5tat display 

rile Actions FIltll'(" c:-=:t-..:V 
liIiB!liZ:lI"IU~ 

Network Job Stahls 
CPU """cry 

OJ_ tIlS Id Ru1 Uar StatuI U!ed 1I111t LUd 1I.lt 

b.30.1icIClO.ldti 257."V1 zoe 101 0 30 0 1e6 
b.30.f'Ic I ClO.Idti 2Gl •• ul me 101 0 30 0 w: 
b.30Jfk I rud\I 2G5.IIIIS me 101 0 30 0 ltJ6 
b30~1ClUd:l 2S6.1111S ZDe W 0 30 0 leE 
b.30..11lc IClJOd 267.IIIIS me W 0 30 0 1tJ6 
b8tchecl~ 125.snoke-fddl Jbedger- A 0 • 0 • 
b.14400.1SQsu.t 12!i9.SU·t c13C16 R03 71 7200 &6 'a.7 
b_14bXUlagust 12S0.9Ult c13~ R03 G2 noo lieS geS 

blttll!emt l4333.leq.Jo'Ila batU Cl24 0 1000 0 2tJ6 

81 
Server: yankee 

Figure 2: c load display window 

Network Load Balancer 

HeJp 

118 

The Network Load Balancer (NLB) makes load balancing 
recommendations to the NLB server. NLB also provides 
an interface for the collection and display of workload 
information about the network. This information, in addi­
tion to being used to set NLB job destination policies, is 
useful to the administrator as a graphical tool for network 
load display. 

On each host in the network where NQE is installed, col­
lectors are installed. These collectors send load and status 
information to the NLB server, installed on the NQE mas­
ter server. The server stores and processes this informa­
tion. NQE then queries the recommended host. The job is 
then sent to the selected host recommended by the load 
balancer. The destination selection process can be config­
ured to take into account site-specific factors. Users may 
tailor the balancing policy and algorithm; exits are pro­
vided so that jobs can override the destination selection 

204 

process. 

The utility cloadprovides a continually updated display 
of machine and load status. This tool enables you to easily 
compare machine loads. 

Figure 3: cload display main window 
Popup windows are provided to give additional informa­
tion about any host selected. This tool provides a visual 
way to determine which machines are heavily used and if 
a machine is not providing new data. 

Figure 4: Host load display 

The Network Load Balancer allows you to use your heter­
ogenous network of systems from various vendors as a 
single computing resource. By utilizing the NLB destina­
tion selection process, running jobs on the least loaded 
system will in many cases provide the best turnaround 
time for the user and make best use of the system 
resources. 



File Transfer Agent 
The File Transfer Agent (FTA) provides reliable 
(asynchronous and synchronous) unattended file 
transfer across the batch complex. The ftad dae­
mon services FTA requests issued by users and 
NQE itself. The ftua and rft commands are 
provided for file transfer. Built upon the TCP /IP 
ftp utility, FTA provides a reliable way to trans­
fer files across the network from your batch 
requests. Using ftp, all file transfers take place 
interactively; you must wait until the transfer is 
completed before proceeding to another task. 
With FTA, file transfer requests can be queued. 
FTA executes the transfer; if the transfer does not 
occur due to an error, FTAautomatically requeues 
the transfer. The f t ua fa ci Ii ty is similar to f t pin 
its user interface and offers the full range of file 
manipulation features found in ftp. The rft 
command is a one-line command interface to 
FTA. It is a simplified interface to the ftua fea­
ture of copying files between hosts. In general it is 
a reliable mechanism for transferring files in sim­
ple operations, especially from within shell 
scripts or NQE. 
Also FTA allows for network peer-to-peer autho­
rization, which enables you to transfer files with­
out specifying passwords in batch request files, or 
in .netrc files or by transmitting passwords over 
the network. It requires use of FTA on the local 
system and support for the peer-to-peer authori­
zation on the remote system. It can be used to 
authorize both batch and interactive file transfers. 

NQE Clients 
The Network Queuing Client (NQC) provides a 
simplified user interface for submitting batch jobs 
to the network. Typically the NQC is installed on 
all user systems, providing a submit-only access 
to NQE. No NQE jobs will be run on the NQC 
system. NQC also provides access to the GUI job 
status tools, FTA, and the job submission/ dele­
tion and control commands. With each NQE 
license, NQC stations may be installed in unlim­
ited quantities at no additional charge. 

UNICOS NQE 
A new product, NQX, will make available the fol­
lowing NQE components on UNICOS 8 systems; 
NLB collector and associated libraries, NQS inter­
face to network load balancer, NQS server sup­
port for NQC clients, NQE clients, and the 
Network Load Balancer. 
With the addition of NQX, UNICOS systems can 

be part of the NQE batch complex. CraySoft NQE 
for workstations is not required. But both UNI­
COS and workstation systems may belong to the 
NQE. 

Summary 
The Cray Network Queuing Environment runs 
each job submitted to a network as efficiently as 
possible on the available resources. This translates 
into faster turnaround for users. 

When developing NQS for use on Cray Research 
supercomputers, we made it as efficient, reliable, 
and production oriented as possible. With NQE 
we've created a high-performance integrated 
computing environment that is unsurpassed in 
performance and reliability. 

This environment is now available to Cray and 
workstation systems in an integrated package. 

205 





Operating Systems 





Livermore Computing's Production Control System, 3.0* 

Robert R. Wood 

Livermore Computing, Lawrence Livermore National Laboratory 

Abstract 

The Livermore Computing Production Control System, commonly 
called the PCS, is described in this paper. The intended audi­
ences for this document are system administrators and resource 
managers of computer systems. 

In 1990, Livermore Computing, a supercomputing center at 
Lawrence Livermore National Laboratory, committed itself to 
convert its supercomputer operations from the New Livermore 
TimeSharing System (NLTSS) to UNIX based systems. This was 
a radical change for Livermore Computing in that over thirty years 
had elapsed during which the only operating environments used 
on production platforms were LTSS and then later NLTSS. Elabo­
rate facilities were developed to help the lab's scientists produc­
tively use the machines and to accurately account for their use to 
goverment oversight agencies. 

UNIX systems were found to have extremely weak means by 
which the machine's resources could be allocated, controlled and 
delivered to organizations and their users. This is a result of the 
origins of UNIX which started as a system for small platforms in 
a collegial or departmental atmosphere without stringent or com­
plex budgetary requirements. Accounting also is weak, being 
generally limited to reporting that a user used an amount of time 
on a process. A process accounting record is made only after the 
completion of a process and then only if the system does not 
"panic" first. 

Thus, resources can only be allocated to users and can only be 
accounted for after they are used. No cognizance can be taken of 
organizational structure or projects. Denying service to a user 
who has access to a machine is crude: administrators can beg 
users to log off, can "nice" undesirable processes or can disable a 
login. 

Large computing centers frequently have thousands of users work­
ing on hundreds of projects. These users and the projects are 
funded by several organizations with varying ability or willing-

• This work was performed under the auspices of the United 
States Department of Energy by Lawrence Livermore 
National Laboratory under contract No. W-7405-Eng-48 

ness to pay for the computer services provided. With only typi­
cal UNIX tools, the appropriate delivery of resources to the cor­
rect organizations, projects, tasks and users requires continual 
human intervention. 

UNIX and related systems have become increasingly more reli­
able over the past few years. Consequently, resource managers 
have been presented with an attendant problem of accurate ac­
counting for resources used. Processes can now run for days or 
months without terminating. Thus, a run-away process or a ma­
licious or uninformed user can use an organization's budgeted 
resource allocation many times over before an accounting record 
to that effect is written. If a process's accounting record is not 
written because of a panic, the computer center is faced with pos­
sibly significant financial loss. 

The PCS project, begun in 1991, addresses UNIX shortcomings 
in the areas of project and organizational level accounting and 
control of production on the machines: 

THE PCS PROVIDES THE BASIC DATA REPORTING MECHANISMS RE­

QUIRED FOR PROJECT LEVEL ACCOUNTING SYSTEMS. THIS RAW DATA 

IS PROVIDED IN NEAR-REAL TIME. 

THE PCS PROVIDES THE MEANS FOR CUSTOMERS OF UNIX BASED 

PRODUCTION SYSTEMS TO BE ALLOCATED RESOURCES ACCORDING TO 

AN ORGANIZATIONAL BUDGET. CUSTOMERS ARE THEN ABLE TO CON­

TROL THEIR USERS' ACCESS TO RESOURCES AND TO CONTROL THE 

RATE OF DELIVERY OF RESOURCES. 

THE PCS PROVIDES THE MECHANISMS FOR THE AUTOMATED DELIV­

ERY OF RESOURCES TO ALL PRODUCTION BEING MANAGED FOR CUS­

TOMERS BY THE SYSTEM. 

THE PCS DOES MORE THAN MERELY PREVENT THE OVERUSE OF THE 

MACHINE WHERE NOT AUTHORIZED. IT ALSO PROACTIVELY DELIVERS 

RESOURCES TO ORGANIZATIONS THAT ARE BEHIND IN CONSUMPTION 

OF RESOURCES TO THE EXTENT POSSIBLE THROUGH THE USE OF THE 

UNDERLYING BATCH SYSTEM. 

CUSTOMERS ARE ABLE TO MANAGE THEIR USERS' ACCESS DIRECTLY 

TO A LARGE EXTENT WITHOUT REQUIRING HEAVY OR CONTINUAL IN­

VOLVEMENT OF THE COMPUTER CENTER STAFF. 

It helps to state what the PCS is NOT. It is not a CPU scheduler; 
rather, it relies on a standard kernel scheduler to perform this 

209 



function. It is not a batch system. However, it may be regarded 
as a policy enforcement module which controls the functioning 
of a batch system. Finally, it does not do process level accounting. 

While the PCS is not a memory or CPU scheduler, it does adapt 
the production demand on the machine to present an efficiently 
manageable workload to the standard memory and CPU 
schedulers. The PCS monitors memory load, swap device load, 
idle time, checkpoint space demand (if applicable), etc. to keep 
resource demands within bounds that are configurable by site ad­
ministrators. 

Overview 

There are two major components of the PCS. They are the Re­
source Allocation & Control system (RAC) and the Production 
Workload Scheduler (PWS). 

Resource Allocation & Control system (RAC} 

Generally, the RAC system is used to manage recharge accounts, 
to manage allocation pools and to manage user allocations within 
the allocation pools. A recharge account should not be confused 
with a user "login" account. So that the term "group" not con­
tinue to be overused, the PCS has borrowed another term to mean 
an allocation pool or group. This term is "bank". 

As resources are consumed on the machine the RAC system as­
sociates those resources with the users who are consuming them, 
a bank and a recharge account. The user and the bank are debited 
the resources used and an accounting report is made for the pur­
pose of charging the account. All of this is done in near-real 
time. If the RAC system determines that a user, recharge account 
or bank has consumed as much of the resources as has been per­
mitted, the RAC system takes steps to prohibit further resource 
consumption by that user, recharge account or bank via the use of 
graceful denial of service. Denial of service includes automati­
cally "nicing" processes, suspension of interactive sessions and 
checkpointing of batch jobs. 

A recharge account, or simply account, is essentially a credit that 
represents an amount of usable resources (which may be unlim­
ited). Users may be permitted to charge an account for resources 
used. Some users, called account coordinators, may be permitted 
to manage the account. That is, account coordinators may grant 
and deny other users access to an account. Accounts are inde­
pendent from each other; that is, accounts have no sub-accounts. 

The primary purposes of accounts are 1) as a mechanism by which 
budgetary charges may be determined for organizations whose 
personnel use the computer and 2) a "one stop" limit on resource 
accessibility to users. 

A primary purpose of banks is to provide a means by which the 
rate of delivery of allocated resources is managed. Also, the PWS 
uses the banking system to prioritize and manage production on 
the machine. This is further described in the PWS section below. 

210 

A bank represents a resource pool available to sub-banks and 
users who are permitted access to the bank. As implied, banks 
exist in a hierarchical structure. There is one "root" bank which 
"owns" all resources on a machine. Resources of the root bank 
are apportioned to its sub-banks. The r~sources available to each 
bank in turn may also be apportioned among its sub-banks. There 
is no limit to the depth of the hierarchy. 

Some users, called bank coordinators, may create and destroy sub­
banks and may grant and deny other users access to a bank. The 
authority of coordinators extend from the highest level bank at 
which they are named coordinator through out that bank's sub-tree. 

Users are permitted access to a part or all of bank's resources 
through a user allocation. There is no limit on the number of 
allocations a user may have. 

Production Workload Scheduler (PWS) 

The Production Workload Scheduler schedules production on the 
machine. Production requirements are made known to the PWS 
in the form of batch requests. When the PWS is installed, users 
do not submit their requests directly to the batch system, but rather 
submit them to the PWS which then submits them to the batch 
system. When users submit a batch request, they must specify 
the bank from which resources are to be drawn and the account 
to be charged for the request's resources. 

One important function of the PWS is to keep the machine busy 
without overloading it. Interactive work on the machine is not 
scheduled by the PWS. However, the PWS does track the re­
source load presented by interactive usage and adjusts the amount 
of production to "load level" the machine accordingly. 

At any point, there is a set of production requests being managed 
by the PWS. This set is called the production workload. Re­
quests in this workload are prioritized according to rules and al­
locations laid out by system administrators and coordinators. High 
priority requests are permitted to run insofar as the machine is 
not overloaded. 

The PWS uses a mechanism called adaptive scheduling to priori­
tize a set of sibling banks. Simply stated, to schedule a set of 
sibling banks adaptively is to schedule from the bank (or its sub­
tree) which has the highest percentage of its allocated time not 
yet delivered in the current shift. Each bank has associated with 
it a scheduling priority. This priority is a non-negative, floating­
point number. The scheduling priority is a multiplier or accelera­
tor on the bank's raw adaptive scheduling priority. 

Each request has associated with it several priority attributes. They 
are coordinator priority, intra-bank priority, also called the group 
priority and individual priority. These attributes establish a multi­
tiered scheme used to prioritize requests drawing from the same bank. 

Some requests may be declared to be short production by a user. 
Requests with this attributes are scheduled on demand (as if they 



were interactive). A coordinator may grant or deny any user per­
mission to use this feature. 

Vendor Requirements 

The PCS requires an underlying batch processing system. The 
ability to checkpoint batch jobs is highly recommended where 
feasible, but not required. 

System functionality required of the platform vendor is as fol­
lows: 

The processes of a session (in the POSIX sense of that word) 
must be identifiable at the session level. For instance, when a 
user logs in, the login process (or telnetd process) should call the 
POSIX routine setsidO. Every process spawned from any child 
of that login (or telnetd) process should be considered to be a 
member of the same session (unless one of them calls setsidO 
again in which case a new session is created for that process sub­
tree). The locality of processes in a session is not material to 
membership in the session. This is meant to address the issue of 
"parallel" processes executing in several nodes of a system. Each 
session existing simultaneously on a platform must have a unique 
identifier. This identifier must be independent of the node(s) on 
which the processes of the session are executing., 

The resources used by processes on the platform must be collected 
by the underlying system at the session level. The most critical 
pieces of information are the session owner user id and the amount 
of user CPU, system CPU and user induced idle CPU time con­
sumed by the processes of the session. User induced idle CPU 
time results when a CPU is dedicated to a user process which 
then sleeps. Other data are useful as well such as characters of II 
0, paging (on virtual machines), swap space consumed, etc. 

The resources used by the system's idle processes must be col­
lected as "idle time" and the resources used by other system pro­
cesses that are not part of any session must be collected as "sys­
tem time." 

There must be a way to periodically extract the data collected by 
the system. The periodicity of data extraction must be 
configurable. The manner of extraction (reading a kernel table, 
report by vendor supplied software, etc.) must be efficient. 

Various session management functions are required. These func­
tions take a session id and then apply the function to every pro­
cess in the session. (Usually, these functions are written to allow 
several classes of process identifier sets such as process, process 
group leader, session, etc.) These functions are: 

Send any signal to all processes in the session. 
Set the nice value or priority of all processes in the session. 
Temporarily suspend (i.e., deny any CPU time to) all pro­
cesses in the session. (This function must not be revocable 
by the user.) 
Revoke the action of the suspend function for all processes 
in the session. 

Addressing the Future 

Several development needs have been identified for PCS. These 
enhancements will make the use of PCS by administrators more 
flexible and will encompass a larger environment (more platforms, 
for instance). Users will also find the PCS to be more of an aid in 
the handling of their production. 

PCS Support of Distributed Computing 
Support should be provided for multi-host execution of a single 
job where the hosts are not necessarily of the same type. For 
instance, a portion of a job might execute on an MPP while 
another portion is executing on a large vector machine and fi­
nally, a supervisor processor for the job may be executing on a 
work station. 

Distributed Management of the PCS 
One problem with the current PCS in an environment with more 
than one host is that system administrators and coordinators 
must work with each PCS system independently. We need to 
reduce the management workload by managing the PCS for all 
hosts from a single platform. Furthermore, coordinators and 
system administrators should be able to manage the entire PCS 
system from any host rather than being required to manage it 
from a single platform. 

Cross Host Submission and Management of Production 
Users should be able to submit their production requests on 
one machine and have it execute on another. The results should 
be available at the submitting host or the executing host as 
requested by the user. Users should be able to establish cross­
host dependencies for their production. 

Enhanced Dependent Execution of Production 
PCS already supports a dependency type wherein a request is 
prohibited from running until a designated job terminates. New 
dependency types should be supported. Some of these are: 
1. Don't run a request until and unless a designated request termi­

nates with a specified exit status. (If a designated request termi­
nates with an exit status other than that specified in the depen­
dency, the dependent request is removed.) 

2. Don't run a request until a designated request has begun execut­
ing. 

3. Begin the execution of a set of production requests simultaneously. 
4. Don't run a request until an "event" is posted by some other re­

quest. (This would require mechanisms by which "event defini­
tions" are declared, the occurrence of the event is posted and 
event definition removed when no longer needed.) 

5. Don't run a request until specified resourc"es (files, etc.) are staged 
and available. 

Enhancement ofPCS to Use Various Batch & Operating Systems 
The PCS has been written to use the Network Queuing System 
provided by Cray Research, Inc. and Sterling Software. It 
should be extended to use other batch systems as appropriate. 
It has been written to run on UNICOS 7.0 and Solaris 2.1.3. It 
should, of course, be maintained to remain compatible with 
future releases of vendor's systems. 

211 



ALACCT: LIMITING ACTIVITY BASED ON ACID 

Sam West 
Cray Research, Inc. 

National Supercomputing Center for Energy and the Environment 
University of Nevada, Las Vegas 

Las Vegas, NV 

Abstract 
While UNICOS provides a means to account for a user's com­

puting activity under one or more Account IDs, it doesn't allow for 
limiting a user's activity on the same basis. Nor does UNICOS 
provide for a hierarchy of Account IDs as it does with Fair-Share 
~esource Groups. 

Alacct is an automated, hierarchically organized, SBU-ori­
en ted administrative system that provides a mechanism to limit a 
user's activity based on the SBU balance associated with an 
Account ID which the user must seiect. 

Implementation comprises an acidlimits fiie along with utili­
ties and library routines for managing and querying the file. 

1.0 Introduction 
NOTE: In the following the term account is used synonymously 
with Login ID. When reference is made to an 'account', in the 
accounting sense, Account ID or ACID will be used. 

In this paper we will be discussing Alacct, an administrative 
system for automatically enforcing access limitation to the 
NSCEE's Cray Y-MP2/216 based on year-to-date accumulation of 
SBUs within an Account ID. We will discuss the motivation for 
such a system and the limitations ofUNICOS that led to its devel­
opment. An earlier solution to the problem, along with its short­
comings, is also described. 

1.1 Motivation 
The user base at NSCEE is, like many computing centers, a 

dynamic entity. Our users come from the University of Nevada 
System, private industry, government agencies, and universities 
outside of Nevada. Their accounts evolve over time as projects 
come and go and ~liations change and,likewise, the bill for their 
computing activity must get charged to different funding sources 
as those projects and affiliations change. 

212 

This dynamic nature creates problems for the system man­
ager who has to deal with the changes. At NSCEE, since account 
creation and deletion is done manually, automation of any portion 
of that process is a boon. Fortunately, accounting for a particular 
user's computing activity is a feature that is already provided by 
Unix, and, by extension, UNICOS. In fact, UNICOS goes a step 
further and allows for accounting by UID-ACID pair, to facilitate 
accounting for one user working on more than one project. Also, 
CSA, Cray Research System Accounting, which is an extension to 
Standard Unix Accounting, provides a site-configurable System 
Billing Unit, or SBU, to express in a single number a user's 
resource utilization. 

1.2 Limitations of UNICOS 
However, important capabilities of system management asso­

ciated with user accounts that are not directly provided by UNI­
COS are the ability to automatically force a user to select a project 
(Account ID) against which to bill a session's computing, and then 
to limit his or her computing activity on that same basis. These 
capabilities are important for, at least, two reasons: to the extent 
that it is possible you want to be able to correlate the consumption 
of resources to actual projects; and, like a 1-900 telephone num­
ber, you don't want users consuming resources for which they 
may be unable, or unwilling, to pay. 

Currently, UNICOS provides no way to force Account ID 
selection.-.With respect to the second capability, the only means 
provided, other than manually turning off a user's account, is the 
cpu resource limitation feature of the limit(2) system call (with the 
user's limit set in the cpuquota field of the UDB.) This mechanism 
suffers from two inadequacies, however: cpu utilization does not 
completely represent the use of a complex resource like a super­
computer; and, even worse, since there is only one lnode per user 
the cpuquota is tied only to the DID, not to a UID-ACID pair. So, 
disabling a user on this basis means disabling him or her entirely, 
not just for activity on a particular project. 



2.0 Background 

2.1 Multiple UID Accounting 

An early attempt at solving this problem at NSCEE. Multiple 
UID Accounting. involved the creation of multiple accounts per 
individual user. with each account being a member of a class of 
account types: Interim. Class. DOE. etc. The individual accounts 
were distinguished from one another by a suffix letter that indi­
cated their class membership: i for Interim. c for Gass. d for DOE. 
etc. Likewise. each account type had its own Account ID. Users 
would then use the Login ID that was associated with the particu­
lar project he or she wanted to work on for that session. UIDs were 
allocated on multiple-of-S boundaries to allow for future account 
types. 

This mechanism allowed for billing to be tied to a particular 
user's activity on a particular project. insofar as was possible. 
while guaranteeing that. when a user had reached his or her limit 
of resources for that project the system administrator could dis­
able the user's account associated with that project without dis­
abling any of the user's other. viable. accounts. Since. at NSCEE. 
a user's bill is generated directly from his or her SBU charges. the 
aforementioned limit was expressed in SBUs. 

The implementation of this scheme involved a file of per­
Login ID limits and a daily report that cross-referenced each 
Login ID's year-to-date system utilization with its limit to produce 
an exception list. The system administrator would use that excep­
tion report to manually disable any account that was over its SBU 
limit. Again. the primary reasons for solving the problem in this 
way were that it allowed NSCEE to take advantage of existing 
mechanisms for forcing users to consciously choose a project and 
for allowing the system administrator to limit activity based on 
SBU utilization on one project without disabling the user entirely. 

Needless to say. this became something of a nightmare to 
administer and the users liked it even less. Limits had to be set on 
a per-user basis. instead of a class of users. Also. it should be 
pointed out that this scheme essentially subverted the purpose of 
allowing multiple Account IDs per Login ID as a means of 
accounting for the multiple projects of a single user. 

2.2 ANew Way 

Therefore. a New Way was sought. NSCEE's Director. Dr. 
Bahram Nassersharif. had recently come from Texas A&M Uni­
versity. where Victor Hazelwood had implemented a strategy for 
automatically limiting. at login. a user's access to the system when 
the user had exceeded an SBU Quota. This sounded like a much 
better way and we decided to head in that direction and begin 
work on implementing it immediately. 

After some discussion. however. we concluded that we 
needed some features that were not provided by the TAMU sys­
tem. especially a hierarchically organized Account ID framework. 

So. we decided to write the system from scratch incorporating the 
ideas we got from TAMU and the experience we already had with 
Multiple urn Accounting. 

3.0 Requirements and Constraints 
After further discussion. a list was formulated of features and 

capabilities the NSCEE needed out of this project. as well as the 
constraints under which we should proceed. 

Alacct should: 

• Be easy to implement. 
• Limit users based on the aggregate SBU consumption by 

all users within a particular Account ID. 
• Allow for hierarchical Account ID management. 
• Force Account ID selection at login. etc. 
• Be easy to administer. 
• Be portable to new releases of UNICOS. 
• Be robust. 

Alacct should not: 

• Require kernel mods. 
• Require multiple accounts per user. 
• Have significant system impact. 
• Have significant user impact. 

4.0 Implementation 
Alacct is implemented at the user level. It is not real-time. in 

the sense that new usage is reflected only after daily accounting 
has been run. It is fairly simple: a central file keeps track of 
Account ID limits and usages; a library of user-callable routines 
queries that file and modifications to critical UNICOS commands 
make calls to those routines; and administrative utilities are used 
to maintain that file. 

4.1 Acidlimits 

The focal point of the implementation of alacct is the: 

/usr/local/etc/acidlimits 

file. This file contains limit. usage and hierarchy information for 
each Account ID on the system. It is queried whenever an Account 
ID must be verified to have a balance greater than 0.00. This hap­
pens during login. execution of the su(1) and newacct(1) com­
mands and also in nqs_spawn. prior to starting a user's NQS job. 

The acidlimits file is symbolic and made up of entries like: 

21100:102.00:0.00:5.72:20000 

Where the five fields represent: 

acid:limit:usage:progeny_usage:parent_acid 

The acid field is an integer represepting the numeric Account 
ID. 

213 



The limit field is a float representing the maximum number 
of SBUs that can be consumed. collectively. by all users that pro­
cess under the specified Account ID and its progeny (see the 
progeny_usage field.) 

The usage field is a float representing the year-to-date. col­
lective SBU consumption by all users who have processed under 
the specified Account ID (as well as optional historical usage - see 
aI_usages.) 

The progeny_usage field is a float representing the recur­
sively computed sum of all usage_field entries for all progeny in 
the hierarchy of the Account ID represented in the acid field. 

The parent_acid field is an integer representing a numeric 
Account ID. This field defines a precedence relation on the entries 
in the file to establish a hierarchy of Account IDs. This hierarchy 
takes the form of an inverted tree like that in figure 1. 

In figure 1 we see a list of users at the bottom. Each of these 
users has the Account ID GrQ>13 as one of their Account IDs. 
GrCP13's parent Account ID is GrantE. whose parent is Grant. 
whose parent is Internal. Internal has. in its parent field. O. which. 
when appearing as a parent Account ID. represents the meta-root 
Account ID (since 0 is a valid Account ID and must also have a 
line in the acidlimits file.) All top-level Account IDs. including 
root, have the meta-root as their parent. to complete the hierarchy. 

Note that. although in figure 1. users only appear on a leaf of 
the tree. there is nothing that prevents users from having one of the 
hierarchy's internal Account IDs as one of their Account IDs. 

This file contains an entry for all Account IDs currently in use 

214 

swcsl regf regu crreef yangf 

(users) 

figure 1 

by any user on the system. If a new Account ID is added to the 

/etc/acid 

file. then. the next time the acidlimits file is created. that new 
Account ID will be inserted with meta-root as its parent and a limit 
of unlimited. As you will see later. a new acidlimits file is created 
from. among other sources. the old acidlimits file. In the bootstrap 
process. when the system is first installed and there is no old acid­
"limits file. an acidlimits file is created from /etc/acid with a one­
level hierarchy. meta-root as every Account ID's parent. and 
unlimited limits for every Account ID. 

Note that since acidlimits is a symbolic file. it can be created 
or modified by hand with your favorite editor. In a system with 
few Account IDs this might be feasible. However. there is an acid­
limits editor. aledit(81). that understands the structure of the file 
and makes changing the file a simple task (see aledit). 

4.2 Local System Modifications 

In this implementation there are two times when the user is 
forced to select the Account ID to which his or her computing 
activity will be billed (and. by virtue of which. access may be 
denied): at login and when su'ing. Likewise. it is at these times. 
and also when requesting a change of Account IDs with 
newacct(1) and starting an NQS job with the user's current 
Account ID. that the Account ID is validated for a positive bal­
ance.To achieve these actions modifications were made to the fol­
lowing source files: 

• login.c 
• newacct.c 
• su.c 
• nqs_spawn. c 

To keep the number of mods small this list is. intentionally. 
short. Notably absent are cron(1) (and. by extension, at(I)) and 
remsh(1). The user's default Account ID is used in these cases. In 
practice. this has not created problems. Also unmodified is the 
acctid(2) system call. since kernel mods were specifically avoided 
and. anyway. only root can change a user's Account ID. 

4.3Iibal.a 

The aforementioned mods involve calls to a library. libal. 
which was written to support the alacct system. That library con­
tains the following routines: 

• alget () Get a single entry from the acidlimits file 
• alput () Update a single entry in the acidlimits file 
• alread () Read the entire acidlimits file 
• alwrite () Write the entire acidlimits file 
• algetbal ( ) Retrieve the current balance of a particu­

lar Account ID 
• alselect () Display. and query for selection. the 

user's current Account Ids and their 
respective balances 



Cra!j UNICOS (clllrk.nscee.edu) (tt\:lP005) 

National Supercolllputing Center for Energy Ilnd the Environlllent 

Universlt!j of Nevada Llls Vegas 

Use of this s!jstePI is restricted to authorized users. 

login! swest 
Pllssword: 
Valid account ids and balances for user swest: 

1. root - unliPlited SBUs 
2. adJII - unlilllited SBUs 
3. Nscee - 908.35 SBUs 
4. Class - 0.00 SBUs 
5. GrCP13 - 17.81 SBUs 

please select by line number. 
account i d?> 3 
Last successful login was : Thu Mar 10 09:33:29 froJII localhost 

figure 2 

An Account ID's balance is recursively computed as the 
lesser of: a) the difference of its limit and the sum of its usage and 
its childrens' usage. and b) the difference of its parent's limit and 
the sum of its parent's usage and its parent's childrens' usage. with 
the meta-root as the limiting case for the recursion (meta-root's 
limit is unlimited.) 

In other words. an Account ID's balance is the least of all bal­
ances of all Account IDs on the path back to the meta-root. This 
means that if any Account ID has exhausted its allocation. then all 
its progeny have. effectively. exhausted theirs. 

It is the requirement that the predecessors' balances be posi­
tive that gives function to this hierarchy. If. for example. it were 
the case. referring again to figure 1. that Internal accounts (i.e. 
Account IDs whose predecessor path includes the Internal 
Account ID) had an aggregate limit which was greater than the 
limit of the Internal Account ID itself. then it would be possible to 
exhaust the allocation to all Internal accounts before anyone of 
those accounts had reached its own limit. Also. this scheme allows 
for special users. perhaps the principal investigator on a project. to 
have access to one of the Account IDs that is an internal node of . 
this hierarchy. and draw on its balance directly. using it up before 
the users who have access to Account IDs further down the hier­
archy have a chance to use theirs. 

5.0 User Interaction 
As mentioned. there are four instances when a user would be 

aware that there is something affecting his or her processing. At 
login. when issuing the su and newacct commands. and when his 
or her NQS job is started. 

5.1Iogin(l) and su(l) 

When a user logs in. or issues an su command. he or she will 
see a screen like that in figure 2. This is the output from the alse­
lect() library call. 

The user must select one of the line numbers corresponding 
to an Account ID with a positive balance. If a valid Account ID is 
selected. then that Account ID becomes the current Account ID 
and the login process (or su) is successfully completed. If an 
invalid Account ID is selected. the user is notified and logged off 
(or the su fails). 

5.2 newacct(l) 

In the case of the newacct(1) command. its invocation is 
unchanged. To change Account IDs the user still specifies the new 
Account ID to which he or she wishes to change. With alacct in 
operation. however. the user's selection is not only verified as a 
legitimate Account ID for that user. but the balance is also verified 
for a balance greater than 0.00. Examples of newacct's operation 
appear in figure 3. 

5.3 nqs.-spawn 

NQS jobs carry the Account ID of the qsub'ing user. It is pos­
sible that. by the time the user's job is selected for processing by 
the nqsdaemon. the limit of the requested Account ID will have 
been exceeded. For this reason. the check for positive balance is 
deferred until the job is actually spawned by NQS. If at that time 
the Account ID is over its limit. the job is rejected and e-mail is 
sent to the user. 

6.0 Administration 
The day-to-day administrative requirements of this system 

are minimal. In addition to any Account ID additions. deletions or 
modifications (that would be made with the aforementioned aledit 
program) the acidlimits file must be revised daily to reflect the 
current year-to-date usage of the various Account IDs on the sys­
tem. Of course. this means that the site must produce a year-to­
date accounting file at least as often as the site wishes the usage 
information stored in the acidlimits file to be accurate. UNICOS 
provides a fairly easy method of doing this without requiring that 
the system administrator maintain on-line all accounting data for 
the year. 

6.1 CSA 

CSA produces summary data for the current accounting 

:rilJ~MmM#::mWHHHH::t:t:Hmt/tm}t{mmHH}H:m}Hnmr:mm/tmmtwmmmmmmnmtt/tt:tmmHd!l 
lullcrilswest 102=> newacct -a 
root (0), account blllllnce - unl1l11ited 
ad", (7), account balance - unlil1lited 
Nscee (21400), Ilccount balance - 908.35 
Class (21600), account balllnCe - 0.00 
GrCP13 (23513), account balance - 17.81 
lu1/cri/swest 103=> newacct -1 
Current account name: Nscee, account blliance - 908.35 
lullcrllswest 104=> newacct Class 

I 
newacct: account balllnce < 0.0, account unchanged 
lullcrilswest 105=> 0 

figure 3 

215 



period when daily accounting (csarun) is run (it is referred to as 
daily accounting. but it can be run on any boundary desired.) This 
data is 'consolidated' by the csacon(8) program into eaeet format. 
CSA also allows for 'periodic' accounting to be run which adds 
together. with csaaddc(8). an arbitrary collection of cacct files to 
produce a file that represents accounting for a specified period. By 
default. csaperiod stores its output in the fiscal subdirectory of the 
/usr/adm/acct directory. 

At NSCEE. csaperiod is run on the first day of every month 
for the previous month to produce monthly accounting. These 
monthly files are kept on-line and the daily files that produced 
them are cleaned off to start the new month. Year-to-date account­
ing then. would be the summation of all the fiscal files along with 
the current month's daily files. To accomplish this. a local varia­
tion of csaperiod was written. csaperiod_year. Csaperiod-year is 
like csaperiod. except that. in addition to the /usr/adm/acct/sum 
directory. it also knows about the /usr/adm/acct/fiscal directory to 
add in monthly data. as well. 

Figure 4 illustrates the year-to-date accounting process which 

(fi,cal) S § § 
(sum) §§§ 

figure 4 

would take place on July 14. Periodic (fiscal) data for each of the 
months from January through June along with the Daily (sum) 
accounting files for the month of July. which are all in cacct for­
mat. would be added together to produce the current year-to-date 
accounting file - pdacct. 

6.2 mkal 

As mentioned before. the year-to-date accounting file con­
tains the information that will be used to keep the usage fields in 
the acidlimits file current. For this purpose. there is the mkal(81) 
program. Mkal updates the acidlimits file with current usage 
information by reading the year-to-date accounting data file. 

216 

pdacct (see figure 5.) 

gR 
~LJ 

figure 5 

. The program operates in the following steps: 

1. Read /etc/acid to get a current list of valid Account IDs. All 
Account IDs start with the default limit of unlimited. 

2. Read /usr/local/etc/acidlimits to bring forward the most 
recent limit information. 

3. Read /usr/local/etc/al_usages to update the Account IDs' 
usage field to reflect historic usage (optional). 

4. Read /usr/locaVadm/acct/pdacct. summing all usage for 
each Account ID and then update the Account IDs accord-. 
ingly. 

S. Rewrite /usr/local/etc/acidlimits. 

6.3 crontab 

The accounting and mkal operations have been automated 
and figure 6 shows the relevant crontab entries which. each day. 
run daily accounting. year-to-date accounting. and mkal. 

* lusr/lib/acctlckpecct * lusr/lib/llcctlckdecct nqs 
* * * lusr/local/1ib/acct/dail~ * * lusr/lib/llcct/dodlsk·1I -y 2> lusr/lldlll/llcct/nlte/dk210g 
* * * l~r/l1b/llcct/csarun 2> lusr/adlll/acct/nlte/fd2109 
1 * * l~r/local/llb/acct/csaperlod.Plont 
* * * lusr/local/llb/acct/csaperlod.!:Jellr * • • lusr/locai/lib/acct/lllkal 

l~r/alr/bln1alrdchk 
lusr/a 1 rib 1 n/lllyf lies 

lusr/llb/sa/sal 600 6 & 
lusr/11b1sa/sa3 -ubwqv 

data 1II1gratlon 

figure 6 



6.4 aledit 
H resource limits change. or a new Account ID has been cre­

ated. the acidlimits file must be rewritten to reflect this change or 
addition. 

The aledit(8l) program is the primary maintenance tool for 
the alacct system. It operates in two modes. Interactive and Dis­
play. and allows a suitably privileged user to interactively view 
and edit the acidlimits file. or to display a formatted. hierarchically 
arranged report of the contents of that file. 

In Display Mode the aledit command accepts options to pro­
duce reports showing: 

• The entire acidlimits hierarchy. appropriately indented (a 
portion of an example of which is shown in figure 7.) 

lusr/lo~l/lib/ecct/aledit -t I lIIore 
root un 11111 ited 0.00 unlil1lited 

Internal 12432.33 4383.17 8049.16 
Bench 45.33 13.00 32.33 

BenBaI 4.00 3.85 0.15 
BenChelll 41.33 9.15 32.18 

Inter1J'l 1000.00 495.18 504.82 
Unfunded 5203.00 1974.07 3228.93 

UnfP25 200.00 0.03 199.97 
UnfP24 200.00 0.00 200.00 
UnfP23 300.00 0.00 300.00 
UnfP22 22.00 7.17 14.83 
UnfP21 150.00 0.49 149.51 
UnfP20 300.00 1.53 298.47 
UnfP19 183.00 0.19 182.81 
UnfP18 40.00 26.51 13.49 
UnfP17 200.00 0.00 200.00 
UnfP16 10.00 9.81 0.19 
UnfP15 4.00 0.00 4.00 
UnfP14 20.00 20.44 -0.44 
UnfP13 400.00 407.20 -7.20 
UnfP12 170.00 173.97 -3.97 
UnfPl1 811.00 741.20 69.80 
UnfPl0 200.00 11.57 188.43 
UnfP9 10.00 10.18 -0.18 
UnfPB 100.00 110.62 -10.62 
UnfP7 40.00 41.58 -1.58 
UnfP6 800.00 0.00 800.00 
UnfP5 293.00 33.49 259.51 
UnfP4 200.00 16.46 183.54 
UnfP3 200.00 3.62 196.38 
UnfP2 250.00 251.44 -1.44 
UnfPl 100.00 106.58 -6.58 

Class 0.00 0.00 0.00 
Grant 5184.00 1737.69 3446.31 

GrantE 1722.00 206.18 1515.82 
GrCP18 40.00 0.00 40.00 
GrCP17 22.00 0.00 22.00 
GrCP16 217.00 0.00 217.00 
GrCP15 32.00 0.00 32.00 
GrCP14 100.00 101.13 -1.13 
GrCP13 20.00 2.61 17.39 
GrCP12 20.00 19.10 0.90 
GrantCP9 20.00 0.00 20.00 
GrantCP8 145.00 7.35 137.65 
GrantCP7 20.00 0.09 19.91 
GrantCP6 0.00 19.35 -19.35 
GrantCP5 20.00 24.31 -4.31 
GrantCP4 44.00 0.00 44.00 
GrantCP3 207.00 0.00 207.00 
GrantCP2 207.00 0.00 207.00 
GrantCP1 608.00 32.23 575.77 

Grant I 3462.00 1531.52 1930.48 
GrUcp19 SO.OO 2.10 57.90 
GrUcp18 105.00 2.00 103.00 
GrUcp17 100.00 0.00 100.00 
GrUcp16 10.00 0.00 10.00 
GrUcp15 58.00 0.00 58.00 
GrUcp14 425.00 17.29 407.71 

GrUcp14a 150.00 17.19 132.81 
GrUcp13 34.00 0.00 34.00 
GrUcp12 21.00 0.00 21.00 
GrUcpl1 24.00 0.00 24.00 
GrUcpl0 102.00 0.00 102.00 
GrUcp9 11.00 0.00 11.00 

figure 7 

= MMHiMAM 
1 (5 eccounts> 

total = unlilili ted 

(k)up (J)down (h>left (l)rlght <Dhlgher (,,) 
(/)srch (+,-)pg+,-l ("'lJ>users (b,B)balo!lnce 
(x)lII!Irk (P)Put <U>unlilll1t (u) 

figure 8 

• The entire acidlimits hierarchy along with users 
• A single Account ID. including users. progenitor path and 

children 

Executing aledit with no options places the user in Interactive 
Mode. When you execute aledit in Interactive Mode. the program 
reads and assembles. into a tree. the Account ID hierarchy defined 
by the predecessor relation found in the acidlimits file. The termi­
nal display is then initialized to show the children of the 'meta­
root' account. and input is accepted directly from the keyboard 
(see figure 8). 

As you can see. the normal display mode shows a list of 
Account IDs down one column. and their corresponding limits in 
another. Notice the special limit 'unlimited'. Account IDs with an 
unlimited limit are not subject to usage deductions when calculat­
ing a balance. 

The accounts on the screen at any given time constitute a peer 
group of accounts. in that they are at the same level in the hierar­
chy and have the same parent. The parent is shown. along with 
some other information. and help messages. at the bottom of the 
display (users of the UNICOS shrdist(8) command may recognize 
the format - portions of the display code for aledit were derived 
from shrdist.) 

There are several major functions provided within aledit: 

• Movement within the Hierarchy 
• Changing Limit Values 
• Changing the Hierarchy 
• Changing Display Modes 

Notice that in figure 8 the cursor is resting on the limit value 
for the Internal Account ID. Changes to that limit can be made by 
simply typing in a new value. To move up or down the list. the 'k' 
or 'j' keys are pressed H this peer group had a parent Account ID. 
which in this case it doesn't. pressing the 'i' key would move the 
display up one level to display the peer group of the parent. Also. 
if Account ID Internal had children. which it does. pressing the 

217 



'm' key while the cursor is resting on Internal will take the user 
down the hierarchy to display the children of that Account ID (see 
figure 9.) 

Account = IMM8jMN# 
PlIge 1 of 1 (6 accounts) 
account total = 33 

(k)up (J)down (h>left <l)riSht. (I>hisher (lII)lower 
(I)srch (+,-)pg+,-l ("U)users (b,B)blllance (?)help 
(x)lIIark (P)Put (U)unlillli t. (u 

figure 9 

The Account IDs in figure 9 are peers of one another and are 
children of the Internal Account ID. Notice that the total of all lim­
its for all Account IDs on this display is 12432.33 SBUs, which 
matches the limit on the Internal Account ID itself. This is not a 
requirement. That total may be greater or less, than the parent 
limit, depending on the circumstances. As an aid, however, since 
those values will be frequently be the same, there is a balance 
function that propagates the total up one level to the parent, or all 
the way up the hierarchy to meta-root. 

Continuing with this example, we see, in figures 10 and 11 the 
displays for the children of the Grant Account ID, followed by the 

Account = _MW­
Page 1 of 1 (2 accounts) 
account totlll = 5184.00 

218 

(k)up (J)down (h>left (l)right (I>hlgher (lII>lower 
(I)srch (+,-)pg+,-l ("U)users (b,B)balance (?)help 
(x)lIIark (P)Put (U)unlilllit (u) 

figure 10 

children of the GrantE Account ID. 

40.00 
22.00 

217.00 
32.00 

100,00 
20,01 
20,00 
20,00 

145.00 
20.00 
0.00 

20.00 
44.00 

207.00 
207.00 
608.00 

(k)up (J)down (h>left (lkisht (1)his/1er (III >1 ower 
(/)srch (+,-)pg+,-l (AU)users (b,B)balllnce (?)help 
(x)lIIark (p)put (P)Put (U)unlhlit (u)update (q)quit 

figure 11 

Finally. in figure 12. if we change display modes to show 
users, we see the list of users who have Account ID GrCP13 as 
one of their Account IDs: 

As mentioned before. aledit also allows for the manipulation 
of the hierarchy itself. This is accomplished in three steps by: 

1. Marking with an 'x' an Account ID, or list of Account IDs. 
2. Positioning the cursor on the parent (or, alternatively. the 

peer group) where the Account ID is to be moved. and 
3. Pressing 'p' (or 'P'). 

Note that if the hierarchy is changed in any way. mkal must 
be rerun to correctly compute the new progeny_usages. 

6.5 ai_usages 

As mentioned earlier the al_usages file is an optional feature 
of alacct that allows for mapping SEU usage by a particular urn 
to a new Account ID against which this usage must be deducted. 

usase: 2.19 balance: 17 .Bl 

swest resf regu crocef !langf 

I 

figure 12 



This mechanism allows us to bring forward from previous years 
historical usage that must be tied to a particular Account ID. The 
mkal_usages(8) program is usually used at year-end to create 
from the final year-to-date accounting file an aCusages file for the 
coming year which contains Account IDs that will be carried for­
ward into the new year. 

7.0 Future Plans 
Just like the shrdist(8) command allows a point-of-contact 

(POC) for each resource group to control the allocation of 
resource shares in his or her group, a POC should be able to dis­
tribute limits to children of the Account ID he or she controls. 

Improvements to the timeliness of the acidlimits file could be 
made with a new routine to summarize the current accounting 
period's data and update a new field in the acidlimits file -
todays_usage. 

Approximation to real-time operation could be implemented 
with a daemon process which would scan the process list as often 
as desired and, using the aforementioned improvement to the acid­
limits file, kill processes with Account IDs which are over the 
newly computed usages. 

8.0 Summary 
Alacct is an administrative extension to UNICOS that allows 

for the automatic limitation of computing activity based on SBU 
consumption by individual user accounts within an Account ID. 

Alacct requires modifications to selected commands in UNI­
COS. These modifications cause the commands to make calls to a 
library of routines, libal.a, to query a file that contains limit infor­
mation for individual Account IDs. This 'acidlimits' file contains 
an entry for each Account ID on the system and is organized hier­
archically such that limits are imposed from the top down while 
usage is propagated from bottom up. 

Administratively, alacct is maintained by manipulating the 
acidlimits file directly with the aledit program, which allows for 
changes to limits and to the hierarchy itself, and indirectly with the 
mkal program which, using current year-to-date accounting infor­
mation reconstructs the file when necessary to reflect current 
usages. 

Users interact with this system directly, and are forced to 
select an Account ID under which to compute, when logging in 
and when executing the su(1) and newacct(1) commands. Users 
interact with this system indirectly when their NQS job is started. 

Since the implementation of alacct is fairly simplistic and it 
does not operate in real-time, the potential exists for users to sub­
vert its purpose. However, the safety net of a robust UNICOS 
accounting system guarantees that no SBU will go unbilled, mak­
ing the greatest risk, therefore, that a user might have to be turned 
off manually. 

System impact is minimal: approximately 45 seconds of real 
time (10 cpu seconds) were required on a lightly loaded system to 
compute year-to-date accounting for March 12 (2 fiscal files and 
11 daily files). mkal operates on the year-to-date accounting file in 
under 1 second to produce the acidlimits file. Disk requirements at 
NSCEE are approximately 700 Blocks (-3MB) per cacct file. 
whether monthly or daily. so on December 31. we would need 
approximately (11 + 30) * 700 Blocks = 28700 Blocks (-120MB). 
These values will. of course vary from system to system depend­
ing on the number of active Account IDs and UIDs. 

9.0 Acknowledgments 
Thanks very much to Joe Lombardo and Mike Ekedahl at 

NSCEE for a final reading of the paper. Also. thanks to Joe for 
using aledit while I got it right. Thanks to Victor Hazelwood for 
suggestions and for already figuring out that this was a reasonable 
thing to do. 

10.0 References 
1 Cray Research. Inc .• UN/COS System Administration Vol­

ume 1. SG 21137.0, A Cray Research. Inc. Publication. 
2 Cray Research. mc.. UN/COS System Calls Reference 

Manual. SR 2012 7.0. A Cray Research. Inc. Publication. 
3 Cray Research. Inc., shrdist v. 7.0. Unpublished Source 

Code. 
4 Cray Research, Inc .• UN/COS 7.0. Unpublished Source 

Code. 

219 



Appendix 1 - Alacct(31) man page 
alacct{31> LOCAL INFORMATION 

NAME 
alacct - Introduction to local alacct UNICOS enhancel'lent 

DESCRIPTION 
alacct is the nallle given to an NSCEE enhanccillent to UNICOS tNt 
perr'll1ts NSCEE to .!!utolll.!!ticall~ lilllit COIllPUting acttvit~ b.!!sed on 
SBU uttliz.!!tion within .!In account • 

.!!1.!!CCt comprises the following clelllents: 

NOTES 

o lusr/localletc/acidlirdts 

o lusr/local/etc/.!!Lus.!!ges 

o lusr/iocalllib/lib.!!l.a 

o lusr/locallllb/acct/Jlkal 

o lusr/iocai/lib/acct/aledi t 

o lusr/iocall.!!dlll/.!!cct/pd.!!cct 

o lIIOdifications to 
!bin/login 
!btn/su 
!bin/nelll.!!CCt 
lusr/lib/nqs/nqsdaelllon 

File of acid lll'lits, usages and 
hierarch!;! lnfomatlon. Usage is 
updated on a dai 11:1 basis b!;! the 
IIIkal uUlitl:l. 

{option.!!l> File of hlstoric.!!l useges. 

Libr.!!r!! of .!!cidlilllits .!!Ccess end 
update routines. 

Adlllinistrative utility to update 
usages in the .!!cidlilllits file. 

Adlllinlstr.!!tive uti lit!:! to lII.!!int.!!in 
the .!!cidlirllits file. 

Year-to-date .!!ccounting inforMation. 

This extension to UNICOS requires I'lods to the following s!:jSteIII source 
files (and- their respective NlIlakefiles>: 

lusr Isrc/cllld/newacct/newacct. c 
lusrlsrc/cllld/su/su.c 
lusrlsrc/cllld/iosin/iosin.c 
lusrlsrc/net/nqs/src/nqs_spawn.c 

(lIIod OOcllld00007a) 
(lIIod OOcllldOOOOSa) 
(lliod OOcllldOOO09.!!) 
(lliod OOnqsOO010.!!) 

For further inforlll.!!tion regarding these lIIods, ple.!!se see their source in 
lusrlsrc/rev/local. 

FILES 
lusr/loc.!!l/etc/.!!cidlillli ts 
lusr/iocal/.!!dlll/.!!cct/pd.!!cct 
lusr/locel/etc/al_useses 
lusr/iocei/lib/i ibel • .!! 
lusrl 1 OCII 1 I.!!cctl 1 ib/lllkal 
lusr/local/acct/liblaledit 

SEE ALSO 
libal<3l> 
.!!cidl1/11tts(51) 
r11k/1HSl> 
.!!ledit<SD 

220 



Priority-Based Memory Scheduling 
Chris Brady, Cray Research, Inc. 

Don Thorp, Cray Research, Inc. 

Jeff Pack, Grumman Data Systems, Inc. 

Fleet Numerical Meteorology and Oceanography Center 

Monterey, California 

Abstract 

The Fleet Numerical Meteorology and Oceanography Cen­
ter (FNMOC) is a production center, providing environ­
mental forecasts for the US Navy and the other DOD 
services around the globe. As the development of the envi­
ronmental models progressed and the production job mix 
became more predictable, it became apparent that existing 
scheduler features would not adequately handle our par­
ticular job mix of high priority production work and lower 
priority development work on a C90 with memory over­
subscription. 

Production jobs run at various times throughout the 24 
hour day. When a production job is queued, it must run 
immediately and get all necessary resources. This requires 
Fair Share, large swap areas to hold the preempted devel­
opment work and scheduler mods to compute swap priori­
ties b.ased on Fair Share usage. 

This paper describes the changes that were made to the 
scheduler and the rationale behind the mods. We hope to 
have the new features included as a design feature of UNI­
COS 9.0. 

Introduction 

FNMOC is the U. S. Navy's primary numerical prediction 
center for automated oceanographic and atmospheric anal­
yses and forecasts and applied products. FNMOC is one of 
a half-dozen centers worldwide running global and 
regional atmospheric models on an operational basis, and 
is the world leader in performing oceanographic and cou­
pled air-ocean modeling operationally. 

The current production system at FNMOC is anchored 
with a CDC Cyber 205 that has been in use since 1982. In 
order to improve and enhance the capabilities of FNMOC, 
a program was started to install new large scale computing 
resources and associated support hardware and software. 

Grumman Data Systems was awarded the contract to pro­
vide and integrate the new program. A Cray Research, Inc. 
Y-MP 2E was installed in November 1991 to operate the 
Empress database management system (DBMS) for the 
larger compute server, the Cray C90, which was installed in 
September 1992. Presently, the new systems are running a 
"pseudo" operational job mix concurrently with additional 
model and DBMS development work. The new systems are 
scheduled to be performing the complete operational 
workload by June 1994. 

In order to provide the operational jobs the resources they 
require in the current configuration, we first utilized the 
Fair Share Scheduler and assigned the operational user 
accounts the highest share of the resources. This provided 
satisfactory CPU scheduling but we were unable to obtain 
consistent results with the memory scheduler. We found 
that operational jobs were being swapped out with devel­
opment jobs. We decided to look at the memory scheduling 
algorithm and see if it could be modified to provide priori­
tized memory scheduling that was consistent with CPU 
scheduling priorities in order to accomplish our scheduling 
objectives. 

Discussion 

System Configuration 

A brief description of the system configuration will help in 
understanding the following discussion. The compute 
server is a Cray Research, Inc. (CRI) C90 with 8 CPUs and 
128 MW of memory. A 256 MW SSD is used for swap, 
ldcache and SDS space for jobs. The C90 is running UNI­
COS 7.C.3. The database server is a CRI Y /MP 2E/232 with 
a 128 MW SSD used for ldcache on the database disk 
devices. The 2E operates with UNICOS 7.0.5.1. The two 
machines are linked by a direct double-wide HiPPI and an 
Ultranet HiPPI connects each machine to the LAN. 

221 



Scheduling Requirements 

FNMOC is a production site that operates on a strict twelve 
hour job schedule. Each job has a start at:\d end time that 
should not vary by more than a few minutes each time it 
runs. This schedule is necessary in order to transmit envi­
ronmental products to end-users in a timely manner. Some 
of the jobs depend on results from a previous job so overall 
success depends on all jobs finishing in a prescribed man­
ner. The run times are from five minutes to ninety minutes, 
with most processes multitasked over 6 CPUs. The total 
number of production jobs run in a twelve hour period is 
currently around 90, with more planned for the final pro­
duction configuration. 

Along with the normal production jobs is a mix of 
unscheduled batch and interactive development work. The 
development jobs can use any spare resources that are 
available any time of the day, but when a production job 
requires resources, the development jobs must be 
swapped. The developers are aware of the operational 
requirements and accept the fact that their batch or interac­
tive job may be swapped for a long time, sometimes even 
hours. 

Configuration Settings 

The Fair Share Scheduler was implemented to enforce the 
job scheduling policy. Currently, 99% of the C90's resources 
are allocated to the production jobs, which at first look may 
be overkill but accurately demonstrates the scheduling 
requirements of FNMOC. The combination of shares allo­
cated and other scheduling parameters determine the oper­
ation of the memory scheduler. 

We have created a separate NQS queue for production jobs 
that has no limits on resources and allows any number of 
jobs to be running. The development jobs use a traditional 
queue structure with memory and run limits. The number 
of development jobs running at anyone time is usually 
small and the jobs normally begin execution upon submis­
sion. It is rare to see a job waiting in an NQS queue. 

The swap space is configured large enough to hold all pos­
sible development and production jobs that could normally 
be running at anyone time. 

The nschedv(8) parameter hog_mem_111ax is set so that 
interactive workload is allowed, but no more than 10% of 
available memory is allocated to interactive processes. 
Occasionally, a large memory interactive process (cdbx(1), 
for example) is observed but these processes have not been 
frequent enough to cause a problem with scheduling or 

222 

swap space. Also, theo111emhog value in nschedv is set to 
allow most normal interactive processes to not be classified 
as hogs, whereas most production jobs are hog processes. 

Problems Encountered 

As our load of production jobs increased, we noticed that, 
even with Fair Share weighted towards the production 
jobs, a large development job would cause a production job 
to swap. Our goal is to force development processes to 
swap when production jobs need memory and eliminate 
swapping of production jobs. We started testing various 
settings of the priority factors (pfactors) on nschedv and 
found that these were ineffective. The pfactors use the pro­
cess priority (p_upri) to compute swap priorities. However, 
the p_upri is adjusted many times a second making it much 
too volatile to be useful for memory scheduling. 

Another factor in swapping is the hard sleeper processes 
classification. In our case, we were concerned with pro­
cesses waiting on network I/O, since all of the production 
and development jobs do network I/O in the form of 
requests to the database server. The scheduler assigns any 
processes waiting on a socket with a priority of 26 which 
designates those processes as hard sleepers. When memory 
is overcommitted and the scheduler is looking for pro­
cesses to swap out, the scheduler swaps hard sleepers first 
regardless of swap priority. This behavior had a severe neg­
ative impact on our priority based scheduling goals. 

We also noticed that occasionally a hog process that should 
have fit in the available memory was held out because the 
system had incorrectly calculated that the available hog 
memory was insufficient for tha t process. 

Finally, SOS space was being used by development jobs 
while a request for SOS space from a production job was 
blocked. We wanted to see if we could force the develop­
ment job to release SOS space without having to restrict the 
developers' use of SOS. 

Solutions 

We decided to change the method that nschedv uses to cal­
culate the priority of swapped processes, normally referred 
to as swap priority. Normally, the formula uses the process 
priority p_upri as a variable in the calculation. We replaced 
p _upri with the Fair Share variable kCusage which is rela­
tively static and is an accurate indicator of Fair Share prior­
ity. 



The results of this change essentially gave the production 
jobs "dedicated" memory due to their 99% share of the 
resources. When the c90 is oversubscribed for memory, 
production processes stay resident in memory and devel­
opment processes compete with each other for the avail­
able memory or remain swapped until enough memory is 
available. 

After this change was implemented, we were still seeing 
production jobs swapped that were doing network I/O. 
The hard sleeper status was overriding our new calculation 
of swap priority and defeating the purpose of the new 
nschedv calculation. A two-line mod to the scheduler was 
made to change the hard sleeper threshold to 27 for all non­
root processes. This allows non-root processes that are 
doing network I/O to remain in memory, but allows sys­
tem daemons that are inactive for long periods of time to 
get swapped. After this mod was applied, the production 
jobs doing network I/O were not marked as hard sleepers 
and were not swapped. 

As mentioned earlier, we noticed that there was a miscalcu­
lation in the amount of available hog memory. We discov­
ered tha t when the vfork(2) system call was called by a hog 
process, the new child was incorrectly marked as a hog 
process. Then hogmem, the amount of memory allocated to 
hog processes, was incremented to account for the new hog 
process. We corrected vfork so that child processes of hogs 
are not marked as hogs. An SPR was filed with CRI for this 
problem. 

Unresolved Issues 

The SOS space issues are still not resolved to our satisfac­
tion. It seems to be impossible to get the operating system 
to release SOS space once it has allocated it to a process, 
especially on a priority basis. This issue has not impacted 
our production run yet because most development jobs use 
a small amount of SOS. We will most likely end up reserv­
ing SDS for production jobs and allowing development 
users limited access. 

Summary 

In an effort to allow higher priority operational jobs to 
receive resources on demand, yet still allow lower priority 
development jobs to utilize remaining resources, we modi­
fied the memory scheduling algorithm to compute swap 
priorities using a process priority value that was stable and 
accurately reflected Fair Share priorities. We changed the 
definition of hard sleeper to not include user processes doing 
network I/O. We also fixed a small bug in vfork that was 

miscalculating hogmem. We feel that, for the most part, our 
modifications have been successful and our goals have 
been met. We are still looking for a better solution to SOS 
space allocation. As the job mix changes towards more 
operational jobs, we will have to modify our scheduling 
parameters, but we now feel that we have a better idea on 
how to tune the scheduler and have more control over the 
overall job load. If there is further interest in the modifica­
tions we made, please contact the authors via the email 
addresses listed below. 

Acknowledgments 

Thanks goes to the Systems Support Division at FNMOC 
for their support of this experiment and to CRI for allowing 
us to utilize the considerable talents of Chris Brady to help 
us understand the scheduler. 

Author Information 

Chris Brady is the AIC with Cray Research, Inc. at the 
National Center for Atmospheric Research in Boulder, CO. 
He also has a temporary assignment in Software Product 
Support division for Cray Research, Inc. He can be reached 
at cbrady@denver.cray.com. 

Don Thorp is the AIC with Cray Research, Inc. at the Fleet 
Numerical Meteorology and Oceanography Center in 
Monterey, CA. He can be reached at djt@craywr.cray.com. 

Jeff Pack is a system analyst with Grumman Data Systems 
at the Fleet Numerical Meteorology and Oceanography 
Center in Monterey, CA. He works on workstation, net­
work and supercomputer administration. He can be 
reached at jpack@fnoc.navy.mil. 

, References 

Cray Research, Inc., UNICOS System Administration for 
Source Releases, SG-2113 7.0, 1992. 

Cray Research, Inc., UNICOS Tuning Guide, SR-2099 7.0, 
1993. 

223 



224 

PLANNING AND CONDUCTING A 
UNICOS OPERATING SYSTEM UPGRADE 

Mary Ann Ciuffini 

National Center for Atmospheric Research 
Scientific Computing Division 

Boulder, Colorado 

Abstract 

For large UNICOS-licensed sites that support many local mods and local codes, a 
UNICOS operating system upgrade is a major undertaking. A detailed plan, flexible time 
line, and communication with staff, Cray Research Incorporated (CRI) analysts, third 
party vendors and users are all valuable aids to accomplishing a successful and painless 
upgrade. Often the reorganization of file systems is combined with an upgrade. This 
paper will present the methodology used at the National Center for Atmospheric 
Research (NCAR) for planning and conducting UNICOS operating system upgrades. 

Introduction 

All sites must periodically upgrade their comput­
ers' operating systems in order to support new 
hardware and software products, to obtain 
software enhancements, and to apply bug fixes. 
In fact, since Cray Research's Software Release 
Policy was put into place in April 1992, fixes are 
now provided in an Update to the latest Revision 
or in the next Revision. This means that sites 
which formerly applied individual CRI mods to 
fix known problems and then rebuilt just the 
affected codes, must now apply an upgrade and 
rebuild the entire system. However, in Software 
Field Notice (SFN) #1072 dated February 11, 
1994, CRI resumed listing individual mods. List­
ing individual mods in SFNs for 7.0 is something 
that CRI had stopped doing. Since CRI has not 
announced a change to their 1992 Software 
Release Policy, it is not clear if CRI is now 
releasing individual mods in addition to the 

revisions or updates. 

Each Major Operating System release level, 
according to CRr s Software Release Policy, is 
supported for one year beyond the introduction of 
the next Major release level. Major Operating 
System releases are 12 to 18 months apart. Con­
sequently, many sites will be conducting a major 
operating system upgrade every year to year­
and-a-half. 

For computer installations that administer several 
Crays of varying architectures and configurations, 
that have applied local mods to the UNICOS 
source code, and that support locally developed 
codes and third party vendor products, upgrading 
the UNICOS operating system is not a trivial 
task. The development of a detailed plan and a 
flexible time line can serve to facilitate this pro­
cess, as can the creation of an upgrade team. 



Materials 

One of the first things to be done when upgrading 
to a Major Operating System release level is to 
check all licensing requirements. At large com­
puter centers changes to existing license agree­
ments or the purchase of new licenses must go 
through the center's contracting department. 
This process can be time consuming, so it is wise 
to initiate it well ahead of the planned upgrade. 
UNICOS licensing requirements are listed in 
CRr s Release Preview. 

UNICOS documentation that should be procured 
and carefully reviewed before an upgrade plan 
and time line can be fully developed are: Release 
Preview, Release Overview, Release Letter, 
Update System Installation Addendum, Installa­
tion Guide, Errata, and Publications Errata. The 
UNICOS System Administration Manual should 
be available. If a Major Release is being 
installed, the full set of UNICOS documentation 
for the release level should be ordered for the sys­
tems staff, the consulting staff and the documen­
tation library. 

Tapes for the release, updates, reVISIOns and 
asynchronous products must be ordered. If CRI 
has recommended that the operating system (OS) 
on the Operator Workstation (OWS) should be 
upgraded, the tapes and documentation for 
accomplishing this must also be ordered. 

Component Identification 

All major components, CRI, locally developed 
and third party vendor supplied, that must be 
rebuilt and/or tested, should be identified. Exam­
ples at NCAR include: Network Queueing Sys­
tem (NQS), Network File System (NFS) , 110 
Subsystem (lOS), OWS, file system quotas, net­
working, mass storage access, NCAR Graphics, 
climate models, local and third party libraries. 
For local, public domain and third party applica­
tions and libraries the make files, source code and 
man pages need to be available. Establishing a 

well documented and organized source code 
directory tree structure for local commands and 
libraries can greatly facilitate the puild and install 
of non-UNICOS components. 

The "Software Enhancements" and "Compatibili~ 
ties and Differences" sections of the Release Pre­
view and Release Overview should be carefully 
scrutinized by the systems staff and consultants 
for new features that will need to be tested and 
for differences that will impact users. Enhance­
ments and differences that are determined to 
affect the user community should be advertised to 
them well in advance of the cutover to the new 
OS. At NCAR we created a file under the direc­
tory lusrlnews to communicate this infonnation. 
As new upgrade issues arose they were appended 
to this news file. Additionally, users were able to 
retrieve the Release Overview with the on-line 
documentation retrieval system, Docview. 

Create the Upgrade Team 

Once the components have been identified, the 
persons responsible for building and/or testing 
them comprise the upgrade team. The upgrade 
team includes systems staff, consultants, opera­
tors, CRI analysts and end users. The upgrade 
team is vital to the success of the project. 

Each team member should be notified of the 
components he or she will be expected to build 
and/or test. To facilitate communication amongst 
the team members an e-mail alias can be created 
and the project head should be identified. All 
communications should be bidirectional between 
the project head and the team. 

Time Line Development 

Before the upgrade materials are obtained a crude 
time line can serve to get the upgrade project 
started in the right direction. Once the manuals 
are in-hand and the various components and their 

225 



226 

points-of-contact have been identified, the time 
line can be refined. The time line should show all 
major tasks and their dependencies. It should 
also show tasks that can occur concurrently. By 
each task box the personnel involved in perform­
ing that task should be listed. Each task box may 
also be labeled with a start and end date, and the 
duration in days. 

The time line should be flexible. Its main pur­
pose is to keep the project on track and to ensure 
that major tasks are not omitted. Each member 
of the upgrade team should receive a copy of the 
time line and should be allowed to suggest neces­
sary modifications to it. 

File System Layout 

The load, build and install of the new release can 
occur while the host is running the production 
system. To accomplish this, separate root, usr 
and src file systems for the new release are 
needed. CRI also recommends a tmp file system 
of 50,000 blocks. However, if disk space is 
tight, tmp can be a directory on the root file sys­
tem. We have found that a /tmp directory is 
sufficient if the build is done in stages and 
/tmp/OUT is cleaned out after each stage. 

Some weeks before the upgrade, monitor and log 
the disk space usage and UO rates of the current 
production system's file systems. This informa­
tion will show if current file system sizes and 
placement are adequate or if adjustments need to 
be made. CRI supplies disk space requirements 
in the UNICOS Installation Guide but we have 
found their sizes to be overly generous. A 
method that can be used to determine file system 
size is to compute the percentage increase 
between CRr s disk space requirements for the 
currently running release and for the new release. 
Increase file systems from their current adequate 
size by this percentage. As an example, if it is 
determined that an adequate size for the produc­
tion root file system is 90,000 blocks and the per­
centage increase is 10%, the root file system for 

the new release should be 99,000 blocks. 

If disk space for the upgrade is limited and there 
is available space on another host, such as a 
workstation, the current UNICOS source can be 
moved and NFS mounted. The source file system 
on the Cray disks can then be reused for the new 
release or upgrade. If this option is selected, the 
decision to freeze changes to the current source, 
except for critical bug fixes, should be made. 

Once the file systems sizes and layout on disk 
have been determined, develop a detailed check­
list of the steps needed to create the new file sys­
tems layout and develop scripts to perform the 
tasks. A checklist will ensure that tasks are per­
formed in order and are not omitted. Several 
hours of system test time will be required to 
revamp the file systems. Use of logical device 
caching (ldcache), use of the dd command, and 
having planned for no more than one move per 
file system helps to reduce the. time required. 
This time savings could be as much as fifty per­
cent. An example of using the Idcache, dump 
and restore commands to copy file system $1 to 
file system $2 follows: 

mount /dev/dsk/$2 /mnt 
Idcache -n 500 -s 96 -t SSD -1 /dev/dsk/$1 
Idcache -n 500 -s 96 -t SSD -1 /dev/dsk/$2 
cd/mnt 
dump -t 0 -f - /dev/dsk/$1 I restore -x -f­
Idcache -n 0 -1 /dev/dsk/$1 
Idcache -n 0 -1 /dev/dsk/$2 
cdl 
umount Imnt 
fsck -u /dev/dsk/$2 

When using the dd command, the file systems 
must be the same size. The dd command is par­
ticularly useful for creating backup root and usr 
file system. Here is an example of how the dd 
command can be used to copy file system $1 to 
file system $2: 

dd if=/dev/dsk/$1 of=/dev/dsk/$2 bs=409600 
labelit Idev/dsk/$2 $2 sn 1036 . 



Keep in mind that the main goals for remaking 
file systems are to achieve optimal sizes and I/O 
performance. 

Backups 

Identify critical times when full system backups 
should be executed. Before a load and before a 
cutover are examples. After the new release is 
built, include it in the daily system backup. At 
NCAR a locally developed Practical Extraction 
and Report Language (PERL) script backs up the 
software on the Y-MPs to NCAR's Mass Storage 
System (MSS). Incremental system backups are 
executed six days per week and a full system 
backup is executed once per week. The MSS is 
comprised of an mM 3090, a 120 gigabyte mM 
3380 disk farm, a 4.8 terabyte Storage Tek 
Automated Cartridge System and an mM 3480 
cartridge system. Access to NCAR's MSS from 
the Crays is via the ANSI High Performance 
Parallel Interface (HIPPI) and the Network Sys­
tems Corporation (NSC) HYPERchannel. 

Test Schedule 

Production down time is only required for file 
systems reconfiguration, system testing and cut­
over. At NCAR, we try to advertise production 
system down time one week in advance and 
schedule it during our normal system test periods, 
0600-0830. The agenda for each test and a list of 
the upgrade team members needed to conduct the 
test should be prepared in advance. Each test of 
the new release should be well planned to avoid 
wasting expensive production time. After each 
system checkout, the test team should share their 
findings which may lead to problem resolution 
and follow up testing. 

Load 

If sufficient space is not available to build and 
test the new release, the file systems will need to 
be reconfigured. For a new release, the base root 

and usr are loaded first. Source, products, revi­
sions and updates are loaded next. If an update 
release is applied to the current UNICOS source, 
local mods and CRI mods may have to be deleted 
first. Having a list of the mods that comprise the 
upgrade and the codes they affect, facilitates this. 
Before adding the UNICOS source for a new 
release make sure that local mods and CRI mods 
that were added to the current production system 
do not get overwritten. 

Mods 

We have added approximately forty-five local 
mods to the production base release. More than 
half of these local mods pertain to system 
accounting. NCAR local mods and CRI mods 
that have been added to the base release are 
logged and stored in the standard UNICOS 
source . USM directories and in a separate direc­
tory tree structure that we have named 
lusrlsrcllocal. Having copies of these mods and 
logs stored in a separate directory tree makes it 
easier to determine how the base release was 
altered. It facilitates the process of deciding 
which local mods need to be applied to the new 
release. Should the UNICOS source file system 
be reused for the new release, having the local 
mods stored under a separate directory tree 
makes it easier to move them to an area where 
they will not be overwritten by the new release. 
We have developed local scripts 
"addmodldelmod" that accomplish this. The 
add mod script adds mods to the UNICOS source 
tree via the UNICOS Source Manager (USM). It 
then places a copy of the mods under a tree struc­
ture separate from the UNICOS source tree and 
updates the log files located under this tree. It 
then mails an informative message to the systems 
staff and appends this message to· a log of system 
changes. 

Once the new release is loaded, each local mod 
must be reviewed for compatibility with the 
release. Some local mods may need to be rewrit­
ten before they can be added. Others may no 

227 



228 

longer be valid. CRI mods that had been added 
to the current base release should be in the new 
release but it should be verified that this is the 
case. 

Configuration 

The configuration information for the machine 
and site should be updated via the install tool. 
Files that the install tool converts, imports, 
creates or updates should be identified. After the 
configuration process has been activated via the 
install tool, verify that the files have been 
changed correctly. There usually are a few 
configuration files that slip through the cracks, 
i.e. ntp.conf. These will have to be identified and 
converted manually. Review configuration 
changes that were made directly to files, i.e. files 
that were not modified by applying USM mods, 
and make sure that these changes are applied to 
the files on the new system. All changes made to 
system files on NCAR's Crays are logged and 
communicated to the systems staff via e-mail. 
This local change log is an extremely useful 
reference. 

Build and Install 

Build and install the new system under chroot. 
Review all configuration files to ensure that they 
are set up properly for the site and machine and 
that they have not been inadvertently overwritten 
by the build/install process. If required, upgrade 
the operating system on the Operator W orksta­
tion. As a precaution, the current OS on the 
OWS should be backed up to tape just prior to 
the upgrade. Transfer the new lOS and UNICOS 
kernels to the OWS. 

Test Environment 

Before booting the new system, a test 

environment should be set up. Ensure that the 
correct file systems will be mounted and that pro­
duction system files, such as accounting records, 
will not be modified while the test system is run­
ning. Step through the startup scripts and check 
files, such as crontabs, to verify that the appropri­
ate components get started. The first test of the 
new system should be conducted by the systems 
staff to ensure that the system boots and transi­
tions into multi-user 'mode properly. Major 
UNICOS components, such as NQS, should be 
tested. The user data base (UDB) will need to be 
populated. If the first test is a success, subse­
quent tests will involve the other members of the 
test team. 

Access during system testing should be restricted 
to members of the test team. We have developed 
a local modification that enables us to control 
access to the system via setting the sitebit in the 
the UDB. If the sitebit setting for a user matches 
the value that is entered in the file /etc/restrict, 
that user is allowed to logon. To open access to 
all users, the /etc/restrict file is removed. Users 
whose access to the system is blocked can be 
notified that the system is in restricted mode by 
placing an informative message in /etc/issue. 
When the user attempts to logon' the message in 
/etc/issue is echoed. We have found this locally 
developed procedure for restricting system access 
to be quicker and more flexible than the UNICOS 
command udbrstrict. 

Non-UNICOS components that are built under 
the test system must be kept separate from their 
production system counterparts. 'This is particu­
larly important if the /usrnocal file system, home 
to the non-UNICOS utilities, is shared by both 
the test and production system. Through the use 
of mirror directories on the /usrnocal file system, 
these binaries can be kept separate. Scripts exe­
cuted prior to system startup and after system 
shutdown can handle the renaming of the mirror 
directories appropriately for the production or 
test system. If space is an issue and all files can 
not be duplicated, codes that do not need to be 
rebuilt under the new release, such as scripts, can 
be linked instead of copied to the mirror 



directories. If hard rather than soft links are used, 
at cutover linked files under the old directories 
can simply be removed. 

When switching to the test system from the pro­
duction system and visa versa, instead of entering 
the same commands over and over again, put 
them in scripts. Setup scripts can simplify the 
transition between production and test mode. 
They reduce the number of key strokes at the 
console and thus minimize errors and save time. 
Setup scripts help to avoid omissions and serve 
as a record. As more components are built and 
tested under the new system, they can be added to 
the setup scripts. 

Cutover 

At cutover to the new UNICOS release there 
should be no major surprises as long as the new 
system had been thoroughly checked out. CRI 
enhancements, local codes, network connections, 
user codes and etc., all should have been tested 
under the new UNICOS release prior to cutover. 
The user community should have been notified 
well in advance of the changes that will affect 
them and at this point their scripts and codes 
should have been modified accordingly. Also, 
the current production system should have been 
backed up as a precaution. 

Sites that use the batch system extensively will 
probably want to move the work load from the 
current production system to the new system. To 
do this all NQS jobs must be put into a queued 
state. As long as there have been no changes to 
internal NQS structures, the current NQS infor­
mation under lusrlspoollnqs can be copied to the 
new system. CRI has provided "qdump" and 
"qload" to accomplish this in the UNICOS 8.0 
Release. The entire procedure is defined in the 
UNICOS 8.0 Installation Guide. In the UNICOS 
7.0 Release, the internal NQS (raw request) struc­
tures changed. CRI supplied a "qconvert" utility 
to convert queued NQS jobs from 6.1 to 7.0. 

For sites that require system accounting informa­
tion, quiet the production system and run a final 
accounting. We have found that running a final 
accounting on the production system is easier 
than converting accounting records over to the 
new system. At this point time critical files, such 
as the UDB, should be moved to the new system. 
Before bringing the new system up in multi-user 
mode the UDB must be updated. Finally, 
changes should be made on the test system to 
convert the test environment to a production 
environment. For example, local utilities that 
were rebuilt under the test system should become 
the default, permanently replacing their previous 
release counterparts. 

Once again it may be necessary to reconfigure file 
systems. Using the dd command or the dump 
and restore commands, the new root and usr file 
systems should be copied to backup root and usr 
file systems. On several occasions, we have had 
to rely on the backup root to boot our production 
system. If lusr/adm and lusrlspool were part of 
the usr file system under the test system but were 
separate file systems under the production sys­
tem, they will need to be split from usr at this 
time. 

Recommendations for CRI 

CRI's April 1992 Software Release Policy of not 
releasing individual mod fixes is not acceptable. 
For most sites applying a revision or update and 
testing it is a major task, while adding one or two 
mods to fix a bug is not. SFN #t'072, which lists 
individual mods, may indicate that CRI has has 
recently reversed their 1992 policy. If this is the 
case, CRI needs to officially announce this 
change in their Software Release Policy. 

Due to the internal NQS (raw request) structures 
change in UNICOS 7.0, CRI supplied the qcon­
vert utility to convert queued NQS jobs from 6.1 
to 7.0. Should CRI make changes to NQS in the 
future that would affect transferring the NQS 
queued workload to the new release, we request 

229 



230 

that CRI continue to supply a qconvert utility. 
Furthermore, we would like CRI to provide a 
method for transferring NQS checkpointed jobs 
from one release to another. At NCAR there are 
a great number of long running batch jobs. To 
get running jobs into a queued state so they can 
be transferred to the new release, they must be 
rerun. This wastes the system resources that had 
already been accumulated by these jobs. 

CRI used to list all the mods in an upgrade pack­
age. We would like them to continue this as it 
helps us to decide which local mods need to be 
pulled before the upgrade mod set can be applied. 

We would like CRI to provide an install tool and 
source release that can be used on one Cray plat­
form to build systems for other Cray platforms. 
This would reduce disk space requirements for 
source and would eliminate the need to have a 
source license for each Cray host. Local mods 
could then be applied to Cray machines that are 
not licensed for source. 

Future Directions 

On NCAR's two Y-MP super computers, the 
UNICOS upgrades have been conducted 
separately and at different times from source 
located on each machine. With the recent 
acquisition of a Cray EL, the concept of treating 
the three Cray hosts as a cluster has emerged. 
For this concept to work, all NCAR Crays must 
run the same version of the UNICOS operating 
system. This means that OS upgrades must be 
done concurrently. Most of the UNICOS source 
for the Y-MPs and EL is the same. Consequently 
we are planning to store the source and build 
UNICOS on one Cray host for the other Cray 
hosts. Machine specific source, such as the 
UNICOS and lOS kernels, will need to be stored 
and built separately from the common source. If 
this scheme works, system build/install and test 
time should be reduced significantly. Disk space 
usage by source code should also be reduced. 

Conclusion 

A painless and successful UNICOS upgrade can 
only happen with careful preparation and plan­
ning. The adage "Haste makes waste" certainly 
applies here. There are many it~ms to attend to 
in a UNICOS upgrade. The project leader must 
pay attention to detail and must be highly organ­
ized. The skills of staff and users should be 
drawn upon, especially when testing the new sys­
tem. Communication with project team members 
and end users is vital. There should be no 
surprises for anyone. 

References 

1. Cray Research Service Bulletin, Volume 2, 
Number 5, May 1992 

2. UNICOS 7.0 Release Preview, PV-5000 7.0, 
Cray Research, Inc., 1991 

3. UNICOS 7.0 Release Overview, RO-5000 
7.0, Cray Research, Inc., 1992 

4. UNICOS Installation Guide, SG-2112 7.0, 
Cray Research, Inc., 1992 

5. Frisch, Aeleen, Essential System Adminis­
tration, O'Reilly and A~sociates, Inc., 
Sebastopol, Ca., 1991 



UNICOS Release Plans (1994-1995) 

Janet M. Lebens 

UNICOS Release Project Leader 
Cray Research, Inc. 

March,1994 

ABSTRACT 

This paper gives an overview of recent and upcoming UNICOS releases. Specific focus is 
placed on the basic feature content and timing of UNICOS 7.0, S.O, S.x and 9.0 release levels 
for 1994 and into 1995. 

1 Introduction 

This paper is divided into three parts. The UNICOS Release Policy section briefly covers the UNICOS Release Policy 
adopted in April of 1992, describes the different release types provided under the policy, and explains, based on the 
policy, what releasesare planned for 1994 and the first part of 1995. The Release Content section covers the content 
and release dates for recent and upcoming releases for the UNICOS 7.0, 8.0,9.0 and 8.x (the next Restricted Feature 
Release) levels. The paper concludes with an overall summary. 

2 UNICOS Release Policy 

2.1 Release Types 

The Software Release Policy was adopted in April of 
1992. There are two release levels provided for under 
the policy: Major releases, and Restricted Feature re­
leases. Both of these can be further divided into Revi­
sions and Updates. Each of these release types has a 
different purpose, a different frequency, and a different 
level of support. 

2.1.1 Major Releases 

Major releases are intended for all customers. They 
focus on providing new functionality as well as fixes. 
Major operating system releases are 12 to 18 months 
apart, and are released in the first or third quarter. Each 
Major release is supported for one year beyond the 
introduction of the next Major release level to provide 
sites with sufficient time for upgrading to the next 
Major release. Both source and binary systems are sup­
ported with Major releases. 

2.1.2 Restricted Feature Releases 

Restricted Feature releases are available on the latest 
architectures to satisfy contractual commitments for 
customers who need new features before the next major 
release. In the past, they have been released on an 
as-needed basis with no set frequency. In the future, 
CRI sees an ongoing need to satisfy contractual com-

Copyright © 1994. Cray Research Inc. All rights reserved 

mitments. As a result, starting with S.x, Restricted Fea­
ture releases will occur every 15-20 weeks. ~upport is 
limited for the Restricted Feature release: a UNICOS 
source license is required, and support for the Restricted 
Release ends at the next Major release of the product. 

2.1.3 Revision and Update Releases 

Revisions and Updates primarily contain fixes. Priority 
is given to fix critical and urgent problems. There are 
two to four Revisions per year per product level, con­
tinuing throughout the support period and decreasing in 
frequency over the life of the release. Major-release 
Revisions and Updates contain features by rare excep­
tion and only when those features are in broad demand 
and do not impact other customers' operations. 

Updates are a snapshot of the next Revision under devel­
opment. They are the fastest release method and small­
est, tested releasable package. They provide a delivery 
mechanism for fast response to critical problems and 
Software Field Notices. Updates are released every 4-6 
weeks for the Major release level. Both Revisions and 
Updates are available for source and binary systems for 
the Major release level. 

2.2 Policy Layout 1994-1995 

231 



232 

SCHEDULE 1994-1995 
1994 1995 

2 3 4 1 2 3 4 

7.0 7.0.7 . 
7.e 

8.0 8.0.2 8.0.3 8.0.4 

8.x 8.1 8.2 8.3 

9.0 9.0 

• = support ends 

UNICOS 8.0 is the current Major release level. Revi­
sions to UNICOS 8.0 will occur approximately every 4 
months into 1995. As the release level matures, the 
need for Revisions will decrease and so will their fre­
quency. Updates will occur every 4-6 weeks for UNI­
COS 8.0. 

UNICOS 7.0 is the previous Major release. Because 
UNICOS 8.0 was released in March of this year, sup­
port for UNICOS 7.0 will end in March of 1995. One 
more revision is planned for 7.0. Updates will continue 
every 4-6 weeks for 7.0 until support ends. 

UNICOS 7.C is the Restricted Feature release level. 
According to the Release Policy, support for UNICOS 
7.C should have ended with the release ofUNICOS 8.0. 
However, support has been extended an additional six 
months to allow time for sites to upgrade to UNICOS 
8.0. Please upgrade as soon as you can; in the interim, 
CRI will be providing fixes to critical and selected 
urgent problems. 

UNICOS 8.x will be the next Restricted Feature release 
level, which will be a superset of UNICOS 8.0. CRI is 
planning three releases, 8.1, 8.2 and 8.3, for this release 
level. These releases will be similar to UNICOS 7.C 
with one main difference: rather than being a separate 
release leg, this leg will become UNICOS 9.0. In other 
words, features for UNICOS 9.0 will be incrementally 
integrated into the 8.x releases, about one third ofUNI­
COS 9.0 features into each 8.x release. As a result, there 
will be more features in Restricted Feature releases than 
in the past. Also, upgrading to UNICOS 9.0 will be eas­
ier. 

3 Release Content 

3.1 UN/COS 7.0 Major Release Level 

3.1.1 UN/COS 7.0.7 Revision Release 

One more revision to the 7.0 leg is planned in fourth 
quarter of this year. UNICOS 7.0.7 will continue focus 

on reliability, mainly in the way of critical and urgent 
fixes. 

In addition to focusing on reliability, UNICOS 7.0.7 
will contain support for the UNICOS under UNICOS 
feature. This feature allows you to run two copies of 
UNICOS on a single mainframe. UNICOS under UNI­
COS supports YMP and C90 mainframe systems. The 
intent of providing UNICOS under UNICOS is to allow 
sitesto test new versions of UNICOS prior to upgrad­
ing. 

In order to support this feature, both versions of UNI­
COS must contain the UNICOS under UNICOS code. 
UNICOS under UNICOS support will also be con­
tained in UNICOS 8.0.4 and the UNICOS 8.2 
Restricted Feature release. Therefore, any combination 
of 7.0.7/8.0.4/8.2 or later releases in each of these legs 
will be able to be run together. Upcoming issues of the 
Cray Research Service Bulletin will contain more 
information on this feature. 

3.2 UN/COS 8.0 Major Release Level 

3.2.1 UN/COS 8.0 Major Release 

UNICOS 8.0 was released in March of this year. There 
are five major themes for this release: Robustness and 
Resiliency, Performance, Security, Standards, and New 
Hardware. Significant functionality for UNICOS 8.0 
will now be discussed as they relate to these five 
themes. 

3.2.1.1 Robustness and Resiliency 

There are many features in the area of Robustness and 
Resiliency. 

Checkpoint/restart has been improved, including NQS 
automatic checkpointing jobs at regular intervals, 
which allows you to restart NQS requests after an 
unplanned system outage. 

UNICOS 8.0 provides interactive session protection, by 
giving you the ability to reconnect to an interactive ses­
sion in the event of a network interruption. 

Improvements have been made to the tape daemon for 
8.0 surrounding tape daemon aborts, as well as in the 
area of kernel memory management and error handling. 

A mechanism is provided to automatically switch to an 
alternate path to disk when one is available and the sys­
tem has detected a hard failure on the currently active 
path. 

Automatic power on/off allows you to power on/off 
your CRA Y C90 system without corrupting data or los­
ing work in progress. 



3.2.1.2 Performance 

In the area of perfonnance, the UNICOS kernel has 
been multithreaded to reduce semaphore wait time. The 
result is a reduction in system overhead and system idle 
time for multiple-CPU systems. Those with heavily uti­
lized systems should see a substantial improvement in 
system throughput as a result. 

Dynamic tuning options for autotasked codes automat­
ically adjust to changes in system workload. This 
includes dynamic processor scheduling based on sys­
tem load average. 

UNICOS 8.0 increases NFS perfonnance by providing 
an option for the server to do asynchronous 110 to disk 
and by providing client control over invalidating its 
cache entries when a file is closed. Subsequent reads 
can then be satisfied out of the cache rather than over 
the network. 

3.2.1.3 Security 

Many features have been added for UNICOS 8.0 to 
support a B 1 evaluation of the UNICOS system. One 
particular configuration of Multilevel Security is 
known as "Trusted UNICOS". The UNICOS 8.0 
release version of Trusted UNICOS has been given a 
B 1 MDIA rating by the US Department of Defense. 

3.2.1.4 Standards 

With the exception of a few commands like lex and awk 
on the CRA Y-2 and internationalization, UNICOS 8.0 
implements POSIX PI003.2, the "shells and utilities" 
standard. Full compliance is planned for UNICOS 9.0. 

To provide the advantages of full ANSI C prototyping 
to all users, full function prototypes are on in all UNI­
COS 8.0 include files. ANSI C prototypes pennit the 
compiler to diagnose errors at compile time. 

Vnodes replace the current file system switch to allow 
for easier importing of 3rd party file systems, such as 
Distributed File System (DFS) for the Distributed 
Computing Environment (DCE). 

3.2.1.5 Hardware 

In the hardware area, UNICOS 8.0 supports all CRA Y 
M90, C90 and EL90 series products. Underlying UNI­
COS support for the CRA Y T3D is included. 

Disk array support for the DA-60/62 and the new 
DA-301 drive are provided, as well as disk support for 
the DD-30 1 disk, and the CRI ND-121ND 14 HiPPI disk 
array products. Support for the DD5 for the EL is also 
provided. RAID 10 provides disk striping and disk mir­
roring across multiple lOSs, providing scalability, fault 
tolerance, and perfonnance improvements. 

In the area of tapes, the EMASS ER90 helical scan tape 
and associated tape autoloader, known as the Data-

tower, are supported. The 3490, a drive similar to the 
3480 but with IDRC (Improved Data Recording Capac­
ity) (Le., data compression), is supported, as well as the 
3490E, a 36 track medium with double-length tape 
capability. Digital Audio Tape support was also added 
for the EL. 

For model E platfonns, support has been added for the 
SSD-E 128i. These are the SSDs with 128MWofmem­
ory and are included in the model E mainframe cabinet. 

In the channel area, support for the FCA-l, the channel 
adaptor connected directly to FDDI for model E sys­
tems, is included. 

3.2.1.6 Other Significant Features 

Much work was done for 8.0 in the way of user exits. 
Exits were added for security, USCP, tapes, NQS, 
accounting, as well as a a site-reserved system call for 
customer's own use. 

The Unified Resource Manager facility is a centralized 
workload manager that dynamically adjusts to chang­
ing system workloads, based on input from NQS, tel net, 
ftp and others, as well as resource targets established by 
the system administrator. 

An asynchronous multiplexed swapper increases inter­
active user response times by concurrently swapping 
out mUltiple processes. 

UNICOS 8.0 was field tested at six sites, to test a com­
bination of hardware platfonns (XMP, YMP, EL and 
C90) and major software functionality (MLS, Multi­
threading, DMF, tapes and binary). The results were 
good from CRI's perspective: better stability and fewer 
SPRs than field tests for 7.0. 

3.2.1.7 Compatibility/Support Issues 

UNICOS 8.0 will be the last major release for the 
CRA Y-2 and XMP platfonns. These platfonns will 
continue to be supported through 1996 by UNICOS 8.0 
Revisions and Updates. 

To implement POSIX 1003.2, we changed the default 
shell. It is based on ksh, which executes nearly all 
Bourne shell scripts unchanged. See the UNICOS 8.0 
Release Overview for the list of changes associated 
with POSIX 1003.2. Some libraries and utilities, such 
as !ibm and cdbx, will now be released with the pro­
gramming environment releases such as FORTRAN 
andC. 

3.2.2 UNICOS 8.0.3 Revision Release 

UNICOS 8.0.3 is planned for fourth quarter 1994 
release. UNICOS 8.0.3 will include SPR fixes as well 
as a fair amount of new functionality. 

233 



234 

UNICOS 8.0.3 will contain support for T3D Phase IT 
110. With Phase IT 110 control for 110 is still done by 
the Cray mainframe, but data transfer can occur directly 
between disks and the T3D. 

Optimizations have been made to buffer cache manage­
ment routines. These enhancements have show a signif­
icant speed-up. 

In addition, enhancements have been made to the file­
system allocation routines. The filesystem changes 
have demonstrated significant speed-ups in adding data 
to long files, because the routines now keep track of the 
last extent to a file, rather than searching for the end of 
a file. 

A new product, NQX 1.0, will make available the fol­
lowing NQX components on UNICOS 8 systems: The 
Network Load Balance, NLB collector and associated 
libraries, NQS interface to the Network Load Balancer, 
NQS server support, and NQE clients. With the addi­
tion of NQX, UNICOS systems can now be part of the 
NQE batch complex. 

FfA 5.0 will add support for IBM's MVS ftp server. 
BLOCKMODE support is also being added to Ff A, to 
allow FT A to transfer Cray Block format files to an 
IBM MVS ftp daemon. The quote command provides 
the ability to send any unsupported or vendor specific 
ftp commands through Ff A and onto the remote ftp 
daemon. FTA 5.0 will also include performance 
enhancements, which will keep Ff A current with 
improvements in CRI's ftp and that of the industry. 
More platforms will also be supported in release FT A 
5.0. 

UNICOS 8.0.3 contains the hooks for the OSFlDistrib­
uted File System. DFS will be a separately released 
product from UNICOS and is planned for 2H94; please 
see Brian Gaffey's paper in these proceedings for more 
information on DFS. 

The IPI-3IHiPPI protocol will be supported for the EL 
in UNICOS 8.0.3, allowing the EL to connect to net­
work disks such as the Cray ND121ND14 disk arrays. 
The EL will be able to sustain speeds up to 50 MBlsec 
to these disks. 

IBM's automated tape loader, the 3495/3494, will sup­
ported in UNICOS 8.0.3. 

3.2.3 UN/COS 8.004 Revision Release 

UNICOS 8.0.4 is planned for a second quarter 1995 
release. In addition to fixes, this release will contain 
support for one configuration, the CRA Y J916, of 
CRI's follow-on EL product, the CRA Y J90 series. It is 
YMP compatible, and has a IOns clock rate. 

3.3 UN/COS 8.x Restricted Feature Release Level 

3.3.1 UN/COS 8.1 Restricted Feature Release 

CRI does not plan to deliver on any hardware of soft­
ware commitments in UNICOS 8.1, but tather is using 
this release to demonstrate that they have a process 
which allows integration and delivery of one third of all 
UNICOS 9.0 features into a Restricted Feature release 
while still providing a solid, stable release. Its planned 
completion is third quarter of 1994. 

Assuming UNICOS 8.1 is successful, UNICOS 8.2 is 
planned for third quarter 1994 release. Among the com­
mitments to be delivered via this release are Escon 
channel support and initial Cray Triton system support. 

The Escon channel will allow for a greater distance 
between Cray and tape unit (up to 3 kilometers, theoret­
ically), and will have a higher 110 bandwidth than cur­
rently possible with the block mux channel. Most newer 
tape products, such as the STK Redwood andIBM Ntp 
products discussed below, will probably require this 
channel. The Escon channel requires an FCA-2 channel 
adaptor. 

Initial support for Triton, the follow-on to the C90 
product on the parallel vector side, will be 'included in 
UNICOS 8.2. Full support for basic Triton will be pro­
vided in the UNICOS 8.3 release, planned for first quar­
ter 1995 deliver. 

3.4 UN/COS 9.0 Major Release Level 

CRI's overall emphasis in the UNICOS 9.0 timeframe 
is Open Supercomputing. Computing environments are 
becoming more heterogenous; in other words, includ­
ing a variety of unlike hardware and software compo­
nents, each of which efficiently performs a different 
computing task. CRI is defining and developing Open 
Supercomputing as an environment in which Cray 
Research tools can be easily integrated in a variety of 
combinations, and can effectively cooperate to solve 
problems. 

3.4.1 UN/COS 9.0 Major Release 

UNICOS 9.0 is planned for third quarter 1995 release. 
In addition to this overall emphasis, five major themes 
have been chosen for UNICOS 9.0: New Platforms, 
Additional Standards, Heterogeneous Computing, Reli­
ability , Availability and Serviceability, and Additional 
Peripherals. Content for 9.0 is still firming up, but this 
paper will highlight some of the major features cur­
rently planned for UNICOS 9.0. 

3.4.1.1 New Platforms 

Support for basic CRI Triton systems will be part of 
UNICOS 9.0. CRI IEEE Triton system support will fol­
low in UNICOS 10.0, and will also be added as a part 
of one of the UNICOS 9.x releases. 



10S-F is our follow-on product to the 10S-E, and we 
will be using it to support new peripheral and network 
technologies, such as ANSI Fiber Channel and ATM. 

3.4.1.2 Additional Standards 

In the area of standards, 3 components to the ATM soft­
ware will be included in UNICOS 9.0: a signaling pro­
tocol, based on UNI 3.0, an ARP server, and a 
convergence layer. 

For the past five years, CRI has focused its operating 
systems standards participation on POSIX. In August 
of last year we certified compliance with the 1988 
POSIX 1003.1 forUNICOS. CRI has also committed to 
POSIX 1003.2. A survey of customers and potential 
customers revealed that, for the future, the requirement 
is for XlOpen branding for UNICOS. Therefore, in the 
9.0 timeframe, CRI plans to obtain XlOpen branding 
for XPG4 compliance. 

UNICOS 9.0 will include ONC+, the follow-on to ONC 
(Open Network Computing) developed by Sun. The 
components of ONC which will be upgraded from their 
ONC versions will include NFS V3 (in the transparent 
file access area), NIS+ (in directory services), AUTH_­
KERB (in RPC authentication), and LockManager V3 
(for file locking). 

3.4.1.3 Heterogeneous Computing 

CRI knows that heterogeneous computing is important 
to its customers. CRI will continue to measure and 
improve cross-platform computing performance in the 
9.0 timeframe. 

The Shared File System feature provides the ability to 
share file systems across multiple Cray systems. The 
attributes of the SFS include high-speed data access, 
full UNIX file semantics, and shared media controlled 
by a semaphore arbitration service. 

The initial support for SFS for file systems spanning 
multiple SSDs is included in UNICOS 8.0. UNICOS 
9.0 will complete this feature, and will include the sup­
port of network disks devices such as the CRI 
ND-12/ND-14 disks across high-speed HiPPI net­
works. 

3.4.1.4 Reliability, Availability, Serviceability 

Support for UNICOS under UNICOS will help make 
upgrading from UNICOS 8.0 to UNICOS 9.0 easier. 

A dynamic kernel memory allocator will be available in 
UNICOS 9.0. A dynamic kernel memory allocator 
allows for centralized memory allocation management. 
Before this feature, if a kernel subsystem needed tem­
porary or static space, the space was allocated from 
buffer cache or m-bufs. In most cases this imposed 

problems on systems that relied on space in the buffer 
cache or m-buf being available. This feature will also 
makes maintenance and porting of UNICOS features to 
the new microkernel technology easier. 

The checkpoint interface will be re-engineered for 9.0. 
These changes should help to alleviate some of the 
problems inherent in the previous design. The new 
design should be more resilient to changes in kernel 
data structures. The new version of checkpoint will rec­
ognize both old and new format checkpoint files. Addi­
tional work is also being done to allow checkpoint files 
to be moved or copied to secondary storage. 

Checkpoint/restart enhancements will also include the 
ability to checkpoint/restart a tape job at the job level. 
This feature should have great benefit to those of you 
with long running jobs with lots of tape mounts. 

3.4.1.5 Additional Peripherals 

The Escon channel will be supported in UNICOS 9.0. 

The Redwood tape device is the STK helical scan tape 
product. It will be supported in UNICOS 9.0, assuming 
availability of the hardware in time. 

IBM's new tape product is also planned for UNICOS 
9.0. It is the follow-on to the 3490E, and. uses a new 
cartridge media, which has 144 tracks of data, and eight 
times the storage space of a 3490E. 

3.4.1.6 Other Significant Features 

Another significant feature is the optimization of the 
tape daemon. Currently, the tape daemon forks a child 
process many times during the life of a tape request 
(from initial request until it is released). This project 
will fork one child process per tape request, and that 
child will handle all of the other tasks without addi­
tional fork(2) calls. This will cut down the amount of 
pipe communication and forks and execs, improving 
performance. 

4 Summary 

- UNICOS 7.0 

With the release of UNICOS 8.0, UNICOS 7.0 be­
comes the previous Major release. Updates will contin­
ue for UNICOS 7.0 throughout its support life. CRI 
plans one more Revision to UNICOS 7.0. The emphasis 
for UNICOS 7.0. continues to be reliability, and 7.0 
will be supported through first quarter 1995. 

-UNICOS 7.C 

Support for UNICOS 7.C will be strictly in the form of 
critical and urgent fixes. This limited support will end 
in third quarter. 

- UNICOS 8.0 

235 



UNICOS 8.0 has just been released. It will be support­
ed with regular Updates, and fairly frequent Revisions. 
These Revisions will contain some high demand fea­
tures in addition to reliability fixes. 

-UNICOS 8.x 

UNICOS 8.x is the next Restricted Feature release leg. 
Its support will be limited, in a manner very similar to 
that ofUNICOS 7.C. 

-UNICOS 9.0 

UNICOS 9.0 is our next planned Major release. It is be­
ing planned for a third quarter 1995 release. 

236 



UNICOS 8.0 EXPERIENCES 

Hubert Busch 

Konrad-Zuse-Zentrum fur Informationstechnik Berlin (Zm), Germany 

Introduction 
The paper presents our experiences with the new version 8.0 

of UNICOS. zm was I is one of the UNICOS 8.0 beta-sides. the 
speciality of zm is an old CRA Y X-MP 216. I will tell you 
something about the organization of such a test. about special 
problems at our side and about some of the new features of 
UNICOS 8.0. 

Situation at zm 
Today zm operates two CRAY computers. a CRAY X-MP 

and a CRAY Y-MP. In this configuration the old CRAY X-MP 
operates as a compute server and the newer CRA Y Y -MP as a 
compute server as well as a file server. This gave us the possibility 
to work with UNICOS 8.0 on the CRA Y X-MP while using 
UNICOS 7.0 on the more powerful CRAY Y-MP. We wanted to 
test the applications MPGS. cvr. AfT and UniChem and test the 
system features TCP/IP with gated. named. snmpd. NFS-client. 
FSS (fair-share scheduling), NQS with FSS, file system quotas 
and URM (Unified Resource Manager). 

Timetable 
We started discussion with the German CRAY representa­

tives in june 1993. First we had to sign up a ,,Field Test 
Agreement" with questions like • .motivations for field testing". 
"test plan overview", "entrance criteria". ,,Zm field test team". 
their duties. "customer representatives duties". etc. 

We needed 4 hours dedicated system time on 2 days for the 
system people starting on october 6th and used 16 hours on 3 days 
to generate our own supplements and to test the system. On 
october 18th we started the .. official" betatest with all of our users. 

. At november 1st we agreed to finish the field test and to go 
on with the 8.0 system in full production. The exit criteria of the 
field test agreement had been met with exception of the avail­
ability of the applications UniChem. AfT and cvr. Fortunately. 
these applications were used for production on the YMP only. We 
agreed to test these applications and NQS with FSS later. The 
overall feeling of the field test was: It went better than everybody 
on site expected and the impact on the users was minimal. 

We started with URM on the XMP in january 1994 (see 
special part of this report) and with UNICOS 8.0 on the YMP. 
including the former missing applications in february 1994. 

Documentation 
One of the problems for a customer and his users is the avail­

ability of the documentation. From the beginning we had only two 
draft copies of the important manuals. one for the system people. 
the other for the application people. There is no paper documen­
tation for the real users. From the beginning we could only use the 
man-pages in the 8.0-version. which was a great help. The 

docview command worked. but it showed the 7.0 documentation. 
I propose to CRA Y to put also the draft documentation of the new 
software in docview format to the betatapes. 

Major issues during test period 
There were two major issues just before the test period: No 

routing through a Sun having a FEI3 installed and we had one 
crash each day because of problems in the TCP code in the kernel. 
Two days after the occurrence we had a workaround with the help 
of the people in Eagen. 

The problem with the network did reoccur after approxi­
mately two hours of UNICOS 8.0. Mter a boot the channel to the 
NSC box hangs. Sometimes ping works, but nothing else. 
sometimes all protocols work. but not so all nets. As a work 
around. we configured the interface down (including netconf -s 
off) and up again. gated was causing the problems. The gated on 
the XMP scrambles the hyroute table entry for the interface from 
which it receives the last RIP update that changes the kernel 
routing table. A kernel mod fixed this problem. 

We had one crash each day the first days. The problem 
seemed to be somewhere in the TCP code in the kernel. Watching 
the quota table usage we usually saw a max usage of approximate 
50 out of 250. The last thing we saw on the console screen just 
before the hang is always an automatic NQS checkpoint. At zm 
the NQS checkpoints go to Itmp/nqschkp. And Itmp has fsquota 
on it. We increased the inode table size to 1000 and watched the 
usage by a cron job. We also increased the quota table as a 
workaround. A fix will be in 8.0.2. 

Minor issues 
Several problems were caused by the local setting of the 

segldr default to PRESEI'=indef. Executables were built which 
did not run (e.g. fpP. segldr. nupdate). Several problems when 
using mailx. At the beginning Ipr did not work. 

URM (Unified Resource Manager) 
In the UNICOS 8.0 Release Preview CRA Y tells us: .. URM 

improves scheduling and performance by centralizing resource 
allocation with a formal method of communication. This tool is 
useful in allocating nonbatch usage of Cray systems. with or 
without NQS .... NQS in UNICOS 8.0 contains many features 
resulting from customer requests and requirements like ... URM 
interface.... System administrators must decide whether to use 
URM with NQS to control batch usage of the system." 

We started using URM at the beginning of 1994. We had to 
modify the user exit according to our needs. We use urm to 
schedule (recommend) all the NQS jobs. On january 17th we 
activated the new configuration. Although we felt pretty sure 
about the concept. all the numbers we had to configure gave us 
some sleepless nights. We switched the NQS scheduling to urm 

237 



unlimited. We changed our policy in a way that the NQS queues 
got a totally different meaning. Before URM there were queues 
with different CPU time and memory limits. Now with URM (and 
FSS). there are three queues. having basically identical limits. but 
different interqueue priority and nice values. The queue fast is not 
nice but expensive compared to the queue normal. slow is quite 
nice but cheap ... Cheap" and .. expensive" are in terms of share 
·-.sage. The price of (not) being nice is set in the array 
NiceTicks[niceJ in limits.c. The increase with nice is not big 
enough for the ZIB. so our CRA Y site representative had to 
change the way this table is set up. We want to state that these 
values should be configured for the site. 

At ZIB the users are divided in groups with specific amounts 
of shares each. Running processes are handled by the FSS accord­
ingly. URM will be used to start only batchjobs that will be given 
resources by the FSS. URM is not yet used to limit the access 
otherwise (login. ftp •... ). but will think about it. 

A job submitted to any queue gets the queue defaults for 
limits missing in the qsub statement. It's values are passed on to 
URM. URM orders all the requests by using a set of weighting 
factors and scans for jobs to recommend for running. The result is 
passed through site _rank.c. A template has been provided by Bill 
Schiefelbein from Cray Eagen which has only slightly been 
modified to fit local needs. 

There will be 5 NQS queues (ia stands for interactive users): 

Table 1: 

system ia fast bigfile normal slow 

nice increment -5 0 +2 +3 +6 +10 

relative share usage +79% +43% +29% +21% o -29% 

interqueue priority 60 - 45 31 30 15 

run limit 9 - 4 1 3 3 

A job submitted to NQS will fall in normal by default. Jobs 
submitted to system will immediately start to run. but it's access 
is restricted. For jobs infast the share usage is approximately 29% 
faster than in normal. In slow. the chance to run is very low. but 
the share usage will accumulate approximately 29% slower than 
in normal. An interactive session has a nice increment of 0 and 
therefore costs approximately 43% more shares compared to a job 
running in the queue normal. All NQS queues (besides system) are 
cheaper and slower than interactive sessions. There are two main 
issues: 

a) How long does it take for a job to get started? 

b) How fast will it run? 

a) is addressed by setting the URM weighting factors. taking 
into account the share usage (70%). the interqueue priority 
(20%). and the age (wait time) (10%). All other factors are set 
to zero. 

b) is influenced by the shares. the usage and by the nice 
value. 

238 

The share usage accumulates faster for less nice people and 
slower for nicer people. So using the NQS Queue fast means .. start 
me soon and run me quick. and I'll pay more than usual for it". On 
the contrary. in slow. a job will start much later and run much 
slower. but at significant less costs. 

There are some potential problems: 

- A user can put a job in the fast queue to get scheduled 
quickly. but use the nice command to lower the cost. The job will 
run slower. but it runs. To avoid this. the nice command has been 
disabled for batch sessions (local mod at ZIB). and the nicem 
command will be disallowed for ordinary users. 

- The csh has a built in nice. 

- The qsub command allows to specify a higher (nicer) nice 
value as the queue default. Due to a minor bug in the NQS-URM 
interface. the nice value is currently not passed to URM. If this is 
solved. the qsub-nice value can be used to influence the job 
ranking within URM (an user exit is provided in site _rank. c). 

For a period of 4 weeks we did not see the correct rank in the 
URM tables according to theFSS values of usage and shares. We 
had a lot of trouble with our users. because the URM-NQS-sched­
uling did not work as committed. Our CRA Y local representative 
learned from Eagen. that in this beta release URM used the shares 
values only and did not look at the usage values. This is solved 
now and the job ranking works as intended. 

Our users need a NQS class like express with low limits for 
CPU-time for example for compilation and other development 
jobs. The reason is that the class fast is not always fast. ~nly 
expensive. The main memory of 16 MW of the XMP often IS a 
bottleneck for all jobs. Most of our users still work with batch jobs 
instead interactively for development. 

Direct FDDI-connection 
We will get a FCA-l (FDDI channel adapter) for our Y-:MP 

within the next weeks. There we will have some new questions. 

Conclusion 
Being a CRA Y-betatest-side was (or even is) a great 

experience. We had a lot of work. but we did not regret it. Thanks 
to the people of CRA Y. especially our local CRA Y representative 
Alois Reimer. 



UNICOS 8.0 - Field Test Experiences 

Douglas A. Spragg 

Exxon Upstream Technical Computing Company 

Introduction 
The purpose of my talk is to share some of 
the experiences that we have had running on 
UNICOS 8.0. As one of the five or so Field 
Test sites chosen by Cray to Beta test the 
UNICOS 8.0 product, we have been running 
it since October of 1993. The main reason 
that we were chosen as a Beta site was 
because we are a heavy user of tapes both to 
support our seismic users' processing needs, 
and to support our use of Cray's Data 
Migration Facility (DMF). Since we have 
been up on UNICOS 8.0, we have also 
installed a 128 processor T3D. Thus the 
experiences that I will be sharing will 
inevitably include observations about 
running the MPP. When I get into reliability 
(MTTI) statistics it is often difficult to 
separate out problems that are generic to 
UNICOS 8.0 versus those that we have 
encountered because we are running the 
MPP. 

Environment 
Let me start off by telling you a little about 
our Company, and our environment. EUTeC 
is actually a distinct Exxon Division with 
about 300 employees set up in late 1990 to act 
as a service provider for Exxon's "upstream" 
(exploration, research, and production) users. 
At the time the organization was formed we 
consolidated two computer centers that had 
been in other Exxon organizations. In doing 
this, we re~ired an old 4 Mwd Cray X-MP, 
and an antIque Cray l-S, and replaced them 
with a model D Y-MP. Although we started 
off with only two processors, we had enough 
foresight to buy an 8 CPU frame so that we 

could gracefully grow our way into the full 
blown configuration. In 1993, we changed out 
our model D for a model E to support the 
installation of the T3D which we did in 
November. Our current Cray configuration 
is: 

Hardware 
• Y-MP 8-E 

4CPUs 
128 mwds main memory 
128mwdsSSD 

• T30 
128 PE 
8 mwds/PE 

• Approximately 250 Gbytes of disk 
(00-41,00-62,00-60 ) 

• 3480/3490 Tapes 
• E-MASS Data Tower with 3 recorders 

(ER90s) 

Software 
• UNICOS 8.0 
• 

• 

• 

• 

MVS Mainframes used for tape front­
end servicing 
Heavy use of OMF (Data Migration) 
to 3490 and ER90 
Base level MLS (Multi-Level 
Security) - mostly for auditability. 
NFS Client and Server 

Our customer base is entirely comprised of 
Exxon Affiliates, with the applications being 
a mixture of seismic, reservoir simulation , 
structural analysis, and chemical modeling. 
To give a perspective on history, and even 
though we have only been operating as a 
company for a little over 3 years, we have run 
production on Cray software all the way from 
COS 1.17, to UNICOS 8.0. 

239 



240 

General Comments 
Recall that we were specifically chosen by 
Cray to be a Beta test site because of our 
extensive tape usage. On an average day, we 
may mount as many as 2000 3480 tapes, and 
3480 tape usage is in addition to DMF 
activity. This probably means that Cray 
thought that the piece of UNICOS that we 
would be most likely to break would be tapes. 
From our point of view, doing the Beta test 
was a convenient way to get quickly up to 
speed on the software that we knew the MPP 
developers were aiming at, and get off the 
UNICOS 7.C that we were running. We had 
installed UNICOS 7.C to support our ER90s 
in the August time frame but were frankly 
concerned about running on a "special leg" of 
UNICOS software. Thus, I guess the big 
question is did we break the UNICOS 8.0 
tape software? Somewhat surprisingly, the 
answer in large part is no. Right after we 
came up, we had some tape problems relating 
to a resource count going negative. However, 
these problems were addressed, and fixed 
very quickly. Shravan Pargal from Bill 
Kennedy's tape development group was on 
our site during the test, as well as Bob 
Rekieta from Technical Support. One of the 
very nice things about doing a Field Test is 
the fact that Cray pays close attention to your 
problems and really does get them fixed. 
Later on in the test, we had other tape issues, 
but these were due to codes in our shop that 
had been compiled and linked under very old 
versions ofUNICOS (would you believe 5.1?), 
and wreaking havoc by calling for tape 
positioning information (GETTP). It would 
appear that some data structure that GETTP 
needed had changed, and the tape daemon 
fell into a logic hole. We also had some 
sporadic library incompatibility problems 
that caused programs to run out of memory. 
These were mostly addressed by having our 

users recompile these programs with the 
most recent version of cf77 (version 6.0). One 
other library issue that bit us was the assign 
command. Many of our applications actually 
read the file pointed to by the FILENV 
environment variable. This file has 
traditionally contained the relevant 
information about each file encoded with 
colon delimiters. In the UNICOS 8.0 version 
these colon delimited fields are no longe; 
present. To accommodate our users' 
immediate needs, we are still using the 
UNICOS 7.0 version of the assign command. 
A word to the wise here is that when you 
start changing systems a lot, you need to 
remind your applications developers to keep 
their application executables at or very near 
the version of the system you are running. 
This may be more a problem for us than is 
the case at your site because we exercise little 
control over the applications that are run on 
our system. 
The UNICOS 8.0 Field Test completed with 
no serious hitch. In fact, we had no system 
interrupts at all until late November. It was 
only when we brought in the T3D that we 
started to have real problems. The fact is that 
since November 18, we have had 16 system 
halts on the Y-MP. In breaking this set of 
data down, we feel that 4 are UNICOS 8.0 
problems, 6 are directly related to the fact 
that we are running an MPP, 3 are site 
procedure problems, and 3 are of unknown 
origin. 

System Halts 
Seeing as how we have both UNICOS 8.0 
software and MPP software in the mix, it 
might be useful to draw a time line where we 
put in dates that we installed various 
versions of both software and the interrupts 
experienced. I will use a code to signify how 
we have classified the various outages. The 
table is on the following page: 



I Key: 
S - site 
U - unknown 

Event 

Start ofUNICOS 8.0 Production 
System panic - bad network command sequence 
System panic - /dev/slog full on dump/restore 
System panic - /dev/slog full on dump/restore 

Install of MAX 1.0.0.2 MPP software 
System panic - Assert in YPE driver 
System hung (no panic) - kernel/mppexec problem 

Install of MAX 1.0.0.3 MPP software 
System panic - Assert in nclvops.c 
Processes hung in sbrk call (nschedv X=I) 

Install of MAX 1.0.0.5 MPP software 
System hung (no panic) 
System panic - recursive lock 
System panic - recursive lock 

Re-install of MAX 1.0.0.3 MPP software 

Date Key 
-----------------
October 16 
November 18 8 
November 22 S 
November 22 S 
November 26 
November 27 M 
December 17 8 
December 19 
December 29 8 
January 7 U 
January 16 
January 19 M 
January 20 M 
January 20 M 
January 20 

System panic - nallookup failed - NFS config corrupt 
System hung (no panic) 

January 25 
January 28 

M 
8 

System panic - may have been result of site error 
Install of MAX 1.0.0.6 MPP software 

System hung (no panic) 
System panic - Assert in YPE driver 
System hung (no panic) 

As you can see, none of these outages are in 
any way related to tapes. The problem that 
we encountered on ·December 29 is related to 
kernel resident DMF code. In general, it 
would appear that in the main, we have 
stumbled over multi-threaded kernel 
problems that may be aggravated by the 
heavy load of system calls that the MPP is 
throwing back over the fence for UNICOS to 
handle. For the most part, the problems 
reported have been fixed in a timely manner, 
and installed as soon as practical. In our case, 
scheduling maintenance time can be difficult 
because of our large production workload. In 
summary, only 4 of our system hits were 
directly attributable to UNICOS 8.0. 

Performance 
In advance of someone asking, let me discuss 
performance. I would love to be able to get up 
here and give you all some real pearls about 
things we discovered relating to UNICOS 8.0 

February 1 S 
February 6 
February 8 U 
March 5 M 
March 9 U 

multi-threading performance. The sad fact is 
that I have precious little information to 
share. One of the main reasons for my lack of 
data, is simply that our environment has 
changed so drastically. In 1993, we added 
CPUs, disk, converted from the model D to 
the model E, added the E-MASS, and added 
the T3D. In that same time frame our work 
mix changed just as drastically. In a general 
sense, the recent upgrade that we made from 
64 mwds of main memory to 128 mwds has 
made a tremendous difference in our 
throughput. We are able to regularly sustain 
100% CPU utilization during our heavy 
workload periods whereas before we were 
maxed out at about 70%. We still have more 
system time than I would like to see - ranging 
as high as 20-30%. This is something that we 
have seen on previous UNICOS releases, 
however, and believe that it has more to do 
with our job mix than anything else. It also 
appears that the MPP aggravates problems 
with system CPU usage. During the middle of 

241 



242 

February, we had Steve Luzmoor from the 
West Coast Technical Support Group out to 
our site, and he found several issues (none of 
them catastrophic) which we intend to follow 
up on. In one case, the mppexecs that we 
were running were being locked, migrating 
towards the lower portion of memory, and in 
turn booting out users' telnet sessions. This 
in turn was creating some very inconsistent 
interactive response conditions. Our site was 
Steve's first experience with mppexec, and I 
think he found it a tricky piece of software to 
deal with. 

Conclusions 
In the main, I consider our UNICOS 8.0 Field 
Test a success. The main reason for saying 
that is that we would have been in somewhat 
of a sticky position doing a conversion from 

. UNICOS 7.C to 8.0 in our current 
environment. Our production workload has 
increased dramatically over last fall, and at 
the same time workload on the MPP is ever­
increasing. It would be far more difficult to 
schedule the required system maintenance 
now than it was last fall. In addition, Cray is 
now STRONGLY advising all MPP sites to 
get to UNICOS 8.0 as quickly as possible. On 
the other hand, I am a little disappointed in 
the number of system problems we have had. 
I am particularly concerned about the fact 
that so many of our system outages have 
been due to the fact that we are running the 
MPP. I had hoped for a better "fire wall" if 
you will between the Y-MP and the MPP. 
In addition, we still have at least one 
unresolved problem. Since we have come up 
on UNICOS 8.0, we have been unable to get 
the NFS Automounter to work. It just hangs 
when we try to start it. Because Eagan has 
been unable to replicate the problem, it has 
been a difficult issue to track down. 
One other problem we encountered was a 
lack of timely updates. We installed UNICOS 
8.0.1.1 in October, and went to UNICOS 
8.0.1.2 when we installed the T3D in 
November. After that, there was no further 
update available until March. It would have 
been nice to have at least one more 
intermediate update. 
Before I conclude, let me share with you some 
other thoughts that are the outcome of a 

Process Improvement Team that Exxon and 
Cray worked on together to improve our site's 
overall MTTI during 1993. Our basic 
conclusions are relevant to more than 
UNICOS 8.0, and so they may belong in 
another talk, but they are simple and 
straightforward so let me state them quickly. 

1) There is a continuing frustration in the 
use of the install tool to build a system. In 
particular, it was several months after we 
got the MPP before we were able to 
straightforwardly build a parameter file 
acceptable to UNICOS using the install 
tool. Also, because the MPP CSL parsi ng 
code has been at times either bad or at 
least not current, we have actually had 
situations where expected system 
configuration parameters for other sub­
systems have been affected (see January 
25 system halt). Our frustration is 
exacerbated by the fact that the people in 
Eagan do not appear to use the install 
tool when they build systems. 

2) There are too many instances of software 
provided at one generation of Cray 
hardware not being adequately carried on 
to the next. One example we identified 
was Cray's failure to carryover some tape 
resiliency mods from the model D to the 
model E environment. Another example 
was our discovery last summer that we 
had significant problems with the 
operation of DD-41 disk 
diagnostics/utilities in the model E. 

3) The process that Cray uses to manage 
SPRs still appears to hide a lot of 
potentially useful information from the 
customer. Unless the customer is 
extremely diligent in following SPR 
progress, which is the case since we have 
been running on the T3D, the 
information flow on SPRs appears 
sporadic and poorly coordinated between 
Software Development and Customer 
Service. 

4) We feel that in the main, Software 
Development is unnecessarily remote 
from what real Cray customers do with 
Cray products. There exists a need in our 
minds for Software to spend more time at 



the customer sites. In our case, we believe 
that having Shravan Pargal here from 
Tape Development during our Field Test 
was of mutual benefit. 

Summary 
Our site has been running UNICOS 8.0 as 
our production system since October of 1993. 
While we have encountered several system 
outages, we believe that (excluding the MPP) 
the number is in the range of what we would 
expect for Beta software. In addition, we have 
encountered no serious problems with any 
major UNICOS sub-system, and in particular 
the tape daemon. It appears to us that 
UNICOS 8.0 will in fact live up to Cray's 
expectations for reliability. Our experience is 
that Cray does an excellent job in following 

up with problems that are encountered in 
running Beta software. In fact, I think we got 
really superb service - especially from tape 
development in solving the issues that we did 
have. 

Acknowledgments 
I would like to thank all of my staff at EUTeC 
for helping to make the conversion to 
UNICOS 8.0 and the installation of the T3D a 
success. In addition, I would like to extend 
special appreciation for the efforts of our two 
Cray site analysts (Bryan White and Ed Liu). 
Their prompt attention to our problems and 
their excellent interface work with Cray in 
Eagan were an enormous help in getting us 
to timely solutions to our problems. 

243 





Operations 





SDSC HOST SITE PRESENTATION 

Daniel D. Drobnis 
Michael Fagan 

San Diego Supercomputer Center 
San Diego, California USA 

Introduction 

The San Diego Supercomputer Center is a National 
Laboratory for Computational Science and Engineering. 
The Center was established in 1985, and is currently 
working to advance computational science research and 
enhance U.S. economic competitiveness. This is 
accomplished through three basic activities: research and 
development, education/training/outreach, and service. In 
particular, the Center 

• Participates in computational science research 

• Supports others doing science 

• 

• 

Educates and trains computational scientists 

Builds tools to advance computational science 

• Enables technology transfer to U.S. industry 

The San Diego center is one of four such centers 
supported primarily by the National Science Foundation 
(NSF). The others are associated with the University of 
Illinois (The National Center for Supercomputer 
Applications, with Carnegie-Mellon and the University of 
Pittsburgh (the Pittsburgh Supercomputing Center), and 
with Cornell University (Cornell Theory Center). 

The San Diego Supercomputer Center is operated by 
General Atomics, a privately held Research and 
Development company, in association with a group of 25 
user institutions. This user group, or consortium, provides 
policy guidance to the Center, and includes, in addition to 
all of the UC campuses, other prominent universities 
elsewhere in California and across the U. S. from Hawaii to 
Maryland. 

Finances 

Most of the computational resources of the Center are 
distributed free of charge to academic researchers who 
have submitted proposals to the Center's Allocation 
Committee, made up of leading U.S. computational 
science researchers. The best proposals are selected for 

a peer-reviewed grant of resources--principally computer 
time--just as they would receive a grant of money to 
support their research. SDSC also maintains an active 
industrial partners program. 

The principal financial support for the Center and its 
communication facilities comes from the federal 
government through NSF, and additionally through other 
research-oriented agencies such as the Defense 
Department Advanced Research Projects Agency (ARPA) 
and the National Institutes of Health (NIH). Support comes 
in addition from our consortium members, the State of 
California (both directly and through the Regents of the 
University of California), UCSD, and industrial partners. 

There are currently over 500 peer-reviewed projects, with 
over 3000 users. There are also over 60 industrial 
partners, who contribute equipment, services, and money 
to the Center, and receive supercomputer time, 
visualization assistance, training, and staff support. 

Communications 

Consortium members, industrial partners, and others 
access the Center over high speed data communications 
lines, both direct and through connections to the 
nationwide interconnected research communications 
network known as the Internet. The total communications 
capability of production trunks and network connections to 
the Center exceeds 60 million bits per second. The major 
portion of this is the Internet's cross-country trunk, 
operating at T3 speeds--45 Mbits/second. 

In addition, an experimental network (the CAS A project) 
links the Center to the Los Alamos National Laboratory in 
New Mexico, and to Caltech and the Jet Propulsion 
Laboratory in Pasadena. It utilizes optical fibers for 
communication, which are already in place, and operates 
at over 800 million bits per second. 

The Center is designed to provide complete service to 
people hundreds or thousands of miles away. One of the 
principle challenges in its operation is to provide the same 
quality of support and services to users hundreds or 

247 



thousands of miles away as is provided to those within the 
building or in San Oiego. 

Research and Development 

Most applications development and computational 
research is done by the Center's academic users. 
However, an active research and development program is 
also carried on by the Center staff; areas currently active 
at the Center include: 

• Networking 
- Gigabit networks (CASA) 
- Network performance monitoring 
- Analytical modeling (NREN) 

• Operating Systems 
- Parallel processor scheduling 
- Parallel architecture resource management 

• Visualization 
- Volume Visualization tools (NetV) 
- Interactive Interfaces (Sequoia 2000) 
- Image manipulation (ImageTools) 

• Applications Development 
- Global Climate Modeling 
- Molecular modeling on parallel architectures 

• Primary and Secondary Education 
- K-12 outreach presentations 
- Secondary school science teacher training 

Facilities 

The Center is housed in a building designed and 
constructed specifically to house it. The building has about 
23,000 square feet of computer room and mechanical 
space, and about 35,000 square feet of office and meeting 
facilities. It cost about $8 Million to construct and furnish in 
1985, and houses about 100 people. 

The Center's workhorse supercomputer is currently an 8-
processor Cray C90, installed in November, 1993, with a 
peak computational speed of 7.8 GFLOPs for 64-bit 
operands. It has 128 Mwords (1 Gbyte) of main memory, 
and 1024 Gwords (8 Gbytes) of SSO. There are 188 
Gbytes of directly attached disk: 13 OA-62 arrays, 4 00-60 
disks, and one string of 00-42s. 

SOSC has had two previous Cray Research computers. In 
1986, the Center opened with a Cray X-MP, and a 
successor Cray Y-MP served during the period 1990 
through 1993. 

The Center also operates an Intel Paragon massively 
parallel computer. It presently contains 400 nodes, each 
containing two i860-XP processing elements--one for 
computation and one for communication. It is rated at a 
combined peak speed of 20 GFLOPs for double precision 
(64-bit) operands and 40 GFLOPS for single precision. 

248 

File Management 

The high performance computers utilize a OataTree file 
management system, which provides permanent common 
file storage for all user files at the Center. The system 
runs on an IBM-MVS platform, and manages all data in a 
hierarchy, with smaller and frequently accessed files on 
3380 disc, and larger and less-used files on 3480-format 
cartridge magnetic tapes. A Storage Technologies tape 
robot handles the most frequently. accessed tape 
cartridges automatically. With disk and/robot file caching, 
about 95% of all file requests are answered without human 
intervention. 

OataTree currently contains over 5 Terabytes of 
information in over 1.5 million files. Files are added at the 
rate of about 25,000 per month. Later in 1994, the file 
management system will be migrated to UniTree, which 
will provide improved performance and features, and will 
operate on an IBM RS-6000 Model 980. It will also control 
a Storage Tek cartridge tape robot when it goes into 
production. 

Supporting the supercomputers, a couple of dozen more 
computers and communication routers provide service to 
Center users, and almost 20 high performance 
workstations in our Scientific Visualization Center translate 
the results of computations into graphic images. 
Workstations are served by an Auspex NFS file server, 
which allows them to remote mount their application file 
systems and user home directories. 

All of these computers are interconnected by a local high 
speed communications Ethernet system at 10 million 
bits/second. An additional system links the fastest 
computers and uses FOOl optical fibers at 100 million 
bits/second. Altogether about 100 workstations and 120 
personal computers are installed in the SOSC building. 

The CASA Gigabit network testbed, which operates at 800 
million bits per second uses HiPPI (High Performance 
Peripheral Interchange) channels and a 32-channel 
crossbar switch. 

Control and Monitoring 

The SOSC Control Room is designed to allow operation of 
the entire Center, including building facilities and security, 
from one place. If necessary, the entire Center can be 
operated and monitored by one person, although we 
normally have two operators on off-shifts, and three during 
the day on weekdays. A useful tool for centralizing status 
monitoring is a PC-based status monitoring and summary 
system, which watches computer and router console 
output message streams.1 This tool, complete with 



documentation and usage examples, is available from the 
Center's anonymous ftp server at ftp.sdsc.edu. 

Visualization Lab 

An Advanced Scientific Visualization Laboratory is located 
directly off the computer floor. Its workstations and CPUs 
can thus be immediately adjacent on the raised computer 
room floor, keeping the Vis Lab itself quiet and comfortable. 
The major elements of the Vis Lab are a variety of graphics 
workstations, principally from Silicon Graphics and Sun. 
These are used both to generate production visual images 
by researchers and students nearby, and to provide a base 
for the development of tools which can be used by remote 
researchers on workstations closer to their homes. The 
set of tools developed for manipulating visual images 
(SDSC ImageTools) have proved so popular that SDSC 
has had over 3000 requests for them through anonymous 
ftp. 

Video Post Production 

After researchers have computed their data on the 
supercomputer, and used the facilities in the VisLab for 
converting the data from numeric form to computer 
graphics images, they often record their images onto video 
disk. Once recorded, the raw footage is edited onto video 
tape for scientific study, presentations at colloquia, 
submissions to judged competitions such as SIGGRAPH, 
training and demonstrations, and productions of broadcast­
quality "programs. II 

Training Facilities 

A specially equipped training facility is available for 
Workshops and Training Seminars for users of the 
Supercomputer Center, as well as for training on personal 
computers. Both the Center and the Universitts Adult 
Extension make extensive use of this area. It is equipped 
with 20 Apple Macintosh IIci computers, with large high­
resolution color monitors capable of full X-Windows 
resolution, 9 MB of RAM, and 80 MB hard discs. The 
material on the Instructorls screen is projected onto the 
screen on the front wall, so that students may see what the 
instructor is demonstrating, and follow along on their own 
screens. 

The Centerls auditorium is equipped to support a wide 
variety of meeting needs for the Center, the University, 
Industrial Partners, and local computer user groups. It can 
be set up with tablet-arm chairs, for large lectures or group 
meetings of 100 or more people, or with tables and chairs 
for seminars and conferences. In addition to slide, motion 
picture, and overhead projection facilities, the video and 
sound systems allow viewing of video tapes, cable and 
broadcast TV, terminal and workstation screens, and video 
teleconferences. The auditorium is equipped with the 

same infrared synchronizers to permit viewing of high­
resolution 3-D workstation images as are used in the 
VisLab. The Center is connected to both UCSDls 
broadband TV distribution system, and to San Diego State 
Universityls Profnet instructional microwave system. 

Work on this project was performed under NSF grant 
number ASC-9019070. 

Dan Drobnis is the manager of the Engineering and 
Operations department at SDSG. Mike Fagan is a 
member of the Engineering, Networking, and Security 
group at SDSG. 

Reference 

1. Dombrowski, H.F. and Drobnis, D. D., "PC-Based 
Status Monitor Now Availablell

, Proceedings of the Spring 
1993 Gray Users Group Meeting~ Montreux, Switzerland 
1993. 

249 



N 
Ul = SDSC SYSTEMS CONFIGURATION 

SCALERNECTOR SUPERCOMPUTER 
CRAY RESEARCH C-90 

ARCHIVAL STORAGE 
'SYSTEM 
5TBlSM 

ADVANCED SCIENTIFIC 
VISUALIZATION 
LABORATORY 

HIGH-SPEED GRAPHICS 
WORKSTATIONS 

170GB 

SCIENTIFIC VISUALIZATION 
10 MBts ETHERNET 

1024 Mb Memory 
7.8GAops 

Fiber Distributed Data Interface 
100 Megabits Per Second 

ROUTE 

Wide Area Networi< Access 
10 Mb/s Ethernet 

Auspex 

LOCAL AREA NETWORK 
10 MBts ETHERNET 

PARALLEL SUPERCOMPUTER 
Intel Paragon XP/S 30 

400 NODES 7.25 Gb 
40 GFlops 

24-Une Rotary 
Terminal Server 
2.4 -14.4 Kb 

2/16194 
MDFagan 

ToHIPPISwIII:h 



Tools for the Cray Research OWS-E Operator 
Under UNICOS 8.0 

Leon F. Vann 
Project Leader 

Computer-based Training 
Software Information Services 

Cray Research, Inc., Eagan, Minnesota, U.S.A. 

Abstract 

A full complement of operator tasks and functions can now be performed easily through the operator 
interface (opi) utility. With the release of UNICOS 7.0.5, opi is now a part of the standard UNICOS release 
package. It is being enhanced with optional choices such as automatic dumps and reboots in the UNICOS 
8.0 release. Training for the OWS-E operator is being revised to include functioning through opi as well as 
through standard commands. 

Overview of Progress and Process 

Significant progress has been made to make operating 
Cray Research systems easier for the operator: the 
operator interface (opi) feature that is part of the 
OWS-E software, the documentation set, and 
computer-based training. The following information 
further describes these products and provides an 
overview of the processes that are in place to enable 
continued improvement. 

Identified Customer Concerns 

Cray Research, Inc. (CRI) continues to strive to identify 
customer requirements for operator information in 
order to improve our products, training, and 
documentation. 

A variety of vehicles have been and are being used to 
solicit customer needs. 

Major sources of customer input are as follows: 

Cray Users Group (CUG) 
SIS Customer Advisory Board (CAB) 

Cray Research support personnel (on-site and in 
support centers) 
Questionnaires 
Contact with customer personnel attending 
training in Eagan and at customer sites 
Information exchanged through the Operator 
Environment Group (OEG) 
Reader comment forms in documentation 
CBT questionnaires 
Informal and formal communication exchanges 

We encourage the use of all of the above as a means 
of communicating and validating needs and solutions. 

A summary of identified customer concerns follows: 

Cost of training in terms of both time and 
money and being able to obtain the training when 
needed 
High turnover rate of operator personnel 
Knowing where to find and gain access to 
documentation 
Being able to provide training to operations 
personnel that fits their level of expertise and 
current environment 

251 



Need for operators and operations personnel to 
have a customizable, easy-to-use interface to Cray 
Research systems 
Need for online training that is available when 
needed (CBT) 
Capability to customize documentation, training, 
and the system interface 
Lights-dim operations environment 
Lights-out operations environment 

Current and Future Activities 

Operator Environment Group (OEG) 
This group is made up of representatives from the 
following software groups: development, testing, 
publications, training, release coordination, and Cray 
Corporate Computing and Networking (CCN), as well 
as an email information exchange for all of the above 
groups and customers through the email address 
oeg@cray.com. The OEG provides a forum for all 
operator-related plans and projects. 

Cray Research Operator Documentation 
The CRI Software Documentation Ready Reference, 
publication S0-2122, lists all CRI software 
publications. A complete set of documentation is 
available for the OWS-E and includes the following 
publications: 

OWS-EI/OS-E (SR-30n) 
Reference Manual 

OWS-EIIOS-E (SG-3078) 
Operator's Guide 

OWS-EI/OS-E (SG-3079) 
Administrator's Guide 

OWS-EIIOS-E (S0-3080) 
Ready Reference 

The UNICOS 8.0.3 release will enable the OWS-E 
documentation, except for the OWS-EIIOS-E Ready 
Reference, to be accessed online using CrayDoc, 
which provides hyperlinked online information. 

Cray Research Operator Training 

Curriculum Planning Team 
The SIS Curriculum Planning Team (CPT) includes 
instructor and management representatives from each 

252 

of the identified audiences. These audiences include 
operators, system administrators, end users, 
applications programmers, and systems analysts. The 
short-term goal of the CPT is to review and revise the 
current curriculum so that changes can be made and 
reflected in the next issue of the CRI Software Training 
Catalog. The group's long-term goal is to identify a ' 
process by which the curriculum can be reviewed and 
modified at regular intervals. 

The CRI Software Training Catalog contains the 
following for each intended audience: 

Audience definition 
Recommended sequence (flowchart format) 
Skills map (indicates the skills covered by each 
course and the level of course content, that is, 
basic, intermediate, or advanced). 
Course description, which includes the objectives 
and the outline 
Schedules for classes offered at CRI 
Headquarters, Regional, and Country training sites 

Training Plan 
It is strongly recommended that customers work 
closely with the Cray Training Coordinator and account 
representative to establish a training plan for each 
identified audience. This plan can then be 
implemented by using the training available in various 
forms from Cray Research; courses can also be 
customized to meet customer needs. 

Operator Training Classes 
Two types of Cray Operator Training (COT) courses are 
available: computer-based training and lecture/lab. 
The current computer-based training course (COT­
CBT) runs on the OWS-E, supports UNICOS 7.0, and 
uses simulated exercises, while the lecture/lab course 
(COT) has hands-on exercises and includes using 
windowing tools such as opi. The COT course also 
can be customized to fit the customer's hardware 
configuration and specific operations procedures. 

Both Cray Operator Training courses address the 
following topics and skills: 

Basic UNIX usage 
OWS, lOS, and CRI system startup and shutdown 
Response to requests; tape and file system 
System dumps and backup procedures 



Response to errors and general troubleshooting 
procedures 
Monitoring system activities 

Future Computer-based Training (CBT) 
Plans 
Future CBT courses will be developed and delivered 
using a new feature-rich system called CrayTutor. 
Courses developed using CrayTutor will run on UNIX 
workstations, like the OWS-E or equivalent Sun 
SPARCstations and can use color, graphics, 
animation, and sound. 

Future courses to be developed using CrayTutor are 
the following: 

CRAY EL System Administration Training 
Phase I: basic operator/administrator tasks 
Cray Operator Training for UNICOS 8.0 
UNICOS 8.0 Basic User Training 

Other courses and/or specific topics will be considered 
and prioritized according to customer needs. 

Start-up Services 

A series of customer-integrated solutions, known as 
Quick Starts, have been defined in the following areas: 

Operator's quick start 
System administrator's quick start 
Application conversion and optimization quick start 
Network administration quick start 

The Quick Start service is primarily aimed at new 
customers, but is useful in transitions to new hardware 
and software. The services provide a CRI specialist to 
work with the customer staff in planning and making 
technical decisions. Procedures are recommended 
and defined to fit the customer environment. The 
overall objective of the Quick Start is to shorten the 
time required to bring a new system into full 
production. 

The operator's quick start involves an experienced 
operator working with the customer's operations staff 
to discuss and determine operational procedures. 
This specialist also can either provide or customize 
scripts for identified procedures. Hands-on time is 
spent with lead operators performing standard and 
customized procedures. 

The operator's quick start could and should be 
complemented by formal training. Before a Quick 
Start, lead operators should be trained in the basics in 
order to take full advantage of planning and 
customization possibilities. All operators can then be 
trained using the computer-based training (COT-CBT), 
followed by the lecture/lab course (COT) for hands-on 
experience using site procedures. 

Operator Interface (opi) 

The operator interface (opi) utility is part of the OWS-E 
software that allows operators to perform a variety of 
functions in a point-and-click manner. These functions 
include the following: 

Monitoring system status and activity on a number 
of Cray Research systems from a Single OWS-E 
Halting, booting, and dumping the IOS-E and the 
mainframe on a selected Cray Research system 
Opening connections to Cray Research systems, 
including the UNICOS console 
Opening connections to local and remote 
OWS-Es 
New opi features available with the UNICOS 8.0 
release, including autodump and auto reboot 

Online help is available to provide information about 
tasks and functions. opi provides two windows that 
are used for standard output and error information. 

One of the important features of opi is the flexibility to 
customize functions and help facilities to fit the 
customer's operations environment. 

opi is part of OWS-E release 7.0.5 and subsequent 
releases. Future releases will also support Solaris 2.0. 

Integrated Performance Support 
Systems (I PSS) 

The goal of a fully implemented IPSS is to provide 
customers with the ability to use CRI tools and 
products in an expert fashion. With a standard 
graphical user interface (GUI) ensuring that CRI 
products are consistent with each other, and with 
online information tools that provide a seamless user 
environment, customers will be better able to do their 
jobs without in-depth technical knowledge of UNICOS. 

253 



The IPSS system includes access to online 
information in SGML source by way of CrayDoc. 
CrayDoc runs on a UNIX workstation and is scheduled 
to be delivered with future products this year, 
including UNICOS, CRAY T3D, UniChem, and the 
programming environment. Computer-based training 
for selected topics will be provided by CrayTutor, 
which also runs on UNIX workstations. 

Customization to Fit Your Needs 

The ultimate goal of an Integrated Performance 
Support System is to provide the capabilities to allow 
customers access to information more easily, to learn 
how to use CRI products more quickly, to get expert 
advise related to the tasks at hand, and to customize 
system components to fit the customer procedures 
and environment. 

254 



CRA Y RESEARCH PRODUCT RESILIENCY 

Presented by Gary Shorrel 

Cray Research, Inc., Chippewa Falls, WI, U.S.A. 

ABSTRACf 

Cray Research, Inc. has placed continued emphasis on product reliability throughout the history of the 
company. Significant advances in reliability or product mean time to interrupt {MTTI} have been 
achieved with each new generation of hardware and software. In 1992, a project was begun to address 
users needs for high system availability, in addition to high system MTTI. The resiliency project has 
identified numerous opportunities for resiliency implementation in CRI hardware and software 
products. This paper will review the history and current status of the resiliency project and discuss 
specific resiliency feature implementations in CRI products. 

RESILIENCY DEFINITION 

Webster defines resiliency as "an ability to 
recover from or adjust easily to misfortune or 
change." The CRI Resiliency Project Team has 
defined resiliency as "the ability of hardware and 
software to cope with failures so that the end user 
realizes 100% availability." 100% availability is a 
lofty goal, but CRI clearly understands that end 
user availability is of utmost importance to our 
customers. 

RESILIENCY AND RELIABILITY 

Inherent reliability of CRI hardware and software 
has increased from hundreds of hours to thousands 
of hours over the past ten years, while at the same 
time hard ware and software products became 
increasingly complex. Because of this increased 
complexity in hardware and software, it has 
become much more difficult to achieve increased 
end user perceived reliability with traditional 
methods of hardening the hardware and testing 
software. 

Traditionally, Cray Research has subjected it's 
hardware components and software systems to 
rigorous reliability tests in order to assure the 
highest possible reliability of our products. Today 
this approach has become increasingly difficult, so 
in addition to traditional reliability techniques, it 
has been determined that resiliency must be 
incorporated into our products in order to achieve 
our goal of high end user availability. 

HISTORY OF RESILIENCY PROJECT 

Realizing the need to advance resiliency within 
Cray Research, management initiated a project in 
1992, which became known as the Cray 
Resiliency Project. The Resiliency Project was 
designed to take a "bottoms up" approach by 
asking individuals who design, test, and maintain 
Cray products on a daily basis, what could be 
done to improve the resiliency of our products. 

In forming the System Resiliency Project Team, 
approximately 20 individuals were recruited from 
various areas of the company including 
Engineering, Software Division, Customer 
Service, System Test, and Manufacturing. The 
main objective of the team was to look at Cray 
Research's products of today and the future and 
determine what can be done to make these 
products more resilient. The team focused on four 
areas of biggest impact. These being: 

- Disk subsystems 
- Mainframe 
- I/O Subsystems 
- Electro-mechanical 

Four product sub-groups were formed based on 
these four areas of opportunity, each with a cross 
section of individuals with various backgrounds, 
job functions, and expertise. Each group 
researched resiliency issues and opportunities for 
current products, products in development, and 
future products. Primary focus was placed on the 
Cray YMP system, 10S-E, DD6x series of disks, 
and later generation products. 

Copyright © 1994. Cray Research Inc. All rights reserved. 

255 



During the summer of 1992, the groups met 
weekly to develop a resiliency requirements 
document. In the fall of 1992, the group worked 
with Software Division to prioritize the issues 
and opportunities for resiliency of Cray 
Research's products. A system resiliency 
requirements document was produced in late 
1992. 

PROJECT GOALS 

Goals established for the project were: 

Identify existing resiliency capabilities 
in current hardware products, assess the 
effectiveness of our use of resiliency 
features, and determine how unused 
features could be used. 

Identify resiliency features in new 
hardware being developed. Determine 
what plans are in place to utilize these 
features and recommend additional 
features where appropriate. 

Recommend additional areas of 
hardware and software design for 
resiliency for future products. 

PROJECT AXIOMS 

As the system resiliency project moved forward, 
the project team developed three axioms. These 
axioms have formed the foundation for our 
ongoing efforts. 

256 

Products must be designed with 
emphasis on resiliency. Resiliency 
starts with the conceptual design of the 
system. Resiliency is not an add on 
option. 

Resiliency must be verifiable under 
realistic operating conditions. Cray 
Research must be able to verify that 
resiliency features designed into the 
product are actually providing benefit 
to the customer. 

Availability improvement must be seen 
and experienced by our customer. This 
is the overall end result of the resiliency 
project. 

SPECIFIC RESILIENCY 
IMPLEMENTATIONS 

The following are examples of resiliency 
features on Cray Research mainframes: 

On older products (CRAY X-MP, CRAY 2, Y­
MP systems): 

SECDED on memory and on some of 
the channels. 

Some graceful degradation on multi­
CPU systems. 

Capability was fairly minimal and not much 
was designed into the products for resiliency. 

On future products, some examples are: 

Spare P .E. nodes on the MPP systems. 

Partitioned memories that will allow for 
degrading memory systems. 

Spare memory chip implementation. 

Disks have historically been one of the more 
difficult issues at Cray Research from a 
reliability perspective. Certainly the disks CRI 
is shipping today are orders of magnitude better 
that what has been shipped in the past. The 
DD6X series (and we believe the next 
generation will be even better) are almost not a 
factor when reliability analysis is done. But, 
nevertheless, there was some opportunity for 
resiliency implementation in the disk area. 

The following are examples of resiliency 
features on Cray Research disk subsystems: 

• On existing disk products (DD4X and 
DD6X disks): 

Mirroring of critical files for lOS 
Model E disks with UNICOS 7.0 
and 7.C. 

Alternate path access to lOS Model 
E disks available with operator 
intervention with UNICOS 7.0 and 
automatic alternate path with 
UNICOS 8.0. 

RAID technology with parity 
protection. 



• On future disk products: 

RAID disk with improved 
concurrent maintainability. 

Power, cooling, and environmental 
monitoring built into disk products 
allowing for early warning of 
abnormal conditions. 

Redundant power supply systems so 
that, in the event of a power supply 
failure, a service person will be 
able to concurrently remove and 
replace the power supply without an 
interrupt. 

The following are examples of resiliency 
features on Cray Research I/O subsystems and 
SSDs: 

• On existing products 

Automatic system clear software on 
power up available in IOS-E 7.0.5. 

On some of the air-cooled I/O 
subsystems, we have redundant 
(N+ 1) power supply technology 
implemented. 

• The next generation I/O products will be 
the most concurrently maintainable 
product in the history of Cray Research. 

Concurrent diagnosis and repair 
of hardware problems for most 
subassemblies. 

Implement a spare memory chip on 
SSD products, allowing for spare 
memory chip mapping. 

Redundant cooling systems, power 
supplies and cabinet designs that 
support concurrent maintenance. 

CURRENT RESILIENCY STATUS 
The resiliency project team has completed and 
prioritized project resiliency requirements. The 
resiliency requirements that are defined in the 
document are an integral part of hardware and 
software product plans. Product development 
teams have updated the requirements to include 
status of their projects and how resiliency 
requirements will be addressed. 

As stated previously, resiliency must be 
designed into the product, not added on. The 
awareness of resiliency requirements within 
Cray Research has increased dramatically since 
initiation of the resiliency project. We believe 
that resiliency must become "a state of mind" in 
the development process for Cray Research 
hardware and software products. The 
importance of implementing resiliency into Cray 
Research products is recognized at the highest 
levels of the company. 

CRT will continue to make product resiliency 
and reliability a high priority for hardware and 
software development projects. Continued 
emphasis on resiliency within Cray Research 
will result in higher end user availability and 
improved customer satisfaction with Cray 
Research products. 

257 





Performance Evaluation 



260 

UNICOS 7.C versus 8.0 Test Results 

C. L. Berkey 

Cray Research Inc. 
Eagan, Minnesota 

This paper discusses some of the testing that was done to compare the UN/COS 
8.0 Multi-threaded system with UN/COS 7.C. The tests and the testing 
methodology are described, the results are presented, and some conclusions are 
suggested. . 

I.Introduction. 

The purpose of the multi-thread feature in UNICOS 8.0 
was to reduce the Kernel overhead by reducing the 
granularity of the locked regions of code allowing 
multiple processors in the kernel simultaneously. A 
detailed discussion of the multi-threading code can be 
found in reference 1. 

To measure the success of this feature a set of "multi-
. thread tests" where developed to show the effect of 

reduced overhead as the number of processors is 
increased. The multi-thread tests where then run on 
UNICOS 7.C and UNICOS 8.0 systems and the results 
compared. There are three parts to these tests: 

1. C liD test run with a varying number of 
concurrent copies, 

2. Fortran UO test run with a varying number of 
concurrent copies, and 

3. A Fortran workload made up of the un optimized 
and optimized versions of the Perfect 
benchmarks TM, the Fortran UO test, a matrix 
multiply using 4 processors, and Nuet and Pueblo 
from the LANL Benchmarks TM each using two 
processors. 

These tests were used to measure the difference in 
elapsed time, user time, system time, file transfer rate, 

and physical I/O request rate between the two systems. 

2.Configuration. 

All the runs were done on a CRAY YMP-C90 with 16 
processors, a 256 MW central memory, and a 1 GW 
SSD with 4 VHISP's. For the disk tests a file system 
with 33 partitions (0-32) of DD60's was used. 

UNICOS versions 7.CAab and the 8.0.2ab where used 
for these measurements. The Itmp, Iroot, and lusr file 
systems where cached to SSD. The file system lusrltmp 
which had the 33 partitions was not cached in SSD. 

3.Test Description. 

• C I/O test 

The primary purpose of the C ua test is to 

determine the maximum physical I/O request rate. 

Therefore a fragmented file with record sizes that 

are not well formed was chosen. The fragmented 

file causes extra reads for file extends and the SSD 
residency causes read before write and no blocks 
are kept in the system buffers. 

Copyright 1994. Cray Research, Inc. All rights reserved. 



The C I/O test writes a 40 Mbyte file in an 
SSD file system and then reads it twice. 
The I/O is synchronous and sequential. 
The following write and read calls are 
used, in a C program, to transfer data in 
record sizes of 1024 bytes. 

rc=write(fd ,a.barray ,bytes_to _write); 

rc=read(fd,blk_in,bytes_expected); 

An NQS queue consisting of sixteen (16) identical 
jobs, each executing the ClIO test using a separate 
file in SSD, was created. Five runs were made with 
the number of concurrent processes of 1, 2, 4, 8 and 
16 each. The job accounting data was captured for 
each job and the "sar" data was captured for each 
run. 

• Fortran I/O test 

The Fortran 110 test was designed to model the I/O 
requirements of a large application witb a modest 
effort made to optimize the I/O bandwidth. The 
record size was selected so the available I/O 
bandwidth could be demonstrated while the 
physical I/O request rate could be correlated to the 
ClIO test. 

The Fortran 110 test writes and reads a 163 Mbyte 
file several times. The reads account for two thirds 
(66.6%) of the I/O requests to tbe test file. The 
record size was a constant 65536 bytes for all the I/ 
o requests. Synchronous and sequential I/O was 
performed using the following Fortran statements: 

write(i) ia 

read(i) ia 

An NQS queue consisting of sixteen (16) identical 
jobs, each performing I/O to a separate file on SSD, 
was created. When using SSD the number of 
concurrent jobs was 1, 2, 4, 8, and 16, while for 
Disk test it was 1,2,4, 8, 16, and 32. Also for disk 
the number of jobs queued is equal to the number of 
jobs allowed to run concurrently. Up to 32 jobs are 
executed each using a separate DD60 partition. The 
job accounting data was captured for each job and 
the "sar" data was captured for each run. 

• Fortran workload: 

The workload was intended to model a site and also 
demonstrate the sustained I/O and memory bandwidth 
of the system. The autotasked matrix multiply (MxM) 
test using four processors generates a· sustained 
memory demand of 24 words per clock period. The 
Perfect and LANL codes represent applications. 

There are five sets of programs used in the Fortran 
workload to create a workload of 130 jobs: 

- 8 copies of the Perfect Benchmark jobs. This created 
104 Perfect NQS jobs with each job executing the 
baseline and the optimized version of the 
benchmark. 

- 12 copies of the Fortran I/O test. 

- 8 copies of the Fortran autotasking test (MxM 
4000x4000) using 4 processors. 

- 2 copies of the LANL Benchmark Neut, problem 
size 128 using 2 processors. 

- 4 copies of the LANL Benchmark Pueblo, problem 
size 128 using 2 processors. 

Five NQS queues, one for each program set, were 
defined. The number of active jobs allowed for each 

NQS queue was set as follows: 

Fortran I/O (4) 

Fortran autotasking (1) 

LANLNEUT (1) 

LANLPUEBLO (1) 

PERFECT (15) 

The queues are started in the above .order with a five 
second wait between each queue start. All jobs in tbe 
workload were equal in priority. The job accounting 
data was captured for each job and the "sar" data was 
captured, with a sample every 4 seconds using tbe 
"sadc" command for the entire run. 

4.Results 

The results are presented on the following pages in the 
form of graphs and tables. Each graph shows a bar graph 
for UNICOS 7.C and UNICOS 8.0. For each graph the 
x-axis is tbe number of concurrent processes and tbe y­
axis is seconds or physical requests per second. 
Preceding each graph is a table showing the raw 
numbers and the percent difference between UNICOS 
7.C and UNICOS 8.0. For tbe Fortran workload all the 
results are shown on one graph. 

261 



262 

5.Conclusions 

The main observation is the large reduction in system 
time for UNICOS 8.0 compared to 7.C as the number of 
concurrent processes is increased. The graphs of system 
time, Figures 3, 7, and 11, show the system time for 
UNICOS 7.C grows more than linearly as the number of 
concurrent processes increases. For UNICOS 8.0 system 
time increases very little between 8 and 16 concurrent 
processes. This smaller system time translates into 
smaller elapsed time and higher transfer rates. However, 
for the Fortran workload, the 43.5% decrease in system 
time leads to only a 3.9% improvement in elapsed time. 
The reduction in system time means there is more CPU 
time available to user code but this workload is I/O 
bound, as can be seen by the high sustained Mbyte rate, 
and does not have enough cpu work to use the additional 
cycles available. 

The system time decreased on UNICOS 8.0 for all test 
cases with more than 2 concurrent processes. The higher 
system time, on UNICOS 8.0 for 1 and 2 concurrent 
processes, is due to the additional locks introduced for 
multi-threading. When only one or two concurrent 
processes are active the benefits of multi-threading 
maybe masked by increased path length. It should be 
noted that for a one CPU system these locks are not 
necessary and in fact for a one CPU system UNICOS 
8.0 will bypass the locks and therefore system time 
should be close to that for UNICOS 7.C. 

The increase in user time for the typical Fortran UO on 
UNICOS 8.0 was isolated to some degradation in the 
Fortran I/O library. For the C I/O test there was an 
improvement in the user time. The differences in user 
time are not related to multi-threading but rather to 
changes to compilers and libraries. 

No attempt was made to measure the effects of other 
changes to UNICOS 8.0 such as VNODES, MLS, etc. 
The assumption is that for these tests the effect of other 
changes is small compared to the multi-thread 
improvements. 

6.Future 

These tests will be run periodically to track perfonnance 
in future UNICOS releases. More analysis and data 
reduction of the sar and accounting data should be done. 
There are a number of additional tests that could be 
done, for example: a disk version of the C I/O test, some 

experiments with limiting the number of active CPU's 
to the number of active processes, and varying the I/O 
record sizes to get some additional data points. 

7.Acknowledgements 

I would like to thank Dick Sandness for providing the 
initial set of tests and procedures and helping to explain 
some of the results. Thanks also to Jeff Pomeroy, Dave 
DeHerder, and Neil Williams for helping to analyze the 
results and review this paper. 

8. References 

1) Neil Williams, Performance Analysis of the UNICOS 
8.0 Multi-threaded Kernel, 1993 Fall Proceedings, Cray 
User Group Inc. 



C 110 Test Results 

Table 1: 

Concurrent Elapsed Seconds User Seconds System Seconds 
Processes 7.C 8.0 %diff 7.C 8.0 %diff 7.C 8.0 %diff 

1 816 816 0.0 540.8 486.4 -10.1 260.0 314.4 +20.9 

2 481 486 +1.0 540.8 486.8 -10.0 373.2 458.4 +22.8 

4 361 302 -16.3 540.9 487.1 -9.9 812.2 606.5 -25.3 

8 384 236 -38.5 541.0 487.4 -9.9 2135.5 908.0 -57.5 

16 460 239 -48.0 541.3 487.4 -10.0 4757.1 941.7 -80.2 

Concurrent Total CPU Seconds Mbytesl Second Phys I/O req/Second 
copies 7.C 8.0 %diff 7.C 8.0 %diff 7.C 8.0 %diff 

1 800.8 800.8 0.0 2.2 2.2 0.0 2875.5 2875.5 0.0 

2 913.9 945.2 +3.4 3.8 3.8 0.0 8263.7 8332.2 +0.8 

4 1353.1 1093.6 -19.2 5.1 6.1 +19.6 11218.1 13407.8 +19.5 

8 2676.5 1395.3 -47.9 4.8 7.8 +62.5 10546.0 17150.5 +62.6 

16 5298.4 1429.1 -73.0 4.0 7.7 +92.5 8803.6 16941.7 +92.4 

263 



264 

C 110 Results 
Elapsed Time User Time 

1000 ~------------, 

800 

~ 600 
5 
u 
~ 400 

200 

o 
1 2 4 8 16 

Fig 1. Concurrent Processes 

System Time 
5000 r--------------, 

4000 

~ 3000 
c::: 
Q 
U 

~ 2000 

1000 

o 
1 2 4 8 16 

Fig 3. Concurrent Processes 

_ UNICOS7.C mm UNICOS 8.0 

1000 ~-----------, 

800 

~ 600 
c::: 
Q 
U 

~ 400 

200 

o 

18 

~ 16 

8 14 
CD 

~ 12 
~ 

~ 10 
Q 

C 8 

~ 6 
~ 4 
tl" 

~ 2 

o 

1 2 4 8 16 
Fig 2. Concurrent Processes 

Physical 1/0 Request Rate 

1 2 4 8 16 
Fig 4. Concurrent Processes 



Fortran 110 test results (SSD) 

Table 2: 

Concurrent Elapsed Seconds User Seconds System Seconds 
Processes 7.C 8.0 %diff 7.C 8.0 %diff 7.C 8.0 %diff 

I 239 330 +38.1 36.7 50.9 +38.7 183.0 258.7 +41.5 

2 181 167 -7.7 36.8 50.9 +38.3 300.2 262.4 -12.6 

4 175 140 -20.0 36.8 51.0 +38.6 608.5 397.5 -34.7 

8 172 125 -27.3 36.8 51.0 +38.6 1286.6 503.8 -60.8 

16 180 124 -31.1 37.2 51.0 +37.l 2739.8 505.9 -81.5 

Concurrent Total CPU Seconds Mbytesl Second Phys I/O req/Second 
Processes 7.C 8.0 %diff 7.C 8.0 %diff 7.C 8.0 %diff 

1 219.8 309.6 +40.9 502.1 363.6 -27.6 8045.5 5822.6 -27.6 

2 336.9 313.5 -7.0 663.0 714.3 +8.4 10622.6 11505.5 +8.3 

4 645.3 448.7 -30.5 685.7 857.2 +25.0 10987.7 13724.4 +24.9 

8 1323.4 554.7 -58.l 697.7 960.0 +37.6 11178.5 15371.4 +37.5 

16 2777.0 554.7 -79.9 666.7 960.0 +45.2 10682.6 15495.4 +45.1 

265 



266 

Fortran 110 SSD Results 
Elapsed Time 

400 r-----------., 

300 

~ 
t:: 
o 200 u 
Q) 

CI) 

~ 
t:: o 
U 

~ 

100 

o 
1 2 4 8 16 

Fig 5. Concurrent Processes 

System Time 
3000 r-----------., 

2000 

1000 

o 
1 2 4 8 16 

Fig 7. Concurrent Processes 

User Time 
400 r------------, 

300 

~ 
t:: 
o 200 u 
Q) 

CI) 

100 

o 
1 2 4 8 16 

Fig 6. Concurrent Processes 

Physical 1/0 Request Rate 
16 .---------------, 

o 
1 2 4 8 16 

Fig 8. Concurrent Processes 

_ UNICOS7.C 
~ UNICOS8.0 



Fortran 110 test results (Disk) 

Table 3: 

Concurrent Elapsed Seconds User Seconds System Seconds 
Processes 7.C 8.0 %diff 7.C 8.0 %diff 7.C 8.0 %diff 

1 164 161 -1.8 1.1 1.5 +36.4 7.2 10.4 +44.4 

2 168 165 -1.8 2.2 3.0 +36.4 15.1 20.8 +37.7 

4 168 164 -2.4 4.4 5.9 +34.1 33.2 41.7 +25.6 

8 169 165 -2.4 8.9 11.8 +32.6 89.3 85.3 -4.5 

16 219 181 -17.4 18.0 23.7 +31.7 1218.7 176.1 -85.6 

32 407 194 -52.3 36.2 47.4 +30.9 447l.4 41l.3 -90.8 

Concurrent Total CPU Seconds Mbytes/ Second Phys I/O req/Second 
Processes 7.C 8.0 %diff 7.C 8.0 %diff 7.C 8.0 %diff 

1 8.3 11.8 +42.2 18.3 18.6 +l.6 295.2 300.2 +1.7 

2 17.4 23.7 +36.2 35.7 36.4 +2.0 576.1 585.7 -l.7 

4 37.6 47.7 +26.9 7l.4 73.2 +2.5 1152.3 1178.6 -2.3 

8 98.2 97.1 -l.1 142.0 145.5 +2.5 229l.6 2343.0 +2.2 

16 1236.7 199.8 -83.8 219.2 265.2 +2l.0 3536.7 427l.8 +20.8 

32 4507.6 458.7 -89.8 235.9 494.9 +109.8 3807.6 7971.1 +109.3 

267 



268 

Fortran 110 Disk Results 
Elapsed Time 

500 r-------------, 

400 

~ 300 
t: 
8 
~ 200 

100 

o 
1 2 4 8 16 32 

Fig 9. Concurrent Processes 

System Time 
5000 r-------------, 

4000 

~ 3000 
t: 
o 
to) 

~ 2000 

1000 ~ 

o Li.l.~~L 
1 2 4 8 16 32 

Fig 11. Concurreni Processes 

User Time 
500 r---------------, 

400 

~ 300 
t: 
8 
~ 200 

100 

1 2 4 8 16 32 
Fig 10. Concurrent Processes 

Physical 1/0 Request Rate 
10 r---------------, 

o '---~ 
1 2 4 8 16 32 

Fig 12. Concurrent Processes 

• 
UNICOS7.C 
UNICOS8.0 



Fortran Workload results 

Table 4: 

Processors 
Elapsed Seconds User Seconds System Seconds 

7.C 8.0 %diff 7.C 8.0 %diff 7.C 8.0 %diff 

16 674.0 648.0 -3.9 6503.5 6616.5 +1.7 2320.5 1312.2 -43.5 

Processors 
Total CPU Seconds Mbytes/ Second Phys I/O req/Second 
7.C 8.0 %diff 7.C 8.0 %diff 7.C 8.0 %diff 

16 8824.1 7928.7 -10.1 545.2 568.2 +4.2 8627.9 8936.3 +3.6 

269 



~ 
t:: 
0 
(,) 
Q) 
(/) 

270 

Fortran Workload 

10000 ~------------------------, 

9000 

8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

o '----
elapsed user 

• 

UNICOS7.C 
UNICOS 8.0 

system Total CPU 
Fig 13 . 

Requests 

~ 
~ ..... 
~ ..... 
~ 
0 
::n 
CD 

.Q 
t:: 
CD 
CI) 

Cit 
........ 
en 
CD 
(') 
0 
::J 
Q. 



Workload Characterization of CRAY Supercomputer Systems 

running UNICOS for the Optimal Design of NQS Configuration 

in a site. 

Young W. Lee, Yeong Wook Cho 
KIST(Korea Institute of Science and Technology) I 

SERI(Systems Engineering Research Institute) 

Yoo-Sung P.O. Box #1, Yoo-Sung, Dae-Jeon, South Korea 
ywlee@garam.kreonet.re.kr 

ywcho@kumdori.seri.re.kr 

Alex Wight 

The Computer Science Department of Edinburgh University 

Room 2422, JCMB of Kings Buildings, Mayfield Road, 

Edinburgh, EH9 3JZ, United Kingdom 

asw@dcs.ed.ac.uk 

This paper discusses a workload characterization study of CRA Y supercomputer 

systems running UNICOS operating system, of which the result was used to optimally 

configure NOS queues in a site in terms of system performance. A NOS configuration 

advisor package has been developed and implemented at KIST/SERI National 

Supercomputer Center as a CRA Y supported work. This paper discusses a part of the 

work. UNICOS supplied workload records were used to generate two- dimensional 

workload distribution charts as advising information for optimal NOS configuration. A 

clustering technique using K-means non-hierarchical clustering algorithm is also applied 

to analyze the workload in terms of NOS queues. 

1. INTRODUCTION 

The NQS(Network Queueing System) is the 

batch processing subsystem of UNICOS. 

Requests in batch queues are scheduled for 

initiation based on criteria configured into NQS 

by an system administrator. Each site should 

design its own NQS configuration based on its 

271 



workload demand and operation policy. How to 

configure NQS efficiently is a time consuming 

and erroneous job but also very important task 

to system administrators. The efficiency of NQS 

configuration directly affects the system per­

formance and a coarse or erroneous NQS 

configuration would cost expensively thinking 

the price of CRA Y systems. Also, a system 

administrator would require significant amount 

of system administration experience in order to 

configure NQS efficiently. With the experience, 

the person who is in charge of NQS con­

figuration design should refer to the workload 

of his/her CRA Y supercomputer system for 

certain period of time. The workload collection 

and analysis requires a lot of effort and time 

because the collected data is huge in its size. 

Nevertheless, good workload characterization is 

essential for the design of efficient NQS 

configuration. The person who is in charge of 

NQS configuration design should test the 

efficiency of the designed NQS configuration 

before implementing it into the production 

system. However, we could not find any 

available tool for these required tasks of 

designing efficient(optimal) NQS configuration. 

In recognition of these hard tasks and 

situation, we developed a package for it, 

named "An Advisor for optimal NQS Con­

figuration Design". We installed and have been 

testing the package in the National Supercom­

puter Center at KIST/SERI, Dae-Duck Science 

Town, Korea. The package analyzes collected 

272 

workload data and plots work demand on two 

dimensional chart in the form of NQS con­

figuration chart. A systems administrator who is 

in charge of NQS configuration design can 

readily design his NQS configuration based on 

the chart. The package even generates 

recommended queue sectors for optimal NQS 

configuration through K-means non-hierarchical 

clustering algorithm. These functions are a 

good bench which systems programmers can 

rely on to make decision when they design 

their NQS configuration. The package further 

offers NQS configuration simulation function 

which enables a systems programmer to 

simulate his test version NQS configuration 

freely before implementing it into his real 

system so that he can select the best 

configuration which the site seeks. This 

simulation function will save a lot of operational 

cost, time and effort because the site can 

obtain the best configuration for its work 

demand and policy without having it 

implemented into its real system. The site will 

be free from the risk to run its NQS con­

figuration draft directly at the production 

system with its valuable customers' jobs! 

In this paper, we introduce two functions 

among the above three functions of our 

package with real usage experience gained at 

the National Supercomputer Center of KIST/ 

SERI. Figure 1 and figure 2 show the general 

diagram for the first function. For further 

explanation, we shows a CRAY2S 4/128(4 CPUs 



& 128 MW main memory) system configuration 

at the National Supercomputer Center of 

KIST /SERI which had been operated for last 5 

years until November 20, 1993 in figure 3 and 

a CRA Y C90 16/512 (16 CPUs & 512 MW main 

memory) supercomputer system configuration 

which was opened December 1, 1993 and will 

be operated for next 5 years in figure 4. In 

this paper, we show examples using workload 

data of November 18, 1993 in a CRA Y2S 

system at the National Supercomputer Center 

of KIST/SERI (reported on November 19, 1993 

by UNICOS accounting facility) and/or the 

workload data of January 19, 1993 in a CRA Y 

C90 system at the National Supercomputer 

Center of KIST/SERI. 

2. WHAT WORKLOAD DATA SHOULD 

BE COLLECTED FOR NQS 

CONFIGURATION DESIGN? 

Workload characteristics can be represented 

by parameters (variables). In characterizing 

physical resource demands for process pro­

cessing, three variables are usually considered 

significant : CPU time demand (real time, 

system time, user time), memory space 

demand (mean, peak, total), and I/O data 

transferred. Real CPU time demand (system 

time + user time) and peak memory space 

demand are used for NOS queue setting and 

I/O data transferred variable is not used for 

NOS queue configuration setting. Instead I/O 

tape unit usage information is used in NOS 

configuration setting. Our package uses real 

CPU time demand, peak memory space 

demand and some other necessary variables 

such as frequencies, etc. for the workload 

characterization of NOS configuration design. 

3. HOW TO COLLECT THE REQUIRED 

WORKLOAD DATA? 

How to collect the above workload data for 

NOS configuration design? Three methods are 

available to collect workload data. The first 

method is to use accounting facility provided 

by CRA Y UNICOS system. Performance related 

UNIX packages can be also used. The third 

method is to use our own self developed 

kernel programs to collect workload data. Our 

package uses the accounting facility provided 

by standard CRA Y UNICOS system, because we 

considered maintainability, portability, generality 

and easiness. 

Our package first collects workload data which 

contain variables pertaining to process 

characteristics and then extract the necessary 

variables including real CPU time demand and 

memory space demand. Table 1 shows the 

format of the collected workload of November 

18, 1993, which was processed by "/bin/ 

acctcom -fhikrt /usr/adm/acctlday/paccf' sys­

tem command. The size of the produced data 

was approximately 50 MBytes on the day of 

273 



November 18, 1993 on a CRAY2S super­

computer system running UNICOS operating 

system at KIST ISERI National Supercomputer 

Center .. Table 2 shows the processed data 

according to process type on March 18, 1993. 

The results were statistically very similar to 

each other. 

274 

4. CONVENTIONAL WORKLOAD 

CHARACTERIZA TION 

On a CRAY2S and a CRAY C90, we collected 

and analyzed these data for more than 3 

months in October, November, December 1993 

and January 1994, and found that the number 

of used process type was less than 500. The 

top 20 popular system commands were shown 

in table 3. Figure 5 shows the cumulative 

frequency distribution of all processes. The top 

2 popular system command types(sh and echo) 

accounted for 46% of the total number of 

processes in the workload, the top 5 popular 

system command types (sh, echo, tpstat, grep, 

wc) for 72% of the total number of the 

processes in the workload and the top 16 

popular system command types for 90% of the 

total number of processes in the workload. 

Among top 20 processes, there was no user 

process type but system command types. 

Figure 6 shows the cumulative real CPU time 

distribution of all process types. The top 

process consumed 306.62 minutes (7.4% 

among 4146.85 minutes), the top 10 processes 

consumed 49% of the total CPU time and the 

top 20 processes consumed 69% of the total 

CPU time. Most of system command types 

consumed less than 1 second CPU time per 

each. 

Figure 7 shows mean memory size distribution 

of all process types. The largest one occupied 

44 % (57 MW) of the global memory space. 

Each of the top 6 processes occupied more 

than 10% (13 MW) of the global memory space. 

The bottom one occupied only 19,240 Word 

(0.015%) of the global memory space. Most of 

system command types occupied less than 100 

KW of the global memory space. 

Figure 8 shows the utilization of the CRA Y2S 

on November 18, 1993 at the National 

Supercomputer Center of KIST ISERI and figure 

9 shows the average daily utilization of the 

CRAY2S from October 25 to November 18, 

1993. 

5. TWO DIMENSIONAL WORKLOAD 

CHART 

There can be several ways to analyze the 

collected workload. As we mentioned in 

introduction section, it is required to analyze 

the collected workload in order to design 

optimal NOS configuration. We found, 2 

dimensional workload plotting method, what we 

are going to explain below, is very helpful for 



it. Figure 10 shows the old NOS configuration 

of the CRA Y2S at KIST ISERI on 2 dimensional 

chart before we applied our package for NOS 

configuration design. We have 16 general 

purpose NOS queues and 6 special purpose 

queues. The interactive jobs have been defined 

to have 3000 second real cpu time limit and 4 

MW maximum memory limit. Excluding the I/O 

tape unit usage information, we can specify 

the physical resource requirement of NOS 

queues well in the 2 dimensional chart. Hence, 

we become to have an idea that, if the 

physical resource demands of each process 

can be characterized in the form of 2 

dimensional NOS configuration chart, the 

systems programmer can readily design the 

required NOS configuration. 

Figure 11 shows the output chart by using 

plotting function of our package, that is, by 

issuing "acctanaL1 acctcom.1119 -f' command 

(the workload data used were collected during 

March 18, 1993 and reported on March 19, 1993 

by UNICOS accounting facility). The x axis 

denotes memory size(mean size in KW) 

occupied by each process and y axis denotes 

cpu time(real time in second) consumed for 

! each process. A denotes 100 and therefore 2A 

means 200 processes. B denotes 1,000 and 

therefore 5B means 5,000 processes. C 

denotes 10,000 and therefore 6C means 60,000 

processes. D denotes 100,000 and therefore 4D 

means 400,000 processes. Comparing the 2 

dimensional workload chart with the 2 dimen-

sional NOS configuration chart of figure 10, it 

could be found that our approach is very 

useful for NOS configuration design. 

Our package provides zooming facility. If it is 

required to close up a window area, then by 

zooming the specified window area, users can 

close up the selected window area in detail. 

Figure 12 shows a sample chart. Our package 

can process both full process workload data 

obtained by "acctcom" procedure (figure 11) 

and reduced workload data according to 

command type by "acctcms" procedure (figure 

13). 

6. CLUSTERING 

Clustering techniques has been often used to 

analyze workload data, especially to find input 

distribution and related values to drive 

performance models. Our package provides 

clustering function to produce recommended 

NOS queues as well as the above purpose. 

CRA Y UNICOS System administrators will have 

better chance to design optimal NOS con­

figuration by using the clustering function of 

our package together with 2 dimensional work­

load chart plotting function of our package. 

Our package uses an adopted K -means 

non-hierarchical clustering algorithm ([ANDER­

BERG 731, [HARTIGAN 751, [SpATH 82]). The 

process types were regarded as pOints in the 

2 dimensional chart(space). The essence of the 

275 



technique can be explained in 4 steps. First, 

it assigns the initial values to pre-defined 

number of clusters(say k), that is, selects the 

first k data from all data. Second, it takes the 

initial values as the centroid of each mass and 

using it, assigns the next data to clusters 

which have least Euclidean distance in the 2 

dimensional chart(space) between each 

component and the centroid of its cluster. 

Third, it recalculates the centroid of each 

cluster and assigns the next data to cluster 

which have least Euclidean distance in the 2 

dimensional chart(space) between each 

component and the centroid of its cluster. 

Fourth, it repeats the second step and the 

third step until the member of each cluster 

does not change, that is, the members of 

each cluster becomes stable. The pre-defined 

number of cluster or the value of k is varied. 

The goodness of a partition is tested based on 

SSE (Sum of Squared Error) and the best K is 

selected. 

The clustering function accepts workload data 

classified to the process type, which is 

produced by "acctcom" procedure and 

generates the following attributes. 

276 

Elements of each cluster 

Frequency of each cluster 

Mean(Centroid) of each cluster 

Minimum and maximum values of each 

cluster 

- Standard deviation from Centroid of each 

cluster 

Median 

- Sum of squared error from median of 

each cluster 

Figure 14 shows a sample output from a 

CRAY2S data of November 18, 1993 in the 

National Supercomputer Center of KIST ISERI. 

We show the recommended NOS queue in 2 

dimensional chart using this output in figure 15. 

By overlapping figure 15 onto figure 13, system 

administrators can find workload information in 

each recommended queue. This will enable 

system administrators to have better insight to 

design their own optimal NOS configurations. 

7. CONCLUSIONS 

Up to now, system administrators have relied 

on their experience and feeling in designing 

their NOS configuration. This kind of non­

scientific approach, so called, art approach to 

design NOS configuration should be no longer 

allowed, because the CRA Y super- computer 

systems are very expensive machine and the 

NOS configuration directly and greatly affects 

the performance of CRA Y systems. In this 

paper, we showed how our package can 

effectively analyze workload in terms of NOS 

queues. We further showed the clustering 

function of our package suggests recom­

mended NOS queues for optimal NOS con­

figuration using given workload. Using our 

approach, the system administrators can 



effectively configure their NQS queues 

according to their workload characteristics and 

their operation policy. We hope other sites 

share our experience and package for their 

NQS configuration setup. Anyone who 

interested in this package will be welcomed by 

Young W. LEE at the email address of 

"ywlee@garam.seri.re.kr". We will send the 

introduced modules and documents to him/her. 

In this paper, we have not introduced the 

simulation function of our package which 

enables system administrators to simulate his 

test version NQS configuration freely without 

implementing it into his/her real production 

system so that he/she can select the best 

configuration which the site requires. We leave 

it for another opportunity. 

ACKNOWLEDGEMENTS 

This research would not have been possible 

without the help of the following individuals : 

Mr. Yoon, Sang Hoon at the National 

Supercomputer Center of KIST/SERI and Mr. 

Park, Sung Won at CRAY Research Inc., Korea. 

We deeply appreciate their help. 

This work was funded by eRA Y Inc. under 

Cooperative Agreement No. KIST/SERI-D003200. 

REFERENCES 

[ANDERBERG 73] Michael R. ANDERBERG, 

"Cluster Analysis for applications", Academic 

Press, Inc. 1973 

[HARTIGAN 75] John A. HARTIGAN, "Clustering 

Algorithms", John Wiley & Sons, Inc., 1975 

[SpATH 82] Helmuth. SpATH, "Clustering 

analysis algorithms", John Wiley & Sons, Inc., 

1982 

277 



FIGURES AND REFERENCES 

! 

278 

lusr ladmJacct/day/pacct* 

( datime ) 

~/arorom-~ 

! 

Figure 1 

(b) ! 



/usr/admlacct/sum/data/mmddlOOOO/cms 
(data file) 

I 

! 

! 

Figure 2 

279 



280 

KIST CRA Y -2S SYSTEM 
CONFIGURATION 

Foreground 
Processor 

4480 4670 
Cartridge Around 

Tape Tape 

SERI Network 

Figure 3 

CRAY-2S 4/128 

Maintenance 
Control 
System 



N 
00 
I-l 

-n 
cO· 
c 
~ 

CD 

~ 

KIST CRA Y Y -MP ego SYSTEM 
CONFIGURATION 

C90 116512 

--------
------------' '-----------­

............................. 

CRAY SYSTEM -------SERI NETWORK 

05-42 X 2 (80 GB) 

--------
STK 

TAPES 

CPU 1-16 (1 GFLOPS/Processor) 

Central Memory (512 MW, 15NS Bi-CMOS) 

IOC 1 
SSD 

(512 MW) 

DA 60 DISK ARRAY X 16 I ~ II ~ II ~ II ~ 
~~~~ BDE·60s ~ ~ ~ ~ 

n : II ; I T:~'~:':B I : II ;II ;II :

------------------------- -

:D

282

ACCOUNTING RECORDS FROM: Fri Nov 17 00:00:03 1993
COMMAND START END REAL
NAME USER TTYNAME TIME TIME (SECS)
#Sccton root? 00:00:09 00:00:09 0.02
echo
sh
echo
echo
sh
tpstat
grep
wc
sh
echo
echo
echo
sh
sh
tpstat
tpstat
sh
grep
wc
sh
echo
echo
echo

root
adm
root
root
root
root
root
root
root
root
root
root

?
?
?
?

00:00:09 00:00:09
00:00:08 00:00:08
00:00:09 00:00:09
00:00:09 00:00:09
00:00:09 00:00:09
00:00:09 00:00:09
00:00:09 00:00:09
00:00:09 00:00:09
00:00:09 00:00:09
00:00:09 00:00:09
00:00:09 00:00:09
00:00:09 00:00:09

root 00:00:09 00:00:09
operator ttyp005 00:00:09 00:00:09
operator ttyp003 00:00:09 00:00:09
root? 00:00:09 00:00:09
operator ttyp003 00:00:09 00:00:09
root? 00:00:09 00:00:09
root 00:00:09 00:00:09
root
root
root
root

?
?
?
?

00:00:09 00:00:09
00:00:09 00:00:09
00:00:09 00:00:09
00:00:09 00:00:09

0.01
0.8(
0.01
0.02
0.00
0.05
0.06
0.2(
0.00
0.01
0.01
0.01
0.00
0.03
0.06
0.06
0.16
0.06
0.17
0.00
0.01
0.01
0.01

Table 1

CPU (SECS) CHARS
SYS USER TRNSFD

0.01 0.00 16392
0.01
0.02
0.00
0.01
0.00
0.01
0.00
0.01
0.00
0.01
0.00
0.01
0.00
0.01
0.01
0.01
0.01
0.00
0.01
0.00
0.01
0.00
0.01

0.00
0.03
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00

Table 2

o
981

o
o
o

2668
716

9
o
o
o
o
o
o

2668
2668

o
716

9
o
o
o
o

PHYS CPU HOG
REQS FACTOR FACTOR

o 0.27 0.(8

20
1
1
o
7
2
.{

o

1
o
o
7
6
o
2
.{

o
1
1

0.32
0.55
0.32
0.32
0.65
0.35
0.'{7
0.3'{
0.63
0.31
0.32
0.32
0.65
0.32
0.32
0.35
0.31
0.4.7
0.3'{
0.63
0.31
0.32
0.31

0.58
0.06
0.65
0.39
0.58
0.34.
0.16
0.06
0.85
0.95
0.95
0.64.
0.56
0.39
0.32
0.33
0.10
0.16
0.08
0.81
0.95
0.95
0.95

TOTAL COMMAND SUMMARY
COMMAND
NAME

TOTALS

a.out
standard
discover
19999.ex
opt.,j)128
tnd
crfree.x
tfq
run3
run.{
run2
run1
relap5.x
cyl.{c
p9oi1L03d
cpc.r
p4-05.e
crf
optJpf
AM IP_1
p4-0.{.e

NUMBER
CMDS

TOTAL
KCORDHN

TOTAL TOTAL
CPU-MIN CONN-MIN

85968 101065215.15 100(6.(0 100(6.40

205 977"H.3'{
51 2173513.16
2 H3983.79

31 6025U25.60
3
1
6
1
1
1

11
21
18
2

25
1
2

10
28

18886S.58
4.206828.66

'{00925.58
7734.3ol.03

2335266.13
2165637.12
2165018.17
2159'{8ol.02

31U'{S.3'{
2374.73.78
666095.51
127567.6(
550560.50
518.t26.17

4.0082 . .{7
2H100.39
'{(576S.33

1861. 22
685 . .t2
6'{7.06
633.0.{
590.21
501.77
'{68.37
389.83
377.1'{
3.{9.75
3'{9.65
3'{8.76
285.08
U3.77
193.5.{
187.60
H3 . .t2
13'{.73
131. 85
122.31
117.9.{

1861. 22
685 . .{2
6.{7.06
633.0'{
590.21
501.77
.{68.37
389.83
377.H
3.{9.75
349.65
3.{8.76
285.08
2'{3.77
193.5.{
187.60
H3.(2
13'{.73
131.85
122.31
117.9.{

TOTAL MEAN MEAN HOG
REAL-MIN SIZE-K CPU-MIN FACTOR

13974'{.45 10059.84

1932.05 5251.66
1387.67 3171.06

0.12

9.08
13."

85.82 11'{9.79 323.53
66'{.99 95179.96 20 . .{2
605.49 320.00
501.82 838'{.06
'{68.(7 856.00
399.86 198'{.03
382.15 6191.97
35.{.93 6192.00
355.61 6191.90
35.{.28 6191.90
285.65 1095.98
152.66 974..16
193.55 3'{'{1.63
187.70 679.99
139.36 3838.77
13.{.75 38'{8.00
138.71 30'{.00
12(.96 1750.'{1
113.09 3779.53

196.74.
501.77
78.06

389.83
377.H
3.{9.75
349.65
3'{8.76
25.92
11.61
10.75
93.80

5.74.
13'{.73
65.93
12.23

'{.21

0.07

0.96
0.'{9
7.5'{
0.95
0.97
1.00
1.00
0.97
0.99
0.99
0.98
0.98
1.00
1.60
1.00
1.00
1.03
1.00
0.95
0.98
1.0,{

K-CHARS
TRNSFD

738232753

13700.{0
2730'{84.0.{

8'{84.88
186603915

20260(5
22

8970
2005920

16356352
16356352
16356352
16356352

370197
13656

6974.676'{
2323

3712951
3525

.{50927
1533598
H39711

KCORE
MIN F STAT

0.00 2 0
0.00 0 0
O.O,{ 0
0.00 0 0
0.00 0 0
0.00 1 0
0.01 0 0
0.01 0 0
0.01 0 0
0.00 1 0
0.00 0 0
0.00 0 0
0.00 0 0
0.00 1 0
0.01 0 0
0.01 0 0
0.01 0 0
0.01 0 0
0.01 0 0
0.01 0 0
0.00 1 0
0.00 0 0
0.00 0 0
0.00 0 0

I/O BUFS
RD/WR

770(H7

'{0882
3'{18696

3518
(86596
58326

20
620

126760
99928

100096
100352
100'{2'{

21H
1863

933 .. .{
69

5(814.
101

23018
16299
20.{96

Table 3

*** TOTAL FREQUENCY RATIO ***

* COMMAND * * FREQUENCY * * AOOUMJREQ * * RATIO * * ACCUM.....RATIO *

sh 95299 95299 (23.83935 ") (23.83935 ")
echo 8827'{ 183573 (22.08203 ") (.{5.92138 ")
tpstat 37566 221139 (9.39726 ") (55.31863 ")
grep 37088 258227 (9.27768 ") (6'{.59632 ")
wc 29167 28739'{ (7.29622 ") (71.89253 ")
qstat 18902 306296 ('{.72840 ") (76.62093 ")
rm 10196 316492 (2.55056 ") (79.17149 ")
cut 9110 325602 (2.27890 ") (81.45039 ")
assign 5594 331196 (1.39936 ") (82.84975 ")
cat 5146 336342 (1.28729 ") (84.13703 ")
expr 4860 341202 (1.21574 ") (85.35278 ")
Is 4655 345857 (1.16446 ") (86.51724 ")
cp 3807 349664 (0.95233 ") (87.46958 ")
line 3280 352944 (0.82050 ") (88.29008 ")
date 2644 355588 (0.66141 ") (88.95148 ")
csh 2385 357973 (0.59662 ") (89.54810 ")
awk 2285 360258 (0.57160 ") (90.11970 ")
sed 2074 362332 (0.51882 ") (90.63852 ")
vi 1746 364078 (0.43677 ") (91.07528 ")
setvar 1615 365693 (0.40400 ") (91.47928 ")
mv 1598 367291 (0.39974 ") (91.87903 ")

CRAY-2S FREQUENCY DISTRIBUTION
(Nov. 18, 1993)

Cumulative Frequency Ratio (%)
100~------~========~~~==~~==~----~

90

80

70

60

50

40

30

20

10

o~--~--~--~--~--~--~----~--~--~--~--~--~

o 10 20 30 40 50 60 70 80 90 100 200 300

of Command Types

Figure 5

283

284

CRAY-2S CPU TIME DISTRIBUTION
(Nov. 18, 1993)

Cumulative CPU Time Ratio (%)
100~--------------------======~~~~~

90

80

70

60

50

40

30

20

10

10 20 30 40 50 60 70 80 90 100 200 300

of Command Types

Figure 6

CRAY-2S MEAN MEMORY DISTRIBUTION
(Nov. 18, 1993)

100

90

80

70

60

50

40

30

20

10

o

Memory Ratio (%)

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

Command Types

Figure 7

CRAY-2S SYSTEM UTILIZATION
(Nov. 18, 1993)

Utilization (%)
100~~--~~~~4-~~~4-+-~--~+-~-+~

90

80
70 .. .

60 .. .

50

40

30

20

10
O~~~~~~~~~~~~~~~~~~~

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Wall Clock Time

I ~ SYSTEM -+- USER + 1/0 I
Figure 8

CRAY-2S SYSTEM UTILIZATION
(Oct. 25, 1993 - Nov. 18, 1993)

Utilization (%)
100~--------~-------k--~~~~~--~--~

90
80 .

70

60

50
40 .. .

30 .. .

20 .. .

10 .
~-­
O~~~~~~~~~~~~~~~~~~~

25 26 27 29 30 31 1 2 3 4 8 9 10 11 14 15 16 17 18

Date

I ~ SYSTEM -+- USER + 1/0 I
Figure 9

285

286

a>u
(seos)

100000. 00 ~-i-t-i-t-i-t--~-~-i--t--~-t-i-t-i-t--t-t--~-t--t-t-i-t--~-~-i-t--~-t-i-t--t-t-i-t--~-~
I I I • I I I • I , I I

90000 .00 ::-1--:-1--:-1--1-r-1-1--:-1--:-:-:-1--:-:-:-:--1-1--:-1--1-:--1-1--1-1--:-1--1-1--:-:-:-1
80000. 00 t--~-~-i-t-i-~--t-t-i-~-i-~-i-t-i-t-i-~-i-t-i-t-i-t--t-~--~-~--~-~-i-~--~-t-i-~--~-~

I I • I I I • I I I I I •• I I I I I I I I I I • , I I • I I I I I •• I I t

70000. 00 r:-r-1-r-:-r-1-1--1-1--1-:-:-1--1-r-1-1--1-1~-1-1-:-r:-1--:-1--1-1--1-1--1-:-:-1--1-1
60000. 00 ~--t-~--t-t-i-~--t-~--~-~-i-~--~-t-i-t-i-~-i-t-i-t--~-t-i-t--t-~--~-~-i-~--~-~-i-~-i-t

I I I I I •• I • I I ••• I I I , I I I • I I • I I I I ••• I ••• I • I

50000. 00 1--:-1--1-:--1-1--:-1--:-1--1-1--:-1--1-::-:-1-1--:-1-1-1--:-1--1-1--:-1--1-1--1-1--:-1--1-1
40000. 00 ~-i-~--~-t-i-~--~-t--~-t--~-~-i-t--~-t-i-t--~-~--~-t-i-t--~-~-i-t--~-~-i-t-i-~-i-t--~-t

I I • I I • I I I I I • I I •• I I •• I I I • I I I I I • I I I • I I I , I

30000. 00 t--t-t--t-t--:--t-;--t-;--t--:--t--t-t--:--t-;--t-i-t--t-;-t-;;-t--t-t--t-t-;--t--t-t-i-;i-t
I • I I I I I I I I I I I I I I I , I I I I I , I I I I I I •• I • I •• I I

20000. 00 t-;--;i-t--t--t--t-t--t--t--;--;;-;-t-;-t-;-t-t--t-t--t-t--t-t--t--t--t-t--t-t--t-;-t-;-t-t
I I I I • I I I I I I I I I I I I I I I •• I •• I I • I I I I I I I I I I •

10000. 00 1--:-1--1-:--1-1--:-1--1--1--1-:-:-1--1-t--1-1--1--1--:-r-:-:--1-1--1-1--1-1--:-:--1-1--;-1--1-1
9000 .00 r-;-1--;-1--:-1--:-:-:-r-1-1--:-1--:-1--1-1--:--r-:-r-:-:-:-1--:-1--1-1--1-:-:-1--:-1--:-1
8000 . 00 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+

: 1: : : : : : : : : : : : : : : : :
7000 . 00 +--+-+--+-+--+-+--+--+--+--+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+--+

6000. 00 1--1-1--1-1--1-1--1--1--1--1--121--1--1--1-1--1-1--1-1--1--1--1--1--1-1--1-1--1--1--1-1--1-1--1-1--1-1 : : : : : : : : : : : : 1: : : : : : : : : : : 2: : : : : : : : : : : 2: : : : :
5000 . 00 +--+-+--+--+--+--+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+--+

: 2: 1: : : : : : : : : : : : : : : : :
4000 . 00 +--+-+--+--+--+--+--+--+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+--+--+-+--+-+--+-+--+-+--+-+

: 2: : 2: : : : : 3: : : : : : : : : : :
3000 . 00 +--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+--+

: : : : : : : : : : : : 2: : : : : : : : : 8: 3: 2: 1: : : : : : : 1: : : : : : : :
2000.00 +--+-+--+-+--+--+--+--+--+--+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+

: : : : : : : : : : : : 2: : : : : : : : :11: 4: 1: : 1: : : 1: : 2: 4: : : : : : : :
1000 . 00 +--+-+--+-+--+-+--+--+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+--+--+-+--+--+--+--+

: : : : : : : : : : : : : 2: : : I; : : : : : : : : : : : : : : 2: : : : : : : :
900 . 00 +--+--+--+-+--+-+--+-+--+--+--+--+--+-+--+--+--+--+--+-+--+-+--+-+--+--+--+--+--+-+--+-+--+--+--+-+--+--+ : 8: 1: ; : : : ; : : : ; : : : ; : : :
800. 00 +--+--+--+-+--+--+--+--+--+--+--+--+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+--+--+-+--+-+--+--+--+-+--+-+

: : : : 1: : : : : : : : : : : 1: : : I; : : 1: : 1: : : : : : : : 1: : : : : ; : :
700.00 +--+-+--+--+--+--+--+--+--+--+--+--+--+--+--+-+--+--+--+-+--+-+--+-+--+--+--+--+--+-+--+--+--+-+--+-+--+--+

: : : : : I; : : : : : : 1: : : : : : 1: : : 5: : : : : : : : : 1: 1: : : : : : : :
600. 00 +--+--+--+--+--+--+--+--+--+--+--+--+--+-+--+--+--+-+--+--+--+--+--+--+--+--+--+--+--+-+--+-+--+--+--+-+--+-+

: : : : : : : : : : : : : : : : : : 1:
500 . 00 +--+-+--+--+--+-+--+--+--+-+--+--+--+--+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+--+--+--+--+-+--+--+--+-+

: : : : 1: : : 1: : : : : : : : : : : 1: : : 2: : 1: : : : : : : : : : : : : : : :
400.00 +--+--+--+--+--+-+--+-+--+--+--+--+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+--+--+--+--+-+--+-+--+-+--+--+

: : : : 1: : : : : : : : 3: : : : : : ; : : 2: : : : : : : : : : 1: : : : : : : :
300. 00 +--+--+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+--+--+--+--+--+--+-+--+-+--+--+

: : : : : : 1: : : : : : 3: : : : 1: : 2: : : 4: 5: : : : : : : : : : : : : : : : :
200. 00 +--+-+--+-+--+-+--+--+--+--+--+--+--+-+--+-+--+--+--+-+--+-+--+-+--+--+--+-+--+-+--+--+--+-+--+-+--+--+

: : : : 2: : 4: : 1: : : :26: : : : 2: 1: 5: : :14: 3: : 1: : : : : 8: 3: : : : : : : : :
100 . 00 +--+--+--+-+--+--+--+--+--+--+--+--+--+--+--+--+--+-+--+-+--+-+--+--+--+--+--+--+--+-+--+-+--+-+--+-+--+--+

: : : : : 1: : 1: : : : : 6: : : 2; : : : 1: : I; : : : : : : : 1: : : : : : : : : :
90. 00 +--+--+--+-+--+--+--+--+--+--+--+--+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+-+--+--+--+-+

: : : : : 1: 1: : : : : : 2: : : 1: : : : : : 4: 1: : : : : : : 2: : : : : : : : : ;
80. 00 +--+-+--+--+--+-+--+--+--+--+--+--+--+--+--+--+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+--+--+--+--+--+--+-+

: : : : : 3: : 1: : : : : 3: : : 1: : : : 1: : 9: : 1: 4: : : : 1: 1: : : : : : : : : :
70. 00 +--+--+--+-+--+-+--+--+--+--+--+--+--+-+--+-+--+-+--+--+--+-+--+-+--+--+--+--+--+-+--+-+--+-+--+-+--+--+

: : : : : 1: : 5: 2: : : : 1: : : : : : : : 8: 5: : : 1: : : : 1: 1: : : : : : : : : :
60. 00 +--+--+--+-+--+--+--+--+--+-+--+-+--+--+--+--+--+--+--+--+--+--+--+--+--+-+--+-+--+--+--+--+--+-+--+-+--+--+

: : : : : : : 3: : : : : 3: : : : : : : 1: I; 5: 1: : : 9: : : : 1: : : ; : : ; : : :
50. 00 +--+-+--+--+--+--+--+--+--+--+--+--+--+-+--+--+--+--+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+--+--+-+

: : : : : I; 1: 3: 1: : : 1: 3: 1: 1: 1: 2; : : 1: : 4: : 1: : 1: : : 1: 1: : : : : : : : : :
40 . 00 +--+--+--+-+--+--+--+--+--+--+--+--+--+-+--+--+--+-+--+-+--+--+--+-+--+--+--+--+--+--+--+--+--+-+--+-+--+-+ : : : : 1: : 1: 6: : : : 1: 4: 2: : : : : 9: : 3 :26: : : 2: 9: : : : : : : : : : : : : :
30 . 00 +--+--+--+-+--+--+--+--+--+--+--+-+--+-+--+--+--+-+--+--+--+--+--+-+--+-+--+-+--+--+--+--+--+--+--+--+--+--+

: : : :1A: : 7: 6: 1: : : 3:14: 2: 2: : 6; ;15: : 3:48; : : 6: ; : : : : : : : : : : : : :
20.00 +--+--+--+-+--+--+--+-+--+-+--+--+--+--+--+--+--+-+--+--+--+-+--+-+--+-+--+--+--+--+--+--+--+-+--+--+--+-+

: : : : 4: 9:70;15: : : 1: 1:14: 3: : I; 2:10: 3: 3:15:20: : 1: 3: 1: ': : : 1: : : : : : : : : :
10 . 00 +--+-+--+--+--+--+--+--+--+--+--+-+--+-+--+--+--+-+--+-+--+-+--+--+--+--+--+--+--+--+--+--+--+-+--+-+--+--+

: : : : : 4:11: 2: : : ; : 4: 1: : : : : : : 7: 1: : : : : : : : : : : : : : : : : :
9 . 00 +--+--+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+--+--+--+--+--+--+-+--+-+

: : : : 2: 2: 13: 2: : 1: : : 3: 1: : 1: : : : : 7: 1: : : 1: : : : : : : : : : : : : : :
8 . 00 +--+-+--+--+--+--+--+-+--+--+--+--+--+--+--+--+--+-+--+-+--+-+--+--+--+--+--+-+--+--+--+-+--+-+--+-+--+-+

: : : : 2: : .. : 5: : : 1: : 8: : : : : 1: : : 1:16: : ; 1: : : : ; : : : ; : : : : : :
7. 00 +--+--+--+-+--+-+--+-+--+-+--+--+--+--+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+--+--+--+--+-+--+--+

::::: :11:5;1: :1: :11:1::: :7:15:13:17;6:: :1::::: :1:::::::::
6. 00 +--+--+--+-+--+--+--+--+--+-+--+--+--+--+--+--+--+-+--+-+--+-+--+--+--+--+--+--+--+--+--+--+--+-+--+--+--+-+

: : : : 2: :15:11: : 1: 4: :13: : : 1: : 2: 6:13: 9:19: : : : : : : : : : : : : : : : : :
5.00 +--+--+--+-+--+-+--+-+--+--+--+--+--+-+--+--+--+-+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+-+--+--+

::: :2:1:15:8: :1:1; :13:2: :3;3:1:15:18:2:3:3: :1:::::::::::::::
4.00 +--+--+--+-+--+-+--+--+--+--+--+--+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+--+

: : : : 5: 1:11:13: 1: 3: 1: :32: 1: :50: 3:11: 1: :11: 3: 6: 1: 6: 1: : : : : : : : : : : : : :
3. 00 +--+-+--+-+--+-+--+-+--+-+--+--+--+--+--+-+--+--+--+-+--+-+--+-+--+-+--+--+--+--+--+-+--+-+--+-+--+-+

: : : :1A: 2:20:3A: : 1;10: 2:67:11:92:85:13: 1: 5;20: 6;18: : : 3: 1: : : : 2; : : : : : : : : :
2 . 00 +--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+--+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+-+--+--+

: : : \10: 4:7A:1A: 3: 6:89:40:2A:97:43: : : 6:20:60:10:25: 3: : : 1: : : : : 1: : : : : : : : :
1. 00 +--+-+--+-+--+-+--+--+--+-+--+--+--+--+--+--+--+-+--+-+--+-+--+--+--+-+--+-+--+--+--+--+--+--+--+--+--+-+

:2D: :27:6C:5B:2C:6C:4B:6B\1C:1B:5B:2B:1A:24:13:32:46:3A: 6:63: 9: : : : : : : 1: 1: : : : : : : : : o . 00 +--+-+--+--+--+--+--+--+--+--+--+--+--+-+--+-+--+--+--+--+--+-+--+-+--+--+--+--+--+--+--+--+--+-+--+--+--+--+
o 5 1 2 3 4 5 6 7 8 9 1 2 345 6 7 8 9 1 2 3 4 5 6 789 1 2 3 4 5 6 7 8 9 1

000 000 o 0
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

000000000 0
o

!!EM
(lOf)

Figure 11

CPU
(seas)

200. 00 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+
: : : 1; :

194. 86 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+
: 1: : : :

189. 71 ~--~-;-~-;;-~--~-;;-~-;-;-~-~--~-~--~-;;-;-~-;;-~--~-~--~-;;-~--~-;;-;-~
I I I I I I I I I I I I I I I I I • I • I I I I I I • I I I • I I I I •

184. 57 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+
: : : 1:

179. 43 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+
: 5: 1: : : : : : : : : : : :

174 .29 ~-;-~--~-;-~-~--~-~--~-;;-;;-~-;-~--~-~-;-~-;-;;-;-~-;-~-;-~-;;-~--~-~-;
I I I I I I I I I I I • I I I I I I I I I I I I I I I I I I I • I I I I

169 .14 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+
: : : 1: 1: : :

164. 00 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+
: : : : : : : : : : : : 1:

158. 86 1--1-1-~-r-:-r-:-1--:-r-1-r~-1-:-:-:-:-:-:-:-:--:-:--:-1--1-r-1-r-1-r-:-1--1
153. 71 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+

: 1: : : : : : : : : :
148. 57 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+

: 1: 1: :
143. 43 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+

: 1: : 1: 2: : : : : : : : : : : :
138. 29 +--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+

: : : : : : : : : : : : : 1: : : : : : : : 2: : : : : : : : : : : : 1: : :
133 .14 +--+-+--+--+--+-+--+--+--+-+--+--+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+

: : 1: : : : : : : : 1: 1: : :
128 . 00 +--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+

: : ; 3: : : : : : : 1: : : 1: : : : : : : : : : : : : 1: : : : : : : : : :
122 . 86 +--+-+--+--+--+-+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+

: : : 4: : : : : : : : : : 1:
117 . 71 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+--+--+--+--+-+--+-+--+-+--+

: : : 6: : : : : : : : : : 1:
112. 57 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+--+--+--+--+-+--+-+--+-+--+

: : : 3:
107. 43 +--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+

: : : 2: : : : : : : : : : : : : : : : : : 2: : : : : : : : : : : : : : :
102. 29 +--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+

: : I; 3: : : : : : : : : : 1:
97 .14 +--+--+--+-+--+-+--+-+--+-+--+--+--+--+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+

: 2: : 3: : : : : : : : : : : : 1: : : : : : : : : 1: : : : : : : : : : : :
92. 00 +--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+

: 1: 1: 2: : : : : 2:
86. 86 +--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+

: : : : : : : : 1: : : : : : : : : : : : : : : : : : 2; : : : : : : : : :
81. 71 +--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+

: 3: : 1: : : : : : : : : : : : 1: : : : : : 2: : : : : : : : : : : : : : :
76 . 57 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+--+--+

: 2: : 3: : : : : 1: : : : : ; : : : : : : 2; : : : : : 6: : : : : : : 1; : :
71. 43 +--+--+--+-+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+

: 4: : 1: : : : : : : : : : : : : : 6: 1: : : : : : : : : : : : : : : : : :
66. 29 +--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+--+--+--+--+--+--+-+--+

: 3: : : : : : : : : : : I • : : : 1: 3: : : : : : : : 1: 1: : : : : : : : :
61.14 +--+-+--+--+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+--+--+

: 2: : 2: 1; :
56. 00 +--+--+--+-+--+-+--+--+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+

: 2: 1: : : : : : : : : : : : : 1: : 1: : : : : : : : : 2: : : : : 1: : 1: : :
50. 86 +--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+

: 4; 2: 1: : 1: : : : 2: : : : : : : : : : : : : : : : : 1: 1: : : : : : : : :
45. 71 +--+--+--+-+--+-+--+-+--+-+--+--+--+--+--+--+--+-+--+-+--+-+--+--+--+--+--+-+--+-+--+-+--+-+--+

: 2: : : 1: : 1: : 1: : : : : : : 1: : : : : : : : : 1: : : 1: : : : : : : : :
40. 57 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+

: 3: 1: 1: 1: : : : : : : : : 1: 1: : : : : I; : : : : : : 3: : : : : 1: : : : :
35. 43 +--+--+--+-+--+--+--+--+--+-+--+--+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+

: 5: 1: 2: 1: : : : : : : : : 7: : : : : : 4: : : : : 4: :12: : : : : : 1: : : :
30 . 29 +--+--+--+-+--+-+--+-+--+--+--+-+--+-+--+--+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+

: 9: 4: 2; : I; : 2: : : 2; : : 7: 7: : 2: : 3: 1: : 3: : : :23: 3: : : : : : : 1: : :
25 .14 +--+-+--+-+--+-+--+--+--+--+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+

: lA: 4: 7: : 1: : : : : 4: : : : 1: : : : 3: : : : ; 2: : : 13 : : : : : : : : : :
20. 00 +--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+--+--+

10.00 66.86 123.71 180.57 237.43 294.29 351.14 2000.00

KEM(KW)

Figure 12

287

288

Cl'U
(seOB)

100000. 00 ~-~-~--~-~--~-;-~-~--~-;~-~-~--~--~-~-~-;~-;-~-~--~-~-~-~--~-~--~-~-~-;-~-~--~-;~-~
I I I I I I I I I I , I •• I

90000 .00 ;;-;--t-t--t-;;-;;-t-;--;;-;;-t-;-t-;--;;-t-;--;;-;;-t--;-t--;-;;-;--t-t-i-t
I I I I I I I I It. I I , I I • I I I t I I •• I I I I I • I I I • I •••

80000. 00 :-:-1--1-1--1-1--:-1--1-1--:-:--1-1--:-:-:-1--1-1--:-1--:-1--:-:--1-1--1-1--:--1--:-r-1--1--:-1
70000. 00 ~--~-~--~--~-~-~--~-~--~--~--~-~--~-~--~-~--~-~--~-~-~-;~-;~-~-~-~-~-~-~-~--~-~-~-~-~-~

I • I I • I I I I I I , I • I I I I I I I I I t I I • , I I I , I I I I I I I

60000 .00 t--;-t--;-;-t-t--t-;;--t--;-t--;-t--t-;--t-t--;-t--;-;;-t-;-t--;-t--;-t--;-;;-;;-t--;-t
I I •• I I I I I I I • t I I t I I I I I • I I I I I I • I I •• I I I , I I

50000. 00 t-;--t--t-;--t-t--;-t-i-t--;-t--;-t--t-t--t-t--t-;--t-;--t-t--;-t-;-t--t-;-;-t-;--;-t-t--t-t
I I •• I I I I I I I • I I I I I I I t I • I I I I I I I I •• , I I • I I I

40000. 00 t-i-;-;-t--;-t-;--t--;-t--;--t--t-t--t-t-;--t-;--;;-t-;--t-;--t--t-t--t-t--t-t-;--t-;--t--t-t
I I I • I I I •• I I ••• I •••• I I • I I I •••• I I •••• I I ••

30000 . 00 t-;--t--t-t-;--t--t-t--t-t--t--t--t-t-;--t--t-t--t-t--t-t--t-t--t-t--t-t--t-t--t-t--t-t--t-t--t-t
•• I • I • I I I I • I I • I I I I I I I • I I I I I I I I I I I I I I I I I

20000. 00 ~-~-~-~-;~-~--~-~--~-~-~-;-~-~--~-~-~-;~--;~-~-~-;~-~--~-~-~-~-~--;-~-~-~-~-~-~
I I I I I I • I I I I I I I I I I I • I • I I I I • I I t I I I ••• I •••

10000 .00 1--:-r-:-1--1-r-1-r-1-1--:-:-:-r-1-1--:-1--:-1--:-r-:-r-:--1--1-1--1-1--1-r-1-r-:-1--:-1
9000. 00 1--1-1--1-:--1-1--:-1--1-r-:-1--:-:--:-1--1-:--:-1--1-:--1-1--:-1--:-1--1-1--1-1--1-1--1-:--1-1
8000 . 00 t--t-t--t-t--t-t--t-t--t-t-;---t--t-t--t-t--t-t--t-t--t-t--t-t--t-t--t--t--t--t--t-t--t--t--t-t--t-t

I I •• I I I I I • I • I • I I I I I I I I I I I I I I I I I t I I , I I I I

7000 . 00 +--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+--+
: : : : : : : : : : : : 3:

6000. 00 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+
: : : : : : : : : : : : 1: : : : : : : : : : : 1: : : : : : : : : : : 1: : : : :

5000 . 00 +--+-+--+--+--+--+--+-+--+--+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+--+--+-+--+-+--+-+
: : : : : : : : : : : : : : : : : : : ; : : 1: : : : : : : : : : : : : : : : :

4000 . 00 +--+-+--+--+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+-+--+--+--+-+--+--+--+--+ : 1: 1: : : : : : 1: : : : : : : : : : :
3000.00 +--+--+--+--+--+--+--+--+--+--+--+-+--+--+--+-+--+--+--+-+--+--+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+--+

: 2: 1: : : : : : : : : : : : : : : : :
2000 . 00 +--+--+--+--+--+-+--+-+--+-+--+-+--+--+--+--+--+-+--+--+--+-+--+--+--+-+--+-+--+-+--+--+--+-+--+-+--+--+

: : : : : : : : : : : : 1: : : : : : : : : 3: 1: 2: : 1: : : 1: : : 1: : : : : : : :
1000 . 00 +--+-+--+--+--+-+--+--+--+--+--+--+--+-+--+-+--+-+--+--+--+--+--+--+--+-+--+--+--+--+--+-+--+-+--+-+--+-+

: : : : : : : : : : : : I; 1:
900.00 1--1-1--1-1--1--1--1-1--1-1--1--1--1--1--1-1--1-1--1--1--1--1--1-1--:--1--1--1--1-1--1-1--:--1--1-1--:-1
800 . 00 +--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+-+--+-+

: I; 1: : : : : : : :
700.00 +--+-+--+-+--+-+--+--+--+--+--+--+--+-+--+-+--+-+--+--+--+-+--+--+--+--+--+-+--+--+--+--+--+-+--+-+--+--+

: : : : : : : : : : : : 1: : : : : : : : : 4; : : : : : : : : : : : : : : : : :
600.00 1--:-1--1-r-1-1--1-1--1-1--1--1--1--1--1--1--1-1--1-1--1-1--1-1--1-1--1--1--1--1--1-1--1-1--1--1--1--1
500.00 +--+-+--+--+--+-+--+--+--+--+--+-+--+-+--+--+--+-+--+-+--+--+--+-+--+-+--+-+--+--+--+--+--+--+--+--+--+--+

: : : : : : : : : : : : : : : : 1:
400.00 +--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+--+--+-+--+--+--+--+--+-+--+-+--+--+--+-+--+--+--+-+--+--+--+--+

: : : : 1: : : : : : : : : : : : : : : : : 1: 1: : : : : : : : : : : : : : : : :
300.00 +--+--+--+-+--+--+--+-+-+--+--+

: : : : : : 1: : : : : : : : : : : : 1: : : : 1: : : : : : : : : : : : : : : : :
200.00 +--+-+--+-+--+--+--+--+--+-+--+--+--+-+--+-+--+--+--+-+--+--+--+-+--+--+--+--+--+--+--+-+--+--+--+--+--+-+

: : : : 2: : 1: : : : : : : : : 1: 1: : : : : : 1: : : : : : : 1: 1: : : : : : : : :
100.00 +--+-+--+-+--+-+--+--+--+--+--+-+--+-+--+--+--+-+--+-+--+--+--+-+--+-+--+--+--+-+--+-+--+-+--+--+--+--+

: : : : : 2: : : : : : : 1: : : : : : : : : 3: 1: : : : : : : : : : : : : : : : :
90 . 00 +--+-+--+--+--+--+--+-+--+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-+--+--+--+-+--+--+--+-+--+--+--+-+

: 1: 1: : : : : : : : : : : : : : : : :
80.00 +--+--+--+-+--+-+--+-+--+-+--+--+--+--+--+-+--+-+--+--+--+--+--+-+--+-+--+--+--+--+--+--+--+--+--+-+--+--+

: : : : 1: 1: : : : : : : 1: : : : : : : : : 1: : 1; : : : : : : : : : : : : : : :
70 . 00 +--+--+--+-+--+-+--+-+--+-+--+--+--+--+--+--+--+--+--+--+--+--+--+-+--+--+--+--+--+--+--+--+--+--+--+-+--+--+

: : : : : 1: : : : : : : : : : : : : : : ; 1: : 1: : : : : : : : : : : : : ; : :
60. 00 1--:--1--1-1--1-1--1--1--1--1--1--1--1--1--1-1--1-1--1--1--1--1--1-1--1--1--1--1--1--1--1-1--1--1--1--1--1-1
50.00 +--+-+--+--+--+--+--+--+--+--+--+--+--+-+--+-+--+-+--+--+--+-+--+--+--+--+--+--+--+--+--+-+--+--+--+-+--+-+

: : : ; : : : : : : : : : : : : 1: : : : : 3: : : : : : : 1: : : : : : : : : : :
40.00 +--+-+--+--+--+--+--+-+--+--+--+--+--+-+--+-+--+--+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+--+--+--+--+-+

: : : : 1: : : 1: : : : : 1: : : : : : : : : 8: I; : 2: : : : 1: : : : : : : : : : :
30 . 00 +--+--+--+--+--+--+--+--+--+--+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+--+--+-+--+--+--+--+--+-+

: : : : : : : : 1: : : 1: : : 1: : 3: : 2; : :28: : : : : : : : : : : : : : : : : :
20. 00 +--+-+--+-+--+--+--+-+--+-+--+-+--+--+--+--+--+-+--+--+--+-+--+--+--+-+--+-+--+--+--+--+--+--+--+-+--+--+

: : : : : 3: : : 1: : : : 1: : 1: : : : : 1: : 4: : : : : : : : : : : : : : : : : :
10.00 1--1--1--1--1--1--1--1-1--1--1--1-1--1--1--1-1--1-1--1-1--1-1--1--1--1-1--1--1--1-1--1--1--1--1--1--1--1-1

9 . 00 1--1-1--1-1--1-1--1-1--:-1--1--1--1--1--1--1--1--1--1--1--:--1--1-1--1-1--1-1--1-1--1--1--1-1--1-1--1--1
8. 00 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+--+

; : ; : ; ; : : ; ; ; ; : : ; : : : : ; ;13; : : 1; ; : : ; : : ; ; : ; : ; : :
7. 00 +--+-+--+--+--+-+--+--+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+-+--+-+

: : : : 1: : : : : : : : : : : 1: : 1: : 1: : 1: : : : : : : : : : : : : : : : : :
6 . 00 +--+--+--+--+--+--+--+--+--+--+--+-+--+--+--+-+--+-+--+-+--+--+--+-+--+--+--+-+--+-+--+--+--+--+--+--+--+--+

: : : : : : 1: : : : : : : : : : : : 2; : : 1: : : : : : : : : : : : : : : : : :
5 . 00 +--+--+--+--+--+--+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+--+--+--+--+-+--+-+--+--+--+--+

: : : : 1; : : : : : : : : : : : : 1: 5: : : : 1: : : : : : : : : : : : : : : : :
4 . 00 +--+--+--+-+--+--+--+-+--+-+--+--+--+--+--+-+--+--+--+-+--+--+--+-+--+--+--+-+--+--+--+-+--+--+--+-+--+-+

: : : : 1: : 1: : : : : : 2: 1: 1: : 1: 1: 1: 1: : 2: 1: 1: : : : : : : : : : : : : : : :
3. 00 +--+-+--+-+--+-+--+-+--+--+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+--+--+--+--+-+--+--+

: : : : : : 1: : : : : : : 3: 1: 1: 1: 1: 1: : : 1: : : : 1: : : : : : : : : : : : : :
2. 00 +--+-+--+-+--+--+--+--+--+-+--+--+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+--+--+-+

: : : : 1: 1: 3: 2: 2: : : 1: 5: 3: 4; : 1: : 1: 2: 1:46; : : : : : : : : : : : : : : : : :
1. 00 +--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+-+--+--+--+--+--+-+--+--+--+-+--+--+

: : : 1:24:73:48:U: 6: 6:12:13:27: 8: 5: 1: 5: 3: 2: 1: 2: 4: 1: : : : : : : : 1: : : : : : : : : o . 00 +--+-+--+--+--+--+--+--+--+--+--+--+--+-+--+--+--+-+--+-+--+-+--+--+--+-+--+--+--+--+--+--+--+--+--+--+--+-+
0 5 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 789 1 2 345 6 7 891

o 000
00000 000

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000
000000000 0

o
HEM

(KIf)

Figure 13

***** Final Clustering Results (datL.size = 517) *****

The Cluster Size : 10 II

[1] :

[2]
[3]
[(]

[5]

[6]

[7]
[8]

[9]
[10]

(51 ;; 23 U 25 26 3(36 37 38 H (7

49 50 51 5(55 56 57 58 59 62
65 66 67 68 71 72 73 75 76 77
78 79 80 81 83 8(86 87 88 89
91 92 93 9(95 96 97 98 99 100

101 102 103 10(107 108 109 110 111 112
113 1U 116 117 118 122 123 12(125 126
127 128 129 130 131 132 133 13(135 137
138 139 1(0 1(1 1(2 1(3 1((1(5 1(6 1(7

U8 U9 150 151 152 153 15(155 156 157
158 159 160 161 162 163 16(165 166 167
168 169 170 171 172 173 17(175 176 177
178 179 180 181 182 183 18(185 186 188
189 190 191 192 193 19(195 196 197 198
199 202 203 20(205 206 207 208 209 210
211 212 213 2a 215 216 217 218 219 220
221 222 223 2U 225 226 227 228 229 230

231 232 233 23(235 236 237 238 239 UO
2U U2 2(3 2H US 2(6 2(7 U8 249 250
251 252 253 25(255 256 258 259 260 261
262 263 26(265 266 267 268 269 270 271
272 273 27(275 276 277 278 279 280 281
282 283 28(285 286 287 288 290 291 293

1 .. 5
6 ;; 11 12 13 a 15 18
5 " 3 21 52 53 H1
(

"
(7 9 16

(;; (0 (2 70 136
9 "

1 2 6 8 28 29 31 39 (5

19 ;; 17 27 63 6(85 105 106 115 119 120
121 187 200 201 257 289 292 297 303

10
"

10 19 20 30 32 33 35 U (3 61
8 ;; 22 (6 (8 60 69 1" 82 90

29(295 296 298 299 300 301 302 30(305
306 307 308 309 310 311 312 313 3U 315
316 317 318 319 320 321 322 323 32(325
326 327 328 329 330 331 332 333 33(335
336 337 338 339 3(0 3U 3(2 3(3 3((3(5

3(6 3(7 3(8 3(9 350 351 352 353 35(355

356 357 358 359 360 361 362 363 36(365
366 '367 368 369 370 371 372 373 31" 375
376 377 378 379 380 381 382 383 38(385
386 387 388 389 390 391 392 393 39(395
396 397 398 399 (00 (01 (02 (03 (O((OS
(06 (07 (08 (09 UO U1 U2 U3 U(US
U6 (17 U8 (19 (20 (21 (22 (23 (U (25
(26 (27 (28 (29 (30 (31 (32 (33 (3((35
(36 (37 (38 (39 ((0 ((2 ((3 (((H5 ((6
((7 ((8 ((9 (50 (51 (52 (53 (5((55 (56
(57 (58 (59 (60 (61 (62 (63 (S((65 (66
(67 (68 (69 (70 (71 (72 (73 (7((75 (76
(77 (78 (79 (80 (81 (82 (83 (8((85 (86
(87 (88 (89 (90 (91 (92 (93 (9((95 (96

(97 (98 (99 500 501 502 503 50(505 506
507 508 509 510 511 512 513 51(515 516

517

Ind Size Freq. Minimum Maximun Centroid StlLdev Median

--

(51 399(00 19.U , 0.00) (1588.52 , 1.99) ((83.92 , 0.12) (99.3(, 0.01) (7.0(. (8 , 0.30)

2 1 2 (561(6.9(92.06) (56U6.9(, 92.06) (56U6.9(92.06) (56U6. 9(, 92.06) (0.00 , 0.00)

3 6 6 111.50 , 80.67) (38(3.77 , 109.89) (1087.28 , 99.22) (112.00 , 103.20) (1752.25 10.06)

(5 22 (13212.72 , 0.00) (U031.75 , 21. 2() (11"98.70 , 9.60) (U385.01 11.87) (5517.81 8.02)

5 (10 1350.50 , (8.12) (89(6.37 , 62.32) (356(.98 , 55.28) (2382.55 59.9() (33(6.35 7.58)

6 (29 8505.03 , 0.57) (9888.0(, 22.87) (89H.63 , 6.(9) (8727.89 , 1.73) (591.73 10.60)

7 9 39 111.00 , 19.37) (501".76 , 37.68) (2(67.61 , 26.90) (2170.29 , 2(.38) (U25.03 , 6.28)

8 19 173 1722.12 0.01) (5020.(6 , (.76) (2871.07 0.81) (2(00.06 0.62) (11(6.5(• 1.12)

9 10 H 111.99 , 6.U) (2007.10 • 17.80) (1216.33 , 11.75) (U93.U • 11.28) (785.3(, 3.59)

10 8 30 2(.00 , 2.75) (1"5.53 • 8.07) (253.5(, (.22) ((3.50 • 3.(2) (358.90 1.97)

Figure 14

289

290

Q>U
(aeca)

100000.00 t-i-H-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-H-t
, , I I I , I , I I I I • I , I • , I I • I I , , I I , I , I I I , • I I , I

90000.00 t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t
I • I I , I , I • I I I , I I I I , , I I I I I I • I •• I I I I I , I I I ,

80000.00 t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t
I I , I , , • I I , , , , I I I I I • I , I I •• , I I , I I I I , I I , I I

70000 .00 t-i-t-i-t-i-t-i-H-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t
• I , , t • , I , , • I I I I I • I , , I I I I , , I I I I I I t I I I • I I

60000 .00 +--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+
, , I I , • I , , , • I • I I • , I I I •• , • , • , , I , , I I •• I I • I
I , I I I I I , I I I I I , , I • I I I I I , I I I I I I , I I • I • I I I I

50000.00 t-i-t-i-t-i-ii-ii-ii-ii-ii-H-ii-ii-ii-ii-ii-ii-ii-ii-ii-ii-t
, • I I I I , , I I I , , , I I I I I I • , I I I , I I I , I I I • I I I I •

40000.00 t-i-H-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-ii-ii-t-i-t-i-ii-t-i-t-i-ii-ii-t
I I • I I I I , I I I I I I , I I I I I I , I I I I I I I • I I , , • I I I ,

30000 .00 t-i-t-i-t"i-t-i-t-i-t-i-ii-t-i-t-i-ii-ii-t-i-ii-t-i-t-i-t-i-t-i-t-i-t-i-t
I I , I I I I , I 1 I I I I I I I I I I I , • I , I I I I I I I , , I I , I I

20000.00 t-i-t-i-t"i-t"i-t-i-ii-t-i-t-i-ii-ii-ii-t-i-ii-t-i-ii-t-i-t-i-t-i-ii-t
, I I , I I , I I I I I I I I I I I • , I I I I I I I I I I , t I I I I I I I

10000.00 t-i-t-i-t"i-t-i-t-i-t-i-t-i-t"i-ii-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t-i-t
I I I I I I , I I I I I I I I I I I , I I I , I I I I I • I I , I I I I I • I

9000 .00 t-i-t-i-t"i-t-i-t-i-t-i-t-i-t-i-ii-t-i-ii-t-i-t-i-t-i-t-i-ii-t-i-t-i-t-i-t
• I I I I , , I I I It' t I I I I , , I I I I I I I I I I • , I I I • I , I

OOOO.OO+--+-+--+-~-+-+--+-~-+-~-+-~-+-~-+-~-+-+--+-+--+-~-+-+--+-~-+-+--+-~-+-~-+-+--+-+--+-+
I : I I ~ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 1; ; ; ; ; ; ; ; ; ; ; : ; ; ; ; ;

7000 .00 +--+-+--+-~-+-+--+-~-+-~- -+--+-+--+-~-+-~-+-~-+-+--+-+--+-+
I ; : : : I : I : :: 3:::::: I : I : I :::;:;;: I ; : : ; : :

OOOO.OO+--+-+--+-~-+-+--+-~-+-~--~-+-~-+-~-+-+--+-+--+-~--+--+-+--+-~-+-+--+-~-+-+--+-+--+-+
: ; ; ; : ; : : : ;; 1; I ; ; ; ; ; : I I : a : ; I : : ; : : : ; 2; : ; ; :

5000 .00 +--+-+--+-~-+-+--+-~-+-+-- -~-+-~-+-~-+-~-+-+--+-~- -+--+-+--+-~-+-~-+-+--+-+--+-+--+-+

4000.00 i.-!-i.-!-l--!-LJ-LJ-L- ; ; ; ; ; ; ; ; _l.ill .. L. ;; ; ; ; -J-L..!-L..!-LJ-LJ-!
: : : : ; : ; ; : : ; : : : : : : 2; : a: : ; : ; 3 ; : ; : ; : : ; : :

3000.00 t-i-ii-t"i-ii-ii-i- , , , , , , , -ii- -i-ii-ii-ii-ii-t , , , , , , , , , " 2"""" 8, 3, 2, 1, " "1"",,,
2000 .00 +--+-+--+-~-+-+--+-~-+-~- -~-+-~-+-~-+-+--+- -~-+-+--+-~-+-+

; ; : : ; ; : : : ;: 2;;:;:::: ;11; 4; 1: : 1 : 1; 2; 4 : : : : ; ; :
1000. 00 +--+-+--+-~-+-+--+-~-+-+-- ,_, . -~- -~- ~- -+--+-+--+-~-+-+

; ; : ; ; : : ; ; ; : .. j~jl ···.·fI~~r~!~&f/1·~ 1:'~ ;:;:; : ; 2 : ; : : : : :
900.00 +--+-+--+-~-+-+--+-~-+-+-- T~"";" . ifi.~-"I-- -~-+-+--+-+-- -~- ~- -~-+-+--+-+--+-+

800 .00 L..!-L..!-L..!-L..!-L..!-L- :.a....!-L..!-L..!-L..!-L! ~L..!-L..!-L- -L- L- -L..!-L..!-L..!-!
; ; ; : 1; : ; ; ; : : ,..; : ; 1; ; : 1; : ; 1 : 1; : :; : : 1 ; : : : : : ;

700.00 t-i-t-i-t-it-t-i-t-i-t-- ~;-+T~70t1ui-;-6 -t-i-ii-t"- -t-- 1 t-i -t-i-t-i-t-i-t
600.00 +--+-+--+-+--+-+--+-+--+-+-- . ~. ' \.' ,. I _+--+_+--+_+-__ :-_ .f.-- -.f.--+-.f.--+-+--+-~

; : ; : : : : : : : : : : : : : : : I; ; : : : : : :: : : ::::;::
500 .00 +--+-~- --+-~-+-~-+-~-+-~- -+-- +-- -+--+-+--+-+--+-+

: :: 1::: I; : : I I : : : I I: :: 2; : 1; : :: : : :::;;::
400 .00 +--+-~- ~-+-~-+-~-+-+--+-+--+-+--+-+--+ --+-~-+-~- -+-- ~- -+--+-~-+-+--+-+ ; ;: 1::::;::: 3: ; : : :: :: 2: :;:: : : 1 : : : : : : :
300.00 +--+-+-- ~-+-~-+-~-+-+--+-~-+-+--+-~-+ --+-~-+- --+-~-+-~- -+-- +-- -+--+-+--+-+--+-+

: :: :: 1: : ; : : : s; : : : 1;: ;: 4; 6 : : :: : : :::;:::
200.00 t-i-t-- -i-t-i- -i-t"i-t-- -i- i- -t"i-ii-ii-t

, " 2:: 4: : 1: :. : :26: : : : 2: 1: " ,14, 3 ,1, " ,8 3, "','"
100.00 +--+-+-- ~-+-+--+-~-+-~-+-~-+-~-+-~-+ --+-~-+- --+-~-+-~- -+-- +-- -+--+-~-+-+--+-+

: :: ; I; : I; : : : ; 6; : : 2; :: 1;: I; :::: : 1: :::::::
90. 00 +--+-~- ~-+-~-+-~-+-~-+-~-+-~-+-+--+ --+-~-+- --+-+--+-~- -~- ~- -+--+-~-+-~-+-+

: ;: ; I; 1: : : : : : 2; : : 1; :: ;: 4: 1 : : :; : 2: ::;::::
80. 00 +--+-~- ~-+-~-+-~-+-+--+-~-+-~-+-~-+ --+-~-+- --+-+-- -~- ~- -+--+-~-+-~-+-+

: ;: : S: I I; ; : : : s: : : 1: :: 1;: 9: 1; 4 :: I; 1: :::;::;
70.00 r1-r- rii-r5i2r1-r11r1-r1-r1 -18r5i- -11 -1-r- ~ri .r- -r1-r1-r1-t
60.00 +--+-+-- ~-+-~-+-~-+-~-+-~-+-~-+-+--+ --+-~-+- --+- --+-~- -~- +-- -+--+-~-+-+--+-+

: :: I:: 3: : : ; : s: : : : :: 1: 1; 6: 1 ; 0:: : 1: ;;:::;;
50.00 +--+-+-- ~-+-~-+-~-+-+--+-~-+-~-+-+--+ --+-~-+- --+- --+-+-- -~- +-- -+--+-~-+-+--+-+

: ;; : I; I; SI I; : I 1; SI I; I; I; 2:; 1;; 4; 1; 1;: 11 1 I I; I ; ; I ;
40.00 +--+-+-- ~-+-~-+-~-+-~-+-~-+-~-+-+--+ --+-~-+- --+- --+-+-- -~- +-- -+--+-~-+-+--+-+

: :: 1:; 1: 6: : : : 1; 4; 2: : : :: : 3:26; : 2 9:; ; : :::;::;
30 .00 +--+-+-- ~-+-~-+-~-+-~-+-~-+-~-+-+--+ --+-~-+- --+- --+-+- ~- -+--+-~-+-+--+-+

: ;: :: 7; 6: 1; : : S:14; 2; 2; ; 6::1 ; S:48; : 6 : : ;: ; :::;::;
20.00 +--+-+-- ~-+-~-+-~-+-~-+-~-+-~-+-~-+ --+-+--+- --+- --+-+--+-~- +-- -+--+-~-+-+--+-+

: :: 4: 9:70:15: : : 1: 1:14: 3: : 1: 2:10: 3:15:20: 1: 3 1: : : : 1: :::::::
10.00 +--+-+-- ~-+-+--+-~-+-~-+-~-+-~-+-~-+ --+-~-+- --+- --+-+--+-~- ~- -~-+-~-+-+--+-+

: :; : 4:11: 2; : : : : 4: I; : ; :: : 7: 1; : :::: ; :::::::
9.00 +--+-+-- ~-+-+--+-~-+-~-+-~-+-~-+-~-+ --+-~-+- --+- --+-~-+-~- ~- -+--+-+--+-+--+-+

: ;; 2: 2:13: 2; : I; : ; SI 1; : 1: :: : 7: 1; : 1 : ; ;: ; ;:;::;:
8.00 +--+-+-- ~-+-+--+-~-+-~-+-~-+-~-+-~-+ --+-+--+- --+- --+-+--+-~- +-- -~-+-~-+-+--+-+

: ;: 2:: 41 5; ; : 1; : 8; : ; : : 1: : 1;16; : 1 : : :: : ::;:;::
7.00 +--+-+-- ~-+-~-+-~-+-~-+-~-+-~-+-~-+ --+-~-+- --+- --+-+--+-~- ~- -+--+-~-+-~-+-+

: :: : :11: 5: 1: : 1: :11: 1: : : : 7:1 13:n: 6: : 1 : : :: 1: :::::::
6.00 +--+-+-- ~-+-+--+-~-+-~-+-~-+-~-+-~-+ --+-~-+- --+- --+-+--+-~- -+-- -+--+-~-+-~-+-+

::; 2: :16:11; ;1:4: ;13:: ;1; :2; 13;9:19; ; :::: ; ::;;:::
5.00 +--+-+-- ~-+-+--+-~-+-~-+-~-+-~-+-~-+ --+-~-+- --+- --+-+--+-~- -+-- -+--+-~-+-+--+-+

: :: 2: 1:15: 8: : 1: 1: a3: 2: : 3: 3: 1:1 18: 2: 3: 3 : 1 : : :: : :::::::
4.00 +--+-+-- ~-+-+--+-~-+-+--+-~-+-~-+-~-+ --+-~-+- --+- --+-~-+-~- -~- -+--+-~-+-+--+-+

: :: 5: 1:11 :13: 1: 3: 1: :32: 1: :50: 3:11: :11: 3: 6 1: 6 1: : :: : :::::::
3.00 +--+-+-- ~-+-~-+-~-+-~-+-~-+-~-+-~-+ --+-~-+- --+- --+-+--+-~- -~- -~-+-~-+-+--+-+

: :: \ 2\20:SA\ \ laO\ 2\67\11\92\85\13: 1\ 20: 6:18: : 3 1: : : : 2: :::::::
2.00 +--+-+-- ~-+-+--+-~-+-~-+-~-+-~-+-~-+ --+-~-+- --+-+--+-~- -~- -+--+-~-+-+--+-+

: :: 0: 4:7A:1A: 3: 6:89:40:2A:m43: : : 6: 60:10:25: 3 : : 1: : :: 1: :::::::
1.00 +--+-+-- ~-+-+--+-~-+-+--+-+--+-+--+-~-+ --+-~-+- --+-+--+-~-+-~- -~- -~-+-~-+-+--+-+

:2D: :27 '5B'2C'6C'4B'6B'lC'lB'5B'2B'lA:24'13:32:4 SA: 6:63: :::::: 1 1: :::::::
o .00 +--+-~- --+-+--+-~-+-~ ~-+-~-+-+--+-+

o 5 1 2 3 4 5 6 7 8 9 1 234 567 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 891
o 000

00000 000
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000

00000 0 0 000 o
MElt

(KIf)

Figure 15

CRA V C90D PERFORMANCE

David Slowinski

Cray Research, Inc.
Chippewa Falls, Wisconsin

What is a eRA y egOD? Cray Research, Inc. (CRI) is
most famous for vector computers built with the fastest
memory technology available. For every new generation of
systems CRI has designed numerous enhancements to add new
capabilities, improve reliability, reduce manufacturing costs, and
increase memory size. The CRAY-l M, CRAY X-MPIEA, and
CRAY Y-MP M90 are all computer systems that use denser,
less expensive memory components to achieve big memory
systems. The CRA Y C90D computer is our big memory
version of the CRA Y C90 system with configurations that go
up to 8 processors and 2 gigawords of memory.

egOD Configurations
C92D 2/512
C94D
C98D

411024
812048

How is the eRA y egOD different from a eRA Y
ego? The memory module is a new design that incorporates
C90 circuit technology, 60 nanosecond 16 megabit commodity
DRAM memory components, and the lessons learned on the
successful CRA Y Y-MP M90 series. There are minor changes
to power distribution to handle the voltages required for the
DRAM chips. And, we made changes to the CRA Y C90 CPU
to allow it to run with the new memory design. The new
Revision 6 CPU includes CRI's latest reliability enhancements
and can run in either a C90 or C90D system. Everything else is
the same! This greatly reduces the costs and risks of introducing
a new system for manufacturing and customer support. The
C90D is bit compatible with the C90 supercomputer and runs
all supported C90 software.

How is performance affected? The good news is that
the C90D subsection busy time is the same as the C90
supercomputer. I wish I knew how to build a less expensive,
more reliable, bigger memory system that is faster than a C90
system. Unfortunately, using a slower memory chip means a
longer memory access time and less memory bandwidth. In my
view, the C90D does have a good "balance." But, of course,
every code would run faster with faster memory.

Performance (in clock periods)
CRAY CRAY CRAY

CRAY Y-MP Y-MP Y-MP
Y-MP M90 C90 C90D --_ __ ...

Subsection Busy 5 15 7 7
Bank Busy 4 20 6 28
Scalar Latency 17 27 23 35

Livermore Loops
Loop Application C94D/C916
1 Hydro Fragment .92
2 Incomplete Cholesky-CG .81
3 Inner product .83
4 Banded linear equations .76
5 Tri-diagonal elimination .76
6 General linear recurrence .66
7 Equation of state .95
8 A.DJ. integration .69
9 Integrate predictors .85
10 Difference predictors .83
11 First sum, partial sums .85
12 First difference .92
13 2D particle in cell .79
14 1 D particle in cell .93
15 Casual FORTRAN 1.03
16 Monte Carlo search .76
17 Implicit, conditional computation .87
18 2D explicit hydrodynamics .85
19 Linear recurrence .87
20 Discrete ordinates transport .82
21 Matrix multiply .71
22 Planckian distribution .49
23 2D implicit hydrodynamics .97
24 First minimum 1.01

Harmonic mean .80

Performance of standard benchmarks. There is a
wide variation in performance depending on the code. The
harmonic mean average performance of the loops relative to the
CRAY Y-MP C916 is .80, but there is no single performance
number that tells the whole story.

Copyright !O 1994 Cray Research, Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of Cray Research, Inc.

291

Let's look at these numbers a little closer. The scalar loops (5,
11, 16, 17, 19, and 20) are slower than the BiCMOS memory
in the C90 computer as we might guess. Loops 13 and 14 use
gather; these do relatively well due to the fast subsection busy
time. Many factors affect the performance of the vector loops
including memory demands of the code, access patterns, and data
allocation.

PERFECT Club Benchmarks
Single CPU Optimized Versions

Code D94/C916 Code D94/C216
adm .78 qed .72
arc2d .89 trfd .90
flo52 .80 dyfesm .77
ocean .82 spice .59
spec77 .77 mg3d .89
bdna .86 track .89
mdg .97 Average .85

The performance of the C90D computer on the PERFECT Club
benchmarks is similar to what we see on many customer
programs. There is a wide range of performance depending on
each code's demands on memory. Some, like mdg, run nearly
as fast on the C90D as on the C90 supercomputer. Others, like
spice, suffer from the longer memory latency.

Why big memory? I see three main reasons:
Run big jobs. Some jobs are simply too big to run on current
systems. Even though there may be only a few big jobs these
are· often the ones poised to make new breakthroughs and
advance the state-of-the-art. In my view, the justification for
supercomputers is their ability to solve big problems and big
memory is the feature that allows us to attempt unsolved
problems. We cannot advance science by rerunning yesterday's
jobs with better price performance.

Reduced coding complexity. Yes, it is theoretically possible to
run any problem using only a small memory. I have heard one
of the original authors of Nastran tell stories about running out
of core problems with paper tape. It IS possible, but there is a
high cost in coding complexity. Out-of-core solutions may
require many months or even years to implement and they add
nothing to the quality of the solution.

Improved performance. This may come in many different ways.
Reduced 110 latency and system overhead may improve wall
clock performance by an order of magnitude in some cases. The
Cray EIE 110 library effectively uses large memory buffers to
significantly reduce 110 wait time and system overhead for many
programs without any user code changes. The biggest speedups
come when big memory allows us to use a more efficient
algorithm.

292

An exciting example of using a more efficient algorithm for
large memory systems was implemented in Gaussian-92 from
Gaussian Incorporated. Gaussian-92 is a computational
chemistry code used by over one hundred Cray customers.
Gaussian-92 has the ability to use different algorithms depending
on the characteristics of the computer it is running on. The time
consuming parts of a Gaussian-92 run are often the calculations
of the 2-electron integrals.

The original "conventional" scheme generates the integrals once,
writes them to disk, and then reads them for each iteration of a
geometry optimization. This method uses the least floating­
point operations and little memory but requires big disk files and
lots of 110.

The "direct" method was developed for vector computers and
was released in Gaussian-88. It recomputes the integrals as they
are needed. This method uses little memory and 110, but requires
lots of floating-point operations to recompute the integrals. The
direct method is optimal for vector computers. The direct
method also allows RISC workstations to run problems that
previously could only be attempted using supercomputers.

With enough memory we could compute the integrals just once
and save them in memory. This "incore" method was first
developed for the big memory CRA Y -2 systems and was released
in Gaussian-90.

Gaussian-92 Rev. C Benchmark
mp2=(fc/6-311 +g(3df ,2p)

Basis Direct Incore
Functions CPU seconds CPU seconds

64MW 1700 MW ..
Molecule A 249 8127 2121
Molecule B 240 7097 1712

Here are the timings for two real customer problems run on a
CRA Y M98 with 4 gigawords of memory using both the direct
and incore methods. The direct runs used 64 million words of
memory and would not benefit from more memory. The incore
runs needed 1700 million words of memory. Using big memory
with a more efficient algorithm for these problems gains about a
factor of four performance improvement over the best performing
algorithm with small memory ..

I believe there are similiar opportunities for significant speed
increases in many other applications programs.

Conclusion. The cost for a million words of memory has
dropped by a factor of 50,000 since the first CRA Y -1 computer.
With the many benefits of big memory and continuing dramatic
improvements in memory cost, big memory will certainly be an
important feature of future supercomputers.

Software Tools

Cray File Permission Support Toolset

David H. Jennings & Mary Ann Cummings

Naval Surface Warfare Center / Dahlgren Division
Code K51

Dahlgren, VA 22448

ABSTRACT

The Cray UNICOS Multilevel Security (MLS) Operating System supports the use of Access Control Lists
(ACLs) to control permissions to directories and files. However, the standard commands (spacl, spget,
spset) are difficult to use and do not allow all the capabilities needed in a multi-user environment. This
paper describes a toolset which enhances the standard UNICOS commands by easily allowing multiple
users the ability to give permissions to a directory or file (or multiple directories or files), even if they are
not the owners.

1. Introduction
The Systems Simulation Branch (K51) is responsible for
the design and programming of large software models
which are typically composed of hundreds of C and
FORTRAN source files. The source, header, and executable
files are divided into separate directories, and often files
from other directories are needed to execute the entire
model. The Cray File Permission Support Toolset was
designed to aid the K51 users in using the UNICOS1 Access
Control Lists to control file accesses to these large models.
It is general enough that any user of the system can benefit
from using this toolset for access control of any number of
files or directories.

The Cray File Permission Support Toolset was developed
because of a need for a development environment where a
set of files and directories were created and modified by
multiple developers. Other users also needed access to some
of the files and directories. Also, in our environment the
development teams and users of one set of files may need
access to other sets as well. The traditional UNIX2
permission scheme and the added ACL permission scheme
provided with our UNICOS MLS system did not provide
the functionality that was needed.

2. Terminology
Before we begin our discussion of the toolset, the following
terms must be defined: ACL, project, model, POC,
development group, and users.

• In a UNICOS MLS environment, an Access Control List

1. UNICOS is a registered trademark of Cray Research,
Inc.

2. UNIX is a registered trademark of AT&T.

or ACL provides an additional level of permission
control for files and directories. An ACL does not take
the place of the traditional UNIX permission scheme
where the owner of a file or directory controls access to
the owner, group, and all other users of the system (Le.,
world); instead it works in conjunction with the UNIX
permissions. An ACL provides the ability to give one or
more users permission to a file or directory.

• A project is a collection of files spread across multiple
directories.

• A model consists of one or more projects.
• A POC is the point of contact for a project and owns all

the directories (not necessarily all the files) under a
project.

• A development group is a set of users who have the
responsibility of changing a project's files. They are
members of the UNIX group for the project's files.

• Users are the set of those who need access to certain files
within the project. They are part of the world for UNIX
permissions on files, but certain project directories will
be given an ACL so users can navigate into directories
where the files are located.

3. Requirements
In order to build a set of tools to aid in granting permissions
in our complicated environment, a set of requirements were
first created. These requirements included:

• Ability to change permissions for a project.

• Ability to change permissions for multiple projects (Le.,
models).

• Ability to give different permissions to different
individuals for a project.

• Ability to allow others besides the project's POC to

295

apply pennissions to a project. These individuals are
usually in the project's development group.

• Ability to allow files (not directories) within a project to
be owned by different individuals. This allows the
toolset to be used in conjunction with UNIX
configuration management tools such as the Source
Code Control System (SCCS).

4. Deficiencies with Cray Commands
Based on the above requirements, it was apparent that a set
of tools must be written to compensate for the deficiencies
in the traditional UNIX pennission scheme and UNICOS
MLS ACL commands.

With UNIX file permissions, the owner of a file or directory
controls access to members of the group and to all other
users on the system. The user's umask value detennines the
pennission of the file or directory upon creation. No one
other than the owner of the file/directory can grant
pennissions. Only three types of pennissions can be given -
owner, group, and world. If two individuals belong to the
same group, those two individual cannot have different
permissions to a particular file or directory. Also, two
different groups cannot be given permission to the same file
or directory.

The UNICOS MLS ACL permissions solve some of the
problems with the UNIX file pennissions, but they also
introduce others. With an ACL, multiple groups can be
given access to a file or directory, but only the owner can
apply an ACL. An ACL works with the UNIX group
permissions of a file or directory. In order to have the
flexibility to grant an individual any pennission to a file or
directory, the UNIX group pennission must be set to the
highest pennission needed. For example, if a file's UNIX
group pennissions were read and execute (rx), then no
individual could be granted write (w) pennission to that file
with an ACL. By granting the highest UNIX group
permission needed to a file or directory, the owner has now
granted everyone in the UNIX group this pennission. The
owner must then use an ACL to restrict pennissions to
certain individuals in the UNIX group if necessary.

Finally, the UNICOS ACL commands (spacl, spget, spset)
are difficult to use and force the user to apply the ACL to
each file or directory. This could cause errors if the user
fails to include a file or directory within the project.

5. Overview of Toolset
Figure 1 shows the basic flow of the tools within the
Pennission Support Toolset. Both permit and permacl are
UNIX scripts written in the Bourne Shell programming
language. The C executable program, permit.exe, can be
defined to be a setuid 1 program if the owner decides he

1. A setuid program is one that allows anyone who can
296 execute the program to do so as the owner.

would like other users to have the ability to place ACLs on
the owner's project. The permit and permacl scripts are
able to be shared by all users; however, the permit.exe
program must be available under the project and owned by
thePOC.

permit

permit.exe

permacl

setuid C executable
program

Figure 1 • Basic Flow of Toolset

6. permit Script
The permit script is the interface between the user and the
ACL commands on the Cray. The following are the valid
input parameters (with defaults in bold italics):

project

addrem

ckacl

type

file

name(s)

path to project (required parameter)

add I rem (option to grant/remove
permissions)

no I yes (option to only check permissions on
project)

users I project I penn it (different classes of
permissions allowed)

file containing names of user/group names

user/group names, with group names
preceded by a colon (:). Note: either file
parameter or at least one name must be
present.

The input parameters are in name=value fonnat. Except for
the list of names (if present), the parameters can appear in
any order.

Before executing the script with the desired input
parameters, the user may define certain environment
variables that the script will use. The environment variables
used and their defaults are:

PERMITEXE project/cpy _scpt/pennit.exe

PERMISSION rx

LOCKFILE /tmp/<each field of project>.lck

PROJFILE project/cpy _scpt/projfile.txt

PERMITEXE signifies the location of the pennit.exe
program to execute. The PERMISSION applied via the
ACL is read/execute by default. A lock file is used to
prevent the possibility of multiple users changing the ACLs
on the same project at the same time. PROJFILE defines a
file which may contain a list of other projects to which the
ACL should be applied. This saves the user from having to
execute pennit for each project; instead he can execute
pennit once for each model.

The permit script basically perfonns parameter error
checks, then executes the file defined by the PERMITEXE
variable. If type = users and PROJFILE exists, then permit
will call PERMITEXE for each entry in PROJFILE.

7. permit.exe Program
The permit.exe file is a C executable program which will
pass the parameters from permit to permacl. It can be
made setuid by the owner if he wishes others to have the
ability to place ACLs on the owner's files. This program
will also pass the file name (LISTS macro) which contains
the set of directories/files upon which to apply ACLs. The
user cannot override the location of this file. Figure 2 shows
the pennit.c program, which is compiled to produce the
permit.exe executable program.

/* @(#)penniLc 1.4 08:14:07 9/11/92 */
static char SCCS_Id[] = "@(#)pennit.c 1.4 08:14:07
9/11/92";
#define USTS "/home/k51/t00Is/pennit/0/exec/lists.txt"
#define PERMACL "/home/k51/tools/exec/pennac1"

#inc1ude <stdlib.h>
#inc1ude <stdio.h>
#inc1ude <string.h>

main(int argc, char** argv) (
int i,
code,
status;

char **nargv = (char**) malloc(sizeof(char*) * (argc + 2»;
nargv[O] = (char*) malloc(sizeof(char) * (strlen(pERMACL)+ 1»;
strcpy(nargv[O],PERMACL);
nargv[l] = (char*) malloc(sizeof(char) * (strlen(USTS)+ I»;
strcpy(nargv[1] ,USTS);

for (i = 1; i < argc; ++i) (
nargv[i+l] = (char*) malloc(sizeof(char) * (strlen(argv[i)) + 1»;
strcpy(nargv[i+ 1],argv[i));}

nargv[i+l] = NULL;

if (forkO == 0) (
code = execv(pERMACL,nargv);
fprintf(stderr,"ERROR: could not execute %s\n",PERMACL);

wait(&status); }

Figure 2 - permit.c C Program

8. Iists.txt File
The LISTS macro in the pennit.c program is a file
containing the set of directories/files upon which to apply
ACLs. Figure 3 shows an example lists.txt file. It contains a
maximum of three non-blank, non-commented lines
representing the directories/files to apply users, project, and
pennit pennissions. These lines correspond to the different
classes of pennissions allowed by the type parameter of the
permit script. The USERSLIST would be used to grant
permissions to the users of the project, those who just need
to access the executable and perhaps header files. As shown
in Figure 3, if permit is executed with type=users, then the
given name(s)/group(s) would be granted pennission to the
include and exec directories. If permit is executed with
type=project, then the name(s)/group(s) would be granted
permission to the SCCS, src, include, obj, and exec
directories. If permit is executed with type=:::.permit, then
permission is granted to the cpy _scpt directory and the
cpy _scpt/permit.exe file. This is used in conjunction with a
setuid permit.exe executable to allow those users the ability
to place ACLs on the project. Any valid directory/file under
the project can be specified in the lists.txt file. Wildcards
can also be used (e.g., exec/* would signify all files within
the exec directory under the project). However, it is much
simpler to place ACLs only on the directories containing
the files, instead of the files themselves. Then by making the
files within that directory world readable, those given ACL
permission to the directory will be able to access the files.

#@(#)lists.txt 1.29/11/9208:01:03

This file is located in -k51/t00Is/pennit/0/exec.
It is used to define three classes of directories/files to be used with
the K51 pennit tool. Comments (preceded by #) can appear beginning in
column 1 or at the end of the line containing the directories/files.
They cannot appear on the same line, but preceding the data. Blank
lines can also appear anywhere in the file.

WARNING - TIlE ORDER OF THE DATA IS FIXED.

If three or more non-commented, non-blank lines appear in file then
USERSUST is set to the first line
PROJECTLIST is set to the second line
PERMITUST is set to the third line
remaining lines (if any) are ignored
If two non-commented, non-blank lines appear in file then
USERSUST is set to the first line
PROJECTLIST and PERMITUST are set to the second line
If one non-commented, non-blank line appears in file then
USERS LIST, PROJECTUST, and PERMITUST are set to that line
#USERSLIST
include exec

PROJECTUST
SCCS src include obj exec
PERMITLIST
cpy _sept epy _sept/pennit.exe

Figure 3 - lists.txt File

297

9. permacl Script
The permacl script is called by the C executable program
and is executed as the owner if the executable is setuid. All
input parameters are passed from the permit script to
permacl. After error checks are performed, an ACL
modification file is created from the desired name(s)/
group(s) input by the user. A lock file is created to lock
other users from placing ACLs on the project's files until
the current job is completed. A list of directories/files is
defined based on the value of the permit type parameter.
For each element of this list the following is performed:

• text version of ACL is retrieved.

• ACL file is created from the text version.
• name(s)/group(s) are removed from ACL file if addrem

is set to add.
• ACL modification file is applied to the ACL file.

• ACL file is applied to the element.

• lock file is removed.

10. Toolset Setup - Owners of Directories/
Files

In order to use the toolset, certain steps must first be taken
to create setup files, to create necessary programs, and to
set needed environment variables. These steps are different
for owners of directories/files and for others who will apply
permissions to these directories/files.

To use the toolset, the owner of directories/files must first:

• Create the setuid C executable program, permit.c, to
pass parameters from the permit script to the permacl
script.

• Ensure that the LISTS macro in permit.c is set
appropriatel y.

• Compile permit.c; no special compilation parameters
are required (cc -0 permit.exe permit.c).

• Create the LISTS file that is specified in the above
LISTS macro.

• Set the setuid permission bits on permit.exe to allow the
UNIX group to execute the file as the owner. This is
done with the command chmod 4750 permit.exe.

WARNING: Be careful with UNIX group and world
permissions on setuid programs!

11. Toolset Use - Users
Once the owner has followed the above instructions, other
users may apply permissions to the directories/files as well.
To do this:

• Check/set the following environment variables:
PERMITEXE, PERMISSION, LOCKFILE,
PROJFILE.

• Execute the permit script with the appropriate
parameters.

298

12. Toolset Example
The following example shows how the owner and
users of a project can use the toolset. Figure 4 shows a
project called my_project, which is divided into
various directories, each containing files. The UNIX
mode permissions on all directories/files are shown.

I

I
homel

(drwxr-u-x)

I
userl/

(drwxr-u-x)

I
my...,projectl
(drw:uwu-x)

I
I I

seesl srcl includel objl execl epy _sept!
(drwxrwx---) (drwxrwx---) (drw:uwx---) (drw:uwx---) (drw:uwx---) (drwu-x---)

s.a.c
s.b.c

Notes:

a.c
b.c

a_h
b_h

All directories end with a slash (f).

a_o my...,project.exe pennit.exe
b.o

All files are shown under the appropriate directory.
UNIX mode pennissions are shown in italics below each directory.
All files within sees directory are (-r--r--r--).
All files within src directory are (-r--r--r--).
All files within include directory are (-r--r--r--).
All files within obj directory are (-rw-rw-r--).
my _project.exe is (-rwxrwxr-x).
pennit.exe is (-rwsr-x---), which makes it setuid.

Figure 4 - Sample Project

The owner has set up this project with cpy _scpt!permit.exe
as a setuid executable. If the lists.txt file of Figure 3 is used
and the owner executes the command

permit project=/homeluserllmyyroject type=project joe mary

then the users joe and mary are given read/execute (rx)
permission to all the directories except cpy _scpt. Since the
files within those directories are at least read to the world,
they can access all the files within those directories.

Next the owner executes the command

permit project =1 home/user lImy yroject type=permit bill

The user bill is given permission to execute the cpy _scpt!
permit.exe executable. Since this is setuid, he can then
grant ACLs on the project to other users.

Next, if the user bill or the owner executes

permit project=lhome/userllmy yroject don kate :math

then the users don and kate and the UNIX group math are
given rx permission to the include and exec directories. If
the PERMISSION environment variable was set to rwx
before executing permit, they would have been given rwx
permission to those directories.

13. Summary
The Cray File Pennission Support Toolset was developed to
enhance the standard ACL commands and meet the
requirements of granting directory/file pennissions in a
complicated environment. The simplest use is to easily
allow the owner of a project to set ACLs on the project's
directories. Users who are allowed to navigate within the
directory via the ACL can access all the files that have
world read pennission. A more complicated scenario would.
involve a setuid executable program allowing others beside
the owner or members of the project's group to grant
pennissions to directories or files within the project. The
toolset is general enough to be tailored to any
developmental environment and any type of directory
structure. It has allowed developers to easily pennit
different classes of pennissions to users of multiple projects
combined into models.

299

TOOLS FOR ACCESSING CRAY DATASETS

ON NON-CRAY PLATFORMS

Peter W. Morreale

National Center for Atmospheric Research
Scientific Computing Division

ABSTRACT

NCAR has a long history of using Cray computers and as a result, some 25 terabytes of data on our Mass Storage
System are in Cray-blocked format. With the addition of several non-Cray compute servers, software was written
to give users the ability to read and write Cray-blocked and unblocked files on these platforms. These non-Cray
platforms conform to the Institute for Electrical and Electronics Engineers (IEEE) standard describing floating­
point data. Therefore, any tools for manipulating Cray datasets must also be able to convert between Cray data
formats and IEEE data formats. While it is true that the Cray Flexible File I/O (FFIO) software can provide this
capability on the Cray, moving this non-essential function from the Cray allows more Cray cycles for other com­
pute-intensive jobs. This paper will outline a library of routines that allow users to manipulate Cray datasets on
non-Cray platfonns. The routines are available for both C and Fortran programs. In addition, three utilities that
also manipulate Cray datasels will be discussed.

1. Introduction

The National Center for Atmospheric Research (NCAR) has
been using Cray Supercomputers since a Cray-IA was
installed in late 1976. NCAR now has a CRAY Y-MP 8/864,
a CRAY Y-MP 2D/216, and a CRAY EL92/2-512 that are
used for the bulk of computing by our user community.
NCAR has an enormous amount of data in Cray format
stored on NCAR's Mass Storage System. Currently, there are
40 terabytes of data on the NCAR Mass Storage System.
Approximately 25 terabytes of that data in a Cray-blocked
format.

Cray computers use their own format to represent data. On
Cray computers, a 64-bit word is used to define both
floating-point values and integer values. In addition, Cray
computers support a number of different file structures. The
most common Cray file format is the Cray-blocked, or COS­
blocked, file structure. This file structure, known ali a Cray
dataset, is used by default when a file is created from a
Fortran unformatted WRITE statement. The Cray-blocked
dataset contains various 8-byte control words which define
512-word (4096 byte) blocks, end-of-record (EOR), end-of­
file (EOF), and end-of-data (EOD). Cray also has an
unblocked dataset structure that contains only data. No
control words of any kind are present in an unblocked
dataset.

In contrast to Cray systems, a number of vendors of other
platforms use Institute for Electrical and Electronics
Engineers (IEEE) binary floating-point standard for
describing data in binary files. Generally, these vendors also
use the same file structure for Fortran unformatted sequential
access binary files. This file structure consist Ii of a 4-byte
control word, followed by data, terminated by another 4-byte
control word for each record in the file. Because the same
file structure and data representation are used by a number of

300

vendors, binary files created from Fortran programs are
generally portable between these vendor's computers.

In recent years, a number of IEEE-based compute servers have
been added to our site. In particular, NCAR now has a four-node
cluster of IBM RISC System/6000 model 550 workstations, an
eight-node IBM Scalable POWERparallel 1 (SPl), and a
Thinking Machines, Inc. CM-5. Since many of the users on these
platforms also use our Cray systems, the ability to use the same
data files on all systems is extremely important.

One possible solution would be to use the Cray systems Flexible
File I/O (FFIO) package. This software allows the user to create
data files in binary formats suitable for direct use on different
vendors platforms. The FFIO solution works for users creating
new data files on the Cray; however, we have over 25 terabytes
of Cray-blocked data already in existence on our Mass Storage
System. If FFIO were the only solution, users would spend a
good deal of their computing allocations just reformatting
datasets. In addition, these Cray jobs would consume a large
number of Cray cycles that would otherwise be used for
compute-intensive work.

Another solution would be to use formatted data files. This
solution poses several problems: 1) formatted files are generally
larger than their binary counterparts, 2) formatted I/O is the
slowest form of 1/0 on any computer since the text must be
interpreted and converted into binary format, and 3) formatted
files can incur a loss of precision.

A third solution would be to provide software that can interpret
Cray file structures and convert the Cray data representation into
the non-Cray data format. This solution has several benefits for
the user. One advantage is that the user can use the same data~ets
on both the Cray and n"on-Cray machines. Another benefit.is that
even accounting for the data conversion, the I/O on the non-Cray
platform is significantly faster then equivalent formatted I/O on
the non-Cray platform.

At NCAR, we have implemented the third solution in the form
of a library of routines that perform 1/0 to and from Cray
datasets. This paper describes the library named NCAR Utilities
(ncaru). The paper also describes three stand alone utilities that
manipulate Cray datasets.

2. The ncaru software package

The ncaru library contains a complete set of routines for
performing 110 on Cray datasets. In addition, a number of
routines that convert data between Cray format and IEEE
format are also included in the library.

The user can use the Cray 110 routines to transfer data in Cray
format or have the routine automatically convert the data to the
native format. Having the option of converting data allows the
user to read datasets that contain both numeric and character
data records.

The ncaru library is written in the C language. Since there is no
standard for inter-language communication, the user entry
points to the library must be ported to the different platforms for
use in Fortran programs. The current implementation has been
ported to IBM RISC System/6000 systems running AIX 3.2.2,
Silicon Graphics Inc. Challenge-L running IRIX V5.1.1.2 and
to Sun Microsystems, Inc. systems running SunOS 4.1.1.

The ncaru software package also includes three utilities that aid
the user in manipulating Cray-blocked files on non-Cray
platforms: cosfile, cosconvert, and cossplit. These utilities
describe records and file structure of a Cray dataset (cosfile),
strip Cray-blocking from a Cray dataset (cosconvert), and split
multi-file datasets into separate datasets (cossplit).

Documentation for the ncaru package consists of UNIX man
pages for each routine and utility. There is also a ncaru man
page that describes the library and lists all the user entry point
routine names.

3. The Cray I/O routines

The Cray 110 routines in the ncaru library allow the user to read,
create, or append to a Cray dataset. The user also specifies
whether the dataset uses a Cray-blocked or Cray-unblocked file
structure.

The Cray 110 routines use a library buffer to block 110 transfers
to and from the disk file. This buffer imitates the library buffer
used in Cray system 110 libraries. Use of a library buffer can
reduce the amount of system work necessary to perform 1/0,
with the trade-off being increased memory usage for the
program.

The following is a list of the Cray 1/0 routines with their
arguments.

ier crayblocks(n)
icf crayopen(path, iflag, mode)
nwds crayread(icf, lac, nwords, iconv)
nwds craywrite(icf, lac, nwords, iconv)
ier crayback(icf)
ier crayrew(icf)
ier crayweof (icf)
ier crayweod(icf)
ier crayclose(icf)

The crayblocks routine allows the user to specify a library
buffer size. The argument n specifies the number of 4096-
byte blocks used by the buffer. This library buffer is
dynamically allocated and is released when the file is closed
with a crayclose routine. If the crayblocks routine is used, all
Cray datasets opened with a crayopen use the specified block
size until another crayblocks routine is executed. The
crayblocks routine must be executed prior to a crayopen
routine if something other than the default library buffer size
(1 block) is desired.

The crayopen routine opens a dataset for either reading or
writing. The path argument specifies the pathname to the file.
The iflag argument specifies the transfer mode, whether the
file structure is blocked or unblocked, and the position of the
file. The nwde argument specifies the file permissions and is
used only if the file is being created. The crayopen routine
dynamically allocates a data structure that contains fields
used by the various 110 routines. The return from a
successful crayopen is the address of this data structure. By
returning the address of the structure as an integer, portability
between Fortran and C is assured.

The crayread routine reads data· from an existing Cray
dataset. The icf argument is the return from a previously
executed crayopen routine. The loc argument is the location
where the first word of data is placed and must conform both
in type and wordsize to the data being read. The nwords
argument specifies the number of words being read. The
iconv argument specifies the desired data conversion.

For blocked files, crayread is fully record-oriented. This
means that if the user specifies a read of a single word, the
first word of the record is transferred and the file is left
positioned at the next record. This feature is useful for
skipping records. The user can also specify a read of more
words than the record actually contains, and only the actual
number of words in the record are transferred. This feature is
useful if the user is not sure of the exact number of words in
the record. In all cases, crayread returns the number of Cray
words actually transferred or an error code.

The craywrite routine writes data to a Cray dataset. Like
crayread, the arguments icf, loc, nwords, and iconv,
correspond to the crayopen return value, location of the data
being written, the number of words to write, and the
conversion flag. Both the crayread and craywrite routines use
a library buffer to reduce the number of physical read or
write requests to disk. For writing, when the buffer is filled,
the library buffer is flushed to disk. This means that if the
user does not close the file via a crayclose, the resulting Cray
dataset may be unusable on the Cray computer.

If the iconv flag for both crayread and craywrite specifies a
numeric conversion, than a conversion buffer is dynamically
allocated. The initial size of the conversion buffer is set to the
number of words in the request. The size of the conversion
buffer is then checked for each subsequent 110 request, and if
a subsequent request is larger than the current size of the
conversion buffer, the buffer is re-allocated to the larger size.
On every request, every byte of the conversion buffer is
preset to zero to prevent bit conversion problems.

301

The crayback routine allows the user to backup a record in a
Cray dataset. The crayback routine can be used on datasets
opened for reading or writing. If the last operation to the
dataset was a write, then crayback will truncate the dataset
prior to positioning at the previous record. This allows the
user to overwrite a record if desired and mimics the behavior
of a Cray Fortran BACKSPACE.

The crayweof routine writes a Cray end-of-file control word.
The crayweod routine writes a Cray end-of-data control
word. These two routines are available for historical
purposes and are seldom used directly by the user. One
possible use of the crayweof routine would be the creation
of a multi-file dataset.

The crayclose routine properly terminates and, if necessary,
flushes the library buffer. The crayclose routine then closes
the dataset and releases all dynamically allocated memory
used for that file.

4. The numeric conversion routines

In addition to the Cray I/O routines, a number of routines to
convert Cray data formats to IEEE data formats are included
in the ncarn library. These routines are implemented as
Fortran subroutine calls and in C as void functions. Here is a
list of the routines and their arguments:

ctodpf(carray, larray, n)
ctospf(carray, larray, n)
ctospi(carray, larray, n, zpad)
dptocf(larray, carray, n)
sptocf(larray, carray, n)
sptoci (larray, carray, n, zpad)

In all the routines, the first argument is the location of the
input values and the second argument is the location for the
converted values. The third argument to all the routines is
the number of words to convert. If the routine has a fourth
argument, it is used to tell the conversion routine whether
the IBM RISC Systeml6000 double-padded integer option
was used during compilation.

In all cases, the carray argument is a pointer to an array
containing 64-bit Cray values and the [array argument is a
pointer to an array containing the IEEE 32-bit or IEEE 64-
bit values.

The ctodpf, ctospf, and ctospi routines convert Cray data to
local DOUBLE PRECISION, REAL, and INTEGER values.
The dptocf, sptocf, and sptoci routines convert local data to
Cray REAL and INTEGER values.

For the routines that convert to IEEE format, any values that
are too large to be properly represented are set to the largest
value that can be represented with the correct sign. Any
values that are too small are set to 0 (zero).

Both the Sun Microsystems and IBM RISC System/6000
Fortran compilers allow the user to specify a command line
option that automatically promotes variables declared as
REAL to DOUBLE PRECISION. This causes the word size
to double from the default 4 bytes to 8 bytes. The routines
with "dpf' in their names should be used in these cases. In
addition, the IBM xlf compiler ha~ an option that allows the

302

compiler to increase the size of Fortran INTEGERs to 8 bytes, 4
bytes to hold the data and 4 bytes of alignment space. For the
integer conversion routines, the zpad argument is used to inform
the routine whether the compiler option was used.

The numeric conversion routines can either be executed directly
from the user program or automatically called through the use of
the Cray I/O routines via the icon v argument to crayread and
craywrite.

5. Example Fortran program

The following sample Fortran program creates a Cray-blocked
dataset with a single record. The IEEE 32-bit REAL values are
converted to Cray single-precision REAL values prior to being
written.

PROGRAM TST
REAL a(1024)
INTEGER CRAYOPEN, CRAYWRITE, CRAYCLOSE
INTEGER ICF, NWDS, IER

ICF = CRAYOPEN(lldata ll , 1, 0'660')
IF (ICF .LE. 0) THEN

PRINT*, llUnable to open dataset ll

STOP
ENDIF

NWDS = CRAYWRITE(ICF, A, 1024, 1)
IF (NWDS .LE. 0) THEN

PRINT*, llWrite failed ll

STOP
ENDIF

IER = CRAYCLOSE(ICF)
IF (ICF .NE. 0) THEN

ENDIF

PRINT*, llUnable to close dataset ll

STOP

PRINT*, llSuccess!ll
END

6. Cray dataset utilities

To assist users with manipulating Cray datasets, three utilities
that operate on Cray-blocked files were created. These utilities
are costile, cosconvert, and cossplit.

The costile utility verifies that the specified file is in a Cray­
blocked format and gives information about the contents of the
dataset. The number of records and their sizes are displayed for
each file in the dataset. In addition, costile attempts to determine
whether the file contains ASCII or binary data and reports the
percentages of each. Here is a sample costile command and its
resulting output:

% cosfile -v /tmp/data

Processing dataset: /tmp/data
Reclt Bytes

1 800
2 8000

EOF 1: Recs=2 Min=800 Max=8000 Avg=4400 Bytes=8800
Type=Binary or mixed -- Binary= 99% ASCII= 1%

EOD. Min=800 Max=8000 Bytes=8800

The cosconveit utility convert!) a Cray-blocked data set into one

of several fonnats. Most often, cos convert is used to strip Cray
control words from a dataset, leaving only data. In some cases,
Cray datasets may contain character data with Blank Field
Initiation (BFI). BFI was used under COS to compress datasets
by replacing three or more blanks in a row with a special two
character code. The cosconvert utility can be used to expand
the blanks in those datasets.

The cos split utility creates single file datasets from a multi-file
dataset. Each output single file dataset will have a unique name.

7. Acknowledgments

The ncaru software package is the result of the work of several
people at NCAR. Charles D' Ambra of the Climate and Global
Dynamics (CGD) division of NCAR wrote the original Cray­
IEEE numeric conversion routines. Craig Ruff of the Scientific
Computing Division (SCD) wrote the original Cray UO
routines for the purpose of adding and stripping Cray-blocking
from files. Dan Anderson and Greg Woods of SCD combined
both the numeric conversion routines and the Cray routines into
a single interface. Tom Parker (SCD) originally wrote cosfile,
cos convert, and cossplit for use on Cray systems. The author,
also of SCD, modified the library code to handle Cray­
unblocked files, added backspacing functionality, rewrote the
utilities to use the library, and added other enhancements.

8. Availability

This package is available to interested organizations without
charge. Please contact Peter Morreale by sending email to
morreale@ncar.ucar.edu for details.

303

CENTRALIZED USER BANKING AND USER ADMINISTRATION ON UNICOS

Morris A. Jette, Jr. and John Reynolds

National Energy Research Supercomputer Center
Livermore, California

Abstract

A Centralized User Banking (CUB) and user administration
capability has been developed at the National Energy
Research Supercomputer Center (NERSC) for UNICOS and
other UNIX platfonns. CUB perfonns resource allocation,
resource accounting and user administration with a
workstation as the server and four Cray supercomputers as
the current clients. Resources allocated at the computer
center may be consumed on any available computer.
Accounts are administered through the CUB server and
modifications are automatically propagated to the appropriate
computers. These tools facilitate the management of a
computer center as a single resource rather than a collection
of independent resources.

The National Energy Research Supercomputer Center

NERSC is funded by the United States Departtnent of Energy
(DOE). The user community consists of about 4,800
researchers worldwide and about 2,000 high school and
college students. The user community is divided into about
600 organizations or accounts. The available compute
resources include a Cray Y-MP C90116-256, Cray-2/8-128,
Cray-2/4-128, Cray Y -MP EL and an assortment of
workstations. Other resources include an international
network, a Common File System (CFS) with 12 terabytes of
data and the National Storage Laboratory (NSL, a high­
perfonnance archive being developed as a collaborative
venture with industrial partners and other research
institutions).

General Allocation and Accounting Requirements

While our student users are generally confined to use of the
Cray Y-MP EL, the researchers are free to use any of the
other computers. The DOE allocates available NERSC
compute resources for the center as a whole, not by
individual computer. Researchers are expected to consume
their computer resources on whichever computers are most
cost effective for their problems.

Resources are allocated in Cray Recharge Units (CRUs),
which are for historical reasons based upon the compute
power of a Cray-1. A "typical" problem may be executed on
any available resource and be charged a similar number of
CRUs. The CPU time consumed is multiplied by a CPU

304

speed factor to normalize these charges. These factors have
been derived from benchmarks. Our CPU speed factors are
as follows:

CPU SPEED
FAcroR

3.50
1.63
1.44
1.00

COMPIITER

Cray Y-MP C90116-256
Cray-2I4-128
Cray-2I8-128
Cray-1 A (no longer in service)

The charge rates vary with the level of service desired. Our
machines have been tuned to provide a wide range of service
levels depending upon the nice value of a process and
whether the work is performed interactively or under batch.
A charge priority factor pennits users to prioritize their work
based upon the level of service desired and be charged
accordingly. This scheme has proven very popular with our
clients. The lowest priority batch jobs have a charge priority
of 0.1. The highest priority interactive jobs have a charge
priority of 3.0. The actual formulas for charge priority
factors are as follows:

CHARGE
JOB NICE PRIORITY CHARGE
TYPE VALUE ALgORITHM PRIQRITY
Interactive o to 10 0.2*(10-nice)+ 1.0 3.0 to 1.0
NQS 5 to 19 0.1 *(10-nice)+ 1.0 1.5 to 0.1

Charges are made on a per process basis. It must be possible
to alter the nice value of a process up or down at any time.
NERSC has developed a simple program called CONTROL
which alters nice values of processes and sessions up and
down. CONTROL runs as a root process and restricts nice
values to the ranges specified in the above table. The
NICEM program has been replaced by a front-end to the
CONTROL command. The system call to increase nice
values has not been altered. The charge rate must change
when the nice value is altered. It is a requirement to be able
to allow changes in service level or charge rate once a process
has begun execution. The ability to react to changing
workloads is considered essential.

CPU use must be monitored in near real time. This can be
accomplished on many UNIX systems by reading the process
andlor session tables and noting changes in CPU time used.

Waiting for timecards to be generated on process completion,
as in standard UNIX accounting, is not considered
acceptable. With some processes running for hundreds of
CPU hours, monitoring timecards would occasionally result
in substantially more resources being consumed than
authorized. Additionally, many users have discovered that
they can avoid charges at some computer centers by
preventing their jobs from terminating. Their jobs can
complete useful work and sleep until the computer crashes,
avoiding the generation of a timecard.

The disadvantage of near real time accounting is that jobs are
charged for resources consumed, even if they fail to complete
due to system failure. The Cray hardware and software is
reliable enough to make this only a minor issue. Refunds are
not given in the cases of job failure due to user error.
Refunds are not given in cases where less than 30 CRU
minutes are lost, since the user benefit is probably less than
the effort involved in determining the magnitude of the loss.
The maximum refund is generally 600 CRU minutes. Users
are expected to provide adequate protection from greater
losses through checkpoints and backups. Since the UNICOS
checkpoint/restart mechanism is fairly fragile, many users
have developed their own checkpoint/restart mechanism. In
most cases, user checkpoint/restart mechanism are quite
robust and have modest storage requirements.

At present, we are charging only for CPU use. The net
charge is calculated by the following formula:

CRU charge = CPU time *CPU speed factor* charge priority

The DOE allocates resources annually by account. In order
to maintain a relatively uniform workload throughout the year
and insure that an account does not prematurely consume its
entire allocation, the allocated resources need to be made
available in periodic installments. Each account has one or
more managers who are responsible for the account
administration. A wide range of administrative controls are
essential, including: the rate at which the annual allocation is
made available (weekly, monthly or other periodic updates
plus allocation infusions on demand), designating other
managers, and allocating resources to the individual users in
the account.

Each user has access to some percentage of the account(s) to
which he has access. In order to simplify administration, the
sum of percentages allocated to each account's user need not
equal 100. For example, the manager may want to make the
account available in its entirety to each user. In this case,
each user would have access to 100 percent of the account's
allocation.

Once a user or his account has exhausted his allocation, he
should be prevented from consuming significant additional
resources. Rather than preventing the user from doing any
work when his allocation has been exhausted, running
interactive jobs must be suspended, running and queued NQS
jobs must be held and the login shell must be changed to a
Very Restricted Shell (VRSH). VRSH permits execution of a
limited set of programs such as: MAIL, NEWS, RM, LS,
KILL, CAT, LPR, MV, TAR, QSTAT, QDEL, CUB user

interfaces, archive user interfaces and a few others. These
permit the user to finish working in some sort of graceful
fashion whenever necessary. Once a user or his account have
additional resources available, held or suspended jobs must
be restarted automatically and the login shell restored to its
fonner value. Interactive jobs are kept suspended only for 24
hours, then killed in order to release their resources. NERSC
clients execute substantial interactive jobs. The temporary
suspension of interactive jobs minimizes the impact of
resource controls. In practice, a user with an important
interactive job suspended would contact an account manager,
be allocated additional resources and continue working in
short order. E-mail and terminal messages must be sent to
notify users of each action.

It must be possible to monitor resource availability and usage
in real time. It must be possible to alter the percentage of an
account allocated to a user in real time. It is highly desirable
that the manager of an account have the ability to control the
interval at which periodic installments of allocation are made.
It is highly desirable that CUB user interfaces be available in
both X window and command line forms.

Monthly accounting reports must be produced and mailed to
each manager. A variety reports are required, including the
following information: raw CPU time consumed, average
charge priority and CRUs consumed by user and computer.
The precision of all accounting information must be
maintained to within seconds.

General User Administration Requirements

The NERSC user community is quite large and has a
substantial turnover rate, particularly for the students.
Managing 6,800 user accounts on several machines with
different environments is very time consuming. NERSC
formerly had a centralized user administration system for a
proprietary operating system (the Cray Time Sharing System,
CTSS, developed at Lawrence Livermore National
Laboratory). When NERSC installed UNICOS, our support
staff inunediately found its workload increased by a factor of
about three. Rather than increase our support staff
accordingly, we decided that the implementation of a
centralized user management system was essential.

The desired functionality was basic UNIX user
administration: adding and deleting users and groups,
changing user groups, etc. NERSC was also required site
specific administration: assigning email aliases and
propagating them to mail hubs; updating local banking
databases on each CRAY; putting postal mail addresses into
an address database. Ideally, all of the required user
administration would be minimally specified once, within one
user interface, and the required actions would be performed
automatically on the appropriate computers. Local daemons
would eliminate the need for repetitive actions and insulate
the support staff from peculiarities of user administration on
any computer.

Basic Design Criteria

Previous experience developing and using a similar system

305

led us to believe that having a single centralized database
would be desirable. This makes for simple administration of
the entire computer center. Clients on various computers
would insure that the necessary allocation and user
management functions are performed, maintaining a
consistent state across all computers at the center in an highly
reliable fashion. Centralized accounting, consistent with the
allocation system information, would follow quite naturally.

While we were willing to take advantage of special features
available with UNICOS, the operating system providing most
of our compute capacity, the system would have to support
UNIX platforms of any variety. Specialized software
requirements (e.g .. database licenses) could be required on
the CUB server, but standard UNIX software should be the
only requirement for CUB clients. The system would have to
be user friendly. Use of commercial software, wherever
possible, was encouraged.

Centralized User Banking Development

While no available system at the start of this project satisfied
our needs, there were two resource allocation system which
provided partial solutions. The San Diego Supercomputer
Center (SDSC) had developed a CPU quota enforcement
system in 1990. NERSC adopted this system in 1991 and
found it generally satisfied our needs, except for managing
allocations on each machine independently. We enhanced
this system to permit the transfer of resources between
machines, but it still was not entirely satisfactory. The
Livermore Computer Center used SDSC's allocation system
as a model for the allocation sub-system of their Production
Control System (PCS). We found the PCS software gave us
somewhat greater flexibility and decided to use that as the
basis of CUB's banking client.

We knew that the design of CUB was certain to be quite
complex, involving several programmers from different
NERSC groups. It was decided that a CASE tool would
provide for easier software development and more reliability.
After examining several options, we selected Software
Through Pictures from Interactive Development
Environments. While the training cost was substantial in
terms of initial programmer productivity, there was general
agreement that the use of CASE was a real advantage. A
small portion of the CUB databa~e is shown in Figure 1 to
indicate its complexity.

The banking client is a daemon which reads the process and
session tables at intervals of ten seconds. The user ID,
process or session ID, system and user CPU time used, and a
few other fields are recorded. Changes in CPU time used are
noted each time the tables are read. Periodically, CPU time
used and CRU charge information is transferred for all active
users and accounts to the banking server. The banking server
updates its database then transfers updated records of
resources available by user and account.

Communications are UDPIIP based, for performance reasons.
Additional logic has been added to provide for sequencing
and message integrity. A very simply RPC has been
developed along with an API which insulates the application

306

level programmers from the complexity of the network. Each
connection is fully authenticated and a unique session key is
established. Transactions are protected by a crypto-checksum
utilizing the session key to insure security. The result is
efticient, easily portable, and fairly secure.

The record of previous process and session table information
permits one to note the starting of new processes and
sessions. The system and user CPU times are reestablished
shortly after a held NQS job is restarted. We avoid charging
for these restarted jobs by logging, though not charging, in
cases where the record of CPU time consumed between
checks exceeds a "reasonable" value. We consider anything
over the real time elapsed multiplied by the number of CPUs
multiplied by 2.0 to be an "unreasonable" value. The only
CPU time not accounted for is that consumed prior to the first
snapshot on a restarted NQS job and that consumed after the
last snapshot of any session. Since CUB's sampling interval
is ten seconds, the CPU time not accounted for is typically
under 0.2 percent. The precision of the data can be increased
in proportion to the resources consumed by the CUB local
bmlker. The resources consumed by the local banker itself
are 6.92 CPU minutes per day on a Cray Y -MP C90.

A client daemon called ACCTMAN performs updates to
local databases as required for user administration. It
performs system administration actions such as adding,
deleting or modifying users or groups. This includes creating
home directories, copying start-up files, creating mail
directories, etc.

NERSC has used ORACLE for most of its database work
over the past few years. The logical choice for the CUB
server database wali thus ORACLE. We had an initial design
goal of making CUB completely database independent, but
quickly found that to be impractical given the urgency of our
need for the capabilities represented by CUB and the
knowledge base of the available programmers. Using
ORACLE's 4GL FORMS proved to be the quickest way to
develop an interface for our support staff, and thus the
quickest way to get a base-line version into production. The
result is that CUB's BANKER, and ACCTMAN daemons,
and the SETCUB utility suite can run on any UNIX host; the
server code is completely written in standard SQL and could
employ any UNIX SQL engine; but the support staff interface
is wedded to ORACLE (but not to UNIX) for the foreseeable
future.

Accounting reports are generated monthly based upon the
CUB database and mailed to the primary manager of each
account.

In order to insure reliability, three machines are available as
CUB servers: a production machine, a "warm backup" and a
development platform. The "warm backup" has a database
that is only 15 minutes old and can be made into the
production machine within about 30 minutes, if needed. The
clients can continue operation for an extended period without
a server. The lack of an operating server merely prevents the
clients from synchronizing their databases and prevents other
database updates. Once communications are reestablished,
the databalies are synchronized. In practice, the servers have

been quite reliable, in spite of the continuing development
effort to complete and enhance CUB.

Database alterations (other than consumption of resources)
are recorded in a journal in ORACLE to insure persistence
across restarts. The database is also backed up regularly,
including the journals. If a client goes down for an extended
period of time transactions destined for it are not lost.

No alterations to the UNICOS kernel were required for CUB.
The LOGIN.C program was modified to request an account
name or number if the user belongs to more than one account.
A default account is used if the user enters RETURN.

The primary user interface to CUB is called SETCUB. This
program can be used by account managers to modify the
CUB database. Other users can execute SETCUB to monitor
resource allocations. In order to make CUB easier to use, the
SETCUB program can also be executed by the mune
VIEWCUB or USERINFO. Both VIEWCUB and
USERINFO provide a subset of SETCUB's functionality.
VIEWCUB can only be used to report allocation information.
USERINFO only reports user information, such as telephone
number and postal address. Examples of SETCUB reports as
shown in Figures 2, 3 and 4.

The overall CUB architecture is shown in Figure 5 showing
the interrelationships between the major components.

Future Plans

While a GUI CUB interface is available to NERSC support
staff, only a command line interface is available to most
users. An X window interface is currently under
development.

Most NERSC users have login names of the form "u"
followed by a number. We plan to permit users the ability to
modify their login name to something they find more
suitable, on a one-time-basis. We will maintain a flat
namespace that includes login names, email aliases, and
certain reserved words.

NERSC found that charging for archival storage was
ineffective in controlling growth. We instituted a quota by
account in 1993, which has substantially reduced the archive
growth rate and resulted in the elimination of a substantial
amount of old data. At present, this quota is administered
only by account (not user) and is not yet integrated with
CUB. This will be rectified in the second quarter of 1994.

Problems of controlling storage use exist not only in the
archive, but also on-line disks. We are planning to impose
charges for disk space. This will be accomplished by a
daemon periodically calculating on-line storage by user and
account then relaying that infonnation to the CUB server.

At present, a user can only be associated with a single
account. This will soon be changed to permit use of multiple
accounts. The UNICOS NEW ACCT command can alter the
account ID on process table entries. Other platfonns would
rely upon a user program relaying to the local banking client

which account should be associated with each session or
process.

Once a single user can be associated with multiple accounts,
we will enable illl "add/delete" capability through SETCUB
that will grant PI's and their managers the ability to add/delete
existing NERSC users to their accounts, without NERSC
support staff intervention.

We plan to implement Kerberos V5 as a centralized
authentication service for NERSC users on all NERSC
platforms. Having Kerberos will provide much greater
network security for those users able to take advantage of it,
because with Kerberos, passwords are never transmitted in
the clear. Kerberos V5 also allows for a higher level of
convenience. Once the Kerberos security token is obtained,
and assuming the proper client software is installed on the
users workstation, the user can securely telnet or ftp to
NERSC machines without providing a password. There are
some problems that must be solved regarding use of Kerberos
at NERSC. What to do about the many users who will not
have Kerberos on their local hosts is the biggest one. We are
working on tllis now

CUB records resource usage only by user and account. In
order to determine which processes consumed the resources,
it is necessary to rely upon UNIX timecards. At some point
in the future, we would like to be able to keep track of
resource use by program. Given the volume of data required
to record each process executed, this would likely only be
used on long running processes.

The client daemons were originally designed for use with
UNICOS. They currently being ported to Hewlett Packard
workstations. Ports are planned for Cray T3D and Intel
Paragon.

Accounts are presently independent of each other. We regard
hierarchical accounts as something desirable. In PCS,
account managers can create and delete sub-accounts, move
users between sub-accounts, and move allocated resources
between sub-accounts. At some time in the future, we may
incorporate hierarchical accounts patterned after the work of
PCS.

Acknow ledgments

CUB's development has been the result of substantial efforts
on the part of many programmers. The following
programmers developed CUB: Patty Clemo, Steve Green,
Harry Massaro, Art Scott, Sue Smith and the authors.

This work was funded by the U.S. Department of Energy
under contract W-7405-Eng-48.

References

1 Hutton, Thomas E., "Implementation of the UNICOS CPU
Quota Enforcement System," Proceedings, Twenty-Fifth
Semi-Annual Cray User Group Meeting, Toronto, Canada,
April 1990.

2. Wood, Robert, "Livermore Computing's Production
Control System Product Description," Lawrence
Livermore National Laboratory Report, November 1993.

307

CM
=>
00

(n:~

)3
---....-.

~ = '"

Object: Generate allocation information about the users in account p6.

Input: setcub view repo=p6 members

Output:

Users In Repository p6 (id 1032)

Login Initial User Time Charge 0/0 0/0 of
Name Name Allec Remaining Time Used Allec. Perm%

u445 M.CHANCE 1674:06 1667:35 6:31 0.18 46.00 46.00

u447 J. MANICKAM 3093:28 2512:09 581 :19 15.97 85.00 85.00

u4100 J. MANICKAM 727:52 727:52 0:00 0.00 20.00 20.00

u4150 R. DEWAR 727:52 727:52 0:00 0:00 20:00 20:00

u4477 J. MANICKAM 1455:45 1455:45 0:00 0:00 40:00 40:00

Current amounts fer p6 3639:23 3051:33 587:50 16:15

~
~ =

Object: Generate detailed allocation information about the
account p6.

Input: setcub view repo=p6 long

Output:

Total Year Remaining Initial Remaining Update
Repository Allocation Year Alloc. Period Allcc. Period Alloe. Period
p6 1032 42540:00 34007:00 4525:10 305:56 monthly

Period
Increment

3420:00

Period
Carry Over

412:10

Managers (privileges)

u44444 - LISA HANCOCK (t,u,c)

Next
Update

01-DEC-93

PU
Login Name

STEVE JARDIN
u431

tH
~

~

Object: Generate information about a specific user
Input: setcub locate user=u7145
Output:

NERSC DATABASE INFORMATION

Common Name
MOE JETTE
Title:
LCode: 561 Bldg. 451 Rm: 2062

BOX: C86
CFSid: 7145

Loginname
u7145

NERSC Domain Email Aliases: @nersc.gov
u7145
jette <Preferred 822 Alias>

u.S. Postal Information:
NERSC
P.O. Box 5509, L-561
Livermore, CA 94550 USA

Work Phone: +1 510-423-4856

CUB . ARCHITECTURE

CUB Platform: CRAY (soon HP, MPP)

udb, group, passwd, acid, local.users
CFS
or

UNITREE
local bank,· udb, passwd

312

Oracle

CUB

oracle forms
opconview
User
Management
Interface

SQLNET

RUDP

setcub
userinfo
viewcub
User
Interface

C[JQS
or

PBS

opcon
cubconsole-- ~ all

daemons
Operator and the
Interface

serVer

FORTRAN 90 UPDATE

Jon Steidel
Compiler Group

Cray Research, Inc.
Eagan, Minnesota

1.0 Introduction

The first release of the Cray Fortran 90
Programming Environment (CF90 1.0) occurred in
December of 1993. CF90 will replace Cray's
current production Fortran product (CF77) in
future releases. This paper discusses the
current status of the CF90 product, its
performance compared to CF77, the CF77 to CF90
transition plan, and current feature plans for
the second release of the CF90 programming
environment.

2.0 CF90 1.0 Status

The CF90 1.0 status is divided into three
subsections. These are the release status of
CF90 on various platforms, the performance of
CF90 1.0 on parallel vector platforms compared
to CF77, and the status of Fortran 90
interpretation processing by the American
National Standards Institute (ANSI) and the
International Standards Organization (ISO).
Potential impact of Fortran 90 interpretations
on CF90 users is discussed in the
third subsection.

2.1 CF90 Release Status

The CF90 Programming Environment 1.0 was
released December 23, 1993 on Cray Y-MP, C90,
and YMP-EL systems. To date, there have been
forty-five CF90 licenses purchased. These
licenses represent twenty-five Cray Y-MP and
C90 systems installed at twenty-one customer
sites, plus twenty licenses on YMP-EL systems.
As of early March, three upgrade releases have
been made to the product to address bugfixes,
and the first revision level release is
planned for early second quarter 1994.

The CF90 programming environment will be
released as a native programming environment
on SPARC Solaris systems in third quarter
1994. Components of the CF90 programming
environment also serve as the basis of the
Distributed Programming Environment (OPE)
which will be also be released in the third
quarter of 1994. Please see the Distributed
Programming Environment paper prepared by Lisa
Krause for more information about OPE.

Initial experiences with CF90 1.0 have been
favorable. A third party vendor's Fortran 90
version of their iibrary package (NAG)

containing over two hundred thousand lines of
Fortran 90 code has been ported and tested
using CF90 with very few (less than 10
distinct) problems. A small number of these
problems were due to CF90 problems. The
remainder were due to differences in
implementation due to interpretation of the
Fortran 90 standard or differences in machine
arithmetic between Cray and the platform
where these libraries were developed. While
it is very early in the release cycle of the
CF90 product, the cumulative failure profile,
based on weighted severity of SPRs, looks very
favorable compared with the last three major
CF77 releases. There are very few Fortran 90
production codes running currently; ~his may
also influence the favorable cumulative
failure profile.

2.2 Performance of CF90 1.0

CF90 release criteria included four measures
of the programming environment's performance.
These were based on CF77 5.0, as CF77 6.0 was
not released until late in the CF90 1.0
development cycle. These criteria were for
the performance of generated code, size of
generated code, compile time, and compile
size. Specifically, these criteria were:

The geometric mean ratio (GMR) of
execution time for code generated by CF90
compared to that of CF77 5.0 shall not
exceed 1.15 for the six performance
benchmark suites: Perfect Club, Livermore
Kernels, NAS Kernels, Linpack Kernels,
Cray 100 kernels, and the New Fortran
Performance Suite (NFPS). Note: NFPS is
a collection of Cray applications and some
Cray user proprietary codes used to
measure Fortran performance by the
Performance Test and Evaluation section.

The size of code generated by CF90 shall
not exceed that of CF77 5.0 by more than
20% when measured using the Perfect Club
and NFPS benchmark suite~.

Compile time of CF90 shall not exceed
twice that of CF77 5.0 when measured using
the Perfect Club and NFPS benchmark
suites.

Copyright © 1994. Cray Research.Inc. All rights reserved

313

Compile size shall not exceed twice that
of CF77 5.0 when meas~red using the
Perfect Club and NFPS benchmark suites.

The rationale for these criteria was based on
the fact the CF90 uses new performance
technology for optimization, vectorization,
and tasking which is not nearly as mature as
that of the CF77 compilation system. Also,
these measurements are based on the CFT77
compiler alone, and CF90 has integrated
the analysis and restructuring capabilities of
FPP and FMP into th~ CF90 compiler itself.
Since the CF90 compiler combines the three
phases of CF77 into a single phase, it was
expected that CF90 would exceed the compile
time and space requirements of the CFT77
compiler.

Three of four of these criteria were exceeded.
Execution performance for the various suites
is as follows (GMR of CF90 to CF77) :

Perfect Club
NFPS Suite
Livermore Kernels
NAS Kernels
LINPACK Kernels
Cray 100 Kernels

1.06
1.09
0.97
1.02
0.99
1.09

A number less than one indicates that CF90
took less time than CF77.

For the Perfect Club Suite, the execution
size, compile time, and compile sizes are
respectively, 1.05, 2.22, and 1.82 when
compared to CF77 5.0. For the NFPS tests, the
execution size, compile time, and compile
sizes are 1.08, 2.46, and 1.72 respectively
compared with CF77 5.0. The compile time
goals which were not met are being addressed
in revisions of the 1.0 release, and in the
2.0 release of CF90.

An additional known performance issue involves
codes that make use of the Fortran 90 array
transformational intrinsic functions. These
intrinsic functions are generic in their
definition, operating on many differing data
types, arbitrary dimensions of arrays of any
dimensionality, with one or more optional
arguments which change the behavior of the
function based on the presence or value of the
argument. In short, each intrinsic may
exhibit a number of special cases that can be
optimized differently based on the specific
way in which it is called. CF90 1.0 has
implemented these intrinsic functions as
external calls. As external calls, all
localoptimization is inhibited. Loop fusion
of neighboring array syntax statements cannot
occur; statements calling" the array intrinsic
functions must be broken up into multiple

314

statements, and each call of these functions
may require allocation and deallocation of
array temporaries as well as copy-in/copy-out
semantics for the array arguments. 1nlining
of these intrinsics removes many of the
optimization barriers and the need for many of
the array temporaries. Revisions of 1.0 and
release 2.0 will implement automatic inlining
of many instances of these functions. The
1.0.1 revision targets the MATMUL, CSH1FT,
TRANSPOSE, and DOT_PRODUCT intrinsic
functions. Future revisions will inline
additional array intrinsic functions. The
benefits of this in lining are seen not only in
execution time, but also in compile time and
size.

2.3 Status of Fortran 90
Interpretation Processing

Since Fortran 90 became an American and
international standard, there have been
approximately 200 formal requests for
interpretation or clarification of the intent
of the standard. At present, about 50 of
these requests are still under initial
consideration. The majority of these requests
are for clarification. Some have required
edits to the standard which will appear in
later revisions of the Fortran language
specification. Cray has attempted to take a
conservative approach in our implementation of
the Fortran 90 language in areas open to
interpretation. Thus, the current
implementation may be more restrictive than
what it may need to be when the
interpretations are resolved. Most
outstanding interpretations involve end cases
in the implementation, and if resolved
differently than the current CF90
implementation, changes would result in a
syntax or semantic error in future versions of
CF90. However, there are a small number of
interpretations pending which may be resolved
in a manner which could result in runtime
behavior different from current CF90 runtime
behavior. If these interpretations are
resolved in a manner incompatible with the
current CF90 implementation, an appropriate
mechanism will be provided so that current
behavior will continue to be supported for at
least one year after the change occurs. This
may take the form of supporting old and new
behavior within a compilation with a message
issued stating old behavior will be removed at
some release level, or, in some cases may
require a compile time switch to select old
and new behavior.

3.0 CF77 to CF90 Transition Pl.an

Cray Research has selected CF90 as our primary
Fortran compiler for the future. CF90 is
based on the new Fortran 90 standard.

Portability is maintained with CF77 codes as
Fortran 90 is a superset of FORTRAN 77, and
CF90 supports CF77 language extensions. CF90
will further promote portable parallel
applications as it is introduced on SPARC
platforms, providing the same programming
environment on workstations as on Cray
platforms. As
CF90's integrated optimization, vectorization
and tasking technology matures, it will
provide better performance than that of CF77,
without the use of preprocessors.

CF77 release 6.0 was the final major feature
of the CF77 compilation system. There will be
no more major feature releases, only bugfixes.
New hardware support will be provided in
rev~s~ons as necessary. Revision support of
CF77 6.0 will continue through third quarter
of 1996.

The CF77 to CF90 transition period is
implemented in two phases beginning
in fourth quarter 1993 and continuing through
third quarter 1996. This allows gradual
migration from CF77 to CF90. During this
transition period, new codes can be developed
using Fortran 90 features, and CF77
applications can be gradually ported to the
CF90 environment.

The first phase of the transition began with
the release of CF90 1.0 and will end when CF90
provides full functionality of the CF77
compilation system and delivers equal or
greater performance than CF77. This phase is
planned to end with a revision of CF90 2.0 in
1995. Phase two begins at this time and
continues through the subsequent release of
CF90.

Existing customers can upgrade their CF77
license to a CF90 license during phase one by
paying the difference in price of a CF90
license over a CF77 license for their system.
CF90 maintenance fees will include CF77
maintenance. CUstomers who received CF77
bundled with their system receive full credit
for a CF77 paid up license. During phase two,
existing customers must pay the full price for
a CF90 license. The CF90 maintenance
price will then include CF77 maintenance also.

New customers and customers upgrading their
systems during phase one can purchase a CF90
license and will also receive CF77.
Maintenance will only be paid for CF90, but
will include both CF77 and CF90 maintenance.
After the initial release of CF90, CF77 will
not be sold separately to new customers.
During phase two, new customers and customers
upgrading their systems can only purchase
CF90. CF77 will not be available to these

customers during phase two.4.0 Feature plans
for CF90 2.0

Release 2.0 of the CF90 programming
environment is planned for mid-year 1995. The
primary focus of this release is to provide
features of the CF77 programming environment
not available with CF90 1.0, and to equal or
surpass the performance provided by the CF77
compiling system. Initial MPP support is
planned, and cross compilers running on
workstations targeting Cray platforms will be
introduced in the second release of the
Distributed Programming Environment.

The features planned for CF90 2.0 include
automatic inlining of external and internal
procedures, runtime checking of array bounds
and conformance, runtime checking of argument
data types and counts, and runtime character
substring range checking. Conditional
compilation facilities will be provided by the
compiler. This feature is available to CF77
users through the gpp preprocessor. User
defined VFUNCTIONs written in Fortran are
planned, though the HPF syntax of PURE and
ELEMENTAL procedures may be used instead of
the VFUNCTION directive. No support is
planned for CFPP$ directives, though simil~r
functionality may be provided for tuning PDGCS
optimization and restructuring through a new
directive set.

Inlining will be similar to CFT77's automatic
inlining capabilities. CF90 will use a
textual interface that produces files in an
intermediate format. Inlining will work off
these intermediate files. This will allow the
frontend of the compiler to run as a stand
alone process producing intermediate text
files. The inliner and optimization/code
generation phases can also be run
independently. The use of the textual
interface is intended to allow for cross
language in lining and additional
interprocedural optimizations in future
releases. No source to source inlining
capability (similar to FPP's inlining) is
planned in the 2.0 time frame.

CF90 2.0 for SPARC platforms will provide 128
bit floating point support (Cray DOUBLE
PRECISION) and 64 bit integer and logical data
types. CF90 1.0 on SPARC platforms supports
only 32 bit integer and logicals, and 32
and 64 bit floating point representations.

For MPP platforms, CF90 2.0 will be the first
release of the full Fortran 90 language. CF90
will provide packed 32 bit integer, real, and
logical data types which will allow
applications to achieve twice the memory and
I/O bandwidth permitted by 64 bit data types.
In addition, CF90 will support 128 bit

315

floating point data types, which are not
currently available with CF77 on MPP
platforms.

5.0 Summary

The Cray Fortran 90 Programming Environment
was released in December 1993, begin~ing the
transition from CF77 to CF90. Initial
experiences have been promising. Performance
of generated code is near that of CF77, and in
some cases exceeds that of CF77. Subsequent
releases of CF90 will move the programming
environment to additional platforms, aiding
portability of applications across platforms.
The CF90 2.0 release will match the
capabilities and performance of CF77, and
introduce cross compilers. In 1995, CF90
should become the Fortran environment of
choice for Cray users.

Autotasking, CRAY, CRAY Y-MP, and UNICOS are
federally registered trademarks and CF77,
CFT77, CRAY-2, SEGLDR, Y-MP, and Y-MP C90 are
trademarks of Cray Research, Inc.

316

~ Fortran 90 Update

Jon Steidel

Cray Research

Software Development

~ Fortran 90 Status

• CF90 Programming Envlrionment 1.0
- Cr.roJ Y·MP. coo. and YMp·EL release December 23,1993

·45 Ucenses
• 21-,-.. 21 C .. _ ...

• 218.-,.-.

- CFoo Spare Native programming environment 3094

- Initial FortranOO MPP support release 2.0

• Distributed Programming Environment Release
1.0
-3094

- Lisa Krause Thursday 8:30

~ Fortran 90 Status

b_ .. CoM,.I. c-,.I. - 11 •..
CF90 1.0 Goal 1.2 2.0 2.0

Perfect Club 1.05 2.22 1.82

NFPS 1.08 2.46 1.72

~ Fortran 90 Update

• Status
• CF77/CF90 Transition Plan

• Plans

~ Fortran 90 Status

.1.0 Performance
- Execution Tunes

(GMR of CF90 1.0 to cm 5.0)
• CAlO 1.0 Goal 1.15

• PerledChb 1.06
.NFPS 1.09
• Uvermor. Kernels .97
• NASKerneis 1.02
• UNPACK Kernels .99

• ~Wf 100 Kernels 1.09

~ Fortran 90 Status

• Array Intrinslcs
- 1.0 performance poor

• External calls Inhibit optirrization

• Heavy use of fAInlXInriu. C09Y lnlout

- Difficult to Inline

• Optional .gunents
• Variabr. runber of cirn.nslons
• t.l1II1)' spKial cases

- Inlining of some cases in 1.0 revisions
• t.lAllAUL. CSHIFT, DOT_PRODUCT. TRANSPOSE in

1.0.1

317

318

~ Fortran 90 Status

Fortran 90 Interpretation processing

• Over 200 formal questions about meaning of
the standard

- Some edits to the standard required

• X3J3 and WGS approval required
- WGS appI'OYed wHI be In F95 standard

- Approximately 50 yet unresolYed

• Some Interpretations may require changes to
CF90

~ CF77 to CF90 Transition

• CF77 6.0 wAI be the final major release of the CF77
compOer (no more major features. only bug fixes). Actively
supported through 3096.

• Transition period win be Implemented In two phases from
4093 through 3096 to allow tor gradual migration from
CF77 to CF90.

• Development of F90 applications

• Porting of CF77 applications

~ CF77 to CF90 Transition
~ (for existing cm customers)

• Phase 1:
- Existing CF77 customers can l4>Orade to CF90 by

paying the "Deka" licensing and maintenance fees.

- CF90 l4>Orade licensing price - CF90 price - CF77
price

• CF77 ~ort Is tKncIed wi1h CAlO maintenance.
• Custom.,.. who r.<»iYed cm buncted with system

received lit credt fot cm paid up license

• Phase 2:
- CF90 license upgrades will be full price

- CF77 st.ppOrt Is bundled wkh CF90 maintenance.

~ CF77 to CF90 Transition

• Cray Research has selected CF90 as our
primary Fortran complier for the future

- New Fortran standard
-Portability

• Fortran 90 is a superaet of Fortran n
• CF77 extensions supported

• Portable path to parallel applications

- Performance
• Advlll'lCed compiler technology
• Integrated Autotasklng and optimization

~ CF77 to CF90 Transition Plan

~ CF77 to CF90 Transition
~ (for new customers and system upgr8des)

• Phase 1:
- New customers and system upgrades purchase

CF90 license only. CF77 is bundled w~h CF90.

- Maintenance win only be paid for CF90.

- After the initial release of CF90. CF77 will not be
solei separately to new customers.

• Phase 2:
- New customers and system upgrades can only

purchase CF90. CF77 will not be available to
these customers.

~ CF90 2.0 Plans

• 2Q95 release

• Full CF77 functionality
- Inlinlng (with textual Interface)

- Runtime c:hec:klng
• Array bculds a'Id c:onfolTTWlce checking

• Runtime .go..ment checking

• &bsrtIg range checking
- Conditional oompHatlon

- User defined VFUNCllONs
• Uay use HPF ELEUENTAL and PURE syntax

- No support for CFPP$ diredives

~ CF90 2.0 Plans

• SPARC features
- 128 bit floating point

- 64 bit Integers

• DP E Features
- Target machine arithmetic: simulation (constant folding)

- Cross compilers
• SPARC host. Clay PVP t.get
• Usa KrauM, Ttusday 8:30

~ CF90 2.0 Plans

• MPP support
- Fun Fortran 90 feature support

- Packed 32 bit data types
• INTEGER, LOGICAl., REAL
• &4 bit COUPLEX (232 bit reals)

- 128 bit floating point representation

319

C AND c++ PROGRAMMING ENVIRONMENTS
David Knaak

Cray Research, Inc.
Eagan, Minnesota

Overview

Cray Research has released Standard C programming
environments for both Cray parallel vector (PVP)
systems and Cray massively parallel (MPP) systems
that include high-performance, reliable compilers and
supporting tools and libraries. A C++ compiler for
PVP systems has been released as a first step towards
a high-performance C++ compiler. A C++ compiler
for MPP systems will soon be released. A transition
will occur over the next few years from separate C
and C++ compilers to a single high-performance
C/C++ compiler, which will be part of a rich
programming environment. High-performance C++
class libraries from Cray Research and third-party
vendors will complement the C++ environment. The
direction for parallel C and C++ is still under study.

Historical Perspective on C and C++
Programming Environments

Prior to 1993, Cray Research compilers were released
asynchronously from the libraries and tools. This
made it difficult to coordinate the delivery of new
functionality when it required changes to both the
compiler and to the tools or libraries. In 1993, Cray
Research released several "programming
environments", integrating the compiler, the
supporting tools, and the supporting libraries into a
single package.

The compilers in these programming environments
need to be high-performance compilers. While the C
and C++ languages are considered good for system
implementation, they are not necessarily good for
numerical programming. Several years ago, Cray
Research committed to delivering a high performance
C compiler suitable for numerical programming. We
have achieved this goal with a combination of
language extensions, optimization directives, and
automatic optimizations. We are now committed to
also delivering a high performance C++ compiler. As
was our goal for C, our goal for C++ is to achieve
performance at or near Fortran performance (within
20%) for equivalent codes.

320

The transition to a high-performance C++ compiler
starts with standard-compliant functionality and will
progress in each release with greater functionality and
with better performance that requires less programmer
effort. Supporting tools and libraries will also be
enhanced. A specific product transition plan will be
presented at a future CUG meeting. We will
collaborate with customers on important applications
to help guide our functionality and performance
enhancements.

Standard C Programming Environment 1.0
for PVP

The Standard C Programming Environment 1.0 was
released for Cray PVP systems in December of 1993.
The components of the PVP version are:
·SCC
• CrayTools: CDBX, xbrowse, PVP performance
tools, [cclint in 1.0.1 release]
• CrayLibs: libm, libsci

The original goal for the Cray Standard C compiler
was to provide an ISO/ANSI compliant compiler that
delivers Cray performance at or near the performance
level of equivalent Fortran code. This goal was
achieved with the 2.0 release and improved on with
the 3.0 and 4.0 releases. Several language extensions
were added to provide some Fortran-like capabilities
that were necessary for delivering the performance.
These language extensions have been proposed to the
ISO/ANSI C committees.

Reliability of the compiler has improved with each
release and is quite good.

Standard C Programming Environment 1.0
for MPP

The Standard C Programming Environment 1.0 was
released for Cray MPP systems in November of
1993. The components of the MPP version are:
·SCC
• CrayTools: TotalView, xbrowse, MPP Apprentice,
[cclint in 1.1 release]
• CrayLibs: libm, libsci, libpvm3

The 1.0 programming environment for MPP supports
multiple PE execution only through message passing.
Two message passing models are available: PVM and
shared memory get and put. Architectural differences
between PVP and MPP systems necessitate some
significant compiler feature differences. On MPP
systems, memory is distributed so distinctions must
be made between local and remote memory
references. On PVP systems, type "float" is 64-bits
but on MPP systems, type "float" is 32-bits. The
computation speed for 32-bit floats is the same speed
as for 64-bit doubles, but arrays of floats are packed 2
values per 64-bit word and so less memory is used
and bandwidth to and from memory or to and from
disk is double. Same story for shorts. Vector
capabilities don't exist on MPP systems. MPP
systems have additional intrinsics and don't support
PVP-specific intrinsics.

Cray C++ 1.0 for PVP

Cray C++ 1.0 for PVP was released in August of
1992. It was not released as part of a full
programming environment, rather, it depends on the
C programming environment for compilation of the
generated C code and for the supporting tools and
libraries. C++ 1.0 is an enhanced version of USL
C++ 3.0.2 (cfront). The major enhancements are
pragma support, additional inlining, and restricted
pointers.

The functionality of Cray C++ 1.0 matches that of the
emerging C++ standard as it was at that time and the
performance is adequate where performance is not a
critical concern. Where performance is a critical
concern, good performance has been achieved in
some cases, often with programmer intervention.
There is still room for improvement. Currently,
performance is highly dependent on programming
style. The tech note SN-2131 provides some
guidance for which techniques work best.

The C++ debugging support was significantly
enhanced with the release of SCC 4.0, COBX 8.1
(both in the C programming environment 1.0) and
with C++ 1.0.1.

There are currently about 40 CRI customers licensed
for C++. If we had not released C++ 1.0, many
customers would have ported the USL code
themselves, duplicating work and not benefiting from
our enhancements.

Cray C++ 1.0 for MPP

C++ 1.0 for MPP will be released mid-1994. As with
SCC for MPP, C++ 1.0 for MPP supports PVM and
shared memory get and put models only. TotalView
will support C++, including handling of mangled
names. At about the same time, the MathPack.h++
and Tools.h++ class libraries for MPP will be
released as separate unbundled products.

Some C++ Customer Experiences

Some significant performance successes have been
achieved with the current compiler technology. But
this has required changes to user code, changes to
C++ 1.0, and changes to SCC. To illustrate that C++
codes can perform quit well, two examples are
described below.

Application 1

This application contained the following C++
statement in the kernel of its code:

t(i, j) += temp * matl.index(i, j);
II t,temp,matl are complex class objects

Though this seems like a very simple statement, it is
expanded by C++ 1.0 into about 150 lines of C code
that SCC must compile. (It really doesn't need to be
quite that complicated.) For this statement, the
equivalent Fortran or C code would contain a loop and
perhaps function calls. The class involved here,
complex, is a relatively simple class but the
optimization issues are general and apply to many
classes. In particular, though it is easier for the
compiler to optimize operations on objects that contain
arrays, the more natural style of writing C++ codes is
usually to have an array of objects. This code uses
arrays of objects. The initial performance (on a single
CRA Y C90 CPU) for this part of the code with SCC
3.0 was about 9 MFLOPS. Using a more aggressive
optimization level, -h vector3, resulted in partial
vectorization of the loop and the performance reached
about 135 MFLOPS. Using SCC 4.0 and the
compiler options -h ivdep,vector3 resulted in
performance of about 315 MFLOPS.

321

Application 2

This application is a hydrocode that simulates the
impact of solid bodies at high velocities. The code
has been written to be run on a wide variety of
architectures including scalar, parallel vector, and
massively parallel. A major focus was developing
appropriate classes for the application and tuning the
classes for different architectures. This keeps the
main code quite portable. Another advantage of this
approach is that all the architecture-dependent features
are buried in the class definitions and remain invisible
to the class users. The initial performance of the
entire application on a CRA Y Y -MP was a about 1
MFLOP. By using reference counting and
management of temporaries to eliminate unnecessary
memory allocations and deallocations, the
performance reached about 25 MFLOPS. Using
restricted pointers and more aggressive inlining
brought that up to 75 MFLOPS on 1 processor of the
Y -MP. The code has also been ported to a CRA Y
T3D using a message passing system based on
get/put. The code runs a typical real-life problem at
about 5.8 MFLOPS per PE with excellent scaling to at
least 128 PEs.

c++ Programming Environment 2.0

The focus for C and C++ programming environments
in 1994 and 1995 is to provide a C/C++ programming
environment with a native, high performance C++
compiler and enhanced tools support of C++. The
2.0 release is planned for mid-1995. In order to focus
our resources on the 2.0 environment, there will be no
major release of the C programming environment in
1994 and 1995. There will be revision releases of the
C and C++ environments as necessary to fix
problems, to support new hardware, and perhaps to
provide some performance enhancements.

The 2.0 environment will include full tools support
for C++. This will include TotalView, xbrowse,
MPP Apprentice, and possibly a class browser.

For the MPP environment, distributed memory
versions of some libsci routines will be available in
2.0. These will include some or all of BLAS2,
BLAS3, LAPACK, FFT, and sparse solvers.

The C++ 2.0 compiler will utilize more advanced
compiler technology. The advantages of the new
compiler technology are:

322

• eliminates the step of translation from C++ code to
(messy) C code
• able to pass C++ specific information to the
optimizer
• same optimization technology as CF90 compiler
• new internal data structure has potential for:

- lower memory usage
- higher throughput
- inter-procedural optimization
- inter-language inlining

C++ 2.0 will be functionally equivalent to C++ 1.0
with somewhat better performance, and with
exception handling. C++ 2.0 will be an ISO/ANSI C
compliant compiler but won't have all of the
functionality of SCC 4.0. The C++ 2.0 programming
environment will not be dependent on the Standard C
programming environment. The target date for C++
2.0 is mid-1995.

c++ Programming Environment 3.0

The target date for C++ 3.0 is mid-1996. C++ 3.0
will keep up with emerging C++ standard and will
have the functionality of SCC 4.0 with maybe a few
minor exceptions. C++ 3.0 will outperform SCC 4.0
for C code. C++ 3.0 will outperform C++ 2.0 for
C++ code.

c++ and Class Libraries

The productivity advantage of C++ is realized when
well defined and optimized classes are available to the
end user that match his or her discipline. C++ can be
used as a meta language that allows the class
implementer to define and implement a new language
that suits the discipline. The class user can then think
in terms of the discipline rather than in terms of
computer science. It does put a greater burden on the
class implementer. This division of labor is a net gain
if the classes are used for more than one application.
The more complicated the hardware gets, the more
important it is that software help hide this complexity
from the user.

Cray Research has been and will be very selective in
which C++ class libraries we distribute. Any that we
do support are, and will be, separately licensed and
priced. We believe that there should be, and will be, a
smorgasbord of class libraries from various vendors
in the future. This gives customers the greatest choice

and will allow even small vendors to compete in niche
markets.

The 2 class libraries that Cray has released are
MathPack.h++ 1.0 and Tools.h++ 1.0 for PVP,
released in December 1993. MathPack.h++ 1.0 and
Tools.h++ 1.0 MPP will be released mid-1994. As
with the evolution of the compilers, this first release
of class libraries focused primarily on providing
functionality and then as good of performance as time
would allow. These libraries are based on Rogue
Wave libraries and therefore have the benefit of
portability of code across many platforms. Industry
standards (even de facto standards) for class libraries
are needed so that the portability benefits can be
reaped. More tuning of the libraries will improve the
performance.

Parallel C and C++

Cray Research has not committed to any C or c++
language extensions for parallelism, or for distributed
memory systems. We are still looking at various
models, experimenting with some, and encouraging
others to experiment. Any model we select must have
potential for high performance. We are also watching
the parallel Fortran models to see what techniques and
paradigms prove most successful. We want to hear
about customers' experiences with parallel extensions.

Summary and Conclusion

The Standard C programming environments for PVP
and MPP include high-performance and reliable
compilers. We have not yet achieved a high level of
automatic high-performance for C++. We are making
the transition of the next few years to a single, high
performance C/C++ compiler that will be part of a rich
programming environment. In the short term, good
C++ performance still requires work by the
programmer. We will work with customers on
important applications to guide our efforts at
enhancing the compiler, tools, and libraries.

In the long run, the success of C++ will depend on:
• compilers that deliver the performance of the
hardware with minimal programmer intervention,
• good supporting tools and libraries,
• well defied and implemented class libraries for
different disciplines,
• and overall, a significant improvement over other
languages in ease of use and time to solution. Cray

Research has taken on the challenge to do its part to
make C++ a success.

323

324

The MPP Apprentice™ Performance Tool:
Delivering the Performance of the Cray T3D®

Winifred Williams, Timothy Hoel, Douglas Pase

Cmy Research, Inc.
655-F Lone Oak Drive

Eagan, Minnesota 55121

ABSTRACT

The MPP Apprentice™ performance tool is designed to help users tune the performance of their
Cray TID® applications. By presenting performance information from the perspective of the user's
original source code, MPP Apprentice helps users rapidly identify the location and cause of the most
significant performance problems. The data collection mechanism and displays scale to permit per­
formance analysis on long running codes on thousands of processors. Information displayed within
the tool includes elapsed time through sections of code, time spent in shared memory overheads and
message passing routines, instruction counts, calling ttee information, performance measures and
observations. We will demonstrate how the MPP Apprentice's guides the user's identification of per­
formance problems using application examples from benchmarks and industry.

1 Introduction

Fast hardware and system software are great, but the
performance that really counts is that which the end
user can achieve. Early MPPs were notoriously diffi­
cult to program, and it was even harder to approach the
peak performance of the systems. While this has been
improving across the board, Cray has a particularly
strong story to tell. The Cray TID has very fast hard­
ware [CRI93-1], system software, and libraries which
overcome the limitations of many other systems.
Cray's MPP Fortran programming model [pa93] ,
along with hardware support from the Cray TID,
attacks the programming issue by letting the user pro­
gram a distributed memory system as though the mem­
ory were shared. Good compilers provide the
performance. But there is always more the user can do
to improve the performance of a code.

The focus of the MPP Apprentice tool is to deliver the
performance of the Cray TID to the user. The tool
assists the user in the location, identification, and res­
olution of perform~ce problems on the Cray TID. Its
instrumentation and displays were designed specifi­
cally to permit performance analysis on thousands of
processors, to handle the longer running codes that
large systems enable, and to support work-sharing,
data parallel, and message passing programming mod­
els. Performance characteristics are related back to the

Copyright © 1994. Cray Reseach Inc. All rights reserved.

user's original source code, since this is what the user
has the ability to change in order to improve perfor­
mance, and are available for the entire program, or a
subroutine, or even small code blocks.

2 Possible approaches

Many performance tools today collect a time-stamped
record of user and system specified events, more com­
monly called event traces. AIMS [Ya94] , GMAT
[CRI91], Paragraph [He91], and TraceView [Ma91] are
examples of event trace based tools. These tools present
information from the perspective of time, and try to
give the user an idea of what was happening in every
processor in the system at any given moment While
event trace tools have great potential to help the user
understand program behavior, the volume of data is dif­
ficult to manage at run-time and when post-processing.
The size of an event trace data file is proportional to the
number of processors, the frequency of trace points,
and the length of program execution. Handling such
large data files at run-time can perturb network perfor­
mance, interprocessor communication, and I/O. At
post-processing time, the volume can be difficult to dis­
play and interpret. The data volume also raises concerns
about how event trace tools will scale to handle longer
running programs and larger numbers of processors.

Other tools record and summarize pass counts and
elapsed times through sections of code, and will be

called "stopwatch" tools for the purposes of this paper.
ATExpert [Wi93] and MPP Apprentice [CRI93-2,
Wi94] are examples of these tools. Stopwatch tools
present infonnation from the perspective of the user's
program and provide the user with perfonnance char­
acteristics at a particular point in the program. Profil­
ing tools present information from a similar
perspective, although their data collection mechanism
is very different. The data volume of stopwatch tools,
which is proportional to the size of the program, is
much smaller than event trace tools. The reduced data
volume intrudes less on program behavior and pennits
much finer grained data collection. The data volume is
also more manageable for a tool to post-process and a
user to interpret, and scales well to growing numbers
of processors and lengths of program execution. The
MPP Apprentice tools is a stopwatch tool.

3 MPP Apprentice method

A compile-time option produces a compiler infonna­
tion file (CIF) for each source file and turns on MPP
Apprentice instrumentation. A CIF contains a descrip­
tion of the source code from the front end of the com­
piler and encapsulates some of the knowledge of the
user's code from the back end of the compiler, such as
instructions to be executed and estimated timings. The
instrumentation occurs during compilation after all
optimizations have occurred. Instructions are added
strategically to collect timing infonnation and pass
counts while minimizing the impact on the user's pro­
gram.

During program execution, timings and pass counts for
each code block are summed within each processor
and kept locally in each processor's memory, enabling
the MPP Apprentice to handle very long running codes
without any increase in the use of processor memory.
At the end of program execution, or when requested by
the user, the power of the Cray T3D is used to sum the
statistics for each code object across the processors,
keeping high and low peaks, and a run-time infonna­
tion file (RIF) is created. The MPP Apprentice post-­
processes the RIF, the CIFs, and the user's source files.

4 Visualization of data

When a user initially runs the MPP Apprentice on their
code, the tool provides a summary of the statistics for
the program and all subroutines, sorting them from the
most to the least critical. The list of subroutines
includes both instrumented as well as uninstrumented
subroutines, such as math and scientific library func­
tions. MPP Apprentice defines long running routines
as "critical", and pennits the user to redefine "critical"
if desired. The summary breaks down the total time for
each instrumented subroutine into time spent in over-

head, parallel work, I/O, and called routines. For unin­
strumented subroutines, only the total time is available.
Overhead is defined as time that would not occur in a
single processor version of the program, and includes
PVM communication, explicit synchronization con­
structs (such as barriers), and implicit synchronization
constructs (such as time spent waiting on data, or
implicit barriers at the end of shared loops). MPP
Apprentice details the exact amount and specific types
of overhead.

Figure 1 shows a sample main . window of MPP
Apprentice. The upper panel of the window, or naviga­
tional display, shows summarized statistics for the pro­
gram and each of its subroutines. The legend window
identifies the breakdown of the total time for each code
object. A small arrow to the right of a subroutine name
indicates that the subroutine has been instrumented and
that it may be expanded to see perfonnance character­
istics of nested levels. All of the detailed infonnation
available for the program and subroutines is also avail­
able for nested levels. Nested code objects are identi­
fied by a name identifying the code construct, e.g., If or
Do, and a line number from the original source code.
The user may ask to see the full source code for a code
object. A source code request invokes Cray's Xbrowse
source code browser, loads the appropriate file auto­
matically, and highlights the corresponding lines of
source code (See Figure 2).

The middle panel of MPP Apprentice details the costs
for the code object selected in the navigational display.
It toggles between providing infonnation on instruc­
tion counts, shared memory overheads, and PVM over­
heads. When displaying instruction counts, the exact
number of each type of floating point and integer
instruction is available, as well as the number of local,
local shared, and global memory loads and stores.
These values assist the user in balancing the use of the
integer and floating point functional units and maxi­
mizing local memory accesses to fully utilize the
power of the Cray T3D. The shared memory overheads
display gives the amount of time spent in each type of
synchronization construct as well as time spent waiting
on the arrival of data. The PVM overheads display
gives the amount of time spent in each type of PVM
call. Samples of each of these displays is available in
Section 5.

A call sites display helps look at algorithmic problems
related to the calling of one subroutine from another. It
lets the user see all the sites from which a selected sub­
routine was called, and all the subroutines to which the
selected subroutine makes calls. Timings and pass
counts are available with this infonnation.

325

c:-=a~..."
"¥L1!S'Q";.""

Menu.

Opening file: IhoIiae/suraac8/111W/cheM/app.rif

Navigational Display
Selecting ite.s (code objects) in
this window updates all other
windows accordingly. Code objects
with arrows naaybe be expanded to
provide performance information on
nested levels by selecting the
arrow or using the navigate menu.

Figure 1: Main window of the MPP Apprentice tool

326

Xbrowse started.

ca..on I block¥ I

i¥(scalar) return

next = 118 + one
preY = 118 - one

i ¥ (next • Be. nProc) next = next - nProc
i¥ (prey .It. Zero) prey = prey + nProc

xtllp = x

do i = one.. nProc-one

call pvaf'initsend(~ .. ok)
call pvaf'pack(REAL8.. xtllp.. 1.. 1.. ok
call pvaf'send(next.. 0.. ok)

_ .. ___ ._." •.•. __ . __ cal 1_ vUlfrecv(.. >I'~ev ... O .. _ok_>

~'n....~ing ¥ile : ·1hoIIe/st.-ac8/ /me-/gdSu..¥· •
. r- was COtIpiled .. ith a Fortran 77 co.piler ..

Figure 2: MPP Apprentice tool working cooperatively with Xbrowse

A knowledge base and analysis engine built into MPP
Apprentice derives secondary statistics from the mea­
sured values. It provides the user with performance
measures (such as MFLOPs ratings), analyzes the
program's use of cache, makes observations about the
user's code, and suggests ways to pursue performance
improvements. It attempts to put the knowledge of
experienced users into the hands of novices. Since the
Cray T3D is a relatively new machine, even experi­
enced users have a lot to learn, so the knowledge base
is expected to grow.

5 Identification of Performance Problems

Many of the commercial and benchmark codes opti­
mized with the MPP Apprentice so far have had a
large amount of time spent on a synchronization con­
struct as their primary performance bottleneck. Time
at synchronization constructs indicates some type of
imbalance in the code, a problem that is typical of
MPP codes in general. The interconnection topology
of the Cray T3D is much faster than other commer­
cially available MPPs, but these performance prob­
lems wh.ile reduced substantially, still exist.

327

328

5.1 Load imbalance with a message passing
code

Figure 1 shows the initial MPP Apprentice output for
a chemical code. With the subroutines sorted in order
of decreasing total time, it is evident that PVMFRECV,
a blocking message receive function, is consuming
the most time, more than half of the total time of the
program. Intuitively it seems undesirable to spend
more than half of program execution time waiting for
messages. By selecting subroutine PVMFRECV in the
Navigational Display and taking a look at the call
sites display, we can see each caII to PVMFRECV and
the amount of time spent in it.

In Figure 3 we can see all of the calls to PVMFRECV.
There are not many of them, but two calls are taking
substantia1ly more time than the others. If we were to
select the units button and switch to viewing pass
counts we would see that for the same number of calls
to PVMFRECV from different call sites, caII times
vary significantly. Some type of a load imbalance

~ CaD Sites

exists. By resolving this problem developers realized
a speedup of three and a half times.

5.2 Load imbalance with Fortran program-
ming model code

The main window in Figure 4 is from the NAS SP
benchmark code. This code uses one of the synchroni­
zation constructs available as part of Cray's Fortran
Programming Model, a barrier. The navigational dis­
play makes it evident that the barrier is the most criti­
cal subroutine in the user's program. With the middle
panel toggled to show shared memory overheads, the
time spent in the barrier shows up as a type of over­
head. Since a barrier is a subroutine call, the user
could approach this similarly to the PVM problem
shown previously by using the call sites display to
view the locations from which the barrier was called,
and the time spent at each location.

Figure 3: Call sites display for PVMFRECV

Xbrowse started.

Opening ~ile: /home/sumac8/apprn/test/sp/app.ri~

Figure 4: Main window of CRAFT code with a barrier

S.3 Poor balance of floating point and integer
calculations

Figure 5 shows the main window for a hydrodynam­
ics code. The most critical subroutine is an uninstru­
mented subroutine called $sldi v. If the user were to
search the source code, $sldi v would not be found.

The observations window in Figure 6 notes and
explains the time spent in $sldiv. Since there is no
integer divide functional unit on the alpha chip used
in the Cray T3D, a subroutine call must be made to do
the divide. Since the cost to call a subroutine is signif-

icantly greater than the direct use of a functional unit,
the program performance will benefit by limiting the
number of integer divides. If we return to Figure 5,
and look at the middle panel which is currently dis­
playing instruction counts, we will note a large num­
ber of integer instructions relative to floating point
instructions. Since there are both integer and floating
point functional units which may be used simulta­
neously, it is desirable to balance their use. The
instructions display indicates an underutilized floating
point unit. When this is combined with the large

329

330

Opening f'ile: Ihome/sumac8/ww/hydrodynam/app.rif'

Figure 5: Main window of a hydrodynamics code

amount of time spent in $sldiv, a strong case could
be made for converting some integers to floats.

6 Conclusion

Initial users have had a tremendous amount of success
with the MPP Apprentice on substantial codes. The
success of developers working on the chemical code
has already been mentioned. Several developers
working on an electromagnetics benchmark were sur­
prised to find that the routines they had been working
to optimize were the two running most efficiently, and
their biggest bottleneck was elsewhere. Another user

was able to take his code from 29.1 MFLOPs to 491
MFLOPS in a short period of time by resolving prob­
lems with PVM communication and barriers that
MPP Apprentice pointed out.

The method of data collection, and the choice of the
data being collected, permits the MPP Apprentice to
scale well to long-running programs on large numbers
of processors. By presenting data from the perspective
of the user's original source code, the user is able to
quickly identify the location of performance prob­
lems. Detailed information on instructions, shared

Code Per~ormance:
4 Total processors (PEs) allocated to this application

7.90 x 10~6 Floating point operations per second (~or 4 PEs)
32.63 x 10~6 Integer operations per second (for 4 PEs)

1.97 x 10~6 Floating point operations per second per processor
8.16 x 10~6 Integer operations per second per processor

3.58 x 10~6 Private loads per second per processor
1.38 x 10~6 Private stores per second per processor
0.00 x 10~6 Local shared loads per second per processor
0.00 x 10~6 Local shared stores per second per processor
0.00 x 10~6 Remote loads per second per processor
0.00 x 10~6 Remote stores per second per processor

15.36 x 10~6 Other instructions per second per processor
30.45 x 10~6 Instructions per second per processor

0.55 Floating point operations per load
2.28 Integer operations per load

Time spent per~orming dif~erent task types:
1744039 usec (20.21Y.) executing Hwork H instructions
2237192 usec (25.92Y.) loading instruction and data caches

o usec (O.OOY.) waiting on shared memory operations
34695 usec (0.40y') waiting on PVM communication

o usec (O.OOY.) executing "read" or other input operations
745985 usec (8.64y') executing "write" or other output operations

3868666 usec (44.83Y.) executing un instrumented ~unctions

100.00Y. Total

Detailed Description:
The combined expenditure o~ time ~or Ssldiv routines is measured to be
3342606 usec, or 38.73Y. of the measured time ~or this program.

The DEC Alpha microprocessor has no integer divide instruction. When the
code calls for an integer divide operation the compiler must insert a
call to a library routine to per~orm the divide. The name o~ the divide
routine is ··Ssldiv··. $sldiv per~orms a ~ull integer divide which is
expensive because it is done in software. I~ the full range o~ integer
values is not used but other integer properties are needed, it can be
raster to use ~loating point values and ~loating point divides in place
of integers, truncating or rounding ~ractions as needed.

Figure 6: Observations window for the hydrodynamics code

331

332

memory overheads, and PVM communication allow a
user to quickly identify the cause of performance
problems. The knowledge base encapsulated in obser­
vations provides performance numbers and helps the
user identify and resolve more difficult problems. As
demonstrated above, the identification of problems in
Cray T3D codes today can be achieved efficiently
using the MPP Apprentice.

7 References

[CRI91] Unicos Performance Utilities Reference
Manual, SR-2040 6.0, Cray Research, Inc., Eagan,
Minnesota, 1991.

[CRI93-1] eray T3D System Architecture Overview,
HR-04033, Cray Research, Inc., Eagan, Minnesota,
1993.

[CRI93-2] Introducing the MPP Apprentice Tool,
IN-2511 1.0, Cray Research, Inc., Eagan, Minnesota,
1993.

[He91] Visualizing the Performance of Parallel Pro­
grams, M. Heath and J. Etheridge. Software. IEEE
Computer Society, Silver Spring, MD, September
1991, Volume 8, #5, pp. 28-39.

[Ma91] Traceview: A Trace Visualization Tool, A.
Maloney, D. Hammerslag, and D. Jablonowski. Soft­
ware. IEEE Computer Society, Silver Spring, MD,
September 1991, Volume 8, #5, pp.19-28.

[Pa93] MPP Fortran Programming Model, Douglas
M. Pase, Tom MacDonald, and Andrew Meltzer.
CRAY Internal Report, February 1993. To appear in
"Scientific Programming," John Wiley and Sons.

[Re93] The Pablo Performance Analysis Environ­
ment, D. Reed, R. Aydt, T. Madhystha, R. Noe, K.
Shields, and B. Schwartz. Technical Report, Univer­
sity of Illinois at Urbana-Champaign, Department of
Computer Science.

[Ya93] Performance Tuning with AIMS -- An Auto­
mated Instrumentation and Monitoring System for
Multicomputers, Jerry C. Van. HICSS 27, Hawaii, Jan
1994.

[Wi93] ATExpert, Winifred Williams and James
Kohn. The Journal of Parallel and Distributed Com­
puting, 18, Academic Press, June 1993, pp. 205-222.

[Wi94] MPP Apprentice Performance Tool, Winifred
Williams, Timothy Hoel, and Douglas Pase. To appear
in Proceedings of IFIP, April 1994.

Cray Distributed Programming Environment

Lisa Krause
Compiler Group

Cray Research, Inc.
Eagan, Minnesota

Abstract

This paper covers the first release of the Cray Distributed Programming
Environment. This will be one of the first releases of Cray software that
is targeted for a user's workstation and not a Cray system.
The paper covers the goals and functionality provided by this initial
release and shows how the user's environment for doing code development
will move to his workstation. This paper also briefly describes plans for
upcoming releases of this distributed environment.

Introduction

In response to customer requests, Cray
Research, Inc. will provide the interactive
portion of the Cray Programming Environments
on the user's desktop system. This first
release of the Cray Distributed Programming
Environment (DPE) 1.0 is scheduled to coincide
with the Programming Environment 1.0.1 release
in the third quarter of this year. The
predominant goal for DPE 1.0 is to provide the
Cray Programming Environment on the user's
desktop. Although not all of the programming
environment components can be moved to the
desktop with this initial release, the focus
for DPE 1.0 is on Fortran 90. By providing
Cray's Fortran 90 on both the user's
workstation and Cray system, we hope to
enhance the user's ability to do code ~
development on whatever system is currently
available and useful to them.

Programming Environments

Currently, without having the Distributed
Programming Environment on the user's desktop,
all program development that is done to
confirm code correctness and to optimize
performance is done on their Cray parallel
vector system. To be able to fully utilize
the capabilities of the program browser and
the performance analysis tools, an interactive
session on the Cray system is needed. If no
interactive sessions are available at the
site, the user must try to perform all of his
tasks through a batch interface. Although
batch use is valuable for determining Cray
system utilization for big jobs, using batch
for program devel~pmentcan be slow and
contain numerous delays.

The Cray Distributed Programming Environment
will seek to alleviate the interruptions and

delays that can occur when doing code
development through
a batch environment or even a heavily loaded
interactive Cray environment. With DPE 1.0,
the user now has the performance tools, such
as ATExpert, flowview, perfview, profview,
procview, and jumpview residing directly on '
his workstation. The program browser, xbrowse;
also is on the workstation and can utilize the
Fortran 90 "front-end" of the compiler to
examine, edit and generate compilation
listing. Although not a full compiler, this
"front-end" component parses the"code and
diagnoses syntactic and semantic errors. The
CF90 "front-end" also produces a partial CIF
file which can be used through xbrowse or
cflist on the desktop. Users can communicate
with their Cray system when they need to
finish compilations, load their programs, and
execute them to obtain performance results by
using scripts that facilitate this
communication. The communication mechanism
used is ToolTalk which is provided in the
CrayTools package. CrayTools is included with
the CF90 Programming Environments and is
bundled with the host platforms targeted for
OPE, with the exception being SunOS.

The advantages provided with the addition of
the Cray Distributed Programming Environment
to a user's working environment are numerous.
With DPE 1.0 the user can now utilize Cray's
Fortran 90 compiler on both the workstation
and their Cray system. Access to the
interactive performance analysis tools that
are contained in the Cray Programming
Environments is easier, since these tools
reside on the user's workstations. By having
these components of the environment available
for the user on their workstation, code
development can move off of the Cray systems.
This frees up the Cray system cpu cycles to be
utilized for large jobs that cannot run

Copyright © 1994. Cray Research,/nc. All rights reserved

333

elsewhere. Using the program browser and the
tools interactively on their workstation frees
users from needing to have an interactive
session on their Cray systems. This favorable
environment for the tools also provides a
consistent interactive response time when they
are invoked.

The release plan for the Cray Distributed
Programming Environment 1.0 is consi~tent with
the release plans for the other Cray
Programming Environments. DPE 1.0 is due to be
released in the third quarter of 1994 and DPE
2.0 will be released in coordination with the
Cray Programming Environment 2.0 releases. The
goals for this first release are to provide
the interactive tools on the desktop and to
gather customer feedback on this distributed
environment.

Functiona1ity of OPE 1.0

The Cray Distributed Programming Environment
will provide many features of the Cray
Programming Environments on the user's
desktop. With the first release of DPE, the
user will be able to browse and generate a
compilation information file (ClF) by using
the program browser, xbrowse. Using the
interface provided by xbrowse, or with the
cflist tool, the user can examine this CIF to
obtain information on syntax and semantic
errors regarding their codes without having to
go to the Cray system. When a full compilation
of the code is needed, the user can initiate
this Fortran 90 compilation for the Cray
system from their workstation. Additional
executable components and commands contained
in the first release of DPE provide both a
framework and a method for communicating what
is to be accomplished on the workstation and
on the Cray system. Besides obtaining binaries
from a full Fortran 90 compilation, commands
can also be used to generate an executable and
move this to the Cray system to be run for
performance information. Performance analysis
can then be done on the desktop, especially
the analysis that can be obtained utilizing
the ATExpert performance tool. To understand
and learn more about the performance tools and
the Cray Fortran 90 compiler, the user will be
able to reference on-line documentation using
the CrayDoc reader.

For the first release of DPE, the Sun SPARC
workstation platform was chosen as the host
platform, as well as the CRS CS6400 platform.
These workstations can be running either SunOS
4.1 or Solaris 2.3 or later to be compatible
with DPE 1.0. For the SunOS workstations
ToolTalk will need to be obtained, as this
communications tool does not come bundled into
the operating system. The FLEXlm license
manager is needed to control access to the DPE

334

product and can be obtained through CraySoft.
The Cray Distributed Programming Environment
1.0 will need to have the CF90 Programming
Environment installed on a Cray Y-MP, Cray
C90, or Cray EL system, running a UNlCOS
release level of 7.0.6, 7.C.3, or 8.0.

Furture .P1ans

The second release of the Cray Distributed
Programming Environment, which is planned for
the first half of 1995, will focus on creating
a goal-directed environment. Instead of simply
providing tools needed to support code
development and analysis, the second release
will move to provide a process where the user
can simply indicate what the final goal should
be for the code being provided. If the goal is
to "optimize" the code, this goal-directed
environment, directed by a visual interface
tool, will lead the user through the steps
needed to provide optimization to the code.
Tentative plans for DPE 2.0 will strive to
support this goal-directed emphasis by
providing cross-compilers, distributed
debugging capabilities and a visual interface
tool. The plans may also include expanding the
target platforms to encompass future MPP
systems. Analysis is ongoing to determine the
value of increasing the host platforms that
will support DPE 2.0 to workstation platforms
such as RS6000 and SGI.

Summary

In summary, by responding to customer
requests, Cray Research, Inc. will release the
major components of the Cray Programming
Environment to run on desktop systems. The
first r-elease will provide tools for
performance and static analysis including the
Fortran 90 front-end. The second release is
currently planning to provide a goal-directed
environment highlighted by cross-compilers and
a distributed debugging capability.

~ Cray Distributed
~ Programming Environment

u .. lCt_

Cray User Group
San Diego, CA

March 1994

CoMpiler 1'wfomI __ on L.M.

DPE 1.0 focus is
on Fortran 90

DPE 1.0

.... .,
ReP • El

soote

Provide the Cray Programming
Environment on the User's

Desktop

Without DPE

~ Customer Advantage

• Cray's Foonn gO avaiable from deP-top to Crirf systems

• Easy acce" to !he Cray ProgranlTing Envirorment

• OeYeiopment mov .. 011 of Cray systems, .Iowing more Cray
cydes lor IlII"ge jobs 1hat camet n.n elsewhere

• Us.n CII'I take lIdIIantage of the Crirf progranming envirorment
without at interactive session

• Consistent Interactive response time when nrnng !he tools

335

336

~ eray Distributed Programming

Release Plans

• Release 1.0 - 3094

• Release 2.0 - 1 H95

@l Functionality

Release 1.0

• Browse and generate compilation information
from the desktop

• Perform syntax checking and static analysis
from the desktop

• Initiate the compilation of Fortran 90 programs
on Cray parallel vector systems

~PlatfOrmS
Release 1.0

• Host
- SunSPARC

• SoIa-is 2.3 « later
• Sl.n os <4.1

- CRSCS6400
• SoI';s 2.3 « IlIIer

• Target
- Cray V -MP. COO, EL

- Future Cray PVP Systems

@lGOa,S

Release 1.0

• Provide Interactive tools on the desktop

• Gather customer feedback on distributed
environment

~ Functionality

Release 1.0

• Generate an executable and analyze the
performance from the desktop

• Execute ATExpert from the desktop

• Reference online documentation from the
desktop

~ System Requirements

Release 1.0

• Host
- Tool1ak for SunOs

- FLEXlm

• Target
- CFOO Programming Environment 1.0

- UNICOS 7.0.6. 7.C.3. or 8.0

OPE 2.0 Focus is on '
Goal-Directed Environment

~GOaIS
Release 2.0

• cross-compilation

• distributed debugging

• visual interface tool

• target platform extends to MPP systems

• host platforms extended

8 __ J

OPE 2.0

I¥. .
ReP

~summary

•·.:~tr.·.· :

snOke

Responding to customer requests, Cray Research Inc.
will release major components of the Cray Programming
Environment to run on desktop syatems.

• Release 1.0: tools for performance and static analysis.
CF90 front-end

• Release 2.0: goal-direded environment. cross-compiiers
and distriJUled debugger

337

338

Cray TotalView™ Debugger

Dianna Crawford

Cray Research, Inc.
655-F Lone Oak Drive

Eagan, Minnesota 55121

ABSTRACT

Cray TotalView is a window-oriented multiprocessor symbolic debugger. First released in late
1993, Cray TotalView is a key component in the Cray Programming Environments. In 1994,
it will be available on ail current hardware platforms and will debug program written in For­
tran 90, Fortran 77, C, C++ and assembler. This paper gives an overview of the features in­
cluded in Cray TotalView, describes the releases plans and plans for the CDBX debugger
which Cray TotalView will eventually replace.

1 Introduction

Cray Research has released a new debugger, Cray
TotalView. This new debugger will span all current and
new Cray supported hardware platfonns and compiler
languages and will eventually replace the Cray CDBX
debugger.

Faced with the challenge of providing a debugger on
Cray Research's massively parallel system, the Cray
T3DTM, we realized that it would be difficult to provide
a useful product by porting CDBX to that environment.
CDBX was designed to debug serial programs and the
extensions to provide debugging of moderately parallel
programs were of limited success. Also, CDBX was
designed for a single architecture and was not very por­
table. We evaluated the currently available debuggers
and selected the TotalView debugger from Bolt
Beranek and Newman Inc. (BBN) as the starting point
for the development of the new Cray parallel debugger.
TotalView was selected because it was a powerful, easy
to use debugger that had been designed to debug paral­
lel programs, and it was portable enough to provide a
good base for developing a debugger that would span
mUltiple languages and hardware architectures.

Cray TotalView was released in the fourth quarter of
1993 and provided initial support for Cray T3D pro­
grams and Cray Fortran 90 programs running on the
Cray Y-MP and C90 platforms. In 1994, Cray Total­
View will support Fortran 90, FORTRAN 77, C, C++
and assembler programs running on Cray massively
parallel, parallel vector and SP ARC systems. This will

Copyright © 1994. Cray Research Inc. All rights reserved.

provide a common debugger across all Cray supported
platfonns, allowing programmers to leverage their
learning investment when they program for more than
one type of system.

Section 2 describes several of the features available with
Cray TotalView. Section 3 describes the Cray Total­
View release features and schedules. Section 4 describes
the current plans for support of the CDBX debugger.
Section 5 provides a summary of the paper.

(Note: To simplify the tenninology, through the remain­
der of this paper the tenn TotalView is used to refer to
the Cray TotalView debugger.)

2 Product Overview

TotalView is a window-oriented multiprocessor debug­
ger. The TotalView debugger has an X Window Sys­
tem™, graphical interface that is easy to learn and
displays as default the infonnation most commonly
needed when debugging. The window interface conveys
the basic concepts of parallel codes, providing a separate
window for each process the user is currently debug­
ging. Execution control, including breakpoints and step­
ping through code, is available across all processes or
for a single process. TotalView allows the user to work
within their language of choice and supports expression
evaluation for both Fortran and C. Viewing large, com­
plex data arrays is supported through an array browser
which displays a two-dimensional slice of a multidimen­
sional array. TotalView functionality is described below
using the screen images shown in Figures 1 through 5.

Figure 1 shows an example of the Root window. This is
the main TotalView window and the first that the user
sees when invoking TotalView. From this window, the
user can start a debug session by loading an executable
or a core file or attaching to a running process, access
the on-line help, and view process information. In the
example Root window, the display shows process
information for each of the four processes that are part
of a single program. One of the processes, cray _trans­
pose, is stopped at a breakpoint, designated by the "B"
after the process id. The user can debug any number of
the processes by clicking the mouse on that process sta­
tus line which will open a Process window for the
selected process. TotalView also allows debugging of
multiple programs from a single interface, which
means, for example, that the user can debug both sides
of a program distributed between a Cray Y -MP and
T3D.

An example of the Process window is shown in Figure
2. There is one Process window for each process the
user is actively debugging. From this window, the user
can control processes, examine code and data and
manipulate program data. Much of TotalView's func­
tionality is available from this versatile and powerful
window, only a small fraction of which is described
here.

The source pane is at the bottom of the Process window.
This displays the source code of the routine the user is
currently stopped in. The user can change the display to
show the assembler code or source code interleaved
with the corresponding assembler code. Lines where
breakpoints can be set are designated with a small hexa­
gon to the left of the line number. The user clicks the
mouse on the hexagon breakpoint symbol to set or
remove a breakpoint, conditional breakpoint or expres­
sion evaluation. The user can run to a breakpoint or a
specific line and can single step through the program,

30071 T cra~_transpose.3
30072 T craY"'t"ranspose.2
30073 T cra~_transpose.l in
30055 8 cra~_t~anspose in

including stepping across function calls, controlling all
processes or just the process shown in the window. The
text within the source pane is also active. Clicking the
mouse on a variable name allows the user to display and
change its value. Clicking the mouse on a function call
displays the source for that function. The example in
Figure 2 shows a display of the source code for the
function do_work. The program is stopped at a break­
point at line 278. An evaluation point is set at line 274
(Figure 4 shows the contents of this evaluation point)
and another breakpoint is set at line 281.

The pane at the top right of the Process window is the
current routine pane. It displays the calling parameters,
local variable information, current program counter and
access to the registers. The user can click the mouse on
the information shown to display additional informa­
tion or change values. For example, Figure 2 shows that
the current routine, do_work, has one calling parame­
ter, prob_p, which is a pointer to a structure. The user
can click the mouse on (Structure) to view that struc­
ture's elements and values. Clicking the mouse on the
value I of local variable i allows the user to change the
value.

The top left pane of the Process window, called the
sequence pane, displays the stack trace. The user can
walk the stack by clicking the mouse on an entry point
name which updates the source pane and current rou­
tine pane with information for the selected routine. In
the example shown in Figure 2, the user is currently
stopped in the routine do_work, which was called by
$TSKHEAD. $TSKHEAD is the tasking library rou­
tine which initiates all slave tasks.

Figure 3 shows an example of the Action_point win­
dow. TotalView allows the user to save and load break­
points across debug sessions. The Action_point
window shows all of the breakpoints and evaluation
points currently set within the program. From this win-

Figure 1: Root window

339

340

:I~11jf.f5?;~11_i%{illl'Jl~1~il_~1
rrmmlllllllllllllllllllllllllllili. process.3~~jD: .cray _ trajsPofe. (RtBreakyoint> 11111111111111111111111111111111111,11111. i,l

.~

i: /1
·I\y_id:l·

.. ~

.... (Structure)

P:()~:i750d (~o_~orJc+Op31c)
BOO: Op1743c (do_uork~Op24b)

,;~. \ •• " , \ , •••••••••••• \ \ ••• , •••••••••••••• , \ " •••• , '" •••••••••• 0' •••• \ ••• , •••••••••• ':,.' ~:/:: •.•

..............................

i Funct~on do_uork ~n cray_transpose.c .;:~

I~" ·!!r·'·······'··:::f::~:~::::;;::::::::::::::::~:~:·~·'::::o::'p::::::':::::-:: ~!Iril
~~ 277 { suap_rou_col (artyprob_p" i); I~ : iifNi:U

'l~ ~i~ :inauranSPoSdor_proc (&Hyprob_p>; 1* do per process c. ;·~:;rl
10 ~:~ 1 r '~nl
~ , ,•. , ..•.....•. , .. ,., .•... , •......... , •... , .•...... , , ,•...•..... , ,., , , ,., ,•.......•...... , ,., ... , , , , .•.. , •. ,.,.,•..•. , , :::::y.:y::.':.: .. : .. :.:: ::::.:;:\·:.\··::;::;':;'·\·::·'::.';:\::\i:.~:.:./\·::· ··:i:~····:::::.\ :.: ;

'f';i~~~~jf~~~_~~~~~~~~~~_~~~;J
Figure 2: Process window

dow the user can disable or delete breakpoints and eval­
uation points and can locate and display a breakpoint
within the source.

The Breakpoint window is shown in Figure 4. From this
window the user can set a conditional breakpoint or an
expression evaluation point, using either C or Fortran
syntax. These action points can be shared across all pro­
cesses or a single process and can STOP all processes
when the breakpoint is hit or only a single process. The
example shows a conditional breakpoint (set at line 274
in Figure 2) which is shared across all processes and
will STOP all processes when it is hit.

Figure 5 shows the array browser. The array browser
displays a two dimensional slice of a multidimensional
array. The user can specify the slice to display, the array
location to display in the upper right hand corner, can
scroll through the array, locate specific values and
change values. The array browser has been optimized
for large arrays and will only read in the portion of the

array being displayed plus a small buffer zone for
scrolling, with additional portions of the array read in
only as needed.

3 Release Plans

TotalView 0.1 is available today; it was released in the
fourth quarter of 1993 with CrayTools 1.1. It provides
full functionality for source-level debugging of parallel
codes. All of the functionality described in section 2 is
provided in this first release. TotalView 0.1 provides
the initial support for Cray T3D programsandCray
Fortran 90 applications on Cray Y-MP and C90 sys­
tems.

The first general release of TotalView is release 1.0,
scheduled for the second quarter of 1994 with Cray­
Tools 1.2. TotalView 1.0 will support Cray Fortran 90,
FORTRAN 77, C, C++ and assembler on Cray T3D,
Y-MP, C90, EL and SPARC systems. With this release
TotalView will support all current Cray languages and
system architectures. Additional features include

Figure 3: Action_point window

Figure 4: Breakpoint window

IIcra!:J_ transpo~
file IIcra!:J_transpo~

341

342

Figure 5: Array browser

CRAFT T3D programming model support and a batch
interface for debugging core files. Significant effort has
been made in developing reliable, portable code and a
strong regression test suite in order to provide a stable,
usable product across a broad platform base for this first
general release of TotalView.

A minor release, TotalView 1.1, is scheduled for the
fourth quarter of 1994 to provide two important fea­
tures, data watchpoints and fast conditional break­
points. This will be delivered in the CrayTools 1.3
release.

TotalView 2.0, scheduled for the middle of 1995 with
CrayTools 2.0, will provide support for new Cray hard­
ware. Release 2.0 will enhance the array browser to
provide visualization of the array data and will provide
enhancements to aid in debugging large numbers of
processes. It will also provide distributed debugging for
the Cray Distributed Programming Environment. This
will allow the user to run TotalView on their desktop
workstation to debug a program running on a Cray sys­
tem.

(Note: CrayTools is a component of the Cray Program­
ming Environment releases. Each Cray Programming
Environment release provides a complete development
environment including a compiling system, CrayTools
development tools, and CrayLibs high performance
libraries.)

4 CDBXPlans

CDBX will eventually be replaced by TotalView. The
following outlines the current plans for CDBX support.
CDBX 8.1 which was released in late 1993 is the last
feature release of CDBX. The 8.1 release supports For­
tran 90, FORTRAN 77, C, C++, Pascal and assembler
on Cray X-MP, Cray-2, Cray Y-MP, C90 and EL sys­
tems. No new language or new hardware support is
planned. CDBX does not support the Cray T3D or
SP ARC systems, for example, nor will it support
Cray's new native C++ compiler planned for 1995.
Minor changes will be made to CDBX to support com­
piler and UNICOS upgrades. CDBX will be supported
with fixes through 1996.

5 Summary

Cray Research has released a new window-oriented
multiprocessor debugger called Cray TotalView. Cray
TotalView will support all current and new Cray lan­
guages and architectures, providing a common debug­
ger across the entire range of products.

TotalView 0.1 is available today, providing full func­
tionality for source-level debugging of parallel T3D
and Fortran 90 codes. TotalView 1.0, scheduled for sec­
ond quarter of 1994, will support Cray Fortran 90,
FORTRAN 77, C, C++ and assembler on Cray T3D,
Y-MP, C90, EL and SPARC systems. With this release,
TotalView will support all current Cray languages and
system architectures. Data watchpoints and fast condi­
tional breakpoints will be supported in the TotalView
1.1 release scheduled for the fourth quarter of 1994. In
mid-1995 we will' deliver data visualization capabilities
and a distributed debugger for debugging Cray pro­
grams from the desktop.

343

344

Fortran 110 Libraries on T3D

Suzanne LaCroix

Cray Research, Inc.
655-F Lone Oak Drive

Eagan, Minnesota 55121

ABSTRACT

The fundamentals of Fortran I/O on the eRA Y T3D system will be covered. Topics include
physical I/O environments, I/O paradigms, library functionality, performance considerations,
and tuning with the I/O library.

1 Introduction

The CRA Y T3D is a Massively Parallel Processor sys­
tem with physically distributed, logically shared mem­
ory. The CRA Y T3D is attached to, or "hosted by", a
CRA Y Y -MP or CRA Y C90 computer system. This
paper covers the fundamentals of Fortran liD on the
CRA Y T3D. Section 2 provides background informa­
tion about the CRA Y T3D physical 110 environment,
section 3 discusses T3D 110 paradigms, section 4 gives
a high level description of library functionality avail­
able on the T3D, section 5 describes performance con­
siderations and tuning opportunities, and section 6
provides a summary.

2 Background

Cray Research offers two physical 110 environments for
T3D systems, Phase I and Phase II. The Phase I liD
environment is the default and is available today. In this
environment, all disk data flows from an liD Cluster
through the host Y-MP or e90 system to the T3D. The
host maintains one common set of filesystems so that all
files available to a user on the host are also available to
a user on the T3D.

The Phase II 110 environment is optional and is cur­
rently under development. In this environment, the
optional second high speed channel (HISP) on an 110
Cluster may be connected to the T3D. This allows disk
data to flow directly from the 110 Cluster to the T3D,

Copyright © 1994. Cray Research Inc. All rights reserved.

bypassing the host. However, just as in Phase I, the host
maintains one common set of filesystems. Phase II aug­
ments Phase I by providing additional connectivity for
T3D systems hosted by small Y -MP or e90 systems.

3 I/O Paradigms

Two liD paradigms are offered for use in T3D applica­
tions, Private 110 and Global 110. Private liD is the
default and is available today. With Private liD, each
process element (PE) opens and accesses a file indepen­
dently. That is, each PE establishes its own file connec­
tion and maintains its own file descriptor. Another way
to describe this paradigm is that the PEs behave like
unrelated processes on a Y-MP. The user provides any
necessary coordination of file access among the multiple
PEs. This liD paradigm is analagous to the message
passing programming model. It is available. to both C
and Fortran programs.

The Global 110 paradigm is currently under develop­
ment. Global 110 allows multiple PEs to share access to
a single file in a cooperative fashion. Global 110 must
be selected by the user by inserting a directive prior to
the Fortran OPEN statement for which global 110 is
desired. In this paradigm, all PEs open a file coopera­
tively. The file connection and the library buffer are
global, shared resources. Each PE may access the file,
or not, independently and the library coordinates the
access. Another way to describe this paradigm is that

the PEs behave like the cooperative processes in a mul­
titasked program on a Y-MP. Global 110 is available to
Fortran programs following Cray Research MPP For­
tran Programming Model rules.

4 Library Functionality

Cray Research supports a rich set of Fortran 110 library
functionality on CRAY Y-MP and CRAY C90 sys­
tems. All of this functionality is available or planned to
be available on the CRA Y T3D.

Functionality that is available now includes support for
formatted and unformatted 110, sequential and direct
access 110, word addressable 110, Asynchronous
Queued 110 (AQIO), and Flexible File 110 (FFIO).

Features that will be available in the short term include
support for BUFFER INIBUFFER OUT, implicit float­
ing point format conversion, and Global 110.

Support for namelist 110 will be available in the longer
term, in conjunction with support of the Fortran 90
compiler on T3D.

5 Performance Considerations

All 110 requests initiated on the T3D are serviced on the
host. This results in a longer transaction latency for
T3D users than for users on the host. Thus, T3D users
should consider these three closely related 110 perfor­
mance factors: optimum request size, latency hiding,
and load balancing.

On the T3D, users should minimize the number of 110
system calls generated, and make a sufficiently large
request to ammortize the cost of the system call. The
assign command has several options that allow a user to
select a library buffer size and library buffering algo­
rithm to help reduce the number of system calls. These
options specify FFIO buffering layers, and require no
changes to the application source code. Some of the
more notable FFIO buffering layers are

• assign -F mr (memory resident file)

• assign -F bufa (asynchronous buffering)

• assign -F cache (memory cached 110)

• assign -F cachea (asynchronous memory cached
110)

• assign -F cos (asynchronous buffering, COS
blocking)

Latency hiding is another important consideration. The
FFIO layers which use an asynchronous buffering algo­
rithm are effective at hiding latency. The user could
also employ either AQIO or BUFFER INIBUFFER
OUT to overlap 110 with computation.

Load balancing refers to balancing the number of PEs
doing 110 with the number of PEs doing computation.

The user must make sure that the compute PEs have
data delivered at a reasonable rate to avoid idle time.
With Global I/O, an application should scale up or
down with little user effort to create a good load bal­
ance.

6 Summary

This paper has described the fundamentals of Fortran
I/O on the CRA Y T3D. The T3D 110 environment
takes advantage of the filesystem management and 110
capabilities on the host. Users can mix and match the
Private 110 and Global 110 paradigms to best fit their
application. A powerful set of Fortran 110 library pack­
ages and tuning features is available on the T3D.

345

User Services

USER CONTACT MEASUREMENT TOOLS AND TECHNIQUES

Ted Spitzmiller
Los Alamos National Laboratory

Los Alamos, New Mexico

Overview

Detennining the effectiveness of user services is often
a subjective assessment based on vague perceptions
and feelings. Although somewhat more objective,
fonnal periodic surveys of the user community may
serve mo~ to harden stereotypical attitudes than to
reveal areas where effective improvement is needed.
Surveys tend to bring out perceptions of the most
recent interaction or long standing horror stories, rather
than long tenn perfonnance. This paper examines how
statistical data, surveys, and user perfonnance can be
used to detennine areas which need improvement.

The user services function is often the focal point for
several aspects of a computing operation:

• It provides infonnation on how to use the various
computing resources through personal interaction
by phone or E-mail. (Documentation and
training may also be a part of user services.)

• It provides feedback as to the efficiency of
computing resources and the effectiveness of the
documentation and training for these resources.

How well are we serving the user community? We
occasionally ask ourselves this question, and
management will sometimes wonder as well, should an
irate user complain.

Perhaps equally important is the ability of user contact
measurement tools to effectively assess trends in the
use of computing resources. A sudden increase in
queries relating to a specific resource can be an
important indicator. Has the user community
discovered the existence of a particular utility or
feature? Is the documentation inadequate? Is training
needed? These are questions that a simple set of tools
can help answer.

This paper will limi~ the scope of user services analysis
to that portion of which deals directly with the
customer. This function may be referred to as the
"Help Desk" or "Consulting".

Evaluation Methods and Criteria

Several criteria may be applied to evaluate the
perfonnance of user services:

• How well does the staff handle queries
(effectiveness)?

• Are responses to queries timely and accurate
(efficiency)?

• Are user concerns accurately and effectively fed
back into the organization (closing the loop)?

• Are future user needs being anticipated?
Several methods may be used to evaluate these aspects
of the user services operation.

• A fonnal survey
• An infonnal survey
• A statistical database
• The ambient complaint rate

All these methods have a place in the evaluation
process and relying on anyone method can lead to a
distorted view of the effectiveness of the operation.

Any "survey" whether fonnal or infonnal involves
varying degrees of SUbjectivity. Perhaps the greatest
constraint in using a survey is that the responses have
to be carefully weighed against the demographics of
the respondents. Without understanding the context in
which responses are submitted, evaluation can be
virtually meaningless or, even worse, misinterpreted.
Evaluating demographic profiles can be as time
consuming a task as the survey itself.

Small, infonnal, and personalized surveys may elicit
the most accurate response. These are typically one­
on-one interviews in which the demographics can be
detennined as a function of the interview. The
interviewer can detennine the users knowledge level
and degree of interaction with the computing facility
and the user services operation. Probing questions
based on previous responses may be asked. There are
several caveats to this method.

• The interviewer must be skilled with interviewing
techniques and must understand the customer
service environment as well as the various
computing resources available to the respondent.

• Only a limited number of users can be contacted
in this manner thus, selection can be the critical
factor. Two dozen "selected" users could make
the computing facilities look "bad" or "good".

349

Formal "broadcast" surveys are often distributed to a
large percentage of the user base and may be biased by
human nature. If an individual is satisfied with the
computing facilities they will often not bother to
respond to the survey. Those who have an "axe to
grind" will most always respond and be quite vocal.

Statistical data from some form of "call-tracking"
system should be added to the subjective answers
provided by a survey. In its most elementary form, a
call tracking system is simply a log of all calls
received by the help desk. The following information
is considered minimal to provide useful analysis.

• The total number of calls handled per unit time (a
business day is a good unit of measure).

• The type of resource about which information is
needed. This can be a list of supported resources
such as operating systems, network functions (E­
mail, ftp, and etc.), mass storage, or graphics
output facilities.

• The resolution time for the query.
• The need to refer the query to another person for

additional expertise.

• The organization to which the person belongs.
Several systems are available to automate this process.
These systems typically provide additional levels of
sophistication to include report generation and
statistical analysis.

Performance Metrics

Assuming that a valid survey can be constructed and
administered, what are some of the key responses that
will provide strong indicators of areas that may need
improvement? Responses may be categorized in the
following areas of user satisfaction:

• Are problems handled effectively by the
consulting staff?

- Are they polite, helpful, and friendly?

- Do they exhibit knowledge of most resources?

- Are problems diagnosed with minimal probing?

_ Are calls responsibly referred to more
appropriate individuals?

- Do they follow-up and effectively 'close' calls".

• - Are the computing facilities adequate?

350

- Does the user need some capability that is not
currently being provided?
- Are the computing resources easy to use?

• Is the information provided adequate?
- Are problems consistently resolved with the
initial information provided?
- Is a documentation reference given to the user
for future needs?
- Is documentation available which covers the
information needed by the query?

• Is there an effective feedback mechanism to the
development and engineering people to permit
enhancements based on observed user
performance?

This paper reviews some data retrieved from the Los
Alamos National Laboratory user services team to
illustrate the use of survey and statistical data as well
as user performance.

Analysis of User Services

Example One

The following user responses are often the focal point
for the argument to reorganize the operation around
phone numbers of specialists instead of a single
generic number.

• User "A" says "Consulting by phone has proven
very ineffective - the consultant cannot easily
visualize my problem, and not being extremely
computer knowledgeable, I can't communicate
the problem. Usually, I ask one of my colleagues
for advice. I suggest setting up consultants to
deal with specific levels of computer expertise."

• User "B" says "It is very difficult to get detailed
consulting information over the phone. It would
be nice to have a list of the consultants along
with their areas of expertise so as to narrow the
'turkey-shoot' somewhat."

These appear to be valid perceptions and, based on
comments like these, some organizations have tried
alternative arrangements. But before making a
decision to change, lets look at what the statistical data
can add.

Consider that of 62 queries per day, 52% are
concluded within 6 minutes and 85% with 12 minutes.
These numbers indicate that most queries need
relatively simple explanations. Note also that the
typical consultant refers less than 23% of queries to
others within the help desk team and less than 8% to
"outside" expertise. This data doesn't support a
"turkey-shoot" assessment.

Demographics of user "A": A Physicist who is
sensitive about his lack of computer literacy. He feels
uneasy about bothering a "high powered" consultant
with his trivial questions.

Demographics of user "B": A sophisticated user whose
queries require a higher level of expertise and thus
almost every time he calls he gets referred to "another
person."

Now let's add comments from users "C", "0", and "E".
"Talking to John Jones [consultant] is like going to the
dentist- I'd rather not"; "John Jones is arrogant and not
user friendly", "Some [consultants] are extremely
responsive, courteous, and knowledgeable, while others
are terrible."

Action item: Clearly there is a problem. John Jones a
very knowledgeable consultant but did not relate well
to the user community, especially the neophyte. He
was eventually moved to another area.

Having people with the right mix of technical and
social skills is an important aspect of user services.

Example Two

User "F" reports that "There is sometimes a long wait
for consulting services".

User "G" reports "The consulting phone is alway
busy".

The statistical data indicates that these users are
frequent callers (F had 22 queries and G had 14
queries in a two month period).

Action Item: Install voice mail on the consulting
phone numbers to handle the overload and avoid the
"busy" signal.

Example Three

The call-tracking log (or database) can be used to
determine specific activity areas. Knowing which
resources are requiring significant assistance can assist
in pinpointing poorly designed resources or the need
for improved documentation or training. The
following table represents the percent of various major
resource areas for a recent two month period:

Resource

UNICOS
ALL-IN-l Mail
Network
SMTP/UNIX Mail
RegistrationN alidation
PAGES/Graphics
Workstations
Other
Common File System
VMS
ADP/Admin
UNIX/UL TRIX

Percent of Queries

24
18
12
8
7
7
6
6
5
5
5
4

An analysis of the highest activity category, UNICOS,
reveals the top 10 query areas for the past three years.

Query Area Percent of UNICOS Queries

PROD (job scheduler)
VI (editor)
Fortran
CLAMS (math software)
FRED (editor)
Login/logout
Environment (.cshrc etc.)
/usr/tmp
CFf/CFf77
FCL

1991 1992 1993

8
4
5
8
3
3
2
3
5
5

6
9
7
7
4
9
9
3
7
3

8
6
7
7
5
5
5
4
4
3

Looking more closely at the UNICOS queries reveals
that many users attempt to use UNICOS without any
formal training and without referring to available
documentation. This phenomena, which may be
termed pseudo-similarity, is not unique to UNICOS.
Most computer users who have had some experience
on one system will attempt to use another operating
system with the assumption that the similarities and
intuitive nature of the beast will permit an acceptable
degree of progress. Although there is an element of
truth in this presumption, it causes the consulting effort
to be loaded with elementary level questions.

An example of the effect of the pseudo-similarity
syndrome can be seen by analyzing the queries related
to the vi editor. Less than 10% of vi queries actually
relate to the use of the vi editor itself. Typical
symptoms of vi problems relate to the failure of vi to
properly initialize as a result of one of the following:

351

• Not correctly defining the appropriate TERM
value.

• Using a "non-default" window size (other than 80
X 35) without resize.

• Not establishing the -tabs parameter (stty).
• Using an incorrect version or option with the Los

Alamos CONNECf utility.
Pseudo-similarity type problems are good indicators of
poor design or implementation. In this case the user
has four chances to fail. The real problem is most
likely the UNICOS environment, which the user failed
to properly establish in the .login or .cshrc files.

This example also points to the possible ambiguity of
logging queries into a database. One consultant may
log the problem as vi, while another may define it as
environment. This lack of a "common view" can
spawn widely divergent descriptors for similar
problems, making analysis difficult.

The origins of the pseudo-similarity problem appears to
lie with the traditional approach to preparing new users
or introducing new resources into an established
environment. The computer is a tool and, like any
tool, the user wants it to be easy to use. They don't
want to spend time learning how to use it. Historically
computer documentation and training has been so
poorly implemented that many users will simply apply
what they do know and forge ahead.

When Los Alamos users were asked where they
obtained most of their current knowledge, 53% cited
co-workers and "trial and error". Only 39% said they
would most likely refer to documentation for new
information. Online "complete text" documentation
was ranked last in importance by the user community.

Example Four

A review of the database shows that the category
OTHER has shown a dramatic increase over the past
six months.

1991
1992

Year

1993 (first half)

352

Total OTHER
Queries

754
958
755

Charge Code
Queries

407
560
620

Closer examination revealed that the majority of
OTHER queries were for assistance in using or
understanding the charge codes associated with
computing. The increase was directly attributed to
tight budgets which have caused many departments to
look more closely at their computing expenses. The
financial analysts lacked adequate training in the use of
utilities to retrieve available data and, therefore
required heavy phone consultations.

Action Item: A training class was provided for the
FIN representatives in the use of the COST accounting
program. A separate category for CHARGES was
established in the tracking log to make analysis of this
problem are easier

Summary

The most recent sUlvey of Los Alamos computer users
revealed that the Consulting Team ranked fourth out of
52 computing resources for overall satisfaction and
tenth for importance. This is a strong indicator that
personalized user selVices are needed and valued in a
large and diverse environment. Consulting activity has
likewise grown over the past four years from 40 to 62
queries per day.

Los Alamos users are relying more on the Consulting
Team and less on documentation for their
informational needs. This trend is troubling in that it
is a strong indicator of:

• poor quality documentation available to users
(specifically man pages) and

• poor user interface design.
With respect to improved user interface design,
software development should examine the call-tracking
database when making changes to an existing product
(or when starting a new product) to review the problem
areas of similar resources.

It is imperative that at least a modest effort be made
periodically to evaluate the effectiveness of the
computing resources and the user selVices activities in
particular. Simple tools and techniques can make this
task relatively easy and cost effective.

Balancing Services to Meet the Needs of a Diverse User Base

Kathryn Gates

Mississippi Center for Supercomputing Research

Oxford, MS

Abstract

The Mississippi Center for Supercomputing Research (MCSR) is in the unique position of providing high performance comput­
ing support to faculty and professional staff, as well as students, at the eight comprehensive institutions of higher learning in
Mississippi. Addressing the needs of both students and veteran researchers calls for a varied approach to user education.
MCSR utilizes on-line services and makes available technical guides and newsletters, seminars, and personal consultation. In
spite of limited funding, MCSR maintains a high level of service through carefully considered policy designed to make the most
efficient and proper use of computer and network resources.

Overview

Established in 1987, the Mississippi Center for Supercom­
puting Research (MCSR) provides high performance com­
puting support to the faculty, professional staff, and students
at the eight state-supported senior institutions of higher learn­
ing in Mississippi. The center originated with the gift of a
Cyber 205 supercomputer system from Standard Oil to the
University of Mississippi and is located on the UM campus in
Oxford. A single processor Cray X-MP system was added in
January 1991, and its capacity was doubled in Apri11992 with
the acquisition of a second processor. MCSR currently sup­
ports a Cray Y-MP8D/364 system, a front-end Sun worksta­
tion, an SGI Challenge L Series workstation and visualization
equipment located at the eight IHL universities and the UM
Medical Center.

MCSR was among the first sites to operate a Cray Research
supercomputer system without permanent, on-site Cray Re­
search support. The MCSR systems staff consists of two ana­
lysts and a student intern, and the user services staff consists
of an administrative director, three consultants, and a student
intern. Together, these groups evaluate user needs, plan oper­
ating system configurations, install and maintain operating
systems and software applications, define user policies, and
provide all other user support. Other groups provide opera­
tions, hardware, and network support.

A Diverse User Base

As with many supercomputing centers, the MCSR user base
includes university faculty, professional staff, and graduate
student researchers. The MCSR user base also includes un­
dergraduates and a growing number of high school students
and teachers. With major high performance computing cen­
ters at the John C. Stennis Space Center in Bay St. Louis and

the U.S. Army Corps of Engineers Waterways Experiment
Station in Vicksburg, an important MCSR function is to aid in
preparing students for careers utilizing supercomputing capa­
bilities. At the close of Fiscal Year 1993, the MCSR user
base included about 350 high school and undergraduate stu­
dents (referred to as instructional users) and 150 graduate stu­
dents, professional staff, and faculty members (referred to as
researchers).

The experience level among users ranges from beginners who
have some proficiency in using personal computers to research­
ers who are active on systems at national supercomputing cen­
ters. The jobs running on MCSR computing platforms repre­
sent many disciplines including computational chemistry, com­
putational fluid dynamics, computer science, economics, elec­
trical engineering, mechanical engineering, forestry, mathemat­
ics, ocean and atmospheric science, and physics.

A Geographically Dispersed User Base

Some users are located on the University of Mississippi cam­
pus and access MCSR machines through the campus network
or through a local dial-in line, but the majority of users are
located at other institutions in Mississippi. All but three of
the universities supported by MCSR are connected to the In­
ternet network through the Mississippi Higher Education Re­
search Network (MISNET) as shown in Figure 1. The most
active users are located at Jackson State University, Missis­
sippi State University, the University of Mississippi, and the
University of Southern Mississippi as shown in Figure 2.

The level of local network development varies from institu­
tion to institution. The Mississippi State University campus
network is quite developed while several smaller universities
only support one or two networked labs. A handful of Miss is­
sippi high schools have Internet access, typically through a

353

U.S. Army Corps
of Engineers

Waterways Experiment
Station ---

University of Mississippi

DSU •
MCIPOP

(point of oreliem;e

UMMed
Center

MS College \

.ASU

New Orleans
MCIPOP

(point of presence)

& MCSR

Note: Both conventional and/or SLIP dialup connections are available on most
campuses allowing MISNEr/Internet connections for authorized users.

Figure 1. The Mississippi Higher Education Research Network (MISNET)

354

(to SuranetlMCI
Birmingham POP
via New Orleans)

SLIP connection to a nearby university. The lack of conve­
nient network access is a primary hindrance for many MCSR
users.

Problem Statement

Given these constraints - a user base that is diverse in terms of
experience level and one that includes both students and vet­
eran researchers (with the students greatly outnumbering the
researchers), users with and without network access distrib­
uted across the state, and limited staffing and funding levels -
what is the best means for providing a needed, valuable ser­
vice that makes effective use of available resources? More
specifically,

(1) What techniques can be used to manage this user base so
that students are accommodated but not allowed to interfere
with production work?

and

(2) What sorts of services can be reasonably provided to best
meet the needs of the user base without overextending the
staff or budget?

This paper describes the methods that have been used by
MCSR staff to address these two issues.

Managing the User Base

Carefully considered policies designed to make the most effi­
cient and proper use of computer and network resources are
employed in managing the user base. First, Cray X-MP and
Cray Y -MP computing resources are allocated so that research-

Q)
Cl
ctS
CI)

:::> -s:::
Q)

~
Q)
a..

Cray X-MP CPU Distribution
by Institution

80 • MCSR
~

60 Univ of Southern MS
III
Univof MS

40 Eill1
MS State Univ • 20 Jackson State Univ

Month

Figure 2. Cray X-MP CPU distribution by institution: July 1992 -
December 1993

ers are favored over instructional users. This hierarchy of us­
ers is carried out through the application of operating system
utilities. Second, expectations are clarified with the purpose
of guiding users, particularly students, toward a successful
path as they utilize MCSR systems.

Establishing a User Hierarchy

Without imposing some sort of hierarchy on accounts, instruc­
tional users would very quickly monopolize system resources
due to their sheer numbers. Typically, these users need rela­
tively small amounts of CPU time, memory, and disk space.
Moreover, instructional accounts exist for brief, well-defined
periods, normally until a semester closes or until the user gradu­
ates. A hierarchy is imposed by defining four categories of
users:

Funded Research - Faculty, staff, graduate students conduct­
ing research associated with one or more funded grants.

Pending Funded Research - Faculty, staff, graduate students
conducting research associated with one or more pending
grants.

Research - Graduate students doing thesis or dissertation
work, faCUlty and staff conducting open-ended research.

Instructional - High school students, undergraduates, class
accounts, faculty and staff who are using MCSR systems for
instructional rather than research purposes.

Users are, by default, assigned to the Instructional category.
Faculty and staff members apply annually to be placed in the
Research, Pending Funded Research, and Funded Research
categories.

Implementing the Hierarchy through UNICOS Tools

Category assignment affects users in several ways including
through disk space quotas, total CPU time allocated, and rela­
tive "share" of the system, with the most stringent limits be­
ing placed on instructional users. A priority system is estab­
lished by employing various UNICOS tools including the Fair
Share Scheduler, the Network Queuing System (NQS), user
database (udb) limits, and disk space quotas.

Resource groups corresponding to the four categories of us­
ers are defined through the Fair Share Scheduler. Figure 3
shows how CPU time is distributed among the resource groups
on the Cray Y-MP system. The Fair Share Scheduler has
been effective in controlling how CPU time is allocated among
users; it is the primary means for insuring that instructional
users do not disrupt production work.

355

Resource Group Allocation
Cray Y-MP

Funded (60.0%)

Figure 3. Cray Y-MP Fair Share Resource Groups

Funded (25.0%)

A separate NQS queue for instructional users is another means
for insuring that these users do not disrupt production work.
Without separate queues, instructional jobs can prevent re­
search related jobs from moving to the running state within a
queue, frustrating any attempts by the Fair Share Scheduler to
grant preference to research related jobs.

User data base limits playa role in managing accounts. In­
structional users are limited to five hours ofCray Y-MP CPU
time for the lifetime of the account. This limit is enforced
through the udb cpuquota field. The interactive process CPU,
memory, and file limits are applied to all users to encourage
the execution of jobs under NQS. Each semester, as students
in C programming classes learn about/ork and exec system
calls, the interactive and batch job process limits perform a
particularly useful function in controlling "runaway" programs.
UNICOS disk quotas are enforced on all user accounts to con­
serve much sought-after disk space.

The Fair Share Scheduler, NQS, udb limits, and disk quotas
permit control over accounts that is typically not available on
UNIX-based systems. Once configured, these tools provide
an orderly, automated method for directing resource alloca­
tion, with reasonable administrative overhead. Instructional
accounts are easily accommodated and, at the same time, are
prevented from causing a degradation in system performance.

Guiding Student Users Toward Appropriate Activities

356

With each passing semester, improper and unauthorized stu­
dent use has become more of a problem. Unacceptable ac­
tivities have ranged from students "snooping" in professors'
accounts (the students, in some cases, are far more adept at
maneuvering through UNIX than are their professors) to break­
ing into systems - fortunately, not MCSR Cray Research sys­
tems - by exploiting obscure operating system holes. Other
activities have included those that are not particularly mali-

cious but certainly unsuitable for a research facility where
computing resources are limited and very much in demand.
An example might be students playing computer games across
the network, using network bandwidth, valuable CPU time
and memory.

The cost has been highest in terms of the staff time and effort
required to identify unacceptable activities and to pursue the
responsible persons. Moreover, this situation conflicts with
the original purpose for giving students access to
supercomputing systems. Only a few students have caused
significant problems, yet many students seem to lack an ap­
preciation for the seriousness of computer crime and an aware­
ness of computer ethics.

An "Appropriate Use Policy" was introduced to address these
problems. The policy explicitly defines appropriate and in­
appropriate use of MCSR computing systems. Users read
and sign a copy of the policy when they apply for an account
on MCSR computer systems. Individuals found to be in vio­
lation of the policy lose access to MCSR systems. Portions of
the Mississippi Code regarding computer crime are printed
periodically in the MCSR technical newsletter. Greater em­
phasis has been placed on UNIX file and directory permis­
sions and on guidelines for choosing secure passwords in
MCSR documentation. Password aging is used on all MCSR
systems, requiring users to change their passwords every three
months.

Since taking these steps, there have been fewer incidences of
students misusing MCSR computing facilities. In the future,
it may be necessary to utilize part or all of the UNICOS Mul­
tilevel Security system (MLS) to create a more secure envi­
ronment for researchers. For now, these strategies - control­
ling resource allocation and educating users about computer
ethics and account security - are sufficient.

Understanding User Needs

The Mississippi Supercomputer Users Advisory Group pro­
vides MCSR with program and policy advice to ensure a pro­
ductive research environment for all state users. The advisory
group consists of faculty and staff representing each univer­
sity served by MCSR. MCSR staff members work with rep­
resentatives to develop policies governing the allocation of
supercomputer resources and to define and prioritize user
needs. This relationship is an important means for under­
standing user needs and evaluating existing services.

Serving Users

A varied approach to user education is required to adequately
address the needs of all users. Given that individuals learn in
different ways, it is advantageous to offer information in mul-

tiple fonnats. Given the disparity in experience levels among
users, it is necessary provide assistance covering a wide range
of topics. MCSR offers many services to its users (summa­
rized in Table 1), including on-line aids, technical guides and
newsletters, seminars, and personal consultation. The ser­
vices offered by MCSR complement on-line vendor documen­
tation (e.g., UNICOS doc view facility) and tutorials.

Publications

Manuals and technical newsletters are fundamental to educat­
ing users in making best use of available resources. MCSR
offers a user's guide for each major system or category of
systems that it supports. These guides provide the site-spe­
cific infonnation needed to work on the system. They high­
light operating system features and tools, provide many ex­
amples, and direct the user to more detailed and comprehen­
sive on-line documentation.

The MCSR document, The Rookie s Guide to UNIX, targets
the subset of users who have little or no prior experience with
the UNIX operating system. It gives beginning level UNIX
training in a tutorial style. Topics covered include logging in,
getting help, file system basics, the vi editor, basic commands,
communicating with other users, networking tools, and shell
programming. This guide is essential due to the large number
of novice users.

Figure 4. Information flow and reuse

Figure 5. Top level menufor the MCSR gopher server

A separate guide, MCSR Services, gives an overview of the
services provided by MCSR. It reviews the MCSR comput­
ing and network facilities, lists contacts, describes available
publications and programs, and provides account application
infonnation. The MCSR technical newsletter, The Super Bul­
let, provides timely supercomputing news and tips, features
noteworthy operating system utilities, gives answers to fre­
quently asked questions, and reports usage statistics.

On-line Services

On-line services play an increasingly important role in edu­
cating users. Through on-line services, infonnation is avail­
able immediately, and users may retrieve it at their conve­
nience. The active role shifts from the consultant to the user,
freeing the consultant to handle more complex questions. On­
line services work well in the MCSR environment, because
they are universally available to all who have access to the
computer systems, and they aid in extending a limited con­
sulting staff.

MCSR supports an anonymous ftp site that contains ASCII
and postscript versions of MCSR manuals and account appli­
cation fonns, example files, and a frequently asked questions
(FAQ) file. This year, MCSR started a gopher server. The
server provides much of the infonnation that is available
through MCSR Services, as well as other useful items such as
advisory group meeting minutes, access to on-line manuals,
and staff listings. Documentation efforts are maximized by
making text available in multiple fonnats as shown in Figure
4.

When possible, MCSR employs on-line vendor tutorials such
as the IMSL "Interactive Documentation Facility" and the Cray
Research on-line course, "Introduction to UNICOS for Ap­
plication Programmers."

357

Service Description Audience Availability Advantages Disadvantages

Rookie's Guide to Manual: Hard copy & On-line, MCSR users who Hard copy: by Hard copy: Hard copy: Costly
UNIX Tutorial for beginning UNIX users are new to UNIX request, contains text and to produce and

fI.l graphics images distribute, difficult = User's Guide to Manual: Hard copy & On-line, MCSR users who On-line (through = for an enhanced to keep up-to-date .. the MCSR [Cray Provides site-specific information for have accounts on anonymous ftp and ~

~ Research, SGI the specified system, highlights the specified gopher): to all
presentation, some

On-line: Users can CJ
users prefer to ..

Challenge L, operating system features and tools, - system users who have peruse text only ..c read hard copy as = Vislab] System(s) lists applications, offers examples network or dial-in while in line mode,
~ Current and access to MCSR

opposed to on-
unavailable when

~ MCSR Services Manual: Hard copy & On-line, screen guides
00 Provides overview of computing potential MCSR systems host machine is
U platforms, services offered by MCSR users On-line: down
~ Super Bullet Technical Newsletter: Hard copy & All MCSR users

Immediately

On-line, Provides timely news and tips
available

Application Seminar: Provides infonnation about MCSR users who To UMusers, Personal, Reaches only a
Programming on developing code, running programs, have accounts on

To other sites by
interactive, can small subset of

the MCSR [Cray accessing applications on the specified the specified easily customize to users, costly to
Research, SGI system system

request
target specific send instructor to

Challenge L, needs remote site, poses
Vislab] System(s) scheduling

Beginning UNIX Seminar: Assists beginning~level MCSR users who problems

fI.l UNIX users are new to UNIX
J-c
~ Intennediate Seminar: Assists intermediate-level MCSR users who .S UNIX UNIX users have mastered e beginning UNIX ~

00 topics
~

Cray FORTRAN Seminar: Provides infonnation about FORTRAN 00
U Optimization Cray FORTRAN extensions and programmers
~ Techniques optimization techniques working on Cray

Research systems

Using the Seminar: Provides infonnation about MCSR users who
[Abaqus, Patran, using the specified application are working with

MPGS, ... J- the specified
Application application

In Person Consultation: Provides "face-to{ace" All MCSR users To users on the Fewest Unavailable to off-
assistance covering a range of topics UMcampus communication campus users,

barriers, can focus Restricted to
directly on the MCSR office hours

= problem

= .. By Phone Consultation: Provides assistance All MCSR users To all MCSR users Can provide Restricted to ~

S over the telephone covering a range of personal attention, MCSR office hours,

-= topics focus directly on some communica-
fI.l = =

the problem tion barriers

U Electronic Mail Consultation: Provides assistance All MCSR users To all MCSR users Canfocus directly Response is
(assist) through electronic mail covering a who have network on the problem, "asynchronous" -

range of topics or dial-in access include session may be slightly
transcripts, offer delayed

after-hour support

MCSR gopher On-line, menu driven tool for Current and To all MCSR users Content modifica- Unavailable when
Server distributing infonnation, including potential MCSR who have network tions are easily the host machine is

overview of computing facilities & users or dial-in access handled, immedi- down
J-c support, account application atelyavailable
~

oS procedures, and technical manuals

0 "Frequently Asked (On-line) file containing answers to All MCSR users To all MCSR users Answers basic Unavailable when
Questions" File frequently asked questions, available who have network questions, the host machine is

through gopher and anonymous ftp or dial-in access immediately down
available

Table 1. Summary of Services offered by MCSR

358

Interactive Assistance

Personal consultation (in person and by phone) is provided
by the three MCSR consultants, each focusing on a particular
area. Often, the questions addressed in one-on-one sessions
are beyond the beginning level. Faculty, staff, and graduate
students are targeted with this service; however, individual
assistance is occasionally required for users at all levels.

An on-line consulting service, assist, is available to handle all
types of inquiries. Users send an electronic mail message to
assist on any of the MCSR platforms, and the message is for­
warded to a consultant on call after a copy is saved in a data­
base. If necessary, the consultant reassigns the request to an­
other staff member who is better equipped to handle it. Ques­
tions submitted after normal working hours or during holi­
days are forwarded to an operator who decides if the question
needs immediate attention. Both instructional users and re­
searchers make frequent use of assist.

MCSR offers a full set of technical seminars covering begin­
ning, intermediate, and advanced topics. The seminar series
is repeated each semester on the UM campus and by request
at remote sites. Because seminars target only a small subset
of users, they are viewed as secondary to other means for dis­
seminating information.

Other Special Programs

Frequently, MCSR is host to regional high school groups for
special sessions on high performance computing. Depending
on the audience, some sessions are introductory in nature, while
others are more technical. Students from the Mississippi

School for Mathematics and Science visit annually for a day­
long program on supercomputing. In the following weeks,
they use MCSR facilities from their school to complete re­
search projects. Often these users have little experience with
computers of any kind before working on MCSR systems.

Outlook

Lack of convenient network access remains a primary hin­
drance to using MCSR facilities for several smaller institu­
tions and most high schools. MCSR consultants will con­
tinue to educate users at such sites concerning the benefits of
Internet access. An auxiliary role will be to facilitate the ex­
pansion of MISNET through additional sites, by making us­
ers aware of potential grants.

MCSR publications will remain at the same level with respect
to content and number of documents offered; however, ef­
forts will be made to continue to enhance the presentation and
organization of publications. The seminar offering will re­
main at the same level, with the exception of a new series
covering visualization techniques.

The most significant changes will occur in the area of net­
work-based and on-line services. As funding permits, suit­
able on-line vendor tutorials will be utilized. Consultants will
continue to expand the existing anonymous ftp site and go­
pher server. An upcoming project is to offer site-specific in­
formation through multimedia tools such as NCSA Mosaic.
MCSR consultants will capitalize on network-based and on­
line services to target the majority of users with the widest
range of material.

359

360

APPLICATIONS OF MULTIMEDIA TECHNOLOGY
FOR USER TECHNICAL SUPPORT

Jeffery A. Kuehn

National Center for Atmospheric Research
Scientific Computing Division

Boulder, Colorado

Abstract
Supercomputing center technical support groups currently face problems reaching a growing and

geographically dispersed user population for purposes of training, providing assistance, and dis­
tributing time critical information on changes within the center. The purpose of this presentation
is to examine the potential applications of several multimedia tools,. including Internet multicasts
and Mosaic, for technical support. The paper and talk will explore both the current and future
uses for these new tools. The hardware and software requirements and costs associated with
these projects will be addressed. In addition, the recent success of a NCAR pilot project will be
discussed in detail.

o INTRODUCTI0l'l

Budget cuts, rising support costs, growing and
geographically dispersed user communities, and an
influx of less sophisticated users are driving user
support to a critical junction. In the face of this
adversity, how will we continue to provide high­
quality support to our user communities? Old
methods of one-on-one assistance and hardcopy
documentation have been supplemented with online
documentation, but the questions still remain: Where
does a new user start learning? Where do they find
the documentation? Where is the answer to this
problem to be found in the documentation? Classes
can be taught but when the users are geographically
dispersed, the travel costs are prohibitive. One answer
to this dilemma may lie in the strategic application of
the latest wave of multimedia tools. These tools,
however, are not a panacea for all of the problems,
and in fact pose several new issues unique to their
realm. The Scientific Computing Division at the
National Center for Atmospheric Research (NCAR)
has examined several such tools, and this paper is an
attempt to summarize our experience with the two
which appear most promising for user support.

1 BACKGROUND

1.1 Internet Multicast

An Internet Multicast is not really a single tool, but
rather a broadcast across the network by a
combination of tools used together in concert: a slow­
scan network video tool, a network' audio tool, and a
network session tool. The individual audio and video
tools are interesting and can be used for a variety of
applications. The network audio tool allows you to
use· your workstation like a speaker phone on a party
line, carrying meetings, conversations, and Radio Free
VAT (a network music program) between
workstations on the network. The network video tool
transmits and receives slow-scan video across the
network allowing a user at one workstation to transmit
images to users at other workstations. Common uses
for the network video tool include transmitting a video
image of yourself sitting in front of your workstation
or transmitting an image of the view from your office
window. The former image lets everyone on the
network (including your supervisor) know that you are
in fact using your workstation (presumably for
something the company considers productive). While
the later image is presumably presented as a service to
those of us on the network who have been denied an

office with a window. It is, however, the combination
of audio and video through a session tool from which
the multicast draws its name, and it is this capability
which is most interesting for application to user
support.

The network session tool does not add to the
capabilities of the network video and audio tools, but
rather serves as a user interface for combining the
video and audio 'tools into a single broadcast signal.
Thus to receive a multicast, you would choose a
session using the session tool, which would initiate an
audio tool ses~ion and a video tool session, allowing
you to hear the audio portion of the broadcast and see
the video portion of the broadcast simultaneously.
Transmitting a session works in a similar fashion. The
session tool is used to select/setup a session and then
start an audio and video tool which will send signals.
A single session can carry multiple audio and video
signals, allowing a user tapping into the session to
pick and choose which and how many of the audio
and video links to display or listen to independently.
For instance, five users carrying on a session may
decide that each one wishes to hear the audio from all
of the others, but that only two of the others are
transmitting a video image that is worth seeing.

These tools are available for Sun SP ARC, DEC, and
SGI architectures. The DEC and SGI kernels will
support multicast by default, but the Sun kernel will
require modification to the default kernel and a copy
of the multicast routing daemon. The support
personnel at NCAR strongly recommend that kernel
updates and modifications be tracked carefully on all
three platforms.

1.2 Mosaic

Mosaic is a tool developed at the National Center for
Supercomputing Applications (NCSA) for browsing
information on a network. The information can take
one of several forms: hypertext documents, other
documents, pictures, audio bites, and animation
sequences. The hypertext documents are the central
"glue" which link all of the information together.
These documents contain coded embedded references
to files existing somewhere on the worldwide network.
The reference coding instructs Mosaic as to the
method of retrieval and display of the selected file.
Thus, a user usually starts out with Mosaic from a
"home page" hypertext document which contains links
to other documents (hypertext, ASCIT, PostScript),
image files, sound files, and animation files on the
network. Currently, a great wealth of information is
available, but it is organized mostly on a site by site

basis, and the author is unaware of any concerted
effort to provide a more network-wide structure at the
time of this writing.

2 NCAR PILOT PROJECT EXPERIENCES

2.1 Multicasting User Training Classes

NCAR's Scientific Computing Division has multicast
two of its four user training classes to date: the Cray
FortraniC Optimization class, and the NCAR Graphics
training class. In both cases, the motivation for
attempting a multicast came from one of our user sites
at which there were several individuals interested in
attending the class in question, but because of tight
budgets, funding for .travel to Boulder could not be
obtained. The decision to try the multicast was made
as a compromise solution, allowing the students to
view the class and have two-way audio
communication with the instructor in Boulder, while
sparing the travel budgets. Class materials were
mailed to the remote students ahead of time, allowing
them to follow the materials with the people in
Boulder. The teaching materials provided in both
cases were an integrated set of lecture notes and slides
in a left-page/right-page format which provided the
information from the overhead slide on one page and a
textual discussion of the slide on the opposing page.

2.1.1 Software, Hardware, and Staff Requirements

There are several start-up costs associated with
producing multicast training classes. The software
required to produce a multicast is freely available via
anonymous FTP (see SOFTWARE for information
on how to obtain the software). The costs associated
with this software are mainly those related to the staff
time required to get it working correctly.
Additionally, each workstation will require a kernel
configured to handle multicasts, and the multicast
routing daemon must be run on exactly one. host on
the local subnetwork segment.

The hardware costs are a different story. The largest
single piece of equipment required is a low-end
workstation dedicated to handling the transmission.
Additionally, low-end workstations are required for
the viewers. NCAR used a vanilla Sun SP ARC station
IPX for one class and a SGI Indy for the other as the
classroom transmission platform. The cost of such
machines runs between $5,000 and $10,000 depending

361

362

on the configuration. The systems which will be
transmitting video signals, require a video capture
card which costs between $500 and $1,000 if not
supplied with the workstation. A high quality· camera
(costing approximately $1,000) is highly
recommended for transmitting the images of the
instructor and their NY material. An inexpensive
CCD video camera (approximately $100 and often
supplied with workstations today) can be used for the
students' images. Additionally, microphones will be
needed for both the instructor and the remote students.
The inexpensive microphones commonly supplied
with most workstations will suffice for the students,
but it is recommended that the instructor use a high­
quality wireless microphone (approximately $250).

Finally, regarding staff time, we found that setting up
and testing the multicast link required about four
hours with at least one person on each end of the
connection. During the class and in addition to the
instructor, a camera person is required. This person
handles the camera work for the instructor and must
be competent in setting up and managing the link
which may occasionally need to be restarted. Given
this, there is little economic incentive to set up a
multicast for only one or two remote students;
however, other issues may outweigh the economic
factors. This overhead could obviously be figured into
any cost associated with the class for the remote
students.

2.1.2 Results

Overall, b~th of NCAR's multicast classes were
highly successful. The remote students claimed that
the multicast was "almost as good as being there",
while the local students reported that the multicast did
not noticeably disrupt their learning process. The
course evaluation ratings from both the local and the
remote groups were comparable. Later interactions
with local and remote students of the the optimization
class suggested that both groups had acquired a
similar grasp of the material. In all respects, the
multicast worked well in producing a learning
environment for remote students similar to that
available to those in the local classroom.

All of this success did not come without a price. The
multicast caused noticeable and sometimes maddening
slow downs on the computing division's network.
The available network bandwidth allowed
transmissions of a clear. audio signal and the video
signal was able to send between one half frame per

second and five frames per second at the cost of a
heavy impact on other network traffic. This imposed
restrictions on both the instructor and the camera
operator which required changes in presentation "and
camera technique.

The instructor needed to refrain from gesturing and
shift their style more towards "posing". Specifically,
because of the low frame rate, one could not move
continuously, as this would have two effects: motions
would appear disjointed and nonsensical and the
network traffic would climb intolerably. Thus, a more
effective technique would have the instructor point to
material on the projection screen, and hold that
"pointing pose" while describing the material. Pacing
and rapid swapping of slides were two other areas
which caused problems, and both need to be avoided.
It turns out that it is actually rather difficult to alter
such gestures made in an unconscious fashion, and
that some instructors have much more difficulty
making this adjustment than others. When the
instructor breaks for questions, they need to be
conscientious about repeating local questions so that
they may be heard by the remote students. Also, as it
may have been necessary to mute the remote
microphones to reduce feedback on the audio link, the
instructor should make a point of allocating time for
the remote students to pose questions.

Similar adjustments were required of the camera
operator. Specifically, slow panning· and zooming of
the camera came across very poorly on the slow scan
video link and swamped the network in the process.
Thus, the camera person was better off making a fast
pan or zoom adjustment, and then leaving the camera
stationary on the new subject. However, much of this
depends on the instructor and cannot be controlled by
the camera person. If possible, it is recommended that
the instructor and camera operator collaborate on the
presentation.

The last of the problems were related to the stability of
the links. It was possible that either the audio (most
likely) or the video link might fail at some point
during the presentation or that the audio signal might
break up badly enough that it was unintelligible. The
SGI platform had more trouble keeping the link up
and running because of software problems. The Sun
platform had more difficulty with audio break-up
because of the slower CPU. While neither platform
was perfect, both served adequately.

2.2 Online Documentation with Mosaic

Since the release of NCSA's Mosaic, sites world wide
have begun displaying their interest by developing the
hypertext documents which form the links on which
Mosaic's access to network information thrives.
NCAR has developed a great deal of information
regarding their mission and the part in that mission
played by each of the NCAR divisions. Additionally,
portions of the institutional plans for the future are
available. The information can be referenced from
any workstation (running X-Windows), PC (running
Microsoft's Windows software), or Macintosh which
is connected to the Internet and runs the Mosaic
software.

2.2.1 Software, Hardware, and Staff Requirements

NCSA's license agreement for Mosaic is very
generous and, as mentioned above, it will run on a
wide variety of platforms provided that a network
connection is available (see SOFTWARE for
information on obtaining Mosaic). Thus, the primary
costs involved in using Mosaic are for the support
staff time. The Scientific Computing Division at
NCAR has currently dedicated one full time person to
developing Mosaic material. Additionally, others are
involved in projects to move current documentation
over to such online formats.

2.2.2 Results

This project is a work in progress, but the headway
made over the last few months is very impressive.
Already we have a great deal of material on NCAR in
general, and the computing division has a very
detailed description of the work done by each of it~
individual groups. The documents contain static
images, movies, music, speeches, and many other bits
of information to flesh out the work we do at NCAR.
Other divisions are beginning to follow suit and
produce material describing their own functions.
Individuals are also "getting into the act", and the
author himself has just recently learned Hyper Text
Mark-up Language (HTML) and written his own
home document with hypertext links to information on
the network which he accesses frequently. Much of
the information developed over the last few months
has been of an advertising or overview nature to
demonstrate the capabilities of Mosaic, but we are
now beginning to move toward making more technical

information available. It should be noted, however,
that as a site moves toward becoming a hub for
Mosaic users, it would be wise to move the Mosaic
information services onto their own machine to reduce
the impact of network activity on internal functions.

3 FUTURE DIRECTIONS

3.1 Multicasts

There are several possible future uses for multicasts in
user support at NCAR. Training via multicast has
proven so successful that the author hopes to see it
extended to the other classes taught by the computing
division, and possibly to classes taught by other
divisions within our organization. However, the
possibilities do not end there.

Many advisory committees and panels for the
computing division must operate without direct input
from that portion of our user base which is not local to
the Boulder area. Frequently, remote users must be
represented by a member of our staff who has been
designated as the advocate for a particular group.
While this has worked well in the past, it may soon be
possible to allow these groups a more direct method of
representation via multicast.

The computing division's consulting office currently
operates in a help-desk mode. Whoever is on duty
answers all of the walk-in, telephone, and electronic
mail questions coming into the consulting office. The
others are handling either special appointments made
by local users or catching up from their last turn on the
duty shift. Multicasts offer two possibilities "here.
First, a multicast link could serve as an additional
medium for handling user questions, over and above
the standard walk-in, phone, and e-mail. Secondly, it
could serve to extend the capabilities of special
appointments to remote users.

3.2 Mosaic

The future of Mosaic at NCAR can be expected to
cover the two possibilities in user documentation: that
which is relatively static and that which is more
dynamic in nature. Static documentation might
include things such "as documents describing site
specific features and commands, descriptions of how
to use a service, and frequently asked question lists.
The dynamic documentation, however, will be much

363

364

more interesting and include items such as our daily
bulletin and change control system.

The daily bulletin is published every morning before 9
A.M. It describes the current state of the computing
facility and includes short term announcements of
upcoming changes. In addition to our current scheme
of a local command which will page the current
bulletin on any terminal, it would be relatively
straightforward to make the information available via
Mosaic as well. Furthermore, our current text format
could eventually be enhanced to include audio reports
of status and changes, video clips of significant events
(such as the installation of new machines), and
graphic images relevant to the daily announcements.

The change control system at NCAR is currently set
up via e-mail notices with a browser based on the day
the message was sent. The system works, but
Mosaic's capability for including links presents a
better model for representing the interconnected
nature of the computing facility and how changes in
one area may affect another. The advantage to the
current system is simplicity; a programmer making a
change fills out a template describing the change and
the effective date, then mails the completed template
to the mailing list. To make any real improvement
over this simplicity and take advantage of Mosaic's
hypertext capabilities will require a system
significantly more sophisticated than the one currently
in place.

4 SUMMARY

The tools discussed in this paper provide a cost
effective answer to many of the questions posed in the
introduction. Though users are geographically
dispersed, they usually have. some level of network
access. Thus, the multimedia tools based on the
network can support their needs regardless of their
location. Because multicasts can be used to provide
training without the associated travel· costs, budgets
can be saved for other critical needs. Because Mosaic
provides entry. points into web-like information
structures, the question of the starting point becomes
less important. Users can start at a point covering
their immediate needs and branch out to other areas of
interest as time permits. Furthermore, both multicast
and Mosaic avail themselves to the possibilities of
stretching our current capabilities beyond our facilities
hy exploiting the conferencing capabilities of
rnulticasts and the audiofvideo capabilities of Mosaic.
However, it should be remembered that the tools are

heavily dependent on the accessibility of high
bandwidth networks, though our infrastructure is
quickly growing to fulfill this need. The final word
becomes a question of support. What difference exists
between supercomputing centers today other than
differences in support?

5 SOFTWARE

1. SD: The network session directory tool was
written by Van Jacobson at Lawrence Berkeley
Laboratory. Binaries are available via
anonymous FTP at ftp.ee.lbl.gov in the directory
fconferencing.

2. VAT: The network audio conferencing tool
was written by Van Jacobson and Steve
McCanne at Lawrence Berkeley Laboratory.
Binaries are available via anonymous FTP at
ftp.ee.lbl.gov in the directory fconferencing.

3. NV: The network video tool was written by
Ron Frederick at the Xerox Palo Alto Research
Center. Source and binaries are available via
anonymous FTP at parcftp.xerox.com in the
directory fnet-research.

4. MROUTED and SunOS 4.1.x mods: The
multicast routing daemon and the kernel mods to
SunOS was written by Steve Deering at Stanford
University. Source and binaries are available via
anonymous FTP at gregorio.stanford.edu in the
directory fvmtp-ip.

5. MOSAIC: The Internet information browser was
written by Eric Bina and Marc Andreessen (X­
Windows), Chris Wilson and Jon Mittelhauser
(Microsoft Windows), and Aleksandar Totic,
Thomas Redman, Kim Stephenson, and Mike
McCool (Macintosh) at NCSAlUniversity of
Illinois at Urbana-Champaign and is, in part,
based on code developed by Tim Berners-Lee at
CERN for CERN's World Wide Web project.
Source and binaries are available via anonymous
FTP at ftp.ncsa.uiuc.edu in the directory /Mosaic.

REFERENCES

1. Paul Hyder, NCAR/SCD, personal
communications, May 1993 through March 1994.

2. Greg McArthur, NCAR/SCD, personal
communications, August 1993 through March
1994.

INTEGRATEDPERFORMANCESUPPOR~
CRAY RESEARCH'S ONLINE INFORMATION STRATEGY

Marjorie L. Kyriopoulos

Cray Research, Inc., Eagan, Minnesota, U.S.A.

"Both the technologies and the time are right. Service industries are on the rise, and performance support

appropriately focuses on serving the customers."

Abstract

Cray Research is planning to implement the
following three critical components of an
Integrated Performance Support System (IPSS) this
year:

• Online documentation (CrayDoc)

• Computer-based training (CrayTutor)

• Online help and messages

These components provide users with immediate,
on-the-job access to information, assistance, and
learning opportunities. This paper describes the
benefits of integrated performance support systems
for Data Center staff, User Services staff, and end
users. Current plans for delivering the IPSS
components and progress toward their integration
also are discussed in this paper.

Cray Research is interested in customer feedback
on these user support products and in future
directions required by our customers.

Introduction

Customers tell us that they want to be able to find
the information they need quickly. And they want
the information online. Most Cray Research
customers like Docview, but many want their
online documentation installed on a workstation
instead of their Cray machine. They want to be able
to navigate through the information quickly and

Esther Dyson

Software Industry Expert

easily. In addition, many customers have indicated
that they want our information tagged with
Standard Generalized Markup Language (SGML)
to make it easier for them to add their own local
procedures.

Users need the flexibility of being able to learn
anywhere at any time in order to meet the demands
of today's work environment. Scheduled training
classes are often offered at the wrong time or are too
costly for customers who recei ve little or no training
credit with the purchase of a Cray Research system
or product.

Cray Research and, in particular, Software
Information Services (SIS), has been soliciting
customer feedback to help us develop our IPSS
strategy. Although we have heard various concerns,
some of the common issues are:

• The error message doesn't tell me what to do
next.

• I can't find the right information.

• Schedules prevent me from sending my
operators to class.

• Why do I need to know UNIX to run my
application?

All of these concerns have one thing in common:
our customers are not getting the information they
need when they need it.

Copy (c) 1994. Cray Research, Inc. All rights reserved.

365

366

The Solution: Integrated Performance
Support Systems

An Integrated Performance Support System (lPSS)
integrates information, assistance, and learning
opportunities, making them available to the user on
demand in the workplace at the moment of need.
Integration of the components is planned to occur
along a continuum, from components such as
online documentation, which are loosely
integrated, to a fully integrated system that is
transparent to the user.

The goal of an IPSS is to enable user performance
while drastically reducing or eliminating the
training, documentation, and support required for
the product.

Benefits: Reduced Customer Costs and
Information Overload

Reduced Costs

Our customers know that the cost of hardware and
software includes the cost of user support and
training. With an increasing number of tasks to
perform and increasingly complex software
products, users no longer have as much time to learn
how the software works. They need products that
require them to spend less time and money on
training.

Reduced Information Overload

Cray Research systems currently require users to
read volumes of information in paper manuals.
Finding information in these volumes is
time-consuming, difficult, and more complex than
it needs to be for today' s supercomputer user. Users
need smaller units of information, provided in
context with the current task, at the moment of need.

Current Plans

Our current plans are to continue developing IPSS
components for existing products, moving along a
continuum, from loosely integrated to fully
integrated performance support.

IPSS Continuum

Existing Products New/Redesigned Products

IIIIIIIIIIIIIIIIIIIIIIII_.~ Jmm_IIIIIIIII~~""]=m"'·'··'m"""ml ... ~m'·····,m·",··,~··,,,'t);A",;"",,;;,,$;';idW@t:f$iTJ~t~~~m ,;:;:;,::)~;~;mr;~r,,'
Loosely Knowledge

IPSS
Components

Integrated More Embedded
Components Integrated into the Product

CrayDoc xhelp (with Context- Prototype
• CraySoft CrayTools) sensitive • NOE 2.0
• UNICOS • Xbrowse help

• Apprentice • Xbrowse • MPP
• Applications
• Programming

Environment

• TotalView • NOE
• ATExpert • OWS-E/opi

CrayTutor
• UNICOS for Users
• EL System Admin (I)
• Cray Operator

Training

IPSS Components

CrayDoc Online Documentation

Expand and collapse TOe
entries

Navigate about the book

'MrttJGrmmmrmm
Use a cross-reference

Ferfonn a word search at the
library level

~ Ferfonn a word search at the
book level

Create two views of same book

Change the stylel100k of the
manual

Create an annotation
(bookmark, note, or byperlink)

Create a journal

Close I book

CJ

I
View hidden text and graphics

HIdden text and graphics appear aslccns In the rightmargin of
the Main Vi.w panel The mouse pointer changes til. finger If

.. Itlsabo.eanlccn Cllcktheleft!!lOUS!'buttononthelcontll
..... a1th. Open m.nu option and thensel.ctlt See'Iccns'

Use a cross-reference

Hott<Xt(lndIcatedbyblue, undersccredt2xtorbold,
und.rscored text) Is a hyperllnk tIltexteJsewhere In the
manual. The mouse point2r changes til. finger If it Is above hot
text When you click on hot tex~ th.linked t2xt will be
displayed either In your main window or in a ne" window,
depending upon the view you ha .. selectsd.

FlguI1!, tabl., section, subsection, and page numbers are all hot
texl(The word,Figw"'and TabI aIsohol) ragenumbers
refer to the page number In the hard-ccpymanua~nct the _. ___ .. _.l.. ____ ..• _ .. lt __ .• _....l ____ -.l .. 1. n •.• ""

(coBack) ',_"e\";0"') I~

'Search: ___ _

I

Based upon feedback from customers, Software
Information Services selected a tool to be used for
delivery of online documentation. First we
developed a list of customer requirements. Then,
we developed a list of criteria by which we
evaluated various tools, The following
requirements are examples of the criteria we
established.

Features:

• Hyperlinks across a library set

• Electronic notes

• Electronic bookmarks

• Ability to handle text, tables, and graphics

• Support for multiple languages

• Ability to handle multiple and large volumes

• SGML compliant

Delivery Options:

• CD-ROM

• Release tape

Portability:

• Sun, SGI, HP, Cray Research SuperServers,
DEC, IBM, Macintosh, PC, Cray Research

We evaluated six tools against our criteria and
selected a tool called DynaText, which we call
CrayDoc, for delivery ofCray Research documents
online. Cray Doc runs on various platforms,
including the Cray SuperServer. It does not
currently run on the Cray Research platform. The
tool was thoroughly tested and prototyped last year
and has been demonstrated to customers, who are
all pleased with its features and capabilities.

The first product released with Cray Doc online
documentation was CraySoft's NQE 1.0. For this
product, documentation was delivered on a
CD-ROM along with the product. We plan to
deliver documentation online, with CrayDoc, for
all CraySoft products, UNICOS 8.0.3., CRAY T3D
1.1, the Cray Programming Environment 1.1., and
UniChem 2.2.

CrayTutor Computer-based Training

, "

::: ,:'.: ,.
'I I I. ~

II I "" I . ,. ,

TIMllC&al1llolMiedwtththedl!'ferentconb'oDln.
I.ThemastP.l' IOSllloadod wtth the followlnB:

ru.

~3~~ E~:3
SCSI tYI_ ... EX2

2. n.'1.v2~.llp~11 illloadet.! with the followinlf:

type_DD4
SI-l tn".TOO

When you _ "105>" pie ... boot th.II)'.tem.

Customers also provided us with pnontIes for
developing computer-based training (CBT)
courses. Customer concerns include:

• Cost of training (time and money)

• High turnover rate of operators

• Inability to find information at the time of
need

• Training that fits the needs of the student

• Need for an easy-to-use interface to the Cray
System

• Need for training anywhere, anytime

• Lights-dim operating environment

• Lights-out operating environment

Last year, we released the Cray Operator Training
courseware in response to some of these concerns.
The course is intended for Cray system operators
who are new to Cray systems, but is designed so that
even experienced operators can learn from it.

The benefit of using CBT is that the training is
self-paced and available at the time of need.

Future CBT courses are being developed using a
new, feature-rich tool called IconAuthor, which we
call CrayTutor, for delivery of our CBT. CrayTutor
courseware runs on UNIX workstations and uses
color, graphics, animation, and sound. Courses
being developed include:

• CRAY EL System Administration Training,
Phase I

• Cray Operator Training for UNICOS 8.0

• UNICOS for Users-Basics (UNICOS 8.0)

Other courses and specific topics are being
considered and prioritized according to customer
needs.

Online Help and Messages

xx xx
~ x~ ~~lIBI!B :'RRR

XX)! liB liB RR RR IN UU ... MIl ~ U.

xxx BBBB ~R 00 00 ~YWUl SS EEE[[
xxxx BB IS RR RR 00 00 UrlWWu.l SS EE

xx XXBBBBRRRROOOOWlOllUj SSEE
xx XXBBBB RR RR 00 .., .., SSSS EEEEE

Yerslon B.O

PleaseselectoneorllOl"esOlI'cef1Iestolo1(l'i(wlthby

• T~in9"open Filenlll'Mll" within the "lnforMUon" tllndow below

.Usingthc·t)Ien entryfro"the·Flle·pull-down~u

• :!ragging thM froM th!t [raw file ttanager~ xf.

For help, select "Gettt"'9StM'ted"f'rollthe"Help"r.etIJ,or
t!:l'e"help"below.

xbrowse version 8.0

367

368

Online help and messages provide users with the
most integrated form of assistance, information,
and learning opportunities.

With online support embedded in the product, users
can get quick answers to their questions. This
improves customer satisfaction and allows Cray
Research support personnel and user support
services to focus on difficult problems instead of
responding to a large number of simple requests.

Better access to information and the reduced
amount of information required to perform the task
enables users to perform their jobs without having
to read through massive volumes of documentation.

One of the initial products with integrated online
and context-sensitive help is the Program Browser
(xbrowse), a Fortran and C source-code browser
released last fall on Cray Research and workstation
platforms.

Moving information into the product reduces the
distance users must travel to get the information
they need. Online help capabilities make
information a mouse-click away. For example,
through the xbrowse Help menu, users can select
the Context Sensitive option to open a pop-up
window that displays information specific to a
procedure or window area. As the user moves
through various windows, context-sensitive help
information is readily available. In addition,
xbrowse enables users to access man pages directly
from the main xbrowse window by selecting the
Man page option in the Help menu. Users never

need to leave their xbrowse session to find
information about their tools and related topics.

Online help is also being developed for TotalView,
an advanced symbolic debugger designed for
Fortran and C programs with multiple parallel
processes. By the end of 1994, many tools
previously released with the UNICOS operating
system will be unbundled and redesigned to include
context-sensitive online help and will be released as
part of Cray's programming environments.

Another product with context-sensitive online help
is the Cray operator interface (opi). Help is
provided in the form of information about operator
tasks and functions. opi provides two windows that
are used for standard output and error information.

Integrated Performance Support System
Prototype

On the fully integrated end of the IPSS continuum,
we are developing a prototype of integrated
performance support for the Network Queuing
Environment (NQE) 2.0 release. This prototype
will demonstrate the integration of the IPSS
components discussed earlier.

The goal of this project is to show the benefits of the
fully integrated system by building integrated
information, assistance, and learning opportunities
into the product for one or more user-level tasks.
By measuring user performance before and after the
implementation of this prototype, we plan to gather
quantitative measurements of user-performance
improvements.

CRA Y, UniChem, and UNICOS are federally registered trademarks and CrayDoc, CRAY EL. CraySoft. CrayTutor. CRAY TID. Docview. and Network Queuing Environment are trademarks ofCray Research.
Inc.

DEC is a trademark of Digital Equipment Corporation. DynaText is a trademark of Electronic Book Technologies. Inc. HP is a trademark of the Hewlett-Packard Company. IBM is a trademark and PC
is a product of International Business Machines Corporation. Macintosh is a trademark of Apple Computer. Inc. SGI is a trademark of Silicon Graphics. Inc. Sun is a trademark of Sun Microsystems.
Inc. SUPERSERVER is a trademark of Cray Research Superservers. Inc. TotalView is a trademark of Bolt Beranek and Newman Inc. UNIX is a trademark of UNIX System Laboratories. Inc.

NEW AND IMPROVED METHODS OF FINDING INFORMATION VIA CRINFORM

Patricia A. Tovo

Cray Research, Inc.
Eagan, MN

The CRInfonn (Cray Infonn) program is an on-line menu-driven infonnation and problem-reporting service for Cray
Research customers. As more infonnation has become available via CRInfonn, it has become increasingly difficult
for the user to find new items or to search for particular types of infonnation. Two new methods of finding
infonnation are being introduced in CRInfonn 3.0. The frrst method makes use of a text searching capability that
provides very efficient searching through large collections of text. The second method provides faster and easier
access to new items in CRInfonn and replaces the current site status file mechanism.

An overview of the major components of CRInfonn 3.0, new features in CRInfonn 3.0 including the details of the
new and improved methods of finding infonnation, CRInfonn 2.1 usage statistics, and future plans for the CRInfonn
program are described below.

CRInform 3.0 Overview
CRInfonn 3.0 is scheduled for release on March 28, 1994. The
major differences between CRInfonn 3.0 and CRInfonn 2.1 are:

- new user interface for menus
- replacement of the Site Status File
- additional infonnation in email notifications
- full-text searching across documents

Before describing these and other changes, an overview of the
CRInfonn 3.0 documentation and system is presented below.

CRInform 3.0 Documentation
The CRInfonn 3.0 release includes the following documentation:

- the CRInfonn User's Guide (SG-2125 3.0)
- Differences Between CRInfonn 3.0 and CRInfonn 2.1
- CRInfonn Program Flyer (MCSF-3230393)

The CRInfonn on-line help files and the on-line version of the
CRInfonn User's Guide have been updated to reflect the
CRInfonn 3.0 release.

CRInform 3.0 System
The CRInfonn 3.0 system consists of five major components:

- technical assistance and problem reporting
- CRInformlSoftware Problem Report (SPR) database
- service and marketing infonnation repository
- software, publications, and training catalogs
- customer bulletin board

These five components will be described below.

Technical Assistance and Problem Reporting
The technical assistance and problem reporting component
allows customers to request assistance and report problems in the
customer's native language. The request is entered as a Request
for Technical Assistance (RT A) that is forwarded to the
customer's regional support center. An RTA can be any request
or question, or it can be a software problem report. Through this
mechanism, the customer can request that the RT A be converted
into a Cray Research Software Problem Report (SPR). If this
occurs, the customer will be notified of the SPR number in the
RT A's resolution. When an RT A is submitted, it is assigned a
number immediately for future reference. When an RTA is
closed, the resolution field is updated by the customer's regional
support center. The status of a customer's RTAs can be queried
using the Status ofRTA query screen, and new infonnation can
be added to an RT A that hasn't been closed.

CRInformlSoftware Problem Report (SPR) Database
The CRInformlSPR database contains software problem reports
for released CRI products. Customer SPRs are included for all
customers that are participating in the CRInfonn Program, i.e.,
for customers that have signed the CRInfonn Program
Agreement. In addition, CRI internal SPRs are included for
released products. All SPRs in the CRInformlSPR database are
accessible to all users with the site infonnation removed from
the SPRs. As of the CRInfonn 3.0 release, 205 customers are
participating, and 85% of the SPRs are available.

The CRInformlSPR database can be queried using the Query
SPR Database screen. Using this mechanism, the user can

Copyright © 1994. Cray Research, Inc. All rights reserved.

369

quickly view the SPRs that originated at his/her site, and/or view
SPRs from other customer sites in order to determine if a
particular problem has already been reported, and if so, if and
how it has been solved.

The customer can add information to an SPR that hasn't been
closed. This information is added to the CRInform database (as
well as the Cray Research internal SPR database), and is
immediately forwarded to the customer service analyst handling
the SPR. This allows for a dialog between the customer and the
Cray Research analyst.

Information Repository
CRInform includes a repository of service and marketing
information. The service and marketing information includes:

- the Cray Research Service Bulletin (CRSB)
- software field notices (SFNs)
- software release documents
- software problem fix information
- company and product announcements

Catalogs
CRInform contains on-line versions of the following Cray
Research catalogs:

- Cray Research software catalog
- Directory of Application Software
- User Publications Catalog
- software training catalog

The CRInform user can order from the software and publications
catalogs and communicate with the regional training registrar.

Customer Bulletin Board
The objective of the CRInform 3.0 customer bulletin board is to
provide communication among Cray Research customers. The
Bulletin Board System (BBS) is based upon Usenet, a network
message-sharing system that exchanges messages in a standard
format. Messages are arranged into topical categories called
news groups. The CRInform newsgroups are only accessible by
CRInform users, that is, Cray Research customers who have
signed the CRInform Program Agreement, and Cray Research
employees who have requested access to the newsgroups.
Messages sent to the unicos-l email alias are being archived in a
CRInform newsgroup, cray.crinform.unicos-l.

New Features in CRInform 3.0
Seven features in CRInform 3.0 will be discussed in the
following section. Five of these features will become available
on March 28, 1994, and the other two features have already been

370

made available in CRInform 2.1. All of these features were
chosen based upon customer requests, and most of them deal
with the need for finding and navigating through information
quickly and easily.

The five new features are:

- new user interface for menus
- Site-related news
- additional information in email notifications
- full-text searching
- new CRInform machine

The other two features that will be discussed are:

- customer mailing list maintenance
- unicos-l news group

New User Interface for Menus
CRInform 3.0 offers an enhanced user interface for its browsing
menus. Prior to CRInform 3.0, the protocol for menu item
selection has been select-by-Ietter only. The new protocol is
similar to that of popular mail and news reader programs like
elm and tin. The primary feature of the new protocol is that
there is always a highlighted menu item (either inverse video or
underlining). In addition, menus are not limited to one page as
they were in the previous release.

Site-related News
The Main Menu option Site-Related News replaces the Site
Status File. Site-Related News provides immediate access to
actual documents as opposed to just the notification of the
existence of new or updated documents as in the Site Status File
mechanism.

The types of events logged have not changed:

- changes in software problem reports (SPRs) or requests
for technical assistance (RTAs) activity

- new orderable software
- new Cray Research Service Bulletins
- new or updated software field notices
- new software release documents
- new software problem fIX information
- new marketing information
- new CRInform program information

In earlier versions of CRInform, the content of email
notifications was identical to what was written to the Site Status
File. This is no longer true for Site-related News. For example,
if an SPR is listed under the Site-related News option, you can

select and view it on the spot as opposed to having to return to
the Main Menu and select another option to view the SPR. You
can randomly read items, save items to an external file, and delete
items.

Additional Information in Email Notifications
The format of email notifications will be essentially the same as
in CRInform 2.1. The logged events are the same as those in
the Site-related News option described above. However, to
provide quick access to software field notices (SFNs) and
software problem reports (SPRs), CRInform now appends the
actual text of new or updated SFNs and SPRs relevant to your
site.

Full-text Searching
CRInform 3.0 provides full-text searches across documents and
document collections. The full-text searching is provided both
within a single category of information (for instance, Marketing
Information) or across multiple categories. A new menu item
has been added to the Main Menu for searching across multiple
categories of information.

The following types of searches are supported:

- boolean searches
- phrase searches and wildcards
- relevancy ranking
- a thesaurus function

The results list of a search is a list of documents each of which
you can search or page though individually with the search tenns
highlighted. If you perform multiple searches over a given
document collection, CRInform saves the results of each search
and lists them so that you can re-examine them or use them as
the base for a subsequent search.

New CRInform Machine
The CRInform machine has been upgraded from a Sequent S81
running DYNIX to a Sun S1000 running Solaris 2.3. Solaris
2.3 is a System V Unix system.

Customer Mailing List Maintenance
The CRInform 3.0 user can maintain their site's mailing list for
the following Cray Research communiques:

- Cray Research Service Bulletins (CRSBs)
- Software Field Notices (SFNs)

These list maintenance features are provided through the Utilities
option from the Main Menu. The user can add, delete, or
otherwise alter the entries from the lists.

unicos-I News Group
The CRInfonn Bulletin Board now includes messages from the
email alias unicos-l, which is maintained by the Cray User
Group (CUG). You can access the CRInform Bulletin Board
from the Main Menu or by using the news reader tin or rn from
the UNIX prompt.

CRInform 2.1 Usage Statistics
Usage patterns of CRInform 2.1 are very similar to those
described in the Fall, 1992 CUG Proceedings for CRInfonn 1.0.
Fifty percent of all usage involves browsing service related
infonnation including 34 percent querying the SPR database, and
16 percent accessing service related textual information including
the Cray Research Service Bulletin, field notices, release
documentation, and software problem fix information.

Seventeen percent involves browsing and ordering from the
software, publications, and training catalogs (9%-software, 5%­
publications, 3%-training).

Eight percent involves reading the bulletin board. Note that
most of this usage is read-only. The only on-going source of
information being posted to the bulletin board is the unicos-l
mailing list.

Seven percent if the usage involves reading the marketing
infonnation, i.e., product and company announcements.

Six percent of the application usage is in the area of technical
assistance, i.e., submitting RT As and obtaining the status and
resolution of RTAs. 4 percent is in the area of mailing list
maintenance, and the remaining 8 percent includes file transfer
via electronic mail (3%),viewing CRInform News (3%), and
viewing the site status file (2%).

Future Plans
Cray Research is planning a CRInform 3.1 minor release in
September of 1994, and a CRInform 4.0 major release in March
of 1995. We plan on extending the user interface concepts used
in the CRInform 3.0 browsing menus to the data input menus
including the menus used to query the SPR database. In
addition, we plan on extending the full-text searching capability
to include the SPR database.

We need customer input to help determine the requirements and
priorities for these releases. Input can be submitted via the
CRInfonn utility for sending comments to the CRInform
administrator or given directly to a Cray Research service
representative.

To obtain access to CRInform, Cray Research customers must
submit a signed CRInform Program Agreement form to their
Cray Research service representative.

371

372

Online Documentation: New Issues Require New Processes

lulianaRew

Documentation Group, User Services Section
Scientific Computing Division

National Center for Atmospheric Research
P.O. Box 3000

Boulder, Colorado 80307-3000

ABSTRACT

While acknowledging that hardcopy documentation still has an important place, this presentation discusses the
following:

• The advantages of using online documentation in light of new advances in information technology on the
Internet

• The problems that documentation providers and maintainers face in having to maintain multiple versions of the
same document, each tailored to certain online delivery systems

• The methodology of "process reengineering" and identification of areas where future improvements in online
documentation may be possible through designing new processes

Introduction

The business community has given wide credence
to a new management technique called "process
reengineering." Some performance experts say
most work processes can be broken down into five
basic, elemental steps (see Figure 1). Process
reengineering is aimed at maximizing the first step
(real work), while minimizing or eliminating the
other steps in an effort to increase efficiency.

What does process reengineering have to offer to
computing technology? In this article, we will
show how one particular area of information
technology----online documentation-may naturally
take advantage of potential efficiencies to be gained
from process reengineering. While acknowledging
that hardcopy documentation still has an important
place, we will (1) discuss the advantages of using
online documentation in light of new advances in
information technology on the Internet (including
timeliness and availability, easy-to-use browsers,
choice of searching mechanisms, training and
documentation, consulting, printing on demand,
and use of standards) and (2) identify areas where
future improvements may be possible through
process reengineering.

Potential Process Improvements
Offered by Information Technology

Information technology refers to computers and
automation. We believe information technology
can playa key role in reengineering processes to
eliminate and minimize waste.

Basic Process Steps

1. Operation-An action that makes a value-adding
advance in a process. That is, "real work" is
accomplished.

2. Inspection-Includes reviews, approvals,
proofreading, authorization, and so forth.

3. Transportation-The movement of goods,
information, or oneself to another location.

4. Delay-Any human waiting time, regardless of
the reason (planned or unplanned).

5. Rework-Includes corrections, adjustments,
revisions, and so forth, and could be caused by a
defective part or a human mistake.

Fig. 1. Five basic process steps.

To use the jargon of the performance improvement
field, if you use a FAX machine or e-mail instead
of regular mail, you are using a "transportation
minimization device" (TMD). If you take notes at a
meeting on your laptop computer instead of writing
them by hand and transcribing them later, you are
using a "rework minimization device" (RMD),
because you are not reentering information, and
you are eliminating the potential for the
introduction of new typing errors.

You get the idea. Now, say you use your laptop to
read a manual online. You've got yourself both a
handy "transportation elimination device" (lED)
and a "delay minimization device" (DMD), because
you have avoided the trip to the documentation
office and (or) the time it takes to mail the
hardcopy document to you.

There are process efficiencies to be gained for the
documentation maintainers too. By observing the
rule of collecting data only once, at its source, we
can make the computer serve as a "data source
entry device" (DSED). Then we can devise
efficient ways to reuse the data.

Online Documentation Finally Comes
of Age

While some forms of online documentation, such
as UNIX man pages, have been a modest success,
most online documentation has been slow to gain
popularity. (Acceptance, yes, but not popularity.)
Some commonly cited reasons are that it is harder
to read much text on a screen, and most
nonproprietary online documentation systems have
been either ugly (as with ASCII text) or
unsearchable (as with PostScript documents).
Hardcopy is a time-honored, portable, reliable user
interface. While eliminating hardcopy may save the
documentation maintainers the effort of printing
and distribution, many readers are not terribly
impressed with such advantages. However, recent
advances in accessibility and convenience mean
that online documentation is finally beginning to
measure up to its potential.

Advantages of Online Documentation
on the Internet

Timeliness and availability. The growth of the
Internet offers the potential to make information
available almost instantaneously to more people
who otherwise would not have had access to it,
including high-level managers and ordinary
workers. This enabling technology can help
everyone make better decisions in their jobs.
Online documentation is unbeatable in the area of
timeliness.

Easy-to-use browsers. Systems such as NCSA
Mosaic and the University of Minnesota's Gopher
(see the article "Internet safari: Exploring the world
of online information" in this issue) have made it
much easier to read online documentation, and
multimedia capabilities make it possible to browse
documents containing pictures, sound, and
animation across the Internet.

Choice of searching mechanisms. Users now have
a variety of strategies for "discovering"
information. Gopher excels at keyword searching
through its Veronica utility, while the World Wide
Web offers the ability to "jump" to information via
hypertext links. Archie lets you search for files on
anonymous File Transfer Protocol (FfP) servers
around the world. The Wide Area Information
Servers (W AIS) give you full-text retrieval of the
information in hundreds of databases. The goal of
letting the customer control/activate the process as
much ~ possible is finally being attained.

Training and documentation. Users are helping
other users train themselves to make the most of
the new online information discovery services. For
example, Richard 1. Smith (Carnegie Library of
Pittsburgh) and Jim Gerland (State University of
New York at Buffalo) recently offered a
"Navigating the Internet-Let's Go Gopherin'"
course to 17,000 people via e-mail. (See "E-mail
course teaches Gopher search tricks," in this
issue.) Documentation for online systems such as
Gopher and Mosaic is itself online. Lunchtime
seminars on networking are becoming popular at
universities and companies. These changes break
the old rule that only experts can successfully
perform complex information searches.

ConSUlting. The placement of all documentation
online makes it easier for you to rapidly look up
simple questions for yourself. This has the added
advantage of freeing our consultants to serve you
better on complex questions.

Printing on demand. Systems such as Gopher and
Mosaic allow you to save and print off passages
locally. SCD also plans to enable users to print
large PostScript manuals economically on our
high-speed Xerox 4050 laser printers.

Use of standards. The new Internet tools use a
few, commonly used standards. This makes them
more accessible to users with machines ranging
from PCs and Macintoshes to high-performance
mainframes. Most of the tools have dumb terminal
interfaces as well as windowing interfaces.
Multiple-protocol servers such as GN may offer a
single interface to both Mosaic and Gopher
protocols.

Notice of New Information

An important service is to notify readers when new
information is available and to guide them to
what's new. The Mosaic browser has begun to
address that question by offering a "bulletin board"
where information providers on the World Wide

373

374

Web can announce new products and servers. A
similar facility is needed for individual information
servers. It would be even better if new documents
automatically announced themselves!

New Issues Require New Processes

With the large increase in the number of possible
avenues for online information dissemination,
documentation providers and maintainers face the
hazards of having to maintain multiple versions of
the same document, each tailored to certain online
delivery systems.

An obvious solution appears to be to select the
enabling technology of a "shared database" of
documentS, selecting one application such as
FrameMaker for authoring the source documents
and using filters, templates, and macros to generate
the additional versions needed. Automation is
called for here, both to avoid the problem of
versions getting "out of synch" and to avoid the
"rework" of maintaining several versions
manually.

SCD sponsored a project recently in which senior
computer science students from the University of
Colorado created a document database manager
that would catalog source documents and provide
online ASCII translations on the fly using built-in
filters. We found that translation on the fly
effectively dealt with the requirement that each
filtered version must simultaneously reflect any
changes. Future versions of MosaiC may provide
"hooks" to allow us to insert on-the-fly. translators.

A "reengineered solution" to this question might
require discarding a proprietary authoring
application in favor of a more universally
applicable text markup language such as the
Standard Generalized Markup Language (SGML).
SGML was developed to provide device
independence (rather than usability across a:
selected set of common platforms as with
FrameMaker). Thus, if your authoring platform is
not around in 10 years, your document should still
be readable by future generations of machines.
Encouragingly, the World Wide Web is moving in
the direction of SGML by using Hypertext Markup
Language (HTML), which is a simple subset of
SGML. Less encouragingly, WYSIWYG
applications such as FrameMaker are not yet fully
SGML compliant.

Other avenues for reengineering might include
information mapping and radical downsizing of
documents to facilitate reading in hypertext
"chunks." A well-don~, concise "Frequently

Asked Questions" (FAQ) list is potentially more
useful than a whole manual.

Icebergs

However desirable, automation can only be
successful for processes that are stable.
FrameMaker recently released a new upgrade.
How will the current filters to ASCII and HTML
interact with it? How will we deal with "new,
. improved" filters? Likewise, PostScript is an
evolving entity. New online documentation
products, such as the Mosaic browser, do not yet
deal with the problem of finding the differences
from previous versions. None of the tools are
much help in making sure that multiple
representations of the same information are kept in
synchronization. Automated conversion scripts
require frequent maintenance when both the source
and target forms are evolving rapidly. It's like
trying to ride two icebergs floating in different
directions.

It is also not clear yet whether process
reengineering has anything to offer to the process
of creating information. In the past, it has always
required human brainpower to organize the
information and to express it in natural language.
Paradigms such as hypertext differ radically from
databases and seem to defy any but simple
automation attempts. For example, our hardcopy
summer issue of SCD Computing News contained
27 articles. By contrast, the Mosaic (hypertext)
version consists of 107 files, including pictures
and cross references, that users can jump to. Even
if they are "synchronized," are these two versions
really the "same" document?

Another question is how to monitor the status of
frequently changing documents. If we make
several isolated changes over time, each change
may seem simple and straightforward in its limited
context, but the resulting document as whole may
become sufficiently different that at some point it
requires total renovation.

Finally, the "payoff' for using SGMLIHTML may
be long in coming. Coding in SGML represents a
large investment of time, and is best suited to
documents that will have a long shelf life.

The Future: Keeping a Step Ahead

The rise of online documentation will bring with it
many other issues, including authenticity and
accuracy of information, research privacy and
patents, and copyrights. We feel the potential
advantages to be provided by online documentation

make it worth the effort of reexamining the
processes we use, in spite of the challenges listed
above. As enabling technologies are identified, we
can then readily take advantage of them.

We look forward to the opportunity offered by
partnering process reengineering and information
technology. We will seek out innovative ways to
deliver up-to-date information to our users that is
more usable and attractive yet easier to provide and
maintain. We may have to break a few old rules
along the way. As Michael Hammer, process
reengineering guru and former MIT professor, has
said, "The real power of technology is not that it
can make the old processes work better, but that it
enables organizations to break old rules and create
new ways of working-that is, to reengineer."

An online version of this paper can be viewed on
the WWW. Its URL is:

http://www.ucar.eduldocs/cug94.rew.html

375

376

MetaCenter Computational Science
Bibliographic Information System:

a White Paper

by Mary Campana, consultant to SDSC, and Stephanie Sides, SDSC

This paper describes the first phase of developing a full-featured one-stop research
information service described at the Cray User Group meeting March 17, 1994.

Over the last eight years, the four national supercomputer centers! and some 10,000
researchers that make use of the centers have produced a unique collection of written,
numeric, and graphical information related to advances in computational science and
the underlying computer (and computer-related) technology. This information includes
journal and conference publications, technical reports, user documentation, datasets,
hand-written computer programs, still images, and animations. The information
includes records of citations of materials as well as the physical materials themselves.

A survey of this information was made in January 1994. A snapshot of this survey
reveals the following

• Over 14,000 journal articles, research reports, etc.
• 3,000 online documents
• 500 documents containing workshop notes or tutorial information
• 6.2 TBytes of data
• 1,400 still images on film
• 400 digital animations and analog videotapes
• 6,000 titles of hardcopy materials related to supercomputing, visualization,

networking, etc., held by the centers' libraries

Although many of the journal and conference publications can be located through
indexes prepared for a particular scientific discipline (e.g., physics, chemistry, and
atmospheric sciences), indexing has generally not been done using computational
terms. For example, it is not possible to search information by hardware platform,
applications package, or algorithm used as part of the research project. Some materials,
such as the reports, visualizations, and other "internal" materials, are simply not
indexed anywhere.

lThe Cornell Theory Center (CTC), the National Center for Supercomputing Applications (NCSA), the
Pittsburgh Supercomputing Center (PSC), and the San Diego Supercomputer Center (SDSC).

This material holds unique value for its potential to fuel the scientific process and serve
as a historical archive. But in its current form, it remains unusable because it has not
been

• Consolidated as a single collection

• Indexed comprehensively to make it easily searchable from a variety of perspectives
(e.g., scientific, computational)

• Made available electronically to the Internet at large

This problem is compounded by the lack of sophisticated search tools on the Internet
that would provide effective mechanisms to access and search this information. WAIS,
veronica, gopher, and archie2 are good tools for locating resources, but they lack the
ability to perform sophisticated text retrieval searches within a collection of resources.
Additionally, they lack important capabilities that would make relevant information
much easier to find that include the following:

• Syndetic structure to enable a user to move from what s/he asks for to what s/he
needs at a specific source of information

o Keyword indexing based on the terms people are most likely to use

• Cross references

• In-depth search and retrieval mechanisms

• Boolean and wildcard searching capabilities

• Standardized terms

• Logical and useful filenames

Therefore, the centers propose to develop an integrated, online computational science
information system containing bibliographic information about work produced by the
centers' aggregate users and staff. The proposed system will include:

• An efficient, cost-effective method of collecting the information produced by the
four centers so that it will be up-to-the-moment in currency.

2NCSA Mosaic and PSC GDOC have much greater capabilities than these tools but do not presently
include indexing.

377

378

• In-depth, precise indexing based on a thesaurus of standardized terminology, which
will permit accurate and comprehensive retrieval of information primarily from a
computational perspective.

• A powerful search engine that will permit natural-language query, relevance
ranking, and retrieval of text through a syndetic structure.3 This engine will not only
permit the system to be searched easily and thoroughly, it will be a tool usable
throughout the Internet, greatly improving Internet users' ability to search for and
find relevant information in other contexts.

• A standard interface usable by non-computer professionals on the Internet.

This project will serve as a testbed for a more comprehensive information system which
will include datasets, still scientific images, digital animations, computer programs, and
other non-bibliographic materials. The information system will also expand beyond the
materials of the MetaCenter to incorporate computational science information from
high-performance computing centers throughout the nation and eventually the world.

This project will be facilitated greatly by taking place in the context of the MetaCenter, a
collaboration of the four national supercomputer centers formed in 1992 to leverage
their diverse resources and expertise so as to advance computational technology and
promote scientific progress. Significantly, an important part of this collaboration is the
MetaCenter's involvement in advancing the National Information Infrastructure.

In 1992 the San Diego Supercomputer Center wrote a proposal to Cray Research, Inc.,
and obtained $25,000 to assess the options for creating a computational science
information system. The library at SDSC and Datasearch, Inc., of Ithaca, NY, which
works with the Cornell Theory Center, have inventoried the various collections of
materials at the centers. During 1994 Datasearch is conducting a feasibility study to
recommend the design of this system and how to implement it. A final report is
expected late this year recommending a suitable hardware platform, a teaming
arrangement with a selected software vendor, procedures for consolidating and
maintaining the data, and potential sources of funding to implement the proposed
system. The Cray funding is not adequate to pursue the project beyond this feasibility
phase.

3Serendipitously, concurrent with the centers' efforts to produce this online system, private industry has
developed several search tools that may be useful for this project. For many years the library and
information science community and related industries have been at the forefront in developing precise,
user-oriented search engines. Dialog, Mead, Datastar, Westlaw, Personal Library Software, and Conquest
are some of the companies whose research and development efforts in this area are used daily by the
library and information provider community. This community has watched the growth of the Internet
and tools such as gopher and WAIS, and has participated in discussions and projects attempting to team
the search-and-retrieval expertise developed by libraries with emerging networking technologies. The
MetaCenter's computational science information system is in a unique position to leverage the strengths
of both the computer science and the library science disciplines simultaneously to produce the first such
prototype system.

The centers expect industry, foundations, and government to be interested in this
project and are seeking cost sharing from all three. All major supercomputer vendors
are expected to be interested in seeing this project move forward as this system will
highlight the work accomplished on their platforms and encourage demand for their
products. Several foundations have shown interest in the advancement of scientific
information systems. And we expect the government to be interested because of this
project's potential in making a significant contribution to Internet resources by
providing a unique source of information about computational science.

The Internet has been described as "a library with all the books thrown on the floor in
the dark." The MetaCenter computational science information system can provide both
the light and the catalog for that library.

379

380

Electronic Publishing: From high-quality
publications to online documentation

Christine Guzy, Production Coordinator

Documentation Group, User Services,
Scientific Computing Division

National Center for Atmospheric Research

Abstract

This presentation will cover electronic publication of printed and online documentation
required by users of a high-performance computing center. It will emphasize the transition
from one format to the other while minimizing maintenance of many versions in different
formats, such as ascii, word-processing and text-layout software, and formats recognized by
online browsers. Research and development techniques and tools will be discussed. Printed
documentation and brochures as well as their NCSA Mosaic online counterparts will be
highlighted.

Introduction

We documentation specialists are all adjust­
ing to the challenges of new and fast-chang­
ing technology in presenting information
and documentation to our Cray users.
While there are a lot of advantages to this
technology, there are also frustrations.

This paper is about some of the advantages
that electronic publishing technology has
given us, including higher resolution hard­
copy publications, increased efficiency, and
online access.

An overview of some of the filtering tools
that we use to convert file formats to make
them compatible for importing illustrations
into text files will be presented. There is also
an overview on filters for converting
various file formats into ASCII and HTML.

We currently use Sun workstations and
Macintoshes. The software we use is Frame­
Maker (on both platforms) for most of our
documentation. We use Microsoft Word and
PageMaker for the newsletter. We also use
Adobe Illustrator and Adobe PhotoShop.

Advantages to electronic publishing

By outputting our documents directly to
film at high resolutions, we are able to save
a generation in quality. In the past, the print
contractor made the negatives from our
paper output.

By ordering photo scans directly from nega­
tives we save the cost and step of printing
photographs. These scans can then be used
in our hardcopy as well as online publica­
tions.

In the case of our Newsletter, the hardcopy
contains black-and-white photos while the
online version can display photos in color.

By importing color illustrations electroni­
cally, an entire page can be ouput as one
color separation. Typically the cost of a
color separation is relative to the size of the
separation, plus the stripping costs.
However, in my experience, the cost is no
more than traditional ways even though in
effect you're buying an 8 x 10 separation.

Scanning and placing photographs and
artwork into the files electronically is more
efficient and accurate than indicating crop
marks and placement to print contractors.
Electronically placed illustrations can be
proofed along with their captions and in
relation to the text. This eliminates the
introduction of errors by print contractors,
such as switched or inverted photos and
illustrations.

Templates make short work of
formatting

Templates automate the tedious task of
formatting text. To format text you simply
click on the format you want for a particu­
lar level of heading or body copy. For exam­
ple, if you want body text, you place your
cursor in the text you want formatted, go to
the menu containing the name of the style,
and click on it. Voila! Consistent formatting.
This is vital to good documentation and
especially when filtering one file format to
another.

Our FrameMaker, Microsoft Word, and
PageMaker software templates have been
standardized to make it easier for us to
filter files from one format to another. We
try to keep the style names consistent even
though the formatting may not look the
same from one document to another.

Obtaining filtering tools

Programs are necessary to filter incompati­
ble file formats for importability. Also,
getting all the files into electronic format is
just the first step in putting information
online. For instance, we convert Frame­
Maker mif (Maker Interchange Format)
files to html (HyperText Markup Language)
for viewing on NCSA Mosaic.

There are an infinite number of filters avail­
able on the Internet. While these filters may
not solve all of your filtering needs, "new
and improved" versions crop up frequently,

so check often. Also, be aware that software
upgrades can become incompatible with
filters that were previously successful and
that can send you back into search mode.

Some ways to find filters are:

• Use Veronica to search Gopher
server menus

• Use Archie to search anonymous
FTP (File Transfer Protocol) archives

• Use W AIS (Wide Area Information
Servers) to search indexed databases

A compilation of html text filers can be
viewed with NCSA's Mosaic. See the
following URL (Uniform Research Locator)
on the WWW (World-Wide Web) in hyper­
text:

http://info.cern.ch/hypertext/WWW /
Tools / Overview.html

It is important to use caution when moving
formats from one platform to another. Not
all file formats are ascii, like PostScript and
EPS. Formats such as TIFF and EPS files
with preview images are binary and hex
files. The easiest way to avoid corrupting
files is to assume the files are binary and
move them accordingly. It is best to use
FTP in binary mode.

Using filters

Some ways to get formatted ascii text. (By
formatted I mean with some tabs between
items in tables and indents for headings
and such):

• Microsoft Word - simply save as
"text with formatting"

• FrameMaker - use miftortf, open in
Microsoft Word, save as "text with
forma tting"

• NCSA Mosaic, save as "formatted
text"

381

382

Some filters that we find useful:

• ps2epsi - PostScript to Encapsu­
lated PostScript (EPS) with optional
preview Image (EPSI) for importing
into FrameMaker and Macintosh
programs.

• xv - interactive image display for
the X Window System, for saving
screen dumps in formats such as tiff
(for importing into text files) and gif
for use with html.

• fm2html- FrameMaker mif to html

• Adobe Photoshop - for saving pict
files to tiff, eps, gif and many other
formats. Also good for enhancing,
cropping, and rotating photos and
images.

• ncgm2fmps - Converts NCAR
Graphics into epsi for importing into
FrameMaker

NCAR Graphics is a software package
developed by SCD's Scientific Visualiza­
tion Group. The standard output format
of the graphics package is. a cgm.This
filter was developed so we could import
examples into the documentation for the
software package.

Conclusion

Streamlining and automating production
tasks, and keeping up with technology in
the field of electronic publishing pays off in
the long run. Or as Juli Rew mentions in her
presentation, "process engineering" and
working" smarter not harder" really
increases efficiency.

Our online user documents now include, in
addition to text, graphics, illustrations, and
photographs. In addition to our hardcopy
documents, we now have our SCD User­
Docs available via anonymous FTP and
Gopher, as well as html-coded files for
viewing with NCSA Mosaic.

The quality of a publication is what attracts
the reader to take a better look at the
contents of a document. Our documents are
designed to assist our users in finding the
information necessary to perform their
computing tasks. The easier we make it for
them to access that information, the less the
phones ring in the consulting office.

For more information on:

• Using Archie, see "Consult Archie,
the FTP archive guru, to find files" in
the March 1992 issue of SCD
Computing News.

• Using Internet tools, see the "Special
issue: Online information tools,"
Jan./Feb. 1994 issue of SCD Comput­
ing News.

JOINT SESSIONS

MSSIOperating Systems

WORKLOAD METRICS
FOR THE

NCAR MASS STORAGE SYSTEM

J. L. Sloan
National Center for Atmospheric Research

Scientific Computing Division
Boulder, Colorado

Abstract

The NCAR Mass Storage System, MSS-III, generates ten
megabytes a day of transaction log containing a wealth of
information about its workload. Traditional metrics such as
overall mean are useful, but omit information regarding
temporality, locality, and burstiness. NCAR has begun to
examine metrics usually applied to virtual memories and
hardware caches to more precisely characterize the MSS-III
workload. These metrics are generated by trace-driven programs
which calculate the working set of the workload, and which
simulate portions of MSS-III as caches. The cache simulation
portion of the project is still being validated.

Introduction

About a year ago, Dr. Bill Buzbee, director of NCAR's
Scientific Computing Division, asked: if funding were available
to expand NCAR's mass storage system, how could it best be
spent? This was a perfectly reasonable question. Answering it
with confidence turned out to be more difficult than we
expected. This paper describes how we have applied tools and
generated performance metrics traditionally used in areas outside
of mass storage.

NCAR's 38 terabyte mass storage system, MSS-III, moves an
average of about five terabytes of data per month (eight
terabytes peak) responding to user requests. An equal amount of
data is moved within the storage hierarchy as part of cache
management (Harano [1]). The MSS-III caches consist of a 1.2
terabyte robotic tape library (which we will refer to as the tape
cache), and a 120 gigabyte disk farm (the disk cache). These
caches are fed from a manual archive of 112,000 tape cartridges.
Where files are cached is based on their size relative to an MSS­
III file threshold parameter. Currently, files smaller than 30
megabytes go to the disk cache, larger files to the tape cache.
Clients served by MSS-III include a CRAY Y-MP8/864, a
CRAY Y-MP21216, a Cray-3, a TMC CM-5, an IBM SP-l,
and dozens of smaller file and compute servers. The primary
method of connecting to the MSS is via HIPPI channels
through a series of cascaded channel switches.

In the execution of its duties, MSS-III generates transaction
logging records to the tune of about 10 megabytes a day. These
transaction logs can be mined for information about what the
MSS is doing, when it is doing it, and who it is doing it to and
for.

Distributions

We began mining the transaction logs and tabulating typical
statistics such as the number of files read, megabytes moved,
and effective transfer rates, by MSS device, client system, and
user. This allows us to generate spiffy charts like Figure 1,
which shows the average transfer rates in kilobytes per second
between MSS-III and different types of client systems for files
of different sizes. However, we convinced ourselves that while
these types of statistics are useful, they do not tell the entire
story.

BLOCK CHART OF MEAN

10 100 1000 10000 100000

KB
OP c::=:::a READ _ WRITE

Figure 1. Average transfer rates in KB/S

For example, a statistic that is frequently bandied about is that
the average size of a file accessed from MSS-III is about 28
megabytes. However, the frequency distribution for accesses by
file size for the 1.2 million files in the MSS is not normal; the
distribution is strongly biased toward small files. Given any
MSS file access, there is nearly a 50% probability that it is for
a file smaller than one megabyte, and almost an 80%
probability that it is for a file smaller than 10 megabytes. This
is illustrated in Figure 2, which shows the distribution of file
requests by file size in quanta of one megabyte.

387

F
I
L
E
S

3000000

2000000

1000000

o 20 40 60 80 100 120 140 160 180 200
MB

Figure 2. Distribution of files by file size

Even so, given any byte accessed from the MSS, there is less
than a 1 % probability that it is from a file less than one
megabyte in size. Highest probabilities are for files in the
neighborhoods of 80, 145, and 180 megabytes. This is probably
an artifact of the file usage patterns of the climate models run at
NCAR. This illustrates the importance of examining statistics
and distributions derived not only from how files are used, but
how the data is used; the distributions are frequently quite
different. Figure 3 shows the distribution of data requests in
megabytes by file size.

Running averages

Although distributions are important, they are inadequate.
Consider these three cases:

a) one one-megabyte file is read 100 times;
b) 100 one-megabyte files are each read one time; and
c) one 100-megabyte file is read one time.

4000000

3000000

~ 2000000

1000000

20 40 60 80 100 120 140 160 180 200
MB

Figure 3. Distribution of data by file size

388

Cases (a) and (b) are identical in terms of number of files
transferred, and all three cases are identical in terms of number
of bytes transferred. Yet it is easy to see that the impact that
each of these cases could have on the MSS might be as much as
two orders of magnitude apart. For example in (a), the file
might be cached immediately, resulting in a single manual tape
mount, while (b) would result in 100 manual tape mounts.
Fixed over head per file transfer would be incurred 100 times for
(a) and (b), but only once for (c). (a) only takes up one
megabyte in a cache, while (b) and (c) each take up 100
megabytes. There is a temporal quality lost in the compilation
of distributions; it matters not only that a file was read, but
when and in what context it was read. To recover this
information, we had to turn to trace-driven analysis of our
transaction log data.

Trace-driven analysis is an attempt to show how different
aspects of the MSS workload change over time. The analysis is
driven by the time stamped transaction log records. This method
was inspired by earlier work characterizing the UNIX 4.2BSD
file system (Ousterhout [2]) and supercomputer file access
(Miller [3], [4], and [5]).

We used running averages to try to get a handle on how the
workload changed over time. Figure 4 shows how the running
average of the number of megabytes moved per hour between
client systems and the MSS tape cache varies from December
1992 to November 1993. Note how the running average
fluctuates until enough time has elapsed for the graph to settle
down and converge to a long-term average.

Linear regression

Using the running average for trend analysis is troublesome.
The longer a span of time the analysis covers, the greater a
change is required to perturb the graph. Over very long runs (a
year or more), significant workload peaks visible to the users

12000

11000

s
~ 10000

M

B 9000

M
V

~ 8000

R

7000

6oo0~--------__ ~--------__________ __

27APR92:13:20 15DEC92:00:53 03AUG93:12:26 23MAR94:00:00
WALLCLDCK

Figure 4. Running average of megabytes moved per hour

may not be visible in the running average. On the other hand,
very long runs were necessary for the averages to converge on a
result we believed. The running average did not adequately
capture the bursty nature of the MSS workload, and it was hard
to extract any clear trend from the resulting graph.

Unfortunately, the burstiness evident in the raw data makes any
trend analysis difficult. Regression analysis usually results in
confidence limits that do not inspire confidence, or the variance
is so large as to make the regression line incredible. Figure 5
shows a linear regression with a 95% confidence, plus a
scatterplot of the raw data, of the number of bytes moved
between client systems and the MSS-III tape cache for the
December-November time frame.

Working sets

Intimidated by the bursty nature of the MSS workload and
disheartened by the relatively poor results provided by either
running averages or linear regression for trend analysis, we
began to shop around for better metrics. The fact that the MSS­
III caches operate a bit like virtual memory inspired us to
wonder if working sets (Denning [6]) might be applicable. A
working set is defined as the amount of unique data referenced
within a given time window. Our time window would be our
target residency periods for cached files (currently five days for
the disk cache and 30 days for the tape cache). The working set
of an MSS cache would tell us how large a cache we would need
to achieve a target residency.

Figure 6 shows how the 30-day working set of the MSS-III tape
cache changed during the December-November time period. We
knew from our distribution statistics that we were meeting our
desired residency time for files in the disk cache, but were
falling short for files in the tape cache. Determining the
working sets of both caches told us why. We found that
although the requests for files from the MSS were biased
towards small files that would be kept in the disk cache, the

18000

17000

16000

15000

..
',' .

14000 '. :.: ..

27APR92:13:20 15DEC92:00:53 03AUG93:12:26 23MAR94:00:00
WALLCLOCK

Figure 5. Linear regression of megabytes moved per hour

W
S

4000000

3000000

2000000
M
B

1000000

o~--------~----------__________ _
27APR92:13:20 15DEC92:00:53 03AUG93:12:26 23 MAR94:00: 00

WALLCLOCK

Figure 6. 30-day working set of the tape cache

five-day working set of the small file workload fit comfortably
on our disk farm. Unfortunately, the working set of the tape
cache was about 200% (peak around 300%) of the actual tape
cache size. We are responding to this by upgrading our tape
cache with double-density drives and extended-length tapes.
When complete, the tape cache will approximately quadruple in
size.

Temporal locality

Working sets give us the big picture as to the overall locality of
the workload within a specified time window, but they do not
give us a distribution of how locality varies by file size. To
determine the working set of an MSS cache, we had to maintain
state about every file written to or read from MSS-III. This
made it easy to generate a distribution by file size of the
probability of a file being read after it had been read or written
previously, and if read, the average time interval between the
successive requests. To get a rough metric that combined both
the probability of reuse and the interarrival time, we plotted the
former divided by the latter versus the file size in megabytes.
High probability of reuse is good, but only if the interarrival
time is fairly short; if files of size 10 megabytes have a 99%
probability of being reused, but requests for those files occur 30
days apart, caching all 10 megabyte files for 5 days would not
be useful.

Figure 7 shows the simple locality metric for files grouped
according to the log of their size in kilobytes. Highest locality
occurs for files of ones of megabytes in size. Taking the broad
range of file sizes in MSS-III into account, from kilobytes to
hundreds of megabytes, in general smaller files exhibit higher
locality (that is, a higher probability of reuse).

389

0.040
0.038
0.036
0.034
0.032

F 0.030

~ 0.028
E 0.026

0.024
L 0.022
o 0.020
C 0.018

~ 0.016
I 0.014
T 0.012
V 0.010

0.008
0.006

r---

0.0041r1

0.002 11 1
O.OOO.IL.._..LL_...LL_.....LJL....-.....L.L...--L...I..---L

1 10 100 1000 10000 100000
KB

Figure 7. Locality by log of file size in kilobytes

Cache performance

The simple locality metric is useful for comparing the relative
locality of files, but it does not provide a useful unit with
which to make decisions about MSS configuration or policy. A
(perhaps obvious) insight was to measure the effectiveness of
the MSS-III caches using traditional cache performance metrics
such as the hit, capacity miss, and compulsory miss ratios. The
hit ratio would tell us the probability of finding a needed file in
the cache. The capacity miss ratio would tell us the probability
of a cached file being dropped from the cache then re-referenced
at a later time, and so is a measure of adequacy of the cache size.
The compulsory miss ratio would tell us the probability of a
file being referenced that had never been in the cache before, and
so is a measure of the temporal locality of the given workload.
These three probabilities should add up to 100%, since a file is
either in the cache, was in the cache, or has never been in the
cache. Since we were already keeping state about each file read
from or written to the MSS, adding the ability to track the
actual MSS caching of the file was easily done.

Figure 8 shows how the actual compulsory miss ratio for the
1.2 terabyte tape cache changed over the December-November
time period. Overall, during this time, the tape cache had an
actual 57% file hit ratio, a 10% capacity file miss ratio, and a
32% compulsory file miss ratio. The compulsory miss ratio is
especially troubling since it is a function of low temporal
locality in the workload, and cannot be easily addressed.

Cache simulation

Working sets and cache metrics provide lots of good
information about how adequate the caches are sized, and how
effective they are. But they do not provide any predictive
capability, for example, what would happen if we increased the
size of the tape cache. Intuitively it would seem to be a good
thing, but the known compulsory miss ratio made us wary of
the likelihood of diminishing returns.

390

1.00
0.95
0.90

A 0.85
C 0.80
T 0.75

0.70
F 0.65
I 0.60
L 0.55

C 0.50
o 0.45
M 0.40

0.35
M 0.30
I 0.25

~ 0.20
0.15
0.10
0.05
0.00 ----____________ _

27APR92:13:20 15DEC92:00:53 03AUG93:12:26 23MAR94:00:00
WALLCLDCK

Figure 8. Actual compulsory miss ratio for tape cache

By using the transaction logs as traces for a cache simulation,
we can model portions of the MSS for a specific input
workload. Some differences from the usual hardware cache
simulation are necessary, for example cache lines in MSS-III are
variable length (the size of individual files), and when a cache
line is dirtied, the entire cache line rather than a single cache
word is replaced.

Figure 9 shows how the predicted compulsory miss ratio for an
upgraded 4.8 terabyte tape cache changes over the December­
November time period.

There are a number of caveats we discovered in simulating the
MSS-III caches. Many results are simply artifacts of the input
workload. For example, our cache model never predicts more
aggregate I/O bandwidth between the MSS and its clients than
actually exists on the computer room floor. This is because the

1.00
0.95
0.90

P 0.85
R 0.80
E 0.75
D 0.70

F 0.65
I 0.60
L 0.55

0.50
C 0.45
o 0.40
M 0.35

M 0.30
I 0.25
S 0.20
5 0.15

0.10
0.05
0.00"-------------------

27APR92:13:20 15DEC92:00:53 03AUG93:12:26 23MAR94:00:00
WALLCLDCK

Figure 9. Predicted compulsory miss ratio for tape cache

traces with the associated inter-arrival time of requests which
drive the simulation are derived from the actual workload. Also,
an enormous amount of work must be done to validate the
simulation, otherwise we would have no confidence in its
predictions. Other problems with trace-driven simulations can
be found in the literature (Jain [7]).

Conclusions

It may look as if we want to discredit virtually every
computationally simple metric that might be commonly used to
measure MSS performance. In practice, we generate all of these
metrics, and they all have their place. However, the sheer
volume of MSS transactions and their bursty nature forces us to
step back and try to characterize the overall workload in a
manner which will give us understandable metrics in usable
units which we can apply to configuration, design and policy
decisions. We still do not believe that we have a good handle on
a metric to measure the burstiness of the workload, and are
currently interested in methods applied to characterizing network
traffic (Leland [8]).

This has been a challenging, and incomplete, task. In fact, the
situation may be worse than we portray: at NCAR, the
performance of our production supercomputers and our mass
storage system is so closely coupled that it is difficult to
understand one without analyzing the other. Work is underway
to model the supercomputer workload at NCAR (Colarelli [9]).
There is likely to be an advantage in coordinating the two
efforts.

More detailed information about workload characterization and
performance analysis of the NCAR Mass Storage System III
can be found in a related paper, Sloan [10].

Acknowledgments

The National Center for Atmospheric Research is operated by
the University Corporation for Atmospheric Research under the
sponsorship of the National Science Foundation. Any opinions,
findings, conclusions, or recommendations expressed in this
paper are those of the author and do not necessarily represent the
views of the National Science Foundation.

The author would like to express his appreciation for the
ongoing support of his management for this project.
Specifically, thanks go to Gene Harano, Bernie O'Lear, and Bill
Buzbee, all of NCAR.

References

1. Harano, E., "Data Handling in the NCAR MSS", National
Center for Atmospheric Research, July 1993

2. Ousterhout, J. et al., "A Trace-Driven Analysis of the
UNIX 4.2 BSD File System", Proc. of the Tenth ACM
Symp. on Operating Systems Principles, December 1985

3. Miller, E., "Input/Output Behavior of Supercomputer
Applications", UCB/CSD 911616, University of
California, January 1991

4. Miller, E. et al., "Analyzing the 110 Behavior of
Supercomputer Applications", Proc. Eleventh IEEE
Symp. on Mass Storage Systems, Monterey CA, 1991

5. Miller, E. et al., "An Analysis of File Migration in a
Unix Supercomputing Environment", extended abstract,
U. of California, Berkeley, 1992

6. Denning, P., "The Working Set Model for Program
Behavior", Proceedings of the ACM Symp. on Operating
Systems Principles, October 1967

7. Jain, R., The Art of Computer Systems Performance
Analysis, John Wiley & Sons, New York, 1991

8. Leland, W. et al., "On the Self-Similar Nature of Ethernet
Traffic", ACM SIGCOMM '93 Proc., San Francisco CA,
1993

9. Colarelli, D., "Modeling the Network Queuing System",
National Center for Atmospheric Research, November
1993

10. Sloan, J., "Flying with Instruments: Characterizing the
NCAR MSS-III Workload", to appear in Proc. Thirteenth
IEEE Symp. on Mass Storage Systems, Annecy, France,
June 1994

391

SCIENTIFIC DATA STORAGE SOLUTIONS: MEETING THE IDGH-PERFORMANCE CHALLENGE

Daniel Krantz, Lynn Jones, Lynn Kluegel, Cheryl Ramsey, and William Collins
Los Alamos National Laboratory

Los Alamos, New Mexico

The Los Alamos High-Performance Data System (HPDS)
has been developed to meet data storage and data access
requirements of Grand Challenge and National Security
problems running in a high-performance computing
environment. HPDS is a fourth-generation data storage
system in which storage devices are directly connected to a
network, data is transferred directly between client
machines and storage devices, and software distributed on
workstations provides system management and control
capabilities. Essential to the success of HPDS is the ability
to effectively use HIPPI networks and HIPPI-attached
storage devices for high-speed data transfer. This paper
focuses on the performance of the HPDS storage systems
in a Cray Supercomputer environment.

INTRODUCTION
The Los Alamos Computing, Information, and
Communications Division has developed HPDS to meet
the high-end data storage and data access requirements of
the Los Alamos computing network. Major computational
resources include seven CRA Y computers that have a total
of 39 CPUs, two fully configured Thinking Machines
CM-200s, a IK Thinking Machines CM-5, and thousands of
workstations. A network based on the IOO-megabyte-per­
second HIPPI (High-Performance Parallel Interface)
technology [1] interconnects HPDS, computational
machines, and visualization systems.

HPDS Requirements
The principal clients of HPDS are Grand Challenge and
National Security problems running on massively parallel
machines and large-memory supercomputers. These
problems generate gigabytes to terabytes of output that are
stored on HPDS as sequential files, and data is often
appended to the end of files. This output is accessed by
post-processing systems that perform calculations such as
time and space averaging and store the processed data as
megabyte- to gigabyte-size files. Visualization systems
access the output and post-processed data randomly or
sequentially at some stride. To meet these requirements,
HPDS must be able to store petabytes of data, transfer files
at tens of megabytes per second, handle terabyte-size files,
and provide selective access to the data (i.e., transfer
partial files). Metadata and scientific data management
systems and methods are being investigated as possible
means for facilitating data storage and access. These

392

systems will provide users with a convenient and
powerful interface to HPDS.

A Fourth-Generation Data Storage System Model
Traditional network data storage systems use a "front­
end" computer that provides network connectivity for
storage devices along with storage management, device
management, and data transfer capabilities [2,3,4]. This
approach can result in a solid, flexible system; however,
transferring data through a front-end machine can make
the data storage system very expensive and limit the
performance. To meet high-end data storage and data
handling requirements with a traditional system, a large
mainframe or small supercomputer must be used for the
front-end.

An alternate method is to directly attach storage devices to
the network and transfer data directly between storage
devices and client machines. Higher data transfer rates
"and reduced hardware costs are realized by this method,
which allows more powerful data storage systems to be
implemented to meet the high-end requirements. The
term "fourth-generation" has been given to this type of
data storage system in which data is transferred directly
between storage devices and client machines, and
workstation-class machines are used for control and
management. HPDS at Los Alamos is a fourth-generation
data storage system; NCAR [5] and the National Storage
Laboratory at Livermore [6] are also developing fourth­
generation systems. Major differences between HPDS and
other fourth-generation systems being developed are:
HPDS uses a peer-to-peer protocol for the HIPPI data
transfer; and the HIPPI connection is used exclusively for
data packets.

The recent availability of HIPPI network technology and
HIP PI-attached storage devices has generated widespread
interest in this new generation of data storage systems,
especially for high-end applications [7,8]. HIPPI network
switching components are commercially available, most
supercomputers have HIPPI interfaces, and scientific
workstations are beginning to have HIPPI interfaces <e.g.,
IBM RS/60(0). HIPPI-attached RAID-3 and RAID-5 disk
arrays are now available from Maximum Strategy and
IBM. Maximum Strategy has modified its HIPPI controller
to work with the Ampex/E-Systems DD-2 helical-scan
tape recorder. Other companies (e.g., Sony, and Broadcast

Television Systems) are pursuing HIPPI-attached 00-1
helical-scan tape systems.

HPDS IMPLEMENTATION
The current production version of HPOS has been
operating for nine months in the Los Alamos High
Performance Computing Research Center (HPCRC).
During this time, substantial work has been done to
enhance overall reliability, performance, and usability.

Major components of HPOS implementation are shown in
Figure 1. The DO-2 tape storage system is currently under
development, and plans are being made to implement the
Gateway system. All other HPOS subsystems are fully
operational. Each HPDS component is designed to run on
a separate UNIX workstation-class machine. In practice,
however, several components are run on the same

Client
Interface

Ethernet

Bitfile
Server

workstation. All components communicate using fixed­
format XOR messages delivered over a UNIX stream
socket.

The current implementation does not provide any
automatic data migration and caching. Clients are
required to explicitly specify the storage system and to
move files (or parts of files) between storage systems.
Besides the need to provide a capability to meet immediate
requirements, there is the need to gain experience with the
storage and access of gigabyte- and terabyte-size files
before implementing migration and caching strategies.

The IEEE Mass Storage Reference Model [9] was used for
system design, and the Reference Model terminology is
used in the remainder of this document.

HIPPI Switch

Figure 1. HPDS implementation.

Client Interface/Name Server
Currently, the client interface and the name server are
integrated in a single subsystem. The initial client
interface is called Data Transfer Interface (DTI). DTI is
based on the Internet File Transport Protocol (FTP) code,
which provides a familiar data transfer interface and offers
a way of controlling client access. The file transfer
commands and UNIX directory commands use FTP
syntax. DTI differs from FTP in that partial file transfers
and file appends are allowed. DTI also has commands to
send data from HPOS to display systems and to transfer

data between HPDS storage systems. From the client
requests, DTI generates requests for the name server and
the bitfile server.

The name server maps the client UNIX file system path
name to a bitfile_id. The current name server was
implemented using a UNIX file system in which each
validated user has a home directory. DTI commands that
list files and manage directories are handled by the name
server within its file system. The name server associa tes

393

the bitfile_id with the UNIX file name by writing the
bitfile_id as data in the named file.

An intelligent user interface has been developed to create a
UNIX-like environment with both interactive capabilities
and C- and Fortran-callable routines. The UNIX
commands and routines are translated into requests that
are then processed by DTI. The high-level interface
provides caching, batch programming, metadata
management, and file association through chunking (i.e.,
family of files).

Bitfile Server
The bitfile server processes requests from the client
interface to create and delete bitfiles, to query and modify
bitfile attributes, and to store and retrieve bitfile data. The
HPDS implementation uses a single bitfile server to
manage multiple storage servers, which enables the bitfile
server to be a location server for storage servers. The
bitfile server determines which storage system to use for
data retrieval and data storage. The design allows for data
to be directly stored and retrieved from any of the storage
sys terns and allows for files and partial files to be cached
on the disk array storage system.

Disk Array Storage System
The disk array storage system is implemented using an
IBM 9570 HIPPI-attached RAID-5 disk array and an IBM
RS/6000 workstation. The 9570 has a maximum data
transfer rate of 60 megabytes per second and a claimed
storage capacity of 5S.1 gigabytes (expandable to 232
gigabytes). The RS/6000 workstation is used to implement
the disk array server, which maps logical storage to
physical storage and provides commands to allocate and
deaIlocate space and to store and retrieve data. The disk
array server also includes the device driver for the disk
array and implementation of the data transfer protocol
(data mover).

The bitfile server sends requests to store and retrieve data
to the disk array server, which establishes the data transfer
protocol with the client machine and issues read and write
commands to the disk array through an Ethernet
connection. Data is transferred directly between the disk
array and the client machine via a HIPPI connection; no
data is transferred through the workstation. Disk files
may be randomly read, written, and updated as long as no
holes (areas without valid data) are created.

The disk array storage system is used to provide speed
matching between fast client machines and slower tape
storage systems, sustained data transfer with streaming
tape systems, random access to data by caching files and

394

partial files, and high-speed data transfer to visualization
systems such as frame buffers.

3490 Tape Storage System
The 3490 tape storage system is implemented using an
IBM 3490 tape subsystem, which consists of two tape
controIlers and four tape drives, and an IBM RS/6000
workstation. The 3490 tape subsystem has a storage
capacity of 400 megabytes per cartridge (SOO megabytes for
double-length 3490E cartridges) and a data transfer rate of
three megabytes per second. .

The RS/6000 workstation is used to connect the 3490 tape
subsystem to the HIPPI network and to implement the
3490 server, which maps logical storage to physical storage
and provides commands to aIlocate and deallocate space
and to store and retrieve data. The 3490 server also
includes the device driver for the 3490 tape subsystem and
implementation of the data transfer protocol (data mover).
The bitfile server sends requests to store and retrieve data
to the 3490 server, which establishes the data transfer
protocol with the client machine and issues read and write
commands to the 3490 tape subsystem. All data passes
through the workstation.

Tape files may be randomly read and may be appended
but may not be updated. Tape files may be directly stored
and retrieved without being cached on disk.

DD-2 Tape Storage System
A tape storage system based on the Ampex DST-600
helical-scan drive is under development. The DST-600 has
a storage capacity of 25 gigabytes per cartridge and a data
transfer rate of 15 megabytes per second. As with the 3490
tape system, an IBM RS/6000 workstation is used to
connect the DST -600 to the HIPPI network and to provide
storage management, device driver, and data transfer
capabilities. AIl data passes through the workstation. The
DST-600 is a streaming device and will be used to hold
large files (greater than a gigabyte), while the 3490 system
will then be used for smaller files.

SYBASE Server
The SYBASE Relational Database Management System
(RDBMS) is installed on a workstation and is used by the
bitfile server and storage servers to store and access
system tables. Use of an RDBMS for this function offers
several advantages. A large part of any data storage
system is the software needed to insure the integrity of the
system tables when hardware failures and system crashes
occur. A commercial RDBMS provides capabilities to
backup, journal, and restore data tables, to maintain
consistency across updates to multiple tables, and to lock
and unlock tables. The SYBASE SQL interface offers all

HPOS system components, including system management
(operator interface, etc.), a powerful means of accessing
system tables.

ruPPI Network Connection
The IBM RS/6000 workstation provides a good way to
connect storage systems to the HIPPI network. The
RS/6000 can be configured with two 80-megabyte-per­
second micro-channels and up to one-gigabyte memory,
has interfaces to a variety of high-performance storage
systems, and has a HIPPI interface that does outboard
protocol processing for TCP lIP, IPI-3, and HIPPI-Framing
Protocol (FP). A throughput of over 60 megabytes per
second has been demonstrated for an RS/6000-970 using
the HIP PI IPI-3 protocol. Data was read into an
application program on a HIP PI interface connected to one
micro-channel and then output on a HIPPI interface
connected to the other micro-channel. An RS I 6000-970
should be able to support simultaneous data transfers for
three Ampex DST-600 tape drives (15 megabytes per
second) or eight IBM 3490 tape drives (3 to 8 megabytes
per second).

HIPPI Data Transfer
Reliable, high-speed data transfer in a HIPPI network is
important for HPOS, computational machines, and
visualization systems. A data transfer protocol for the Los
Alamos HIPPI network must provide routing, flow
control, reliable data delivery, process identification, and
peer-to-peer connectivity. The protocol must not
substantially degrade the performance of the physical
HIPPI network and must be supported by the client
computers, storage systems, and other components of the
network. HIPPI Data Transfer (HOT) was developed by
Los Alamos to meet these requirements[10].

HDT is based on the separation of control and data, where
control uses TCP socket connections for message
communication (currently over Ethernet), and data packets
are transmitted over a HIPPI connection. This separation
of control and data allows for reliable delivery of control
messages, at the same time allowing large packets of data
(megabytes) to be transferred over the HIPPI with
minimum overhead. The protocol provides flow control,
block-level retransmission, and timeouts.

HDT is implemented as a library of C routines that can be
loaded and called by application programs. The source or
destination of an HDT transfer can be memory, disk, or
any storage to which the application has access. HDT can
also be implemented as a standalone utility program.
HDT allows the starting data transfer address and the
length of the data transfer to be specified, which can result

in partial file transfers. Data may also be appended to the
end of a file.

HDT consists of system-independent routines and system­
dependent routines. System-independent routines
implement control protocol using TCP sockets for
communication. System-dependent routines interface to
the HIPPI driver and with local storage (e.g., disk or
memory) to read and write data packets. The protocol is
based on receiving side routines requesting data packets
from sending side routines.

The most difficult HIPPI data transfer challenge was to
match the HIPPI implementations of the various systems:
the RS/6000 supports TCP lIP, IPI-3, and HIPPI-FP
protocols; the 9570 disk array supports IPI-3 protocol, use
of header-less data packets (data packets with no header
and no protocol), and use of alternate-header data packets;
the Cray UNICOS machines support TCP lIP and IPI-3
protocols, use of header-less data packets, and use of
HIPPI-FP; and the Thinking Machines CM-5 and CM-200
only support header-less data packets.

Presently, all HIPPI data transfers between Cray clients
and HPDS storage systems use HIPPI-FP while header-less
data packets are transferred between the Connection
Machines and the HPDS disk array. The separation of
control and data, where all control is done using TCP
sockets over Ethernet, allows header-less data packets to
be transmitted over the HIPPI network. Use of header-less
data packets means that the destination must be able to
determine from the control path what each data packet is
as it arrives, which prohibits multiplexing of data transfers
and could cause data integrity problems. The internal
HIPPI interface for the Connection Machine (available by
mid-1994) will be able to support data packets using
HIPPI-FP; then, all HIPPI data transfers will use HIPPI-FP.

HPDS PERFORMANCE

Theoretical performance statistics are rarely achieved in
real-world systems due to high-overhead costs and
unpredictable operating environments. The following
paragraphs present actual HPDS storage system
performance numbers gathered in a true production
environment from a variety of HPDS clients.

Major HPDS client architectures consist of Cray
supercomputers and massively parallel Connection
Machines from Thinking Machines Corporation.
Performance statistics were gathered for a CRAY X-MP,
CRAY Y-MP, CRAY M98 and CM-5 using DTI. The lK
CM-5 is supported by a multi-gigabyte Scalable Disk

395

Array (SDA) and an external HIPPI connection. Table 1
shows the different Cray configurations.

Disk Array Storage System Performance
Although the disk array has a potential capacity of 58.1
gigabytes, the HPDS implementation can only use 48.06
gigabytes. Of the 20 available disks in the array, 16 are
used for data, 2 for parity, and 2 for hot spares. This
configuration increases the reliability and availability, and
it avoids the penalty of having to read parity data before
each write of new data. The disk array has a potential
transfer rate of 60 megabytes per second, but several

factors limit this number: type of transaction, transfer
block size, file size, and HPDS client architecture.
Experience has shown that writing data to the disk array
has a slower transfer rate than reading data from the disk
array. Therefore, all performance numbers shown in the
following figures will differentiate between these transfers.

Transfer block size has a significant impact on disk array
performance. Figure 2 shows curves derived from a HIPPI
tester that wrote data to and retrieved data from the disk
array in raw mode, bypassing all HPDS protocols and
layers of overhead.

Machine UNICOS Number Memory Size lOS Model- ldcache Size
Version ofCPUs and Type Disk Type and Location

CRAYX-MP 7.0.5 4 16-megaword C- DD49 384-megabyte
CMOS SSD

CRAYY-MP 6.1 8 64-megaword D-DD42 366-megabyte
CMOS SSD

CRAYM98 7.C.3 8 16-gigabyte E - DA62 with 1.75-gigabyte
DRAM 4-way stripe main memory

Table 1. Cray Client Configurations.

55

50

45 · -... . · . . . · . . . · . . . · . . . · . . . · . . . · . . . · . . .
40

· . . . · . . .

Transfer 35
Rate (tvS/sec)

30

25

20

15
0 5 10 15 20 25 30 35

Block Size (tvS)

I ~ite I , . __ ._-._- ~ead •

Figure 2. Raw transfers using a HIPPI tester without HPDS overhead.

396

As the transfer block size increases, actual data transfer
rates approach the theoretical limit of 60 megabytes per
second. Although it appears that 32 megabytes should be
chosen as the transfer block size, HPDS operates with a
4-megabyte block size because of HPDS client constraints.

Multiple transfers between the disk array and HPDS
clients were conducted with files of random data ranging
in size from 2 megabytes to 1.5 gigabytes to examine
HPDS disk array performance from a practical standpoint.
Each machine was in production use, allowing contention
for the HIPPI channel, ldcache, memory, and CPU. The
CRA Y M98 was also run under dedicated system time
(DST) to demonstrate full HPDS capability without user
contention on the HPDS client. Figures 3 and 4 show
transfer rates for the range of file sizes under a constant
transfer block size of 4 megabytes.

in large part, to the ldcache, which falls within this range.
Transfers less than the size of the ldcache will achieve SSD
or main memory speeds. Once the file size exceeds the
ldcache, transfer rates become limited by the Cray disks.
The CM-5 has a low, but consistent, transfer rate because
of the CM-5 external HIPPI interface. The CRAY M98 is
able to sustain high transfer rates throughout the range of
file sizes for two reasons: the disks can sustain transfer
rates of 128 megabytes per second, and the main memory
ldcache is greater than the largest file in the test suite.

These performance statistics were gathered while HPDS
maintained data transfer block sizes of 4 megabytes. To
demonstrate the drop in performance with smaller block
sizes, the same suite of tests was repeated from the
eRA Y M98 for block sizes of 1, 2, 4 and 32 megabytes.
Figures 5 and 6 show the resul ts.

Transfer rates for the CRAY X-MP and CRAY Y-MP drop
drastically between 200 and 400 megabytes, which is due,

35

30

25

20
Transfer

Rale (tv13/sec) 1 S

10

5

0
0

.
.... y!.:.~.~~.~.~ + + ····+················1················1···············.+ --i -, --l - - , -j- - - - f ' - , -1- - ,
I. " : : : : : : ·············:···············--0···············0········ 0- •••••••••••••••• : •••••••••••••••• : •••••••••••• ····0············
,: I : : : : :

: , : : : : :
: :' : : : : :

V '\ l\ l l 1 1 1 ·············:·· .. ············0···.···········0···············0················:················:················0············
Ii \i \ ill i i

i ~ ", iii i i
..•. /. ..•..• ! .•.••..•..•.••.• i~ :. i i ! ••••••.••••.•••. ! •••.•••••••••••• l

: :" : : : : :

.::::::::::::I:::::::::::::~:I:::::~:l~::::::t:::::i:=:::-:-:I:~:.:~f:.: .. ::~:
, , J!- ., - J t - - - 1 - - - -! - - - - r ---1 - - - -l- - -

200 400 600 800 1000 1200 1400 1600
File Size (tv13)

--M9S(DS1)
--------- X-MP
---Y-MP
- - - - - eMS
- - - - -M9a

Figure 3. Transfer rates for reading data from the disk array onto the HPDS client.

397

30

25

20

Transfer 15
Rate (tvB/sec)

10

5

o

. . .
: . - -:: _, -... _

·'i i·· i !! ~
.-.'.=". .=., '=".' ~ :.--.:. :

" .. · .. ·· ·r·\·:· ·· t-· .. · .. · .. · .. ··t .. ··~ .. ·~ .. ·-·t .. :'···~· .. ~ .. ··!·· .. · · .. i·····~ .. ·~···:' .. r···:· .. · .. ··
:. : : : : : :
:.: : : : : :
:.: : : : : :
: ": : : : : :

............. ! ~ i i i i i i
: .: : : : : :
: I: : : : : :
: I: : : : : :
: .: : : : : :
: .: : : : : :
: ': : : : : :

~::~::~I::=:::~·t~~:~~l:~;:;:~:~l:~:~:~;:~l;:~:~l~;:;:;:d;:;:~;:~:: , , t ---i' --'!J - J - r ---1- ---1- --... i ... -
o 200 400 600 BOO 1000 1200 1400 1600

File Size (~)

--M9S(DSl)
......... X-MP
- - -Y-MP
- - - - - eMS
- .. - . M9a

Figure 4. Transfer rates for writing data from the HPDS client to the Disk Array.

Clearly, larger transfer blocks yield better performance
statistics, but other HPOS client architectures must be
taken into consideration. The Cray M98 performs well
with 32 megabyte blocks because it is a large machine with
very low user demands. On heavily used systems, the
32-megabyte transfer blocks introduce a significant delay
in CPU scheduling, lowering transfer rates below the 4
megabyte block performance levels. To accommodate the
wide spectrum of machines, the transfer block size is
currently maintained at 4 megabytes.

megabytes per second. With a 2 to 1 compression ratio, we
expect to achieve 6 megabytes per second transfers to
individual tape units. HPOS user data achieves an
average compression ratio of 1.9 to I, and visualization
data can sustain a compression ratio of nearly 3 to 1.

DD-2 Tape Storage System Performance
Preliminary tests of the DD-2 tape storage system, which is
under development, indicate the obvious: the theoretical
transfer rate of 15 megabytes per second will not be
achieved. Again, the transfer block size plays a key role in
determining the transfer rates. The Ampex OST -600
supports transfer block sizes up to 1 megabyte, and when
this maximum is used, data can be moved between
RS/6000 memory and 00-2 helical scan tape at 10 to 12
megabytes per second. Transfer block sizes less than 1
megabyte drastically affect this rate and will not be used
by HPOS. A production 00-2 tape storage capability
should be available by mid-1994.

3490 Tape Storage System Performance
The 3490 tape storage system is currently connected to an
RS/6000 usirig a parallel channel interface, which limits
the data transfer between the 3490 tape system and the
workstation to 2 megabytes per second. Tests similar to
the disk array performance analysis were conducted on
the 3490 tape system. In almost all cases, the transfer rates
averaged 1.5 megabytes per second. As would be
expected, the transfer rates were slightly lower for the
larger files because of multiple tape mounts. Improved
transfer rates are anticipated for the ESCON interface, a
DMA device with an expected transfer rate of 17

398

FUTURE WORK SUl\1MARY

Plans for enhancing HPOS include: acquiring a large­
capacity, high-performance automated tape storage system
based on ad vanced linear technology or helical-scan
technology to replace the existing 3490 tape storage system
as the principal storage system; implementing migration
programs to automatically move files down in the storage
hierarchy when they are idle and to cache files in better­
performing storage systems to improve data access;
implementing a Gateway System to provide clients with
standard FTP and NFS access to HPOS data using Ethernet
and FOOl connections (HPOS data will be cached on the
Gateway system); implementing additional scientific data
management systems to provide users with more
intelligent access to their data; and supporting the CRAY
T30 computer as a client.

Data storage and data access requirements of a high­
performance computing environment can be met in a cost­
effective manner by using a fourth-generation data storage
system in which storage devices are directly connected to a
HIPPI network and are managed by workstation-class
machines. Vendor and user organizations, including Los
Alamos, are now building these fourth-generation data
storage systems using a variety of approaches and
software.

HPOS is specifically aimed at providing Grand Challenge
and National Security computational problems with the
ability to store and retrieve gigabyte to terabyte amounts
of data promptly. Transfer block sizes, transaction type,
and client architecture significantly affect HPOS
performance. This analysis demonstrates the crucial need
for efficient client HIPPI connectivity.

40

35

30

25
Transfer

Rate (M3/sec) 20

15

10

5
o

········::::::::::r::::::::::::::::::T::::::::::::::::::::;::::::::::····::::::::r:::::::::::::::::::r:::::::::::::.:::
:'--'~-'---------f-----,----t--------'-l-----------j-
': : : : :, ~ ':' : : :

, : : : : :

" I I I I I
·······:;:.····~·····················I············:····~· ... = :: ... t= = = ... ~
I : '- :.",.: : :

···:··::·::·+·::·:·~:·l·~··=··:··::t:··=··~·=·~·~··=··~·~·~.+
.................. ~ ~ ···+· .. ··················1······················1·····

~ I i I I
200 400 600

File Size(M3)

800

--32MB Blocks
--------- 4MB Blocks
- - - 2MB Blocks
- - - - - 1 M B Blocks

1000 1200

Figure 5. Transfer rates for reading data from the disk array to the Cray M98.

399

3S
. .

30 ·········t····················t···················l····_·····_······1····· ·············r·················

25
Transfer

Rate (M3/sec) 20

15

10

5 0 200 400 600
File Size(M3)

800 1000 1200

--32MB Blocks
.. _. __ ._- 4MB Blocks
- - - 2MB Blocks
- - - - -1 MB Blocks

Figure 6. Transfer rates for writing from the Cray M98 to the disk array.

REFERENCES

1. "High-Performance Parallel Interface Mechanical,
Electrical, and Signaling Protocol Specification (HIPPI­
PH)," ANSI X3.183-1991.

2. Hogan, C., et al., "The Livennore Distributed Storage
System: Requirements and Overview," Digest of
Papers, Tenth IEEE Symposium on Mass Storage
Systems, May 1990, pp. 6-17.

3. Tweten, D., "Hiding Mass Storage Under UNIX:
NASA's MSS-ll Architecture," Digest of Papers, Tenth
IEEE Symposium on Mass Storage Systems, May 1990,
pp.140-145.

4. Peterson, A., "E-Systems Modular Automated Storage
System (EMASS) Software Functionality," Digest of
Papers, Eleventh IEEE Symposium on Mass Storage
Systems, October 1991, pp. 73-76.

5. Sloan, V., et al., "MASSIVE: The Mass Storage System
IV Enterprise," Twelfth IEEE Symposium on Mass
Storage Systems, Apri11993.

400

6. Coyne, R., Hulen, H., and Watson, R., "Storage
Systems for National Information Assets," Proceedings
of Supercomputing 92, November 1992, pp. 626-635.

7. Tolmie, D., "Local Area Gigabit Networking," Digest
of Papers, Eleventh IEEE Symposium on Mass Storage
Systems, October 1991, pp. 11-16.

8. Collins, B., "High-Performance Data Systems," Digest
of Papers, Eleventh IEEE Symposium on Mass Storage
Systems, October 1991, pp. 25-26.

9. Coleman, S., and Miller, S., "Mass Storage Reference
Model: Version 4," Goddard Conference on Mass
Storage Systems and Technologies, September 1992,
pp.1-76.

10. Collins, W., et al., "Los Alamos HPDS: High-Speed
Data Transfer," Twelfth IEEE Symposium on Mass
Storage Systems, April 1993, pp. 111-118.

TRADEMARKS
Connection Machine, CM-200, and CM-5 are registered
trademarks of Thinking Machines Corporation.

CRAY, Y-MP, and UNICOS are registered trademarks of
Cray Research, Inc.

Ethernet is a registered trademark of Xerox Corporation.

IBM and RS/6000 are registered trademarks of
International Business Machines Corporation.

NFS is a registered trademark of Sun Microsystems, Inc.

SYBASE is a registered trademark of Sybase, Inc.

UNIX is a registered trademark of AT&T.

COPYRIGHT
Copyright, 1993, The Regents of the University of
California. This document was produced under a U.S.
Government contract (W-7405-ENG-36) by the Los Alamos
National Laboratory, which is operated by the University
of California for the U.S. Department of Energy. The U.S.
Government is licensed to use, reproduce, and distribute
this document. Permission is granted to the public to copy
and use this document without charge, provided that this
notice and any statement of authorship are reproduced on
all copies. Neither the Government nor the University
makes any warranty, express or implied, or assumes any
liability or responsibility for the use of this document.

All Los Alamos computers, computing systems, and their
associated communications systems are to be used only for
official business. The Computing and Communications
Division and the Operational Security and Safeguards
Division have the responsibility and the authority to
periodically audit users' files.

401

BEYOND A TERABYTE FILESYSTEM

Alan K. Powers

Sterling Software
Numerical Aerodynamic Simulation Facility

NASA Ames Division
Moffett Field, CA USA

powerg@nas.nasa.gov

Abstract

The Numerical Aerodynamics Simulation Facility's (NAS) CRAY C91611024 accesses a "vir­
tual" on-line filesystem, which is expanding beyond a terabyte of information. This paper
will present the evolution of the Data Migration Facility (DMF) at NAS and some options
for fine tuning DMF to stretch the on-line disk capacity and explore the transitions to STK
4490 devices.

NAS Mission
The National Aeronautics and Space Administration (NASA) cre­
ated the Numerical Aerodynamic Simulation (NAS) Program to
focus resources on solving critical problems in aeroscience, space
technology, and related applications by utilizing the power of the
most advanced supercomputers available. 1

The mission of the NAS Program is to ensure continuing
leadership in Computational Fluid Dynamics (CFD) and
related computational aerospace disciplines by:

• acting as a pathfinder in advanced, large-scale com­
putational capability through systematic incorpora­
tion of state-of-the-art improvements in computer
hardware and software technologies;

• providing a national computational capability, avail­
able to NASA, DoD, industry, other government
agencies, and universities, as a necessary element in
ensuring continuing leadership in computational
fluid dynamics and related computational aerospace
disciplines;

• creating a strong research tool for the NASA Office of
Aeronau tics.

NAS C90 Configuration

The NAS Program is currently administering a CRAY
C916/1024 (C90) that accesses a "virtual" on-line filesys­
tern. The C90 contains 16 CPUs and 1024 MW of main
memory, one solid-state storage device (SSD), and five I/O

402

clusters. Three communication channel adapters connect
the Operator's Work Station (OWS) and two FDDI rings.
Four HiPPI channel adapters connect to an UltraNet hub,
two Maximum Strategy Raids, and a HiPPI "switched net­
work." Four tape channel adapters connect four cross-cou­
pled StorageTek (STK) 4490 control units with a total of 16
STK 4490s tape transports inside two Library Storage Mod­
ules (LSM, aka SILO), and eight IBM 3490E manual tape
drives.

The C90 is using a beta version UNICOS (8.0.1) and DMF
(2.0.4), and manages 315,000 files using 130 GB of on-line
DD42 and DD60 disk and 1.1 TB of off-line tape usage and
5.5 TB silo capacity. The total disk capacity is 263 GB for
various system and test filesystems and two temporary
filesystems, /big (18 GB using 1.75 GB of ldcache), and
/fast (5.5 GB of SSD) and five home filesystems (25 GB
total). '

NAS Process

Most everyone has heard the saying "Pascal assumes the
programmer doesn't know what he is doing, C assumes the
programmer does know what he is doing". Ada assumes
the programmer doesn't know what he is doing, but if he
thinks he does he needs to get approval. As in most orga­
nizations assume a change needs to be approved, therefore
change is a slowly evolving process.

Originally NAS used DMF with a Cray 2 (navier) and a
CRAY YMP (reynolds) to transfer files reliably to the mass

storage system (prandtl). This was done primarily because
network transfers used a slow unreliable network connecting
to an unstable machine. By using DMF within NQS jobs, job
failures decreased, but prandtl was still causing major prob­
lems due to long periods of down time.

The NAS model on the Cray systems was to have three differ­
ent types of user disk storage: home, scratch, and TMPDIR.
The home filesystem was the login directory to hold user
source code and support files for the application. The scratch
filesystems were short term storage (3-4 days) to hold job out­
put that would be needed for a subsequent job. TMPDIRs
would be used for NQS jobs to create intermediate files that
would be removed at the end of the session.

With this model both the home and scratch space were over
subscribed by 200% and 400% respectively. This had not pre­
viously been a problem, because all 1000+ customers were on
the system at varying times throughout the operational year
and did not overlap enough to cause a space problem.

It was thought that the users would run their NQS jobs in the
TMPDIR filesystem then copy the 'needed' output files to the
scratch area, because these were the fastest disks using
ldcache. Files needed for the long term were transferred
(rcp/ftp/dmputldmget) to prandtl. This model sounds great,
but in reality customers could not count on prandtl being up
to get the data back, so the users started hoarding the scratch
space to run their NQS jobs. Disk space was like gold, those

who had it ruled. Those who didn't had problems with jobs
aborting due to a lack of scratch space to save job results.

When NQS jobs abort, the Cray cpu cycles are wasted and
no useful research is accomplished. If just five percent of
the time on the YMP was lost this constituted 3500 cpu
hours and if the problem continued with the C90 (arriving
in March, 1993), it would be wasting 7000 hours. It would
be like wasting one full year of computing time for a Cray
2.

Different alternatives were investigated to help resolve the
problem of jobs aborting due to the lack of scratch space.
The best alternative at the time was to attach STK silos
directly to the YMP and build a filesystem for users that
DMF could migrate. In the summer of 1992, NAS decided
the YMP was only for computation and it was expected the
problems would be solved "soon" because of the system
upgrade on prandtl.

''The system will always be defended by those countless people
who have enough intellect to defend but not quite enough to inno­
vate. Politically, change forced by a crisis is much more accept­
able because it is obvious that something must be done - and
sUlviving a crisis is achievement enough." 2

In January 1993 the crisis occurred. After the upgraded
mass storage server had been up and running for a little
over a month, it had a major operating system failure and
was down for several days. At this time NAS decided they

TABLE 1. Daily tape pool (msp) report
New Put Total Average Get Total Average

DATE Tapes Files PutGB Put GB Files GetGB GetGB

930912 97 40640 21.83 0.00054 70 0.908 0.01297

931101 155 1414 31.39 0.02220 7124 36.967 0.00519

931103 263 3250 50.60 0.01557 6151 37.330 0.00607

931205 379 8056 78.78 0.00978 54 0.431 0.00798

940201 27 377 11.27 0.02988 633 3.100 0.00490

940202 29 904 12.53 0.01386 1779 10.412 0.00585

940203 32 1148 13.59 0.01184 515 2.739 0.00532

940204 34 931 13.66 0.01468 434 8.848 0.02039

940205 30 1411 12.96 0.00918 162 1.968 0.01215

940206 26 726 10.71 0.01475 484 2.395 0.00495

940207 11 694 5.05 0.00727 834 5.802 0.00696

403

had to attach the silos to the YMP because the Cray 2 was
leaving in February. In middle of January, a massive effort
commenced: tape channels were installed and connection
to the silos. DMF and silo software were installed and
tested. By February the silos were fully attached and DMF
in production. In the middle of February about 70
gigabytes of DD42s were added to the YMP for DMF
migration for the purpose of being the "interim" mass stor­
age server.

" Success is when opportunity meets preparedness."

Confucius paraphrased

DMF worked well for the YMP customers and DMF stor­
age net growth was over 200 gigabytes a month. During
this time several tools (silorelist, silostat, siloload, siloe­
jed, silorecycle, dmf_stats) were developed to help man­
age the DMF tape pools. The report in Figure 1, showing
the current status of a DMF tape pool, was created by
silostat. The report in Table 1, showing the daily usage of
the tape pool, was created by dmf_stats.

When the C90 finally arrived in the middle of March 1993 (
into production in April) the filesystems were configured
the same as previous Crays with home, scratch and TMP­
DIR filesystems. Although the scratch space was doubled
for the C90 and DMF on the YMP was reliable, most users
still hoarded their scratch space. After several months this
became a serious problem again. Also NAS researchers
needed to run jobs producing substantial output files (10
GB and greater), but there was not enough free space.

The NAS model needed to change. The easiest solution
was to reduce the users' disk quota, but the customers
needed the existing disk quota to com plete their projects,
but not all the time. NAS wanted the new mass storage sys­
tem to replace DMF on the YMP, but it was not ready when
the YMP was to be decommissioned in October of 1993.

FIGURE 1. A snapshot of the status of a msp.
cartl status:

tapes to be loaded into silo - 2767
empty tapes to be loaded into silo - 2767
partial tapes to be loaded into silo - 0
empty silo tapes - 2444 (2097 available for use)
used silo tapes - 2486
empty db tapes = 5231 (2097 available for use)
used db tapes - 2486
total db usage - 921.041401 GB
last tape in db - N68299
tapes to merge - 2 (0.309855 GB) in 1 merge operations

Tapes to be ejected from Isms: 2431
Tapes to be ejected from IsmO: 1116

404

Tapes to be ejected from Ism1: 1315

In August 1993 DMF and the migrated filesystem were
moved to the C90 and configured. DMF was to be read­
only on the YMP, read/write on the C90, and the silos were
to be shared between the two machines. A modification
was made to dmput to allow migration of files on a speci­
fied filesystem. By this time DMF was managing 1.3 ter­
abytes of data.

In late September 1993 the C90 memory was upgraded to
1024 mega words. Extra swap disk space was needed and
the only place to take space was from scratch. The NAS
model changed to combine all the scratch space into
migratable space (130 GB). This typically provided 30 GB
of free space. Researchers could now create the large out­
put files they needed, and jobs would not abort due to full
filesystems.

This created a different set of problems to solve. Before the
change, DMF was migrating 200-500 files a day, and after­
wards, 2000-6000 files a day for a total of 30 GB of new
data per day. This created a lot of tape shuffling in and out
of the silos.

To help manage the growth, NAS wanted to enforce a 10
GB limit for on-line and off-line space, and a maximum of
750 inodes per user. This limit was to go into effect by the
middle of November. In response customers tried to bring
their files back at once, but this created large delays and
clogged the I/O paths to the migratable filesystem.

DMF modifications as shown in Figures 3 and 4 were
added so only a small number of files could be migrated
during the day. This helped avoid "put" storms, but users
wanted small files and the files they were using to stay on­
line. A DMF attribute file was created to keep files less than
a day old or less than 100 KB on-line, and the DMF config­
uration file parameter MIN_DM_SIZE was changed from 4
kilobytes to 100 KB.

The reason 100 KB cut-off was chosen is shown in Figure 2.
These files represented 65 percent of the total number of
DMFfiles and less than 1 percent of the total data. Retain­
ing these files on-line also reduced the number of files in
the DMF database. In a few weeks, DMF data went from
1.7 TB and 450,000 files to 0.8 TB and 300,000 files.

"Success covers a multitude of blunders"

George Bernard Shaw

FIGURE 2. File Size Report

SIZE FILES % MBYTES %

OK 4671 1 0 0

0-4K 86481 26 119 0

4-50K 116861 35 1486 0

SO-lOOK 12179 3 870 0

100- 29602 9 7145 0
SOOK

SOOK-IM 16378 4 12119 1

1-50M 57840 17 409621 42

SO-500M 4186 1 445118 46

In the middle of November, the new mass storage server
came into production. The C90 migratable filesystem
switched from an interim mass storage server to short term
storage for jobs. Files needing long term could be trans­
ferred to the mass storage server. The file age report (Table
2), shows the data is spread out fairly evenly over time. In
the future this report may be used to justify moving the
older data off the C90 to the mass storage server

FIGURE 3. New options for dmmctl, dmhit,
dmfree

-b

-m filecount

-i blockp

migrate new files only i.e. no dual
state files

migrate filecount number of files

migrate a percentage of the total
migratable blocks

FIGURE 4. Keep files less than 1 day and less
than 100KB on-line.

Attribute Startpoint Constant Variable

access 0 -1 0

access 1 1 .01

access 2 10 .1

access 3 100 1.

access 4 1000 1.

size 0 -2000 0

size 25 0 0

In December 1993, the tape transport and control units
were upgraded to support the new STK 4490s. While
benchmarking the STK 4490s, several one GB files were
written to a 3490E tape using a blocksize of 64 KBytes; the
transfer rate was about 3.5 MB/s. Compare this to 2.6
MB/ s for the previous STK 4480s. Using the ebmxmon on
the OWS, the best transfer rate to date for the STK 4490 is
3.8 MB/s. The upgrade to STK 4490 has provided 30-40
percent increase in transfer rates. Unfortunately, the cur­
rent version of DMF and DMF 2.1 assumes the tape to be
fixed length, neither version can take advantage of the data
com pression.

Dump was used to compare the tape usage and time
between the IBM 3480s and 3490Es. The 3490E are func­
tionally equivalent to the STK 4490s. The size of the filesys­
tem to be dumped was 18.5 Gbytes, at 93% capacity. The
actual data dumped was 17.2 Gbytes. Figure 5 shows an
85% (6.5 to 1) decrease in the number of tapes needed for
both 3480 and 3490E tapes using the new IBM 3490E
drives, and 66% (3 to 1) decrease in time. If DMF could
take advantage of data compression, it would probably
increase the 3490E tape capacity from 1000 MB to over
1500MB.

FIGURE 5. Transfer time and usage comparison
for drives and tapes

IBM 3490E tapes 3480 tapes 3480 tapes
& drive

Tapes 12 tapes 20 tapes 75-80 tapes

TIme 1 hr40 min 2hr56 min 4-5 hours

In January 1994, the C90 starting to run out of processes
because zombie processes were not being removed. It was
determined that init could not com pletely sync the disk in a
timely matter and this caused a backlog of disk request on
the migrated disk. Also during this time, several customer
jobs, using the assign -s u, degraded I/O on all jobs. Sev­
eral customers were requested to change the assign state­
ment. Then the migrated disk were reconfigured with the
first couple of DD60s to handle all the inode lookup on the
migrated filesystem. After this was done the zombie prob­
lem went a way.

Lessons Learned

Try to have a VSN naming convention for the msp tape
pool (0-499 primary tapes 500-999 secondary tapes).

Have a backup recovery plan in place, and know how long the
recovery will take to do before there is a failure. It may not be best

405

TABLE 2. File age report

TOTAL RESTORED

DAYS FILES % MBYTES % FILES %FIL %TOT

0-7 32586 9 152215 15 31937 98 41

7-30 45255 13 176693 18 13091 28 16

30-60 24881 7 94812 9 4034 16 5

60-90 18223 5 65285 6 2620 14 3

90-120 20820 6 63453 6 2403 11 3

120-180 44898 13 137038 14 5182 11 6

180-240 32981 10 81790 8 4589 13 5

240-300 23566 7 76576 7 2254 9 2

300-365 19170 5 54290 5 2119 11 2

1-2yr 36700 11 48479 5 6034 16 7

2-3yr 16916 5 8847 0 2017 11 2

3-4yr 6990 2 627 0 678 9 0

>4yr 5300 1 369 0 281 5 0

TarAL 328286 960473 77239

Files accessed in the last day 10007 megabytes 85599.5

o do a full filesystem restore. If inodes on the failed disk are not
lSed, then the disk can be replaced and just the files on the disk
:an be restored. 3

~void mixing disk types and disk allocation units. Cray
laS this working now, but it is one less potential problem to
fVorry about.

)evelop a policy for how long and how much the data
;hould be kept on-line per user. The NAS goal was to keep
LII the primary tapes inside the silo.

)nly use ldcache with the write-through option on
nigrated and DMF filesystems.

Jse the fastest disk possible for the DMF databases.

v1ake sure the tape daemon has all the bug fixes installed.
Nhen the tape daemon had problems it appeared to the
:ustomers there were problems with DMF.

v1ake sure there is hardware maintenance on the SUN
.vorkstation that controls the silos. This is a single point of
ailure. H this machine is down then DMF is down.

)MF system load is not an impact on workload.

406

Outstanding Problems

Dumps on the migrated filesystems take too long. This
could be resolved if most of the files were migrated and
brought back every night. Some testing to do this has
already been done, but has not been put into production.
Also with DMF 2.1, using the command dmfill could
resolve the problem.

The directory lost+found is limited to 4 kilobytes. This is a
big problem on a large filesystem. When the system crashes
and fsck is fixing the filesystem the lost+found directory
fills up quickly. The system then has to be brought down,
and the directory moved and recreated, before starting the
next fsck. This is something that may need to be resolved
byCRAY.

The I.dmpre area grew to 20,000 files, which the dmdae­
mon searches for a migrated file (rm, dmput, dmget, etc.).
It was taking over 40 seconds to do an Is > I dev I null. This
causes long delays for on-line migrated files to be used.
Cray should not use directories to see if the data blocks are
to be migrated. A possible solution is to set flags in the
inode to see if the file's data should be migrated. Some of
this is done now, but not all of it.

Archiving sometimes causes a large number of dmpufs
filling the DMF pipe (/usr/dm/dmd.req.pipe), so dmgets
have to wait until the pipe is empty before the dmdaemon
is aware to process the dmget request. The dmgefs takes
several hours before users are able to use the data even if
the data is already on disk in the / .dm pre area. It would be
great if the dmgefs had their own pipe queue to the
dmdaemon and it would round-robin between the primary
pipe and the dmget pipe.

Future

Future plans are to install the STK clipper doors into the
silos, which will need ACSLS V 4.0 for the STK SUN server.
Currently all DMF tapes are 3480s XL configured for 500
megabyte capacity. These tapes will be replaced with 3490E
tapes and configured to at least 1000 megabyte capacity.
The tmp filesystem size might have to increase to accom­
modate the larger tapes size when several tape merges are
in progress.

Acknowledgments
Special thanks to Nicholas P. Cardo for his DMF knowledge and
support tools and Julia S. Close for her DMF measurement tools.

This work was performed by Sterling Software at Numerical
Aerodynamic Simulation Facility (Moffett Field, CA 94035-1000)
under NASA Contract NAS2-13619.

All brand and product names are trademarks or registered trade­
marks of their respective holders.

References

[1] NAS User Guide Chapter Volume 1, P. 1-4
[2] Sam A. Falk Molisvich, "System Require­

ments for Support of Computational Chem­
istry. "Thirty-First Semi-Annual Cray User
Group Meeting, Montreux, Switzerland,
March 1993, P. 418.

[3] K.C. Matthews, "UNICOS 6.0 File System
Recoverability", Twenty-seventh Semi­
Annual Cray User Group Meeting, London
Great Britain, April, 1991.

407

Operations/Environmental MIG

Overview of Projects, Porting, and Performance
of Environmental Applications

by Tony Meys
Earth and Environmental Sciences Group

Applications Department
Cray Research, Inc.

I. Introduction to Environmental
E&ES

The Earth & Environmental Sciences (E&ES)
Group is a multidisciplinary group of
technical analysts with expertise in geo­
sciences. A segment of this group is a
dedicated resource for supporting projects
specifically related to environmental science.
The core expertise of Environmental E&ES
lies in the porting and optimization of global
and regional weather models. Additionally,
Environmental E&ES is beginning to
investigate other applications of CRI
supercomputers for the solution of
environmental problems. These emerging
areas of supercomputing problem solving
include air pollution, groundwater studies,
hydrology, and coupled modeling problems
which explore the complex interaction of air,
ocean, land, and biological impact.

E&ES is interested in learning more about
unique applications requiring the power of
supercomputing which CUG members may be
contemplating. The possibility for joint
projects between CRI and CUG members exists
where novel science pushes the limits of high
performance computing, especially where the
problem solved has both theoretical and
practical application. CUG members are

Copyright 1994, Cray Research, Inc., 655E
Lone Oak Park, Eagan, MN 55121 J U.S.A.

encouraged to discuss possible projects with
E&ES using the contact information provided
at the end of this paper.

Environmental E&ES is somewhat unique in
comparison to other groups within the
Applications Department of CRI. We do not
usually support third-party vendor codes
(although we are open to opportunities to do
this) or CRI owned applications. What we do
support are needs within CRI and among our
customers which require combined expertise
in environmental science and CRI computers.
The goal of Environmental E&ES is to assist
our customers in getting the best performance
possible from their environmental
applications.

II. What Kinds of Environmental
Applications are Cray Supercomputer
Users Running?

The following table summarizes some of the
environmental applications which E&ES
knows to be running on CRI platforms. It is
by no means an exhaustive list and is meant
only to be representative of the kinds of
environmental problems being solved on CRI
machines.

411

412

Application Comments

CCM2 NCAR Community Climate model

MM4/ MMS f\CAR

ARPS Center for the Advanced Prediction of Storms (CAPS)

HIRLAM Regional forecast model (mainly used by European scientists)

NMC Production 10 day GCM; NGM and Eta model for regional U.S. forecasts

ECMWF 10 day forecast model

SKYHI Global ci~culation model (e.g., GFDL)

POP Ocean circulation model (e.g., GFDL, LANL)

Proudman Model Ocean circulation model (Proudman Oceanographic Institute)

RADM/AQM Air pollution (SUNY at Albany; U.S. EPA)

UAM Urban airshed model (used by U.S. EPA)

MODFLOW Groundwater

BIGFLOW Groundwater (Southwest Research)

TABLE 1: Environmental Applications which run on CRI platforms.

The remainder of this discussion will focus on
several examples of performance tuning of
environmental applications for CRI platforms.
These examples have been chosen because they
illustrate performance considerations on C-
90 and T3D architectures, the two most
recent additions to CRI's family of products at
the mid to high-end of computer performance.

III. C-90 Performance on Global
Circulation Models

Since the mid-1980s, CRI vector/parallel
machines have been the leading computational
engine for the integration of operational and
research general circulation models. This
trend has continued with the introduction of
the C-90 series of machines. The following
two examples show some of the performance
characteristics E&ES has observed in the
process of evaluating customer codes.

C C M 2 : As part of a recent performance
study, Dr. Jim Hack (NCAR Scientist and
leader of the Community Climate Model Core
Group) ran a high resolution global climate
simulation on a dedicated C90/16
supercomputer at CRl's corporate
headquarters. The purpose of this experiment
was to validate CCM2 performance on CRl's
largest PVP configuration. Prior to making
this run, CRI field analysts and E&ES
consulted with the Core Group on a wide range
of performance issues which included I/O
optimization, parallelization techniques,
system tuning, and providing a large system
for an extended (3 day) dedicated session. The
following table summarizes computer
performance related results of the
experiment.

Resolution Y-MP/8 C-90

T42L18 41 1 2

T63L24 170 42

T106L30 835 185

Using Isotropic Grid Formulation

T42L18 31 9

T63L24 123 31

T106L30 584 132

Using Isotropic Fully Semi-Lagrangian Formulation

T42L18 25 7

T63L24 64 1 6

T106L30 250 I 58

TABLE 2: CCM2
System Turnaround (wallclock seconds per simulated day)

S KYH I: E&ES recently participated in a
performance analysis of a version of SKYHI.
The code, which is a global circulation model,
was provided to E&ES by the Geophysical Fluid
Dynamics Lab (GFDL). Some results are
summarized below. Of particular interest in
this tuning exercise was the impact of SSD
utilization. Even with very large core
memories, it still is very important that
large environmental models retain an out-of­
core solution option. The lower cost of SSD
coupled with high communication bandwidth
provide the most cost efficient solution for
running multiple, large simulations in Y-MP
and C-90 environments. This also leaves
more core memory available on a shared,
production system for other users. The result
is increased overall site throughput with only
a minimal performance degradation cost
resulting from use of the SSD.

Some of the parallel/vector projects the
Earth & Environmental Sciences Group of CRI

will be involved in this year will include
performance tuning of environmental codes
for entry-level supercomputers, porting and
optimization of environmental applications
which are not now widely used on
supercomputers (e.g., in areas of hydrology,
groundwater, pollution), and evaluation of
CRl's next generation of PVP machines on
selected atmospheric and ocean modelling
problems.

413

414

M/C PR::C SSDW/OPT SPEEDUP IN-MEM W/OPT SPEEDUP

YMP 1 1450 1.0 1386 1.0

YMP 8 199 7.3 189 7.3

C90 1 598 1.0 (2.4) 557 1.0 (2.5)

C90 4 157 3.8 (9.2) 147 3.8 (9.4)

C90 8 83 7.2 (17.5) 77 7.2 (18.0)

C90 1 6 49 12.2 (29.6) 44 12.7 (31.5)

TABLE 3: SKYHI
N90 (100 Steps = 1.67 hour fcst.)

IV. Developing Environmental Codes
for the T3D

Optimization techniques for the Cray T3D are
significantly different when compared to
strategies used for PVP machines. This, of
course, is the expected result of a shift to a
fast scalar architecture and the larger
number of processing elements available for
use by an application. It has been the author's
experience that compilation of existing
Fortran codes for execution on a T3D requires
minimal, if any, modification of a code. One
caveat to this observation is the need to
transform Cray floating point initialization
files to I EEE format. Simple conversion
programs can be written which utilize
UNICOS's "assign" command to make necessary
conversions.

For those users which have already developed
application codes which take advantage of
multi-tasking, the initial PVP decomposition
may be of value. Since global weather models
have traditionally been decomposed along
latitude strips, a substantial amount of work
already exists along each of these bands. I n a
benchmark code adapted by the author, an
effective port was made of a single-threaded
global circulation model using the traditional
method of decomposition by latitudes. This
was done for 32 latitude "groups."

Additionally, pairs of processors were
experimented with so that teams of two PEls
could split spectral transform calculations.
Admittedly, this is not the best way to
parallelize this kind of a code, since it will
not scale beyond the number of latitudes and
involves significant inter-PE communication.
Still, an important part of the porting
"battle" may involve getting an existing
application running on the T3D so that the
developer can experiment with decompOSition
methods and begin work on optimization of
routines which may not require extensive
modification even after a complete domain
decompOSition.

Ultimately, the most successful T3D ports
will require rethinking the parallel design of
an application. Examples of codes which have
undergone this kind of redesign include POP
and SKYHI. POP is currently running on the
T3D. A project is now underway at GFDL
(Geophysics Fluid Dynamics Lab) to evaluate
SKYHI on both C-90 and T3D platforms.
E&ES is following both of these projects and
providing consultation as requested by the
developers and CRI field analysts.

Today's T3D Tuning Techniques:

As with any applications development
environment, analysts are always interested

in finding ways to avoid "reinventing the
wheel" and evaluating performance. To date,
E&ES environmental analysts have found a
communications "template," knowledge of
single PE optimization techniques, and the
performance tool Apprentice to be
particularly useful.

A communications "template": Since a major
applications development issue when creating
new MPP programs is initialization of a
communications network among PEs and the
availability of higher level communication
utilities which perform recurring functions,
a communications template is an important
tool. E&ES is currently experimenting with
the initialization, communication, and
"stencil" routines created by the developers of
POP. Since these researchers paid particular
attention to implementing communication
routines in a way which is portable to a
variety of MPP machines, their
communication modules have provided an
excellent starting point for the development
and testing of codes. Basically, the
communication modules provide PVM
initialization, communication among PEs
configured as subcomponents of a volume, and
an assortment of basic mathematical!
communication routines. The performance of
some of these routines has been improved by
1) assembly language routines, and 2) use of
the CRI get/put communication primitives.

Communication "templates" like those created
for POP allow a developer to immediately get a
code running and begin to focus on
performance optimization of code which will
run on each PE. E&ES strongly recommends
that T3D analysts develop these kinds of
routines, or ask us about the example
communications template just discussed.

Single PE optimization techniques: The DEC
Alpha is the processing power source of the
Cray T3D. Like all other high-performance
platforms, a bit of knowledge about the

architecture of the machine can have a
substantial impact on programming results.

A few things to keep in mind include:
- data cache use and alignment
- loop unrolling
- data locality
- memory "pages"
- dual instruction issues
- inter-PE communication overhead

Several examples based on solution of partial
differential equations found in environmental
applications were discussed as part of the C UG
presentation accompanying this paper. It is
anticipated that some of the optimization
considerations may become less important as
improved versions of the compiling system
for the T3D become available.

Use of Apprentice: Application developers
familiar with Perfview and HPM on Cray
Research PVP platforms will find Apprentice
to be a useful performance analysis tool for
providing similar kinds of performance
information on the T3D. A brief discussion
highlighting some of the features of
Apprentice was included in the CUG talk which
accompanied this paper.

CRI supercomputer users have begun a
number of T3D porting and tuning projects
for their environmental applications. The
following table summarizes some of these
activities, indicating whether the project is
in a planning, porting, or performance tuning
stage.

415

416

Application Comments

POPS Ocean model; GFDL, LANL, others; CRI is consulting with Dr. Chris Kerr;
code runs on T3D and is being tuned

Proudman Ocean Ocean model; CRI support of customer from Cray UK; code runs on the T3D

HIRLAM Regional weather model; CRI support of customer from Cray UK;
port to T3D has been made, development continues

SKYHI Global circulation model; E&ES is consulting with Dr. Chris
Kerr, GFDL; code has been domain decomposed for MPP and
initial T3D port is in progress

ECMWF 10-day forecast model; Cray UK is assisting with porting

CCM2 E&ES and CRI field plan on providing NCAR with assistance in
porting/tuning this year

Others

TABLE 4: Summary of Activities and Status

E&ES anticipates a substantial increase in its
support activities of T3D projects during the
remainder of this year. CUG members with an
interest in tuning and porting codes for Y­
MP, C-90, or T3D machines are encouraged
to contact E&ES to ask questions and share
results.

For more information contact:

Tony Meys
E&ES Group, Applications Department
Cray Research, Inc.
655E Lone Oak Park
Eagan, MN 55121
U.SA.

phone: (612) 683-3426
e-mail: meys@stratus.cray.com

initial

OperationslMPP MIG

T3D SN6004 is \vell, alive and conlputing

Ma.rtine Gigandet, Monique Patron, Francois Robin
C0111111issariat a l'Energie Atomique
Centre d'Etudes de Limeil-Valenton

94195 Villeneuve-Saint-Georges Cedex - France
gigandet@lilueil.cea.fr

l\1arch 10, 1994

Abstract

This paper intends to review t.he different
stages we went through. from the day we
decided to inst.all an IVIPP machine at our
site with the \villingness of making it con­
tribute heavily to 0111' production. to this
very day.

Illtrod llctioll

CRAY T3D SN6004, the third T:3D ma­
chine delivered to the field, arrived at
Limeil on december the 1st. exactly on
schedule.

The process of installing an ~vIPP ma­
chine at our site had begun about one year
earlier ...

1 The choice

By the end of 1992, our management de­
cided to replace our CRAY XlvIP 216 by
a more powerful computer with a newer
technology and innovative architecture.

As Inost of large computing centers,
we had to face the challenge of provid­
ing a stable, continuous production envi­
rOlllnent and bringing leading edge com­
puting capabilities. vVe were already of­
fering an heterogeneous computing archi­
tecture to onr nser base: moderately-

parallel scalar (Le, servers and worksta­
tions) and moderately-parallel vector (i.e,
traditional supercOlnputers) connected via
a. tiered networking structure.

\lVe felt it was the right tilne to add a
third component i.e., massively-parallel for
four main reasons :

• There wa.s no other way to get the pro­
cessing power future supercodes will
need.

• The IVIPP market was Inature enough
to offer a, usable production environ­
ment.

• vVe had acquired SOlne experience to
efficiently use :NIPP systems for our
applications by various experiments
done on different machines (CM2,
ClvI.S, iPSC860, ...).

• New progranllning techniques had to
be taught to more programmers in or­
der to be ready over the next year or
two.

The choice was a CRAY T3D which
would be delivered by the end of 1993. It
was guided by several considerations:

• CRAY's skills in architecture and
technology,

• very fast inter-processors cOlnlnunica­
tion,

419

420

• programming models ava ilability,

• easy integration in existing environ­
ment.

At that time, the option was a stan­
dalone system integrating CRA Y YNIP,
IOC and IvIPP elements into a single pack­
age. The configuration included an NIPP
system with 128 Processing Elements and
1024 Mwords of distributed memory, two
YMP cpus, 25G Mwords of Y~IP DRANI
memory and two I/O dusters.

2 The M92 delivery

As we need('d more. computing power be­
fore the end of 9;3, CRI accept('d to de­
liver a CRA)r tvJ92 in march 9;3 in replace­
ment of onr Xlv[P-2H).'rlw 1\'192 modules
would be rC'insprt.C'd jJl thC' '1':3D chassis or
removed in case of a. new complet.e T~~D
delivery at. the end or 9:3.

vVe knew t.his 1\J92 ha.d t.o Iw opera.ted
with UNICOS 7 in order to pn)\'ide our
users with the ('RAY '1':3D ('lImlator so
that they wOl1ld])(' ablC' to ex('('ut(' and do
some perronnance analysis on SOIlH.' lvfPP
programs beforC' the machine a.rrivaL Dur­
ing february, we made the tra1lsition from
UNICOS () to UNICOS 7 Oll 0111' X1\.JP and
we validated our product-iOll under that
system. The 1\192 was st.arted in march
and we made an ag)'('('lllellt with CHI to
get the T:3D emula.tor]HerE'lea.se.

3 The hardware
changes

option

TvIeantime. C itA Y inforllwd us that they
would not go fn rther with the standalonE'
system option we had chosen ~ the so called
SA128/2-2!)(j. ThC',V had Jlla.de the decision
to replace tIl<' eRA '{ host. 'dvI P 1\H)~ by a.
Y:MP 4E with (H ~vI words of lllernol'y.

As we IH'ed('d larger globed memory on
the host, we con vprt.C'd on r f-i rst option

into a. tightly-coupled system option. That
meant that by the end of 93, we would keep
the 1192 as it was and receive one more
separate chassis housing the MPP PE's.
The MPP I/O cluster would be installed
in the ~192 cha.ssis. This option opened
the possibility to upgrade our configura­
tion up to 512 PE's sOlnetimes

Last hardware change concerned the size
of distributed memory. The 16 Mbits
memory chips allowing the 8 Mwords local
memory per PE would not be in bulk pro­
duction by the end of 93. Consequently,
the machine that would be shipped would
be equipped with 2 1\1 words of local Inem­
ory 1)('}' PE. An upgrade was scheduled by
the end of 1st quarter 94. We Inade an
agreement with CRAY to divide the accep­
tance process into two steps corresponding
to the two sets of ha.rdware delivery.

4 The acceptance progranl
test suite

At the l)('ginlling of october, we started
to build an acceptance program test suite.
vVe had to do it only with our own pro­
grams because of t.he small number of ap­
plications availahle in the new NIPP arena
and those being Sll hmitted to licensing.

The program test suite was made of 7
sets of 19 differC'nt programs:

• CEA Benchmarks : 8 Fortran pro­
grams running in single processor
mode including kernels, linear algebra
and pieces of production codes.

• COllununications kernels : 3 tests (C
and Fortran) designed to check and
measure communications primitives
(send, receive, broadcast) for PVM
a.nd ~'get-pu t" operations.

• TaD / 1v19:2 dat.a. exchange test via files
with data COllversions (IEEE 64 bits,
CRAYL PVlvl between T3D and M92
bC'ing not available at that tilne.

• Neutron transport using :Monte-Carlo
luethod : very few communications,
the particles being processed indepen­
dantly by each processor.

• Boltzman equation for high altitude
flows (rarefied gases) : needed a tran­
sition from PVl'v1 2.4 to PVIv1 3 done
via a 10ca.Ily developed library.

• Electromagnetism: 2 C codes us­
ing PVIvr 3, the first one dealing
with electromagnetic fields, the sec­
ond with di(~lectric constants and 1
Fortra.n code using "get-put" opera.­
tions dealing with ReS.

• Linear algebra. : :2 Fortran progra.ms
solving a linear system by conjugate
gradient with diagonal preconditioner
and generating llPavy data. exchange.
One lIses PV1\!I :~. the other" get-put"
operations.

1\;[ost of those programs were tested first
with the emulator and second on a. T3D
prototype located in Chippewa by t.he end
of november. From that very first contact
with the T;3D, we drew t.he following con­
siderations :

• vVe had 110 problellls with the compi­
lation operations.

• The user and system cpu times con­
Slimed 011 t.he Yl\fP host by compiling
and linking for T:3D were very high
(respectively 500 and 29 seconds for a
28000 lines Fortran prograrn instea.d
of 91 and 1 when the sit-me program is
compiled for a. Y1\!1P).

• A few T:3D reboots were necessary,
some of them being probably due to
the protot.ype state of the machine.
We not.ed t.hat. rebooting is easy and
quick.

• vVe effec-
tively used the cOlnmand "mppstaf'

(displays information about state and
use of the machine) and the tools "to­
talview" (debugger) and" apprentice"
(optimizer).

• Some programming errors not de­
tected by the eluulator had to be cor­
rected.

• Some program modifications were
necessary, main concerns being about
time measurement accuracy, cache ef­
ficiency, PV1\i1 environment variables
set.t.ing.

• All numerical results were as ex­
pected.

5 The finish before T3D ar­
rival

During november, we finished the work al­
lowing our ~l192 to be a T3D host sys­
ten1. It required to upgrade UNICOS to
the 7C3 release and the OWS to the 7.0.6
release. T:3D software (compilers, loader,
libraries, p-l\ernel for computing nodes, Il­
kernel for I/O nodes, drivers, comluands,
...) was installed. A 1\/192 hardware luod­
ification (with rega.rd to the LOSP and
I-IISP channels linking T3D and M92) had
also to be achieved so that the 1\;[PP con­
nect / disconnect operations will never have
adverse effects on 1\/192 production.

6 T3D arrival and first con­
tact

On december the 1st, CRAY T3D entered
Limeil laboratory. Time was about 12:30
am. First hardware tests were running the
evening of that very day. The next day,
installation process started on normal con­
ditions. First connection with 1\1192 was re­
alized on december the 4th. Cray people
experienced five PE 1110dules failures, one

421

422

I/O gateway failure and a weld problem in
the cooling system causing a fluorinert leak
on the HEU. T3D IOC was missing, hut
of course we could not intend to use it at
that phase of T3D program development.
T3D software finished to be installed on
december the 8th. The machine was ma.de
available for our first testing on december
the 13th.

6.1 The systen1 tests

Before validating our program test suite,
we wa.nted to check some system function­
alities :

• Reboot 1\'1 PP and verify it does not
impact '{J\i[P norma] operation.

• Configure administrative pools with
different a.ttributes.

• Ivlodify the pools state (availa hIe, un­
a.vailable) and check there are no bad
effects on applications already 1'u 11-

ning.

• Run concnrrently multiple applica­
tions and verify the partitions are cor­
rectly created and returned to the
pools.

• Execute the same application in dif­
ferent pools and compare the results.

• Test the NQS support ('or t"IPP.

• Test administrative a.nd user com­
mands targeted for the 1';3D use.

All those minimum system fUllc.tionalities
worked satisfactoril.Y.

6.2 The applications tests

During the final preparation of the accep­
tance run, we encountered the following
problems:

• Our UNICOS system (as probably
most of UNICOS systems) does not
allow more than 64 opened files per
process. Since each MPP application
is controlled by one agent process us­
ing 9 file descriptors for its own needs,
55 is the maximum number of files one
application can have opened at the
saIne tirne. If, for example, the appli­
cation is running in 128 PE's and ev­
ery PE is trying to open one file, it will
fail. The issue to allow more than 64
files open (change of UNICOS kernel
OPEN-lvIAX parameter) is whether
we need to recompile all the applica­
tions on the 1/192 host or not. CRAY's
safe a.nswer is "I'm not sure" !!! We
encountered a problem related to this
limitation : a local default user envi­
ronment sptting (the "FILENV" vari­
able) forced all the P E's to open the
file descrihing the "assign" paralne­
tel's; it caused the program abort for
partitions exceeding 32 PE's.

• During high T3D workload, the con­
figuration driver realloca.ted the PE's
to new partitions too rapidly which
ca.used a pkernel panic.

• Some partitions shapes allocated were
not cu hic and led to the abort of the
corresponding programs, some oth­
ers (which were valid but wrapped
around) induced the programs' block­
ing up.

• Program blocking occured too when
one PE was sent a great nUInber of
messages hy the others at the same

time.

• After some "nonnal" program aborts
(due to progra.mming or environment

setting errors), the T3D had to be re­
booted.

7 The first step acceptance

On december 20th, a new version of 11AX
(1.0.0.3 with some fixes) was installed and
our M92 was rebooted with a new MPP
configuration driver. These modifications
corrected the problems affecting our accep­
tance program test suite (i.e, bad parti­
tions shapes). So we decided to proceed
to the acceptance process. The T3D was
configured with one 128 PE's pool.

• First. the acceptance programs were
executed successively with different.
sizes:

changing some T3D software components
led to variations in running times ranging
from 5 to 20 % for the same application
depending on its size.

8.1 Single processor

• Performances depend heavily on
cache use.

• 5 to 20 11fiops are currently obtained
with Fortran programs .

• Looks like .5 times slower than a Y11P­
NI92 processor in vector mode.

script #PE's elapsed time

arlene 128,(:)4 11 mil
bench 1 5 mil :30 s
benehk 1 1 mIl
bmsolver 4,8,l().:32/i4,128 i mn 10 s
boltzmann 4.8. 16. :32 2() mil lOs
cliagopt. 1(). 128*:3, ()4 \) mn 20 s
diagpvln 1 G. 128 5 11111

10 4.8, 1 (), :t2 50 s
metrall 128. GIl. :~~, 1 G. 8 12 lllll

perf 2 I.t) s
pvmtest. 2, :32, G4. 128] mn

rellorm 16*2, :32*2. G4 *:3 27 mn

• In addition of execnting successively
all the acceptance programs, we had
planned to load them all in hill)';; into
the machine. Up to 8 programs ran
simultaneously. During this phase.
while two programs wen.~ using respec­
tively 1G and :32 PE's, we noticed tha.t
a program requiring G4 PE\; was \vait­
ing.

All results werc correct and wc siglled on
the first step accepta.nce notification.

8 The first perfornlances
results

All those pa.rIy perfonn a. 11 C(' resnlts ha.ve
to be refined. Specia.lly. we noticed that

8.2 Network

• vVith Fortran, data exchange rate be­
tween two near-by PE's are:

using PV1'l : :3:3 1!fB/s with 20
Ilsec latency time.

using GET: :3.5 11B/s with 2
Jlsec latency time.

\Vithin a 128 PE's partition, the min­
imum data transfer rate is 20% lower.

• \Vith assembly language, we verified
reading a. data (i.e, a cache line) in an­
other PE's memory needs 100 to 1.50
cycles depending of the two proces­
SOl'S' distance.

8.3 Applications

Because the goal of the acceptance was to
check that the T:1D was working as ex­
pected, measuring performances was llOt
our primary concern.

However, it is possible to draw SOllle pre­
liminary conclusions :

• \Vith an optimized program tailored
for the T:3D, it is possible to get re­
ally high performances. For exalnple,
an optimized ReS program runs at 6
GHops for :1 28 PE's.

423

424

9

• For a communication intensive pro­
graIn, it is often not very difficult to
switch from PVM to "get-put" op­
erations (especially if the program is
"well" written). The performance inl­
provement obtained can be very in­
teresting. For exaInple, in a conju­
gate gradient program iterations loop,
the communications are located in
2 subroutines (dot product and ma­
trix vector multiplication). Rewrit­
ing those subroutines is staightfor­
ward and leaos to 1 Gflops Oll 128
PE's instead of 200 IvIflops with PVIvl.

• For this kind of programs, the per­
formances of the T:3D are quite good
cOlnpared to other 1\,IPP machines
(SPI or C1\I15) because the speed of
the network hides the not so good per­
fonnanees of the lIodes (due probably
for a part to the lack of maturity of
the compiler and the cache size and
policy).

• On a. simple particle tra.nsport pro­
gram (this kind of codes accounts for a
significa.tive' amount of CPU time on
our vector machines), the T:3D with
128 PE's 1'1111S 18 times faster than a
.M92 in monoprocessor mode.

CRAFT

eRA FT, the era.y global-a.ddress-space
programming model, is not yet released.
Still, we have' put the emphasis on it since
the beginning of our experiments by us­
ing the 1';3]) e'mulator. vVe are very con­
cerned by the eRA FT features which com­
bine a global address space with data­
sharing and ,vork-sharing permit ting pro­
grammers to use a high-level, implicit
Inethoo of specifying parallel work (for­
tran 90 array syntax, for example) or a
lower-level, more explicit method. Our ex­
perience with eRA FT suggests that many

of our programs could be relatively easily
adapted. The main issues when working
with CRAFT are the following:

• CRAFT is evolving and a number of
restrictions (often Inade in the inter­
est of runtime performance) are intro­
duced.

• CRI seems to be short in time. Will
all parts of the nl0del be implemented
in first release?

• Some progra.mmation choices are dif­
ficult to make since we don't know
whether automatic compiler opti­
Inization will occur or not.

• Our programluing strategy is based
on the emulator results. We noticed
the emulator has not always the be­
havior a real T3D would have (for in­
stance, it simulates remote accesses
for obviol1s1y local data in some pieces
of code).

• Some features planned for CRAFT
are not emulated (shared variables
pointers).

• Y1\/IP cp time consumed by the eInu­
lator is high :

times for a :2200 Fortran lines code
with :344 directives are:

Y1\/I P -1\192 1.:3:3s
emu -LO -FO -p4 132s
emu -LO -FO -p8 22.58
emu -LO -FO -p16 4268
emu -LO -FO -p32 814s

• \iVhat will be the emulator status in
the next future?

10 Conclusion

The early presence of a eRA Y T3D at
our site represents a great challenge for us.
From our first contact with the machine,
\ve feel confident for the future: hardware

shows a great. level of relia.bility alld soft­
ware has all the features for usa.ble high
sustained performances processing.

10.1 Current work

Until now, only a few progra.mmers are
working on T3D (about 10 people). 1\10re
programmers will be involved when the
size of the distributed memory will be up­
graded and CRAFT released. Current
work deals with:

• Getting a 1H.'tt<:'r knowlC'dge of tl1{-' ma­
chine in general.

• Estimating the T:3D [/0 impact. on
YlvlP-lvlD:2 WhPll aliI' applications will
he ill prod t1 ctiOll.

• Buildillg tools to monit.or f\H)2 a.1Id
T:3D as a product.ion cOlllputing fa­
cility.

• Porting Oll CRAFT systPIll a. CFD
code with domain decomposition im­
plementing hydrodynamics and parti­
cle tra.nsport.

• Porting ReS codes lIeeding the de­
velopllwllt. of a co III pJex parallel
Cholesky solv('r 1101. exist.i ug yet.

• Porting an Enler explicit. hydrody­
namics code using PV:M.

10.2 Drawbacks and advantages

The t.wo following SlI bsectic)}Is Btl llllllarize
our early ('\'aluat.ioH of t.he wcaknesses and
the strengt.hs oftl1<.' T:3D computer system.

• D ra.w hacks

SalaH memory size (until 2Q94)

Difficnlt memory distribution
(system buffers - a.pplicat.ions)

Hard hierarchical melllory (reg­
isters. cache, DHA~L remote
DH AI\f) considera.tions

PVM only (until 2Q94)

CRAFT uncertainties

High compilation and linkage
times on Y1\1P-1\II92

Among all those items, the last one
has the worst effect. The 1\1192 is a pro­
duction machine with a high workload
leading to unacceptable ela.psed times
for our T3D developers.

• Advantages

High hard ware reliability (no
failure since installation)

Few software problems (a non­
regression test suite is executed
at each system or compiler
change)

Easy integration in existing com­
puting environment

Adequate applica.tions changes
paths

Satisfactory tools

Interesting early performances

The expected progresses both of T3D
software optimizations and prograln­
mel's' skills should perceptibly hn­
prove the performances. For those
reasons, \ve think the T:3D will re­
spond to our needs.

425

426

System Administration Tasks and

Operational Tools For the Cray T3D

System

Susan J. Crawford

eray Research, Inc.
Eagan, Minnesota

This paper provides a conceptual overview of system administrators'
responsibilities and the administrative tasks and tools for configuration
planning, reconfiguring, and monitoring a Cray T3D system. The paper

describes implementation to date and future directions.

March 1994

1.0 Introduction

T3D system administration to date can best be described in
three parts. The three areas of interest are:

• Background information about the T3D resources that
an administrator must understand and manage

• A description of T3D administration capabilities today

• A view into the areas that will be enhanced during
1994

2.0 Background Information on T3D
System Resources

When administrators prepare for the arrival of a Cray T3D
system, they must understand the system resources avail­
able to the T3D system. There are six basic resources that
require some study. Those are:

• PEmemory

• Barrier network

• Routing tables

• Redundantnodes

• Cray Y-MP system central memory

Copyright © 1994. Cray Research Inc. All rights reserved.

• PEs (processing elements)

PE Memory

PE memory is available in two sizes, two million words
per PE or eight million words per PE. A goal of the Cray
Research system software developers is to allow users ac­
cess to as much PE local memory as possible. UNICOS
MAX supports both memory sizes. It is important that an
administrator understand these basic ideas about PE mem­
ory but no further administrative control of PE memory is
required.

Barrier Network

The barrier network is implemented as a hardware fabric
separate from the PE network fabric. The UNICOS MAX
as (operating system) currently allocates two barriers to
each application for use by the application. No further
control of the barrier network is necessary by the adminis­
trator. However, the administrator should study the high
level hardware design of the barrier network for two im­
portant reasons. First, it is important to understand that
both barrier bits and PEs must be available before the OS
can allocate resources. Secondly, in the event of a failure
in a wire in the barrier network, the administrator should

be aware of the effect this reduction in the total number of
barrier wires has on as resource allocation.

Routing Tables

The administrator should study the default routing tables
that are provided with the T3D system to understand how
these routes satisfy that installation's application needs. In
general, no routing table administration is required.

Redundant Nodes

An administrator can replace a failing node by mapping in
a redundant node at the next T3D machine reboot. Until
that node is mapped in, the system stays up but runs with
fewer available PE resources. On a Cray T3D system, a
node is a pair of PEs which share a switch within the Cray
T3D system network. The administrator should under­
stand the impact on the resource allocator when a node
fails and the procedure that is used to map in a redundant
node.

Cray Y-MP System Central Memory

Cray Y-MP system central memory is required by the parts
of the UNICOS 8.0 operating system that control, config­
ure, administer and process T3D system application sys­
tem calls. After an application load is characterized at a
T3D system site, the administrator can further tune Y-MP
system central memory use. This paper does not address
that kind of tuning.

Within the UNICOS MAX operating system, a resource
allocator maintains a list of free/available resources, a list
of resources that are in use, and a queue of pending appli­
cations that have been validated for access to the T3D sys­
tem. These pending applications are waiting their turn for
resources. By default, this queue is precessed in FIFO or­
der. The as uses resource allocation algorithms to deter­
mine if the free PEs and barrier bits are aligned in the
hardware such that they can be handed out to meet an ap­
plication's requirements. These requirements, time limits,
number of PEs and memory, are communicated to the as
via environment variables and a.out options. In general,
the administrator must realize that:

• When resources are available, the as resource alloca­
tor gives an application a power of two PEs in a rectan­
gular array.

• In some cases even though the correct number of PEs
may be available to meet the requirements of a pending
application, those PEs may exist in a location in the
hardware such that barrier bits are not available. In this
case the application remains in the as application
queue.

• Interactive jobs are validated and directly enter the as
application queue. They are not currently coordinated
with those applications that are submitted and validat­
ed by NQS as they flow through NQS queues to the as
application queue.

The collection of PEs in the machine allow large applica­
tions to run where large means great numbers of PEs or
quite possibly all PEs in the machine. This PE collection
also allows many small applications to run simultaneously
when each application is using a small number of PEs. In
this paper large jobs will mean applications which request
a great number of PEs. Small jobs will mean applications
which request a small number of PEs.

To best manage T3D system resources, experienced T3D
system administrators have found that the resource of pri­
mary concern is the total number of PEs in the T3D sys­
tem. The PEs must be managed such that the T3D system
is as sharable as possible. Another way to view this is to
think of T3D system job throughput. Even though admin­
istrators cannot directly control the time of day nor the or­
der in which programmers decide to submit batch and
interactive jobs, they can set up the PE usage to get the
most work from the T3D system.

T3D system administration centers on PE administration
and the other five resources discussed in this section of
this paper are of more interest to the administrator when:

• an error has occurred within the system

• applications make read/write system calls that cause
the high speed channel from the T3D system to the
Y-MP system to operate at or near the maximum possi­
ble transfer rate

The rest of this paper addresses administration of PEs.

427

428

3.0 Background Information on OS
Resource Allocation

The as resource allocator was designed to meet the fol­
lowing goals:

• Allocate PEs to an application at run-time. These allo-
cated PEs are referred to as a T3D system partition.

• Provide T3D system space sharing.

• Allocate a power of two PEs per partition.

• Support one PE applications.

• Gang schedule PEs, barriers and PE memory so that
these resources are allocated and available at applica­
tion start up and held until application completion.

• Allow application access to as much PE memory as
possible.

• Allocate both a normal barrier and a eureka barrier to
each application.

• Provide a heterogeneous application environment.

Space sharing means that when resources are available
more than one partition can be allocated and active at a
time. The following diagram illustrates space sharing.

FIGURE 1. T3D System Space Sharing

SPACE SHARING

The UNICOS MAX as supports the heterogeneous appli­
cation environment in the following key ways. There is:

• Support for optimal application performance by allow­
ing an application to be split between a Cray parallel

vector processor (PVP) front-end system and the Cray
T3D MPP system.

• Support for optimal application performance by pro­
viding a high bandwidth, low latency connection be­
tween the PVP and MPP.

• Support of a common view or shared view of the file
system for the heterogeneous application.

• Support for heterogeneous application system calls by
distribution of the as between the MPP and the PVP.

4.0 TaD System Administration Today

The focus for the administrator is T3D system shareability
through the administration of PEs. T3D system PEs can be
viewed in a hierarchical way:

• Level 1 - the whole machine.

• Level 2 - administrative pools of PEs within the whole
machine.

• Level 3 - application partitions within the administra­
tive pools.

The administrator considers dividing the whole machine
into administrative pools of PEs. The following diagram
illustrates one such administrative pool configuration. (See
figure 2.)

FIGURE 2. Administrative Pools

3 ADMINISTRATIVE POOLS

As applications are assigned a partition and downloaded
from the Cray PVP front-end machine to the Cray T3D
system, sharing will occur. (See figure 1.)

5.0 Administrative Control Today

Management of T3D system PEs is through the use of ad­
ministrative resource pools. PE resources are controlled on
a pool basis. Finer granularity of control is achieved by the
administrator through the use of four pool attributes sup­
ported by the UNICOS MAX as today. These attributes
are:

• pool type

• pool status

• pool privilege

• pool job flow

Pool type or usage can be batch, interactive or both. Pool
status can be available or unavailable. The as allocates re­
sources only from pools marked as available. An adminis­
trator may wish to change pool attributes on demand. The
procedure for doing this is to mark the pool as unavailable
to allow active partitions to complete normally (or drain
from the pool) and to prevent the as from allocating addi­
tional pool resources. Once the pool is drained and quiet,
the pool attributes can be changed and the pool once again
set to available status.

Pool privileges can be limited by assigning group IDs to a
pool. In the future, the as will also support pool user IDs
to further control pool access.

Pool job flow can be managed through the use of:

• the definition of an express job in terms of wall clock
time

• the specification of maximum job wait/pend time

• the maximum number of partitions

To keep jobs flowing out of the as application queue and
into a T3D system pool, it is sometimes helpful to define
the express job. The administrator could, for example, de­
fine express jobs to be those with one minute time limits or
less. By doing so this causes the as to allow a job of one
minute or less to be given resources and downloaded to
the T3D system even though it may not be at the head of
the as application queue. This would help most when an

administrator expects to see a mix of large/long jobs and
small/short jobs waiting for T3D system access.

If express job processing is turned on as described in the
paragraph above, maximum job wait could be used to fur­
ther control the job skipping that will occur. Job skipping
will occur if a large job rises to the head of the as applica­
tion queue but is then being bypassed for resource alloca­
tion due to a steady stream of express jobs space sharing
the T3D system. By setting a maximum job wait time lim­
it, the as resource allocator turns off express job process­
ing once the skipped job has waited the maximum time.
The active T3D system applications are allowed to com­
plete normally to sufficiently drain the pool and allow the
skipped job to acquire the resources it needs.

The administrator can also specify the maximum number
of partitions allowed per pool to further control pool job
flow.

6.0 Administrative Monitoring

There are four commands that help the administrator mon­
itor the use of T3D system PEs.

• 'mppping'

• 'ps -m'

• 'qstat -m'

• 'mppstat'

To ping the PEs on the T3D system, 'mppping' is used.
This command serves as a quick check to see if the PEs
are responding. To display T3D application process infor­
mation, the 'm' option has been added to 'ps'. The 'm' op­
tion has been to 'qstat' so status of batch queues for the
T3D system can be retrieved. The 'mppstat' command dis­
plays administrative pool status.

7.0 Future Development Work

Future UNICOS MAX as enhancements fall in these cat­
egories:

• increased system shareability

• ease of use in scheduling

• ease of use in retrieving status

429

430

Shareability

There are currently some undesirable interactions between
interactive job processing and NQS job processing since
the two types of job submissions do not work in concert in
the UNICOS MAX system today. There will be enhance­
ments to the as resource allocator to coordinate these
types of job submissions.

There are a few situations that can occur when PEs and
barriers are available for a partition but the resources are
sufficiently fragmented such that the as resource allocator
cannot assign those resources. Again there will be en­
hancements to improve upon system shareability.

The third area that is undergoing development is a new
feature called job roll. Job roll is often referred to as roll­
ing or rollin/rollout. When a job roll out is requested by
the administrator the UNICOS MAX OS will perform this
sequence of steps:

• First, the to-be-rolled application is brought to a quiet
point.

• Second, sufficient job state is saved so that the job can
later be rolled back in to the T3D system.

• Third, the job roll image is moved off of the T3D sys­
tem to a file.

• Fourth, the resources are returned to the resource allo­
cator's free list.

Job roll is useful when the administrator wishes to tempo­
rarily stop a long running job so that those resources can
be used by other short jobs.

When the administrator wishes to roll in a roll image, that
job is located and placed in the application queue.

Scheduling

T3D system job scheduling can be made easier to under­
stand and control. An administrative interface to schedul­
ing can be provided through the use of a common
scheduling command in the future. Also, there are utilities
that have been developed for use in testing the UNICOS
MAX as that allow run-time reordering of the OS appli­
cation queue. These utilities could be released with the
software as options to a common scheduling command.

In the future the 'mppstat' command can be enhanced to
provide additional terse and verbose forms. This command
can also be enhanced to serve as the common collection
point for T3D system monitoring information.

CRAY Y-MP and UNICOS are trademarks of Cray Re­
search, Inc.

Performance Evaluation/Applications and Algorithms

110 Optimisation Techniques Under UNICOS

Neil Storer (neil.slOrer@ecmwj.co.uk)
EuropecUl Centre For Mcdium-RcUlge Weathcr Forecasts

Reading, Berkshire, RG2 9AX
EnghUld

1. Abstract

This paper will describe the techniques employed at ECMWF to
optimise the performance of jobs which do large amounts of I/O.
It will concentrate on the use of Flexible Fortran I/O (FFIO) by
Fortran programs, though some mention will be made of
techniques available to C programs.

The paper will also describe the I/O performcUlce tools "procstat",
"procview" and "procrpt", which can be used to monitor I/O
usage, indicating the files on which to concentrate tuning efforts.

2. Glossary

CACHE This is. a buffer area, in main memory,
designed as an intermediate repository for data blocks, positioned
between the user's arrays and the physical disk. There moe two
reasons for the cache area. The first is to allow the user's logical
I/O requests to be "batched up" into physical I/O rcqueslo; to the
disk. The second is to allow frequently accessed blocks of data
to be made available at "memory speeds", without having to
perfonn disk 110.

CACHE PAGE This is a single cache buffer.

CONTIGUOUS When applied to disk space, tllis memlS tllat
the individual sectors which make up ilie space on ilie disk are
consecutively allocated. For example a 100 sector contiguous file
starting at address "A" on ilie disk will use up all the sectors
through to address "A + 99". It is much more efficient to do I/O
to a contiguous data.et ilian a non-contiguous one, especially if
that file is LDCACHEd. "setf' can be used to create a contiguous
file, and the "/etc/fck" command can be used to confirm tllis.

COS This is an acronym for "Cray Operating
System", an earlier operating system for Cray computers. It was
a Cray proprietary system, not based upon Unix mId altllOugh
still supported by Cray Research, is used at very few sites.

KERNEL This is the name given to ilie lowest level
of UNICOS. Whenever a program requires an operating system
service, such as I/O, it makes a system call to the Kemel. This
then handles the I/O control and drives tlle I/O devices.

LDCACHE This is a cache area in the SSD which
pennits 1/0 to those filesystems which are Idcached to perfonn
at speeds from 8 to 500 MBytes/sec, depending upon whctlIer or
not the data is in an LDCACHE page. LDCACHE is allocated on
a per filesystem basis. If a progrrun does I/O to a filesystem,

such as /unp, which is ldcached, then that data will automatically
go via tlle LDCACHE area for that ftlesystem. To get the most
from ru1 LDCACHEd file, I/O should be well-formed (see later)
and the record size should be a multiple of the LDCACHE page
size. Small record size I/O to fragmented LDCACHEd files can
be worse than to non-LDCACHED contiguous files.

SSD This an acronym for "Solid-state Storage
Device". The ECMWF C90's SSD consists of 4 GBytes of
memory. This memory is slower, and hence cheaper, than main
memory, of which we have 1 GByte. SSD can be used in several
ways, of which LDCACHE cUld SDS are relevant to this article.
The SSD is not directly accessible to user programs. They use it
by making system calls to the Kernel. These system calls are the
result of doing I/O to files which either reside in SDS or which
reside on filcsystems which are ldcached.

SDS This is an acronym for "Secondary Data
Segments", an area in ilie SSD iliat can be reserved by a user
progrrun, enabling I/O to perform at speeds from 500 to 3000
MBytcs/sec. The main difference, from a user's point of view,
betwecn LDCACHE and SDS, is iliat LDCACHE is shared,
potentially by all progrruns running on the C90, while SDS is
reserved for a particular file used by a particular program.

3. File Types and Structures

There are 3 main UNICOS file types or structures. These are
TEXT, COS BLOCKED and UNBLOCKED and are illustrated
in figure 1.

1) TEXT file:
This consists of bytes of ASCII data. Records are terminated by
an ASCII line feed character (LF - Hex code OA). Because there
is a record structure it is possible to use the BACKSPACE
statement to repOSition ilie file at a previous record. Also it is
possible to read partial records. The Fortran standard allows the
reading of just 1 byte from a record, the next read will occur not
at tlle next byte, but at the frrst byte of the next record. This is
what is meruIt in tllis article by "partial reads".

This daL:'l structure is produced by default when using Fortran
FORMATTED WRITE statements e.g. WRITE (1 0, 901) X.

It is also produced using C "printf' and "fprintf' routines. It is
also tlle type produced by such Unix utilities as editors, compiler
and otller utility listings etc.

2) COS BLOCKED file:

433

This consists usually of words (8 bytes) of data. Records are
tenninated by a special Record Control Word (RCW). The data
is blocked up into 512 word blocks, each of which has a Block
Control Word (BCW) at the beginning. There are pointers wiUlin
the BCWs and RCWs to the next control word and there are
special RCWs denoting End-of-File and End-of-Data. This type
of file also supports BACKSPACE and partial reads.

This data structure is produced by default using Fortran
UNFORMATTED WRITE statements e.g.WRITE(10) X, or
using the BUFFER OUT statement.

It can also be produced using the C "ffwrite" routine (FFIO)
with an appropriate call to "asgcmd" beforehmld. It is not
produced by any of the nonnal Unix utilities and is not
recognised by other Unix implementations, as it is Cray specific.

3) UNBLOCKED file:
This consists of a sequence of unstructured bytes. Because there
is no structure to it, it has no record structure associated with it.
Because there is no concept of a record with this file type, it is
not possible to use BACKSPACE to get to tlle previous file
position, nor is it possible to read partial records and expect to
be positioned at the beginning of the next record.

It can be produced by Fortran UNFORMATTED WRITES or
BUFFER OUT statements, provided tllat an appropriate "cL~sign"
control statement has been used beforehmld.

It is also produced using the C "write" and "fwrite" statements.

Of course any file, even TEXT or COS BLOCKED files, may be
treated as UNBLOCKED. If, by using an assign statement, tlle
user treats a COS BLOCKED file as UNBLOCKED tllcn tlle
first read executed on that file will cause tlle BCW for tllC first
block to appear as the first word of data read from tlle file. This
may, but more probably may not, be what tlle user intended.

4. Data Flow Throughout the System

Figure 2 shows the paths over which data flows betwcen tlle
user's program and the physical disk. There is a "brick wall"
shown which symbolises the interface at which tlle data tnUlsfers
between the user memory cUld the UNICOS Kernel memory.
Since user programs themselves cannot directly write/read tlle
Kernel memory or physical disk, tlley have to issue system calls
to get the Kernel to do this for them. The ronount of time tllat
this will t:'lke depends upon several factors, including how much
dat:'! is to be transferred, and how busy the UNICOS Kemel
already is processing other system requests. This time is known
as "SYSTEM TIME" and is charged to the user and reported at
the end of the job.

The current version of the operating system, UNICOS 7.c.2, is
single-threaded. By this we mean that, in general, while tllC
Kernel is processing one system call, it cannot simult,Uleously

434

process another. If for example the Kernel were processing a
very long request for one process cmd 15 other processes then
made a system request, all 16 CPUs of the C90 would be in use
by UNICOS. However, of the 16 CPUs, only 1 would be doing
useful work while the other 15 would be waiting for that one to
finish. The next major release of the operating system UNICOS
8 is multi-threaded cUld should solve this problem.

The blocks in figure 2 represent points at which the data may
"stopover" on its way between the user process and the disk.

The first block represents ml ARRAY in the user's program.

The second block represents a LIBRARY BUFFER or a
MEMORY RESIDENT LIBRARY BUFFER. These are blocks
of memory within the user's field length, which has been
reserved by the I/O librMy, mId as such are "owned" by the user.
Each library buffer is specific to a particular file, files do not
share librMy buffers.

The tllird block represents the SYSTEM BUFFERS. These are
blocks of memory within the Kernel's field length (outside the
user's field length), which the Kernel uses to match the
progmm's logical I/O requests with physical I/O to the disk. I/O
to a physical disk is "qumltized", the quantum being a disk
sector. It is only possible to write integral multiples of sectors to
a disk, whereal) the user cml, if he so wishes, write any size of
data. The system buffers are used to "marry up" this obvious
discrepmlcy in functionality. They are not "owned" by any
particular user but are a shared resource, not only between user
processes but also between different files in the same process.

The fourth block represents SDS. These are blocks of memory
in tlle SSD. Each SDS buffer is "owned" by a particular user
process mId is specific to a particular file, but still only
accessible via system calls. In this way it acts in a way similar
to a MEMORY RESIDENT LIBRARY BUFFER.

The fifth block represents LDCACHE BUFFERS. These are
blocks of memory in the SSD. Each buffer is "owned" by the
Kernel and used in a way similar to that of the SYSTEM buffers.
SOS and LDCACHE are liot mutually exclusive, a file with an
SDS buffer can, and probably will, still use LDCACHE buffers.

5. Techniques for Improving I/O Performance

When looking at improving 110 performance several factors need
to be taken into consideration, but of all the factors which cause
inefficiency, the one that causes the most is the inefficient use of
tlle SYSTEM BUFFERS. By cutting out system buffer use it is
usually possible to make your progrruns much more efficient. It
was possible to cut down the elapsed time that it took a test
prognun to do its I/O from 30 minutes to 20 seconds, just by
bypassing tlle system buffers. A real production program now
runs in 1I3rd of its original time just by doing the same.

The next best way of cutting out inefficiencies is to pre-allocate

your files contiguously on the disk.

The third way is to cut down on the number of system calls
needed to transfer the data.

Cutting out the use of SYSTEM BUFFERs involves doing "well­
formed" 1/0. The term "well- formed" means that the 110 must
be done from "User memory space" to "Kemel memory space"
in integral multiples of the disk sector size, and the file must
always be positioned on a sector boundary. From now on the
tenn "block" will have a specific meaning:

1 Block = 512 words (4 KBytes)

There are 2 types of disk connected to the C90:

DD-62
DA-62

(Sector size = 1 Block)
(Sector size = 4 Blocks)

The C90 DA-62 disks hold only the lunp filesystem, while all
other filesystems are on DD-62 disks. From this we can see that
all 1/0 requests which transfer integral multiples of 4 blocks (2
Kwords, 16 KBytes) are well-formed on both types of disk.

Pre-allocating your files contiguously on the disk has several
benefits. Normally users do not pre-allocate their files, though
some UNICOS commands, such as "cp" do this intemally. Users
normally let the Kemel allocate chunks of disk as their file
grows. A typical example is this:

The user writes the first sector or 2 of data to disk. The Kemel
allocates 1 or 2 sectors to the file. The user writes more data and
again the Kemel allocates 1 or 2 sectors to the file. Eventually,
when the file reaches a certain size, the Kemel allocates 28
sectors at a time (28 being the size of a track on the disk). When
the file is complete it may consist of hundreds of small chunks
which are spread over a wide area of the disk. This can have
disastrous consequences if the file is LDCACHEd. It can also
take a long time to read this file because the disk heads will have
to do a lot of positioning in order to read the data.

Pre-allocating the file contiguously will get round these
problems. This can be done at the control statement level or at
the C program level. In the following exmnples "nwnblks" is the
required size of the file in BLOCKS (4 KBytes) mId "filesize" is
the required size in bytes.

Control statement:

setf -c -nnumblks filename II setf -n numblks filenmne

C program example:

if (fstat(filename, &st) == 0) filesize -= st.scsize;
1* Already exists ialloc allocates an additional extent *1

if (ialloc(filename, filesize, IA_CONT, 0) < 0)
1* Contiguous allocation failed *1

1*
if (ialloc(filenmne, filesize, 0, 0) < 0)

There is insufficient disk space *1

(void) perror("No space left I quota exceeded");
retum (1);

Note that the "II" construct is used on the control statement in
case there is insufficient contiguous space on the filesystem, at
which point we still pre-allocate but without the "_c" (contiguous)
parruneter. Without the "II setf .. " construct the job would abort
if the mnount of space requested was not available as one
contiguous piece.

6. Fortran 110 Library Processing

Now before everyone dashes off to change their Fortran code to
do well-fonned 110, one needs to look at how the Fortran 110
library handles the COS blocked and UNBLOCKED file types.
TEXT files are not mentioned here because formatted Fortran
output is usually only a small part of the 110, being used for
human-readable results. Having said that, I have in the past come
across a Fortran progrmn which used fonnatted 110 to pass data
to mlOther progrmn, where there was no need for it be fonnatted.
This is very inefficient and should be avoided.

COS BLOCKED FILES

As mentioned earlier COS BLOCKED datasets are the default
for files read and written using unformatted READIWRITE or
BUFFER IN/OUT statements. They may also be explicitly
requested using an "assign" control statement, the format for
which is:

assign -F cos.synctype:bufsize filename/unit-no

Where:
synctype = "sync" for synchronous 110; "async" for

asynchronous 110 which does read-ahead and
write-behind; "auto" (default) which is "sync" for
bufsize < 64, otherwise "async".

bufsize = size of LIBRARY BUFFER in units of a block,
the default is 48.

e.g. To assign a COS BLOCKED dataset, with a buffer size of
56 blocks, using synchronous 110, accessed via Fortran unit
number 10, Ule assign statement would be:

assign -F cos:56 u: 10

Figure 3 shows what happens when the user program does 4
WRITE statements to create a fue with 4 records, each
containing the data belonging to a different array. In this example
you can see that the 4 WRITE statements simply transfer data
between Ule user's arrays mId a library buffer. The data does not
actually get transfen"ed to disk via a system call until the buffer
is tlushed, when the file is closed, and then only 1 system call is

435

involved. If we change the example to write Ulese arrays 56
times to a file with a buffer size of 56, then we can see that
these 224 Fortran WRI1E statements will generate 3 system
requests each transferring 56 blocks to disk. All these are well­
formed requests and so will bypass the system buffers. This is
very good, but if the file was continually being created, rewound
read, rewound read, rewound ... etc. it would be even better to
keep the file totally within in the library buffers until it was
closed and flushed to disk. This would require a library buffer of
168 blocks (84 Kwords) and the assign statement would be:

assign -F cos.sync:168 u:10

UNBLOCKED FILES

Having looked at COS BLOCKED daL:1Sets, let us now see how
UNBLOCKED datasets are handled by the I/O library. To assign
a file as UNBLOCKED the format of Ule a')sign control
statement is:

assign -F syscaU filename/unit-no

e.g. To assign as unblocked the file "fort.11", the a~sign

statement would be:

assign -F syscall f:fort.l1

Figure 4 shows the same Fortran progrmn as before but Ulis time
writing to an UNBLOCKED dataset. One cml sec Ulat this is
very inefficient as every Fortran WRITE statement generates a
system call with an 110 request which is not well-fonned. Let us
look at this in more deL:1i1 in "pseudo-code" form.

User: does 1st WRI1E --> system call
Kernel: if no system buffer is free {

flush the oldest buffer to disk }
copy data from the user's array to the buffer

User: does 2nd WRITE --> system call
Kernel: if the previous buffer is not still around {

if no system buffer is free {
flush the oldest buffer to disk }

read the previous sector of daL:'l from disk into the
buffer}

copy the first part of the daL:'l from Ule user's array to the
end of the buffer
if no other system buffer is free {

flush the oldest buffer to disk }
copy the last part of the daL:'l from user's array into Ule
buffer

User: does 3rd WRITE etc.

As one can see, a large amount of Kernel mId disk activity is
going on. This is the main cause of "system time" on the C90.
How can this be prevented without having to completely rewrite
the 110 portion of the Fortran program? The simplest way is to
introduce a "well-fonned" LIBRARY BUFFER. The format of

436

Ule assign statement to do this is:

assign -F cache:bufsize:nbufs filename/unit-no

Where:
bufsize = size of LIBRARY BUFFER in units of a block,

the default being 8.
nbufs = the number of cache "pages", the default is 4.

e.g. To assign 1 cache page of 56 blocks to an unblocked file
"fort.11", the assign sL:'ltement would be:

assign -F cache:56:l f:fort.ll

There is no need to specify "syscall" as that is implied, though
one could specify it for clarity e.g.

assign -F cache:56:1,syscall f:fort.ll

Now, as cml be seen from figure 5, all Fortran 110 calls just
operate on data in Ule LIBRARY BUFFER instead of making ill­
formed I/O requests.

For UNBLOCKED files which are small enough to fit within the
memory of the job it is better to use "mr" (memory resident),
rather Ulml "cache", especially if the files are "scratch" files
which are created mId used solely within this program. The
format of the assign control sL:'ltement to do this is:

assign -F mr.savscr.ovfopt:init:max:incr filename/unit-no

Where:
savscr

ovfopt

init

max

incr

= "save" (default) to pre-load and post-store the
data in the file on disk; "scr" to indicate that the
data is neither to be read from nor written to the
actual disk file.
= "ovfl" (default) to allow excess data to overflow
onto disk; "novfl" to abort the program if the
mnount of daL:'l exceeds the memory resident
buffer.
= Ule number of blocks of memory initially
allocated to the memory resident buffer.
= the maximum number of blocks that may be
allocated.
= the block allocation increment.

e.g. To assign the smne file "fort. 1 1" to be memory resident, one
would need to reserve 168 blocks of memory, in order for it to
fit completely within the buffer. The assign statement would be:

assign -F mr.save.novfl:168:l68:0 f:fort.ll
or

assign -F mr.scr.novfl:168:l68:0,syscall f:fort.ll

The latter statement explicitly specifies "syscall" for clarity and
states that the file is a "scratch" file, that will only exist for the
duration of Ule progrmn.

Figure 6 shows this exmnple. One should not overflow the

memory resident buffer, hence use the "novtl" parruneter. If this
is not coded and the data overflows the buffer tilen all the
overflow portions of the data will (in this example) be ill-formed
and system time will again accrue.

7. LDCA CRE Data Flow

Since several of the filesystems on the C90, including /unp, are
LDCACHEd it is instructive to see how this works. Figure 7
shows an example of LDCACHE use. In this exrunple the
amount of LDCACHE allocated to the filesystem is 4 pages each
of size 2 sectors. In reality /tmp has 1280 pages each of 7
sectors. The example shows a well-fonned I/O request for 4
sectors of data. It also shows a file which was not allocated
contiguously on the disk. The flow is as follows:

User: does the READ --> system call
Kernel: if no LDCACHE buffer is free {

flush the oldest buffer to disk }
1) read 2 sectors from disk into the buffer (only 1 of which

is from our file)
transfer our 1 sector to the user's field lengtil
if no LDCACHE buffer is free {

flush the oldest buffer to disk }
2) read 2 sectors from disk into tile buffer (only 1 of which

is from our file)
transfer our 1 sector to the user's field lengtil
if no LDCACHE buffer is free {

flush the oldest buffer to disk }
3) read 2 sectors from disk into the buffer (only 1 of which

is from our file)
trrulsfer our 1 sector to the user's field lengtil
if no LDCACHE buffer is free {

flush the oldest buffer to disk }
4) read 2 sectors from disk into the buffer (only 1 of which

is from our file)
transfer our 1 sector to tlle user's field lengtil

As can be seen, in this exmnple there could be up to 8 physical
disk I/O transfers from wildly different areas on tlle disk, before
the data is actually available in the user's progrrun. If tile tile
was contiguous on the disk this would be reduced to 4 physical
I/O requests. In real life, with a buffer size of 7 sectors, tilCre
would probably be only 2 physical I/O requests (224 KBytes) for
such a contiguous file, instead of 8 physical I/O requests (806
KBytes) mId the disk positioning, which is the main cause of
slow I/O, would be kept to a minimum.

One point that should be made concerning FFIO. When one
codes the "-F" parmneter on the assign SL:'ltement, some of tile
other parameters lose their default values and the "_s" pm"mneter
cmmot be specified. One important parmneter that may need to
be explicitly specified is the "-T off' parmneter. This is needed
if the progrrun uses the SETPOS routine to position witilin a file
and WRITE a record at that point. If a "-F" parruneter is not used
but a "-s u" used instead, then the default is "-T off", but when
using "-F" the default becomes "-T on", the tile will become

truncated immediately after the record just written, and any data
which was behind this record in the file will no longer exist.

8. 110 Performance Tools

By far tlle most important perfonnance tool for monitoring I/O
is "procstat". PrOCSL:'lt produces a file which is analyzed by the
"procview" (ml X-windows application) and "procrpt" utilities.
Data is put in the procstat "raw file" every time an I/O operation
is performed from within the progrrun being monitored. One of
tile nice features of proCSL:'lt is its ability to monitor any progrrun
witllOut having to recompile it, in fact procstat can also be used
on Unix utilities such as "cp", "tar", "cpio" and the like.

Below is a simple procstat example in which the normal "a.out"
command is replaced by:

procstat -R $TMPDIRlrawfile a.out
procrpt -s -F all $TMPDIRlrawfile

it is as simple as tllat. Now comes the "tricky" part - interpreting
the procrpt output, procview is much easier to interpret.

First, skip to tile end of the report to the title:

"PROCSTAT FORTRAN FILE REPORT"

Here you will find a set of reports, one for each of the Fortran
tiles in your progrrun. Such a report (taken from a test program
run) looks like tilis:

Fortran Unit Number
File Name

11
fort.11
a.out Command Executed

Date/Time of Open 11/02/93 11:52:43

System File Descriptor 4
Type of I/O sequentl unformatted
File Structure unknown

Fortran I/O Count of Real
Statements Statements Time
----------- ---------- ----------
READ 128000 15:00.1751
WRITE 128000 6:42.9804
REWIND 200 1.0175
CLOSE 1 .0031

32506 Bytes xferrd per Fortran I/O statement
0.78% Of Fortran I/O statements did not
initiate a system request

From the last value (0.78%) we can see that every READ or
WRITE statement caused a system call to be made, which in
general is a bad tlling. This is because the file was assigned as
UNBLOCKED (or UNKNOWN as procrpt reports). The higher
this number tile better, 100% being the target to aim for.

From tile REWIND count (200) we can deduce that the file is
being continually written, rewound, read and rewound again.

437

From the time taken to read and write the file, compared to oUler
files in this program which only took 20 seconds in total, it is
obvious that this file is a prime candidate for optimisation. One
can find out more information about this file by looking em"lier
in the report. Search backwards for either string:

"File Name = fort.ll" or "Fortran Unit Number = 11"

One will see the above again, but there is also oUler interesting
information, such as that given at the foot of the page.

From this one can see that the file was 4193280 Bytes long (0.5
MWords) and that it was continually being written then read. It
also confmns that each of the 12800 Fortran READs and
WRITEs issued a system call. This file is a prime candidate for
MEMORY RESIDENT or CACHE. Just putting a 56 block
CACHE on this file with the assign statement:

assign -F cache:56:1 u:11

changes the total 1/0 wait time on it from 31 minutes 41 seconds
to 19 seconds; while converting to MEMORY RESIDENT with
the assign statement:

assign -F mr.scr.novf1:130:130:0 u:ll

changes the total 110 wait time on it to 0.85 seconds.

9. C Program 110 Optimisation

This article has concentrated on Fortran progrmns, since Ulese
make up the majority of programs run on Ule C90. WiUI C
programs things are 110t quite so easy.

It is still possible to optimise the 110 of C progrmns. The use of
"ialloc" has been shown in an earlier example. In order to use
FFIO, the source code has to be modified to call Ule FFIO
routines (ffopen, ffread, ffwrite, ffclose etc.). Unless special
constructs, such as #define macros, are used, this could cause
portability problems. Well-fonned liD is an obvious way of

Minimum File Size
Maximum File Size =
Final File Size =
Sys I/O # of
Function Calls

4193280 (bytes)
4206592 (bytes)
4193280 (Bytes)

Bytes # Bytes
Processed Requested

419328000 419328000
419328000 419328000

optimising. Library buffering can be used by coding "fopen"
calls instead of "open" and "freadlfwrite" instead of "read/write".
The size of library buffers (by default 8 blocks) can be specified
using Ule "setvbuf' routine.
e.g.

if (setvbuf(file_out, (char *) NULL, _IOFBF, 56*4096) != 0)
{

perror("Cannot set buffer");
return (1);

10. Summary

In Ulis article I have attempted to give some ideas of ways in
which 110 can be optimised. In most cases this does not
necessarily involve chmlging any code, merely using procstat and
procview or procrpt mId then adding one or two assign control
statements to Ule jobs. In the past few months we have tried to
identify jobs on the C90 which are performing inefficiently, as
regards tile mnount of system time they use, since these jobs
affect all otiler jobs on tile machine. The user is then approached
and encouraged to use the techniques described in this article,
WiUl tile end result that 110 wait time, and hence turnaround time,
decreases drmnatically (from say 1 hour to 10 minutes).

Everyone's 110 requirements are different and it would be
impossible to design a default liD system to satisfy everyone's
needs. I believe that Cray have done an excellent job in
designing procstat mId FFIO, mId users are more than willing to
use tilese features when they see how easy they are to use and
how much benefit Uley cml gain from using them. Obviously it
is better to design code from the very beginning with "well­
formed" 110, contiguous data and reasonable buffer sizes, rather
tilml have to rely upon users coding assign statements at a later
stage, but for "dusty deck" codes FFIO etc. is the next best thing.

Two Cray manuals describing 1/0 techniques in detail are:

(SG-3075 7.0): liD User's Guide
(SG-3076 7.0): Advanced 110 User's Guide

Wait Time (Clock Periods)
Max Min Total

2523192870 19650 215991603956
1999536112 20170 240666850980

Read
Write
Seek
Truncate

12800
12800

200
100

n/a n/a 31263627 4294 70589203

438

System I/O
Function

Read
Write

Avg Bytes
Per Call

32760.0
32760.0

n/a n/a

Percent of
File Moved

9968.4
9968.4

39963846 6552 26900319

Average I/O Rate
(MegaBytes/Second)

0.466
0.418

Fig 1: UNICOS File Types

r ASCIlOLFO t TEXT r- ASCIlOLFO -.

COS BLOCKED

UNBLOCKED

C EGMWF 1/0 Optimisation ~, __ J

The COS blocking Layer
o assign -F cososynctype:bufsize

o synctype = "sync" for synchronous 1/0

o synctype = "async" for read-ahead, write-behind

o synctype = "auto" (default)o This is "sync" for
buffer size < 64, otherwise it is asynco

o bufsize = size of working buffer in units of 512-
word blocks (default is 48)

o BACKSPACE & partial record READs supported

o Fewer system calls than FORTRAN 1/0 calls

o the buffer gets flushed when it is full

C ECMWF :j 1/0 Optimisation .. /

,. .. ,

The SYSCALL Layer

o assign -F syscall

o BACKSPACE and partial record reads are NOT
supported

o Each FORTRAN 1/0 call causes a system call

o Can cause a large system overhead, especially
if the 1/0 requests not "well-formed"

o "well-formed" means lithe record size is a
multiple of the device sector size and the file is
positioned on a sector boundary"

~c ECMWF 1/0 Optimisation

/.

Fig 2: Data Flow Diagram

,<,. User~P{ocess :<·&~ Kijf::f:: -----+-

.. C [CMWF 1/0 Optimisation)

I

Fig 3: assign -F cos Data Flow
Lib .. ", B""" .1 tIlI

l
' Logical Device

11 III 1 ~
i ~
~':'-b ~
~
~

User Arrays

C l:.:CMW:: 4 1/0 Optimisation
\.. .. J

r · .. · · · · · · · · · \
. Fig 4: assign -F syscall Data Flow

User Arrays System Buffers Logical Device

1/0 Optimisation
l

439

~. I" '\

Fig 5: assign -F cache:syscall Data Flow
The CACHE Layer

o assign -F cache:bufsize:nbufs

o bufslze = size of each cache page buffer In
units of 512-word blocks (default Is 8)

o nbufs = number of cache pages (default is 4)

o Fewer system calls than FORTRAN I/O calls

o cache preemption Is done on the basis of
"Ieast recently used"

1/0 Optimisation

The MR Layer
o assign -F mr.savscr.ovfopt:lnlt:max:lncr

o savescr = "save" (pre-load post-store the data in
the file)

o savescr = "scr" (no pre-load or post-store)

o ovfopt = "ovfl" (Excess data overflows to the next
layer)

o ovfopt = "novfl" (Abort on overflow)

o Init = number of 512-word blocks Initially allocated

o max = maximum number of blocks to allocate

o Incr = block allocation increment

.)

C ECMWF 'i 1/0 Optimisation , ... /

r··· ... '"
Fig 7: Example LDCACHE Data Flow

User Array LDCACHE Buffer Physical Disk

~ r:; 1I/~\t.1J·r.
~ ,.,..,..~~- :~ 1/0 Optimisation

~

440

User Arrays Library Buffers Logical Device

... C E:CMWF 1/0 Optimisation)

I .,\

Fig 6: assign -F mr Data Flow
User Arrays Library Buffer Logical Device

C l:.:cr"W"/:: 1r; 1/0 Optimisation
\..: ..)

r .. ···························· .. ·· .. ··············· · ... ,

SSD Partitions at ECMWF

o Swap Space [190 MWl
Used since swap to disk is very slow

o SOS (Secondary Data Segments) [322 MWl
LOCACHE for various filesystems

User files which are assigned to SOS

Auxilliary arrays (new CFl77 feature)

o SSD-resident filesystems [0 MWl
Not used at ECMWF

I/O Optimisation l

Fig 9: SSD Partitions Diagram

rool

:::

Procstat output - part 1

Fortran Unit Number
File Name

Type of I/O
File structure

11
fort. 11

sequential unformatted
unknown

Portran I/O count of Real
Statements Statements Time

READ
WRITE
REWIND
CLOSE

128000 15;00.1751
128000 6;42.9804

200 1.0175
.0031

usr

fdb

Imp

owrk

rwrk

iwrk

32506 Bytes transferred per Portran I/O statement
0.78% Of Fortran I/O Statements did not initiate

a system request

C t::CMWF ::; I/O Optimisation ./ , .. .

,.... .. ,
RECOMMENDATIONS

o PRE-ALLOCATE your files using:

setf -c -n numblks filename II setf -n numblks filename

o Cut down on system calls & buffer use by:

Using the MR layer

Using the CACHE layer

Using the SDS layer

Tailoring your library buffer sizes

o Cut down on CPU time by:

NOT using FORMATTED I/O

NOT using COS Blocked files with well-formed I/O

,C ECMWF :i I/O Optimisation

I/O Performance tools

o M='ja -m'
a.out [parameters]
ja -01 -p ${M}:

o procstat -R rawfllename a.out [parameters]

o procview rawfilename

o procrpt -s -F all rawfilename

~ ECMWF
\~

14 I/O Optimisation

I'

Procstat output - part 2

Minimum Pile Size - 4193280 (bytes)
Maximum Pile Size - 4206592 (bytes)
Pinal Pile Size - 4193280 (bytes)

Sys I/O # of # Bytes Wait Time
Punction Calls Processed Max Min

Read 12800 419328000 2523192870
Write 12800 419328000 1999536112
Seek 200 n/a 31263627
Truncate 100 n/a 39963846

(Clock Periods)
Total

19650 215991603956
20170 240666850980

4294 70589203
6552 26900319

system I/O Avg Bytes Percent of Average I/O Rate
Function Per Call Pile Moved (MegaBytes/second)

Read
Write

32760.0
32760.0

9968.4
9968.4

0.466
0.418

C [Cr\l~w:: 1!; I/O Optimisation)
\..

441

1/0 IMPROVEMENTS IN A PRODUCTION ENVIRONMENT

JeffZais and John Bauer

ABSTRACT

Recent I/O enhancements have dramatically improved
I/O throughput for many important engineering
applications. Several individual examples (such as
NASTRAN and ANSYS jobs) have been discussed at
recent CUG meetings. This paper documents
improved overall system throughput, not just gains
from isolated jobs. A suite of numerous engineering
applications were submitted to a dedicated C90 system
using commonplace I/O enhancements such
as ldcache. The same benchmark suite was then
submitted to the same machine, this time using the
EAG FFIO routines to reduce the I/O wait time. Job
accounting comparisons quantify the improvement in
system throughput.

EAG FFIO Background

Work has been in progress on the EAG FFIO layers
since 1992. The main goals of the project are to allow
individual applications to:

1) Provide their own caching of I/O data
2) Utilize user striping of files
3) Measure I/O perfonnance on a per file basis
4) Track I/O activity on an event basis

A key feature of the layers is that no source code
changes are required. They can be used from both
FORTRAN and C codes.

Details on implementation of the EAG FFIO layers
have been presented in previous CUG discussions. In
the Spring 1993 meeting, Doug Petesch, John Bauer
presented "An Application Independent Intelligent I/O
Layer" which gave an overview and several
MSC/NASTRAN specific examples. For the Summer
1993 CUG Applications Symposium, John Bauer
presented an "I/O Optimization" talk which detailed the
I/O process and how I/O could be improved with EAG
FFIO.

Purpose of This Study

The purpose of this study is to demonstrate how
EAG FFIO can help improve I/O perfonnance. As

Copyright © 1994. Cray Research Inc. All rights reserved

442

Engineering Applications Group
Cray Research, Inc.
Eagan, MN

most CRA Y sites, ldcache is employed for this
purpose. This study will compare I/O performance
for a C90 system using ldcache and EAG FFIO
caching.

In addition, previous presentations of EAG FFIO
have concentrated on single jobs. This study will
present how EAG FFIO can improve I/O
performance in a simulated production environment
with many concurrent jobs running in NQS batch
queues.

System Configuration

The system used for this study was configured in the
following manner:

C90 (serial number 4(01)
8 cpus
256 Mw Memory
512MwSSD
8 I/O Clusters

The file system used for the I/O consisted of 32
DD60 drives, on 32 I/O channels.

Job Mix Description

The job mix for this study consisted of I/O intensive
third-party applications typical of those run at an
engineering site:

Structural Analysis:

CFD:

Chemistry:

MSC/NASTRAN
ABAQUS
ANSYS

FIDAP
VSAERO

GAMESS

Even within these codes, the I/O intensity is problem
dependent. Therefore, in order to prove the
efficiency ofEAG FFIO, examples were deliberately
chosen so that all jobs would be I/O intensive.

However, the most I/O intensive examples were
deliberately not used in the job mix. This is because
those examples could not practically run without
EAG FFIO (using just ldcache). Therefore, the
results were not overtly exaggerated. The detailed
descriptions of the jobs are:

MSC/NASTRAN
Nl = 120,000 DOF Normal Modes
N2 = 150,000 DOF Normal Modes
N3 = 580,000 DOF Normal Modes

ABAQUS
Al = Linear Statics; 3131 RMS Wavefront
A2 = Linear Statics; 3131 RMS Wavefront
A3 = Linear Statics; 3131 RMS Wavefront

ANSYS
11 = Normal Modes; 2843 Wavefront
12 = Normal Modes; 2418 Wavefront
J3 = Normal Mopes; 2418 Wavefront

VSAERO
VI = Customer CFD Benchmark

FIDAP
F1 = 10,200 Elements; 388,000 DOF;

3D Compressible Laminar
Temperature Dependent Calculation

GAMESS
G 1 = ab initio single point energy

calculation

A schematic of the job mix is shown in Figure 1. All
jobs were submitted to NQS at one time. The queues
were set so that the longest running jobs ran first.
Then, as those jobs completed shorter running jobs
filled in the remaining time. In this way, the cpus
had very little idle time while waiting for the longest
running job to finish. The job mix was tuned so that
for the case where EAG FFIO was used, all 8 cpus
were busy until 5 minutes before the finish time (out
of 55 minutes total).

The job mix results were tabulated by adding up the
user cpu, system cpu, and I/O wait times as reported
by the "ja" command. The total of user cpu, system
cpu, and I/O wait time was used as a measure of time
required to complete the individual jobs.

For the case where the job mix was run with ldcache,
the first cpus became idle 41 minutes before the
longest running job finished. This caused less
contention between the jobs for system resources,
which should skew the final results in favor of the
ldcache case.

The NQS queues were set so that the cpus were

oversubscribed. Initially, 9 jobs were active. One of
the jobs (ANSYS job 11) ran with 2 cpus, so there
was a demand for 10 cpus, with only 8 available.
One of the ABAQUS jobs requested 95 Mw of
memory, so that the total memory required for the
jobs was 244 Mw. This was less than the available
memory, so there was no swapping involved.

The results are summarized in the following tables:

LDCACHE Results
cpu I/O Data
time wait Transfer

Code (sec) (sec) (Mw)
NASTRAN (3 jobs) 6512 7960 21611
ANSYS (8 jobs) 6700 622 1795
VSAERO (5 jobs) 586 1240 2950
GAMESS (1 job) 1133 717 2191
ABAOUS (7 jobs) 6363 1996 5148
Job Mix 23724 12591 34201

EAG FFIO Results
cpu I/O Data
time wait Transfer

Code (sec) (sec) (Mw)
NASTRAN (3 jobs) 6159 1359 12585
ANSYS (8 jobs) 6685 118 1648
VSAERO (5 jobs) 602 311 2950
GAMESS (1 job) 1128 110 2185
ABAOUS (7 jobs) 6188 535 5005
Job Mix 23135 2552 24655

The total of C90 "busy time" (cpu time plus I/O wait
time) is 10.09 hours for the ldcache system. Using
EAG FFIO, this time is reduced to 7.14 hours, a
reduction of 30%.

The EAG FFIO EIE cache also has the effect of
reducing the total data transferred. This is most
dramatic in the NASTRAN results, while the other
codes undergo only a small decrease. The data
transfer reduction is due to requests for data that
happen to reside in the cache, avoiding a transfer
from disk.

Even though the reduction in data transferred is
greatest in NASTRAN, the I/O wait time is reduced
in all codes. Additionally, the cpu time does not
increase. In fact, the total cpu time decreases, since
less system cpu time is spent managing I/O tasks.

Memory vs. SDS Resident Cache

The first experiment established that EAG FFIO was
effective in reducing I/O wait time. A second
experiment was run in order to determine if the cache
is more efficient as memory resident or SDS resident.

443

In this experiment, a subset of the jobs in the first
mix was used. This was done so that the jobs plus
their EAG FFIO cache could both remain in memory.

Mem Cache
Code Job (Mw) (Mw)
ANSYS J1 24 8
NASTRAN N1 13 36
NASTRAN N2 15 18 (2 copies)
NASTRAN N3 37 18
GAMESS G1 2 2 (2 copies)
ABAQUS Al 15 6·
ABAOUS A2 li 13

Totals 121 101

Therefore, a total of 222 Mw (Memory plus EIE
cache) are required to run this job mix entirely in
memory.

The results of the study were as follows:

SDS Cache

user cpu (sec)
system cpu (sec)
total cpu (sec)
I/O wait (sec)
Data Transfer (Mw)

18790
383

19173
2559

30438

Memory Cache

18830
305

19135
2643

29898

As the table shows, there are no significant
differences in performance between the SDS cache
and the Memory cache. Slight differences exist in
the distribution of cpu time. For the SDS cache, the
system time increases from 305 to 383 seconds.
This is because system calls are required to manage
the SDS resident EIE cache, while a memory resident
cache is managed under the user cpu time. While the
SDS cache system cpu increases, the user cpu time
decreases. The net effect is a slight increase in cpu
time for the SDS cache, but the increase is very slight
compared to the total cpu time.

System Configuration Suggestions

The job mixes have demonstrated that a system using
EAG FFIO can offer better performance than a
system using ldcache. Setting up a system with
ldcache is easier. This section presents some
suggestions on configuring systems for EAG FFIO.

One issue is whether the cache should be SDS or
memory resident. The example of the previous
sections suggests that there is no significant

444

difference in performance, so this can be determined
strictly on local resources.

It is important that EAG FFIO and Ide ache work
together. For the codes which are not I/O intensive
or are not running EAG FFIO, users will still want
the benefit of ldcache. When SDS space is used for
ldcache, an SDS resident EIE cache presents no
problems. This is because the EIE cache will bypass
the ldcache area and communicate directly with disk.

However, with an SDS Ide ache and a memory
resident EIE cache, the default path is for the EIE
cache to use the ldcache to and from disk. This
problem can be avoided by using the "set.ldraw"
option from EAG FFIO. Then the memory cache
will bypass the ldcache and use raw I/O directly to
and from disk.

Another issue is the size of SDS space reserved for
EAG FFIO usage, compared with SDS space
available for swapping and ldcache. At one site,
nearly all the cpu time is consumed by ABAQUS
jobs. This machine is a Y-MP 2E, with 32 Mw of
memory and 32 Mw of SSD. Separate tests showed
that at most 5 ABAQUS jobs should run
concurrently. Each requires a 3 Mw EIE cache.
Therefore, 16 Mw of SDS space is reserved for EAG
FFIO, while the rest is used for swapping and
ldcache.

Another site runs multiple applications (50% PAM­
CRASH, 30% MSC/NASTRAN, 10% ABAQUS).
Here the SDS division is more complicated, with
some SDS space reserved for I/O intensive codes
(NASTRAN, ABAQUS), and the other SDS space
used as ldcache for PAM-CRASH.

Summary

This paper has demonstrated the following items:

• For I/O intensive applications, EIE cache can
provide superior performance than ldcache.

• For a C90 system simulating an I/O intensive
production environment, EIE cache increased
system throughput by 40%.

• Production environment C90 demonstrated no
significant difference between performance of
SDS and Memory based EIE cache.

• Some sites beginning to allocate SSD in order to
make SDS space regularly available to EAG
FFIO users.

cpu1_ _
2 I I~
3 ,::~:::~:::!:::::::::::::::::::::::::::::::::::::] •

4 I:::t:::::::::::::::::::::I:::I::1

5 ~
...
~.~

6 I:::::::::::::::::.::·~::::::::·::::::··.::::::::·::·:::::'.':':'.:.:::':~::.::: ... ::::::: .. :'::.::': .. ::':''':::::·:::·"::::::':::·::::::::11':": :::::: ::.: ... :: ... :.:::::: .. :.::::.::.:.;.:.::::::::: ... :.:::::::':':::::':':::::':::.:::::.:~':::::::.::::,::·:·:~:~::::::::I

7 ~~
~.~ . ..
~.

8 11. ~ •

t t
Start Finish

Figure 1.

Schematic of job mix activity. Longest-running jobs were submitted to queues first.
When they completed, shorter jobs filled in remaining time so that idle time near the

finish of the job mix was minimized.

445

NEW STRATEGIES FOR FILE ALLOCATION ON MULTI-DEVICE FILE SYSTEMS

Abstract

Chris Brady
Cray Research, Inc.
Boulder, Colorado

Dennis Colarelli
NCAR

Boulder, Colorado

As UNIX-based operating systems are required to support
large datasets, multi-device file systems will become more
standardized. Cray Research supercomputers have made
extensive use of multi-device file systems for many years
and have customers using file systems with over 100
devices. Performance problems due to file fragmentation
and system allocation overhead occur as file sizes and the
number of files grow, and as a significant percentage of the
file system space is used.

In this paper we look at how different file allocation
strategies find contiguous disk blocks in multi-device file
systems, and how different bitmap scan techniques enable
efficient searches for free space. Performance factors
include: contiguous free space allocation, system response
time, file system fragmentation and free space distribution.

Our results are based on measurement and simulation. The
measurement data and the simulation parameters were
taken from a Cray Research Y-MP8/864 located at the
National Center for Atmospheric Research (NCAR). The
results show the dramatic effect that the choice of file
allocation strategies can have on large, multi-device file
systems.

1. Introduction

This project began as a result of observed performance
degradation of climate models running on the Cray Y­
MP8/864 at the National Center for Atmospheric Research
(NCAR). The cause was traced to fragmentation of the
large files used by these models. We set out to explore
alternate methods of allocating space for files which would
reduce fragmentation and allocation time.

When allocating space, the file system would attempt to
find contiguous regions within the partition where the file
was created. Selection of a partition for new files was on a
round-robin basis, where each new file was placed on
succeeding partitions. We observed that it was often the
case that when the selected partition was unable to allocate
a contiguous region for a file, other partitions had
sufficient contiguous space. Even when no partition had a
sufficiently large contiguous free region, judicious
scanning of the partitions could result in a file with only a
few fragments.

In addition, we found that file systems which were nearly
full caused on average excessively high allocation times.
The allocation cpu time charged to the user would on

446

Henry Newman
Instrumental

Minneapolis, Minnesota

Gene Schumacher
NCAR

Boulder, Colorado

occasion cause jobs to fail by exceeding the cpu time
limits estimated by the user.
To improve this situation, we investigated alternate
methods of finding contiguous free regions in multi­
partition file systems. We knew if we were to search more
of the allocation bitmap to find free contiguous regions, we
would also need more efficient search methods than
currently being used.

In Section 2 we look at the effects file fragmentation has
on 110 performance. Section 3 describes different
strategies for allocating contiguous free regions. Section 4
describes bitmap scan methods used to locate free blocks
in the file system's allocation bitmap. In Section 5 we
discuss the simulation models and performance analysis of
the different allocation and bitmap scan methods. Section 7
presents a summary of the performance analysis and
conclusions which guided our implementation decisions.

2. Fragmentation and 110 Performance

In an attempt to quantify the adverse effects of file
fragmentation, a synthetic test case was created. In this test
we measured 110 wait time, allocation time, and write
system time with varying amounts of fragmentation.

110 wait time is the period of time spent waiting for an liD
request to complete. In general it can be thought of as the
sum of seek and rotational latency and data transfer time,
subject to lOS write behind buffering. Before each 110 can
begin, the disk heads must be positioned to the correct
track (seek latency) and the position of the disk sector
with respect to the disk heads must be correct (rotational
latency). Since the disk driver will write each fragment of
a file as a separate operation, file fragmentation greatly
increases the probability of incurring additional latency .

Allocation time is the CPU time used by the kernel to
identify and allocate disk space. When the available space
on a disk is fragmented, the file system bitmap must be
searched repeatedly until enough fragments have been
found to satisfy the request. Fragmentation of the file
system free space results in increased file allocation
overhead.

The write system time is the CPU time used by the kernel
to process the write request. For each fragment in a file
the kernel must identify the starting location and length
and make a separate 110 request to the disk driver.
Consequently, file fragmentation increases the amount of
work that the kernel must do.

I/O Wait (x100) \~~~~iill
30

20

10

40

Number of File Fragments
(Extents)

80

:: o·
a en
CD
(')

o
::l
Co en

Figure 1. Effect of Number of File Fragmentation on Write, Allocation and I/O Wait Times

The test case consisted of allocating and writing 800 block
(3 Mbyte) files which had varying amounts of uniform
fragmentation. The file system where the files were
written was pre-fragmented with uniformly spaced
allocation of 20 blocks each. The space between
allocation was adjusted so that the 800 block allocation
would result in the desired amount of fragmentation.

Figure 1 shows the results of the tests. Note that for all of
the factors measured there are significant performance
penalties associated with fragmented files.

3. Allocation Strategies

We looked at three different strategies for identifying
partitions for file allocation: round-robin, first-fit and best­
fit. Each of these methods have characteristics which are
advantageous for different distributions of file sizes and
unique performance costs which are functions of size
distribution.

There are three round-robin allocation strategies currently
available for Cray Research systems [1]. Round-robin all
files (rrt) places each new file in succeeding partitions.
Directories and i-nodes are placed in the first partition
whenever possible. Round-robinfirst level directories
(rrd1) places those directories directly under the root
directory in succeeding partitions. Subsequent level
directories and normal files are placed in the partition
associated with the directory at the beginning of their path.
Round-robin all directories (rrda) places each newly
created directory in succeeding partitions. Normal files are
place on partitions associated with their parent directory.
Round-robin all files is the default and the strategy
selected for our study. We refer to it simply as round­
robin in the remainder of the paper.

Within a partition, file space for round-robin is allocated
on a first-fit basis. The partition is scanned from the
beginning for the first available contiguous region which
will satisfy the allocation request. If there are no
contiguous regions which can completely satisfy the
request, the largest region is allocated, and smaller regions
are selected from within the partition to complete the
allocation. If the partition becomes full before the request
can be satisfied, allocation spills over to the succeeding
partition.

First-fit is a technique we borrowed from memory
allocation systems [2]. With first-fit, each partition is
scanned until one is found which contains a contiguous
region of free space sufficiently large enough to satisfy the
allocation request. If no region in the file system is able to
provide a contiguous region large enough to satisfy the
request, the largest region is allocated and another first-fit
search begins to satisfy the remaining allocation. This
procedure is continued until the request is completely
satisfied or the file system becomes completely full.

If the first-fit search began at the first partition for each
allocation request, files would tend to become unevenly
distributed across partitions, with most of the files residing
in the lower partitions of the file system. This could
possibly result in performance penalties manifested
primarily in I/O wait time. Partitions with a
disproportionate number of files will most likely receive
more I/O requests, resulting in channel contention and
increased seek and rotational latency . To avoid this
problem, we begin the first-fit search on the partition
following the last allocation. This seems to give a
reasonable distribution of files across the file system's
partitions.

447

Like first-fit, we borrowed best-fit from memory allocation
techniques [2]. Unlike first-fit, best-fit searches for
contiguous regions of free space that either exactly satisfy
the allocation request or selects the smallest region who's
size is greater than the allocation request. Note that this
frequently requires searching the entire file system before
an allocation can be made. We deal with unsatisfiable
requests and file distribution in the same manner as first
fit. If a contiguous region cannot be found which is
greater than the request size, the largest region is allocated
and another best-fit search attempts to satisfy the
remaining request. Likewise, subsequent searches begin
following the partition of the last allocation to avoid free
space clustering.

4. Bitmap Scan Methods

The current UNICOS bitmap search function offers fairly
good performance, 14.0 milliseconds/megabyte. However
the increased demands of alternative allocation strategies
and the significant growth of file system sizes require
much higher performance bitmap functions.

The good performance of current bitmap search function in
UNICOS is primarily due to the use of the Cray leading
zero hardware instruction. This instruction allows
contiguous bit regions within a word to be processed in
one operation, offering significantly better performance
than bit at a time processing. However the current
implementation's potential performance is limited by
instruction scheduling. In this study we used a
significantly faster scalar bitmap search function with
performance of 5.7 ms/megabyte, a speedup of
approximately 2.5, which was created by Dean Nelson of
CRI software development.

In addition, a technique was developed that allows vector
processing to be used for bitmap searches. To use the
vectorized bitmap search the minimum number of zero
words that must be located in the bitmap to satisfy the
request is determined. This is done by subtracting 63 from
the request size and then dividing by the word size. For
example, an allocation of 191 bits would require at least
(191-63)/64 or 2 words of zeros in the bitmap to satisfy the
request. A bitmap region with two zero words would have
128 to 254 free bits depending on the state of the preceding
and trailing words. To locate space for a 191 bit allocation
"candidate" regions of 2 or more zero words are located in
the bitmap using a vectorized word at a time search. When
a "candidate" region is found the preceding and trailing
words are examined to determine the exact size and
starting location of the region. This technique can be used
for any allocation size but suitable free space may not be
identified for sizes less than 126 bits, depending on
alignment. In this study the vector bitmap search was only
used for allocations of at least 126 bits.

448

The performance of the vector bitmap search is .31
ms/megabit, 45 times the speed of the current scalar
search. Since the startup costs for the vector search are
low the vector search performance exceeds the improved
scalar search for all allocation sizes unless the total bitmap
size is very small (300-500 bits).

5. Simulation Models

In order to quantify the differences in these methods we
built two models of file system allocation and ran a
number of simulations. The factors we were interested in
were file fragmentation, free space fragmentation and
allocation time. We did not simulate 110 wait time or
write system time as it was clear from our measurement
study that these factors were a function of file
fragmentation and not directly a function of allocation
methods.

The first model was used to measure the effect of
allocation strategy on file fragmentation and allocation
strategy/bitmap scan methods on allocation time. This
model consisted of taking a snapshot of the temporary file
system on NCAR's Cray Y-MP8/864. This file system is
comprised of 16 partitions with three different sizes and 56
gigabytes total space. The file system had 42% free space
when the snapshot was taken. Allocation requests ranging
from 1 megabyte to 300 megabytes were submitted to the
simulation.

Figure 2 shows the simulation results for the effect of
allocation strategy on file fragmentation. First-fit and best­
fit produced considerably less file robin allocation
constrains the search to the currently selected device.
Round-robin allocation is unable to utilize more optimal
free regions that may be available on other devices.

Round-robin performance may be particularly poor with
file systems comprised of different size devices. Since the
round-robin allocation method does not take into account
different disk sizes, the smaller disks tend to fill up first.
As the free space on a disk nears zero, there are frequently
a large number of small remaining fragments. Since
allocation is restricted to the selected disk so long as there
is available space, a large allocation will be satisfied with
many small allocations, resulting in severely fragmented
files. As both first-fit and best-fit are able to examine the
entire file system, dissimilar device sizes will not
adversely affect file system performance.

Best-fit produced slightly less average file fragmentation
than first fit. We attribute this to the fact that best-fit saves
larger regions for later allocations. The small remainder
egions produced by best-fit were productively used by
small allocation requests.

Number of
File Fragments

(Extents)

300

File Size (Megabytes)

Figure 2. Effect of Allocation Strategy on File Fragmentation

Figures 3 and 4 show the effects of allocation strategy and
bitmap scan methods on allocation time for files ranging in
size from 1 megabyte to 300 megabytes. To get accurate
timing data, actual kernel bitmap search functions were
used in the simulation.

First-fit vector resulted in the least amount of CPU time
for file allocation. The vector bitmap scan is substantially
faster than the scalar for all allocation methods, but the
greatest gains were for first-fit and best-fit.

450

400

350

300

250

200

150

100

50

0

-- First fit - scalar

I " I P I
I' I

.. 1 !

- -- First fit - vector ,J: I ... t"lw<'·l
- - - - Round robin - scalar I J I I I 11.-",,····· I I 1.--1 I I I 1 ,,<,°'1 I I

CI)

--Round robin - vector ! . ". r-1 i L.~A'-vJ.~~.'''<--'' iii
-t---t--f---"-~--"-""""""'-T--.,I--t-+--1t--t--t--t--t--+, """""":,f'I, ~t-+-:t-~~~..,,~b,,<,,··,jl iii i

I ... I i I j
"C
C

()

.. ~ - i i _,.i.,o,,""v/~,l
~-I---I--I---I---I~"",--I-4---I--oI--I--oI--I---II--4-~"';;""",--I-~ .. "."" .. =I--4---I--01---!--+'--1--"--I---I~~

I ,s.. ...
L Q)

§ PI I
.' ! !

f
............

i
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

File Size (Megabytes)
Figure 3. Allocation Time

449

300

-- First fit - scalar

250 -t--t-+f -- - First fit - vectorl--f---t--t---+-+--f---t--t---+-+--+--t--t--+-+--f-....,..,--f--+--t---+---f

- - - - Best fit - scalar

200

50

o

o 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

File Size (Megabytes)
Figure 4. Allocation Time

The amount of CPU time required to do an allocation is
closely correlated to the resulting number of file
fragments. This is because the bitmap within a disk
boundary must be re-scanned for each file fragment. Note
the clear steps for first-fit and best-fit. These steps at 84,
168, and 248 megabytes correspond to 1, 2, 3 and 4 file
fragments.

An important finding that is difficult to see in the chart is
the performance of best-fit with smaller allocation sizes.
Best-fit performance is the worst for file sizes up to 11
megabytes for vector and up to 125 megabytes for scalar.
This is important when a large proportion of files are
small. The poor performance of best-fit, relative to first-fit
and round-robin, with small files is due to the requirement
of finding an exact fit before stopping the search. With
first-fit and round-robin an available region of sufficient
size can often be found for small allocations without going
very far into the bitmap. As the file size increases, first-fit
and round-robin must go deeper into the map to find a
suitable allocation, narrowing the difference between them
and best-fit.

The second model was used to measure the effect of
allocation strategy on file system fragmentation and
provide a different view of allocation strategylbitmap scan
methods on allocation time. In this model the file system
consisted of four partitions of varying sizes (1084368,
1084368, 813504, and 524640 blocks) with a total size of
3,524,880 blocks. File sizes were geometrically
distributed with a mean size of 2 megabytes. The

450

simulation allocated files until the desired percentage of
free space was reached and then random deletions were
done to maintain the targeted free space. Allocations
continued until a steady state was reached, after which the
file system bitmap was analyzed for fragmentation.

Assuming files are uniformly distributed in a file system
and file sizes are geometrically distributed, file system
fragmentation will increase as free space decreases. This
is because there are a larger number of small files deleted
than large files deleted, and small files are primarily
responsible for file system fragmentation.

Figure 5 shows the effect of allocation strategy on file
system free space fragmentation. One of the unexpected
findings was that first-fit resulted in the greatest amount of
file system fragmentation. Since first-fit always allocates
from regions large enough to satisfy requests (or the
largest available), highly fragmented areas are often left
untouched. Round-robin, on the other hand, allocates only
from the selected partition, sometimes using up numerous
small regions to satisfy a large allocation. While this
results in file fragmentation, file system fragmentation is
reduced.

It is interesting to note that file system fragmentation for
round-robin starts to drop off as the file system reaches
90% full.

One of the arguments against the use of best-fit is that it
leaves behind a large number of small unusable fragments.

30
40

50
60 % Free Space

70

80

90

10
20

Number of Free Space
Fragments

Figure 5. Effect of Allocation Strategy on File System Fragmentation

Yet in our study, best-fit produced the smallest amount of
file system fragmentation. We attribute this to the
distribution of file sizes was such that there were enough
small files to effectively use the fragmented regions.

Figure 6 shows the effect of allocation strategy and bitmap
scan method on allocation time. The results for first-fit
and round-robin are fairly intuitive. File system
fragmentation increases as the file system fills, as does the
average search time. Significant gains can be seen at all
points when the vector scan is used. Note that first-fit and
best-fit benefit more from the vector search than does
round-robin. As expected, the cost of best-fit allocation is
significantly greater than the other methods. Note that
there is a slight decrease in the allocation time for best-fit
as the file system fills up, just the opposite of first-fit and
round-robin. This can be attributed to the fact that as the
file system fills there are a greater number of fragments,
increasing the probability of finding an exact fit. Since
best-fit frequently must search the entire bitmap, the
average search distance does not increase as the file system
fills.

Another result is that first-fit does a much better job of
balancing the disk usage. With best-fit, the simulations
show a large increase in allocation time between 50% and
40% file system free space. This increase is caused by a

partition that has become nearly full, whereas in the first­
fit case, none of the disks fills until between 20% and 10%
free space has been reached.

6. Summary and Conclusions

Of the three allocation methods studied, first-fit and best­
fit resulted in less file fragmentation, since both can scan
other disks when large blocks of free space cannot be
found in the currently selected disk. Round-robin
allocation must continue to allocate from the same disk
until there is no remaining space on that disk.

First-fit allocation is faster than round-robin because it
results in fewer file fragments. The close correlation in
Figure I of CPU time and number of file fragments clearly
illustrates the cost of file fragments. As expected, best-fit
required the most CPU time for allocation due to the
increased search distances to find an exact fit.

An important detail not illustrated in the charts is that the
vector bitmap scan is significantly faster for all allocation
sizes that are large enough to take advantage of vector
scan. In this study the size threshold for using vector scan
was 126 blocks. At the vector threshold the average
allocation time for the scalar scan was 471 microseconds,
compared to 29 microseconds for the vector scan.

451

18,000

16,000

Microseconds

50

% Free Space

Figure 6. Effect of Allocation Strategy on Allocation Time.

Figure 6 shows that for file allocation best-fit required the
greatest amount of CPU time. However Figures 3 and 4
show that the allocation time for large files using best-fit is
often less than that for round-robin. This is because the
performance of best-fit is far worse than the other methods
for small files. Since the file sizes used in the tests
illustrated in Figure 6 are geometrically distributed, there
are many more small files in the simulation.

Since first-fit resulted in the most free space
fragmentation, one would also expect greater file
fragmentation, however, this was not the case. Since first­
fit is able to use the most contiguous regions, it is less
affected by free space fragmentation.

With these findings we conclude that first-fit allocation
with vector bitmap scan is the best choice. This
combination results in less allocation time than any other
combination. File fragmentation is slightly greater than
best-fit, but the difference is so small that it is an
acceptable tradeoff given the significantly greater
allocation time for best-fit.

452

We have implemented first-fit allocation/vector scan on
NCAR's Cray Y-MPS/S64 and Cray Y-MPI2D under
UNICOS 6.1.6 and UNICOS 7.0.3. First-fit
allocation/vector scan will be available on all NCIFS file
systems in UNICOS S.I.

7. Acknowledgements

We would like to thank Greg McArthur and John Sloan for·
their helpful comments and Belinda Housewright for her
help in preparing this paper.

8. References

[1] UNICOS System Administration, Volume 1, SG-
21137.0.

[2] D. E. Knuth, "The Art Of Computer Programming,
Volume 1, Fundamental Algorithms, Addison­
Wesley (1975).

Performance EvaluationlMPP MIG

The Performance of Synchronization and Broadcast Communication on the
Cray T3D Computer System

F. Ray Barriuso

Cmy Research, Inc.
Eagan, Minnesota

ABSTRACf

The Cray T3D Computer System provides a set of hardware features that allow for the effi­
cient implementation of synchronization primitives. This paper will briefly describe the hard­
ware support for fast synchronization and discuss the design and performance of the
synchronization routines that implement barriers, locks, critical regions, and events as well as
the broadcast routine used by the Cray T3D Fortran Compiler System (CRAFT).

1.0 Introduction

The CRAFT Fortran Programming Model [pa93]
describes a set of shared memory synchronization
primitives. These primitives include barriers, locks,
critical sections, and events. The Cray TID Computer
System contains some efficient mechanisms for
implementing these primitives. These mechanisms
include the hardware barrier/eureka network, the
atomic swap mechanism, and automatic cache
invalidation. The barrier/eureka network is used to
implement barrier synchronization which notifies all
processors when all processors have reached a
particular point in a program. This network is also used
to implement a specific type of event communication
called eureka synchronization which can be used to
alert all processors when one processor has reached a
particular point in the program. The atomic swap
mechanism is used for the implementation of locks,
critical regions, and memory based event
synchronization. Automatic cache invalidation is used
to insure that blocked processors do not consume
memory bandwidth while waiting to pass through a
synchronization point This paper will discuss in some
detail the hardware support for synchronization and the
design and performance of the different
synchronization routines.

Broadcast is a form of communication where one pro­
cessor sends some amount of data to many other proces­
sors. This paper will discuss the algorithms used to
implement broadcast communication on the Cray TID
and then present the performance of broadcast for differ­
ent numbers of processors and different size word trans­
fers

2.0 Hardware Support for Synchronization

A brief description of the T3D hardware features used
to support the synchronization primitives follows.

2.1 Barrier Registers

The hardware supportS a pair of 8-bit memory-mapped
barrier synchronization registers, BSRO and BSRI.
BSRO has valid bits in positions 0 -7 and BSRI is valid
in bit positions 8 - 15. Each processor possesses its own
private pair of barrier registers. The T3D
UNICOS-MAX operating system has reserved BSRI
for its own use, so only BSRO is available for user
synchronization. Although there are eight barrier bits in
BSRO that are available to the user, not all eight bits are
necessarily available to anyone application program. In
fact, although this may change in the future, currently
the operating system allocates exactly one barrier bit
for each user application.

Copyright © 1994. Cray Research Inc. All rights reserved.

455

456

2.2 Eureka Barriers
The T3D hardware supports a mechanism in which the
bits in each barrier register can be programmed to
function in the conventional barrier mode or in eureka
mode. In eureka mode, the conventional barrier AND
tree is used as an OR tree using negative logic. So,
instead of each processor waiting· for all other
processors to satisfy the barrier, all processors wait for
one processor to satisfy the eureka. Logically this is all
processors waiting for an event that one of the
processors will eventually satisfy. As with
conventional barrier bits, each user application is
allocated one eureka bit by the operating system.

2.3 Atomic Swap
The TID hardware supports an atomic swap capability
that is ideally suited for shared memory locks. This
capability allows a processor to perform an indivisible
read-write sequence on any memory location, local or
remote.

2.4 Automatic Cache Invalidation
The DEC Alpha EV4 RISC processor chip contains an
8K byte data cache [DEC91b]. It is a write-through,
direct-mapped, read-allocate, physical offset-tagged
cache that is organized as 256 lines of 4 64-bit words
each.

A processor can set itself up such that any remote write
into its local memory can invalidate the data cache line
associated with that local address. A blocked processor
can then spin on a local memory lock by doing a
cached read once and then continue testing the lock in
cache without consuming memory bandwidth. When a
remote processor writes to the lock, the cache line on
which the processor was spinning will be
automatically invalidated causing the local processor
to miss the cache and fetch the updated memory
location containing the lock.

2.5 Write Barriers
The hardware supports a memory barrier instruction
that can be used to insure that all subsequent loads or
stores to local memory will not access memory until
after all previous loads and stores to local memory
have completed.

The hardware also implements a memory-mapped
register, the User Status Register (USR), that indicates
if there are any outstanding remote write request. This
can be used to verify that all remote writes have
reached their destinations.

Together, the memory barrier instruction and the USR
can be used to insure that all writes, whether local or
remote, have been written to memory before continuing
with execution. This is similar to executing a cmr
instruction on a Cray Y-MP computer system.

3.0 Synchronizations Primitives

3.1 Barriers
Barriers are a fast mechanism for synchronizing all

tasks at once. They are expected to be extremely fast
Barriers are implemented with the following CRAFr
compiler directive:

CDIR$ BARRIER

Implicit barriers occur in CRAFT programs at the
bottom of distributed loops, when shared data is
redistributed, and when shared arrays are allocated.
Within serial regions of code, the barrier directive is a
no-oPe

Fortran programs not using the CRAFT Fortran
Programming Model can call a barrier library routine.

CALL BARRIER ()

The barrier routine provides direct access to the
hardware barrier mechanism and as such, is somewhat
faster than the barrier directive. Unlike the barrier
directive, if the barrier routine is called from outside a
parallel region, the program will deadlock. The barrier
routine must be called from within a parallel region
and all processors must participate. The user can guard
against calling the barrier routine from outside of a
parallel region with the use of the IN PARALLEL
compiler intrinsic [pa93]. -

The barrier mechanism actually consists of two parts,
setting the barrier and waiting for the barrier to clear.
As discussed in [Fr92], the point at which a processor
sets the barrier and the point at which the processor
waits for the barrier need not coincide. They do
coincide with the BARRI ER directive and the
BARRI ER routine. However, there are some user
applications that lose a large amount of time waiting at
barriers when the computation preceding the barrier is
not homogeneous. The following three routines allow
early arriving processors to move forward into an
independent phase of the computation while the slower
processors catch up:

CALL SET_BARRIER()
CALL WAIT_BARRIER()
L = TEST_BARRIER()

The C version of these library routines are defined as:

void barrier(void);
void set_barrier(void);
void wait_barrier(void);
int test_barrier(void);

SET BARRIER sets the barrier. It indicates that the
calling task has arrived at a barrier synchronization
point. WAIT_BARRIER suspends task execution until
all tasks arrive at the barrier. TEST_BARRIER returns
the state of the barrier: zero (C) or .FALSE. (Fortran) if
barrier is not satisfied, nonzero (C) or . TRUE. (Forttan)
otherwise.

Example:

(block 1: must be completed
before block 2 is started)
CALL SET_BARRIER () ;
(unconstrained calculations)
CALL WAIT_BARRIER();
(block 2: cannot be started
until block 1 is complete~

3.1.1 Barrier Algorithm

The basic barrier algorithm is not at all complex.
Ignoring deadlock detection and debugging support,
the barrier routine looks like:

flush the write buffers;
wait for remote writes to complete;
set the barrier bit;
while (barrier bit is set)

continue;

3.1.2 Barrier performance

The barrier routine was timed in the following fashion:

CALL BARRIER ()
Tl = IRTC ()
CALL BARRIER ()
TIME = IRTC() - Tl

The mean time to execute the barrier routine is
approximately 1.5 microseconds {Jl.secs) and this is
constant with respect to the number of processors as
the following data indicates (times are in clock
periods):

Nllm~r Qf PES M~Tim~ SUI. I&vWUQn
32 242 19
64 255 21
128 257 24
256 258 26

The small, relatively invariant mean time indicates a
fast, efficient barrier network that scales well with the
number of processors.

3.2 Locks
Locks are used to serialize access to shared data. The
lock operations are supported by three subroutines:

CALL SET_LOCK(lockword)
CALL CLEAR_LOCK(lockword)
L - TEST_LOCK(lockword)

The argument lockword must be a shared integer
variable or array element. The lock routines issue an
error message and abort if lockword is not declared to
be shared. The subroutine SET_LOCK sets the lock. If
the lock is set, the processor calling SET_LOCK
spin-waits until the lock is cleared, otherwise the lock
is set immediately. CLEAR_LOCK clears a lock
whether it is set or not. TEST_LOCK atomically sets a
lock and returns the state that the lock had (whether set
or cleared) prior to the test.

3.2.1 Design Considerations

The lock routines were designed with the following
assumptions and constraints:

1. Locks are used to serialize access to data as
opposed to code. Therefore, they do not generally
expect heavy contention for the shared lock word.

2. Blocked processors should not consume any
memory bandwidth.

3. The lock routines should be able to efficiently sup­
port a large number of concurrently active locks.

The hardware atomic swap and automatic cache line
. invalidation mechanisms are ideally suited for

implementing a non-polling software lock. The atomic
swap mechanism is used to insure sequential access to
the lock word. Automatic cache invalidation is used to
allow a processor that is blocked on a lock to spin-wait
without consuming any network or memory
bandwidth. Spin-waiting in cache versus memory is
important if other processors are reading or writing
large amounts of data into the blocked processor's
memory. However, the cost to set up and clear
automatic cache invalidation is noticeable; It cost
about 120 clock periods (cps) to set up automatic cache
invalidation and another 120 cps (roughly 0.8 J,1SeCs) to
clear it again. The cost to set up automatic cache
invalidation can generally be hidden since the
processor is blocked from entering the critical region.
The overhead to clear this mechanism, however, is
totally exposed.

The lock algorithm implements a FIFO wait queue in
which the user defined lock word is used to hold the

457

458

virtual PE numbers of the processors that are at the
head and tail of the wait queue. Blocked processors are
added to the tail of the queue and unlocked processors
(processors that were blocked but are now being
allowed into the protected region) are removed from
the head of the queue. The wait queue itself is a
:block(1) distributed array that is N$PES long [pa93].

3.2.2 Lock Algorithm

The basic algorithms for SET LOCK and
CLEAR LOCK follow:

SET_LOCK:

while «(lock = atomic_swap(lockword,BUSY» = BUSY)

delayO; 1* wait a bit before ttying again *'
if (lock = LOCKED) { 1* then add to tail of wait queue *'

if (lock.tail 1= EMPTY) {

waicqueue[mype] = lock.tail;

lock.tail = mype;
} else {

lock.head = lock.tail = mype;
}

locaClock[mype) = BLOCKED;

lock word = lock;
while (locaClock[mype)= BLOCKED)

continue; '* spin-wait in cache *'
} else {

lockword = LOCKED;

CLEAR_LOCK:

while «(lock = atomic_swap(1ockword,BUSY» = BUSy) '* no delay gives priority to CLEAR_LOCK *'
continue;

flush write buffer,
wait for all remote writes to complete;
if (lock = LOCKED) {

if (lock.head 1= EMPTY) { '* wakeup next PE *'
if (lk.head 1= lk.tail) {

nexcnode = atomic_swap
(wait_queue[lk.head),zERO);

locaClock[1k.head] = UNLOCKED; '* move next PE to head of queue *'
lk.head = next_node;

} else { 1* only one task is blocked *'
locaClock[1k.head] = UNLOCKED;

lock.head = lock.tail = EMPTY;

lockword = lock;

} else { '* No tasks waiting *'
lockword = UNLOCKED;

3.2.3 Lock performance

The time to set an unlocked lock without competition
and the time to clear a lock that does not have any
waiting processors is approximately 2.8 J..lSeCs each.
The time to unlock a lock with blocked processors
depends on the number of processors blocked as the
following table shows:

Number of blocked PEs
1
3
7
15
31

Mean Time (usecs)
7.5
9.0
10.1
11.6
12.6

When only one processor is blocked on the lock, the
processor calling CLEAR_LOCK performs one
atomic-swap on the lock word and then one remote
write into the blocked processors memory in order to
wake that processor up. When there are more than one
processors blocked, the processor calling
CLEAR_LOCK must also move the next processor in
the wait queue to the head of the queue. This takes an
additional atomic-swap. However, this alone does not
account for the increase in latencies as more processors
are blocked on the lock. For this experiment, when
only one processor was blocked on the lock, it was
always the inter-node processor neighbor. (Le. When
processor 0 had the lock, it was always processor 1
who was blocked and vice versa.) When there are more
than one blocked processors, then the majority, if not
all, of the atomic-swaps and remote writes traverse the
network. As the number of processors increase, the
average distance in the torus between the processor
who has the lock and the next processor in the wait
queue also increases. Thus, the mean time to acquire
the lock, wake the processor at the head of the queue,
and move the next processor to the head of the queue
also increases.

Another interesting measurement is to determine the
time is takes to get the last processor into a highly
contended locked region. The following code segment
attempts to measure this by computing the mean time
for each processor to get into the critical region over a
large number of runs and then finding the maximum
mean time for any processor:

do i = 1. n1ests

call barrierQ

11 =irtcO
call seclock(lock)
times (i) = irteO - t1
call elear_lock(lock)

enddo
mean = compute_mean(times.ntests)

max_mean = max (mean)

Notice that this doesn't strictly measure the time for
the last processor for each loop iteration since one can
never know which processor will be the last to arrive.
However, by taking the maximwn of the averages
across all processors, we are determining the mean
time into the locked region for the processor who was
most often at the tail of the queue.

Number of Processors Max. Mean Time (~
2 9.0
4 35.5
8 75.7
16 198.4

3.3 Critical Sections
A critical section is a specialized form of lock that
protects a region of code from being executed
concurrently. Critical sections are implemented with
the following CRAFf compiler directives:

CDIR$ CRITICAL
CDIR$ END CRITICAL

Every CRITICAL directive must have a matching
END CRITICAL directive within the same program
unit and the directives must be perfectly nested.
Branching into and out of critical sections is not
allowed.

3.3.1 Design Considerations

Critical regions were designed with the following
assumptions:

1. Critical regions are used to serialize access to code
as opposed to data. Therefore, heavy contention at
the CRITICAL directive is expected.

2. Critical regions will be used to protect relatively
small sequences of instructions, such as incre­
menting a shared counter. The important perfor­
mance consideration is the time it takes to get all
processors through the protected region. There­
fore, these algorithms do not take the time to
enable and disable automatic cache invalidation;
Blocked processors spin-wait in memory.

The code for CRITICAL and END CRITICAL use a
mutual exclusion algorithm proposed by [Sc90]. This
algorithm is more efficient than that used by
SET_LOCK and CLEAR_LOCK in the following ways:

1. In the algorithm for CRITICAL, the processor
entering an uncontested critical region simply per­
forms one remote atomic swap operation to
acquire the critical region lock. With SET_LOCK,
the processor performs one remote atomic swap
and one remote write in order to acquire the lock.

2. In the algorithm for CRITICAL, a processor that
is blocking on the critical region lock performs
one remote atomic swap and one remote write.
With SET_LOCK, the processor performs at least
one atomic swap and two remote writes. If the
lock word is in the BUSY state, the processor may
issue several remote atomic swaps.

3. In the algorithm for END CRI T IAL, a processor
leaving a highly contended critical region per­
forms one remote write in order to wake up the
processor at the head of the wait queue. With
CLEAR_LOCK, the processor performs one
remote atomic swap and two remote writes.

4. In the algorithm for END CRI TICAL, a processor
leaving a critical region in which no other proces­
sors are waiting performs one remote atomic
swap. With CLEAR_LOCK, the processor per­
forms one remote atomic swap and one remote
write.

Although more efficient, the critical region mutual
exclusion algorithm is unsuitable for use in the general
lock routines. The largest drawback is that every user
lock must have its own wait queue. This means that in
the general case, if there are 64 locks in a user
application, there is a possibility that the application
will also need 64 wait queues. For a given application,
there is no way for the library to know how many wait
queues to allocate statically. The wait queues could be
allocated dynamically, but the cost of this dynamic
allocation plus the cost of managing the different
queues within SET_LOCK/CLEAR_LOCK seems at
least as expensive as the current lock routines.

A smaller drawback of the critical region mutual
exclusion algorithm is that it does not guarantee a
FIFO wait queue. There does exist a small timing
window where an early arriving processor to the
critical region could be shuffled to the end of the wait
queue. Although this window is fairly small, it does
exist and early arriving processors do sometimes get
shuffled to the end of the wait queue. Having a strict

459

460

FIFO wait queue has been an important issue for the
LOCKON/LOCKOFF routines on the Cray Y-MP/C90
computer systems with some of Cray's customers but it
is not clear if this is an issue for MPP systems.

Although these drawbacks limit the algorithm's
usefulness for the general lock routines, it is a useful
algorithm for critical regions. In the absence of task
teams, critical regions are implemented with one lock.
This implies that only one wait queue is needed and it
can be statically allocated by the start-up routine. Also,
it is believed that a strict FIFO wait queue for critical
regions is not necessary.

3.3.2 CRITICALIEND CRITICAL Algorithm

The general algorithms for CRI T I CAL and END
CRI TICAL follow.

CRITICAL:
lock = _atomic_swap(critiaClock,mype);
if (lock 1= UNLOCKED) (

locaClock[mype) = BLOCKED;
criC waicqueueLMY _PEOJ = ZERO; '* add PE to the wait queue *'
criC waicqueue[1ock) = mype;
while (locaClock[mype)= BLOCKED)

continue;

END CRlTIAL:
flush write buffer;
wait for all remote writes to complete;

if (criCwait_queue[mype) = ZERO) (

1*
* No other PEs appear to be waiting. We
* need to make sure.

*' lock = _atomic_swap(criticaClock,zERO);

if (lock = mype)
return;

'* * We have accidentally removed a processor
* from the wait queue. We have to put it back.

*' usurper = atomic_swap(lockword,lock);

while (crit_waicqueue[mype) = ZERO)

continue; '* wait for PE to finish enqueueing *'
if (usurper 1= ZERO) (

1*
* Some PE got into the queue ahead of our

* victim. Place the victim at the tail of
* of the wait queue. For this unfortunate
* PE, the wait queue is no longer FIFO.

*' cricwaicqueue[usurper) = crit_wait_queue[mype);
} else (

locaUock[criCwait_queue[mype)) = UNLOCKED;

} else (

locaClock[cricwaicqueue[mype)) = UNLOCKED;

3.3.3 Critical Region Performance

Probably the most interesting statistic for critical
regions is the time it takes to get a specified number of
processors through an empty critical section. This time
was measured using the following code segment:

do i = 1. ntests
call barrierQ

tl =irtcO
cdir$ critical

cdirS end critical
times(i) = irtcO -tl

enddo
mean = compute_mean(times.ntests)
max_mean = max(mean)

As with the lock performance test, this test finds the
maximum of the averages across all processors in
order to compute the mean time into the critical region
for the processor who was most often the last to arrive.
The results from this test follow:

Number of PEs
1
8
32
64
128
256

Max. Mean Time (J.LSWl
5.7

26.0
85.0
184.0
394.0
945.0

The time for one processor to execute
CRITICAL/END CRITICAL is almost identical to the
time for one processor to execute
SET_LOCK/CLEAR_LOCK. However, heavily
contended critical regions scale much better with the
number of processors than do the lock routines.

3.4 Events
Events provide a method of program synchronization
that is used to communicate the state of execution of
one task to other tasks. The event operations are
supported by four subroutines which can be called to
execute in memory or eureka mode:

CALL SET_EVENT([event])

CALL WAIT_EVENT([event])

CALL CLEAR_EVENT([event])

S = TEST_EVENT([event])

SET_EVENT sets, or posts, an event. It declares the
event to have occurred. WAI T _EVENT suspends task
execution at a cleared event until the specified event is
posted by SET_EVENT. CLEAR_EVENT clears the
event. TEST_EVENT returns the state of the event:
.TRUE. if set, .FALSE. otherwise. The argument to the
event routines is optional. If an argument is supplied to
the event routines, it must be a shared integer variable
or array element. (Note that this restriction implies that
memory mode events are only available to CRAFf
programmers.) If these routines are called without an
argument, then the hardware eureka mechanism is used
for event communication.

3.4.1 Design Considerations

There are two ways that the event functions can be
used: in memory mode or in eureka mode. In memory
mode, the argument to the event routines must be a
shared integer variable. If the event routines are called
without an argument, then they use the T3D hardware
eureka mechanism for event communication.
Depending on the mode, the event routines are used in
slightly different ways.

3.4.2 Memory Mode Events

Like the lock routines, memory mode events will use
the hardware atomic swap mechanism and automatic
cache line invalidation. The sign bit of the event word
will be used for event communication. That is,
SET_EVENT will set the sign bit in the event word and
CLEAR_EVENT will clear the sign bit. As with
traditional Cray macrotasking, CLEAR_EVENT is
usually called immediately after the call to
WAIT EVENT.

The memory mode event routines implement a binary
tree wait queue. A binary tree is used to shorten the
time it takes to wake up the last arriving processor
from N to O(log2N) where N is the number of
processors blocked on an event. Another property of
using a binary tree structure is that multiple processors
can place themselves onto the tree concurrently. That
is, one processor can be enqueueing itself on the right
side of the tree while another processor is enqueueing
itself on the left.

The data structures used to implement this wait queue
are the same data structures used for the lock routines.
The difference between events and locks is that the
event routines place two PE numbers in each element
of wait queue in order to implement a binary tree. The
enqueueing algorithm is designed to insure that the tree
is always balanced.

3.4.3 Eureka Mode Events

Eureka mode events use the T3D eureka mechanism.
This mechanism requires that all processors
participate. Specifically, all processors must call
CLEAR_EVENT before any processor can test, wait, or
set the eureka event. In eureka mode, CLEAR EVENT

is used to initialize the eureka barrier bit to the cleared
state. It does this by setting the eureka and barrier bits
and then waiting at the barrier until all processors have
armed their eureka bits. Although it is necessary for all
processors to clear the eureka mode event before
beginning the eureka activity, it is not necessary for all
processors to ever wait for the eureka event to be set.
However, before another eureka activity can be started,
all processors must once again call CLEAR_EVENT to
initialize the eureka barrier bit.

Since eureka mode events do not rely on shared
memory, this event mechanism is made available to C
applications through the following routines:

461

462

void set_event(void);
void wait_event(void);
void clear_event(void);
int test_event(void);

These routines are used exactly like their Fortran
counterparts with the exception that the eversions
take no arguments and only execute in eureka mode.

3.4.4 Event Algorithm

The general algorithms for the memory-mode portion
of SET_EVENT and WAIT_EVENT follow. Many of
the details have been left out for clarity and brevity.
Note that since the event word is the root node of the
wait queue, it has to be special cased for the first two
processors blocking on the event; All other processors
will write to the wait queue.

SET_EVENT:

while «event = atomic_swap(event.BUSY» = BUSY) '* no delay favors SET_EVENT over WAIT_EVENT *'
continue;

if (evenLstate 1= POSTED) {

if (evenLleft 1= EMPTY)

locaCevent[evenLleft] = POSTED;

if (ev->right 1= EMPTY)

locaCevent[event.right] = POSTED;

event.right = event.left = EMPTY;

event. state = POSTED;

flush the write buffer;

wait for remote writes to complete;

event[O] = ev;

WAIT_EVENT:

while «event = atomic_swap(eventword.BUSY» = BUSY)

delayO; 1* wait a bit before trying again *'
if (evenLstate = CLEARED) {

pe_state = UNASSIGNED;

do { 1* add PE to the binary tree wait queue *'
if (evenLq_state == LEFf) {

event.q_state == RIGHT;

if (evenLleft = EMPTY) (

event.left = mype;

pe_state = ASSIGNED;

1*
* Set up local wait word

* and wait in cache.

*' local_event[mype] = BLOCKED;

[eventword I wait_queue] = event;

while (locaCevent(mype)) == BLOCKED)

continue; 1* spin in cache *'
1*
* Event occurred; Wake up PEs in the next node.

*' while «next_node = atomic_swap

(wait_queue[mype].BUSy»=-BUSy)

continue;

locaCevent[next_node.right] = POSTED;

locaCevent[next_node.left] = POSTED;

) else { 1* get next node in wait queue *'
while «next_node = atomic_swap

(wait_queue[event.left].BUSY» = BUSY)

continue;

1*
* Next node is BUSY so free the node above.

*' [eventword I wait_queue] = event;

event = next_node;

} else {

ev->q_state = RIGHT;

(SamI! algorithm as for LEFT using RIGHI)

} while (pe_state 1= ASSIGNED);

} else {

event[O] = ev; '* event is already posted *'

3.5 Event Performance

3.5.1 Eureka Mode Events

The routine CLEAR_EVENT executes in 1.5 JlSCCs
when executed in eureka mode which, not
coincidentally, is the same time as executing the
BARRIER routine. This makes sense since
CLEAR_EVENT clears the eureka bit and then waits at
a barrier until all processors have cleared their eureka

bit. The clearing of the eureka and the setting of the
barrier bit occur in the same store instruction.

The SET EVENT routine executes in 1 J.1SeC. This
includes the time to flush all writes to memory, check
on the completion of remote writes, overhead from
deadlock detection, and debugging support.

The routine WAI T EVENT executes in 1.5 J.1SeCs. This
should be expected since waiting on a eureka and
waiting on a barrier are the same thing as far as the
algorithm and the hardware are concerned.

3.5.2 Memory Mode Events

The memory mode version of CLEAR EVENT
executes in 2.5 J.1SeCs.

The SET EVENT routine execution time depends
upon the n~mber of processors blocked on the event as
follows:

Number of blocked PEs
o
1
>1

MeanTime(~

3.5

4.5
5.0

Currently, it takes approximately 5 J.1Secs to execute
WAIT EVENT when the event is already posted. This
time Should be around 2.9 J.1Secs; It appears that this
poor performance is being caused by inefficiencies in
the MPP C compiler. This should be fixed by our first
release.

When timing the WAIT_EVENT routine when the
event is not posted, what is actually measured is the
time to empty the entire event wait queue. The
following section of code was used to measure this:

do i = I, ntests
call barrierQ

if (mype .eq. (n$pes - 1» then
delay = irtcO + (n$pes * 2(00)

3 if (irtcO .Ie. delay) gOla 3
tl =irtcO
call set_event(evar)
call barrierQ

times(i) = (irtcO - tl) - barriecwaiCtime
call c1eacevent(evar)

else
call waicevent(evar)
callbarrierQ

endif

enddo

if (mype .eq. (n$pes - 1» then
mean = compule_mean(times,ntests)

endif

The results from this experiment follow:

Number of blocked PEs
1

MeanTime(~

11.2
3 15.5
7 19.3
15 22.6
31 26.3
63 29.3

This table shows that not only are memory mode
events fast, they also scale very well with the number
of processors.

4.0 Broadcast Communication

The COpy parameter of the END MAS TER directive
generates a call to a library broadcast routine which
broadcasts the data from processor 0 to all other
processors. This broadcast routine implements two
algorithms: one for low-latency, small-word-count
transfers called the bisection broadcast and another for
high-bandwidth, large-word-count transfers called the
pipelined broadcast When the broadcast routine is
called, it chooses the appropriate algorithm to execute
based on the number of processors participating in the
broadcast and the number of words to broadcast.

The bisection broadcast algorithm works as follows
("-+" indicates a write operation of the broadcast data):

First time step:
processor[O] -+ processor[n$pes/2]

Second time step:
processor[O] -+ processor[n$pes/4]

processor[n$pes!2] -+ processor[3n$pes/4]

Third time step:

etc.

processor[O] -+ processor[n$pes/8]
processor[n$pes/4] -+ processor[3n$pes/8]
processor[n$pes!2] -+ processor[5n$pes/8]
processor[3n$pes/4] -+ processor[7n$pes/8]

This algorithm seems to be most efficient when the
number of processors participating in the broadcast is
less than or equal to 32 or when the number of words
to broadcast is less than approximately 1024 words. It
should also be noted that this algorithm is fairly
insensitive to the shape of the partition (the number of
processors in each of the X, Y, and Z directions on the
physical torus).

The pipelined broadcast algorithm is a pipelined node
broadcast where the even numbered processor in each

463

464

node sends a subset or block of the broadcast data to
the even numbered processor in the next two nodes in a
binary tree. The number of words in each block of
broadcast data written depends on the number of
processors participating in the broadcast and the
number of words to broadcast. Once a processor
receives the first block of broadcast data, it
immediately begins to send it to the next node in the
broadcast tree. As the broadcast continues, soon all of
the even numbered processors are sending blocks of
data to their children in the broadcast tree concurrently.
Once each even numbered processor has finished
sending all of its broadcast data to its two even
numbered children, it then sends all of the data to its
internode, odd-numbered processor partner in one
large block. An illustration follows. The numbers
shown are virtual processor numbers.

First Time Step:

PEO
"block #1

PE2 PE4

Second Time Step:

PEO

" block #2
PE2 PE4

" "block #1

PE 6 PE 8 PE lOPE 12

Last Time Step:

processor[O] ~ processor[l]
processor[2] ~ processor[3]
processor[4] ~ processor[5]
etc.

This algorithm is most efficient when more than 32
processors are participating in the broadcast and when
the number of words to broadcast is larger than 1024.
The drawback to this algorithm is that it is fairly
sensitive to the shape of the partition. It is fastest when
the partition is shaped as a perfect cube.

4.1 Broadcast Performance

The following table shows the time to complete a
broadcast for different numbers of processors and
different numbers of words.

PES
32
64
128
256

1 word
11.1
12.7
14.2
16.0

MeanTime(~

128 words lk words 16 K words
53.9 337 5162
64.1 404 4836
74.1 470 5001
83.8 538 6770

The shapes of the partitions for this experiment were:

Partition Size (PEs) Partition Shape (X x y x Z)
32 8 x 2 x 2
64 8x2x4
128
256

8x4x4
16 x4 x4

The broadcast routine is, in general, very fast. An
anomaly in the performance data does exist where it is
faster to broadcast 16K words of data to 128
processors than it is to broadcast the data to 32
processors. The is because the bisection broadcast
algorithm is fastest for all word sizes when the
broadcast involves just 32 processors; The start-up
costs for the pipelined broadcast is too large for so few
processors. However, the pipelined broadcast
algorithm is able to broadcast 16K words to 128
processors faster than the bisection broadcast
algorithm can broadcast 16K words to 32 processors.

5.0 Conclusion

The hardware support for the synchronization routines
was briefly described and the algorithms used to
implement barriers, locks, events, and the broadcast
routines were discussed. The trade-offs were presented
between using locks and critical region directives and
between using eureka or memory mode events. It is
clear from the performance results presented that
synchronization and broadcast communication on the
Cray T3D Computer System is very efficient.

6.0 References

[DEC91b] The EV3 AND EV4 SPECIFICATION -
DC227, DC228, Version 2.0, May 3, 1991. Digital
Equipment Corp.

[Pa93] MPP Fortran Programming Model, Douglas
M. Pase, Tom MacDonald, and Andrew Meltzer.
CRA Y Internal Report, February 1993. To appear in
"Scientific Programming," John Wiley and Sons.

[Fr92] Fast Mechanisms/or Quasi Synchronization, P.
Frederickson, K. Lind. Draft 1.0, Technical Report,
August 21, 1992. Cmy Research Inc., Los Alamos,
NM.

High Performance Programming Using Explicit
Shared Memory Model on the Cray T'3D1

Subhash Saini2 and Horst D. Simon
Numerical Aerodynamic Simulation Facility

NASA Ames Research Center, Mail Stop 258-6
Moffett Field, CA 94035-1000, USA
email: {saini, simon}@nas.nasa.gov

Phone: S. Saini: 415-604-4343, H.D. Simon: 415-604-4322
FAX: 415-604-4377

and
Charles Grassl

Cray Research, Inc.
655F Lone Oak Drive

Egan, MN 55121
Phone: 612-683-3531
FAX: 612-683-5599

email: cmg@magnet.cray.com

Abstract

The Cray T3D system is the first-phase system in Cray Research, Inc.'s (CRI) three-phase
massively parallel processing (MPP) program. This system features a heterogeneous architecture
that closely couples DEC's Alpha microprocessors and CRI's parallel-vector technology, i.e., the
Cray Y-MP and Cray C90. An overview of the Cray T3D hardware and available programming
models is presented. Under Cray Research's Adaptive Fortran (CRAFT) model four programming
methods (data parallel, work sharing, message-passing using PVM, and explicit shared memory
model) will be available to the users. However, at this time data parallel and work sharing
programming models are not yet available. The differences between standard PVM and CRI's
PVM are highlighted with performance measurements such as latencies and communication
bandwidths. We have found that the performance of neither standard PVM nor CRI's PVM
exploits the hardware capabilities of the T3D. The reasons for the less than optimal performance
of PVM as a native message-passing library on T3D are presented. This is illustrated by the
performance of the NAS Parallel Benchmarks (NPB) programmed in the explicit shared memory
model on the Cray T3D. In general, the performance of standard PVM is about 4 to 5 times less
than what can be obtained by using the explicit shared memory model. The issues involved (such
as barriers, synchronization, invalidating data cache, aligning data cache etc.) while programming
in the explicit shared memory model are discussed. Performance data for the NPB using the
explicit shared memory programming model on the Cray T3D and other hi~hly parallel systems
such as the TMC CM-5, Intel Paragon, Cray C90, IBM-SP1, etc. is presented.

1. S. Saini and H.D. Simon are employees of Computer Sciences Corporation. This work is supported by
NASA Ames Research Center through contract NAS-129461.

2. Presenting author.

465

1: Introduction
The introduction of the CRAY T3D by Cray Research Inc. (CRI) in late 1993 has been a

significant event in the field of massively parallel supercomputing. The T3D promises a major
advance in highly parallel hardware with respect to a low latency (1 micro second) and high
bandwidth (125 MB/sec) interconnect. For comparison, latency for Intel's Paragon is 120 micro
seconds under Open Software Foundation (OSF)/1 AD and 90 micro seconds under Sandia
University of New Mexico Operating System (SUNMOS). For the Paragon the communication
bandwidths under OSF/1 AD and SUMOS are 35 MB per second and 170 MB per second
respectively [1]. The latency for CM-5 is about 80 micro seconds and communication bandwidth
is 9 MB per second [1]. It is clear that the latency and communication bandwidth ofT3D are much
better compared to Paragon and CM-5. The low latency and high communication bandwidth make
the T3D scalable up to the maximum number of processing elements (PEs) that are available
today, which is 256 PEs at the time of writing [1]. This scalability is clearly shown by the Class A
NAS Parallel Benchmarks (NPB) for Processing Elements (PEs) ranging from 32 to 256 [2-5].
What makes the T3D unique is its ability to globally and non-uniformly address the entire
memory without the interruption of remote processors using an explicit shared memory model. In
the T3D, a PE can access its local memory about 3 to 4 times faster than memory of remote PEs.
In Section 2, the overview of Cray T3D including macro architecture and micro architecture is
presented. Section 3 describes the memory hierarchy of the Cray T3D. In Section 4, we present
the shared distributed memory model of the T3D. In Section 5, operating system and compilers
are discussed. In Section 6, CRAFT programming model is discussed. Section 7 contains CRrs
extensions to the standard PVM. Section 8 contains a discussion of the explicit shared memory
model. Section 9 is a brief description of the NPB. Section 10 contains the results and discussion
and Section 11 presents our conclusions.

2: Cray T3D Overview
CRAY T3D has a two-tier architecture consisting of macro architecture and micro architecture

[6,7]:

2.1 Micro architecture The micro architecture will vary as technologies advance to achieve
Tjiops/s of sustained performance. Micro architecture refers to the microprocessor chip used in the
Cray T3D. CRI is committed to use most appropriate (performance, features, technology and

....

Micro architecture ...
I

'- --
Figure 1: Two-tier architecture of Cray T3D.

availability) microprocessor in each generation. The DECchip 21064 (also called Alpha chip)
used in the Cray T3D consists of four independent functional units. The block diagram of the
Alpha microprocessor is shown in Figure 2. The Alpha chip consists of four main components
IBOX, EBOX, FBOX and ABOX. A brief description of each box is given below [6-8].
(a) Central control unit (IBOX): The IBOX performs instruction fetch, resource checks, and

466

dual instruction issue to the EBOX, ABOX and FBOX or branch unit. It also handles pipeline
stalls, aborts and restarts.
(b) Integer execution unit (EBOX): The EBOX contains a 64-bit fully pipelined integer execu­
tion data path including adders, logic box, barrel shifter, byte extract and mask, and independent
integer multiplier. In addition, it also contains a 32 entry 64-bit integer register file (IRF).
(c) Floating point unit (FBOX): The FBOX contains a fully pipelined floating point unit and
independent divider, supporting both IEEE and VAX floating point data types.
(d) Load/store or address unit (ABOX): The ABOX contains five major sections: address trans­
lation data path, load silo, write buffer, data cache (DCACHE) interface and external bus interface
unit.

2.1.1 Pipeline organization:

The Alpha chip uses a seven stage pipeline for integer operation and memory reference instruc­
tions, and a six stage pipeline for a floating point operation instructions. The IBOX maintains state
for all pipeline stages to track outstanding register writes.

2.1.2 Cache organization:

Address bus

Data bus

(128 bits)

External cache

control

Figure 2: Block diagram of DECchip 21064 Alpha Microprocessor.

The Alpha chip contains two on-chip caches; data cache (DCACHE) and instruction cache
(ICACHE). The chip also supports secondary cache, but it is not used in the version utilized in the
T3D. The data cache contains 8 KB and is a write through, direct mapped, read-allocate physical
cache with 32-byte blocks. The data cache is "direct mapped", unlike the Intel iPSC/860 or Para­
gon where it is "set associative". A direct cache has only one image of a given cache line. It is
"read allocate" which means that entries into the cache only happen as result of a cacheable load
from local memory. During a cache hit data is loaded into register from DCACHE and during a
cache miss one cache line is loaded from DRAM.

The instruction cache is 8 KB and is a physical direct-mapped cache with 32-byte blocks. The
Alpha chip supports secondary cache built from off-the-shelf static RAMs although it is not used
in the T3D. The chip directly controls the RAMs using its programmable secondary cache inter­
face, allowing each implementation to make its own secondary cache speed and configuration
trade-offs.The secondary cache interface supports cache sizes from 0 to 8 MB and a range of oper­
ating speeds which are sub-multiples of the chip clock. The virtual address is a 64-bit unsigned
integer that specifies a byte location within the virtual address space. The Alpha chip checks all

467

64-bits of a virtual address and implements a 43-bit subset of the address space and so supports a
physical address space of 16 GB.

2.1.3 Features and Specifications of Alpha Chip:

The main features and specifications of the Alpha chip are given in Table 1. The content of a
register is available immediately. A word in a data cache is available in three clocks and every
subsequent word in its cache line needs another one clock. The chip takes 20 clocks to access data
from its local memory. To achieve high performance on a single PE, one should always use small
strides and short loops. The Alpha chip uses IEEE format for its floating point representation. If
the application is distributed between the T3D and the Cray YMP/C90, one has to convert the data
to the correct representation and this should always be done using very fast routines available on
Cray YMP/C90 [6-8].

Table 1: Specifications for The DECchip 21064 Alpha microprocessor

Characteristics Specification

Technology CMOS, 0.75 micron

Transistors count 1.68 million

Physical dimensions 1.4 by 1.7 cm

Number of signal pins 291

Cycle time 150 MHz (6.67 nano second)

On-chip D-cache 8 KB, physical, direct mapped, write-through, 32 byte line, 32-byte fill

On-chip I-cache 8 KB, physical, direct mapped, 32 byte line, 32-byte fill, 64 ASNs

On-chip DTB 32-entry; fully associative, 8-KB, 4-MB page sizes

On-chip ITB fully associative, 8 KB page plus 4-entry, fully-associated, 4-MB page

Latency of data cache to memory 3 clock periods (20.01 ns)

Bandwidth of data cache to memory 64 bit per clock period

Floating-point unit On-chip FPU supports both IEEE and VAX floating point

Bus Separate data and address bus 128-bitl64-bit data bus

Serial ROM interface Allows the chip to directly access serial ROM

Virtual address size 64 bit checked; 43 bits implemented

Physical address size 34-bits implemented

Page size 8KB

Issue rate 2 instructions per cycle to A-box, E-box, or F-box

Integer pipeline 7-stage pipeline

Floating pipeline 10-stage pipeline

Number of floating point registers 32

Size of floating point register 64 bit

Number of integer register 32

Size of integer register 64-bit

468

2.1.4 Single PE Optimization

Currently, optimizing a code for a single PE on the Cray T3D is much more difficult than for
the C90 single CPU because of the following: optimizations are state dependent, data locality is
always the issue, bandwidth is a limitation factor, not as many functional units are pipelined,
compilers and various tools are not as mature as those available on C90. The following are the
problems associated with the Alpha chip used in Cray T3D: (a) all memory operations stall upon
cache miss, (b) the slow external bus makes the DRAM bandwidth suboptimal, (c) there are no
integer to floating point or SQRT instructions, (d) divide and integer multiply are non-pipelined.
A division operation produces one result every 64 clock periods and integer multiply produces
one result every 20 clock periods.

Every DRAM request results in a cache line load of four 64-bit words - one for the actual
request and the other three words which are mapped to the same cache line. Aligning data on a
cache line boundary (word 0 of any cache line) enhances the performance. The cache alignment
can be done by using a compiler directive CDIR$ ALIGN_CACHE. The SAXPY operation Y (I)
= Y(I) + alpha*X(I) would perform better assuming X and Yare cache aligned and are on
different cache lines. Performance can also be enhanced by scalar replacement, by holding the
value of a temporary scalar in a register to reduce the number of memory accesses. Cache
utilization can also be enhanced by loop interchange so that stride in the inner loop is one. Large
stride in the inner loop causes cache misses. The DRAM memory of the Alpha chip is interleaved
and one should ensure page boundary alignment. Page hit occurs when either current and previous
references are to the same even or same odd page, or current and previous reference have different
chip select (cs) bit. Page miss occurs when current and previous references are to different even or
different odd pages. Page hits take 8 clock periods whereas a page miss takes 2 clock periods. For
details on single PE optimization of T3D see reference [1].

2.2 Macro architecture
The macro architecture will remain the same in all the three phases of MPP project. The macro
architecture will be stable from one generation to the next in order to preserve the applications
development investment of the users. In addition to two PEs and a Block Transfer Engine, each
computational node has support circuitry which includes Data Translation Buffers (DTB),
Message Queue Control (MQC), Data Prefetch Queue (DPQ), Atomic Swap Control (ASC),
Barrier Synchronization Registers (BSR), and PE Control. For details see references [6,9].

2.2.1 Block Transfer Engine:

Each computational node has two identical PEs which function independently of each other.
Each node has support circuitry including but not limited to network interface, network router and
block transfer engine (BTE). The network interface formats the inform~tion and the network
router deformats it before sending it to either PE 0 or PE 1. BTE is asynchronous and is shared by
the two PEs. It can move data independently without involving either the local PE or the remote
PE. It also provides gather-scatter functionality in addition to data pre-fetch with a constant stride.
It can transfer data up to 64 K words and can be used to select PE number and memory offset bits
using the virtual global memory apdress facility. The use of BTE requires making system calls. It
also involves performing local work first, and then double buffering the remote data transfers and
working on those buffers. However, the start up time for BTE is very high.

2.2.2 Interconnect Network Topology

Each computational node is connected to other nodes via a three dimensional torus intercon­
nect network as shown in Figure 4. This network operates at 150 MHz, identical to the clock of
the Alpha chip used in Cray T3D. The network is 16 bits wide and can send simultaneously bi-

469

directional traffic in all three directions (X, Y and Z). The T3D network transmits system control
information and user data. The control packets vary in size from 6 to 16 bytes. The data packets
range in size from 16 bytes to 52 bytes. The amount of data in these packets is 8 or 32 bytes with
the remainder being header and checksum information. The headers and checksums contribute to
a load factor which affects attainable data transfer rates.

3: Memory Hierarchy
The memory hierarchy very strongly impacts the performance of an algorithm both at global

and local levels. Normally, one would expect this kind of optimization to be handled by the
compiler; however, the T3D user still needs to worry about organizing his data accesses so that the
compiler can recognize opportunities for memory related improvements.

Computational Node

Figure 3: Computational node of Cray T3D.

The T3D memory hierarchy has the following four layers as shown in Figure 5.
(a) Data Cache: Data cache is a small, high speed random access memory that temporally stores
frequently or recently accessed local data without user's intervention. The data cache is 8 KB that
can access data from the memory at the rate of 1200 MB per second.
(b) Local Memory: Local memory consists of DRAM with read bandwidth of 320 MB per
second per PE. The memory chips are organized in banks to read or write multiple words at a time
rather than at a single words. Memory is interleaved in blocks of four 64 bit words to permit cache
line memory actions. In other .words, addresses of four banks are interleaved at a word level.
(c) Remote Memory: The Cray T3D is designed with memory physically distributed among all
PEs but globally shared and addressable. The remote memory is 4(16) GB for a machine with
16(64) MB per PE. Using SHMEM_PUT function, it can be accessed at the rate of 125 MB per
second. The cost of remote access is of the order of 4 to 5 times that of a local memory access not
including overhead of PVM calls, etc.
(d) Secondary Memory: It consists of hard disks up to a TB and is connected to the T3D through
a high speed channel (HISP). This can be used for out-of-core problems when the DRAM of T3D
is not enough. The typical sustained speed of the DD-60 disks is about 20 MB per second.

The following principles and guidelines should be followed to exploit the memory hierarchy of
the T3D: (a) use data that is readily available in the order register, data cache, local memory,

470

+y

-y

Figure 4: Interconnect topology for Cray TJD.

remote memory, and secondary memory, (b) load the data from local or remote memory much
before it is needed and reuse that data, (c) hide latency with computation whenever possible [9].

4: Shared Distributed Memory
The Cray T3D is designed with memory physically distributed among all PEs, with each PE

having a favored (a) low latency, high bandwidth path to a local memory; and (b) longer latency,
lower bandwidth path over an interconnect network to remote memory associated with other PEs.
Each PE uses memory addressing that references any word in shared memory. This address, the
virtual address, is initially generated by the compiler. The virtual address is converted into a
logical node number, PE number and address offset by the PE and other components in the
computational node [6, 9, 10].

5: Cray T3D Operating System
UNICOS MAX 1.0 is a distributed operating system. UNICOS runs on the host Cray (YMP or

C90) platform, whereas MAX is a microkemel residing on each PE of Cray T3D. MAX takes
about 4 MB on each PE (MAX is based upon the Open Software Foundation (OSF) MACH 3.0
microkemel). Functionality which is not available in the microkerenel is performed by UNICOS
on the host system via message-passing using low speed channel (6 MB/sec) for control and high
speed channel (200 MB/sec) for data. The operating system used is UNICOS MAX 1.0 and the
compiler used is CF77_M 6.0. Latency for requesting data from a host YMP/C90 is 10 ms

471

involving seven system calls.

Table 2: Characteristics and specifications for Cray T3D system (see also [13]).

Characteristic Specification Comments

Local bandwidth 640 MB per second mem <----> PE
320 MB per second

Cache memory latency 20 x 10-9 second read-ahead

Local memory latency 90 x 10-9 second no read ahead

Local memory latency 150 x 10-9 second per node

Peak bandwidth 300 MB per second

Switch bandwidth 2100 MB per second per node

Bi-section bandwidth 76.8 GB per second 1024 PEs

PE <-----> PE latency (1 message) 0.5-1.5 micro sec. CRIMP
(COMMS1) (1 message) 4.0-5.0 micro sec. PVM
(COMMS2) (2 message) 1.3 micro second CRIMP

Data transfer rate of LOSP 6 MB per second In each direction

Data transfer rate of HISP 200 MB per second In each direction

DRAM memory 16 MB and 64 MB 4 - 16 MB chips

DRAM memory 19.2 - 38.4 GFLOPS per second 4 - 16 MB chips

Smallest Fastest

8KB 1200 MB/s

16/64MB 320 MB/s

4/16 GB
Remote

125 MB/s

Largest
20GB Secondary (DD-60) 20MB/s

Slowest

Figure 5: Cray T3D memory hierarchy.

472

6: Cray Research Adaptive Fortran (CRAFT) model

CRAFf derives its features from Fortran 77, Fortran 90, High Performance Fortran (HPF) ,
Fortran D and PVM. The two programming models High Performance Fortran (HPF) and CRAFT
are compatible with each other in the sense that HPF targets portability whereas CRAFT aims for
high performance. CRI does not support HPF or Message Passing Interface (MPI) on the T3D but
has adopted standard PVM and has optimized it and added several extensions to it for T3D.

Message Passing

PVM

(MIMD)
. Standard
. CRI extensions
- fastsendlrecv
- PVM channels

Explicit

EXPLICIT

Explicit shared
memory model

.SHMEM_PUT

.SHMEM_GET

IMPLICIT

. Data parallel
(SIMD)

Work sharing
(SPMD)

(MIMD)

Explicit or Implicit

Figure 6: CRAFf programming model available on Cray T3D.

At this time, two programming models, data parallel and worksharing, are not available. So we
are left with only two choices of programming models, namely message-passing and explicit
shared memory model. Parallel Virtual Machine (PVM) is a public domain software and was
developed at Oak Ridge National Laboratory and University of Tennessee. PVM was designed for
loosely coupled network of workstations where network is much slower compared to the speed of
the processors. CRI has taken this public domain PVM and extended it in several ways. One of the
important feature of PVM is a process of buffering the messages both at the sending and receiving
node. This feature is a boon for a slow network but is a curse in a fast network like T3D. It is a
boon in slow network as no handshake is needed with the receiving node before the message is
sent by the sender, and no acknowledgment is needed from the receiving node. The penalty of
buffering is relatively small compared to the communication cost of the network. However, in the
Cray T3D where the communication network is very fast, the penalty of buffering both at the
sending node and receiving node is enormous. To overcome the cost of buffering the messages,
CRI has provided a optimization feature called "PVMDataInPlace". This feature should be used
with a great caution. The memory should not be reused until after the data has been unpacked by
the receiving PE. Importantly, the memory address should be accessible by the other PE which is
true for COMMON or static DATA but may not be true for data allocated dynamically. Table 3
gives the latency and communication bandwidth for various types of communication available on

473

T3D.

Table 3: Measured latencies and bandwidths.

Type of Communication Latency in microseconds Bandwidth in MB per second

PVM send and recv ·60 - 80 30a

40b

PVM fastsend and fastrecv 15 - 20 lOe

PVM channels (send & recv) 5 100

SHMEM_GErt 1.5 30

SHMEM_PUrt 1.5 120

a PvmDataRaw packing
b PvrnDatalnPlace packing
c For 256 bytes - for small messages latency
d One need not match SHMEM_GET with SHME_PUT

7: CRI's PVM Extensions
Performance of standard PVM, CRrs PVM and shared memory GET and PUT is shown in

Table 3. The PvrnDataRaw packing includes an extra memory-to-memory operation as part of
the PACK call [7,8]. The advantage of using standard PVM is that the code is portable; the
disadvantage is that the performance is poor due to buffering of data both at sending PE and
receiving PE. CRI has provided extensions to standard PVM to exploit the hardware features of
T3D. The Cray MPP version of PVM provides a pair of functions that provide shorter latencies
for short messages, called fastsend and fastrecv. Latencies for short messages for these fasts end
and fastrecv functions are about 15 - 20 microseconds compared to about 60 - 80 microseconds
for regular PVM send and recv. The fastsend and fastrecv functions are limited to 256 bytes of
data (by default). This bandwidth is not very high, but still much higher than the bandwidth of
standard PVM send and recv. Messages that contain more than 256 bytes must transfer the data in
a second transfer. For details see reference [12].

7.1.1 PVM Channels on Cray T3D:

CRI provides new functions in PVM called PVM channels. The PVM channels are most useful
for applications where communication is both regular and its pattern is repetitive. Two PEs
establish a channel with a single data buffer and matching destination data buffer. Each transfer
request specifies a channel, and transfer occurs at very high speed. PVM channel send/recv
functions transfer data at about 100 MB per second with latencies of about 5 microseconds. For
details see reference [12].

8: Explicit Shared Memory Model
Given the latency and communication bandwidth of standard PVM and CRrs extensions to

PVM, it is clear that performance of the applications using standard PVM cannot exploit the
hardware capability of the T3D. In view of this all the NPB were written in the explicit shared
memory model using SHMEM_GET and SHMEM_PUT functions. The function SHMEM_PUT
has latency of about 1.5 microseconds and communication bandwidth of 125 MB per second.
Message-passing deals only with private addresses (privatellocal memory). In the explicit shared
memory model, the user is responsible for explicitly managing the data transfers and
communication and does so by explicitly specifying two addresses: a local address, and a remote

474

address which is really a tuple (PE number, local address). The two functions (SHMEM_GET and
SHMEM_PUT) are used to read (GET)/write (PUT) fromlto any remote PE and map directly onto
the low level CRAY T3D concepts of loads and stores. Unlike message-passing, the use of these
functions does not involve any PE (sender or receiver).

CALL SHMEM_GET(TARGET, SOURCE, LEN, PEl
CALL SHMEM_PUT(TARGET, SOURCE, LEN, PEl
TARGET - Address of array into which data is transferred. This must be a word

address
SOURCE - Address of array from which data is transferred. This must be a

word address.
LEN - Length, in words, of the array
PE - PE number of other PE

The function SHMEM_GET returns when the data has been loaded into the local data array
and is thus a blocking function and uses remote loads. The function SHMEM_PUT returns when
the data has been sent from the chip (but may not yet have arrived at the other PE) and is thus non­
blocking and uses remote stores. For details see reference [11].

8.1 Knowledge of Remote Address
To use the functions SHMEM_GET and SHMEM_PUT one needs to know the addresses at

both local and remote PEs. The easiest way to know the remote address is to use COMMON
blocks in Fortran and global data or static data in C. On the T3D, such data is statically allocated
at the same location on all PEs. Therefore, if one knows a local address of one of these variables
on one PE, then one knows its local address on all PEs.

Example:
InC:

static double x[50], y[50]
shmem_put(y, x, 50, mype+ 1);

In Fortran:
COMMON/abcl x(50), y(50)
CALL SHMEM_PUT(y, x, 50, mype+ 1)

Copy 50 words of data from array x on this PE to array y on the PE numbered mype+ 1. The
base addresses of arrays x and y are the same on the two PEs.

8.2 Issues involved in using explicit shared memory model

A user must be aware of the following two issues:

8.2.1 Data Cache Alignment

Alignment of COMMON blocks in data cache enhances the performance of the application.
The reason for this is that first word takes about 3 clocks and every subsequent word in a cache
line takes just one more clock. This alignment can be done by using a compiler directive CDIR$
ALIGN_CACHE [10].

8.2.2 The Cache-coherency Problem

Because of the data cache, data can be found in memory or in the cache. As long as local PE is
the only device changing or reading the data, there is a little danger in the PE seeing the old or
stale copy. However, programming in explicit shared memory model, any PE can both read and
write data to the memory of remote PEs. Remote PEs means the opportunity exists for other PEs
to cause copies to be inconsistent or remote PEs to read the stale copies. This is generally referred

475

to as the cache-coherency-problem. In Figure 7 we have illustrated the problem associated with
cache-coherency while programming in the explicit shared memory model. In the first column N.
and B' refer to the cached copies of A and B in memory and therefore it does not matter weather
PE reads the value from the memory or the data cache and we says that cache and main memory
are in coherent state. In the middle column, let us assume that PE 1 writes-back 555 into A. Some
other PE reads the value of A from the memory of PE 1 using SHMEM_ GET. In this case, PE 1
would read the stale value of A and not the updated value of A (which is N.) and such a situation
is called cache-incoherent. In the last column, let us assume that PE 21 writes the value ofB using
SHMEM_PUT and PE 2 reads the value of B from the cache and it will read the stale value of B
and not the updated value. In this situation, the cache of PE 2 should be invalidated [10].

~ [(c::~) (c::: J

N Iss A' 1 .. · ..• ,.i.,· .. i.,." .•. ':., .• ',' ••• :,', ••... ·.'.2 .. '.'.· ... 'i.,' ... ·, .•. O.·,','·,','.'O,'.·,' ... ·.',.,',',.· .• ,' .. , .• ,.,.i .. , .• , .•. ',' ••• '.', .• ,., ••.• ,.,· .. ,.,.,'.·,'"., ..• ,., .• "i.

A'

i{

B' B' 400 B ',400:

Memory Memory Memory

A I :1t::1
From the memory of PE 21

B

(a) Cache and memory
coherent:
N =AandB' =B

(b) ~ache and memory (c) Gache and memory
mcoherent: mcoherent

A' not equal to A (A stale) B' not equal to B (B' stale)

Figure 7: Cache coherency and invalidation of data cache.

9: NAS Parallel Benchmarks
The NPB were developed to evaluate the performance of highly parallel supercomputers. One

of the main features of these benchmarks is their pencil and paper specification, which means that
all details are specified algorithmically thereby avoiding many of the difficulties associated with
traditional approaches to evaluating highly parallel supercomputers. The NPB consist of a set of
eight problems each focusing on some important aspect of highly parallel supercomputing for
computational aerosciences. The eight problems include five kernels and three simulated compu­
tational fluid dynamics (CFD) applications. The implementation of the kernels is relatively simple
and straightforward and gives some insight into the general level of performance that can be
expected for a given highly parallel machine. The other three simulated CFD applications need
more effort to implement on highly parallel computers and are representative of the types of actual
data movement and computation needed for computational aerosciences. The NPB all involve sig­
nificant interprocessor communication with the exception of the Embarrassingly Parallel (EP)
benchmark which involves almost no interprocessor communication [3-5].

476

10: Results and Discussion
The results and discussion are presented for two classes of NPB, namely class A and class B

and they given separately.
10.1 Class A NPB Results

In Figures 8-15 are shown the class A NPB. All the results are normalized to one processor of
Cray YMP and is denoted by Cray YMP/l. Note that IBM SP-l results are for only 64 nodes.
Figure 8 shows the results for EP. This benchmark gives an estimate of the upper achievable limits
for floating point performance as it does not have any significant interprocessor communication
except at the end to collect the results. This kernel uses two intrinsic function SQRT and LOG.
Figure 9 are the results for the MG kernel, which solves Poisson equation with periodic boundary
conditions and requires highly unstructured long distance communication and thus is a good test
for communications bandwidth.

;;: ;;:
::!: ::!:
>- >-
g g
.Q

~ iii a: a:

YMP C90 T3D IBM PAR KSR MP2 eMS YMP C90 T3D PAR KSR MP2 eMS
8 16 128 64 128 128 16 K 512 8 16 128 128 32 16 K 512

Figure 8: Results for EP class A benchmark. Figure 9: Results for MG class A benchmark.

In Figure 10 are shown the results for CG kernel. This kernel approximates the smallest
eigenvalue of a large sparse, symmetric, positive definite matrix. This kernel tests irregular long­
range communication and basic computations are done by sparse matrix-vector multiplication.
Figure 11 gives the results for FT kernel and we find T3D performs the best.

Figure 12 shows results for IS kernel and uses a sorting operation that is useful in "Particle
method" and it tests the integer computation speed and communication bandwidth. Figure 13
shows the results for LU, pseudo CFD application used in NASA code INS3D-LU. Here
perfonnance of T3D is the best among all MPPs. .

Figure 14 shows the results for SP benchmark, which is the basic kernel in the NASA code
ARC3D. It uses an implicit factorization scheme. This benchmark solves multiple independent
systems of non-diagonally dominant, scalar pentadiagonal equations. Figure 15 shows the results
for block tridiagonal (BT) benchmark that solves multiple independent systems of non-diagonally
dominant, block tridiagonal equations with a block size of 5x5.
10.2 Class B Results

Figure 16 shows the results for EP. For C90 and T3D results are obtained by algebraic and
table-lookup methods that will be disallowed in the future. The performance of T3D is better than
C90 .. Figure 17 shows the results for MG kernel. Here the performance of T3D is very close to
C90 and performance of the Paragon is about two processors of C90. Figure 18 shows the results
of CG kernel. Performance of the Paragon is about half processor of the C90. Figure 19 shows FT

477

YMP C90 T3D PAR KSR MP2 ncube CMS YMP C90 T3D IBM PAR KSR MP2 CMS
8 16 128 128 64 16K 1024 128 8 16 128 64 128 64 16 K 128

Figure 10: Results for CG class A benchmark. Figure 11: Results for FT class A benchmark.

YMP C90 T3D IBM PAR KSR MP-2 CM-S
8 16 128 64 128 64 16 K 128

YMP C90 T3D IBM PAR KSR MP-2 CM-S
8 16 128 64 128 128 4 K 128

Figure 12: Results for IS class A benchmark. Figure 13: Results for LV class A benchmark.

kernel and all the machines use either I-D, 2-D or 3-D assembly- coded routines. Figure 20 shows
the results of IS on C90, T3D, Paragon and CM-SE. Figure 21 shows the results for LU. Here we
notice that performance of Paragon is less than even one CPU of C90 and performance of CM-SE
is slightly better than 1 CPU of C90. In Figure 22 are the results for SP and we notice that the
performance of the Paragon is less than 2 CPU of C90 and for the CM-SE it is about 2 processors
of C90. In Figure 23 are shown the results for BT benchmark.

478

~~-----------------------.

YMP C90 T3D IBM PAR KSR MP-2 CM-S
8 16 128 64 128 128 4 K 128

Figure 14: Results for SP class A benchmark.

C-90
16

T3D
256

Paragon CM-5
256 128

Figure 16: EP for class B NPB.

11: Conclusions

YMP C90 T3D IBM PAR KSR MP-2 CM-S
8 16 128 64 128 128 4 K 128

Figure 15: Results for BT class A benchmark.

C-90
16

T3D
256

Paragon CM-5
256 128

Figure 17: MG for class B NPB.

1. Out of four only two programming models (message-passing using PVM and explicit shared
memory model) are available today on the Cray T3D. The other two programming models
namely, data parallel and worksharing models are not yet available.

2. Performance of PVM is not very good due to the need of buffering of the messages both at
sending PE and receiving PE, which involves making an expensive copy of the data from user
space to the system space. Although the speed of the Cray T3D network is fast, copying is a
relatively slow process. The overall performance of PVM is dictated by the time needed to buffer
the messages at both ends involving PEe

3. The explicit shared memory model has the advantage that it offers better performance than
message passing. The disadvantage is that the code is non-portable, however, the performance is
about 4 to 5 times better than using PVM.

479

C-90
16

T3D
256

Paragon CM-5
256 128

Figure 18: CG for class B NPB.

C-90
16

T3D
256

Paragon CM-5
256 128

Figure 19: FT for class B NPB.

4. The explicit shared memory model should be used with great deal of care because of the
following: (a) the cache-coherency problem, (b) cache boundary alignment problem, (c) barrier
synchronization problem. Leaving out a necessary barrier synchronization introduces a race
condition.

C-90
16

T3D
256

Paragon CM-5
256 128

Figure 20: IS for class B NPB.

C-90
16

T3D
256

Paragon CM-5
256 128

Figure 21: LV for class B NPB.

5. In order to obtain good performance, a user has to optimize the application for a single PE
which requires a detailed knowledge of the memory hierarchy.

6. The function of Block Transfer Engine seems to be redundant as start up time is very large and
the same functionality is provided by explicit shared memory model.

7. For both class A and class B NPB, Cray T3D outperforms both Paragon and CM-SE.

480

C-90
16

T3D
256

Paragon CM-5
256 128

C-90
16

T3D
256

Paragon CM-5
256 128

Figure 22: SP for class B NPB. Figure 23: BT for class B NPB.

References:

[1] S. Saini and H.D. Simon, to be published

[2] S. Saini et aI., Proceedings of Cray User Group Spring 94 Conference, March 14-18, 1994,
San Diego, California.

[3] D. Bailey et aI., eds, The NAS Parallel Benchmarks, Technical Report RNR-91-02, NAS Ames
Research Center, Moffet Field, California, 1991.

[4] D. Bailey et aI., The NAS Parallel Benchmark Res1:l1ts, IEEE Parallel & Distributed
Technology, 43-51, February 1993.

[5] D. Bailey et aI., eds, The NAS Parallel Benchmark results 394,Technical Report RNR-94-06,
NAS Ames Research Center, Moffet Field, California, 1994.

[6] S. Saini, Overview of Cray T3D Hardware and Software, NAS User Televideo Seminar,
Sept. 22, 1993, NASA Ames Research Center. For a free copy of the video tape send e-mail to
saini@nas.nasa.go~

[7] Alpha Architecture Handbook, 1992, Digital Equipment Corporation.

[8] DECchipTM 21064-AA Microprocessor Harrdware Reference Manual, Order Number: EC­
N0079-72, Digital Equipment Corporation October, 1992, Maynard, Massachusetts.

[9] CRAY T3D System Architecture Overview, HR-04033, Cray Research, Inc.

[10] S. Saini, "High Performance Programming Using Explicit Shared Memory Model on Cray
T3D", NAS, User Televideo Seminar, Jan, 19, 1994, NASA Ames Research Center. For a
copy of the video tape send e-mail to saini@nas.nasa.gov.

[11] Cray Research MPP Software Guide, SG-2508 1.0 DRAFT - 11/15/93.

[12] PVM and HeNCE Programmer's Manual, SR-2501 3.0, November 1993, Cray Research, Inc.
[13] K. E. Gates and W. P. Petersen, A Technical Description of Some Parallel Computers, Int. J.

High Speed Computing, 1994 (to appear).

481

482

Architecture and Performance for
the CRAY T3D

Charles M. Grassl
Cray Research, Inc.

655A Lone Oak: Drive
Eagan, MN'55121

cmg@cray.com

The architecture and performance of the CRAY T3D system is presented. Performance of the
single PE, network and full system is examined using several benchmark tests. The effect of
architectural features on programming constraints and methods is discussed.

I. Introduction

The CRAY T3D, introduced in September, 1993,
is the beginning of a series of three MPP systems
which have a common macro architecture. The
basis of the common macro architecture is a 3D
torus. The micro architecture is implemented in
the EV2064 (Alpha) microprocessor form DEC.

We will present features and performance of the
torus network and of the microprocessor. We will
emphasize features which are of interest to pro­
grammers and users of the T3D. This discussion
will highlight features which directly affect per­
formance and we will also point out features
which have little effect on performance.

II. Macro Architecture

The 3D torus is essentially a three dimensional
grid with periodic boundary conditions. That is,

Research for various reasons, including the fol­
lowing:
• Scaling properties.
• Low latency.
• High bisection bandwidth.

• Low contention.

2.1 Network topology

The wiring in a single dimension is interleaved
as is illustrated below in the Figure 1. Because of
the interleaving, an edge node is not further from
a neighbor on the opposite edge than is an
interior node from its neighbors.

o 7 1 6 2 5 3 4

nodes on opposite edges of the cube are connect- FIGURE 1. Node interleaving in 1 dimension. Logically
ed.The 3D torus topology was chosen by Cray adjacent nodes are separated.

Due to the periodic nature of the 3D grid, all po­
sitions are logically equivalent and each node has
essentially an equivalent position in the cube. Be­
cause of the connections along edges, message
traffic along an axis in the 3D cube can travel in
either direction. This features alleviates most net­
work contention. In general, programmers do not
have to be aware of the physical position of a log­
ical PEe

The T3D interconnection network uses a "dimen­
sion order routing" for propagating messages.
When messages are traversing the network, there
is a bias for first traveling in an X direction, fol­
lowed by a Y direction and lastly a Z direction.
The effect of this bias is very small. The graph in
Figure 2 shows the magnitude of this bias. In this
graph, we have plotted the measured message
passing latency relative to a logical node 0 for
each PE in a CRA Y T3D with 256 nodes.

Jlsec
1.8
1.6
1 . 4 ..MN1Iw...~IIJ~~~".,.,.1Il
1.2
1.0
0.8
0.6
0.4
0.2
o .0 +---+----1-----1------1

o 64 128 192 256

Target PE

FIGURE 2. Measured inter-node latency as a
function of node number.

In the graph, we see the slight effect of
dimension order routing. The plot has a major
period of 16, which is the size of the x dimension
of the system on which the test program was run.

2.2 Hardware implementation

The inter-PE communication network is
implemented with technology developed for
traditional Cray Research supercomputers. The
T3D system's interconnect uses e90 style 10K
gate arrays which are mounted on Y-MP style
modules. The modules in the T3D have two
boards, whereas the Y-MP and C90 modules
have four boards. The T3D system has a clock
rate of 150 MHz. This technology leads to the
low latencies for communication between nodes.

2.3 Partitions

The details of the network configuration are
generally transparent to the user. The node
configuration of each of the T3D various
marketed systems are within a factor of two of
being perfect cubes. That is, no dimension of a
T3D system has more than twice as many nodes
as does any other dimension. In actual use,
hardware partitions can have any shape within
the system. "Unusual" hardware partitions can
have some effect on communication patterns.

Software partitions can also have some effect of
communication patterns, but generally less.
Software partitions allow communications to
pass through other partitions, so boundaries are
so not "hard".

2.4 Network performance

Each Processing Element (PE) at a node has its
own memory, but the pair of PEs share a single
network switch. Each node in the T3D has two

483

484

Processing Elements (PEs). These PEs, which
are DEC Alpha microprocessors, will be
described later.

2.4.1 Synchronization

The T3D network has hardware synchronization
primitives. The most obvious effect of this
hardware is fast synchronization or barriers.The
hardware synchronization time lightly related to
the system size. For a 64 node (128 PE) system,
the sychronization time is less than 1
microsecond. The lower curve in the figure
below shows the synchronization time versus the
number of PEs for a primitive user programmed
barrier. The upper curve is from measurements
using the BARRIERO function in libc.

2.0

1 .5

1.0

0.5

o . 0 +--------+----'--+----..I~--+--.-__f

o

FIGURE 3.

32 64

PEs

96 128

Srnchronization time as a function of number
o PEs. The lower curve is for
synchronization without deadlock detection.
The upper curve is for synchronization with
deadlock detection.

2.4.2 Single channel performance

The interconnect channels are 16 bits (two
bytes) wide and are bidirectional. That is, a
message can be sent and received at full speed
on a single network channel. The bandwidth of a
channel is 2 bytes times 150 MHz, or 300
Mbyte/s. A packet of data on the network is 8
bytes long. Of this eight bytes, four bytes are

data, two bytes are header information and two
bytes are trailers. The load factor is 50%, so the
bandwidth available to the user is 150 Mbyte/s
in a single directions.

MB/s
140

120
100

80
60

40
20

0
0 2000 4000 6000

Bytes

FIGURE 4. Internode communication rate as a
function of message size.

For node to node message passing, the minimum
measured latency is 1.3 microseconds and the
measured asymptotic bandwidth is 125 Mbyte/s.
The message size at which the bandwidth is one
half of maximum, or Nl/2' is approximately 200,
or 25 words. A typical plot of bandwidth versus
message size is shown is Figure 2. These figures
are for small messages which can be contained
in the data cache. That is, for messages smaller
than 16 Kbytes. For large messages, t~e
asymptotic bandwidth is the same, but the
latency is approximately 1.7 microseconds.

The shape of the curve in Figure 3 is reminiscent
of vector speed cures. In fact, the
parameterization of this curve is from Prof.
Roger Hockney, one of the developers of the

parameterization using Roo and N 1/2 to
characterize vector processing.

TABLE 1. Message Passing Rate using PUTs. "Small if
for cache contained messages. "Large" is for
messages larger than cache (16
KB)).Message Passing Rate using GETs.

Roo Nl/2 Tstart Size

125 MB/s 164 Bytes 1.3 JlSec. Small
127 380 3.0 Large

TABLE 2. Message Passing Rate using GETs. "Small if
for cache contained messages. "Large" is for
messages larger than cache (16 KB).

35MB/s
37

Nl/2

180 Bytes 5.2 Jlsec
144 3.9

2.4.3 Multiple channels

Small
Large

For global communication, we have attained an
average node-to-node bandwidth of over 120
Mbyte/s. This bandwidth is close to the rated
bandwidth of the network interconnect. Note
that because there are two PEs per node, the
average rate per PE is over 60 Mbyte/s.

Examples of demanding global communication
algorithms are transpose and a global collection.
Bandwidth results for these two algorithms are
shown in Table 3. These tests demonstrate both a
high sustained bandwidth and the lack of
contention in the network.

TABLE 3. Global bandwidth examples.

Algorithm Bandwidth per PE

Transpose 60 MB/s
Global collection 63 MB/s

III. Micro Architecture

3.1 DEC Alpha

The T3D uses the EV2064 microprocessor from
DEC. This microprocessor is more commonly
know as the" Alpha" microprocessor. The Alpha
microprocessor is used in DEC's line ofAXP
workstations which run at clock speeds of from
140 MHz to 200 MHz. The microprocessor
version which is used in the T3D runs at 150
MHz, the same speed as that of the network
interconnect.

The Alpha microprocessor used in the T3D is not
binary compatible with the AXP computers
manufactured by DEC. The version of the Alpha
microprocessor used in the T3D has several
different instructions from what are used in the
AXP products. The different instructions allow,
among other features, the implementation of
shared memory. The shared memory features
will allow more efficient parallel processing and
easier program development. The compromise
in the selection of the modifications to the Alpha
instructions is that binaries generated for AXP
workstations will not directly run on the T3D.

Another significant difference between the two
versions of the Alpha microprocessor is the
absence of a secondary memory in the T3D's
PEs. Among the reasons for not implementing a
secondary cache are that there would be
additional coherence considerations for parallel
processing.

We have not been able to run tests which
accurately evaluate the single PE performance
impact of not having a secondary cache. Many
quoted benchmarks for the AXP products benefit
from the secondary cache, but we do not know if
"typical" MPP applications would likewise
benefit from this cache.

Measured, or sustained, speeds for individual
PEs range up to 105 Mftop/s for matrix multiply
kernels. More typical Fortran code runs from 10

485

486

Mflop/s to 40 or 50 Mflop/s. The Alpha
microprocessor can issue one floating point add
or one multiply every clock period, so the
"burst" or "theoretical peak" speed is 150
Mflop/s.

Table 2 shows single PE speeds for the N AS
Parallel benchmarks. The listed speeds are
extracted from data for 32 PEs. The median
speed is 16.6 Mflop/s. Note that the speed for EP
(Embarrassing Parallel) is artificially high
because the implemented algorithm uses fewer
operations than the official operation count. The
floating point speed for IS (Integer search) is low
because the program performs few floating point
operations ..

TABLE 4. Single PE performance for the
NAS Parallel Benchmarks.
Results extracted from 32 PE
runs

Program Speed

EP 83.0 Mflop/s
MG 20
CO 4.2
Ff 26.9
IS 3.6
LV 10.5
SP 16.4
BT 21.2

Each PE in the T3D has an 8 Kbyte (1 Kword)
data cache and either 16 Mbytes (2 M words) or
64 Mbytes (8 Mwords) of local memory. The
Alpha microprocessor has a separate 8 Kbyte
instruction cache. The size of the local memory
is great concern to the programmer. The
microkernel running on each PE requires
approximately 3 or 4 Mbyte of memory. On the
16 Mbyte models, this leaves 1.3 Mwords for
user space. 64 Mbyte models have over 7.5
M words of user space.

3.2 Cache organization

The size and organization of the data cache is of
significance to the programmer. The contents of

and the coherence of the data cache can be
manipulated by the programmer. For some
shared memory message passing, the coherence
of the data cache must be explicitly controlled
by the programmer.

Programmers striving for the highest possible
performance should be aware of the 1 Kword
size of the data cache. Blocked algorithms
should be manipulated to work on blocks of this
size. The data cache size is also of significance
for algorithms which use look-up tables.
Because look-up tables often involve gather
operations, tables which fit in cache are
significantly faster than those which must gather
data from local memory.

The Alpha microprocessor data cache is direct
mapped. This means that each memory location
is mapped onto one unique cache location. The
ramification of this feature to the programmer is
that concurrent references to data which have
memory addresses differing by multiples of
1024 words should be avoided. These kinds of
concurrent references can usually be avoided by
padding arrays.

An simple example of array padding is shown
below in Figure 4. In this example, if the
padding were not present, the reference to A(i)
and B (i) would be to the same data cache
locations. The padding size was chosen so that
one variable reference could get several cache
lines ahead of the other variable.

REAL*8 A(1024*10, B(1024*10)
COMMON /program! A, pad(32), B

DO i=l,n
A(i) = B(i).
END DO

FIGURE 5. Example of padding of arrays to
avoid cache conflicts.

The bandwidth for various operations is shown
in Table 5. The two results given for the an array
copy: one for using the hardware read-ahead
feature and one without this feature. We see that

the read-ahead feature enhances the bandwidth
by over 25%. The result for the library SAXP Y
operation shows that the peak attainable memory
bandwidth is 350 Mbyte/s.

TABLE 5. Node Bandwidth. Rates are in MB/s

Operation

Copy
Copy

SAXPY

Rate

193 MB/s
258

348

IV. Conclusion

Comment

Fortran wlo read-ahead
Fortran wI read-ahead
Libsci

The salient feature of the T3D macro
architecture is the low latency high bandwidth
torus. Because of the torus' connectivity, the
programmer generally does not have to be
concerned with the relative location of PEs or
the location of a partition within a system.

A programmer working with the T3D should be
aware of several micro architecture features. In
particular, the organization of the cache leads to
certain conflicts which can be remedied by
adjusting relative addresses.

Also of significance to the programmer is the
memory bandwidth of the PEs. This bandwidth
will eventually limit the performance of well
written programs.

487

User Services/Software Tools

CONFESSIONS OF A CONSULTANT
(A compendium of miscellaneous tools/scriptslhints/tips/techniques)

Tom Parker

National Center for Atmospheric Research
Boulder, Colorado

Abstract

Consultants require more tools than the average user, so that they can access a wide
variety of information to assist users. This talk discusses various tools that the NCAR
consultants have informally developed/acquired/borrowed. These miscellaneous tools
help us locate system resources, resolve user problems, examine files, debug Fortran, and
provide pointers to other sources of information, both on and off the Cray. We also have
written several "reference cards "for popular, local software, to improve ease-of-use.

Introduction

This presentation consists of a compendium of
varied and miscellaneous tools, tips and tech­
niques. These were written or acquired over the
years by the author, a user consultant. They have
proved useful in assisting users or in managing
Unix files and directories.

Due to the nature of the subject matter, this docu­
ment consists mainly of lists and pointers, rather
than a narrative. 50 tools are summarized in
Appendix 1. Several tips about vi, cft77, and
reference cards are in Appendix 2. About 70
miscellaneous tips and techniques are listed in
Appendix 3. Many good sources of infonnation
are described in Appendix 4.

Thus, this paper/talk presents a "grab bag" of
miscellaneous tools and tips. The author hopes
that the reader will find something useful for their
needs.

All of the non-proprietary items mentioned here,
are also available via anononymous ftp from
ftp.ucar.edu in directory /cug/Sc.

491

Appendix 1 - Summary of Tools

Command Categoa Lang Man Avail+ . Function

allsys misc csh Run a command on several systems.
beav files c y archie Binary editor and viewer.
bed files c y archie Binary editor.
beep mISC csh Beep your terminal.
calc misc perl· Calculator.
ccc fortran csh Remove comment/empty fortran lines.
cflint fortran c y CRI* Analyze fortran source.
cmdcount commands csh Count system command usage.
cosconvert files cf77 y Convert COS-blocked dataset.
cosfile files cf77 y Analyze a COS-blocked dataset.
cos split files cf77 y Split multifile COS-blocked dataset.
dir directory alias Find directory and cd to h.
dirsize directory csh Calculate size of directory (bytes).
each files csh Run a command against a list of files.
exist files csh Beep when a file exists.
ff files csh Run findfile and finddir.
fi files csh Find a file and vi it.
files files csh Display files or directories.
filetime files c Display three timestamps of a file.
findcmd commands csh Find all about a command.
finddir directory csh Find a directory.
findfile files csh Find a file.
findlib libraries csh Find a library.
findman commands csh y Find a man page.
findme misc csh Find info about me.

. findstring files csh Find a string in files.
findsub libraries csh y Find a subroutine in a library.
flint fortran c y IPT* Analyze fortran source.
gzip files c y archie* GNU File compressor.
large directory csh List files by size.
Ie files csh y Convert file names to lower case.
lib x libraries csh List names of system libraries.
line max files csh Find largest line.
loc files csh Search for strings.
lrecl files c y Show min/max record lengths.
make v files csh Truncate trailing blanks.
most files c y archie Hex! Ascii viewer.
olddate files csh Change date of a file.

492

Command Category Lang Man Avail+ Function

pcprint files csh y Print a' file on PC attached printer.
realpath misc csh Display full pathname of a file.
mhome m csh Run m on extra-curricular newsgroups.
rot13 files csh Simplest of encryption techniques.
ruler misc csh Display a ruler (1-80).
run fortran csh Compile, link, run.
textfile files cfl7 y Display info about a text file.
trail files csh Display lines with trailing blanks.
tree directory c Visual display of tree structure.
xdump.perl files perl Perl script to dump a file in hex.
xv files c y archie* Great image viewer that can hex dump.

--

+ All items are available from anonymous ftp site "ftp.ucar.edu" in
directory "/cug/5c", except those marked with * in the "Avail" column.

Appendix 2 - Tips and Techniques: vi, reference cards, cft77

There is a lot of good information about the 'vi' editor, in

ftp.uu.net:/pub/text-processing/vil

You can customize your' vi' session via settings in the vi initialization file,
normally called ".exrc". Below are some .exrc settings I have found useful.
For example, to lowercase the line I'm on in vi, I can type ";1".

" Some settings I like.
set ic number show mode
"
" ;f and ;g = Paragraph formatters.
:map ;f ! }fmt -~1
:map ;g ! }fmt -61
"
" ;u = Uppercase a line.
:map ;u :sl.*f\U&I
"
" ;1 = Lowercase a line.
"
:map;l :s/.*~&1
"

493

494

" ;z = Insert my signature file
:map ;z :r -I.sig-elm
"
" ;> = Insert '>'s til EOF.
:map ;> :.,$s/"I> I
"
" ;a = switch between 2 files
:map;a :e#
"
" ;r = Insert long ruler (80 columns)
:map ;r 00 + 1. ... + 2 + 3 + 4 -- .6 + 7 + 8
"
" ;s = Insert short ruler (72 columns)
:map ;s 00 + 1 + 2 + 3 + 4 -- .6 + 7 ..
"
" Allow arrow keys to work in VI "text insert" mode
:map! OAka
:map! OBja
:map! OC la
:map! ODha

Reference cards are a handy source of information. Some good UNICOS cards
include:

- "Shells SQ-2116"
- "User Commands SQ-2056"
- "CF77 SQ-3070"

You can also write your own reference cards, for popular local software. For
example, at NCAR we have cards for several popular systems. (Free copies
available upon request to the author).

cft77 Debugging Tips

Here are a few tips I've found useful in debugging Fortran problems.

o First and foremost: flint (from vendor IPT) or cflint (from CRI)

o Check subscripts and arguments: cft77 -Rabc

o Un initialization problems: cft77 -ei

o SAVE problems: cft77 -ev

o Optimization problems: cft77 -0 off

o Clobbering code problems: segldr-n

o Memory problems:

PRINT *,'AVAIL. memory (in words) = ',lliPSTAT(12)

o ' assign -V'

o 'cdbx'

o 'explain'
- explain sys-2
- explain lib-l051

o Four common run-time errors:

1) Operand Range Error

An ORE occurs when a program attempts to load or store in an area of memory
that is not part of the user's area. This usually occurs when an array is
referenced with an out-of-bounds subscript.

2) Program Range Error

A PRE occurs when a program attempts to jump into an area of memory that is
not part of the user's area. This may occur, for example, when a subroutine
in the program mistakenly overwrites the Bff save area. When this happens,
the address of the routine from which the subroutine was called is lost.
When the subroutine attempts to return to the calling routine, it jumps
elsewhere instead.

3) Error Exit

An error exit occurs when a program attempts to execute an instruction parcel
of all zeroes. This error usually occurs when the program's code area has
been mistakenly overwritten with words of data (for example, when the program
stores in an array with an out-of-bounds subscript).

4) Floating-point Exception

An FPE occurs when a program attempts to perform a floating-point division of
O. It may also occur with floating-point operations in which one of the
operands is not a valid floating-point value. An invalid floating-point
value may be created when a real array has been equivalenced to an integer

495

496

array, and integer values are stored in the array and then later referenced
as real.

Appendix 3 - Tips and Techniques: Miscellaneous

This appendix list about 70 miscellaneous tips and techniques.

Neat way to check permissions:
find $HOME -perm -002 -print # Shows files that have OTHER write permission

Grab last 30 characters in a string: echo $string I rev I cut -cl-30 I rev

Hex stuff: echo "ibase=16;obase=16 rest of function"lbc
BTW, you can use variables in the echo above.

Remove non-printable characters from a file (except NewLine and Tab).
lusrlbinltr -dc '\011\012 --' < $1

Insert spaces between every character in a string:
echo "string" I sed -e "sl\(.\)l\l/g"

Demo of basename and dimame
echo 'basename lalb/c' ---> c
echo 'basename 1234545' ---> 123
echo 'basename myprog.c .c' ---> myprog
echo 'dimame alb/c/d.e' ---> albIc

Use 'dd' for: ASCII<-->EBCDIC, Upper<-->Lower, Swap VAX bytes

Uppercase a file: tr '[a-z]' '[A-Z]' < input> output

Count number of blanks in a file: tr -cd ' , < input I wc -c

Change mUltiple blank lines to a single blank line -- several methods:
cat-s fn
sed' $!N ;l'\n$ID;P;D' fn
sed'I.I,r$l!d' fn

To list just' dot' files: Is -d . *
To list just directory files: echo *1 or: Ibinlls -ld *1

or: Ibinlls -ld *1 .*1

To list size of directories: du -s *1 or: my 'dirsize'

To rename all .old files to .new, type this in csh:
foreachx(*.old)
mv $x $x:r.new
end

Find all lines that end in blank(s): grep" "$ myfile
To remove trailmg blanks while in vi: :%sI *$/1 (or use my 'makev' command)

Find a string in a directory:
find. -type f -exec grep ~ string' {} Idev/null ';'

Or, use my 'findstrlng' command.

Neat commands: colrm, col, colcrt, fmt, fold, hc, join, nl, paste, pr
xmessage

Handy datacomm commands: traceroute, host, whois, nslookup

See.if site is on Internet: whois

Some ways to double space a file: sed G file; pr -dt file

Print first 50 lines of a file: head -50 file; sed '50q' file

Print lines 30 to ~5: sed -n '30,35p;35q' file

To reverse the order of lines in a file: tail -r <file>
Or: perl -e 'print reverse <>'
Or, in vi: :gI"/mO

To find a G in columns 1-5:
grep '''.\{O,4\}G' -/cds/master

Or more generally, to find string xxx in columns m-n:
grep '''.\{m-l~n-1\}xxx' file-to-search

Change null bytes to blanks: perl -pi -e tr'I\(JJ()/1' <file>

To extract the first 5 letters from a variable using awk:
. echo $11 awk '{print substr($1,1,5)}' .

similarly for the last three:
echo $11 awk '{print substr($1 ,length($I)-2,3) }'

awk 'length >= n' file It Print lines >= n characters.

To print first token of each line: awk' {print $1 }' file
('cut' works too: cut -d' , -fl < file)

497

498

Print first two fields in opposite order: awk' { print $2, $1 }' file

Print line number and number of tokens:
awk ' {print "Line number="NR, "Tokens="NF}' file

Add up sizes of .zip files:
find. -name '*.zip' -Is I awk' {s += $2} END {print s}'

Is -al * .zip I
awk' {i = i + $4;j++} END {printj "files use" i "bytes"}'

Print every 10th line of a file: awk '(NR %10 == 0) {print}' file

To pass a shell variable into awk, you need to put it on the command line:

awk <awk-program> <variable-assignments> <filename>.

E.g. to prepend every line of letclhosts with the value of the variable A;
assume for this run that A's value should be "Sam"

awk ' {printf("%s: %s", A, $O)}, A=Sam letclhosts

If you wish to assign multiple variables, you can do them one at a time
before the filename. Note that if the input should come from stdin, you
must replace the file name with "-".

Performance commands: vmstat; pstat -s; top

To capture a telnet session: telnet wherever I tee my. session
(Doesn't seem to work though, for 'ftp').

Change all occurences of a string in a file:
sed 's/old.string/new.stringlg' filename> file.out

To bypass an alias, eg "alias rm 'rm -''', use: \rm xxx
Also, in a script with "#!lhinlcsh -f', the -f will bypass all aliases, etc.

To test status of a command, in csh:
if { cat a } echo "Command worked"
if! { cat nothere } echo "Command failed"

To get a random number: ksh 'echo $RANDOM'
... or: set testl = 'perl-e 'srand; print int(rand(200)+1)"

or: set test! = 'perl-e 'print 'int(rand(100)Y'

To see if filel is newer than file2:
if('find filel -newer file2 -print' == "") echo "file2 newer"

-or-

set x = 'Is -t file1 file2'; echo "Newest is: $x[1]"

Create an empty file (replacing it if it already exists):
echo >! a

Test if a value is numeric (positive integer):
if ('~cho $x I egrep '''[0-9]+$'' != 1111) echo "It's a number."

You can have arguments in an alias. For example:
alias tom 'echo \!:2 \!:1'
tom a b # Will echo: b a

If use 'rsh' in a csh script, may need '-n' option to avoid
"unfortunate interactions" -- like the csh script stopping prematurely.
For example: rsh shavano.ucar.edu -n Is

Indirection in csh:
set one~= l;·set two = one; eval echo \$$two --> 1

Subscripts in csh:
set a5 = five; eval echo \ai --> five # E.g. 1
eval set temp = \$enum$i # E.g. 2

Prompt for yes/no in csh:
echo -n "yeS/no ?"
set ans=$<

Tokenize a string that has'/, as separator, in csh:
set x = 'echo /a/b/c/d I tr 'I' ' "
echo $#X $x[l] $x[2] # ...

Example of simple loop with counter, in csh:
@i=l
while ($i <= 10)

echo $i
@i++

end

Test if file is not there, in csh:
if (-e myfile = 0) msread ...

or equivalently,
if !(-e myfile) msread ...

Redirect stdout & stderr, together, in csh: a.out >& both
Redirect stdout & stderr, separately: (a.out> stdout) >& stderr

Parse parts of a file name, in csh:
set a = /aIb/c.d

499

500

a:h = /alb
a:t = c.d
a:r = /alb/c
a:e= d

Quoting variables, in csh -- :q and :x
If variable is a wordlist, use.:q to quote it & preserve wordlist.
If variable is NOT a word list, use :x to quote it & create wordlist.

LIMITATIONS in csh (from man page)
Words can be no longer than 1024 characters. The system
limits argument lists to 1,048,576 characters. !:Iowever, the
maximum number of arguments to a command for which filename.
expansion applies is 1706. Command substitutions may expand.
to no more characters than are allowed in the argument list.

Global substitution, in csh:
> echo hi hi hi

hi hi hi

> ! :gslhilhello
hello hello hello

Emoticons are things like: :-), ;-) For more, check:

(1) mercury.unt.edu Ipub/miscIEMOTICON.TXT,
(2) rascal.ics.utexas.edu Imisc/misclEMOTICON .PS,
(3) ugle.unit.no Ipub/misc/jargon/expandedlemoticon, or
(4) wiretap.spies.com !Library lHumorlN erdl.cap/emoticon. txt

If VT100 screen fonts are hosed, try: tput rmso; tput reset

To see a file in FfP: get file.of.interest "Imore"
or get file.of.interest -

To view a big Is: Is. "Imore" # Need the ".".
or Is -It "Imore"
or dir. "Imore" # Need the ".".

To capture a big directory: Is -It xxx # Puts it in file xxx back home.

To 'tar' entire directory (including. files): "tar -cvfmy.tar."
To 'tar' entire directory (excluding. files): "tar -cvf my.tar *"

To make global changes: perl-pLbak -e 's/oldlnew/g' *

Change all null bytes to blanks: perl-pi.bak -e 'trl\OOOII' tezz

Erase words with less than n letters (the words are one per line):

perl-ne 'print if (lengthO >= n)' <infile >outfile

List last mod time of file >6 months old:
perl-e 'require "ctime.pl"; print &ctime«stat{"filename"»[9])'

Print current time in seconds from epoch: perl-e 'print time,"\n'"

Print 3 times associated with a file, in seconds since epoch:
perl-e 'printf "%d %d %d\n", {stat{shift»[8 . .l0]' .cshrc

To remove trailing blanks while in vi: :%sl *$/1

To spell check a file in vi: : !spell %
To test a few words: spell; words words; words words; EOT

To expand tabs, in vi: :% !expand

Delete columns 10-20, n vi: :1,$!cut -c 1-9,21-
on some systems: :1,$!colrm 1020 ! Not shavano!

From the book: Learning the vi Editory (Nutshell book)
- To replace current line: cc or S
- To replace from cursor to EOL: c
- To show all lines containing string: :glstringlp
- To show all lines NOT containing .string: :g!/stringlp
- To show TABs and EOLs: :set list
- To move to top of screen: H
- To move to bottom of screen: L
- To move to 1 st char of next line:
- To display file info:
- To format a paragraph:
- To specify all lines:
- Global change:
- Selective change:
- Do :q! and then vi same file again:
- Delete all blank lines:
- Delete all blank OR white space lines:
- Reverse order of lines:
- Read in results of command (e.g. date):
- Sort lines 10-20:

Appendix 4 - Information Sources

<return>
"g
!}fmt
:1,$ or:%
:%s/oldlnew/g
:%s/oldlnew/gc
:e!
:gI"$/d
:gI"[TAB]*$/d
:g/.*/moO
:r !date
:10,20 !sort

o Tools mentioned in this talk are available via anonymous ftp to:

501

502

ftp.ucar.edu:/cugl5c/

o rn (Reads Use net newsgroups)
- comp.unix.questions 'comp.unix.shell

comp.sources.misc comp.sources.unix

o Internet: archie, gopher, www
- Federal Income Tax forms
- Perl Archive

o "UNIX Power Tools"

"UNIX Power Tools", by Peek, O'Reilly, & Loukides.
O'Reilly & AssociatesIBantam Books
March, 1993

o Unix Books

anonymous ftp to rtfm.mit.edu:/pub/usenetlmisc.books.technical and get file
"[misc.books.technicall_A_Concise_Guide_to_UNIX_Books" .

oFAQs

To get FAQs, anonymous ftp to rtfm.mit.edu:/pub/usenetl.
There are directories for many usenet groups; look in the desired directory
foranFAQ.

E.g. in the directory "/pub/usenetlcomp.unix.questions" you will see several
files that start with "Unix_-_Frequently_Asked_Qu~stions"

Also, the directory Ipub/usenetlnews.answersl contains many FAQs.

o IPT - vendor for Fortran-lint (flint)

Information Processing Techniques
1096 East Meadow Circle
Palo Alto, CA 94303
(415)494-7500

o www - World Wide Web

- Frequently accessed via 'xmosaic', 'lynx', or 'gopher'.
- Federal Income Tax Forms: http://www.scubed.com:800lltaxlfedl
- Perl archive: http://www.cis.ufl.edu:80/perll

o Author: Tom Parker, tparker@ncar.ucar.edu, (303) 497-1227

SHORT PAPERS

Xnewu: A Client-Server Based Application for Managing Cray User Accounts

Khalid Warraich and Victor Hazlewood

Texas A&M University
Supercomputer Center

College Station, TX 77843-3363

victor@tamymp.tamu.edu

ABSTRACT

Many tools are available on the UNICOS system for account administration and system management.
However, none provide a graphical interface to account creation and/or management. A client-server based
application was developed at Texas A&M to add new login ids and new accounts. The graphical interface
provides point and click functionality to adding new UNICOS accounts. The information is validated and then
sent to the server which resides on UNICOS. This server provides some additional data validation and then
makes the appropriate calls to log the transaction, calls udbgen and other utilities to set up the account.

1. Background
The Texas A&M University Supercomputer Center

(TAMUSC) was established in August 1989 to provide
supercomputer resources to Texas A&M University facu1ty,
students, and researchers. TAMUSC decided from the onset
of the center to use the Cray System Accounting (CSA)
package that is provided by UNICOS. A local database
containing local accounting and user information was
included as a supplement to CSA and is updated at the
creation of each user login and user account (users may
have multiple accounts per login name). This information is
not stored in the User Data Base (UDB), therefore, it is not
managed by the UNICOS utility nu. nu provides some
flexibility but does not supply an X Window (X) graphical
user interface nor the ability to add local fields and
commands to the configuration file /etc/nu.cf60. Over the
last year three analysts at Texas A&M have created an X
based client-server application called Xnewu which
manages the creation of new 10gins and accounts for the
Cray system at TAMUSC.

2. Xnewu objectives
The primary objectives for the TAMUSC Xnewu utility
include the following:

1) provide client-server capability to manage accounts
on the VAX and the Cray systems,

2) provide an easy to use X Window user interface on
TAMUSC's SUN computer system,

3) update local accounting and user information
databases on the Cray,

4) log each account creation transaction for disaster
recovery.

When a user receives his first TAMUSC account, a login
name and account are created on a local VAX system and
on the Cray. The TAMUSC requires that the login name be
the same on both systems for accounting and billing
purposes. This requirement forces a coordination between
the two systems. Once all the appropriate information is
given for a new account in Xnewu (see Figure 1) a request
is made for a new username to an authoritative database.
When the username is determined, a request to create a new
login is sent to the VAX and Cray.

To create subsequent accounts for a user, his existing
username is determined, the appropriate information
entered in Xnewu, and then an account creation request is
issued. This account creation request is sent to the Cray
only.

3. Xnewu Overview
We chose our SUN system as the point of user interaction
with the Xnewu system for account creation on the VAX
and the Cray systems over the network. The SUN system
provides the graphical capability, as well as the networking
ability needed to manage the accounts. The Xnewu program
on the SUN is written using the Open Look Intrinsics
Toolkit and acts as the client to the Cray servers. The
interaction with VAX is done through an expect script
running on the SUN.

The creation of a TAMUSC account starts with the approval
of a researchers grant paperwork. Once approved the user
information is enter into the Xnewu client on the SUN
computer system. If this is the first account for a user a new
login name is determined by requesting a new login name
from the IBM authoritative database via the VAX through
the expect script (see Figure 2). After the name is returned a
request to create a new login name is sent to the VAX (using
the expect script) and the Cray Xnewu servers (using a TCP
connection, see Figure 2).

When the Cray server receives an account or login creation

505

request the server logs the transaction in a file for disaster
recovery. Then it updates local accounting and information
files with information regarding the user's identity, his
department, college, grant type received, and the grant
time. Next the server runs the udbgen program to update
the necessary fields in the UDB. Finally, the server runs a
script to create the users home directory (if necessary), the
.forward file, an entry in the USCP slot file, and copies the
"dot" files to the users home directory. Miscellaneous other
tasks could simply be added to this script if necessary.

5. Implementation
(The focus of tIlis section will be on the SUN and Cray
portions of the Xnewu client-server application.)

The three main routines representing functions of Xnewu
client on the SUN (implemented as callback routines and
activated by appropriate buttons on Xnewu) are
check _callback, echo _callback, and create_callback.

The check_callback routine checks all input data and
checks its validity and consistency. If any required data is
missing, out of range, or inconsistent with other data, the
check_callback routine will warn the user and describe the
problem in the status line at the bottom of the Xnewu form.

The echo _callback procedure first calls check _callback and
then displays the current input data on standard output.
This allows the user to inspect the data before it is
transmitted to the VAX and/or the Cray.

The action of create_callback routine dependents on the
"Action" item selected in the Xnewu form. The two
supported actions are "Create Login" and "Create
Accounting Id."

If Create Login is selected at the time the Perform Action
button is pressed (initiating the create_callback routine)
then a login id is obtained from the IBM via the VAX, the
VAX account created, and a request structure is built (see
Table 1 below) and forwarded to the Xnewu server on the
Cray for processing.

Table 1: Request Structure

Loginid Users login id

Account Users accounting id

Password Users password

Name Users First, Middle, and Last Name

SSN Users social security number

Dept Users department name

College Users college name

Email Users default Email address

506

Table 1: Request Structure

Plname Users Supervisor (Principal Investigator)

Placid PI's controlling accounting id

OrigSBU Users Cray resource allocation

HomeDir Users Home Directory

GrantType Type of grant user is being allocated

If Create Accoullting ID is selected at the time the Perform
Action button is pressed a request structure is built and sent
to the Cray for creation of a new account for an existing
user.

Once the Xnewu server on the Cray receives either the
Create Login or the Create Accounting ID request several
pieces of the information are checked for accuracy and
consistency (e.g., duplicate login ids, account creation for
non-existent login. etc.). This second check on the Cray is
more extensive than the one on the SUN since more
information is available on the Cray than on the SUN. An
entry is then made to a log file for disaster recovery. Next, a
udbgen command is created and executed with the request
structure information to created either the new login or the
new account. The local TAMUSC information database is
updated. Then the script to create user's home directory
(for new login requests) and miscellaneous other tasks is
executed. Finally, the server goes to sleep waiting for the
next request.

6. Conclusion
The Xnewu client-server application provides an easy to
use, easily modifiable interface to creating new logins and
accounts for the Cray system at TAMU. This application
could be easily modified to provide other sites with similar
account administration needs a flexible account creation
interface. The Xnewu application provides logging
capabilities, update of local databases, update of the
UNICOS UDB, and execution of a local script which can
perform any number of miscellaneous tasks.

The Xnewu client-server application requires a SUN
system with TCP/IP network access to the Cray system.

QEXEC: A TOOL FOR SUBMITTING A COMMAND TO NQS

Glenn Randers-Pehrson

U. S. Army Research Laboratory
Aberdeen proving Ground, MD 21005-5066

INTRODUCTION:

"qexec" is a shell script that can simplify
the procedure for running a command in batch
mode through the UNICOS Network Queueing
System (NQS) (UNICOS is a trademark of Cray
Research, Inc).

Using the existing NQS "qsub" procedure, you
are normally required to write a shell script
containing the command to be executed. For
example, suppose you wish to run the command

cft77 -em x.f

in batch mode using 2000kW memory and 100
second limits. You would put "cft77 -em x.f"
in a file called "cft77.sh" and then type:

qsub -eo -1m 2000kW -~ 2000kW \
-It 100 -IT 100 cft77.sh

Using "qexec" you would not have to bother with
creating "cft77.sh"; you would simply type

qexec -eo -m 2000 -t 100 cft77 -em x.f

"qexec" passes its options to "qsub". In
addition, it understands "-t sec" as shorthand
for "-It sec -IT sec" and "-m 1000" as shorthand
for "-1m 1000kW -1M 1000kW".

THE .qexecrc FILE:

You may put default options for "qexec" in a
./.qexecrc or $HOME/.qexecrc file. Options on
on the "qexec" directive take precedence over
those mentioned in these files and options in
./.qexecrc take precedence over those in
$HOME/.qexecrc. For example, suppose ./.qexecrc
does not exist and $HOME/.qexecrc contains:

-eo -m 2000 -t 600

Then you would obtain the same effect as above
by typing the following:

qexec -t 100 cft77 -em x.f

This will take "-eo" and the memory limit from
$HOME/.qexecrc, and the time limit from the
"qexec" command.

If for some reason you wish to submit a job with
"qexec" entirely ignoring your .qexecrc and
$HOME/.qexecrc files, then put a "-" at the
beginning of the option list, e.g.

qexec - -m 2000 -t 100 cft77 -em x.f

CHANGING TO THE' PRESENT WORKING DIRECTORY:

Like "qsub", "qexec" will run the job in your home
directory if you have not included an appropriate
"cd" command in your .profile or .login file.
The following will cause your job to run in the
directory from which "qexec" or "qsub" was issued:

"sh" users should include in .profile:

case ${ENVIRONMENT:=LOGIN} in
BATCH) cd $QSUB_WORKDIR;;

esac

"csh" users should include in .login:

if ($ENVIRONMENT == BATCH) then
cd $QSUB_WORKDIR

endif

THE qexec.log FILE:

"qexec" reports its activity in a ./qexec.log
file, giving the time that the job was submitted
to NQS, the qsub options, a copy of the command,
and the time that the job actually began and
finished execution. This information is also
included in the standard output of the job, along
with timing results obtained with /bin/time.

NQS JOB NAME AND PROCESS NAMES:

"qexec" makes a local copy of /bin/time, named
$QSUB_REQID. This can help you identify your job
in the "ps" or "top" displays; the process leader
will have the same name as the NQS request ID.
The first word of the command (e.g. "cft77")
becomes the NQS job name.

507

THE qexec SCRIPT:

The "qexec" shell script follows. You may
obtain a machine-readable copy by sending
e-mail to<glennrp@arl.ar.my.mil>.

#!/bin/sh
qexec [-] [-m kw] [-t sec]
[qsub_args] [--] and [cmd_args]

creates a shell script containing a
command and its arguments and submits
the script for execution via qsub

if no leading "-", uses any arguments
in .qexecrc or $HOME/.qexecrc that are
not specified on the command line .

makes an entry in ./qexee.log

written by Glenn Randers-Pehrson
U. S. Army Research Laboratory
Aberdeen Proving Ground, MD
<glennrp@arl.ar.my.mil>

case $1 in
-) qexec_rc=""; ;
*) qexec_rc='cat -s .qexecrc $HOME/.qexecrc';;

esae

argname=""; silent=no; qsub_args=""
have_lm=no; have_1M=no; have_r=no
have_lt=no; have_1T=no

for arg do
case $1 in
-a) # wait until after specified time

change embedded blanks to commas
when='echo $2lsed -e s/",* *"/,/g'
qsub_args="$qsub_args -a $when"
shift; shift;;

-1m) # memory limit
qsub_args="$qsub_args $1 $2"
have_lm=yes; shift; shift;;

-1M) # memory limit
qsub_args="$qsub_args $1 $2"
have_1M=yes; shift; shift;;

-It) # time limit
qsub_args="$qsub_args $1 $2"
have_lt=yes; shift; shift;;

-IT) # time limit
qsub_args="$qsub_args $1 $2"
have_1T=yes; shift; shift;;

-m) # memory limit
case $2 in
*[0-9]) unitS=Kw;;

508

*) units=" " ;;
esac
qsub_args="$qsub_args -1m 2units"
qsub_args="$qsub_args -lM 2units"
have_1m=yes; have_1M=yes
shift; shift;;

-r) argname="-r $2"
shift; shift; ;

-t) # time limit
qsub_args="$qsub_args -It $2 -IT $2"
have_lt=yes; have_1T=yes
shift; shift; ;

-[eopqsCL]I-l?l-l??I-mu) # opts with args
qsub_args="$qsub_args $1 $2"
shift; shift; ;

-eol-[kmnr]?11U??I-x) # opts w/o args
qsub_args="$qsub_args $1"
shift; ;

-z) silent=yes; shift;;
-) shift; ;
--) shift; break;; # optionally ends args
*) break;; # found beginning of command
esac

done

append arguments from $HOME/qexee.rc
if they haven't already been specified

task=find_next_arg
for rc in $qexec_rc
do

case $rc in
-m) task=parsing_m;;
-r)

case $have_r in
yes) task=skip;;
no) task=parsing_r;;

esac; ;
-t) task=parsing_t;;
-1m) task=parsing_lm;;
-lM) task=parsing_1M;;
-It) task=parsing_lt;;
-IT) task=parsing_1T;;
-[aeopqsCL] l-l?l-l??I-mu)

task=copy
for new_arg in $qsub_args
do

case $new_arg in
$rc) task=skip;;

esac
done
case $task in

copy)
qsub_args="$qsub_args $rc";;

esac; ;
-eol-[kmnr]?11U??I-x)

task=eopy
for new_arg in $qsub_args

do
case $new_arg in

$rc) task=skip;;
esac

done
case $task ;in

copy) qSUb_args=" $qsub_args $rc";;
esac; ;

-z) silent=yes;;
--) break;;
*) case $task in

parsing_1m)
case $rc in

*[0-9]) unitS=Kw;;
*) units="" ; ;

esac
case Shave_1m in

no) have_lm=yes
qsub_args="$qsub_args -1m rcunits";;

esac
task=find_next_arg;;

parsing lM)

cas; $rc in
*[0-9]) unitS=Kw;;
*) units="";;

esac
case Shave_1M in

no) have_1M=yes
qsub_args="$qsub_args -1M rcunits";;

esac
task=find_next_arg;;

parsing_m)
case $rc in

*[0-9]) unitS=Kw;;
*) units=""; ;

esac
case $have_lm in

no) have_lm=yes
qsub_args="$qsub_args -1m rcunits";;

esac
case $have_1M in

no) have_1M=yes
qsub_args="$qsub_args -1M rcunits";;

esac
task=find_next_arg;;

parsing_r)
argname="-r $rc"; have_r=yes
task=find_next_arg;;

parsing_lt)
case $have_lt in

no) have_lt=yes
qsub_args="$qsub_args -It $rc";;

esac
task=find_next_arg;;

parsing_1T)
case $have_1T in

no) have IT=yes
qSub_args="$qsub_args -IT $rc";;

esac
task=find_next_arg;;

parsing t)
cas; $have_lt in

no) have_lt=yes
qsub_args="$qsub_args -It $rc";;

esac
case $have_1T in

no) have IT=yes
qSub_args=" $qsub_args -IT $rc";;

esac
task=find_next_arg;;

copy)
qsub_args="$qsub_args $rc";;

skip)
task=find_next_arg;;

find_next_arg) ;;
esac ;;

esac
done

case $have_r in
no) argname="-r $1";;

esac

create a file for submission. At this
pOint, "$*11 contains the command line
that remains after parsing the "qsub"
arguments.

cp /bin/time \$QSUB_REQID causes the time
process to have the name of the qsub request,
allowing you to relate process id's to request
id.

echo » qexec.log
echo 'date'» qexec.log
echo "qsub $qsub_args $argname" » qexec.log
echo $*» qexec.log

qsub $qsub_args $argname » qexec.log «~I
echo command: $*
echo "submitted thru qexec on " 'date'
echo "with qsub $qsub_args $argname "
echo "beginning execution on" \ 'date\'
cp /bin/time \$QSUB_REQID
echo "\$QSUB_REQID beginning execution\

on" \'date\'»qexec.log
\$QSUB_REQID $*
echo "\$QSUB_REQID finishing execution\

on" \'date\'»qexec.log
echo "end command execution on" \ 'date\ ,
rm \$QSUB_REQID

case $silent in
no) tail -1 qexec.log;;

esac

509

ATTENDEE LIST

eRA Y User Group Attendee List
San Diego, Spring 1994

Adair, Bill
Exxon Eutec
P.O. Box 4449
Houston TX 77210-4449
USA
Phone: 713965-7638
Fax: 713965-7477

Adamec, Steve
USAE Waterways Experiment
Station
Information Technology Laboratory
Attn: CEWES-IM-H
3909 Halls Ferry Road
Vicksburg MS 39180-6199
USA
Phone: 601 634-2901
Fax: 601 634-2331
Email: adamec@wes.army.mil

Adams, Jerry
Cray Research, Inc.
Customer Service
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Adeff, Sergio
University of Mississippi
Center for Supercomputing
Research
Powers Hall, Room 109
University MS 38677
USA
Phone: 601 232-7206
Fax: 601 232-7180

Aguila, Jordi
Cesca
Marketing
Avda. Diagonal 645
Barcelona 08028
Spain
Phone: 93 491 38 35
Fax: 93 490 46 35
Email: zdijav01 @

puigmal.cesca.es

Allen, Portia
San Die,go Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619534-5000
Fax: 619534-5152

Almond, James C.
University of Texas System CHPC
Center for High Performance
Computing
10100 Burnet Road, Commons
Building 1.154
Austin TX 78758-4497
USA
Phone: 512471-2472
Fax: 512471-2445
Emai j.almond@

hermes.chpc.utexas.edu

Amiot, Mary
Cray Research, Inc.
Marketing
655 A Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3524
Fax: 612 683-3599
Email: mary.amiot@cray.com

Anderson, Alfred
University of Texas
CHPCm CMS 1.154
10300 Jollyville Road #633
Austin TX 78759
USA
Phone: 512471-2463
Fax: 512471-2445
Email:a.anderson@

chpc.utexas.edu

Anderson, Mike
Cray Research, Inc.
Corporate Marketing
655-A Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Anderson, Paul
Department of Defense
9800 Savage Road
Ft. Meade MD 20755
USA
Phone: 301 688-9519

Audemard, Michele
IDRIS/CNRS
System Management
Bat. 506, BP #167
Orsay Cedex 91403
France
Phone: 33 69 82 41 27
Fax: 33 69 28 52 73
Email: audemard@idris.fr

Azar, Alex
Cray Research France
Marketing
18, Rue de Tilsitt
Paris 75017
France
Phone: 161 44091441
Fax: 161 44 091404
Email: aa@cray.com

Balog, Douglas
Pittsburgh Supercomputing Center
4400 Fifth Avenue
Pittsburgh PA 15213
USA
Phone: 412 268-4960
Fax: 412 268-5832
Email: balog@cpwsca,psc.edu

Bamber, Gail
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619 534-5000
Fax: 619534-5152

Barnes, David
NASAl Langley Research Center
ACD
MS 157B
Hampton VA 23681-0001
USA
Phone: 804864-7389
Fax: 804864-7604
Email: d.b.barnes@

express.larc.nasa.gov

Barriuso, Ray
Cray Research, Inc.
Software Development
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Baumbaugh, R. Suzette
University of Mississippi
Center for Supercomputing
Research
Powers Hall, Room 322
University MS 38677
USA
Phone: 601 232-7206
Fax: 601 232-7180

Beck,Susan
Cray Research, Inc.
P.O. Box 51703
Knoxville TN 37950
USA
Phone: 615 690-8869
Fax: 615631-2224

Beckley, Donna
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619534-5000
Fax: 619 534-5152

Bedoll, Bob
Boeing Computer Service
Research and Technology
P.O. Box 24346, MS 7L-48
Seattle WA 98124-0346
USA
Fax: 206 865-2965
Email: rfb@sdc.boeing.com

Belbot, Norm
Cray Research, Inc.
Customer Service
4041 Powder Mill Road
Calverton MO 20705
USA
Phone: 301 595-2605
Fax: 301 595-2637
Email: belbot@castrg1

This list is intended for communication and information dispersal within the Cray User Group. Any other use is unauthorized.
513

Benwell. Peter R.
United Kingdom Meteorological
Office
Central Computing
London Road
Bracknell Berkshire RG122SZ
UK
Phone: 44 344-85 6097
Fax: 44 344-85 4412

Bergman, Larry A.
Jet Propulsion Laboratory
Section 341
4800 Oak Grove Drive, MS 300-
329
Pasadena CA 91109
USA
Phone: 818 354-4689
Fax: 818393-4820
Email: larry@jplopto.jpl.nasa.gov

Berkey, Chet
Cray Research, Inc.
Software Devel0r:>ment
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-3599

Bernardi, Sergio
CINECA
Systems Management
Via Magnanelli 6/3
Casalecchio Di Reno (BO 1-40033
Italy
Phone: 3951 598411/6599411
Fax: 3951 598472/6599472
Email: abatu01@cinymp.cineca.it

Bernhard, Win
General Electric - Aircraft Engines
8700 Governor's Hill
Mail Stop A303
Cincinnati OH 45249
USA
Phone: 513 583-3687
Fax: 513 583-3652

Bielli, Dominique
METEO-France
SCEMml/DEV
42 Avenue Coriolis
Toulouse Cedex 31057
France
Phone: 193361 0781 22
Fax: 193361 0781 09
Email: bielli@metro.fr

Blaskovich, David
Cray Research, Inc.
Corporate Marketing Suite 1331
North
1331 Pennsylvania Avenue,NW
Washington DC 20004
USA
Phone: 202 638-6000
Fax: 202 638-0820

Blay, Christopher
Lockheed Info Tech Co.
High Performance and Classified
Computing
1401 Del Norte Street
Denver CO 80221
USA
Phone: 303 430-2122
Fax: 303 430-2225
Email: cblay@

514
hpcc,litc.lockheed.com

Bodzin, Henry
Ford Motor Company
Engineering Computer Center MD-
1
20,000 Rotunda Drive, ECC
Building
Dearborn MICH 48121
USA
Phone:
Fax:
Email:

313845-1347
313 390-4865
bodzin@
pms625.pms.ford.com

Boland, Bob
Los Alamos National Laboratory
Distributed Computing
Environments MS B272
P.O. Box 1663
Los Alamos NM 87545
USA
Phone: 505 667-1729
Fax: 505 665-6333
Email: wrb@ lanl,gov

Bongiorno, Vito
Cray Research, Inc.
Central Region
1440 Northland Drive
Mendota Heights MN 55120
USA
Phone: 612683-3404
Fax: 612683-7483
Email: vb@.cray.com

Boyle, Tom
Cray Research, Inc.
Americas Tech. - Support
655 F Lone Oak Dr.
Eagan MN 55121
USA
Phone: 612 683-5695
Fax: 612 683-5599
Email: boyle@hemlock.cray.com

Brady, Chris
Cray Research, Inc
Customer Service- NCAR
1850 Table Mesa Drive
Boulder CO 80307
USA
Phone: 303497-1836
Fax: 303 494-4002

Brandt, Ruediger
Debis SH CCS
CCS-SW/HPC
Fasenenweg 9
Leinfelden 0-70771
Germany
Phone: 49 711 9722193
Fax: 49 711 9721955
Email: sde4220@str.daimler­
benz.com

Breinlinger, Helmut
Leibniz-Rechenzentrum Muenchen
Barer Str. 21
Muenchen 0-80333
Germany
Phone: 49 89 21058788
Fax: 49 89 2809460
Email: breinlinger@

Irz-muenchen.de

Brewer, Kevin
Mobil-MEPTEC
Information Technology
P.O. Box 650232 B-2-236
Dallas TX 75265
USA
Phone: 214 951-3506
Fax: 214951-3529
Email: krbrewer@dal,mobil,com

Brost, Jerry
Cray Research, Inc.
Engineering
900 Lowater Road
Chippewa Falls WI 54729
USA
Phone: 715 726-6508
Fax: 715 726-6713

Brown, Denice
U.s. Army Research Lab
Attn: AMSRL-CI-AC
Bldg 328, Room 3
Aberdeen Proving Ground MD
21005-5067
USA
Phone: 410 278-6269
Fax: 410 278-5077
Email: denice@arl.army.mil

Brown, Troy
Exxon Eutec
3616 Richmond Avenue
Houston TX 77046-3604
USA
Phone: 713 965-4660
Fax: 713 965-7310

Brunzell, Barb
Cray Research, Inc.
Customer Service
655-A Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-3599

Buerger, Paul
Ohio Supercomputer Center
1224 Kinnear Rd
Columbus OH 43212-1154
USA
Phone: 614292-8447
Fax: 614292-7168
Email: kevin@osc.edu

Buisan, Marc
CNES
18 Av E. Belin
Toulouse 31055
France
Phone: 3361 274741
Fax: 3361 281662
Email: buisan@melies.cnes.fr

Busch, Hubert
ZIB Berlin
Computer Center
Heilbronner Str. 10
Berlin-Wilmersdorf D-10711
Germany
Phone: 49 30 89604 135
Fax: 49 30 89604 125
Email: busch@ZIB-Berlin.de

Campbell. Colin
Cray Research UK
Oldbury
Bracknell Berkshire RG124TQ
UK
Phone: 44-344 722190
Fax: 44-344426319
Email: cjc@cray.com

Caputo, Gina
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619534-5000
Fax: 619534-5152

Cardo, Nicholas P.
Sterling Software, Inc.
NASAl Ames Research Center
MIS 233-3
Moffett Field CA 94035-1000
USA
Phone: 415 604-4754
Fax: 415964-1760
Email: npcardo@

ames.arc. nasa.gov

Carll, Rich
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619534-5000
Fax: 619534-5152

Carlson, John
Cray Research, Inc.
655 A Lone Oak Dr.
Eagan MN 55121
USA
Phone: 612-683-7120
Fax: 612-683-7199
Email: John.Carlson@cray.com

Carpenter, John
Cray Research, Inc.
Corporate Marketin~
655-A Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Carrillo, Alex
USAE Waterways Experiment
Station
Information Technology Laboratory
Attn: CEWES-IM-H
3909 Halls Ferry Road
Vicksburg MS 39180-6199
USA
Phone: 601 634-2588
Fax: 601 634-2331

Carruthers, Bob
Cray Research, Inc.
Corporate Marketing UK
Oldbury
Bracknell Berks RG124TQ
United Kingdom
Phone: 44 344 485971
Fax: 44344426319

Cave, Robert
Institute for Defense Analyses
Center for Communications
Research
Thanet Road
Princeton NJ 08540
USA
Phone: 609 924-4600
Fax: 609 924-3061
Email: bob@ccr-p.ida.org

Chahine, Roger
Hydro-Quebec
855 EST st. Catherine 20e
Montreal Quebec H2L 4P5
Canada
Phone: 514840-3027
Fax: 514840-4160
Email: chahine@

cant.hydro.qc.ca

Charon, Elizabeth
CEAlCEL V
DMAISIE
94195 Villeneuve
Saint Georges Cedex
France
Phone: 33 1 45 95 61 84
Fax: 33 1 45 95 95 55

Cheung, Henry
CSE
719 Heron Road
Ottawa Ontario K1 G 3Z4
Canada
Phone: 613991-7173
Fax: 613991-7323
Email: hccheun@

manitou.cse.dnd.ca

Cho, YoungWook
SERif KIST
Software Engineering and System
Software
P.O. Box Yuseong
Taejeon 305-600
Korea
Phone: 82 042 869-1653
Fax: 82 042 869-1699
Email: ywcho@kumdorLserLre.kr

Christoph, Gary
Los Alamos National Laboratory
Group C-1 MS B252
P.O. Box 1663
Los Alamos NM 87545
USA
Phone: 505667-3709
Fax: 505 665-6333
Email: ggc@lanl.gov

Ciotti, Bob
NASA Ames Research Center
MS 258-5
NAS Facility
Moffett Field CA 94035-1 000
USA
Phone: 415 604-4408
Fax: 415 604-4377
Email: ciotti@nas.nasa.gov

Ciuffini, Mary Ann
NCAR
P.O. Box 3000
Boulder CO 80307
USA
Phone: 303 497-1806
Fax: 303497-1818
Email: mac@ncar.ucar.edu

Clark, Charlie
Cray Research, Inc.
European Region 4 Customer
Service
Oldbury
Bracknell Berks RG124TQ
United Kingdom
Phone: 44 344 722296
Fax: 44344 722191

Clave, Salvador
Cesca
Projects
Avda. Diagonal 645
Barcelona 08028
Spain
Phone: 93 491 38 35
Fax: 934904635
Email: zdiscm01 @

puigmal.cesca.es

Cohen,Phii
Scripps Research Institute
10666 North Torrey Pines Road
MB200R
La Jolla CA 92037
USA
Phone: 619 554-9914
Fax: 619 554-6260
Email: phil@scripps.edu

Cole, John
U.S. Army Research Lab
Advanced Computing Division Attn:
AMSRL-CI-A
Bldg 328, Room 26·
Aberdeen Proving Ground MD
21005
USA
Phone: 410 278-9276
Fax: 410 278-5077
Email: cole@arl.army.mil

Collinet, Philippe
IDRISICNRS
Bat. 506, BP #167
Orsay Cedex 91403
France
Phone: 33 69 82 41 27
Fax: 33 69 28 52 73
Email: collinet@idris.fr

Copeland, Rene
Cray Research, Inc.
Supercomputer Operations
1440 Northland Drive
Mendota Heights MN 55120
USA
Phone: 612683-5922
Fax: 612683-7345

Corbett, Dorothy
Arctic Region Supercomputing
Center
P.O. Box 756020
Fairbanks AK 99775
USA
Phone: 907474-5102
Fax: 907474-5494
Email: dscorbett@

acad5.alaska.edu

Councill, Carolyn
Pittsburgh Supercomputing Center
4400 Fifth Avenue
Pittsburgh PA 15213
USA
Phone: 412 268-1556
Fax: 412 268-5832
Email: councill@psc.edu

515

Crain. Sylvia
Cray Research, Inc.
Software Development
500 Montezuma; Suite 118
Santa Fe NM 87505
USA
Phone: 505 988-2468 x30
Fax: 505984-1375

Craw, James
NASA Ames Research Center
MS 258-6
NAS Facility
Moffett Field CA 94035-1000
USA
Phone: 415 604-4606
Fax: 415 604-4377
Email: craw@ nas.nasa.gov

Crawford, Dianna
Cray Research, Inc.
Software DeveloQment
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-3599

Crawford, Susan
Cray Research, Inc.
Software Development
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Curtis, Nick
Idaho National Engineering
Laboratory
Scientific Systems
P.O. Box 1625
Idaho Falls 10 83415-2603
USA
Phone: 208 526-9687
Fax: 208 526-9936
Email: nic@inel,gov

Dagitz, Roger
Cray Research, Inc.
Customer Service
890 Industrial Blvd.
Chippewa Falls WI 54729
USA
Phone: 715 726-5269
Fax: 715 723-4343
Email: roger.dagitz@cray.com

Dalmas, George
U.S. Govt C.I.A.
MS 2V29
Room 2V29, NHB
Washington DC 20505
USA
Phone: 703 874-2765
Fax: 703 883-9053

Das, Simanti
Exxon Eutec
CIT GP3-728233-Benmar
233 Benmar
Houston TX 77002
USA
Phone: 713423-7236
Fax: 713423-7801

516

Davey, Sandy
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619 534-5000
Fax: 619534-5152

Davis, Mike
Cray Research, Inc.
Customer Service
6565 Americas Pkwy NE
Albuquerque NM 87110
USA
Phone: 505 844-1034
Fax: 505 844-2067

Declerk, Michael
IDA
Thanet Road
Princeton NJ 08540
USA
Phone: 609 924-4600
Fax: 609924-3061

Dent, David
European Centre for Medium
Range Weather Forecasts
Shinfield Park
Reading Berkshire RG2 9AX
UK
Phone: 44 734-499702
Fax: 44 734-869450
Email: ddent@ecmwf.co.uk

Dispen, Arve
University of Trondheim Computing
Centre
Sintef Runit
Trondheim N-7034
Norway
Phone: 47 73 592989
Fax: 4773 591700
Email: dispen@cray.sintef.no

Doering, Don
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619 534-5000
Fax: 619 534-5152

Dombrowski, Jay
San Diego Supercomputer Center
Eng.&Oper.
P.O. Box 85608
San Diego CA 92186-9784
USA
Phone: 16195345023
Fax: 16195345152
Email: dombrowhf@sdsc.edu

Dorgan, John
NIST
Computer Services Division
Bldg. 225, Room A27
Gaithersburg MD 20899-0001
USA
Phone: 301 975-2959
Email: dorgan@tiber.nist.gov

Douglas, Margaret
NSWCDD
K51
Navy/NSWC
Dahlgren VA 22448
USA
Phone: 703663-7334
Fax: 703663-7999
Email: mdougla@

relay.nswc.navy.mil

Drobnis, Dan
San Diego Supercomputer Center
Engineering & Operations
P.O. Box 85608 SDSC-103
San Diego CA 92186-9784
USA
Phone: 619 534-5020
Fax: 619534-5152
Email: Drobnisdd@sdsc.sds.edu

Dungworth, Mick
Cray Research, Inc.
V.P.- Customer Service
1440 Northland Drive
Mendota Heights MN 55120
USA
Phone: 612683-7150
Fax: 612683-7345

Dunn, Christopher
G.C.H.Q.
Computer Operations MS F/0302B
Priors Road, Oakley
Cheltenham Glos GL52 5AJ
United Kingdom
Phone: 44242221491 x2381
Fax: 44242226816

Dunn, Thomas
Naval Meteorology and
Oceanography Command
Mail Code OOC
1020 Balch Boulevard
Stennis Space Center MS 39529-
50
USA
Phone: 601 688-4189
Fax: 601 688-4880
Email: dunn@pops.navo.navy.mil

Eacock, Nigel A.
Government Communications
Headquarters
F/1212
Priors Road

Cheltenham G loucestershire
GL525AJ
UK
Phone: 44242-221491
Fax: 44 242-226816

Edge, Curtis D.
North Carolina Supercomputing
Center
P.O. Box 12889
Research Triangle Park NC
27709
USA
Phone: 919248-1148
Fax: 919248-1101
Email: edge@ncsc.org

Eltgroth. Peter
Lawrence Livermore National
Laboratory
Physics MS L-294
P.O. Box 808
Livermore CA 94551
USA
Phone: 510422-4096
Fax: 510423-6961
Email: eltgroth@lanl.gov

Engel, James
NASA/Johnson Space Center
Grumman Data Systems
12000 Aerospace Ave.
Houston TX 77034
USA
Phone: 713 483-5894
Fax: 713483-7044
Email: engel@sed.jsc.nasa.gov

Erickson, David
Cray Research, Inc.
Customer Service
890 Industrial Blvd,
Chippewa Falls WI 54729
USA
Phone: 715 726-5308
Fax: 715 726-4343

Escobar, Juan
IDRIS/CNRS
Users Support
Bat. 506, BP #167
Orsay Cedex 91403
France
Phone: 33 69 82 42 00
Fax: 33 69 28 52 73
Email: escobar@idris.fr

Evans, Roger
Rutherford Appleton Laboratory
Chilton
Didlot OX11 OOX
Great Britain
Phone: 44 235 445656
Fax: 44 235 446626
Email: rge@ib.ql.ac.uk

Eversole, Larry C.
Jet Propulsion Laboratory
Cal Tech MS 301-455
4800 Oak Grove Drive
Pasadena CA 91109
USA
Phone: 818354·2786
Fax: 818393-1187
Email: eversole@

voyager.jpl. nasa.gov

Ewald, Robert
Cray Research, Inc.
900 Lowater Road
Chippewa Falls WI 54729
USA
Phone: 715-726-6508
Fax: 715 726·6713
Email: Bob.Ewald@cray.com

Fagan, Mike
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619534·5000
Fax: 619534-5152

Fairhurst, Helen
United Kingdom Meteorological
Office
London Road
Bracknell Berkshire RG 12 2SZ
UK
Phone: 44 34 856097
Fax: 4434854412

Falcione, Dean
Westinghouse- Bettis
RT
P.O. Box 79
W. Mifflin PA 15122-0079
USA
Phone: 412 476-6535
Fax: 412 476-6924
Email: falcione@bettis.gov

Falde, Paul
Cray Research, Inc.
655F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-3599
Email: falde@cray.com

Falkenthal, John
DCIX
2100 Main Street
Huntington Beach CA 92648
USA

Ferber, Daniel
Cray_ Research, Inc.
665F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683 3522
Fax: 6126833599

Fichtel, Hartmut
Deutsches Klimarechenzentrum
GmbH
Systems Software
Bundesstrasse 55
0-20146 Hamburg 13
Germany
Phone: 49-40-41173-220
Fax: 49-40-41173-270
Email: fichtel@dkrz.d400.de

Fine, Martin
Merrill Lynch
Swaps
World Financial Center, North
Tower, 16th Floor
New York NY 10281-1316
USA
Phone: 212 444-6203
Fax: 212444-6789
Email: fine@repo-dev.ml.com

Finn, Steven
Pacific-Sierra Research
2901 28th Street
Santa Monica CA 90405
USA
Phone: 310314-2332
Fax: 310314-2323
Email: sf@lanl.gov

Finney, Christopher
EMASS
Sales
51 Corporate Woods, 9393 W.
11 Oth Street
Overland Park KS 66213
USA
Phone: 913 451-6989

Fischer, Ericka
University of Stuttgart Computing
Center
Operations
Allmandring 30
Stuttgart 0-70550
Germany
Phone: 49711 685-4515
Fax: 49 711 68 2357
Email: e.fischer@

rus. u n i-stuttgart. de

Fischer, Uwe
Rechenzentrum der Universitaet
Stuttgart
Allmandring 30A
0-7000 Stuttgart 80
Germany
Phone: 49 711 685 5800
Fax: 49 711 682 357
Email: uwe.fischer@

rus. u n i-stuttgart. de

Friedman, Karen
National Center for Atmospheric
Research
P.O. Box 3000
Boulder CO 80307
USA
Fax: 303497-1298

Fry, Wes
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619-534-5000
Fax: 61'9534-5152

Frybarger, Jim
Los Alamos National Laboratory
Computer Operations and
Assurance Group MS B292
P.O. Box 1663
Los Alamos NM 87545
USA
Phone: 505667-4584
Fax: 505 665-8816
Email: jaf@ lanl.gov

Furtney, Mark
Cray Research, Inc.
Software Development
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 6.12 683-3522
Fax: 612683-3599

Gaffey, Brian
Cray Research, Inc.
Software Development
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-3599

517

Gates. Kathy
University of Mississippi
Center for Supercomputing
Research
Powers Hall, Room 105
University MS 38677
USA
Phone: 601 232-7206
Fax: 601 232-7180

Gates, Leary
Cray Research, Inc.
Software Development
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612 683-3599

Georgi, Gunter
Grumman
73 Irma Avenue
Port Washington NY 11050
USA
Phone: 516883-2336
Email: georgi@cug.org

Gerard, Nicole
Electricite de France
DER-IMA
1 Avenue Du General De Gaulle
Clamart 92141
France
Phone: 33 1 47654553
Fax: 33 1 47 653973
Email: nicole.gerard@der.edf.fr

Gerth, Mitch
Phillips Petroleum Company
Information Technology
1110 PLaza Office Building
Bartlesville OK 74004
USA
Phone: 918661-3971
Fax: 918661-5250
Email: jmgarth@ppco.com

Gigandet, Martine
CEAlCEL V
DMAISIE
94195 Villeneuve
Saint Georges Cedex
France
Phone: 33 1 45 95 61 84
Fax: 33 1 45 95 95 55
Email: gigandet@limeil.cea.fr

Gordon, Daniel
IDA Center for Communications
Research
4320 Westerra Court
San Diego CA 92121
USA
Phone: 619622-5431
Fax: 619455-1327
Email: gordon @ccrwest.org

Gottschewski, Juergen
Konrad Zuse-Zentrum fur
Informationstechnik Berlin
Heilbronner Str. 10
Berlin-Wilmersdorf 0-10711
Germany
Phone: 49-30-89604-130
Fax: 49-30-89604-125
Email: Gottschewski@sc.ZIB­
Berlin.de

518

Graffunder, Sara
Cray Research, Inc.
Applications
655-E Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-3599

Grasseau, Giller
IDRIS/CNRS
Users Support
Bat. 506, BP #167
Orsay Cedex 91403
France
Phone: 33 69 82 42 50
Fax: 33 69 28 52 73
Email: grasseau@idris.fr

Grassl, Charles
Cray Research, Inc.
Benchmarking
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-3599

Greenwade, Eric
INEL - EG&G Idaho, Inc.
1155 Foote Drive
P.O. Box 1625, MS 2608

Idaho Falls 10 83415
USA
Phone: 208 526-1276
Fax: 208 526-9936
Email: leg@ inel,gov

Griffing, R. Bruce
Lawrence Livermore National
Laboratory
NERSC
P.O. Box 5509
Livermore CA 94551
USA
Phone: 610 422-4498
Fax: 510422-1482
Email: griffing@nersc.gov

Grindle, Jim
Cray Research, Inc.
Software Development-UN ICOS
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612 683-3599

Guest, Clayton
Sterling Software (NASA Ames)
MS 258-6
NAS Facility
Moffett Field CA 94035-1000
USA
Phone: 416 604-1339
Fax: 415964-1760
Email: cguest@

eagle.arc.nasa.gov

Guritz, Richard
Arctic Region Supercomputing
Center
P.O. Box 73685
Fairbanks AK 99775
USA
Phone: 907474-6307
Fax: 907474-5494
Email: rguritz@

iias.images.alaska.edu

Guzy, Christine
NCAR
SCD
1850 Table Mesa Drive
Boulder CO 80303
USA
Phone: 303497-1826
Fax: 303497-1814
Email: guzy@ncar.ucar.edu

Haerer, Sally
NCAR
SCD Consulting Group
P.O. Box 3000
Boulder CO 80307
USA
Phone: 303497-1283
Fax: 303497-1298
Email: haerer@ncar.ucar.edu

Hale, Cherie
Los Alamos National Laboratory
Group C6
P.O. Box 1663
Los Alamos NM 87545
USA
Phone: 505667-2879
Fax: 505 665-5402
Email: cbh@lanl,gov

Hale, Gerald
Los Alamos National Laboratory
T-2 MS B243
P.O. Box 1663 .
Los Alamos NM 87545
USA
Phone: 505667-7738
Fax: 505667-9671
Email: ghale@lanl,gov

Hall, Bonnie
Exxon Eutec
ST-967
P.O. Box 4449
Houston TX n210-4449
USA
Phone: 713966-6031
Fax: 713965-7477

Hampton, Mary
USAE Waterways Experiment
Station
Information Technology Laboratory
Attn: CEWES-IM-MI-C
3909 Halls Ferry Road
Vicksburg MS 39180-6199
USA
Phone: 601 634-3501
Fax: 601 634-2331
Email: hampton@wes.army.mil

Hanyzewski, Gary
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619534-5000
Fax: 619534-5152

Hardesty, Carol Cannon
Lawrence Livermore National
Laboratory
NERSC
P.O. Box 5509
Livermore CA 94550
USA
Phone: 510 422-9037
Fax: 510 423-5951
Email: hardesty@ l1ersc.gov

Harrell. Jim
Cray Research, Inc.
Software Development
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Haven, Will
Britiah Aerospace
W302M, warton Aerodrome
Preston Lancashire PR56AC
UK
Phone: 44 772 852230
Fax: 44 772 852787

Haxby, Andy
Shell Common Information
Services
Cray and Unix Support
Rowlandsway House, Rowlands
Way PSI 23
Wythenshawe Manchester M22
5SB
UK
Phone:
Fax:
Email:

44 61 499 4910
4461 4994914
andy@
trumpet.demon.co.uk

Hazlewood, Victor
Texas A&M University
C15
012 Teague 3142
College Station TX 77840-3142
USA
Phone: 409 862-4121
Fax: 409847-8643
Email: victor@tamymp.tamu.edu

Heib, Michael
Debis SH CCS
CCS-SW/HPC
Fasenenweg 9
Leinfelden 0-70771
Germany
Phone: 49 711 9722180
Fax: 49 711 9721955
Email: sde4220@

str .daimler-benz.com

Heinzel, Stefan
Max Planck Institut fuer
Plasmaphysik
Boltzmannstrasse 2
Garching 85748
Germany
Phone: 049 89 3299 1340
Fax: 049 89 3299 2200
Email: sth@ipp-garching.mpg.de

Henesey, Mike
Cray Research, Inc.
N. E. District Manager
655-A Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Henken, Gerrit
Deutsches Klimarechenzentrum
GmbH
Communication
Bundesstr. 55
Hamburg 0-21035
Gerr:nany
Phone: 49 40 41173-330
Fax: 49 40 41173-270
Email: henken@dkrz.d400.de

Henquel, Patrick
CNES
18 Au Edouard Belin
Toulouse Cedex 31055
France
Phone: 3361 282048

Henry, Olivier
CEAlCEV-M
DMAI AMA
Boite Postale 7
Courtry 77181
France
Phone: 33 1 49 36 89 12

Hessler, Gerd
University of Kiel
Computer Center
Olshausenstrasse 40
Kiel 0-24118
Germany
Phone: 49431-8802770
Fax: 49431-8801523
Email: hessler@

rz.uni-kiel.d400.de

Hilberg, Claus
European Centre for Medium
Range Weather Forecasts
Shinfield Park
Reading Berkshire RG2 9Ax
UK
Phone: 44 734-499000
Fax: 44 734-869450
Email: cJaus.hilberg@

ecmwf.co.uk

Hines, Gary
Cray Research, Inc.
Corporate Marketing
655-A Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Hinrichs, Emil
Prakla-Seismos GmbH
Geophysical Data Center
Bucholzer Str. 100
0-30655 Hannover51
Germany
Phone: 49 511-642-4227
Fax: 49511-647-6860
Email: hinrichs@

annover.sgp.slb.com

Hochlenert, Juergen
Cray Research GmbH
Service
Riesstrasse 25
Munchen D-80992
Germany
Phone: 49 89 14903 130
Fax: 49 89 14903 149
Email: jho@

crmunichO.cray.com.de

Holzmaier, Walter
Cray Research GmbH
Service
Riesstrasse 25
Munchen 0-80992
Germany
Phone: 49 89 14903 134
Fax: 49 89 14903 149
Email: wgh@

crmunichO.cray.com.de

Horner-Miller, Barbara
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena CA 91355
USA
Phone:
Fax:
Email:

818 354-3434
818393-1187
horner@
cosmos.jpl. nasa. gov

Hung, Howard
National Institute of Standards and
Technology
Scientific Computing Environments
Division
MS B146, Bldg 225·
Gaithersburg MD 20899
USA
Phone: 301 975-2890
Fax: 301 963-9137
Email: hung@cam.nist.gov

Hutton, Tom
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619534-5000
Fax: 619534-5152
Email: Hutton@sds.sdsc.edu

Jamgochian, Linda
EMASS
Marketing MS 58100
2260 Merritt Drive
Dallas TX 75266
USA
Phone: 214205-7762
Email: lindaj@emass.esy.com

Jastremski, Bruce
Cray Research, Inc.
Local Sales Management
222 N. Sepulveda Blvd. Suite 1406
EI Segundo CA 90245
USA
Phone: 3~ 0640-8402
Fax: 310640-8442

Jaunin, Michel
Ecole Polytechnique Federale de
Lausanne
Service -Informatique Central-SE
CP121 Ecublens
CH-1015 Lausanne

Switzerland
Phone: 41-21 693 22 11
Fax: 41-21 693 22 20
Email: jaunin@sic.epfl.ch

519

Jennings. David
NSWCDD
Navy/NSWC
Dahlgren VA 22448
USA
Phone: 703 663-7334
Fax: 703663-7999
Email:

mil
djennin@relay.nswc.navy.

Jensen, Gary
National Center for Atmospheric
Research
P.O. Box 3000
Boulder CO 80307
USA
Phone: 303 497-1289
Fax: 303497-1298
Email: guido@niwot.ucar.edu

Jensen,Nancy
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619534-5000
Fax: 619534-5152

Jette, Morris
Lawrence Livermore National
Laboratory
NERSC L-561
P.O. Box 808
Livermore CA 94550
USA
Phone: 510 423-4856
Email: jette@nersc.gov

Jin, SangWon
Samsung Advanced Institute of
Technology
Department of Supercomputer
Applications
P.O. Box 111
Suwon 440-600
Korea
Phone: 8227440011 x 9161
Fax: 82 331 280 9158

Johnson, Frederick
National Institute of Standards and
Technology
Bldg. 225/Rm. B122
Gaithersburg MD 20899
USA
Phone: 301 975-2700
Fax: 301 963-9137
Email: fjohnson@ nist.gov

Johnson, Steve
Cray Research, Inc.
1050 Lowater Rd
Chippewa Falls WI 54729
USA
Phone: 715 726-8227
Fax: 715 726-6715
Email: sjj@artgate.cray.com

Jones,Kelly
Cray Research, Inc.
890 Industrial Blvd
Chippewa Falls WI 54729
USA
Phone: 715 726-5224
Fax: 715 726-4343
Email: krj@techops.cray.com

520

Jones, Terry
Grumman Data System
Bldg 1001, Room 101
Stennis Space.Center MS 39522
USA
Phone: 601 688-5289
Fax: 601 689-0400

Kadomatsu, Gary
Cray Research, Inc.
2100 Main Street
Huntington Beach CA 92648
USA .
Phone: 714960-7611
Fax: 714969-6472
Email: garyk@craywr.cray.com

Kaler, Joe
Cray Research, Inc.
Customer Service
890 Industrial Blvd,
Chippewa Falls WI 54729
USA
Phone: 715 726-5334
Fax: 715 726-4343

Kamrath, Anke
San Diego Supercomputer Center
User Services
P .0.Box 85608
San Diego CA 92186-9784
USA
Phone: 619534-5140
Fax: 619534-5117
Email: kamratha@ sdsc.edu

Keller, Jayne
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619 534-5000
Fax: 619534-5152

Kikuchi, Mitutaka
Nippon Telegraph and Telephone
Corporation
Research and Development
Information and Patent Center
3-9-11 Midori-Cho
Tokyo Musashino-shi 180
Japan
Phone: 81-422 59-3699
Fax: 81-422 60-7480
Email: kikuchi@superm.ntt.jp

Kirchhof, Cal
Cray Research, Inc.
Software Development
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-3599

Klein, Rosie
Cray Research, Inc.
Corporate Marketing
1440 Northland Drive
Mendota Heights MN 55120
USA
Phone: 612683-7521
Fax: 612683-7345

Klepzig, Floyd
University of Mississippi
Center for Supercomputing
Research
Supercomputer Building, Room
100A
University MS 38677
USA
Phone: 601 232-7206
Fax: -601 232-7180

Knaak, David
Cray Research, Inc.
Software Develor;:>ment
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Koeninger, Kent
Cray Research, Inc.
Software Development
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612 683-3599
Email: kentk@cray.com

Krantz, Daniel
Los Alamos National Laboratory
Computing, Information and
Communications Div. MS B294
P.O. Box 1663
Los Alamos NM 87545
USA
Phone: 505 665-4932
Fax: 505 665-6333
Email: dwk@lanl.gov

Krause, Lisa
Cray Research, Inc.
Software Develor;:>ment
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Krecji, Fre~
Cray Research, Inc.
Customer Service-West
2100 Main Street
Hunington Beach CA 92648
USA
Phone: 714 960-7611
Fax: 714 969-6472

Kuehn, Jeff
NCAR
SCD Consulting Group
P.O. Box 3000
Boulder CO 80307
USA
Phone: 303497-1311
Fax: 303497-1814

Kulsrud, Helene
Institute for Defense Analyses
Center for Communications
Research
Thanet Road
Princeton NJ 08540
USA
Phone: 609 279-6243
Fax: 609 924-3061
Email: laney@ccr.p.ida.org

Kyriopoulos. Marj
Cray Research, Inc.
Customer Service
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612 683-3599

LaCroix, Suzanne
Cray Research, Inc.
Software DeveloRment
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Lapeyre, Alain
Centre National dlEtudes Spatiale
18 Au Edouard Belin
Toulouse Cedex 31055
France
Phone: 3361 282051
Fax: 3361 281893
Email: lapeyre@sc2000.cnes.fr

Larson, Julie
Cray Research, Inc.
Customer Service
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612 683-3599

Lasher, Bill
EMASS
2260 Merritt Drive
Garland TX 75042
USA
Phone: 214 205-8555
Fax: 214205-7200
Email: billl@emass.esy.com

Lebens, Janet
Cray Research, Inc.
Software Development
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612 683-3599

Lecoeuvre, Claude
Commissariat a IIEnergie Atomique
Cel-V
94195 Villeneuve
St. Georges Cedex
France
Phone: 33 1 459561 85
Fax: 33 1 45 95 95 55
Email: lecoeuvr@limeil.cea.fr

Lee, Yong Woo
SERI! KIST
Software Engineerng and System
Software
P.O. Box Yuseong
Taejeon 305-600
Korea
Phone: 82 042 869-1674
Fax: 82042869-1699
Email: ywll@garam.kreonet.re.kr

Lemaire, Frederic
Cray Research France
Service
18, Rue de Tilsitt
Paris 75017
France
Phone: 161 44091441
Fax: 161 44091404

Levine, Michael
Pittsburgh Supercomputing Center
4400 Fifth Avenue
Pittsburgh PA 15213
USA
Phone: 412 268-4960
Fax: 412 268-5832
Email: Levine@a.psc.edu

Lin, Carlos
San Die.go Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619 534-5000
Fax: 619534-5152

Litteer, Gerald
INEL-EG&G Idaho, Inc.
1155 Foote Drive ISC G06
P.O. Box 1625
Idaho Falls 10 83415
USA
Phone: 208 526-9117
Fax: 208 526-9936
Email: gll@inel.gov

Lloyd, Harold
National Meteorlogical Center
Automation Division
DOC/NOAAlNWS FOB-4, Room
2334
Suitland MD 20746
USA
Phone: 301 763-2616
Fax: 301 763-3479

Lovato, Frank
Naval Oceanographic Office
Mail Code NSC
1002 Balch Boulevard
Stennis Space Center MS 39529-
50
USA
Phone: 601 688-5091
Fax: . 601 689-0400
Email: lovato@

pops.navo.navy.mil

Mack, Dieter
Rechenzentrum der Universitaet
Stuttgart
Systems
Allmandring 30
Stuttgart 0-70550
Germany
Phone: 49 711 685-5788
Fax: 45 711 68 2357
Email: mack@rus.uni-stuttgart.de

Mandell, Jeff
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619 534-5000
Fax: 619534-5152

Mandt, Hans
Boeing Advanced Systems
Laboratory
P.O. Box 24346
MS 7L-48
Seattle WA 98124
USA
Phone: 206 866-3505
Fax: 206 865-2965
Email:

hans@skipper.boeing.co
m

Mantock, Gregg
Eli Lilly and Company
Lilly Corporate Center
SCientific Information Systems
Indianapolis IN 46285
USA
Phone: 317276-4269
Fax: 317276-4127

Marsden, Yuki
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619534-5000
Fax: 619534-5152

Martin, Stuart
Rutherford Appleton Laboratory
Atlas Centre
Chilton Didcot Oxon OX11 OOX
England
Phone: 44 235 446780
Fax: 44 235 446626
Email: sjm4@ib.rl.ac.uk

Mascarenas, Art
LANL
MS B294
Los Alamos NM 87545
USA
Phone: 505667-7191
Email: adm@lanl.gov

Mason, Ange
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186-9784
USA
Phone: 619 534-8333
Fax: 619534-5152
Email: masona@sdsc.edu

Mason, Delores
National Energy Research
Supercomputer Computer Center
NERSC
P.O. Box 808 L-560
Livermore CA 94550
USA
Phone: 510 422-9325
Fax: 510423-8744
Email: mason @ nersc.gov

Mason, Don
Cray Research, Inc.
Software DeveloRment
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-3599

521

Matthews. Kevin
Cray Research, Inc.
655F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-5422
Fax: 612 683-5201
Email: kcm@cray.com

McLaughlin, Dan
Cray Research, Inc.
Customer Service
890 Industrial Blvd.
Chippewa Falls WI 54729
USA
Phone: 715 726-5067
Fax: 715 726-4343

Melendez, Jerry
Los Alamos National Laboratory
Computer Systems
P.O. Box 1663, MS B294
Los Alamos NM 87545
USA
Phone: ·505667-5243
Fax: 505 665-6333
Email: kjm@lanl.gov

Mengel, Don
Cray Research, Inc.
Customer Service
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612 683-3599

Meys, Tony
Cray Research, Inc.
Applications
655-E Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-3599

Miller, Raymond
Los Alamos National Laboratory
C-2
P.O. Box 1663 MS B294
Los Alamos NM 87545
USA
Phone: 505 665-3222
Fax: 505 665-6333

Miller, Robin
Mississippi Center for Computing
Research
205 Supercomputing Building
University of Mississippi
University MS 38677
USA
Phone: 601 232-7206
Fax: 601 232-7180
Email: robin@vm.cc.olemiss.edu

Milosevich, Sam
Eli Lilly
MC7R7
Lilly Corporate Center, Drop 1513
Indianapolis IN 46285
USA
Phone:
Fax:
Email:

522

317276-9118
317276-5431
sam@ncsa.uiuc.edu;
sam@lilly.com

Minto, Bill
Cray Research, Inc.
Corporate Marketing! T3D
655-A Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612 683-3599

Mitchell, John Cameron
Government Comm.Headquarters
C34C Room F/1211
Priors Road
Cheltenham Gloucestershire
GL525AJ
UK
Phone: 044242221491 ext. 3793
Fax: 44 242 251725

Moore, Reagan W.
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186-9784
USA
Phone: 619 534-5073
Fax: 619534-5152
Email: moore@sdsc.edu

Morin, Michele
Electricite de France
DER-IMA
1 Avenue Du General De Gaulle
Clamart 92141
France
Phone: 33 1 476551 15
Fax: 331 47 6541 18
Email: michele.morin@der.edf.fr

Morreale, Peter
National Center for Atmospheric
Research
SCD Consulting
1850 Table Mesa Drive
Boulder CO 80307
USA
Phone: 303497-1293
Email: morreale@ncar.ucar.gov

Morrow, Dennis
NASA/Goddard
SDCD
Mail Code 932
Greenbelt MD 20771
USA
Phone: 301 286-2829
Fax: 301 286-1634
Email:

morrow@calcary.gsfc.nas
a.gov

Muehling, Eric
Arctic Region Supercomputing
Center
P.O. Box 756020
Fairbanks AK 99775
USA
Phone: 907474-5149
Fax: 907474-5494
Email: fnerm@arsc.alaska.edu

Nadrchal, Jaroslav
Czech Academy of Sciences
Institute of Physics
Cukrovarnicka 10
162 00 Praha 6
Czech Republic
Phone: +42 2355 500
Fax: +4223123184
Email: nadrchal@fzu.cs

Nagy, Nicholas
Los Alamos National Laboratory
CIC-DO B260
Los Alamos Nat'l Laboratory P.O.
Box 1663
Los Alamos NM 87544
USA
Phone: 505667-6164
Fax: 505665-4361
Email: Nagy@lanl.gov

Nason,John
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619534-5000
Fax: 619534-5152

Naud, Alain
IDRIS/CNRS
System/Data Management
Bat. 506, BP #167
Orsay Cedex 91403
France
Phone: 33 69 82 41 27
Fax: 33 69 28 52 73
Email: naud@idris.fr

Novotny, Robert
EMASS
Sales
10809 W. l28th Terrace
Overland Park KS 66213
USA
Phone: 913897-6944

O'Connor, Bill
EMASS
Sales
7716 E. Minnezona Avenue
Scottsdale AZ 85251
USA
Phone: 602 990-3202

O'Neill, Michael
Cray Research U.K.
Applications Support Group
Oldbury
Bracknell Berkshire RG124TO
UK
Phone: 44 344 8485971
Fax: 44 344 57234
Email: mlon@cray.com

Ogawa, Susumu
Cray Research Japan Ltd.
East Japan Sales District
Ichibancho Eight-One Building
64 Ichiban-cho Chiyoda-KU Tokyo
102
Japan
Phone: 81 3 3239 0710
Fax: 81 3 3239 0955
Email: sog@sol.crj.cray.com

Ogno, Anton
Exxon Eutec
10806 Atwell Drive
Houston TX 77096
USA
Phone: 713965-7308
Fax: 713965-7310

Ohmura. Kyukichi
CRC Research Institute, Inc.
1-3-D16, Nakase, Mihama-ku
Chiba-shi 261-01
Japan
Phone: +81 432747180
Fax: +81 43298 1863
Email: k-oomura@crc.co.jp

alias, Uwe
University of Kiel
Computer Center
Olshausenstrasse 40
Kiel D-24118
Germany
Phone: 494318802770
Fax: 49 4318 801 523
Email: 0Iias@rz.uni-kiel.d400.de

Olson, Denny
Cray Research, Inc.
Applications
655-E Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612 683-3599

Olson, James
Phillips Petroleum Company
1110 PLaza Office Building
Bartlesville OK 74004
USA
Phone: 918661-3042
Fax: 918661-9345
Email: lio@ppco.com

Oner, Fatma
Power Computing Company
1930 Hi Line Drive
Dallas TX 75207
USA
Phone: 214655-8618
Fax: 214655-8836

Opalko, Bob
Mississippi Center for
Supercomputing Research
Computer Center
Powers Hall, Room 315
University MS 38677
USA
Phone: 601 232-7206
Fax: 601 232-7180

aura, Shuhei
Cray Research, Inc.
Yokogawa Electric Corp.
Shinjuku Center Buildin~ (50F)
1-25-1 Nishi-shinjukuShlnJuku-Ku
Tokyo 163-60
Japan
Phone:
Fax:
Email:

81 333490617
81 333490697
Ctanaka@
eng.yokogawa.co.jp

Owen, R.
NASA Ames Research Center
MS 258-6
NAS Facility
Moffett Field CA 94035-1000
USA
Phone: 415 604-5935
Fax: 415 964-1760
Email: rkowen@nas.nasa.gov

Oyanagi, Steven
Minnesota Supercomputer Center
1200 Washington Avenue South
Minneapolis MN 55415
USA
Phone: 612337-3527
Fax: 612337-3400
Email: sho@msc.edu

Pack, Jeff
Grumman Data Systems
7 Grace Hopper Avenue
Monterey CA 93943-5005
USA
Phone: 408 656-4647
Fax: 408656-4648
Email: jpack@fnoc.navy.mil

Palm, Joan
Cray Research, Inc.
Corporate Marketing
655 A Lone Oak Dr.
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612 683-3599

Parker, Tom
National Center for Atmospheric
Research
SCD Consulting Group
P.O. Box 3000
Boulder CO 80307
USA
Phone: 303497-1227
Fax: 303497-1814
Email: tparker@ncar.ucar.edu

Parks, Cathy
Sterling Software (NASA Ames)
MS 258-6
NAS Facility
Moffett Field CA 94035-1000
USA
Phone: 415604-4768
Fax: 415 604-4377
Email: cparks@nas.nasa.gov

Patella, Rick
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619 534-5000
Fax: 619534-5152

Pellegrino, Fran
Westinghouse Electric Corp
PO Box 355
Computer Services
Pittsburgh PA 15230-0355
USA
Phone: 412374-4281
Fax: 412 374-4909
Email: pellegrino@b.psc.edu

Perry, Steve
Cray Research, Inc.
Sales
200 Westpark Drive, Suite 270
Peachtree City GA 30269
USA
Phone: 404631-2235
Fax: 404631-2224

Peterson, Anthony
EMASS
MS 57230
2260 Merritt Drive
Garland TX 75042
USA
Phone: 214 205-8320
Email: anthonyp@
emass.esy.com

Petty, James
Grumman Data System
Security
Bldg 1001, Room 101
Stennis Space Center MS 39522
USA
Phone: 601 688-4514
Fax: 601 689-0400

Pfaff, Bruce
NASA Goddard Space Flight
Center
Mail Code 931
Greenbelt MD 20771
USA
Phone: 301 286-8587
Fax: 301 286-1634
Email: k3bep@

charney.gsfc.nasa.gov

Pfaff, Dale .
Naval Research Lab
Mail Code 5594
4555 Overlook Avenue, SW
Washington DC 20375-5000
USA
Phone: 202767-3190
Fax: 202 404-7402
Email: pfaff@ccf.nrl.navy.mil

Polterock, Josh
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619 534-5000
Fax: 619534-5152

Powers, Alan
Sterling Software (NASA Ames)
MS 258-6

,NAS Facility
Moffett Field CA 94035-1000
USA
Phone: 415 604-3991
Fax: 415604-4377
Email: powers@nas.nasa.gov

Price, Robert
Westinghouse Electric Corporation
Westinghouse Corporate Computer
Services
P.O. Box 355, WEC-W204C
Pittsburgh PA 15146
USA
Phone: 412 374-5826
Fax: 412374-6924
Emair: price@a.psc.edu

Puzio, Sylvie
IDRIS/CNRS
Users Graphic Support
Bat. 506, BP #167
Orsay Cedex 91403
France
Phone: 33 69 82 42 00
Fax: 3369285273
Email: puzio@idris.fr

523

Qualters. Irene
Cray Research, Inc.
Software Development
655 F Lone Oak Dr.
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612 683-3599
Email: imq@cray.com

Raith, Dieter
RUS Rechenzentrum Uni Stuttgart
Computer Center
Allmandring 30
D~ 70550 Stuttgart
Germany
Phone: 49-711-68545167
Fax: 49-711-682357
Email: raith@rus.uni-stuttgart.de

Raymond, Richard
Pittsburgh Supercomputing Center
4400 Fifth Avenue
Pittsburgh PA 15213
USA
Phone: 412 268-4960
Fax: 412 268-5832
Email: raymond@psc.edu

Reinhardt, Steve
Cray Research, Inc.
Software Devel0r:>ment
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-3599

Rew, Juli
National Center for Atmospheric
Research
SCD
1850 Table Mesa Drive
Boulder CO 80303
USA
Phone: 303497-1830
Fax: 303497-1814
Email: juliana@ ncar.ucar.edu

Reynolds, John
Lawrence Livermore National
Laboratory
NERSC L-561
P.O. Box 5509
Livermore CA 94550
USA
Phone: 510422-8350
Fax: 510 422-0435
Email: reynolds@ nersc.gov

Rhodes,Hannah
Cray Research, Inc.
Applications
655-0 Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Richmond, Barbara
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619 534-5000
Fax: 619534-5152

524

Ride, Sally
University of California, San Diego
CALSPC IN
La Jolla CA 92093
USA

Rittenhouse, Virgil
Cray Research, Inc.
Customer Service-West
2100 Main Street
Hunington Beach CA 92648
USA
Phone: 714 \960-7611
Fax: 714 969-6472

Roach, ' David
University of Mississippi
Center for Supercomputing
Research
Powers Hall, Room 305
University MS 38677
USA
Phone: 601 232-7206
Fax: 601 232-7180

Robb, Derek
Cray Research, Inc.
Corporate Marketin~
655-A Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-3599

Robertson, Michael
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619534-5000
Fax: 619534-5152

Rohwer, David
Arctic Region Supercomputing
Center
Computer Network
303 Tanana Drive
Fairbanks AK 99775
USA
Phone: 907474-6319
Fax: 907474-7127
Email: scdar@orca.alaska.edu

Roiger, Wayne
Cray Research, Inc.
Software Development
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612 683-3599

Rokkum, Leif Reidar
University of Trondheim Computing
Centre
Industrial Mathematics
University of Trondheim
Trondheim N-7034
Norway
Phone: 4773 592033
Fax: 4773 592971
Email: leifreidar.rokkum@
sima.sintef.no

Romberg, Mathilde
KFA Juelich
Postfach 1913
Zentralinstitut fur Angewandte
Mathemayik
0-52425 Juelich
Germany
Phone: 492461-613631
Fax: 4924611516656
Email: m.romberg@kfa-juelich.de

Rosenberg, Robert
United States Navy
Research Computation Division
4555 Overlook Ave., S.W.
Washington DC 20375
USA
Phone: 202767-3884
Fax: 202404-7402
Email: Rosenberg2@

ccf.nrl.navy.mil

Rutherford, Paul
Cray Research, Inc.
Software Development
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-'3599

Saffioti, Joe
Communications Security
Establishment
719 Heron Road
Ottawa Ontario K1 G 3Z4
Canada
Phone: 613991-7302
Fax: 613991-7323

Saini, Subhash
NASA Ames Research Center
MS 258-6
NAS Facility
Moffett Field CA 94035-1000
USA

Saye, Louis
Cray Research, Inc.
925 1 st Avenue
Chippewa Falls WI 54729
USA
Phone: 715 723-5501
Fax: 715 723-4980
Email: %00%CHPI@mpls2

Scarbnick, Carl
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619 534-5000
Fax: 619534-5152

Schafer, Hans-Ulrich
Cray Research GmbH
Sales and Marketing Support
Riesstrasse 25
Munchen 0-80992
Germany
Phone: 49 89 149030
Fax: 49 89 1409075
Email: hus@cray.com

Schardt. Thomas
NASA Goddard Space Flight
Center
Code 931
Greenbelt MD 20771
USA
Phone: 301 286-9155
Fax: 301 286-1634
Email: k3tds@

charney.gsfc.nasa.gov

Schilder, Sandi
Cray Research, Inc.
CCN
655-E Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Schroeder, Wayne
San Diego Supercomputer Center
P. O. Box 85608
San Diego CA 92186-9784
USA
Phone: 619534-5065
Fax: 619534-5152
Email: schroeder@sdsc.edu

Schroeder, William
GECRD
Computer Graphics & Systems MS
KWC-211
1177 Highland Park Road
Schenectady NY 12309
USA
Phone: 518387-5106
Fax: 518387-6560
Email: schroeder@crd.ge.com

Schultz, Richard
IDA Center for Communications
Research
4320 Westerra Court
San Diego CA 92121
USA
Phone: 619 622-5420
Fax: 619455-1327
Email: rich@ccrwest.org

Shaginaw, Richard
Bristol-Myers Squibb
SIS
P.O. Box 4000
Princeton NJ 08543-4000
USA
Phone: 609 252-5184
Fax: 609 252-6163
Email: shaginaw@bms.com

Sharp, Barry
Boeing Computer Technical
Service
Technical Services
P.O. Box 24346 MS 7 A-35
Seattle WA 98124-0346
USA
Phone: 206 865-6411
Fax: 206 865-2007
Email: bxs@sdc.cs.boeing.com

Sheddon, Mark
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186-9784
USA
Phone: 619534-5130
Fax: 619534-5152
Email: sheddon@sdsc.edu

Sherman, Tom
Cray Research, Inc.
Applications
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612 683-3599

Sheroke, Robert
U.S. Army Research Lab
Bldg 328, Room 3
Aberdeen Proving Ground MD
21005
USA
Phone: 41 0 278-2064
Fax: 410 278-5077
Email: rsheroke@arl.army.mil

Shorrel, Gary
Cray Research, Inc.
Engineering
1050 Lowater Road
Chippewa Falls WI 54729
USA
Phone: 715 726-8223
Fax: 715726-7615

Shukla, Suresh
Boeing Computer Service
Service Management MS 7 A-26
P.O. Box 24346
Seattle WA 98124-0346
USA
Phone: 206 865-3482
Fax: 206 865-2007

Shuler, Jean
National Energy Research
Supercomputer Computer Center
NERSC L-561
P.O. Box 5509
Livermore CA 94550
USA
Phone: 510423-1909
Fax: 510422-0435
Email: shuler@ nersc.gov

Sides, Stephanie
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186-9784
USA
Phone: 619534-5131
Fax: 619 534-5152
Email: sides@sdsc.edu

Silvia, Robert J.
North Carolina Supercomputing
Center
3021 Cornwallis Road
Research Triangle Park NC
27709
USA
Phone: 919248-1132
Fax: 919248-1101
Email: rjs@ncsc.org

Simmons, MarS'Jaret W.
Los Alamos National Laboratory
MS B265
P. O. Box 1663
Los Alamos NM 87545
USA
Phone: 505667-1749
Fax: 505 665-5220
Email: mls@ lanl.gov

Sinco, Russ

222 N. Sepulveda Blvd.
EISegundo CA 90245
USA
Email: Sindo@sunnyla.cray.com

Skaug, Dallas.
Cray Research, Inc.
Corporate Marketin~
655-A Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-3599

Slocomb, Charles
LANL
CIC-DO
Los Alamos Nat'l Laboratory P.O.
Box 1663
Los· Alamos NM 87544
USA
Phone: 505667-6164
Fax: 505665-4361
Email: cas@lanl.gov

Slowinski, David
Cray Research, Inc.
Development
900 Lowater Road
Chippewa Falls WI 54729
USA
Phone: 715 726-6000
Fax: 715 726-6713

Smart, Charlotte
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619 534-5000
Fax: 619534-5152

Smetana, Andrew
Westinghouse Savannah River
Scientific Computations
Bldg 773-42A Rm.127
Aiken SC 29808
USA
Phone: 803 725-4192
Fax: 803725-4704

Smith, Edward
Apple Computer
20740 Valley Green Drive
MIS #32 E
Cupertino CA 95014
USA
Phone: 408 996-1010
Fax: 408974-3103

Smith, Liz
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619534-5000
Fax: 619534-5152

Sotler, Virginia A.
United States Army Corps of
Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg MS 39180-6199
USA
Phone: 601 634-4418
Fax: 601 634-2331
Email: sotler@wes.army.mil

525

Sova. Mary
Cray Research, Inc.
Customer Service-West
2100 Main Street
Hunington Beach CA 92648
USA
Phone: 714 \960-7611
Fax: 714 969-6472

Spencer, Leo
Lawrence Livermore National
Laboratory
Livermore Computing L-67
7000 East Avenue
Livermore CA 94550
USA
Phone: 510 422-0484
Fax: 510423-6961

Spiller, Jake
Merrill Lynch
Swaps
World Financial Center, North
Tower
New York NY 10281-1316
USA
Phone: 212 449-0056
Fax: 212 449-2724
Email: jake@swaps-ny.mLcom

Spitzmiller, Ted
Los Alamos National Laboratory
C-6 MS B295
P.O. Box 1663
Los Alamos NM 87545
USA
Phone: 505667-7298
Fax: 505 665-5402
Email: ths@lanLgov

Spragg, Douglas
Exxon Upstream Technical
Computing Company
P.O. Box 4449
Houston TX 77210
USA
Phone: 713 965-4804
Fax: 713965-7310

Springmann, Jeanne
NIST
Bldg. 225, Room B 1 46
Gaithersburg MD 20899-0001
USA
Phone: 301 975-3805

St. Charles, Neil
Ford Motor Company
Engineering Computer Center
PO Box 2053
Dearborn MI 48121-2053
USA
Phone:
Fax:
Email:

313845-5471
313390-4865
stcharle@
pms007.pms.ford.com

St. John, Wally
Los Alamos National Laboratory
C-5 MS B255
P.O. Box 1663
Los Alamos NM 87545
USA
Phone: 505 665-3666
Fax: 505665-7793
Email: jwb@lanLgov

526

Steidel, Jon
Cray Research, Inc.
Software Development
655 F Lone Oak Dr.
Eagan MN 55121
USA
Phone: 612 683~3522
Fax: 612 683-3599
Email: jls@bedlam.cray.com

Stern, Stuart .
Boeing Advanced Systems
Laboratory
Research and Technology
P.O. Box 24346 MS 7L-48
Seattle WA 98124-0346
USA
Phone: 206 866-3504
Fax: 206 865-2965

Storer, Neil
European Centre for Medium
Range Weather Forecasts
Operations Department
Shinfield Park
Reading Berkshire RG2 9AX
UK
Phone: 011-44-734-499353
Fax: 011-44-734-869450
Email: neil.storer@ecmwf.co.uk

Strand, Brad
Cray Research, Inc.
655F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612 683-3599
Email: bstrand.cray.com

Strande, Shawn
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619534-5000
Fax: 619 534-5152

Stringer, Ben
COADOD
P.O. Box 4924
Kingston 2604 ACT
Australia
Phone: 61 62650431
Fax: 61 62650485
Email: ben@defcen.gov.au

Swanson, Robert
Martin Marietta Services Group
135 Washington Avenue
Bay City MI 48708
USA
Phone: 517 894-7600
Fax: 517 894-7676
Email: rto@nesc.epa.gov

Swanson, Sandra
Martin Marietta Services Group
135 Washington Avenue
Bay City MI 48708
USA
Fax: 517894-7600
Email: saz@ nesc.epa.gov

Sydow, Pete
Cray Research, Inc.
Software Development
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Tanaka, Toshiro
Cray Research, Inc.
Yokogawa Electric Corp.
Shinjuku Center Building (50F)
1-25-1 Nishi-shinjuku
Shinjuku-Ku TokYo 163-60
Japan
Phone: 81 33349 0617
Fax: 81 3 3349 0697
Email:

t_tanaka@eng.yokogawa.
co.jp

Thelliez, Eric
Electricite de France
DER-IMA
1 Avenue Du General De Gaulle
Clamart 92141
France
Phone: 33 1 47 65 39 49
Fax: 33 1 47 65 39 73
Email: ericthelliez@der.edf.fr

Therre, Marie Helene
Cray Research France
Service
18 Rue de Tilsitt
Paris 75017
France
Phone: 161 44091441
Fax: 161 44091404

Tiemann, Jochen
DEBIS Systemhaus GmbH
RZ SIS MS HPC G300
Mercedesstrasse 136
Stuttgart 0-70322
Germany
Phone: 49 711 1722836
Fax: 49 711 1756764
Email: tie mann @ str.daimler­
benz.com

Tovo, Pat
Cray Research, Inc.
655F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612683-3522
Fax: 612683-3599
Email: tovo@maliogany

Tracy, Daniel
Department of Defense
9800 Savage Road
Ft. Meade MD 20755-6000
USA
Phone: 301 688-7206

Umscheid, Lou
Geophysical Fluid Dynamics
Laboratory
Room 161
P.O. Box 308, Princeton University
Princeton NJ 08542
USA
Phone: 609 452-6591
Fax: 609987-5063
Email: lu@gfdLgov

Valenzuela. Felipe
Swiss Federal Institute of
Technology
SIC-SE
CH-1015 Lausanne
Switzerland
Phone: 41 21 693 2256
Fax: 41 21 6932220
Email: valenzuela@sic.epfl.ch

Vandevender, Walter
Sandia National Laboratories
Organization 1943
P.O. Box 5800
Albuquerque NM 87185-5800
USA
Phone: 505 844-4802
Fax: 505 844-2067
Email: whvande@sandia.gov

Vann,Leon
Cray Research, Inc.
655A Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683 3522
Fax: 6126833599

Verdier, Francesca
NASA Goddard Space Flight
Center
Mail Code 931
Greenbelt MD 20771
USA
Phone:
Fax:
Email:

301 286-8153
301 286-1634
xrfrv@
calvin.gsfc.nasa.gov

Vernon, Krista
Mississippi Center for
Supercomputing Research
Center for Supercomputing
Research
Powers Hall, Room 303
University MS 38677
USA
Phone: 601 232-7206
Fax: 601 232-7180
Email:

cckrista @ magnolia. mcsr.o
lemiss.edu

Vigil, Manuel
Los Alamos National Laboratory
MS B294
P :0. Box 1663
Los Alamos NM 87545
USA
Phone: 505667-5243
Fax: 505 665-6333

Vildibill, Mic hael
San Diego Supercomputer Center
P. O. Box 85608
San DiegoCA 92186-9784
USA
Phone: 619 534-5074
Fax: 619534-5152
Email: mikev@sdsc.edu

Vizino, Chad
Pittsburgh Supercomputing Center
4400 Fifth Avenue
Pittsburgh PA 15213
USA
Phone: 412 268-5868
Fax: 412 268-5832
Email: vizino@psc.edu

Vogel, Mary C.
Rockwell International
MS SE25 P.O. Box 2515
2201 Seal Beach Boulevard
Seal Beach CA 90740
USA
Phone: 31 0 797-2565
Fax: 310797-3511

Wasserman, Harver
Los Alamos Nationa Laboratory
Computer Research Group MS
B265
P.O. Box 1663
Los Alamos NM 87545
USA
Phone: 505 667-2136
Fax: 505 665-5220
Email: hjw@ lanl.gov

Watson, Jr., Robert
Lockheed Info Tech Company
High Performance Computing
1401 Del Norte Street
Denver CO 80221
USA
Phone: 303 430-2122
Fax: 303 430-2225
Email: bwatson@

litc.lockheed.com

Weening, Joseph
IDA Center for Communications
Research
4320 Westerra Court
San Diego CA 92121
USA
Phone: 619 622-5429
Fax: 619455-1327
Email: jweening@ccrwest.org

Wehinger, Walter
Rechenzentrum der Univ. Stuttgart
Allmandring 30
D-70550 Stuttgart 80
Germany
Phone: 49-711-685-2513
Fax: 49-711-682-357
Email: wehin~er@

rus. um-stuttgart.de

Weidl, IngeborS)
Max Planck Instltut fuer
Plasmaphysik
Boltzmanstrasse 2
Garching D-85748
Germany
Phone: +49 89 3299 218
Fax: +498932992191
Email: sth@

uts. ipp-garching. mpg. de

Weinberger, Howard
Technology Applications
POBox 40190
Albuquerque NM 87196
USA
Phone: 505266-6740
Fax: 505266-6931
Email: weinberger@plk.af.mil

Wenes, Geert
Cray Research, Inc.
Af)plications
5 Post Oak Park, Suite 2020
Houston TX 77027
USA
Phone: 703297-7896
Fax: 703 968-1620

Wenger, Doug
United States Navy
Fleet Numerical Oceanography
Center
Airport Road
Monterey CA 93943-5005
USA
Phone: 408 656-4445
Fax: 408 656-4489
Email: dwenger@fnoc.navy.mil

West, Sam
Cray Research, Inc.
Customer Service-West Box
454028
4505 S. Maryland Parkway
Las Vegas NV 89154-4028
USA
Phone: 702 895-4499
Fax: 702 895-4156

Whiting, Don
Cray Research, Inc.
890 Industrial Blvd
Chippewa Falls WI 54729
USA
Phone: 715 726-5014
Fax: 715 726-6713

Wicks, Thomas
Boeing Computer Service
Research and Technology MS 7L-
48.
P.O. Box 24346
Seattle WA 98124-0346
USA
Phone: 206 866-3953
Fax: 206 865-2965

Wielinga, Paul
Sara
Kruislaan 415
Amsterdam 1098 SJ
The Netherlands
Phone: 31-20-592 3000
Fax: 31-20-6683167
Email: wielinga@sara.nl

Wienke, Bruce
Los Alamos National Laboratory
Advanced Computing Laboratory
P.O. Box 1663, CDOI ACL MS
B287
Los Alamos NM 87545
USA
Phone: 505 667-1358
Fax: 505 665-4939
Email: brw@ lanl.gov

Wilkens-Diehr, Nancy
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619 534-5000
Fax: 619534-5152

Williams, Mark
United States Army Research
Center
SECAD, SLCBR-SE-A
Bldg. 394, Room 231
Aberdeen Proving Ground MD
21005-5067
USA
Phone: 410 278-6320
Fax: 301 278-5077
Email: mrwil@arl.army.mil

527

Williams. Winnie
Cray Research, Inc.
Software Development - T3D
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612 683-3599

Wilson, John
Cray Research, Inc.
Software Develoj:>ment
655-F Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612 683-3599

Wimberly, Frank
Pittsburgh Supercomputing Center
4400 Fifth Avenue
Pittsburgh PA 15213
USA
Phone: 412 268-4960
Fax: 412 268-5832
Email: wimberly@a.psc.edu

Windoffer, Cris
Jet Propulsion Laboratory
4800 Oak Grove Drive
MS 301-455
Pasadena CA 91109
USA
Phone: 818354-7357
Fax: 818393-1187
Email: cris@voyager.jpl.nasa.gov

Winget, Karen
Fine Point Editorial Services
1011 Ridge Valley Court
Shepherdstown WV 25443
USA
Phone: 304876-1618
Fax: 304876-1814
Email: kwinget@mcimail.com

Wohlever, Kevin
Martin Marietta Services Group
135 Washington Avenue
Bay City MI 48708
USA
Phone: 517894-7685
Fax: 517894-7600
Email: kwy@nesc.epa.gov

Wojewocki, Diane
San Diego Supercomputer Center
P.O. Box 85608
San Diego CA 92186
USA
Phone: 619 534-5000
Fax: 619534-5152

Wood, Robert
Lawrence Livermore National
Laborato~
Computation Organization/LC
p.o. Box 808
Livermore CA 94550
USA
Phone: 510 423-5077
Email: bwood@ IInl.gov

528

Worlton, Jack
Cray Research, Inc.
Corporate Marketing
2231 E. 3980 South
Salt Lake City UT 84124
USA
Phone: 801 272-0494
Fax: 801 272-0495

Yoo, Sang Seop
Samsung Advanced Institute of
Technology
Department of Supercomputer
Applications
P.O. Box 111
Suwon 440:600
Korea
Phone: 822 7440011 x 9160
Fax: 82331 2809158

Young, Bing
Lawrence Livermore National
Laboratory
LC MS L-061
P.O. Box 808
Livermore CA 94551
USA
Phone: 510423-5077
Email: young@lanl.gov

Zais, Jeff
Cray Research, Inc.
Applications
655-E Lone Oak Drive
Eagan MN 55121
USA
Phone: 612 683-3522
Fax: 612683-3599

Zumach, Bill
Pittsburgh Supercomputing Center
4400 Fifth Avenue
Pittsburgh PA 15213
USA
Phone: 412 268-4960
Fax: 412 268-5832
Email: zUn"lach@a.psc.edu

INCORPORATED

Cover Photo:
James Blank/San Diego Convention & Visitors Bureau

