fdr"ﬁ' g wx

& ZERD vv "‘

*\.

N K I

‘.‘ _

INCORPORATED

d

PROC

s

—DINGS

FALL 1985




INCORPORATED

PROCEEDINGS

Karen Friedman, Editor

SIXTEENTH SEMI-ANNUAL
CRAY USER GROUP MEETING

September 30 - October 3, 1985

Hotel du Parc

Montréal, Québec
Canada '

Host: Environnement Canada




Prepared for publication and printed at the National Center for Atmospheric
Research, Boulder, Colorado (NCAR).*,t

* The National Center for Atmospheric Research is operated by the University
Corporation for Atmospheric Research and is sponsored by the National
Science Foundation.

t Any opinions, findings, conclusions, or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

ii



CONTENTS

PRELIMINARY INFORMATION

AcknowledgementsS. « « ¢ o 4 ¢ 4 4 4 4 e s 0 e 4 e 4 e s e 3
CRAY User Group, Inc. Board of Directors, 1985-1986 . . . . 4
Members of the Program Committee. . . + ¢« ¢« ¢ ¢« ¢« ¢ o « o . 5
Program « « o o o o o o o o o o o o o s o o o o o o o o o o 6
PRESENTATIONS

Cray Corporate Report, Robert H. Ewald. . . . . « . « « . . 9
CRAY Software Status, Margaret A. Loftus. . . « « ¢« ¢« « « . 11
CFT77: CRAY s New Fortran Compiler, Karen Spackman . . . . 13
Multitasking in Operating Systems, Jeffrey C. Huskamp . . . 15
CFT Compiler Optimization and CRAY X-MP Vector Performance,

Ingrid Y. Bucher, Margaret L. Simmons . . . . + ¢« « o« « & 19
NAS Kernel Benchmark Results, David H. Bailey « . « « + . . 22
SSD User Experience Session, Mostyn Lewis . « « « ¢« « « « 26

CRAY SSD Scheduling Concerns, Ronald Kerry. . . . « . . . 27

SSD Experience at Boeing Computer Services,

Conrad Kimball. v o ¢« ¢ o o ¢ « o s &« o o o s o« o o o 28
User Requirements Committee Report, Stephen Niver . . . . . 33
SHORT PAPERS
Some User Experience in Migrating to CFT1.14, Chris Lazou . 39
SPECIAL INTEREST COMMITTEE REPORTS
Networking and Frontends Session I, Dean W. Smith . . . . . 43
CRAY Integrated Support Processor Installation
Experience, Ronald Kerry. « « « o o o« ¢ o o o o o o o o 43
Running Multiple CRAY Stations at Chevron 0il Field
Research Co., Annabella DecCke + v & 4 « o ¢ o o o o« o & Hy

Enhanced Station Messages Support, Dean Smith . . . . . . 45
Languages Session, Mary Zosel .« + « o o ¢ o o o o o o o o W7

CFTT7 Discussion, Karen SpacKman. « + « « o « o o o o o L8
Special Interest Group on Operations, Gary Jensen . . . . . 50

Computer Operations at Environment Canada, Gary Cross . . 51

FOCUS at the Los Alamos National Laboratory,

Fred Montoya. « « ¢ ¢« v ¢ v v 4« ¢ o o o o o o o o o o 56
Multitasking Performance Workshop Summary, Ann Cowley . . . 59

Multitasking the Weather, David Dent. . . . . . . « . . . 60

CMTS - A CRAY Multitasking Simulator, J.D.A. David. . . . 68
Multitasking, Margaret L. Simmons . « « o« ¢ o o o o o o o & 72

The Multi-Level Data Bus Approach to Multitasking,

B 0 £ « - 72

Experiences with CRAY Multitasking, Eugene N. Miya,
M.S. Johnson., . . ¢ ¢ v ¢ v ¢ s e e 4 e s e s e e e e 77

iii



CONTENTS

SPECTAL INTEREST COMMITTEE REPORTS (cont.)

Multitasking, Margaret L. Simmons (cont.)

Speedup Predictions for Large Scientific Parallel
Programs on CRAY X-MP-Like Architectures, Elizabeth
Williams, Frank Bobrowicz . . « « « ¢« « ¢« ¢ « o« o &

Los Alamos National Laboratory Control Library,

F.W. BObrowicz. « « v v o« v o o & ¢ o o o o o o o

Networking and Frontends Session IT, Dean W. Smith. . .

MVS Station Status, Peter Griffiths . . . . . . . . .

Superlink Status, Stuart Ross . . . . . « « . « + . &

Apollo and VAX Station Status, Martin Cutts . . . . .

VM and UNIX Stations, Allen Machinski . . . . . . . .

CRAY CYBER Link Software: Product Status and
Development Plan, Wolfgang G. Kroj. . . . « « « .

COS Session, David Lexton « . « ¢ ¢« & ¢ ¢ v ¢ & ¢ o + &

COS Experience Panel. . « o o o o o o o o o o o o o
Claus Hilberg . « ¢ v ¢ ¢ o o ¢« v o o o o o o o o
Conrad Kimball. .« v « ¢ v ¢ ¢ ¢« o ¢ o o o o o o o &
Mostyn LewiSe « ¢ o o o o o o ¢ o o o o o o o o o

COS Interactive: A Developer’s Perspective, Bryan Koc

0OSSIC Report, David Lexton. . . . . ¢« ¢« ¢ ¢ ¢« ¢« o + &

Microtasking Panel Session, Mary Zosel. . + « « « « o &

Performance and Evaluation Special Interest Committee,
Mostyn Lewis. ¢ ¢ ¢ o ¢ ¢ ¢ o o o o o s o o o 4 o s

I/0 Workshop, Mostyn Lewis. « ¢« ¢« « ¢ o ¢ ¢ ¢ « « « o« o

Benchmarking CRAY s X-MP and SSD, Christoper Holl . .

Software Paging for Large Matrices on CRAY X-MP,

U. Detert ¢ ¢ v v v v v 6 6 0 v v v v o e e e e e
New COS Features, Clay Kirkland . . . « ¢« ¢« « & ¢« +
Customer Experience with DD-U9 Disks, Mostyn Lewis. .

Report on the Graphics Session, H.E. Kulsrud. . . . . .

ADDITIONAL REPORTS

President s Report, M.G. Schomberg. . « « + ¢« « « « « &
Incorporation of the CRAY User Group, M.G. Schomberg. .
Report of the Vice President, H.E. Kulsrud. . . . . . .
Report of the Program Committee, David Lexton . . . . .

ADDITIONAL INFORMATION

Montreal CUG Meeting Participants by Organization . . .
CUG Site Contact List o . ¢ v ¢ ¢« ¢ ¢ o« ¢ o o o o o« o &
Call For Papers FOrMs « o « o o o o o o o o o o o o o
Help CUG FOrm ¢« o v « o & o o o o o o o o o o o o o o s

iv

100

101
102
102
102
103
103

104
106
106
106
107
108
109
114
115

116
17
118

135
145
158
159

163
165
166
167

171
180
203
205



sy 135 Gt G e e e o e

. D s A e e e s e e

. - . == _ = . _ __ _  _ @ s . L .

Lo B i s B e L T g e e B e «:smr;;:*;# Sanne i e o) *,,@'z’:zaw*uu' s e ... . . _ . e

i :;érzzzsi.mz:f;wwr o gl v ﬂf,} Gt St L ,,L wm; T m L e e e s e ey, 0 e s £

- . . ' ¢ .

e, e ermz; s :( 14 T b e 0 g i a0

ik e e . . «M ~~ i 3 ; ... . ... . . . ]

S e e e e B RELLTILN “g;» Lo Lubiing LUN - - ... _ . .. -

s - ., .. . . , mg;:gw”‘w;*',~:éii,%is%\» L,««;@éég«*ﬁv‘aé‘;:v:f%%%: - . . . . = .
donsen s dlonni g e et G e e i e B e s e e e e ) RS

o iis;{j’;;.m‘gg'»;;;;“ e . . . . . o



ACKNOWLEDGEMENTS

Thanks go to the following persons who comprised
the Local Arrangements Committee from Environment
Canada:

* Raymond Benoit - Chair
* Betty Benwell

* Gary Cross

* Jean-Frangois Gagnon

* Claude Payette

Thanks also go to Kathy Lucero and Mary Buck for
their assistance in typing various contributions

to these Proceedings.



TITLE

President

Vice President

Treasurer

Secretary

Member, Board of Directors

Member, Board of Directors

Member, Board of Directors

CRAY USER GROUP, INCORPORATED

BOARD OF DIRECTORS

1985 - 1986

NAME

Helene Kulsrud

David Lexton

Robert Price

Karen Friedman

Stephen Niver

Sven Sandin

Michael Schomberg

ORGANIZATION

IDA

uLcc

Westinghouse

NCAR

BCS

SAAB-Scania AB

AERE-Harwell



Raymond Benoit
Ann Cowley
Jacqueline Goirand
Gary Jensen
Helene Kulsrud
Mostyn Lewis
David Lexton
Jerry Melendez
David Sadler
Margaret Simmons
Dean Smith

Mary Zosel

lMembers of the Program Committee

- EC

- NCAR

- CIFRAM

- NCAR

- IDA, Chair
- CHEVRON
- ULCC

- LANL

- CRI

- LANL

- ARCO

- LLNL



PROGRAM
CRAY USER GROUP, INC.

FALL 1985
MONTREAL
TUESDAY WEDNESDAY THURSDAY
OCTOBER 1 OCTOBER 2 OCTOBER 3
8:30 Welcome
B. Attfield (EC) Multitasking
Performance I 1/0
8:45 Keynote A. Cowley  (NCAR) M. Lewis (Chevron)
J. Connolly (NSF)
9:15 CRI Corporate Report 8:30 8:30
B. Kasson (CRI) Operations II
G. Jensen  (NCAR)
9:30 CUG Report Graphics
M. Schomberg (AERE) H. Kulsrud (IDA)
9:45 CUG Elections CTSS
J. Goirand (c1s1) G. Melendez (LANL)
10:00 BREAK 10:00 BREAK 10:00 BREAK
10:30 Presentation of New 10:30 Multitasking In 10:30 Effects of Compiler
Officers Operating Systems Optimization on X-MP
J. Huskamp (1DA) I. Bucher (LANL)
10:35 CRI Software Report
M. Loftus (CRI){|11:00 Microtasking
Overview 11:00 NAS Kerunel Benchmark
11:00 CFT-77 M. Booth (CRI) Results
K. Spackman (CRI) D. Bailey(NASA/Ames)
11:30 Synchronization
Speed and
11:30 CRI Directions In Multiprocessor 11:30 Microtasking
Networking Performance Benchmarks at CRI
D. Thompson (CRI) T. Axelrod  (LLNL) L. Kraus (CRI)
12:00 LUNCH 12:00 LUNCH 12:00 LUNCH
Multitasking 1:30 User Requirements
Networking Performance II Report
D. Smith (ARCO) M. Simmons (LANL) S. Niver (Boeing)
Front Ends 1:45 SSD Update Users
1:30 1:30 | D. Smith (ARCO) Report
M. Lewis (Chevron)
Multitasking
Tutorial Short Papers 2:00 CRAY II Performance
R. Brickner (LANL) J. Goirand (CISI) R. Numrich (CRI)
3:00 BREAK 3:00 BREAK 2:45 CRAY-2 Users Report
J. Perdue(NASA/Ames)
3:15 Next Conference
Languages cos S. Niver (Boeing)
M. Zosel (LLNL) D. Lexton (ULCC)
3:30 3:30 3:25 CLOSING REMARKS
Operations I Microtasking Panel .
G. Jensen (NCAR) M. Zosel (LLNL) 3:30 BREAK/END
4:00 CUG Advisory Council
4:30 User Requirements
7:00 CONFERENCE DINNER 5:00 PROGRAM COMMITTEE Committee







Cray Corporate Report

Robert H. Ewald

Cray Research, Inc.
Minneapolis, MN

The first three quarters of 1985 have been We expect to install about 30 new systems and to
very busy and productive for Cray Research, reinstall several other systems during 1985. To
Inc. The sections below briefly review Cray's date, the systems shown in Table 2 have been
organization, business, and product highlights installed during 1985.

during 1985.

ORGANIZATION Table 2
1985 Installations Thru 9-30-85
Cray continues to operate in a decentralized

manner believing that small groups of people North America
dedicated to a common task with limited resources
and aggressive implementation schedules work well BCS X-MP/24 *Ford X-MP/11
in the fast moving high performance computing Exxon USA  X-MP/14 “*NRL X-MP/14
business. As of September 30, 1985, Cray had Chevron,CA X-MP/48 *Rockwell X-MP/14
about 3,000 employees distributed in the LANL X-MP/48 *Northrop X-MP/12
following major functional areas: LLNL-LCC X~MP/48 *ORNL CRAY-1/S200
SNLA X-MP/24 *Chevron, TX X-MP/24
64% - Hardware Dev., Eng., & Mfg. *Lockheed,CA X-MP/24
22% - Field Support and Marketing *AFGWC X-MP/22
10% - Software *GD X-MP/24
4% - Finance, Human Resources, and Admin. *U of IL X-MP/24
*Wright-Patt. X-MP/12
BUSINESS
International
Cray's 1985 business continues to be very
strong. We hope to receive at least 35 orders *CINECA X-MP/22
for our systems during 1985. To date we have *Toshiba X-MP/22
received 28 orders including those indicated *Opel CRAY-1/51000
in Table 1.
Table 1
1985 Qrders Thru 9-30-85 PRODUCT HIGHLIGHTS
North America International Two major product announcements were made during
the summer of 1985. The CRAY-2 was formally
LLNL-LCC X-MP/48 ADNOC  X-MP/14 announced in June 1985 as a four processor
SNLA X-MP/24 ECMWF  X-MP/48 parallel vector computer with a 4.1 ns cycle time
Bell X-MP/24 EDF X-MP/216 and 256Mw of memory.
U of MN CRAY-2 ELF X-MP/12
Chevron, TX X-MP/24 MPPI X-MP/24 The first CRAY-2 was installed at the Magnetic
NASA/Lewis X-MP/24 RUS CRAY-2 Fusion Energy Computer Center in Livermore, CA in
*ORNL X-MP/12 XEPFL  CRAY-1/52000 May 1985. The second system was shipped to
*Shell X-MP/14 *Nissan X-MP/11 NASA's AMES Research Center in September 1985.
*DuPont CRAY-1/A *BP X-MP/12
*GA Tech. X-MP/48 In September the X-MP family was expanded with
*U of IL X-MP/48 larger memory (up to 16Mw) systems. The
*GD, TX X-MP/24 gather/scatter, compress index and a second
*NASA/Marshall  X-MP/48 vector logical unit were also implemented across
XFairchild, CA  CRAY-1S2000 the X-MP line. The current X-MP family of
*Lockheed, CA X-MP/24 systems is shown in Table 3.
*Wright-Patt. X-MP/12 * New Accounts



Table 3
X-MP Systems

MEMORY
NO.of  SIZE (MW), TYPE No.of  No.of 88D

MODELS CPUs  NO.of BANKS  COLs |OP SIZE (Mw)

X-MP/11 1 1, MDS,18 6 2-4 32-128
X-MP/12 1  2,MO0S,18 6 2-4 32-128
X-MP/14 1 4, MOS,18 86 2-4 32-128
X-MP/18 1 B8,M0832 6 2-4 32-128
X-MP/24 2 4,MO08,18 8 2-4 32-128
X-MP/28 2 8, MOS,32 8 2-4 32-128
X-MP/216 2 16,M08,32 8 2-4 32-128
X-MP/48 4 B8,ECL, 32 12 4 32-128
X-MP/416 4 16,ECL, 64 12 4 32-128

SUMMARY

The first three quarters of 1985 have been very
productive for Cray Research with announcements
and installations of new systems. The demand
for CRAY systems continues to be very strong as
new scientific, engineering and national defense
applications are developing and as existing
applications continue to grow.



CRAY SOFTWARE STATUS

Margaret A. Loftus

Cray Research, Inc.
Minneapolis, MN

The following software has been released since
the last User Meeting five months ago.

1.14 Nos Station May 1985

1.14 On-Line Diagnostics  August 1985
1.0 VAX/UNIX Station September 1985
1.14 NOS/BE September 1985
1.14 COS/CFT BF3 September 1985

The last major software release was COS/CFT 1.14
in January 1985.

The field have experienced very few problems
with the COS 1.14, the most significant being
Cyber tape related. Some sites have
encountered stability problems with CFT 1.14.

As a result of these problems, we will be making
changes in CFT testing.

The following is a status of the major software
plans in progress

- 1.15 will be released Tate 85/early 86.

- CAL 2.0 to be released the end of 1985 and
will support the CRAY-1,
CRAY-1S, CRAY-1M, CRAY X-MP and CRAY-2.

- Pascal 3.0 to be released the end of 1985.
Performance improvements include scalar,
vectorization via array syntax and multi-
tasking.

- C under COS to also be released by the end
of 1985. A prerelease is available today.

- CFT77 (NFT) is being tested in Mendota
Heights and planned to be released by the
end of 1985/early 1986. The first release
will support the X-MP and the second
release the CRAY-2. Results thus far have
been excellent in both performance and
stability.

- Cyber Station development moved to Germany.
1.15 NOS Station (dual state) to be
released 4Q85. 1.15 NOS/BE Station (dual
state) 4Q85 release dependent CDC release.
1.16 NOS Station release 2Q86 to include
interactive. The NOS/VE Station effort has
begun and targeted for 1987 release.

11

Superlink/MVS. Superlink/ISP installed at
a customer site in October. The Superlink/
MVS R2 to be released in 1986 and provide
interactive support. Superlink/MVS R3 to
be released in 1987 and provide full
Station support and full intergration into
SNA.

2.0 MVS Station (1.14) released 1Q86 and
include interactive.

3.0 VM Station to be released in November
and include dispose to mini disk; separate
data streams for graphics; 3375 disk
support and improved tape handling.

3.0 VAX/VMS released October with enhanced
DECnet support; VMS 4.0 is required.

2.0 Apollo Station release 1Q86 with
operator commands and control.

Microtasking for the X-MP will be included
in 1.15. A prerelease will be available
1086 under COS.

CFT2 - CRAY 2 Fortran compiler is based on
CFT. Development is complete and we are
now stabilizing.

Multitasking - Future microtasking support
will differ from the X-MP due to hardware
differences.

CX-0S (UNIX*)supports CRAY-1s, CRAY X-MP
and CRAY-2. The initial release in 1Q86
will include CFT, CFT2, CFT77, C, Pascal,
Segldr, multitasking (macro/micro on
X-MP). Some tape support on X-MP (no
label processing), batch, debuggers,
source code maintenance, SCILIB, X-MP and
CRAY-2 peripherals, large memory suppoprt,
I/0 enhancements (striping, device over-
flow, performance, streaming large files)
TCP/IP (separate package available from
third party) and interactive.

We expect to pass AT&T's System V Unix
validation tests when they are available.

*UNIX is a trademark of AT&T Bell Laboratories.



A subsequent release is planned for 4Q86
with SCP (Station) recovery. In 1988 we
expect to have a common CX-0S software
product across all hardware products with
equivalent functionality to COS at that
time.

Major emphasis of CRI software over the next
three years are in the following four areas:

Multitasking

High Performance Transportable Software to
deal with future hardware architectures

Connectivity which includes enhancements
to existing and new stations, and net-
working.

Continued Enhancements and Support of
existing software.

12



CFT77:

CRAY'S NEW FORTRAN COMPILER

Karen Spackman

Cray Research, Inc.

Mendota Heights, Minnesota

Cray will be releasing a new FORTRAN compiler
for its machines early in 1986. The first
release will be for the CRAY X-MP under COS.
Subsequent releases will support the CRAY-2, the
CRAY X-MP under UNICOS, and the CRAY-1. We have
been working on this project for some time, and
many of you have heard it referred to by its
working name of NFT. During 1985 the name CFT77
was selected for the release name of the
compiler. When we began this project four years
ago, we had several goals we wanted to achieve.
I will review four of the most important of
these goals.

One of our primary goals was to produce a
compiler that could be ported more easily to new
CRAY machines. At the time we started the
project, the CRAY X-MP and CRAY-2 had not yet
been announced, but we knew not only that these
machines were coming shortly but that there
would be follow-on machines in both Tines. All
of these machines have to be supported as
quickly as possible with a high-quality FORTRAN
compiler that generates high-performance code.

What do we mean by portability? The definition
that we use states that portability is a measure
of the ease with which a program can be moved
from one environment to another without losing
the characferistics that made moving the program
desirable. For us, our FORTRAN compilers must
produce high-performance generated code. If we
lose that performance when we port the compiler,
then our compiler was not very portable either.

Compiler portability may seem to be an issue
only for the implementor, but it has an
important implication for the user as well. We
want the user's view of FORTRAN to be the same
across our machine lines; we want the same
FORTRAN "dialect" to be supported on all the
machines. This can best be achieved by having
the same compiler on all machines.

A second goal for the new compiler was to
incorporate some of the work in optimization
that has been done in the last several years
that we could not reasonably put into CFT. In
particular we expected this to give us improved
scalar performance.

13

Our third goal developed out of the realization
that with our new machines we were moving into
multiprocessors and that we would need to make
utilizing the multiple processors as easy as
possible for our users. Consequently one of the
goals for the new compiler was to develop a
vehicle that could be used to partition codes
automatically for multitasking. Because of the
extensive analysis that will be needed to do
this, CFT is not an appropriate vehicle.
Automatic multitasking will not be available in
the first release of CFT77, but we expect to
demonstrate the feature by the end of 1986.

Finally, we wanted to develop a basis for
future compiler development work for other
languages. Since we are making a considerable
investment in optimization and since we are
developing code generators for all of our
mainframes, we wanted to take advantage of this
work for additional languages. In 1981 FORTRAN
was the only language we supported; since then
we have added Pascal and C as supported
languages and expect to offer additional
languages in the future. We plan to develop a
common modular compiling system out of the
CFT77 development work and use this to
implement FORTRAN 8X as well as new C and
Pascal compilers.

One requirement for the new compiler from the
beginning was that it be compatible with CFT.
There are two parts to this requirement. One
is FORTRAN source compatibility: a FORTRAN
program that works correctly with CFT should
work with CFT77. To this end, CFT77 supports
the existing CFT extensions with few
exceptions. The second part of this
requirement is relocatable compatibility:
routines compiled by CFT77 can call and be
called by routines compiled by CFT (with the
new calling sequence), and CFT77 uses the same
run-time libraries as CFT.

There are certain differences between the
compilers that the user will notice. CFT77
does more extensive error checking than CFT,
and some constructs that may appear to work
with CFT will be detected as errors. We are
trying to identify these and will provide a
list of differences with the release
information. With CFT77 we have made POINTER a



separate data type and placed some restrictions
on the operations that can be performed on
pointers. We think this will give the user
some additional protection from inadvertently
misusing pointers without invalidating existing
programs. If we find that this change does
invalidate existing programs, we will change to
the CFT implementation. We expect to find this
out during beta testing since one of the beta
test sites uses pointers extensively. Finally
I want to point out that CFT77 and CFT are
different compilers and have different control
card options and compiler directives. However,
since compiler directives are embedded in the
source code, CFT77 recognizes CFT directives
that it doesn't use and prints warning messages
indicating that the directives are ignored.

CFT77 is a FORTRAN 77 compiler. We have also
added three features that we expect to be
included in the next standard. We allow
internal identifier names up to 31 characters
in Tength, and these may include underscores.
We have implemented a subset of the array syntax
proposed for FORTRAN 8X. This allows the user
to write expressions involving whole arrays or
sections of arrays; for the first release we
Timit the use to assignment statements and do
not allow character type. We have also
implemented automatic arrays which allow an
adjustable array to be allocated on entry to a
subroutine and freed on exit.

The approach to optimization used in CFT77 is
different from that used by CFT. CFT77 does
what is termed global optimization which means
that an entire subprogram is analyzed to
determine the control and data flow. Scalar
optimizations are then done using the flow
information; this means that optimizations are
not applied only within basic blocks as they are
with CFT. Further, the information gathered for
scalar optimization is used in the vectorization
analysis and in doing register assignment.

Future development areas for CFT77 include
extending the vectorization facility and adding
an assertion capability to let the programmer
give the compiler information to aid
vectorization. Automatic partitioning for
multitasking is another area for continued
development work; we expect this capability to

l Lecarme, Olicier, and Peyrolle-Thomas,
Marie-Claude, "Self-compiling Compilers: An
Appraisal of Their Implementation and
Portability", Software Practice and Experience,
8, 149-170 (1978).

14

develop and be extended over several releases
as we learn more about how we can profitably
use multiple processors. We plan to extend the
array syntax subset that we have implemented in
the first release. And, of course, we expect
to make performance improvements continually as
we evaluate the code we produce and identify
areas to improve.



Multitasking in Operating Systems

Jeffrey C.

Huskamp

Institute for Defense Analyses

Princeton, NJ

Abstract

There are several implementation problems
in bootstrapping an existing operating
system, which is written for a single
processor machine, to a multiprocessor
machine with a large memory. The problems
include deciding whether to make the kernel
multithreaded, implementing multiple
execution points (tasks) in a process,
avoiding deadlock and minimizing context
switching overhead. Some possible solutions
for CRAY machines are discussed.

Key words: multiprocessing, multitasking,
CRAY, supercomputer

Introduction

All four production operating systems
for CRAY machines (COS[1], CTSS[2],
Folklore[3], AMOK[4]) and the announced
operating system for the CRAY-2 (UNIX

[5]) have ancestors that only execute

on single processor machines. The next
high performance supercomputers will provide
rmultiple processors to speed up program
execution. Since designing, implementing,
and changing over to an entirely new
operating system that makes use of multiple
processors is a very laborious undertaking,
some of these operating systems will
probably be modified to permit the users
access to the multiprocessing/parallel
processing features of the machines.
However, incorporating multiple processors
into the user interface and making use

of the multiple processors inside the
operating system cannot be done easily.
Some of the features needed in multi-
processor operating systems that are not
found in single processor systems include
permitting the operating svstem to have
multiple execution threads active at one
time, permitting user jobs to have more
than one execution point (i.e. multiple
tasks), preventing system deadlock, and
avoiding full context switches when possible
since the process state information is
large and getting larger.

15

This paper discusses different approaches
that can be taken toward solving these
problems. For a complete solution,
changing a majority of the operating
system may be necessary. When possible,

a low cost partial solution is identified
that may make a full solution unnecessary.

Single Threaded Kernels

Most operating system kernels assume that
only one processor executes in the
operating system at one time. In boot-
strapping an operating system to a
multiprocessor machine, some consideration
might be given to utilizing multiple
processors within the operating system.
There are at least three approaches to
this problem. The easiest approach is

to lock the entire operating system so
only one processor is executing the
operating system at one time. With this
strateqgy, one processor could be waiting
for another processor to f£inish its tour
through the system. If this condition
occurs frequently, processors are waiting
for system calls to complete and the
operating system becomes a performance
bottleneck. To obtain an estimate of

the performance degradation, a quick
calculation (with many independence
assumptions) can estimate the probability
that two or more processors could be
executing system calls at the same time.
For the calculation, the percentage of
CPU time devoted to executing system calls
in AMOK (=5%) will be used as an example.
Assuming that the system has N processors,
the probability of conflict is:

N= number of processors

S= probability of wanting to execute
a system call=0.05

P= probability 2 or more processes are
executing system calls

P= 1-(probability that 0 or 1 processors
are executing system calls)

P= 1-((1-s)N+Ns[(1-5) (B-") )



# Processors
1

Conflict Probability
0.0000
0.0025
0.0073
0.0140
0.0226
0.0328
0.0444
0.0572
0.1892
0.4800

NOOJOYUT W WN

w =

The above table suggests that for machines
having four or fewer processors, the global
operating system locking approach seems

to not degrade performance significantly.
This is consistent with observations of
CTSS on multiprocessor machines. However,
for the next géneration of supercomputers
that have a larger number of processors,
this approach does not seem to be correct.

The next simplest possibility for taking
advantage of multiple processors is to
provide a shared kernel that performs

the basic I/O and context switching
functions, and supports multiple operating
systems. This breaks the host multi--
processor machine into multiple guest
systems with a small number of processors
in each system. If enough guest systems
are introduced, the argument for locking
the entire kernel that was made above

may again be valid. This approach can

be thought of as a virtual machine
implementation. The advantage is that
different operating systems can execute

at the same time (e.g. a batch system

and a timesharing system) to provide
different services. The disadvantages

are that (1) more memory is devoted to

the operating system, (2) the lower level
kernel can be a bottleneck unless it is
reentrant, (3) an extra context switch

is needed to access the shared kernel
since each guest operating system must

be treated with suspicion, (4) extra
checking must be included in the shared
kernel so system bugs from one guest system
don't crash another guest system, and

(5) all system resources (e.g. memory, disk)
must be partitioned. The peripheral
partitioning also may imply that multiple
copies of public files are necessary,

one for each guest system. An example

of this approach is the NLTSS [6]
development system at Livermore. 1In this
case, one operating system is a production
system (LTSS) and the other is a devel-
opment system (NLTSS).

Finally, the most expensive approach is

to actually redesign the operating system
to take advantage of multiple processors.
This involves setting up tasks within

the system that have their own stacks,
developing a low cost system task

switching mechanism, and locking all shared

16

data structures. This approach

could result in less efficiently compiled
code for the operating system and would
create synchronization overhead for
processors executing inside the system.

One Execution Point per Process

Perhaps the most troublesome problem in
providing support for parallel processing
is permitting multiple exchange packages
inside the process header (minus words).
The first concern is the expansion of

the header by at least the amount of
storage that constitutes a process context.
In AMOK on the CRAY-1, this amounts to

a minimum of 657 words per task. In
addition, descriptions of open objects
for each task consume more space. On the
CRAY-2, the 16K local memory adds more
storage overhead to tasks.

With one task per process, all execution
in the process stops when a system call

is issued. That is, the user exchange
package is waiting for the system call
processing to complete. In parallel
processing, other tasks in the process

may be active and can cause system call
implementations that work in single
processor systems to fail. For example,
trying to terminate all tasks within a
process can be adventuresome since some
tasks may be issuing system calls that
take a long time to complete or may be
erroneously spawning other tasks.
Certainly logic must be added to make sure
all tasks are moving toward termination at
the same time.

The system call interface must be expanded
to enable task creation and task deletion.
Other system calls, such as suspend pro-
cess, must be extended to include tasks.
This also implies that the scheduler must
be modified to service these tasks.

If these changes are troublesome, perhaps
an implementation which pushes some of the
implementation into the user space would
be better. For example, the CTSS approach
puts task creation and deletion into user
library routines [7].

Another alternative is to adapt a UNIX~like
system that thrives on many small processes
but does not support multiple execution
points within one process. Allocating
multiple CPU's in this situation is
straightforward. However, to avoid idle
CPU's, the number of jobs in the queue

must at least equal the number of physical
CPU's. This will make the throughput of
the machine look good, but will not help
the response time of any one job. Of
course, if extensions are added to UNIX to
permit multiple execution points within

one address space, a new version of UNIX



will be required. This may not be the
correct path to take since compatibility
problems may be created with other versions
of UNIX.

Errors in Multithreaded Systems

One of the most feared problems in multi-
processor systems is system deadlock. The
problem occurs when two or more processors
that are executing inside the operating
system try to reserve the same objects but
in a different order. To eliminate this
problem, all execution paths of the
operating system must be checked for the
possibility of multiple object reservations,
which is a time-consuming procedure. One
fact that helps the problem is that the
large majority of stem calls usually
only needs to reserve one object at a time.

Thus many execution sequences do not need
to be analyzed. For example, directory
calls such as create, open and delete only
need to reserve the directory to be
modified. In AMOK, system calls such as
initiate process and terminate process
have the potential to reserve more than
one process so these execution paths must
be scrutinized.

s

To reduce the number of system tables
and/or system table entries that must be
locked, some of the operating system can
be structured so that only one processor
executes within a certain subsystem at a
time. Three subsystems that might be
handled this way are the memory manager,
the network manager and the operator
console manager. Since these subsystems
are most easily programmed as single
processor tasks and are crucial for correct
system performance, locking these sub-
systems at a very high level seems accep-
table. This utilizes the message-system
approach to structuring an operating
system [8] as opposed to the procedure-
oriented approach. Thus there appear to
be some operating system functions that
can have a very coarse grain of protection
(and can be more easily programmed) and
some that must have very fine-grained
protection.

Context Switch Time

For jobs that request a large number of
system functions per CPU second, context
switching can represent a significant
amount of overhead. This is particularly
true if the B, T and V registers must be
saved. Two mechanisms contained in current
operating systems can help reduce this
overhead. The simplest mechanism permits
more than one system call to be issued
with one context switch to the operating
system. One implementation is done by
CTSS which allows system calls to be
chained together. For example, this can

17

speed up tape processing by reading or
writing multiple records per context
switch. On AMOK, some non-standard
arithmetic/logical and conditional branch-
ing system calls have been implemented so
that simple functions can be computed
without exchanging back to the user
process. This is useful in loop control
and in termination condition testing.

This makes system calls resemble assembly
language programs. The system calls take
the same amount of time as a round-trip
context switch from the user process to
the operating system and back. Thus
system call programs with simple loop
control can execute faster than issuing
single system calls. This optimization
widely used by user support routines as
evidenced by the system-wide average of
four system calls executed per exchange
the system. Unfortunately, the standard
UNIX system does not permit more than one
system call to be issued per context
switch. It would also seem unwise to
modify this basic part of the UNIX user
interface in attempts to speed up the
system.

is

to

The more complex mechanism is the imple-
mentation of lightweight tasks within a
process by code executing within the
process. For user level lightweight tasks,
the operating system does not know there
are multiple tasks in the process. This
means that task scheduling, task dispatch-
ing and context switching are done by the
process itself. Lightweight tasks have
been implemented for NLTSS servers and for
the AMOK operating system. As an example
of lightweight tasks, the AMOK implemen-
tation will be discussed in slightly more
detail.

When an AMOK system task wants to tempo-
rarily give up control of the CPU, it calls
the procedure STKSLEEP, which saves the
contents of register B02 in variable
STKINFO for the task. In the CRAY calling
sequence, B02 points to the register save
area for the procedure that called
STKSLEEP. The scheduler task is then
awakened to dispatch another task. To
awaken a task, STKWAKE restores B77, BO0O,
B0l, B02, B66 and B67 from the register
save area pointed to by STKINFO for the
task. This restores the registers to the
correct state for returning to the pro-
cedure that called STKSLEEP. The transfer
of control is accomplished by a non-local
jump (not a normal procedure return)
implemented in assembly language. The
procedure that called STKSLEEP thinks that
a normal return from STKSLEEP has occurred
and resumes its execution.

The advantage of lightweight tasks is that
context switching incurs only a small
overhead. ©Not all the registers need to



be saved and, for user level tasks, an
exchange to the operating sytem for
scheduling is not needed. The disadvantage
is that an infinite loop in one task may
disable the entire process.

Summary

The four problem areas discussed in this
paper are prime areas of concern when
existing operating systems for single
processor machines are bootstrapped to
multiprocessor machines. The approaches
suggested here are extensions of current
efforts being made to attack these
problems. Hopefully some of these concerns
will be addressed in the Unix imple-
mentation underway at CRI.

REFERENCES:

[1] Cray Research, Inc., "CRAY-0S
(COS) Version 1 Reference Manual",
SR-0011, Revision N, (to appear).

[2] Fong, K., "The NMFECC Cray
Time-Sharing System", Software
Practice and Experience, 15 (1),
87-103 (January 1985).

[3] Santavicca, T., "Folklore - Delivering
Supercomputing", Proceedings of the
Conference on Operating Systems for
Supercomputers, Princeton, New Jersey
(June 1984).

[4] Huskamp, J.C., "A Modular Operating
System for the CRAY-1", (to appear).

[5] Ritchie, D.M. and K. Thompson, "The
UNIX Time-Sharing System", Comm. Assoc.
Comp. Mach., 17 (7), 365-375
(July 1974).

[6] Donnelley, J., "Components of a
Network Operating System", Computer
Networks, 3, 389-399 (1979).

[7] Long, G., "Status of CRAY-2 Software
at MFE", Proceedings of the Conference
on Operating Systems for Supercomputers,
Princeton, New Jersey, (June 1984).

[8] Lauer, H., "On the Duality of Operating
Systems Structures", in Proc. Second
International Symposium on Operating
Systems, IRIA, October 1978, reprinted
in Operating Systems Review, 13 (2),
3-19 (April 1979).

18



CFT COMPILER OPTIMIZATION AND CRAY X-MP VECTOR PERFORMANCE

Ingrid Y. Bucher and Margaret L. Simmons

Los Alamos National Laboratory
Los Alamos, New Mexico

INTRODUCTION

The motivation for this paper was the observation that
Cray X-MP vector performance has not always evolved in
the expected direction of improvement. It is well known
that vector performance of register-to-register vector
computers is strongly compiler dependent. The compiler is
responsible for proper sequencing of vector load,
arithmetic, and store operations, and for scheduling
necessary scalar operations in such a way that they take
place while vector operations are in progress and therefore
do not consume any additional time. We have analyzed
vector performance data for CFT compiler versions 1.10
through 1.14. It is concluded that in spite of the great
performance improvements achieved by version 1.14 of
CFT, further speedups are possible by eliminating the
slowdowns introduced in version 1.11.

MODEL OF CRAY VECTOR PERFORMANCE

Based on the well known fact that Cray vector operations
are ‘“‘stripmined” in sections of 64, the time required to
perform arithmetic operations on vectors of length &V is
given by

N

T =T:1arloul + 6_4 * Ts + N * Telemenl (1)

tartstrip

where the brackets g}%l denote the next integer greater

than or equal to N /64, and where T, iS the startup
time for the outer loop processing the strips, 7o, the
startup time for each strip of length 64, and Ty, the
time required 1o produce one result element. Equation (1)
represents a linear step function as represented in Fig. 1,
with the height of each step equal to the startup time of
each 64-strip. In reality, there is a small overshoot
associated with the startup of each 64-strip (see Fig. 2).
This is due to the fact that for vector instructions with
very short vector lengths some necessary scalar work is
incompletely overlapped.

The points for N equal to multiples of 64 lie on a straight
line represented by

Tr= T:Iﬂﬂoul +N* (Tslrzrl.ﬂrip /64 + Telemem ) . (2)

19

This line intersects the T-axis at 7 = Ty 0 - ASSuming
Toemens iS known (typically a small multiple of the cycle
time), Tyansirip €an be determined from the slope of the
line. This method of determining startup times is more
accurate than examining the measured height of the steps
because of the overshoots.

RESULTS OF VECTOR PERFORMANCE MEASUREMENTS

AND THEIR INTERPRETATION

Execution times for typical vector operations were
measured by timing 10® floating point operations for each
vector length. A straightforward double loop was used,
with the inner loop index running from one through the
vector length N, and the outer loop index running from 1
through 108/N . Because of the many repetitions of the
outer loop, its startup time does not significantly distort
the results. The time required for the timing function
calls (CPUTIME under CTSS, SECOND under COS) was
subtracted. Typical MFLOP rates for stride one measured
for compiler versions 1.10, 1.11, 1.13, and 1.14 are
presented in Table I for three vector lengths of

N =10, 100, co. Although CFT 1.14 shows a dramatic
performance increase for short vectors with optimization
options enabled (BTREGS, FULLIFCON, FULLDOREP) the
rate for long vectors is lower than for CFT 1.10. Without
optimization options, measured rates for CFT versions 1.11
through 1.14 are nearly the same and lower than those for
1.10 for all vector lengths. Figure 2 shows results for a
simple vector multiply operation for CFT 1.14 with and
without optimization options. The figure demonstrates
that the optlimizations reduce the startup time of the outer
stripmine loop (zero intercept) considerably, while the
startup time of each 64-strip (height of each step) remains
unchanged.

Table II contains results for element times 7, pen: » 64-Strip
startup times Ty grrip » and outer stripmine loop startup
times Ty,q.0, fOr the simple vector operations listed in
column one. These data were obtained by measuring
vector executlion times for vector lengths equal to
multiples of 64 (up to 512) and performing a least squares
fit to the data points according to Eq. (2).

The results show that since the inception of the Cray X-
MP two great changes in vector performance have occurred
in CFT history: an increase in the startup time of 64 strips



by about 50% between CFT versions 1.10 and 1.11 and a
decrease in the startup time of the outer stripmine loop by
about a factor of four in introducing optimization options
in CFT 1.14. Typical startup times for each 64-strip are
20 cycles with CFT 1.10 and 30 cycles thereafter. For the
outer stripmine loop, startup times have been reduced
from 110 cycles (with CFT 1.10) to about 25 cycles (with
CFT 1.14 with options). It is noteworthy that the startup
time of the 64 strips has 1o be added to that of the
stripmine loop for short vectors at least once even if the
vector length N < 64 and several times if N > 64. Thusa
decrease in this time improves short as well as long vector
performance. The question arises naturally whether we
cannot have both short startup times for strips as well as
stripmine loops.

‘We have examined code produced by the CFT compiler
versions 1.10 and 1.14 for many loops. As an example, we
present characteristics of the compiled code in Fig. 3 for a
frequently encountered vector operation

V =SV + SV + SV + SV + -

where all V'’s denote distinct vectors, all §’s distinct scalar
operands. It can be seen that while CFT 1.10 uses a simple-
minded approach 1o fetch operands as they are needed for
the operations, CFT 1.14 prefeiches as many vector
operands as possible. This approach may work well for
the Cray-1 (SAXPY now chains for the first time in Cray-
1 history without hand coding), however, it is less efficient
for the Cray X-MP with its multiple data paths. The
philosophy results in additional non-overlapped startup
times for fetches (plus associated non-overlapped A-
register loads) and in some cases in delays due to lack of
free V-registers. The X-MP has enough memory paths to
supply its functional units with two operands on the fly
they do not need more. In addition fetches and operations
chain. The most effective way of programming this
machine is therefore the simpleminded approach used in
CFT 1.10. The authors do not see any reason why this
approach cannot be combined with the use of Band T
registers to reduce startup times for the outer stripmine
loops as demonstrated by CFT 1.14 so effectively.

CONCLUSIONS

Between CFT versions 1.10 and 1.11, a significant increase
in 64-vector strip startup times has occurred. While CFT
version 1.14 has reduced startup times for outer stripmine
loops and thereby dramatically increased short vector
performance, further improvements are achievable by
eliminating the slowdowns introduced in CFT 1.11. This
may necessitate different approaches to the scheduling of
vector instructions for different computers in the Cray
family.

TIME

VECTOR LENGTH

Figure 1. Plot of step function represented by Eq. (1).

10

CFT Compiler version 114 with and without
& BTREG option bod
g S &.’poo-“
% \0‘6@0°°° - *
a 0?“ 00% -....
7] 0 “e°° Lo
=} $°°® )
& 5 000 eme 5
& 2SO
= 00" @ee® ?"
~ o *® 0
o°°6;-".
§ $°ge0®
g m°°°°,".
°o°°:-o".
goo'.
0 T 1 T T T T T
0 64 128 192 256 320 384 448 512

VECTOR LENGTH

Figure 2. Measured execution times for simple
multiplication in vector mode as a function of vector
length.

CFT 1.10 CFT 1.14
Load Load
Multiply  Load
Load Multiply
Multiply  Load
Add Load
Load Multiply
Multiply  Add
Add Load
Multiply

Add
Figure 3. Code produced by two CFT compiler versions

forV =SsV + SV + &V + ---

20



TABLE 1
MEASURED RATES FOR SIMPLE VECTOR LOOPS

IN MFLOPS
Stride = 1 CFT 1.14 CFT 1.14 CFT 1.13 CFT 1.13 CFT 1.11 CFT 1.10
Options No Options Options  No Options No Options No Options
Vector Length = 10
V=V¥ Vv 14 9 14 9 8 9
V=V+S* VvV 25 15 26 16 15 16
V=S* V+S*V 30 20 33 21 22 21
V=V% V+VXx YV 32 21 33 21 22 21
Vector Length = 100
V=v* vV 64 42 58 43 40 46
V=V4+sx Vv 120 80 117 81 81 82
V=S§* V+S*V 110 84 110 85 91 92
V=V* V+Vx vy 102 84 102 84 87 90
Vector Length = co
V=vx vV 72 72 72 72 67 80
V=V+S*V 145 145 145 145 144 160
V=S* V+Sx Vv 124 124 . 124 124 140 140
V=V* V+Vx vV 116 116 115 115 131 135
TABLE I

START-UP AND RESULT ELEMENT TIMES
FOR SIMPLE VECTOR OPERATIONS

Stride = 1
Times in Nanoseconds
CFT 1.14 (Options) CFT 1.14 (No Options) CFT 1.13 (Options)

Tetment T, startstrip Tstartout Tetement T startstrip Tstartout T element T, startstrip Tstartout
V=Vv+s 9.5 203 177 9.5 203 978 9.5 205 174
V=vx s 9.5 204 186 9.5 202 990 9.5 204 196
v=v+vV 9.5 251 177 9.5 251 849 9.5 249 186
V=V Vv 9.5 280 293 9.5 279 913 9.5 284 240
V=V +S* V 9.5 264 276 9.5 266 1082 9.5 275 263
V=V% V+s 9.5 288 269 9.5 286 1095 9.5 294 273
V=V V4V 14.2 304 460 14.2 283 1121 14.2 281 456
V=§% V+S* V 19.0 331 199 19.0 332 1036 19.0 329 207
V=V* V+ VsV 19.0 442 224 19.0 444 839 19.0 449 197

CFT 1.13 (No Options) CFT 1.11 CFT 1.10

T elment T, startstrip T, startout T, element T, startstrip T, startout T element T startstrip T startout
V=v+s 9.5 205 931 9.5 206 863 9.5 171 984
V=V s 9.5 205 949 9.5 206 875 9.5 171 955
V=v+vV 9.5 247 798 9.5 345 925 9.5 190 974
V=V V 9.5 282 856 9.5 341 924 9.5 189 1175
V=V +S5%V 9.5 267 1038 9.5 289 989 9.5 190 1196
V=V* V+s 9.5 290 1027 9.5 340 995 9.5 219 1095
V=V* V+V 14.2 280 1065 14.2 284 1152 14.2 171 1434
V=S*¥ V+S* V 19.0 330 1000 19.0 153 1096 19.0 152 1192
V=V¥ V+ V%V 19.0 453 799 19.0 243 1090 19.0 207 1336

21



NAS KERNEL BENCHMARK RESULTS

David H. Bailey

Informatics General Corp. / NASA Ames Research Center
Moffett Field, California

Abstract

The NAS Kernel Benchmark Program, developed by
the NAS (Numerical Aerodynamic Simulation) Projects
Office to assist in supercomputer performance evaluation,
has now been run on a number of currently available sys-
tems. This report briefly describes the benchmark pro-
gram and lists the performance figures that are now avail-

able. Analysis and interpretation of the results are in-
cluded.

Introduction

A benchmark test program has been developed for
use by the NAS program at the NASA Ames Research
Center to aid in the evaluation of supercomputer perfor-
mance. This Fortran program consists of seven sections
(referred to in this paper as kernels), each of which per-
forms calculations typical of NASA Ames supercomput-
ing. It is designed to provide a realistic projection of the
supercomputer performance that can be expected on ac-
tual user codes.

The NAS Kernel Benchmark Program will not be de-
scribed here in exhaustive detail. A more extensive de-
scription of the program, including a listing of the actual
Fortran code, may be found in [1]. These seven test ker-
nels were chosen from actual user codes currently being
run on NASA Ames supercomputers and were included
in the benchmark program with only minor changes from
these user codes. All of the kernels emphasize the vector
performance of a supercomputer — over 99% of the floating
point calculations are contained in DO loops that are at
least potentially vectorizable, provided the hardware of
the computer includes the necessary vector instructions
and provided the compiler being used is sufficiently so-
phisticated in its vectorization analysis. All floating point
computations in the seven kernels must be performed with
64-bit precision (at least 47 mantissa bits).

Substantial care was exercised in the selection of these
kernels to insure that none of them had any features that
unduly favored any particular supercomputer design. The
subroutines selected are all straightforward Fortran code,
intelligently written for vector computation but otherwise
neutral towards any particular model. An effort was made

22

to select a variety of calculations and memory operations.
Some of the kernels contain vector memory accesses with
only unit stride, while others have large strides. (The
term stride refers to the memory increment between suc-
cessive words stored or fetched from an array. For a real
array indexed by the first dimension in a DO loop, the
stride is one. For a real array indexed by the second di-
mension, the stride is equal to the first dimension.) Some
contain loops with very long vectors (as high as 1000),
while others contain loops with shorter vectors (the short-
est in a time-intensive loop is 28). A brief description of
each kernel is as follows:

1. MXM - Performs an “outer product” matrix mul-
tiply.

2. CFFT2D - Performs a two dimensional complex
Fast Fourier Transform.

3. CHOLSKY - Performs a vector Cholesky decom-
position.

4. BTRIX - Performs a vector block tridiagonal ma-
trix solution.

5. GMTRY - Sets up arrays for a vortex method so-
lution and performs Gaussian elimination on the
resulting array.

6. EMIT - Creates new vortices according to certain
boundary conditions.

7. VPENTA - Simultaneously inverts three matrix
pentadiagonals in a manner conducive to vector
processing.

Results

The NAS Kernel Benchmark Program has now been
run on a number of large computer systems,
and these figures may now be reported. Figure 1 lists
the performance rates in MFLOPS (millions of floating
point operations per second) for the various computers
and compilers tested. The column headed NO. CPUs
specifies the number of central processing units that were
used in the computation (note that two of the Cray runs
are for multiple CPUs). The column headed TUNING in-
dicates the level of tuning performed (0, 20, 50, or unlim-



[[COMPUTER/ [ NO. | TUN- KERNELS COMP.
COMPILER CPUs | ING 1 2 3 4 5 6 7| RATE
Cray X-MP/12 1 0 1310 30.2 ) 36.0| 714 52| 745 215 245
CFT 1.13

Cray X-MP/12 1 20 1310 | 828 51.6 | 71.6|102.0 | 107.4 | 112.5 88.2
CFT 1.13

Cray X-MP/12 1 0 130.7 | 30.7| 353 | 716 50.1} 820 216 43.9
CFT 1.14

Cray X-MP/12 1 20 1308 | 82.0 ( 50.4 | 71.5|110.3 1 97.7 | 116.4 87.7
CFT 1.14

Cray X-MP/22 1 0 1365 | 45.7| 470 ) 738 65.1 | 814 | 37.1 59.9
CFT 1.14

Cray X-MP/22 1 20 133.7 ] 89.3| 605 | 77.2|118.2| 976 | 115.5 94.4
CFT 1.14

Cray X-MP/48 1 0 1360 | 459 | 598 | 823 | 955 | 84.1| 305 61.9
CFT 1.14

Cray X-MP /48 1 20 1360 | 85.2 | 66.7 | 79.6 | 115.5 | 103.0 | 124.1 96.4
CFT 1.14

Cray X-MP/22 2 20 |272.0 | 175.3 | 112.0 | 141.2 | 219.4 | 193.2 | 238.6 182.1
CFT 1.14

Cray X-MP/48 4 20 |536.8 | 330.9 | 205.0 | 273.3 | 395.3 | 396.6 | 483.9 349.1
CFT 1.14

CDC 205 1 0 128.0 | 12.7 55! 10.8 3.2 59 108 8.9
F200PR1

CDC 205 1 0 1166 | 125 | 24.2 80| 21.3| 611 9.4 16.1
VAST 1.21

CDC 205 1 20 1208 | 495 | 1084 | 145 | 721 | 769 | 52.8 44.7
VAST 1.21

CDC 205 1 50 1278 | 57.4|108.3 |135.7 | 75.0 } 76.2| 674 82.9
VAST 1.21

Amdahl 1200 1 0 465.1 | 11.1 | 422 88.5| 38.3 ] 2145 73 22.4
VI0L10

Amdahl 1200 1 20 | 4972|1060 | 95.6 | 88.0 [ 127.5 | 214.9 | 202.3 139.1
V10L10

Amdabl 1200 1 50 |5009 |106.5 | 96.1 [ 91.3 | 127.4 | 220.5 | 202.4 140.8
V10L19

Amdahl 1200 1 unlm | 499.2 | 162.1 | 96.7 | 124.5 | 150.9 | 219.4 | 232.2 174.7
V10L10

Figure 1: NAS Kernel Benchmark Program Results (MFLOPS)

23




ited lines changed out of approximately 1000 total lines).
The columns numbered 1 to 7 give the rates on the in-
dividual kernels, and the column headed COMP. RATE
gives the composite MFLOPS rate. The composite rate is
the total floating point operations performed in the seven
kernels divided by the total of the seven CPU times.

Notes

Figures for more than 20 lines of tuning on the Cray
X-MP computers are not shown because the rates listed
for 20-line tuning are close to the maximum attainable
level. The uniprocessor Cray X-MP/22 and X-MP/48
rates, especially the untuned figures, are slightly higher
than the X-MP/12 rates because the X-MP/12 has slower
memory chips and fewer memory banks than the multi-
processor models. The figures listed in the box for two
CPUs on the Cray X-MP/22 and for four CPUs on the X-
MP/48 are the result of running the NAS Kernel Bench-
mark Program simultaneously on each processor. These
runs thus represent the total system throughput that can
be expected in a multiprogramming environment. These
runs do not represent multitasking, because multitask-
ing means modifying a code so that separate parts of the
computation run on separate processors, and the individ-
ual parts are coordinated. In these two cases the entire
program was run on each processor without coordination,
so they do not qualify as multitasking runs in any sense.
However,they do provide a good estimate of the wallclock
speedup that could be achieved if true multitask process-
ing were invoked. Note that these figures are only 1.93
times and 3.62 times as high as the corresponding unipro-
cessor results. Memory bank contention prevents these
rates from achieving a full two or four times speedup.

No tuned code figures are listed for the CDC 205 with
the standard F200 compiler. This is because significant
improvement in the performance figures would require uti-
lizing the CDC Fortran explicit vector constructs, which
are not allowed for this test because they are not standard
ANSI Fortran. Using these explicit vector constructs and
some other tuning, a composite performance rate of 84.1
MFLOPS was achieved, which is close to the 50-line tun-
ing figure listed above for the CDC 205 with the VAST

Fortran processor. According to CDC personnel, within a
few months a new Fortran processor, based on vectoriza-
tion techniques pioneered by Prof. Kuck of the University
of Illinois, will be available for use on the CDC 205. This
processor will likely yield higher performance figures than
the VAST processor figures cited above.

The figures shown for unlimited tuning on the Am-
dahl 1200 Vector Processor system are actually based on
approximately 400 lines changed. The Amdahl represen-
tative who performed this tuning is convinced that some
further improvement in the composite rate is possible with
additional revision of the code.

Tuning for the Cray runs was initially performed by
the author. Subsequently a representative of Cray Re-
search, Inc. reviewed this tuning and his suggestions were

24

incorporated for the final runs. Tuning for the CDC and
Amdahl runs was performed by their own benchmark per-
sonnel with input from the author.

Analysis

The most striking aspect of the above table of figures
is the great variance of the rates on the same kernel. Even
on the same computer the rates vary dramatically. This
spread indicates that even minor tuning can sharply im-
prove execution speeds, and that an effective compiler is
a critical part of system performance.

The most common tuning technique employed on the
various systems was to change the dimensions of arrays in
order to avoid the disadvantageous memory strides that
result when arrays are indexed by other than the first
dimension. For example, the dimension of one array in
kernel seven was changed from (128,128) to (129,128) for
both the Amdahl and the Cray tuned code runs. This
change alone increased the performance rate of kernel
number seven by a factor of 27 on the Amdahl 1200 and
by a factor of 5 on the Cray X-MP/12. The second most
commonly applied tuning technique was the insertion of
compiler directives to force vectorization of DO loops.
Most of the other tuning consisted of code revisions to
avoid certain constructs that were not handled well by
the system.

The process of tuning the code on the various ma-

chines disclosed several weaknesses of the various Fortran
compilers. For example, one key DO loop in kernel five
calls the complex exponential function. The Cray CFT
1.13 compiler vectorized this loop, but the vector ver-
sion of the complex exponential function was merely a
loop that iteratively called the scalar complex exponen-
tial function. As a result of this fact and the failure of the
compiler to vectorize one other key DO loop, the untuned
performance rate on this kernel was only 5.2 MFLOPS
on the Cray X-MP/12. The difficulty with the complex
exponential function was overcome in tuning by defining
an inline version of the function at the beginning of the
subroutine, as follows:
CEXP(Z) = EXP(REAL(Z)) *
$  CMPLX(COS(AIMAG(Z)),SIN(AIMAG(Z)))

This change, together with an altered dimension and a
compiler directive, increased the performance rate on this
kernel by a factor of 20. Both of the above mentioned
shortcomings were rectified in the CFT 1.14 compiler.

Another feature of both CFT 1.13 and 1.14 discovered
in the process of tuning is their failure to vectorize simple
complex summation loops:

COMPLEX X(50), 2

Z=(0.,0.)
DO 100 I = 1, 50
Z=17+ X()

100 CONTINUE

Such summation loops with real or integer variables are
readily vectorized by both versions of CFT, but complex
variable summations are not for some reason.



Coincidentally, the loop mentioned above with the
complex exponential reference also proved troublesome to
the Amdahl compiler, although for a different reason. The
loop contained the line

22 =21 -1. / II

where each variable is of type complex. The compiler
failed to vectorize this statement, and as a result the per-
formance rate on kernel five was significantly reduced. For
the minor tuning test this statement was rewritten using
the complex constant (1., 0.). The statement was then
correctly vectorized by the Amdahl compiler.

Except for the above mentioned details, both the Am-
dahl and the Cray compilers display a high level of so-
phistication. For instance, the CFT 1.14 compiler now
includes a “conditional vectorization” feature. If the com-
piler cannot determine at compile time whether or not a
recursive dependency exists in a DO loop, then the com-
piler generates both a scalar and a vector version of the
loop, complete with an execution time test for safe vector-
ization. The Amdahl compiler appears to be even more
sophisticated than the CFT compilers. It attempts to
vectorize not only inner DO loops but also outer loops
if conditions permit. In addition, if part of a DO loop
resists vectorization, the Amdahl compiler vectorizes the
rest, whereas the Cray CFT compilers generally vectorize
a loop only if all statements within the loop are vector-
izable. Another area where the Amdahl compiler seems
to outperform the Cray compilers is in the vectorization
of IF statements. CFT 1.13 vectorizes some IF state-
ments if a certain option is specified, but only CFT 1.14
can vectorize IF ... THEN ... ELSE constructs. The
Amdahl compiler vectorizes both of these constructs and
even some IF ... GOTO statements, such as loops that
search for the first occurrence of a given value in an array.

Conclusions

The three supercomputers tested have achieved high
performance figures on the NAS Kernel Benchmark Pro-
gram. The highest composite rate, 349.1 MFLOPS, was
achieved by the Cray X-MP/48, which is to be expected
since this was a four processor run. However, it should
again be emphasized that this result is not true multi-
tasking — the benchmark program was run simultaneously
on each processor, and the results were added. Thus
these results should be considered to be a measure of the
overall system throughput capacity of the machine rather
than the execution speed of a single job. A user could
achieve comparable rates on a single job only by making
the changes necessary to invoke true multitasking.

Comparing uniprocessor figures, the rates were closer,
with all three systems achieving in the neighborhood of
100 MFLOPS on tuned code. Since each of the three
systems has claim to the highest rate on at least one of
the seven kernels, it is hard to make absolute statements
about the relative performances of these systems. How-
ever, certain patterns can clearly be seen.

25

The Cray X-MP computers with the new CFT 1.14
compiler achieved impressive untuned performance fig-
ures, significantly higher than untuned figures on the other
systems (considerably higher even than CFT 1.13). The
Amdahl 1200, on the other hand, achieved very high rates
on many of the kernels with some tuning, although the
overall untuned performance was not spectacular. This
is mostly due to the fact that the Amdahl machine is
more sensitive to disadvantageous memory strides than is
the Cray X-MP system. The CDC 205 is clearly capa-
ble of high performance rates (it had the highest rate of
the three systems on kernel four), but it seems to require
more tuning to achieve these rates. One reason that extra
tuning is required is that the CDC Fortran compiler is ap-
parently not as advanced as the compilers available on the
other systems. This situation may be rectified with the
introduction of more powerful Fortran processors on the
CDC/ETA computers. Another factor in the CDC rates
is the long startup times for vector operations. As a re-
sult, codes with vector lengths less than about 70 usually
require revision (such as combining an inner loop and an
outer loop into one loop) before the performance reaches
its full potential.

The level of tuning that is the most appropriate for
comparison depends on the nature of the supercomput-
ing application. For a research and development appli-
cation, the minor tuning figures may be the most impor-
tant. Programmers in such environments usually apply
some optimization techniques in their programs, but they
seldom have time to perform massive tuning, especially
on a code that is being continually revised. On the other
hand, the major tuning or unlimited tuning figures might
be more appropriate for a production computation appli-
cation, where a single code might be used on a daily basis
for years, and a large investment in optimization would
be worthwhile over the long run.

Using the minor tuning figures (with the best avail-
able compiler) as a standard, it appears that the Am-
dahl 1200 Vector Processor has the highest uniprocessor
performance rate, with about 1.5 times the Cray X-MP
uniprocessor rates and about three times the CDC 205
rate. If major tuning is allowed, then the CDC figures are
improved to nearly the Cray X-MP level, but the Amdahl
figures are still about 1.5 times faster than the X-MP
or the 205. If we consider the total system throughput
with the minor tuning figures, then the Cray X-MP/48 is
clearly the winner with about 2.5 times the throughput of
the Amdahl. Similarly, the Cray X-MP/22 would likely
achieve about 30 percent higher throughput than the Am-
dahl, although this comparison is closer if major tuning
is permitted. These results must be considered tentative,
since they could change overnight with the introduction
of a more powerful version of the Fortran compiler on any
of these systems.

Reference

1. Bailey, D. H., and Barton, J. T., “The NAS Ker-
nel Benchmark Program”, NASA Technical Mem-
orandum, April 1985.



SSD USER EXPERIENCE SESSION

Mostyn Lewis

Chevron 0i1 Field Research Company
La Habra, CA

Approximately three years after the advent of the Solid
State Device (SSD), it seemed appropriate to gather together
some user experiences and some hopes. Conrad Kimball of BCS
elaborated on experiences and Ronald Kerry of GM voiced
hopes relevant to their impending delivery of an SSD.

Mostyn Lewis of COFRC spoke of his site's locally developed
SSD automatic preemption code and its latest enhancements
and future.

COFRC SSD Code

Mostyn Lewis recapped the abilities of this locally developed
major software effort to provide automatic SSD swapping.
Over the last two years it was noticed that, in heavy
demand, users were turning away from the SSD due to poor
turnaround -- waiting for their chance at use (either for an
initial allocation or waiting in '"rolled out" state for
their next go). Consequently, people shunned the SSD and
went back to using disk, which although slower had a pre-
dictable turnaround. To help alleviate this situation, we
changed the swap code to work on a "virtual SSD", i.e.,
disk. Hence, the user could execute all the time and in
between SSD allocations execute in a '"swapped out of SSD

state'". Optionally, at the user's choice, via JCL, the old
regime of not doing anything in a swapped out state (i.e.,
being suspended) still exists -- this is for purists who

wish to do timings and benchmarks.

COFRC will soon offer Cray access to its code so Cray can
provide the same functionality in their equivalent (in

COS 1.16?). Also, COFRC is willing to find suitable trades
for other sites to use the code and General Motors are
expected to use our code next year.

26



CRAY SSD SCHEDULING CONCERNS

Ronald Kerry

General Motors Research Laboratories
Warren, MI

The CRAY SSD provides definite application performance gains in an
unconstrained environment (in terms of SSD demand). However, in an
environment where there is significant competition for the use of the
SSD, throughput can actually decrease.

I will discuss the specific concerns which General Motors Research
Laboratories has regarding the use of the SSD in just such an
environment. It should be noted that these concerns are purely
speculative as we do not have an SSD at the present time.

General Motors Research currently has a CRAY-1S with 2 million words of
memory and a 3-processor I/0O subsystem. The applications which we run
on our CRAY include engine modelling, aerodyanmics, and structural
analysis along with other automotive applications. These applications
all require the computational power of the CRAY. They also require
either very large amounts of memory or a large very fast I/0 device.

Through benchmarking, we have shown that a large SSD can provide
adequate application performance in a standalone benchmark environment.
This led us to the decision to obtain a 128Mw SSD when we upgraded our
CRAY to an XMP-24 in February 1986.

However, the expected performance gains could very well not be seen if
excessive competition for the device results. The SSD is a very
expensive device; it would also be wasteful if the SSD went virtually
unused. We feel that significant enhancements need to be made to the
CRAY Operating System software to take full advantage of the SSD in a
multiprogrammed environment.

Some of the issues which we feel must be addressed by CRAY Research
include:

1) control over how the SSD is used -- should it be used for memory
roll images in addition to user data?

2) should a job be locked out until space is available on the SSD? --
should a job be rolled out of the SSD after a period of usage? -- it
takes a very long time to roll out 128Mw worth of data!! —-- what about a
partial rollout of the data?

3) should data be split across the SSD and disk devices?

General Motors Research will probably obtain the SSD scheduling code
written by Chevron in order to help alleviate some of the above concerns
in the short term. In the long term, CRAY Research MUST step up to the
responsibility of properly supporting a device which they sell! In the
real world, many applications require large amounts of memory, or
failing that, a large amount of very fast external storage. The SSD
hardware has the capability to answer that need. Where is the software?

27



SSD EXPERIENCE AT BOEING COMPUTER SERVICES

Conrad Kimball

Boeing Computer Services
Bellevue, WA

OVERVIEW

Boeing Computer Services, a division of
The Boeing Company, is currently running
an X-MP/24 with an SSD-5 (134 million
words) and 24 DD-29s. We are running COS
1.12, but with a 1.13 version of the IOS
software. We have roughly 275,000 lines
of local code distributed throughout COS,
the IOS, the libraries, and the product
sets. Part of this is our own SSD manage-
ment system. We use the low-level Cray
Research support of the SSD (device dri-
vers, etc.), but we have replaced the
higher level functions of allocation and
scheduling. Our SSD management philosophy
allows a single job to use up to 100 mil-
lion words of SSD, with more available by
special arrangement. To free up central
memory, we have put CSP in the SSD.

SSD MANAGEMENT ISSUES
Goals

wWhen Boeing Computer Services began plan-
ning for its SSD, we drew up a list of
goals for the management of the SSD:

o For sufficiently small amounts of SSD,
there should be no need to declare any
SSD resource reguirements.

o Reservation and allocation of SSD space
should be deferred as long as possible,
preferably until it is needed to do
physical I/0.

o When SSD space is reserved, minimize
any excess reservation beyond the
amount of SSD needed to do I/O.

o Minimize the differences, visible to
low levels of code or JCL, between SSD-
and disk-resident datasets.

o Avoid the need for users to know speci-
fic SSD device names.

o Provide feedback to users about their
usage of the SSD.

o Interactive jobs must be able to use
the SSD.

o SSD accounting must be separate from
disk accounting. In particular, an SSD
residency integral must be computed.

o Preserve any SSD datasets across a
shutdown and restart.

Standard COS 1.12 SSD Facilities

Standard COS 1.12 supports the SSD as a

generic resource, with several undesirable
consequences.

SSD resources must be explicitly declared,
regardless of how much or how little SSD
space will be used. SSD resources can be

requested only via the JOB statement.
This means that:

Interactive jobs cannot use the SSD,
since they have no JOB statement.

An unsophisticated user must be aware
of whether any canned procedures use
the SSD (and how much), and adjust the
JOB statement accordingly.

SSD resources are allocated at the time a
job starts. This leads to several ineffi-
ciencies:

A job is not started until there is
enough free SSD space to satisfy its
maximum SSD usage, regardless of how

long the job may run before it actually
uses the SSD.

Once a job starts, its SSD space is
unavailable to other jobs, regardless

of how long the job may run before it
actually uses the SSD.

A job's SSD allocation monotonically
decreases over time. This causes other
inefficiencies:



Even though a job's maximum SSD re-
guirement might occur late in the job,
it must reserve (and leave idle) that
much SSD space from the start of the
job.

If a job uses SSD in two or more widely
separated intervals, it must retain its
SSD reservation until all SSD usage is
complete. This may, in turn, require
knowledge of how various canned proce-
dures behave.

Low-level awareness of SSD usage is
required. For example:

Individual ASSIGN statements must be
used to assign the SSD to a dataset.

ASSIGN requires the user to know the
site's SSD device name.

A RELEASE of an SSD dataset reduces the
job's SSD reservation by the size of
that dataset. Even though Cray
Research is planning a no-reduce option
for the RELEASE statement, the user
must still be aware that SSD is being
used, so that he can choose that
option.

OPTION, STAT is the only tool that provides
feedback about SSD usage, and it shows
only cumulative statistics, when what is
really needed is history of activity over
time.

SSD usage accounting is not distinguished
from disk usage accounting.

Boeing Computer Services' Implementation

In light of the goals that Boeing Computer
Services set and the deficiences in the

standard COS 1.12 SSD support, we designed
and built our own SSD management facility.

The maximum SSD that a normal job may use
is 100 million words. With prior arrange-
ments a job may use the entire 134 million
words of the SSD.

No explicit SSD space declaration needs to
be made for usage up to 10 million words.
We chose the 10 million word cutoff for
the following reasons:

29

Of all the jobs that run at Boeing,
more than 90 percent use at most 10
million words of scratch disk space.
Thus the vast majority of our custo-
mers' jobs can use the SSD without
needing to declare it - all they must
do is direct their datasets to the SSD.

Calculations showed that dynamic pre-
emption of 10 million words of SSD
would have acceptable performance (be-
tween 20 and 30 seconds, using non-
striped DD-29s). As we do not yet have
a dynamic preemption mechanism, the
system provides an implicit declaration
of 10 million words whenever a job
tries to use the SSD.

When an explicit SSD declaration is
needed, it can be done either by using the
SSD parameter on the JOB statement or by
setting the JCL variable 'SSD' to the
number of blocks needed (e.g.

SET, SSD=50000). This gives us several
nice properties:

Compatibility with the standard SSD
declaration on the JOB statement.

Canned procedures can make use of the
SSD without the user needing to know
about it or having to change his JOB
statement.

Interactive jobs can use the SSD.

Reservation and allocation of SSD space is
deferred to the last possible moment.

Even though a job may have made an SSD
declaration, the system does not actually
reserve any SSD space until the job tries
to perform a physical write on some data-
set that is assigned to the SSD. The
system (DQM) detects that no SSD has been

reserved, and triggers the reservation
mechanism. If not enough SSD is availa-
ble, the job may be suspended at this

point. When the last SSD dataset is
released, the system releases the job's
SSD reservation, until the next time that
a physical write is done on an SSD data-
set. As a result:

Jobs that use SSD will run, unhindered,
until they actually need to use the
SSD. At that point they may be sus-
pended, but at least they have had an



opportunity to accomplish useful work
in the meantime.

SSD space is not locked up and left
idle between the time a job starts and
the time that it needs the SSD.

A job's SSD declaration can be adjusted,
either up or down, via the SET statement.
One use of this allows a job to overesti-
mate its SSD requirements, create all its
SSD datasets, then reduce its SSD reserva-
tion to the amount actually in use. Of
course, if a job increases its SSD decla-
ration while it is holding an SSD reserva-
tion, there is a possibility of a deadly
embrace with other jobs using the SSD.

SSD preemption could handle the deadly
embrace, but since we do not have preemp-
tion, we disallow any increase in the SSD
declaration while a job has any SSD space
in use (in effect the job must do the pre-
emption itself).

To minimize the need for low level aware-
ness of SSD usage, we implemented the
following facilities:

Wherever a user can specify a device
name, a user may specify a generic
device name (as opposed to the name of a
generic device). To assign a dataset
to the SSD, a user need only use
'DV=SSD', rather than the full device
name of 'DV=SSD-0-20'. In a similar

fashion, to assign a dataset to any
disk device, a user need only use
'DV=DD', rather than knowing about

device names such as 'DD-Al1-20', etc.
To ensure datasets are assigned to
distinct disk devices, a user can use
'DV=DD-ordinal', where 'ordinal' is an
ordinal into whatever disk devices
exist at that time (e.g., 'DV=DD-1',
'DV=DD-2").

For performance reasons, SSD datasets
are assigned a default buffer size of
40 blocks.

A job may control SSD overflow behavior
at the job level setting the SSDOVF JCL
variable. If SSDOVF=TRUE, SSD datasets
may spill to disk (unless a specific
ASSIGN declares otherwise for that
dataset). If SSDOVEF=FALSE, the job
aborts when an SSD dataset overflows

30

the SSD.

The OPTION statement was extended to
allow a job to change its default buf-
fer size, to change its SSD default
buffer size, and to choose a default
device for subseqguent datasets. For
example, OPTION,DV=SSD,SSDBS=20 would
assign all subsequent datasets to the
SSD, with a default buffer size of 20
(octal) blocks. While we were at it,
we also propagated all relevant parame-
ters (such as BFI and LM) from the
ASSIGN statement to the OPTION state-
ment. Of course, a specific ASSIGN
statement can override any of the
defaults selected by the OPTION state-
ment.

To provide users with more feedback about
their SSD usage, a local utility (DNLIST)
can be used at any point in a job. DNLIST
lists all the local datasets that exist,
and if OPTION, STAT is turned on, also
lists the OPTION, STAT information. Should
an SSD overflow occur, the system informs
the user (in the logfile) about which
dataset overflowed, its size at the time
of the overflow, and also the names and
sizes of any other SSD datasets that may
exist. At the end of the job, the system
informs the user (in the logfile, again)
of the high water marks of the job's SSD
usage and scratch disk usage, and the
times when they occurred.

To make things easier for our operations
staff, we have changed shutdown to auto-
matically flush the SSD if any jobs have
SSD space in use. A subsequent restart
will automatically restore the SSD, if
necessary.

Finally, we modified COS slightly to allow
CSP to be SSD resident. This frees up
about 100K of central memory, without the
performance penalty of putting CSP on
disk.

PERFORMANCE OBSERVATIONS

In one performance study we observed that
as buffer size increases, the sequential
I1/0 transfer rate approaches an asymptotic
value of 1 billion bytes per second. The
transfer rate curve rises steeply at first
and then levels off. The knee point is in



the vicinity of a 40 block buffer size,
which attains approximately 75 percent of
the asymptotic transfer rate (hence our
default buffer size of 40 blocks for SSD
datasets).

As we gained experience with the SSD, we
noticed an interesting phenomenon. For
many codes, the access counts of SSD data-
sets were almost exactly equal to the
total blocks transferred divided by 1/2 of
the buffer size - almost every physical
I/0 request was transferring 1/2 buffer.
We believe that this is because the SSD is
so fast that applications cannot keep up
with it unless they are extremely I/0
bound and use very big buffers. From this
observation we have concluded that the 1/2
buffer threshold for physical I/0 (embed-
ded in the S$SYSLIB I/0O routines) is coun-
terproductive for the SSD. It seems that
Cray Research has reached a similar con-
clusion, because an upcoming COS release
will allow users to adjust the physical
I/0 thresholds of their datasets.

A flush of the 134 million word SSD, using
non-striped DD-29s, with write-behind ena-
bled, takes about 5 minutes. A restore
takes about 10 minutes, since it writes
the SSD, reads it back, and verifies that
the SSD data is intact. Recently, how-
ever, another site discovered a bug in the
write-behind logic that handles error re-
covery, so we have disabled write-behind.
A flush now takes about 15 minutes!

HOW CRAY RESEARCH CAN HELP

Cray Research could do many things to help
its SSD customers. Some of the issues
that interest Boeing are:

o Reduce the system overhead in process-
ing SSD I/0 requests. The new queued
I1/0 scheme sounds like it will be effi-
cient, but it will require application
codes to change, the way they do I/O.

If queued I/0 could be embedded in some
library I/0 routines, so it is trans-
parent to the user, then it would
really be useful. One of the nicest
things about the implementation of SSD
support is that the SSD can easily be
substituted for disk, and standard I/0O
requests can be used.

31

Provide a high speed SSD preemption
facility - both operator initiated pre-
emption and dynamic (system initiated)
preemption. Dynamic preemption should
preempt only as much SSD space as is
needed to satisfy the requirements of
the higher priority job.

Provide more feedback to SSD users. As
difficult as it may be to implement,
what is really needed here is some way
to plot, over the life of a job, how
much SSD and scratch disk space the job
uses, and the amount of I/O it does.

Fix the SSD scheduling algorithm to
eliminate the 'dead' SSD space that
OCCurs now.

Speed up the flush and restore of the
SSD. One way might be to use striped
disks; another might be to flush and
restore only those parts of the SSD
that are in use.

Allow sites to use the SSD as a high-
speed swap device. As main memories
get bigger and bigger, so do the jobs
that users run. As jobs get bigger, it
takes longer to roll them out and back
in. For jobs that occupy all of main
memory, the system is essentially idle
while the rollout and rollin occur.

For example, a single job that uses all
the memory on our X-MP, (about 3.9
million words), takes 10 - 13 seconds
to roll out and another 10 - 13 seconds
to roll in. Even with striped DD-49s
it will still take about 3 - 4 seconds
for a round trip. With the larger
8-million and 16-million word memories,
the overhead of rollin and rollout
could quickly get out of hand.

One way to alleviate this problem might
be to use the SSD as a high speed swap
device, or at least as a staging
device. Using its high bandwidth,
exchanging two 3.9 million word jobs in
main memory would take less than a
tenth of a second. The system could
then migrate jobs between the SSD and
disk, at its leisure. This could be
made even more attractive by using the
SSD back door to stage roll files be-
tween disk and SSD.



CONCLUSIONS

We have found that SSD performance is all
that it is touted to be. Unfortunately,
in an environment as diverse as that at
Boeing Computer Services, the SSD is not
as useful as we would like it to be. Much
work remains to be done for Boeing to
realize the SSD's full potential.

32



USER REQUIREMENTS COMMITTEE REPORT

Stephen Niver

Boeing Computer Services
Seattle, WA

The first part of this report deals
with the results of the Winter '84
ballot. There were six items that
were to be forwarded to Cray Re-
search (CRI) for comment. The re-
sponse from CRI is as follows: ’

COS Coding Standards

Following a well-established set of
coding standards benefits both CRI
and COS sites. Please publish these
standards and modify COS in those
routines that deviate from the
standards.

Response: Cray does not plan to
publish COS coding standards.

User Exits

User exits should be implemented at
all important decision points in COS.
These should provide hooks with a
guaranteed interface at all places
that users in general want to put
modifications. Specification of
this requirement in more detail
would follow acceptance of the prin-
ciple by Cray.

Response: Cray will consider
customer requests for specific COS
enhancements in support of User
Exits.

Cray appreciates the need by some of
its customers to implement local
system code in COS to adapt the
system to their specific needs.
Since local code can make system
support more difficult for both Cray
and Cray's customers, Cray would
give priority to User Exits which
enhance the maintainability of the
system and which benefit a large
number of customers.

33

Installation Areas in COS Tables

Installations should be able to
define and use areas within all coOS
tables. In some tables, it may be
appropriate for CRI to set aside a
guaranteed number of words. In other
cases, the ability to increase the
size of tables with an assembly-time
table definition may be more
sensible.

Response: Cray will consider
customer requests for specific COS
enhancements to provide Installation
Areas in COS tables.

Cray appreciates the need by some of
its customers to implement local
system code in COS to adapt the
system to their specific needs.

Since local code can make system sup-
port more difficult for both Cray and
Cray's customers, Cray would give
priority to putting Installation
Areas in COS Tables which enhance the
maintainability of the system and
which benefit a large number of
customers.

System Tuning

As the COS system has become more
complex, the ability to easily
tune/modify the system assumes
greater importance. It would be ben-
eficial, therefore if CRI were to
adopt a design direction that all
tunable aspects of COS be parameter-
ized and changeable via STARTUP direc-
tive or installation parameter as
appropriate.

Response: Cray will consider
customer requests for specific CO0S
enhancements in support of System
Tuning.



Most tunable aspects of COS are
already parameterized. Cray would
be interested in requests both for
educational items related to tuning
(such as the Job Scheduler Tuning
Guide) and for tools in support of
tuning.

Software Configuration

As the site configurations have
become more varied, software has
been written to support many diverse
hardware and software features.
Sites should have the ability to
"configure out" that code that does
not apply to their specific
configuration.

Response: Cray will consider
customer requests for specific COS
enhancements in support of Software
configuration.

Cray has made enhancements for COS
1.15 in support of diverse hardware
features. These include new CONFIG
functions, such as the ability to
up/down a CPU and a target CPU
capability. Both STARTUP and CONFIG
are being considered for further
enhancement.

Support for "configuring out" code
is not planned for COS. Although
the Tape Queue Manager Task may be
configured out of the system, other
COS features are implemented within
several tasks. Testing and
performance considerations make
configurability of these features at
cross purposes with a reliable
performance-oriented product.

Queue Management

Installations with large numbers of
users can easily get into the
position of needing to maintain
large input queues. The development
of network access to the Cray will
lead to this becoming a universal
experience. Running out of queue
space leads to unrealistic
operational problems. Expanding the
number of possible queue entries to
a related level would lead to an
unacceptable large main memory
commitment.

34

A queue management feature is
required which would allow a much
larger number of queue entries,
including expansion to disc, dumping
of queues and portions of queues.

The feature must provide for the
maintenance of relative priorities of
items no matter where they reside.

Response: Cray has placed this
feature in its planning cycle for
future implementation.

SSD Management

Competition for scarce system
resources dictates the need for an
"intelligent" means for managing
these resources. The system must
make these resources easy to access
(i.e., no hard specification on job
card) yet manage the resource usage
so maximum utilization does occur and
resource deadlocks do not. COS
already "manages" the CPU and main
memory through the job schedule.
Please extend COS to manage the SSD
and buffer memory as well. Features
should include (but not be limited
to) the ability for system control
(scheduling, allocation and
deallocation/rolling) and operator-
initiated control.

Response: A project for the SSD
management capability described is
underway and planned for release with
COS 1.16. A design document has been
completed for internal review.

Concurrent Maintenance

For sites committed to a 24-hour,
7-day-a-week production, system
availability is a critical concern.
To insure total system availability
to the maximum number of users, some
changes in the approach to overall
system design is necessary. The
design goal should be that when a
system anomaly occurs, the failing
component should be isolated so that
a set of users are impacted rather
than the whole customer set. 1In
summary, the system design goal
should provide that the whole
production system should not be
totally impacted when the unit
failure occurs or while the failure



is being isolated, repaired, or when
the failing element is returned to
the production system. Some
examples are the following:

Disk drive/controller failures

Single CPU failures within a
multi-headed system

Tape Drives

Response: The following areas
have been identified for attention:

Offloading disk data

Add capability to allow
diagnostics executed in
privileged mode

Create 'diagnostic' task

Operator messages

Access to channels

'Portioning' devices

'Portioning' memory

Disk information requests

CPU in maintenance mode

The first four items are complete and
the remainder should become available
progressively throughout 1986.

Summary of Ballot Responses

The appropriate Special Interest
Committees will now work with CRI to
assist CRI in specific implementa-
tion for those items CRI plans to
consider.

The second part of the report covers
the results of the recent (Summer,
'85) ballot (Fig. 1). Following
discussion in the User Requirements
committee, it was recommended that
CUG forward the top three items to
CRI for comment. The lowest rated
item, MODULA2, will be dropped; the
remaining items will be carried to
the next ballot. The two dotted
lines on the chart graphically
portray this. Those items above the
top line are forwarded to CRI, those
below the bottom are dropped, and
those in between are carried to the
next ballot.

SUMMER 1985 CUG USER REQUIREMENT SURVEY RESULTS

**% RESPONSES SORTED BY TOTAL POINTS #*%*

NUM FEATURE

RESP TITLE
28 PERMANENT DATASET PROTECTION
27 SCILIB EXTENSIONS
27 JOB DEPENDENCY

17 ENHANCED PDS MAINTENANCE
15 IMPROVED INTERACTIVE

19 JCL MULTI-TASKING

11 CRAY-TO-CRAY COMMUNICATION

2 CTSS SUPPORT
2 MODULA2
0 UNASSIGNED

TOTAL PERCENT AVERAG
POINTS POINTS RESP.
873.0 25.8 31.2
596.0 17.6 22.1
576.0 17.0 21.3
389.0 11.5 22.9
275.0 8.1 18.3
250.0 7.5 13.2
231.0 6.8 21.0
170.0 .0 85.0
20.0 .6 10.0
0.0 0.0 0.0

Figure 1






s

N —————————
. . e s e
.. - ... ..
s e e . . - ... ...
- .. - = .. . e S O s
. o . . ... == . = .
... =~~~ _ _~ = e L T S e e s mmm@%M%er‘“);,i,y;;im«“gggggi,@u,‘mﬁm«~w’3%im>*1"“"'35‘~""'f’~‘f§g""”"’ -
e ‘:iix;m@éﬂmgimm@,,v,,,jg;;; . . . e »\g!g:«ungg;lﬁéx; . i *Eiﬁ’%"ﬁ{”gi’a’éﬁiu v«xiégs * DA - 5 «)«~:5?jv’i'as:15;im‘iv’iuK)3;i7;x’x’aenﬁii?é%é,ﬁ?iz'f,mLiitiéy’ﬁ‘i@5§v’v’fffx?n«?iﬁv’f@;ggggiizﬁ?ianms‘z‘%iifif@t;;igﬁifxwezﬂ@?}@f égiwﬁisifﬁii‘ g
;iz,xﬁxi;?i?ii:s?m:izii}?»fx;imcmﬁ:%iia(au;iii’xsx:)x«ﬁi‘"ﬁin;?;,ﬁi"n’iqfﬁ?iiiéss‘a«iiuisw’m e co s EOEVIL. £ Ak ... ...
RneEE e e e e »‘s’s’agiws"%sss;f»:ﬂxxnaxd»:«ntiiész!%g namaE :é:%%’f’::‘;"~:?a§;é§g;;;;E;ig;,;;;;;;w:;;;g;a;;;g;*—‘;@,gX,e;;i;;;a,y;x,ﬁ;;;;izf«,,,;«w';;a‘;,ﬁ me»~fzﬁ§>,,gfii*f%f,mm*;xsza;si»r;i;ﬁsiv"xa,;mi;i‘iff%x,a:':i‘?uzzx,;mi‘ﬂagw««vzsum;iii‘zwgsmﬁ, s ’i:wms:?‘*ffis;:é:’m;;je;:Sf;*;;:;z;;;;;;ifff‘*%}éiii;‘i%‘13;5
... . . ... __ - . .
i ___= . ___ . _ =~ . _ .. = __ = _ @ s ...__._.___
... _ »Wii‘”’i” S e i ;'EwJ“f!??ﬁi;»!‘;‘i»ff?g?gz:!;‘gé&g’,’,g‘;”g!w%‘,‘ e
. .. . . o
Bl R
=



SOME USER EXPERIENCE IN MIGRATING TO CFT1.14

Chris Lazou

University of London
England

The UL CC Environment.

The University of London Computer Centre provides large-scale computer services to
members of the academic community throughout Britain. These services are based on
a Cray-15/1000 running COS1.12, CFT1.11 (old calling sequence) and an Amdahl
470V/8 running MVS SP1.3. Access to the centre is provided over X25 - based wide
- area networks in conformity with the ISO madel of Open Systems Interconnection
(OsD.

The user community consists of postgraduates and university teachers, and totals over
6500 accounts. About 1500 of these accounts are Cray-1S users. Most of the users
have to submit their work for a "peer review", to establish whether their work
warrants a large-scale computer, before they are allowed to use the Cray-1S5. This
rather small system is overloaded and our users'requirements are one to two orders
of magnitude larger than the computational capacity of the Cray-1S. The work
simulated on the Cray-1S at ULCC spans the complete range of academic disciplines
from physical to biological sciences on to humanities.

CFT Versions

Apart from CFT1.11 (old calling sequence) residing in the system, we also have
CFT1.10, CFT1.11 (new calling sequence), CFT1.13 bug fix 2, CFT1.14 bug fix 2 on
permanent data sets. Indeed many of the other bug fix versions are also there,
which gives you an indication of the inherent instability of .CFT as a product. In
addition to the Cray Products, we support the Cray Library, the mathematical
libraries NAG and IMSL, and some 35 packages and other libraries including graphics.

The size of user programs run on the system, range from small development jobs, to
large (several hundred thousand lines of Fortran statements) production jobs,
partitioned to use as much of the Cray resources available.

Migration Path

As a matter of policy ULCC plans to effect upgrades during the summer when
University treachers are free from undergraduate teaching duties. Since our user
population is spread around the country, we have adopted the following migration path
whenever we wish to upgrade a new version:

1. Document and distribute any external user changes, noting their possible
impact on running programs to the user community.

2. Place CFT and associated products on permanent data sets and provide a
procedure to access them.

39



3. Encourage application programmers at ULCC and the users at large to try
new versions of CFT.

4. Generate new libraries on permanent data sets for users to access on a trial
basis.

5. A stringent quality assurance exercise is initiated with the aim of assuring
that all previous production programs still function correctly with the new
versions (an impossible task with Cray software).

Problems encountered during migration.

Once the user community started using CFT1.14 the problems began to pop out of
the woodwork. Our Cray analyst verified and submitted on ULCC's behalf, 7 critical,
5 major and 2 minor SPRs. There are 3 more known problems which are currently
under investigation, not as yet isolated enough to establish whether we have to issue
new SPRs for them.

The problems encountered were mainly due to the CFT compiler generating wrong
code or the functions in the ARLIB library, have been "speeded up", by changing the
algorithms, but with scant respect to accuracy. These problems were detected in
large codes such as the LUSAS package (55K lines of code), a computational
chemistry program (350K lines of code), crystallography package, econometrics,
GAUSSIAN 82, and the NAG tests.

Remedies

With such spread of problems encountered at CFT1.14, ULCC was unable to upgrade
last summer. Another problem which may be local to European sites, is that the
response to critical SPRs by Cray Research is very slow. Even when code has been
developed to solve the critical problem it is often not available to us for several
weeks rather than days.

Recommendations

1. CRI should do more testing before releasing its products, if it wishes to
preserve the confidence of the user community to their worthiness.

2. CRI should consider providing a mechanism for access of all current SPRs by
all sites to enable installations to ascertain whether a problem they are
hitting has previously been reported. This has the added advantage, for
installation analysts, of providing material hints to assist them when trying
to isolate problems in large systems. Some of these problems take days to
isolate and any reduction of this unnessary cost, would be appreciated.

3. CRI should consider publishing any changes to algorithms calculating floating
point numbers results from mathematical functions and should try to conform
to either IEEE or other suitable standards where available.

4, CRI must do better as far as CFT is concerned if it wishes to keep ahead
of its competitors in this field.

40






NETWORKING AND FRONTENDS SESSION I

Dean W.

Smith

ARCO 0il and Gas Company
Plano, Texas

The networking parallel session consisted
of three talks by users on their
experiences and desires regarding various
Cray Research software products. Ronald
Kerry's talk concerned General Motors'
experiences installing and using the new
Superlink/ISP product. Annabella Deck,
from Chevron 0Oil Field Research, gave a
presentation regarding Chevron's
experiences running multiple frontend
stations on a single CRAY and the problems
they have encountered. I, of ARCO Oil and
Gas, gave a talk on the networking of
control information via the station
messages facility.

CRAY INTEGRATED SUPPORT PROCESSOR
INSTALLATION EXPERIENCE

Ronald Kerry
Computer Science Department
General Motors Research Laboratories

The new Integrated Support Processor (ISP)
is a software product that establishes a
link between the CRAY operating system
(COS) and IBM's MVS operating system.
Through this link, CRAY users have local
access to MVS data, device support, and
data management services.

Having local access means that you can
perform input and output on MVS datasets
as if they were local to your CRAY job.
You do not have to move the entire
dataset to the CRAY first, a process that
involves data staging and subsequent
delays in program execution. Instead, a
CRAY application program can go directly
to the IBM device with no waiting.

I will discuss the installation
experiences seen at General lMotors
Research Laboratories as part of the early
support test program for the ISP product.
This discussion will include:

1) the installation process;
2) the problems encountered during

testing, along with the current
status of the product;

43

3) some preliminary figures showing
the performance of the ISP
product, especially as it compares
to the data staging techniques
used by the current MVS station.

General Motors Research currently has a
CRAY-1S with 2 million words of memory and
a 3-processor I/0 subsystem. The
applications which we run on our CRAY
include engine modelling, aerodynamics,
and structural analysis along with other
automotive applications. These
applications all require the computational
power of the CRAY. However, they are also
all very dependent on information that is
stored in our MVS database.

In September of 1984, Cray Research
presented us with the idea of the ISP. We
felt that it would benefit both Cray
Research and General Motors Research to
participate in a cooperative development
and testing program. GMR expectations for
the SIP were high and included:

1) ISP would relieve the pressure of
storing large seldom used
databases on local CRAY devices;

2) ISP would allow us to share data
between CRAY and MVS
applications;

3) ISP would significantly speed up
data transfer between CRAY and
MVS;

4) ISP would enable us to see much
faster CRAY application
performance.

The installation experience was divided
into two distinct phases. The first phase
I will call "advanced development.'" We
ran into many problems. Most of these
problems were found because of the fact
that GMR computing environment is vastly
different from the environment on which
the ISP was initially developed. These
problems included:



1) naming conflict with the
interactive system productivity
facility of TSO on MVS (SPF);

2) module reentrancy problems;

3) multiprocessor problems;

4) extended addressing problems.

The advanced development phase was carried
out over three contiguous weekends after
which we decided to wait until COS V114BF2
was stable enough to continue testing.

The second phase of the installation was
the actual BETA test period. Several
problems were found during this period,
but none were as fundamental as the
problems found during the advanced
development phase. The BETA test period
was completed in September of 1985.

Some of the major features and differences
of the ISP include:

1) use of storage above the 16MB line
for I/0 buffers;

2) approximately 200Kb of SQA storage
is used for control blocks;

3) a performance monitor is provided
which runs as part of RMF;

4) a dump format routine is provided
which runs as part of IPCS;

5) the default DF value is BB instead
of the normal CB value;

6) output is binary zero filled
instead of blank filled;

7) user job exits are provided which
MUST be coded to enforce
installation MVS JCL standards;

8) the documentation is in its

infancy, but what is provided is
very good.

Performance figures for the ISP are very
preliminary due to the limited amount of
time available in which to carry out
experiments. We were able to sustain
transfer rates of from 1 to 2 MB in each
direction fairly easily while consuming 5%
- 10% of a single 3084 type processor. If
the TRACE option is turned on, the CPU
utilization can go up to as high as 40%.

MVS blocksizes and buffer sizes
COS buffer sizes can affect the
performance of the ISP greatly.
general, MVS blocksizes had the
effect on performance.

along with

In
biggest

44

In a worst case scenario, a COPYD of a 60
million byte dataset took three times as
long using the ISP with DF=CB as the same
operation using local CRAY datasets.
However, if the time to fetch the input
dataset and dispose the output dataset in
the latter case is added in, the total
time to do the COPYD using the ISP was
three times shorter!

After all this discussion, it should be
noted that the ISP is really a prototype
product, with much improvement to follow.
Some of the suggestions generated out of
our early installation experiences
include:
1) enable use of the hyperchannel
for connectivity;
2) include the capability of writing
SMF records in the performance
tool;
3) general ISP recovery improvement
(RAS) ;
4) installation options should be
specified via a PARMLIB type
arrangement instead of being
assembled in;

allow MVS to initiate action with
the ISP.

5)

RUNNING MULTIPLE CRAY STATIONS AT
CHEVRON OIL FIELD RESEARCH CO.

Annabella Deck
Chevron 0il Field Research Company

At Chevron 0il Field Research Company
(COFRC), users are free to use whichever
computer they prefer. Choice is based on
personal preference, the requirements of
their application, the availability of
disk storage, etc. For this reason, all
general-purpose computers are connected
to the CRAY, and there is a requirement
that any CRAY job may access data on any
frontend and submit jobs to run on any
frontend regardless of the frontend of
origin. There is a problem - because we
have RACF on the IBM 3081 and 3033, and
all datasets are protected. 1In addition,
users like to be able to view and drop or
kill jobs they have submitted to the CRAY
from other frontends.

The problem is how to identify the user

who submitted a CRAY job, independent of
the frontend of origin, and in such a way
that the user cannot change his identity.

When a CRAY was first installed at COFRC
we had the CRAY MVS station and an



in-house VAX station and we used the TID
field (of the Link Control Package) to
identify the user. When the CRAY VAX
station was installed, we found we could
no longer use the TID field. We now use
the userid of USR field. All stations
have been modified to set the USR field in
the dataset header for a job. This is set
to the logon or userid of the user
submitting the CRAY job. It is set
independent of the user and cannot be
changed. This field identifies the user,
and is also used as the basis for all

CRAY privileges and dataset ownership
fields.

COS Changes:
ignore US field on JOB card;

US field on ACCOUNT card requires
special privilege;

USR field propagation, DISPOSE - ok,
FETCH/ACQUIRE - copy USR field to
DSH, Station Messages - error in
code setting USR in FSH.

COS Changes - SCP:

remove MF test for enter log file
request;

when selecting a job for reply to
commands STATUS, JOB, JSTAT, DROP and
KILL, 1) remove MF test, 2) if
requestor's TID = OPERATOR then allow
request, 3) if requestor's TID =
job's TID then allow request, 4) if
requestor's TID = job's USR then
allow request.

MVS Station Changes:

setup USR field in DSH for a job
being submitted;

remove MF test for STATUS and JOB
displays;

if no RACF slot then use USR field as
RACF USERID;

if no TMS slot then build ACCTN field
from USR.

VMS Station Changes:

set USR field in DSH for JOB and

SUBDS to VAX USERID;

in interactive
USERID;

set US and UN fields
logon segment to VAX
disable US parameter on interactive.

My request to CRI is that each station
should implement a user exit whenever a

45

station slot record is read. The exit
should be able to change the slot record
or build its own if a slot record is not
found. In addition, Cray should consider
providing a standard ownership field
independent of the frontend of origin of
the job.

ENHANCED STATION MESSAGES SUPPORT

Dean Smith
ARCO 0il and GAS

The operation and system facilities of
COS are often a less than a perfect match
to the frontend system. The problem is
not limited to different types of front-
ends. Because the systems that interface
to a CRAY may themselves be dissimilar,
this problem can be experienced with two
nearly identical systems, and more than
1 frontend can guarantee an incompatible
fit.

Reasons for the condition:

CRI is forced to develop solutions
that have to be something to
everyone.

CRI has had to develop system
services (accounting, userid
validation, password verification,
dataset security services, etc.)
that are alien to the host systenm,
even though there exist counterparts
on the host system.

CRI has limited resources with which
to understand and address the
problems of integrating CRAYs into
our "alien" systems.

The result is often a "compromised
solution”.

My proposal is twofold: 1) enhance the
station messages facility of SCP protocol
to support many of the system facilities,
2) develop a flexible user exit facility
on the frontends to act on the station
message requests. In this way the various
components and utilities of COS could
utilize the station messages facility to
obtain information, request validation, or
communicate results back to the frontends.
This facility should also provide for a
user interface to the station messages
facility.

The range of applications can span the
entire system and user processing on the
CRAY:



Accounting,

User Privileges,

PDN Access and Dataset privacy,
Tape Drive Allocation,

Job Scheduling,

Software/hardware Error Reporting,
CSP Exit,

ABEND Notification,

ABEND Recovery/Reprieve Processing,
Allocation of Local Datasets,

Job Initiation/Termination,
Operator messages

Judiciously implemented, the result could
be a CRAY system which more closely
resembles its host system to the user, the
system operators, and system support
personnel.

I believe there are advantages to both
the user community and to CRI in this
proposal. Some advantages to the users
would be:

It would allow us to establish
system-wide standards (one security
system) .

We could better utilize our own
system personnel.

We wouldn't need two sets of
processes to perform analogous
functions on the different systems
(one accounting system).

Additionally, there would be advantages to
CRI:

Future enhancements and their
implementation could be at the
discretion of the site.

CRI could shorten the implementation
time for new facilities by
down-loading many of the
responsibilities to the site support
personnel.

CRI would not have to determine a
"best" solution among variocus
implementations.

46



LANGUAGES SESSION

Mary Zosel

Lawrence Livermore National Laboratory
Livermore, California

Four presentations were made in the languages
session:

Peggy Boike, CRI - CFT 1.14 release

Wayne Anderson, LANL - Lisp

Kelly 0'Hair, LLNL - LR Parser System

Karen Spackman, CRI - CFT77 (NFT) discussion

In the discussion of CFT 1.14, Peggy Boike, CRI,
addressed some of the problems that were encoun-
tered with the CFT 1.14 release. Some of the beta
testing procedures had been allowed to lapse.
Peggy assured users that future compiler releases
would go through extensive beta testing before
release. Fixes for all major 1.14 problems
reported before the time of the meeting, and most
minor problems had been made and distributed to
the sites.

Wayne Anderson, LANL, described the implementation
of Portable Standard Lisp at LANL. This Lisp
dialect was originally developed at the University
of Utah. It currently runs under CTSS on LANL's
Cray machines.

Kelly O'Hair, LLNL, presented a description of

the LR system which is available for Cray machines.
This parser system handles full LR grammers. It

is written in standard Pascal and has been ported
to multiple different machines and systems, large
and small, including the IBM PC and SUN work-
station. This parser system generates parser
skeletons for the input grammer in the user's
choice of several different languages: C, Pascal,
Fortran77, CFT-Fortran, and LRLTRAN. One usually
associates use of automatic parsers with compiler
development, but at LLNL, O0'Hair has found the

main use is in developing interactive utilities.
The system has been used to handle user interaction
for the debugger, for the file transport utility,
for a code analysis program, for a macro processor,
etc.

Karen Spackman's presentation follows this summary.

47



CFT77 DISCUSSION

Karen Spackman

Cray Research, Inc.

Mendota Heights, Minnesota

First T would 1ike to comment about the testing
that we are doing on CFT77. We are very
concerned about the reliability of our products
and are doing what we can to ensure that the
compiler is reliable before it is released. We
do functional testing of specific features and
run our own set of regression tests to make
certain that we haven't introduced new problems.
Currently our regression test base contains over
one quarter of a million lines of code.

We will be taking CFT77 out to sites for beta
testing before it is released. We are planning
on two beta test sites for the CRAY X-MP
release, one running COS and one running CTSS.
We will also take the CRAY-2 version to a beta
test site.

The fact that CFT77 is written in Pascal gives
us an advantage in testing that our earlier
products did not have. The testing department
has written a coverage tool that works with
products written in Pascal which measures how
much of the code is exercised by the test set.
We will be running this coverage tool against
our existing test set to determine how good the
coverage is now and what areas we need to
concentrate on for future test development. We
will also be running the coverage tool at the
beta sites in order to find out how much beta
testing improves the coverage.

We also do performance testing at Mendota
Heights, and this is an area where we would like
to do more. As well as running computational
kernel codes, we have a set of "real" programs
which we use for a performance measure. We
would 1ike to expand this set, and we need
programs from you to do so. We are Tooking for
actual user programs, not synthetic loops. They
need to be well-behaved in the sense of being
numerically stable and having answers that are
fairly easy to check. They should be scaled
down to run in one to five minutes of CPU time.
Finally, because we are interested in tests to
measure generated code performance, the programs
should do minimal amounts of I/0, and the
execution time should not be dominated by
library routines. If you have programs that we
can use, please contact me, Dick Hendrickson or

48

Jeff Drummond at Cray Research, Mendota Heights,
Minnesota.

Question: Why didn't CRAY use Kuck's vectorizing
preprocessor for the new compiler?

Answer: We are, of course, aware of the work
of Kuck and his students since it is the
foundation for much of the work that has been
done in analyzing dependencies. We have
certainly used many of the ideas from Kuck's
work (and from Kennedy's at Rice University)
in designing our approach to vectoriziation.
We were interested in developing an integrated
approach to the problem, however, that used
the information gathered during the flow
analysis done for scalar optimization and that
took advantage of other optimizations done for
scalar code. Consequently we want the
vectorization analysis to be part of the
compiler itself and not a separate

preprocessor.

Question: Are there options to turn off
optimization?

Answer: Yes. Full optimization is on by
default. Control card options exist to turn

off all optimization and to turn off just
vectorization. When automatic partitioning
for multitasking is available, this will also
have a control card option.

Question:  How does compilation speed compare
with CFT?
Answer: We don't have a lot of information

on this yet since the compilers that we build
for testing in Mendota Heights have all of our
debug code turned on, and this easily doubles
the compilation time. We have done some
preliminary timings with the debug code turned
off and are seeing compilation times four to
ten times slower than CFT. We are now
analyzing where in the compiler we are
spending the time and looking at what we can
do in these areas. Right now global register
assignment is taking a significant amount of
time, and we are looking at changes that



should improve this substantially. Right now
my best guess is that we will be Tooking at
compile times more than four times

those of CFT at the initial release.

Question: What about execution speeds?
Answer:  Our preliminary scalar results have

shown 10% to 30% improvements in runtime over
CFT. Vectorization code is still being
completed, so I don't have figures available
for that yet. Our commitment all along on the
project has been that CFT77 will generate code
at least as good as that generated by CFT at
the time of the release.

Question: What about the size of the compiler?
Answer:  Again because of the large amount of

debug code that we typically run with, I don't
have a good feeling for what the size of the
compiler will be at release. This is an area
that we will be addressing in the next month,
particularly in terms of segmenting the
compiler. The data space used by the compiler
does grow during compilation; there is no fixed
Timit on this.

Question: How does CRAY view continued CFT
support in light of the CFT77 release?

Answer: Certainly we intend CFT77 to become
the principal FORTRAN compiler for our machines;
we will be retargeting CFT77 and porting it to
all of our new machines. However, we want
people to move to CFT77 because we have given
you a better product with better performance.

We certainly don't intend to force people to
move from CFT to CFT77 by not supporting CFT.

We will support CFT, for existing machines, as
long as our customers find it necessary.

Question: Does the optimization we are doing
for the initial release for the CRAY X-MP apply
to the CRAY-2 also?

Answer:  In general, yes. Most of the
optimizations that are done are aimed at
eliminating redundant operations which are
redundant on any machine. Specific
optimizations such as instruction scheduling
have to be cognizant of the target machine
characteristics, however.

Question: Will the user be able to compile
for a different target machine than the one
being compiled on?

Answer:  Within the CRAY 1/X-MP line CFT77

will support a "CPU=" compiler option to allow
retargeting. There are no plans at the present
time to support cross-compilers between the CRAY
1/X-MP line and the CRAY-2.

49

Question: Will CFT77 gradually change into a
FORTRAN 8X compiler?

Answer: My feeling right now is that we will
support FORTRAN 8X with a separate compiler
based on the optimization, vectorization, and
code generation used in CFT77 rather than simply
incorporating all of the FORTRAN 8X features
into CFT77. FORTRAN 8X seems to be different
enough that I believe users will want to have
both compilers available concurrently for
awhile.

Question: Will you be Tooking at Toop
unrolling for the CRAY-2?

Answer: I expect that we will be looking at
Toop unrolling. We won't have this available
for the first version of CFT77 for the CRAY-2,
but some of the early results from CAL code on
the CRAY-2 indicate that we need to look at
this for performance, probably for scalar
Toops as well as vector. Also some work one
of our site analyst's did last year indicates
that unrolling may pay off on the CRAY X-MP as
well. We will certainly be investigating this
in the next year.

Question: Can you tell us how you expect to
approach automatic multitasking in CFT77?

Answer: Initially we will be looking at
multitasking at the do-loop level, similar to
microtasking except that we will have the
compiler do the analysis to determine if the
loop or program segment can be multitasked.

In the next few years we will be looking at
the whole problem of interprocedural analysis;
this should let us expand the granularity

of tasks that can be detected by the compiler.
Our whole thrust will be to provide as much
multitasking capability as we can without
requiring the user to change his code. I
expect we will introduce special syntax or
directives only if we find significant
ambiguities that we can't resolve.



SPECIAL INTEREST GROUP ON OPERATIONS

Gary Jensen, Chairman

National Center for Atmospheric Research

This meeting consisted of two sessions of the
workshop. Attendance at the workshop was up
by about 15% over the previous records. The
facilities were outstanding and that made it quite
enjoyable for all. We want to thank Gary Cross,
the Operations Manager at Dorval, for arranging
the great ‘digs’.

I want to thank the speakers for the fine job
they did in presenting their information to us in a
most professional manner.

PRESENTATION DESCRIPTIONS

Andy Marien, Centre Informatique de Dorval,
hosted a showing of a video tape presentation
created by Cray Research, Inc., Central Region,
titled “Installing an X-MP, from the view of Phy-
sical Plant Support”. This video tape describes
the problems that must be solved in order to have
a smooth installation. The tape included many
examples of how NOT to do it. The ‘star’ of the
show is Andy and the Dorval Facility. We all
want to thank CRI for the tape, and Andy for his
comments and answers to the many questions.

Ray Benoit, Centre Informatique de Dorval,
discussed ‘“Networking at Dorval, Today and in
the Future”. Ray was the host of the entire CUG
meeting and had been very busy throughout all of
the meetings. Since he had to speak at most of
the meetings, he had almost completely lost his
voice. He gave an excellent presentation despite
this problem. We want to give Ray a special
thanks for the fine job he and his people did in
organizing a smooth running CUG meeting. We
will remember his raspy voice.

Boulder, CO

Gary Cross, Centre Informatique de Dorval, is
someone none of us will ever forget. His presen-
tation “Operation of the Dorval Computer
Center” is included in these proceedings. Gary
helped Ray Benoit set things up and was respon-
sible for facilities, meals and parties. As you will
read in his paper, he did get even with me at the
party at Le Festin. Dressing up in the 1690
Governor’s robes and playing that role was worse
then any presentation I have ever had to make. I
think my wife enjoyed it and thanks to her, I was
not alone playing the Fool! Again, Gary, thanks
for the fine job you did. I owe you one.

Dan Drobnis, San Diego Supercomputer
Center, explained the plans, goals, and the
current status of this new center. This center is
funded by the Offlice of Advanced Computing,
National Science Foundation. The center is now
operating. Listening to this presentation con-
vinced me that they will do well. Good luck,
Dan. We hope you make yourself a regular parti-
cipant at CUG.

Lou Saye, Cray Research, Inc., presented the
Cray reliability statistics for the last six months.
He did a fine job again, and we appreciate his
participation. We want to also thank Gary
Shorrel for his comments and help. We hope that
they will continue to provide this information, in
the future.

Fred Montoya, Los Alamos, described “The
FOCUS System’. His paper is included in these
proceedings. We thank Fred for his continued
support of the workshop. Fred has made several
presentations in the past.

Thanks again, to all the participants and the
Dorval staff.

50



COMPUTER OPERATIONS AT ENVIRONMENT CANADA

Gary Cross

Operations Manager

Environment Canada
Dorval, Quebec, Canada

Good afternoon and Welcome to CUG Mont-
real 1985. It’s almost a relief to be here speaking
to you today. I say that because as a member of
the local arrangements committee, this talk will
amount to my first break since Sunday morning.

When Ray Benoit asked me to participate on
the CRAY local arrangements committee several
months ago, I remember being ushered into an
office and all the various categories which needed
volunteers were written on a blackboard.
Categories such as registration, finances, mailings
etc., etc. When I was asked to participate in
organizing part of CUG Montreal, I agreed for
several reasons. To begin, I was fortunate enough
to be asked first so I immediately chose by far
and away the best category, food and entertain-
ment. No way anything else came close. The
second reason was that I could get away from the
office and spend a few days meeting people and
staying in a nice downtown hotel. So far so good.
Thirdly I had the chance to spend large amounts
of other people’s money on food and drink and I
loved it. Now everything was going ok, until I
heard from Gary Jensen here. I was comfortably
in the shadows spending other people’s money
and planning lunches and such, next thing I know
Gary has convinced me to stand here for a talk
on our Operations centre. Suffice to say I got
more than [ bargained for. Well I decided to get
Gary back at his own game. The deal I made
with him was that I would stand up here and
speak for 25 minutes or so and Gary would con-
sent to be the honorary governor at our supper
tonight at Le Festin. I haven’t told him yet
exactly what that entails and I don’t think I will.
After all fair’s fair.

As you can probably tell, I am not accus-
tomed to public speaking especially in front of
such a large and distinguished group, so please be
patient. I’'m going to do the best I can and I'd
like to start by reviewing the-outline of my talk.
Pll be speaking in general terms about the
makeup of our centre, explaining the hardware on
site, personnel, shift schedules, plus some prob-
lems faced with managing this particular site. If
there are any questions following my talk, please
feel free to ask them. I only hope they’re not in

the area of technical questions like bits, bytes or
transfer rates because I tend to leave all that
hard stuff to my support staff who, fortunately or
unfortunately, are not present today. I don’t
know if I am departing from the norm in not
really getting too heavily into hardware and
software numbers and such, but I hope you will
find it interesting nonetheless. So, with your per-
mission I'd like to touch a few bases concentrat-
ing primarily on the makeup of our site from my
point of view, that of the Operations Manager.

Let me begin by telling you just a little about
who we are and what we do. Our shop is
officially called the Dorval Computer Centre, or
The Centre Informatique De Dorval, or CID.
Most references to the Centre use the French
acronym CID, as I shall. CID is a part of the
Atmospheric Environment Service (AES), and as
such is more or less the equivalent of the U.S.
National Weather Center in Washington. In gen-
eral, CID is responsible for producing weather
related products for the country. This includes
products for regional forecast centres in Canada,
public radio and cable television stations, along
with meteorological data relating to conditions
for aircraft flights, farming conditions, and
marine forecasts.

CID was the first CRAY supercomputer centre
in Canada (installed in 1983), and it supports the
AES. We are situated in Dorval, Quebec.

Between 1974 and 1982, a CDC Cyber 7600
was our large-scale computer, and this was
replaced by a Cyber 176 as an interim measure
until the installation and conversion to the CRAY
1S was complete.

It is worth mentioning here that in spite of
the totally scientific nature of CID and its appli-
cations, we run a real time production shop.
That is to say the meteorological products pro-
duced at CID must be distributed nationally
under the constraints of very stringent deadlines.
The operational weather runs executed on the
CRAY must begin exactly on time and complete
without incident, or nationwide delays are
incurred and believe me we hear about it. So
basically, CID 1is in business to produce

51



meteorological products which have a very high
profile across Canada.

The CRAY 1S is currently front-ended by two
Control Data Cyber 730 computers. These are
used mostly for pre-and post—processing opera-
tions in scalar mode.

One Cyber 730 is used for real-time produc-
tion processing and the second front-end for
development or research work. If one of the 730’s
goes down, the remaining one switches to the
production 730 to maintain our production dead-
lines. As a result, users on the development
machine are out of luck until the second 730 is
returned to service.

The development machine has eight Control
Data 885 disk spindles, and the production
machine has four Control Data 885 disk spindles.
Each spindle has a capacity of 75 million words.
The CRAY has a bank of twelve DD29 disk
drives which provide a total of 900 million words.

There are two tape drives attached to each
Cyber 730 and three STC tape drives attached to
the CRAY 1S. All of these drives, while used for
user testing, are in use most frequently for back-
ing up permanent files and data sets. More on
that aspect of CIDO in a few minutes. We also
have, what we call, an input/output room adja-
cent to the main computer room where we pro-
cess the paper output. The peripherals which
cause most of the dust pollution in the computer
room, were moved outside the main machine area
to a spot where they wouldn’t cause any
dust/dirt problems. While it does make for a few
extra steps several times per day for the opera-
tors, the overall benefit of having the machines
which use ribbons and chemicals, away from disk
and tape drives, is a definite improvement.

There are two CDC line printers, one attached
to each of the 730’s. On the average, we go
through ten boxes of line printer paper daily
which amounts roughly to 1.8 million lines
printed per day, mostly test output for research.
There are also two electrostatic plotters in the
input/output room which produce graphics out-
put, usually in the form of weather charts or
related statistics. These, like the line printers,
are constantly in operation as they strive to keep
up with the mass of plotted and printed output
queued on the Cybers waiting for their turn.
Another room, also adjacent to the main com-
puter area, houses all of CID’s communications
equipment such as our Datapac units, modems,
tandem non-stop communications computers etc.,

etc. That’s a very general overview of CID’s
hardware. Now I'd like to touch on the makeup
of the different groups within CID responsible for
supporting this equipment. CID is composed of
four support groups each headed by a manager.
Gerry Berlinguette is the chief of the centre
which, of course, includes the four managers and
their staff. The four groups are Communications
and Graphics, Systems Support, User Services,
and Computer Operations.

Communications and Graphics takes care of
CID’s networks and communications facilities.
These tasks relate primarily to the Cybers and
other communications equipment, as there are no
interactive users hooked directly to the CRAY.
Local and remote users (about 400) must first
pass through the communications equipment to
the front-end Cybers and then proceed to run
jobs on the CRAY.

The second section is Systems Support respon-
sible for installing and maintaining and trouble-
shooting all software on both the Cybers and the
CRAY. You can take my word for it, that with a
Systems Support staff totalling five persons
including the manager, there isn’t much spare
time to be found in that group, or any other CID
section for that matter.

CID also has a User Support Group responsi-
ble for processing and coordinating all users prob-
lems, requests, and sometimes demands. As you
might already know, anyone who works in a user
support capacity is long on patience, and if he or
she lasts for a couple of years, usually qualifies for
sainthood.

The fourth group s, of course, the Operations
Section. I've saved the best for last, and I'll get
into a few details about Operations in a second.

The number of persons in CID, responsible for
all aspects of the Computer Centre and clerical
administration total only 34. I know of some
governmental centres half our size with twice the
allocation of person-years. Believe me, when
things aren’t going well and we’re pushed to the
edge, I realize how much eflort is required by
these 34 people to settle things down and rectify
any problems. It can get pretty hairy when
several tasks or problems need simultaneous
attention and there are only 34 people in the
entire crew.

Furthermore, of these 34 person-years, a full
one-third are in the Operations Section. That
doesn’t leave many people for software, communi-
cations, or user support. Well so much for self-

52



gratification.

Now a little bit about the Operations Group.
There are currently 14 people in the Operations
Section which is known as CIDO. The 14 are
broken up in the following manner: one manager,
two full-time day shift operations support staff,
one tape librarian, and ten computer operators.
The tape librarian is responsible for all the
Centre’s tapes, now totalling approximately 8,500
volumes. He handles all user requests directly,
plus attending to all of CID’s internal needs. He
is a very busy person. He works five days per
week, eight hours per day. The operators are not
involved in handling user requests during his
absence.

The two support staff members, who work
directly for me, are responsible for the day-to-day
needs of CIDO. Their primary duties include
preparation of operator shift schedules, scheduling
all work on the three mainframes, attending daily
manufacture meetings, controlling all user disk
space allocations, preparing operator instructions
and procedures, as well as preparing CID stock
and supplies contracts and coordinating delivery,
storage, and allocations of this stock.

They both work five days per week, eight
hours per day, and are available 24 hours per
day, seven days per week via electronic pagers
for calls directed to CIDO from the operating
staff, manufacturers, or other CID sections. As a
matter of fact, the Systems Section and the Com-
munications Section also carry pagers for the
same purpose. The User Services Section has an
automatic answering system to record user
inquiries after normal business hours. So in
effect, personnel from each of the four CID sec-
tions are on 24-hour standby.

The ten computer operators (one is tem-
porary) are obliged to work many shifts
since CID runs a 24-hour day, 7 days per week,
365 days per year operation. We have been using
a 12-hour shift cycle since 1974. I'll give you a
quick idea of how it works. There are two opera-
tors per 12-hour shift. One is the shift coordina-
tor, and the second is the computer operator.
The shift coordinator is responsible for the shift
and consequently is one level higher than the
computer operator. That is basically the only
major difference between their functions. This is
because the work load requires that they function
as an absolute tcam, meaning one must be able to
handle the duties of the other and vice-versa. So,
through evolution, they both perform the same
duties on shift. That was not the way the

original job descriptions were designed for the
staff some ten years ago, but as the centre got
bigger and the responsibilities grew, the operating
staff remained static at two per shift. Therefore,
the duties for each, which were once well
separated and defined, are now more or less
melded together.

Besides monitoring all systems and performing
the usual tasks associated with operating in a
multi-mainframe environment, each shift is
required to log all hardware, software or environ-
mental interruptions as well as any other
incidents that may occur. All events are logged
on specially designed forms which become the
main input for meetings held daily with a
representative from each CID section as well as
from both computer suppliers. Each incident is
discussed in a round-table format, and is assigned
to one of the representatives for action. Follow-
ups are also done and various reports are gen-
erated from these meetings as all pertinent data is
entered into a data base on the Cyber front- ends.

We do not have the luxury of assigning
specific tasks to the shift coordinator or to the
operator. Given all the equipment which requires
monitoring and the paper which has to be cut
and the tapes which have to be mounted, there is
simply no way we can now split up their duties
unless more staff is hired. But each shift has an
operator and coordinator and, as I said, there are
two people per 12-hour shift.

As I said previously, the 12-hour shift schedule
has been in effect for over ten years and frankly,
from the operators’ point of view, is the best
thing that ever happened to them. I was an
operator in CID for over ten years and I’ve seen
many schedules come and go, and having worked
them all, this one is tough to beat. The SKED
works this way, and is identical for the ten opera-
tors. Government workers, regardless of their
shifts, operate on a 37.5-hour work week.

For the operators each of their shifts are 12.25
hours long, either from 7:45 AM. to 8 P.M. or
7:45 PM. to 8 AM. The fifteen extra minutes is
for a debriefing period between shifts. Each
operator works four of these 12-hour shifts, start-
ing with two night shifts, then a 24-hour break
after completing the second of the two night
shifts. He/she then works two 12-hour day shifts
and is off for five days. So that’s the way it
works, four on, five off, four on, five off, and so
on.

53



The SKED is based on a 56-day rotation and
at the end of the 56 days each operator "owes”
the schedule 8 hours. This is usually made up as
a project-day during one of the days off. Besides
affording the operators with copious amount of
time off, they are also available to work plenty of
overtime, that magic word. Due to tight govern-
ment restrictions on the hiring of people at our
site and in general, throughout the government,
overtime is, at CIDO, a very real requirement.
Each time our operators take annual leave or
”book off” sick, that shift must be filled with
overtime. This applies to one day off, or one
month off and we’ve experienced both many
times. Seeing as how all of our operating staff
have four week holidays, overtime payments cost
CIDO a small fortune. What helps to run up our
O/T bill is that when an operator is on his or her
5 days off and comes in for a 12-hour O/T shift,
the second to 5th days off are paid at a rate of
double time, which equals 24 hours at their regu-
lar hourly rate.

During the peak summer months of July and
August, we average 25 to 35 overtime assign-
ments per month, sometimes more, seldom less.
We are very fortunate, in a way, that all of the
operators are ready, willing, and able to work
large amounts of overtime because, even if only
one or two balk from time-to-time the on- site
staff must work a double or 24-hour shift. So,
you can see that given our current hiring con-
straints, if one or two operators refused all O/T
offers, we would be in quite a bind.

CIDO just doesn’t have the required cushion
of person-years to help reduce our O/T budget.
The operating staff has always been receptive to
the requests for O/T work and continue to be.
This does help considerably when producing shift
schedules, especially during summer and holiday
periods.

One final point about the CIDO shift
schedule. Every three months the operators'cycle
is rotated from the shift supervisors’ cycle. It
just doesn’t work to leave two people together for
more than three months. For each team that
loves working with each other, there are at least
two other teams who really don’t get along all
that well. The only alternative is to keep them
all moving along with a three-month rotation.
There are a few long-term problems associated
with the operating staff which are no fault of
theirs, but more related to the acquisition, or
better yet, non-acquisition of staff. Of the nine
full-time operators on staff in CIDO, the most

junior person has about ten years'service in our
shop, not just government service but ten years
operating our computers. The negligible staff tur-
naround is due, in part, to the lack of any career
paths for the operators. There is just nowhere for
them to go within CID. Person-years are just not
available, hence training programs in other sec-
tions for temporary periods do not exist. Further,
again due to person-year shortages, I cannot spare
even one operator for training stints either within
or outside of CIDO. Therefore, it is very difficult
to motivate the operating staff to do anything but
operate. I must add here that a large majority of
the operators are self-motivated. They genuinely
take pride in their work and do a fine job.

One big plus about having a veteran operating
stafl is that they are as up-to-date and aware of
our methods, practices, and procedures as anyone.
I can also rely on them to learn new instructions
rapidly, and they often point out ways to improve
on existing standards.

One compensating factor, though, is the
salaries paid to the operators. We are a union
shop, and as such, the salaries, even by
american-dollar standards, are hard to beat. The
base salary structure, coupled with the number of
overtime hours worked make for a generous
yearly salary. It’s not the greatest motivating
factor in the world, but it does keep the com-
plaints down.

The operators belong to one government
union and the day shift workers belong to a
second union. From a management point of
view, there is certainly nothing to fear from
either union. The common bond between the two
unions Is to see how much money in union dues
they can remove from our paychecks and how
fast they can do it. They are not at all what you
would call militant, so no difliculties are caused
by the presence of unions on site.

You might now have the idea that staff shor-
tages are a major problem at CID. Well, yes and
no. I think we could use a few extra people here
and there to help us push forward and expand
more rapidly, but I am not implying that we are
lagging behind in our work or are unable to prop-
erly function. CID has adapted extremely well
over the years to a pared-down staff, and it is cer-
tainly to our credit that we have progressed as far
as we have in a relatively short period of time.

I'd just like to now touch on some miscellane-
ous topics to highlight a couple of Operations’
tasks. They might provide some useful

54



comparisons to your sites.

CIDO is responsible for the archiving of all
permanent files on the Cyber disks and all the
data sets on the CRAY disks. We have incre-
mental dump routines on both the CRAY and
Cybers which are executed daily. Full dumps of
all files on the CRAY and the Cybers are done
once per week. Disaster dumps of all disks are
done once per month and stored off site for a
period of a year. All the files, whether incremen-
tal, weekly, or monthly are dumped to magnetic
tape which, needless to say, requires constant
recycling and manipulation by our support staff
and tape librarian. CID’s Systems Group has
recently provided Operations with a CRAY incre-
mental dump package. Prior to that, we were
dumping the complete disk catalog once per day
which ate up 1.5 to 2.5 hours of time. Progress is
being made.

Preventive maintenance on the CRAY is per-
formed twice each week (Mondays and Fridays)
with two hours allocated per period. This was
reduced from five times per week during CRAY-
acceptance to three times per week, and then to
the current schedule of twice per week. Preven-
tive maintenance on the Cybers is twice per
month for each front-end. Each period lasts two
hours. One week the development machine is
under P.M,; and the following week the produc-

tion machine is under P.M. When production is

on P.M., the production disks and software are
switched to the development machine so the pro-
duction system is never down for P.M. periods.
CID does not permit changes of any kind
(hardware, software, temporary, or permanent) to
be performed on any of our computers by
engineers, analysts, Operations, or System person-
nel until proper documentation is supplied to
CIDO and approved by the appropriate manager
or managers. Once approval is given, Operations
then schedules the time on the designated system,
and the users are then informed using computer-
ized bulletins. There are also minimum times
required before anything is scheduled, depending
on the impact of the change.

The immediate future for CIDO looks quite
interesting. The CRAY is scheduled to be
replaced by the end of 1986. The two Cyber
front-end computers will be replaced in the early
part of 1986. In spite of the fact that nothing
seems to be permanent here but change, it cer-
tainly makes for interesting times and produces
ever different problems to solve and situations to
handle. That, to me, is what managing an

operations shop is all about. It keeps changing
and evolving almost right before your eyes.

Lastly, due to the sensitive nature of CRAY
supercomputer technology, - full-blown security
equipment and procedures have been set up at
CID. The features include a 24-hour security
guard team, ID cards for all personnel as well as
visitors and service personnel, selected entries
controlled areas using electronic card access, secu-
rity cameras and video recorders, and Halon fire
retardant systems. The features are constantly
under scrutiny and enhancements are often made.
It did take time for some people to adapt to the
move from no security although the staff
adapted well.

Well, I think I've gone on long enough. I
must admit that I rather enjoyed the experience.
What I really hope is that I was able to shed a
little light on the operations in’s and out’s at the
Dorval Computer Centre.

55

to



FOCUS AT THE LOS ALAMOS NATIONAL LABORATORY

Fred J. Montoya

Los Alamos National Laboratory

ABSTRACT

During the past three years, the Computer
Operations Group at Los Alamos National
Laboratory has operated the FOCUS System
(Facility for Operations Control and Utilization
Statistics). FOCUS is responsible for production
control, load leveling, and status reporting. This
paper describes the operation of FOCUS.

INTRODUCTION

The Computer Operations Group (C-1) at Los
Alamos National Laboratory operates the Central
Computing Facility (CCF). The Group consists
of 68 people including the Group Leader, the
Associate Group Leader for Operations, and a
Supervisor responsible for Special Services. The
operators are divided into three teams, A, B, and
C. Each team has a Supervisor, a Deputy Super-
visor, three Lead Operators, and twelve opera-
tors.

OUR ENVIRONMENT

The CCF houses the following major comput-
ers: two CRAY-1As, two CRAY-1Ss, one CRAY
X-MP /2400, one CRAY X-MP/4800, three CDC
7600s, three Cyber 825s, one Cyber 855, and one
Cyber 176. One IBM 3083 and one IBM 4341
control the Common File System (CFS). The CFS
is used as a data storage device by all of the
worker computers. A large array of mini-
computers are used as gateways to provide
Integrated Computer Network (ICN) service from
remote computers through the XNET System, or
as hosts to external networks such as ARPANET
and TELENET.

Los Alamos, NM

The network is divided into three partitions:
Secure, Administrative, and Open. This parti-
tioning avoids having duplicate systems for each
level of computing, but it adds to the complexity
of the operation.

The CCF is operated 24 hours a day, 7 days a
week, 365 days a year. We schedule a 48-hour,
holiday shutdown at Christmas/New Years, and a
two-day maintenance shutdown twice a year (usu-
ally during a three-day holiday weekend) in the
fall and in the spring.

FOCUS OPERATIONS ENVIRONMENT

FOCUS is a component of the ICN that auto-
mates production control, station reporting, and
performance measurement. FOCUS currently
operates with a primary and secondary controller
(a VAX 780), using periodic software backups to
reduce the eflects of failure. Reliability and avai-
lability are very good, but our goal is continuous,
error-free operation.

The FOCUS System’s primary function is to
schedule production work on all CRAYs and
7600s. Production is defined as the mode of jobs
that are scheduled and run by the computer
center on behalf of a user. A production mode
job is run independent of the presence of the user.

The method of scheduling is based on several
objectives of the system.

1. The primary objective distributes the
CRAY production resources on a continuous basis
to the major divisions of the Laboratory accord-
ing to the Director’s allocations.

2. A secondary objective allows organizations
control over which jobs are run within an
organization’s allocation.

3. The third objective allows organizations
flexible control for ”saving” and ”overspending”

56



allocations to handle workload fluctuations.

4. A fourth and final objective optimizes the
use of the CRAY production resource.

An organization is allocated the CRAY pro-
duction resource in proportion to its require-
ments. The allocation is transformed into a frac-
tion of the resource, not as a fixed amount of ser-
vice. This assures that variations in the available
resource are distributed in an equitable manner.
Because fluctuations in workload make it imprac-
tical to keep all organizations exactly serviced
according to allocations, a history of usage is kept
to force long-term usage to correspond to alloca-
tions while allowing short-term fluctuations.

An organization needs some flexibility and is
able to control and manage the workload within
the organization. This allows them the ability to
sub-allocate, the ability to order jobs or define
ordering criteria, the ability to time job-leveling
factors within the organization, and the ability to
control the ”saving” or ”overspending” of the
allocation.

From the operations side, an effort is made to
improve machine performance. This implies that
the scheduler will monitor the utilization meas-
ures on the production machines and schedule
jobs to a machine when it appears that utilization
can be improved. A machine is not permitted to
go idle when there is eligible work. Furthermore,
maintenance schedules, special conditions, and
end- of-shift conditions can be anticipated and
accommodated efficiently.

FOCUS has three production shifts (DAY,
NIGHT, and WEEKEND/HOLIDAY) that are
allocated, charged, and historically recorded
independently of each other. The scheduling
implementation requires the same master queue
structure for all three shifts; however, each shift
is separately allocated.

The batch subsystem on the CRAY computers
operates as slave to the FOCUS scheduling.
Although FOCUS controls the initiation of each
job, the running of jobs is controlled by the batch
subsystem. The intent is to have the batch sub-
system run the jobs with higher CTSS priority
given to the ones initiated first. However, multi-
ple jobs may be running on a given machine at
any one time and the dynamic nature of the job
will produce a multi- programming mix of pro-
duction jobs on the CRAYs. FOCUS determines
dynamically the degree of multi-programming for
each CRAY based on production parameters and
machine utilization statistics.

Based on the above, jobs are scheduled to a
machine when it needs work. When the queues
are searched for the next eligible job, the charac-
teristics of the machine being scheduled must be
considered. Some jobs are ineligible because they
require more than the maximum memory of the
machine, their time limit would extend the
current committed time on the machine beyond
the current period, or the job specified a specific
machine. In addition, a job may be ineligible
because it is dependent on another job that has
not been completed successfully.

FOCUS MENUS FOR THE OPERATOR

FOQUS is an automatic system; however, the
system has to be monitored by an operator. The
operator has a menu that offers many tools to
effectively and efficiently operate FOCUS. Most
commands can be entered with the touch of a
finger on the touch screen of a VT100 terminal.

The following are the menu options that are
available to the operator.

- FOCUS - Menu of anything that has to do
with FOCUS.

- INFORM - Status of all worker computers,
also allows the operator to select an individual
computer.

- JOB COMMAND - Menu for scheduling
jobs.

- JOB STATUS - Status of all jobs in all the
worker computers.

- MACHINE COMMAND - Menu allowing an
operator to change parameters, time limits,
memory limits, and set dry up.

- MACHINE STATUS - Overall look at the
status of jobs that are running or waiting to run.

- PRINT CARRYOVER LOG - Listing of the

carryover from the previous production period.

- PRINT JOB LOG - Summary and status of
all jobs submitted during the previous production
period.

- PRINT SUMMARY - Summary for any
month of production on an individual machine, or
a complete summary of all machines.

- QUEUE DISPLAY - Master queues of all
user divisions.

- SYS ACTIVITY - Lets the operator display
which process in the system is using the CPU.

57



- UTILIZATION - Current shift production
report for all CRAYs and 7600s.

- GATHER - Responsible for updating and
reporting the number of users and CPU utiliza-
tion.

- DBUG - Used by system personnel.

- DISPLAY - Runs FOCUS gather and
displays information in the color monitor.

- CURRENT PROCESSES - The given status

of all processes.

- PHONE - Displays the office phone number
of all ICN validated users.

- CURRENT TIME - 2400-hour military
clock. WWVB, National Bureau of Standards
Radio Station, Denver, Colorado.

- ACKNOWLEDGE - Still in the development
stage. Will alert the operator that a message
exists on a worker (for example, "waiting on tape
mount”).

- HELP - Help package for operator.

- QUIT - Exits operator from FOCUS and the
terminal becomes a regular user terminal.

Another tool in the FOCUS System is the
automated trouble log. Instead of writing trouble
logs, the operator enters all information into a
VT100 terminal. Every weekday morning, with a
simple command, management can receive a prin-
tout of all worker computer and equipment mal-
functions that have occurred during the past 24
hours.

OTHER USER OPTIONS

The user has other options with FOCUS that
help operations. A user can sign on to a user ter-
minal and access FOCUS. The user can view the
job queues and get a good idea as to the status of
his jobs. Another feature is the touch tone tele-
phone call. The user calls a certain telephone
number and a digitized voice will answer giving
the user instructions to touch tone in his user
number. FOCUS will then scan the queues for
the user’s number and respond with the status of
his jobs.

CONCLUSION

FOCUS made Computer Operations more
efficient. We are now able to operate the facility
with fewer people, yet our throughput continues
to increase. Before FOCUS, we were using five
operators on each shift for a total of fifteen opera-
tors to operate five CRAYs. At present, we are
using two operators per shift on FOCUS. Even if
we add more worker computers to the ICN, the
FOCUS staff will not increase.

The user organizations are responsible for the
allocations and the scheduling is accomplished by
using a centralized control machine. The primary
advantage of centralized scheduling and control is
that several worker computers can be scheduled,
allocated, and viewed as a single production
resource.

58



MULTITASKING PERFORMANCE WORKSHOP SUMMARY

Ann Cowley

National Center for Atmospheric Research
Boulder, CO

Three papers were presented in the workshop. The
abstracts are included here, and the papers by
David and Dent are included in their entirety.
Koskela“s paper was not submitted for publication
here.

MULTITASKING THE WEATHER
David Dent - ECMWF

The ECMWF Model uses both cpus of a CRAY X-MP/22.
Performance figures will be presented together
with measurements of overheads and inefficien-
cies. The repercussions of moving to a CRAY X-
MP/48 will also be discussed.

VECTOR USE AND CONTENTION MEASUREMENTS
Rebecca Koskela - LANL

Performance measurements for parallel and vector
processing are reported for the CRAY X-MP super-
computers at Los Alamos National Laboratory. The
measurements are made with the CRAY hardware per-
formance monitor. Three kinds of measurements
are made: (1) we measure the percentage of vec-
tor instructions executed system-wide, (2) for
parallel processing, we measure the amount of
memory contention in the CRAY X-MP shared memory
architecture for 2, 3, and 4 processors, (3) we
also measure the percentage of time a processor
is blocked waiting to execute in the shared
operating system because another processor is
executing in it.

CMTS - A CRAY MULTITASKING SIMULATOR
Jacques David - CEA-Limeil

CMTS is a CRAY Multitasking Simulator which can
run on CRAY-1 or X with CFT 1.10/C0S 1.11 and
later releases (ALLOC=STATIC), or on CYBER
(NOS/BE - NOS-SCOPE) systems. It can be used for
testing and debugging multitasked applications
and gathering various statisties
(Locks/Events/Speed-up...).

59



MULTITASKING THE WEATHER

David Dent

European Centre for Medium-Range Weather Forecasts
London, England

INTRODUCTION

The European Centre for Medium Range Weather
Forecasts has the dual responsibility of:

a. Carrying out research into numerical weather
prediction, and

b. producing a 10-day forecast on a daily basis
to a strict operational timetable.

This second activity has generated the need for
the weather model to execute as efficiently as

possible on the available hardware. This report
outlines the methods which have been employed to
allow the model to utilize multiple central pro-
cessors of a CRAY-XMP and presents detailed tim-
ings which indicate where inefficiencies exist.

HISTORY

The present production model has been developed
over a number of years and is used both for
research and operational forecasting. The model
uses spectral techniques and covers the complete
globe. It consists of about 100,000 lines of
Fortran and requires work files to hold its data.
The code is independent of the spectral trunca-
tion chosen, i.e. the data resolution.

The model first went into daily production in
1983 at resolution T63, executing a 10-day fore-
cast on a CRAY-1A in 5 hours. The same resolu-
tion model was moved to a CRAY-X22 in 1984 and
executed on one CP in 3 hours, using the solid
state storage device (SSD) for the work
files. In 1985, the resolution was increased to
T106 and currently executes in 5 hours, 15
minutes using both processors of an XMP-22.

ECMWF CRAY-XMP CONFIGURATION

From the point of view of the spectral model, the
principal characteristics of the CRAY-X2200
installed at ECMWF are:

2 Central Processors

2 Mwords of central memory
16 banks of memory

16 Mwords of SSD

60

80 Mwords/sec memory to SSD transfer rate

COMPUTER RESOURCES USED BY THE SPECTRAL MODEL

At resolution T106, the single-tasking model
requires: .

1.5 Mwords of central memory
15.3 Mwords of SSD

There are 3 work files, totaling 15.3 MW and
transferring 30 MW of data to/from SSD per time
step.

Putting files on a device with such a high
transfer rate to/from central memory allows 1/0
to be carried out synchronously without much
overhead. This reduces the central memory
requirements for buffer space and costs less than
3% of the elapsed time for a 10-day forecast.

MULTITASKING INTERFACE

The following facilities available in the Cray
multi-tasking library are used in the model:

CALL TSKSTART
CALL TSKWAIT
CALL LOCKON

CALL LOCKOFF

These tools enable tasks to be started and syn-
chronized, and critical areas of code to be pro-
tected against simultaneous execution.

GENERAL STRUCTURE

The model is organized into 2 scans over the
data, as shown in Figure 1. Within each scan,
there is a loop over all latitude rows (160 for
the T106 resolution). Between scans is a smaller
area of computation associated with diffusion and
semi-implicit calculations. The loop over time
steps is repeated 960 times for a 10-day fore-
cast. However, every 12 steps, significant addi-
tional computation is performed by radiation cal-
culations.



A multitasking version of an application recuires
more main memory than its singletasking
equivalent. Given (a) the desire to maximize the
resolution and (b) the shortage of main memory,
it is important to select a multitasking strategy
which has low memory requirements.

It turns out to be convenient and efficient in
memory to split Scan 1 and perform it in 2 pairs
of subtasks with a synchronizing point in
betwzen. This is because each northern row gen-
erates the symmetric part of a Fourier component,
while the equivalent antisymmetric part is gen-
erated by the appropriate southern row. Both
components are combined in different ways to pro-
vide contributions to the legendre transform. By
computing one northern row and one southern row
simul taneously, not only is the memory require-
ment minimized, but also the legendre computation
is performed efficiently.

Part of the diffusion calculation is also multi-
tasked and Scan 2 can be computed 2 rows at a
time (see Figure 2).

There remain some relatively small parts of the
code which are computed in singletasking mode.

The memory requirements for this multi-tasking
strategy are 1.8 Mwords. Note that alternative
strategies are, of course, possible. However,
subtask structures which may be preferred for
optimizing reasons require either more central
memory or additional SSD.

TIMINGS
All the timings reported here are elapsed times
corresponding either to a single time step or to
a complete 10-day forecast.
For a normal timestep:
singletasking:

multitasking:
speedup ratio:

19.73 seconds/step
11.36 seconds/step
1.75

These times correspond to a total time of 5 hours
15 minutes for a 10-day forecast, including the
creation and post-processing of history data.

Since the above timings are very simple and made
at the very highest level, they tell nothing
about the behavior of individual tasks within the
model. Currently, there is no support within the
Cray multi-tasking library for obtaining detailed
timings. Consequently, all the following timings
were obtained by inserting code into the model at
strategic places in order to record times as
reported by the real time clock. The measure-
ments were done in such a way as to disturb the
model as little as possible. The model was run
in a dedicated environment with no disturbances
other than any caused by the operating system
(COS 1.13). Analysis of the measurements was
done subsequently in a normal batch environment.

61

The average times taken by each of the tasks as
identified in the previous section are shown in
Figure 3.

By measuring the time taken by the Cray multi-
tasking library routines, it is possible to
obtain estimates of the cost of starting tasks,
ete.

For TSKSTART, three distinctly different times
are observed as follows:

40 milliseconds
0.4 milliseconds

for one case only

The expensive start corresponds to the very first
TSKSTART in the complete application, when addi-
tional memory has to be requested from the
operating system for table space.

The intermediate time corresponds to the case
when a “logical CP” has to be connected to a
“physical CP”.

The shortest time corresponds to the case when a
physical CP is already connected. In this execu-
tion, the Cray multi-tasking scheduler has
released the physical CP in nearly all cases
before the next task is created. The small per-
centage of fast TSKSTART times were all observed
for PROCESS 2, where there is a very small time
gap after completion of PROCESS 1.

By tuning the actions of the library scheduler
(CALL TSKTUNE), it is possible to modify this
behavior so that a terminating task retains con-
nection to a physical CP, allowing the cheapest
TSKSTART time when the next task commences. This
is a valid strategy for a dedicated environment
and allows 90% of the TSKSTART costs to be only
40 microseconds.

The measured minimum times for other multi-
tasking calls are:

60 microseconds
1.5 microseconds

TSKWAIT
LOCKON/LOCKOFF

The approximate total overhead is 82 ms per time
step (0.7%).

An obvious conclusion is that task overheads are
small compared to the size of tasks which exist
in the spectral model.

INEFFICIENCIES

By measuring the amount of time spent outside of
the tasks, it can be seen how much of the code
has been multi-tasked and therefore what addi-
tional improvements might be made in the future
(see Figure 5).

The TSKWAIT time reported in the previous section
was the minimum observed, i.e. for the case where
the master task completed after the started task

for 96% of all TSKSTARTs
0.04 milliseconds for U4% of all TSKSTARTs



and was therefore not held up in the synchroniz-
ing process. By examining average TSKWAIT times,
it is possible to obtain estimates of how imbal-
anced the pairs of tasks are. Figure 5 shows
that these imbalances account for nearly 4% of
the overall model time. Most of the imbalance
was observed in PROCESS 1. PROCESS 2 and PROCESS
3 imbalances were smaller by a factor of 9.

There are at least 2 reasons for this imbalance.
One concerns LOCKS and will be discussed below.
The other concerns the nature of the computation
in grid-point space (part of PROCESS 1).
Although the amount of work done for each lati-
tude line is exactly equal for the dynamies part
of the code, this is not always true in parts of
the physical parameterization. Convection and
condensation calculations are affected by synop-
tic conditions and will therefore vary in space
and time. The magnitude of these variations in
terms of computing expense has not yet been meas-
ured.

LOCKS are used to protect critical regions of
code in some 20 places, mostly for statistic
gathering purposes. These locks all occur in
PROCESS 1 and are mostly insignificant in time.
However, some random I/0 is carried out to a sin-
gle dataset which is common to both tasks and in
the current Cray software, a lock is applied
whenever I/0 is initiated to any dataset. Indi-
cations are that this causes most of the imbal-
ance observed in PROCESS 1.

EXECUTION ON A CRAY-X48

It is a straightforward process to extend the
strategy to utilize U4 processors. A second
north/south pair of lines of latitude are pro-
cessed simultaneously, and the only new problem
arises in the direct Legendre transform, where
every northern row adds a contribution into one
half of the spectral array and every southern row
updates the other half. To avoid 2 rows updating
the same elements of the spectral array simul-
taneously, some locks are necessary, but for
efficiency reasons their effect must be minim-
ized. Currently this is achieved by splitting
the work domain into 4 pieces and by making a
dynamic decision as to which piece to perform
next using the LOCKTST function.

The measured performance on a CRAY-XU8 is as fol-
lows:

processors 1 2 y
elapsed seconds/time step 19.3 10.3 5.5
speedup - 1.87 3.5

These timings lead to a predicted overall cost
for a 10-day forecast in an operational environ-
ment of 2 hours, 20 minutes.

Comparison with the performance on the X22 (Sec-
tion 7) shows a small difference for the single
processors execution due to a faster SSD channel
speed. The much larger difference for the dual

processor execution is due to insufficient memory

" banks on the X22, where the CP speed is retarded

62

by an average of nearly 10%.

FUTURE DEVELOPMENT

The existing 4-processor version of the model
provides the basis for acceptable execution on an
X48., However, the static nature of the task
balancing leads to inefficiencies which can be
largely removed by changing to a dynamic stra-
tegy. At a cost of increased memory requirement,
it should be possible to reduce execution time by
another 10%.



GENERAL STRUCTURE

( start )

g
loop
SCAN 1 over
rows
loop
over
time D
steps <
loop
SCAN 2 over
rows

(finish)

63



MULTI-TASKING STRUCTURE

1/0

| E—

| E—

64



PROCESS TIMES

%/////




TSKSTART COSTS

T B
B

0.04ms 0.4ms  40ms

NAT 29-NOV-1984

66



11111111111111




CMIS - A CRAY MULTITASKING SIMULATOR

J.D.A. David

CEA, Centre d'Etudes de Limeil-Valenton

Villeneuve-St-Georges, France

ABSTRACT

CMIS is a program in binary library that can be
used on CRAY-1 and X systems, and on CDC CYBER
systems, to simulate the CRAY Multitasking
library. No source change is required to run

programs with either Cray “Multi’ library, or
CMIS. CMTIS allows checking the correctness of
multitasked programs to be run, and gathering
statisties about processor use, for instance, the
speed-up one can get from algorithms using
several processors simultaneously. How CMIS
works and its internals will be described, and
examples will be given of use on real programs
with comparison to real X-MP/U8 benchmarks.

INTRODUCTION
Why CMTS

At the time we started to write CMIS, end of
1983, first specifications of Cray Multitasking
were Jjust known, and we wanted to be prepared to
benchmark X-MP/2U4 and later X-MP/U8. So we
wanted to first be sure that future benchmarks
would be correct with respect to Fortran and Mul-
titasking Library syntax (so that benchmarks
would run as soon as possible on X-MP). Second,
we wanted to experiment multitasked algorithms,
test them with real results and real “multitasked
execution’, and then evaluate their performance
and get a rough evaluation of the expected speed-
up and if necessary, tune or modify algorithms.
Another reason was to debug codes at ease in
France, and check for hidden bugs that would lead
to deadlocks or unused and/or over-used branches
of program (e.g., due to a misconception, some
event chain would never occur and a task never be
activated).

What is CMIS?

CMTS was conceived to emulate the standard Cray
Multitasking Library, so the user would have to
do minimum changes to programs and/or JCL to use
CMTS rather than standard Multi. Another objec-
tive was to provide the user with an effective
assistance to debugging, at all levels - that is,
from verifying that calls were done with accept-
able values of arguments, to catching deadlocks,
and including diagnostics of probably bad use of

68

resources (locks/events) and a trace facility for
“task stepping”.

CMIS was primarily conceived to run on the CRAY-
1/S that Limeil center had at that time, but a
by-product was that it can also run on Cyber sys-
tem (with NOS/BE). The Cyber was used as a
front-end for the Cray, and interactive debugging
of CMIS was then made possible for faster
development., CMIS has also been implemented and
tested on a Cyber 76 (SCOPE 2) that was also
available.

CMTS DESIGN

The primary requirement for CMIS definition was
to emulate all public calls to Cray Multitasking
Library. To this we added some more calls either
as an implementation convenience or as a possible
user convenience - for example, a function to
give current task ID was added (and is heavily
used in CMTS), and a subroutine MTRCLL that does
“nothing” but permits the user to get better
simulations, and especially to emulate busy wait-
ings (that would be otherwise impossible to simu-
late on a 1-CPU mainframe without access to
timer-counter interrupt). Also, to implement
CMTS on CYBER system, which does 1limit Fortran
names to 7 characters (CRAY limit is 8), we
decided to use all 6 character names, beginning
with the prefix MT. A secondary prefix (TK, LK,
EV, I (for Internal) specifies the category of
the routine. Only functions callable by user
have a different convention; that is, first
letter is compatible with Fortran implicit typ-
ing, and the name ends with MT. On Cray, a set
of stub subroutines with Cray Multitasking
Library names calling CMTS MTXXXX routines
enables user to have the standard interface.

The main difference with Cray standard is that
CMTS does not know the “task common” notion.
First, this notion was added to Cray primitives
after the start of CMIS. Also, there were some
problems with it - the semantics was not clear
(did a child task inherit a copy of the task com-
mons of its mother? to what value task common is
initialized?). It was not standard Fortran com-
patible and then either needs a pre-compiler or
user source code modification. For these rea-
sons, and also because it was not easy to



implement in CMIS while user could easily emulate
it with standard commons and indexing from task
ID or value, Task Common was dropped from CMIS.

CMTS PHILOSOPHY

As CMTS runs on 1-CPU mainframes, it cannot emu-
late tasks simultaneously, so it emulates them in
turn, with a (reverse by default) round robin
algorithm. Task switch occurs inside CMTS
library routines when they are called, if current
task cannot proceed (default), or at user option,
when a “time-slice” is elapsed. As CMIS cannot
choose times when it is called (in fact, this
time-slice is a “minimum” value, and doesn’t
suppress all timings problems - for example,
without calls to MTRCLL), CMTS cannot catch busy
waits inside tight loops.

Timing information was appended as a second
thought, as it can give invaluable information
about algorithm performance (primary objective
was to be able to run multitasked programs, and
effectively verify that there were no evident
bug). Timing is done by CMTS keeping “clocks”
for CPUs and tasks, but it is not used otherwise
(except for task choice for free CPU assignment).
What it means is that CMTS processes events (LOCK
ON/OFF, EVPOST/WAIT/CLEAR, TASK START/WAIT/END)
in the order it encounters them in the course of
the simulation, not in the order in which they
would occur in a real multitasked system with the
simulated number of CPUs. This can lead to wrong
timings, and it could also lead to wrong results
for algorithms which were time-dependent (but
these algorithms would likely be indeterminis-
tie). In fact, CMTS execution corresponds to one
on 1-CPU computer, even if it computes the times
the same sequence of events occurring on n-CPUs
would take. The most important fact remains that
if CMTS declares an algorithm wrong, it is almost
certainly wrong, and that timings that CMIS gets
for most event-driven programs are quite accurate
(see Benchmark comparison part).

CMIS INTERNAL DESIGN

Tasks are handled in a straightforward manner.
Starting a task consists of forking the current
task (UNIX fork call), then calling the associ-
ated subroutine, then ending the current (child)
task (UNIX exit() call)., Wait for end of task is
handled by a list (chained) of waiting tasks.

Locks have two notable particularities. First,
in early design it was thought that locks were in
fact critical sections, although this was
corrected later. From that remains the notion of
“ownership” of lock (the owner is the task that
locked-on the lock), and the diagnostiecs (option-
ally fatal) that warn user from inter-task
lockon/lockoff. Second, the tasks waiting for a
lock are managed in a FIFO way. (“First” in emu-
lation, not in emulated time order) - but an
exception was introduced for speeding-up emula-
tions., When a task does frequent, but short,

69

exclusive accesses to shared data (may be for
updating purposes), CMIS prefers to keep tem-
porarily ownership of lock to this task while it
is emulating it. It means that the current task
has a “short circuit” access to locks while it is
emulated in the real CPU. This does not modify
timings if lockings are short, and it suppresses
many costly task switches.

Logical CPUs were added with timings, to have
timing computed for different CPU numbers. As
timings, it does not introduce changes in emula-
tion, except in order of choice of tasks during
the round-robin of emulation. If there are more
tasks active than there are available CPUs, some
tasks will be put in waiting state, and then will
be emulated later on, when a CPU becomes free
because of a task blocking. The logical CPUs
allocation algorithm is the simpler one. It is
‘first” (from tasks waiting a CPU, the task hav-
ing the oldest ‘real” time) come, first served,
without any priority; any blocking forces the
task to release the CPU.

CMTS uses IDs to communicate with users. These
ID are variables set to “unique” (for a CMIS run)
value, depending on ID type. Task IDs start at
50000, locks IDs start at 60000, events IDs start
at 70000. This enables CMIS and users to check
quickly ID validity.

HOW CMTS WORKS

CMIS can be thought of as a two-level modular
structure. The first level is user callable, and
does all bookkeeping about timings, statisties,
and managing of task queue/locks/events states.
It submits all the real task management to second
level, via calls that create, delete, (re)start,
and stop tasks. The second level takes tasks
status and manages logical CPUs so that at most,
nCPU tasks are enabled. Others are either wait-
ing a task, a lock, an event (first level manage-
ment ), or waiting a CPU (second level manage-
ment). It then takes tasks associated to logical
CPUs, and runs them in (reverse) round-robin
order. The scheduler selects tasks according to
forced switch or time-slice switch as described
above.

The swapping routine does swapping by writing
task memory image to file by way of Fortran
binary i/o. One routine, MTEXEC, is the execu-
tive and is always called each time an event that
could switch to another task occurs. It is the
“system exchange processor’. The routine MTRCLL
(which calls MTEXEC) does the same thing, but
forces the round-robin to go one step and execute
another task if there is one ready - this enables
CMIS to emulate busy-waiting. The swapper rou-
tine is called only from MTEXEC, and in MTEXEC in
branches of only one block-if, as last statement
of the branch, so that in any case, it returns in
MTEXEC at the same point. This is necessary
because MTEXEC is swapped with task, as it con-
tains in its context (local data) the (future)
return point for the task.



CMTS IMPLEMENTATION

CMTS consists of 100 modules, of which 2 are CAL
and 2 are COMPASS. The “COMPILE” (or $CPL) file

contains about 7000 lines, giving 4500 statements.

A1l CRAY Standard Multitasking routines are sup-
ported, the only exception being the TASK COMMON
notion. CMIS allows 33 logical CPUs, 33 tasks,
100 locks, 100 events to be simultaneously used.
At most, 500 contiguous Commons areas (and 500
contiguous local areas) can be used. Fortran
input/output logical numbers used are 98 for load
map file ZZZZZMP, 99 for options file MTOPTS, and
60 to 60+maxCPU for tasks swap files.

CMTS options, specified either in free/keyword
format on file MTOPTS (read upon CMTS initializa-
tion - its use is to be able to run the same pro-
gram with different number of CPUs without any
change or recompilation), or as arguments in
MTOPT call, allow user to specify CPU number,
clock tick (for RTC emulation), message level,
trace file, reprieve or end processing, and
warning/fatal level for dubious locks/events
usages (such as task 1 lockon/task 2 lockoff,
lock released while on, event posted while it is
already posted, etc....).

Output from CMTS is labeled with prefix identifi-
cation containing logical CPU number, CPU/task
real time (as computed by CMTS), task ID, task c¢p
time. If required, trace file contains all
events which did change status of any task, with
all IDs specified; optionally, all calls to mul-
titasking 1ib (CMTS 1ib) can be traced. Statis-
tiecs are supplied at end of job step, with
count/max/min of locks/events/tasks activity.
Also, a message signals each task start (and each
start of multitasking activity), and each task
end with an estimation of task efficiency (real-
time/CPU-time); at each multi-activity end, CMTS
gives a rough estimation of the speed-up for the
multitasked part just ended.

CMTS UTILIZATION - EXAMPLES

CMTS was used at Limeil to debug and evaluate 2
vectorized, multitasked codes that were run later
on Mendota Heights CRAY X-MP/48.

The first code was a Monte-Carlo Neutron Tran-
sport code [2]. Task synchronization was done
either by TSKSTART/TSKWAIT, or EVPOST/EVWAIT.
LOCKON/LOCKOFF was used for critical section
around common data updating. CMTS found bugs
such as argument passing, like:

DO 1 I=1, N
X=expression(I)
1 CALL TSKSTART (1TSK,SUB,X,I)

(X and I values received by instances of SUB will
be “random”, depending on relative timings of
loop and taskstarts).

Other bugs found were missing critical sections,
RANF generator interference with tasking (we were
forced to use it as a non-sharable resource, with
lockon/ranset/ranf/ranget/lockoff calls). A
pseudo bug was that for CMIS, the main program
was swapped as other programs, and then data
local to main program could not be transmitted to
other tasks (this does not occur with Cray Stan-
dard Multitasking Library). So we had to put
shared data in COMMON, which, in any case, is
always good practice.

The second code was a set of versions of Precon-
ditioned Conjugate Gradient algorithm [3], which
has no intrinsic parallelism (contrary to preced-
ing algorithm), and has a very small granularity.
Synchronization was done by means of locks, or of
events, or by higher level routines (using locks
and events) like SYNC (rendez-vous or barrier
routine), and “tokens” (dataflow (or Petri nets)
approach - each task receiving and giving tokens
for synchro). CMIS found deadlocks not foreseen,
and signalled lost evposts that pointed that syn-
chro was not done as intended.

Real benchmarks [U4] enable us to compare Standard
Cray multitasking results with CMTS previsions.
Numerical results from algorithms were identiecal,
except in cases of indeterministic runs (CMTS
always gave the same value (for fixed number of
processors), as user didn’t change parameters,
but X-MP gave 3 different results). Timings
observed were equal to those predicted within 10%
for 2 processors, and for 4 processors the
difference can be observed (and verified from
other measurements) to come from memory conten-
tion (timings degradated about 10-20%).

Example with algorithms INV synchronlzed with
SYINC on 2 and 4 processors.

Number of CPUs Theor. Real CMTS
Sp-up Sp-up  Sp-up

2 1.85 1.85 1.91
Y 3.23 2.75 3.48
on X-MP/U8 on 1-8
CONCLUSION

CMIS is a powerful tool to test, debug and evalu-
ate multitasked algorithms. Its debug options
and statistics give the user invaluable informa-
tion. Its predictions, although rather crude,
are quite accurate to evaluate algorithms. Most
of all, it doesn”t need a real multitasking
machine - it can even run on non-Cray systems.

CMTS is now included in CRAY BENCHLIB. It could
also be ported, with minimal effort, to othér
mainframes for users that would like £> test Cray
multitasking.



(11

2]

3]

(4]

REFERENCES

David, J.D.A. and Meurant, G.A., "CMTS
User”s Guide", CEA Report CEA-N-2432.

Chauvet, Y., "Cray Channels", Vol. 6, No. 3
(1984), Computer Physies Communications,
Vol. 37 (1985), to appear.

Meurant, G., "Preconditioned Conjugate Gra-
dient", LBL - 18023 (1984), BIT, Vol. 24
(1984), pp. 623-633.

Chauvet, Y., David, J., and Meurant, G.,
"Experiences Numeriques sur le CRAY X-
MP/48", CEA Report CEA-N-2446, June 1985.

71



MULTITASKING

Chaired by
Margarer L. Simmons

THE MULTI-LEVEL DATA BUS APPROACH TO MULTITASKING

J. L. Owens

Lawrence Livermore National Laboratory
Livermore, California

ABSTRACT

This paper describes a method of program design
that involves the separation of the data access
functions from the operations on the data
within a program. This separation allows the
program developer to easily adjust the amount
of parallelism and size of granularity of the
resulting multi-tasked program. With this
approach the programmer can, over time, move
to finer and finer grain tasking and achieve a
balance between the granularity and overhead.

INTRODUCTION

In the process of constructing multi-tasked programs we
have observed that multi-lasking a program becomes a
problem in data management. The program designer must
make sure that the data values are available when a task
needs them and that no other task has simultaneous access
to those data values unless they are protected by some
type of synchronization method. Fortran’s pass-by-
reference method of argument passing causes problems
when a program is multi-tasked. The problem that is
caused by passing by reference can best be illustrated by
an example. Consider the following program segment:

DO 100 M=1,10
CALL CALC(m)
100 CONTINUE

If we assume that CALC uses M to select independent data
areas to modify, the natural way to multi-task this
routine is to change it 1o something like:

DO 100 M=1,10
CALL TSKSTART(TID(M),CALC,M)
100 CONTINUE

Although this starts up 10 tasks, programming it this way
in Fortran leads to a bug. Depending upon how the tasks
are executed, i1 is possible that all of the tasks started will
see an argument of 10 for the value of M. This occurs
because the location in memory holding the value of M is
being changed as the tasks using that value are running.

72

This type of problem could be solved by giving Fortran
the ability to pass by value, but it reappears when data is
communicated via COMMON. Since data communication
via COMMON is often used when large data sels must be
communicated to many routines, we will need some
method of controlling the access 1o variables contained in
COMMON blocks.

In this paper, we describe a method of data access control
that is analogous to the way data access is controlled
within most modern computers. This method will allow
us lo communicale to independently running tasks via
variables conlained in COMMON but still make sure that
the tasks each get a private copy.of the data that they will
modify. Most modern computers use a bus structure to
control the movement of data between memory and the
CPU. Boards are designed to plug into the bus and thus
are able to obtain access to the data in the memory.
Various control methods are used 1o control access to the
bus. It is necessary for the boards on a common bus to
each obey a bus protocol so that each board will know
when it can have access to the bus. In the following
sections of this paper we wil] describe a method of passing
data to routines that functions much like the bus of a
modern computer. The tasks will get subset selection
values from a COMMON block. All tasks using the same
bus will use information from this COMMON block, but
they will each get different subsets 1o operate upon since
they will select the subset selection values based upon a
bus Jevel number that was passed to them when they were
started. It is the responsibility of the bus control routines
to make sure that the subsets of data processed cover the
enlire data base that needs to be processed.

DATA COMMUNICATION OVER A
MULTI-LEVEL DATA BUS

Before we describe the data bus approach to passing data
into routines we will digress for a moment and consider
how data is currently passed into and out of data
computation centers. Consider the following fragment of
Fortran code.

A=B+C*D
E=F+G
H=B+D



Traditionally we have thought of each of these statements
as being performed one at a time but why not let all three
of these statements execute at once on a multiple cpu
machine. Since the data used and the values calculated are
independent for these equations we could do that.
However if we consider the following fragment of Fortran
code we see why some control method is required.

A=B+C*D
E=A+F
G=A+E

In case of the equations above we see that before the
second equation can run we must have completed equation
one and before equation three can execute we must have
completed both Egs. (1) and (2). There are many forms
that the necessary control can take. At the level of single
lines like these that are operating on scalar variables, we
would probably just run all three lines of code on the
same CPU and use the traditional Fortran sequential
stalement execution convention to make sure that the
necessary control was present. However, what if the code
fragment was as below?

DO 100 I = 1, 1000000
100 A(D = B(D + C(I) * D)

DO 200 I = 1, 1000000
200 E(D = A(D + F(D

DO 300 I = 1, 1000000
300 G(D = A(D + E(D

Now we could have a performance problem if we simply
let one processor run all three statements since it could
take a long time to do each one. Also, if we note that the
first element of the second equation can be calculated as
soon as the first element of the first equation is completed,
we see that a considerable amount of potentially
overlapable execution can be lost if we run on only one
CPU. Even if we let several CPUs process a given line and
wait until all CPUs have finished a line before going on to
the next line we still lose some of the available
parallelism. When we consider that many modern
machines have vector instructions that perform at 10 or
more times their scalar instruction counterparts, we begin
to see the problems in trying to apply as much as possible
of a multi-processor to the above problem. One approach
1o this problem that we have been considering is to think
of the data access control problems as if they were really
bus access and control problems. The concept is to
communicate between calculation centers by letting the
centers themselves get their data from a software
simulated bus with access to the bus controlled by event
flags. While the bus concept provides some structure to
the data flow control problem, it also leads to another
problem. The bus itself can become a bottleneck! So we
are led to the concept of a data bus that has many levels
upon which data can be moved. By moving data in
parallel over each of these buses we achieve a high level of
parallel operation, and if we only pass over the bus the
information to tell the tasks what subsets of data a given

73

task is to operate upon, we minimize the amount of
information that must be passed. Also by defining the bus
and the data it can access we get a modular method of
construction so that subroutines and buses can be shared
between several codes that do the same kinds of operations
on the same data structures. The multi-level data bus
approach can fit in well with a structured and modular
method of program construction. However we do give up
one of the favored concepts of structured design for those
subroutines that are multi-tasked -- the concept of passing
all data via arguments. Since we want the subroutines to
operate as efficiently as possible we do not want to have to
pay the indirect addressing, data copying, and space
overhead that comes with passing arguments by value.
But we can replace the argument passing mechanism with
the multi-level data bus passing mechanism and retain
many of the advantages of passing data via arguments.

The concept then is that the above program fragment
would function as shown below:

(Wait until given access to a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N)
DO 100 [ = M,N

100 A(D = B() + O(1) * IXD)

(Wait until given access 10 a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N)
DO 2001=MN

200 E(I) = A(D + F(D)

(Wait until given access to a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N)
DO 3001=M,N

300 G(1) = A(D + E(D

It should be noted that three different multi-level data
buses are being used to control the data access in the above
code fragment. First there is a data bus that controls read
access to B, C and D and write access to A; then there is a
data bus that controls read access to A and F and write
access to E. Finally there is a bus that controls read access
to A and E and write access to G. Note also that if the
tasking and event handling overhead permitted it, we
could start up many, many tasks that could all run'in
parallel (i.e., M - N could be small). It should also be
noted that I, M, and N are local to each task so that in
theory the bus control software could even allocate
different amounts of work to different tasks. Since each of
these computation centers is working from different values
of M and N they can actually go back to the bus to get
more data to work on when they finish the work they are
currently doing. Thus the coding would really look
something like:



50 (Wait until given access to a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N)
DO 1001 =MN

100 A(1) = B(D) + (1) * D))
GO TO 50

150 (Wait until given access to a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N)
DO 2001 = MN

200 E(I) = A(D + (D)
GO TO 150

250 (Wait until given access 10 a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N)
DO 3001 =MN

300 G(1) = A(D) + E(D
GO TO 250

In this form we can actually get along with a smaller
number of tasks since each task gets more work when it
finishes the work it is currently doing. However the
designer of a program may wish to design the code so that
each task is given the same amount of work as each of that
task’s clones and such that only one bus transaction is all
that is necessary to accomplish the work. This will keep
the communication overhead over the data bus to a
minimum and minimize the number of event flags used. In
the form above we have assumed that a given task keeps
the bus it is using busy until it has completed the work
assigned to it. Actually a task could release a given bus
level after getting its value for M and N from the bus but
we choose not to allow this since the reuse of a given bus
level by other tasks complicates the bus control
algorithms. However we have omitted another
requirement of the bus control logic that cannot be left out
if the bus is to function. This is the requirement for the
initial assignment to each task of its bus level.

The bus that a given fragment of code uses is decided by
the code fragment’s data access requirements, but its bus
level is decided upon dynamically and depends on when
the 1ask was started. The allocation of bus level then
becomes a problem because each task must know its bus
level in order to get its data, but at the startup time of the
tasks these levels have not necessarily been decided upon.
Another point we have left out is any discussion of the
bus controller software that must not only control access
to a given bus but must also work with other bus
controller software to implement the control logic
necessary for the correct operation of the program. In the
next section we discuss the requirements for these

sof tware bus controller modules.

THE MULTI-LEVEL DATA BUS CONTROL LOGIC

Up until now we have not described how the tasks are
started or how the control of a bus is carried out. This is
because there are many ways that the control of a bus can
be implemented. Below we will describe one of the ways
the control of a bus could be implemented. At one
extreme, consider a code that contains only one multi-level
data bus. In this case at the beginning of the code the tasks
that were to process data in parallel could all be started
and as they are started they could be passed their level on
the data bus. Since we are implementing multi-level data

buses which have only one task per bus Jevel we could
then have the actual task’s code look much like that listed
below. Even if there were many data buses in a given
program we could still do the bus level allocation at task
startup time if we have a different level counter for each
multi-level data bus. If this approach is used then the
actual programming might look something like the
following,

(Get bus level number)
50 (Wait until given access 10 a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N)
DO 1001 =M\N
100 A(1) = B() + D) * D)D)
GO TO 50

(Get bus level number)
150 (Wait until given access to a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N)
DO 2001 =MN
200 E(I) = A() + F(I)
GO TO 150

(Get bus level number)
250 (Wait until given access to a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N)
DO 3001=MN
300 G(1) = A(1) + E(1)
GO TO 250

where the process of getting a bus level number would be
simply to accept it as an argument at the time of task
startup. All the tasks could be started at the start of the
program and from then on use the same bus level for all
data communication control. An alternative to this
method would be to allow a task at the start of its run to
ask for a bus level from the bus control routine via using
some communication convention that would allow many
tasks 1o each get a unique value for their bus level. A
felch-and-add primitive operation on a unique location for
each bus could be used for this purpose. Of course other
critical code section locking methods could also be used to
accomplish the same purpose. For our purposes here we
will assume that the simple allocation of bus level at task
start time is all that is needed. This process might look
much like that listed below.

(At start of program, start the bus controllers which in turn start up the tasks
that will process the data under the control of the bus)

(Get bus level number)
50 (Wait until given access to a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N) ’
DO 1001 =MN
100 A1) = B(1) + O * D() ) .
(Set the bus event 10 say that the data subset has been processed)
GO TO 50

(Get bus level number)
150 (Wait until given access to a bus level via the raising of an cvent flag)
(Take from the appropriate bus level M and N)
DO 2001 =MN }
200 E() = A() + F(1)
(Take from the appropriate bus level M and N)
GOTO150 ..

(Get bus level number)
250 (Wait until given access to a bus Jevel via the raising of an event flag)
(Take from the appropriate bus level M and N)
DO 3001 =MN _
300 G(1) = A(D + E(D) )
(Take from the appropriate bus level M and N)
GO TO 250 ‘

74



Now we come to the bus control logic itself. This is
implemented via one or more independent tasks for each
data bus implemented. Logically we can look at the bus
control logic as being required to do several things. First it
must decide if it is time to allow data to move across the
bus (i.e., it must find an answer to the question “Is this
program ready to perform the calculation centers that are
waiting for this bus”)? Next it must select the subset of
data and place it so that the tasks can access it. Then it
must set the bus event to say that the data is on the bus
and ready for use on the given bus level. It then must
wait for the event that indicates the calculation has been
completed and the output is on the bus. Then it must take
data calculated and put it back where it belongs. Finally,
if the bus is to be used again, it must wait until it is again
time to put data on the bus for another round of
calculation.

The job of the bus control logic sounds complicated but
sometimes it can be greatly simplified. In fact if we
consider the original scalar version of the equations that
we had at the start and think about what happens in a
slightly different way we can see how each of the
functions performed by the bus logic gets done in normal
programs. First think of the equations sitting there ready
to do their calculations and the event that they are waiting
for is the arrival of the program counter at their location.
But before that event can happen another event occurs
(i.e., the arrival of the program counter at another
position) that allows some instructions to be executed to
put the needed data in certain registers where the
calculations assume the data will be when they are
executed. Finally when the equations have completed
their work another event (again the program counter
arriving at a certain location) occurs that allows the
output from the equation to be put back into the location
that it needs to be in for future calculations (i.e., main
memory). Of course in this simple case the bus logic gets
mixed up with the equations themselves and we are
proposing that it be explicitly separated from the
equations. This separation will cause some extra overhead
but if the amount of computation that must be done is
large then the advantages of allowing the parallel
execulion of the program will more than make up for the
extra logic of explicitly raising events to communicate
between the bus control and the equations.

One advantage of the data bus approach is that it can hide
from the equations the amount of work that must be done
to place the data where the equations assume it will be.
Thus the equations can assume that the data will be in a
COMMON block and their coding simply refers to it via
off sets passed to them over the bus (i.e., another
COMMON block that is indexed by the bus level number
that each task is given at its birth). On some machines the
process of gelling the data controlled by the bus may
require the movement of the data from a large central
memory 10 a smaller and faster local memory. Such data
movement is hidden from the equations by the bus logic
that takes care of such machine specific dependencies. This
allows a program using the multi-level data bus design to
be moved from machine to machine with machine

75

dependent changes being made only in the data bus control
routines. : .

One thing that has not been spelled out is how the bus
logic knows when it is time to cause activation of its
particular bus. One method of exercising this control is to
have another bus (a MASTER bus) that is really just an
array of events with each multi-level data bus plugged in
at a certain place (i.e., looking for a given event in the
array). Then as certain points in the progression of the
program execution are reached the appropriate events are
enabled and the associated bus allows data transfer. When
all the bus data has been moved over the bus and the
output has been placed where it belongs, then the bus
control can raise an event to indicate its job is completed
for now and this could in fact be the event that started
another bus to activate. Thus the buses themselves could
accomplish what is done by the arrival of the program
counter in normal programs (i.e., the control of the flow of
the program’s logic). This type of control may prove to be
too restrictive and some interbus control may be needed
that allows many buses to be active at any one time. In
fact that is what is needed in the example given above so
that the second and third equations above can run at the
same time as the first one is working on its data. In this
case the bus logic as described above can be carried out at
the bus level number level rather than at the entire bus
level and thus when a bus level has completed its
processing it can cause a level in another bus to be
activated. Since in theory the number of bus levels could
approach the number of elements upon which the
calculation is to be performed, any level of parallelism
that is needed could in fact be implemented via this
approach. Clearly at some granularity level the overhead
will exceed the work done and we will have to be
judicious in our use of very fine granularity.

As described above, the data bus approach appears to be
much like the data flow approach. Indeed a data-flow-like
execution can be implemented via this approach but so can
a normal sequential program flow. We think that the most
likely place for a data bus 1o be used is at a point where a
procedure call is being made. If in changing a code into a
multi-tasking code you are able to identify a procedure
that will be multi-tasked then you have identified a place
to consider the use of a multi-level data bus. It is just this
ability to be used to change a totally serial program into a
parallel program in a step-by-step manner that makes the
multi-level data bus approach attractive. With this
approach to transforming programs we think we will be
able to move in a step by step and structured manner
toward a more data-flow-like execution of programs. By
identifying exactly what data is controlled by a given. bus
we will be able to maintain a better understanding of how
the program is functioning. In fact, as can be seen below,
the structure chart of a program being transformed into a
multi-level data bus form looks much like the traditional
structure chart with only the arguments being passed via a
different approach. Note that in this approach the
arguments to routines are usually passed via COMMON
and only the subset selection is passed in the variables
associated with the data bus. Thus this approach lets us
see explicitly in the structure chart arguments that were



hidden in nondata bus programs because they were passed
by COMMON. Below we show a structure chart for the
code fragments we have used before in this paper. We
now consider each fragment as a procedure since that is the
way this approach will be implemented using the CRAY
multi-tasking primitives.

Main progrem

v 72 N

8,C.D R 3 R,E 6

/ N ~

CALCULATE R CRLCULATE E CALCULATE G

If the data bus model of producing parallel programs
proves 1o be a good paradigm then in the future it might be
possible for compilers to replace argument passing at
certain specified places in a program with a data bus type
of data passing mechanism and thus automate the
production of the data buses for a program. With
machines such as the ETA machine where large blocks of
data may have to move between local and remote memory,
having the data bus type for arguments in the compiler
could relieve the programmer from having to worry about
the movement of the data.

CONCLUSION

‘We have described a method of controlling the flow of
information into and out of subroutines that can be
applied incrementally as needed to convert a Fortran
program from a serial version to a multi-tasked version
suitable for running on a multi-cpu computer system.
Unlike other approaches that suggest that new languages
may be needed or that additional features be added to the
syntax of current languages, this approach simply removes
a feature from Fortran for multitasked routines while
leaving the nonmultitasked routines as they are. The
feature not used is the argument passing by reference of
Fortran. It is replaced by an argument passing method
based upon selection of subsets of the data which are
stored in COMMON blocks. The method a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>