
------------ ------

INCORPORATED

PROCEEDINGS
FALL 1985

INCORPORATED

PROCEEDINGS

Karen Friedman, Editor

SIXTEENTH SEMI-ANNUAL

CRAY USER GROUP MEETING

September 30 - October 3, 1985

Hotel du Parc

Montreal, Quebec
Canada

Host: Environnement Canada

Prepared for publication and printed at the National Center for Atmospheric
Research, Boulder, Colorado (NCAR).*,t

* The National Center for Atmospheric Research is operated by the University
Corporation for Atmospheric Research and is sponsored by the National
Science Foundation.

t Any opinions, findings, conclusions, or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

i i

CONTENTS

PRELIMINARY INFORMATION

Acknowledgements. • • • • • • • • • • • • • • • • • 3
CRAY User Group, Inc. Board of Directors, 1985-1986 • • 4
Members of the Program Committee. • • • • • • • • 5
Program . 6

PRESENTATIONS

Cray Corporate Report, Robert H. Ewald ••.••••
CRAY Software Status, Margaret A. Loftus •.•••••
CFT77: CRAY's New Fortran Compiler, Karen Spackman.
Multitasking in Operating Systems, Jeffrey C. Huskamp •
CFT Compiler Optimization and CRAY X-MP Vector Performance,

Ingrid Y. Bucher, Margaret L. Simmons ••••
NAS Kernel Benchmark Results, David H. Bailey •
SSD User Experience Session, Mostyn Lewis • •

CRAY SSD Scheduling Concerns, Ronald Kerry. • ••••••
SSD Experience at Boeing Computer Services,

Conrad Kimball. • • • • • • • • • • • • •
User Requirements Committee Report, Stephen Niver •

SHORT PAPERS

9
11
13
15

19
22
26
27

28
33

Some User Experience in Migrating to CFT1.14, Chris Lazou • 39

SPECIAL INTEREST COMMITTEE REPORTS

Networking and Frontends Session I, Dean W. Smith •••••
CRAY Integrated Support Processor Installation

Experience, Ronald Kerry ••••••••••••••••
Running Multiple CRAY Stations at Chevron Oil Field

Research Co., Annabella Deck ••
Enhanced Station Messages Support, Dean Smith ••••••

Languages Session, Mary Zosel • • • •
CFT77 Discussion, Karen Spackman. • • •

Special Interest Group on Operations, Gary Jensen •
Computer Operations at Environment Canada, Gary Cross
FOCUS at the Los Alamos National Laboratory,

Fred Montoya. • • • • • • • • • • • • • • • •
Multitasking Performance Workshop Summary, Ann Cowley.

Multitasking the Weather, David Dent •••••••••
CMTS - A CRAY Multitasking Simulator, J.D.A. David.

Multitasking, Margaret L. Simmons •••••••••••
The Multi-Level Data Bus Approach to Multitasking,

J.L. Owens •••••
Experiences with CRAY Multitasking, Eugene N. Miya,

M.S. Johnson ••••••••••••••••

,­
'.,}

iii

43

43

44
45
47
48
50
51

56
59
60
68
72

72

77

CONTENTS

SPECIAL INTEREST COMMITTEE REPORTS (cont.)

Multitasking, Margaret L. Simmons (cont.)
Speedup Predictions for Large Scientific Parallel

Programs on CRAY X-MP-Like Architectures, Elizabeth
Williams, Frank Bobrowicz ••••.•.••.••••.

Los Alamos National Laboratory Control Library,
F.W. Bobrowicz ••••••.•••.•

Networking and Frontends Session II, Dean W. Smith.
MVS Station Status, Peter Griffiths •.•.••
Superlink Status, Stuart Ross ••.••
Apollo and VAX Station Status, Martin Cutts ••..•
VM and UNIX Stations, Allen Machinski
CRAY CYBER Link Software: Product Status and

Development Plan, Wolfgang G. Kroj .•
COS Session, David Lexton •

COS Experience Panel •.•••
Claus Hilberg . . • • •
Conrad Kimball •••••
Mostyn Lewis. .

COS Interactive: A Developer's Perspect~ve, Bryan Koch •
OSSIC Report, David Lexton. • • • • • • • • • . • . •

Microtasking Panel Session, Mary 20sel. . •••..••
Performance and Evaluation Special Interest Committee,

Mostyn Lewis ••••••••••••..•••.•••
IIO Workshop, Mostyn Lewis ••••••.••••••.

Benchmarking CRAY's X-MP and SSD, Christoper Holl •
Software Paging for Large Matrices on CRAY X-MP,

U. Detert • • .••.•.•••.•
New COS Features, Clay Kirkland • • • . • • • . • .
Customer Experience with DD-49 Disks, Mostyn Lewis ••

Report on the Graphics Session, H.E. Kulsrud ••••..

ADDITIONAL REPORTS

100

101
102
102
102
103
103

104
106
106
106
107
108
109
114
115

116
117
118

135
145
158
159

President's Report, M.G. Schomberg. . . • • • • • • • . 163
Incorporation of the CRAY User Group, M.G. Schomberg. 165
Report of the Vice President, H.E. Kulsrud. • . • •. 166
Report of the Program Committee, David Lexton • • . . 167

ADDITIONAL INFORMATION

Montreal CUG Meeting Participants by Organization. • • •• 171
CUG Site Contact List • • • • • . • • . • • • • • • • • 180
Call For Papers Form. • • • • • • • • • 203
Help CUG Form • • • • • • • • • 205

iv

PRELIMIllAHYIUFOm.IATION

ACKNOWLEDGH1ENTS

Thanks go to the following persons who comprised
the Local Arrangements Co~mittee fro~ Environment
Canada:

* Raymond Benoit - Chair

* Betty Benwell

* Gary Cross

* Jean-Fransois Gagnon

* Claude Payette

Thanks also go to Kathy Lucero and r~ary Buck for
their assistance in typing various contributions
to these Proceedings.

3

CRAY USER GROUP, INCORPORATED

BOARD OF DIRECTORS

1985 - 1986

TITLE NAME ORGANIZATION

President Helene Kulsrud IDA

Vice President David Lexton ULCC

Treasurer Robert Price Westinghouse

Secretary Ka ren Fri edman NCAR

Member, Board of Directors Stephen Niver BCS

Member, Board of Directors Sven Sandin SAAB-Scania AB

Member, Board of Directors Michael Schomberg AERE-Harwell

4

Members of the Program Committee

Raymond Benoi t EC

Ann Cowley NCAR

Jacqueline Goirand CIFRAM

Gary Jensen NCAR

Helene Kulsrud IDA, Chair

Mostyn Lewis CHEVRON

David Lexton ULCC

Jerry Melendez LANL

David Sadler CRI

Margaret Simmons LANL

Dean Smith ARCO

Mary Zosel LLNL

5

TUESDAY
OCTOBER 1

8:30 Welcome
B. Attfield (EC)

8:45 Keynote
J. Connolly (NSF)

9: 15 CRI Corporate Report
B. Kasson (CRI)

9:30 CUG Report
M. Schomberg (AERE)

9:45 CUG Elections
J. Goirand (CIS!)

10:00 BREAK

10:30 Presentation of New
Officers

10:35 CRI Software Report
M. Loftus (CRr)

11:00 CFT-77
K. Spackman (CRI)

11:30 CRI Directions In
Networking
D. Thompson (CRI)

12:00 LUNCH

Networking
D. Smith (ARCO)

1:30

Multitasking
Tutorial
R. Brickner (LANL)

3:00 BREAK

Languages
M. Zosel (LLNL)

3:30

Operations I
G. Jensen (NCAR)

7:00 CONFERENCE DINNER

PROGRAM
CRAY USER GROUP, INC.

8:30

10:00

10:30

11:00

11:30

12:00

1:30

3:00

3:30

5:00

FALL 1985
MONTREAL

WEDNESDAY
OCTOBER 2

Multitasking
Performance
A. Cowley

I
(NCAR)

Operations II
G. Jensen (NCAR)

CTSS
G. Melendez (LANL)

BREAK

Multitasking In
Operating Systems
J. Huskamp (IDA)

Microtasking
Overview
M. Booth (CRI)

Synchronization
Speed and
Multiprocessor
Per forman ce
T. Axelrod (LLNL)

LUNCH

Multitasking
Performance II
M. Simmons (LANL)

Front Ends
D. Smith (ARCO)

Short Papers
J. Goirand (CIS!)

BREAK

COS
D. Lexton (ULCC)

Microtasking Panel
M. Zosel (LLNL)

PROGRAM COMMITTEE

6

THURSDAY
OCTOBER 3

I/O
M. Lewis (Chevron)

8:30

Graphics
H. Kulsrud (IDA)

10:00 BREAK

10:30 Effects of Compiler
Optimization on X-MP
I. Bucher (LANL)

11:00 NAS Kernel Benchmark
Results
D. Bailey(NASA/Ames)

11: 30 Microtasking
Benchmarks at CRI
L. Kraus (CRI)

12:00 LUNCH

1:30 User Requirements
Report
S. Niver (Boeing)

1:45 SSD Update Users
Report
M. Lewis (Chevron)

2:00 CRAY II Performance
R. Numrich (CRI)

2:45 CRAY-2 Users Report
J. Perdue(NASA/Ames)

3:15 Next Conference
S. Niver (Boeing)

3:25 CLOSING REMARKS

3:30 BREAK/END

4:00 CUG Advisory Council
4:30 User Requirements

Committee

Cray Corporate Report

Rober·t H. Ewald

Cray Research, Inc.
Minneapolis, MN

The first three quarters of 1985 have been
very busy and productive for Cray Research,
Inc. The sections below briefly review Cray's
organization, business, and product highlights
during 1985.

ORGANIZATION

Cray continues to operate in a decentralized
manner believing that small groups of people
dedicated to a common task with limited resources
and aggressive implementation schedules work well
in the fast moving high performance computing
business. As of September 30, 1985, Cray had
about 3,000 employees distributed in the
following major functional areas:

64% - Hardware Dev., Eng., & Mfg.
22% - Field Support and Marketing
10% - Software

4% - Finance, Human Resources, and Admin.

BUSINESS

Cray's 1985 business continues to be very
strong. We hope to receive at least 35 orders
for our systems during 1985. To date we have
received 28 orders including those indicated
in Tab 1 e 1.

Table 1
1985 Orders Thru 9-30-85

North America International

LLNL-LCC X-MP/48
SNLA X-MP/24
Bell X-MP/24
U of MN CRAY-2
Chevron, TX X-MP/24
NASA/Lewis X-MP/24

*ORNL X-MP/12
*Shell X-MP/14
*DuPont CRAY-1/A
*GA Tech. X-MP/48
*U of IL X-MP/48
*GD, TX X-MP/24

ADNOC
ECMWF
EDF
ELF
MPPI
RUS
*EPFL
*Nissan
*BP

*NASA/Marshall X-MP/48
*Fairchild, CA CRAY-1S2000
*Lockheed, CA X-MP/24
*Wright-Patt. X-MP/12

X-MP/14
X-MP/48
X-MP/216
X-MP/12
X-MP/24
CRAY-2
CRAY-1/S2000
X-MP/11
X-MP/12

9

We expect to install about 30 new systems and to
reinstall several other systems during 1985. To
date, the systems shown in Table 2 have been
installed during 1985.

Table 2
1985 Installations Thru 9-30-85

BCS
Exxon USA
Chevron,CA
LANL
LLNL-LCC
SNLA

;"CINECA
;"Toshiba
;"Opel

North America

X-MP/24
X-MP/14
X-MP/48
X-MP/48
X-MP/48
X-MP/24

*Ford X-MP/11
*NRL X-MP/14
*Rockwell X-MP/14
*Northrop X-MP/12
;"ORNL CRAY-1/S200
*Chevron, TX X-MP/24
*Lockheed,CA X-MP/24
;',AFGWC X-MP /22
*GD X-MP/24
*U of IL X-MP/24
*Wright-Patt. X-MP/12

International

X-MP/22
X-MP/22
CRAY-1/S1000

PRODUCT HIGHLIGHTS

Two major product announcements were made during
the summer of 1985. The CRAY-2 was formally
announced in June 1985 as a four processor
parallel vector computer with a 4.1 ns cycle time
and 256Mw of memory.

The first CRAY-2 was installed at the Magnetic
Fusion Energy Computer Center in Livermore, CA in
May 1985. The second system was shipped to
NASA's AMES Research Center in September 1985.

In September the X-MP family was expanded with
larger memory (up to 16Mw) systems. The
gather/scatter, compress index and a second
vector logical unit were also implemented across
the X-MP line. The current X-MP family of
systems is shown in Table 3.

;', New Accounts

Table 3

X-MP Systems

MEMORY
NO. 01 IIZE 'UWI. nPE No. 01 No. 01 880

f:!QQW S<eU! tl!2 21 I!&!!S! 22.1.! I2e! !!W!!.!1

X-MP/11 1 1. MOS.16 6 2-. 32-128

X-MP/12 2. MOS.16 6 2-4 32-128

X-MP/14 4. MOS,16 6 2-4 32-128

X-MP/18 8. MOS.32 6 2-4 32-128

X-MP/24 2 4. MOS,16 8 2-4 32-128

X-MP/28 2 8. MOS,32 8 2-4 32-128

X-MP/216 2 16. MOS.32 8 2-4 32-128

X-MP/48 4 8. ECl, 32 12 4 32-128

X-MP/416 4 16.ECl.64 12 4 32-128

SUMMARY

The first three quarters of 1985 have been very
productive for Cray Research with announcements
and installations of new systems. The demand
for CRAY systems continues to be very strong as
new scientific, engineering and national defense
applications are developing and as existing
applications continue to grow.

10

CRAY SOFTWARE STATUS

Margaret A. Loftus

Cray Research, Inc.
Minneapolis, MN

The following software has been released since
the last User Meeting five months ago.

1.14 Nos Station
1.14 On-Line Diagnostics
1.0 VAX/UNIX Station
1.14 NOS/BE
1.14 COS/CFT BF3

May 1985
August 1985
September 1985
September 1985
September 1985

The last major software release was COS/CFT 1.14
in January 1985.

The field have experienced very few problems
with the COS 1.14, the most significant being
Cybe r tape rel a ted. Some sites have
encountered stability problems with CFT 1.14.
As a result of these problems, we will be making
changes in CFT testing.

The following is a status of the major software
plans in progress

1.15 will be released late 85/early 86.

CAL 2.0 to be released the end of 1985 and
will support the CRAY-1,
CRAY-1S, CRAY-1M, CRAY X-MP and CRAY-2.

Pascal 3.0 to be released the end of 1985.
Performance improvements include scalar,
vectorization via array syntax and multi­
tasking.

C under COS to also be released hy the end
of 1985. A prerelease is available today.

CFT77 (NFT) is being tested in Mendota
Heights and planned to be released by the
end of 1985/early 1986. The first release
will support the X-MP and the second
release the CRAY-2. Results thus far have
been excellent in both performance and
stabil ity.

Cyber Station development moved to Germany.
1.15 NOS Station (dual state) to be
released 4Q85. 1.15 NOS/BE Station (dual
state) 4Q85 release dependent CDC release.
1.16 NOS Station release 2Q86 to include
interactive. The NOS/VE Station effort has
begun and targeted for 1987 release.

11

Superl i nk/MVS. Superl i nk/ISP ins ta 11 ed at
a customer site in October. The Superlink/
MVS R2 to be released in 1986 and provide
interactive support. Superlink/MVS R3 to
be released in 1987 and provide full
Station support and full intergration into
SNA.

2.0 MVS Station (1.14) released 1Q86 and
include interactive.

3.0 VM Station to be released in November
and include dispose to mini disk; separate
data streams for graphics; 3375 disk
support and improved tape handling.

3.0 VAX/VMS released October with enhanced
DECnet support; VMS 4.0 is required.

2.0 Apollo Station release 1Q86 with
operator commands and control.

Microtasking for the X-MP will be included
in 1.15. A prerelease will be available
1Q86 under COS.

CFT2 - CRAY 2 Fortran compiler is based on
CFT. Development is complete and we are
now stabil izing.

Multitasking - Future microtasking support
will differ from the X-MP due to hardware
differences.

ex-os (UNIX*)supports CRAY-1s, CRAY X-MP
and CRAY-2. The initial release in 1Q86
will include CFT, CFT2, CFT77 , C, Pascal,
Segldr, multitasking (macro/micro on
X-MP). Some tape support on X-MP (no
label processing), batch, debuggers,
source code maintenance, SCILIB, X-MP and
CRAY-2 peripherals, large memory suppoprt,
I/O enhancements (striping, device over­
flow, performance, streaming large files)
TCP/IP (separate package available from
third party) and interactive.

We expect to pass AT&T's System V Unix
validation tests when they are available.

*UNIX is a trademark of AT&T Bell Laboratories.

A subsequent release is planned for 4Q86
with SCP (Station) recovery. In 1988 we
expect to have a common CX-OS software
product across all hardware products with
equivalent functionality to COS at that
time.

Major emphasis of CRI software over the next
three years are in the following four areas:

Multitasking

High Performance Transportable Software to
deal with future hardware architectures

Connectivity which includes enhancements
to existing and new stations, and net­
working.

Continued Enhancements and Support of
existing software.

12

CFT77: CRAY'S NEW FORTRAN COMPILER

Karen Spackman

Cray Research, Inc.

Mendota Heights, Minnesota

Cray will be releasing a new FORTRAN compiler
for its machines early in 1986. The first
release will be for the CRAY X-MP under COS.
Subsequent releases will support the CRAY-2, the
CRAY X-MP under UNICOS, and the CRAY-1. We have
been working on this project for some time, and
many of you have heard it referred to by its
working name of NFT. During 1985 the name CFT77
was selected for the release name of the
compiler. When we began this project four years
ago, we had several goals we wanted to achieve.
I will review four of the most important of
these goals.

One of our primary goals was to produce a
compiler that could be ported more easily to new
CRAY machines. At the time we started the
project, the CRAY X-MP and CRAY-2 had not yet
been announced, but we knew not only that these
machines were coming shortly but that there
would be follow-on machines in both lines. All
of these machines have to be supported as
quickly as possible with a high-quality FORTRAN
compiler that generates high-performance code.

What do we mean by portability? The definition
that we use states that portability is a measure
of the ease with which a program can be moved
from one environment to another without losing
the characteristics that made moving the program
desirable. For us, our FORTRAN compilers must
produce high-performance generated code. If we
lose that performance when we port the compiler,
then our compiler was not very portable either.

Compiler portability may seem to be an issue
only for the implementor, but it has an
important implication for the user as well. We
want the user's view of FORTRAN to be the same
across our machine lines; we want the same
FORTRAN IIdialect li to be supported on all the
machines. This can best be achieved by having
the same compiler on all machines.

A second goal for the new compiler was to
incorporate some of the work in optimization
that has been done in the last several years
that we could not reasonably put into CFT. In
particular we expected this to give us improved
scalar performance.

13

Our third goal developed out of the realization
that with our new machines we were moving into
multiprocessors and that we would need to make
utilizing the multiple processors as easy as
possible for our users. Consequently one of the
goals for the new compiler was to develop a
vehicle that could be used to partition codes
automatically for multitasking. Because of the
extensive analysis that will be needed to do
this, CFT is not an appropriate vehicle.
Automatic multitasking will not be available in
the first release of CFT77, but we expect to
demonstrate the feature by the end of 1986.

Finally, we wanted to develop a basis for
future compiler development work for other
languages. Since we are making a considerable
investment in optimization and since we are
developing code generators for all of our
mainframes, we wanted to take advantage of this
work for additional languages. In 1981 FORTRAN
was the only language we supported; since then
we have added Pascal and C as supported
languages and expect to offer additional
languages in the future. We plan to develop a
common modular compiling system out of the
CFT77 development work and use this to
implement FORTRAN 8X as well as new C and
Pascal compilers.

One requirement for the new compiler from the
beginning was that it be compatible with CFT.
There are two parts to this requirement. One
is FORTRAN source compatibility: a FORTRAN
program that works correctly with CFT should
work with CFT77. To this end, CFT77 supports
the existing CFT extensions with few
exceptions. The second part of this
requirement is relocatable compatibility:
routines compiled by CFT77 can call and be
called by routines compiled by CFT (with the
new calling sequence), and CFT77 uses the same
run-time libraries as CFT.

There are certain differences between the
compilers that the user will notice. CFT77
does more extensive error checking than CFT,
and some constructs that may appear to work
with CFT will be detected as errors. We are
trying to identify these and will provide a
list of differences with the release
information. With CFT77 we have made POINTER a

separate data type and placed some restrictions
on the operations that can be performed on
pointers. We think this will give the user
some additional protection from inadvertently
misusing pointers without invalidating existing
programs. If we find that this change does
invalidate existing programs, we will change to
the eFT implementation. We expect to find this
out during beta testing since one of the beta
test sites uses pointers extensively. Finally
I want to point out that eFT77 and eFT are
different compilers and have different control
card options and compiler directives. However,
since compiler directives are embedded in the
source code, eFT77 recognizes eFT directives
that it doesn't use and prints warning messages
indicating that the directives are ignored.

eFT77 is a FORTRAN 77 compiler. We have also
added three features that we expect to be
included in the next standard. We allow
internal identifier names up to 31 characters
in length, and these may include underscores.
We have implemented a subset of the array syntax
proposed for FORTRAN 8X. This allows the user
to write expressions involving whole arrays or
sections of arrays; for the first release we
limit the use to assignment statements and do
not allow character type. We have also
implemented automatic arrays which allow an
adjustable array to be allocated on entry to a
subroutine and freed on exit.

The approach to optimization used in eFT77 is
different from that used by eFT. eFT77 does
what is termed global optimization which means
that an entire subprogram is analyzed to
determine the control and data flow. Scalar
optimizations are then done using the flow
information; this means that optimizations are
not applied only within basic blocks as they are
with eFT. Further, the informa t i on ga thered for
scalar optimization is used in the vectorization
analysis and in doing register assignment.

Future development areas for eFT77 include
extending the vectorization facility and adding
an assertion capability to let the programmer
give the compiler information to aid
vectorization. Automatic partitioning for
multitasking is another area for continued
development work; we expect this capability to

1 Lecarme, Olicier, and Peyrolle-Thomas,
Marie-Claude, "Self-compiling Compilers: An
Appraisal of Their Implementation and
Portability", Software Practice and Experience,
8, 149-170 (1978).

14

develop and be extended over several releases
as we learn more about how we can profitably
use multiple processors. We plan to extend the
array syntax subset that we have implemented in
the first release. And, of course, we expect
to make performance improvements continually as
we evaluate the code we produce and identify
areas to improve.

Multitasking in Operating Systems

Jeffrey C. Huskamp

Institute for Defense Analyses
Princeton, NJ

Abstract

There are several implementation problems
in bootstrapping an existing operating
system, which is written for a single
processor machine, to a multiprocessor
machine with a large memory. The problems
include deciding whether to make the kernel
multithreaded, implementing mUltiple
execution points (tasks) in a process,
avoiding deadlock and minimizing context
switching overhead. Some possible solutions
for CRAY machines are discussed.

Key words: multiprocessing, multitasking,
CRAY, supercomputer

Introduction

All four production operating systems
for CRAY machines (COS[I], CTSS[2],
Folklore[3] , AMOK[4]) and the announced
operating system for the CRAY-2 (UNIX ™
[5]) have ancestors that only execute
on single processor machines. The next
high performance supercomputers will provide
multiple processors to speed up program
execution. Since designing, implementing,
and changing over to an entirely new
operating system that makes use of multiple
p~ocessors is a very laborious undertaking,
some of these operating systems will
probably be modified to per~it the users
access to the multiprocessing/parallel
processing features of the machines.
However, incorporating multiple processors
into the user interface and making use
of the multiple processors inside the
operating system cannot be done easily.
Some of the features needed in multi­
processor operating systems that are not
found in single processor systems include
permitting the operating system to have
multiple execution threads active at one
time, pe~mitting user jobs to have more
than one execution point (i.e. multiple
tasks), preventing system deadlock, and
avoiding full context switches when possible
since the process state info~mation is
large and getting larger.

15

This paper discusses different approaches
that can be taken toward solving these
problems. For a complete solution,
changing a majority of the operating
system may be necessary. When possible,
a low cost partial solution is identified
that may make a full solution unnecessary.

Single Threaded Ke~nels

Most operating system kernels assume that
only one processor executes in the
operating system at one time. In boot­
strapping an operating system to a
multiprocessor machine, some consideration
~ight be given to utilizing multiple
p~ocesso~s within the operating syste~.
There are at least three approaches to
this problem. The easiest approach is
to lock the entire operating system so
only one processor is executing the
operating system at one time. With this
strategy, one processor could be waiting
for another processor to finish its tour
through the system. If this condition
occurs frequently, processors are waiting
for system calls to complete and the
operating system becomes a performance
bottleneck. To obtain an estimate of
the performance degradation, a quick
calculation (with many independence
assumptions) can estimate the probability
that two or more processors could be
executing system calls at the same time.
For the calculation, the percentage of
CPU time devoted to executing system calls
in AMOK (=5%) will be used as an example.
Assuming that the system has N processors,
the probability of conflict is:

N= number of processors

S= probability of wanting to execute
a system call=O.05

P= probability 2 or more processes are
executing system calls

P= l-(probability that 0 or 1 processors
are executing system calls)

p= 1- ((1-S) N+NS [(1-S) (N-'.)])

Processors
1
2
3
4
5
6
7
8

16
32

Conflict Probability
0.0000
0.0025
0.0073
0.0140
0.0226
0.0328
0.0444
0.0572
0.1892
0.4800

The above table suggests that for machines
having four or fewer processors, the global
operating system locking approach seems
to not degrade performance significantly.
This is consistent with observations of
CTSS on multiprocessor machines. However,
for the next generation of supercomputers
that have a larger number of processors,
this approach does not seem to be correct.

The next simplest possibility for taking
advantage of multiple processors is to
provide a shared kernel that performs
the basic I/O and context switching
functions, and supports multiple operating
systems. This breaks the host multi-­
processor machine into multiple guest
systems with a small number of processors
in each system. If enough guest systems
are introduced, the argument for locking
the entire kernel that was made above
may again be valid. This approach can
be thought of as a virtual machine
implementation. The advantage is that
different operating systems can execute
at the same time (e.g. a batch system
and a timesharing system) to provide
different services. The disadvantages
are that (1) more memory is devoted to
the operating system, (2) the lower level
kernel can be a bottleneck unless it is
reentrant, (3) an extra context switch
is needed to access the shared kernel
since each guest operating system must
be treated with suspicion, (4) extra
checking must be included in the shared
kernel so system bugs from one guest system
don't crash another guest system, and
(5) all system resources (e.g. memory, disk)
must be partitioned. The peripheral
partitioning also may imply that multiple
copies of public files are necessary,
one for each guest system. An example
of this approach is the NLTSS [6]
development system at Livermore. In this
case, one operating system is a production
system (LTSS) and the other is a devel­
opment system (NLTSS).

Finally, the most expensive approach is
to actually redesign the operating system
to take advantage of mUltiple processors.
This involves setting up tasks within
the system that have their own stacks,
developing a low cost system task
switching mechanism, and locking all shared

16

data structures. This approach
could result in less efficiently compiled
code for the operating system and would
crRate synchronization overhead for
processors executing inside the system.

One Execution Point per Process

Perhaps the most troublesome problem in
providing support fo~ parallel processing
is permitting multiple exchange packages
insidp. the process header (minus words) .
The first concern is the expansion of
the header by at least the amount of
storage that constitutes a process context.
In AMOK on the CRAY-1, this amounts to
a minimum of 657 words per task. In
addition, descriptions of open objects
for each task consume more space. On the
CRAY-2, the 16K local memory adds more
storage overhead to tasks.

With one task per process, all execution
in the process stops when a system call
is issued. That is, the user exchange
package is waiting for the system call
processing to complete. In parallel
processing, other tasks in the process
may be active and can cause system call
implementations that work in single
processor systems to fail. For example,
trying to terminate all tasks within a
process can be adventuresome since some
tasks may be issuing system calls that
take a long time to complete or may be
erroneously spawning other tasks.
Certainly logic must be added to make sure
all tasks are moving toward termination at
the same time.

The system call interface must be expanded
to enable task creation and task deletion.
Other system calls, such as suspend pro­
cess, must be extended to include tasks.
This also implies that the scheduler must
be modified to service these tasks.

If these changes are troublesome, perhaps
an implementation which pushes some of the
implementation into the user space would
be better. For example, the CTSS approach
puts task creation and deletion into user
library routines [7].

Another alternative is to adapt a UNIX-like
system that thrives on many small processes
but does not support mUltiple execution
points within one process. Allocating
multiple CPU's in this situation is
straightforward. However, to avoid idle
CPU's, the number of jobs in the queue
must at least equal the number of physical
CPU's. This will makp. the throughput of
the machine look good, but will not help
the response time of anyone job. Of
course, if extensions are added to UNIX to
permit multiple execution points within
one address space, a new version of UNIX

will be required. This may not be the
correct path to take since compatibility
problems may be created with other versions
of UNIX.

Errors in Multithreaded Systems

One of the most feared problems in multi­
processor systems is system deadlock. The
problem occurs when two or more processors
that are executing inside the operating
system try to reserve the same objects but
in a different order. To eliminate this
problem, all execution paths of the
operating system must be checked for the
possibility of mUltiple object reservations,
which is a time-consuming procedure. One
fact that helps the problem is that the
large majority of s stem calls usually
only need; to reserve one object at a time.
Thus many execution sequences do not need
to be analyzed. For example, directory
calls such as create, open and delete only
need to reserve the directory to be
modified. In AMOK, system calls such as
initiate process and terminate process
have the potential to reserve more than
one process so these execution paths must
be scrutinized.

To reduce the number of system tables
and/or system table entries that must be
locked, some of the operating system can
be structured so that only one processor
executes within a certain subsystem at a
time. Three subsystems that might be
handled this way are the memory manager,
the network manager and the operator
console manager. Since these subsystems
are most easily programmed as single
processor tasks and are crucial for correct
system performance, locking these sub­
systems at a very high level seems accep­
table. This utilizes the message-system
approach to structuring an operating
system [8] as opposed to the procedure­
oriented approach. Thus there appear to
be some operating system functions that
can have a very coarse grain of protection
(and can be more easily programmed) and
some that must have very fine-grained
protection.

Context Switch Time

For jobs that request a large number of
system functions per CPU second, context
switching can represent a significant
amount of overhead. This is particularly
true if the B, T and V registers must be
saved. Two mechanisms contained in current
operating systems can help reduce this
overhead. The simplest mechanism permits
more than one system call to be issued
with one context switch to the operating
system. One implementation is done by
CTSS which allows system calls to be
chained together. For example, this can

17

speed up tape processing by reading or
writing mUltiple records per context
switch. On AMOK, some non-standard
arithmetic/logical and conditional branch­
ing system calls have been implemented so
that simple functions can be computed
without exchanging back to the user
process. This is useful in loop control
and in termination condition testing.
This makes system calls resemble assembly
language programs. The system calls take
the same amount of time as a round-trip
context switch from the user process to
the operating system and back. Thus
system call programs with simple loop
control can execute faster than issuing
single system calls. This optimization is
widely used by user support routines as
evidenced by the system-wide average of
four system calls executed per exchange to
the system. Unfortunately, the standard
UNIX system does not permit more than one
system call to be issued per context
switch. It would also seem unwise to
modify this basic part of the UNIX user
interface in attempts to speed up the
system.

The more complex mechanism is the imple­
mentation of lightweight tasks within a
process by code executing within the
process. For user level lightweight tasks,
the operating system does not know there
are multiple tasks in the process. This
means that task scheduling, task dispatch­
ing and context switching are done by the
process itself. Lightweight tasks have
been implemented for NLTSS servers and for
the AMOK operating system. As an example
of lightweight tasks, the AMOK implemen­
tation will be discussed in slightly more
detail.

When an AMOK system task wants to tempo­
rarily give up control of the CPU, it calls
the procedure STKSLEEP, which saves the
contents of register B02 in variable
STKINFO for the task. In the CRAY calling
sequence, B02 points to the register save
area for the procedure that called
STKSLEEP. The scheduler task is then
awakened to dispatch another task. To
awaken a task, STKWAKE restores B77, BOO,
BOl, B02, B66 and B67 from the register
save area pointed to by STKINFO for the
task. This restores the registers to the
correct state for returning to the pro­
cedure that called STKSLEEP. The transfer
of control is accomplished by a non-local
jump (not a normal procedure return)
implemented in assembly language. The
procedure that called STKSLEEP thinks that
a normal return from STKSLEEP has occurred
and resumes its execution.

The advantage of lightweight tasks is that
context switching incurs only a small
overhead. Not all the registers need to

be saved and, for user level tasks, an
exchange to the operating sytem for
scheduling is not needed. The disadvantage
is that an infinite loop in one task may
disable the entire process.

Summary

The four problem areas discussed in this
paper are prime areas of concern when
existing operating systems for single
processor machines are bootstrapped to
multiprocessor machines. The approaches
suggested here are extensions of current
efforts being made to attack these
problems. Hopefully some of these concerns
will be addressed in the Unix imple­
mentation underway at CRI.

REFERENCES:

[1] Cray Research, Inc., "CRAY-OS
(COS) Version 1 Reference Manual",
SR-0011, Revision N, (to appear) .

[2] Fong, K., "The NMFECC Cray
Time-Sharing System", Software
Practice and Experience, 15 (1),
87-103 (January 1985).

[3] Santavicca, T., "Folklore - Delivering
Supercomputing", Proceedings of the
Conference on Operating Systems for
Supercomputers, Princeton, New Jersey
(June 1984).

[4] Huskamp, J.C., "A Modular Operating
System for the CRAY-1", (to appear).

[5] Ritchie, D.M. and K. Thompson, "The
UNIX Time-Sharing System", Comm. Assoc.
Compo Mach., 17 (7), 365-375
(July 1974).

[6] Donnelley, J., "Components of a
Network Operating System", Computer
Networks, 3, 389-399 (1979).

[7] Long, G., "Status of CRAY-2 Software
at MFE" , Proceedings of the Conference
on Operating Systems for Supercomputers,
Princeton, New Jersey, (June 1984).

[8] Lauer, H., "On the Duality of Operating
Systems Structures", in Proc. Second
International Symposium on Operating
Systems, IRIA, October 1978, reprinted
in Operating Systems Review, 13 (2),
3-19 (April 1979).

18

CFT COMPILER OPTIMIZATION AND CRA Y X-MP VECfOR PERFORMANCE

Ingrid Y. Bucher and Margaret L. Simmons

Los Alamos National Laboratory
Los Alamos, New Mexico

INTRODucnON

The motivation for this paper was the observation that
Cray X-MP vector performance has not always evolved in
the expected direction of improvement. It is well known
that vector performance of register-to-register vector
computers is strongly compiler dependent. The compiler is
responsible for proper sequencing of vector load,
arithmetic, and store operations, and for scheduling
necessary scalar operations in such a way that they take
place while vector operations are in progress and therefore
do not consume any additional time. We have analyzed
vector performance data for CFT compiler versions 1.10
through 1.14. It is concluded that in spite of the great
performance improvements achieved by version 1.14 of
CFT, further speedups are possible by eliminating the
slowdowns introduced in version 1.11.

MODEL OF CRA Y VECTOR PERFORMANCE

Based on the well known fact that Cray vector operations
are "stripmined" in sections of 64, the time required to
perform arithmetic operations on vectors of length N is
given by

where the brackets I ~ I denote the next integer greater

than or equal to N /64, and where TSlarlout is the startup
time for the outer loop processing the strips, TSlarlSlrip the
startup time for each strip of length 64, and Telement the
time required to produce one result element. Equation (1)
represents a linear step function as represented in Fig. 1,
with the height of each step equal to the startup time of
each 64-strip. In reality, there is a small overshoot
associated with the startup of each 64-strip (see Fig. 2).
This is due to the fact that for vector instructions with
very short vector lengths some necessary scalar work is
incom pletely overlapped.

The points for N equal to multiples of 64 lie on a straight
line represented by

T = Tsrar,out + N * (Tslarlstrip /64 + Telemenl) . (2)

19

This line intersects the T -axis at T = TSlartoul. Assummg
Telement is known (typically a small multiple of the cycle
time), Tstartslrip can be determined from the slope of the
line. This method of determining startup times is more
accurate than examining the measured height of the steps
because of the overshoots.

RESULTS OF VECfOR PERFORMANCE MEASUREMENTS
AND THEIR INTERPRETATION

Execution times for typical vector operations were
measured by timing 106 floating point operations for each
vector length. A straightforward double loop was used,
with the inner loop index running from one through the
vector length N , and the outer loop index running from 1
through 106/N. Because of the many repetitions of the
outer loop, its startup time does not significantly distort
the results. The time required for the timing function
calls (CPUTIME under CTSS, SECOND under COS) was
subtracted. Typical MFLOP rates for stride one measured
for compiler versions 1.10,1.11,1.13, and 1.14 are
presented in Table I for three vector lengths of
N = 10. 100.00. Although CFT 1.14 shows a dramatic
performance increase for short vectors with optimization
options enabled (BTREGS, FULLIFCON, FULLDOREP) the
rate for long vectors is lower than for CFT 1.10. Without
optimization options, measured rates for CFT versions 1.11
through 1.14 are nearly the same and lower than those for
1.10 for all vector lengths. Figure 2 shows results for a
simple vector multiply operation for CFT 1.14 with and
without optimization options. The figure demonstrates
that the optimizations reduce the startup time of the outer
stripmine loop (zero intercept) considerably, while the
startup time of each 64-strip (height of each step) remains
unchanged.

Table II contains results for element times Telement , 64-strip
startup times Tstarlstrip , and outer stripmine loop startup
times TSlarlout for the simple vector operations listed in
column one. These data were obtained by measuring
vector execution times for vector lengths equal to
multiples of 64 (up to 512) and performing a least squares
fit to the data pOints according to Eq. (2).

The results show that since the inception of the Cray X­
MP two great changes in vector performance have occurred
in CFT history: an increase in the startup time of 64 strips

by about 50% between CFT versions 1.10 and 1.11 and a
decrease in the startup time of the outer stripmine loop by
about a factor of four in introducing optimization options
in CFT 1.14. Typical startup times for each 64-strip are
20 cycles with CFT 1.10 and 30 cycles thereafter. For the
outer stripmine loop, startup times have been reduced
from 110 cycles (with CFT 1.10) to about 25 cycles (with
CFT 1.14 with options). It is noteworthy that the startup
time of the 64 strips has to be added to that of the
stripmine loop for short vectors at least once even if the
vector length N ~ 64 and several times if N > 64. Thus a
decrease in this time improves short as well as long vector
performance. The question arises naturally whether we
cannot have both short startup times for strips as well as
stri pmine loops.

We have examined code produced by the CFT compiler
versions 1.10 and 1.14 for many loops. As an example, we
present characteristics of the compiled code in Fig. 3 for a
frequently encountered vector operation

where all V 's denote distinct vectors, all S 's distinct scalar
operands. It can be seen that while CFT 1.10 uses a simple­
minded approach to fetch operands as they are needed for
the operations, CFT 1.14 prefetches as many vector
operands as possible. This approach may work well for
the Cray-1 (SAXPY now chains for the first time in Cray-
1 history without hand coding), however, it is less efficient
for the Cray X-MP with its multiple data paths. The
philosophy results in additional non-overlapped startup
times for fetches (plus associated non-overlapped A­
register loads) and in some cases in delays due to lack of
free V-registers. The X-MP has enough memory paths to
supply its functional units with two operands on the fly;
they do not need more. In addition fetches and operations
chain. The most effective way of programming this
machine is the ref ore the simpleminded approach used in
CFT 1.10. The authors do not see any reason why this
approach cannot be combined with the use of Band T
registers to reduce startup times for the outer stripmine
loops as demonstrated by CFT 1.14 so effectively.

CONCLUSIONS

Between CFT versions 1.10 and 1.11, a significant increase
in 64-vector strip startup times has occurred. While CFT
version 1.14 has reduced startup times for outer stripmine
loops and thereby dramatically increased short vector
performance, further improvements are achievable by
eliminating the slowdowns introduced in CFT 1.11. This
may necessitate different approaches to the scheduling of
vector instructions for different computers in the Cray
family.

20

VECTOR LENGTH

Figure 1. Plot of step function represented by Eq. (1).

10,-------------------------------------,

04---~----._--_.--_.----._--_r----._--~

o 64 128 192 256 320 384 448 512

VECTOR LENGTH

Figure 2. Measured execution times for simple
multiplication in vector mode as a function of vector
length.

CFT 1.10 CFT 1.14

Load Load
Multiply Load
Load Multiply
Multiply Load
Add Load
Load Multiply
Multiply Add
Add Load

Multiply
Add

Figure 3. Code produced by two CFT compiler versions
for V = S*V + S*V + S*V + ...

TABLE I
MEASURED RATES FOR SIMPLE VECTOR LOOPS

IN MFLOPS

Stride = 1 CFT 1.14 CFT 1.14 CFT 1.13 CFT 1.13 CFT 1.11 CFT 1.10
Options No Options Options No Options No Options No Options

Vector Length = 10

v = v * v 14 9 14 9 8 9
v=v+s* v 25 15 26 16 15 16
v=s* v+s* v 30 20 33 21 22 21
v=v* v+v* v 32 21 33 21 22 21

Vector Length = 100

v=v*v 64 42 58 43 40 46
v=v+s* v 120 80 117 81 81 82
v=s* v+s* v 110 84 110 85 91 92
v=v* v+v* v 102 84 102 84 87 90

Vector Length = 00

v = v * v 72 72 72 72 67 80
v=v+s* v 145 145 145 145 144 160
v=s* v+s* v 124 124 124 124 140 140
v=v* v+v* v 116 116 115 115 131 135

TABLE II
START-UP AND RESULT ELEMENT TIMES

FOR SIMPLE VECTOR OPERATIONS

Stride = 1
Times in Nanoseconds

CFT 1.14 (Options) CFT 1.14 (No Options) CFT 1.13 (Options)

Telment Tstartstrip Tstartout Telement Tstartstrip Tstartout Telement Tstartstrtp T startout

v=v+s 9.5 203 177 9.5 203 978 9.5 205 174
v = v * s 9.5 204 186 9.5 202 990 9.5 204 196
v=v+v 9.5 251 177 9.5 251 849 9.5 249 186
v = v * v 9.5 280 293 9.5 279 913 9.5 284 240
v=v+s* v 9.5 264 276 9.5 266 1082 9.5 275 263
v=v* v+s 9.5 288 269 9.5 286 1095 9.5 294 273

v=v* v+v 14.2 304 460 14.2 283 1121 14.2 281 456

v=s*v+s*v 19.0 331 199 19.0 332 1036 19.0 329 207

v=v* v+v* v 19.0 442 224 19.0 444 839 19.0 449 197

CFT 1.13 (No Options) CFT 1.11 CFT 1.10

Telment Tstartstrip Tstartout Telement Tstartstrip Tstartout Telement Tstartstrip Tstartout

v=v+s 9.5 205 931 9.5 206 863 9.5 171 984

v = v * s 9.5 205 949 9.5 206 875 9.5 171 955
v=v+v 9.5 247 798 9.5 345 925 9.5 190 974

v=v*v 9.5 282 856 9.5 341 924 9.5 189 1175
v=v+s* v 9.5 267 1038 9.5 289 989 9.5 190 1196
v=v* v+s 9.5 290 1027 9.5 340 995 9.5 219 1095
v=v* v+v 14.2 280 1065 14.2 284 1152 14.2 171 1434

v=s* v+s* v 19.0 330 1000 19.0 153 1096 19.0 152 1192
v=v*v+v*v 19.0 453 799 19.0 243 1090 19.0 207 1336

21

NAS KERNEL BENCHMARK RESULTS

David H. Bailey

Informatics General Corp. / NASA Ames Research Center

Moffett Field, California

Abstract

The N AS Kernel Benchmark Program, developed by
the NAS (Numerical Ae:(odynamic Simulation) Projects
Office to assist in supercomputer performance evaluation,
has now been run on a number of currently available sys­
tems. This report briefly describes the benchmark pro­
gram and lists the performance figures that are now avail­
able. Analysis and interpretation of the results are in­
cluded.

Introduction

A benchmark test program has been developed for
use by the N AS program at the NASA Ames Research
Center to aid in the evaluation of supercomputer perfor­
mance. This Fortran program consists of seven sections
(referred to in this paper as kernels), each of which per­
forms calculations typical of NASA Ames supercomput­
ing. It is designed to provide a realistic projection of the
supercomputer performance that can be expected on ac­
tual user codes.

The N AS Kernel Benchmark Program will not be de­
scribed here in exhaustive detail. A more extensive de­
scription of the program, including a listing of the actual
Fortran code, may be found in [1]. These seven test ker­
nels were chosen from actual user codes currently being
run on NASA Ames supercomputers and were included
in the benchmark program with only minor changes from
these user codes. All of the kernels emphasize the vector
performance of a supercomputer - over 99% of the floating
point calculations are contained in DO loops that are at
least potentially vectorizable, provided the hardware of
the computer includes the necessary vector instructions
and provided the compiler being used is sufficiently so­
phisticated in its vectorization analysis. All floating point
computations in the seven kernels must be performed with
64-bit precision (at least 47 mantissa bits).

Substantial care was exercised in the selection of these
kernels to insure that none of them had any features that
unduly favored any particular supercomputer design. The
subroutines selected are all straightforward Fortran code,
intelligently written for vector computation but otherwise
neutral towards any particular model. An effort was made

22

to select a variety of calculations and memory operations.
Some of the kernels contain vector memory accesses with
only unit stride, while others have large strides. (The
term stride refers to the memory increment between suc­
cessive words stored or fetched from an array. For a real
array indexed by the first dimension in a DO loop, the
stride is one. For a real array indexed by the second di­
mension, the stride is equal to the first dimension.) Some
contain loops with very long vectors (as high as 1000),
while others contain loops with shorter vectors (the short­
est in a time-intensive loop is 28). A brief description of
each kernel is as follows:

1. MXM - Performs an "outer product" matrix mul­
tiply.

2. CFFT2D - Performs a two dimensional complex
Fast Fourier Transform.

3. CHOLSKY - Performs a vector Cholesky decom­
position.

4. BTRIX - Performs a vector block tridiagonal ma­
trix solution.

5. GMTRY - Sets up arrays for a vortex method so­
lution and performs Gaussian elimination on the
resulting array.

6. EMIT - Creates new vortices according to certain
boundary conditions.

7. VPENT A - Simultaneously inverts three matrix
pentadiagonals in a manner conducive to vector
processing.

Results

The N AS Kernel Benchmark Program has now been
run on a number of large computer systems,
and these figures may now be reported. Figure 1 lists
the performance rates in MFLOPS (millions of floating
point operations per second) for the various computers
and compilers tested. The column headed NO. CPUs
specifies the number of central processing units that were
used in the computation (note that two of the Cray runs
are for multiple CPUs). The column headed TUNING in­
dicates the level of tuning performed (0, 20, 50, or unlim-

COMPUTER/ NO. TUN- KERNELS COMPo
COMPILER CPUs ING 1 2 3 4 5 6 7 RATE

Cray X-MP /12 1 0 131.0 30.2 36.0 71.4 5.2 74.5 21.5 24.5
CFT 1.13

Cray X-MP /12 1 20 131.0 82.8 51.6 71.6 102.0 107.4 112.5 88.2
CFT 1.13

Cray X-MP/12 1 0 130.7 30.7 35.3 71.6 50.1 82.0 21.6 43.9
CFT 1.14

Cray X-MP /12 1 20 130.8 82.0 50.4 71.5 110.3 97.7 116.4 87.7
CFT 1.14

Cray X-MP /22 1 0 136.5 45.7 47.0 73.8 65.1 81.4 37.1 59.9
CFT 1.14

Cray X-MP /22 1 20 133.7 89.3 60.5 77.2 118.2 97.6 115.5 94.4
CFT 1.14

Cray X-MP /48 1 0 136.0 45.9 59.8 82.3 95.5 84.1 30.5 61.9
CFT 1.14

Cray X-MP/48 1 20 136.0 85.2 66.7 79.6 115.5 103.0 124.1 96.4
CFT 1.14

Cray X-MP /22 2 20 272.0 175.3 112.0 141.2 219.4 193.2 238.6 182.1
CFT 1.14

Cray X-MP /48 4 20 536.8 330.9 205.0 273.3 395.3 396.6 483.9 349.1
CFT 1.14

CDC 205 1 0 128.0 12.7 5.5 10.8 3.2 5.9 10.8 8.9
F200PRI

CDC 205 1 0 116.6 12.5 24.2 8.0 21.3 61.1 9.4 16.1
VAST 1.21

CDC 205 1 20 129.S 49.5 10S.4 14.5 72.1 76.9 52.S 44.7
VAST 1.21

CDC 205 1 50 127.8 57.4 10S.3 135.7 75.0 76.2 67.4 82.9
VAST 1.21

Amdahl 1200 1 0 465.1 11.1 42.2 8S.5 3S.3 214.5 7.3 22.4
VI0LlO

Amdahl 1200 1 20 497.2 106.0 95.6 88.0 127.5 214.9 202.3 139.1
VIOLIO

Amdahl 1200 1 50 500.9 106.5 96.1 91.3 127.4 220.5 202.4 140.8
VIOL 10

Amdahl 1200 1 unlm 499.2 162.1 96.7 124.5 150.9 219.4 232.2 174.7
VIOLIO

Figure 1: NAS Kernel Benchmark Program Results (MFLOPS)

23

ited lines changed out of approximately 1000 total lines).
The columns numbered 1 to 7 give the rates on the in­
dividual kernels, and the column headed COMPo RATE
gives the composite MFLOPS rate. The composite rate is
the total floating point operations performed in the seven
kernels divided by the total of the seven CPU times.

Notes

Figures for more than 20 lines of tuning on the Cray
X-MP computers are not shown because the rates listed
for 20-line tuning are close to the maximum attainable
level. The uniprocessor Cray X-MP /22 and X-MP /48
rates, especially the untuned figures, are slightly higher
than the X-MP /12 rates because the X-MP /12 has slower
memory chips and fewer memory banks than the multi­
processor models. The figures listed in the box for two
CPUs on the Cray X-MP /22 and for four CPUs on the X­
MP / 48 are the result of running the N AS Kernel Bench­
mark Program simultaneously on each processor. These
runs thus represent the total system throughput that can
be expected in a multiprogramming environment. These
runs do not represent multitasking, because multitask­
ing means modifying a code so that separate parts of the
computation run on separate processors, and the individ­
ual parts are coordinated. In these two cases the entire
program was run on each processor without coordination,
so they do not qualify as multitasking runs in any sense.
However, they do provide a good estimate of the wallclock
speedup that could be achieved if true multitask process­
ing were invoked. Note that these figures are only 1.93
times and 3.62 times as high as the corresponding unipro­
cessor results. Memory bank contention prevents these
rates from achieving a full two or four times speedup.

No tuned code figures are listed for the CDC 20S with
the standard F200 compiler. This is because significant
improvement in the performance figures would require uti­
lizing the CDC Fortran explicit vector constructs, which
are not allowed for this test because they are not standard
ANSI Fortran. Using these explicit vector constructs and
some other tuning, a composite performance rate of 84.1
MFLOPS was achieved, which is close to the SO-line tun­
ing figure listed above for the CDC 20S with the VAST

Fortran processor. According to CDC personnel, within a
few months a new Fortran processor, based on vectoriza­
tion techniques pioneered by Prof. Kuck of the University
of illinois, will be available for use on the CDC 20S. This
processor will likely yield higher performance figures than
the VAST processor figures cited above.

The figures shown for unlimited tuning on the Am­
dahl 1200 Vector Processor system are actually based on
approximately 400 lines changed. The Amdahl represen­
tative who performed this tuning is convinced that some
further improvement in the composite rate is possible with
additional revision of the code.

Tuning for the Cray runs was initially performed by
the author. Subsequently a representative of Cray Re­
search, Inc. reviewed this tuning and his suggestions were

24

incorporated for the final runs. Tuning for the CDC and
Amdahl runs was performed by their own benchmark per­
sonnel with input from the author.

Analysis

The most striking aspect of the above table of figures
is the great variance of the rates on the same kernel. Even
on the same computer the rates vary dramatically. This
spread indicates that even minor tuning can sharply im­
prove execution speeds, and that an effective compiler is
a critical part of system performance.

The most common tuning technique employed on the
various systems was to change the dimensions of arrays in
order to avoid the disadvantageous memory strides that
result when arrays are indexed by other than the first
dimension. For example, the dimension of one array in
kernel seven was changed from (128,128) to (129,128) for
both the Amdahl and the Cray tuned code runs. This
change alone increased the performance rate of kernel
number seven by a factor of 27 on the Amdahl 1200 and
by a factor of S on the Cray X-MP /12. The second most
commonly applied tuning technique was the insertion of
compiler directives to force vectorization of DO loops.
Most of the other tuning consisted of code revisions to
avoid certain constructs that were not handled well by
the system.

The process of tuning the code on the various ma­

chines disclosed several weaknesses of the various Fortran
compilers. For example, one key DO loop in kernel five
calls the complex exponential function. The Cray CFT
1.13 compiler vectorized this loop, but the vector ver­
sion of the complex exponential function was merely a
loop that iteratively called the scalar complex exponen­
tial function. As a result of this fact and the failure of the
compiler to vectorize one other key DO loop, the untuned
performance rate on this kernel was only S.2 MFLOPS
on the Cray X-MP /12. The difficulty with the complex
exponential function was overcome in tuning by defining
an inline version of the function at the beginning of the
subroutine, as follows:

CEXP(Z) = EXP(REAL(Z» *
S CNPLX(COS(AIMAG(Z»,SIN(AIMAG(Z»)

This change, together with an altered dimension and a
compiler directive, increased the performance rate on this
kernel by a factor of 20. Both of the above mentioned
shortcomings were rectified in the CFT 1.14 compiler.

Another feature of both CFT 1.13 and 1.14 discovered
in the process of tuning is their failure to vectorize simple
complex summation loops:

COMPLEX X(50) , Z
Z = (0., 0.)
DO 100 I = 1, 50

Z = Z + XCI)
100 CONTINUE

Such summation loops with real or integer variables are
readily vectorized by both versions of CFT, but complex
variable summations are not for some reason.

Coincidentally, the loop mentioned above with the
complex exponential reference also proved troublesome to
the Amdahl compiler, although for a different reason. The
loop contained the line

ZZ = ZI - 1. I ZI
where each variable is of type complex. The compiler
failed to vectorize this statement, and as a result the per­
formance rate on kernel five was significantly reduced. For
the minor tuning test this statement was rewritten using
the complex constant (1., 0.). The statement was then
correctly vectorized by the Amdahl compiler.

Except for the above mentioned details, both the Am­
dahl and the Cray compilers display a high level of so­
phistication. For instance, the CFT 1.14 compiler now
includes a "conditional vectorization" feature. If the com­
piler cannot determine at compile time whether or not a
recursive dependency exists in a DO loop, then the com­
piler generates both a scalar and a vector version of the
loop, complete with an execution time test for safe vector­
ization. The Amdahl compiler appears to be even more
sophisticated than the CFT compilers. It attempts to
vectorize not only inner DO loops but also outer loops
if conditions permit. In addition, if part of a DO loop
resists vectorization, the Amdahl compiler vectorizes the
rest, whereas the Cray eFT compilers generally vectorize
a loop only if all statements within the loop are vector­
izable. Another area where the Amdahl compiler seems
to outperform the Cray compilers is in the vectorization
of IF statements. CFT 1.13 vectorizes some IF state­
ments if a certain option is specified, but only CFT 1.14
can vectorize IF... THEN... ELSE constructs. The
Amdahl compiler vectorizes both of these constructs and
even some IF ... GOTO statements, such as loops that
search for the first occurrence of a given value in an array.

Conclusions

The three supercomputers tested have achieved high
performance figures on the N AS Kernel Benchmark Pro­
gram. The highest composite rate, 349.1 MFLOPS, was
achieved by the Cray X-MP/48, which is to be expected
since this was a four processor run. However, it should
again be emphasized that this result is not true multi­
tasking - the benchmark program was run simultaneously
on each processor, and the results were added. Thus
these results should be considered to be a measure of the
overall system throughput capacity of the machine rather
than the execution speed of a single job. A user could
achieve comparable rates on a single job only by making
the changes necessary to invoke true multitasking.

Comparing uniprocessor figures, the rates were closer,
with all three systems achieving in the neighborhood of
100 MFLOPS on tuned code. Since each of the three
systems has claim to the highest rate on at least one of
the seven kernels, it is hard to make absolute statements
about the relative performances of these systems. How­
ever, certain patterns can clearly be seen.

25

The Cray X-MP computers with the new CFT 1.14
compiler achieved impressive untuned performance fig­
ures, significantly higher than untuned figures on the other
systems (considerably higher even than CFT 1.13). The
Amdahl 1200, on the other hand, achieved very high rates
on many of the kernels with some tuning, although the
overall untuned performance was not spectacular. This
is mostly due to the fact that the Amdahl machine is
more sensitive to disadvantageous memory strides than is
the Cray X-MP system. The CDC 205 is clearly capa­
ble of high performance rates (it had the highest rate of
the three systems on kernel four), but it seems to require
more tuning to achieve these rates. One reason that extra
tuning is required is that the CDe Fortran compiler is ap­
parently not as advanced as the compilers available on the
other systems. This situation may be rectified with the
introduction of more· powerful Fortran processors on the
CDC /ETA computers. Another factor in the CDC rates
is the long startup times for vector operations. As a re­
sult, codes with vector lengths less than about 70 usually
require revision (such as combining an inner loop and an
outer loop into one loop) before the performance reaches
its full potential.

The level of tuning that is the most appropriate for
comparison depends on the nature of the supercomput­
ing application. For a research and development appli­
cation, the minor tuning figures may be the most impor­
tant. Programmers in such environments usually apply
some optimization techniques in their programs, but they
seldom have time to perform massive tuning, especially
on a code that is being continually revised. On the other
hand, the major tuning or unlimited tuning figures might
be more appropriate for a production computation appli­
cation, where a single code might be used on a daily basis
for years, and a large investment in optimization would
be worthwhile over the long run.

Using the minor tuning figures (with the best avail­
able compiler) as a standard, it appears that the Am­
dahl 1200 Vector Processor has the highest uniprocessor
performance rate, with about 1.5 times the Cray X-MP
uniprocessor rates and about three times the CDC 205
rate. If major tuning is allowed, then the CDC figures are
improved to nearly the Cray X-MP level, but the Amdahl
figures are still about 1.5 times faster than the X-MP
or the 205. If we consider the total system throughput
with the minor tuning figures, then the Cray X-MP/48 is
clearly the winner with about 2.5 times the throughput of
the Amdahl. Similarly, the Cray X-MP /22 would likely
achieve about 30 percent higher throughput than the Am­
dahl, although this comparison is closer if major tuning
is permitted. These results must be considered tentative,
since they could change overnight with the introduction
of a more powerful version of the Fortran compiler on any
of these systems.
Reference

1. Bailey, D. H., and Barton, J. T., "The NAS Ker­
nel Benchmark Program", NASA Technical Mem­
orandum, April 1985.

SSD USER EXPERIENCE SESSION

r~ostyn Lewi s

Chevron Oil Field Research Company
La Habra, CA

Approximately three years after the advent of the Solid
State Device (SSD), it seemed appropriate to gather together
some user experiences and some hopes. Conrad Kimball of BCS
elaborated on experiences and Ronald Kerry of GM voiced
hopes relevant to their impending delivery of an SSD.
Mostyn Lewis of COFRC spoke of his site's locally developed
SSD automatic preemption code and its latest enhancements
and future.

COFRC SSD Code

Mostyn Lewis recapped the abilities of this locally developed
major software effort to provide automatic SSD swapping.
Over the last two years it was noticed that, in heavy
demand, users were turning away from the SSD due to poor
turnaround -- waiting for their chance at use (either for an
initial allocation or waiting in "rolled out" state for
their next go). Consequently, people shunned the SSD and
went back to using disk, which although slower had a pre­
dictable turnaround. To help alleviate this situation, we
changed the swap code to work on a "virtual SSD", i.e.,
disk. Hence, the user could execute all the time and in
between SSD allocations execute in a "swapped out of SSD
state". Optionally, at the user's choice, via JCL, the old
regime of not doing anything in a swapped out state (i.e.,
being suspended) still exists -- this is for purists who
wish to do timings and benchmarks.

COFRC will soon offer Cray access to its code so Cray can
provide the same functionality in their equivalent (in
COS 1.16?). Also, COFRC is willing to find suitable trades
for other sites to use the code and General Motors are
expected to use our code next year.

26

CRAY SSD SCHEDULING CONCERNS

Ronald Kerry

General Motors Research Laboratories
Warren, MI

The CRAY SSD provides definite application performance gains in an
unconstrained environment (in terms of SSD demand). However, in an
environment where there is significant competition for the use of the
SSD, throughput can actually decrease.

I will discuss the specific concerns which General Motors
Laboratories has regarding the use of the SSD in just
environment. It should be noted that these concerns are
speculative as we do not have an SSD at the present time.

Research
such an

purely

General Motors Research currently has a CRAY-IS with 2 million words of
memory and a 3-processor I/O subsystem. The applications which we run
on our CRAY include engine modelling, aerodyanmics, and structural
analYSis along with other automotive applications. These applications
all require the computational power of the CRAY. They also require
either very large amounts of memory or a large very fast I/O device.

Through benchmarking, we have shown that a large SSD can provide
adequate application performance in a standalone benchmark environment.
This led us to the decision to obtain a 128Mw SSD when we upgraded our
CRAY to an XMP-24 in February 1986.

However, the expected performance gains could very well not be seen if
excessive competition for the device results. The SSD is a very
expensive device; it would also be wasteful if the SSD went virtually
unused. We feel that significant enhancements need to be made to the
CRAY Operating System software to take full advantage of the SSD in a
multiprogrammed environment.

Some of the issues which we feel must be addressed by CRAY Research
include:

1) control over how the SSD is used -- should it be used for memory
roll images in addition to user data?

2) should a job be locked out until space is available on the SSD? -­
should a job be rolled out of the SSD after a period of usage? -- it
takes a very long time to rollout 128Mw worth of data!! -- what about a
partial rollout of the data?

3) should data be split across the SSD and disk devices?

General Motors Research will probably obtain the SSD scheduling code
written by Chevron in order to help alleviate some of the above concerns
in the short term. In the long term, CRAY Research MUST step up to the
responsibility of properly supporting a device which they sell! In the
real world, many applications require large amounts of memory, or
failing that, u large amount of very fast external storage. The SSD
hardware has the capability to answer that need. Where is the software?

27

SSD EXPERIENCE AT BOEING COMPUTER SERVICES

Conrad Kimball

Boeing Computer Services
Bellevue, WA

OVERVIEW

Boeing Computer Services, a division of
The Boeing Company, is currently running
an X-MP/24 with an SSD-5 (134 million
words) and 24 DD-29s. We are running COS
1.12, but with a 1.13 version of the lOS
software. We have roughly 275,000 lines
of local code distributed throughout COS,
the lOS, the libraries, and the product
sets. Part of this is our own SSD manage­
ment system. We use the low-level Cray
Research support of the SSD (device dri­
vers, etc.), but we have replaced the
higher level functions of allocation and
scheduling. Our SSD management philosophy
allows a single job to use up to 100 mil­
lion words of SSD, with more available by
special arrangement. To free up central
memory, we have put CSP in the SSD.

SSD MANAGEMENT ISSUES

Goals

When Boeing Computer Services began plan­
ning for its SSD, we drew up a list of
goals for the management of the SSD:

o For sufficiently small amounts of SSD,
there should be no need to declare any
SSD resource requirements.

o Reservation and allocation of SSD space
should be deferred as long as possible,
preferably until it is needed to do
physical I/O.

o When SSD space is reserved, minimize
any excess reservation beyond the
amount of SSD needed to do I/O.

o Minimize the differences, visible to
low levels of code or JCL, between SSD­
and disk-resident datasets.

o Avoid the need for users to know speci­
fic SSD device names.

o Provide feedback to users about their
usage of the SSD.

28

o Interactive jobs must be able to use
the SSD.

o SSD accounting must be separate from
disk accounting. In particular, an SSD
residency integral must be computed.

o Preserve any SSD data sets across a
shutdown and restart.

Standard COS 1.12 SSD Facilities

Standard COS 1.12 supports the SSD as a
generic resource, with several undesirable
consequences.

SSD resources must be explicitly declared,
regardless of how much or how little SSD
space will be used. SSD resources can be
requested only via the JOB statement.
This means that:

Interactive jobs cannot use the SSD,
since they have no JOB statement.

An unsophisticated user must be aware
of whether any canned procedures use
the SSD (and how much), and adjust the
JOB statement accordingly.

SSD resources are allocated at the time a
job starts. This leads to several ineffi­
ciencies:

A job is not started until there is
enough free SSD space to satisfy its
maximum SSD usage, regardless of how
long the job may run before it actually
uses the SSD.

Once a job starts, its SSD space is
unavailable to other jobs, regardless
of how long the job may run before it
actually uses the SSD.

A job's SSD allocation monotonically
decreases over time. This causes other
inefficiencies:

Even though a job's maximum SSD re­
~irement might occur late in the job,
1t must reserve (and leave idle) that
much SSD space from the start of the
job.

If a job uses SSD in two or more widely
separated intervals, it must retain its
SSD reservation until all SSD usage is
complete. This may, in turn, require
knowledge of how various canned proce­
dures behave.

Low-level awareness of SSD usage is
required. For example:

Individual ASSIGN statements must be
used to assign the SSD to a dataset.

ASSIGN requires the user to know the
site's SSD device name.

A RELEASE of an SSD dataset reduces the
job's SSD reservation by the size of
that dataset. Even though Cray
Research is planning a no-reduce option
for the RELEASE statement, the user
must still be aware that SSD is being
used, so that he can choose that
option.

OPTION,STAT is the only tool that provides
feedback about SSD usage, and it shows
only cumulative statistics, when what is
really needed is history of activity over
time.

SSD usage accounting is not distinguished
from disk usage accounting.

Boeing Computer Services' Implementation

In light of the goals that Boeing Computer
Services set and the deficiences in the
standard COS 1.12 SSD support, we designed
and built our own SSD management facility.

The maximum SSD that a normal job may use
is 100 million words. With prior arrange­
ments a job may use the entire 134 million
words of the SSD.

No explicit SSD space declaration needs to
be made for usage up to 10 million words.
We chose the 10 million word cutoff for
the following reasons:

29

Of all the jobs that run at Boeing,
more than 90 percent use at most 10
million words of scratch disk space.
Thus the vast majority of our custo­
mers' jobs can use the SSD without
needing to declare it - all they must
do is direct their datasets to the SSD.

Calculations showed that dynamic pre­
emption of 10 million words of SSD
would have acceptable performance (be­
tween 20 and 30 seconds, using non­
striped DD-29s). As we do not yet have
a dynamic preemption mechanism, the
system provides an implicit declaration
of 10 million words whenever a job
tries to use the SSD.

When an explicit SSD declaration is
needed, it can be done either by using the
SSD parameter on the JOB statement or by
setting the JCL variable 'SSD' to the
number of blocks needed (e.g.
SET,SSD=50000). This gives us several
nice properties:

Compatibility with the standard SSD
declaration on the JOB statement.

Canned procedures can make use of the
SSD without the user needing to know
about it or having to change his JOB
statement.

Interactive jobs can use the SSD.

Reservation and allocation of SSD space is
deferred to the last possible moment.
Even though a job may have made an SSD
declaration, the system does not actually
reserve any SSD space until the job tries
to perform a physical write on some data­
set that is assigned to the SSD. The
system (DQM) detects that no SSD has been
reserved, and triggers the reservation
mechanism. If not enough SSD is availa­
ble, the job may be suspended at this
point. When the last SSD dataset is
released, the system releases the job's
SSD reservation, until the next time that
a physical write is done on an SSD data­
set. As a result:

Jobs that use SSD will run, unhindered,
until they actually need to use the
SSD. At that point they may be sus­
pended, but at least they have had an

opportunity to accomplish useful work
in the meantime.

SSD space is not locked up and left
idle between the time a job starts and
the time that it needs the SSD.

A job's SSD declaration can be adjusted,
either up or down, via the SET statement.
One use of this allows a job to overesti­
mate its SSD requirements, create all its
SSD datasets, then reduce its SSD reserva­
tion to the amount actually in use. Of
course, if a job increases its SSD decla­
ration while it is holding an SSD reserva­
tion, there is a possibility of a deadly
embrace with other jobs using the SSD.
SSD preemption could handle the deadly
embrace, but since we do not have preemp­
tion, we disallow any increase in the SSD
declaration while a job has any SSD space
in use (in effect the job must do the pre­
emption itself).

To minimize the need for low level aware­
ness of SSD usage, we implemented the
following facilities:

Wherever a user can specify a device
name, a user may specify a generic
device name (as opposed to the name of a
generic device). To assign a dataset
to the SSD, a user need only use
'DV=SSD', rather than the full device
name of 'DV=SSD-0-20'. In a similar
fashion, to assign a dataset to any
disk device, a user need only use
'DV=DD', rather than knowing about
device names such as 'DD-Al-20', etc.
To ensure datasets are assigned to
distinct disk devices, a user can use
'DV=DD-ordinal', where 'ordinal' is an
ordinal into whatever disk devices
exist at that time (e.g., 'DV=DD-l',
'DV=DD-2') .

For performance reasons, SSD datasets
are assigned a default buffer size of
40 blocks.

A job may control SSD overflow behavior
at the job level setting the SSDOVF JCL
variable. If SSDOVF=TRUE, SSD datasets
may spill to disk (unless a specific
ASSIGN declares otherwise for that
dataset). If SSDOVF=FALSE, the job
aborts when an SSD dataset overflows

30

the SSD.

The OPTION statement was extended to
allow a job to change its default buf­
fer size, to change its SSD default
buffer size, and to choose a default
device for subsequent datasets. For
example, OPTION,DV=SSD,SSDBS=20 would
assign all subsequent datasets to the
SSD, with a default buffer size of 20
(octal) blocks. While we were at it,
we also propagated all relevant parame­
ters (such as BFI and LM) from the
ASSIGN statement to the OPTION state­
ment. Of course, a specific ASSIGN
statement can override any of the
defaults selected by the OPTION state­
ment.

To provide users with more feedback about
their SSD usage, a local utility (DNLIST)
can be used at any point in a job. DNLIST
lists all the local datasets that exist,
and if OPTION, STAT is turned on, also
lists the OPTION, STAT information. Should
an SSD overflow occur, the system informs
the user (in the logfile) about which
dataset overflowed, its size at the time
of the overflow, and also the names and
sizes of any other SSD data sets that may
exist. At the end of the job, the system
informs the user (in the logfile, again)
of the high water marks of the job's SSD
usage and scratch disk usage, and the
times when they occurred.

To make things easier for our operations
staff, we have changed shutdown to auto­
matically flush the SSD if any jobs have
SSD space in use. A subsequent restart
will automatically restore the SSD, if
necessary.

Finally, we modified COS slightly to allow
CSP to be SSD resident. This frees up
about lOOK of central memory, without the
performance penalty of putting CSP on
disk.

PERFORMANCE OBSERVATIONS

In one performance study we observed that
as buffer size increases, the sequential
I/O transfer rate approaches an asymptotic
value of 1 billion bytes per second. The
transfer rate curve rises steeply at first
and then levels off. The knee point is in

the vicinity of a 40 block buffer size,
which attains approximately 75 percent of
the asymptotic transfer rate (hence our
default buffer size of 40 blocks for SSD
datasets).

As we gained experience with the SSD, we
noticed an interesting phenomenon. For
many codes, the access counts of SSD data­
sets were almost exactly equal to the
total blocks transferred divided by 1/2 of
the buffer size - almost every physical
I/O request was transferring 1/2 buffer.
We believe that this is because the SSD is
so fast that applications cannot keep up
with it unless they are extremely I/O
bound and use very big buffers. From this
observation we have concluded that the 1/2
buffer threshold for physical I/O (embed­
ded in the $SYSLIB I/O routines) is coun­
terproductive for the SSD. It seems that
Cray Research has reached a similar con­
clusion, because an upcoming COS release
will allow users to adjust the physical
I/O thresholds of their datasets.

A flush of the 134 million word SSD, using
non-striped DD-29s, with write-behind ena­
bled, takes about 5 minutes. A restore
takes about 10 minutes, since it writes
the SSD, reads it back, and verifies that
the SSD data is intact. Recently, how­
ever, another site discovered a bug in the
write-behind logic that handles error re­
covery, so we have disabled write-behind.
A flush now takes about 15 minutes!

HOW CRAY RESEARCH CAN HELP

Cray Research could do many things to help
its SSD customers. Some of the issues
that interest Boeing are:

o Reduce the system overhead in process­
ing SSD I/O requests. The new queued
I/O scheme sounds like it will be effi­
cient, but it will require application
codes to change/the way they do I/O.
If queued I/O could be embedded in some
library I/O routines, so it is trans­
parent to the user, then it would
really be useful. One of the nicest
things about the implementation of SSD
support is that the SSD can easily be
substituted for disk, and standard I/O
requests can be used.

31

o Provide a high speed SSD preemption
facility - both operator initiated pre­
emption and dynamic (system initiated)
preemption. Dynamic preemption should
preempt only as much SSD space as is
needed to satisfy the requirements of
the higher priority job.

o Provide more feedback to SSD users. As
difficult as it may be to implement,
what is really needed here is some way
to plot, over the life of a job, how
much SSD and scratch disk space the job
uses, and the amount of I/O it does.

o Fix the SSD scheduling algorithm to
eliminate the 'dead' SSD space that
occurs now.

o Speed up the flush and restore of the
SSD. One way might be to use striped
disks; another might be to flush and
restore only those parts of the SSD
that are in use.

o Allow sites to use the SSD as a high
speed swap device. As main memories
get bigger and bigger, so do the jobs
that users run. As jobs get bigger, it
takes longer to roll them out and back
in. For jobs that occupy all of main
memory, the system is essentially idle
while the rollout and rollin occur.
For example, a single job that uses all
the memory on our X-MP, (about 3.9
million words), takes 10 - 13 seconds
to rollout and another 10 - 13 seconds
to roll in. Even with striped DD-49s
it will still take about 3 - 4 seconds
for a round trip. With the larger
8-million and 16-million word memories,
the overhead of rollin and rollout
could quickly get out of hand.

One way to alleviate this problem might
be to use the SSD as a high speed swap
device, or at least as a staging
device. Using its high bandwidth,
exchanging two 3.9 million word jobs in
main memory would take less than a
tenth of a second. The system could
then migrate jobs between the SSD and
disk, at its leisure. This could be
made even more attractive by using the
SSD back door to stage roll files be­
tween disk and SSD.

CONCLUSIONS

We have found that SSD performance is all
that it is touted to be. ~nfortunately,
in an environment as diverse as that at
Boeing Computer Services, the SSD is not
as useful as we would like it to be. Much
work remains to be done for Boeing to
realize the SSD's full potential.

32

USER REQUIREMENTS COMMITTEE REPORT

stephen Niver

Boeing Computer Services
Seattle, WA

The first part of this report deals
with the results of the winter '84
ballot. There were six items that
were to be forwarded to Cray Re­
search (CRI) for comment. The re­
sponse from CRI is as follows:

COS Coding standards

Following a well-established set of
coding standards benefits both CRI
and COS sites. Please publish these
standards and modify cos in those
routines that deviate from the
standards.

Response: Cray does not plan to
publish cos coding standards.

User Exits

User exits should be implemented at
all important decision points in COS.
These should provide hooks with a
guaranteed interface at all places
that users in general want to put
modifications. Specification of
this requirement in more detail
would follow acceptance of the prin­
ciple by Cray.

Response: Cray will consider
customer requests for specific COS
enhancements in support of User
Exits.

Cray appreciates the need by some of
its customers to implement local
system code in COS to adapt the
system to their specific needs.
Since local code can make system
support more difficult for both Cray
and Cray's customers, Cray would
give priority to User Exits which
enhance the maintainability of the
system and which benefit a large
number of customers.

33

Installation Areas in cos Tables

Installations should be able to
define and use areas within all COS
tables. In some tables, it may be
appropriate for CRI to set aside a
guaranteed number of words. In other
cases, the ability to increase the
size of tables with an assembly-time
table definition may be more
sensible.

Response: Cray will consider
customer requests for specific COS
enhancements to provide Installation
Areas in COS tables.

Cray appreciates the need by some of
its customers to implement local
system code in COS to adapt the
system to their specific needs.
Since local code can make system sup­
port more difficult for both Cray and
Cray's customers, Cray would give
priority to putting Installation
Areas in COS Tables which enhance the
maintainability of the system and
which benefit a large number of
customers.

System Tuning

As the COS system has become more
complex, the ability to easily
tune/modify the system assumes
greater importance. It would be ben­
eficial, therefore if CRI were to
adopt a design direction that all
tunable aspects of COS be parameter­
ized and changeable via STARTUP direc~
tive or installation parameter as
appropriate.

Response: Cray will consider
customer requests for specific COS
enhancements in support of System
Tuning.

Most tunable aspects of COS are
already parameterized. Cray would
be interested in requests both for
educational items related to tuning
(such as the Job Scheduler Tuning
Guide) and for tools in support of
tuning.

Software Configuration

As the site configurations have
become more varied, software has
been written to support many diverse
hardware and software features.
sites should have the ability to
"configure out" that code that does
not apply to their specific
configuration.

Response: Cray will consider
customer requests for specific COS
enhancements in support of Software
Configuration.

Cray has made enhancements for COS
1.15 in support of diverse hardware
features. These include new CONFIG
functions, such as the ability to
up/down a CPU and a target CPU
capability. Both STARTUP and CONFIG
are being considered for further
enhancement.

Support for "configuring out" code
is not planned for COS. Although
the Tape Queue Manager Task may be
configured out of the system, other
COS features are implemented within
several tasks. Testing and
performance considerations make
configurability of these features at
cross purposes with a reliable
performance-oriented product.

Queue Management

Installations with large numbers of
users can easily get into the
position of needing to maintain
large input queues. The development
of network access to the Cray will
lead to this becoming a universal
experience. Running out of queue
space leads to unrealistic
operational problems. Expanding the
number of possible queue entries to
a related level would lead to an
unacceptable large main memory
commitment.

34

A queue management feature is
required which would allow a much
larger number of queue entries,
including expansion to disc, dumping
of queues and portions of queues.
The feature must provide for the
maintenance of relative priorities of
items no matter where they reside.

Response: Cray has placed this
feature in its planning cycle for
future implementation.

SSD Management

Competition for scarce system
resources dictates the need for an
"intelligent" means for managing
these resources. The system must
make these resources easy to access
(i.e., no hard specification on job
card) yet manage the resource usage
so maximum utilization does occur and
resource deadlocks do not. COS
already "manages" the CPU and main
memory through the job schedule.
Please extend COS to manage the SSD
and buffer memory as well. Features
should include (but not be limited
to) the ability for system control
(scheduling, allocation and
deallocation/rolling) and operator­
initiated control.

Response: A project for the SSD
management capability described is
underway and planned for release with
COS 1.16. A design document has been
completed for internal review.

Concurrent Maintenance

For sites committed to a 24-hour,
7-day-a-week production, system
availability is a critical concern.
To insure total system availability
to the maximum number of users, some
changes in the approach to overall
system design is necessary. The
design goal should be that when a
system anomaly occurs, the failing
component should be isolated so that
a set of users are impacted rather
than the whole customer set. In
summary, the system design goal
should provide that the whole
production system should not be
totally impacted when the unit
failure occurs or while the failure

is being isolated, repaired, or when
the failing element is returned to
the production system. Some
examples are the following:

Disk drive/controller failures
Single CPU failures within a

multi-headed system
Tape Drives

Response: The following areas
have been identified for attention:

Offloading disk data
Add capability to allow

diagnostics executed in
privileged mode

Create 'diagnostic' task
Operator messages
Access to channels
'Portioning' devices
'Portioning' memory
Disk information requests
CPU in maintenance mode

The first four items are complete and
the remainder should become available
progressively throughout 1986.

Summary of Ballot Responses
The appropriate Special Interest
Committees will now work with CRI to
assist CRI in specific implementa­
tion for those items CRI plans to
consider.

The second part of the report covers
the results of the recent (Summer,
'85) ballot (Fig. 1). Following
discussion in the User Requirements
committee, it was recommended that
CUG forward the top three items to
CRI for comment. The lowest rated
item, MODULA2, will be dropped; the
remaining items will be carried to
the next ballot. The two dotted
lines on the chart graphically
portray this. Those items above the
top line are forwarded to CRI, those
below the bottom are dropped, and
those in between are carried to the
next ballot.

SUMMER 1985 CUG USER REQUIREMENT SURVEY RESULTS

** RESPONSES SORTED BY TOTAL POINTS **

NUM FEATURE TOTAL PERCENT AVERAG
RESP TITLE POINTS POINTS RESP.

28 PERMANENT DATASET PROTECTION 873.0 25.8 31.2
27 SCILIB EXTENSIONS 596.0 17.6 22.1
'27 JOB DEPENDENCY 576.0 17.0 21.3

- - - - - - - - - - - - - - - - - - -
17 ENHANCED PDS MAINTENANCE 389.0 11.5 22.9
15 IMPROVED INTERACTIVE 275.0 8.1 18.3
19 JCL MULTI-TASKING 250.0 7.5 13.2
11 CRAY-TO-CRAY COMMUNICATION 231.0 6.8 21. 0

- - - - - - - - - - ------- - - - - - - - -
2 CTSS SUPPORT 170.0 5.0 85.0
2 MODULA2 20.0 0.6 10.0
0 UNASSIGNED 0.0 0.0 0.0

Figure 1

35

SOME USER EXPERIENCE IN MIGRATING TO CFTl.14

The ULCC Environment.

Chris Lazou

University of London
Engl and

The University of London Computer Centre provides large-scale computer services to
members of the academic community throughout Britain. These services are based on
a Cray-lS/1000 running COSl.I2, CFTl.ll (old calling sequence) and an Amdahl
470V 18 running MVS SP1.3. Access to the centre is provided over X25 - based wide
- area networks in conformity with the ISO model of Open Systems Interconnection
(051).

The user community consists of postgraduates and university teachers, and totals over
6500 accounts. About 1500 of these accounts are Cray-IS users. Most of the users
have to submit their work for a "peer review", to establish whether their work
warrants a large-scale computer, before they are allowed to use the Cray-IS. This
rather small system is overloaded and our users' requirements are one to two orders
of magnitude larger than the computational capacity of the Cray-IS. The work
simulated on the Cray-IS at ULCC spans the complete range of academic disciplines
from physical to biological sciences on to humanities.

CFT Versions

Apart from CFTl.ll (old calling sequence) residing in the system, we also have
CFTl.I0, CFTl.ll (new calling sequence), CFTl.13 bug fix 2, CFTl.14 bug fix 2 on
permanent data sets. Indeed many of the other bug fix versions are also there,
which gives you an indication of the inherent instability of .eFT as a product. In
addi tion to the Cray Products, we support the Cray Library, the mathematical
libraries NAG and IMSL, and some 35 packages and other libraries including graphics.

The size of user programs run on the system, range from small development jobs, to
large (several hundred thousand lines of Fortran statements) production jobs,
partitioned to use as much of the Cray resources available.

Migration Path

As a matter of policy ULCC plans to effect upgrades during the summer when
University treachers are free from undergraduate teaching duties. Since our user
population is spread around the country, we have adopted the following migration path
whenever we wish to upgrade a new version:

1. Document and distribute any external user changes, noting their possible
impact on running programs to the user community.

2. Place CFT and associated products on permanent data sets and provide a
procedure to access them.

39

3. Encourage application programmers at ULCC and the users at large to try
new versions of CFT.

4. Generate new libraries on permanent data sets for users to access on a trial
basis.

5. A stringent quality assurance exercise is initiated with the aim of assuring
that all previous production programs still function correctly with the new
versions (an impossible task with Cray software).

Problems encountered during migration.

Once the user community started using CFTl.14 the problems b~gan to pop out of
the woodwork. Our Cray analyst verified and submitted on ULCC's behalf, 7 critical,
5 major and 2 minor SPRs. There are 3 more known problems which are currently
under investigation, not as yet isolated enough to establish whether we have to issue
new SPRs for them.

The problems encountered were mainly due to the CFT compiler generating wrong
code or the functions in the ARLIB library, have been "speeded up", by changing the
algorithms, but with scant respect to accuracy. These problems were detected in
large codes such as the LUSAS package (55K lines of code), a computational
chemistry program (350K lines of code), crystallography package, econometrics,
GAUSSIAN 82, and the NAG tests.

Remedies

With such spread of problems encountered at CFTl.14, ULCC was unable to upgrade
last summer. Another problem which may be local to European sites, is that the
response to critical SPRs by Cray Research is very slow. Even when code has been
developed to solve the critical problem it is often not available to us for several
weeks rather than days.

Recommendations

1. CRI should do more testing before releasing its products, if it wishes to
preserve the confidence of the user community to their worthiness.

2. CRI should consider providing a mechanism for access of all current SPRs by
all sites to enable installations to ascertain whether a problem they are
hitting has previously been reported. This has the added advantage, for
installation analysts, of providing material hints to assist them when trying
to isolate problems in large systems. Some of these problems take days to
isolate and any reduction of this unnessary cost, would be appreciated.

3. CRI should consider publishing any changes to algorithms calculating floating
point numbers results from mathematical functions and should try to conform
to either IEEE or other suitable standards where available.

4. CRI must do better as far as CFT is concerned if it wishes to keep ahead
of its competitors in this field.

40

,,"i h":' .", ,,'."

SPECIAL :ttfrEREST:; CoMMEtrEE'::REPOBTS;:
','. '" "~'~: ~ . ": $ h " ~., 'i .". "'~'" ~ ,; "'"'.~

NETIVORKING AND FRONTENDS SESSION I

Dean \"7. Smith

ARCO Oil and Gas Company
Plano, Texas

The networking parallel session consisted
of three talks by users on their
experiences and desires regarding various
Cray Research software products. Ronald
Kerry's talk concerned General Motors'
experiences installing and using the new
Superlink/ISP product. Annabella Deck,
from Chevron Oil Field Research, gave a
presentation regarding Chevron's
experiences running mUltiple frontend
stations on a single CRAY and the problems
they have encountered. I, of ARCO Oil and
Gas, gave a talk on the networking of
control information via the station
messages facility.

CRAY INTEGRATED SUPPORT PROCESSOR
INSTALLATION EXPERIENCE

Ronald Kerry
Computer Science Department

General Motors Research Laboratories

The new Integrated Support Processor (ISP)
is a software product that establishes a
link between the CRAY operating system
(COS) and IBM's MVS operating system.
Through this link, CRAY users have local
access to MVS data, device support, and
data management services.

Having local access means that you can
perform input and output on MVS datasets
as if they were local to your CRAY job.
You do not have to move the entire
dataset to the CRAY first, a process that
involves data staging and subsequent
delays in program execution. Instead, a
CRAY application program can go directly
to the IBM device with no waiting.

I will discuss the installation
experiences seen at General I1otors
Research Laboratories as part of the early
support test program for the ISP product.
This discussion will include:

1) the installation process;

2) the problems encountered during
testing, along with the current
status of the product;

43

3) some preliminary figures showing
the performance of the ISP
product, especially as it compares
to the data staging techniques
used by the current MVS station.

General Motors Research currently has a
CRAY-1S with 2 million words of memory and
a 3-processor I/O subsystem. The
applications which we run on our CRAY
include engine modelling, aerodynamics,
and structural analysis along with other
automotive applications. These
applications all require the computational
power of the CRAY. However, they are also
all very dependent on information that is
stored in our HVS database.

In September of 1984, Cray Research
presented us with the idea of the ISP. We
felt that it would benefit both Cray
Research and General Motors Research to
participate in a cooperative development
and testing program. GMR expectations for
the SIP were high and included:

1) ISP would relieve the pressure of
storing large seldom used
databases on local CRAY devices;

2) ISP would allow us to share data
between CRAY and MVS
applications;

3) ISP would significantly speed up
data transfer between CRAY and
MVS;

4) ISP would enable us to see much
faster CRAY application
performance.

The installation experience was divided
into two distinct phases. The first phase
I will call "advanced development" We
ran into many problems. Most of these
problems were found because of the fact
that GMR computing environment is vastly
different from the environment on which
the ISP was initially developed. These
problems included:

1) naming conflict with the
interactive system productivity
facility of TSO on MVS (SPF);

2) module reentrancy problems;

3) multiprocessor problems;

4) extended addressing problems.

The advanced development phase was carried
out over three contiguous weekends after
which we decided to wait until COS Vl14BF2
was stable enough to continue testing.

The second phase of the installation was
the actual BETA test period. Several
problems were found during this period,
but none were as fundamental as the
problems found during the advanced
development phase. The BETA test period
was completed in September of 1985.

Some of the major features and differences
of the ISP include:

1) use of storage above the 16MB line
for I/O buffers;

2) approximately 200Kb of SQA storage
is used for control blocks;

3) a performance monitor is provided
which runs as part of RMF;

4) a dump format routine is provided
which runs as part of IPCS;

5) the default DF value is BB instead
of the normal CB value;

6) output is binary zero filled
instead of blank filled;

7) user job exits are provided which
MUST be coded to enforce
installation MVS JCL standards;

8) the documentation is in its
infancy, but what is provided is
very good.

Performance figures for the ISP are very
preliminary due to the limited amount of
time available in which to carry out
experiments. We were able to sustain
transfer rates of from 1 to 2 HB in each
direction fairly easily while consuming 5%
- 10% of a single 3084 type processor. If
the TRACE option is turned on, the CPU
utilization can go up to as high as 40%.

MVS blocksizes and buffer sizes
COS buffer sizes can affect the
performance of the ISP greatly.
general, MVS blocksizes had the
effect on performance.

along with

In
biggest

44

In a worst case scenario, a COPYD o£ a 60
million byte dataset took three times as
long using the ISP with DF=CB as the same
operation using local CRAY datasets.
However, if the time to fetch the input
dataset and dispose the output dataset in
the latter case is added in, the total
time to do the COPYD using the ISP was
three times shorter!

After all this discussion, it should be
noted that the ISP is really a prototype
product, with much improvement to follow.
Some of the suggestions generated out of
our early installation experiences
include:

1) enable use of the hyperchannel
for connectivity;

2) include the capability of writing
SMF records in the performance
tool;

3) general ISP recovery improvement
(RAS) ;

4) installation options should be
specified via a PARMLIB type
arrangement instead of being
assembled in;

5) allow HVS to initiate action with
the ISP.

RUNNING MULTIPLE CRAY STATIONS AT
CHEVRON OIL FIELD RESEARCH CO.

Annabella Deck
Chevron Oil Field Research Company

At Chevron Oil Field Research Company
(COFRC), users are free to use whichever
computer they prefer. Choice is based on
personal preference, the requirements of
their application, the availability of
disk storage, etc. For this reason, all
general-purpose computers are connected
to the CRAY, and there is a requirement
that any CRAY job may access data on any
frontend and submit jobs to run on any
frontend regardless of the frontend of
origin. There is a problem - because we
have RACF on the IBM 3081 and 3033, and
all datasets are protected. In addition,
users like to be able to view and drop or
kill jobs they have submitted to the CRAY
from other frontends.

The problem is how to identify the user
who submitted a CRAY job, independent of
the frontend of origin, and in such a way
that the user cannot change his identity.

When a CRAY was first installed at COFRC
we had the CRAY MVS station and an

in-house VAX station and we used the TID
field (of the Link Control Package) to
identify the user. Hhen the CRAY VAX
station was installed, we found we could
no longer use the TID field. We now use
the use rid of USR field. All stations
have been modified to set the USR field in
the dataset header for a job. This is set
to the logon or userid of the user
submitting the CRAY job. It is set
independent of the user and cannot be
changed. This field identifies the user,
and is also used as the basis for all
CRAY privileges and dataset ownership
fields.

COS Changes:

ignore us field on JOB card;

us field on ACCOUNT card requires
special privilege;

USR field propagation, DISPOSE - ok,
FETCH/ACQUIRE - copy USR field to
DSH, Station Messages - error in
code setting USR in FSH.

COS Changes - SCP:

remove MF test for enter log file
request;

when selecting a job for reply to
commands STATUS, JOB, JSTAT, DROP and
KILL, 1) remove MF test, 2) if
requestor's TID = OPERATOR then allow
request, 3) if requestor's TID =
job's TID then allow request, 4) if
requestor's TID = job's USR then
allow request.

MVS Station Changes:

setup USR field in DSH for a job
being submitted;

remove MF test for STATUS and JOB
displays;

if no RACF slot then use USR field as
RACF USERID;

if no TMS slot then build ACCTN field
from USR.

VMS Station Changes:

set USR field in DSH for JOB and
SUBDS to VAX USERID;

set US and UN fields in interactive
logon segment to VAX USERID;

disable US parameter on interactive.

l~ request to CRr is that each station
should implement a user exit whenever a

45

station slot record is read. The exit
should be able to change the slot record
or build its own if a slot record is not
found. In addition, Cray should consider
providing a standard ownership field
independent of the frontend of origin of
the job.

ENHANCED STATION MESSAGES SUPPORT

Dean Smith
ARCO Oil and GAS

The operation and system facilities of
COS are often a less than a perfect match
to the frontend system. The problem is
not limited to different types of front­
ends. Because the systems that interface
to a CRAY may themselves be dissimilar,
this problem can be experienced with two
nearly identical systems, and more than
1 frontend can guarantee an incompatible
fit.

Reasons for the condition:

CRI is forced to develop solutions
that have to be something to
everyone.

CRI has had to develop system
services (accounting, userid
validation, password verification,
dataset security services, etc.)
that are alien to the host system,
even though there exist counterparts
on the host system.

CRI has limited resources with which
to understand and address the
problems of integrating CRAYs into
our lIalien ll systems.

The result is often a IIcompromised
solution II .

My proposal is twofold: 1) enhance the
station messages facility of SCP protocol
to support many of the system facilities,
2) develop a flexible user exit facility
on the frontends to act on the station
message requests. In this way the various
components and utilities of COS could
utilize the station messages facility to
obtain information, request validation, or
communicate results back to the frontends.
This facility should also provide for a
user interface to the station messages
facility.

The range of applications can span the
entire system and user processing on the
CRAY:

Accounting,
User Privileges,
PDN Access and Dataset privacy,
Tape Drive Allocation,
Job Scheduling,
Software/hardware Error Reporting,
CSP Exit,
ABEND Notification,
ABEND Recovery/Reprieve Processing,
Allocation of Local Datasets,
Job Initiation/Termination,
Operator messages

JUdiciously implemented, the result could
be a CRAY system which more closely
resembles its host system to the user, the
system operators, and system support
personnel.

I believe there are advantages to both
the user community and to CRI in this
proposal. Some advantages to the users
would be:

It would allow us to establish
system-wide standards (one security
system) .

We could better utilize our own
system personnel.

We wouldn't need two sets of
processes to perform analogous
functions on the different systems
(one accounting system).

Additionally, there would be advantages to
CRI:

Future enhancements and their
implementation could be at the
discretion of the site.

CRI could shorten the implementation
time for new facilities by
down-loading many of the
responsibilities to the site support
personnel.

CRI would not have to determine a
"best" solution among various
implementations.

46

LANGUAGES SESSION

Mary Zosel

Lawrence Livermore National Laboratory
Livermore, California

Four presentations were made in the languages
session:

Peggy Boike, CRI - CFT 1.14 release
Wayne Anderson, LANL - Lisp
Kelly O'Hair, LLNL - LR Parser System
Karen Spackman, CRI - CFT?? (NFT) discussion

In the discussion of CFT 1.14, Peggy Boike, CRI,
addressed some of the problems that were encoun­
tered with the CFT 1.14 release. Some of the beta
testing procedures had been allowed to lapse.
Peggy assured users that future compiler releases
would go through extensive beta testing before
release. Fixes for all major 1.14 problems
reported before the time of the meeting, and most
minor problems had been made and distributed to
the sites.

Wayne Anderson, LANL, described the implementation
of Portable Standard Lisp at LANL. This Lisp
dialect was originally developed at the University
of Utah. It currently runs under CTSS on LANL's
Cray machines.

Kelly Q'Hair, LLNL, presented a description of
the LR system which is available for Cray machines.
This parser system handles full LR grammers. It
is written in standard Pascal and has been ported
to multiple different machines and systems, large
and small, including the IBM PC and SUN work­
station. This parser system generates parser
skeletons for the input grammer in the user's
choice of several different languages: C, Pascal,
Fortran??, CFT-Fortran, and LRLTRAN. One usually
associates use of automatic parsers with compiler
development, but at LLNL, O'Hair has found the
main use is in developing interactive utilities.
The system has been used to handle user interaction
for the debugger, for the file transport utility,
for a code analysis program, for a macro processor,
etc.

Karen Spackman's presentation follows this summary.

4?

CFT77 DISCUSSION

Karen Spackman

Cray Research, Inc.

Mendota Heights, Minnesota

First I would like to comment about the testing
that we are doing on CFT77. We are very
concerned about the reliability of our products
and are doing what we can to ensure that the
compiler is reliable before it is released. We
do functional testing of specific features and
run our own set of regression tests to make
certain that we haven't introduced new problems.
Currently our regression test base contains over
one quarter of a million lines of code.

We will be taking CFT77 out to sites for beta
testing before it is released. We are planning
on two beta test sites for the CRAY X-MP
release, one running COS and one running CTSS.
We will also take the CRAY-2 version to a beta
test site.

The fact that CFT77 is written in Pascal gives
us an advantage in testing that our earlier
products did not have. The testing department
has written a coverage tool that works with
products written in Pascal which measures how
much of the code is exercised by the test set.
We will be running this coverage tool against
our existing test set to determine how good the
coverage is now and what areas we need to
concentrate on for future test development. We
will also be running the coverage tool at the
beta sites in order to find out how much beta
testing improves the coverage.

We also do performance testing at Mendota
Heights, and this is an area where we would like
to do more. As well as running computational
kernel codes, we have a set of urealu programs
which we use for a performance measure. We
would like to expand this set, and we need
programs from you to do so. We are looking for
actual user programs, not synthetic loops. They
need to be well-behaved in the sense of being
numerically stable and having answers that are
fairly easy to check. They should be scaled
down to run in one to five minutes of CPU time.
Finally, because we are interested in tests to
measure generated code performance, the programs
should do minimal amounts of I/O, and the
execution time should not be dominated by
library routines. If you have programs that we
can use, please contact me, Dick Hendrickson or

48

Jeff Drummond at Cray Research, Mendota Heights,
Minnesota.

Question: Why didn't CRAY use Kuck's vectorizing
preprocessor for the new compiler?

Answer: We are, of course, aware of the work
of Kuck and his students since it is the
foundation for much of the work that has been
done in analyzing dependencies. We have
certainly used many of the ideas from Kuck's
work (and from Kennedy's at Rice University)
in designing our approach to vectoriziation.
We were interested in developing an integrated
approach to the problem, however, that used
the information gathered during the flow
analysis done for scalar optimization and that
took advantage of other optimizations done for
scalar code. Consequently we want the
vectorization analysis to be part of the
compiler itself and not a separate
preprocessor.

Question: Are there options to turn off
optimization?

Answer: Yes. Full optimization is on by
default. Control card options exist to turn
off all optimization and to turn off just
vectorization. When automatic partitioning
for multitasking is available, this will also
have a control card option.

Question: How does compilation speed compare
with CFT?

Answer: We don't have a lot of information
on this yet since the compilers that we build
for testing in Mendota Heights have all of our
debug code turned on, and this easily doubles
the compilation time. We have done some
preliminary timings with the debug code turned
off and are seeing compilation times four to
ten times slower than CFT. We are now
analyzing where in the compiler we are
spending the time and looking at what we can
do in these areas. Right now global register
assignment is taking a significant amount of
time, and we are looking at changes that

should improve this substantially. Right now
my best guess is that we will be looking at
compile times more than four times
those of CFT at the initial release.

Question: What about execution speeds?

Answer: Our preliminary scalar results have
shown 10% to 30% improvements in runtime over
CFT. Vectorization code is still being
completed, so I don't have figures available
for that yet. Our commitment all along on the
project has been that CFT77 will generate code
at least as good as that generated by CFT at
the time of the release.

Question: What about the size of the compiler?

Answer: Again because of the large amount of
debug code that \'1e typically run with, I don't
have a good feeling for what the size of the
compiler will be at release. This is an area
that we will be addressing in the next month,
particularly in terms of segmenting the
compiler. The data space used by the compiler
does grow during compilation; there is no fixed
limit on this.

Question: How does CRAY view continued CFT
support in light of the CFT77 release?

Answer: Certainly we intend CFT77 to become
the principal FORTRAN compiler for our machines;
we will be retargeting CFT77 and porting it to
all of our new machines. However, we want
people to move to CFT77 because we have given
you a better product with better performance.
We certainly don't intend to force people to
move from CFT to CFT77 by not supporting CFT.
We will support CFT, for existing machines, as
long as our customers find it necessary.

Question: Does the optimization we are doing
for the initial release for the CRAY X-MP apply
to the CRAY-2 also?

Answer: In general, yes. Most of the
optimizations that are done are aimed at
eliminating redundant operations which are
redundant on any machine. Specific
optimizations such as instruction scheduling
have to be cognizant of the target machine
characteristics, however.

Question: Will the user be able to compile
for a different target machine than the one
being compiled on?

Answer: Within the CRAY l/X-MP line CFT77
will support a IICPU=II compiler option to allow
retargeting. There are no plans at the present
time to support cross-compilers between the CRAY
l/X-MP line and the CRAY-2.

49

Question: Will CFT77 gradually change into a
FORTRAN ax compiler?

Answer: My feeling right now is that we will
support FORTRAN ax with a separate compiler
based on the optimization, vectorization, and
code generation used in CFT7? rather than simply
incorporating all of the FORTRAN ax features
into CFT77. FORTRAN ax seems to be different
enough that I believe users will want to have
both compilers available concurrently for
awhile.

Question: Will you be looking at loop
unrolling for the CRAY-2?

Answer: I expect that we will be looking at
loop unrolling. We won't have this available
for the first version of CFT?7 for the CRAY-2,
but some of the early results from CAL code on
the CRAY-2 indicate that we need to look at
this for performance, probably for scalar
loops as well as vector. Also some work one
of our site analyst's did last year indicates
that unrolling may payoff on the CRAY X-MP as
well. We will certainly be investigating this
in the next year.

Question: Can you tell us how you expect to
approach automatic multitasking in CFT7??

Answer: Initially we will be looking at
multitasking at the do-loop level, similar to
microtasking except that we will have the
compiler do the analysis to determine if the
loop or program segment can be multitasked.
In the next few years we will be looking at
the whole problem of interprocedural analysis;
this should let us expand the granularity
of tasks that can be detected by the compiler.
Our whole thrust will be to provide as much
multitasking capability as we can without
requiring the user to change his code. I
expect we will introduce special syntax or
directives only if we find significant
ambiguities that we can't resolve.

SPECIAL INTEREST GROUP ON OPERATIONS

Gary Jensen, Chairman

National Center for Atmospheric Research
Boulder, CO

This meeting consisted of two sessions of the
workshop. Attendance at the workshop was up
by about 15% over the previous records. The
facilities were outstanding and that made it quite
enjoyable for all. We want to thank Gary Cross,
the Operations Manager at Dorval, for arranging
the great 'digs'.

I want to thank the speakers for the fine job
they did in presenting their information to us in a
most professional manner.

PRESENTATION DESCRIPTIONS

Andy Mar£en, Centre Informat£que de Dorval,
hosted a showing of a video tape presentation
created by Cray Research, Inc., Central Region,
titled "Installing an X-MP, from the view of Phy­
sical Plant Support". This video tape describes
the problems that must be solved in order to have
a smooth installation. The tape included many
examples of how NOT to do it. The 'star' of the
show is Andy and the Dorval Facility. We all
want to thank CRI for the tape, and Andy for his
comments and answers to the many questions.

Ray Benoz't, Centre Informatique de Dorval,
discussed "Networking at Dorval, Today and in
the Future". Ray was the host of the entire CUG
meeting and had been very busy throughout all of
the meetings. Since he had to speak· at most of
the meetings, he had almost completely lost his
voice. He gave an excellent presentation despite
this problem. We want to give Ray a special
thanks for the fine job he and his people did in
organizing a smooth running CUG meeting. We
will remember his raspy voice.

Gary Cross, Centre Informatique de Dorval, is
someone none of us will ever forget. His presen­
tation "Operation of the Dorval Computer
Center" is included in these proceedings. Gary
helped Ray Benoit set things up and was respon­
sible for facilities, meals and parties. As you will
read in his paper, he did get even with me at the
party at Le Festin. Dressing up in the 1690
Governor's robes and playing that role was worse
then any presentation I have ever had to make. I
think my wife enjoyed it and thanks to her, I was
not alone playing the Fool! Again, Gary, thanks
for the fine job you did. lowe you one.

Dan Drobnis, San Diego Supercomputer
Center, explained the plans, goals, and the
current status of this new center. This center is
funded by the Office of Advanced Computing,
National Science Foundation. The center is now
operating. Listening to this presentation con­
vinced me that they will do well. Good luck,
Dan. We hope you make yourself a regular parti­
cipant at CUG.

Lou Saye, Cray Research, Inc., presented the
Cray reliability statistics for the last six months.
He did a fine job again, and we appreciate his
participation. We want to also thank Gary
Shorrel for his comments and help. We hope that
they will continue to provide this information, in
the future.

Fred Montoya, Los Alamos, described "The
FOCUS System". His paper is included in these
proceedings. We thank Fred for his continued
support of the workshop. Fred has made several
presentations in the past.

Thanks again, to all the participants and the
Dorval staff.

50

COMPUTER OPERATIONS AT ENVIRONMENT CANADA

Gary Cross
Operations Manager

Environment Canada
Dorval, Quebec, Canada

Good afternoon and Welcome to CUG Mont­
real 1985. It's almost a relief to be here speaking
to you today. I say that because as a member of
the local arrangements committee, this talk will
amount to my first break since Sunday morning.

When Ray Benoit asked me to participate on
the CRA Y local arrangements committee several
months ago, I remember being ushered into an
office and all the various categories which needed
volunteers were written on a blackboard.
Categories such as registration, finances, mailings
etc., etc. When I was asked to participate in
organizing part of CUG Montreal, I agreed for
several reasons. To begin, I was fortunate enough
to be asked first so I immediately chose by far
and away the best category, food and entertain­
ment. No way anything else came close. The
second reason was that I could get away from the
office and spend a few days meeting people and
staying in a nice downtown hotel. So far so good.
Thirdly I had the chance to spend large amounts
of other people's money on food and drink and I
loved it. Now everything was going ok, until I
heard from Gary Jensen here. I was comfortably
in the shadows spending other people's money
and planning lunches and such, next thing I know
Gary has convinced me to stand here for a talk
on our Operations centre. Suffice to say I got
more than I bargained for. Well I decided to get
Gary back at his own game. The deal I made
with him was that I would stand up here and
speak for 25 minutes or so and Gary would con­
sent to be the honorary governor at our supper
tonight at Le Festin. I haven't told him yet
exactly what that entails and I don't think I will.
After all fair's fair.

As you can probably tell, I am not accus­
tomed to public speaking especially in front of
such a large and distinguished group, so please be
patient. I'm going to do the best I can and I'd
like to start by reviewing the outline of my talk.
I'll be speaking in general terms about the
makeup of our centre, explaining the hardware on
site, personnel, shift schedules, plus some prob­
lems faced with managing this particular site. If
there are any questions following my talk, please
feel free to ask them. I only hope they're not in

the area of technical questions like bits, bytes or
transfer rates because I tend to leave all that
hard stuff to my support staff who, fortunately or
unfortunately, are not present today. I don't
know if I am departing from the norm in not
really getting too heavily into hardware and
software numbers and such, but I hope you will
find it interesting nonetheless. So, with your per­
mission I'd like to touch a few bases concentrat­
ing primarily on the makeup of our site from my
point of view, that of the Operations Manager.

Let me begin by telling you just a little about
who we are and what we do. Our shop is
officially called the Dorval Computer Centre, or
The Centre Informatique De Dorval, or cm.
Most references to the Centre use the French
acronym cm, as I shall. cm is a part of the
Atmospheric Environment Service (AES), and as
such is more or less the equivalent of the U.S.
National Weather Center in Washington. In gen­
eral, CID is responsible for producing weather
related products for the country. This includes
products for regional forecast centres in Canada,
public radio and cable television stations, along
with meteorological data relating to conditions
for aircraft flights, farming conditions, and
marine forecasts.

cm was the first CRA Y supercomputer centre
in Canada (installed in 1983), and it supports the
AES. We are situated in Dorval, Quebec.

Between 1974 and 1982, a CDC Cyber 7600
was our large-scale computer, and this was
replaced by a Cyber 176 as an interim measure
until the installation and conversion to the CRA Y
IS was complete.

It is worth mentioning here that in spite of
the totally scientific nature of cm and its appli­
cations, we run a real time production shop.
That is to say the meteorological products pro­
duced at cm must be distributed nationally
under the constraints of very stringent deadlines.
The operational weather runs executed on the
CRA Y must begin exactly on time and complete
without incident, or nationwide delays are
incurred and believe me we hear about it. So
basically, cm is in business to produce

51

meteorological products which have a very high
profile across Canada.

The CRA Y IS is currently front-ended by two
Control Data Cyber 730 computers. These are
used mostly for pre- and post-processing opera­
tions in scalar mode.

One Cyber 730 is used for real-time produc­
tion processing and the second front-end for
development or research work. If one of the 730's
goes down, the remaining one switche s to the
production 730 to maintain our production dead­
lines. .As a result, users on the development
machine are out of luck until the second 730 is
returned to service.

The development machine has eight Control
Data 885 disk spindles, and the production
machine has four Control Data 885 disk spindles.
Each spindle has a capacity of 75 million words.
The CRA Y has a bank of twelve DD29 disk
drives which provide a total of 900 million words.

There are two tape drives attached to each
Cyber 730 and three STC tape drives attached to
the CRA Y IS. All of these drives, while used for
user testing, are in use most frequently for back­
ing up permanent files and data sets. More on
that aspect of CIDO in a few minutes. We also
have, what we call, an input/output room adja­
cent to the main computer room where we pro­
cess the paper output. The peripherals which
cause most of the dust pollution in the computer
room, were moved outside the main machine area
to a spot where they wouldn't cause any
dust/dirt problems. While it does make for a few
extra steps several times per day for the opera­
tors, the overall benefit of having the machines
which use ribbons and chemicals, away from disk
and tape drives, is a definite improvement.

There are two CDC line printers, one attached
to each of the 730's. On the average, we go
through ten boxes of line printer paper daily
which amounts roughly to 1.8 million lines
printed per day, mostly test output for research.
There are also two electrostatic plotters in the
input/output room which produce graphics out­
put, usually in the form of weather charts or
related statistics. These, like the line printers,
are constantly in operation as they strive to keep
up with the mass of plotted and printed output
queued on the Cybers waiting for their turn.
Another room, also adjacent to the main com­
puter area, houses all of CID's communications
equipment such as our Datapac units, modems,
tandem non-stop communications computers etc.,

etc. That's a very general overview of CID's
hardware. Now I'd like to touch on the makeup
of the different groups within CID responsible for
supporting this equipment. CID is composed of
four support groups each headed by a manager.
Gerry Berlinguette is the chief of the centre
which, of course, includes the four managers and
their staff. The four groups are Communications
and Graphics, Systems Support, User Services,
and Computer Operations.

Communications and Graphics takes care of
CID's networks and communications facilities.
These tasks relate primarily to the Cybers and
other communications equipment, as there are no
interactive users hooked directly to the CRAY.
Local and remote users (about 400) must first
pass through the communications equipment to
the front-end Cybers and then proceed to run
jobs on the CRA Y.

The second section is Systems Support respon­
sible for installing and maintaining and trouble­
shooting all software on both the Cybers and the
CRAY. You can take my word for it, that with a
Systems Support staff totalling five persons
including the manager, there isn't much spare
time to be found in that group, or any other CID
section for that matter.

CID also has a User Support Group responsi­
ble for processing and coordinating all users prob­
lems, requests, and sometimes demands. .As you
might already know, anyone who works in a user
support capacity is long on patience, and if he or
she lasts for a couple of years, usually qualifies for
sainthood.

The fourth group is, of course, the Operations
Section. I've saved the best for last, and I'll get
into a few details about Operations in a second.

The number of persons in CID, responsible for
all aspects of the Computer Centre and clerical
administration total only 34. I know of some
governmental centres half our size with twice the
allocation of person-years. Believe me, when
things aren't going well and we're pushed to the
edge, I realize how much effort is required by
these 34 people to settle things down and rectify
any problems. It can get pretty hairy when
several tasks or problems need simultaneous
attention and there are only 34 people in the
entire crew.

Furthermore, of these 34 person-years, a full
one-third are in the Operations Section. That
doesn't leave many people for software, communi­
cations, or user support. Well so much for self-

52

gratification.

Now a little bit about the Operations Group.
There are currently 14 people in the Operations
Section which is known as OIDO. The 14 are
broken up in the following manner: one manager,
two full-time day shift operations support staff,
one tape librarian, and ten computer operators.
The tape librarian is responsible for all the
Oentre's tapes, now totalling approximately 8,500
volumes. He handles all user requests directly,
plus attending to all of OID's internal needs. He
is a very busy person. He works five days per
week, eight hours per day. The operators are not
involved in handling user requests during his
absence.

The two support staff members, who work
directly for me, are responsible for the day-to-day
needs of OIDO. Their primary duties include
preparation of operator shift schedules, scheduling
all work on the three mainframes, attending daily
manufacture meetings, controlling all user disk
space allocations, preparing operator instructions
and procedures, as well as preparing OID stock
and supplies contracts and coordinating delivery,
storage, and allocations of this stock.

They both work five days per week, eight
hours per day, and are available 24 hours per
day, seven days per week via electronic pager s
for calls directed to OIDO from the operating
staff, manufacturers, or other OID sections. AB a
matter of fact, the Systems Section and the Oom­
munications Section also carry pager s for the
same purpose. The User Services Section has an
automatic answering system to record user
inquiries after normal business hours. So in
effect, personnel from each of the four OID sec­
tions are on 24-hour standby.

The ten computer operators (one is tem­
porary) are obliged to work many shifts
since OID runs a 24-hour da,y, 7 days per week,
365 days per year operation. We have been using
a 12-hour shift cycle since 1974. I'll give you a
quick idea of how it works. There are two opera­
tors per 12-hour shift. One is the shift coordina­
tor, and the second is the computer operator.
The shift coordinator is responsible for the shift
and consequently is one level higher than the
computer operator. That is basically the only
major difference between their functions. This is
because the work load requires that they function
as an absolute team, meaning one must be able to
handle the duties of the other and vice-versa. So,
through evolution, they both perform the same
duties on shift. That was not the way the

original job descriptions were designed for the
staff some ten years ago, but as the centre got
bigger and the responsibilities grew, the operating
staff remained static at two per shift. Therefore,
the duties for each, which were once well
separated and defined, are now more or less
melded together.

Besides monitoring all systems and performing
the usual tasks associated with operating in a
multi-mainframe environment, each shift is
required to log all hardware, software or environ­
mental interruptions as well as any other
incidents that may occur. All events are logged
on specially designed forms which become the
main input for meetings held daily with a
representative from each OID section as well as
from both computer suppliers. Each incident is
discussed in a round-table format, and is assigned
to one of the representatives for action. Follow­
ups are also done and various reports are gen­
erated from these meetings as all pertinent data is
entered into a data base on the Oyber front- ends.

We do not have the luxury of assigning
specific tasks to the shift coordinator or to the
operator. Given all the equipment which requires
monitoring and the paper which has to be cut
and the tapes which have to be mounted, there is
simply no way we can now split up their duties
unless more staff is hired. But each shift has an
operator and coordinator and, as I said, there are
two people per 12-hour shift.

AB I said previously, the 12-hour shift schedule
has been in effect for over ten years and frankly,
from the operators' point of view, is the best
thing that ever happened to them. I was an
operator in OID for over ten years and I've seen
many schedules come and go, and having worked
them all, this one is tough to beat. The SKED
works this way, and is identical for the ten opera­
tors. Government workers, regardless of their
shifts, operate on a 37.5-hour work week.

For the operators each of their shifts are 12.25
hours long, either from 7:45 A.M. to 8 P.M. or
7:45 P.M. to 8 A.M. The fifteen extra minutes is
for a debriefing period between shifts. Each
operator works four of these 12-hour shifts, start­
ing with two night shifts, then a 24-hour break
after completing the second of the two night
shifts. He/she then works two 12-hour day shifts
and is off for five days. So that's the way it
works, four on, five off, four on, five off, and so
on.

53

The SKED is based on a 56-day rotation and
at the end of the 56 days each operator "owes"
the schedule 8 hours. This is usually made up as
a project-day during one of the days off. Besides
affording the operators with copious amount of
time off, they are also available to work plenty of
overtime, that magic word. Due to tight govern­
ment restrictions on the hiring of people at our
site and in general, throughout the government,
overtime is, at CIDO, a very real requirement.
Each time our operators take annual leave or
"book off" sick, that shift must be filled with
overtime. This applies to one day off, or one
month off and we've experienced both many
times. Seeing as how all of our operating staff
have four week holidays, overtime payments cost
CIDO a small fortune. What helps to run up our
a IT bill is that when an operator is on his or her
5 days off and comes in for a 12-hour OIT shift,
the second to 5th days off are paid at a rate of
double time, which equals 24 hours at their regu­
lar hourly rate.

During the peak summer months of July and
August, we average 25 to 35 overtime assign­
ments per month, sometimes more, seldom less.
We are very fortunate, in away, that all of the
operators are ready, willing, and able to work
large amounts of overtime because, even if only
one or two balk from time-to-time the on- site
staff must work a double or 24-hour shift. So,
you can see that given our current hiring con­
straints, if one or two operators refused all a IT
offers, we would be in quite a bind.

CIDO just doesn't have the required cushion
of person-years to help reduce our a IT budget.
The operating staff has always been receptive to
the requests for a IT work and continue to be.
This does help considerably when producing shift
schedules, especially during summer and holiday
periods.

One final point about the CIDO shift
schedule. Every three months the operators' cycle
is rotated from the shift supervisors' cycle. It
just doesn't work to leave two people together for
more than three months. For each team that
loves working with each other, there are at least
two other teams who really don't get along all
that well. The only alternative is to keep them
all moving along with a three-month rotation.
There are a few long-term problems associated
with the operating staff which are no fault of
theirs, but more related to the acquisition, or
better yet, non-acquisition of staff. Of the nine
full-time operators on staff in CIDO, the most

junior person has about ten years' service in our
shop, not just government service but ten years
operating our computers. The negligible staff tur­
naround is due, in part, to the lack of any career
paths for the operators. There is just nowhere for
them to go within CID. Person-years are just not
available, hence training programs in other sec­
tions for temporary periods do not exist. Further,
again due to person-year shortages, I cannot spare
even one operator for training stints either within
or outside of CIDO. Therefore, it is very difficult
to motivate the operating staff to do anything but
operate. I must add here that a large majority of
the operators are self-motivated. They genuinely
take pride in their work and do a fine job.

One big plus about having a veteran operating
staff is that they are as up-to-date and aware of
our methods, practices, and procedures as anyone.
I can also rely on them to learn new instructions
rapidly, and they often point out ways to improve
on existing standards.

One compensating factor, though, is the
salaries paid to the operators. \Ve are a union
shop, and as such, the salaries, even by
american-dollar standards, are hard to beat. The
base salary structure, coupled with the number of
overtime hours worked make for a generous
yearly salary. It's not the greatest motivating
factor in the world, but it does keep the com­
plaints down.

The operators belong to one government
union and the day shift workers belong to a
second union. From a management point of
view, there is certainly nothing to fear from
either union. The common bond between the two
unions is to see how much money in union dues
they can remove from our paychecks and how
fast they can do it. They are not at all what you
would call militant, so no difficulties are caused
by the presence of unions on site.

You might now have the idea that staff shor­
tages are a major problem at CID. \Vell, yes and
no. I think we could use a few extra people here
and there to help us push forward and expand
more rapidly, but I am not implying that we are
lagging behind in our work or are unable to prop­
erly function. OlD has adapted extremely well
over the years to a pared-down staff, and it is cer­
tainly to our credit that we have progressed as far
as we have in a relatively short period of time.

I'd just like to now touch on some miscellane­
ous topics to highlight a couple of Operations'
tasks. They might provide some useful

54

comparisons to your sites.

CIDO is responsible for the archiving of all
permanent files on the Cyber disks and all the
data sets on the CRA Y disks. We have incre­
mental dump routines on both the CRAY and
Cybers which are executed daily. Full dumps of
all files on the CRA Y and the Cybers are done
once per week. Disaster dumps of all disks are
done once per month and stored off site for a
period of a year. All the files, whether incremen­
tal, weekly, or monthly are dumped to magnetic
tape which, needless to say, requires constant
recycling and manipulation by our support staff
and tape librarian. CID's Systems Group has
recently provided Operations with a CRAY incre­
mental dump package. Prior to that, we were
dumping the complete disk catalog once per day
which ate up 1.5 to 2.5 hours of time. Progress is
being made.

Preventive maintenance on the CRAY is per­
formed twice each week (Mondays and Fridays)
with two hours allocated per period. This was
reduced from five times per week during CRA Y­
acceptance to three times per week, and then to
the current schedule of twice per week. Preven­
tive maintenance on the Cybers is twice per
month for each front-end. Each period . lasts two
hours. One week the development machine is
under P.M., and the following week the produc­
tion machine is under P.M. When prOd"c1ction is
on P.M., the production disks and software are
switched to the development machine so the pro­
duction system is never down for P.M. periods.
CID does not permit changes of any kind
(hardware, software, temporary, or permanent) to
be performed on any of our computers by
engineers, analysts, Operations, or System person­
nel until proper documentation is supplied to
CIDO and approved by the appropriate manager
or managers. Once approval is given, Operations
then schedules the time on the designated system,
and the users are then informed using computer­
ized bulletins. There are also minimum times
required before anything is scheduled, depending
on the impact of the change.

The immediate future for CIDO looks quite
interesting. The CRAY is scheduled to be
replaced by the end of 1986. The two Cyber
front-end computers will be replaced in the early
part of 1986. In spite of the fact that nothing
seems to be permanent here but change, it cer­
tainly makes for interesting times and produces
ever different problems to solve and situations to
handle. That, to me, is what managing an

operations shop is all about. It keeps changing
and evolving almost right before your eyes.

Lastly, due to the sensitive nature of CRAY
supercomputer technology, full-blown security
equipment and procedures have been set up at
CID. The features include a 24-hour security
guard team, ID cards for all personnel as well as
visitors and service personnel, selected entries to
controlled areas using electronic card access, secu­
rity cameras and video recorders, and Halon fire
retardant systems. The features are constantly
under scrutiny and enhancements are often made.
It did take time for some people to adapt to the
move from no security although the staff
adapted well.

Well, I think I've gone on long enough.
must admit that I rather enjoyed the experience.
What I really hope is that I was able to shed a
little light on the operations in's and out's at the
Dorval Computer Centre.

55

FOCUS AT THE LOS ALAr·IOS NATIONAL LABORATORY

Fred J. Montoya

Los Alamos National Laboratory

Los Alamos, Nr~

ABSTRACT

During the past three years, the Computer
Operations Group at Los Alamos National
Laboratory has operated the FOCUS System
(Facility for Operations Control and Utilization
Statistics). FOCUS is responsible for production
control, load leveling, and status reporting. This
paper describes the operation of FOCUS.

INTRODUCTION

The Computer Operations Group (C-l) at Los
Alamos National Laboratory operates the Central
Computing Facility (CCF). The Group consists
of 68 people including the Group Leader, the
Associate Group Leader for Operations, and a
Supervisor responsible for Special Services. The
operators are divided into three teams, A, B, and
C. Each team has a Supervisor, a Deputy Super­
visor, three Lead Operators, and twelve opera­
tors.

OUR ENVIRONMENT

The CCF houses the following major comput­
ers: two CRAY-lAs, two CRAY-lSs, one CRAY
X-MP /2400, one CRA Y X-MP / 4800, three CDC
7600s, three Cyber 825s, one Cyber 855, and one
Cyber 176. One mM 3083 and one IBM 4341
control the Common File System (CFS). The CFS
is used as a data storage device by all of the
worker computers. A large array of mini­
computers are used as gateways to provide
Integrated Computer Network (ICN) service from
remote computers through the XNET System, or
as hosts to external networks such as ARPANET
and TELENET.

The network is divided into three partitions:
Secure, Administrative, and Open. This parti­
tioning avoids having duplicate systems for each
level of computing, but it adds to the complexity
of the operation.

The CCF is operated 24 hours a day, 7 days a
week, 365 days a year. We schedule a 48-hour,
holiday shutdown at Christmas/New Years, and a
two-day maintenance shutdown twice a year (usu­
ally during a three-day holiday weekend) in the
fall and in the spring.

FOCUS OPERATIONS ENVIRONMENT

FOCUS is a component of the ICN that auto­
mates production control, station reporting, and
performance measurement. FOCUS currently
operates with a primary and secondary controller
(a VAX 780), using periodic software backups to
reduce the effects of failure. Reliability and avai­
lability are very good, but our goal is continuous,
error-free operation.

The FOCUS System's primary function is to
schedule production work on all CRAYs and
7600s. Production is defined as the mode of jobs
that. are scheduled and run by the computer
center on behalf of a user. A production mode
job is run independent of the presence of the user.

The method of scheduling is based on several
objectives of the system.

1. The primary objective distributes the
CRA Y production resources on a continuous basis
to the major divisions of the Laboratory accord­
ing to the Director's allocations.

2. A secondary objective allows organizations
control over which jobs are run within an
organization's allocation.

3. The third objective allows organizations
flexible control for "saving" and "overspending"

56

allocations to handle workload fluctuations.

4. A fourth and final objective optimizes the
use of the CRA Y production resource.

An organization is allocated the CRA Y pro­
duction resource in proportion to its require­
ments. The allocation is transformed into a frac­
tion of the resource, not as a fixed amount of ser­
vice. This assures that variations in the available
resource are distributed in an equitable manner.
Because fluctuations in workload make it imprac­
tical to keep all organizations exactly serviced
according to allocations, a history of usage is kept
to force long-term usage to correspond to alloca­
tions while allowing short-term fluctuations.

An organization needs some flexibility and is
able to control and manage the workload within
the organization. This allows them the ability to
sub-allocate, the ability to order jobs or define
ordering criteria, the ability to time job-leveling
factors within the organization, and the ability to
control the "saving" or " overspending" of the
allocation.

From the operations side, an effort is made to
improve machine performance. This implies that
the scheduler will monitor the utilization meas­
ures on the production machines and schedule
jobs to a machine when it appears that utilization
can be improved. A machine is not permitted to
go idle when there is eligible work. Furthermore,
maintenance schedules, special conditions, and
end- of-shift conditions can be anticipated and
accommodated efficiently.

FOCUS has three production shifts (DAY,
NIGHT, and WEEKEND/HOLIDAY) that are
allocated, charged, and historically recorded
independently of each other. The scheduling
implementation requires the same master queue
structure for all three shifts; however, each shift
is separately allocated.

The batch subsystem on the CRAY computers
operates as slave to the FOCUS scheduling.
Although FOCUS controls the initiation of each
job, the running of jobs is controlled by the batch
subsystem. The intent is to have the batch sub­
system run the jobs with higher CTSS priority
given to the ones initiated first. However, multi­
ple jobs may be running on a given machine at
anyone time and the dynamic nature of the job
will produce a multi- programming mix of pro­
duction jobs on the CRAYs. FOCUS determines
dynamically the degree of multi-programming for
each CRA Y based on production parameters and
machine utilization statistics.

Based on the above, jobs are scheduled to a
machine when it needs work. When the queues
are searched for the next eligible job, the charac­
teristics of the machine being scheduled must be
considered. Some jobs are ineligible because they
require more than the maximum memory of the
machine, their time limit would extend the
current committed time on the machine beyond
the current period, or the job specified a specific
machine. In addition, a job may be ineligible
because it is dependent on another job that has
not been completed successfully.

FOCUS MENUS FOR THE OPERATOR

FOCUS is an automatic system; however, the
system has to be monitored by an operator. The
operator has a menu that offers many tools to
effectively and efficiently operate FOCUS. Most
commands can be entered with the touch of a
finger on the touch screen of a VT100 terminal.

The following are the menu options that are
available to the operator.

- FOCUS - Menu of anything that has to do
with FOCUS.

- INFORM - Status of all worker computers,
also allows the operator to select an individual
computer.

- JOB COMMAND - Menu for scheduling
jobs.

- JOB STATUS - Status of all jobs in all the
worker computers.

- MACHINE CO"MMAND - Menu allowing an
operator to change parameters, time limits,
memory limits, and set dry up.

- MACHINE STATUS - Overall look at the
status of jobs that are running or waiting to run.

- PRINT CARRYOVER LOG - Listing of the
carryover from the previous production period.

- PRINT JOB LOG - Summary and status of
all jobs submitted during the previous production
period.

- PRINT SUMMARY - Summary for any
month of production on an individual machine, or
a complete summary of all machines.

- QUEUE DISPLAY - Master queues of all
user divisions.

- SYS ACTNITY - Lets the operator display
which process in the system is using the CPU.

57

- UTILIZATION - Current shift production
report for all CRAYs and 7600s.

- GATHER - Responsible for updating and
reporting the number of users and CPU utiliza­
tion.

- DBUG - Used by system personnel.

- DISPLAY - Runs FOCUS gather and
displays information in the color monitor.

- CURRENT PROCESSES - The given status
of all processes.

- PHONE - Displays the office phone number
of all ICN validated users.

- CURRENT TIME - 2400-hour military
clock. WWVB, National Bureau of Standards
Radio Station, Denver, Colorado.

- ACKNOWLEDGE - Still in the development
stage. Will alert the operator that a message
exists on a worker (for example, "waiting on tape
mount").

- HELP - Help package for operator.

- QUIT - Exits operator from FOCUS and the
terminal becomes a regular user terminal.

Another tool in the FOCUS System is the
automated trouble log. Instead of writing trouble
logs, the operator enters all information into a
VT100 terminal. Every weekday morning, with a
simple command, management can receive a prin­
tout of all worker computer and equipment mal­
functions that have occurred during the past 24
hours.

OTHER USER OPTIONS

The user has other options with FOCUS that
help operations. A user can sign on to a user ter­
minal and access FOCUS. The user can view the
job queues and get a good idea as to the status of
his jobs. Another feature is the touch tone tele­
phone call. The user calls a certain telephone
number and a digitized voice will answer giving
the user instructions to touch tone in his user
number. FOCUS will then scan the queues for
the user's number and respond with the status of
his jobs.

CONCLUSION

FOCUS made Computer Operations more
efficient. We are now able to operate the facility
with fewer people, yet our throughput continues
to increase. Before FOCUS, we were using five
operators on each shift for a total of fifteen opera­
tors to operate five CRAYs. At present, we are
using two operators per shift on FOCUS. Even if
we add more worker computers to the ICN, the
FOCUS staff will not increase.

The user organizations are responsible for the
allocations and the scheduling is accomplished by
using a centralized control machine. The primary
advantage of centralized scheduling and control is
that several worker computers can be scheduled,
allocated, and viewed as a single production
resource.

58

MULTITASKING PERFORMANCE WORKSHOP SUMMARY

Ann Cowley

National Center for Atmospheric ~esearch
Boulder, CO

Three papers were presented in the workshop. The
abstracts are included here, and the papers by
David and Dent are included in their entirety.
Koskela's paper was not submitted for publication
here.

MULTITASKING THE WEATHER
David Dent - ECMWF

The ECMWF Model uses both cpus of a CRAY X-MP/22.
Performance figures will be presented together
with measurements of overheads and inefficien­
cies. The repercussions of moving to a CRAY X­
MP/48 will also be discussed.

VECTOR USE AND CONTENTION MEASUREMENTS
Rebecca Koskela - LANL

Performance measurements for parallel and vector
processing are reported for the CRAY X-MP super­
computers at Los Alamos National Laboratory. The
measurements are made with the CRAY hardware per­
formance monitor. Three kinds of measurements
are made: (1) we measure the percentage of vec­
tor instructions executed system-wide, (2) for
parallel processing, we measure the amount of
memory contention in the CRAY X-MP shared memory
architecture for 2, 3, and 4 processors, (3) we
also measure the percentage of time a processor
is blocked waiting to execute in the shared
operating system because another processor is
executir.g in it.

CMTS - A CRAY MULTITASKING SIMULATOR
Jacques David - CEA-Limeil

CMTS is a CRAY Multit~sking Simulator which can
run on CRAY-l or X with CFT 1.10/COS 1.11 and
later releases (ALLOC=STATIC), or on CYBER
(NOS/BE - NOS-SCOPE) systems. It can be used for
testing and debugging multltasked applications
and gpt hering various statistics
(Locks/Events/Speed-up ••.).

59

MULTITASKING THE HEATHER

David Dent

European Centre for Medium-Range Weather Forecasts
London, England

INTRODUCTION

The European Centre for Medium Range Weather
Forecasts has the dual responsibility of:

a. Carrying out research into numerical weather
prediction, and

b. producing a 10-day forecast on a daily basis
to a strict operational timetable.

This second activity has ~nerated the need for
the weather model to execute as efficiently as
possible on the available hardware. This report
outlines the methods which have been employed to
allow the model to utilize multiple central pro­
cessors of a CRAY-XMP and presents detailed tim­
ings which indicate where inefficiencies exist.

HISTORY

The present production model has been developed
over a number of years and is used both for
research and operational forecasting. The model
uses spectral techniques and covers the complete
globe. It consists of about 100,000 lines of
Fortran and requires work files to hold its data.
The code is independent of the spectral trunca­
tion chosen, i.e. the data resolution.

The model first went into daily production in
1983 at resolution T63, executing a 10-day fore­
cast on a CRAY-1A in 5 hours. The same resolu­
tion model was moved to a CRAY-X22 in 1984 and
executed on one CP in 3 hours, using the solid
state storage device (SSD) for the work
files. In 1985, the resolution was increased to
T106 and currently executes in 5 hours, 15
minutes using both processors of an XMP-22.

ECMWF CRAY-XMP CONFIGURATION

From the point of view of the spectral model, the
principal characteristics of the CRAY-X2200
installed at ECMWF are:

2 Central Processors
2 Mwords of central memory
16 banks of memory
16 Mwords of SSD

60

80 Mwords/sec memory to SSD transfer rate

COMPUTER RESOURCES USED BY THE SPECTRAL MODEL

At resolution T106, the single-tasking model
requires:

1.5 Mwords of central memory
15.3 Mwords of SSD

There are 3 work files, totaling 15.3 MW and
transferring 30 MW of data to/from SSD per time
step.

Putting files on a device with such a high
transfer rate to/from central memory allows 1/0
to be carried out synchronously without much
overhead. This reduces the central memory
requirements for buffer space and costs less than
3% of the elapsed time for a 10-day forecast.

MULTITASKING INTERFACE

The following facilities available in the Cray
multi-tasking library are used in the model:

CALL TSKSTART
CALL TSKWAIT
CALL LOCKON
CALL LOCKOFF

These tools enable tasks to be started and syn­
chronized, and critical areas of code to be pro­
tected against simultaneous execution.

GENERAL STRUCTURE

The model is organized into 2 scans over the
data, as shown in Figure 1. Within each scan,
there is a loop over all latitude rows (160 for
the T106 resolution). Between scans is a smaller
area of computation associated with diffusion and
semi-implicit calculations. The loop over time
steps is repeated 960 times for a 10-day fore­
cast. However, every 12 steps, significant addi­
tional computation is performed by radiation cal­
cUlations.

A multitasking version of an application requJres
more main memory than its singlet asking
equivalent. Given (a) the desire to maximize the
resolution and (b) the shortage of main memory,
it is important to select a multitasking strategy
which has low memory requirements.

It turns out to be convenient and efficient in
memory to split Scan 1 and perform it in 2 pairs
of subtasks with a synchronizing point in
bet\lsen. This is because each northern row gen­
erates the symmetric part of a Fourier component,
while the equivalent antisymmetric part is gen­
erated by the appropriate southern row. Both
components are combined in different ways to pro­
vide contributions to the legendre transform. By
computing one northern row and one southern row
simultaneously, not only is the memory require­
ment minimized, but also the legendre computation
is performed efficiently.

Part of the diffusion calculation is also multi­
tasked and Scan 2 can be computed 2 rows at a
time (see Figure 2).

There remain some relatively small parts of the
code which are computed in singletasking mode.

The memory requirements for this multi-tasking
strategy are 1.8 Mwords. Note that alternative
strategies are, of course, possible. However,
subtask structures which may be preferred for
optimizing reasons require either more central
memory or additional SSD.

TIMINGS

All the timings reported here are elapsed times
corresponding either to a single time step or to
a complete 10-day forecast.

For a normal timestep:

singletasking:
mul ti tasking:
speedup ratio:

19.73 seconds/step
11.36 seconds/step
1. 75

These times correspond to a total time of 5 hours
15 minutes for a 10-day forecast, including the
creation and post-processing of history data.

Since the above timings are very simple and made
at the very highest level, they tell nothing
about the behavior of individual tasks within the
model. Currently, there is no support within the
Cray multi-tasking library for obtaining detailed
timings. Consequently, all the following timings
were obtained by inserting C0de into the model at
strategic places in order to record times as
reported by the real time clock. The measure­
ments were done in such a way as to disturb the
model as little as possible. The model was run
in a dedic~ted environment with no disturbances
other than any caused by the operating system
(COS 1.13). Analysis of the measurements was
done subsequently in a normal batch environment.

61

The average times taken by each of the tasks as
identified in the previous section are shown in
Figure 3.

By measuring the time taken by the Cray multi­
tasking library routines, it is possible to
obtain estimates of the cost of starting tasks,
etc.

For TSKSTART, three distinctly different times
are observed as follows:

40 milliseconds for one case only
0.4 milliseconds for 96% of all TSKSTARTs
0.04 milliseconds for 4% of all TSKSTARTs

The expensive start corresponds to the very first
TSKSTART in the complete application, when addi­
tional memory has to be requested from the
operating system for table space.

The intermediate time corresponds to the case
when a 'logical CP' has to be connected to a
, physical CP'.

The shortest time corresponds to the case when a
physical CP is already connected. In this execu­
tion, the Cray multi-tasking scheduler has
released the physical CP in nearly all cases
before the next task is created. The small per­
centage of fast TSKSTART times were all observed
for PROCESS 2, where there is a very small time
gap after completion of PROCESS 1.

By tuning the actions of the library scheduler
(CALL TSKTUNE), it is possible to modify this
behavior so that a terminating task retains con­
nection to a physical CP, allowing the cheapest
TSKSTART time when the next task commences. This
is a valid strategy for a dedicated environment
and allows 90% of the TSKSTART costs to be only
40 microseconds.

The measured minimum times for other multi­
tasking calls are:

TS KWA IT
L OCKON /LOCKOFF

60 microseconds
1 .5 mi cros econds

The approximate total overhead is 82 ms per time
step (0.7%).

An obvious conclusion is that task overheads are
small compared to the size of tasks which exist
in the spectral model.

INEFFICIENCIES

By measuring the amount of time spent outside of
the tasks, it can be seen how much of the code
has been multi-tasked and therefore what addi­
tional improvements might be made in the future
(see Figure 5).

The TSKWAIT time reported in the previous section
was the minimum observed, i.e. for the case where
the master task completed after the started task

and was therefore not held up in the synchroniz­
ing process. By examining average TSKWAIT times,
it is possible to obtain estimates of how imbal­
anced the pairs of tasks are. Figure 5 shows
that these imbalances account for nearly 4% of
the overall model time. Most of the imbalance
was observed in PROCESS 1. PROCESS 2 and PROCESS
3 imbalances were smaller by a factor of 9.

There are at least 2 reasons for this imbalance.
One concerns LOCKS and will be discussed below.
The other concerns the nature of the computation
in grid-point space (part of PROCESS 1).
Although the amount of work done for each lati­
tude line is exactly equal for the dynamics part
of the code, this is not always true in parts of
the physical parameterization. Convection and
condensation calculations are affected by synop­
tic conditions and will therefore vary in space
and time. The magnitude of these variations in
terms of computing expense has not yet been meas­
ured.

LOCKS are used to protect critical regions of
code in some 20 places, mostly for statistic
gathering purposes. These locks all occur in
PROCESS 1 and are mostly insignificant in time.
However, some random I/O is carried out to a sin­
gle dataset which is common to both tasks and in
the current Cray software, a lock is applied
whenever I/O is initiated to any dataset. Indi­
cations are that this causes most of the imbal­
ance observed in PROCESS 1.

EXECUTION ON A CRAY-X48

It is a straightforward process to extend the
strategy to utilize 4 processors. A second
north/south pair of lines of latitude are pro­
cessed simultaneously, and the only new problem
arises in the direct Legendre transform, where
every northern row adds a contribution into one
half of the spectral array and every southern row
updates the other half. To avoid 2 rows updating
the same elements of the spectral array simul­
taneously, some locks are necessary, but for
efficiency reasons their effect must be minim­
ized. Currently this is achieved by splitting
the work domain into 4 pieces and by making a
dynamic decision as to which piece to perform
next using the LOCKTST function.

The measured performance on a CRAY-X48 is as fol­
lows:

processors
elapsed seconds/time step
speedup

1
19.3

2
10.3
1.87

4
5.5
3.5

These timings lead to a predicted overall cost
for a 10-day forecast in an operational environ­
ment of 2 hours, 20 minutes.

Comparison with the performance on the X22 (Sec­
tion 7) shows a small difference for the single
processors execution due to a faster SSD channel
speed. The much larger difference for the dual

62

processor execution is due to insufficient memory
banks on the X22, where the CP speed is retarded
by an average of nearly 10%.

FUTURE DEVELOPMENT

The existing 4-processor version of the model
provides the basis for acceptable execution on an
X48. However, the static nature of the task
balancing leads to inefficiencies which can be
largely removed by changing to a dynamic stra­
tegy. At a cost of increased memory requirement,
it should be possible to reduce execution time by
another 10%.

GENERAL STRUCTURE

loop
over
time
steps

start
~

..... ~t--------,

r---~-------. 100 p
SCAN 1 over

SCAN 2

Figure 1

63

rows

loop
over
rows

MULTI·TASKING STRUCTURE
~r

,.."",
~

~
~

I/O

1 1

2 2

..l
D D

~
~

3 3
T

,r

Figure 2

64

PROCESS TIMES
milli-seconds

100~-------------------------------

80

60

40

20

Figure 3

P1 P2 P3

NAT 18-SEP-1985 c

65

TSKSTART COSTS
%

100~------------~------------~

50

Figure 4

O.04ms O.4ms 40ms

NAT 29-NOV-1984

66

MULTI=TASK~NG EFFICIENCY

multi-tasking
88.6%

NAT 18-SEP-1985

2 processor model

67

out of balance
.- 3.6%

overheads
0.7%

single-tasking
7.1'%

Figure 5

c

CMTS - A CRAY IIDLTITASKING SIMULATOR

J.D.A. David

CEA, Centre d'Etudes de Limeil-Valenton

Villeneuve-St-Georges, France

ABSTRACT

CMTS is a program in binary library that can be
used on CRAY-1 and X systems, and on CDC CYBER
systems, to simulate the CRAY Multitasking
library. No source change is required to run

programs with either Cray 'Multi' library, or
CMTS. CMTS allows checking the correctness of
multitasked programs to be run, and gathering
statistics about processor use, for instance, the
speed-up one can get from algorithms using
several processors simultaneously. How CMTS
works and its internals will be described, and
examples will be given of use on real programs
wi th comparison to real X-MP / 48 benchmarks.

INTRODUCTION

Why CMTS

At the time we started to write CMTS, end of
1983, first specifications of Cray Multitasking
were just known, and we wanted to be prepared to
benchmark X-MP/24 and later X-MP/48. So we
wanted to first be sure that future benchmarks
would be correct with respect to Fortran and Mul­
titasking Library syntax (so that benchmarks
would run as soon as possible on X-MP). Second,
we wanted to experiment multitasked algorithms,
test them with real results and real 'multitasked
execution', and then evaluate their performance
and ~t a rough evaluation of the expected speed­
up and if necessary, tune or modify algorithms.
Another reason was to debug codes at ease in
France, and check for hidden bugs that would lead
to deadlocks or unused and/or over-used branches
of program (e.g., due to a misconception, some
event chain would never occur and a task never be
acti vated).

What is CMTS?

CMTS was conceived to emulate the standard Cray
Multitasking Library, so the user would have to
do minimum changes to programs and/or JCL to use
CMTS rather than standard Multi. Another objec­
tive was to provide the user with an effective
assistance to debugging, at all levels - that is,
from verifying that calls were done with accept­
able values of arguments, to catching deadlocks,
and including diagnostics of probably bad use of

68

resources (locks/events) and a trace facility for
'task stepping' •

CMTS was primarily conceived to run on the CRAY-
1/S that Limeil center had at that time, but a
by-product was that it can also run on Cyber,sys­
tern (with NOS/BE). The Cyber was used as a
front-end for the Cray, and interactive debugging
of CMTS was then made possible for faster
development. CMTS has also been implemented and
tested on a Cyber 76 (SCOPE 2) that was also
available.

CMTS DESIGN

The primary requirement for CMTS definition was
to emUlate all public calls to Cray Multitasking
Library. To-this we added some more calls either
as an implementation convenience or as a possible
user convenience - for example, a function to
give current task ID was added (and is heavily
used in CMTS) , and a subroutine MTRCLL that does
'nothing' but permits the user to get better
simulations, and especially to emulate busy wait­
ings (that would be otherwise impossible to simu­
late on a 1-CPU mainframe without access to
timer-counter interrupt). Also, to implement
CMTS on CYBER system, which does limit Fortran
names to 7 characters (CRAY limit is 8), we
decided to use all 6 character names, beginning
with the prefix MT. A secondary prefix (TK, LK,
EV, I (for Internal) specifies the category of
the routine. Only functions callable by user
have a different convention; that is, first
letter is compatible with Fortran implicit typ­
ing, and the name ends with MT. On Cray, a set
of stub subroutines with Cray Multitasking
Library names calling CMTS MTXXXX routines
enables user to have the standard interface.

The main difference with Cray standard is that
CMTS does not know the 'task common' notion.
First, this notion was added to Cray primitives
after the start of CMTS. Also, there were some
problems with it - the semantics was not clear
(did a child task inherit a copy of the task com­
mons of its mother? to what value task common is
initialized?). It was not standard Fortran com­
patible and then either needs a pre-compiler or
user source code modification. For these rea­
sons, and also because it was not easy to

implement in CMTS while user could easily emulate
it with standard oommons and indexing from task
ID or value, Task Common was dropped from CMTS.

CMTS PHILOSOPHY

As CMTS runs on l-CPU mainframes, it cannot emu­
late tasks simultaneously, so it emulates them in
turn, with a (reverse by default) round robin
algorithm. Task switch occurs inside CMTS
library routines when they are called, if current
task cannot proceed (default), or at user option,
when a ' time-slice' is elapsed. As CMTS cannot
choose times when it is called (in fact, this
time-slice is a 'minimum' value, and doesn't
suppress all timings problems - for example,
without calls to MTRCLL), CMTS cannot catch busy
waits inside tight loops.

Timing information was appended as a second
thought, as it can give invaluable information
about algorithm performance (primary objective
was to be able to run multitasked programs, and
effectively verify that there were no evident
bug). Timing is done by CMTS keeping 'clOCks'
for CPUs and tasks, but it is not used otherwise
(except for task choice for free CPU assignment).
What it means is that CMTS processes events (LOCK
ON/OFF, EVPOST/WAIT/CLEAR, TASK START/WAIT/END)
in the order it encounters them in the course of
the simulation, not in the order in which they
would occur in a real multitasked system with the
simulated number of CPUs. This can lead to wrong
timings, and it could also lead to wrong results
for algorithms which were time-dependent (but
these algorithms would likely be indeterminis­
tic). In fact, CMTS execution corresponds to one
on 1-CPU computer, even if it computes the times
the same sequence of events occurring on n-CPUs
would take. The most important fact remains that
if CMTS declares an algorithm wrong, it is almost
certainly wrong, and that timings that CMTS gets
for most event-driven programs are quite accurate
(see Benchmark comparison part).

CMTS INTERNAL DESIGN

Tasks are handled in a straightforward manner.
Starting a task consists of forking the current
task (UNIX fork call), then calling the associ­
ated subroutine, then ending the current (child)
task (UNIX exit() cal!). Wait for end of task is
handled by a list (chained) of waiting tasks.

Locks have two notable particularities. First,
in early design it was thought that locks were in
fact critical sections, although this was
corrected later. From that remains the notion of
'ownership' of lock (the owner is the task that
locked-on the lock), and the diagnostics (option­
ally fatal) that warn user from inter-task
lockon/lockoff. Second, the tasks waiting for a
lock are managed in a FIFO way. ('First' in emu-.
lation, not in emulated time order) - but an
exception was introduced for speeding-up emula­
tions. When a task does frequent, but short,

69

exclusive accesses to shared data (may be for
updating purposes), CMTS prefers to keep tem­
porarily ownership of lock to this task while it
is emulating it. It means that the current task
has a 'short circuit' access to locks while it is
emulated in the real CPU. This does not modify
timings if lockings are short, and it suppresses
many costly task switches.

Logical CPUs were added with timings, to have
timing computed for different CPU numbers. As
timings, it does not introduce changes in emula­
tion, except in order of choice of tasks during
the round-robin of emulation. If there are more
tasks active than there are available CPUs, some
tasks will be put in waiting state, and then will
be emulated later on, when a CPU becomes free
because of a task blocking. The logical CP~s
allocation algorithm is the simpler one. It is
'first' (from tasks waiting a CPU, the task hav­
ing the oldest 'real' time) come, first served,
without any priority; any blocking forces the
task to release the CPU.

CMTS uses IDs to communicate with users. These
ID are variables set to 'unique' (for a CMTS run)
value, depending on ID type. Task IDs start at
50000, locks IDs start at 60000, events IDs start
at 70000. This enables CMTS and users to check
quickly ID validity.

HOW CMTS WORKS

CMTS can be thought of as a two-level modular
structure. The first level is user callable, and
does all bookkeeping about timings, statistiCS,
and managing of task queue/locks/events states.
It submits all the real task management to second
level, via calls that create, delete, (re)start,
and stop tasks. The second level takes tasks
status and manages logical CPUs so that at most,
nCPU tasks are enabled. Others are either wait­
ing a task, a lock, an event (first level manage­
ment), or waiting a CPU (second level manage­
ment). It then takes tasks associated to logical
CPUs, and runs them in (reverse) round-robin
order. The scheduler selects tasks according to
forced switch or time-slice switch as described
above.

The swapping routine does swapping by writing
task memory image to file by way of Fortran
binary i/o. One routine, MTEXEC, is the execu­
tive and is always called each time an event that
could switch to another task occurs. It is the
'system exchange processor'. The routine MTRCLL
(which calls MTEXEC) does the same thing, but
forces the round-robin to go one step and execute
another task if there is one ready - this enables
CMTS to emulate busy-waiting. The swapper rou­
tine is called only from MTEXEC, and in MTEXEC in
branches of only one block-if, as last statement
of the branch, so that in any case, it returns in
MTEXEC at the same point. This is necessary
because MTEXEC is swapped with task, as it con­
tains in its context (local data) the (future)
return point for the task.

CMTS IMPLEMENTATION

CMTS consists of 100 modules, of which 2 are CAL
and 2 are COMPASS. The 'COMPILE' (or $CPL) file
contains about 7000 lines, giving 4500 statements.

All CRAY Standard Multitasking routines are sup­
ported, the only exception being the TASK COMMON
notion. CMTS allows 33 logical CPUs, 33 tasks,
100 locks, 100 events to be simultaneously used.
At most, 500 contiguous Commons areas (and 500
contiguous local areas) can be used. Fortran
input/output logical numbers used are 98 for load
map file ZZZZZMP, 99 for options file MTOPTS, and
60 to 60+maxCPU for tasks swap files.

CMTS options, specified either in free/keyword
format on file MTOPTS (read upon CMTS initializa­
tion - its use is to be able to run the same pro­
gram with different number of CPUs without any
change or recompilation), or as arguments in
MTOPT call, allow user to specify CPU number,
clock tick (for RTC emulation), message level,
trace file, reprieve or end processing, and
warning/fatal level for dubious locks/events
usages (such as task 1 lockon/task 210ckoff,
lock released while on, event posted while it is
already posted, etc ••••).

Output from CMTS is labeled with prefix identifi­
cation containing logical CPU number, CPU/task
real time (as computed by CMTS) , task ID, task cp
time. If required, trace file contains all
events which did change status of any task, with
all IDs specified; optionally, all calls to mul­
titasking lib (CMTS lib) can be traced. Statis­
tics are supplied at end of job step, with
count/max/min of locks/events/tasks activity.
Also, a message signals each task start (and each
start of multitasking activity), and each task
end with an estimation of task efficiency (real­
time/CPU-time); at each multi-activity end, CMTS
gives a rough estimation of the speed-up for the
mul ti tasked part just ended.

CMTS UTILIZATION - EXAMPLES

CMTS was used at Limeil to debug and evaluate 2
vectorized, multitasked codes that were run later
on Mendota Heights CRAY X-MP/48.

The first code was a Monte-Carlo Neutron Tran­
sport code [2J. Task synchronization was done
either by TS KSTART/TSKWA IT , or EVPOST/EVWAIT.
LOCKON/LOCKOFF was used for critical section
around common data updating. CMTS found bugs
such as argument passing, like:

DO 1 I=1, N
X=expression (I)
1 CALL TSKSTART (1TSK,SUB,X,I)

(X and I values received by instances of SUB will
be 'random', depending on relative timings of
loop and taskstarts).

70

Other bugs found were miSSing critical sections,
RANF generator interference with tasking (we were
forced to use it as a non-sharable resource, with
lockon/ranset/ranf/ranget/lockoff calls). A
pseudo bug was that for CMTS, the main program
was swapped as other programs, and then data
local to main program could not be transmitted to
other tasks (this does not occur with Cray Stan­
dard Multitasking Library). So we had to put
shared data in COMMON, which, in any case, is
always good practice.

The second code was a set of versions of Precon­
ditioned Conjugate Gradient algorithm [3], which
has no intrinsic parallelism (contrary to preced­
ing ~gorithm), and has a very small granularity.
Synchronization was done by means of locks, or of
events, or by higher level routines (using locks
and events) like SYNC (rendez-vous or barrier
routine), and 'tokens' (dataflow (or Petri nets)
approach - each task receiving and giving tokens
for synchro). CMTS found deadlocks not foreseen,
and signalled lost evposts that pointed that syn­
chro was not done as intended.

Real benchmarks [4] enable us to compare Standard
Cray multitasking results with CMTS previsions.
Numerical results from algorithms were identical,
except in cases of indeterministic runs (CMTS
always gave the same value (for fixed number of
processors), as user didn't change parameters,
but X-MP gave 3 different results). Timings
observed were equal to those predicted within 10%
for 2 processors, and for 4 processors the
difference can be observed (and verified from
other measurements) to come from memory conten­
tion (timings degradated about 10-20%).

Example with algorithms INV synchronized with
SYNC on 2 and 4 processors.

Number of CPUs

2
4

Theor.
Sp-up

1.85
3.23

Real
Sp-up

1.85
2.75

CONCLUSION

CMTS
Sp-up

1. 91
3.48

on '--S

CMTS is a powerful tool to test, debug and evalu­
ate multitasked algorithms. Its debug options
and statistics give the user invaluable informa­
tion. Its predictions, although rather crude,
are quite accurate to evaluate algorithms. Most
of all, it doesn't need a real multitasking
machine - it can even run on non-Cray systems.

CMTS is now included in CR~Y BENCHLIB. It could
also be ported, with minimal effort, to other
mainframes for users that w0uld like t::> test Cray
multitasking.

REFERENCES

[1] David, J.D.A. and Meurant, G.A., "CMTS
User's Guide", CEA Report CEA-N-2432.

[2] Chauvet, Y., "Cray Channels", Vol. 6, No. 3
(1984), Computer Physics Communications,
Vol. 37 (1985), to appear.

[3] Meurant, G., "Preconditioned Conjugate Gra­
dient", LBL - 18023 (1984), BIT, Vol. 24
(1984), pp. 623-633. -

[4] Chauvet, Y., David, J., and Meurant, G.,
"Experiences Numeriques sur le CRAY X­
MP/48", CEA Report CEA-N-2446, June 1985.

71

MUL TIT ASKING

Chaired by
Margaret L. Simmons

THE MULTI-LEVEL DATA BUS APPROACH TO MULTITASKING

1. L. Owens

Lawrence Livermore National Laboratory
Livermore, California

ABSTRACT

This paper describes a method of program design
that involves the separation of the data access
functions from the operations on the data
within a program. This separation allows the
program developer to easily adjust the amount
of parallelism and size of granularity of the
resulting multi-tasked program. With this
approach the programmer can, over time, move
to finer and finer grain tasking and achieve a
balance between the granularity and overhead.

INTRODUCTION

In the process of constructing multi-tasked programs we
have observed that multi-tasking a program becomes a
problem in data management. The program designer must
make sure that the data values are available when a task
needs them and that no other task has simultaneous access
to those data values unless they are protected by some
type of synchronization method. Fortran's pass-by­
reference method of argument passing causes problems
when a program is multi-tasked. The problem that is
caused by passing by reference can best be illustrated by
an example. Consider the following program segment:

DO 100 M = 1, 10
CALL CALCCm)

100 CONTINUE

If we assume that CALC uses M to select independent data
areas to modify, the natural way to multi-task this
routine is to change it to something like:

DO 100 M = 1, 10
CALL TSKSTARTITI))(M),CALC,M)

100 CONTINUE

Although this starts up 10 tasks, programming it this way
in Fortran leads to a bug. Depending upon how the tasks
are executed, it is possible that all of the tasks started will
see an argumt'nl of]0 for the value of M. This occurs
because the location in memory holding the value of M is
being changed as the tasks USing that value are running.

72

This type of problem could be solved by giving Fortran
the ability to pass by value, but it reappears when data is
communicated via COMMON. Since data communication
via COMMON is often used when large data sets must be
communicated to many routines, we will need some
method of controlling the access to variables contained in
COMMON blocks.

In this paper, we describe a method of data access control
that is analogous to the way data access is controlled
within most modern computers. This method will allow
us to communicate to independently running tasks via
variables contained in COMMON but still make sure that
thl' tasks each get a private copy.of the data that they will
modify. Most modern computers use a bus structure to
control the movement of data between memory and the
CPU. Boards are designed to plug into the bus and thus
are able to obtain access to the data in the memory.
Various control methods are used to control access to the
bus. It is necessary for the boards on a common bus to
each obey a bus pr01ocol so that each board will know
when it can have access to the bus. In the following
sections of this paper we will describe a mel hod of passing
data to routines that functions much like the bus of a
modern computer. The tasks will get subset selection
values from a COMMON block. All tasks using the same
bus will use information from this COMMON block, but
they will each get different subsets to operate upon since
they will select the subset selection values based upon a
bus level num ber that was passed to them when they were
started. It is the responsibility of the bus control routines
to make sure that the subsets of data processed cover the
entire data base that needs to be processed.

DATA COMMUNICATION OVER A
MULTI-LEVEL DATA BUS

Before we describe the data bus approach to passing data
into routines we will digress for a moment and consider
how data is currently passed into and out of data
computation centers. Consider the following fragment of
Fortran code.

A=B+C*D
E=F+G
H=B+D

Traditionally we have thought of each of these statements
as being performed one at a time but why not let all three
of these statements execute at once on a multiple cpu
machine. Since the data used and the values calculated are
independent for these equations we could do that.
However if we consider the following fragment of Fortran
code we see why some control method is required.

A=B+C*D
E=A+F
G=A+E

In case of the equations above we see that before the
second equation can run we must have completed equation
one and before equation three can execute we must have
completed both Eqs. C 1) and (2). There are many forms
that the necessary control can take. At the level of single
lines like these that are operating on scalar variables, we
would probably just run all three lines of code on the
same CPU and use the traditional Fortran sequential
statement execution convention to make sure that the
necessary control was present. However, what if the code
fragment was as below?

DO 100 I = 1,1000000
100 AO) = BCI) + CO) * DO)

DO 200 I = 1, 1000000
200 EO) = AO) + FO)

DO 300 I = 1, 1000000
300 GO) = AO) + EO)

Now we could have a performance problem if we simply
let one processor run all three statements since it could
take a long time to do each one. Also, if we note that the
brst element of the second equation can be calculated as
soon as the brst element of the brst equation is completed,
we see that a considerable amount of potentially
overlapable execution can be lost if we run on only one
CPU. Even if we let several CPUs process a given line and
wait until all CPUs have finished a line before going on to
the next line we still lose some of the available
parallelism. When we conSider that many modern
machines have vector instructions that perform at 10 or
more times their scalar instruction counterparts, we begin
to see the problems in trying to apply as much as possible
of a multi-processor to the above problem. One approach
to this problem that we have been considering is to think
of the data access control problems as if they were really
bus access and control problems. The concept is to
communicate between calculation centers by letting the
centers themselves get their data from a software
simulated bus with access to the bus controlled by event
flags. While the bus concept provides some structure to
the data flow control problem, it also leads to another
problem. The bus itself can become a bottleneck! So we
are led to the concept of a data bus that has many levels
upon which data can be moved. By moving data in
parallel over each of these buses we achieve a high level of
parallel operation, and if we only pass over the bus the
information to tel] the tasks what subsets of data a given

73

task is to operate upon, we minimize the amount of
information that must be passed. Also by defining the bus
and the data it can access we get a modular method of
construction so that subroutines and buses can be shared
between several codes that do the same kinds of operations
on the same data structures. The multi-level data bus
approach can fit in well with a structured and modular
method of program construction. However we do give up
one of the favored concepts of structured design for those
subroutines that are multi-tasked -- the concept of passing
all data via arguments. Since we want the subroutines to
operate as effiCiently as possible we do not want to have to
pay the indirect addressing, data copying, and space
overhead that comes with passing arguments by value.
But we can replace the argument passing mechanism with
the multi-level data bus passing mechanism and retain
many of the advantages of passing data via arguments.

The concept then is that the above program fragment
would func1 ion as shown below:

(Wait until given access to a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N)
00 lOOI-M,N

100 A(J) - 8(J) + e(J) • D(J)

(Wait until given access to a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N)
D0200I=M,N

200 E(J) = A(J) + F(J)

(Wait until given access to a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N)
D0300I=M,N

300 G(J) = A()) + E(J)

It should be noted that three different multi-level data
buses are being used to control the data access in the above
code fragment. First there is a data bus that controls read
access to B, C and D and write access to A~ then there is a
data bus that controls read access to A and F and write
access to E. Finally there is a bus that controls read access
to A and E and write access to G. Note also that if the
tasking and event handling overhead permitted it, we
could start up many, many tasks that could all run in
parallel Ci.e., M - N could be small). It should also be
noted that I, M, and N are local to each task so that in
theory the bus control software could even allocate
different amounts of work to different tasks. Since each of
these computation centers is working from different values
of M and N they can actually go back to the bus to get
more data to work on when they finish the work they are
currently doing. Thus the coding would really look
something like:

50 (Wait until given access to a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N)
DO 1(0) - M,N

100 AO) -= 80) + CO)· D)))
GO TO 50

ISO (Wait unti] given access to a bus level via the raising of an event flag)
(Take from the appropriate bus level M and N)
0(200) - M,N

200 EO) -= A(I) + F())
GO TO ISO

2SO (Wait unti] given access to a bus level via the raising of an event flag)
(Take from the appropriatl' bus level M and N)
0(300) ~M,N

300 G(J) "" Am + Em
GO TO 2SO

In this form we can actually get along with a smaller
num ber of tasks since each task gets more work when it
finishes the work it is currently doing. However the
designer of a program may wish to design the code so that
each task is given the same amount of work as each of that
task's clones and such that only one bus transaction is all
that is necessary to accomplish the work .. This will keep
the communication overhead over the data bus to a
minimum and minimize the number of event flags used. In
the form above we have assumed that a given task keeps
the bus it is using busy until it has completed the work
assigned to it. Actually a task could release a given bus
level after getting its value for M and N from the bus but
we choose not to allow this since the reuse of a given bus
level by other tasks complicates the bus control
algorithms. However we have omitted another
reqUirement of the bus control logic that cannot be left out
if the bus is to function. This is the reqUirement for the
initial assignment to each task of its bus level.

The bus that a given fragment of code uses is decided by
the code fragment's data access reqUirements, but its bus
level is decided upon dynamically and depends on when
the task was started. The allocation of bus level then
becomes a problem because each task must know its bus
level in order to get its data, but at the startup time of the
tasks these levels have not necessarily been deCided upon.
Another point we have left out is any discussion of the
bus controller software that must not only control access
to a given bus but must also work with other bus
controller software to implement the control logic
necessary for the correct operation of the program. In the
next section we discuss the reqUirements for these
software bus controller modules.

THE MUL TI-LEYEL DATA BUS CONTROL LOGIC

Up until now we have not described how the tasks are
started or how the control of a bus is carried out. This is
because there are many ways that the control of a bus can
be implemented. Below we will describe one of the' ways
the control of a bus could be implemented. At one
extreme, consider a code that contains only one multi-level
data bus. In this case at the beginning of the code the tasks
that were to process data in parallel could all be started
and as they are started they could be passed their level on
the data bus. Since we are implementing multi-level data

74

buses which have only one task per bus level we could
then have the actual task's code look much like that listed
below. Even if there were many data buses in a given
program we could still do the bus level allocation at task
startup time if we have a different level counter for each
multi-level data bus. If this approach is used then the
actual programming might look something like the
following)

(Get bus level number)
SO (Wait until given access to a bus level via the raising of an event flag)

(Take from the appropriate bus level M and N)
00 1001 "" M,N

100 A(J) "" 80) + Cm • D)I)
GO TO SO

(Get bus level number)
150 (Wait until given access to a bus level via the raising of an event flag)

(Take from the appropriate bus level M and N)
002001 = M,N

200 E(J) = AO) + F(I)
GO TO 150

(Get bus level number)
250 (Wait until given access to a bus level via the raising of an event flag)

(Take from the appropriate bus level M and N)
003001 =M,N

300 G(I) "" A(I) + EO)
GOT02SO

where the process of getting a bus level number would be
simply to accept it as an argument at the time of task
startup. All the tasks could be started at the start of the
program and from then on use the same bus level for all
data communication control. An alternative to this
method would be to allow a task at the start of its run to
ask for a bus lrvel from the bus control routine via using
some communication convention that would allow many
tasks to each get a unique value for their bus level. A
fetch-and-add primitive operation on a unique location for
each bus could be used for this purpose. Of course other
critical code section locking methods could also be used to
accomplish the same purpose. For our purposes here we
will assume that the simple allocation of bus level at task
start time is all that is needed. This process might look
much like that listed below.

(At start of program, start the bus controI1ers which in tUl'Il start up the tasks
that wiJ] process the data under the control of the bus)

(Get bus level number)
50 (Wait until given access to a bus level via the raising of an event flag)

(Take from the appropriate bus level M and N)
00 100 I =M,N

100 A(J) - 8(J) + cO) • DO)
(Set the bus event to say that the data subset has been processed)
GO TO SO

(Get bus level number)
ISO (Wait until given access to a bus level via the raising of an event flag)

(Take from the appropriate bus level M and N)
00200 I "" M,N

200 EO) = AO) + F(I)
(Take from the appropriate bus level M and N)
GO TO 150

(Get bus level number)
250 (Wait until given access to a bus level via the raising of an event flag)

(Take from the appropriate bus level M and N)
003001 -M,N

300 G(I) "" AO) + EO)
(Take from the appropriate bus level M and N)
GO TO 250

Now we come to the bus control logic itself. This is
implemented via one or more independent tasks for each
data bus implemented. Logically we can look at the bus
control logic as being required to do several things. First it
must decide if it is time to allow data to move across the
bus (i.e., it must find an answer to the question "Is this
program ready to perform the calculation centers that are
waiting for this bus")? Next it must select the subset of
data and place it so that the tasks can access it. Then it
must set the bus event to say that the data is on the bus
and ready for use on the given bus level. It then must
wait for the event that indicates the calculation has been
completed and the output is on the bus. Then it must take
data calculated and put it back where it belongs. Finally,
if the bus is to be used again, it must wait until it is again
time to put data on the bus for another round of
calculation.

The job of the bus control logic sounds complicated but
sometimes it can be greatly Simplified. In fact if we
consider the original scalar version of the equations that
we had at the start and think about what happens in a
slightly different way we can see how each of the
functions performed by the bus logic gets done in normal
programs. First think of the equations sitting there ready
to do their calculations and the event that they are waiting
for is the arrival of the program counter at their location.
But before that event can happen another event occurs
(i.e., the arrival of the program counter at another
position) that allows some instructions to be executed to
put the needed data in certain registers where the
calculations assume the data will be when they are
executed. Finally when the equations have completed
their work another event (again the program counter
arriving at a certain location) occurs that allows the
output from the equation to be put back into the location
that it needs to be in for future calculations (Le., main
memory). Of course in this simple case the bus logic gets
mixed up with the equations themselves and we are
proposing that it be explicitly separated from the
equations. This separation will cause some extra overhead
but if the amount of computation that must be done is
large then the advantages of allowing the parallel
execution of the program will more than make up for the
extra logic of explicitly raising events to communicate
between the bus control and the equations.

One advantage of the data bus approach is that it can hide
from the equations the amount of work that must he done
to place the data where the equations assume it will be.
Thus the equations can assume that the data will be in a
COMMON block and their coding simply refers to it via
offsets passed to them over the bus (i.e., another
COMMON block that is indexed by the bus level number
tbat each task is given at its birth). On some machines the
process of getting the data controlled by the bus may
require t he movement of the data from a large central
memory to a smaller and faster local memory. Such data
movement is hidden from the equations by the bus logic
that takes care of such machine specific dependencies. This
allows a program using the multi-level data bus design to
be moved from machine to machine with machine

75

dependent changes being made only in the data bus control
routines.

One thing that has not been spelled out is how the bus
logic knows when it is time to cause activation of its
particular bus. One method of exercising this control is to
have another bus (a MASTER bus) that is really just an
array of events with each multi-level data bus plugged in
at a certain place (Le., looking for a given event in the
array). Then as certain points in the progression of the
program execution are reached the appropriate events are
enabled and the associated bus allows data transfer. When
all the bus data has been moved over the bus and the
output has been placed where it belongs, then the bus
control can raise an event to indicate its job is completed
for now and this could in fact be the event that started
another bus to activate. Thus the buses themselves could
accomplish what is done by the arrival of the program
counter in normal programs (Le., the control of the flow of
the program's logic). This type of control may prove to be
too restrictive and some inter bus control may be needed
that allows many buses to be active at anyone time. In
fact that is what is needed in the example given above so
that the second and third equations above can run at the
same time as the first one is working on its data. In this
case the bus logic as described above can be carried out at
the bus level number level rather than at the entire bus
level and thus when a bus level has completed its
processing it can cause a level in another bus to be
activated. Since in theory the num ber of bus levels could
approach the number of elements upon which the
calculation is to be performed, any level of parallelism
that is needed could in fact be implemented via this
approach. Clearly at some granularity level the overhead
will exceed the work done and we will have to be
judicious in our use of very fine granularity.

As described above, the data bus approach appears to be
much like the data flow approach. Indeed a data-flow-like
execution can be implemented via this approach but so can
a normal sequential program flow. We think that the most
likely place for a data bus to be used is at a pOint where a
procedure call is heing made. If in changing a code into a
multi-tasking code you are able to identify a procedure
that will be multi-tasked then you have identified a place
to consider the use of a multi-level data bus. It is just this
ability to be used to change a totally serial program into a
parallel program in a step-by-step manner that makes the
multi-level data bus approach attractive. With this
approach to transforming programs we think we will be
able to move in a step by step and strucl ured manner
toward a more data-flow-like execution of programs. By
identifying exactly what data is controlled by a given bus
we will be able to maintain a better understanding of how
the program is functioning. In fact, as can be seen below,
the structure chart of a program being transformed into a
multi-level data bus form looks much like the traditional
structure chart with only the arguments being passed via a
different approach. Note that in this approach the
arguments to routines are usually passed via COMMON
and only the subset selection is passed in the variables
associated with the data bus. Thus this approach lets us
see explicitly in the structure chart arguments that were

hidden in non data bus programs because they were passed
by COMMON. Below we show a structure chart for the
code fragments we have used before in this paper. We
now consider each fragment as a procedure since that is the
way this approach will be implemented using the CRAY
multi-tasking primitives.

Main prDgram

BUS BUS
R C

B,C,D R R,F R,E G

I '" CRLCULRTE R CRLCULRTE E CRLCULATE G

If the data bus model of producing parallel programs
proves to be a good paradigm then in the future it might be
possible for compilers to replace argument passing at
certain specified places in a program with a data bus type
of data passing mechanism and thus automate the
production of the data buses for a program. With
machines such as the ETA machine where large blocks of
data may have to move between local and remote memory,
having the data bus type for arguments in the compiler
could relieve the programmer from having to worry about
the movement of the data.

CONCLUSION

We have described a method of controlling the flow of
information into and out of subroutines that can be
applied incrementally as needed to convert a Fortran
program from a serial version to a multi-tasked version
suitable for running on a multi-cpu computer system.
Unlike other approaches that suggest that new languages
may be needed or that additional features be added to the
syntax of current languages, this approach simply removes
a feature from Fortran fot' multitasked routines while
leaving the nonmultitasked routines as they are. The
feature not used is the argument passing by reference of
Fortran. It is replaced by an argument passing method
based upon selection of subsets of the data which are
stored in COMMON blocks. The method allows finer and
finer grains of parallelism to be used as incremental
changes are made to a program. Ultimately a very data
flow type of execution can be achieved.

76

EXPERIENCES WITH CRA Y MULTITASKING

Eugene N. Miya and M. S. Johnson

AMES Research Center
Moffett Field, California

ABSTRACT

This paper covers the issues involved in modifying an eXistmg code for
multi-tasking Thp~e include Cray extensions to FORTRAN. an examination of
the application rode under study, designing workable modifications, specific code
modifications to the V AX and Cray versions, performance, and efficiency results.
The finished product is a faster, fully synchronous, parallel version of the original
prograni

A '·production" program. TWING. is partitioned by hand to run on two
CPt);,. TWI!'\G analyzes transonic airflow over a wing. Our preliminary stud~
uses a greatly reduced data structure on a shared memory. multi-headed VAX.
Tnt' program is then moved to a Cray X-MP 122 under version 1.13 of the eray
Operating System (COS) using Cray FORTRA:\l (CFT) versions 1.13 and 1.14.

TWING is a well-struct.ured. highly vt'ctorized program that runs on one
processor. Loop splitting (performed manually) multi·tasks thret' key subroutines.
MultHask TWING uses two CPLis simultaneously in determining airflow above
and below an airfoil; acting as two operator-independent flows. Another portion
of the program splits processing into wingtip versu~ ··surrounding" wing flows.

Simply dividing subroutine data and control structure down the middlt' of a
subroutine is not safe. Simple division product's results that are inconsistent with
uniprocessor runs. The safest. way to partition the codt' is to transfer one block of
loops at a time and check the results of each on a test case. Other issues includt'
debugging and performance. Task startup and maintenance e.g .. synchroniza­
tion are potentially expensive.

Future research considerations involve the development and integration of a
FORTRA:\ preprocessor for higher-level, explicit control of multi-tasking.
Despite these problems. the partitioning of certain pre-existing programs looks
promising.

77

Introduction and Outline

The search for improved performanCE'
ha~ focused on using different forms of paral-

lelism to achievE' speed increases. l To this end.
Cray Research. Inc. (CRI) introduced vector
processing and. most recently, user-accessiblf
multi-tasking (Larson. 1984. Research.
1985. Research. 1984). The Cray work on
multi-tasking takes a "coarse grain" approach
to parallelism in contrast to the "fine grain"
parallelism of vect.or instruction sets or
dataflow (Dennis. 1979). Multi-tasking was
not introduced without tradeoffs such as this.

The issues raisE'd with the introduction
of multi-tasking and multiprocessing involv~'

more than perforrnance Multi-tasK program;.
may requir!' major changes in thE'Jf aigorithm,
storagE' management. and codE'. Toward thi­
end. npw or modified programming language;.
are nE'E'dE'c

Explicitly parallellanguagp~ must handl",
problems beyond the scope of conventional
programming languages. These issues include
data protection. non-determinism. proces,
management (i.e .. creation, scheduling. dele­
tion), interprocess communication, synchroni­
zation (i.e., deadlock and starvation). and
error and exception handling (Denning. 1985).
These problems are well documented wit.h thE'
Carnegie-Mellon's muhiprocessor research
(Jones, 1980). There are f('w simple solu­

tions.2 and tradeoffs must hI' made. Grit and
McGraw compare parallel applicatiom pro­
gramming to operating systems programmin~
in sheer difficulty (Grit. 1983) thus creating
more troublr.

System timing must receive careful con­
sideration in multi-task codes to avoid incon­
sistent results and deadlock. A sequential
codC' hacking style IS dangerous In this

IThe terminology is varied. colorful, and hignly
confusin b. Among other phrases. we have: parallel pro·
cessing. multiprocessing. polyprocessing. distributed com·
puting. decentralizea computing. and 5(, forth. Each
phrase ha, a sJightiy difierent meaning: enough to make
communications difficul:. CRI maKes the subtle distinc·
tions that multiprogramming means multiple jobs working
or. a cpe ie.g .. time-Sharing. mul!lprocfs~lng means work
done on multipJ(· physical CPL~ working multiple job~
:i.~ .. without regard for jobs .. and multi' tasking means
multiple physical cpe, working cooperatively on a singlt
problem.

2Jones and Gehringer specifically classify distribu ted
system issues into proLlems of 1) consistency, 2) d€adlock.

environment. Care is required when dividing
a problem into multiph> tasks to avoid inc on­
sist.enc~'. Thi!' division is called partitioning or
decomposition as well as other terms.

Several partitioninp schemes can execute
rodps in parallel (.Jon('s. 1980). The most
common are pipelining. spatial partitioning (by
problem space or machine st.orage). or relaxa­
tion that removes assump! ions of data con­
sistency. David K uck IS best known for hi8
research on automatIc partitIOning (Kuck.
1980). This paper covers the subject of parti­
tioning an existing application program by
hand.

The program "TWING ,. is the vehicle
that we use to explore the issuE'S surrounding
multi-tasking. This report rovers:

Existing Languages: Issues and Problems
The Cray Multi-tasking Implementation

The TWING Program
Modifications to TWIj\G

The 2-Processor VAX \' ersion
The 2-Processor Cray Version

Debugging and Other Consequences
Performance Issue,
Discussion and Conclusion

OUT programming style is conservative and
defensive. We assume the multi-task program
will not execute the first time. ""1.' chose a
synchronous algorithm and sought results
identical to results using uni-task TWING.
This work stresses thC' importance of careful
analYSIS. design. and testillg

Existing FORTRAN Drawbacks

As background. it is useful to understand
tile problems inherent with standard FOR­
TRA\ and multi-tasking. FORTRAl'\ is not
currently designed for or intended to run in a
parallel environment. :'\ew problems arise in
multi-ta'iking such a;; synchronization, com­
munication. error handling. and deadlock. An
excellent survey of language issues and various
attempts at solving them appears in Comput­
ing Surveys (Andreu·s. 19S5j.

First. the standard FORTRA!\ language
lacks process-creation primitives and struc­
tures. The SUBROUTI!\E is the closest
FORTRA:\ object resembling a process or a
T ASK. Second, the language lacks feature!'
for explicit synchronization and protection

:ll starvatior .. and 4) exception handling.

78

such a~ semaphores (Dijkstra, 1958) (i.e.,
ALGOL-58). monitors (Hoare. 1974) (i.e., con-

current Pascal). or rendezvous (i.e., Ada~)
(DOD, 1980). h. also. lacks explicit commun­
ication features such as mailboxes.

Each of the aforementioned synchroniza­
tion features has assumptions of atomicity
(uninterruptability) which is critical for main- .
t.aining a degree of consistency that standard
FORTRAN cannot currently provide. Syn­
chronization is a technique normally reserved
for operating system programming (usin f
libraries) since it. offers "hazardous'· user facili­

tie5. 4

Lastly, the software engineering prob­
lems associated with FORTRAK are accen­
tuated in a multi-tasking environment. The~('

problems are documented elsewhere (Dijkstra.
1958): they include GO TOs and the lack of
modern data structures. An example of these
tradeoffs is the inability for Cray multi-tasking
FORTRA)\ to coherently perform multiple
RETURJ\s. .

It is not easy to add these features to the
FORTRAN language. These features conflict
with existing language semantics. The pro­
grammer must locate and manage side effects
on globally referenced memory (such as COM­
MON variables), call-by-reference parameter
passing, and manufacturer-dependent features.
These side effects also occur at the lower
vect.or-processing level: Cray users have modi­
fied their programming style to accommodate
them. We can similarly expect users to adopt
a multi-tasking programming style.

Cray Multi-tasking FORTRAN exten­
sions

The existing Cray Research supercom­
puter line performs efficiently by using a vec­
tor instruction set. Performance improvement
is achieved by using. regular data-access pat­
terns on arrays and their indices. Currently,
multi-tasking seeks to achieve performance
improvement using multiple processing units.

eray Research has a set of primitive
extensions to support multi-tasking in version
1.13 of their CFT FORTRAJ\ compiler

lAda is a trademark of the Ada Joint Pr0jE'ct Offic~
of the CS DOD.

'There exists the potential for user-ind uced system
deadlock.

(Larson, 1984). These extensions currently
allow several virt.ual CPlls to execute simul­
taneously on one to four physical CPUs.
These primitivei' are invoked using subrout.ine
CALLs. They are useful for creating more ela­
borate synchronization mechanisms such as
monitors (Hoare, 1974).

The Cray primitives fall into three gen-
eral categories:

T ASK creation and control
EVENT creation and synchronization
LOCK creation and protection

The primitives are controlled using three basic
data structures: a T ASK control array
(Il\'TEGER type containing two or three ele­
ments), EVEKTs, and LOCKs (both of type
INTEGER) all explicitly assigned (i.e.,
created)

An extremely important semanticS differ­
ence is the handling of storage (primary
memory) in this version of FORTRAK Local
storage in normal FORTRAN has a static
allocation resulting in possible side effects.

The new multi-tasking CFT FORTRAl\'
requires a dynamic or stack-based allocation of
storage more characteristic of ALGOL-like
languages such as Pascal or C. This is neces­
sary for TASK creation and migration. Local
storage (scalars or arrays) now has a finite life­
time and scope. A programmer cannot use a
value left over from a previous subroutine
CALL or assume values are initialized to zero
(0). This is a radical departure from standard
FORTRAl\. The next four sections cover
the~e primitives and their effeCLS in greater
detail.

TASK Control

We begin with TASK creation. A user
controls a concurrent object, called a TASK
that is invoked like a SUBROUTINE. The
T ASK is defined like any other SUBROlJ­
TIl\'E except that its name must explicitly
appear in an EXTERNAL statement before a
CALL. and its storage gets handled dif­
ferently. The specific TASK syntax primitives
are shown in figure 1 where SUBNAME is the
SUBROUTINE name, and ITCA is an
INTEGER TASK control array. Note,

5We mention this because there are no FORTRAJ\
keywords (i.e .• syntax) associated with this problem: it·s
fiemantic.

79

CALL TSKSTART(ITCA,SUBl\AME,:arguments])
CALL TSKWAIT(lTCAj

Figure L Cray TASK primitives.

restrict.ed, positional SUBROUTINE argli­
mems are passablf'.

A TASK control array is a simple data
struct.ure that holds TASK control data for a
schrduler that is loaded with the program on
execution. This scheduler is distinct from thE'
operatin R system's scheduler in that it governs
user defined TASKs rat.her than JOB~.

The TASK is created using the
TSKSTART call. TSKSTART is similar to a
fork in languages like ALGOL-58 except a
separate address space is created. much like a
separate space for a FORTRAN subroutine.
The effect is like a subroutine CALL with one
major exception: subroutine CALLs are svn­
chronous and consequently wait, uniike
TSKST ART calb

The following program fragment. (figure
2), listed in parallel. illustrates the creation of
a TASK. l\ot.e that the subprogram allocating
the TASK control array must not lose the
T ASK control array st.or~ge~ Sev~~-; problem~
will result ~

A "TSKWAJT" statement could force a

crude explicit synchronization on execution of
a RETURN stat~menl within task A. The
section on Debugging will touch on the use­
fulness of TSKWAIT. More refined

PROGRAM
INTEGER TA(2)
EXTERNAL A

synchronization is available using EVENTs
and LOCKs. There are also TSK calls
covered in the Cray documentation that
report T ASK information or statistic,.
(Research, 1985).

eray support. of multi-tasking includes a

simple deadlock-detection mechanism.
Deadlock occurs when all user TASKs an­
waiting for a condition that never o('cur~

This goe~ for synchronization using
TSKW AlT. EVE]\;Ts. - or LOCKs. Care if'
required, particularly. in using EVENTs
because these functions are not necessarilY
atomic (indivisible). IDeadlock is discussed
further in the section or; Debugging.

EVENTs and LOCKs

Synchronization and consistency protec­
tion use combinations of EVENTs and
LOCKs. Both are useful for simple synchroni­
zation The key difference between an
E\'E!\T and a LOCK is that a/LOCK forces
tasks to run in a First-In. First-Out (FIFO)
ordrr. An EVE:\,T i,. comparable to a "broad­
cast." and many TASKs can run at once. It
is also important to clear or reset a LOCK or
E\'E:,\T at. appropriate times.

CALL TSKSTART(TA.A.arguments) SUBR.OUTINE A(parameters)

END END

Figure 2. An illustrat.ion of simple TASK crt'ation.

80

EVENT" and LOCKs art> created by
usinr subroutine CALLs which assign special
protect.ion in the same manner in which
T ASKs are crt>a.1.ed. Basic arithmetic and log­
ical operat.ions are disabled for these obje('t~

until they are released. The spt>cific primitiH
SUBROUTIJ\E CALLs ar('

EVENT Control

EVASGN(IEVARl
EVPOST(IEV AR)
EVWAIT(IEVARj
EVCLEAR(IEVAR)
EVREL(IEV ARi

LOCK Control

LOCKASGN(LCK)
LOCKON(LCK)
LOCKOFF(LCK!
LOCKREL(LCK)

in which IEVAR and LCK are INTEGER~
assigned as EVENTs or LOCKs. The folio\\-­
ing is a simplt> two-TASK synchronization
using EVENTs in t.wo separate executing
TASKs. The s('ope is shown by the bounding
boxes of figuf(' 3. If an EVENT or a LOCK is
CLEARed or RELeased while some TASK is
waiting, the consequences are nondeterministi(,
and can be disastrous.

If combinatiom of EVENTs. LOCKs.
and COMMO]\' memory are used. it is possible
to make mort> elaboratt> synchronization
mechanisms such as semaphores and monitors.
Sequential critical sections of code and data
need protection using these synchronization
primitives. Problems of inconsistent synchron­
ization are covered in the next section.

COInlTIunications

Communication take~ place though one
of three mechanisms:

CALL-by-Reference parameter passing
Global COMMON memory

TASK 1: TASK 2:

TASK COMMON memory

Data is passed using shared (e.g., COMMON)
variables. This is thr principal means of com­
munication and requires care in use.

A TASK-local COMMON (e.g .. TASK
COMMON) is available in version 1.14 of thc
CFT compiler. 1t is similar to the more rlobal
COMMO]\ except that its data is accessiblc
only to objects (SUBROUTINEs; within a
parti(,ular TASK MaintainiJl~ a consistent
system state is a chore left to the user.

Consistency is threatened bv three basic
hazards. Supp()~e A and B are'two TASKs
running in parallel and sharin[! a variable V.
The hazards are bast'd on the order in which
processes access \: Il timing problem. Thr
first hazard is the read- write hazard -- having
one TASK prematurely reading a stale value
before the appropriate writ e. The next is the
write-read hazard: having one TASK prema­
turely "clobbering" a value before it could be
read. The last hazard is the write-write
hazard in which one TASK writes over values
that never get a chance to be read jparticu­

larlv difficult to dete('.t: r,. The Cray is not
res~onsible for these p~tential user errors of
timing.

Storage and Subroutine Linkage

Tht' actual handling of storage differs
vastlv from conventional static FORTRA]\.
This "has its greatest effect on SUBROUTINE

·Tn~ m~rnory on the Dent'icor Heterogeneous PrCJ­
ceS50r ;HEP: is an attempt te, s0ive this problem. If vari·
abIes receive a special declarat iOIl, they are forced to alter­
nat(· reads and writes using a un ique semaphore memory
sysl err~.

CALL EV\VAIT(READY)
CALL EVPOST(ACK)

CALL EVPOST(READY)
CALL EVWAIT(ACK)

Figure~. Synchronization of two TASKs US1Ilg EVENT flag".
Boxe~ represent different address spa('e~.

81

and FUNCTION linkages. The semantics of
these new linkages prompt some users to name
this an entirely different language (e.g., "not­
FORTRAN"). Old memory-saving tricks such
as statically defined and allocated variables
left. for a second subroutine CALL are now
undefined and may contain unreliablE' data.
Users cannot assume values are initialized to
zero (0 i. Expressions m parameter list~

involve similar problemb

ThosE' readers familiar with dynami('
storage management in scopf'd languages suc!:
as ALGOL. C, Pascal, or LISP should grasJ
the~e concepts easily. FORTRAN simply doe;.
not. offer t.he protection mE'chanisms to ensur"
consistency of data in a multipn)('E'~s environ­
ment. The user must. actively manage tl!P

data consistency and program defensivej~

The Mathematical Basis for TWING

TWING is a program that solves thr
conservativE' full-potential equation, using h

fully implicit, approximate-fact.orization algo­
rithm. The program solves for stable state
airflow over a wing flying at. transonic velo­
city. TWING is the development of Dr. Terry
Holst and Scott. Thomas (Thomas, 1983) at
the Applied Computational Aerodynamics
Branch, NASA Ames Research Cent.er.

Figure 4 is a schematic of the finite
difference mesh over which the flow solver
operates. From this representation in "physi­
cal space", the problem is transformed into a

"computational space" Ifigure 51 which
preserves the orthogonalit.y of the mesh lines
throughout the computational domain.

(p<t>1)Z + (p<t>~)~ + (p<t>z L = 0 (La)

A mathematical representation of this
flow solver is given in the derivation of equa­
tion I.c. The three-dimensionaL full potential
equation (in x,y.z coordinates) is presented in
equation] .a. ThE' transformation into compu­
tational coordinates (':.7],~ coordinates) yield~
equation Lb. In this equation. U. V, and W
arE' t.erms composed of <l>x, if>y, and if>z com­
binrd with assorted metric quantitie~. J
represents the Jacobian of the transformation.
The finite-difference approximation of this
transformed equation (I.c) employs backward
differencp operators in the f,,7], and ~ direc­
tions. This yields the finite-difference approxi­
mation in equation I.c. The special density
coefficients iJ , p, and p introduce an artificial
VIscosity term into the calculation. The resi­
dual term L(<t» obtained from this equation i5
used in the first step of the factorization
scheme outlined below.

An outlinE' of the t.hree-step
approximate-factorization scheme is shown in
the derivation of equation 2.<.'.. In step one
(equation 2.a), an intermediate term G(i,j) is
computed for each point Oil a given "k-shell"
of the mesh by solving a t.ridiagonal linear sys­
tem along each 7] line (i.e., ~= a constant)
extending from the symmetry plane out to the
freestream sidewall. In step t.wo (equation
2.b), G(i,j) computes another intermediate
term F(i,j,k) for each point in the "k-shell."
This step requires the solution of a tridiagonal
linear system along each f, line (i.e., constant
7]) extending from the upper vort.ex sheet
around the leading edge to the lower vortex
sheet (figure 6). Finally, when F(i,j.k) has
been computed for every point in the three­
dimensional mesh. the correction factor

The t.hree-dimensional full potential equation (x,y.z coordinates).

(p U ! J) e ..;. (p F / .J)'I + (p W / J), = 0 (1. b)

The full potential equation in comput.ational space ({, 7], ~).

be(pU/ JL:..+.i .• -+ b"r}!p\'/ JL.j_+ .• .;. b~(pW/ JL.j.k.+ o (I.e)

The resultant. finite-difference approximation.

82

Figure 4. Sample finite difference mesh.

OUTER BOUNDARY

z

tLy
Figure 5. Transformation to computational space.

83

SYMMETRY PLANE
BOUNDARY

~ LINE (17 = CONSTANT)

FREESTREAM
SIDEWALL
BOUNDARY

Figure 6. Computation divided into two tasks.

OUTER BOUNDARY

/ r LINE (~ AND 17 = CONSTAINT)
"PENCIL"

FREESTREAM
SIDEWALL
BOUNDARY

Figure 7. Computation done as a region of pencils.

84

St.ep 1:

(
I l' i _

a -r a j3 '1 : J ; b r,
!' I I ,j .k

Step 2:

(Ai + /3/1(- gn,,; (2.1)

Step 3: Correction factor C.

(0 ~ "61 en .. , = f n .. , (2.c) I ',) .• , ,) .•

Steps in the finite differencing scheme.

Program VTWING
Input subroutine (INPUT)

READ mesh
READ run-time parameters

Initialization subroutine (INIT)
initialize the solution
compute and store metrics

Flow Solver: (SOLVE)
for each iteration do

for each k-shell in mesh do
get metric~
compute density and density coefficients
compute residuals
solve for gn i.j and f n i,).k

end k-Ioop

awL<llni,i.k -;- aAk.,.Jffii,;.k+J (2.a)

calculate and apply en i. i .k

output maximum residuai and correction for it.eration
check convergence

end iteration loop
output solution

Figure 8. Sequential structure of the TWING Program:

C(i,j,k) is computed in step three (equation
2.c). This calculation proceeds from the outer
boundary down to the wing surface, requiring
the solution of a bidiagonal system for each ~

line (i.e., ~ and 'fJ = constants, figure 7) of the
mesh. This correction factor is then added to
the solution from the previous iteration, gen­
er(lt,ing a new solution. This three-step pro­
cess is repeated iteratively until com'ergence l~

achieved or a preset maximum iteration i~

reached.

An outline showing the code structure
itself is presented in figure Ii. The program
first reads the physical coordinates of the fin­
ite difference mesh and its run-time parame­
ters. The program then computes the metric
quantities defining the transformation of the
problem into "computational space" and
writes these to disk.

At this point. the main iteration loop of
the program begins. The program completes
steps one and two (equations 2.a and 2.b) of

85

Figure 9. Computation divided in two different regions.

86

thE' three-st.ep approximate-factorization
scheme outlined above operating on successivE'
"k-shells" in the mesh, beginning at the sur­
face of the wing and progressing to the outer
boundary. For each k-shell, the code:

(2)

(3)

(4)

(5)

fetches the appropriate subset of metrics
from the disk

computes the density at. each point

generates the special density coefficients

computes the residual terms resulting
from equation I.e

solves for G(i,j) and F(i,j,k)

Aft.er completing thi~ "k-loop," the codE' com­
pletes step three of the scheme by calculating
the correction C(i,j,k) and applies it to each
mesh point to generatE' a new solution. A con­
vergence check follows: when satisfactory con­
vergencE' is achiE'ved, the final solution is writ­
ten to disk.

The Modification of TWING.

TWING is written in portablE' FOR­
TRAN 66 and executes on eray, CDC 7600.
and V AX CPlls. ThE' program was rewritten
to be well-structured. Its control flow is serial
(i.e., few GO TOs jumping control around).
Although it was possible to partition the com­
putation along functional lines in a sort of
high-level pipeline, this approach was not pur­
sued because it needs either substantial addi­
tional memory or elaborate internal buffering
to store intermediate results. Pipelining may
also hinder efficient execution-time load­
balancing with some stages of a pipeline exE'­
cuting longer than other stages of the pipe.

This problem was exacerbated in
TWING by the extensive USE' of
EQUIV ALENCE statements in the original
code. employed in an effort t.o squeeze the
largest possible problems into the limited corE'
memory of a CDC 7600 or a Cra), IS. Since a
functional partitioning of the problem seemed
unsuited to the limited shared memory avail­
a Lie, a static spatial-partitioning scheme was
employed.

Our restructuring took advantage of
existing code and attempted as little algorithm
change as possible. In this scheme, each step
in the algorithm was examined in an effort to
determine if several portions of the mesh could
be operated on simultaneously at that step.
Execution profiling using the Cray FLO\\'-

TRACE facilities showed dominant run times
in three SUBROUTINEs. Vectorized TWING
exec u ted threE' times faster than scalar
TWING with input-output overhE'ad included.
Since distinct steps in thE' algorithm tend to
correspond to separate modules in the finished
code, this process result.ed in a body of code
that formed thE' skelet OIl of the concurrent·
processing portion of the modified TWING.

The calculations of the density (subrou­
tine RO), the special density coefficients (sub~
routine ROCO), and the residuals (subroutine
RESID) were all split along the TJ axis for
each "K-shell" in the computational mesh
(figures 6 and 7). ThIS resulted in splitting
loops (figure 10). One processor generated
these results for points on or between the sym­
metry plane boundary and the wingtil-'. The
other processor handled points on the wing
extensIOn. out to the freestream sidewall boun­
dary. This "inboard-outboard" partitioning
scheme was chosen because the algorithm
employed in each of these calculations is usu­
ally constant for a given ~ line (TJ = a con­
stant) but varied with position along the Tf
axis. An inboard-outboard scheme was then>­
fore construct.ed using processor-dependent
branches such as:

c
IF (TASKID .EQ. 2) GOTO 12
DO 10 I = 1,NIM

10 CONTINUE
C This continue added for multi-tasking

12 CONTINUE

Mathematically, however, each point in the
mesh was operated on independently during
these preliminary calculations. We can
replace the mesh with different divisions if
there were reasons for favoring it.

A more fundamental relationship
between the underlying mathematics of the
algorithm and the spatial decomposition of the
problem for Multiple-Instruction stream,
Multiple-Dat a stream IMIMD execution is
illustrated by the three-step approximate­
factorization scheme outlined in a previous
section. Recall that in equation 2.a, the back­
ward differencing is performed only about TJ,
which generates tridiagonal linear systems
along TJ lines (~= a constant). This makes the
inboard-outboard partitioning scheme used
above unworkable for this step.

87

Tablt' 1. EXt'cution Time Profiling
Subroutine VecLOrized TWING.... Scalar TWING

% Total Run Time C!;C Total Run TirTH'
------------_. ---- - -------------.-
RO 15.93 14.92
ROCO 13.4;-' 15.9]
RESID 23.92 17.99

Total ~:(53.:: 48.82
tTo clarify: this is not % of vector execution.

C Variables declared as integer; TASKID obtained from TSKL4LFE.
IF (TASKID .EQ. 1) THEN

ROJSTART = 2
ROJSTOP = NJTM

ELSEIF (T ASKID .EQ. 2) THEN
ROJSTART = NJT
ROJSTOP = NJM

ENDIF
C The tlalues of NJTM. NJT. and lOAf are preset parameter~
C in uni-tasked TV/lNG.

C Now. each process works on the j-lines defined by
C the initial assignment block.
C

DO 20 J=ROJSTART1.ROJSTOPI
(' DO 20 J=. r.NJM -- old statement

DO 15 l=l.J\IM

15 CONTINUE
20 CONTINUE

Figure 10. Code illustrating the splitting of a loop.

However, adjacent TJ lines are computa­
tionally independent at this step, implying
that the mesh could partition into "top" and
"bott.om" ~ecLions. each handled by a separal,e
processor (figure 9). Similarly, in step two
(equation 2.bl. the backward differences are
taken about ~. generating tridiagonal linear
syst.ems along ~ lines (77 = a constant) through
the mesh. Here, each (line is computation­
ally independent. and the resulting tridiagonal
systems are solved concurrently by dividing
the mesh into the inboard and outboard sec­
tions described in the last paragraph (st'e fig­
ure 6).

Finally. in !Hep three (equation 2.c).
bidiagonal syst ems are generall'd along lines in
the ~ direction (~ and 1] both = constants)
(see figure 9). Again. concurrent processing of
multipj(· \' "pencils" is a simplt' and powerful
way to use an MIMD machine at this step.

l\ott' that trUI' MIMD capacity was
required to use such a spatial partitioning
scheme. A vector architecture alone would
not suffice because there was no guarantee
that the instruction stream to be executed
would be the same at. different points in th('
mesh. Split difference schemes have some­
times proved useful. The wing rool could

88

have used a more complex differencing scheme
than employed near the outer boundary of a
mesh. It is also possible that the values of
some program parameters might also be posi­
tion dependent.

Another code sequence commonly
encountered in TWING was the selection of
the maximum or minimum value in an array
following an operation on the elements of the
array. While this search has been conducted
in a serial mode by the main program after
the subprocesses ret urn. this considerably
degraded the resulting speedup. A better
approach was to have each subprocess locat.e
the maximum or minimum element in its por­
tion of the data bast'. and pass the indices of
this value back to the main program. The
main program net'ded only to compare the two
passed elements t(, obtain a maximum or
minimum over the entin' dat.a base An
example of such a coding sequence i~ shown
within the next code section (figure 11) wherr
numbered variables are TASK ·determined and
nonnumbered variables are global shared vari­
ables.

V AX Modification

Our first MIMD testbed used two V AX
11/780 minicomputers linked to one MA780
multi-ported. shared memory unit. Because
the operation of the processors wa~

IF (ABS(RMAXl) .GE. ABS(RMAX2)) THEN
IF (ABS(RMAX1) .GT. ABS(RMAX)) THEN

RMAX = RMAXl
IR~1AX = IRMAX 1
JRMAX = JRMAX]
J{RMAX = KRMAX]

END IF

asynchrono'ts, each with its own copy of the
operating system running on a local clock, the
configuration was best. described as a "loosely
coupled" multiprocessor. Although each pro­
cessor retained its large virtual address space
as local memory, the sh ared memory in the
MA 780 was not virtually addressable. Each
MA 780 unit could accommodat,e up 1.0 t.wo
megabytes of physical memory. The unit
employed for this st.udy was equipped with
256 kilobytes of physicai memory.

The operating system .in use al. the timE'
of the study was VAXiVMS (Version 3.]).
VAXiVMS provides three facilities for inler­
process communication across tht' shared
memory link: event flags, mailboxes, and glo­
bal datasect.i(lI1~.

Event fla!!~ are allocated in thirty-two
bit clusters and arr manipulated using a
variety of system-supplied rout.ines. A process
could set or clear individual flags and could
wait for the logical A~D or OR of a multiple
flag mask. One drawbac.k of VMS-event flag
services for MIMD programming was that, thE'
flag operations were not indivisible (atomic).
This can cause difficulties when an MIMD
program uses shared memory. It required pro­
tection from simultaneous access by more than
one process, especially if the number of com­
peting processes is great. In the present study
this problem did not arise, both because, at

ELSE IF (ABS(R;"IAX]) .L T. ABS(RMAX2)) THEN
IF (ABS(RMAX21 .GT. ABS(RMAX)) THEN

RMAX = RMAX2
IRMAX = IRMAX2
JRMAX -~ JR\1AX2
KRMAX = KRMAX2

END IF
END IF

Figurr] 1. Selecting a maximum value from two locally determined maxima.

89

most, two processes were active simultane­
ously and also because they generally operated
on different parts of the statically partitioned
dat.a base.

The VAX iVMS syst.em was not
intended to. be a multiprocessor operating sy~­
tem. Programming the shared memory wa~
clumsy. Since our shared memory was small
we reduced the resolution of the program to fit
the space of the memory. This was a develop­
ment measure that did not happen on our
Cray. This paper does not cover the VAX
specific version in any greater detail.

The other MIMD test bed consists of a
Cray X-MP /22 running version 1.13 of the
Cray Operating Syst.em (COS). The Cray. tJY
way of contrast, is a ··tightly coupled," shared
memory multiprocessor. This creat.es prob­
lems not. faced on our V AX testbed such a~

more memory contention but simplifies Pf(·­
gramming.

Cray Modifications

The V AX version of TWING was a
"stripped-down" version of the production
Cray code designed to fit into the small shared
memory system. We, therefore. did not. counl
on the V AX version to reach convergence.
The mesh was too coarse, and we did not get
11 chance to truly debug the V AX version.
The mathematical basis for partitioning the
vector version of TWING (VTWING) was
identical to the V AX-specific version. This
time. we sought realistic convergence. Debug­
ging was a major problem not only for
TWING, but also for the new STACK alloca­
tion and multi-tasking of the CFT compiler we
were testing.

One important side step, was a quick set
of checks regarding the new SUBROUTINE
linkages. We should mention this was not a
problem for TWING. To do this, a user com­
piled the complete, existing program using the
ALLOC=ST A CK option on the new. eFT
compiler. The program was then run using
the associat.ed new loader given adequate
stack and heap sizcs (sec the manual)
(Research, 1985). The results were compared
to the original STATICally compiled run. A
useful variation of this was to create simple
TASKs that START then immediately WAIT
as a CALL to a SUBROUTINE would:

change from:
CALL RO

to:
CALL TSKSTART(TA.RO)
CALL TSKWAIT(TA)

The t.iming differenccs between STATIC and
ST A CK runs are included in the section on
Performance. The compiler changesaf­
feet program execution without source code
changes.

The next stage enta.iled converting the
existing code into a multi-tasking body of
code. This was not as easy as it appeared as
subtle errors required detection and correction.
It is possible to do this at differen t levels or
stages such as converting the entire program,
converting subroutines, or converting blocks of
code. Converting a code in large sections is
like writing a large program and expecting it
to run correctly the first time.

It was important t.o have good com­
parison data. since fast execution did not
imply correct. execution. A machine-readable
output. was created from an unmodified, run­
nin!! version of TWING. Once the code was
running. we tested the out.put. of the multi­
task run with our uni-task output using a dif-

ferential file comparator (the UNIX7 dill pro­
gram). This insured that our conversion was
precise.

Our third and last. att.empt at. conversion
was to break a subroutine into two smaller
subroutines: a parallel portion and a serial
portion. Since most of the data was stored in
COMMON blocks, paramet.er passing wa!:'
minimized to simplify these problems. The
parallel subroutines were run' and synchronized
before t}l!' serial portion as shown in figure
12.

Portions of serial subroutine code (typi­
cally loops) then migrated to the parallel sub­
routines. This technique successfully identi­
fied su bscripting oversights. branching prob~
lems. and so on. It was painfully slow. but it
was effective. Initially, task synchronization
was performed using TSKST ART and
TSKWAIT. not the more complex EVENT
flags. \\e used the "Make it right before you
make it faster" philosophy from the The Ele­
ments 01 Programming Style (Kernighan,
1978).

We stress the following point: make cer­
tain that the existing code is bug-free. There

7UNIX is a trademark of AT&T Bell Laboratories.

90

take: becomes:
CALL S SUB S CALL P1

CALL 82

SUB S]a II SUB SIL

SUB S2 I
Figurf' 12 Cod{' mi~ration from serial int.o
parallel where S is the subprogram. the num­
bered portions refer to the halves (1 and 2) of
S. PI represents the set of CALLs that are in­
voked for parallel TASKs S 1 a and SIb.

is litt)t> sense trying to multi-task bug ridden
code. Multi-tasking the code made programs
harder to debug. The programmer has to di~­
tinguish the original bugs from the nE'w)~

introduced linkage and multi-task bug~.

Each SUBROUTINE was individually
converted to two parallel TASKs giving threE'
versions of the program. The next step was to
get combinations of two different TASKs run­
ning within a program. This was used to
locate side effects between any two different
TASKs. We still used the crude START and
WAIT CALLs at this point. Finally. we had
all three CALLs converted.

Once all TASKs were operating using
crude synchronization, it was a simple matter
to get barrier synchronization using EVENTs.
We moved one TASK at a time to EVENT
struClure~. After EVE]\"Ts replaced the
TSKSTART and TSKWAIT CALLs. we
wrote a simple user-If'vel TASK scheduler (fig­
ure 13) that worked on simple message­
passin~

Our last act scaled the grid from V AX
shared memory-size to Cray memory, produc­
tion size. During this final work, we corrected
one \' AX-scale dependency problem. This
problem involved a partial correctness proof
mentioned further in the section on Debug­
ging.

Time and Effort

This work took several months. We
reported our many compiler problems to CRl.
Meanwhile, Cray Research migrated from
CFT Release 1.13 to 1.14. solving many of our
problems.

To reiterat.e the degree of change,
TWING actually consisted of two separate

programs~: a grid generat.or and thE' vee torized
version of th{, TWIN G flow 50)ver. The
multi-tasking took place only on the flow
solver

We document. the GRIDGEN program
here only for completeness. The GRIDGEN
program cons'isted of

212:~ total lines of commented FORTRAI\
1195 executable lines of code in
1031 executable statement~

An instrumented uni-task versIOn of the
TWING solver consisted of

3926 lines of commented code
3840 lines without instrumentation
2529 total executable lines
1906 executable statements

An instrumented multi-task version of
TWING came to

4450 lines of commented code
4399 lines without instrumentation
2870 lines total executable
2186 executable statement~

1\ote that additions and modifications do not
sum to the totals because there is overlap,
Additions and modifications t.ook the form of
replication and addition of statements to han­
dle problems such as parameter passing,

Our experiencE' with converting this and
other 1\ASA codes iLES and ARC3D]
currently has us modifying about 10% of the
code (if the grid generator is counted, slightly
more if not). Most of these codes have fewer

"The two programs are combined as one for
machines with large memory.

91

MESG ~ 1
CALL SCHEll

SUBROUTINE SCHED SUBROUTINE PROCES

CALL EVPOST(GO) CALL EV" AIT(GO)
IF(MESG.EQ.l) THEN

CALL EVWAIT(DONEI CALL RO

CALL EVPOST(DONE)
END

END

Figure 13. Strurture of our simple scheduler.

loop~ split across processors compared t.o
T"'ING. We split a total of 19 loops in three
SUBROVTINEs. This includes new code for
loop split.ting, new per-process branches.
TASK-EVENT creation and control code, and
a small TASK scheduler. About 210 lines of
control flow rode were added (excluding com­
ments). 70 more lines were replaced or modi­
fied into 160 lines to handle problems of
paramet.er passing, or changes to array indices.

During the development of each TASK,
good version control proved useful. A good
tool requires parallel branching versions; linear
version control such as UPDATE was not. ade­
quate. Maintaining the successful. intermedi­
ate stages of multi-task TWING made debug­
ging and scale-up easier through the isolation
of changes. It was always possible to easily
fall back to some parallel. executable code.

Debugging

Sequent,ial debugging is generally
regarded as a black art. Bugs occur during
compile-t.ime and run-time: with the latt.er,
the non-fatal ones are the hardest to find.
The basic techniques for debugging are
categorized int,o: 1) traces, 2) snapshots or 3)
dumps. These techniques have problems in
multiprocess environments lacking consistency
or having deadlock. Multi-task debugging is
plagued by a lack of reproducibility, synchron­
ization, and good tools. The literature on
run-time debugging in multiprocess environ­
ments is scarce (Model, 1979) and more work

is needed in this area.

)\jumerous users tell us to "force multi­
task execution into a single stream of execu-

tion 9
" as if simple user-controlled reduction

would solve hazard problems.

This does not help~

Normal debugging depends on a machine
being in a reasonably consistent. state. A
multi-task program crash may not occur at
the same location as with a uni-task program.
This is true for uniprocessors executing multi­
task code as well.

Consider a. simple example to illustrate
the conceptual difficulties of debugging using
the CFT trarebac k facilit y. A program
creates a child TASK. '''hen the child TASK
dies. should the traceback trace through the
point where the child process began. or should
it trace throu!!h the synchronization routines
(if any)'.' The tangled nondeterministic web
makes t.his decision difficult. There are situa­
tions where on(' trace is preferable over the
other. One condition is when the child dies
because of t.he actions of its parent or sibling
processes !side effects·:. So. traces are not sim­
ple. What about snapshots':'

9This is accomplished using the TSKTUNE call and
setting the MAXCPC parameter to '}"

92

Inserting WRITE statement.s int,o pro­
grams might not help. First. the execution
order of these statements may vary (e.g .. non­
determinism). Second. I/O is another shared
resource. and the user must have LOCKs that
protect that. resource like any ot.her shared
resourc(

Ont:' surprising effect of Inserting
WRITE statement.s at key points was the
migration of bugs from one location to
another! \Ve solvrd this debugging problem
by modifying our techniqur of migrating code
between serial and parallel development sub­
routines. Our new technique was to remove
data structures and code immediately follow­
ing the breakage point to isolat.e program and
compiler bug~. This sometimes worked to
locate bugs. The problem at this point
becomes: is the program crashing because of
the original bug or the bugs introduced by
cutting code<'

In the 1/0 locking process, it would help
users debug codes if the system could hide I/O
locking details from users. Better yet, a small
library of simple routines would help. It
should have traceable ERROR and ASSER­
TION routines. If a user resorts to adding
WRITE st atements to follow the execution of
a program, the user should have a similar
trace of a serial code for advanced comparison.
A simple filter could take a source program
and insert a WRITE with the subprogram's
name. More elaborate and more powerful
debugging tools would also help.

Dumps. the method of last resort. are
frequently less consistent than traces or break­
points. We avoided dumps at all cost.

One t.echnique tried in the latter stages
of multi-task conversion was program proving.
Toward completion of program scale-up, we
had a tricky change to a SUBROUTINE call.
Precondition and postcondition assertions were
compiled surrounding critical code changes.
Proof techniyues had limitations in a parallel
environment. but it was a useful technique for
checking changes. Program proving was not
regarded as a cure-all and was regarded as
con troversial.

The last set of problems involves syn­
chronization and timing. A new diagnostic
message for first-time multi-tasking program­
mers is compressed from a real CRA Y job in
figure 14. Race conditions occur whenever
two or more TASKs or processors are sharing

data (or code). This is the time when
deadlock can occur. There are no general solu­
tions. but there is a mountain of research
literature. Multi-tasking CFT provides lim­
ited deadlock detection and traceback. Keep­
ing TASK scheduling and timing constraints
simple is currently the best way to avoid
deadlock. The most difficult deadlock prob­
lems should occur when there are indirect
deadluck~.

Testing Multiprocessor Outputs

A running multi-task program was not
enough; we sought numerical results identical
to our uni-task TWING. There were many
occasions where our pro!!ram ran to comple­
tion, bUL our number:- did not agree at lesser
digits of precision. A standard file comparator
was used ttl test out,pul between TWING
runs. The importance of tools such as a good
file comparator was nOl underestimated. A
single. incorrect, boundary subscript could
"poison" an entire array. Testing asynchro­
nous methods ie.g., chaotic relaxation; is more
difficult.

Fortunately. our program is completely
synchronous. However, newer asynchronous,
chaotic algorithms remove the consistency
assumption and approximate a solution. If
such asynchronous methods are used, file com­
parator programs are completely inadequate.
Better comparison tools are needed. Output
testing tools must approximate floating-point
comparisons within a specified tolerance.

The Cray multi-task version of TWING
had proved our concept by reaching conver­
gence with results identical to a uni-task ver­
sion of vectorized TWING.

Other Generally Useful Tools

While mentioning debugging tools, we
should also mention other generally useful
tools. Among these we could include tools to
search for STATIC allocation and data depen­
dence. Data dependence tools can also pro­
vide help when recursion is added to FOR­
TRA J\. A good cross-referencing tool could
aid this search proces~. Other tools could pos­
sibly identify linkage problems. Such tools are
useful in the analysis and compilation phases
of development. All these programs should
execute independently (i.e., from a compiler)
in the style of other good software tools.

93

USER UT024 - DEADLOCK - ALL USER TASKS WAITING FOR LOCKS OR EVENTS
USER TB001 - BE(jINNING OF TRACEBACK
USER - $TRBK WAS CALLED BY UTERP% AT li15731a
USER - UTERpl;f, WAS CALLED BY $SUSTSK% AT 17056276
liSEH - $SUSTSK% WAS CALLED BY EVWAIT AT 17U1511b

USER TB002 - El'D OF TRACEBACh

Figure 14. A frequent error message for new users of multit.askin~.

Performance and Execution Behavior

The measurement of parallel program~ i~
conceptually complicated by several factors.
The Cray measurement facilities. if used.
record the lengt,h of all parallel execution
traces as if they were measured sequentially,
F or instance. two cycles run in parallel take
one cycle to execute. but they are still counted
as t,Wl> eye le~, The Cray documentation
(Research. 1985) notes that flow tracing facili­
ties do not work properly with multi-tasking
environments. \\t'e resort to the direct use of
the system real-time clock and flow tracing of
the uni-task version of TWING to give m
run-t.ime characteristic~

Therr arr no standard metrics for det rT­
mining muit,iprocessor performanu improVE'­
ment, The most common in use i~ simple
speed up defined by: '

Simple speed - up ~
Serial execution firm

Parallel execution time

The simple speed up of TWINC is illustrated
in the next table,

Another conceptual measurement prob­
lem is where and how measurements are
taken. We simply throw two CPUs at a prob­
lem, so the maximum simple speed-up is one­
half the total serial execution time, I/O wail
time is a significant portion of the program
that cannot multi-task. We recognize thaI we
don't use two CPl;s for the entire time: we
have serial code. and we have wait-time for
T ASKs to finish and synchronize. Also. we
need more cycles t.o cover overhead.

Since we were abk I () multi-t ask only
50% of the t.otal serial execution. the besl
improvement we could gain would be 25(7c of
total execution. WI> might term thi,

performance fi!!ure as proportional. simple,
speed-up. A~ we multi-task more code. this
figure should slowly increaf.(,

Still another problem is that with two or
more CPU~ sharing common resources
memory and 10 - collisions become inevit­
able. Processors arr forced tel wait. and this
expends more overhead cycles. This conten­
tion is visible when running a uni-task version
of the code in one processor. and running a
second code in another processor. By varying
the work load in the second program between
a CPU intensive versus memory intensive
JOB. we can see the simple, but significant
effp(,t.s of memory contention (See the Table
below). These are interference effects not
found on uniprocessors. A problem arises in
shared memory multiprocessors such as on our
V AX and Cray that local memory multipro­
cessors do nol have. Memory contention sig­
nificantly slows down memory performance.
DesIgners of future multiprocessors must bal­
anc(' proces~or- versus memory-performance
ra!e~.

Another performamp issue is the addi­
tion of overhead ('ycle~ required to control
TASKs. FigurE' 15 shows the cost in cycle~

versus t.he iteratiom toward solution for our
\' AX version. This cos! occurs similarly on
the Cra~.

Load balancing is a significant problem
since T ASK~ vary in work load. and we have
seen that measurement of load has problems.
The output from the Cray day files shows a
considerable im balance of work. Cray tools
discovered that TASK 1 did more work (exe­
cuted significantly longer) than TASK 2. The
timing output of a single day-file illustrate~

tht, difference on our two CPC system:

94

50000

40000

C 30000

y
c

e

20000

10000

o

TWING Performance versus Iterations, solid==scalar, dash==MIMD

o 20 40 60 80
TWING Iterations

Figure 15. Graph showing the additional overhead (near linear)

between sequential versus parallel code versions.

95

100

Tabl~ 2. TWING Execution time
STATIC Compil/.' STACK Compile Multi-tasked Speedup

CPDs used onf on{' twc' **
Real iwall', (imp

-
7.76 7.1 i 7.10 10%

Total syst,em tim ... 7.:\6 6.7f. 9.6i n/at
Input 0.0244 0.025[. 0.0263 n/at
Inil 0.250 0.210 0.211 I n/at
SolvE' 7.08 6.52 9.4:1 n/at
RO 1.25 1.06 1.23

I
20/(

ROCO 0.985 0.891 0.886 10~
RESID 1.75 1.73 1.42 20%
:t:not applicabl~: sequential FLODUMP
timings added only for completeness:
thf' difference in wall clock time versus
~~t the operating system reports .

.--
Table 3. Uni-task TWING Execution Times (in Seconds)

Low Memory Contention High Memory Contention
STATIC compile ST ACK compile ST ATIC compile STACK compile

Real !Wall1 Time 7.94
Total-System Time 7.35
Subroutines:
Input:j: 0.0244
Initt 0.250
Solve 7.08

RO 1.26
ROCO 0.995
RESID 1.77

:t:These SUBROUTINEs were not con-
verted to use multi-tasking. They are
included here for control reasons to
show the effect of changing to a
STACK compilation.

TASK CP TIME
11.85

2 4.83

This is because the work areas were not parti­
tioned evenly between the two TASKs based
on hand analysis of array proportions. Work
was partitioned based on existing, somewhat
lopsided DO-loop parameters in three-

7.36 8.49 8.04
6.76 8.03 7.35

0.0255 0.0264 0.0276
0.210 0.270 0.225
6.52 7.73 7.09

1.06 1.35 1.13
0.893 1.07 0.970
1.74 1.91 1.89

dimensional arrays.

To change these parameters would
require more computation and potentially
further array-subscript change. Additional
algorithm modifications are required for boun­
dary regions. Dynamic load balancing is
harder still.

96

Discussion

Further R.esearch

This research has not coverE'd other
forms of multiprocess partitioning. Pipelines
are a common proposal: easilv constructed and
debugged. but difficult to ~une or 10aJ bal­
ance. (See Scale-Up.) The program's author
(Thomas) is considering this approach, but. it
requires extensive rewrit.ing

A1icro-tasking is another Cray-proposed
multiprocessing construct (Booth. 1985)
Micro-tasking involves a simpler. more restric­
tive set. of control primitives. Another impor­
tant issue is the area of scale-up (See next sec­
tion).

Scale-up

Cert.ain aspect.s of scaling up programs
~re trivial. Increasing problem size is not typ­
Ically a problem: our V AX case was not. a
necessary prerequisite to move the program to
the Cray. Adding more processors. however.
is not trivial. The work on the TWING cod~
began before there was any ronsideration of
generalizing the program to use more than two
processors.

The current. multi-task work on TWING
will not generalize to an n -processor case.
The code used to determine maxima is one
problem that will not easily scale. If more
than two processors are used, different parti­
tioning schemes become preferable.

Probably the key issue of multi-t.asking
is whether the performance gained was wortb
the effort expended. Then' is a conflicit (or
tradeoff) between thf need to have large
multi-task sect.ions for performance and small
multi-task sections for ease of development
and deblJggin~.

The multi-tasking programmer must also
confront the need to have large protected criti­
cal sections and many asynchronous processes
running. Our scale-up of thp code uncovered
many machine-dependent assumption prob­
lems. For the scale-up of code, the parallel­
serial divide-and-conquer approach again
worked.

Open Issues

The problems of automatir
are not addressed in this stud\,.
intent. is (.0 extend FORTRA~

partitioning
Our futurE'

by using a

simple preprocessor to add support for simpler
construct!' (e.g.. COBEGIN, COEND) like
Cray micro-tasking. The preprocessor should
ideally hide low-level details and machine
dependent. processing. It is tempting for pro­
grammers to be parochial about particular
construcLs. so we wish to avoid this by using
preprocessor~. Similar research is under study
on different architectures at, other sites (e.g.:
LANL. ANL. Bell Labs. CMU, l.~. of Ill.).

There are dozens of issues left open: dif­
ferent synchronous and asynchronous algo­
rithms. t.ranslation imo an intermediate
language for dataflow-st.yle execution. meas­
urement and load balancing. Parallel process­
ing has many diffIcult problem~ remaining
which will tah years to researclJ

Conclusion.,>

The introduction of parallelism is as sig­
nificant a tool as either Cray multi-tasking or
micro-tasking. The problems of parallelism
are not. new. They are typically thought to
inhabit that realm called systems program­
ming. t:sers intending to add parallelism to
their collection of tools are advised to learn
from experienre of others.

Good software tools would help program­
mers. These tools must. provide multiprocess­
ing support. Many programmers would prob­
ably desire a standardization of multiprocess­
ing syntax. but this is premature'.

Programmers should recognize that. with
adding parallelism and achieving better perfor­
manre. there will come some loss of the
coherent sequence that makes sequential pro­
gramminr' such a powerful tool.

Programs designed to use parallelism
from their inception are more likelv to use
parallelism efficiently. This was c1~arly the
case with the introduction of vectorization.
i.e., vector-designed programs tend to use vec~
tors more efficiently. We should soon see
more multi-task programs, but it is an open
question whether these programs are scale-able
into the hundred- and thousand- (proposed)
processors range.

Acknowledgements

Michael Johnson deserves special recog­
nition for doing the preliminary V AX work
(Johnson, 1983). Scott Thom~s and Alan
Fernquist provided valuable assistance with

97

uni-task TWING. Ken StE'vens. Eric Barszcz,
and Cathy Schulbach assisted with debugging.
Dave Robertson of Zero-One relayed our many
CFT problems back 1.0 Cray Researc h

Referencei:'

ILarson. 1984.
John L. Larson. "Mult.itaskin!! on thr
CRA Y X-MP-2 Multiprocessor." COt/I'

puter 17(7), pp. 62-69 IEEE, (July
1984).

IResearch, 1985;
Cray Research, Inc., "Multitasking
User's Guide," Technical Note SN-0222,
Rev. A (January 1985).

IResearch. 1984
Cray Res~arch, Inc., "Multitasking and
th(' X-MP." Technical Note (January
1984i

!Dennis. 1979
Jack B. Dennis. "ThE' Varieties of Data­
Flow Machines," 1 sf International
Conference on Distributed Computing
Systemh. ,pp. 430-439 IEEE, (October
1979).

IDenning, 1985
Peter J Denning, "The Science of Com­
puting: Parallel Computing," American
Scientist 73(4), pp. 322-323 (July.
August 1985).

IJones, 1980;
Anita K. Jones and Edward F. Gehr­
inger. eds., "ThE' Cm* Multiproces~()r
Project: A Research Review," CMU-CS·
80-131, Carnegie-Mellon university.
Pittsburgh, PA (July 1980).

IGrit. 1983
DalE' H. Grit and James R. McGraw.
"Programming Divide and Conquer on a
Multiprocessor." UCRL-8871O.
Lawrence Livermore National Labora­
tory, Livermore, CA (May 1983).

!Jones, 1980
Anita K Jones and Peter Schwarz,
"Experience using multiprocessor sys­
t.em~ - a status report," Computing Sur­
veys 12(2), pp. 121-165 (June 1980).

IKuck, 1980
David J. Kuck, Robert H. Kuhn. Bruce
Leasure. and Michael Wolfe. "The Struc­
ture of an Advanced Vectorizer for Pipe­
lined Processors," Computer Software

and Applications Conference (COMP­
SAC80j. , pp. 709-715 IEEE, (October
1980).

I Andrews,] 983,
Gregory R. AndrE'ws and Fred B.
Schneider. "Concepts and Notations for
Concurrent Programming," Computing
Surveys 15(1), pp. 3-43 (March 1983).

I Dijkstra. 196~
E. Dijkstra. Multiprogramming Sys­
tem'''' "The Structure of the "THE"
Multiprogramming System." Communi­
cations of the A eM 11(5), pp. 341-346
(May 1968).

IHoare, 1974
C. A. R. Hoare. "Monitors: An Operat­
ing System Structuring Concept." Com­
munications of the ACM 17(10), pp.
549-557 (OctoLE'r 1974).

IDOD,1980:
DOD, Reference Manual for the Ada
Programming Language. U.S. Depart­
ment of Defense (July 1980).

IDijkstra, 1968;
E. Dijkstra. "Go To Considered Harm­
fu!''' Communications of the ACM
11(3), pp. 147-l48 (March 1968).

IFong. 1984
Kirby Fong, Personal Communication,
LLNL, Magnetic Fusion Energy Com­
puter Center (1984).

IThomas. 1983~
Scott D. Thomas and Terry L. Holst,
"~umerical Computation of Transonic
Flow About Wing-Fuselage Configura­
tions on a Vector Computer." AIAA
21st Aerospace. Scienr.es A1eeting, (Janu­
ary 1983).

iKernighan. 1978
. Brian W. Kernighan and P. J. Plauger,

The Elements of Programming Style, 2nd
edition, McGraw-Hill, New York,
NY (1978).

IModeL 1979
Mitchell 1. Model. "Monitoring System
Behavior in A Complex Computational
Environment.." CSL-79-1. Xerox Palo
Alto Research Center, Palo Alto, CA
94306 (January 1979).

IBooth. 198[,'

98

Mike Booth. "Microtasking Presenta­
tion," Internal Report, Cray Researc h

Inc ..
Dallas. TX (1985)

IJohnson, 1983
Michael S. Johnson. "Modification of th~
TWING Full Potential Code for Execu­
tion on an MIMD Computer." Tech.
Memo., NA~A Ames Research Center.
Moffett Field. CA 11983).

99

SPEEDUP PREDICfIONS FOR LARGE SCIENTIFIC PARALLEL PROGRAMS
ON CRAY X-MP-LIKE ARCHITECfURES

Elizabeth Williams
Frank Bobrowicz

Los Alamos National Laboratory

Los Alamos, NM

ABSTRACf

I low much speedup can we expect for large scientiflc
parallel programs running on supercomputers? For insight
into this problem we ex1end the parallel processing
environmen1 currently existing on tl1(' Cray X-MP (a
shared memory multiprocessor with at most four
processors) 10 a simula1ed N-prncessor environment.
where N ~ 1. Several large scien1 iIll' parallel programs
rrom I.os i\ lalllos National l.abora1ory were run in this
simulated environment, and speedups were predicted. A
Sl)(~(\dllp of 14.4 on I() processors was measured for one or
the three 11I0st used codes at the I .aboralory.

100

LOS ALAMOS NATIONAL LABORATORY CONTROL LIBRARY

F. W. Bobrowicz

Los Alamos National Laboratory
Los Alamos, New Mexico

ABSTRACf

The Los Alamos National Laboratory multitasking control
library is now being used in the development of
multitasked computer programs. Ex1ensions,
modiflCa1ions. and irnprovcmenls 1ha1 have been Illade 10
this library as a resul1 of 1hcse experiences will be
discussed. Results obtained for some of our mul1itaskcd
codes will be presented.

101

NETWORKING AND FRONTENDS SESSION I I

Dean W. Smith

ARCO Oil and Gas Company
Plano, Texas

This session consisted entirely of a
number of talks by Cray Research personnel
responsible for the development and
support of Cray's station products. The
following presentations were made: HVS
station status by Peter Griffiths,
Superlink status by Stuart Ross, APOLLO
and VAX station status by Hartin Cutts, VH
and UNIX station status by Allen
Hachinski, and Cyber station status by
Wolfgang Kroj. The following sections are
based on by notes and the overheads from
the individual's presentation.

r.1VS STATION STATUS
Peter Griffiths

Cray UK

The current MVS station release is 1.13
bugfix 2 which was released in October of
1985. A major new release is scheduled
for the first quarter of 1986. The
numbering scheme for the MVS station will
be changed at that time and the new
release will be known as 2.01. Minor
releases are scheduled for 2Q86 and 4Q86,
and a major release is also scheduled for
3Q86.

Release 2.01 of the MVS Station has a
number of new features addressing
interactive support, mUlti-cpu support,
RACF support, operations support,
installation exit invocation improvements
and station tape processing.

The mUlti-cpu support will address the
problem of operating a single station in a
complex that has more than 1 processor.
Currently, the station provides little
support for users who may not be executing
on the same cpu as the MVS station. The
new station will support data and communi­
cations paths in a loosely coupled cpu
configuration (the shared database/shared
spool environment). It will also support a
communications path in a remotely
configured cpu environment (ACF/VTAM
network). This feature should greatly
enhance the exposure of the CRAY and extend
the CRAY environment throughout a large HVS
network.

102

A closely related feature is the SCP
interactive support. Long a feature of
the SCP protocol, the MVS station will now
support interactive sessions on the CRAY
from an ACF/VTAM network.

RACF support will be enhanced by two
features. RACF 1.6 will be supported
which, when installed with the TCB
extension feature, removes the need for
the station to perform its own RACHECKs
and RACDEFs. Additionally, RACF support
will be extended to the protection of COS
tapes.

Several operational enhancements have been
added to the new release. Jobs can be
held prior to transfer, there will be an
automatic logon and relogon feature, HVS
I/O will use QSAM, and there will be
pre-mount messages for station tapes.

Installation enhancements include: the
installation exit invocation improvements,
and the JES2 modifications will be
packaged as JES2 exits.

This new release contains many features
which have been desired in the MVS
environment for a long time.

SUPERLINK STATUS
Stuart Ross

Cray Research UK

The superlink project actually consists of
a number of products. The current product
is Superlink/ISP. Its follow-up product,
seen as the marriage of the Superlink/ISP
and the HVS station product, is known as
Superlink/HVS.

Superlink/ISP was supported in COS 1.14
BF2 and is currently in Beta test status
(see discussion by Ronald Kerry on ISP in
the Networking Session proceedings) .

Currently the product is undergoing
product stabilization, benchmarking and
analysis of customer experiences.

Superlink/ISP's features include a high
performance data pipe, sequential data
access to MVS datasets, and access to any
peripheral on an IBM system.

Superlink/MVS is expected to provide a
number of new features in the areas of
direct data access, communications access,
network interfaces and application
capabilities. The concept is to provide a
layered architecture that can satisfy a
wide range of requirements and
applications.

The new network interface will utilize a
network access method based on an ISO
model for open systems interconnection;
support a number of interface devices;
provide a high performance transport
service in the operating system; and
establish a transportable applications
interface.

In the realm of data access, direct
record-level I/O, both sequential and
random,will be provided as part of the
standard product. Superlink/MVS will
serve as the communications access
interface by being a gateway to VTAM
and supporting CRAY interactive sessions.

Because Superlink/MVS will provide an
applications layer, the distinction
between data and control information
should blur, allowing users to establish
their own process to process communica­
tions. Eventually, it should be possible
to develop distributed applications where
work is being performed on the host system
and the CRAY in a coordinated method on
whichever system performs that function
best.

APOLLO AND VAX STATION STATUS
Martin Cutts

Cray Research UK

The current release of the APOLLO station
at the time of the Montreal CUG was
Release 1.01, which was released in May
1985. Release 1.01 supported job
submission, dataset staging of character
blocked and binary blocked (CB and BB)
data formats, and SCP interactive
sessions.

Release 1.01 of the APOLLO station is
scheduled for November 1985 and is planned
to support improved staging performance,
direct dispose of graphics, and support
for AEGIS release 9.0.

Release 1.03 is to be a bugfix release
and no features are expected to be
provided.

Release 2.0 of the APOLLO station is
scheduled for the second quarter of 1985
and is expected to complete the user

103

interface.
driven user
for STATUS,
as support
staging.

Features expected are: menu
interface; operator control
DROP, JOB, and KILL; as well
for transparent dataset

The current VAX/VMS station release is
3.01 and was available in October 1985.
Features included in the new release are:

Excluding interactive identical user
environment whether attached or
remote.

Multiple stations on one VAX.

Ease of installation using command
procedures and configuration utility.

Control and authorization managed
from attached station.

Efficient network dataset transfers.

Spooling.

Range of commands extended.

Release 4.0 is scheduled for fourth
quarter of 1986 and is expected to support
features in two different VAX
environments.

Clustered Stations:

Decnet not used within a cluster.

Cluster wide queues.

Only one copy of the station with a
cluster.

HICROVAX/VAX Station 2 Support:

Remote interactive.

Menu driven user interface.

Separate interactive graphics window.

VM and UNIX* STATIONS
Allen Machinski

Cray Research

Allen Machinski addressed the station
products in the IBM VM and VAX UNIX
stations.

The current VM station is release 3.0 and
was available in November 1985. New
features available in the release were:

Tape enhancements: label processing,
user exits and multi volume/multi
dataset support.

Intertask dispose.

Graphics support, both interactive
and by dispose.

Dispose to CMS files (mini disks).

Performance enhancements including
performance statistics reporter and
real time monitoring and diagnostic
aids.

Improved documentation with online
error messages and online manuals
using DCF.

MVS NETDATA job/dataset submission
and MVS TSO/E support.

The next release of the VM station (R 4.0)
is expected to provide the following
features:

VM/SP release 4.0 support.

VM/SNA considerations.

Application program interface for
dataset staging and station messages.

Device statistics monitor.

Dataset transfer accounting.

Variable segment size.

CRSTAT fullscreen reads.

Disk acquire/fetch performance
enhancement.

Allen's second product discussion reviewed
the status and features of the UNIX
station in the VAX environment.

The UNIX station was written in the C
language for transportability. It
supports both batch and interactive
facilities. It has a software requirement
of ATT UNIX 5.2, and a hardware
requirement of the NSC HYPERchannel
interface. The UNIX station consists of
two components, the station concentrator
and the user interfaces to the station
concentrator.

Concentrator Features:

One concentrator per destination
CRAY.

separate batch and interactive
processes.

File transfer features: multiple
streams, job submission from
frontend, dataset staging to and from
CRAY, and multifile dataset support.

104

File transfers survive station or cos
failures.

Maintains log file for batch and
interactive processing: date and
time of logon, stream activity, error
conditions and debug messages.

Optional trace file of messages for
debugging: enable or disable while
station running; trace any or all
message codes; and trace NSC header,
LCP and segments.

User Interface features:

Separate input and output processes.

User can set default destination
CRAY.

Escape to shell.

Maintains logfile for each user.

Interactive command syntax very
similar to operator console.

Input and output redirection.

Local commands: CRAY, HELP, END,
REFRESH and SCROLL.

Display commands: DATASET, JSTAT,
STATCLASS, STATUS, and STORAGE.

Dataset commands: SAVE, and SUBMIT.

Operator commands: CHANNEL, CLASS,
DEVICE, DROP, ENTER, FLUSH, KILL,
LIMIT, OPERATOR, RECOVER, RERUN,
RESUME, ROUTE, SHUTDOWN, STREAH,
SUSPEND, SWITCH.

* UNIX is a trademark of AT&T Bell
Laboratories

CRAY CYBER LINK SOFTWARE
PRODUCT STATUS AND DEVELOPMENT PLAN

Wolfgang G. Kroj
Cray Research GmbH

The major points of Wolfgang Kroj's talk
included a discussion of the NOS station,
NOS/BE station, NOS station interactive
support, Control Data Corporation hardware
and software environments, dual state
support, station support policy and a
statement of direction.

The current NOS station release is 1.14
and became available in May 1985.
Features included in that release
included:

NOS 2.2 and NOS 2.3 support.

U of M PASCAL release 4.0 support.

Multiple station support.

Runtime driver selection.

History trace facility.

The next release of NOS station 1.15 will
become available in the 4th quarter 1985
and its new features will include:

Enhanced history trace facility.

Operator command for stream control.

Dual state support.

NOS station release 1.16 is expected in
2nd quarter 1986 and the only expected
feature is interactive support.

provides full implementation of the
SCP interactive frontend protocol.

Design requirements: optional
feature, restricted access, preserve
overall station performance and
reliability, minimal changes to
existing station.

Functionality similar to VM and VMS
stations.

Hulti CRAY support.

The current NOS/BE station release is 1.14
and became available in September 1985.
Features included in that release
included:

History trace facility.

Runtime driver selection.

Operator command for stream control.

U of M PASCAL release 4.0 support.

The next release of NOS/BE station 1.15
will become available in the 4th quarter
1985 or 1st quarter 1986. Its new features
will include:

Enhanced history trace facility.

Enter command.

Dual state support.

The CYBER 180 represents a departure for
Control Data and Wolfgang reviewed some of
of its hardware and software features.
The CYBER 180 architecture has 64 bit
words, 8 bit ASCII character set,
hexadecimal internal representation, two's
complement arithmetic, IBM-like
instruction set, microcoded machine, cache
memory, byte-addressable virtual memory,
4096 segments of maximum 2GB, and "wired
HULTICS". The NOS/VE operating system

105

includes the following features: supports
new 180-type hardware, dual state, multi­
tasking, interactive, tools, written in
CYBIL, binary releases, and CDNA/CDCNET.

The features of dual state support
include:

Provides basic CRAY station
functionality to dual state users.

Release 1.15 of the Cyber stations.

Installation option.

Features provided for NOS/VE users:
CRAY job submission, CRAY system
status, and coded file staging
between COS and NOS/VE.

Requires minimum NOS/VE level of
1.1.2 for NOS dual state.

Station Support Policy:

The Cyber stations are intended to
support future NOS-, and NOS/VE
systems no later than 6 months after
the respective release from Control
Data.

At time of availability a particular
Cyber station software release is
intended to provide support for the
last 2 levels of corresponding CDC
operating system releases.

The previous release of the Cyber
station software will be supported
for at least 4 months following new
release availability.

Bugfix releases will supercede all
previous bugfix and critical releases
for a specified release level.

The Cyber stations will continue to
support the latest U of M PASCAL
compiler release exclusively, subject
to availability of at least 6 months
prior to the station release.

Statement of Direction:

It is not planned to add new features
to the NOS- and NOS/BE st~tion
software after release 1.16 and 1.15
respectively.

The station software supplied by Cray
Research will support NOS- and NOS/BE
dual state operation. Hooks for
NOS/VE users to access basic station
functions will be provided.

Cray Research plans to provide CRAY
Cyber Link Software to support
Control Data frontends running the
NOS/VE operating system.

COS Session

David Lexton

University of London Computer Centre
England

A. COS Experience Panel

en Claus Hilberg (ECMWF)

(a) COS itself

The current system at ECMWF is COS 1.13 BF2 with
a number of additional bug fixes, all of which have
now been released through the SPR mechanism.
There have been no software crashes for many weeks,
and we consider today's COS 1.13 a very good
system.

We plan to replace the current X-MP/22 with an
X-MP/48 at the end of this year, so we are right
now upgrading to COS 1.14. Because of our
obligation to produce a 10 day global weather
forecast every day, we test new software very
thoroughly. We're pleased to say that at th is
moment there is only one outstanding COS problem,
which we believe has to do with overflow of SSD
files to disk, and which we also believe CRI will send
us a fix for shortly. We have had little trouble
fitting local code - the only major local mod is a
simplified version of the NASA/ Ames code to allow
operators to initiate rollout of 550 space.

All in all we are very optimistic about COS 1.14 - it
looks like a good system.

(b) Compilers

Much was already said at this CUG about errors in
the CFT 1.14 compiler. ECMWF can add to this that
CFT 1.13 was no better. We have in essence 3
different Fortran programs that are vi tal for our
production, and we have not yet seen one compiler -
be it 1.13 or 1.14 - that will correctly compile all 3
programs. We are very dissatisfied with CRl's
performance in this area.

(c) Libraries

ECMWF uses multitasking for the operational
forecast, and at the same time we run both STATIC
and STACK calling sequence programs. This makes
the maintenance of libraries a complex matter.
Currently we try to maintain 5 different combinations
of compilers and libraries:

106

for old calling sequence programs, we still run
CFT 1.11 with libraries also at level 1.ll.

II for normal production, STATIC programs use CFT
1.13 BF2 with 1.13 BF2 libraries.

III for normal production, STACK programs use CFT
1.14 BF1 with selected bug fixes, a 1.14 SF1
$FTLIB, and other libraries at 1.13 BF2.

IV we are testing 1.14 BF2 compiler and libraries
for STATIC programs. This testing has been
going on for some time, and we're still finding
catastrophic errors.

V we are also testing 1.14 BF2 compiler and
libraries for STACK programs. They appear to
work all right, but we cannot put them into
production because they don't function easily
wi thout the new LOADER.

Having to look after so many compiler/library
combinations requires much effort, in particular when
users by accident pick up non-matching versions and
then come to user support and ask for help.

Cd) Compatibility

We feel that CRI is not paying sufficient attention to
the problems of compatibility between releases. We
mention two examples: First, CFT 1.14 BF2 will not
function properly in a COS 1.13 environment because
the runtime libraries use TASK COMMON, which is
not understood by 1.13 LOADER, and produce some
spectacular runtime errors; it didn't really have to
be that way, one could with limited effort have
produced library routines that avoided TASK
COMMON in a 1.13 environment. And second, the
1.14 LOADER that would overcome the first problem
won't work under 1.13 because it issues a new kind
of F$BEGIN calls; again, one could have made
LOADER realise it was talking to a 1.13 environment
and used different F$SEGIN calls.

It should be a requirement that level N of the
products must function with the operating system at
level N-1 and level N+1. Fortunately, we have seen
no problems running 1.13 products under COS 1. 14.
We would have been happier if this was by design,
but we suspect that it is by good fortune only.

(ii) Conrad Kimball (Boeing)

(a) Software Configuration

Boeing Computer Services (BCS), a division of The
Boeing Company, is currently running COS 1.12 on a
Cray-lS/2000 and an X-MP/24. We provide the 1.12,
1.13, and 1.14 product sets to our users and have
15,000 lines of local code in them. We have 60 000
lines of code in COS proper (much of it in two ~ew
ta~~~), and 180,000 lines of code in new system
utilIties. On our X-MP we are running the 1.13 level
of the 105 software, with the User Channel Shell
feature retrofitted from 1.14. We have 10 000 lines
of code in the 105, primarily in the form of an NSC
A130 driver for our HYPERchannellocal network.

(b) X-MP Installation

In the summer of 1984 BCS began planning for the
installation of its X-MP. At that time we had a pair
of lIS's, and we were about to convert to COS 1.12.
A major problem that we faced was the issue of
binary compatibility - the instruction sets of the 115
and X-MP are slightly different. In particular, CFT
1.09 and some of the $SCILIB routines used the
unadvertised vector recursion facility of the 115.

Sin~e we were about to convert to COS 1.12, we
decided to make the 1.12 libraries 'neutral' - that is
able to run the same binaries on either a 115 or a~
X-MP. When our users converted to CFT 1.11 and
the 1.12 libraries they would automatically get
115 I X-MP compatibility. This neutrality was
achieved by modifying a handful of $SCILIB routines
to make a runtime test to determine on which model
they were running, and adjust their algorithms
accordingly.

Another major problem was the 105 on the X-MP -
our very first 105. BCS has a locally developed
HYPERchannel network, and we had to somehow move
our NSC A130 driver out to the 105. In addition, we
had modified our Data General station to provide
local commands and displays, and we were faced with
how to provide them on an 105.

To handle our local network requirements, it was
decided that we should install a 1.13 105 and retrofit
a pre-release of the User Channel Shell driver from
the 1.14 105. All we had to do then was provide an
NSC Al30 driver overlay in the 105, interfaced with
the User Channel Shell facility, and some EXEC
modifications to interface with the COS side of the
facility. Much to our relief we encountered only a
few minor incompatibilities between COS 1.12 and
the 1.13 IDS, which were quickly fixed. The User
Channel Shell facility went in very easily, and has
run for seven months with few problems.

Rather than modify the IDS operator station to
provide displays and commands like those we had put
Into the Data General station, we chose to make use
of the lOP interactive station facility. We built a
utility program (and several new EXP functions)
which runs at an lOP interactive console, and which
provides our local displays and commands. The lOP

interactive facility has also tremendously improved
the productivity of our test sessions.

Finally, the X-MP was to be delivered just four
weeks before the scheduled production date - not
much time for software development and checkout
considering that the first week or two was reserved
for machine acceptance trials. Since we were
already accustomed to doing much of our software
checkout on the CSIM si mulator, we obtained a
pre-release of the 1.14 CSIM, which could simulate
both the X-MP CPU and the 105. We used the 1.14
CSIM extensively, for both COS and 105 development.
When we sent a team to Chippewa Falls for final
factory trials before shipment, our modified COS 1.12
ran successfully the first time that we tried it. In
our environment, with extremely limited test time
availability, we simply cannot function without CSIM.

Lest all th.is sound like everything went smoothly, we
had two disastrous beta test sessions just before the
X-MP was due to go into production. In both cases,
after about half an hour of the beta test, the system
destroyed the dataset catalog and crashed. The
problem was eventually traced to a last-minute
modification that increased the number of SOT
ent,:,ies t.o 1000. It turns out that field SDQC is only
9 bits Wide, which effectively limits COS to no more
t~an 5~1 SOT entries - we were overflowing this
field, with the eventual result of destroying the
catalog.

(c) COS 1.14 Conversion

In June BCS started a conversion to COS 1.14. It
will take us 29 man-months to convert almost
275,000 lines of local code. Some of the difficulties
we are encountering include: massive internal changes
between COS 1.12 and COS 1.14; untested code in
1.14; undefined variables in the CFT sections of some
1.14 utilities; and 90 unresolved SPR's for which we
had previously submitted corrective code (we
expended at least one man-month just converting SPR
corrective code).

With the i~troduction of multi-tasking in COS 1.14,
large sectIOns of COS have been rewritten.
Unfortunately, we have much local code in some of
these areas, especially in the EXP task. Since EXP
was extensively rewri tten, it would have greatly
helped our conversion effort if Cray Research had
taken the opportunity to put hooks (user exits) into
EXP.

At the start of the conversion, we assembled all of
COS, and all the utilities, products, and libraries,
then fed these listings to an error analyzer. To our
surprise we discovered a total of 52 undefined
variables being used in the CFT portions of the
following utilities:

BIND 6
BUILD 3
CSIM 1
DUMP 1
EXTRACT - 14

107

FLODUMP
STATS
TEDI
UPDATE

6
15

2
4

In addition to these blatant bugs, we have also found
a handful of problems in COS itself - bugs so obvious
that those pieces of code could never have been
tested at all. For example, we found two bugs (in 2
lines of code) in the code that computes the number
of cylinders for an SSD for the *CONFIG,DVN=SSO
parameter file directive. One bug was using an
incorrect constant, while the other bug failed to float
an integer number before normalizing it.

We have also been experimenting with the Software
Tools that were released in 1.14. It appears that
they will be extremely difficult to modify. The
software tools have their own source management
facility, which records program changes in a specially
formatted text file (roughly analogous to an UPDATE
PU. This internal source file is in turn maintained
on an UPDATE PL, resulting in two levels of source
management. To modify a software tool, one must
first change the program's source, then determine the
appropriate changes to the source management tool's
internal text file, and finally use UPDATE to change
the internal text file. Presumably Cray Research has
some automated technique to accomplish all of this.
If so, we would like to have access to it.

(d) How Cray Research can help

Cray Research can help BCS in several ways. First,
make better releases - no untested code; no
undefined variables in CFT code; and better release
documentation (although the 1.15 pre-release letter
was very good).

Second, Cray Research must greatly increase its
concern for and support of binary compatibility of
user codes across releases. Although there are some
efforts in this direction, a few 'gotcha's seem to slip
through each time. Some of the most pernicious
impacts involve changes to tables that reside in the
user field length. Cray Research should commit to
make no changes to the size of such tables, (perhaps
all such tables could be doubled in size at one
release, to provide room for expansion, and left alone
after that), and to never move fields around within
such tables. In addition, every such table should
have an installation area (including the JCB).

Third, Cray Research should support all products for
two COS versions before and after the· product is
released. In other words, CFT 1.14 should be
supported on COS 1.12, 1.13, 1.14, 1.15, and 1.16.

Fourth, Cray Research must address the reliability of
COS (and of any successor product). It is no longer
an adequate methodology to simply code, test, and
fix the bugs that show up. Instead, a design
philosophy of fault tolerance and damage containment
must be pursued.

Fifth, Cray Research should provide various data
center assistance items for their sites. BCS would
like to see hooks (user exits) through COS; better
scheduling of large jobs (increasingly important as
memory sizes grow); a fast, dynamic SSD pre-emption
facility; and perhaps most important to us, a super
shutdown facility. This super shutdown facility would

108

allow us to take a system that is loaded with
customer jobs, shut it down in such a way that all
jobs and their local files are preserved, give the
system to a site analyst for a test session, make it
appear to that test session that the system is empty
(so the analyst can perform deadstarts and not worry
about damaging any rolled out or queued jobs), then
restore the original production environment.

(iii) Mostyn Lewis (Chevron)

As Chevron Oil Field Research Company (COFRC)
took delivery of an X-MP/48 in May 1985, it was
necessary to convert to COS 1.14 to support the new
hardware (four CPU's, extended addressing, 00-49
disks) and CFT 1.14 also, (to use scatter/gather
hardware, for example). Our major problems
occurred in CFT, VBS tape support and MVS station
support.

CFT had one major and eight critical SPR's.
Programs ceased to vectorise; there were "compiler
errors" (programs causing compiler aborts); bad code
generation and a delay in fixing these problems (in
hind sight probably due to COFRC being only a part
of a wider arena of CFT victims!) .

VBS tapes ceased to work correctly when they were
written. This was amazing, as one only had to read
what was written to spot this defect. We thought
Test and Integration had failed. Two visits from
Mendota Heights failed to cure the problem and there
was a further compounding of mis-communication
when Cray actually believed they had fixed our
problem when we were still suffering. A letter from
our site analyst was necessary to prompt Cray into a
realization of the unsatisfactory support before a
final visi t found the bugs and cured them. The VBS
problem had remained critical for three months.

The MVS Cray station had 12 significant problems.
All were fixed by local expertise and included an
operation console "hang" problem and another which
only allowed a maximum of three active streams (out
of 16).

In summary, we believe we observed a breakdown in
the communication link from the Cray Region to
Field Support to Software Development. Mendota
Heights seem to lack the awareness of a customer in
trouble. We also noticed how fragile the link to
Field Support was, typified by the difficulty our local
analysts have in finding the right person ("not
answering his phone"). The VBS problem should have
been caught by the QA process and really should not
have occurred in the first place (apparently an
outcome of TQM re-design to support features).

Let's have stability before features, please!

B. COS Interactive: A Developer's Perspective

Bryan Koch (CRn

1. Overview

This paper briefly describes the functional
characteristics of COS interactive, as available
through the Station protocol. The applicability of
COS interactive to the systems development process
is discussed, and the availability of the interactive
protocol in various Cray-supplied stations is described.

The majority of the paper is a walk-through of a
sample interactive session, using Cray's CSIM
simulator.

2. Features of COS Interactive

2.1 Environment

The COS interactive environment is quite similar to
the batch environment, so a user familiar with batch
should have few if any problems making use of the
interactive environment. Control statements are
identical in the two modes; procedure ($PROC) files
are usable in either environment; and programs which
read from standard input ($IN) and write to standard
output ($OUT) can be used without modification.

A new class of device types (IA devices) may be
associated with dataset names, and the two standard
I/O file names $IN and $OUT are associated with the
interactive station. Reads and writes on $IN and
$OUT (respectively) cause input lines to be requested
from the user and output lines to be wri tten to the
user's terminal (via the station). Control statements
are also obtained from the user, via the station,
when needed.

COS prompts for control statements by issuing a'!'.
The standard prompt issued when a user program
issues reads on interactive data sets is I?', but this
can be changed by inserting a new prompt character
in the Job Control Block (JCB).

2.2 Scheduling

No spec ial parameters in the Job ~cheduler .(JSH)
pertain specifically to interactive sessions.
Nonetheless, it is possible to some degree to tune the
system for interactive processing.

Two levels of scheduling affect interactive users,
CPU and memory. Interactive users can be assigned
to a specific job class, allowing them to be assigned
a different priority than other classes of jobs. (In
Mendota Heights, interactive jobs are assigned
priority 8, while all other jobs execute at priority 7
or below.) This priority can be used to control the
location of interactive jobs in the memory request
queue.

2.2.1 Memory Scheduling

All other things being equal, the priority of a job
determines the amount of time a joh spends in
memory (and thus is eligible to execute in the CPU).

109

When a job which has been suspended for any reason
(tape mount request, interactive I/O request, time
delay, etc.) is 'resumed' by the operating system, that
job receives a one-time priority 'kick', to a level
above any other job in the system. This allows jobs
which have been waiting for resources (such as tapes)
to begin using these resources as quickly as possible.

Interactive jobs· receive a priority 'kick' at every
control statement and interactive I/O request which
results in a suspend. For a system wi th free
memory, this can result in very snappy response
times; when jobs must roll out to accommodate .the
newly-resumed interactive job, the response time
depends on the speed of the swap storage and the
size of the preempted job(s).

2.2.2 CPU Scheduling

The priority of a job does not control its position in
the CPU queue, as this is a function of the time
slice, the CPU vs I/O ratio, and the age of the job
in the queue.

Standard mechanisms are used to age jobs in the
CPU queue, and installations are free to determine
the weight that priority plays in this aging. The
CPU scheduling algorithm is best described as a
'fair-share' round-robin scheduler. Once in the CPU
queue, there is no di fferentiation between batch and
interactive jobs.

2.3 Resource Utilization for Interactive
Sessions

Unlike batch jobs, interactive sessions do not begin
with a JOB statement. One implication of this is
that interactive jobs cannot request any controlled
devices, and are bound to use site-wide default limits
for other resources.

Thus, interactive jobs cannot typically make use of
on-line tapes, because reservations for tape drives
must be declared on the JOB statement. Similar
situations arise in the use of other controlled devices;
si tes often make the SSD a controlled device.

Limits for file space, for maximum memory size, and
for CPU time, are taken from the site-wide defaults.

3. Data and Control Paths

The Station protocol supports two separate paths
from a station user to the interactive session: data
and control.

The 'data' path is used for interacting directly with
the control statement processor or an application
program. It supports ASCII characters, transparent
8-bit characters, as well as a special 'end of file'
indicator.

The 'control' path allows the user to bypass normal
flow control mechanisms and interact directly with
the station and SCPo Control path requests allow the
user to:

* Determine the STATUS of the interactive session.
Status information includes the last control
statement executed, the CPU status (waiting,
executing, suspended), and the amount of CPU
time used thus far in the session.

* SUSPEND or END the session. The user can
suspend the session and make use of the
facilities of the front-end system, to return at a
later ti me; or the user can end the session,
terminating the interactive job.

* Send an ABORT or ATTENTION interrupt to the
currently-executing process. Abort and attention
are similar, and many programs and users use
them interchangeably. Both may be intercepted
by the reprieve mechanism.

Some programs terminate only on ABORT
interrupts, and use ATTENTION interrupts to
merely suspend their current activity and issue a
prompt to the user. CSIM is an example of a
program which selectively uses these two flavors
of interrupts.

4. Availability

COS interactive is available through the Station
protocol with almost all levels of COS used in the
Cray community today. Cray-supplied stations which
currently support interactive sessions include:

* IBM Compatible - VM/CMS

* DEC VAX - VMS and Unix System V

* Cray IDS

* Apollo - Aegis

Interactive facilities are under development for the
following Stations, with availability scheduled as
indicated:

* IBM Compatible - MVS (lQ86)

* CDC Cyber - NOS (2Q86)

* Sun workstations - Unix(l) 4.2BSO (l-2Q86)

* Other Unix-based products-COS

(1) Unix is a trademark of AT & T

5. Applicability

From the author's perspective as an operating systems
developer, one of the primary uses of COS
interactive is that it provides a common Cray
environment. This environment exists on almost all
front-end systems, including the fairly Spartan
surroundings of the check-out floor in the
manufacturing area.

110

A common environment means that the developer can
learn one environment - the COS interactive
environment - and use the Cray almost without
regard for the front-end system which provides access
to the Cray. This frees the developer to concentrate
on solving developmental problems rather than
learning yet-another editor or command interface.

The other major use of COS interactive is as a
development tool. While some developmental
activities - most notably long assemblies and
compilations - are more suited to background (batch)
processing, many are more appropriate to the
interactive environment.

* Interactive use of Cray systems allows the
developer to make use of an iterative
development/test cycle.

* Interactive is often appropriate for simulation
and debugging of operating system, library, and
user-level codes.

* Ed i t i ng, of prog ra m source, of procedure
libraries, and of data files, is best done
interactively, either on the front-end or, in some
cases, on the Cray. This can also be used for
job creation and submission of background work.

6. Interactive Data Flow

All COS interactive data passes through at least
three processes: the Station, the Station Call
Processor (SCP) system task, and the user exchange
processor (EXP) system task.

6.1 Station Responsibili ties

The front-end station is responsible for collecting
interactive input from the user, buffering it into
record (line) segments, and forwarding these segments
to SCPo

Commands, typically denoted by a command-character
in the first column of the line, are intercepted and
interpreted by the Station rather than being passed as
data to SCPo Commands are sent in non-data
segments to SCP for processing; some Stations
implement local commands as well.

The Station is also responsible for receiving output
record (line) segments from SCP and displaying these
to the user. As such, the Station is responsible for
the form of the displayed data; there is no virtual
terminal support in SCP.

6.2 COS System Tasks

Interactive jobs are created by SCP upon receipt of
an interactive logon segment from a Station. These
jobs are managed by the same mechanisms that
control batch johs - the Job Class Manager.

SCP is responsible for interactive buffer management.
When input (from the user) data is received from a
Station, it is placed in interactive buffers. When
EXP is asked to return the next line of user input,
either by an executing program, or when the next
control statement is needed, the line is retrieved
from the system's interactive buffers.

A similar path operates for interactive output. The
user writes a line using standard I/O requests, which
are interpreted by EXP. EXP moves the data from
the user's buffers to the system interactive buffers.
SCP retrieves the data from the interactive buffers
and sends it to the appropriate station.

7. Sample Interactive Session

One of the uses of COS interactive is the on-line
debugging of operating systems or other programs
through simulators or interactive debuggers.

The use of shared time, as opposed to dedicated
time, for software development can make developers
more productive. It also allows more time for the
testing of code, which can result in fewer problems
later in the development cycle. The sample session
in this section is taken from actual code under
development in the Mendota Heights facility.

The code segment we will examine is in EXEC, the
portion of COS which operates in monitor mode and
handles all exchanges, I/O interrupts, timers, and the
like. Because it is in monitor mode, this segment of
code would be very difficult to debug using
console-oriented (online) tools, and is thus a good
example of the power of simulation programs like
CSIM.

The remainder of this paper is a walk-through of the
way in which a developer might use Cray interactive
to debug an operating system modification. The
example is presented in dialog form, with sections of
the interactive session followed by a discussion of the
preceding section.

This example was prepared on a Sun model 2/50
workstation, using a developmental version of the
Unix Station running under Unix 4.2BSD. The
operating system on the Cray is the bug fix 3 release
of COS 1.14.

(The program fragment used in this example is
located at the end of the paper.)

clem% ias -i
interactive logon - done

CRAY X-MP SERIAL-20l/40 09/24/85

1.14BF3 COS 1.14 ASSEMBLY DATE 09/17/85

PDOOO - PDN = UPIC 10 = BTK ED = 10 OWN
PDOOO - ACCESS COMPLETE

111

Discussion

Most interactive stations let the user specify a set of
commands to be executed upon interactive logon.
Typically, these commands come from a file on the
front-end system, and contain account information
and other COS control statements to let the user
customize the interactive environment. In this
session the ias command invokes the interactive
station, and the '_if option speci fies that an
initialization file is to be executed. The author's
ini tialization file contains two di rec t i v es: an
ACCOUNT statement, and an ACCESS statement.

The system responds to the logon request with the
system header (CRA Y •••), reads and executes the
ACCOUNT and ACCESS statements, then issues the
standard control-statement prompt character, I!'. The
user is now free to issue any COS control
statements, or issue Station commands.

! audit,id=btk.

-----OWN = U9935-----

PDN 10 ED

99COS BTK 1
START BTK 1
TESTSSD BTK 1
UPIC BTK 10

4 OAT ASETS, 468 BLOCKS, 239616 WORDS
! copyf,i=$in,o=param.
? *INSTALL
? *END
? e
10048 - COPY OF 2 RECORDS 1 FILES COMPLETED
! access,dn=cos,pdn=99cos,id=btk.
PDOOO - PDN = 99COS 10 = BTK ED = 1 OWN
POOOO - ACCESS COMPLETE

Discussion

In the example here, the user first issues the AUDIT
command to determine the names of files created by
a separate (batch) run.

COPYF is invoked to create a STARTUP-style
parameter file, needed by CSIM. Long or
complicated parameter files are typically created
using either a local Cray editor (TEDn or on the
front-end system, but given the simplicity of the file
the user has chosen to create it on-line.

Note that the user is copying from the COS standard
input file, $IN. When reads are issued on interactive
access CIA) files, a prompt ('?') is sent to the user
via the Station, and the interactive session is
suspended until the user responds with the requested
data.

Note also the use of the special end-of-file command
to the station. In the case of the Unix station, this
command is ' e'; other stations have different
command conventions.

Finall y, the user accesses the COS binary to be
simulated.

! csim,t=IOO.

At 14:04:25 on 09/24/85: Cray CPU/lOS simulation
1.14 CSIM version of 09/13/85 19:50:14

I = $IN L = $OUT T = 100.0

? defcpu,x,l,ema
? start cos param

OPSYS = COS

PARAMETER FILE CONTENTS:

*INSTALL
*END

? dis a 20073b m=e

DIS A 00020073 P EXEC

OSPAR PARAM

0020073 006165 030663 071106 007000
0020074 146370 020660 004453 125100
0020075 000004 073201 054226 055202

<etc.>
? bre,I,20074b,m=e
?

Discussion

CSIM, the Cray Simulator, is invoked. It responds
with version and parameter information, then issues
its prompts the user by reading from $IN.

The user enters the DEFCPU and START commands,
displays memory in the area of the code to be
debugged, and sets a breakpoint at the first parcel of
the newly-added code.

? run,t=20
DEADSTART

LOGON sent
Segment

o 0000000020040100201000
1 0002000000000000000000
2 0415172462013013430465 COS X.15
3 0300711363106313634065 09/23/85

STARTUP IS PERFORMING AN INSTALL

Breakpoint 1 encountered at P=00020074h
BA=OOOOOOOO
?x

DIS X X X ANY CPU
P 00020074d AD 00000011 MODES FLAGS
IBA 00000000 Al 00003760 OFF ON OFF ON
ILA 00035000 A2 00000010 MM PCI
XA . 3760 VL 100 A3 00006165 ICM MCU
DBA 00000000 A4 00047115 IFP FPE
DLA 04000000 A5 0005343 IUM ORE
BOO 00020074b A6 00004453 IMM PRE

A 7 00004303 SEI ME
BDM 101

112

SO 0000000000000000000000 FPS EEX
51 0000000000000000000000 WS NEX
52 0200000000000000000000 lOR DL
53 0000000000000000000003 EMA ICP
54 0000001040000000001000 SVL
55 0000000000000000000001
56 0000000000000000000002
57 1000000000000000000000
VM 0000000000000000000000
PROCESSOR = 0 CLUSTER = 1 PS = 0
ERROR TYPE = NONE VNU = 0
CHIP SLCT = 00 BANK = 00
READ MODE = I/O SYNDROME = 000
?

Discussion

The RUN directive begins simulation of the
newly-loaded binary image. The time limit for this
section of the simulation will be twenty seconds of
real CPU time. The built-in station within CSIM
sends a LOGON segment to the simulated system,
and the simulated STARTUP replies with the message
STARTUP IS PERFORMING AN INSTALL.
Eventually, the breakpoint set earlier is encountered.

The user issues the CSIM Station command 'X' to
examine the currently-executing exchange package in
the simulated system.

?step
TRACE CPU-O P=0002oo74d F3A=OOOoOoOO 51 4,A5
Result reqister 51 = 0000001040000000001000
?step .
TRACE CPU-O P=0002oo75b BA=oooOoooo 52 SRO
Result register 52 = 1000000000040000000000
?step
TRACE CPU- 0 P=00020075c BA=OooOoooO 52 52<26
Result register 52=0001000000000000000000
?step
TRACE CPU- 0 P=00020075d BA=ooOooooO 52 52>76
Result register 52 = 0000000000000000000000
?step
TRACE CPU- 0 P=0002oo76a BA=oooOOOOO SO 5152
Result register SO = 0000001040000000001000
?a
DIS A 00020073 P EXEC
0020073 006165 030663 071106 007000
0020074 146370 020600 004453 125100
0020075 000004 073201 054226 055202

<etc.>
? 20074d=126100,m=e
? a
DIS A 00020073 P EXEC
0020073 006165 030663 071106 007000
0020074 146370 020600 004453 126100
0020075 000004 073201 054226 055202

<etc.>
? p=20074d,m=e
?

Discussion

The user begins stepping through the code, one
instruction at a time.

By the time the last step is reached, something has
gone wrong. The result in SO register should be the
difference between the actual CPU number and that
of the Guest Operating System (GOS). The number
in SO is clearly wrong since CPU numbers range form
0-3.

Analysis of the code locates the problem. The
instruction at 20074b loads A6 with the base address
of the Guest Operating System table, while the next
instruction uses AS as the index register. One or the
other is wrong, as they should be identical. A quick
scan of the following code shows that A6 is used as
a scratch register, so the developer decides to change
the GETF to use A6.

The instruction in simulated memory is modified, and
the P-register is reset to the beginning of the code
segment in question.

?step
TRACE CPU-O P=00020074d BA=OOOOOOOO 51 4,A6
Result register 51 - 0000000000000000000000
?step
TRACE CPU-O P=0002007Sb BA=OOOOOOOO 52 SRO
Result register 52 = 1000000000040000000000
?step
TRACE CPU-O P=00020075c BA=OOOOOOOO 52 52<26
Result register 52 = 0001000000000000000000
?step
TRACE CPU-O P=0002007Sd BA=OOOOOOOO 52 52>76
Result register 52 = 0000000000000000000000
?step
TRACE CPU-O P=00020076a BA=OOOOOOOO SO 5152
Result register SO = 0000000000000000000000
? step
TRACE CPU-O P=00020076b BA=OOOOOOOO JSN 20111a
? step
TRACE CPU-O P=00020076d BA=OOOOOOOO A6 51
Result register A6 = 00000000 <etc.>
? step
TRACE CPU-O P=00020105c BA=OOOOOOOO AO A6-A4
Result register AO = 77777700
?

Discussion

The developer steps through the remainder of the
code to ensure that there are no other bugs in the
code segment. Note that after the initialS-register
comparison (P=20076a), the correct (or at least
reasonable) value is now returned.

? run

DEVICE DD-Al-20 - NO ENGINEERING FLAW
TARLE FOUND

ENTER GO TO CONTINUE STARTUP
SKIP TO CONTINUE W /0 FURTHER WARNINGS
? SKIP

113

STARTUP SELECTED CREATION OF THE
$DSC-EXTENSION.
THE $DSC-EXTENSION WAS CREATED AND SAVED
SUCCESSFlJLL Y.
THE $DSC-EXTENSION IS 00% FULL.
THE $DSC-EXTENSION WAS RECOVERED AND
VALIDA TED SUCCESS FULL Y.
CREA TING NEW EDITION OF THE SYSTEM
DIRECTORY

Simulation time limit exceeded.
? run,t=40

*** SIMULATION COMPLETE H··)(­

? end
q

BYE

Discussion

Having successfully tested the developmental code,
the programmer elects to let STARTUP run to
completion. The initial time limit of 20 seconds is
insufficient, but the programmer allocates more time
and the simulation then runs to completion.

The END directive terminates the CSIM session, and
the user then issues the Station loqoff command (in
this case ' q').

8. Conclusions

COS interactive, as provided for by the interactive
Stations, fulfills an important role in the software
development process in Cray's Mendota Heights
facility. Large assemblies and compilations are
performed in the background, while interactive
sessions are used in the debugging, testing and
vali dation of new operating system, library, and
applications-level code.

Interactive sessions have available the same command
set used in the batch environment, though some
limitations are imposed by the lack of interactive
JOB statements in the area of resource utilization.

A common scheduler is used for both batch and
interactive sessions. Some tuning is possible through
the use of the Job Class Manager. Response time to
interactive sessi ons is largely controlled by the
amount of free memory, and the size of jobs needing
to roll out to free memory for interactive sessions.

Interactive Session Example

20073b 030663 A6
c 071106 51
d 007 00031476a R

A6+A3
A6
TACT

A6 <= STT addr

ready the task

- new code segment --------------------

20074b
d

20075b
20076a

0206 00004453
<opdef>
<macro>
<macro.

* Check if running in the GOS CPU.

A6 B@GOS+LH@GOS
GETF,S1 S7,GOSCPU,A5 GOS CPU number
GETSRO PN,S2 Current CPU
$IF S1,EQ,S2 If in the GOS CPU

d
20077a
20100c
20101a

023610 A6 51 Find processor to interrupt

c
d

assigned

<macro>
1202 00002016
1204 00002020
051224
045023

GENPBM
52
54

52
SO

S3,A6 GOS processor
PSMEXEC,O EXEC CPUs
PSMSTP,O STP CPUs

S2!S4
1153&52 EXEC or STP CPUs not

20102a <macro> $IF
52
54
55
A6
52
55
52
A4
$IF

SZ If COS needs to be interrupted
c 1202 00002014

20103a 1204 00002022
c 1205 00002026

20104a 1006 00035013
c 051224

PSMIDLE,O IDLE CPUs
PSMUSER,O USER CPUs
PSMDOWN,O DOWN CPUs
XEND+HIGHCPUN,O Max CPU number
S2!S4 IDLE and USER CPUs

d 051535 S3!S5 DOWN and GOS CPUs
20105a 045225 1155&52 All CPUs eligible to interrupt

b 027420 ZS2 Processor number or 64
c <macro>

interrupt
A4,LE,A6 If a valid COS CPU to

20106b <macro>
20111a <macro>

SETIP
$ENDIF

$ENDIF
$ENDIF

PN=A4,SCR=A6,ERROR=$STOP112

a <macro>
a <macro>

C. OSSIC Report

David Lexton (ULCC)

The Operating Systems committee had met on
Monday 30th September. Don Mason gave a report
on COS and UNIX. The si tuation on User
Requirements was then considered in some detail.
On behalf of CRI, Don Mason had responded (to
Steve Niver, chair of the User Requirements
committee) to those forwarded to them from the
first ballot. OSSIC needs to consider the responses
to operating systems requirements but as no one on
the committee had seen them prior to 30 September,
this was not yet possible, as far as all the
requirements were concerned. However, in relation
to user exits, system tuning and installation areas,
the OSSIC Chair had collected detailed material from
a number of sites in June and sent that to CRI. In
spite of this Don Mason had requested more
discussion on those topics. The committee felt very
strongly that a general approach to these questions
was urgenty required. To facilitate this, Conrad
Kimball, Jim Sherin and Dean Smith agreed to
interact directly on behalf of OSSIC with Don
Mason's nominees on these matters. CRI have asked
for input from OSSIC on two UNIX iSGues, namely
the operator interface and batch processing
requirements. User requirements to be submitted to
URC for inclusion in the next ballot were discussed.

114

The committee appointed a new chair Ray Benoit
(CID), with Dave Lexton (ULCC) as deputy-chair.
The other members of the committee are Conrad
Kimball (Boeing), Jim Sherin (Westinghouse), Lothar
Wollschlager (KFA), Claus Hilberg (ECMWF),
Mostyn Lewis (Chevron), Larry Yaeger (Digital
Productions), Charles Slocomb (LANL) and Don Mason
(CRn.

The Committee discussed the relation between the
SIC and CUG sessions, without reaching any
conclusions. It was thought desirable to have some
overlap between the areas covered by different SICs.

MICROTASKING PANEL SESSION

r"1a ry Zose 1

Lawrence Livermore National Laboratory
Livermore, California

Frank Bobrowicz, LANL, Mike Booth and Lisa
Krause, CRI, and Rob Strout, LLNL made up a
panel for discussion of the microtasking approach
to using multiprocessors. Lisa Krause discussed
the status and plans of the microtasking pre­
processor at CRI. It is currently being prepared
for beta release in system 1.15. There have been
several bug fixes made to the original prototype
version. Changes to allow separate compilation
have been made. There are also plans to support
a new form of the guard directive: CDIR$ GUARD n
where n is treated as (n mod 64) to generate a
lock number.

Rob Strout described what was done to get the
preprocessor and microtasking library up and
running on the NLTSS system at LLNL, and in
general what must be done to move to a different
op~rating system. The chang~s are minimal. The
target system and compilers must support stack
based code generation. Minor preprocessor
changes were required to make up for different
library support. The library change for NLTSS
requir=d only a change to the method used to give
up idle processors.

Mike Booth led a discussion about interaction
between multitasking and microtasking and how he
could see them working together in the future.
He discussed some ideas about making use of the
hardware performance monitor to make operating
system scheduling decisions to avoid assigning
processor resources to microtasking slavRs which
were hanging on a semaphore. Since there are
other customer uses for the performance monitor,
the system would have used this information in a
way which did no~ preempt other usage.

Mike also answered general questions about how
microtasking works, what context switching is
done (none) and why/where a user might want to
use microtasking. Microtasking introduces use
of multiple processors for loops with very low
execution time overhead and a simple syntactic
directive. It does introduce extra cost in terms
of code size, because some code is duplicated in
the system. It also may slow down overall system
throughput, if the operating system is not care­
fully tuned, because it leaves slave processors
hanging on semaphores when the applications is in
a monoprocessor portion of the code.

ll5

PERFORMANCE AND EVALUATION SPECIAL INTEREST Cor,1t1ITTEE (PESIC)

r~ostyn Lewi s

Chevron Oil Field Research Company
La Habra, CA

PESIC was formed at the 85' Fall CUG in Montr~al. It
comprises the original three workshops on:

Performance
Optimization
I/O

(Ann Cowley, NCAR)
(Jacqueline Goirand, CIFRAM)
(Mostyn Lewis, COFRC)

Also to be included in future PESIC sessions are topics on:

Benchmarking
Workload Analysis
System Tuning

No demarcation on hardware is implied; all Cray machines Is,
Xs, 2s, (Ys and 3s) are to be included.

An important new topic to be embraced is software
reliability. Any suggestions in this area are welcomed.
PESIC would like hard facts and philosophy.

Traditionally, experiences with new software and hardware
have been presented such as relate to the SSD and DD-49's
and new I/O software. We would like to continue this
pioneering trend and invite anyone to contribute. (How
about 3480 tape experiences, DD-39 experiences, UNIX related
experiences ... ?).

If you have something to contribute at the next conference
in Seattle during the spring of 1986 where the theme is UNIX
and you are not sure if it fits into any of the obvious
SIC's, give me a call -- PESIC is your safety net and is
likely to be able to accommodate you.

116

I/O WORKSHOP

Mostyn Lewis

Chevron Oil Field Research
La Habra, CA

The I/O workshop had four speakers covering benchmarking,
applications, new Cray I/O features and new hardware experi­
ences. The breadth of the coverage was an apt precursor to
the newly-formed PESIC (Performance and Evaluation Special
Interest Committee) of which the I/O workshop is one con­
stituent. For more information on PESIC, please see else­
where in these proceedings.

117

BENCHMARKING CRAylS X-MP AND SSD

Christopher Holl

Boeing Computer Services

Be 11 evue, WA

Starting in 1984, Boeing Computer Services benchmarked several X-MP / SSD

systems to learn more about the model 24 and 128 Meg SSD which were installed in

March of 1985. The tests conducted over the year revealed much about the behavior

of the mainframe compared to the Cray I-S. Runs with the SSD measured the

characteristics of this very high speed storage device. In addition to jobs designed for

the benchmarks, many applications were run with and without the SSD tojudge the

improvement over the l-S, and observe the impact of the SSD on production work.

This presentation covers a general description of the benchmark tools, followed by

the results of CPU and SSD performance testing.

I. GOALS

i. CPU Speed Factor
The first goal was to obtain a ratio of the average CPU seconds used by each

mainframe while executing a single job. If the number of I-S CPU seconds used is

known, this ratio, or ((speed factor" can be used to estimate how many CPU seconds

will be used on the X-MP.

ii. Throughput
The second was to determine the throughput of the X-MP relative to the Cray I-S,

while processing a ((typical" Boeing workload.

iii. I/O (disk and SSD)
The final goal was to measure the disk I/O, and the speed of the SSD.

118

II. HARDWARE DIFFERENCES

i. CPU

There are three major differences between a I-S CPU and an X-MP CPU. The clock

cycle has been reduced from 12.5 nanoseconds on the I-S to 9.5 nanoseconds on the

X-MP; the number of paths to memory (per CPU) has increased from one to three;

and later X-MPs (including Boeing's) have hardware scatter/gather and compressed

index instructions, while the I-S must use software for these operations. (The vector

floating point multiply unit can also be used as a second logical unit in the X-MP,

but this option was not used for the benchmarks.)

ii. Memory

The amount of central memory (for Boeing's machines) has increased from two

million words on the I-S, to four million words on the X-MP.

iii 1/0
Boeing's Cray I-S has DCU-3 disk controllers, while the X-MP has an lOS with

DCU-4 controllers. A 128 million word Solidstate Storage Device (SSD) was

installed with the X-MP. Figure 1 displays the two configurations.

DCU·3 DCU· 3

mm ~.------,.----,DCU' 3 DCU·3

~ ~ oc"·' oc",

Empty Empty

Cray 1-5 Disk Configuration

Low Speed Channel
- B -

u Master lOP
- f -

f
e

DCU·4

DCU·4

High Speed Channel Buffer lOP
DCU·4

DCU·4

DCU·4

DCU·4
OptIonal HIgh Speed Channel Disk lOP

DCU·4

M DCU·4

e
Expander lIE m

To Mamframe 0 lOP
r for tapes.
y

(Not used)

IDS Configuration

Figure 1: Boeing's 110 Configurations

119

III. TOOLS

i. Boeing and commercial jobs:
The first category of tools consists of jobs obtained from Boeing Computer Services

Engineering Technology Applications group (ETA). The six types of ETA tests are

summerized in Table 1. Addi tional tests (not listed here) were solicited from

commercial customers and the Boeing customer for a second benchmark. These tests

consisted of structural, thermal, reservoir, fluid dynamics, and dynamic analysis

codes.

*

Designation

FFT1

FFT2

FFT3

FFT4

LES1

MDL4

SAMO

SAM1

SAM2

TARIO

VIP

Description

Fast Fourier Transfer, certification case.

Test case, array size: 20482.

Test case, array size: 40962.

Test case, array size: 81922.

Linear Equation Solver: Envelope Factorization.

NASTRAN* model of gas generator for off-shore platform.

Job to assemble SAMECS (Boeing structure code) modules.

SAMECS data case.

SAMECS data case.

SAMECS / ATLAS I/O routine.

Vector Implicit Program,** Reservoir simulation.

By McNeal- Schwindler Corporation.

** By Nolen & Associates (with permission).

Table 1: Engineering applications tests

120

..
11. Programs designed for the benchmark.
The second category consists of three jobs developed by Boeing Computer Services

Cray Technology. These jobs are listed in Table 2.

...

Designation

FLOPS1

FLOPS2

FLOPS3

FLOPS4

FLOPS5

10 STAT

SORT

Description

N = 500.

N = 500.

N = 1000.

N = 2500.

N = 5000.

Solve Ax = I for x. Data in memory.

Amount ofliO = 125,754 words.

Data in memory.

Amount ofliO = 3,128,784 words.

Amount ofliO = 12,507,630 words.

Job to measure transfer rate and overhead of an lIO device.

Sort-merge test.

Table 2: Boeing Technology tests

Ill. QBM / QBMCPU
The third category consists of a benchmark tool named Quick BenchMark (QBM)

because of its ability to determine the relative capacity of a configuration in

approximately ten minutes. A complete description of QBM is outside the scope and

intent of this presentation. The function of QBM is to duplicate a ten minute subset

of a workload running on a base system. This workload can then be run on any target

system. If the QBM load processes in ten minutes on the target computer, it has the

same capacity as the base computer. If the load processes in more than ten minutes,
the target system has less capacity than the base system. If the load finishes in less

time, the target system has greater capacity. The QBM load can be scaled up or

down until the job takes ten minutes to complete. The relative capacity of the

target machine for running the base machine's workload is the load factor used to

scale the base load so it processes in ten minutes on the target machine. This is a

simplified overview, but the process will give results such as 1 Cray X-MP = 2.5

Cray 1-S'.

A special QBM job was also used to measure the speed factor. This job, called

QBMCPU, performs 11 different types of computation, as described in table 3. A V

indicates that the exercise is vectorizeable. Each computation is weighted by a best

guess approximation to reflect its percentage of the total Boeing workload. Table 4

121

CPU COMPUTATION DESCRIPTION WEIGHT

1. 3-Dimensional Average Flux Code .05V

2. 2-Dimensional Linear Algebra .15 V

3. 1-Dimensional Linear Algebra .15 V

4. 100 Element Random Scatter .05

5. 100 Element Random Gather .05

6. 100 Calls to Function With 1 Argument .03

7. 100 Calls to Function With 6 Arguments .03

8. 100 Calls to Library Routines: SINE, COSINE, EXPONENTIAL .10 V

9. One Call to Linear Code .14

10. One Call to Shell Sort of 2 Word Records .05

11. 100 Calls to Formatted I/O Loop ~
1.00

Table 3: QBMCPU tests

shows QBMCPU to be 45% vector code. The exercises were calibrated on Boeing's

Cray 1-S (running the COS 1.10 operating system) so the program could print speed

factors directly. QBMCPU was then run on a Cray 1-S and an X-MP in Mendota

Heights, both running COS 1.12. Speed factors for each exercise, and the weighted

overall factor, were obtained on the X-MP, and ((normalized" by dividing by the

speed factors found on the Mendota 1-S. This adjustment was necessary since the

tests were run on a different release of COS than that on which the program was

calibrated.

v. RESULTS

i. CPU

Boeing and Commercial Jobs:
Each of the test jobs was run on Boeing's Cray 1-S (and in some cases Cray's 1-8 in

Mendota Heights) and again on an X-MP. The CPU times for the major job steps

were obtained and compared. Each pair of times provides a ratio of CPU seconds

used by each mainframe for a given task. The hardware changes already mentioned

affect this ratio. First of all, it is reasonable to suppose that the ratio of CPU time

122

used by a job would be the ratio of the clock speeds: 12.5 / 9.5 = 1.32, or that a job

that took 12.5 CPU seconds on a 1-8 would take 9.5 CPU seconds on an X-MP. The

other changes come into consideration however. The I-S has only one path to

memory for fetching and storing data. The X-MP has four paths to memory for each

CPU: one for storing data, two for fetching data, and one for I/O. This allows it to

perform some operations with less contention for memory access than a I-S. For

example, in the vector operation A = B + C, the system performs a fetch for each

element of vectors Band C, adds the values, and stores the result in the

corresponding element of A. The fetch of b i and ci can take place at the same time.

Once the sum is calculated, the store of a i can take place at the same time as the fetch

of bi+ n and ci+ n' etc. This advantage only becomes appreciable when processing

vectors. The longer the vector length, the better the X-MP performs. This means

some calculations can have a large increase in performance. Observations showed

improvements of up to twice the speed of a I-S. The theoretical maximum speed

factor for a function designed to take full advantage of the X-MP hardware would be

3 (memory paths) X 1.32 (CPU factor) = 3.96.

Influencing the low end of performance is the fact that even though the CPU (Le.

clock cycle time) is faster, the memory access time is not. It takes the same length of

time to fetch an element from memory into the CPU on an X-MP as it does on a I-S.

All benchmark tests were performed using CFT 1.11 to allow direct comparison with

tests executed on Boeing's I-S. Optimization for memory timing done by CFT 1.11

uses the timing for a I-S: 9 clock cycles of work are scheduled after a memory

request. To wait the same length of time, the faster X-MP must wait 12 cycles. This

means at least 3 cycles are waisted for every memory request using binaries

generated by CFT 1.11. Memory access bound jobs may show little or no

improvement. This was confirmed by the software scatter and gather tests, which

showed almost no performance gain. The range of the speed factor for a single CPU

with its associated paths to memory is then from 1.0 to 3.96.

The CFT 1.13 compiler allows the user to specify on which type of mainframe the

program will execute. When the compiler generates binaries for the X-MP it will

try to schedule 12 clock cycles worth of operations during the time that would be idle

due to a memory access. IfCFT 1.13 can do this so there are no more idle cycles than

there would be on a 1-S, the minimum improvement should be 1.3. For CAL

programs, the programmer must optimize for timing considerations.

123

Job Average of 1-5 times Average of X-MP times Ratio

FFT1 4.4183 3.2750 1.35

FFT2 7.2460 4.6115 1.57

FFT3 31.2264 20.1143 1.55

FFT4 136.3585 89.6515 1.52

LES1 187.8939 147.2305 1.28

MDL4 1965.9437 1275.2191 1.54

SAMO 27.9868 18.4480 1.52

SAM1 96.1758 77.6475 1.24

SAM2 334.1038 265.0155 1.26

TARIO 0.2487 0.1900 1.31

VIP 554.9596 280.0902 1.98

FLOPS1 2.2862 1.5981 1.43

FLOPS2 2.3857 1.6629 1.43

FLOPS3 11.0417 7.0957 1.56

FLOPS4 113.1866 64.3849 1.76

FLOPS5 751.0158 395.4812 1.90

SORT 23.6077 15.7917 1.49

Average Ratio 1.51

Table 4: Benchmark Job CPU Times and Ratios

Engineering and Technology Jobs:
The speed factors obtained for these jobs are listed in table 4. These factors were

averaged to give the overall mean speed factor for the benchmark jobs. In

production, the overall speed factor will be determined by the ratio of scalar to vector

work being performed by the user base. We had no way to measure this ratio on the

I-S, so we must assume the benchmark jobs are representative of the workmix. The

X-MP has hardware registers that accumulate performance statistics for ajob. Note

that the factor for SAMO is close to the average. SAMO is a setup job for the

SAMECS tests, and consists of 9 compile, load (without execution), and save steps.

MDL4 also has a speed factor very close the the average. To show the distribution.

124

the speed factors for the jobs listed in table 4 are plotted in figure 2. (IOSTAT was

not used as a speed factor test.) A second benchmark was conducted with the

additional jobs and the distribution for these is plotted in figure 3. The tests which

were able to compile under CFT 1.14 were run with hardware scatter/gather, and the

distribution for these is shown in figure 4.

QBM:
The results of the QBMCPU kernels are displayed in Table 5. During the course of

QBMCPU testing, several copies of the program were run together. The speed

factors produced by these runs varied more than expected, which led to some

investigation. QBMCPU was run 8 times on an X-MP. Some of these jobs were run

TEST SMALLEST LARGEST AVERAGE % DIFF
-1-. 1.3171 1.3629 1.3497 3M

2. 1.6171 1.9074 1.8249 17.95
3. 1.9677 2.3155 2.2343 17.67
4. 1.1458 1.1806 1.1725 3.03
5. 1.0739 1.0969 1.0908 2.14
6. 1.2127 1.2588 1.2480 3.80
7. 1.1658 1.2108 1.2000 3.86
8. 1.4311 1.4636 1.4562 2.27
9. 1.2087 1.2463 1.2374 3.11

10. 1.1107 1.1499 1.1407 3.53
11. 1.2532 1.2938 1.2859 3.24

Overall 1.500 4.95

Table 5: QBMCPU Speed Factor Results

single stream (alone in the computer) and some were run together (up to four at a

time). Each job took 10 measurements. This gave 80 samples for each type of

computation. The percent difference is (largest - smallest) -+ (smallest) X 100. Of

the 11 CPU tests, two showed a variation in the amount of CPU-seconds-used in

excess of 10%. Test 2. executed the following code in a loop:

DO 2 J = 1.5
DO 1 I = 1.100

A(J.I) = A(J,I) + Rl(I) * C(J,I) + D(I.J)
1 CONTINUE
2 CONTINUE

The time required to perform this double loop varied by 18%.

125

N
U
M
B
E
R

o
F

J
o
B
S

N
U
M
B
E
R

0
F

J
0
B
S

t
Figure 2:

I-

FIRST BENCHMARK DATA
8

7 l-
(COS 1.12 - CFT 1.09)

6 I-

5 I-

4 -

3 -

2 l-

I-

I I I _l J I I I

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7

CPU SPEED FACTOR

8 I- Figure 3:

SECOND BENCHMARK DATA
7 I- (COS 1. 1 2 - eFT 1 . 11)

6 l-

5 I-

4 I-

3 -

2 I-

I _I I I I I

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7

CPU SPEED FACTOR

126

8 Figure 4:

EXTRA BENCHMARK DATA

N 7 (CFT1.14-Hardware SCATTER/GATHER)

U
M 6
B
E
R 5

0
F 4

J 3
0
B
S 2

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7

CPU SPEED FACTOR

127

Test 3 was a similar loop:

00 1 I = 1,100
H(I) = H(I) + R1(I) * PH(I) + 01(1)

1 CONTINUE

The CPU times for this test also varied by more than 17%. The fetching and storing

of elements was causing one CPU to wait for access to a bank of memory, while the

other CPU was reading from, or writing to, that bank. The tests were changed

slightly in an attempt to create a worst case. Test 2 was shortened to performed two

FETCHes and a STORE. This is the maximum number of memory accesses the

hardware can support at one time, and it was hoped this would intensify the

symptom. Test 2 became:

A(J,I) = C(J,I) + O(I,J)

Test 3 was changed to three FETCHes and a STORE which produces out-of-stride

memory accesses:

H(I) = R1(I) * PH(I) + 01(1)

The number of times each expression was executed was increased for each test, to

maintain the proper weighting factors. This modified program was called

QBMCPU2. This job was then run the same number of times that QBMCPU had

been run. Changing the expressions did indeed affect the abili ty of the tests to use a

consistent number of CPU seconds. Test 2 now varied by 19% and test 3 by as much

as 26%. A complete summary of the QBMCPU2 results are listed in Table 6. Cray

TEST SMALLEST LARGEST AVERAGE % DIFF
-1-. 1.3104 1.3627 1.3493 Lf.OO

2. 1.5185 1.8115 1.7046 19.30
3. 2.1452 2.7068 2.5571 26.18
4. 1.1421 1.1802 1.1721 3.33
5. 1.0858 1.0979 1.0949 1.12
6. 1.1963 1.2482 1.2389 4.33
7. 1.1634 1.2168 1.2107 4.59
8. 1.4464 1.4638 1.4597 1.20
9. 1.2820 1.3011 1.2964 1.49

10. 1.1007 1.1520 1.1431 4.66
11. 1.2655 1.2943 1.2867 2.27

Overall 1.5392 7.48

Table 6: QBMCPU2 Speed Factor Results

128

Research was asked to respond to this inconsistency with some quantitative

explanation. They were given the source to QBMCPU with instructions for use, and

obtained approximately 17% variability for some of the kernels. Although they

recognize that some variability exists, they have offered no recommendation for

controlling the problem.

In preparation for the test of the 4-CPU Cray, QBMCPU was enhanced to include

four additional exercises (see table 7). These new tests were added to aggravate the

CPU COMPUTATION DESCRIPTION

12. FETCH-FETCH-STORE double loop

13. 3000 word storage move

14. 100 CALLs to a function with FLOW TRACE enabled

15. 100 CALLs of a 9-word BUFFER OUT

Table 7: Enhanced QBMCPU on 4-CPU X-MP

WEIGHT

.05 V

.05

.01

.03

CPU variability problem, and determine experimentally how widely the times could

vary. (These weights can no longer be interpreted as percentages, since the sum of

all weights now totals 1.14.) QBMCPU was recalibrated and run 15 times on the 4

CPU Cray X-MP, giving 150 measurements per kernel. The results for both speed

factors and variability are presented in Table 8. Notice the high ratios for the

SCATTER and GATHER tests (4 and 5). The 4 - CPU model had the hardware

scatter/gather feature, while the X-MPs in previous tests did not. The X-MP that

Boeing purchased has this feature. Since these operations are so much faster than

the other types of CPU tests, even small weighting coefficients will cause a large

difference in the overall CPU speed factor. In previous tests, the speed factor has

been determined to be 1.52, while the new CPU gives 2.55. How much this affects

the other benchmark tests is unknown, but it is possible the potential of the CPU has

been underestimated, and the throughput may be greater than measured. As

mentioned before, the actual performance obtained will depend on the work being

performed. It is not possible to determine how much of the Boeing workload consists

of scatter/gather operations. The variation in CPU time is greater than on the 2

CPU X-MP, which is to be expected, since twice as many CPU s are trying to access

memory through twice as many CPU-to-memory paths. The overall CPU variability

is almost 20%, with a large standard deviation.

TEST SPEED FACTOR % DIFFERENCE
-1-. 1.36 6.17

2. 1.84 34.49
3. 2.05 26.11
4. 11.21 38.43
5. 13.94 38.23
6. 1.17 5.26
7. 1.20 7.15
8. 1.39 4.16
9. 1.52 4.11

10. 2.03 6.23
11. 1.25 4.14
12. 1.73 33.10
13. 1.84 38.90
14. 1.31 8.69
15. 1.10 3.43

Overall 2.55 19.84

Table 8: Enhanced QBMCPU on 4-CPU X-MP

THROUGHPUT RESULTS
QBM was run on Boeing's I-S and on several X-MPs. The last X-MP benchmark was

conducted on Boeing's model 24 after installation at the Bellevue datacenter. The

operating system was COS 1.12, with CFT 1.11. These tests showed that the X-MP

would process 3.85 times the Boeing Computer Services' Cray I-S workload.

SSD
Each of the benchmark jobs was run once with all datasets resident on disk, and a

second time with scratch datasets assigned to the SSD. The CPU seconds were

subtracted from the wall clock time to give an estimate of I/O time. Since each job

was run alone in the machine this is a reasonable approximation. The percentage of

reduction for the jobs is graphed in figure 5. Only the jobs with a fair amount ofVO

(greater than 10 seconds with SSD) are representented. Almost all jobs showed a

tremendous reduction in I/O time, the best case being shown below.

IOSTAT showed how the transfer rate of the SSD (and Buffer Memory) is affected by

the buffer size, and that the default buffer size of 4 blocks is too small. Boeing has

changed the default size to 40 blocks (for SSD and BMR datasets) in order to realize

130

Figure 5:

11 % REDUCTION IN 1/0 TIMES
N (X-MP wlo SSD to X-MP wi SSD)
U 10

M 9
B
E 8
R

7

0
F 6

J 5

0 4
B
S 3

2

o 10 20 30 40 50 60 70 80 90 100

PERCENT OF REDUCTION

131

System
1-S

X-MP
w/SSD

BEST EXAMPLE
Computational Fluid Dynamics

3-D Parabolized Navier-Stokes
10° Wedge with corner flow

Wall Clock Time
1: 53:46
1:25:10
1 :03:05

CPU seconds
4928
3752
3750

liD Time
31 :38
22:38
00:35

approximately 75% of the effective transfer rate. Figures 6 through 9 show various

I/O plots for three different sized SSDs, and Buffer Memory.

v. CONCLUSIONS
Although the data has more to reveal, some basic conclusions have been drawn from

the benchmarks:

o CPU performance is very dependent on type of work.

o The amount of CPU seconds used can vary.

o Throughput for Boeing is 3.85 times a I-S.

o The SSD can reduce I/O time by 90%.

o SSD buffer size needs to be larger than disk buffer size.

The hardware performance registers on the X-MP can be used to obtain a more

detailed profile of the type of work being done. This will allow for more accurate

benchmarks to be done on future vector processing computers.

132

Figure 6:

SEQUENTIAL SSD TRANSFER RATE

100

90
P 128MegSSD -1250 M bytes/sec burst
E 80

R
C 70

E
N 60

T 50

a 40
F

30

M
A 20

X
10

o 20 40 60 80 100 120 140 160 180 200 220

BUFFER SIZE IN BLOCKS

Figure 7:

SEQUENTIAL SSD TRANSFER RATE

100

90
P

32 Meg SSD -1000 M bytes / sec burst

E 80
R
C 70

E
N 60

T 50 8 Meg SSD - 320 M bytes / sec bu rst

a 40
F

30

M
A 20

X
10

o 20 40 60 80 100 120 140 160 180 200 220

BUFFER SIZE IN BLOCKS

133

Figure 8:

TIME! BLOCK vs. DATA BUFFER SIZE

100

90

80

70

II SECS 60

!BLOCK 50

40

30
8 Meg SSD

20 ~ 10 32 Meg SSD

o 20 40 60 80 100 120 140 160 180 200 220

BUFFER SIZE IN BLOCKS

Figure 9:

BUFFER MEMORY TRANSFER RATE

300

250

M Bits!
Sec

200

150

o 20 40 60 80 100 120 140 160 180 200 220

BUFFER SIZE IN BLOCKS

134

SOFTWARE PAGING FOR LARGE ~IATRICES ON CRAY X-f4P

U. Detert

Zentralinstitut fur Angewandte Mathematik
Kernforschungsanlage Julich GmbH

West Germany

Abstract: CRAY computers provide high computational speed but only limited main

memory resources. This paper presents a fast and flexible method for

the handling of large 2-dimensional matrices by a software paging

mechanism using matrix segmentations with user-defined shape and size

of blocks. Emphasis is put on performance analysis (CPU time, I/O

requests, data transfer) depending on the matrix segmentation

chosen . Performance data is given comparing several standard I/O

methods with the software paging method.

Introduction

The following paper presents a software paging mechanism developed for the

handling of large 2-dimensional matrices stored on secondary storage.

The paging mechanism allows for access to following matrix substructures:

- rows (or part of) ,

- columns (or part of),

- diagonals (or part of) ,

- matrix elements,

- blocks (i.e. rectangular submatrices).

The principle of operation of the software paging method is that of most

customary paging systems: the data to be handled is segmented into pages

(called blocks in the following) and stored in secondary memory; if certain

items of the data are required for the computation they are loaded into main

memory (demand paging). These pages form the "working set" in memory (called

data buffer in the following), (figure 1).

A disadvantage with most customary paging systems when handling matrices is

that normally the "natural" order of matrix elements in main memory is kept

when the matrix is segmented into pages. In FORTRAN this means that pages

comprise a few number of columns whereas rows are spread over a large number of

pages.

135

The paging mechanism presented here differs in two ways from this. First, a

block segmentation of the matrix is used; i. e. pages are submatrices of the

given matrix. And second, blocks are not of fixed size but of user-defined size

and shape. So, blocks (pages) may be square or rectangular submatrices. They

may, however, also be a combination of one or more rows or columns if desired

(called "horizontal" or "vertical" blocks, respectively). 1)

This concept provides high flexibility for the handling of matrices with

different size and shape. Besides, best performance can be achieved by properly

adopting the matrix segmentation to the underlying application and the

resulting access pattern.

Performance

In the following, some performance considerations shall be discussed.

The first question of interest is the choice of the I/O routines used for the

data transfer between data buffer and secondary storage. As all buffering is

done in the data buffer of the paging system and the selection of the data

items to be read or written is managed by the paging system, these I/O routines

should not involve significant additional overhead for buffering the data in

system I/O buffers. Secondly, the I/O routines should be well suited for direct

or random I/O, as references to matrix blocks will in most cases be

non-sequential.

The following CRAY I/O methods were investigated for use with the paging

system:

1)

- standard direct access I/O,

- READMS/WRITMS routines (random I/O, record addressable),

- READDR/WRITDR routines (unblocked random I/O, record addressable),

- PUTWA/GETWA routines (random I/O, word addressable),

- BUFFER IN/OUT (with SETPOS, GETPOS) (asynchronous direct access I/O).

A detailed description of the software paging method is given in:
U. Detert, Untersuchungen zur Implementierung eines Software-Paging­
Systems auf der CRAY X-MP.
Interner Bericht - KFA/ZAM 1/1985

136

Related to the criterions "CPU time", "number of I/O requests" and "amount of

data transferred" for non-sequential data ref~nmc(\s READDR/WRITDR OR t:!1e on';

hand and BUFFER IN/BUFFER OUT on the other hand proved to be comparably

qualified whereas all other routines exhibited either high CPU time consumption

or a bad utilization of the I/O buffers. As READDR/WRITDR is especially well

suited for long records and requires no system I/O buffers, these routines were

selected for use with the paging system.

The overall performance of the paging system is much influenced by the proper

choice of the size and shape of the matrix blocks and the number of blocks

kept in main memory at a time. For mere access to rows it is obviously optimal

to choose "horizontal" blocks containing one or more rows each, at least one of

them being in main memory at a time (figure 2). Correspondingly "vertical"

blocks are optimal for the access to columns. If the dimensions of the matrix

are n x m and the dimensions of the blocks are s x z, then there are lis I/O

operations to be performed per row of the matrix for a segmentation with

horizontal blocks, provided that all rows of the block can be used before the

block is overwritten.

The vector length for copying out one row from the data buffer to the user area

is z, the length of the complete row, because each block contains complete

rows. The amount of data transferred for access to each row is z (again under

the assumption that the whole block can be used before it is overwritten) so

there is no overhead in the amount of data transferred.

If access is to rows and columns with equal frequency, horizontal or vertical

blocks are not reasonable, as they lead to an enormous amount of I/O operations

and data transfer. In this case it can be proved that rectangular blocks are

optimal with as many blocks per row as there are blocks per column. For square

matrices this means that square blocks should be used. In this case kl n/s

is the number of blocks per column and k2 := m/z the number of blocks per row

(and normally kl = k
2

) • As one block is common to rows and columns, the data

buffer should contain at least k
1

+k
2
-1 blocks in order to enable the

referencing of adjacent rows and columns without additional I/O operations

(figure 3). In this case m/(zos) I/O operations per row and n/(soz) I/O

operations per column are required. The amount of data transferred per row is m

and the data transferred per column is n, if the whole data buffer can be

utilized before blocks are overwritten. The vector length for copying out the

data is s in the case of columns and z in the case of rows, which is a

significantly smaller vector length than in the case of horizontal blocks or

vertical blocks. So for the sake of good I/O and CPU performance blocks should

not be too small.

137

Figure 4 shows the effect of reducing the block size constantly from 240 x 240

(which is the whole matrix) to 8 x 8 for the example of the LINPACK program

SGEFA/SGESL for the solution of linear systems. For blocks significantly

smaller than 40 x 40, CPU time and the number of I/O requests increase

dramatically.

For the same program, examinations were made to find out the optimal number of

blocks to be preserved in the data buffer. Figure 5 shows CPU time and the

number of I/O requests for a fixed block size of 20 x 20 and a variable number

of blocks in the data buffer ranging from 144 to 6 blocks. As access is 50

times more often to columns than to rows in this program, there is no actual

need to buffer rows and columns (which would require a minimum number of 23

blocks in main memory). If however less than 12 blocks are kept in data buffer

(which is the number of blocks required for the access to one complete row or

column) "page flattering" occurs, resulting in an enormous amount of CPU time

and I/O requests.

Taking into consideration the much more frequent access to columns than to

rows, square blocks possibly might not be the best choice in this case. Figure

6 shows CPU time, number of I/O requests, and number of disk sectors moved for

the same program and various matrix segmentations (NBK is the number of blocks

kept in data buffer).

For all runs shown in figure 6 the amount of memory reserved for the data

buffer was about the same, however, in runs 1 to 3 (block sizes 20 x 20, 30 x

10 and 10 x 30) blocks for the access to rows and columns were kept in memory

(i.e. NBK = k
1

+k
2
-1), whereas in runs 4 and 5 (block sizes 240 x 40 and 80 x 40)

only blocks for the access to columns were buffered (NBK = k
1
). In the first

case (buffering of rows and columns) square blocks are best; both, run 2 and

run 3 show higher CPU time and I/O demands than run 1 due to the use of

non-square blocks. Buffering of only columns with block size 240 x 40 and NBK =
1 (run 4) leads to an optimal behaviour concerning CPU time and number of I/O

requests, as the very frequent access to columns is optimally realized in this

case. However, the number of disk sectors moved goes up by a factor of 6

compared with run 1. This is due to the fact that every reference to a row

forces the whole matrix to be read. Run 5 is a compromise between run 1 and run

4. Splitting up the "vertical" blocks of run 4 into three parts of size 80 x 40

each results in significantly less data transfer for row access and only

negligible increase in CPU time and number of I/O requests. Figure 7 recalls

the measurements for this example.

138

A performance comparison between the software paging system and some "standard"

I/O methods is given in figures 8 and 9. Figure 8 shows performance data for a

matrix mUltiply with matrix size 500 x 500 carried out in a row by row

fashion. For this simple example access to rows of the matrix is completely

sequential. So, matrices can be stored on secondary storage each row being one

logical record and sequential and direct access I/O routines can be used to

handle them. For the software paging system a block segmentation with

horizontal blocks was used selecting block sizes with nearly optimal behavior

(restrictions had to accepted to meet buffer size requirements). Concerning CPU

time the software paging system beats all I/O routines except BUFFER IN/BUFFER

OUT which is slightly faster. With regard to the number of I/O requests,

however, standard sequential I/O and BUFFER IN/BUFFER OUT are significantly

better. Irrleoo, it is very difficult to beat sequential I/O by any means of

direct access I/O.

The second example (figure 9) is a simple matrix traversal where the matrix is

wri tten row by row in forward direction and is read backwards. The whole

procedure is repeated ten times. Here, the software paging system is best with

regard to CPU time and the number of I/O requests. Concerning the amount of

disk sectors moved, only READDR/WRITDR performs better than the paging system.

This is due to the fact that with READDR/WRITDR each logical record corresponds

to one physical record. Hence, no read is necessary before a write operation

can be executed (a disadvantage of READDR/WRITDR, however, is the very large

number of I/O requests). All other routines exhibit a very unsatisfactory

utilization of the I/O buffers. Especially standard direct access I/O routines

show poor performance in this respect.

A final assessment of the paging performance is given in figure 10. For

various matrix sizes ranging from 50 x 50 to 1000 x 1000 CPU time and the

number of I/O requests are given for the above mentioned LINPACK program. For

comparison, both the CPU time with use of the paging system and without its

use together with the ratio of both are represented. For a fixed upper limit of

about 11000 words for the data buffer this ratio is almost a constant. For a

1000 x 1000 matrix an additional run with an increased buffer size of about

100,000 words (i.e. 10 % of the matrix are kept in main memory) shows that CPU

time and the number of I/O requests can further be reduced.

139

Conclusion

The software paging method presented is a means designed for the fast and

flexible handling of large 2-dimensional matrices not fitting into main

memory.

The concept of user-defined matrix segmentations gives the ability to adopt the

paging system to various applications with different I/O demands.

A comparison of the paging system with standard I/O methods shows satisfactory

performance of the software paging system even in those simple cases where

standard I/O methods can be applied. The applications aimed at with the paging

system, however, lie far beyond this.

Applications program: ~
read row of matrix. ~

Paging system: map matrix 1

addresses to block addresses
in data buffer.

V

I '------ _I _1-. _I _1-1-]
I/O routines: load blocks
from secondary memory.

Figure 1. Virtual memory concept

140

I
V

///
///
///

Figure 2. Matrix segmentation with "horizontal" blocks.

m

z

111111I111111I111111I111111I111111I111111
s ////// ////// ////// ////// ////// //////

//1///1///// /////!.////// //1/// /1////

"""I I I I I //////
//////

"""I I I I I //////
//1///

n ------------

"""I I I I I //1///
//////

"""I I I I I //////
//////

"""I I I I I //////
//////

Figure 3. Matrix segmentation with square blocks.

141

Paging Performance for Variable Block Size

20

15

-+- Memory (157.)

-+-CPU time (sec.)

-*- liD requ. (110000)

0~~--~~==~~~~~~==~~--~~
o 20 40 b0 60 100 120 140 lb0 160 200 220 240

NS. NZ

Figure 4. Paging performance depending on block size.

Paging Performance for Variable Number of Blocks in Main Memory

b0

50

48
-+- I/O requ. (110000)

-*- CPU (sec.)

20

10

20 40 b0 60 100 120 140 lb0
NBK

Figure 5. Paging performance depending all the number of blocks in
data buffer.

142

20

18

1b

12

Performance for Different Matrix Segmentations

~ CPU time (sec.)

~ liD requests (*10000)

~ Disk sectors ('10000)

20x2B

NBK=23

30x10

NBK=31

10x30

NBK=31

240x40

NBK=l

80x40

NBK=3

Figure 6. Paging performance for various matrix segmentations.

No. s z NBK Buffer CPU I/O Disk
size requ. sect.

1 20 20 23 9200 2.636 29256 29729
2 30 10 31 9300 2.819 42615 43090
3 10 30 31 9300 3.743 36775 37248
4 240 40 1 9600 1. 372 9569 180486
5 80 40 3 9600 1. 613 11534 80620

Figure 7. Measurements for figure 6.

143

I/O
wait

15.7
19.0
17.0
23.0
13.7

I/O method CPU I/O Disk I/O Buffer
time requ. sect. wait size

sequential 12.73 4195 248828 26.2 16384
direct access 16.33 36705 254896 36.3 16384
BUFFER IN/OUT 6.64 3022 248828 13.8 16384
READHS/WRITHS 19.73 19617 247861 33.1 16384
READDR/WRITDR 9.60 253079 253408 1:21 0
software paging 6.97 11512 255424 33.5 16443
without I/O 4.14 - - - 750000

Figure 8. Performance data for matrix multiply with different I/O
methods.

I/O method CPU I/O Disk I/O Buffer
time requ. sect. wait size

sequential 0.·69 5034 43943 7.8 4096
direct access 0.63 15503 54547 12.3 4096
BUFFER IN/OUT 0.43 5004 43941 9.4 4096
READHS/WRITHS 0.91 9540 19085 6.5 4096
READDR/WRITDR 0.25 10070 10397 5.1 0
software paging 0.25 2017 15910 4.4 4177

Figure 9. Heasurements for matrix traversal with different I/O meth­
ods.

Rank Block Buffer I/O
size size requ.

50 10x10 613 1762
100 50x25 2570 2800
150 50x30 4587 5976
200 50x40 8100 8216
250 64x32 8319 17410
300 100x30 9117 23284
600 200x15 9297 182765

1000 200x10 11063 889862
1000 200x100 100163 92233

1
--c-.

CPU
with

0.12
0.28
0.64
1.14
1. 88
2.83

15.10
61. 21
40.74

I -
I CPU

~ithout

I
0.013 I

0.050
0.12
0.24

I

0.39
0.61
3.16
12.0
12.0

Ratio
CPU

9.0
5.6
5.3
4.9
4.8
4.7
4.8
5.1
3.4

Figure 10. Performance of LINPACK program SGEFA/SGESL with and with­
out software paging.

144

l. AQIO.

2. ASSIGN CARD EXTENSIONS.

3. BACKDOOR TO SSD.

4. CIRCULAR liD IMPROVEMENTS.

NEW COS FEATURES

Clay Kirkland

Cray Research, Inc.
Mendota Heights, MN

145

A Q I O.

l. ASYNCHRONOUS QUEUED INPUT OUTPUT.

2. SSD TRANSFERS ONLY ON COS 1.14.

3. DISK TRANSFERS ON COS 1.15.

4. FILES MUST BE PREALLOCATED.

A Q I o. ASYNCHRONOUS QUEUED INPUT/OUTPUT.

1. USER NOW HAS THE ABILITY TO QUEUE UP

MULTIPLE INPUT/OUTPUT REQUESTS TO COS.

2. REQUESTS CAN BE DYNAMICALLY ADDED TO THE

QUEUE BY THE USER AND MAY CONTAIN INTERMIXED

READ AND WRITE REQUESTS.

3. REQUESTS PACKETS CONTAIN USER MEMORY

ADDRESS, DISK ADDRESS, NUMBER OF DISK

BLOCKS INVOLVED IN THE TRANSFER, AND A

TRANSFER DIRECTION.

4. USER ALSO CAN INITIATE COMPOUND AQIO

REQUESTS TO COS. THE COMPOUND REQUEST IS

THE SAME AS THE REGULAR REQUEST WITH THE

ADDITION OF A SKIP INCREMENT ON DISK, A

SKIP INCREMENT IN MEMORY, AND AN INCREMENT

COUNT. THIS CAN DRAMATICALLY LOWER SYSTEM

OVERHEAD BY PASSING AN I/O DO LOOP TO THE

LOWEST LEVEL OF THE OPERATING SYSTEM.

146

A Q I O.

FOR T RAN CAL LAB LEI N T E R F ACE.

1. ASSIGN FILE TO AND PREALLOCATE IT.

2. OPEN THE FILE BY CALLING AQOPEN.

CALL AQOPEN(AQP(1),(IREQ*8)+32, IFT01IL,O,ISTAT)

3. WRITE ON THE FILE.

CALL AQWRITE(AQP(l),ARRAY,BLOCK,NUMBLKS,ID,FIRE,IS)

4. READ THE FILE.

CALL AQREAD(AQP(l),ARRAY,BLOCK,NUMBLKS,ID,FIRE,IS)

5. COMPOUND WRITE ON THE FILE.

CALL AQWRITEC(AQP(l),ARRAY,MEMSTRD,BLOCK,
2 NUMBLKS,DSKSTRD,INCS-1,ID,FIRE,IS)

6. COMPOUND READ ON THE FILE.

CALL AQREADC(AQP(l),ARRAY,MEMSTRD,BLOCK,
2 NUMBLKS,DSKSTRD,INCS-1,ID,FIRE,IS)

7. CHECK STATUS ON THE FILE.

CALL AQSTAT(AQP(l),REPLY,REQID,STATUS)

8. WAIT UNTIL I/O QUIET ON FILE

CALL AQWAIT(AQP(l),STATUS)

9. CLOSE FILE.

CALL AQCLOSE(AQP(l),STATUS)

147

PERFORMANCE RESULTS OF AQIO ON SN 201 TO SSD.

SIZE OF TRANSFER IN WORDS RATE IN MEGAWORDS/SEC.

1024 NORMAL READ/WRITE. 2.50 II 3.34

1024 AQIO 20 REQUESTS. 12.51 II 12.72

1024 AQIO COMPOUND REQ OF 20. 26.15 II 26.32

2048 NORMAL READ/WRITE. 4.89 II 6.47

2048 AQIO 20 REQUESTS. 24.95 II 25.37

2048 AQIO COMPOUND REQ OF 20. 52.08 II 52.35

4096 NORMAL READ/WRITE. 10.01 II 13.35

4096 AQIO 20 REQUESTS. 49.48 II 50.11

4096 AQIO COMPOUND REQ OF 20. 98.01 II 100.76

TO ACHIEVE THE SAME TRANSFER RATE AS THE COMPOUND

REQUEST OF 1024 WORDS USING NORMAL READ/WRITE,WE NEED

A TRANSFER SIZE OF 10752 WORDS. TO DUPLICATE THE 2048

COMPOUND RATE WE NEED A TRANSFER SIZE OF 43008 WORDS,

AND TO DUPLICATE THE 4096 COMPOUND RATE WE NEED TO

MOVE 82944 WORDS.

148

II

II

II

II

II

II

II

II

II

WHY 0 I S K A Q I 0 ?

1. TIME TO DO F$RDC OR F$WDC CALL. (NORMAL READ/WRITE)

300 - 400 MICROSECONDS.

2. TIME TO DO F$QIO CALL.

400 - 1000 MICROSECONDS.

3. TIME TO ADD REQUEST TO THE QUEUE.

5 - 6 MICROSECONDS.

4. THUS TO DO 100 WRITE REQUESTS ON A DATASET.

100 * 350 = 35000 MICROSECONDS (F$WDC)

600 + 5 * 100 = 1100 MICROSECONDS (F$QIO)

5. PAYOFF IN REDUCED SYSTEM OVERHEAD.

6. USER - LIB - EXEC - EXP(CIO) - DQM - CIO -

EXEC - LIB - USER.

149

1024

C E N T R A L

+++++++++++++
+ ++

+ + +
+++++++++++++
+ +
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
t
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+

+
+

+ +
++ 16

+++++++++++++

256

M E M 0 R Y CUB E.

1024 * 256 * 16

S S 0 CUB E.

+++++++++++++++++++
+ ++

+ + +
+ + +

+ + +
+++++++++++++++++++ +
+ + +
+ + +
+ + +
+ + +
+ + + 1024 * 1024 * 64
+ + +
+ + +

1024 + + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + + 64
+ ++
+++++++++++++++++++

1024

150

A Q I 0 ; E X AMP L E.

JOB,JN=TAPE,T=7,SSD=1310BO.
ACCOUNT,----------.
ASSIGN,DN=FTOl,DV=SSD-0-20,LIM=1310BO.
WRITEDS(DN=FTOl,NR=131,RL=512000.
CFT.
LDR.
IEOF

PROGRAM TEST
PARAMETER (IL = 1024),(JL = 256),(KL = 16)
COMMON IAI A(IL,JL,KL),B(IL,JL,KL),AQP(1024)
INTEGER FIRE,BLOCKS,STATUS

C SSD SIZE IS SSD(1024,1024,64)

CALL IN IT ! OPEN AQIO FILE AND INITIALIZE.
FIRE = 0
BLOCKI = 0
NBLOCKS = 512
ID =0
DO 20 J = l,B
BLOCK = BLOCKI
DO 10 I = 1,4

C READ IN 16 SUB PLANES FROM SSD WITH ONE CALL.

CALL AQREADC(AQP,A,(IL * JL),BLOCK,NBLOCKS,
+ 204B,(KL-l),ID,FIRE,STATUS)

ID = ID + 1
CALL AQWAIT(AQP,STATUS)
CALL PROCESS
BLOCK = BLOCK + NBLOCKS

10 CONTINUE
BLOCKI = BLOCKI + (2 * 256 * 16)

20 CONTINUE
STOP
END

IEOF

151

ASSIGN CARD EXTENSIONS.

1. ASSIGN,DN=FT01""SZ=180,INC=180,C.

SZ = DATASET SIZE IN DECIMAL SECTORS. IF BOTH
SZ AND INC ARE SPECIFIED, SZ IS USED INITIALLY
AND INC IS USED ON SUBSEQUENT ASSIGNS.

INC = NUMBER OF DECIMAL SECTORS TO ALLOCATE EACH
TIME ALLOCATION OCCURS.

C = CONTIGUOUS SPACE ALLOCATION. ALLOCATE CON-
TIGUOUS SPACE EQUAL TO THE SZ PARAM OR THE
INC PARAM OR THE SYSTEM DEFAULT. IF C IS
NOT SPECIFIED, THE SYSTEM TRIES TO FIND
CONTIGUOUS SPACE ON THE SELECTED DEVICE
ONLY. IF C IS SPECIFIED AND NOF IS NOT
THE SYSTEM SEARCHES ON EVERY AVAILABLE
DEVICE.

2. ASSIGN,DN=FT01", ,DT=DT1:DT2:DT3:DT4.

DT = DT1:DT2:DT3:DT4 DEVICE TYPE. DT1 THROUGH DT4
ARE DEVICE TYPES IN THE SYSTEM. IF LDV WAS NOT
SPECIFIED, AN ATTEMPT WILL BE MADE TO ALLOCATE
SPACE FIRST ON DT1. OVERFLOW WILL GO TO DT2
TO DT3 AND DT4. IF THE SPACE REQUIREMENT CAN-
NOT BE MET ON DEVICE TYPES AND NOF IS NOT
DECLARED, OVERFLOW WILL CONTINUE ON THE DEFAULT
DEVICES. IF AN LDV WAS NAMED AND SPACE WAS NOT
AVAILABLE ON THAT LDV, THEN DEVICE SELECTION GOES
ACCORDING TO DT. ALLOWABLE OTIS ARE COS
SUPPORTED DEVICES DD19,DD29,DD39,DD49,SSD
AND EBM.

3. ASSIGN,DN=FT01" "ST=SCR.

ASSIGN,DN=FT02""ST=PERM.

T = STORAGE TYPE. DEFAULT WILL BE INSTALLATION
PARAMETER. CAN BE SCR (SCRATCH) OR PERM
(PERMANENT) ..

152

ENHANCEMENTS FOR DEVICE SELECTION.

1. THE CURRENT DEFAULT DEVICE SELECTION IN DQM IS
ROUND ROBIN ON THE DEFAULT DEVICES. THIS METHOD
IS SUFFICIENT IF ALL THE DEVICES ARE THE SAME
TYPE AND SPEED, BUT WE NOW HAVE DEVICES THAT
VARY WIDELY IN SIZE, SPEED AND NUMBER OF CHANNELS.

2. THE SELECTION METHOD WILL BE CHANGED TO SELECT
A DEVICE ON THE CHANNEL THAT IS LEAST ACTIVE. THIS
SHOULD CAUSE THE CHANNEL ACTIVITY ON ALL CHANNELS
TO BE MORE EVEN AND REDUCE THE I/O WAIT TIME IN
THE SYSTEM.

3. COS WILL ALSO ALLOW A DEVICE TO BE SCRATCH
WHETHER IT BE A PRIVATE (REQUEST BY NAME) OR
PUBLIC. IT WILL ALSO BE POSSIBLE FOR A SITE TO
DECLARE DEFAULT SPACE AS SCRATCH OR PERMANENT.

4. IF DEFAULT SPACE IS SCRATCH AND SSD IS SET
TO A SCRATCH DEVICE, THEN THE SSD SHOULD GET
MOST OF THE SMALL SCRATCH FILES BECAUSE THE
DEVICE SELECTION WILL FAVOUR IT FAST CHANNEL.

SSD BACKDOOR.

1. USER NOW HAS ABILITY TO ISSUE SYSTEM FUNCTION
TO COpy PORTIONS OF UNBLOCKED FILES FROM/TO
SSD (OR BUFFER MEMORY) TO/FROM DISK.

2. USER NEEDS TWO DSP'S, ONE FOR INPUT FILE AND
ONE FOR THE OUTPUT FILE.

3. USER PUTS STARTING AND ENDING BLOCK NUMBER IN
A SPECIAL WORD OF THE INPUT DSP AND PUTS THE
STARTING BLOCK NUMBER IN THE OUTPUT DSP.

4. USER THEN SETS Sl = INPUT DSP ADDRESS, S2 =
OUTPUT DSP ADDRESS AND ISSUES A F$CPY CALL.

5. I/O IS DONE ASYNCHRONOUSLY BOTH DSP'S ARE BUSY
AND STATUS IS DONE IN THE NORMAL WAY.

6. PACKET TO THE lOP HAS BITS SET IN IT TO
INDICATE THE TARGET MEMORY FOR THE FILE
TRANSFER (CPU MEMORY, SSD MEMORY OR BUFFER
MEMORY) .

7. BUFFER MEMORY TRANSFERS REQUIRE NO NEW HARDWARE

8. SSD MEMORY TRANSFERS REQUIRE 1 HIGH SPEED
(850 MEGABITS/SEC TYPICALLY ON THE XIOP)
CHANNEL AND SOME SPECIAL MODULES IN THE
SSD.

153

CIRCULAR 1/0 IMPROVEMENTS.

1. MORE CHANGES TO THE ASSIGN CARD.

ASSIGN,DN=FT01,XSZ=MAX:MIN.

2. XSZ IS USED TO SET THE MAXIMUM AND MINIMUM
TRANSFERS THAT COS WILL DO ON THIS FILE.

3. IN THE OLD DAYS THERE WAS NO MINIMUM, MAXIMUM
WAS HALF OF THE BUFFER.

4. NOW (COS 1.15) INITIAL SIZE IS MAXIMUM AND
ON SUBSEQUENT CIRCULAR CHAINING COS WILL TRY
TO USE MINIMUM.

5. TAPE FILES DO NOT USE THIS. MOST EFFECTIVE
ON SSD OR OTHER FAST DEVICES.

6. USER COULD FOR INSTANCE SET UP A 12 SECTOR
BUFFER AND SET THE MINIMUM TRANSFER TO 3
SECTORS. THERE WOULD THEN BE 4 TRANSFERS TO
FILL THE BUFFER AND THE USER WOULD BE RE­
CONNECTED AFTE~ THE FIRST 3 SECTORS SO TH~
ABILITY TO KEEP THE STREAM GOING IS ENHANCED.

7. F$RCL IS CHANGED. USER IS RECONNECTED MUCH
FASTER.

00-39 STREAMING TESTS THROUGH A SINGLE lOP

RECORD SIZE = 2 CYLINDERS.

STREAMS WRITES READS

MWISEC MBISEC MWISEC MB/SEC

1 .729 5.83 .728 5.82

2 .731 5.84 .728 5.82

3 .730 5.84 .726 5.81

4 .731 5.85 .728 5.83

5 .729 5.83 .727 5.81

6 .728 5.82 .722 5.78

7 .724 5.79 .715 5.72

8 .689 5.51 .676 5.d1

154

00-49 STREAMING TESTS THROUGH A SINGLE lOP

RECORD SIZE = 2 CYLINDERS.

STREAMS WRITES READS

MW/SEC MB/SEC MW/SEC MB/SEC

1 1.21 9.66 1.21 9.65

2 1.21 9.66 1.21 9.64

3 1.21 9.67 1.21 9.65

4 1.21 9.66 1.21 9.67

5 1.20 9.57 1.13 9.09

6 1.10 8.82 .97 7.76

7 1. 07 8.57 .55 4.39

8 1. 07 8.55 * .50 4.01

* TOTAL RATE OF 547 MEGABITS / SEC OVER CHANNEL

B M R T RAN S FER S PEE 0 S.

RECORD SIZE ACCESS WRITE RATE READ RATE
IN WORDS TIME MICROS MWORDS/SEC. MWORDS/SEC.

512 995/1157 .51 .44
1024 1105/1056 .92 .97
2048 1636/1309 1.25 1.57
4096 2.43 2.49
8192 2.97 3.30

10240 3.36 3.54
43008 4.35 4.34
65536 4.73 4.70

102400 4.81 4.50

155

S S 0 T RAN S FER S PEE 0 S.

RECORD SIZE ACCESS WRITE RATE
IN WORDS TIME MICROS MWORDS/SEC.

512 408/306 1. 25
1024 408/306 2.50
2048 418/316 4.89
4096 10.01
8192 19.53

16896 34.48
32768 64.00
65536 79.40

102400 112.59

TAP E S

1. TRANSPARENT OR INTERCHANGE FORMATS

2. IMPLICIT OR EXPLICIT CONVERSION.

3. CDC, IBM, SUPPORTED ON COS 1.14.

4. VMS SUPPORTED ON COS ,1.15.

4. 3480 SUPPORT ON COS 1.15.

READ RATE
MWORDS/SEC.

1. 67
3.34
6.47

13.35
21.81
24.39
45.37
89.50

119.04

TAP E S C H A R ACT E R CON V.

JOB,JN=TAPE,T=7,*6250=1.
ACCOUNT,----------.
ACCESS,DN=FT01,DF=IC,DT=*62S0,MBS=4000,CV=ON,

CS=EB,FD=IBM,RF=FB,RS=80.
CFT.

LOR.

IEOF
PROGRAM TEST
DIMENSION IA(10)

DO 10 I = 1,1000
READ(l,100,END=200) IA

100 FORMAT(10A8)
10 CONTINUE

200 CONTINUE
STOP
END

IEOF

156

TAP E S C H A R ACT E R CON V. TAP E S FLO A TIN G PT. CON V.

JOB,JN=TAPE,T=7,*6250=1. JOB,JN=TAPE,T=7,*6250=1.
ACCOUNT,----------.
ACCESS,DN=FT01,DF=IC,DT=*6250,MBS=4000,CV=ON,

ACCOUNT,----------.
ACCESS,DN=FT01,DF=IC,DT=*6250,MBS=4000,CV=ON,

CFT.

LOR.

IEOF

100
10

200

IEOF

CS=EB,FD=IBM,RF=FB,RS=80. CS=EB,FD=IBM,RF=F,RS=4000.

PROGRAM TEST
DIMENSION IA(10)

DO 10 I = 1,1000
READ(1,100,END=200) IA
FORMAT(10A8)
CONTINUE

CONTINUE
STOP
END

CFT.

LOR.

IEOF
PROGRAM TEST
DIMENSION A(1000)

DO 10 I = 1,1000
READ(1,END=200) A

10 CONTINUE

200 CONTINUE
STOP
END

IEOF

TAP E S EXPLICIT CON V E R SID N.

JOB,JN=TAPE,T=7,*6250=1.
ACCOUNT,----------.
ACCESS,DN=FT01,DF=IC,DT=*6250,MBS=32760.

CFT.

LOR.

IEOF
PROGRAM TEST
DIMENSION A(10000),B(10000)

EOFST = 0.0
DO 10 I = 1,1000
BUFFER IN(1,1)(A(1),A(10000))
IF(UNIT(l).EQ.EOFST) GO TO 200
IL = ILENGTH(l)
CALL MYCONV(A,IL,B)
WRITE(2)(B(J),J=1,IL)

10 CONTINUE

200 CONTINUE
STOP
END

IEOF

157

,
CUSTOMER EXPERIENCE WITH 00-49 DISKS

~1ostyn Le\'Ji s

Chevron Oil Field Research Company
La Habra, CA

Chevron Oil Field Research Company (COFRC) had a recent
delivery of a Cray X-MP/48. The configuration includes
28 disks, 20 of which are the DD-49 variety (IBIS). Four
DD-49's were delivered in February of 1985 and the remainder
at the beginning of May 1985. The original four disks had
one incident and eight of the remainder suffered incidents.
Some trouble occurred because 19 spindle motors in 19 drives
were changed due to a lack of thermal protection on the
original motors. A head failed on one drive apparently due
to a "noisier" motor. The cure was to install ferrite
"beads" on a lead between the servo and HDA (Head Disk
Assembly). Only half of our disks had "beads" and we
wondered why. Five power supplies were changed -- caused by
a bad part, a bridge rectifier, in four cases, and by faulty
quality assurance in the other (loose screwsl). The power
supply problems caused fallout resulting in bad modules and
crowbars (circuit breakers). Six HDA's failed and were
replaced. At the time of the failures, we believed they
were due to bad electronics inside the HDA, head crashes and
mis-reading of the servo track(s) and/or bad servo head. It
transpired, also, that we had some incompatabilities between
HDA's and supporting cards in the drive.

Various rumours arose concerning the unsuitability of travel
for HDA's and bad packaging.

All in all, it may have seemed a gloomy picture. However,
as an early customer, COFRC was prepared for teething
problems and considered the above as examples. If you're a
pioneer, you expect to forge the pathway for others. The
disks gave a level of performance necessary to complement
the X-MP/48 and it has been easy to achieve nine megabytes
per second transfer rates.

We expect things to quiet down and for Cray and IBIS to
achieve a stable hardware product in light of "post-mortem"
evidence. The speaker is personally in favor of these
"leading edge" disks and has confidence in the amelioration
of the current situation.

158

Report on the Graphics Session

H. n. Kulsrud

IDA/CRD

Princeton, NJ

The graphics session began with a paper entitled
"Digital Image Synthesis on the Cray" by Grey
Lorig of CRI. Grey described the OASIS System
for digital animation which is being developed at
CRI. The goaln for this syntem are an open
environment, clean interfaces and portability.
Grey is unitinff some established packages and
adding new ones. OASIS will handle interactive
modeling. image rendering and ray tracing etc.
This will probably not be a Cray supported package.

A Video film made by Zero One Systems for Nasa
Amen was shown. Interactive Graphics on an Iris
Workstation using calculations from a Cray was
dramatically demonstrated. This film showed a
real application, simulation of fluid flow over the
space shuttle, and was a model of how effective
such an equipment marriage can be.

John Aldag of CRI led a discussion on User
Requirements for Graphics. John presented some
issues discussed in a 8tate!Sic Planninr; paper he
is preparinG for Cray. His objective is to
understand graphics requirements of Cray Users,
raise awareness of CRI management, provide
graphics performance in line with the computational
power of a Cray and to enhance marketability.
John presented two alternatives for Graphics,
broad performance and high performance. Although
the users seem to want both alternatives, the plea
for high performance Graphics (50-100 megabytes
or more) was stressed by the speakers. The
question seems to be involved with whether CRI
will release the high speed channel specificationn
to at least one graphics equipment company.

The concludinG item of the session was the formal
formation of the CUG special interest Committee on
Graphics and Data Bases. The prior discussion
revealed the need for such a Committee and its
first meetine: will take place on the opening Monday
of the Seattle meetinG.

159

,"'ADDITIONAli"REPORTS
• ,;' ";.;-:>, ' ;, \" "

PRESIDENT'S REPORT

M. G. Schomberg

AERE-Harwell
England

This is the sixteenth meeting of the Cray
User Group and the meeting at which we
will be taking the vote to incorporate
CUG. I will be speaking about
incorporation a little later.

I would like to remind you that your Board
of Directors consists of:

Michael Schomberg
Laney Kulsrud
Karen Friedman
Bob Price
Jacqueline Goirand
Dave Lexton
Joe Thompson

President
Vice President
Secretary
Treasurer
Director at Large
Director at Large
Director at Large

The Monday prior to the start of this
general meeting proved to be a very busy
day during which many of the technical and
administrative committees met. The Board
of Directors and the Advisory' Council also
had meetings.

I am pleased to report that there are 69
sites who are paid-up Installation Members
of the Cray User Group. In addition
there are a few other sites who are repre­
sented here but who have not paid their
fees. The Board of Directors will now be
getting rather tougher with those sites
who are not paying their fees and in
future they will be excluded from meet­
ings.

The funds of the Cray User Group stand at
a very healthy $9243 and these are
deposited in an interest bearing account.
Your Board of Directors have recommended
that the annual fee for an Installation
should remain at $100 for the next year.

The Program Committee chaired by Laney
Kulsrud and comprising the chairs of
Special Interest Committees has again been
very active as can be judged from the
excellent programme which has been pre­
pared for this meeting. The number of
papers offered for CUG meetings continues
to grow. Hence for the Seattle meeting
in Spr ing of 1986 we have agreed to
extend the Conference to three and a half

163

days. The meeting will therefore finish
at mid-day on Friday. One of the object­
ives of increasing the length of the meet­
ing is to reduce the number of parallel
sessions.

In my report in the Spring I stated that
your Board of Directors were concentrat­
ing their efforts onto two major object­
ives.

One of these objectives was to improve the
technical communication between CUG and
Cray Research Inc. Your Board sees this
as working in two ways. First, user
requests and requests from the Special
Interest Committees are submitted to the
User Requirement Committee which is
chaired by Steve Niver. The User
Requirement Committee examines each
request in detail to ensure that it is
substant ive, technically viable and
unambiguous. A list of about ten key
items is then sent to Installation
Delegates to cast their votes indicating
the importance and relevance of each item
to their installation. This has been
accomplished this time and, following the
approval of the Board of Directors these
will be submitted as formal requests to
Cray Research Inc. Steve Niver will be
reporting fully on this later in the
meeting.

The other way of improving technical
communication is to establish a close
technical working relationship between
the Special Interest Committees and Cray
Research Inc. technical staff. Cray
staff should attend selected meetings of
the Special Interest Committees and also
Cray will submit some design documents to
these committees for comment. These
procedures are starting to work but not
all the committees are yet fully active.
In addition the interest from Cray has not
yet been as positive as we would wish.

These problems are being addressed and I
am confident that there is a genuine
desire from all concerned to make this
part of CUG as effective as possible.

The second major objective of your Board
has been to incorporate the Cray User
Group. Thanks to the efforts of Bob
Price all the necessary preparatory work
has now been completed. In a few moments
I will be putting to you the motion:

"It is proposed by the Board of
Directors of the Cray User Group to
dissolve this Association. It is
also proposed to transfer any and all
assets, accounts receiveable, member­
ship, committee organization, and any
established operations, plans or
intentions of this Association to the
Cray User Group, Incorporated."

voting is to be by Installation Delegates
only using the orange cards which have
been issued.

Before taking the vote I would like to
remind you of the main reasons for

164

Incorporation. These are:

• to limit personal liability
• to bind the officers of the

organization against embezzlement
• to facilitate insurance.

The structure, function and organization
of the Cray User Group will not change as
a result of incorporation.

Before closing my report I would like to
offer my personal thanks to all the
members of the Board of Directors and to
the chairs of all the various committees
for the tremendous amount of work they
have put into the Cray User Group. We
come have a long way over the last two
years or so and this has only been
possible by much hard work by a
significant number of people. Thank you.

INCORPORATION OF THE CRAY USER GROUP

M. G. Schomberg

AERE-Harwell
England

The following motion was put to the general membership of the Cray User

Group on 1 October 1985.

It is proposed by the Board of Directors of the Cray User Group to

dissolve this Association. It is also proposed to transfer any

and all assets, accounts receiveable, membership, committee

organization, and any established operations, plans or intentions of

this ~ssociation to the Cray User Group, Incorporated.

A vote of Installation Delegates was taken on the above motion. The

results were:

In favour - 29 votes

Against - none.

The motion was therefore carried unanimously and the Cray User Group became

an Incorporated body on 1 October 1985.

165

Report of the Vice President

H. E. Kulsrud

IDA/CRD

Princeton, NJ

Preparation of the Program for Montreal pr aceeded without difficulties. There were no changes of
personnel on the Program Committee and all the members were able to attend the Montreal meeting.
\,lith the more formal organization of the SICs there will now be committee members available for
organizing sessions. However, responsibility for the parallel sessions will still lie with the SI C Chairs.
The theme of multitasking and multiprocessinG proved very tir:1Cly and raised a number of questions of
interest to the attendees. The theme and the excellence of the program contributed to the laree
attendance at the meeting. We were finally able to get a keynote speaker and in the future will attempt
to coordinate the keynote and the meeting theme. As anticipated, overlap of material between sessions
was the principal organization problem for this meeting. We finally changed the names of some of these
sessions to reflect this overlap. Sixty-six people participated in the technical profj·ram.

Work has begun for the Seattle meeting. The theme is UNIX and several speakers have already been
contacted. The Call for Papers for Spring 86 was included in the Stockholm proceedings and in the
Montreal abstracts. The call will also be included in the first Seattle mailing.

Ray Benoit and his local arrangements committee did an excellent job - this is becoming a tradition at
CUG. Faced with fifty r.1ore attendees than they had planned for, the committee was able to provide
facilities for all. I am sure that the charm of Montreal and these arrangements also contributed to the
attendance. Our sincere thanks to this committee.

Future CUG meetings are planned for:

lYJay 5-9, 1986

Sept. 29-0ct. 3, 1986

Spring 1987

Fall 1987

Spring 1988

Seattle, Washington

Garmisch-Partenkirchen,
\'Jest Germany

New York City, NY

Bologna, Italy

rlIinneapolis, Minn.

166

Boeing Computer Services

DFVLR

Grumman Data Systems

CINECA

University of Minn.

Report of the Program Committee

David Lexton

University of London Computer Centre
England

The program commi ttee met at 5 p.m. on 2nd
October 1985. Membership of the committee remains
substantially unchanged.

Montreal Meeting

The local arrangements committee under Ray Benoit
maintained the high standard for CUG organisation
set in Stockholm. On this basis, the program
committee was able to discuss some detailed
criticisms of the program itself. First of all it was
pointed out that the call for papers frequently does
not reach the people in the organisation who would
be interested in giving papers. Efforts would
therefore be taken to make the call more
eye-catching. There was agreement that the quality
of papers in general sessions was good but that more
time should be left for questions. In some cases,
such as the front end session, it was felt that there
had not been enough time allocated in the first
place. Some presentations were thought to contain
too much detail or not to be pitched at the right
level. It was agreed that it would be desirable to
have more presentations on applications. The view
was expressed that CUG should be seeking from CRI
statements of philosophy rather than project reports.

Conference Proceedings

The delay in getting papers in to the proceedings
editor (Karen Friedman) had been the worst ever for
the Stockholm Conference. Anyone not going to
make the deadline was urged to contact the editor.
It was agreed that, in future and where appropriate,
contributors would be asked to bring their papers to
CUG in a form ready to go into the proceedings.

167

Seattle CUG

The Seattle CUG will last three-and-a-half days,
starting on Tuesday morning and ending at Friday
lunchtime. It was agreed that up to three sessions in
parallel would be allowed an d ro ugh equ ali t y
maintained between general and parallel sessions.
The theme of the meeting is UNIX and most of the
suggestions for general sessions were related to the
theme. These were COS-to-UNIX migration,
UNICOS, multi tasking, a pplications under UNIX,
UNIX performance, UNIX security, SSD Management
under UNIX, UNIX resource management, comparison
of CX-OS and UNIX, Cray-2, UNIX and CTSS,
managing very large resources under COS and UNIX,
software reliability, Crayettes and, finally, at least
one humorous talk.

The different committees requested the following
numbers of sessions: Software tools, 3.
Communications, 3. Operating Systems, 2. CTSS, l.
Performance, 2. Database and Graphics, l.
Operations, 3.

Garmisch-Partenkirchen CUG

It was agreed by the committee that the theme
should be Applications and Algorithms. Reliability,
Performance and Tuning would be the theme for
the following meeting in New York.

MONTREAL CRAY USER GROUP MEETING PARTICIPANTS BY ORGANIZATION

Organization Representatives Phone Numbers
-------------~----.----.---------------~----.------------

Aramco
Dhahran
P.O. Box 5000
S. Arabia

Atlantic-Richfield Oil & Gas
2300 Plano Parkway
Plano, TX 75075

AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

Boeing Computer Services
565 Andover Park West
9C-01
Tukwila, WA 98188

Boeing Computer Services
P.O. Box 24346
Seattle, WA 98124

CCVR
Ecole Poly technique
91128 Palaiseau CEDEX
France

CEA - France
Centre de LIMEIL
B.P. 27
94190 Villeneuve St. Georges
France

CEA-CEV
Unite de Calcul
BP 7
77181 Courtry
France

Centre de Caclul Vectoriel
pour la Recherche

Ecole Poly technique
91128 Palaiseau CEDEX
France

Chevron Geosciences
2811 Hayes Road
Houston, TX 77242

Chuck Deprycker

B.Y. Chin
Chuck Murphy
Dean Smith

Tony Shober

David S. Dodson
Kenneth W. Neves

Conrad Kimball
Steve Niver
Howard Schmeising

Serge Hardoin

.Jacques David
Martine Gigandet

Joseph Harrar

Maurice Benoit

A.R. Bertrand
David L. Millp.r

171

96638766146

(214) 422-6627
(214) 754-6612
(214) 754-6415

(206) 575-5107
(206) 575-5074

(206) 763-6410
(206) 763-5073
(206) 763-5069

6 941 82 00

4595 6289
4595 6184

1 868 8688

6 941 82 00

(713) 596-2515
(713) 596-2515

Chevron Oil Field
Research Company

3282 Beach Blvd.
La Habra, CA 90631

CIFRAM
CEN-Saclay
BP 24
91190 Gif-sur-Yvette
France

CINECA
6/3 Magnanelli
Casalecchio di Reno
40033
Bologna, Italy

Compagnie General de
Geophysique

1 Rue Leon Migaux
91301 Massy
France

Cray Canada, Inc.
207 Place Frontenac
Pointe Claire, Quebec H9R YZ7
Canada

Cray Canada, Inc.
4141 Yonge street
Toronto, Ontario M2P 2A8
Canada

Cray Research France
7 Rue de Tilsitt
75017 Paris
France

Cray Research GMBH
Perhamerstrasse 31
8000 Munchen 21
West Germany

Cray Research, Inc.
5350 Manhattan Circle
Boulder, CO 80302

Cray Research, Inc.
1100 Lowater Rd.
Chippewa Falls, WI 54749

Annabella Deck
Mostyn Lewis

Jacqueline Goirand
Regis Schoonheere

Marco Lanzarini
Elda Rossi
Bassini Sanzio

Yves Goudedranche
Claude Guerin

Rejean Chartier

Martin Buchanan
Paul Clark
John Maas
Claude Paquette
Tom SmIth

Anne Beauchamp

Walter Holzmaier
Wolfgang Kroj

Sonya Anderson
Bob Biro

Thomas Hewitt
Lou Saye
Gary Shorrel

172

(213) 694-9218
(213) 694-9235

(6) 908 3841
(6) 908 6319

39 51 576541
39 51 576541
39 51 576541

331 69 20 8408
331 69 20 8408

(514) 695-0210

(416) 229-2729
(416) 229-2729
(416) 229-2729
(416) 229-2729
(416) 229-2729

766 01 55

089 56011~ 0
089 56014 0

(303) 499-3055

(715) 726-1211

(715) 726-1255

Cray Research, Inc.
5847 San Felipe, Suite 3000
Houston, TX 77057

Cray Research, Inc.
1440 Northland Dr.
Mendota Heights, MN

Cray Research, Inc.

55120

608 2nd Avenue South
Minneapolis, MN 55402

Cray Research, Inc.
5776 stone Ridge Mall Road
Pleasanton, CA 94566

Larry Stewart

Vic Achenbach
John Aldag
Walt Anderson
Peggy Boike
Earl Bolen
Mike Booth
John Dawson
Pat Donlin
Stuart Drayton
Jean Egerman
Denise Gaertner
Brian Gaffey
Larry Gates
Chris Hector
Dick Hendrickson
Thea D. Hodge
Clay Kirkland
Dave Knaak
Bryan Koch
Lisa Krause
Loren Lemmerman
Paul Leskar
Margaret A. Loftus
Grey Lorig
Don Mason
Al Ma tchinsky
.Jim Miller
Jim Nelson
Bob Numrich
Peter Rigsbee
Gregory Russell
Dave Sadler
Larry Schermer
Gayle F. Smith
Karen Spackman
John Stephens
Gerry Stimmler
D. Thompson
Brian Walsh
Bing Young

Mary Amiot
Bruce Kasson
Michael Mott

Howard Watts

173

(713) 975-8998

(612) 452-6650

(612) 333-5889
(612) 333-5889
(612) 333-5889

(415) 463-2800

Cray Research (UK), Ltd.
Cray House
London Road
Bracknell, Berkshire RG12 2SY
England

Department of National Defense
Ottawa, Ontario
Canada

DFVLR
WT-DV
D - 8031 Wessling
West Germany

E I Du Pont de Nemours
E304, DuPont Co.
Wilmington, DE 19898

Electricite de France
1 Avenue du General de Gaulle
A2-004
92140 Clamart
France

Environment Canada
Ice Center
365 Laurier Ave. West
Ottawa, Ontario K1A OH3
Canada

Environment Canada
2121 North Service Road
Trans-Canada Highway
Dorval, Quebec H9P 1J3
Canada

European Centre foro Medium
Range Weather Forecasts
Shinfi.eld Park
Reading, Berkshire
England

Exxon Company
3616 Richmond
Room 107
Houston, TX 77046

RG2 9AX

Martin Cutts
John G. Fleming
Peter Griffiths
Stewart Ross

.John Mulholland

Peter Herchenbach

Aaron .}. Owens

Yves Souffez

Zavie Miller

Bruce At tr-teld
Raymond BenoH
G.E. Berlinguette
Gary Cross
Jean-Francois Gagnon
Mario Lepine
Andre Marien
Claude Payette
Michel Valin

David Dent
Claus Hilberg
Geerd-R. Hoffmann

Brian Vohs

174

4)~ 344 485971
44 344 1185971
44 344 485971
44 344 485971

(613) 998-4183

8153 28-911

(302) 772-1762

3 765 4018

(613) 996-0001

(51 10 n83-91111~
(5 110 683- 9 4 11~
(514) 683-8151
(5 1 4) 6 8 3- 8 1 52
(5 1 4) 683- 9 4 1 4
(51 1n 683-7768
(S 1 4) 683- 111 92
(5 14) F. 8 3-8 152
(51 10 683- 11525

734-876000
734-876000
734 876000

(713) 965-7534

Exxon Production Research Company
P.O. Box 2189
Houston, TX 77252

Fairchild
1801 McCarthy Blvd.
Milpitas, CA 95035

Ford Motor Company
Engineering Computer Center
P.O. Box 2053
Dearborn, MI 48121

GA Technologies, Inc.
P.O. Box 85608
San Diego, CA 92138

General Motors Research
12 Mile and Mound Roads
Warren, MI 48090-9055

Government Communication Hqtrs.
1212 Priors Rd.
Cheltenham, Gloucestershire
GL52 5AJ
England

Grumman Data Systems Corp.
1111 Stewart Avenue
Bethpage, NY 11714

Institute for Defense Analyses
Thanet Road
Princeton, NJ 08540

KFA Juelich ZAM
Nuclear Research Center
Postfach 1913, D-5170 Juelich
Germany

Koninklijke/Shell Exploratie
Produktie Laboratorium
Volmerlaan 6
2288 GD Rikswijk (ZH)
The Netherlands

Harry L. Brondel (713) 940-J~838

Charles Dangelo (408) 942-2587

Neil St. Charles (313) 845-8493
Jim Viculis (313) 845-8492

Sid Karin (619) 455-1~5g7

Fred McClain (619) 455-4597

Dean Hammond (313) 575-3372
Ronald Kerry (313) 575-3208
Karen M. Schaefer (313) 575-3237

Alan Phillips 0242521491

Luke Kraner (516) 346-2136
Don MacKenzie (516) 575-1859
Paul Muzio (516) 575-2950
James Poplawski (516) 575-2934
John Riordan (516) 575-7684

Robert L. Cave (609) 924-4600
Jeffrey Huskamp (609) 924-4600
Helene Kulsrud (609) 924-1~600
Richard Schultz (609) 924-1~600

Ulrich Detert 02461 616434

A.E. Stormer 070 112741

175

Konrad-Zuse-Zentrum fur
Informationstechnik Berlin

Heilbronnerstrasse 10
D-1000, Berlin 31
West Germany

Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, CA 94550

Lockheed Advanced Aeronautics
Company

D60-40, U50, P 2
P.O. Box 551
Burbank, CA 91520

Lockheed Missiles and Space Corp.
1111 Lockheed Way
Org 1943, Bldg. 102
Sunnyvale, CA 94086

Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

Max Plank Institut fur
Plasmaphysik

D8046 Garching
West Germany

McDonnell-Douglas
P.O. Box 516
St. Louis, MO 63166

Hubert Busch

Tim Axelrod
Kent Crispin
Jed Donnelley
Edmund Goodwin
Patrick Gray
Curtis Klutts
Jerry Owens
Ed Schoonover
Robert E. Strout II
Richard Watson
Mary Zosel

Doug Ford
Howard Weinberger

Lee Coven
Jack Sherman
T.D. Telford

J. Wayne Anderson
Christopher Barnes
Richard O. Branch
Ralph Brickner
Ingrid Bucher
Granville Chorn
John Dragon
Rebecca Koskela
Jerry Melendez
Fred J. Montoya
Mark Roschke
Margaret Simmons
Joseph Thompson
Elizabeth Williams

ute Schnelder
Wolfgang Schneider

F.B. Hunt
Mike .Jones
James McCoy

176

030 30 32 743

(415) 422-4002
(415) 422-11309
(415) 422-1259
(415) 1~22-4049
(415) 422-4068
(415) 422-16 116
(415) 422-3767
(415) 422-1W02
(415) 422-9216
(415) 422-11002

(805) 257-572.0
(805) 257-5725

(408) 742-]1844
(408) 742-8993
(408) 742-0948

(505) 667-1977
(505) 667-4370
(505) 667-4890
(505) 667-8385
(505) 667-2830
(505) 667-5683
(505) 667-1J812
(505) fi67-8887
(505) 667-7785
(505) fi67-4890
(505) 667-7073
(505) 667-1749
(505) 667-5553
(505) f167-2496

(3111) 232-1 Q 38

Mobil-Mepsi
Mepsi Computer Center
P.O. Box 900
Dallas, TX 75221

NASA Ames Research Center
Mail Stop 233-1
Moffet Field, CA 94035

NASA Ames Research Center
808 Burlway Rd., Suite 207
Burlingame, CA 94010

National Center for Atmospheric
Research

P.O. Box 3000
Boulder, CO 80307

National Magnetic Fusion
Energy Computer Center

P.O. Box 5509
Livermore, CA 94550

National Science Foundation
Washington, DC 20550

National Security Agency
Ft. George G. Meade, MD 20755

Naval Research Laboratory
4555 Overlook Avenue S.W.
Washington, DC 20375

SAAB-Scania
Aerospace Division
S-58188 Linkoping
S'weden

Sandia National Laboratories
Albuquerque, NM 87185

Sandia National Lqboratories
P.O. Box 969
Livermore, CA 94550

Kevin Brewer.

David H. Bailey
E.N. Miya
James "Newt" Perdue

Ron Levine

Ann Cowley
Karen Friedman
Gary Jensen
Walter Macintyre
Richard K. Sato
Sandra J. Walker

Hans Bruijnes
F. David Storch

John Connelly

.Joseph J. Barney
Claudia R. Cannady
C. Thomas Myers
Lynne D. Rockenbauch
Gary L. Stahley
W.T. Truesdale

Harvey Brock
Judith L. Flippen-Anderson
Dale Pfaff
Rudi F. Saenger

Sven Sandin

Mark Kiefer
Frank Mason

Hilary D .. Jones
Gordon J. Millp.r
Karen L. Sheaffer

177

(214) 658-4302

(415) 694-6841
(415) 694-6453
(415) 694-5189

(415) 342-2229

(303) 497-1223
(303) 497-1276
(303) 497-1289
(303) 497-1204
(303) 497-1287
(303) 497-1267

(415) 422-4012

(301) 766-1722
(301) 688-7398
(301) 730-0370
(301) 987-6042
(301) 688-6275

(202) 767-3887
(202) 767-2624
(202) 767-3190
(202) 767-2751

013 18 23 57

(505) 844-0855

(415) 4'22-2892
(415) 1122-2964
(415) 422-3431

San Diego Supercomputer Center
P.O. Box 85608
San Diego, CA 92138

Schlumberger - Doll Research
Old Quarry Rd.
PO Box 301
Ridgefield, CT 06811

Shell Oil
P.O. Box 20109
Houston, TX 17025

Societe Nationale ELF
Acquitaine
SNEA(P) Rue Jules Ferry
64000 Pau
France

SORIa
1 Lincoln Center
5400 LBJ Freeway
Dallas, TX 15240

Swiss Federal Institute of
Technology - Lausanne

Batiment du DMA
Ecublens
CH-1015 Lausanne
Switzerland

UKAEA Harwell
Bldg. 8.12
Harwell, Oxfordshire OX11 ORA
England

United Information Services Co.
2525 Washington
Kansas City, MO 64108

University of Illinois
1304 W. Springfield
Urbana, IL 61801

University of London
Computer Center
20 Guilford Street
London WC 1 N 1D Z
England

Daniel Drobnis

Ray Kocian

James Colby
C.W. Smith

Michel Morin

Rex Shadrick

Pierre Santschi

Michael G. Schomberg

Nate Losapio

Sue Greenberg
Sandy Moy

Christopher Lazou
Dave Lexton

178

(619) 455-4189

(203) 431-5522

(113) 195-1696
(113) 195-1696

(59) 83 4146

(214) 960- IW11

021 41 22 11

235 2U141 3263

(816) 221-~100

01 405 8400
01 405 8400

University of Toronto
Computing Services
255 Huron Street
Toronto, Ontario M5S 1A1
Canada

US Air Force
AFGWC
Offut AFB, NE 68113

US Air Force Weapons Laboratory
Kirtland AFB, NM 87117-6008

Westinghouse Electric Corp.
P.O. Box 355
Pittsburgh, PA 15146

Zero One Systems, Inc.
2431 Mission College Blvd.
Santa Clara, CA 95054

Bob Chambers
Warren Jackson
Edmund West

Band C. Huso
Joe Luteran

David Pelowitz
Larry Bapagnani

Fran Pellegrino
Robert Price
James J. Sherin

Kent Koeninger
Paul Richards

179

(416) 978-7092
(416) 978-8948
(416) 978-4085

(402) 294-4671
(402) 294-4029

(505) 844-9618
(505) 844-9618

(1~12) 374-1~281
(412) 374-5826
(412) 374-5720

(415) 694-6555
(408) 988-3030

CUG Site Contact List
March 1986

Adam Opel AG (OPEL CRAY)
Bahnhofsp1atz
Russe1sheim
D-6090
Germany

Installation Delegate
T. Zimmerschied

Air Force Weapons Laboratory (AFWL AD)
AFWL/SI
Kirtland AFB, NM 87117-6008

Installation Delegate
Larry Rapagnani

Technical and Operations Contact
---Mi~G1eicher

Arabian American Oil Company (ARAMCO)
EXPEC Computer Center
Dhahran, Saudi Arabia

TELEX: 601220 ARAMCO SJ

Installation Delegate
Wayne Schmaedeke
X-2660

Technical Contact
Alfred Anderson
X-2650

Operations Contact
Gene McHargue
Box 10356

0049-6142-663797

(505)844-0441

(505)844-9964

(011)966-3-87-65155

(011)966-3-87-61188

(011)966-3-874-1945(or 3830)

180

Arnold Engineering Development Center (AEDC-CCF)
Central Computer Facility
Arnold Air Force Station, TN
37389

Installation Delegate
Larry Cunningham (615)454-7263
AEDC MS 100

Technical Contact
Wayne Neese (615)454-4294
AEDS MS 100

Atlantic-Richfield Oil & Gas Company (ARCO)
2300 Plano Parkway
Plano, TX 75075

TWX 910 861 4320

TELEX 73-2680

Facsimile Transmission DMS 1000(214) 422-3657

Installation Delegate
Dean Smith -- (214)422-6415
PRC - C2292

Technical Contact
B.Y. Chin (214)422-6627
PRC - 2211

Operations Contact
----Chuck Murphy (214)422-6612

PRC - 5141

Atomic Energy Research Establishment (HARWELL)
Harwell, Oxfordshire
OX11 ORA, England

TELEX 83135 ATOM HA G

Installation Delegate
A. ,E. Taylor
H 7.12

Technical Contact ----
Don Sadler
Bldg. 8.12

Operations Contact
Michaef~Schomberg
Bldg. 8.12

0235-24141, x.3053

0235-24141, x.3227

0235-24141, x.3263

131

Atomic Weapons Research Establishment (AWRE)
Aldermaston
Reading, RG7 4PR
England

TELEX 848104 or 848105

Installation Delegate
L. M. Russell

Technical Contact
P. A. Janes

Operations Contact
M.D.P. Fasey

AT&T Bell Laboratories (ATTBLMH)
600 Mountain Avenue
Murray Hill, NJ 07974

TELEX 13-8650
Facsimile (201)582-2608

(201)582-6934

07356-4111, x.6678

07356-4111, x.4045

07356-4111, x.6491

Installation Delegate and Technical Contact
---- Peter Nelson - ---- (201)582-6078

Operations Contact
--~ndolph Bell (201)582-6368

Boeing Computer Services Company (BCS)
Post Office Box 24346
Seattle, WA 98124

Installation Delegate
Stephen Niver (206)763-5073
MS 7A-23

Operations Contact
----Jim Roetter (206)763-5510

MS 7C-12

BP Exploration (BPLONDON)
Moor Lane
London EC2Y 9BU
United Kingdom

Installation Delegate, Technical and Operations Contact
M.P. Stanyer ------- --- (1l4);-::-920=-6156---

182

Centre de Calcul EPFL (EPFL)
Batiment du DMA
Ecublens
CH- '-0 15 Lausanne
Switzerland

TELEX: 25 934 EPFV CH

Installation Delegate
---- Pierre Santschi

Technical and Operations Contact
Michel Jaunin

Centre de Calcul Vectoriel Pour la Recherche
Ecole Poly technique
91128 Palaiseau Cedex
France

TELEX: 691596

021/47.22.11
011/41/21/47.22.11 (from USA)

011/41/21/47.22.02

(CCVR)

Installation Delegate
---Tor Bloch

60 19 41 53

Technical Contact
Maurice Benoit

Operations Contact
Paulette-Dreyfus

Centre Informatique de Dorval (CID)
(Environment Canada)
2121 Trans-Canada Highway
Dorval, Quebec
Canada H9P1J3

69 41 82 00, x.2534

Installation Delegate and Technical Contact
----Raymond Benoit- ----- ---r5T4f683-9414

Operations Contact
Gary Cross

183

(514)683-8152

Century Research Center Corporation (CRCC)
3, Nihombashi Honcho 3-chome,Chuo-ku
Tokyo, Japan 103

TELEX 252-4362 CRCNET J

Installation Delegate
Mike(Mitsuru) Maruyama

Technical Contact
. Kazuyoshi Fukushima

Chevron Geosciences
2811 Hayes Road
Houston, TX 77082

(CHEV-TEX)

(03) 665-9901

(03) 665-9901

Installation Delegate and Technical Contact
William Kimball- (71:31596-2520
Room 1114

Operations Contact
Juan Cruz (713)596-2523
Room 3302

Chevron Oil Field Research Company (CHEVRON)
3282 Beach Blvd.
La Habra, CA 90631

TELEX: 176967 via San Francisco

Installation Delegate and Technical Contact
Mostyn LeH'is (213)694-9235

Operations Contact
John Kunselman

CIFRAM (CIFRAM)
(CiSi-Framatorne)
BP 24
Gif-sur-Yvette
91190
France

TELEX CISIPSC 691 597 F

Installation Delegate
-----~uis Bosset

Technical Contact
-----Phil:i.ppe Van Surrell

(213)694-7029

69-08-}~2-03

69-08-67-05

69-08-63-19

184

Commissariat a l'Energie Atomique/CEL-V
BP 21

(CEA-CEL)

94190 Villeneuve st. Georges
France

Installation Delegate
Henri Dauty (1)569-96-60, x.6386

Technical Contact
Martine13igandet (1)569-96-60, x.6184

Operations Contact
Claude Riviere (1)569-96-60, x.6.484

Commissariat a L'Energie Atomique/CEV (CEAT)
Centre D'Etudes de Vaujours
Unite de Calcul
BP 7
11181 Courtry
France

Installation Delegate
Bruno Compoint

Technical and Operations Contact
--------Joseph Harrar

Compagnie Generale de Geophysique (CGG)
1, Rue Leon Migaux
BP 56
Massy CEDEX
91301
France

TELEX: CGGEC 692442F

Installation Delegate
Claude Guerin

Conoco, Inc. (CONOCO)
1000 South Pine
Ponca CHy, OK 14603

(1) 868-8413

(1) 868-8688

(6) 920.84.08

Installation Delegate and Technical Contact
Julian Ford (405)761-3360
394 Park Builrling

Operations Contact
-----David Mohler

394 Park Building
(415)767-2813

185

Consorzio Interuniversitario per la Gestione
Del Centro di Calcolo Elettronico dell'Italia
Nord-Orientale (CINECA)

6/3 Magnanelli
Casalecchio di Reno
40033
Bologna, Italy

Installation Delegate
Marco Lanzarini

Cray Research, Inc.
608 2nd Avenue South
Minneapolis, MN 55402

Administrative Contact
Mary Am-iot

Technical and Operations Contact
DaveSadler

39-51-576541

(612)333-5889

(612)452-6650

Deutsche Forschungs- und Versuchs-anstalt fur Luft-
und Raumfahrt (DFVLR)

Oberpfaffenhofen
Muncher Strasse 20
8031 WeSSling
West Germany

Telephone: (0)8153/281
TELEX: 526401

Installation Delegate
Peter- Herchenbach

Digital Productions (DIGIPROD)
3416 S. La Cienega Blvd.
Los Angeles, CA 90016

Installation Delegate
Gary Demos

Technical Contact
Larry Yaeger

Operations Contact
Gordon Garb

(0)8153/28954

(213)938-1111

(213)938-1111

(213)938-1111

186

E.I. DuPont de Nemours, Inc. (DUPONT)
Experimental Station
Wilmington, DE
19803

Installation Delegate
David Filkin (302)772-3970

Operations Contact
James Chang
Bldg. 320

Electricite de France (EDF)
1 Avenue du General de Gaulle
A2-004
92140 Clamart
France

TELEX 270 400 F EDFERIM

Installation Delegate
Yves Souffez

Technical Contact ---------
Bertrand Meyer

European Centre for Medium Range (ECMWF)
Weather Forecasts

Shinfield Park
Reading RG2 9AX
Berkshire, England

TELEX 847908

Installation Delegate
------Geerd-R. Hoffmann

Technical Contact
Claus Hilberg

Operations Contact
EricWalton

187

(1) 765 40 18

(1) 765 41 50 or
(1) 765 41 05

44-734-876000, x.340

44-734-876000, x.323

44-734-876000

Exxon Co. USA - EDPC (EXXONUSA)
3616 Richmond
Houston, TX 77046

TWX: (713) 965-7310

Installation Delegate
Michael Beddingfield

Technical Contact
Brian Vohs
107ST

Operations Contact
Don Smith
245 ST

Exxon Production Research Company (EPRCO)
P. O. Box 2189
Houston, TX 77001

(713)966-6134

(713)965-7534

(713)965-7514

TELEX: 910-881-5579 (Answer back: USEPRTX HOU)

Installation Delegate
T.A. Black
N-121

Technical Contact
J.E. Chapman
N-121

Operations Contact
D.N. Turner
N-180A

Fairchild (COMUN)
Gate Array Division
1801 McCarthy Blvd.
Milpitas, CA 95035

Installation Delegate
Carlos Dangelo

Technical Contact
Carlos Dangelo
Hassan Nosrati

Operations Contact
Hassan Nosrati

(713)965-1~407

(408) gll2-2587

(408)942-2680

188

Ford Motor Company (FORD)
Engineering Computer Center
MD- 1, Room 208
PO Box 2053
Dearborn, MI 48121

Installation Delegate
Neil St. Charles

General Dynamics Corporation (CF)
Data Systems Division
Central Center
PO Box 748
Fort Worth, TX 76101

TELEX: 768231

(313) 845-8493

Installation Delegate and Technical Contact
M.H. Pittman (817) 777-3102
Mail Zone 1175

Operations Contact
----B.D". Hollingswor·th

Mail Zone 2169
(817) 777-3238

General Motors Research (GM)
General Motors Technical Center
12 Mile and Mound Roads
Warren, MI 48090-9055

Installation Delegate an~ Operations Contact
Ronald Kerry (313) 575-3208

Technical Contact
---Dean Hammond (313) 575-3372

Operations Contact
---~ren Schaefer (313) 575-3237

270 R.AN.B.

Government Communications Headquarters (GCHQ)
Priors Road
Cheltenham, Gloucestershire
GL52 5AJ
England

Installation Delegate and Technical Contact
-----xran PhilLtps -- 0242-521491, x.2301

F/1210, Dept. X34C

Operations Contact
R. Medley
F/1208

0242-521491, x.3185

189

Grumman Data Systems (GDS)
1111 Stewart Avenue
Bethpage, NY 11714

Installation Delegate and Technical Contact
James Poplawski (516)575-2934
MS B34-111

Operations Contact
Steven Hornacek, Jr.

Institute for Defense Analyses (IDA)
Thanet Road
Princeton, NJ 08540

(516)575-1~273

Installation Delegate and Operations Contact
Robert Cave- - (609)924-4600

Technical Contact
Helene Kulsrud

KFA Julich (KFA)
Postfach 1913
5170 Julich 1
West Germany

TELEX: 833556 KFA D

Installation Delegate
Friedel Hossfeld

Technical and Operations Contact
L. Wollschlaeger

(609) 924-4600

02461-61-6 1W2

02461-61-6420

Koninklijke/Shell Exploratie & Produktie Laboratorium (KSEPL)
Volmerlaan 6
2288 GD Rijswijk (Z.H.)
The Netherlands

TELEX KSEPL NL 31527

Installation Delegate and Technical Contact
---- A.E. Stormer 070-112741

LS-219

Operations Contact
----A-.f.H. Kardol

LS-208
070-112601

190

Konrad Zuse-Zentrum fur Informationstechnik Berlin (BERLIN)
Heilbronnerstrasse 10
D 1000 Berlin 31
West Germany

TELEX: 183798

Installation Delegate
Jurgen Gottschewski (030)-3032-233

Lawrence Livermore National Laboratory (LLNL)
PO Box 808
Livermore, CA 94550

TWX 910 386 8339 UCLLL LVMR

Installation Delegate
Richard Zwakenberg
L-300

Technical Contact
PatrickH. Gray
L-60

Operations Contact
Pierre Du Bois
L-67

(415)422-3750

(415)422-4049

(415)422-4007

Lockheed Advanced Aeronautics Company (XMP24110)
Dept. 60-40, Unit 50, Plant 2
PO Box 551
Burbank, CA 91520

Installation Delegate and Technical Contact
Howard Weinberger ---- (805)257-5725

Operations Contact
Doug Ford

Lockheed Missile and Space Co.
1111 Lockheed Way
Sunnyvale, CA 94086

TELEX: 346409

Installation Delegate
Jack Sherman

Technical Contact
----Doug Telford

Operations Contact
----JerryROninger

(805)257-5720

(LOCKHEED)

(408)742-8993

(408)742-09 1W

(408)742-5831

191

Los Alamos National Laboratory (LANL)
P. O. Box 1663
Los Alamos, NM 87545

Installation Delegate
Charles Slocomb (505)667-5243
MS B294

Technical Contact
Margaret Simmons
MS B265

Christopher Barnes
Group X-1, MS E531

Operations Contact

(505)667-1749

(505)667-5000

Torn Trezona (505)667-4890
MS 252

Max Planck Institute fur Plasmaphysik (MPI)
8046 Garching
Bei Munchen
West Germany

TELEX 05/215 808

Installation Delegate and Technical Contact
Johann Gassmann-- 089-3299-340

McDonnell-Douglas Corporation (MDC)
PO Box 516
st. Louis, MO 63166

Facsimile Transmission: (311t)233-6149

Installation Delegate
James R. McCoy
Dept. W512 - 306/3

Technical Contact
James Miget
W532 - 306/3/395

Operations Contact
F. Brian Hunt
W270 - 306/2E/290

(314) 233- 3425

(311t)234-3326

192

Merlin Profilers Limited
1 Duke street
Woking, Surrey
United Kingdom

Installation pelegate
Paul Blundell

Technical Contact
Andy Wright

Mitsubishi Research Institute, Inc. (MIRI)
2-3-6, Otemachi
Chiyoda-ku
Tokyo, Japan 100

TELEX 222-2287 MRI J

Installation Delegate
Nobuhide Hayakawa

Technical and Operations Contact
Shuichi Yamagishi

(03) 270-9211

(03) 270-9211

Mobil Exploration & Producing Services, Inc. (MEPSI)
PO Box 900
Dallas, TX 75221

Installation Delegate
Beverly Jackson

MOD (P.E.), RARDE (RARDE)
Fort Halstead
Sevenoaks, Kent, TN14 7BP
England

TELEX: 95267

(214)658-4409

Installation Delegate and Technical Contact
Bob Youldon 0732-55211, x.3086
Bldg. 511

NASA/Ames Research Center (NAS)
NAS Projects Office
Moffett Field, CA 94035

Installation Delegate
------:JOhn Barton-

I'1S 233-1
(415) 694-6837

193

NASA/Lewis Research Center (NASA/LE)
21000 Brookpark Road
Cleveland, OH 44135

Installation Delegate
William McNally
MS 142-2

National Cancer Institute (FCRF)
Frederick Cancer Research Facility
Advanced Scientific Computing Laboratory
PO Box B
Frederick, MD 21701

Installation Delegate

(216)433-4000, x.6650

Charles Crum (301)695-2765

Technical Contact
Jacob Maizel (301)695-2532

Operations Contact
Steve Karwoski (301)695-2775

National Center for Atmospheric Research (NCAR)
P. O. Box 3000
Boulder, CO 80307

TELEX 45694

Installation Delegate
Bernie O'Lear

Technical Contact
Eugene Schumacher

Operations Contact
Gary Jensen

National Magnetic Fusion Energy
Computer Center (NMFECC)

P. O. Box 5509, L-561
Livermore, CA 94550

TELEX 910-386-8339

Installation Delegate
Hans Bruijnes

Technical Contact
F" David Storch

Operations Contact
MarilynlR:[chards

(303)497-1268

(303)497-1264

(303) 1~97-1289

(415)422-4012

(415)422-4004

(415) It22-4397

194

National Security Agency
Ft. George G. Meade, MD

(NSA)
20755

Installation Delegate
Bruce Steger
T335

Technical Contact
C. Thomas Myers
T335

Operations Contact
Richard W. Ader
T152

Naval Research Laboratory
4555 Overlook Avenue S.W.
Washington, DC 20375

(NRL)

Installation Delegate
Harvey Brock

Nissan Motor Company (NISSAN)
Nissan Technical Center
560-2, Okatsukoku
Atsugi, Kanagawa
243-01
Japan

Telex: J47980

(301)688-6275

(301)688-6275

(301)688-6198

(202)767-3886

Installation Delegate, Technical and Operations Contact
Mizuho Fukuda ---- -- 0462-47-5523
Engineerng Computer Applications Section No. 1
Product Development Systems Department

195

NTT Electrical Communications Laboratories (NTT)
Nippon Telegraph and Telephone Corporation
3-9-11 Midori-cho
Musashino city, Tokyo 180
Japan

Installation Delegate
Toshimasa Suzuki (011) 81-0422-59-3001

Technical Contact
Mikio Sasaki (011) 81-0422-59-2261
Information Processing Services Section
Engineering Department

Operations Contact
-----~ideaki Maeda (011) 81-0422-59-3845

Information Processing Services Section
Engineering Department

ONERA - Calculateur Aeronautique (ONERA)
BP 72
Chatillon Sous Bagneux
92322
France

TELEX: ONERA 260 907F

Installation Delegate
Jean-Pierre Peltier

Technical Contact
Daniel Colin

Operations Contact
Jean Erceau

Phillips Petroleum Company
418 Information Systems Bldg.
Bartlesville, OK 74004

(1) 6571160, x.2094

(1) 6571160, x.3098

(1) 6571160, x.2465

Installation, Technical and Operations Contact
Arvin Todd-------- (918)661-6426

Rechenzentrum der Universitat Stuttgart
Pfaffenwaldring 57
7000 Stuttgart 80
West Germany

TELEX: 07255445

Installation Delegate
Walter Wehinger

(RUS)

0711-685-5391

196

Rockwell International Information Systems Center (RI)
PO Box 2515
Mail Code SH10
Seal Beach, CA 90740

TELEX: 910-341-6801 (ROCK ISCW SLBH)

Installation Delegate and Technical Contact
Abraham Levine (213)594-2740

Operations Contact
Joe Henderson (213)594-2283

Royal Aircraft Establishment (RAE)
Bldg. R16
Farnborough, Hants
GU14 6TD
England

TELEX: 858134

Installation Delegate
J.M. Taylor

Technical Contact
D. Swan

Operations Contact ----r:- Shepherd

SAAB-Scania (SAAB)
Aircraft Division
S-58188 Linkoping
Sweden

TELEX: 5004Q SAABLGS

(0252)24461, x.3042

(0252)24461, x.2714

(0252)24461, x.2375

Installation Delegate and Technical Contact
Sven Sandin 4613 182357

Operations Contact
Stig Logdberg

197

4613 182371

Sandia National Laboratories (SNLA)
Albuquerque, NM 87185

Installation Delegate
Melvin Scott
Department 2641

Technical Contact
-----Frank Mason

Division 2641

Operations Contact
Kelly Montoya
Department 2630

Sandia National Laboratories (SNLL)
PO Box 969, East Avenue
Livermore, CA 94550

Installation Delegate and Technical
Dona Crawford
D8235

Operations Contact
M.H. Pendley
D8236

San Diego Supercomputer Center (SDSC)
PO Box 85608
San Diego, CA 92138

TELEX: 695065

Installation Delegate and Technical
Fred McClain

Operations Contact

(505)844-4075

(505)844-2332

(505)844-1234

Contact
(4155422-2192

(415) 422-2965

Contact
(619)455-4597

-----nan· Drobnis (619)455- 11189

193

Schlumberger-Doll Research (SCHLUMBE)
Old Quarry Road
PO Box 307
Ridgefield, CT 06877

TELEX: 643359

Installation Delegate
Bob Snow

Technical Contact
----Raymond Kocian

Operations Contact
Josephine Murray

Shell Oil Company (SHELLOIL)
PO Box 20709
Houston, TX 77025

(203)431-5527

(203)431-5522

(203)431-5524

TELEX: 71-378-7530 (answer back - Shell MTM HOU)

Installation Delegate
---~Kealy

Technical Contact
----B.D. Huff

Rm. 5B48

Operations Contact
----~W. Smith

Rm. 1P10

Shell U. K. (SHELLUK)
Rowlandsway Wythenshawe
Manchester M22 5SB
United Kingdom

TELEX: 668613

Installation Delegate
---- David Cheater

SNEA (ELF)
Rue Jules Ferry
Pau 64000
France

TELEX: Petra 560 804F

(713)795-3320

(713) 795- 319 3

(713)795-1696

061-499-4357

Installation Delegate, Technical and Operations Contact --"-----m-c--:l1el Morin- ----- --- 59-834146 ----

199

SOHIO
Geophysical Data Center
1 Lincoln Center
5400 LBJ Freeway
Suite 1200-LB 25
Dallas, TX 75240

Installation Delegate, Technical and Operations Contact
Mark Rehrauer - (214)960-4336

SVERDRUP Technology, Inc. (SVERDRUP)
Arnold Air Force Station, TN 37389

Installation Delegate and Operations Contact
John L. Roberson- (615)455-2611, x-5294
ASTF MS900

Toshiba Corporation (TIS)
TIS Division
1-1, Shibaura
Minato-Ku, Tokyo, 105
Japan

TELEX: J22587

Installation Delegate
Kenjo Yoshimura

Technical and Operations Contact
Kyosuke Tsuruta ---

United Information Services, Inc. (UISCO)
2525 Washington
Kansas City, MO 64108

044-541-1743

044-541-1743

Installation Delegate and Operations Contact
Nate Losapio (816)221-9700, x.6535

Technical Contact
John McComb (816)221-9700

University of Illinois at Urbana-Champaign (UIUCNCSA)
National Center for Supercomputing Applications
1011 W. Springfield
Urbana, IL 61801

Installation Delegate and Technical Contact
Win Bernhard (217)333-8049

Operations Contact
Mike Smith

200

(217) 244-0708

University of London
Computer Center
20 Guilford street
London WC1N 1DZ
England

TELEX: 8953011

(ULCC)

Installation Delegate
Richard Field

Technical Contact
Harald Kirkman

Operations Contact
Lawrie Tweed

(01)4058400

University of Minnesota Computer Center (MINN)
2520 Broadway Drive

, Lauderdale, MN 55113

Installation Delegate
John Sell (612)313-1818

Technical Contact
--------Linda Gray

Operations Contact
Elizabeth Stadther

University of Texas System (UTXCHPC)
Center for High Performance Computing
Commons Builning, Balcones Research Center
PO Drawer S
Austin, TX 18113-1388

Installation Delegate
Charles Warlick

Technical Contact
Willi.am Bard

Operations Contact
Rob'ert Baker

201

(612)316-5603

(612)313-4920

(512)411-2412

(512)411-2412

(512)411-2412

University of Toronto (UTORONTO)
Computing Services
255 Huron St.
Toronto, Ontario M5S1A1
Canada

Installation Delegate and Technical Contact
Edmund West (416)978-4085
MPP 331

Operations Contact
Robert Chambers
MP 350

Westinghouse Electric Corporation
Energy Systems Computer Center
P. O. Box 355
Pittsburgh, PA 15146

TELEX: 234992503 USA

Installation Delegate
------ Robert Price

MNC 206E

Technical Contact
Jerry Kennedy
Nuclear Center 180

Operations Contact
R.W. Kunko
Fran Pellegrino

ZeroOne Systems, Inc. (ZERO)
2431 Mission College Blvd.
Santa Clara, CA 95054-1297

(416)978-7092

(WESTESCC)

(412)374-5826

(412)374- 1t399

(412)374-lt674

Installation Delegate, Technical and Operations Contact
Glenn Lewis ----- -- (408)988-3030

202

CUG

CALL for PAPERS

Garmisch-Partenkirchen, West Germany
Fali 1986 .

NAME:

ORGANIZATION:

ADDRESS:

TELEPHONE: ()

TITLE OF PAPER:

TWO OR THREE SENTENCE ABSTRACT:

EQUIPMENT REQUIRED OTHER THAN 35MM SLIDE PROJECTOR OR
OVERHEAD PROJECTOR:

GENERAL SESSION
I/O
FRONT ENDS
NETWORKING
OPERATIONS
OPERATING SYSTEMS
GRAPHICS

RETURN BY JULY 1, 1986 TO:

David Lexton
University of London
Computer Center
20 Guilford Street
London WC1~ lDZ England

SUGGESTED SESSION:

LANGUAGES
LIBRARIES
MULTITASKING
OPTIMIZATION
PERFORMANCE EVALUATION
APPLICATIONS . - -
DATA MANAGEMENT

OTHER ________________ _

203

I Want to

HELP CUG

By working on the

CRA Y Operating Systems SIG

CTSS SIG

Networking and Front Ends SIG

Languages and Libraries SIG

Operations SIG

Performance Improvement SIG

Hold a CUG Meeting at my Site

Lead a Workshop on

Other

NAME

ADDRESS

TELEPHONE ______________________ __

Please complete this form if you wish to assist with CUG
meetings.

Return to:

Karen Friedman
NCAR
P.O. Box 3000
Boulder, Colorado 80307
USA

205

