
CRAY-1® AND CRAY X-MP
COMPUTER SYSTEMS

COS
EXEC/STP/CSP

INTERNAL REFERENCE
MANUAL

SM-0040

c:
RESEARCH, INC.

CRAY-1® AND CRAY X-MP
COMPUTER SYSTEMS

COS
EXEC/STP/CSP

INTERNAL REFERENCE
MANUAL

SM-0040

Copyright© 1980, 1981, 1982, 1983, 1984 by CRAY RESEARCH, INC.
This manual or parts thereof may not be reproduced in any form
without permission of CRAY RESEARCH, INC.

C:li=II$.IIIIIIIIA"~:,¥",
RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SM-0040

Each time this manual is revise~ and reprinted, all c~an~es is~ued against the p.revious version in the !orm of change packets are
incorporated into the new version and the new version IS assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a numeric designator, starting with
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:

CRAY RESEARCH, INC.,

1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision

01

A

A-Ol

B

C

SM-0040

Description

October, 1980 - Original printing: supports COS Version 1.09.
This manual obsoletes portions of the CRAY-OS Version 1 System
Programmer's Manual, publication 2240012.

July, 1981 - This change packet reflects the feature changes
made to COS for the 1.10 release, including changes to JCL,
disk flaw processing, partial deallocation, and the Network
Systems Corporation HYPERchannel feature. Other minor
technical and editorial changes are also included.

August, 1981 - This printing incorporates change packet 01.
No other changes have been made.

June, 1982 - This change packet describes the new Tape Queue
Manager (TQM) task: substantial changes to the Disk Queue
Manager (DQM) task, the Overlay Manager (OVM) task, and EXEC:
and other minor technical and editorial changeS to bring this
publication into agreement with the 1.11 version of COS.

July, 1983 - This rewrite describes the new Stager (STG) task:
substantial changes to the System Executive (EXEC), Job
Scheduler (JSH), and Tape Queue Manager (TQM): other changes
required to bring this publication into agreement with the
1.12 version of COS. Numerous editorial changes have been
made to enhance readability. This printing obsoletes all
previous printings.

February, 1984 - This reprint with revision reflects the
feature changes made to COS for the 1.13 release, including
multitasking support, volatile device support, and tape
positioning. This printing obsoletes all previous printings.

ii C

PREFACE

This manual describes the internal features of the EXEC, STP, and CSP
portions of the Cray Operating System.

This publication is part of a set of manuals that describes the internal
design of the Cray Operating System (COS) and its product set.

Manuals in this set that describe the internal design of COS and other
software products from Cray Research, Inc. (CRI), are as follows:

SM-OOl7
SM-0040
SM-004l
SM-0045
SM-0046
SM-0049
SM-0072

FORTRAN (CFT) Internal Reference Manual
COS EXEC/STP/CSP Internal Reference Manual
COS Product Set Internal Reference Manual
COS Table Descriptions Internal Reference Manual t
lOS Software Internal Reference Manual
Data General Station (DGS) Internal Reference Manual
COS Simulator (CSIM) Internal Reference Manual

Manuals that define procedures and external features of tools needed for
installing and maintaining CRI software are as follows:

SM-0043
SM-0044
SR-0073

COS Operational Procedures Reference Manual
COS Operational Aids Reference Manual
COS Simulator (CSIM) Reference Manual

The reader is assumed to be familiar with the contents of the CRAY-OS
Version 1 Reference Manual, publication SR-OOll, and to be experienced in
coding the Cray Assembly Language (CAL) as described in the CAL Assembler
Version 1 Reference Manual, CRI publication SR-OOOO. In addition, the
I/O Subsystem assembler language (APML) is described in the APML
Assembler Reference Manual, CRI publication SM-0036.

Operating information is available in the following publications:

SG-0006
SG-005l

Data General Station (DGS) Operator's Guide
I/O Subsystem (lOS) Operator's Guide

t This manual is distributed on magnetic tape and can be obtained
through your Cray Research analyst.

SM-0040 iii C

CONTENTS

PREFACE • ..
1. INTRODUCTION

1.1
1.2

1.3

1.4

1.5

1.6
1.7

1.8

SM-0040

GENERAL DESCRIPTION
SOFTWARE CONFIGURATION •
1.2.1
1.2.2

Cray Operating System (COS)
Language systems •
FORTRAN compiler •
CAL assembler
Pascal compiler
API.t1L assembler •
SKOL macro translator

1.2.3 Library routines.
1.2.4 Applications programs
SYSTEM RESIDENCE •
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5

EXEC constant, data, and table areas •
EXEC program area
System Task Processor (STP) table area •
STP program area •
Control Statement Processor (CSP) area •

1.3.6 User area
MASS STORAGE SUBSYSTEM ORGANIZATION
1.4.1
1.4.2

Formatting •
Device label (DVL)
Flaw information •
Dataset Allocation Table

1.4.3 Dataset catalog
EXCHANGE MECHANISM •

(DSC)

1.5.1 Exchange Package.
1.5.2 Exchange Package areas.
1.5.3 B, T, and V registers
COS STARTUP
GENERAL DESCRIPTION OF JOB FLOW
1.7.1
1.7.2
1.7.3

Job entry
Job initiation •
Job advancement

1.7.4 Job termination
TASKS AND MULTITASKING •
1.8.1
1.8.2

Multiprogramming •
Multiprocessing

v

(OAT) for DSC •

iii

1-1

1-1
1-2
1-2
1-3
1-4
1-4
1-4
1-5
1-5
1-5
1-5
1-6
1-7
1-10
1-10
1-13
1-13
1-14
1-15
1-16
1-16
1-16
1-16
1-17
1-17
1-18
1-18
1-21
1-21
1-22
1-22
1-22
1-23
1-24
1-24
1-25
1-25

C

1.9
1.10

1.S.3 Tasks
Idle memory correction tasks •
System task
User task • • • •
User library • •

1.S.4 Multitasking
1.S.5 Jobs and user tasks
MASS STORAGE DATASET MANAGEMENT. •
I/O INTERFACES • • • • • • • • • •

2. EXEC • • • • • • • • • • • •

2.1
2.2

2.3

2.4
2.5
2.6

SM-0040

INTERCHANGE ANALYSIS
INTERRUPT HANDLERS • • • • • • • • • •
2.2.1 I/O interrupt handler (101) ••••
2.2.2 Expired time event interrupt handler (TEl)
2.2.3 Programmable clock interrupt handler (PCI)
2.2.4 MCU interrupt handler (CII) ••••
2.2.5 Error interrupt handler (EE) ••••
2.2.6 Memory error interrupt handler (ME)
2.2.7 Normal exit interrupt handler (NE) ••
2.2.S Interprocessor interrupt handler (IPI)
2.2.9 Deadlock interrupt handler (DLI) ••••••••
CHANNEL MANAGEMENT • • • • • • • • • • • •
2.3.1 Channel management tables ••••

2.3.2
2.3.3

Channel Buffer Table (CBT) • • • • • •
Channel Table (CHT) • • • •
Link Interface Table (LIT)
Subsystem Control Table (SCT)
System Task Table (STT) • • • •
I/O Service Processor tables •
Channel assignments
Channel processors • • • • •
Front-end Driver interrupt handlers
Disk/SSD Driver interrupt handlers • •
I/O Subsystem MIOP command and status

processors • • •
TASK SCHEDULER • • • • • •
EXEC RESOURCE ACCOUNTING •
EXECUTIVE REQUEST PROCESSOR
2.6.1 Executive requests ••

Create a system task request (CTSK=Ol)
Ready system task request (RTSK=02) •••••••
System task self-suspend request (SUSP=03)
Front-end Driver request (FET=05) •••••
Delay system task for time request (TDELAY=06) •
Reserved for site use request (RESERVED=07) ••
Start second CPU request (STRTCP2=10) •••••
Disk block I/O request (10=11) • • • • • • • • •
Select single-bit error detection mode request

(SEDSEL=12) •••••••••••••••••

vi

1-25
1-25
1-25
1-26
1-26
1-26
1-26
1-27
l-2S

2-1

2-2
2-3
2-3
2-3
2-3
2-5
2-5
2-5
2-5
2-6
2-6
2-7
2-S
2-S
2-S
2-9
2-9
2-9
2-9
2-10
2-10
2-11
2-12

2-12
2-13
2-14
2-16
2-16
2-16
2-17
2-19
2-19
2-20
2-21
2-21
2-22

2-22

C

2.6 EXECUTIVE REQUEST PROCESSOR (continued)

2.7

SM-0040

Ready system task and suspend self request
(RTSS=14) •••••••••••••••

Connect user task to CPU request (RCP=16).
Disconnect user task from CPU request (DCP=17) •
Post message in history buffer request

(POST=20) •••••••••••
Set memory size request (SMSZ=2l)
Packet I/O request (PIO=22)
Boot a new system request (BOOT=23)
Start system request (START=24)
Stop system request (STOP=25)
Display memory request (DMEM=26)
Enter memory request (~mM=27) •
Display Exchange Package request (DXPR=30)
Enter Exchange Package register request

(EXPR=3l) •••••••••••••••
Set system breakpoint request (SBKPT=32) • •
Clear system breakpoint request (CBKPT=33)
Report CPU use request (CPUTIL=34) • •
Report task use request (TASKUTIL=35)
Report EXEC request (EREQNT=36)
Report EXEC call counts request (ECALLCNT=37)
Report interrupt counts request (CHINTCNT=40)
Switch processors request (PSWITCH=4l) • •
Dump CRAY X-MP cluster registers request

(DUMPCL=42)
2.6.2 EXEC error codes ••
FRONT-END DRIVER • • • • • • • •
2.7.1 Theory of operation

2.7.2

2.7.3

Channel on operation • • •
Channel off operation • • • •
Output to front-end operation • • • •
System tables used by the Front-end Driver •
Channel Table (CH'!') ••••••
Channel Extension Table (CXT) ••••
Link Interface Table (LIT) • • • • • •
Link Extension Table (LXT) • •
Front-end Driver processors
R005 request dispatcher •••••••

FNDLX •
GETLX
ITERM ••
LPEND
OTERM •
TACT

R005C request processor
CCLR/CCLRA
CCLRB •••••
CCLRC •
CCLRD ••

vii

2-23
2-24
2-26

2-27
2-28
2-28
2-29
2-30
2-31
2-31
2-32
2-33

2-33
2-34
2-35
2-36
2-36
2-37
2-38
2-39
2-39

2-40
2-41
2-42
2-42
2-43
2-43
2-43
2-44
2-44
2-44
2-44
2-44
2-45
2-45
2-45
2-46
2-46
2-47
2-47
2-47
2-47
2-48
2-48
2-48
2-49

C

2.7

2.8

SM-0040

FRONT-END DRIVER (continued)
CHKSM •

2.7.4

FOLD
LIRCV •
LORCV •
RLCP
RLTP
RSSEG •
WLCP
WLTP
WSSEG •
WXLCP •
WXLTP •

R005I request processor
R005N request processor

NCLR/NCLRA
NCLRB •
NEND
NENDA •
NETO
NIRCV •
NORCV •
NPEND •
NRLCF •
NRLCP •
NRSEG •
NWLCF •
NWLCP •
NWSEF •
NWSEG •
NWXLC •
NWXLF •
OUTFC •
STAT
STATA •
OUTFC •

Front-end Driver error recovery
R005C (IFC interface) error processing
R005I (I/O Subsystem) error processing •
R005N (NSC HYPERchannel interface) error

processing •
DISK/SSD DRIVER
2.8.1 Disk/SSD Driver tables.

2.8.2
2.8.3
2.8.4
2.8.5

Device Channel Table (DCT)
Equipment Table (EQT)
ROll monitor request •
Lost disk interrupts •
Status checking and error recovery •
Hardware sequences for sample requests •
Multiple sector write
Cylinder select

viii

2-49
2-49
2-49
2-49
2-49
2-50
2-50
2-50
2-51
2-51
2-51
2-51
2-51
2-52
2-54
2-54
2-54
2-54
2-54
2-55
2-55
2-56
2-56
2-57
2-57
2-58
2-58
2-58
2-59
2-59
2-59
2-59
2-60
2-60
2-60
2-60
2-61
2-61

2-61
2-62
2-63
2-63
2-63
2-63
2-64
2-64
2-64
2-65
2-65

c

2.9

2.10
2.11
2.12

SM-0040

2.8.5 Hardware sequences for sample requests (continued)
Controller master clear • • • •
Margin select •••••

PACKET I/O DRIVER • • • • • • • • • •
2.9.1 Packet I/O Driver tables.

Any Packet Table (APT) •
Channel Extension Table (CXT)
Free Input Queue Table (FIQ) •
Free Output Queue Table (FOQ)
Queue Control Table (QCT)
Subsystem Control Table (SCT)

2.9.2 Packet description •••
2.9.3 R022 monitor request ••••
2.9.4 MIOP driver processors •••
2.9.5 Packet queueing processors ••
MEMORY ERROR CORRECTION • • • •
IDLE TASK • • • • • •
EXEC DEBUG AIDS •••• • • • • •
2.12.1 History trace •••••

. .

History Function Table (XFT) • • • •
History Trace Table (XTT) • • • •

I/O interrupt (101=1) • • • • • •
User-initiated normal exchange (UNE=2)
STP-initiated normal exchange (SNE=3)
Exchange to system task (ENE=4) • •
Exchange to idle package (ENE=4) ••
Exchange to user task (ENE=4)
Canceled timer event (PCI=5) • • • •
Time event (PCI=5) ••••• • • • • •
Default time event pulse (PCI=5) •••••
Unexpected PCI interrupt (PCI=S) •••
Front-end input LCP (FEI=7) • • • • • • • •
Physical disk I/O request (010=11)
Disk error retry part 1 (010=11) •••
Disk error retry part 2 (010=11)
Intertask message (ITM=12) •••••
Error exchange (EEI=13) • • • • • • • •
Front-end output LCP (FEO=14)
Front-end segment (SEG=lS) ••••
Front-end input SCBs (SCI=l6)
Front-end error LCP (FEE=17)
Front-end output SCBs (SCO=20) ••••
User task status change (JST=24).
Job status change (JST-24) •••••••••
Search for a free memory segment (GET=2S) •
Allocation of a memory segment (GET=2S)
Liberation of a memory segment (LIB=26)
Request received by JSH (JSH=30) •••
550 transfer (580=31) • •
580 error (SSD=31)
J$ALLOC requests (MEM=32)

ix

. .

2-65
2-66
2-66
2-66
2-67
2-67
2-67
2-67
2-67
2-67
2-67
2-68
2-68
2-68
2-69
2-73
2-73
2-73
2-73
2-74
2-75
2-76
2-76
2-76
2-76
2-77
2-77
2-77
2-77
2-78
2-78
2-78
2-79
2-79
2-79
2-80
2-80
2-80
2-81
2-81
2-81
2-81
2-82
2-82
2-82
2-83
2-83
2-84
2-84
2-84

C

2.12 EXEC DEBUG AIDS (cont inued)
Entry to MOVEMEM routine (MEM=32) · Entry to ERASEMEM routine (MEM=32)
Exit from RELOCATE routine (MEM=32)
MCU interrupt (HTMCU=33) · · · . · Interprocessor interrupt (HTIPI=34)
Deadlock interrupt (HTDLI=35) · . · System wait for single threading

(HTSYS=36) · · · · · · · · · Operating system entry after
single-thread wait (HTNWT=37)

Logical interprocessor request
(HTIPSET=40) · · · · · · · · Logical interprocessor request
acknowledgement (HTIPACK=41)

Intertask message - task request
(HTASCII=42) · · · · · · Intertask message - task reply
(HTASCII=42)

Memory error (HTMEC=43) · · · · 2.12.2 System stop buffer · · · · 2.13 INTERACTIVE SYSTEM DEBUGGING · 2.14 MULTIPROCESSOR CONSIDERATIONS
2.14.1 Single threading · · · · · · · · · · 2.14.2 Semaphore usage
2.14.3 Interprocessor communications
2.14.4 Processor Working Storage area (PWS)

2.15 EXEC-SPECIFIC MACROS · · · · 2.15.1 CLEARIP · · · · 2.15.2 COPYXP · · · · · 2.15.3 X$SIO. · · · · · · · · · · 2.15.4 GETPW. · · · · · · · · · · 2.15.5 GETSRO · · · · · 2.15.6 I$FWB · · · · 2.15.7 SETCL
2.15.8 SETIP · · · · 2.15.9 STOP . · · · · · 2.15.10 FALLTHRU · · · · · · · · ·

3. SYSTEM TASK PROCESSOR (STP)

3.1
3.2

SM-0040

GENERAL DESCRIPTION
TASK COMMUNICATION • •
3.2.1 EXEC/TASK communication
3.2.2 Task-to-task communication

PUTREQ •
GETREQ •
PUTREPLY •
GETREPLY •
TSKREQ •
REPLIES

x

· · · · · · · · · · · · · · · · · ·
· · ·
· · ·
· · ·
· · ·

· · · · · · · · ·
· · · · · · · · ·

·

· 2-85

· 2-85

· 2-85

· 2-86

· 2-86

· 2-87

· 2-87

· 2-87

· 2-87

· 2-88

2-88

2-89

· · ·
· · ·

· · · · · · · · · ·

2-89
2-89
2-94
2-94
2-94
2-95
2-96
2-97
2-97
2-97
2-97
2-98
2-98
2-98
2-98
2-98
2-99
2-99
2-99

3-1

3-1
3-2
3-3
3-3
3-5
3-5
3-6
3-6
3-7
3-7

C

3.2.3 USER/STP communication •••
3.2.4 TASK/FRONT-END communication •

4. STP COMMON ROUTINES

4.1

4.2

4.3

4.4

4.5

4.6
4.7

SM-0040

TASK I/O ROUTINES
4.1.1 System tables used by TIO

Dataset Name Table (DNT) • •
Dataset Parameter Area (DSP)

4.1.2 Error processing ••••••
4.1.3 TIO logical read routines ••••••

4.1.4

4.1.5
4.1.6

$RWDP routine •••••• • • • • •
$RWDR routine •••••••
TIO logical write routines •
$WWDP routine
$WWDR routine •••••
$WWDS routine
$WEOF routine
$WEOD routine
Positioning routine
Block transfer routines
$RBLK routine
$WBLK routine

CIRCULAR I/O ROUTINES (CIa)
4.2.1 CIO entry points ••
4.2.2 CIO main read/write entry ••
4.2.3 CIO synchronous recall •••
4.2.4 CIa asynchronous recall. •
MEMORY ALLOCATION/DEALLOCATION ROUTINES
4.3.1 Memory allocation - HEMAL
4.3.2 Memory deallocation - MEMDE
4.3.3 Partial memory deallocation - PMEMDE •
CHAINING/UNCHAINING SUBROUTINES
4.4.1 Chain item - CHAIN •••••••••
4.4.2 Unchain item - UNCHAIN •••••••
INTERACTIVE COMMUNICATION BUFFER MANAGEMENT ROUTINES
4.5.1 ENQMSG routine •••••
4.5.2 NXTMSG routine • • • ••••
4.5.3 FREEMSG routine
PASSWORD ENCRYPTION
SYSTEM BUFFER MANAGEMENT • •
4.7.1 System buffer initialization
4.7.2 System buffer internal management
4.7.3 Buffer allocation •••••••••
4.7.4 System buffer deallocation • • • • • ••••
4.7.5 System buffer performance considerations

xi

3-8
3-8

4-1

4-1
4-4
4-5
4-5
4-5
4-5
4-5
4-8
4-8
4-8
4-10
4-11
4-11
4-12
4-12
4-13
4-13
4-14
4-14
4-19
4-19
4-20
4-21
4-22
4-23
4-23
4-24
4-25
4-25
4-27
4-27
4-28
4-28
4-29
4-29
4-30
4-32
4-33
4-33
4-35
4-36

C

5. COS STARTUP · 5-1

5.1 INSTALL OPTION · · · · · 5-1
5.2 DEADSTART OPTION · · · · · · 5-3

5.2.1 Device space reservation · · · · · 5-4
5.2.2 Mass storage groups · · · · 5-5
5.2.3 Dataset catalog extension 5-6
5.2.4 Other startup processing · 5-7

5.3 RESTART OPTION · · · · · · · · · · 5-8
5.3.1 Job recovery by Restart 5-10
5.3.2 Index entry validation · · · · · 5-11
5.3.3 Roll dataset validation 5-12
5.3.4 DAT validation · · · · · 5-12
5.3.5 Dataset reservation · · · · 5-13
5.3.6 Pseudo access of permanent datasets 5-14
5.3.7 Resource deallocation · · · · 5-14
5.3.8 Job recovery completion · · · · · · · · · · · · 5-15
5.3.9 Termination of RRJ · · · · · 5-15

5.4 2-PASS STARTUP · · · · · · · · · 5-16
5.5 STARTUP FLAW PROCESSING · · · · · · 5-16
5.6 INPUT TO STARTUP · · · · 5-18

5.6.1 Configuration changes · · · · · · 5-18
5.6.2 Parameter file · · · · · 5-18
5.6.3 Dataset Catalog Extension dataset (DXT) · · · · 5-19

Recovery and validation · · · · · · · · · 5-19
DXT access and control · · · · · · · · · · · · · 5-20

5.6.4 System Directory dataset ($SDR) 5-21
5.6.5 Rolled Job Index dataset ($ROLL) · · · · 5-22

5.7 TABLES USED BY STARTUP · · · · · · · · · · · · · 5-24
5.7.1 Active User Table (AUT) · · · · 5-25
5.7.2 Configuration Table (CNT) · · · · 5-25
5.7.3 Dataset Allocation Table (DAT) · · · · 5-25
5.7.4 Dataset Name Table (DNT) · · · · · · · · 5-25
5.7.5 Device Reservation Table (DRT) · · · · 5-25
5.7.6 Dataset Catalog Table (DSe) · · · · · · · 5-25
5.7.7 Dataset Parameter Area (DSP) · · · · · · 5-26
5.7.8 Device Label (DVL) · · · · · · · · · · · 5-27
5.7.9 Dataset Catalog Extension (DXT) · · · · · · · · 5-27
5.7.10 Engineering Flaw Table (EFT) 5-27
5.7.11 Equipment Table (EQT) · · 5-27
5.7.12 Generic Resource Table (GRT) · · · · 5-27
5.7.13 Job Table Area (JTA) · · · · · · · · 5-27
5.7.14 Job Execution Table (JXT) 5-28
5.7.15 Overlay Directory Table (ODT) · · · · 5-28
5.7.16 Permanent Dataset Information Table (PDI) 5-28
5.7.17 Queued Dataset Table (QDT) · · · · · · 5-28
5.7.18 Rolled Job Index Table (RJI) · · · · 5-28
5.7.19 System Dataset Table (SDT) 5-28
5.7.20 Tape Device Table (TOT) 5-28

5.8 STARTUP SUBROUTINES · · · · 5-29
5.8.1 Z subroutine · · · · · · · · · · · · 5-29

SM-0040 xii C

5.8.2 RRJ subroutine • • •
RRJ execution during Install • •
RRJ execution during Deadstart • •
RRJ execution during Restart •• • •

5.8.3 SDRREC subroutine
File allocation
SDR recovery • • • • • • • • •
No recovery specified • • • •

6.

7.

Changes in the number of SDR entries

DISK QUEUE MANAGER (DQM) · · · · · ·
6.1 DQM INTERFACE WITH OTHER TASKS · · · · · · · 6.1.1 Allocation • · · · · · · 6.1.2 Dea1location • · · · 6.1.3 Queue I/O · · · · · · · 6.1.4 Return status · · · 6.2 SYSTEM TABLES USED BY DQM

6.2.1 Dataset Allocation Table (DAT)
6.2.2 Device Channel Table (OCT) · · 6.2.3 Dataset Name Table (DNT) · · · · · · 6.2.4 Device Reservation Table (DRT) · · · 6.2.5 Dataset Parameter Table (DSP)
6.2.6 Equipment Table (EQT) · · · · · · · 6.2.7 Generic Resource Table (GRT)
6.2.8 Job Table Area (JTA) · · · · · · 6.2.9 Job Execution Table (JXT)
6.2.10 Request Table (RQT)
6.2.11 Subsystem Control Table (SCT) · · · 6.3 DATASET ALLOCATION . · · · · · · · · · 6.4 RESOURCE MANAGEMENT · · · · · · · · · 6.4.1 DCU-2 and DCU-3 controller management
6.4.2 DCU-4 controller management · · · 6.4.3 Storage unit management

6.5 QUEUE MANAGEMENT • . · · · · · 6.6 I/O REQUEST FLOW IN DQM · · · · 6.7 DISK HARDWARE ERROR LOGGING · · 6.8 UNCORRECTED DATA ERROR RECOVERY
6.9 MAINTENANCE TEST FEATURE · · · · ·
STATION CALL PROCESSOR (SCP) • • • • • • • •

7.1 SYSTEM TABLES USED BY SCP
7.1.1 Active User Table (AUT)
7.1.2 Interactive Buffer Table (IBT)
7.1.3 Link Configuration Table (LCT)
7.1.4 Link Interface Table (LIT) ••
7.1.5 Link Extension Table (LXT) •
7.1.6 Permanent Dataset Definition (PDD)

·

· ·

SM-0040 xiii

·
· · ·

· ·
·
·

· ·

· · ·

·
· · ·

· · ·
·
·
·
·

· · ·

· ·

· · · · · ·
· · · ·

· ·
· ·
· ·

· ·
· · · · · · ·

· · · ·
· ·

· ·
· ·
· ·

5-30
5-30
5-31
5-31
5-32
5-32
5-32
5-32
5-33

6-1

6-1
6-1
6-2
6-3
6-4
6-4
6-5
6-6
6-6
6-6
6-8
6-8
6-8
6-8
6-8
6-8
6-8
6-9
6-10
6-11
6-11
6-11
6-11
6-12
6-13
6-14
6-14

7-1

7-1
7-2
7-2
7-2
7-2
7-2
7-2

C

8.

9.

7.1.7 System Dataset Table (SDT)
7.1.8 Stager Stream Table (SST)

7.2 PROCESSING FLOW FOR SCP •••••

EXCHANGE PROCESSOR (EXP) · · · . · · · · ·
8.1 SYSTEM ACTION REQUESTS · · · · 8.2 USER ERROR EXIT . · · · 8.3 EXCHANGE PROCESSOR REQUEST WORD
8.4 JOB SCHEDULER REQUESTS · . · · 8.5 SYSTEM TABLES USED BY EXP · · · · 8.5.1 Call Table (CALL) · · · · 8.5.2 Job Execution Table (JXT)

8.5.3 Queued Dataset Table (QDT)
8.5.4 System Dataset Table (SOT) · 8.6 USER AREA TABLES USED BY EXP · · · 8.6.1 Dataset Definition List (DOL)
8.6.2 Dataset Name Table (DNT) · · 8.6.3 Dataset Parameter Table (DSP)
8.6.4 Job Communication Block (JCB)
8.6.5 Logical File Table (LFT) · · 8.6.6 Open Dataset Name Table (ODN)
8.6.7 Permanent Dataset Definition
8.6.8 Security Swap Table (SWT) · 8.6.9 Task Control Block (TCB) · · 8.6.10 User Security Privilege Table

8.7 JOB RERUN · · · 8.8 REPRIEVE PROCESSING
8.9 IRRECOVERABILITY OF JOBS

JOB SCHEDULER (JSH)

9.1
9.2
9.3
9.4

INTRODUCTION • •
JSH DESIGN PHILOSOPHY
JXT ALLOCATION • • • • •
MEMORY ALLOCATION

· · ·

· · · · · · · ·
· ·

· · · ·
·

· · · · · (PDD)

· · · · · · (UPT)

· ·

9.4.1 Roll time versus responsiveness ••

· ·

· · · · · · · · · ·

· · · ·

· ·
· · · ·

· ·
· ·

9.4.2 Memory request queue • • •••

9.5
9.6

9.4.3 Memory priority.
9.4.4 Thrash locks •••••
9.4.5 Allocation flag
9.4.6 Tables used by allocation
CPU CONNECTION • • • • • • • • • • • • •
MEMORY MANAGEMENT • • • • • • •
9.6.1 JSH management of user memory

· · ·

· · ·

·
·

· ·
· ·

Deciding who gets memory • • • •
Expansion space •••••• • • • • • •
Allocating, deallocating, and compacting

· · ·

· · ·

·
·

· ·
· ·

memory • • • • • • • • • • • • • • • • •

SM-0040 xiv

· · · ·

· ·

·

· · · ·
· · · ·

· ·

·

· ·
· ·

7-3
7-3
7-3

8-1

8-2
8-23
8-24
8-25
8-25
8-26
8-26
8-26
8-26
8-27
8-27
8-27
8-27
8-28
8-28
8-28
8-29
8-29
8-29
8-29
8-29
8-31
8-32

9-1

9-1
9-2
9-3
9-5
9-5
9-5
9-5
9-7
9-7
9-7
9-13
9-17
9-17
9-18
9-18

9-20

C

9.7
9.8

9.9

9.6.2 Management of a job's memory
User requests • • • • • •
System requests •••••
J$ALLOC request processing • • • • • •

JOB INITIATION • • • • • • • • • • • • • •
JOB STATUS • • • • • • • • • • • • • • • •
9.8.1 Status changes involved in CPU swapping
9.8.2 Status changes involved in memory swapping.
9.8.3 Status changes involved in job suspension

and resumption • • • •
JSH INTERFACE WITH OTHER TASKS
9.9.1 Calling sequence ••
9.9.2 Initialize request.
9.9.3 Allocate request ••
9.9.4 Await request
9.9.5 Delay request
9.9.6 Suspend request
9.9.7 Stop request ••••••
9.9.8 Clear request
9.9.9 Abort request
9.9.10 Rerun request
9.9.11 Delete request •
9.9.12 I/O-suspend request
9.9.13 I/O-resume request ••
9.9.14 Resume request.
9.9.15 Start request ••••••
9.9.16 Index request
9.9.17 Start all request
9.9.18 Stop all request
9.9.19 Recover request
9.9.20 Shutdown request. • ••••••••
9.9.21 Remove K request •••• • • •••
9.9.22 Invoke request •••••••••••
9.9.23 User roll request • • • • • •••
9.9.24 Change priority request ••••
9.9.25 Force job into memory request
9.9.26 Get memory request ••••••
9.9.27 Return memory request •••••••••••
9.9.28 Initialize user task request ••
9.9.29 Activate user task request ••
9.9.30 Deactivate user task request ••••
9.9.31 Single thread user task request ••••••
9.9.32 Process user task deadlock request ••

10. PERMANENT DATASET MANAGER (PDM)
10.1 FUNCTIONS •••••• • • • • • • • • • • • •

10.1.1 Save user dataset processing (function code
10) ••••••••••••••••

10.1.2 Save input or output dataset processing
(function codes 12, 14) ••••••••

SM-0040 xv

9-21
9-21
9-22
9-23
9-28
9-29
9-34
9-34

9-35
9-36
9-38
9-41
9-42
9-45
9-46
9-47
9-48
9-48
9-49
9-49
9-50
9-51
9-51
9-52
9-52
9-53
9-53
9-54
9-54
9-55
9-55
9-56
9-57
9-57
9-58
9-59
9-59
9-60
9-60
9-61
9-61
9-62

10-1

10-2

10-4

10-4

C

10.2
10.3

10.4

10.1.3 Access processing (function codes 20, 26)
10.1.4 Delete processing (function codes 30, 36)
10.1.5 Page request processing (function codes 40

and 41) •••••••••••••••••
10.1.6 Load processing (function codes 50, 52, 54)
10.1.7 PDS/release processing (function code 60)
10.1.8 PDN request processing (function code 70)
10.1.9 Dump time processing (function code 100) ••
10.1.10 Dequeue SOT processing (function code 110)
10.1.11 Queue SOT processing (function codes 120,

122, 124) ••••••••••••••••••
10.1.12 Adjust processing (function code 130)
10.1.13 Modify processing (function code 140)
10.1.14 SDT rewrite processing (function code 150)
10.1.15 Pseudo-access processing (function code 160)
10.1.16 PDSDUMP access processing (function codes

170, 176) ••••••••••
10.1.17 Permit processing (function code 200) •••••
POD STATUS •
TABLES USED BY PDM • • • • • • • • • • •
10.3.1 Class Structure Definition Table (CSD)
10.3.2 Dataset Allocation Table (DAT) ••••
10.3.3 Dataset Name Table (DNT)
10.3.4 Device Reservation Table (DRT)
10.3.5 Dataset Catalog (DSC) ••••
10.3.6 Dataset Parameter Area (DSP) •
10.3.7 Dataset Catalog Extension (DXT)
10.3.8 Equipment Table (EQT) •••••
10.3.9 Job Communication Block (JCB)
10.3.10 Job Table Area (JTA) •••••
10.3.11 Job Execution Table (JXT)

.

10.3.12 Permanent Dataset Definition Table (PDD) ••••
10.3.13 Permanent Dataset Information Table (POI)
10.3.14 Permanent Dataset Table (PDS)
10.3.15 Queued Dataset Table (QDT) •••••
10.3.16 System Dataset Table (SDT)
10.3.17 DXT Allocation Table (XAT) •••••••
THEORY OF OPERATION •• • • • • • • • • • • •

11. LOG MANAGER (MSG)

11.1

11.2
11.3

SM-0040

LOG PROCESSING ••••••••••
11.1.1 System log processing ••••
11.1.2 User log processing ••••
TASK CALLS TO MSG ••• • • •
SYSTEM TABLES USED BY MSG
11.3.1 Active User Table (AUT)
11.3.2 Dataset Parameter Area (DSP)
11.3.3 Job Table Area (JTA) •••
11.3.4 Job Execution Table (JXT) ••••••
11.3.5 Log JXT Table (LGJ) ••••

xvi

10-4
10-6

10-6
10-7
10-7
10-7
10-7
10-8

10-8
10-8
10-8
10-9
10-9

10-9
10-10
10-10
10-14
10-14
10-14
10-14
10-15
10-15
10-15
10-15
10-16
10-16
10-16
10-16
10-16
10-17
10-17
10-17
10-17
10-17
10-17

11-1

11-1
11-1
11-3
11-4
11-6
11-6
11-6
11-7
11-7
11-7

c

11.3.6 Permanent Dataset Definition Table (PDD) • · 11.3.7 System Dataset Table (SOT) · · · · · · · 11.4 $SYSTEMLOG FORMAT · · · · · · · · · · · · · · 11.4.1 Type 0 - Null messages · · · · 11.4.2 Type 1 - ASCII string messages
11.4.3 Type 2 - Station Call Processor messages · 11.4.4 Type 3 - Hardware messages · · 11.4.5 Type 4 - Accounting messages · · · · · · · · 11.4.6 Type 5 - Startup messages · · · · · · · · · 11.4.7 Type 6 - System performance messages · · · · · · 11.4.8 Type 7 - Task debug messages · · · · 11.5 SLOG FORMAT . . . · · · · · · · · · · · · · ·

12. MESSAGE PROCESSOR (MEP) ·
12.1 EXEC MEMORY ERROR MESSAGE FORMAT • •
12.2 I/O SUBSYSTEM INTERFACE •••• • • • •
12.3 I/O SUBSYSTEM HARDWARE ERROR MESSAGE FORMATS •
12.4 ASCII MESSAGES • • • • • • • • • • • • • • •

13. DISK ERROR CORRECTION (DEC)

13.1 DEC INTERFACE WITH OTHER TASKS •
13.2 SYSTEM TABLE USED BY DEC ••••

· ·
14. SYSTEM PERFORMANCE MONITOR (SPM)

14.1 SYSTEM TABLES USED BY SPM
14.1.1 Class Structure Definition Table
14.1.2 Device Channel Table (OCT) · · · 14.1.3 Interrupt Count Table (IC) · · · 14.1.4 Monitor Call Table (MCT)
14.1.5 System Task Table (STT)

14.2 CONTROL PARAMETERS · · · · · · 14.3 METHOD OF DATA COLLECTION · · 14.4 DATA COLLECTION AND RECORD DEFINITION · 14.5 TASK FLOW FOR SPM · · · · · · · · · · ·
15. JOB CLASS MANAGER (JCM) ••••

15.1
15.2

SM-0040

JOB CLASS ASSIGNMENT • • • • •
JCM INTERFACE WITH OTHER TASKS • • • • •
15.2.1 Classify request ••••••
15.2.2 Reclassify request •
15.2.3 Assign request ••
15.2.4 Fixc1ass request •

xvii

(CSD) ·
· · · · · · · · · · · · · ·

11-7
11-8
11-8
11-10
11-10
11-11
11-11
11-12
11-12
11-13
11-13
11-13

12-1

12-1
12-1
12-2
12-3

13-1

13-1
13-2

14-1

14-1
14-1
14-1
14-1
14-2
14-2
14-2
14-3
14-3
14-10

15-1

15-1
15-2
15-3
15-4
15-4
15-5

c

16. OVERLAY MANAGER (OVM) •••••

16.1

16.2

16.3

SYSTEM TABLES USED BY OVM • • • •
16.1.1 Overlay Call Stack (OCS)
16.1.2 Overlay Control Table (OCT)
16.1.3 Overlay Directory Table (ODT)
16.1.4 Overlay Load Request List (OLL) •••••
USING OVM FUNCTIONS ••••••••• • • • •
16.2.1 Initial load overlay request. • •••
16.2.2 Transfer of control requests ••••••••
16.2.3 Inhibiting overlay reuse ••••
16.2.4 Returning to called overlay
OVM REQUEST PROCESSING • • • • • • • •
16.3.1 OV$FCLD request (LOADOVL) processing •
16.3.2 OV$FCCL request (CALLOVL) processing •
16.3.3 OV$FCGO request (GOTOOVL) processing •
16.3.4 OV$FCDIS request (DISABLE) processing
16.3.5 OV$FCRTN request (RTNOVL) processing •

17. TAPE QUEUE MANAGER • • • • • • •

17.1
17.2
17.3
17.4
17.5

SYSTEM TABLES USED BY TQM
TQM INTERFACE WITH THE I/O SUBSYSTEM •
TQM INITIALIZATION • • • • • • •
DELAYED FUNCTION PROCESSING
I/O SUBSYSTEM REPLY PROCESSING •
17.5.1 Reply packet format ••••
17.5.2 Types of I/O Subsystem replies
17.5.3 I/O Subsystem reply processor structure
17.5.4 Reply-exit address •••••••••
17.5.5 Initialization subfunction (TQPXR) ••
17.5.6 Write tapemarks and rewind function
17.5.7 Continue read function. • •••••
17.5.8 Free-device function ••••••••••••••
17.5.9 Read-block function •••••
17.5.10 Remount or mount processing function.
17.5.11 Rewind function •• • • • • •••
17.5.12 Write-tapemark function
17.5.13 Unload-volume function ••
17.5.14 Write-block function •••

17.6 COS AND OPERATOR REQUEST PROCESSING

SM-0040

17.6.1
17.6.2
17.6.3

17.6.4
17.6.5
17.6.6
17.6.7
17.6.8

SCP reply
Operator command • •
CIO requests •
F$RDC request
F$WDC request
F$CLS close request
F$OPN open request • • • • • •
F$PDM delete request • •
F$PDM save request • •
T$POS position request •

xviii

16-1

16-2
16-2
16-2
16-2
16-2
16-3
16-3
16-4
16-5
16-6
16-7
16-7
16-8
16-8
16-9
16-9

17-1

17-2
17-2
17-3
17-3
17-4
17-4
17-4
17-5
17-6
17-7
17-8
17-9
17-9
17-10
17-13
17-14
17-16
17-17
17-18
17-21
17-22
17-22
17-23
17-24
17-24
17-24
17-25
17-26
17-26
17-26

C

17.7
17.8

17.9

17.6.9 F$RLS release request · · · · · · 17.6.10 Sequencer requests (TQPSI or TQPSN)
IDLE-LOOP PROCESSING · · · · · · · · · · · · TQM STEPFLOWS · · · · · · · · · · · · · 17.8.1
17.8.2
17.8.3
17.8.4

17.8.5

17.8.6

17.8.7
17.8.8
17.8.9

17.8.10

General flow for dataset access processing · General flow for open processing • • • • • •
General flow for write dataset processing
General flow for beginning of volume

validation (TQ$WB300) ••••••••••
General flow for I/O Subsystem write reply

processing •• • • • • • • • • •
General flow for volume switch during write

(TQ$WB200) • • • • • • • • • • • • •
General flow for rewind/close processing • •
General flow for read dataset processing • •
General flow for beginning of volume read

validation (TQ$RB300) • • • • • • •
General flow for I/O Subsystem read reply

processing • • • • • • • • • • • • • • • •
17.8.11 Process trailer labels (TQ$RB190) ••••
17.8.12 Process volume switch for read (TQ$RB200)
17.8.13 General flow for close processing
17.8.14 General flow for release processing
17.8.15 Process tape positioning request.
TQM TRACE BUFFER • • • • • • • • • • • • • • • •

IS. STAGER (STG)

18.1 TABLES USED BY STAGER · · · · · · · · 18.1.1 Permanent Dataset Definition (PDD) · · 18.1.2 System Dataset Table (SDT) · · · · · · · lS.1.3 Stager Stream Table (SST) · · · · · · · 18.2 OVERVIEW OF STG PROCESSING · · · · 18.2.1 Input processing · · · lS.2.2 Output processing · · · · · · Output termination phase
18.3 SCP/STG COMMUNICATION

18.3.1 SCP message request codes · · · · · · 18.3.2 STG message reply codes
18.4 STG BUFFER MANAGEMENT · · · · · · · · · · · · · 18.5 MESSAGE REQUEST CODES AND VALID RESPONSES
18.6 DATASET STAGING EXAMPLES · · · · · · · · · · · · 18.7 DATASET TRANSFER TERMINATION PROCESSING · · · ·

19. FLUSH VOLATILE DEVICE (FVD)

19.1 FVD interface with other tasks · 19.2 System tables used by FVD · · · · · · 19.3 FVD general flow . . . · · · · · · · · · 19.4 Interaction between FVD and Startup · · · · · ·

SM-0040 xix

· · · ·

· ·

· · · ·

· ·

17-27
17-27
17-29
17-30
17-30
17-31
17-31

17-32

17-33

17-34
17-35
17-37

17-37

17-38
17-40
17-41
17-41
17-42
17-43
17-43

18-1

18-1
18-1
18-1
18-2
18-2
18-4
18-6
18-7
18-7
18-S
18-S
18-10
lS-10
18-11
lS-14

19-1

19-1
19-2
19-2
19-3

C

20. CONTROL STATEMENT PROCESSOR (CSP)

20.1

20.2

20.3
20.4

SYSTEM TABLES USED BY CSP
20.1.1
20.1.2

Dataset Parameter Area (DSP)
Job Communication Block (JCB)

20.1.3 Logical File Table
THEORY OF OPERATION

CSP load process •

(LFT)

20.2.1
20.2.2 Entry and exit conditions

Entry condition

20.2.3
20.2.4

Exit conditions
Begin job
Crack statements •

20.2.5 Process statements •
System calls •
Parameters •

20.2.6 Advance job
20.2.7 Error exit processing
20.2.8 End job
RECOVERY STATUS MESSAGES •
CSP STEP FLOW

APPENDIX SECTION

A.

B.

THE COS SECURITY SYSTEM

A.l
A.2

A.3

THE USER •
COS SECURITY MANAGEMENT
A.2.1 Defining user profiles •
A.2.2 Defining system privileges •
SECURITY IMPLEMENTATION
A.3.1 Security management utilities
A.3.2
A.3.3
A.3.4

Account statement
System action requests •
Data security
Password blanking
Control statement suppression
Password encryption
Secure datasets

ADDING A TASK

B.l
B.2
B.3
B.4
B.5
B.6
B.7

TASK ID
INTERTASK COMMUNICATION
TASK I/O •
TASK SUSPENSION
TASK CREATION
TASK EXECUTION •
MODIFICATION TO FDUMP

SM-0040 xx

., .

20-1

20-1
20-1
20-1
20-2
20-2
20-2
20-2
20-3
20-4
20-4
20-4
20-4
20-5
20-5
20-5
20-5
20-6
20-6
20-7

A-I

A-I
A-I
A-2
A-2
A-3
A-4
A-4
A-S
A-6
A-6
A-6
A-6
A-7

B-1

B-1
B-2
B-3
B-3
B-3
B-3
B-4

C

FIGURES

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8

Elements of CRAY-oS
Memory assignment •
Expansion of a user area
Expansion of COS resident •
Mass storage organization •
CRAY-l Exchange Package •
CRAY X-MP Exchange Package
Exchange Package management •
Overview of COS I/O •
EXEC-controlled exchange sequences
System control

1-9
2-1
2-2
2-3
2-4
2-5
2-6
3-1
4-1

Channel Table linkage with assigned task
Channel Table linkage for packet I/O
Task scheduling table linkages.
Memory Er ror Log (MEL)
Task communication tables •
Dataset table linkages
TIO logical read
TIO logical write •
Physical I/O
Memory allocation tables
Chain tables

4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
6-1
6-2

System Buffer memor~ management •
System Buffer control words •
Initialized System Buffer •
System Buffer space allocation
System Buffer space deallocation
DQM Allocation interface

6-3
6-4
6-5

DQM Deallocation interface
DQM Queue I/O interface •
DQM table linkages
DAT structure •

6-6 DCU-2, DCU-3 controller configuration
6-7 DCU-4 controller configuration
7-1 Header when queue is empty
7-2 Queue with two entries
9-la Memory priority variation
9-lb Memory priority variation
9-lc Memory priority variation
9-ld Memory priority variation •
9-le Memory priority variation •
9-2 Time slice for CPU-bound user task. •
9-3 Time slice for I/O-bound user task. •
9-4 CPU competition •
9-5 Suspended user task •
9-6 Interactive user task •
9-7 Memory allocation •
9-8a - 9-8e Memory management
9-9 Memory compaction •
9-10 The areas of a job's memory.

SM-0040 xxi

. .

· · · ·
· ·

· ·

· ·

· · ·

·

· ·
. . ·

·

·

1-3
1-6

· · 1-7

· · 1-8
1-15

· · 1-17
1-19
1-20
1-29
2-2
2-4

· · 2-9
2-10
2-15
2-70
3-4
4-2

· · 4-6
4-9
4-16
4-22
4-26

· · · 4-31

· · · 4-32
4-34
4-35
4-37

· · 6-2
6-2
6-3
6-5

· · 6-7

· · · 6-10
6-12
7-3

· · 7-4
9-10

· 9-11
9-12
9-12

· · · 9-13
9-15
9-15
9-16
9-16
9-17
9-19
9-19
9-20
9-22

C

FIGURES (continued)

9-11 Decreasing the user code/data area
9-12 Decreasing the buffer area · · · · · · . · · 9-13 Decreasing the user code/data area · . · · · · 9-14 Decreasing the buffer area · · · · 9-15 Increasing the JTA area . . · · · · · · 9-16 Increasing the user code/data area
9-17 Increasing the buffer area · · · · 9-18 Increasing the user code/data area
9-19 Increasing the buffer area · · · · · · · · 9-20 Increasing the field length · · · · · 9-21 Decreasing the field length · · · · · · . · · · · 9-22 Normal transitions between job states · · · . · · · · 20-1 CSP control statement flow diagram

TABLES

2-1 Address bits in word 0, depending on mainframe models
2-2 EXEC stop messages • • • • • • • •
9-1 DNT initialization • • • • • • • • •
9-2
9-3
9-4
10-1

Status bit assignments
Status-change sequences • •
JSH functions • • • • •
PDD status ••••••

11-1 ASCII message subtypes • • • • ·
14-1 Task usage record - subtype 2 • • • • • • • •
14-2 EXEC requests record - subtype 3 ••••
14-3 User memory usage record - subtype 4
14-4 Disk usage record - subtype 5 • • •
14-5 Disk channel usage record - subtype 6 •

·

· ·

· · · ·

14-6 Link usage record - subtype 7 • • • • • • •
14-7 EXEC call usage record - subtype 8 • • • • • • • •
14-8 User call usage record - subtype 9 • • • • • • • •
14-9 Job Scheduler management statistics record - subtype 11 •
14-10 Job class information record - subtype 12 : • • • • • • •
14-11 CPU usage record - subtype 13 • • • •
14-12 Interrupt count record - subtype 14 • •
15-1 JCM functions • • • • • • • • • • • • • • • •

GLOSSARY

INDEX

SM-0040 xxii

9-24
9-24
9-25
9-25
9-25
9-26
9-26
9-27
9-27
9-28
9-28
9-33
20-8

2-66
2-84
9-30
9-31
9-32
9-39

10-10
11-11
14-4
14-5
14-5
14-6
14-6
14-7
14-7
14-8
14-8
14-9
14-9
14-10
15-3

C

INTRODUCTION

1.1 GENERAL DESCRIPTION

CRAY-OS (COS) is a multiprogramming operating system for the Cray
Computer System. The operating system provides efficient use of system
resources by monitoring and controlling the flow of work presented to the
system in the form of jobs. The operating system centralizes many job
functions such as input/output and memory allocation and resolves
conflicts when more than one job is in need of resources.

1

CRAY-OS is a collection of programs that, following startup of the system,
resides in CRAY-l or CRAY X-MP Central Memory, on system mass storage,
and in the I/O Subsystem (on some models). (Startup is the process of
bringing the computer and operating system to an operational state.)

Jobs are presented to the Cray mainframe by one or more computers
referred to as front-end systems, which may be any of a variety of
computer systems. Since a front-end system operates asynchronously under
control of its own operating system, software executing on the front-end
system is beyond the scope of this publication.

Cray Research, Inc., products, the FORTRAN compiler, the CAL assembler,
the UPDATE program, and utility programs, execute as parts of user jobs
and are described in separate publications.

The operating system is available in two forms: (1) preassembled into
absolute binary programs in an executable form and (2) source language
programs in the form of UPDATE program libraries. UPDATE is a system
program used to maintain programs and other data on permanent datasets.
See the UPDATE Reference Manual, CRI publication SR-0013.

The binary form of the program is provided for the installation of the
basic system. The UPDATE decks provide a means for modifying and
updating source code and for generating an installation-tailored system
in binary form by reassembling the modified programs.

Details for generating, installing, and starting up the operating system
are given in the COS Operational Procedures Reference Manual, publication
SM-0043.

SM-0040 1-1 C

SOFTWARE CONFIGURATION INTRODUCTION

1.2 SOFTWARE CONFIGURATION

The Cray computer requires three types of software: an operating system,
language systems, and applications programs. The I/O Subsystem, when
present, also requires its own software. The internal features of the
I/O Subsystem Software are described in the lOS Software Internal
Reference Manual, CRI publication SM-0046.

1.2.1 CRAY OPERATING SYSTEM (COS)

The Cray Operating System (COS) consists of memory resident and mass
storage resident programs that

• Manage resources,

• Supervise job processing, and

• Perform input/output operations.

COS also contains a set of disk resident utility programs. The operating
system is activated through a system startup operation performed from a
Maintenance Control Unit (MCU), which can be an I/O Subsystem. A job can
consist of a compilation or assembly of a program written in some source
language such as FORTRAN, followed by execution of the program resulting
from the compilation or assembly.

COS consists of the following modules that execute on the mainframe
central processing unit(s) (CPUs) (figure 1-1):

Executive (EXEC)
System Task Processor (STP)
Control Statement Processor (CSP)
Utility programs (not shown)

EXEC (described in section 2) runs in monitor mode and is responsible for
control of the system. It schedules STP tasks, manages exchange
packages, performs I/O, and handles all interrupts. EXEC has access to
all of memory.

STP (described in section 3) runs in object program (user) mode. It
accesses all memory other than that occupied by EXEC and is responsible
for processing all user requests. STP is composed of a number of
programs known as tasks, each of which has its own exchange package.

The Control Statement Processor (CSP), described in section 20, is
responsible for interpreting all job control statements and for either

SM-0040 1-2 C

INTRODUCTION SOP'lWARB CONFIGURATION

performing the requested function or making the appropriate system
request. An installation option specifies whether an image of CSP
resides after the STP area in memory or whether it resides on disk. In
either case, it is copied into a user field for execution.

Utility programs (described in the COS Product Set Internal Reference
Manual, publication SM-004l) include the loader (LOR), a library
generation program (BUILD), a source language maintenance program
(UPDATE), permanent dataset utility programs, copy and positioning
routines, and so on.

CSP Jobs

STP

EXEC

Figure 1-1. Elements of CRAY-OS

Images of utility programs are resident on disk storage and are summoned
through control statements for loading and execution in the user field.

1.2.2 LANGUAGE SYSTEMS

Currently, five language systems developed by Cray Research, Inc., are
provided for the Cray Computer System. They are the FORTRAN compiler

I (CFT), the Cray Assembly Language program (CAL), the Pascal compiler, the
SKOL macro translator, and A Programming Macro Language (APML) for the
I/O Subsystem.

I

SM-0040 1-3 C

SOF'lWARE CONFIGURATION INTRODUCTION

FORTRAN compiler

Developed in parallel with the Cray Computer System, the Cray Research,
Inc., FORTRAN compiler is designed to take advantage of the vector
capability of the various computers.

The compiler itself determines the need for vectorizing and generates
code accordingly, removing such considerations from the programmer.
Optimizing routines examine FORTRAN source code to see if it can be
vectorized. The compiler conforms with ANSI FORTRAN 77 standards.

A description of the design of the compiler is outside the scope of this
publication, but is included in the Cray FORTRAN (CFT) Internal Reference
Manual, publication SM-OOI7.

CAL assembler

The CAL assembler provides users with a means of expressing all hardware
functions of the CPU symbolically. Augmenting the instruction repertoire
is a set of versatile pseudo instructions that provides users with
options for generating macro instructions, organizing programs, and so
on. Programs written in CAL may take advantage of Cray Research-provided
system macros that facilitate communication with the operating system.
CAL enables the user to tailor programs to the architecture of the Cray
computers. Much of the operating system as well as other software
provided by Cray Research, Inc., is coded in CAL.

A description of the design of the CAL assembler is beyond the scope of
this publication. See the CAL Assembler Version 1 Reference Manual, CRI
publication SR-OOOO, for assembler information.

Pascal compiler

I The Cray Research, Inc., Pascal compiler supports the International
Standards Organization (ISO) Version 1 Pascal standard. Cray Pascal also
includes extensions to the ISO standard. The compiler optionally issues
messages identifying these extensions to help transport a program to a
machine running a different implementation of the language.

I

The Pascal Reference Manual, CRI publication SR-0060, describes the
language and notes all Cray Research, Inc., extensions. The Pascal
Internal Reference Manual, CRI publication SM-006l, describes the design
of the compiler.

SM-0040 1-4 C

INTRODUCTION SOF'lWARE CONFIGURATION

APML assembler

The APML assembler executes on the mainframe CPU and generates absolute
code that is executable in the Cray I/O Processors. APML allows the
system programmer to express symbolically all hardware functions of a
Cray I/O Processor. It is used to generate the I/O Subsystem software.

APML has a full range of symbolic instructions, which allow the APML user
to fully use the I/O Processors arithmetic and I/O instructions,
registers, and memory. In addition, APML provides a number of macro,
conditional assembly, and pseudo instructions that simplify the task of
creating assembly language programs.

APML is described in the APML Reference Manual, CRI publication SM-0036.

SKOL macro translator

SKOL, a high-level programming language that stresses readability and
extensibility, offers the user a well structured language while retaining
the power and efficiency of the CFT compiler. SKOL is translated into
FORTRAN code by a set of string-processing macro instructions. By adding
to these instructions, the user can extend the language to suit
individual needs. By inserting macros directly into the SKOL source
program, the programmer can define changes in the language for a specific
run.

SKOL is described in the SKOL Reference Manual, CRI publication SR-0033.

1.2.3 LIBRARY ROUTINES

Cray software includes a group of subprograms that are callable from user
I programs. These subprograms reside in the $FTLIB, $PSCLIB, $SYSLIB,

$ARLIB, $IOLIB, $UTLIB, and $SCILIB libraries. They are grouped by
UPDATE deck name within each library. The subprograms are divided among
the libraries on a functional basis.

I

1.2.4 APPLICATIONS PROGRAMS

Applications programs are specialized programs usually written in a
source language such as FORTRAN to solve particular user problems. These
programs are generally written by customers and are not described in this
publication.

SM-0040 1-5 C

SYSTEM RESIDENCE INTRODUCTION

1.3 SYSTEM RESIDENCE

The system components reside in areas of memory defined during startup
(section 5). This section describes the locations of the various
components of the operating system without attempting to explain what
they are. The components are described in later sections.

o

COS
resident

User areal

User area2

User area3

· · ·
User arean

COS resident

Figure 1-2. Memory assignment

Figure 1-2 illustrates the general contents of memory following startup.
Figure 1-3 illustrates the general layout of a user area at job
initiation. Figure 1-4 itemizes the memory resident portions of the
operating system.

t Installation parameter that defines maximum memory in words

SM-0040 1-6 C

IN'lBODUC'.rION SYSTEM RBSIDBRCB

User BA-I@IJTLt

User BA

User BA+200 S

JCHLM

JCLFT

User LA-I

Job Table Area

Job Communication
Block

User program

Dataset buffers
and I/O tables

Figure 1-3. Expansion of a user area

1.3.1 EXEC CONSTANT, DATA, AND TABLE AREAS

User
Field

The EXEC constant area contains all EXEC constants. The constants are
functionally grouped, and include:

Constant memory locations
Front-end Driver constants
Packet I/O Driver constants

The EXEC data area contains all EXEC data not in the form of tables. The
data in this area is functionally grouped, and includes:

Initial and warm-boot exchange packages (at location 0)
Space reserved for DDC (SYSDUMP utility)
Identification (at location 1400 octal;
Pointers to EXEC tables
Stop message buffer
X-MP cluster register dump area

t This value is correct at job initiation and until JTA expansion occurs.

SM-0040 1-7 C

SYSTEM RESIDENCE

Disk/SSD Driver data
Packet I/O Driver data
Front-end Driver data
Miscellaneous data
EXEC messages

o

XMTR

CSPBASE

CSPEND

EXEC constant, data and table areas

EXEC program area

STP table area

STP program area

CSP area t

Available
for
jobs

Memory for CRAY-OS
System Log and station

buffers

Figure 1-4. Expansion of COS resident

INTRODUCTION

The EXEC table area contains all EXEC tables, alphabetically ordered.
Most table layouts are described in the COS Table Descriptions Internal
Reference Manual, CRI publication SM-0045. The other tables are
internally documented. The tables are:

t This area is available for jobs if CSP resides on disk.

SM-0040 1-8 C

IftBODUC'.rION SYSTEM RESIDENCE

"
CAT Channel Address Table

CBT Channel Buffer Table containing one entry of working storage for
each disk driver channel.

CHT Channel Table containing a I-word entry for each side (input and
output) of a physical channel. An entry contains a pointer to
the Channel Processor Table for the channel-assigned task ID and
the address of the channel processor assigned to the side of the
channel. Input sides are assigned even numbers: output sides odd
numbers.

CLT Channel Limit Table

CXT Channel Extension Table

FIQ Free input packet queue

FOQ Free output packet queue

ICT Interrupt Count Table

IHT Interrupt Handler Table

MCT Monitor Count Table

MEL Memory Error Log Table

MRT Monitor Request Table

PWS Processor working storage

RMS Read Margin Select Table

SCT Subsystem Control Table

STT System Task Table consisting of three parts: a header, a task
parameter word area, and an exchange package area

STX System Task Exchange Package Table

TBT Task Breakpoint Table

TET Time Event Table

XFT History Function Table

XTT History Trace Table

SM-0040 1-9 c

SYSTEM RESIDENCE INTRODUCTION

1.3.2 EXEC PROGRAM AREA

Included in the area occupied by the System Executive (EXEC) are
interrupt handlers, channel processors, task scheduler, the drivers
(disk, I/O Subsystem, and front end), system interchange, request
processors, and debug aids. EXEC has a base address (BA) of 0 and a
limit address (LA) equal to the installation parameter I@MEM. EXEC is
described in section 2 of this manual.

1.3.3 SYSTEM TASK PROCESSOR (STP) TABLE AREA

This area contains tables accessible to all STP tasks (not necessarily in
the order noted).

AUT Active User Table containing an entry for each logged on
interactive user

CMCC Communication Module Chain Control for controlling task-to-task
communication. It is a contiguous area containing an entry for
each combination of tasks possible within the system. The CMCC
is arranged in task number sequence. The IDs of the requesting
task and requested task determine the appropriate CMCC entry.

CMOD Communications modules in 6-word groups that form a pool from
which they are allocated as needed. Two words are used as
control: two are used as input registers; and two are used as
output registers. A task receives all of its requests and makes
all of its replies through a CMOD.

CNT Configuration Table containing information on the availability
and type of each device known to the systemt

CPT Class Parameter Table used by JCM. It contains all job
statement parameters used to determine the job class.

CSD Class Structure Definition Table containing the job class
structure. For each class defined in the structure, there is a
class map: these appear in CSD in descending order. A header
precedes the class maps. Variable length characteristic
expressions for each class follow the maps.

OAT Dataset Allocation Table. A OAT exists for each dataset known
to the system and defines where the dataset logically resides on
mass storage, that is, on which logical devices and what portion
of a device.

t Currently used only for tape devices

SM-0040 1-10 C

I

I

INTRODUCTION SYSTEM RBSIDERCB

OCT Device Channel Table serving as a link between a physical or
logical disk channel and the EQT. It is an interface to the
EXEC disk driver. The OCT holds channel system performance
data.

DRT Device Reservation Table. A DRT exists for each logical disk
device known to the system. A DRT contains a bit map showing
available and reserved tracks on the device.

DXI Permanent Dataset Catalog Extension Information Table
containing information used by the Permanent Dataset Manager
(PDM) such as the size of the Dataset Catalog Extension Table
(DXT)

ECT Error Code Table for controlling abort and reprieve processing
done by EXP. It contains a I-word entry for each system error
code and is defined using the ERDEF macro.

EQT Equipment Table containing an entry for each disk device known
to the system

GRT Generic Resource Table containing an entry for each generic
resource in the system.

IBT Interactive Buffer Table for managing the Interactive Buffer
Pool

JXT Job Execution Table. The JXT controls all active jobs in the
system and can contain as many as 256 entries. Entry 0 (the
first entry) is used to represent the system itself.

LeT Link Configuration Table containing an entry for each CPU
channel used for front-end communications

LIT Link Interface Table. SCP assigns an LIT entry at startup to
each CPU channel used for front-end communications. This table
is used primarily for channel control.

LXT Link Interface Extension Table. EXEC assigns an LXT entry for
a front-end station at log-on time and releases the entry at
log off. This table is used primarily for EXEC-STP
communication of information on a front-end station.

MST Memory Segment Table containing an entry for each segment of
memory allocated by the Job Scheduler (JSH) as well as an entry
for each free segment. The number of entries in the MST is set
to twice the number of JXT entries plus four words. Each MST
entry is one word in length.

SM-0040 1-11 C

I

SYSTEM RBSIDBRCB IltTRODUCTION

ODT Overlay Directory Table. Each overlay defined by a DEFINOVL
macro contains an entry in the ODT. Each entry contains
addressing information and data on the overlay's use.

OLL Overlay Load Request List holding a backlog of requests for
overlays. When an overlay load is requested and the memory
pool is full, an entry is added to the OLL to be processed when
space becomes available.

PDI Permanent Dataset Information Table containing information used
by the Permanent Dataset Manager (PDM), such as the number of
overflow and hash pages.

PDS Permanent Dataset Table consis~ing of a l-word header followed
by a I-word entry for each active permanent dataset. The entry
indicates how a dataset is accessed and if multiple access
exists. If so, the entry tells how many users are accessing
the dataset.

PXT Processor Execution Table contains status information for each
physical processor, including which user task is currently
connected.

QDT Queued Dataset Table desc"ribing the multitype attributes for a
disposed dataset. The table is managed by the Permanent
Dataset Manager (PDM) and Exchange Processor (EXP) tasks. The
number of entries in the QDT must equal the SDT entry count.

RJI Rolled Job Index Table containing for each defined JXT, an
entry describing the job assigned to the JXT entry, allowing
the recovery of jobs from mass storage.

RQT Request Table used to queue transfer requests for disk
management. DQM uses the RQT to manage both logical and
physical disk requests. RQT entries are queued to an EQT entry.

SBU System Billing Unit Table containing the values obtained when
system billing units are calculated for system resources.

SDR System Directory containing a Dataset Name Table for each of
the datasets comprising the system library. The SDR is
initialized after a system startup.

SDT System Dataset Table containing an entry for each dataset
spooled to or from a front-end system. An SDT entry can have
appendages allocated out of an STP memory pool to contain TEXT
field and station slot information.

SM-0040 1-12 c

I

I

INTRODUCTION SYSTEM RESIDENCE

SST Stager Stream Table. Eight input stream and eight output
stream SSTs are contained within each LXT.

STPD STP Dump Directory containing pointers to task origins,
buffers, and so on. An entry gives a mnemonic in ASCII plus
the relative STP address for the area.

TDT Tape Device Table. The Tape Queue Manager task uses the Tape
Device Table to control online tape devices. The TDT contains
an entry for each tape device in the system.

TXT Task Execution Table contains all information to control all
user tasks within the system.

UCT User Call Table containing a count of the number of times each
type of user call is made. This table is used by the System
Performance Monitor (SPM).

Details of the STP tables are given in the COS Table Descriptions
Internal Reference Manual, publication SM-0045.

1.3.4 STP PROGRAM AREA

The System Task Processor (STP) consists of system tasks and reentrant
code common to all of the system tasks. System tasks cannot access the
memory area occupied by EXEC but can access the rest of memory.

Although system tasks are loaded into memory during startup, they are
recognized only through an Executive create system task request (usually
issued by the Startup task). The Startup task is a special case since it
executes only when the system is started up and is created by EXEC
itself. Recovery of rolled-out jobs executes as a portion of the Startup
task rather than as a separate task. STP is described further in section
3 of this publication.

1.3.5 CONTROL STATEMENT PROCESSOR (CSP) AREA

An image of CSP is maintained either in memory following STP or on mass
storage, depending upon the setting of an installation option. This
program is copied into each user field where it executes each time the
job requires interpretation of a control statement.

CSP is further described in section 20 of this publication.

SM-0040 1-13 C

I

SYSTEM RESIDENCE INTRODUCTION

1.3.6 USER AREA

The user area of memory is assigned to one or more jobs. Each job has an
area called the Job Table Area (JTA) preceding the field defined for the
user. A JTA is accessible to the operating system but not to the user.

The JTA contains job-related information such as accounting data; JXT
pointer; sense switches; areas for saving B, T, and V register contents;
control statement and logfile DSPs; a logfile buffer; and a DNT area,
which contains an entry for each dataset used by the job. In addition,
task control blocks (TCBs) defining attributes of each executable user
task are maintained in the JTA.

Each user field begins with a 128-word block called the Job Communication
Block (JCB), which contains a copy of the current control statement for
the job as well as other job-related information. The highest part of
the user field contains dataset buffers and I/O tables.

The user field, in addition to being used for user-requested programs
such as the compiler, assembler, and object programs, is also the area
where utility programs such as the loader, copy and positioning routines,
and permanent dataset utility programs execute. CSP also executes in the
user field.

Tables that may reside in the user field include the following:

BAT Binary Audit Table. This table contains an entry for each
permanent dataset that meets requirements specified on the AUDIT
control statement, and for which the user number matches the job
user number.

DDL Dataset Definition List. A DDL in the user field accompanies
each request to create a DNT.

DSP Dataset Parameter Area. A DSP in the user field contains the
status of a particular dataset and the location of the I/O
buffer for the dataset.

JAC Job Accounting Table. This table defines an area for data to be
returned to the user by an accounting request.

JCB Job Communication Block, residing at the very beginning of the
user area and containing information used by both COS and
library routines. Copies of the more important pointers are
kept in the job's JTA to assist in JCB validation and
re-creation.

SM-0040 1-14 C

I

INTRODUCTION MASS S'l'OBAGE SOBSYS'lBM ORGANIZATION

LFT Logical File Table. This table in the user field contains an
entry for each dataset name and alias referenced by FORTRAN
users. Each entry points to the DSP for a dataset.

ODN Open Dataset Name Table. A request to open a dataset for a job
contains a pointer to the ODN table in the user field.

PDD Permanent Dataset Definition Table. A PDD in CSP is used for
many permanent dataset requests.

See the COS Table Descriptions Internal Reference Manual, publication
SM-0045, for detailed descriptions of these tables. This table is
available as a listable tape.

1.4 MASS STORAGE SUBSYSTEM ORGANIZATION

Depending on the Cray computer model, mass storage consists of either
DO-19 or DD-29 Disk Storage Units and DCU-2, DCU-3, and DCU-4 Disk
Control Units. The controllers are Cray model~ependent. These
controllers are physically nonremovable.

Each disk storage unit contains a device label, datasets, and unused
space to be allocated to datasets (figure 1-5). Additionally, one disk
storage unit is designated as the master device and contains a table area
called the Dataset Catalog (DSC), which contains information about
permanent datasets •

DATASETS

MASTER
DEVICE

SM-0040

. ~

"- ~
".~

DEVICE

Figure 1-5. Mass storage organization

1-15

DEVICE

C

MASS STORAGE SUBSYSTEM ORGANIZATION IN'l'RODUC'l'ION

1.4.1 FORMATTING

Before a unit can be introduced into the system, it must be formatted.
Formatting is the process of writing cylinder, head, and sector
identification on the disk storage unit. This process is performed
off-line by field engineers. Unless addressing information has been
inadvertently destroyed, formatting is performed only once.

1.4.2 DEVICE LABEL (DVL)

A disk storage unit (DSU) must be labeled before it can be used by the
system. The Install program writes a Device Label Table (DVL) on one
track of each DSU. The DVLs act as the starting point for determining
the status of mass storage when the system is deadstarted or restarted.
The location of the DVL is usually, but is not required to be, the first
track on the device.

Flaw information

A DVL contains a list of flaws (bad tracks) for its DSU. Initial flaw
information is obtained from an engineering diagnostic run before the
Install program. This initial flaw information is stored on the device
in a special table called the Engineering Flaw Table (EFT). The EFT is
written to sector 1710 of the first track that can be succesfu1ly
reread on the device (no more than 10 tracks are tried). No EFT is
written if no track in the first 10 tracks can be written and reread
successfully. Install reads back each DVL after writing it to verify the
integrity of the DVL. If a DVL cannot be read back perfectly, then the
track is overwritten with a test pattern and a different track is tried.

The DVL is the last track written by Install so that all flaws, even any
discovered while trying to write the DVL itself, are recorded in the DVL.

Dataset Allocation Table (DAT) for DSC

The Device Label Table (DVL) for the master device maps the Dataset
Catalog (DSC) since it contains the complete Dataset Allocation Table
(DAT) for the DSC except for DAT page headers.

SM-0040 1-16 C

INTBODUCTION EXCHANGE MECHANISM

1.4.3 DATASET CATALOG (DSC)

The Device Label Table (DVL) for the master device states which tracks
comprise the Dataset Catalog (DSC). Similarly, the DSC states which
tracks comprise each of the currently cataloged datasets. Deadstart and
Restart update the Disk Reservation Table (DRT) in STP-resident memory to
reserve these dataset tracks so that the existence of permanent datasets
is known to the system when it is deadstarted or restarted, as opposed to
Install which assumes that all of mass storage is vacant. Special
consideration is given to job input and output datasets. Deadstart
deletes all input and output datasets, defined by flags in the DSC.
Entries for these datasets in the DSC are zeroed. Restart, on the other
hand, recovers the job input and output datasets.

1.5 EXCHANGE MECHANISM

The technique employed in Cray computers to switch execution from one
program to another is called the exchange mechanism. A 16-word block of
program parameters is maintained for each program. When another program
is to begin execution, an operation known as an exchange sequence is
initiated. This sequence causes the program parameters for the next
program to be executed and to be exchanged with the information in the
operating registers. Operating register contents are saved for the
terminating program and the registers entered with data for the new
program.

Exchange sequences are initiated automatically upon occurrence of an
interrupt condition or voluntarily by the user or by the operating system
through normal (EX) or error (ERR) exit instructions.

o
1

2

3

4-7

8-15

SM-0040

o 8 16 24 32 40

E I S IRI BI///I P I

C 1///1 BA I / / 1"-' IMM

////////////IRHI///I LA 1 M I

V//////////////I XA 1 VL 1 F I

///////////////////////////////////////1

SO to S7

Figure 1-6. CRAY-l Exchange Package

1-17

48 56 63
AO

Al

A2

A3

A4 to A7

C

EXCHANGE MECHANISM INTRODUCTION

Field

Error type (E)
Syndrome bits (S)
Read mode (R)
Bank error address (B)
Program register (P)
Chip error address (C)
Base address (BA)
Interrupt Monitor Mode bit (IMM)
High-order bits of memory error read
address (RH)
Limit address (LA)
Mode bits (M)
Exchange address (XA)
Vector length (VL)
Flag register (F)
Current contents of the eight A registers
Current contents of the eight S registers

Word

0
0
0
0
0
1
1
1

2
2
2
3
3
3
0-7
8-15

Bits

0-1
2-9
10-11
12-15
18-39
0-15
18-35
39

14-15
18-35
36-39
16-23
24-30
31-39
40-63
0-63

As shown in section 2, the System Executive (EXEC) is always a partner in
the exchange; that is, it is either the program relinguishing control or
receiving control. All other programs must return control to EXEC. The
contents of the interrupt flag register (F) are instrumental in the
selection of the next program to be executed.

1.5.1 EXCHANGE PACKAGE

An Exchange Package is a 16-word block of data in memory that is
associated with a particular computer program. An Exchange Package
contains the basic hardware parameters necessary to provide continuity
from one execution interval for the program to the next. The CRAY-l
Exchange Package is illustrated in figure 1-6; the CRAY X-MP Exchange
Package is illustrated in figure 1-7.

1.5.2 EXCHANGE PACKAGE AREAS

System hardware requires all Exchange Packages to be located in the first
4096 words of memory. In addition, the deadstart function expects an
Exchange Package to be at address O. This Exchange Package initiates
execution of EXEC and, consequently, the operating system. The EXEC
Exchange Package is either active or is in one of the other Exchange
Package areas (figure 1-8).

SM-0040 1-18 C

INTRODUCTION EXCBANGB MBCBANISM

PN
o

o 8 16 24 32 40 48 56 63

1

2

3

4

5

6-7

8-15

lEI S 1///1 P I

~I CS I B I11111I IBA IML1 I

~/I/IIII/IIII ILA IML2 I

V//i/i/I/IIIIIFI XA I VL I F I

/1/11/111/1111/111 DBA POI/I~CLN
Vi////IIIII/IIII/l DLA 11/1/1
/1////1//111//1////1/11////1///1/1///111

SO to S7

AO

Al

A2

A3

A4

AS

A6 to A7

Figure 1-7. CRAY X-MP Exchange Package

Field Word Bits

Processor number (PN) 0 1
Error type (E) 0 2-3
Syndrome bits (S) 0 4-11
Program Address register (P) 0 16-39
Read mode (R) 1 0-1
Read address (CSB) 1 2-6 (CS)J 7-11
Instruction Base Address (IBA) 1 18-34
Instruction Limit Address (ILA) 2 18-34
Mode register (M) 1-2 35-39
Vector not used (VNU) 2 0
Flag register (F) 3 14-15; 31-39
Exchange Address register (XA) 3 16-23
Vector Length register (VL) 3 24-30
Data Base Address (DBA) 4 18-34
Program State (PS) 4 35
Cluster Number (CLN) 4 38-39
Data Limit Address (DLA) 5 18-34
Current contents of the eight A registers 0-7 40-63
Current contents of the eight S registers 8-15 0-63

The exchange packages summarized below are selected by EXEC depending on
interrupt flags and other conditions as defined later:

• Any of a set of Exchange Packages in the System Task Table (STT).

(B)

This second portion of the STT is called the System Task Exchange
Package Table (STX), and contains one Exchange Package for each STP
task.

SM-0040 1-19 C

EXCHANGE MBCIIARISM INTBODUC'l'ION

- -

--

- -

--
--
- -

--
--
- -

SM-0040

User XP

- -(BA~ - - __

Idle XP
EXEC ~

Error XP
STP

/ Task 0 XP
--

USERS --

-- ..
/ EXEC

./ f XP
JLA) L...-____ ----A

/ Operating Registers

Task 1 XP

:

Task n XP

Program Areas Exchange Package Areas

EXEC

STP

--

USERS --
--

Program Areas

EXEC

STP

-

USERS --

--

A. EXEC IN EXECUTION

/
/-----,

_' (BA) l· ~I / ..
.... ;/ .' ... ---{p)/ /

/

I~'

:-..

/
/

}LA)

/

/
/

//

,/

/

TASK 1
XP

Operating Registers

B. TASK 1 IN EXECUTION

-
/

(BA)

/ J,- ~
/ ' ,- ,

f / ,.

/ (p) I
/ ,

I ,I'
,

/ / "
/. (Ui.) USER

XP

Operating Registers

User XP

Idle XP

Error XP

Task 0 XP

EXEC XP

Task n XP

Exchange Package Areas

EXEC XP

Idle XP

Error XP

Task 0 XP

Task 1 XP
:

Task n XP

Program Areas Exchange Package Areas
C. CURRENT USER IN EXECUTION

Figure 1-8. Exchange Package management

1-20 c

INTBODUC'.rION COS STARTUP

• The active user Exchange Packages. One user Exchange Package per
CPU resides in the Processor working storage (PWS) entry at
W@PWUSXP and is copied from the user's Job Table Area (JTA) when
the job is connected to a CPU. The Exchange Package is then
copied into the user's JTA when the job is disconnected from a CPU.

• The idle task Exchange Packages. One idle Exchange Package per
CPU resides in the PWS entry at W@PWIDXP and is selected when no
STP tasks or user jobs are scheduled for execution for a
particular cpu.

• The Memory Error Correction task Exchange Packages. One
correction Exchange Package per CPU resides in the PWS at W@PWCOXP
and is selected when a memory parity error causes an exchange.

1.5.3 B, T, AND V REGISTERS

On any exchange to EXEC, the
uses register BOO) is saved.
the System Task Table (STT).
during interrupt processing.
proper BOO register value.

task or user program's BOO register (EXEC
A task's BOO register value is stored in
The active user's BOO value is stored
When EXEC exchanges out, it restores the

B, T, and V register values are saved by EXEC only when the current user
job is being disconnected from the CPU in favor of some other job. A
job's B, T, and V register values are restored when the job is
reconnected to the CPU. These registers are maintained in the job's Job
Table Area (JTA).

1.6 COS STARTUP

During system startup, the operating system is loaded into Central
Memory, begins execution, and generates or recovers tables for the
operating system. There are three types of startup: Install, Deadstart,
and Restart. A general description follows; details are given in section
5 of this manual.

Install

SM-0040

COS is started as if for the very first time. All Cray mass
storage is assumed to be vacant. The startup program labels
devices and establishes the Dataset Catalog (DSC) on mass
storage.

1-21 C

GENERAL DESCRIPTION OF JOB PLON INTRODUCTION

Deadstart COS is started as if after a normal system power-down.
Permanent datasets are recovered but input queues and output
queues are not reconstructed. Rolled-out jobs cannot be
recovered during a deadstart.

Restart COS is started as if after a system failure (crash). Input
queues and output queues as well as permanent datasets are
recovered. Rolled-out jobs may be recovered according to
operator selection.

1.7 GENERAL DESCRIPTION OF JOB FLOW

A job passes through the following stages from the time it is read by the
front-end system until it terminates:

• Entry

• Initiation

• Advancement

• Termination

1.7.1 JOB ENTRY

A job enters the system from a front-end system. The Station Call
Processor task (SCP) in STP is responsible for making the job's existence
known to the system. It does this by executing the following steps:

1. Making an entry in the System Dataset Table (SDT) and creating a
memory pool entry containing station slot data

2. Requesting that an entry be created in the Dataset Catalog (DSC) ,
thereby making the dataset permanent

3. Readying the Job Scheduler Task (JSH)

1.7.2 JOB INITIATION

The Job Scheduler Task (JSH) scans the SDT looking for candidates for
processing. A job is scheduled to begin processing (initiated) when:

SM-0040 1-22 C

I

IlftBODUC'.rION GBHBRAL DECRIPTIOH OF JOB PLOW

• An entry for a job of the correct class is available in the Job
Execution Table (JXT),

• No other job in the same class of higher priority is waiting to
begin processing, and

• The requested generic resources (for example, tape devices) are
available.

JSH uses an available entry in the JXT to create an entry for the job
being initiated. The Job Scheduler continues to use the JXT entry during
the life of the job to control CPU use, job roll in/rollout, and memory
allocation.

JSH also moves the job's SDT entry from the input queue to the executing
queue, still in the SDT.

The Rolled Job Index entry corresponding to the assigned JXT entry is
also initialized at this point.

1.7.3 JOB ADVANCEMENT

The Job Scheduler (JSH) gives each job a CPU priority reflecting its
history of CPU usage so that I/O-bound jobs can have a greater chance of
being assigned to the CPU. A job requiring a large memory area is
allowed to stay in memory longer to compensate for its greater roll
in/rollout time. A job assigned more than average CPU time for its
priority is liable to be rolled out sooner as a consequence. The
operator can change a job's priority while a job is running.

Not all jobs having entries in the JXT are in memory: some are rolled out
to mass storage when an event occurs causing other jobs to replace them
in memory.

The Control Statement Processor (CSP) advances a job through its program
steps. CSP is first loaded and executed in the user field following job
initiation; thereafter, it is loaded whenever a job step terminates.
Normal job step termination occurs when an F$ADV call is made to the
system by the user program. Abnormal termination occurs upon detection

I of an error by either COS or hardware error interrupts during the job
step or an F$ABT call by the user program.

SM-0040 1-23 C

I

I

I

TASKS AND MULTITASKING INTRODUCTION

1.7.4 JOB TERMINATION

When a job terminates, the following actions occur:

• A OSC entry is created for each of the job's output datasets.

• A SOT entry is created for each of the job's output datasets.

• The user logfile, $LOG, is copied onto the end of $OUT.

• The DSC entry is deleted for the input dataset.

• The SOT entry is deleted from the executing queue.

• The JXT entry, TXT entry, and the memory assigned to the job are
released.

• The Rolled Job Index entry is cleared (zeroed).

• SCP is readied at the next interrupt from a front end and scans
the SOT for output to send to the front-end system.

• SCP deletes the corresponding OSC and SOT entries after each
output dataset is successfully transmitted to the front-end system.

1.8 TASKS AND MULTITASKING

While this manual frequently refers to some particular task, several
types of tasks occur in COS:

• The idle and memory error correction tasks resident in EXEC

• System tasks resident in STP

• User tasks resident in user jobs

• User library tasks resident in user jobs but under library control

This section defines several terms related to the above types of tasks.
See the Multitasking User Guide, CRI publication SN-0222, for a full
description of multitasking concepts.

SM-0040 1-24 C

I

INTRODUCTION TASKS AND MULTITASKING

1.8.1 MULTIPROGRAMMING

Muttippogpamming is a mode of operation that provides for the sharing
of processor resources among multiple, independent, software processes.
This mode, used by many computing systems, makes most efficient use of a
single cpu. In the multiprogramming mode, when several processes are
ready to run, should one process be delayed by I/O, for example, another
process can immediately be switched in to run on the CPU. In contrast, a
system running in monoprogramming mode has only one process ready to run
and any delays will leave the CPU idle. Processor resources could
include more than one CPU, and in a multiprogramming environment, these
multiple CPUs would be shared between multiple, independent software
processes.

1.8.2 MULTIPROCESSING

MuttipPo08ssing is a mode of operation that provides for parallel
processing by two or more processors. That is, all processors work at
the same time without adversely affecting each other.

1.8.3 TASKS

A task is a software process. It is a unit of computation that can be
scheduled and whose instructions must be processed in sequential order.

Idle and memory error correction tasks

The EXEC idle task is described in section 2.11. Memory error correction
is described in section 2.10. The memory correction task is unique in
that it is not executed through the EXEC task scheduler.

System task

The tasks comprising the System Task Processor (STP) are referred to as
system tasks. STP is described in section 3.

SM-0040

NOTE

The term task, as used in this manual, refers to a
system task, unless otherwise noted.

1-25 C

I

TASKS AND MULTITASKING INTRODUCTION

User task

A usep task is the entity referred to in the F$TASK system action
request, as described in section 8.1. User jobs are generally unaware of
user tasks; user task management requests are usually made by the
multitasking library routines.

User library task

A usep Librapy task is the entity created by calling TSKSTART (initiate
a task) in the multitasking library. Multitasking in a FORTRAN program
is done as user library tasks. That is, when a FORTRAN program creates
multiple tasks, the tasks created are user library tasks. User library
tasks are created and synchronized-by user-program calls to the
multitasking library.

The multitasking library scheduler manages (schedules) user library
tasks. The library scheduler creates, deletes, activates, and
deactivates user tasks as needed; the library scheduler is responsible
for assigning user library tasks to user tasks. within a user job, the
user program only knows about user library tasks; EXEC and STP only know
about user tasks; the multitasking library scheduler forms the interface
between user tasks and user library tasks.

1.8.4 MULTITASKING

Multitasking is a special case of multiprocessing, where more than one
task can be executing in a user job. When multitasking, there is no
guarantee that more than one processor will be allowed to work on the
tasks of a given job, no guarantee that the tasks will execute in any
particular order, and no guarantee of which task will finish first.

In this manual, muLtitasking refers only to user-level tasks (user
tasks and user library tasks).

1.8.5 JOBS AND USER TASKS

Each user job consists of one or more user tasks. Most COS-managed
resources, except a CPU, are allocated to the entire job, whereas each
user task includes an exchange package, and an environment save/restore
area. A user task can have a physical CPU allocated to it, and on the
CRAY X-MP, can have a physical cluster allocated.

SM-0040 1-26 C

IN'.rRODUC'rION MASS STORAGE DATASET MAHAGBMBN'l

When the Job Scheduler (JSH) initially places a job into memory, the
first task control block is created automatically by the system. An
initial task is entered on the CPU queue. Other task creations within
the job are the responsibility of the first task or tasks that are
spawned by the first task. Other than this relationship, no hierarchy of
tasks exists within a job.

A job can be rolled into and out of memory. An individual task cannot be
rolled. Whenever JSH rolls a jOb out of memory, all tasks are marked as
not schedulable and any tasks currently connected are disconnected from
the CPU. A task has the same execution priority as the parent job.

When the cumulative execution times of all the tasks within a job exceed
the job's time limit (from the JOB control statement), the job is marked
as time limited and aborted.

1. 9 MASS STORAGE DATASET MANAGEMENT

All information maintained on mass storage by the Cray Operating System
(COS) is organized into collections of information called datasets. Mass
storage datasets are of two types: local or permanent. A local dataset
exists only for the life of the job that created it and can be accessed
only by that job. A permanent dataset is available to the system and can
survive system deadstarts.

A mass storage dataset is permanent if it has an entry in the Dataset
Catalog (DSC) on disk. Permanent datasets are of two types: those
created with directives (user permanent datasets), and those representing
standard job input and output datasets (system permanent datasets).

User permanent datasets are maintained for as long as the user or
installation desires. A user permanent dataset is protected from
unauthorized access through permission control words. The user can
create a user permanent dataset by prestaging a dataset from a front-end
computer system or by using the SAVE or ACQUIRE control statement or
macro. A user accesses a user permanent dataset by using the ACCESS
control statement or macro. The dataset can be removed from the system
with the DELETE control statement or macro. More than one authorized
user can access a permanent dataset. A user wishing to write on, or
otherwise alter a permanent dataset, must have unique access; multiple
users wishing to read the dataset may have multiaccess.

Some permanent datasets similar to user permanent datasets are created
and maintained by the system. Users cannot delete or access these

SM-0040 1-27 C

I/O INTERFACES INTRODUCTION

datasets, because the system has unique access to them. One such dataset
is the Rolled Job Index dataset, which is created or accessed by the
Startup task and remains in use throughout the operation of the system.

System permanent datasets are job related. Each job's input dataset is
made permanent when the job is received by the Cray Computer System.
When job processing ends, certain of the job's local datasets having
special names or which were given a disposition other than scratch by the
user are made permanent and the job's input dataset is deleted from mass
storage. The output datasets that were made permanent are sent to a
front-end computer system for processing. They are deleted from mass
storage when their receipt has been acknowledged by the front-end
computer system.

1.10 I/O INTERFACES

Figure 1-9 presents an overview of the interfaces and system components
involved in performing input and output in the system. This figure
summarizes the request levels and routine calls without going into
details on the movement of data. That is, it does not describe how data
is transferred from disk to a circular buffer and then to a user area on
a read~ nor does it describe how it is transferred in the reverse
sequence on a write.

Major interfaces exist between the user and STP and between STP and
EXEC. Details of the user levels of I/O are presented in the FORTRAN
(CFT) Reference Manual, publication SR-0009, and in the CRAY-OS Version 1
Reference Manual, publication SR-OOll. Details for EXEC (driver level)
I/O are given in section 2. Details for STP interfaces are given in
section 3.

I/O can be on any dataset structure and can be initiated by the user or
by the system.

FORTRAN statements for logical I/O represent the highest level of I/O
requests. The FORTRAN statements fall into two categories:
formatted/unformatted and buffered. The formatted/unformatted statements
(that is, READ, PUNCH, WRITE, and PRINT) result in calls to library
routines $RFI through $WUF. These routines contain calls to the Logical
Record I/O routines, also on the library. These calls can be formatted
by the user or made through CAL macros.

The Logical Record I/O routines issue Exchange Processor requests (that
is, F$ calls) consisting of read circular and write circular requests to
the Circular Input/Output (CIO) routines resident in STP (see section 4) •

SM-0040 1-28 C

INTRODUCTION I/O INTERFACES

hs,nchronous r/G Synchronous I/O

user

CFT BUFFERED i/O CFT FORMATTED/ interface

STATEMENTS UNFORMATTED STATEMENTS

BUFFER IN READ PUNCH

BUFFER OUT PRINT WRITE CAL BLOCKED I/O MACROS

READ WRITE WRITEF

READP WRITEP WRITED
CAL BUFFERED

READC WRITEC BKSP
I/O MACROS CAL UNBLOCKED READCP WRITECP BKSPF

BUFIN BUFOUT BUFEOF I/O MACROS GETPOS
BUF INP BUFOUTP BUFEOD READU SETPOS

BUFCHECK WRITEU REWIND

------ -------- -------- --------- ----- ------- ------, r , library
routines

BUFFERED I/O SRFI $WFl $RUI $WUI

SRFA $WFA $RUA $WUA

$RB $RFV $WFV $RUV $WUV

$WI3 $RFF $WFF $RUF $WUF

"

~ / CAL BUFFERED I/O

INTERFACE

SCBlO
,r ,Ir

UNBLOCKED DATASETS LOGI CAL RECORD I/O

$RWIll $WWIll $WEOF $GPOS

$RLB $RWDP $WWDP $WEOD $SPOS

$WLB $RCHR $WCHR $REWD

$RCHP $WCHP $BKSP

$WWDS SBKSPF

----- --- ----------------- ------- ----------,r system
calls

F$BlO
F$RDC

F$WOC

USER

TIO CIO

$RWIll $WWOR $WEOF RDCS NON-CIO ..
$RWDP $WWDP $WEOO - WDCS (Z. SCP, dnd JSH)

$WWDS $REWO CIOS

I
I
I

TQM D~ -----~

L STP

, /
PACKET DRI VER DISK DR I VER

'/ / / I \ \
Disk Control1er Functions

EXEC

I/O SUBSYSTEM I
Figure 1-9. Overview of cos I/O

SM-0040 1-29 c

I/O INTERFACES INTRODUCTION

System logical I/O required by COS tasks (for example, management of the
DSC) is generally performed through Task I/O (TIO) routines resident in
STP (see section 4). TIO routines closely resemble the Logical Record
I/O routines. In addition to supporting I/O for system tasks, TIO
routines also handle FORTRAN buffered I/O. At the FORTRAN level, the
BUFFER IN and BUFFER OUT statements are compiled into calls to two
library routines, $RB and $WB. These routines issue F$BIO Exchange
Processor requests that interface with a subset of TIO routines in STP.

Since TIO routines reside jointly with CIO in STP, they directly call CIO
routines to perform the same functions as requested through F$ calls by
the Logical Record I/O routines. Thus, CIa becomes the focal point for
all logical I/O in the system.

CIO communicates its needs for physical I/O either to the Tape Queue
Manager (TQM) or to the Disk Queue Manager (DQM) through DNT and DSP
tables. The DNT for a dataset points to its DSP, which specifies the
request.

CIO is the normal mode of communication with DQM. However, DQM also
communicates with the station and startup interfaces. In these
interfaces, SCP and Startup pass a caller-built DNT containing the I/O
request for DQM. The Job Scheduler (JSH) also uses a non-CIO interface
to process job roll-in/roll-out and to manipulate the Rolled Job Index
dataset.

DQM coordinates physical I/O activity on the disks by queueing executive
requests for the disk driver (see s~ction 2.8) or, if an I/O Subsystem is
present, to disk I/O software in the I/O Subsystem (see the lOS Software
Internal Reference Manual, CRI publication SM-0046). The disk driver
consists of a number of channel processors that issue functions to the
disk controllers.

TQM manages tape I/O between user jobs and the I/O Subsystem (lOS).
Software in the lOS responds to requests for tape I/O received from TQM
and physically controls block multiplexer channels, control units, and
tape devices. (See the lOS Software Internal Reference Manual, CRI
publication SM-0046, for a description of this software.)

SM-0040 1-30 C

EXEC

The system Executive module (EXEC) is the control center for the
operating system. It alone accesses all of memory, controls the I/O
channels, and selects the next program to execute. Components of EXEC
include the following.

• An interchange routine

• Interrupt handlers

• Channel processors

• A monitor request processor

• A Front-end Driver

• A Disk and SSD Driver

• A Packet I/O Driver

• A task scheduler

2

These routines are integral to EXEC. Control transfers from routine to
routine through simple jumps.

After CPU startup, EXEC begins execution (at EX) whenever a system, user,
or idle task is interrupted. The interrupt can result from the execution
of an exit instruction (EX or ERR), or from a variety of hardware-related
interrupts (operand range, program range, programmable clock, I/O
channel, deadlock, or interprocessor interrupts). On reentry EXEC saves
BOO, performs various accounting and validation functions, ensures that
the operating system is single-threaded (that is, it executes in only one
CPU in multiprocessor systems), and enters the interchange analysis
routine (ENA).

The interchange analysis routine examines the interprocessor
communications area, the channel interrupt register, the real-time clock,
and the interrupted exchange package to determine the cause of the
interrupt and passes control to the appropriate handler. Each interrupt
handler clears the appropriate flag in the interrupted exchange package
and, after processing the interrupt condition, returns to interchange
analysis (which checks for additional conditions). When all outstanding
interrupt conditions have been processed, the system task scheduler (TSO)
is entered.

SM-0040 2-1 C

I

INTERCHANGE ANALYSIS EXEC

The task scheduler selects the highest priority system task which is
ready to run and causes it to be executed. If no system tasks are ready,
the user task scheduler (SCHUSER) is invoked.

If no user task is currently connected, the user task scheduler selects
either the currently-connected user task, or the idle task for execution.

After the selection of a task (system, user, or idle), an exchange out of
EXEC occurs. The cycle begins again when the task is interrupted.
Figure 2-1 illustrates the execution flow into and out of EXEC •

.--EXEC exit

~--I/O or other interrupt,
program exit, or
error condition

Figure 2-1. EXEC-controlled exchange sequences

2.1 INTERCHANGE ANALYSIS

Each time ENA is entered, the interprocessor request queue is checked for
an interprocessor message. If a message is found, IPREQST is called to
process it. The message is then cleared, and control returns to ENA.

ENA next looks for pending I/O channel interrupts. When an I/O channel
is found to have an interrupt pending, control transfers to 101 which
clears the I/O interrupt bit in the active exchange package, selects a
processing routine based on the channel number, and enters that routine.
The channel processor returns control to ENA.

Next, the real-time clock and the time event table are examined. If a
timer event is pending, control is passed to TEl (the expired time event
interrupt handler). After processing the timer event, control is
returned to ENA.

SM-0040 2-2 C

I

EXEC INTERRUPT HANDLERS

Finally, after ENA has processed all of the above conditions, the flags
in the interrupted exchange package are examined to determine the cause
of the exchange. Note that the I/O Interrupt flag is ignored since ENA
has already processed pending I/O interrupts. The Interrupt Handler
Table (IHT) maps each flag into a handling routine. The flags are
processed in order from left (high-order) to right (low-order). When a
flag is set, the corresponding interrupt handler is entered. Again, when
processing is complete, control returns to ENA.

After a pass through ENA with none of the above conditions encountered,
the task scheduler (TSO) is invoked.

Figure 2-2 illustrates the relationship of the elements of EXEC to other
system components.

2. 2 INTERRUPT HANDLERS

Each interrupt handler routine can invoke further routines for
processing. When an interrupt is processed, control returns to
Interchange.

2.2.1 I/O INTERRUPT HANDLER (IOI)

101 clears the I/O Interrupt flag in the interrupted exchange package,
increments the interrupt count for the channel, sets the next channel
processor to RJ (reject), makes a history trace entry, and exits to the
current channel processor.

2.2.2 EXPIRED TIME EVENT INTERRUPT HANDLER (TEl)

TEl clears the Programmable Clock Interrupt flag in the interrupted
exchange package, makes a history trace entry, sets up the next scheduled
time event for the CPU, and exits to the time event processor.

2. 2. 3 PROGRAMMABLE CLOCK INTERRUPT HANDLER (PC I)

PCI clears the Programmable Clock Interrupt flag in the interrupted
exchange package, makes a history trace entry, and sets up the next

SM-0040 2-3 C

I

INTERRUPT HANDLERS

Mass
Storage

Resident r--'---..,
COS ,-L---';;'~..,

LDR

Interrupt

Monitor
Request

Processor

Interchange

Front
end

Driver

1

EXEC

Disk/
SSD

Driver

Idle
Program

Packet
I/O

Driver

Figure 2-2. System control

t One Exchange Package per CPU

SM-0040 2-4

STP

Conunon
Routines

Task
o

Task
1

Task
2

Task
n

EXEC

C

I

EXEC INTERRUPT HANDLBBS

default time event. This interrupt is unexpected, since the calculated
time event expiration should process all PCI interrupts. This routine is
present but unused on mainframes without a programmable clock.

2.2.4 MCU INTERRUPT HANDLER (CII)

CII clears the MCU Interrupt flag in the interrupted Exchange Package.

2.2.5 ERROR INTERRUPT HANDLER (EE)

EE clears the appropriate flag in the interrupted .Exchange Package and
makes a history trace entry. Interrupts handled by this routine are:

• Floating-point error interrupt

• Operand range error interrupt

• Program range error interrupt

• Error exit

Processing depends on the type and cause of the error.

2.2.6 MEMORY ERROR INTERRUPT HANDLER (ME)

ME clears the Memory Error flag in the interrupted Exchange Package,
corrects the error if it is a single-bit error, and logs the error by
sending a packet to the Message Processor task (MEP). A multibit error
causes the system to halt if the error occurred in the operating system
or by a channel read from an I/O buffer.

2.2.7 NORMAL EXIT INTERRUPT HANDLER (NE)

NE clears the Normal Exit flag in the interrupted exchange package and
determines whether a system task or user job made the exit. A system
task exit causes the Monitor Request Processor to be invoked, a user job
exit causes the Exchange Processor (EXP) task to be scheduled.

SM-0040 2-5 C

I

INTERRUPT HANDLERS EXEC

2.2.8 INTERPROCESSOR INTERRUPT HANDLER (IPI)

IPI clears the Interprocessor Interrupt flag in the interrupted exchange
package on a CRAY X-MP mainframe.

2.2.9 DEADLOCK INTERRUPT HANDLER (DLI)

On the CRAY X-MP mainframe, deadlock interrupts can occur that do not
indicate that a programming error occurred. For instance, a deadlock
interrupt occurs whenever a Test & Set Semaphore (0034) instruction is
executed while the semaphore in question is already set and no other CPUs
are in the executing CPU's cluster.

The only level where detection of true deadlocks can take place is user
task scheduling (in JSH) and the only path to JSH from EXEC is through
EXP. Thus, deadlock interrupts generally require the scheduling of both
EXP and JSH, a large burden on the system when multitasking is used.

In order to reduce this system overhead, EXEC does some screening of
deadlock interrupts. The goal of this screening is to avoid the trip
through EXP/JSH when there is a high probability that the user task can
successfully resume processing, while at the same time avoiding needless
deadlock interrupts. To these ends, EXEC maintains a counter in the
user's TCB, and uses this counter plus other global information to
(selectively) return to the user task, rather than scheduling EXP when a
deadlock is encountered. This direct return to the user takes place when
all of the following conditions hold:

• The user is multitasking (that is, more than one user task is
active).

• More than one CPU is in the user's cluster.

• An excessive number of deadlock interrupts have not occurred since
the user task's last trip to EXP. This number is defined in STP
low-memory location DLIGNORE.

If any of the above conditions does not hold, EXP deals with the
deadlock.

Deadlock interrupts should never occur from within system tasks, such
interrupts cause a system halt.

SM-0040 2-6 C

EXEC CHANNEL MANAGEMENT

2.3 CHANNEL MANAGEMENT

EXEC manages channels in pairs, with the even-numbered side an input
channel and the odd-numbered side an output channel. A channel pair
consisting of channels 2 and 3 is referred to as channel pair 1, and so
on •

. EXEC manages the mainframe's physical I/O channels based on parameter
settings in the configuration deck CONFIG@P. The channel parameters are:

C@CPLCHN

C@CPHCHN

C@CPMCHN

C@CPSCHN

Lowest physical I/O channel number. This parameter is
an even number.

Highest physical I/O channel number. This parameter is
an odd number.

Maintenance Control Unit (MCU) input channel number.
May be equal to C@CPLCHN. This parameter is an even
number.

CRAY X-MP Solid-state Storage Device (SSD) control
channel number. This value is used during system
initialization to master clear the SSD channel.

For more information on the configuration deck CONFIG@P, consult the COS
Operational Procedures Reference Manual, publication SM-0043.

Typical channel layouts are shown below.

CRAY-l mainframes:

Channel Pair Description

2,3 1 6 Mbyte channel to MCU (MIOP or Data General
Eclipse)

4,5 2 Depends on configuration
6,7 3 Depends on configuration
8,9 4 Depends on configuration

10,11 5 Depends on configuration
12,13 6 Depends on configuration
14,15 7 Depends on configuration
16,17 8 Depends on configuration
18,19 9 Depends on configuration
20,21 10 Depends on configuration
22,23 11 Depends on configuration
24,25 12 Depends on configuration

SM-0040 2-7 C

CHANNEL MANAGEMENT

CRAY X-MP mainframes:

Channel

6,7
8,9

10,11
12,13
14,15

Pair

3
4
5
6
7

Oeser iption

SSD 1250 Mbyte channelt

6 Mbyte channel (MIOP)
6 Mbyte channel
6 Mbyte channel
6 Mbyte channel

2.3.1 CHANNEL MANAGEMENT TABLES

The following tables aid in channel management:

CBT
CHT
LIT
SCT
STT
LIT or CBT

Channel Buffer Table
Channel Table
Link Interface Table
Subsystem Control Table
System Task Table
I/O Service Processor Tables

Detailed information on these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

Figure 2-3 illustrates how these tables are linked together.

Channel Buffer Table (CBT)

EXEC

EXEC assigns one CBT entry to each pair of Channel Table (CHT) entries
during EXEC initialization. The CBT is the default processor table for
channel activity and is used by the Disk/SSD Driver.

Channel Table (CHT)

Each site configures one CHT entry per mainframe I/O channel, plus enough
dummy entries at the beginning, so the physical I/O channel number is an
index into the CHT. (Site configuration information is provided in the
COS Operational Procedures Reference Manual, publication SM-0043.) Each
entry contains: a task parameter block address linking the channel to an
STP task (not for the MIOP channel), a table address, and an interrupt
handler address.

t Optional. Channel 6 is unused but is allocated to make a pair if this
option is present.

SM-0040 2-8 C

EXEC CHANNEL MANAGEMENT

CHT

STT

I/O Service
Processor Table

D

Figure 2-3. Channel Table linkage with assigned task

Link Interface Table (LIT)

The Front-end Driver assigns one LIT entry to a pair of Channel Table
(CHT) entries if the channel pair is to be used for front-end I/O.

Subsystem Control Table (SCT)

EXEC uses the SCT to select a processor for a packet received from the
MIOP (I/O Subsystem). See the discussion on the Packet I/O Driver for
details, in section 2.9.

System Task Table (STT)

The STT contains information about each STP task for scheduling a task to
run if channel activity warrants it.

I/O Service Processor tables

The I/O Service Processor tables contain information for control of the
channel processor and can contain pointers to other tables. Front-end
and mass storage channels have different I/O Service Processor tables.
The service table is the LIT for Front-end Driver requests and the CBT
for Disk/SSD Driver requests.

SM-0040 2-9 C

CHANNEL MANAGEMENT EXEC

2.3.2 CHANNEL ASSIGNMENTS

When an STP task makes an I/O request for a specified channel pair, EXEC
assigns the STP task that channel pair. The monitor requests involved
are ROOS (Front-end Driver) and ROll (Disk/SSD Driver). The R022 request
(packet I/O) can also involve I/O, but the channel to the I/O Subsystem
is not assigned to a specific task.

Ii

CHT

seT

Figure 2-4. Channel Table linkage for packet I/O

2.3.3 CHANNEL PROCESSORS

The Channel Table (CHT) has a processor address for each physical
mainframe channel configured. By default, this channel processor is the
reject (RJ) processor, which ignores all interrupts on the channel. If
an I/O operation is in progress, each processor address indicates the
interrupt handler that receives control when an interrupt is received on
a particular channel.

EXEC has the following categories of interrupts (and corresponding
interrupt processors) :

• Front-end Driver interrupts (ROOS)

• Disk/SSD Driver interrupts (ROll)

• MIOP (I/O Subsystem) Driver interrupts (R022)

SM-0040 2-10 C

EXEC CHANNEL MANAGEMENT

Front-end driver interrupt handlers

Any of the following processors are assigned to a CPU I/O channel as a
result of monitor request 5 (Front-end Driver) for front-end computers
and network adapters attached directly to a CPU channel.

Processor

R005C/RLCP

R005C/RSSEG

R005C/RLTP

R005C/WLCP

R005C/WSSEG

R005C/WLTP

R005C/WXLCP

R005C/WXLTP

R005C/CCLRB

R005C/CCLRD

R005N/NRLCF

R005N/NRLCP

R005N/NRSEG

R005N/NWLCF

R005N/NWLCP

R005N/NWSEF

R005N/NWSEG

R005N/NWXLF

SM-0040

Function

Reads (or waits for) a link control package (LCP)

Reads (or waits for) a data subsegment

Reads (or waits for) a link trailer package (LTP)

writes a link control package

writes a data subsegment

writes a link trailer package

writes an error link control package

writes an error link trailer package

Reads input channel before master clear

writes a Select function code (VAX interface only)

Reads zero data (Wait for Message function
acknowledgement)

Reads a link control package and link control package
extension (LCPE)

Reads a data segment

Reads zero data (Transmit Message function
acknowledgement)

Writes a link control package and link control package
extension

Reads zero data (Transmit Data function
acknowledgement)

writes a data segment

Reads zero data (Transmit Message function
acknowledgement)

2-11 C

Processor Function

ROOSN/NWXLC Writes an error link control package or link control
package extension

ROOSN/NCLRB

ROOSN/STATA

XPROC/ENA

Reads zero data (Clear Adapter function
acknowledgement)

Reads an adapter status word

No operation

When a processor completes its function, it assigns the next front-end
processor or reject (RJ) to the channel without involving the Station
Call Processor (SCP). See section 2.7 for details on the Front-end
Driver.

Disk/SSD Driver interrupt handlers

EXEC assigns any of the following processors to a mainframe I/O channel
as a result of monitor request lIS (Disk/SSD Driver). This request
performs I/O on disk controllers and disk storage units connected
directly to mainframe channels or to an optional Solid-state Storage
Device (SSD).

Processor Function

DDC2S0 Indicates disk block transfer is complete

DDFCTIO Output interrupt handler, no response expected

DDRSP Output interrupt handler, response expected

DDTO Disk software timeout interrupt handler

DDE140 Input interrupt handler, correction vector received

SSINT Input interrupt handler, SSD status received

When a processor completes its function, it assigns the next processor to
the channel without involving a task. See section 2.S for details on the
Disk/SSD Dril:ler.

I/O Subsystem MIOP command and status processors

Either of the following processors is assigned to a mainframe I/O channel
as a result of monitor request 22 (packet I/O).

SM-0040 2-12 C

EXEC TASK SCHEDULER

Processor Function

APIIP Processes MIOP status input interrupt

APOIP Processes MIOP command output interrupt

These interrupt processors are part of the Packet I/O Driver, which is
detailed in section 2.9.

2.4 TASK SCHEDULER

Task scheduling is entered when all interrupt conditions are processed
and the CPU is looking for something to do. If one or more system tasks
are ready to run, the task with the highest priority is selected for
execution. If no system task is eligible, the user task connected to the
CPU in question is selected. If no user is connected, the idle package
is selected for execution. The variables used in system task scheduling
are:

• STAPB, a field in the System Task Table (STT) header that contains
the STT address of the previously-active system task.

• STPLK, the STP lock indicator. When nonzero, the
previously-executing STP task has disabled preemptive task
scheduling, indicating that the task scheduler should return to
that task.

• TBIDLE, a field in the Task Breakpoint Table. When ~onzero, a
system task is stopped at a breakpoint, indicating that only the
breakpoint-processing task (SCP) is a candidate for scheduling.

• TPT, the Task Priority Table. This table is indexed by priority,
and each table entry contains the address of the system task with
the corresponding priority.

• STPRL, the System Task Priority Ready List, contains a bit for
each possible task priority. When a bit in STPRL is set, the
system task with the corresponding priority is ready to run, that
is, it is not suspended.

The basic decisions of task scheduling, in order, are:

SM-0040 2-13 C

I

EXEC RESOURCE ACCOUNTING EXEC

• If STPLK is nonzero, return to the previously active system task.
The STT address of this task is contained in STT field STAPB. If
any system tasks with a higher priority than the selected task are
found, set the STP Lock Recall flag (LKRCL) so that the UNLOCK
macro will exchange to EXEC to allow the higher-priority task to
be executed when the lock is released.

• If a system task is at a breakpoint (TBIDLE is nonzero), select
SCP if it has been initialized and is not suspended. If SCP has
not yet been initialized, or if it is suspended, select the idle
package instead.

• If any system task is ready to run, select the task with the
highest priority and cause it to be executed. (The tests for
ready-to-run and highest-priority are combined since STPRL
implicitly contains a priority-ordered list of ready tasks.)

• If no exchange package was selected as a result of the above
steps, user task scheduling (SCHUSER) is entered.

Figure 2-5 illustrates the table linkages for task scheduling.

2.5 EXEC RESOURCE ACCOUNTING

EXEC maintains the following performance information in EXEC tables:

• Accumulated CPU time for itself (in Processor Working Storage)

• Accumulated CPU time for each task (in STT)

• Total time given to users (in Processor Working Storage)

• Count of all channel interrupts for both real and pseudo channels
(IC)

• Each user's execution time (in TCB)

• Number of normal exits for each task (in STT)

• Number of ready task requests, both from other tasks and from
external and internal interrupts, for each task (in STT)

• Number of each type of EXEC request

SM-0040 2-14 C

EXEC EXEC RESOURCE ACCOUNTING

STPRL

o 63

I I
(Bit n set means the task with priority n is ready)

o STT addr task i, with priority 0

1 STT addr task j, with priority 1

n STT addr task k, with priority n

STT
,It

STT entry for task k

@STPRI=priority (=n)

@STXPAD=XP address -

STX
't

Exchange Package for task k

Figure 2-5. Task scheduling table linkages

I SM-0040 2-15 c

I

EXECUTIVE REQUEST PBOCBSSOR BXBC

2.6 EXECUTIVE REQUEST PROCESSOR

The Executive Request Processor is initiated by the Normal Exit (NE)
channel processor when a normal exchange from a task implies the presence
of a request for the Executive. The request is passed to EXEC in
registers S6 and S7 of the task's exchange package. The Executive
Request Processor handles the requests defined by the Monitor Call Table
(MCT).

When EXEC returns to a task following processing of an Executive request,
control returns at (P)+2 for a normal return and at (P) if an error
occurred. (P) is the address of the instruction following the exit to
EXEC. When an error return is made by EXEC to (P), S6 contains an error
code.

2.6.1 EXECUTIVE REQUESTS

This section provides the request format and functional flow of executive
requests issued by tasks. Executive replies are described in section
3.2.1 of this publication, EXEC/Task Communication~ error return codes
are described in section 2.6.2 of this publication, EXEC Error Codes.

Create a system task request (CTSK=Ol)

This request initializes table space within EXEC defining a new system
task and invokes the newly created task.

Format:

o 8 16 24 32 40 48 56
@CTTN

63

S5

S6

S7

V///I@CTPRI I @CTID

V///////////////I @CTPR I @CTFC

Field Word Bits Description

@CTTN S5 0-63 Task name, left-justified, binary
zero-filled: must be unique.

@CTPRI S6 48-55 Task priority: must be unique.

@CTID S6 56-63 Task IO number: must be unique.

SM-0040 2-16 C

I

EXEC EXECUTIVE REQUEST PROCESSOR

Field Word Bits Description

@CTPR 57 16-39 Initial P register for task

@CTFC 57 55-63 Request code (CTSK=OlS)

System tasks (normally Startup) use the CT5K request to create and invoke
a new system task. Control returns to the requesting task as priorities
permit, but EXEC allocates space in the System Task Table (STT) for the
newly created task. EXEC sets the task status to not suspended,
initializes an entry in the Task Priority Table (TPT) pointing to the new
STT entry, and marks the task as ready in the System Task Priority Ready
List (STPRL).

EXEC sets up a standard system task Exchange Package for the task, with a
base address set to B@STP, the initial P register as specified in the
request, X-MP cluster CLSYS selected, @XPSEI (selected for external
interrupt) set, @XPORE (interrupt on operand range error) set, and
interrupt on memory errors (single- and double-bit) set according to
system defaults.

ERROR CONDITIONS:

(P) exits:

(S6)=ERTALC (026) if task is already created

(56)=ERNTS (OOl) if all tasks have already been created

$5TOP023: if a duplicate task priority is encountered

Ready system task request (RTSK=02)

The ready system task request causes another system task to be readied,
and (optionally) causes an entry to be entered into the system trace
buffer.

Format:

Sl

S2

S6

S7

SM-0040

o 8 16 24 32 40 48

Trace-l

Trace-2

Task

~IIIIIIIII/IIIIIIIIIIIIIIIIIIIIIIIII//IIIIIIIIIIIIIIIIII

2-17

56

FC

C

63

I

EXECUTIVE REQUEST PBOCBSSOR EXEC

Field Word

Trace-l Sl

Trace-2 S2

TASK S6

T S7

FC S7

0-63

0-63

0-63

o

55-63

Description

First word of intertask message

Second word of intertask message

Task number to be readied

Intertask Message flag: If set, Sl
and S2 hold an intertask message which
is to be entered into the History
Trace Table. Sl and S2 are ignored if
T=O.

Request code (RTSK=02a)

System tasks use the RTSK request to ready another system task. Since
this function is often associated with intertask messages (replies), the
request allows the caller to place an entry in the History Trace Table as
part of the call (rather than requiring an additional EXEC request to
perform the trace).

If the sign bit of S7 is clear in the request, the target task is readied
with no additional processing. If the sign of S7 is set in the request,
then Sl and S2 in the requesting task's Exchange Package are assumed to
contain a two-word entry for the History Trace Table. The message set
produced by the latter looks like:

Trace code

012
042

Words 1 and 2 in the history trace

Sl and S2 from requesting task's Exchange Package
"READY xxx->yyy" in ASCII

xxx are the first three characters of the requesting task
name, and yyy are the first three characters of the target
(readied) task name. 042 is the history trace code for EXEC
ASCII message, and 012 is the history trace code for
intertask message.

ERROR CONDITIONS:

(P) exits:

(S6)=ERTNX (003) if target task does not exist

SM-0040 2-18 C

I

I

I

I

EXEC EXECUTIVE REQUEST PROCESSOR

System task self-suspend request (SUSP=03)

A system task uses the system task self-suspend request when it wishes to
suspend itself.

Format:

o 8 16 24 32 40 48 56 63
S6 //

S7 V//1 FC

Field Word Bits Description

FC S7 55-63 Request code (SUSP=03 a)

The request has no parameters. When the task is readied (by some other
task, or by EXEC), the task resumes at (P)+2.

Front-end Driver request (FET=05)

This request invokes the Front-end Driver (FED). FED either processes the
I request and/or formats a message for the Master I/O Processor (MIOP) and

the lOP Driver. See section 2.7 for a more detailed description of the
Front-end Driver.

Format:

o 8 16 24 32 40 48 56 63
S6 REQI///////////I LXT I LIT

S7 V////////////////////////////////////ICHTI CHO I CHN 05

Field Bits

REQ S6 0-3

LXT S6 16-39

LIT 56 40-63

SM-0040

Description

Operation request code:
FETCON (0) Channel on
FETCOF (1) Channel off
FETOUT (2) Output to front end

Absolute address of LXT entry (only if
REQ=FETOUT)

If REQ is FETCON or FETCOF, absolute
address of LIT entry

2-19 C

EXECUTIVE REQUEST PROCESSOR

Field Word Bits Descril2tion

CHT 87 37-40 Channel type

CHO 87 41-48 Channel ordinal (nonzero only for lOP
channel)

CHN 87 49-54 Channel pair number

FC 87 55-63 Monitor request number (058)

The flow is as follows:

1. If channel ordinal is 0:

a. Assign task to channel.
b. Set input and/or output active flags.
c. Set channel registers CA and CL for input and/or output.
d. Start processing by station channel driver.
e. Release task from channel.

2. Otherwise:

a. Build MIOP station request in CXT.
b. When MIOP requests addresses, put message on send queue to

MIOP. (The CXT contains a flag indicating that an address
request has arrived and addresses should be queued
immediately.)

c. Return to requesting task.

Delay system task for time request (TDELAY=06)

A system task uses the delay system task request when it wishes to delay
(give up the CPU) until a specified time.

Format:

56

57

Field

RT

FC

5M-0040

o 8 16 24 32 40 48 56 63
RT

V//1 FC

Word Bits

86 0-63

87 55-63

Description

RT clock after which task wishes to be
readied.

Request code (06 8)

2-20 C

EXEC EXECtJ'lIVE REQUEST PROCESSOR

Several warnings are associated with this request:

• The requesting task may be readied before the time specified in
the event of requests by other system tasks.

• The requesting task may be readied any time after the specified RT
clock value has arrived, depending on system load and task
priorities.

Because of the above conditions, callers of the TDELAY request must
conduct their own timing when they are concerned with specific delays.

Reserved for site use reguest (RESERVED=07)

This request is reserved for site use.

Start second CPU request (STRTCP2=10)

This request is valid only on CRAY X-MP mainframes. It sets up an
initial Exchange Package at location 0 and deadstarts the second CPU.

Format:

o S 16 24 32 40 4S 56 63

56 //

57 V//1 lOS

Field Description

FC S7 55-63 Monitor request number (lOS)

The flow is as follows:

1. Error if mainframe is not CRAY X-MP.

2. Build an initial Exchange Package at location o.

3. Deadstart the second CPU with an interprocessor interrupt.

4. Exit to exchange processor.

When the second CPU gains control, the flow is:

SM-0040 2-21 C

I

EXECUTIVE REQUEST PROCESSOR EXEC

1. Clear interprocessor interrupt.

2. wait for access to operating system, if necessary.

3. Set up initial default time event.

4. Indicate second processor is started.

5. Set up Processor Execution Table (PXT) entry to reflect the
status of the newly-started processor.

6. Set up HIGHCPUN cell in low-5TP memory to reflect the number of
the newly-started processor.

7. Exit by simulating an exchange into EXEC at EN.

Disk block I/O request (10=11)

The disk block I/O request results in execution of the disk driver. 5ee
section 2.S for detailed information on the Disk/5SD Driver.

Format:

0 S 16 24 32 40 4S 56 63
56 V//////////////////////////////////////I EQT address

57 ///////////////1 DCT address Channel no. lIS

Field Word Bits Description

EQT 56 40-63 Equipment Table address

DCT S7 16-39 Device Channel Table address

CHN 57 40-54 Software channel (channel pair) number

FC 57 55-63 Monitor request number (lIS)

Select single-bit error detection mode request (SEDSEL=12)

This request enables or disables single-bit memory error detection for
the idle and all STP tasks. Memory error detection mode bits are set for
user jobs only when the user's Exchange Package is copied to the active
user Exchange Package area. The memory error detection mode applies to
all CPUs in the mainframe.

SM-0040 2-22 C

EXEC EXECUTIVE REQUEST PROCESSOR

Format:

o 8 16 24 32 40 48 56 63

S6 //I'-Mode

S7 ///1 128

Field Word

Mode S6 63

Oeser iption

Memory error detection mode:
o Disable single-bit error

interrupts
1 Enable single-bit error interrupts

FC S7 55-63 Monitor request number (128)

The flow is as follows:

1. Set selected mode for idle tasks.

2. Set selected mode for all STP tasks.

Ready system task and suspend self request (RTSS=14)

The ready system task and suspend self request permits one system task to
ready another and then suspend itself. This request is typically used in
intertask communications.

Format:

Sl

S2

S6

S7

Field

Trace-l

Trace-2

Task

SM-0040

o 8 16 24 32 40 48 56 63
Trace-l

Trace-2

Task

~I///1 FC

Bits Description

Sl 0-63 First word of intertask message

S2 0-63 Second word of intertask message

S6 0-63 Task number to be readied

2-23 C

I

EXECUTIVE REQUEST PBOCBSSOR EXEC

Field

T S7

FC S7

Bits

o

55-63

Description

Intertask Message flag: if set, Sl
and S2 hold an inter task message which
is to be entered into the History
Trace Table. Sl and S2 are ignored if
T=O.

Request code (RTSS=14S)

The RTSS request readies a system task and suspends the caller. Since
this request is generally associated with inter task messages, the caller
is allowed to place an entry in the History Trace Table as part of the
call (rather than requiring an additional EXEC request to perform the
trace).

If the sign bit of S7 is clear in the request, EXEC readies the target
task with no additional processing. If the sign bit of S7 is set in the
request, then S1 and S2 in the requesting task's Exchange Package are
assumed to contain a two-word entry for the History Trace Table. (The
calling task is suspended in any case.) The message set produced when the
sign of S7 is set has the following format:

Trace code

012
042

Words 1 and 2 in the history trace

Sl and S2 from requesting task's Exchange Package
"ROy-SUS xx~>yyy" in ASCII

xxx are the first three characters of the requesting task
name, and yyy are the first three characters of the target
(readied) task name. 042 is the history trace code for EXEC
ASCII message, and 012 is the history trace code for
intertask message.

ERROR CONDITIONS:

(P) exits:

(S6)=ERTNX (003) if target task does not exist

$STOP064: when task ID in request indicates the calling task.

Connect user task to CPU request (RCP=16)

The connect user task to CPU request logically connects a user task to a
physical CPU.

SM-0040 2-24 C

I

EXEC BXBCO'.rlVE BEQUEST PBOCBSSOR

Format:

o 8 16 24 32
S6

S7

~I@RCCLNI///////////////////////I

@RCTS

@RCLDCL

Field ~ Bits Description

40 48 56 63
@RCTXT

I @RCFC

@RCLDCL S6 0 =1 to load CRAY X-MP cluster from JTA

@RCCLN S6 1-5 CRAY X-MP cluster number for user task

@RCTXT S6 32-63 STP-relative TXT address of user task
to connect

@RCTS S7 0-54 Number of CPU cycles in time slice

@RCFC S7 55-63 Request code (016a)

The job scheduler task (JSH) uses this request to associate a user task
with a particular cpu. When a user task is connected and no system tasks
are ready to execute, EXEC's task scheduler will exchange to the user
task connected to its cPU.

Processing for this request consists of the following:

• Ensure CPU not already connected to another user task.

• Ensure cluster number selection valid for machine type.

• Calculate EXEC-relative addresses for TXT, TCB, JTA, task status
block (TSB), Exchange Package, and store in PWS.

• Load CRAY X-MP cluster if requested to do so, and execute on CRAY
X-MP.

• Set connected task information into TXT and TSB (if present).

• Set up timer event for time slice expiration.

• If Spy is enabled for user, set up timer event for Spy event.

,
SM-0040 2-25 C

I

EXECUTIVE REQUEST PROCESSOR EXEC

ERROR CONDITIONS:

(P) exits:

(S6)=ERNCP (014) if a user task is already connected in the requesting
CPU

(S6)=ERCLN (035) if an invalid cluster number is specified

(S6)=ERMT (034) if cluster loading is selected on a non- CRAY X-MP
mainframe

$STOP034: occurs if a zero time slice is specified on the connect

$STOP044: occurs if a zero SPY time slice is encountered

$STOP045: occurs if the SETCL macro does not find the requested cluster
number in its tests: indicates a hardware problem.

Disconnect user task from CPU request (DCP=17)

The job scheduler task (JSH) uses this request to disassociate a user
task from a physical CPU to which it had been previously connected.

Format:

O~ 16 24 32 40 48 56 63
~ 1/// @DCSTCL ///////////////1 @DCTXT S6

S7 ///1 @DCFC

Field Word Bits Description

@DCSTCL S6 0 =1 to store X-MP cluster in the JTA

@DCTXT S6 32-63 STP-relative TXT address of user task
to disconnect

@DCFC S7 55-63 Request code (017 8)

JSH uses this request to remove the association between a user task and a
particular CPU and CRAY X-MP cluster.

Processing for this request consists of the following:

• Ensure that the specified user is connected to the requested CPU.

SM-0040 2-26 C

EXEC EXECUTIVE RBQtJEST PROCESSOR

• Ensure that the TXT address specified in the request matches that
of the connected user.

• Cancel time slice event.

• Cancel Spy time slice event.

• If requested to save cluster, and a cluster is assigned, save
cluster in the JTA.

• Copy Exchange Package to the TCB, if it isn't already there.

• Clear all connected user fields from the PWS.

ERROR CONDITIONS:

(P) exits:

(S6)=ERNTC (033) if no user task is connected to the CPU

$STOPOI6: occurs if the TXT address passed in the request does not match
the address of the TXT entry connected

$STOP047: occurs if the SETCL macro does not find the cluster number
from the PWS in its tests

Post message in history buffer request (POST=20)

This request permits any STP task to enter two S registers of information
into the history buffer, when that debug function is selected.

Format:

o 8 16 24 32 40 48 56 63
S6 1111/1111/11111/1/1111/111/111/1/1/11//11111/111/1/1/1/1/1///1/1
S7 I I I / / // I 1/ I I / I I / II I II I / I 11/ 1/ /1 I / I / I / 1/ I I 1111 1 Itl ~I 20 8

lst/S 2hd S D~bu9 function
reg. reg. code

Field Word Bits Description

First S S7 42-44 Ordinal of S register containing first
register word of information to post

Second S S7 45-47 Ordinal of S register containing
Register second word of information to post

SM-0040 2-27 C

EXECUTIVE REQUEST PROCESSOR EXEC

Field Word

Debug S7
function code

FC S7

The flow is as follows:

Bits

48-54

55-63

Description

History trace function number (see
section 2.12.1 of this manual)

Monitor request number (208)

1. Set up call to EXEC subroutine DEBUG by moving debug function
code to AS, first S register to S6, and second S register to S7.

2. Call subroutine DEBUG to enter message in trace with time and
issue location stamp.

Set memory size request (SMSZ=21)

This request is used during system initialization when the size of memory
is changed through a Startup *MEMSIZ parameter.

Format:

o 8 16 24 32 40 48 56
S6 v//////////////////////////////////////\ New limit address

S7 V//\ 218

Field Word Bits Description

LA S6 40-63 New system limit address

FC S7 55-63 Monitor request number (218)

The processing consists of setting the new system limit address in all
system exchange packages.

Packet I/O request (PIO=22)

This request invokes the I/O Subsystem driver called the lOP driver.

Format:

o 8 16 24 32 40 48 56
S6 ///////////////////////////////////////\ SCT

87 V//\PFC\ 228

SM-0040 2-28 C

63

63

EXEC EXECUTIVE REQUEST PROCESSOR

Field Word Bits Description

SCT S6 40-63 Subsystem Control Table address
(absolute)

PFC S7 52-54 Function code:
0 Clear
I Send packet
2 Receive packet

FC S7 55-63 Monitor request number (22 8)

Before a task uses this request to perform I/O, the lOP driver must be
linked to the STP-resident table called the Subsystem Control Table
(SCT). This linking is accomplished when the task issues the first clear
PIO request. The SCT address can only thereafter be changed if a task
issues a new PIO clear function. A task monitors the status of the
subsystem by inspecting the status field (SCSTAT) of the SCT table. The
following flags are maintained by the lOP driver in the SCSTAT field:

• SCOOWN=1 I/O Subsystem Down flag

• SCRST=1 I/O Subsystem Reset flag

• SCIR=1 Input Ready flag

Flag SCOOWN is cleared and flag SCRST is set by the lOP driver when the
I/O Subsystem is restarted or initialized. A task can then acknowledge
reset by issuing a PIO clear request to clear the SCRST flag. The driver
cannot accept a clear until all input is processed, which means flag SCIR
must be clear.

Sending or rece~v~ng a packet requires that a packet address (SCCIP) and
packet size in words (SCPSZ) be passed in the SCT table. In general, a
packet is received when the SCIR flag is set, and a packet is sent when
all status flags are clear.

Boot a new system request (BOOT=23)

This request moves an image of an operating system down to the executable
area.

SM-0040 2-29 C

EXECU'l'IVE REQUEST PROCESSOR EXEC

Format:

o 8 16 24 32 40 48 56 63

S6 V//////////////I BOOTNW I BOOTAD

S7 V//1 23 8

Field Word

BOOTNW S6

BOOTAD S6

BOOTFC S7

The flow is as follows:

Bit

16-39

40-63

55-63

Description

Number of words in new system,
including parameter file

Base address of new system, EXEC
relative

Function code (23 8)

1. Copy the new system down to location o.

2. Set the system length in the new system's exchange package
register S7.

3. Exchange to the new system's boot exchange package.

When the new system gets control, the flow is:

1. Save the system length.

2. Continue with system initialization.

Start system request (START=24)

This request starts the system after a system breakpoint is encountered
or after a stop function is issued.

Format:

o 8 16 24 32 40 48 56 63

S6 ///1

S7 V//1 24 8

Field Word Bit Description

FC S7 55-63 Monitor request number (24 8)

SM-0040 2-30 C

EXEC EXECUTIVE REQUEST PROCESSOR

The flow is as follows:

1. Clear Alternate Task Scheduling flag that forced system to idle
except for external requests to the station (SCP).

2. Request execution of the Task Scheduler.

Stop system request (STOP=25)

This request stops the system except for entry of station debugging
conunands.

Format:

o 8 16 24 32 40 48 56 63

S6 11111111/111111111111111111111/111111111/111111111111/111/1/1//1
S7 VIII/IIII/II 258

Field Word Bit Description

Fe S7 55-63 Monitor request number (25 8)

The flow consists of setting the Alternate Task Scheduling flag. The
alternate scheduling allows only SCP to execute so station debugging
conunands can be entered.

Display memory request (DMEM=26)

This request copies memory to a specified area. It is used to display
memory during debugging.

Format:

S6

S7

Field

Source

SM-0040

o 8 16 24 32 40 48 56

1/1/11111/111/111 Display area FWA I Buffer area FWA

VIIIIIIIIIII/III

Word Bit

S6 16-39

Length 11/1111/111111111 26 8

Description

Absolute address of first word of
memory to copy for display

2-31

63

C

EXECUTIVE REQUEST PROCESSOR EXEC

Field Word Bit

Destination S6 40-63

Length S7 16-39

FC S7 55-63

Description

Absolute address of display buffer

Number of words to copy to display
buffer

Monitor request number (268)

The flow consists of copying the memory block from the requested area to
the display buffer.

Enter memory request (EMEM=27)

This request enters the bit string into memory at the specified bit
position.

Format:

0 8 16 24 32 40 48 56
S6 @EMVAL /@EMBCT

S7 /111111111111111 @EMADR I@EMBITIIII +11/11

Field Word Bit Description

63

278

@EMVAL S6 0-63 Value to be entered; right-justified.

@EMADR S7 16-39 Absolute address of memory word to
modify

@EMBIT S7 40-45 Starting bit position of field to
modify within memory word

@EMBCT S7 48-53 Number of bits to modify in memory
word

FC S7 55-63 Monitor request number (27 8)

The flow is as follows:

1. Get value, bit position, bit count, and absolute address from the
request.

2. Get the word to be modified.

SM-0040 2-32 c

EXEC EXBCOTlVE REQUEST PROCESSOR

3. Form and position a mask of bits to save in the requested word.

4. Shift the new value to the specified bit position.

5. Clear the old contents of the field and merge in the new value.

6. Update the memory copy of the word.

Display Exchange Package request (DXPR=30)

This request moves the contents of the Exchange Package and BO to a
buffer.

Format:

o 8 16 24 32 40 48 56 63
S6 11111/11111111111111111/1111111111111111 Buffer area FWA

S7 11111/111/11111111111111111111111111111/IIIIIIIITask 1DI 30 8

Field Description

Buffer area S6
FWA

40-63 Absolute address of a l7-word buffer
to receive the information

Task 1D S7

FC S7

The flow is as follows:

47-54

55-63

1D of the task being displayed.
Nontask Exchange Packages can be
displayed using the display memory
request.

Monitor request number (308)

1. Copy Exchange Package to words 0 through 15 of buffer.

2. Copy (BO) to word 16 of buffer from the task BO Save Table.

Enter Exchange Package register request (EXPR=3l)

This request inserts the bit string into the specified Exchange Package
register.

SM-0040 2-33 c

EXECUTIVE BEQUEST PROCESSOR

Format:
o 8 16 24 32 40 48 56

Value 56

57 II • Reg~ster Blt
v//////ITask IDIRegister des~g.1 number I ""I//Ilengthl

Bit 'offset

Field Word Bit Description

Value S6 0-63 Value to be entered

Task ID S7 8-15 ID of the task being modified.
Nontask Exchange Packages can be
modified using the enter memory
request.

Register S7 16-31 Register designator (see below)
designator

Register S7 32-39 Ordinal of designated register
number

EXEC

63

Offset S7 40-45 Starting bit position of value being
entered

Bit length 57 48-53 Number of bits in value being entered

FC S7 55-63 Monitor request number (31 8)

The flow is as follows:

1. Determine word length and position of specified register in
memory.

2. Shift value to desired position.

3. Merge into addressed memory word.

Register designators can be any of those noted in the Debug Function
Request (0278)' as documented in the Front-end Protocol Internal
Reference Manual, eRI publication SM-0042.

5et system breakpoint request (SBKPT=32)

This request sets a single or double breakpoint in the system by changing
an instruction parcel to an error exit instruction with the breakpoint
number in the rightmost bits. If a breakpoint exists at the address, an

SM-0040 2-34 C

EXEC EXECU'rIVE REQUEST PBOCESSOR

error is reported. The double breakpoint allows for automatic resetting
of the initial breakpoint when the second breakpoint is encountered. Up
to eight system task breakpoints are allowed.

Format:

o 8 16 24 32 40 48 56 63
II ~reaKpol.nt:. HreaKpol.nt

S6 v//////////////I ~arcel address 2 I parcel address 1

S7 V//////////////////////////////////////I t 1///////////1 328
/ . Breakpol.nt number

Field Word Bit Description

Parcel 2 S6 16-39 Absolute parcel address of first
breakpoint

Parcel 1 S6 40-63 Absolute parcel address of second
breakpoint

Number S7 40-42 Breakpoint number (0-7)

FC S7 55-63 Monitor request number (328)

The flow is as follows:

1. Verify breakpoint number.

2. Verify breakpoint number not in use.

3. Verify memory address not already in Breakpoint Table.

4. Store information in Task Breakpoint Table.

5. Save breakpoint instruction parcel.

6. Set breakpoint.

Clear system breakpoint request (CBKPT=33)

This request clears a system task breakpoint entry.

SM-0040 2-35 C

EXECUTIVE REQUEST PROCESSOR EXEC

Format:

o 8 16 24 32 40 48 56 63

86 V///I//////////1////

87 V//////////////////////////////////////I l' 1////1//////1 338

Field Word

Breakpoint 87
number

FC 87

The flow is as follows:

Bit

40-42

55-63

1. Verify breakpoint number.

BreakpOint number

Description

Breakpoint number (0-7)

Monitor request number (338)

2. Verify breakpoint number in use.

3. Determine which of two possible breakpoint addresses is active.

4. Restore instruction parcel at the active address.

5. Clear breakpoint table entry.

Report CPU use request (CPUTIL=34)

This request puts data on CPU use into the assigned buffer.

Format:

o 8 16 24 32 40 48 56 63
86 ////////1//////////////1 Buffer length I Buffer address

87 V///I/////////////////////I////////////////////////////1 348

Field Word

Buffer length 86

Buffer
address

FC

8M-0040

86

87

Bit Description

24-39 Buffer size in words

40-63 Absolute address of receiving buffer

55-63 Monitor request number (348)

2-36 C

EXEC EXECUTIVE REQUEST PROCESSOR

The flow is as follows:

1. Validate buffer size.

2. Fill the buffer with CPU usage data, zeroing the fields in EXEC
that collect such data.

Report task use request (TASKUTIL=35)

This request puts task usage data into the assigned buffer.

Format:

o 8 16 24 32 40 48 56 63

S6 V//////////////////////I Buffer length I Buffer address

S7 V//1 35 8

Field Word Bit Description

Buffer length S6 24-39 Buffer size in words

Buffer
address

S6 40-63 Absolute address of receiving buffer

FC S7 55-63 Monitor request number (358)

The flow is as follows:

1. Validate buffer size.

2. Put number of tasks into buffer.

3. Put number of readies of each task into buffer, zeroing the fields
that collect such data in the STT.

Report EXEC request (EREQNT=36)

This request puts the EXEC request count of each task into the assigned
buffer.

SM-0040 2-37 C

EXECUTIVE REQUEST PROCESSOR EXEC

Format:

o 8 16 24 32 40 48 56

S6 ///////////////////////, Buffer length, Buffer address

S7 V//, 368

Field

Buffer
length

Word

S6

Bit Description

24-39 Buffer size in words

63

Buffer
address

S6 40-63 Absolute address of receiving buffer

FC S7 55-63 Monitor request number (368)

The flow is as follows:

1. Validate buffer size.

2. Put number of tasks into buffer.

3. Put number of requests made by each task into buffer, zeroing the
fields that collect such data in the STT.

Report EXEC call counts request (ECALLCNT=37)

This request puts the number of EXEC requests of each type into the
assigned buffer.

Format:

o 8 16 24 32 40 48 56 63

S6 ///////////////////////1 Buffer length, Buffer address

S7 ///1 37 8

Field

Buffer
length

Word

S6

Bit Description

24-39 Buffer size in words

Buffer
address

S6 40-63 Absolute address of receiving buffer

FC S7 55-63 Monitor request number (378)

SM-0040 2-38 c

EXEC EXECUTIVE REQUEST PROCESSOR

The flow is as follows:

1. Validate buffer size.

2. Put number of task EXEC request types into buffer.

3. Put number of requests of each type into buffer, zeroing the
fields that collect such data in the STT.

Report interrupt counts request (CHINTCNT=40)

This request puts interrupt counts of each channel and pseudo channel
into the assigned buffer.

Format:

o 8 16 24 32 40 48 56 63

S6 V//////////////////////I Buffer length I Buffer address

S7 V//1 40 8

Field

Buffer
length

Word

S6

Bit Description

24-39 Buffer size in words

Buffer
address

S6 40-63 Absolute address of receiving buffer

FC S7 55-63 Memory request number (408)

The flow is as follows:

1. Validate buffer size.

2. Put number of interrupt channels into buffer.

3. Put interrupt count of each channel into buffer, zeroing the
table entries that collect such data.

Switch processors request (PSWITCH=4l)

On CRAY X-MP mainframes, the switch processors request causes STP to be
switched to the processor number specified in PN field.

SM-0040 2-39 C

I

EXECUTIVE REQUEST PBOCESSOR

Format:

o 8 16 24 32 40 48 56 63

S6 V//IPN

S7 V//1 418

Field Bit Description

PN S6 60-63 Ordinal of CPU to switch to

FC S7 55-63 Monitor request number (418)

Processing for this request consists of the following:

• Increment the P register of the calling task by 2.

• Ensure that the calling task is the job scheduler, JSH.

• Suspend the calling task, and clear all system task scheduling
information pertaining to it.

• Issue an interprocessor message to the other CPU, requesting that
it complete processing of the P5WITCH request.

• Clear all operating system locks, and wait for the other CPU to
enter the operating system.

• Jump to LOCKOS to reenter single-threaded operation.

ERROR CONDITIONS:

$5TOPOI2: occurs if the calling task is not J5H.

Dump CRAY X-MP cluster registers request (DUMPCL=42)

System tasks use the dump CRAY X-MP cluster registers request to obtain a
copy of all registers in a CRAY X-MP cluster.

Format:

o 8 16 24 32 40 48 56 63

S6 @DUCLN 1///////////////////////1 @DUADDR

57 V//1 @DUFC

SM-0040 2-40 C

EXEC EXBCt1lIVB REQUEST PROCESSOR

Field Word

@DUCLN S6

@DUADDR S6

@DCFC S7

Bits

0-7

32-63

55-63

Description

CRAY X-MP cluster to be dumped

STP-relative address of buffer to
receive cluster image: must be at
least C@CLSIZE words long.

Request code (0428)

Processing for this request consists of the following:

• Ensure that a buffer was specified, that the request is being made
on a CRAY X-MP mainframe, and that the cluster number is valid.

• Enter the selected cluster, dump the cluster to the specified
buffer, and reenter the system cluster.

ERROR CONDITIONS:

(P) exits:

(S6)=ERIA (036) if a zero buffer address is specified

(S6)=ERMT (034) if the request is made on a machine other than
a CRAY X-MP mainframe

(S6)=ERCLN (035) if an invalid cluster number is specified

$STOP048: occurs if the SETCL macro does not find the requested
cluster number in its tests; indicates a hardware problem.

2.6.2 EXEC ERROR CODES

EXEC returns one of the following error codes in register S6, if a
request cannot be processed. The requester's P register is not
incremented in this case.

Octal
Symbol code Processing routine and significance

ERNTS 1 <ROO1> No task space left
ERIDA 2 <ROll> No task assigned
ERTNX 3 <ROOO, ROO2, R004, R014, R03l>

Task does not exist

SM-0040 2-41 C

FRONT-END DRIVER

Symbol

ERRAT
ERCHA
ERITN

ERBPN
ERBPB
ERBFD
ERNCP
ERGSY
ERIPS
ERIRN
ERQFULL
ERINB

ERTALC
ERSID
ERBFC
ERTPB
ERICH

Octal
code

4
5
6

11
12
13
14
15
16
20
24
25

26
27
30
31
32

2.7 FRONT-END DRIVER

EXEC

Processing routine and significance

<R004>
<ROll>
<R014>

Resource already assigned to a task
Channel already active
Illegal task call (also returned if
unknown task makes a request)

<R032, R033> Illegal breakpoint number
<R032> Address already has a breakpoint
<R027, R031> Bad field definition
<ROI6> Job already connected
<R021> Disk malfunction
<R033> Breakpoint invalid
<R031> Illegal register name
<R006> Time queue is full
<R034, R035, R036, R037, R040>

<ROOI>
<R022>
<R022>
<R022>
<R022>

Insufficient buffer length
Task already created
Source ID mismatch
Bad function
Task parameter block changed
Invalid channel number

The Front-end Driver (FED) physically controls I/O between the Cray
mainframe and front-end computers attached directly to the Cray
mainframe. In addition, it passes requests to the MIOP for I/O between
the Cray mainframe and front-end computers attached to an I/O Subsystem.

The Front-end Driver is invoked by EXEC monitor request 5. The Station
Call Processor (SCP) is the only task to use FED. FED requires the use
of COS front-end protocol. See the Front-end Protocol Internal Reference
Manual, CRI publication SM-0042, for detailed information on COS protocol.

FED processes task requests for channel control and front-end I/O. FED
performs hardware-level error recovery and some logical error recovery.
Most logical error recovery is provided by the requesting task.

2.7.1 THEORY OF OPERATION

FED processes the following operations:

• Channel on

SM-0040 2-42 C

EXEC FRONT-END DRIVER

• Channel off

• Output to front end

Channel on operation

The following processing flow performs the channel on operation:

Assign channel pair to requesting task
Master clear interface
IF direct coupled interface THEN

Send restart message
ENDIF
WHILE channel remains on

Wait for input message
IF direct coupled interface THEN

Terminate any output active on channel pair
ENDIF
IF input error THEN

Increment error count
IF error retry count not exceeded THEN

Send MESSAGE ERROR message
ELSE

Exit and wait for operator intervention (channel hung)
ENDIF

ELSE
Notify requesting task of an input message

ENDIF
Check for deferred output operation on this channel

ENDWHILE

Channel off operation

The following processing flow performs the channel off operation:

Deassign channel
Terminate any I/O on channel
Reject further interrupts from channel

Output to front-end operation

The following processing flow performs the output to front-end operation:

Send output message
IF network error THEN

SM-0040 2-43 C

FRONT-END DRIVER

IF local adapter busy THEN
Defer output operation

ELSE
Increment error count
IF error retry limit not exceeded THEN

Resend output message
ELSE

Exit and wait for operator intervention (channel hung)
ENDIF

ENDIF
ENDIF

2.7.2 SYSTEM TABLES USED BY THE FRONT-END DRIVER

FED uses the following system tables:

CHT Channel Table
CXT Channel Extension Table
LIT Link Interface Table
LXT Link Extension Table

Detailed information on these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

Channel Table (CHT)

EXEC

A channel pair is assigned to the requesting task when the channel is
turned on, by placing the task parameter block address and LIT entry
address in the CHT entries for the channel pair. The interrupt handler
address is updated by the FED after each interrupt.

Channel Extension Table (CXT)

The Channel Extension Table (CXT) has an entry for each I/O Subsystem
channel ordinal. A request is passed to the MIOP by building a message in
the entry for the channel ordinal specified in the monitor request.
Further communication with the MIOP is handled by the lOP driver.

Link Interface Table (LIT)

The Link Interface Table (LIT) has an entry for each channel configured
for front-end communications. The entry address is passed in the monitor
request. FED uses the LIT to control the interfaces and to multiplex
multiple logical front ends on one channel.

SM-0040 2-44 C

EXEC FRONT-END DRIVER

Link Extension Table (LXT)

The Link Extension Table (LXT) has an entry for each logical front-end ID
configured. It is used for communication between EXEC and STP. An entry
is allocated by FED upon receipt of a logon message, and released after an
output operation if the OFF bit is set. Receipt of a front-end message is
Signaled by FED with the INT (interrupt) bit. FED does not modify an
entry after setting INT until the next output request is received for that
entry.

2.7.3 FRONT-END DRIVER PROCESSORS

The Front-end Driver consists of a request dispatcher (ROOS) and the
following request processors:

Processor Function

ROOSC IFC (channel coupler) request processor

ROOSI lOP request processor

ROOSN NSC (HYPERchannel) request processor

R005 request dispatcher

The R005 request dispatcher determines the pertinent request processor
and transfers control to it. R005 processing is as follows:

IF nonzero channel ordinal THEN
Exit to R005I

ELSE
IF channel off THEN

Perform processing and exit
ELSE

Set up tables
Exit to R005C or R005N, depending on type

ENDIF
ENDIF

The following R005 subroutines are available to all request processors:

Processor Function

FNDLX Looks up an LXT entry

SM-0040 2-45 c

I

FRONT-END DRIVER EXEC

Processor Function

GETLX Allocates an LXT entry

I TERM Performs input termination processing

MVLCP Moves an LCP from an LIT entry to an LXT entry

OTERM Performs output termination processing

TACT Activates requesting task

FNOLX - Processing is as follows:

Look up:
An LXT entry allocated to a given 10

Return to calling routine

GETLX - Processing is as follows:

LABEL 1
Find an LXT with the same 10 as the input LCP.
If no matching LXT entry:

Get an inactive LXT.
If a free entry exits:

ELSE

ENDIF
ELSE

Set up the free entry.

Set an error and return.

If the LXT is not on the same channel:
Set an error and return.

ENDIF
If the LXT is logging off:
If the LXT is ready for input:

Clear the 10 (deactivate the LXT).
Jump to LABEL 1.

ELSE
Reject the logon (allowing SCP to finish current processing).
ENDIF

ENOIF
Set the relog flat in the LXT.
ENDIF

ITERM - Processing is as follows:

Set LXT Entry Interrupt flag
Mark LXT entry ineligible for input (RDY=O)

SM-0040 2-46 C

EXEC FRONT-END DRIVER

Save channel information in LXT entry for next output operation
Increment message counters in LIT entry
Return to calling routine

LPEND

I Find first LXT that has deferred output pending.

OTERM - Processing is as follows:

Increment message counters in LIT entry
IF the OFF bit is set in the LXT entry THEN

Deallocate the entry
ENDIF
Return

TACT - Processing is as follows:

Activate the requesting task
Return to the calling routine

ROOSC request processor

ROOSC processing is as follows:

IF channel on THEN
Call CCLR to master clear the interface
Set up to write a restart message LCP; WLCP is interrupt handler
Set up to read an LCP into the LIT entry; RLCP is interrupt handler

ELSE IF output THEN
Mark the LXT entry eligible for input (RDY=I)
Set up to write an LCP from the LXT entry; WLCP is interrupt handler

ENDIF

Each routine designates another routine as an interrupt handler if I/O is
pending on the channel pair. The ROOSC routines are:

Processor Function

CCLR Master clears interface

CCLRB Processes interrupt from reading input channel

CCLRC Processes timeout interrupt and master clear channel

CCLRD Processes interrupt from writing function code

SM-0040 2-47 C

FRONT-END DRIVER EXEC

Processor Function

CHKSM Checksums a given area

FOLD Folds a 64-bit checksum

LIRCV Processes input error

LORCV Processes output error

RLCP Processes interrupt from reading LCP

RLTP Processes interrupt from reading LTP

RSSEG Processes interrupt from reading subsegment

WLCP Processes interrupt from writing LCP

WLTP Processes interrupt from writing LTP

WSSEG Processes interrupt from writing subsegment

WXLCP Processes interrupt from writing error LCP

WXLTP Processes interrupt from writing error LTP

CCLR/CCLRA Processing is as follows:

Terminate any input or output on channel
Set up a timer for I@MCLDLY clock ticks; CCLRC is interrupt handler
Set up to read any input in LCP-size pieces; CCLRB is interrupt
handler

CCLRB - Processing is as follows:

Cancel the timer
Exit to CCLRA

CCLRC - Processing is as follows:

Issue the master clear sequence for low-speed asynchronous channel
IF a VAX channel type THEN

Set up to write a SELECT function code; CCLRD is interrupt handler
ELSE

Return to calling routine
ENDIF

SM-0040 2-48 C

EXEC FRONT-END DRIVER

CCLRD - Processing is as follows:

Return to calling routine

CHKSM - Processing is as follows:

Calculate checksum and return to calling routine

FOLD - Processing is as follows:

Fold checksum and return to calling routine

LIRCV - Processing is as follows:

Increment error counters
IF error retry count exceeded THEN

Exit
ELSE IF output channel is not active THEN

Format a message error message LCP
Set up to write the error LCP; WXLCP is interrupt handler

ENDIF
Set up to read the next LCP; RLCP is interrupt handler

LORCV - Processing is as follows:

Increment error counters
IF no LXT entry is available for the ID THEN

Set up to send a restart LCP; WLCP is interrupt handler
ELSE

Set up to resend last output LCP; WLCP is interrupt handler
ENDIF

RLCP - Processing is as follows:

Call DEBUG for history trace entries (HTFEI=7 and HTSCI=16)
IF channel error or short input THEN

Exit to LIRCV
ELSE

Stop any output in progress on channel
IF a logon message THEN

Set up to read short segment; RSSEG is interrupt handler
ELSE IF a hardware (3xx) message error message THEN

Exi t to LORCV
ELSE IF the ID has no LXT entry or no LXT entries are available THEN

Exit to LIRCV
ELSE

SM-0040

Call MVLCP to move the LCP to the LXT entry
IF a segment is present THEN

2-49 C

FRONT-END DRIVER EXEC

Set up to read the first subsegment; RSSEG is interrupt handler
ELSE IF checksumming enabled THEN

Set up to read the LTP; RLTP is interrupt handler
Call ITERM to perform input termination processing
Call TACT to activate the requesting task

ENDIF
ENDIF

ENDIF

RLTP - Processing is as follows:

IF a channel error or short input THEN
Exit to LIRCV

ELSE
Set up to read the next LCP; RLCP is interrupt handler
Call ITERM to perform input termination processing
Call TACT to activate the requesting task

ENDIF

RSSEG - Processing is as follows:

IF a channel error or short input THEN
Exi t to LIRCV

ELSE IF a logon message segment THEN
Call GETLX to allocate an LXT entry and move the logon segment
IF no LXT entries are available THEN

Exit to LIRVC
ELSE

Call MVLCP to move the LCP into the LXT entry
Call DEBUG for history trace entry (HTSEG=15)
Set up to read the next LCP; RLCP is interrupt handler
Call ITERM to perform input termination processing
Call TACT to activate the requesting task

ENDIF
ELSE IF no more subsegments are available

Set up to read the next subsegment; RSSEG is interrupt handler
ELSE IF checksumming enabled THEN

Set up to read the LTP; RLTP is interrupt handler
ELSE

Call DEBUG for history trace entry (HTSEG=15)
Set up to read the next LCP; RLCP is interrupt handler
Call ITERM to perform input termination processing
Call TACT to activate the requesting task

ENDIF

WLCP - Processing is as follows:

Call DEBUG for history trace entries (HTFEO=14 and THSCO=20)
IF a segment is present THEN

SM-0040 2-50 C

FRONT-END DRIVER

Set up to write the first subsegment, WSSEG is interrupt handler
ELSE IF checksumming enabled THEN

Set up to write the LTP, WLTP is interrupt handler
ELSE

Call OTERM to perform output termination processing
ENDIF

WLTP - Processing is as follows:

Call OTERM to perform output termination processing

WSSEG - Processing is as follows:

IF no more subsegments are present THEN
Set up and write the next subsegmentJ WSSEG is interrupt handler

ELSE
Make history trace entry (HTSEG=lS)
IF checksumming enabled THEN

Set up to write the LTP, WLTP is interrupt handler
ELSE

Call OTERM to perform output termination processing
ENDIF

ENDIF

WXLCP - Processing is as follows:

Call DEBUG for history trace entry (HTFEE=17)
IF checksumming enabled THEN

Call CHKSM and FOLD to calculate checksum, format error LTP
Set up to write the error LTP, WXLTP is interrupt handler

ENDIF

WXLTP - Processing is as follows:

Clean up

ROOSI request processor

The processing for ROOSI is as follows:

IF the operation is a channel on or channel off operation THEN
Format an X packet in the CXT entry for ordinal specified

ELSE IF the operation is an output operation THEN
Format a B packet in the eXT entry for ordinal specified

ENDIF
Call IOPRDV/APENQ to queue the packet to the MIOP

SM-0040 2-Sl C

I

FRONT-END DRIVER EXEC

Further communication with the MIOP is handled by the lOP driver (R022).

The APRCV subroutine recovers from an I/O Subsystem shutdown or restart.
APRCV issues a K packet to the MIOP for each active CXT entry. The lOP
driver uses the K packet upon receipt of an initialization sequence from
the MIOP.

APRCV processing is as follows:

LOOP for all CXT entries
IF entry is active THEN

Call DEQ to obtain a packet from the free queue
Build a K packet
Call IOPDRV/APENQ2 to queue the packet to the MIOP

ENDIF
ENDLOOP

R005N request processor

R005N processing is as follows:

IF a CHANNEL ON request
Master clear the adapter.
Set up to write a WAIT FOR MESSAGE function.
Exit - input pending.

ELSEIF an output request
Build the output message LCPE based on
information received for that ID.
If the adapter is busy (a non-WAIT FOR MESSAGE
function or if output recovery in progress)

Defer the current output operation.
Exit.

ELSE
Clear outstanding WAIT FOR MESSAGE function
with two END OPERATIONS.
Get the adapter status.
IF error

Issue END OP to clear adapter.
ELSEIF message received

Defer current write request.
Exit - input pending.

ENDIF
ENDIF
Set up to write a transmit message function.
Exit - output pending.

ELSE (unknown request)
STOP

ENDIF

SM-0040 2-52 c

I

EXEC FRONT-END DRIVER

Each routine designates another routine as an interrupt handler if I/O is
pending on the channel pair. Since the NSC adapter gives both an output
interrupt and an input interrupt for each function, output interrupts
require no special processing and are assigned to ENA in XPROC. The
R005N routines are:

Processor

NCLR

NCLRA

NEND

NENDA

NETO

NIRCV

NORCV

NPEND

NRLCF

NRLCP

NRSEG

NWLCF

NWLCP

NWSEF

NWSEG

NWXLC

NWXLF

SM-0040

Function

Master clears adapter

Processes interrupt acknowledging clear-adapter
function

Issues adapter end operation function

Processes interrupt acknowledging end operation
function

Processes interrupt from a time event expiration

Processes input error

Processes output error

Processes any pending output

Processes interrupt acknowledging wait-for-message
function

Processes interrupt from reading LCP

Processes interrupt from reading segment

Processes interrupt acknowledging transmit-data
function

Processes interrupt from writing LCP

Processes interrupt acknowledging transmit-data
function

Processes interrupt from writing segment

Processes interrupt from writing error LCP

Processes interrupt acknowledging transmit-message
function

2-53 C

FRONT-END DRIVER EXEC

Processor Function

OUTFC writes a function code

STAT Obtains adapter status

STATA Processes interrupt from reading adapter status word

R005N also uses the alternate entry point MVLCE of routine MVLCP to
perform the move of both LCPE and LCP from the LIT to the LXT.

NCLR/NCLRA - Processing is as follows:

Save return address in LIT entry
Terminate any input or output active on channel
Set up to write a clear-adapter function; ENA is interrupt handler
Set up to read the acknowledgment; NCLRA is interrupt handler

NCLRB - Processing is as follows:

IF channel error or adapter error THEN
Increment error counters
LF err-or retry limit exceeded THEN

Exit
ELSE

Exit to NCLRA
ENDIF

ELSE
Return to calling routine

ENDIF

NEND - Processing is as follows:

Ensure no interrupts.
Set up return address.
Issue END OP function.

NENDA - Processing is as follows:

Ensure no output interrupts.
Cancel time event.
Set up return address.

NETO - Processing is as follows:

IF time out recovery already in progress
Set channel hung.
Exit.

SM-0040 2-54 C

I

I

EXEC

ENDIF
Increment the timeout counter.
Issue an NSC END operation to clear errors.
IF output in progress

Increment output error count for this LXT.
IF error count exceeded

EXIT - check for transfer pending.
ENDIF
Set up to restart output.

ENDIF
Exit - check for transfer pending.

NIRCV - Processing is as follows:

I Save message error subcode.

I

Ensure input and output channels are inactive.
Issue an ENDOP to clear the adapter.
Increment error counters in the LIT
IF too many errors

Clear error counter, and increment retry
counter exceeded.
Exit - check for transfer pending.

ENDIF
If message has no source or destination

Increment the unknown interrupt counter.
EXIT - check for transfer pending.
ENDIF

Set up to write a transmit message function.
EXIT - input pending.

NORCV - Processing is as follows:

Deactivate both sides of the channel pair.
Issue an END OP to clear the adapter.
Increment the error counters in the LIT.
Set up to write a transmit message function.
IF within error limit

wait before retrying. This means exit
and reenter here. Issue a Wait For Message
during the delay time.
IF output has been completed when the delay
expires

Clear error counts.
IF current function is WAIT FOR MESSAGE

Clear WAIT FOR MESSAGE with END OF.
EXIT - check for transfer pending.

ELSE
EXIT - to ENA.

SM-0040 2-55

FRONT-END DRIVER

c

FRONT-END DRIVER

ENDIF
ELSE

IF function is not WAIT FOR MESSAGE
Requeue output operation.
EXIT - to ENA.

ELSE
Clear WAIT FOR MESSAGE with END OF
Set up to retransmit the message.
EXIT - output pending.

ENDIF
ENDIF

Exit - output pending.
ELSE

Clear error count, and increment retry
count exceeded.
Exit - check for transfer pending.

ENDIF

NPEND - Processing is as follows:

Get adapter status.
IF status error

Issue END OP to clear adapter.
ELSEIF message received

Setup to input message.
Exit - input pending.

ENDIF
IF error message pending

Set up to write error message.
Exit - output pending.

END IF
IF output pending and no output recovery in progress

Look for pending LXT.
IF LXT found

Set up to write TRANSMIT MESSAGE function.
Exit - output pending.

ELSE
Clear output pending count.

ENDIF
ENDIF
Set up to write WAIT FOR MESSAGE function.
Exit - input pending.

NRLCF - Processing is as follows:

Ensure the output channel is inactive.

EXEC

Set up to write an INPUT MESSAGE function code and read the message
proper (LCPE/LCP) into the LIT entry.
Exit.

SM-0040 2-56 C

EXEC

NRLCP - Processing is as follows:

Ensure the output channel is inactive.
Cancel the time event.
Record the input LCP in the history trace buffer.
IF a channel error, short LCP, or adapter error

Exit - input error.
ENDIF
IF a LOGON message

Set up to write an INPUT DATA function, and
read the short LOGON segment.
Exit - input pending.

ENDIF
IF a MESSAGE ERROR message with a 3xx subcode

I Look up the LXT entry for input source ID.
IF no matching LXT

Exit - input error.
ENDIF
Exit - output error.

ENDIF
IF LXT entry not ready for input

Exit - input error.
ENDIF
Move the LCPE and LCP into the LXT entry.
IF a data segment expected

Set up to write the INPUT DATA function code
and read the segment.
Exit - input pending.

ELSE
IF associated data present

Exit - input error.
ENDIF
Issue END OP to complete transfer.
Perform input termination.
Exit - check for transfer pending.

ENDIF

NRSEG - Processing is as follows:

Ensure the output channel is inactive.
Cancel the time event.
IF a channel error, short segment, or adapter error

Exit - input error.
ENDIF
Issue an END OP to complete the transfer.
IF a LOGON message

Allocate an LXT entry.
IF no available entries

SM-0040 2-57

FRONT-END DRIVER

C

FRONT-END DRIVER

Exit - input error.
ENDIF
Move the LCPE and LCP into the LXT.

ELSE
Get the LXT address for this message.

ENDIF
Record the input segment in the history trace.
Perform input termination.
Exit - check for transfer pending.

NWLCF - Processing is as follows:

Ensure no output interrupts.
Cancel the time event.
Set up to write the message proper (LCPE/LCP) from the LXT.
Exit.

NWLCP - Processing is as follows:

Ensure output channel is inactive.
Cancel the time event.
Record the output LCP in the history trace buffer.
IF adapter status good

IF there is a segment
Set up to write a TRANSMIT LAST DATA function.
Exit - output pending.

ELSE
Perform output termination.
Exit - check for transfer pending.

ENDIF
ELSE

IF status indicates no message received
Exit - output error.

ENDIF
Issue an END UP to clear the adapter.
Defer current operation.
Exit - input pending.

ENDIF

NWSEF - Processing is as follows:

Ensure the output channel is inactive.
Cancel the time event.
Set up to write the segment.
Exit.

SM-0040 2-58

EXEC

C

EXEC

NWSEG - Processing is as follows:

Ensure the output channel is inactive.
Cancel the time event.
Record the output segment in the history trace.
Perform output termination processing.
Exit - check for transfer pending.

NWXLC - Processing is as follows:

Ensure the output channel is inactive.
Cancel the time event.
Record the LCP in the history trace.
Get the adapter status.
IF the status indicates an error

IF message received
Issue an END OP to clear the adapter.
Defer the current output operation.
Exit - process forced input.

ELSE
Increment retry count exceeded.
Exit - check for transfer pending.

ENDIF
ENDIF

FRONT-END DRIVER

Set up to write a wait-for-message function: ENA is interrupt handler
Exit - output pending

NWXLF - Processing is as follows:

Ensure the output channel is inactive.
Set up to write the message proper (LCPE/LCP) •
Exit.

OUTFC - Processing is as follows:

Ensure input channel inactive.
Set up to input response.
Output function code.
IF not WAIT FOR MESSAGE or CLEAR ADAPTER functions

Set time event timer.
ENDIF
WHILE time to wait not exceeded

EXITIF any I/O interrupt received.
Decrement time to wait.

ENDWHILE

SM-0040 2-59 C

FRONT-END DRIVER EXEC

STAT - Processing is as follows:

Save return address in the LIT entry
Issue STATUS function.
Set up to write a status function~ ENA is interrupt handler
Set up to read the acknowledgment~ STATA is interrupt handler

STATA - Processing is as follows:

Determine response code
Exit

OUTFC - Processing is as follows:

Ensure input channel inactive.
Set up to input response.
Output function code.
IF not WAIT FOR MESSAGE or CLEAR ADAPTER functions

Set time event timer.
ENDIF
WHILE time to wait not exceeded

EXITIF any I/O interrupt received.
Decrement time to wait.

ENDWHILE

2.7.4 FRONT-END DRIVER ERROR RECOVERY

The Front-end Driver (FED) attempts recovery from hardware-related
errors. In addition, it detects and attempts recovery from some
software-related errors (for example, lack of table space).

An error condition results in one of the following:

• Retry of the operation that caused the error

• Generation and transmission of a Message Error message

If error conditions persist and the error retry limit for a channel is
exceeded, operator intervention is required.

A typical sequence for recovering from multiple errors is as follows:

1. At the master operator station, turn the affected channel off.

2. Terminate the front-end stations using the affected channel
(perhaps turn off the front-end channel).

SM-0040 2-60 C

EXEC FRONT-END DRIVER

3. If necessary, manually master clear the interfaces.

4. Turn on the channel.

5. Restart the front-end stations including the front-end channel.

If this sequence fails, contact the Cray Research engineers.

ROOSC (IFC interface) error processing

An input error causes the issue of a Message Error message to the front
end. If the input error retry count is exceeded, operator intervention
is required. The error retry limit for ROOSC is 8192.

The following circumstances indicate an input error:

• The Channel Error flag is set.

• A transfer length error (short transmission) occurs.

• No LXT entries are available for a front-end log on.

An output error causes a retry of the last operation by the front end.
If the output error retry count is exceeded, no further retries are
attempted, but the channel remains active.

A Message Error message with an octal 3xx message subcode indicates an
output error.

ROOSI (I/O Subsystem) error processing

All error processing is handled by the I/O Subsystem. See the lOS
Software Internal Reference Manual, CRI publication SM-0046, for details.

ROOSN (NSC HYPERchannel interface) error processing

An input error results in a Message Error message to the front end. If
the input error retry count is exceeded, no further retries are
attempted, but the channel remains active. The error retry limit for
ROOSN is 10.

The following circumstances indicate an input error:

• The Channel Error flag is set.

SM-0040 2-61 C

DISK/SSD DRIVER EXEC

• A transfer length error (short transmission) occurs.

• An invalid HYPERchannel adapter status is returned.

• No LXT entries are available for a front-end log on.

An output error causes a retry of the last operation by the front end.
If the output error retry count is exceeded, no further retries are
attempted, but the channel remains active.

The following circumstances indicate an output error:

• An invalid HYPERchannel adapter status is returned.

• A Message Error message with an octal 3xx message subcode is
received.

2.8 DISK/SSD DRIVER

The Disk/SSD Driver controls the following devices connected to a
mainframe I/O channel:

• DCU-2 Disk Controller

• DCU-3 Disk Controller

• SSD (Solid-state Storage Device)

Each disk controller can drive from one to four disk storage units of the
following types:

• DD-19 Disk Storage unit

• DD-29 Disk Storage unit

As an option, an SSD can be part of the configuration.

• On the CRAY-l M Series and CRAY-l S Series mainframes, the SSD is
controlled by a High-speed Channel Controller (HSC) which connects
to a 6-Mbyte channel pair. The HSC moves data to and from the SSD
over a lOO-Mbyte channel.

• On the CRAY X-MP mainframe, the SSD is connected directly to the
mainframe through a l250-Mbyte channel. Note that only one half
of a channel pair is required to control a CRAY X-MP SSD, but the
pair must be configured.

SM-0040 2-62 C

EXEC DISK/SSD DEcrVER

2.8.1 DISK/SSD DRIVER TABLES

The parameters in the requesting task's S6 and S7 registers specify table
addresses and a channel pair number to use for all devices controlled by
the ROll monitor request.

The monitor request includes addresses of the following tables:

OCT Device Channel Table
EQT Equipment Table

Device Channel Table (OCT)

The DCT contains the channel characteristics.

Equipment Table (EQT)

The EQT contains information on the type of I/O request and the device
characteristics (disk storage unit type, SSD, and so on) •

2.8.2 ROll MONITOR REQUEST

ROll checks the validity of the request parameters. If there is an
illegal value or if the request would interfere with a request already in
progress (except for master clear requests), ROll immediately makes an
error return.

A normal return is scheduled if the request is well formed.

ROll selects the initial processor depending on device characteristics.
Once the parameter validation is performed, one of the following
processors is selected:

Processor Description

001 DD19/29 disk request initialization

SSREQ CRAY-l M Series or S Series SSD request

XSREQ CRAY X-MP Series SSD request

ROll is interrupt driven and executes a request in short bursts. Each
processor selects the next processor to execute upon receipt of an

SM-0040 2-63 C

DISK/SSD DRIVER

interrupt. Time between interrupts is available to the rest of the
system for task or user job execution.

ROll informs its calling STP task of the progress of the request after
each transfer of a sector (if I/O interrupts occur after each sector is
transferred) and at the completion of the request. The Disk Queue
Manager (DQM) is the only task that calls ROll.

2.8.3 LOST DISK INTERRUPTS

An interrupt could fail to occur due to hardware failure. Therefore,
ROll protects itself by scheduling a timeout interrupt for each request
to ROll. As a result, each execution of Interchange compares the current
contents of RTC (real-time clock) to the timeout value. Interchange
gives control to ROll if the timeout occurs.

Exchanges or other interrupts might not occur for an extended period.
The MCU real-time interrupts should be enabled, if available, to ensure
frequent execution of Interchange if the computer is not equipped with a
programmable clock. The time delay scheduled for timeout reflects the
magnitude of the request to ROll while being liberal enough to avoid
needless timeouts.

A single ROll request can involve many interrupts; thus, the single
timeout scheduled per ROll request acts as a blanket protection.

Lost interrupts are rare; generally, only expected interrupts occur.

When the request completes, the timeout is released.

2.8.4 STATUS CHECKING AND ERROR RECOVERY

ROll checks hardware status at the start and completion of each request.

ROll notifies the calling STP task when a request completes whether
successfully or in error. To effect error recovery, the calling task
must make the appropriate calls to ROll.

2.8.5 HARDWARE SEQUENCES FOR SAMPLE REQUESTS

This subsection assumes the reader is familiar with the Mass Storage
Subsystem Hardware Reference Manual, CRI publication HR-0630. The
processing sequence for several requests is presented here.

SM-0040 2-64 C

EXEC DISK/SSD DRIVER

Multiple sector write

A multiple sector write resembles the multiple sector read; however,
retry is disabled implicitly and write continuity is checked. Either a
margin select function or a read function destroys write continuity. A
write function destroys read continuity.

Cylinder select

A cylinder select resembles a multiple sector read or write except that
sectors to transfer are 0 on entry to the driver.

Controller master clear

Processing is as follows:

1. Master clear channel with recommended I/O master clear sequence.

2. Reserve unit.

3. Read subsystem status.

4. Read fault status.

5. Read interlock status.

6. Read cylinder status.

7. Read head status.

8. Read sector status.

9. Read offset status.

10. Release unit, clear fault, and return to cylinder O.

11. Reserve unit.

12. Release unit, clear fault, and return to cylinder O.

13. Reserve unit.

SM-0040 2-65 C

PACKET I/O DRIVER EXEC

Margin select

The margin select is driven by the Margin Select Table in EXEC. The
table is initialized for 40 retries, starting at the smallest offset and
working out to two-thirds of the maximum offset. Each word in the Margin
Select Table contains eight margin values, one per byte.

2.9 PACKET I/O DRIVER

The Packet I/O Driver consists of two major parts:

1. The MIOP driver, which controls the 6-Mbyte channel to the Master
I/O processor in the I/O Subsystem.

2. Packet queueing, which routes packets among three areas of the
system:

• STP tasks

• EXEC

• I/O Subsystem

Packets can originate in and be sent to any of these areas.

2.9.1 PACKET I/O DRIVER TABLES

The following tables are used by the Packet I/O Driver:

APT Any Packet Table
CXT Channel Extension Table
FIQ Free Input Queue Table
FOQ Free Output Queue Table
QCT Queue Control Table
SCT Subsystem Control Table

Any Packet Table (APT)

The APT defines most of the packet formats and all of the packet formats
recognized by EXEC.

SM-0040 2-66 C

EXEC PACKET I/O DRIVER

Channel Extension Table (CXT)

The CXT controls front ends connected through the I/O Subsystem. Each lOS
channel ordinal has one entry for handling one or more of the logical
front-end IDs.

Free Input Queue Table (FIQ)

The FIQ contains input packets. The packet to be read from the MIOP
contains "NEXTPACK" in ASCII replicated throughout.

Free Output Queue Table (FOQ)

The FOQ contains pointers to queued output packets.

Queue Control Table (QCT)

The QCT is a general format for tables manipulated by the EXEC queue
management subroutines. Specific tables using this format are the FIQ,
FOQ, and SCT.

Subsystem Control Table (SCT)

The SCT contains an entry for each type of packet EXEC can receive from
the MIOP or send to STP. Each entry contains the address of a routine
that either processes the packet or forwards it to an STP task for
processing.

Detailed information on these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

2.9.2 PACKET DESCRIPTION

The unit of information passed is known as a packet and is always six
64-bit words long. The Any Packet Table (APT) describes most of the
formats the packet can take. The packet always has a l6-bit destination
10 (DID) and a l6-bit source 10 (SID) used by the Packet I/O Driver to
route the packet to its destination.

The following ASCII identifiers are valid in the SID and DID fields. The
identifiers are right-justified and null (binary zero) filled.

SM-0040 2-67 C

PACKE'l' I/O DRIVER EXEC

Identifier Description

Cl Cray mainframe identifier
EX EXEC identifier

A Disk I/O
B Front-end I/O
C Error message
D Tape I/O
E Echo
G Tape configuration
I Initialization part 1
J Initialization part 2
K Kernel request
N Null request
S Statistics request

2.9.3 R022 MONITOR REQUEST

STP tasks can send packets to and receive packets from the I/O Subsystem
with a R022 monitor request (Packet I/O). STP tasks can also receive
packets from EXEC using the R022 request. See the PIO request in section
2.6.1 for details of this R022 monitor request.

2.9.4 MIOP DRIVER PROCESSORS

The following processors are interrupt-driven:

Processor Description

APIIP Input interrupt handler; packet received from MIOP.

APOIP Output interrupt handler; MIOP has received packet.

The APIIP routine uses the Subsystem Control Table (SCT) to determine the
packet queueing processor for the packet.

2.9.5 PACKET QUEUEING PROCESSORS

The following processors are used by the MIOP driver to process packets
from the I/O Subsystem and are also used by EXEC to send packets to STP
tasks.

SM-0040 2-68 C

EXEC MBl«)RY ERROR CORRBC'l'ION

Packet

A
B
C
D
E
I
J
N
S

Processor

APXP
APBP
APXP
APXP
APEP
APIP
APJP
APNP
APSP

Action taken

Forward packet to DQM
Forward packet to SCP, or process request
Forward packet to MEP
Forward packet to TQM
Process request (echo the packet)
Process request (Subsystem is down)
Process request (Subsystem is up)
Process request (ignore packet)
Process request (return statistics)

2.10 MEMORY ERROR CORRECTION

Memory error correction logs memory errors in an Executive table (MEL) at
the time of interrupt. In addition, all memory errors are logged with
MSG in the System Log except those which are double bit in nature and
have forced a STOP at the time of interrupt. Between the MEL table and
the System Log, all memory errors should be fairly easy to locate. When
a memory error occurs, it is logged in the MEL. The MEL format is
illustrated in figure 2-6.

A STOP (see section 2.13.2) occurs immediately after receiving the
interrupt if any of the following conditions occur:

• Double-bit count (I@MEUCT) is exceeded ($STOP037).

• Population count of the syndrome bits is all zero ($STOP038)
indicating the hardware reported an error with contradictory
syndrome bits.

• Decoded syndrome bits do not match the correctable/uncorrectable
code contained within the exchange package ($STOP039).

• EXEC idle loop detects a multibit memory error ($STOP040).

• Multibit memory error occurs while STP is executing ($STOP04l).

• Multibit error occurs during an I/O reference ($STOP042).

• An lOP packet cannot be obtained to send the error packet to MEP
($STOP03l).

If an uncorrectable memory error stops the system, the MEL should contain
sufficient information, through raw dump or system dump, to isolate the
error and failing module.

SM-0040 2-69 c

MEMORY ERROR CORRECTION

o

1

2

3

4

5

6

7

8

9

10

11

12

o 8 16 24 32 40 48

Total Error Count

Single-bit Count

Double-bit Count

Current Bank

Current Chip Select

Current Syndrome

Current Error Type (Correctable/Uncorrectable)

Current RTC

Last Bank

Last Chip Select

Last Syndrome

Last Error Type (Correctable/Uncorrectable)

Last RTC

Figure 2-6. Memory Error Log (MEL)

56

Messages from EXEC to the Message Processor task (MEP) consist of the
standardized Any Packet Table (APT) header (1 word) followed by five
words of memory error information as follows:

o 8 16 24 32 40 48 56

EXEC

63

63

o

1

2

3

4

5

/""""\. DID I SID 1//1/////////////////1//1 FC

[>VI /SYS/ / I MF I BANKS I CHIP I CONF 1///////////////1 JXO

IN

~TI/////I////IRMI CODE I SYN I ERROR ADDRESS

////////1///////1 BASE ADDRESS I P ADDRESS

RTC

Field Word Bits Description

DID o 0-15 Destination ID (ASCII "C")

SID o 16-31 Source ID (ASCII "EX")

FC o 56-63 Function code (6)

SM-0040 2-70 C

EXEC

Field Word Bits

SYS 1 o

MF 1 8-15

BANKS 1 16-23

CHIP 1 24-31

CONF 1 32-39

JXO 1 56-63

IN 2 0-63

ET 3 0-1

RM 3 14-15

SM-0040

MFX>RY ERROR CORREC'l'ION

Description

If set, error occurred in system

Mainframe type as follows:
@CRAY1=1
@CRAY1S=2
@CRAYXMP=3

Number of banks in mainframe
(C@MMBANK)

Chip size as follows:
@MIKCH=l 1024 bits
@M2KCH=2 2048 bits
@M4KCH=3 4096 bits

Memory configuration:
@MLEFT=l
@MRIGHT=2
@BOTH=3

Job Execution Table offset if error
occurred in job~ otherwise, O.

Job name of job in which error
occurred. If error occurred in STP,
this field is filled with ASCII "STP".

Error type:
10 Uncorrectable
01 Correctable

Read Mode:
CRAY-l mainframes:

o Scalar
1 I/O
2 Vector, B or T
3 Instruction fetch

CRAY X-MP mainframes:
o I/O
1 Scalar
2 Vector, B or T
3 Instruction fetch

2-71 C

MEMORY ERROR OORRECTION

Field Word Bits

CODE 3 16-31

SYN 3 32-39

ERROR ADDRESS 3 40-63

BASE ADDRESS 4 16-39

P ADDRESS 4 40-63

Description

Code indicating type of error
encountered:

o No error encountered
1 Check bit
2 Double bit
3 Single bit
4 Multiple bit

Syndrome bits

Error address (see below)

Base address

P address of interrupted exchange
package

EXEC

RTC 5 0-63 RT value at time of error interrupt

The error address in word 0 has different values based upon which
mainframe type is being used. See table 2-1 for the error address
interpretation.

Also note that MEP communicates only the last five words of this message
to the MSG task (through PUTREQ) when requesting entry of the error in
the System Log.

Table 2-1. Address bits in word 0, depending on mainframe models

CRAY-l CRAY-l
Field Description Model A or B S or M Series CRAY X-MP

Banks Banks Banks

8 16 8 16 16 32

CA High-order bits 41-42 40-41 40-41 31-40 43-47 42-46

BIT Bit in chip 43-60 42-59 42-60 41-59 48-59 47-58

BK Bank address 61-63 60-63 61-63 60-63 60-63 59-63

SM-0040 2-72 C

IDLE TASK

2.11 IDLE TASK

When the Task Scheduler finds no work for the CPU to perform, the Task
Scheduler exchanges to the Idle task. The Idle task is a small loop that
periodically reads EXEC's portion of memory. The Idle loop continues
until an interrupt occurs.

The Idle task loops making memory references because EXEC normally
executes with memory error detection disabled. The Idle task is designed
to pick up any memory failures that EXEC does not normally detect.

2.12 EXEC DEBUG AIDS

EXEC has two debugging aids: history trace and the stop buffer.

2.12.1 HISTORY TRACE

The history trace is an EXEC-resident circular buffer of 4-word
messages. The EXEC routine DEBUG makes entries in the History Trace
Table (XTT) based on a function code plus control information in the
History Function Table (XFT). DEBUG is accessed from STP with monitor
request R020 (Post). The following tables are used by DEBUG:

XFT History Function Table
XTT History Trace Table

History Function Table (XFT)

The XFT determines which calls to the DEBUG routine result in entries in
the History Trace Table (XTT). The first word is a global-enable word,
with the mnemonic "ALL- in ASCII. If the low-order 24 bits of this word
are set to nonzero, all calls to the DEBUG routine result in entries in
the XTT. This is the default setting.

If the low-order 24 bits of this global-enable word are 0, the history
trace function number passed to DEBUG is used as an index into the XFT.
For example, a function code of 1 would point to the entry with the
mnemonic -101" in ASCII, for I/O interrupt trace. If the low-order 24
bits of the indexed word are nonzero, then an entry is made in the XTT.
If the low-order 24 bits of the indexed word are 0, no entry is made.

To disable all traces, clear the low-order 24 bits of the global-enable
word, and ensure that no individual functions are enabled.

SM-0040 2-73 C

EXEC DEBUG AIDS EXEC

To selectively enable traces, clear the low-order 24 bits of the
global-enable word, and set the low-order 24 bits of one or more other
words in the XFT.

STP functions are further selected by assembly selection of the POST
macro. An STP function not listed in the POST macro in the early part of
STP is disabled and can be re-enabled only through reassembly.

History Trace Table (XTT)

The header of this table contains the real time of the last call to DEBUG
and the offset from B@XTT where the next trace entry is formatted.

Each entry in this table contains the following information:

o 7 10 24 48 51 63
0 FC I PN I SM I P 1/////1 XA

1 BOO I INT

2 WDl

3 WD2

Field Word Bits Description

FC 0 0-6 Function number

PN 0 7-9 Processor number (CRAY X-MP only)

SM 0 10-23 First 14 semaphores in system cluster
(CRAY X-MP only)

P 0 24-47 Current exchange package P register

XA 0 51-63 Current exchange package address

BOO 1 0-23 Last BOO value (if task related)

INT 1 24-63 Interval in cycles since previous entry

WDl 2 0-63 Caller supplied word 1

WD2 3 0-63 Caller supplied word 2

Consult the COS Table Descriptions Internal Reference Manual, publication
SM-0045, for detailed information on these tables.

SM-0040 2-74 c

EXEC EXEC DEBUG AIDS

Use the following macro to make a trace entry from a task in STP. This
example assumes that 0'77 is the function number and S2 and S3 contain
the information to be captured. Note that any register values other than
SO and S7 can be used instead.

In EXEC, to perform a history trace, place the information of interest in
56 and S7 and execute the following:

Location Result Operand Comment
1 10 20 35

A5 0'77 function number
R DEBUG

The history trace is easily expandable so new function types can be
added. New DEBUG function numbers can be assigned up to a maximum value
of 77 octal.

I/O interrupt (101=1) - For I/O interrupt trace entries, the first data
word transferred serves as the only trace of the following events:
HYPERchannel function output, HYPERchannel status input. The contents of
word 2 is the HYPERchannel status for input and output HYPERchannel
segment interrupts.

Trace entry format:

0 8 16 24 32 40 48 56 63
2

I
CHE I CHN

3

I CHT I IH

I Data

Field Word Bits Descri]2tion

CHE 2 0-6 Channel Error flag

CHN 2 7-15 Hardware channel number

CHT 2 16-39 Channel Table address

SM-0040 2-75 C

EXEC DEBUG AIDS EXEC

Field Word Bits Description

IH 2 40-63 Interrupt handler address

Data 3 0-63 First data word transferred

User-initiated normal exchange (UNE=2) - Trace entry format:

0 8 16 24 32 40 48 56 63
2

I
SO

I 3 Sl

Field Word Bits Description

SO 2 0-63 User SO

Sl 3 0-63 User Sl

STP-initiated normal exchange (SNE=3) - Trace entry format:

0 8 16 24 32 40 48 56 63

2

I
S6

I 3 S7

Field Word Bits Description

S6 2 0-63 Task S6

S7 3 0-63 Task S7

Exchange to sl!:stem task ~ENE=4) - Trace entry format:

0 8 16 24 32 40 48 56 63
2

I
"TO:· in ASCII

I 3 target

Field Word Bits Description

target 3 0-63 ASCII name of system task

Exchange to idle package (ENE=4) - Trace entry format:

0 8 16 24 32 40 48 56 63
2

I
"TO:· in ASCII

I 3 "IDLE· in ASCII

SM-0040 2-76 C

EXEC DEBUG AIDS

Exchange to user task (ENE=4) - Trace entry format:

0 8 16 24 32 40 48 56 63
2

I
"TO:" in ASCII

I 3 • USER· in ASCII TXT

Field Word Bits Description

TXT 3 40-63 STP-relative TXT address of user task
being entered

Canceled timer event (PCI=5) - Trace entry format:

0 8 16 24 32 40 48 56 63
2

I
"CANCELli in ASCII

3 nTlMEVENT" in ASCII

This trace entry occurs when a global timer event, which is set up for
processing by both CPUs, is processed by a CPU. Since the timer was set
in each CPU but need be processed by only one, the timer for the other
CPU is canceled.

Time event (PCI=5) - Trace entry format:

I

o 8 16 24 32 40 48 56 63

Field

PT

EH

TN

2

3

Default

2

3

SM-0040

time

0

I

Zero I

Word Bits

2 16-39

2 40-63

3 0-63

event pulse (PCI=5)

8 16

PT I EH

I TN

Description

Parameter table address

Event handler address

II TlMEVENT " in ASCII

- Trace entry format:

24 32 40 48 56 63
RTC

I TN

2-77 C

EXEC DEBUG AIDS EXEC

Field Word Bits Description

RTC 2 0-63 Real-time clock at interrupt

TN 3 0-63 nDEFPULSE n in ASCII

Unexpected PCI interrupt (PCI=5) - Trace entry format:

0 8 16 24 32 40 48 56 63
2

I
RTC

I
3 TN

Field Word Bits Description

RTC 2 0-63 Real-time clock at interrupt

TN 3 0-63 nUNEX PCln in ASCII

I
inEut Front-end LCP (FEI=7l - Trace entry format:

0 8 16 24 32 40 48 56 63
2

I
LCPO

I 3 LCPl

Field Word Bits Description

LCPO 2 0-63 LCP+O

LCPl 3 0-63 LCP+l

I
Ph~sical disk I/O reguest (DIO=11~ - This entry is not used for disk storage
units connected through the I/O Subsystem.

Trace entry format:

0 8 16 24 32 40 48 56 63
2

I
LDV

I 3 CDR

Field Word Bits Description

LDV 2 0-63 W@EQLDV, logical device name

CDR 3 0-63 W@CBCDR, current disk request word

SM-0040 2-78 C

EXEC EXEC DEBUG AIDS

Disk error retry part 1 (DIO=ll) - This entry is not used for disk storage
units connected through the I/O Subsystem. Disk error retry part 1 and
part 2 always occur in contiguous pairs of trace entries.

Trace entry format:

Field

LDV

TD

2

3

o 8

Word

2

3

16

Bits

0-63

0-63

24 32 40 48 56 63
LDV

I TD

Description

W@EQLDV, logical device name in ASCII

W@EQTD, transfer direction word

Disk error retry part 2 (DIO=ll) - This entry is not used for disk storage
units connected through the I/O Subsystem. Disk error retry part 1 and
part 2 always occur in contiguous pairs of trace entries.

Trace entry format:

Field

STO

STI

2

3

o 8

Word

2

3

16

Bits

0-63

0-63

24 32 40 48

STO

STI

Description

W@EQSTO, first status word

W@EQSTl, second status word

Intertask message (ITM=12) - Trace entry format:

0 8 16 24 32 40 48

2

I
WDl

3 WD2

Field ~ Bits Description

WDl 2 0-63 Input word 0 or output word

WD2 3 0-63 Input word 1 or output word

SM-0040 2-79

56 63

I

56 63

I

0

1

C

I

EXEC DEBUG AIDS

Error exchange (EEI=13) - Trace entry format:

Field

Flags

2

3

o

Word

3

8 16

Bits

0-63

24 32 40 48 56
"ERR EXCH" in ASCII

Flags

Description

W@XPF (exchange package flags word)
from the package which detected the
error exchange

Front-end output LCP (FEO=14) - Trace entry format:

Field

LCPO

LCPl

2

3

o 8

Word

2

3

16 24 32 40 48 56
LCPO

LCPl

Bits Description

0-63 LCP+O

0-63 LCP+l

Front-end segment (SEG=15) - This entry is not used for front-end
mainframes connected to the Cray mainframe through an I/O Subsystem.

Trace entry format:

0 8 16 24 32 40 48 56
2

I

Zero

3 Zero LA BA

Field Word Bits Description

63

63

63

I

LA 3 16-39 Absolute limit address of the segment
buffer

BA 3 40-63 Absolute base address of the segment
buffer

SM-0040 2-80 C

EXBC EXEC DEBUG AIDS

Front-end input SCBs (SCI=16) - Trace entry format:

Field

LCP3

LCP4

2

3

o 8

Word

2

3

16 24 32 40
LCP3

LCP4

Bits Description

0-63 LCP+3

0-63 LCP+4

48 56

Front-end error LCP (FEE=17) - This entry is not used for front-end
mainframes connected to the Cray mainframe through an I/O Subsystem.

Trace entry format:

2

3

Field

LCPO

LCPl

o 8

Word

2

3

16 24 32 40
LCPO

LCP1

Bits Description

0-63 LCP+O

0-63 LCP+1

Front-end output SCBs (SCO=20) - Trace entry format:

0 8 16 24 32 40
2

I

LCP3

3 LCP4

Field Word Bits Description

LCP3 2 0-63 LCP+3

LCP4 3 0-63 LCP+4

User task status change (JST=24 l - Trace entry format:

0 8 16 24 32 40

2

I
OST I "->"

3 NST

SM-0040 2-81

48 56

48 56

48 56

in ASCII

TXT

63

63

I

63

I

63

C

I

EXEC DEBUG AIDS EXEC

Field Word Bits Description

ST 3 0-39 Old TXSTCH (ASCII task status) field

NST 4 0-39 New TXSTCH (ASCII task status) field

TXT 4 40-63 TXT ordinal associated with status
change

Job status change (JST=24) - Trace entry format:

0 8 16 24 32 40 48 56 63

2

I
OST I n=>n in ASCII

I 3 NST JXT

Field Word Bits Description

ST 3 0-39 Old JXSTCH (ASCII task status) field

NST 4 0-39 New JXSTCH (ASCII task status) field

JXT 4 40-63 JXT ordinal associated with status
change

Search for a free memop:l. segment (GET=25) - This entry is disabled in the
default system.

Trace entry format:

0 8 16 24 32 40 48 56

2

I

STCH

3 SZ

Field Word Bits Description

STCH 2 0-63 JXSTCH for job that needs memory

SZ 3 0-63 Size of free segment sought

Allocation of a memory segment (GET=2S) - This entry is disabled in the
default system.

SM-0040 2-82 c

63

I

I

EXEC EXEC DEBUG AIDS

Trace entry format:
0 8 16 24 32 40 48 56 63

2

I

MST

I
3 N

Field Word Bits Description

MST 2 0-63 MST entry for the free segment from
which the allocation is to be taken

JXORD 2 0-15 JXT ordinal
SGZ 2 16-39 Segment size
SGA 2 40-63 Segment address

N 3 0-63 Number of words to allocate

Liberation of a memory segment (LIB=26) - This entry is disabled in the
default system.

Trace entry format:

0 8

2

I 3

Field Word

MSTO 2

JXORD 2
SGZ 2
SGA 2

MST 3

Reg;uest received by JSH
system.

Trace entry

2

3

SM-0040

o

format:

8

16

Bits

0-63

0-15
16-39
40-63

0-63

(JSH=30)

16

FN

24 32 40 48 56 63

MSTO

I
MST

Description

Offset of MST entry for segment to be
freed
JXT ordinal
Segment size
Segment address

The MST entry itself

- This entry is disabled in the default

24 32 40 48 56 63

IN

2-83 c

EXEC DEBUG AIDS

Field Word Bits Description

FN 2 0-39 ASCII function name

JXORD 2 40-63 JXT ordinal

IN 3 0-55 A5CII job name

S5D transfer (550=31) - Trace entry format:

0 8 16 24 32 40 48 56
2

I
TN

3 FCT

Field Word Bits Description

TN 2 0-63 "GO SSD" in ASCII

FCT 3 0-63 Function word (CBFCT from CBT)

SSO error (5S0=31) - Trace entry format:

0 8 16 24 32 40 48 56

2

I
TN

3 EC

Field Word Bits Description

TN 2 0-63 ·SSD ERR" in ASCII

EC 3 ·0-63 Error code

J$ALLOC requests (MEM=32) - Trace entry format:

o 8 16 24 32 40 48 56
2 V///////////////////////////////////////I MRWA

3 MRW

Field Word Bits Description

MRWA 2 40-63 Address of memory request word;
initial processing done in STP

MRW 3 40-63 Memory request word itself

SM-0040 2-84

EXEC

63

I

63

I

63

C

EXEC EXEC DEBUG AIDS

Entry to MOVEMEM routine (MEM=32) - This trace entry is suppressed if no data
is moved.

Trace entry format:

0 8 16 24 32 40 48 56 63
'1 ~ TN 1 FA FL

I
£

3 TA TL ///////////////1

Field Word Bits Description

TN 2 0-15 "MV" in ASCII

FA 2 16-39 From address

FL 2 40-63 From length

TA 3 16-39 To address

TL 3 40-63 To length

Entry to ERASEMEM routine (MEM=32) - This trace entry is suppressed if no
data is erased.

Trace entry format:

0 8 16 24 32 40 48 56 63

2

[///////////////1

TN

I
3 EA EL

Field Word Bits Description

TN 2 0-63 "ERASE" in ASCII

EA 3 16-39 Address

EL 3 40-63 Length of area to be erased

Exit from RELOCATE routine (MEM=32) - There are always two trace entries,
one for before and one for after, relocating.

SM-0040 2-85 C

EXEC DEBUG AIDS EXEC

Trace entry format:
0 8 16 24 32 40 48 56 63

2

I
HLM LFT DSP

I 3 BFB BBFL FL

Field Word Bits Description

HLM 2 0-21 High limit of memory

LFT 2 22-42 LFT address

DSP 2 43-63 DSP address

BFB 3 0-21 BFB address

BBFL 3 22-42 Buffer boundary in first entry;
change in FL in second entry.

FL 3 43-63 Field length

MCU interrupt (HTMCU=33) - Trace entry format:

0 8 16 24 32 40 48 56 63

2

I

RTC

I
3 TN

Field Word Bits Description

RTC 2 0-63 Value of real-time clock at event
detection

TN 3 0-63 "MCU INT" in ASCII

Interprocessor interrupt (HTIPI=34) - Trace entry format:

0 8 16 24 32 40 48 56 63

2

I

RTC

I 3 TN

Field Word Bits Description

RTC 2 0-63 Value of real-time clock at event
detection

TN 3 0-63 " IP INT" in ASCII

SM-0040 2-86 C

EXEC EXEC DEBUG AIDS

Deadlock interrupt (HTDLI=35) - Trace entry format:

0 8 16 24 32 40 48 56 63
2

I
RTC

I 3 TN

Field Word Bits Description

RTC 2 0-63 Value of real-time clock at event
detection

TN 3 0-63 nDEADLOCKn in ASCII

System wait for single threading (HTSYS=36) - Trace entry format:

o 8 16 24 32 40 48 56 63

Field

RTC

TN

2

3

Word Bits

2 0-63

3 0-63

RTC

I TN

Description

Value of real-time clock at entry to
code at SYSWAIT

"SYSWAIT" in ASCII

Operating system entry after single-thread wait (HTNWT=37) - Trace entry
format:

0 8 16 24 32 40 48 56 63
2

I
CYC

I 3 TN

Field Word Bits Description

CYC 2 0-63 RT clock cycles spent waiting

TN 3 0-63 nENDWAIT" in ASCII

Logical interprocessor request (HTIPSET=40) - Trace entry format:

0 8 16 24 32 40 48 56 63

2

I
REQ

I 3 TN

SM-0040 2-87 C

EXEC DEBUG AIDS

Field Word

REQ 2

TN 3

Bits

0-63

0-63

EXEC

Description

Interprocessor request code:
o (IPRQNOOP) No specific request
1 (IPRQPSW) Switch operating

system to other CPU

Logical interprocessor request acknowledgement (HTIPACK=41) - Trace entry
format:

Field

REQ

TN

2

3

o 8 16

Word Bits

2 0-63

3 0-63

24 32 40 48 56

REQ

TN

Description

Interprocessor request code:
o (IPRQNOOP) No specific request
1 (IPRQPSW) Switch operating

system to other CPU

"IP ACK" in ASCII

63

Intertask message - task request (HTASCII=42) - Trace entry format:

Field

2

3

Source

Dest

o 8 16

Word Bits

3 0-23

3 40-63

24 32 40 48 56 63
"ROY SUS" in ASCII

source "->" dest

Description

Name of system task that initiated an
intertask message and issued an RTSS
(ready task, suspend self) request

Name of system task that was readied
to receive an intertask message

This trace message is always part of a set of messages:

003- System task normal exchange
012- Intertask messageJ request in trace words 2 and 3
042- Intertask message; task request "ROY SUS xxx->yyyn

SM-0040 2-88 C

I

EXEC EXEC DEBUG AIDS

Intertask message - task reply (HTASCII=42) - Trace entry format:

0 8 16 24 32 40 48 56 63

2

I
"READY" in ASCII

I 3 source "->" dest

Field Word Bits Description

Source 3 0-23 Name of system task which initiated an
inter task message and issued an RTSK
(ready task) request

Dest 3 40-63 Name of system task which was readied
to receive an intertask

This trace message is always part of a set of messages:

003 System task normal exchange
012 Intertask message; request in trace words 2 and 3.
042 Intertask message; task reply "READY xxx->yyy".

Memory error (HTMEC=43) - Trace entry format:

Field

2

3

o

Word

8 16

Bits

24 32 40
SYNDROME

"MEM ERR" in ASCII

Description

48

message

56

Syndrome 2 0-63 Syndrome bits of memory error

63

This trace message always occurs for single and double-bit memory errors.

2.12.2 SYSTEM STOP BUFFER

The System Stop Buffer is a feature of EXEC which assists the computer
operator or system analyst in finding the general cause of a system
crash. When EXEC detects a fatal error condition, it builds a STOP
message in a buffer called the stop buffer. This buffer is located in
EXEC at B@STOP. The buffer is loaded with the label in EXEC where the
error is detected, the word address of P and BO, and an ASCII stop
message. The buffer is formatted as follows:

SM-0040 2-89 c

I

EXEC DEBUG AIDS

==============================
S TOP B U F FER

==============================
EXEC STOPPED AT LABEL: $STOP006

W.P = W.BO =

message
------------END BUFFER ---------

EXEC

The stop label is used in EXEC with the STOP macro. The STOP macro does
not convert the values in P and BO to ASCII characters, so their values
appear in the dump. The value of P is in the word after the word
containing W.P and the value of BO is in the word after the word
containing W.BO. These two values have been truncated to words.

The following convention is used for STOP labels and messages: the label
has the form $STOpeo, where eo is a unique decimal number for each
error condition. The stop message contains the routine name where the
stop occurred and a short, descriptive error message. Table 2-2 shows
the EXEC stop messages.

Label

$STOPOOO
$STOPOOl

$STP0002
$STOP003
$STOP004
$STOPOOS
$STOP006
$STOP007
$STOP008

$STOP009
$STOPOlO
$STOPOll

$STOPOl2

SM-0040

Table 2-2. EXEC stop messages

Code

EEF
EX

APOIP
APIIP
EE
EEF
EEF
EEF
EEF

EN
TECAN
TSO

R04l

Significance

Unknown error
(Al) does not equal XP exchange
address
lOP channel error
lOP channel error
Program address range error
Floating-point error
Operand range error
Program range error
STP error exit (usually
accompanied
by SY006 message in STP memory)
CPU halt requested by lOS
Invalid event number
The STP Lock flag STPLK is set,
but no task is marked as active.
A PSWITCH request was received
from a task other than the job
scheduler (JSH).

2-90 C

I

I

I
I

I

I

I

EXEC EXEC DEBUG AIDS

Table 2-2. EXEC stop messages (continued)

Label

$STOP013

$STOP014
$STOPOlS
$STOP016

$STOP017
$STOPOl8
$STOP019
$STOP020
$STOP02l
$STOP022

$STOP023

$STOP024
$STOP02S
$STOP026
$STOP027

$STOP028
$STOP029
$STOP030
$STOP03l

$STOP032

$STOP034
$STOP03S

$STOP036
$STOP037

$STOP038

SM-0040

Code

TS2

TEREQ
ENQ
R017

ROOSI/APRCV
APENQ
API
ENQ
DEQ
DEQ

ROOl

ROOS
ROOS
ROOSC
EXA

ROOSI
ROOSN
ROll
MCOR/XBMSG

XPROC/EN

R022/APIIP
INIT

IN I T/GETRT
MCOR/XMCNT

MCOR/XSYND

Significance

No system task was selected on
entry to TS2.
Invalid event number
Queue entry contains bad ID
The TXT address specified in the
request does not match the address
of the TXT entry which is
connected in the requesting cpu.
B@FIQ empty
B@FOQ empty
B@FIQ empty
Maximum queue length exceeded
Queue empty
Header queue ID does not equal
entry queue ID
This error occurs when a duplicate
task priority is encountered on a
task create.
Undefined operation
Undefined channel type
Undefined operation
A zero exchange package address
was presented to the exchange
processor.
Undefined operation
Undefined operation
Maximum cylinder exceeded
An lOP packet cannot be obtained
to send the error packet to MEP.
System cluster not set up

Short packet received from lOS
Error reading date and time from
MCU
Bad time or date parameter from MCU
This error occurs when the
double-bit count (I@MEUCT) is
exceeded.
This error occurs if the
population count of the syndrome
bits is 0, indicating the hardware
reported an error but the syndrome
bits show no error.

2-91 C

EXEC DEBUG AIDS BXBC

Table 2-2. EXEC stop messages (continued)

Label Code Significance

$STOP039 MCOR/XSYND This error occurs if the decoded
syndrome bits do not match the
correctable/uncorrectable code
contained within the exchange
package.

$STOP040 MCOR/XMHLT This error occurs if the EXEC idle
loop detects a multibit error.

$ STOP 0 4 I MCOR/XMHLT This error occurs if a multibit
error occurs while STP is
executing.

$STOP042 MCOR/XMHLT This error occurs if any multibit
error occurs during an I/O
reference.

$STOP043 ROl6 A zero time slice was selected in
the RCP=Ol6 EXEC request.

$STOP044 ROl6 A zero time slice for Spy was
found in the connected user task's
TCB.

$STOP045 ROl6 The SETCL macro was unable to find
the requested cluster number in
the list of valid clusters. Since
the cluster number has been
previously validated, this
indicates a hardware problem.

$STOP046 ROl7 A zero time slice for Spy was
found in the connected user task's
TCB.

$ STOP 0 48 R042 The SETCL macro was unable to find
the requested cluster number in
the list of valid clusters. Since
the cluster number has been
previously validated, this
indicates a hardware problem.

$STOP050 EX SM@PLOCK was cleared while EXEC
was executing.

$STOP05l EX SM@EXEC was cleared while EXEC was
executing.

$STOP052 EX The PWS addresses calculated
before and after an exchange do
not match.

$ STOP 0 53 EX SM@PLOCK was cleared during the
execution of an STP task.

SM-0040 2-92 C

I

EXEC EXEC DEBUG AIDS

Table 2-2. EXEC stop messages (continued)

Label Code

$STOP054 EX

$STOP055 IPREQST

$STOP056 EX

$STOP057 NE

$STOP058 NE

$STOP059 SCHUSER

$STOP060 IPCPU

$STOP061 EX

$STOP062 TSO

$STOP063 DLI

$STOP064 ROl4

$STOP065 IDLE

$STOP069 APSP

$STOP072 BOOT
$S'l'OP073 SETLA
$S'l'OP074 SETXP

SM-0040

Significance

The SETCL macro was unable to find
the requested cluster number in
the list of valid clusters.
An invalid interprocessor request
code was found in the IPRQ table.
The current task ID, maintained in
low-STP memory by EXEC, was found
to exceed the maximum task number.
A system task made an EXEC request
while holding STPLK.
The active task STT addresses in
the PWS entry for the executing
CPU and in the STT header differ.
W@TCEPAL in the connected user
task's TCB was found to have all
flags clear, but to be nonzero.
An interprocessor request is
already pending for the other cpu.
No system task was selected for
execution at label EX, in
violation of the specified entry
conditions.
The active system task STT
addresses in the PWS (for the
executing CPU) and in the STT
header differ. This indicates a
problem with CPU scheduling in
EXEC.
A deadlock condition was detected
that did not occur in the user
area.
A system task is attempting to
both ready and suspend itself.
An exit was made from the main
idle loop, indicates a hardware
problem.
An unknown S-packet type was
received from the I/O Subsystem.
Undefined CPU type.
Undefined CPU type.
Undefined CPU type.

2-93 C

I

INTERACTIVE SYSTEM DEBUGGING EXEC

2.13 INTERACTIVE SYSTEM DEBUGGING

Executive requests described in section 2.6.1 provide the mechanism
through which interactive system debugging control passes from the user
to SCP to EXEC. The debugging capability provides for memory entry and
display, operating register entry and display, setting and clearing
breakpoints, and starting and stopping the system.

SCP, common routines used by SCP, and EXEC cannot be breakpointed; the
debugging commands use SCP and EXEC to communicate with the operator.

Oper~tor debug commands that use this capability are described in the COS
Operational Procedures Reference Manual, publication SM-0043.

2.14 MULTIPROCESSOR CONSIDERATIONS

Several aspects of EXEC reflect its need to support multiprocessor as
well as uniprocessor configurations.

2.14.1 SINGLE-THREADING

COS was originally developed on a uniprocessor system. Many code
sequences reflect the assumption that only one processor is active by how
they access and update tables.

Rather than locating and changing all explicit and implicit assumptions
regarding process synchronization within COS, the much less timeconsuming
decision was made, that COS should run in only one CPU at anyone time.

On the CRAY X-MP mainframe, the hardware semaphore registers are used by
EXEC to ensure that only one CPU is active in either EXEC or in the STP
area. When one CPU is found to be in COS, the other CPU waits for the
other CPU to leave the operating system; the code that accomplishes this
begins at label LOCKOS in EXEC and extends through the end of the SYSWAIT
subroutine.

Because SYSWAIT executes in monitor mode with external interrupts
disabled, and because when one CPU is in monitor mode no I/O interrupts
are posted to another CPU of a CRAY X-MP system, SYSWAIT polls for I/O
interrupts. When an I/O interrupt is found and when the other CPU is not
in EXEC, SYSWAIT sends an interprocessor message and interrupts the other
CPU.

SM-0040 2-94 C

I

EXEC MULTIPROCESSOR CONSIDERATIONS

2.14.2 SEMAPHORE USAGE

Management of CRAY X-MP cluster registers is the responsibility of three
entities in the COS environment: EXEC, which manages the system cluster,
COS locks, and saves and restores user cluster registers; JSH, which
assigns nonsystem clusters to user jobs (and the contained user tasks)
and directs EXEC to load or save user clusters; and to user-mode code,
both user programs and library subroutines.

EXEC saves and restores user cluster registers at the direction of JSH.
As an aid to the library scheduler, EXEC also clears semaphore SM@BWAIT
(SMOO) on every exchange to a user task. EXEC does not modify any other
registers in user clusters.

Several semaphore registers are used within EXEC for interprocessor
communication and coordination:

• SM@ALOCK - referred to as the active lock - is the master lock
within EXEC. It is a short-term lock, used when attempting to
gain access to other longer-term locks. Code sequences involving
SM@ALOCK always follow the general pattern:

WAIT$SET ALaCK Test and set master lock
GETSM xxxx Test secondary lock
$IF SO,MI If secondary lock is busy

CLRSM ALaCK Release master lock
J delay Exit to do something else, or try again

$ENDIF
SETSM xxxx Set secondary lock
CLRSM ALOCK Release master lock

• SM@PLOCK - called the passive lock - is used within EXEC to ensure
single-threading of COS. The only portions of COS that are not
single-threaded are small portions of EXEC: between labels EN and
LOCKOS, and subroutines called by SYSWAIT (DEBUG, and IPCPU).
When SM@PLOCK is set, one X-MP CPU is active in COS.

• SM@EXEC flags for the SYSWAIT subroutine. When SM@EXEC is set, a
CPU is in the single-threaded section of EXEC; when clear, then no
CPU is in EXEC. SM@PLOCK is always set when SM@EXEC is set,
though the reverse is not true.

• SM@IPRQ controls access to the Interprocessor Request Table
(B@IPRQ). Writes into the table can only take place after issuing
a WAIT$SET IPRQ instruction. This lock is needed because writes
into the IPRQ table can take place outside of code protected by
SM@PLOCK.

SM-0040 2-95 C

I

MULTIPROCESSOR CONSIDERATIONS EDC

• SM@DEBLK ensures single-threading in the DEBUG subroutine. This
semaphore will always be set in the history trace entries for X-MP
systems. This lock is needed because DEBUG calls can be made from
outside of code protected by SM@PLOCK.

• SM@BWAIT flags for the memory error correction code. When set,
SM@BWAIT indicates that a CPU is in the SYSWAIT subroutine.
Memory error correction uses this flag to determine that the other
CPU is parked in EXEC so that memory correction can be safely
done. SM@BWAIT (in the system cluster) is set and cleared only in
the SYSWAIT subroutine.

2.14.3 INTERPROCESSOR COMMUNICATIONS

The RCP and DCP Executive requests (connect and disconnect user task) are
issued by JSH to associate and disassociate a user task from the
specified cPU. Because the requests are CPU-specific, EXEC provides JSH
with a mechanism (PSWITCH) for switching between physical CPUs.

The PSWITCH Executive request, available only to JSH, performs the
necessary interprocessor communication. When JSH calls PSWITCH, EXEC
suspends the caller and verifies that the caller was indeed JSH.

EXEC, in addition to accomodating JSH, also needs the ability to switch
physical CPUs. EXEC causes the other CPU to enter EXEC either because an
I/O interrupt is found while in SYSWAIT, or because memory error
correction needs to have all user-mode exchange packages in memory
(having all CPUs in EXEC guarantees no user-mode exchange package is
active).

Processor switching is accomplished through a mechanism called
interprocessor communication. Interprocessor communication takes place
through messages. Interprocessor messages are currently of two types:

• Processor switch messages to allow JSH to use the other CPU

• No-op messages to allow EXEC to use the other CPU

EXEC routine IPCPU places the interprocessor message in the
Interprocessor Request Table (IPRQ) and issues an interprocessor
interrupt (IP 1) instruction. Interprocessor interrupts, while used in
sending messages, are basically ignored by EXEC.

When the other CPU enters EXEC, EXEC receives the message. IPREQST
processes processor switch messages and schedules JSH in the receiving
CPU.

SM-0040 2-96 C

I

EXEC EXEC-SPECIFIC MACROS

2.14.4 PROCESSOR WORKING STORAGE AREA (PWS)

The processor working storage area (PWS) contains data specific to each
CPU, including:

• Addresses and fields associated with a connected user task,
including the user task exchange package, if any.

• Idle task exchange package and BOO register save areas.

• Memory error correction exchange package.

• Statistics and timing counters, both cumulative and in last
statistics interval.

• A word indicating which software process is executing in the CPU
in question (USER, EXEC, MEM-COR, or system task) •

The GETPW macro can be used to determine the PWS address of the current
CPU (see section 2.15.4) •

2.15 EXEC-SPECIFIC MACROS

A number of macros are defined locally within EXEC. These macros are
generally appropriate only in the EXEC environment, or are used to ease
the writing of machine-independent code without conditional assembly at
the source statement level.

2.15.1 CLEARIP

The CLEARIP macro clears the Interprocessor Interrupt flag in the CRAY
X-MP CPU which encounters the macro; on other systems the macro does not
generate any code.

2.15.2 COPYXP

The COPYXP macro copies exchange packages from one area of memory to
another. The macro was written with the goal of removing the run-time
loops and vector-register operations which had previously been used to
perform the copy.

SM-0040 2-97 C

I

EXEC-SPECIFIC MACROS EDC

2.15.3 X$SIO

The X$SIO macro initiates an I/O operation on a low-speed channel, to
record the Interrupt Handler Table address for the channel in question,
and to record the starting and ending addresses sent to the channel (for
debugging) •

2.15.4 GETPW

The GETPW macro obtains the address of the processor working storage area
for the CPU which is executing the GETPW macro. On uniprocessor systems,
this is always the first PWS entry; on multiprocessor systems the PWS
address is based on the CPU number.

2.15.5 GETSRO

The GETSRO macro (defined in comdeck GETSRO) extracts fields from CRAY
X-MP status register zero. When assembled on uniprocessor systems, the
macro returns a zero as the value of the requested field.

2.15.6 I$FWB

The I$FWB macro forces alignment of code to a specific word boundary.
Its most typical usage is to force tables to 4- or 8- word boundaries to
make dumps easier to read.

2.15.7 SETCL

The SETCL macro issues one of the CRAY X-MP set cluster number
instructions, and was written because:

• Selection of a cluster by the hardware requires that the cluster
number be a constant embedded in the instruction. No instruction
is available to set the cluster number from a register.

• CAL allows only the numbers 0, 1, 2, 3 on the CLN instruction; it
does not allow constants with the values above.

SM-0040 2-98 C

I

EDC EXEC-SPECIFIC MACROS

SETCL allows either a constant or a register as the cluster designator,
and either issues the instruction directly (if a constant was specified)
or uses a set of $IF/CLN statements to select the desired cluster.

When assembled on uniprocessor systems, SETCL does not generate any code.

2.15.8 SETIP

The SETIP macro sets the Interprocessor Interrupt flag in the other CPU
in CRAY X-MP systems. On uniprocessor systems, the macro does not
asssemble any code.

2.15.9 STOP

The STOP macro stops EXEC and issues a message when a fatal error
occurs. The STOP call can be either unconditional, or alternately the
programmer can elect to stop only when a specific condition or set of
conditions occurs. In the latter case, any condition accepted by the $IF
family of macros may be used on a STOP call.

2.15.10 FALLTHRU

The FALLTHRU macro allows the programmer to insert visual aids for
comprehension while ensuring that later modifications (possibly by
another programmer) do not insert code into what was originally intended
to be contiguous code sequences.

SM-0040 2-99 C

SYSTEM TASK PROCESSOR (STP)

3.1 GENERAL DESCRIPTION

I The System Task Processor (STP) runs in non-monitor (user) mode and
accesses all memory other than that occupied by EXEC. STP is responsible
for processing all user requests. STP consists of tables, a set of

I programs called tasks, and some reentrant routines common to all tasks.

I

A system task serves a specific purpose and usually recognizes a set of
subfunctions that can be requested by other tasks. Characteristics of a
task are that it has its own ID (a number in the range 0-358)' an
assigned priority (000-377 8), its own exchange package area in the
System Task Table (STT), and its own intertask communication control
table which defines the tasks allowed to communicate. Each task and many
of the common subroutines are separate UPDATE decks and CAL IDENTs.

The system tasks (deck and IDENT names are noted in parentheses) are:

Startup (STP, STARTUP)
Disk Queue Manager (DQM)
Station Call' Processor (SCP)
Exchange Processor (EXP)
Job Scheduler (JSH)
Permanent Dataset Manager (PDM)
Log Manager (MSG)
Message Processor (MEP)
Disk Error Correction (DEC)
System Performance Monitor (SPM)
Job Class Manager (JCM)
Overlay Manager (OVM)

Tape Queue Manager (TQM)
Stager (STG)
Flush Volatile Device (FVD)

Each system task is fully described in a later section of this manual.

The addresses in the Base Address (BA) register and Limit Address (LA)
register are the same for all tasks; BA is set to the beginning of STP
and LA is set to I@MEM (an installation-defined maximum memory value) •

Although a task is loaded into memory during system startup, it does not
normally become known to the system until an existing task issues an
executive request for the creation of some other task. COS Startup is
the necessary exception. A create task request assigns an ID and a
priority to a task through the task's parameter block in the STT.

SM-0040 3-1 C

3

TASK COMMUNICATION SYSTEM TASK PBOCESSOR

Tasks execute in program mode and are thus interruptible. An interrupt
Occurs as a result of the task executing an exit instruction (ERR or EX)
or results from one of the interrupt flags being set automatically (for
example, an I/O interrupt occurred).

When a task is created, it is forced into execution. During this initial
execution, it usually performs some initialization and setup operations
and then suspends itself. Thereafter, a task is executed only if it is
readied. Readying of a task consists of altering its suspend bit. A
task is not a candidate for execution, however, unless all of the bits in
its status field are 0, including the breakpoint and stop bits.

Task readying occurs automatically or explicitly. Readying occurs
automatically for tasks assigned to a channel when an interrupt occurs on
the assigned channel. Readying of a task also occurs as a result of an
explicit EXEC request issued by one task for the execution of another
task. A task is readied or suspended by a master operator station
request (station DEBUG command). A task remains ready (unless
breakpointed or stopped) until EXEC receives a request to suspend it.

A task requests self-suspension when it has completed an assigned
function or posts a request for another task. Note that if the task
being requested is of lower priority than the task making the request,
the requesting task must suspend itself to allow the lower priority task
to execute.

Subsequent requests to ready a task already readied cause the ready
request bit in the task's parameter word to be set. When this bit is
set, the next suspend request for the task causes the task to be
rereadied rather than suspended. The task ready request bit is then
cleared.

3.2 TASK COMMUNICATION

Tasks communicate with EXEC, with each other, with user jobs, and with
the front end.

3.2.1 EXEC/TASK COMMUNICATION

A task communicates with EXEC by placing a request and parameters in
registers S6 and S7 and by executing an EX instruction. When a task
executes an EX, the error return is to the instruction following the EX:
the normal return is to the instruction following the error return. The

SM-0040 3-2 C

SYSTEM TASK PROCESSOR TASK COMMUNICATION

error return instruction must be a 2-parcel instruction. A reply to the
request is returned in registers S6 and S7.

EXEC requests are described in detail in section 2.6 of this publication.

3.2.2 TASK-TO-TASK COMMUNICATION

STP contains two areas used for intertask communication. The first area
is the communication module chain control (CMCC); the second area is the
communication module (CMOO).

The CMCC is a contiguous area containing an entry for each combination of
tasks possible within the system. The CMCC is arranged in task number
sequence, that is, all possible task 0 combinations of requests to task 0
are followed by all possible combinations of requests to task 1. The
task 10 of the requesting task and the task 10 of the requested task are
the values that determine the appropriate CMCC entry.

CMOOs are allocated from a pool as needed and, therefore, have no fixed
location. Memory pool 2 is reserved exclusively for use by intertask
communications. A CMOO consists of six words: two are used for control;
two are used as input registers; and two are used as output registers. A
task receives ftll of its requests and makes all of its replies through a
CMOO.

Figure 3-1 illustrates the tables used for task communication.

One task communicates with another by placing a request in the input word
of a CMOO. The requested task replies by placing the request status in
the output words of the CMOO. The format of a request is subject to the
requirements defined by the called task. Requests recognized by a task
are described with the task later in this section. However, some
conventions do exist. Conventionally, the requested function is placed
in INPUT+O. Output usage is conventionally defined such that OUTPUT+O is
o if no error has occurred; otherwise, it contains a nonzero error code.

Six reentrant routines in STP that are common to all tasks facilitate
intertask communication. They are:

PUTREQ Put request routine, asynchronous; destroys A6.

GETREQ Get request routine; destroys A6 and A7.

PUTREPLY Put task reply routine; destroys A6 and A7.

GETREPLY Request status routine; destroys A6.

SM-0040 3-3 C

TASK COMMUNICATION SYSTEM TASK PROCESSOR

Communication Module Chain Control

Task 0

.---------------
Header

Task 1

,
Task 0 to Task 1 , , , , , ,
Task 1 to Task 1 , , , , , , ,
Task 2 to Task 1 ---, , , , ,

I I ,
I I ,
I I , , I I

1

, , , ,
Task n to Task 1 Task n , ,

\

Communication Modules

L+

CMOD 1 ,~

" Task 2 to Task 1 "
1---- Control --

~ " " " " Input "
1---- --

l+ " " CMOD 2 ,,'
Task 2 to Task 1 ---- Output ---

~-----------------.

~ · ·
· r--

l+
CMOD n

Task 2 to Task 1

Figure 3-1. Task communication tables

SM-0040 3-4 c

SYSTEM TASK PROCESSOR TASK COMMUNICATION

TSKREQ Task request routine, synchronous: destroys A3.

REPLIES Queues unrequested reply; destroys A6.

The task placing a request calls PUTREQ to place the request and calls
GETREPLY to check for a status from the requested task. Conversely, the
requested task uses GETREQ to locate outstanding requests and uses
PUTREPLY to return the status. If TSKREQ is used, PUTREQ and GETREPLY
must not be used.

TSKREQ is incompatible with PUTREQ and GETREPLY; if TSKREQ is used,
PUTREQ and GETREPLY must not be.

PUTREQ

This STP common subroutine places the request in the input registers of a
CMOD and links the appropriate communications module chain control. If
the request cannot be chained because no CMODs are available or the chain
is at its maximum, PUTREQ suspends the calling task or, at the caller's
discretion, returns control to the requester with no action taken. Once
PUTREQ bas successfully generated the CMOD and linked it to the CMCC, the
requested task is readied and control returns to the requester. PUTREQ
is called through a return jump with the caller providing the following
values.

INPUT REGISTERS: (AI) Discard indicator. If (AI) is positive, control
does not return to the caller until the request
is queued. If (AI) is negative and the request
cannot be queued without suspending the caller,
control returns with no action taken.

(A2) Requested task's ID

(Sl) INPUT+O
Request

(S2) INPUT+l

OUTPUT REGISTERS: None

GETREQ

This STP common subroutine locates any outstanding request for the
caller. Using the CMCC, GETREQ searches for a CMOD representing a
request not yet given to the requester. GETREQ begins the CMCC search
with the lowest numbered task and returns the first request encountered
to the caller. A task calls GETREQ through a return jump.

SM-0040 3-5 C

TASK COMMUNICATION SYSTEM TASK PROCESSOR

INPUT REGISTERS: None

OUTPUT REGISTERS: (AO) Found indicator. If (AO)=O, no outstanding
requests exist. If (AO)~O, a request is
returned.

(A2) 10 of task that generated the request

(51) INPUT+O
Request

(52) INPUT+1

PUTREPLY

This STP common subroutine places the reply to a request in the first
available CMOD. Requests and replies are stored in the CMOO in the
sequence in which they are generated. Therefore, a single CMOD
represents an unrelated request and reply. The subroutine readies the
task where the reply is directed and returns to the requester. PUTREPLY
is called through a return jump.

INPUT REGISTERS: (A2) 10 of task to receive the reply

(51) OUTPUT+O
Reply

(52) OUTPUT+l

OUTPUT REGISTERS: None

GETREPLY

This STP common subroutine searches for a reply to the calling task. The
search begins with the lowest numbered task and ends with the highest
numbered task, returning the first reply encountered. GETREPLY removes
the CMOO from the CMCC and releases it for reallocation. The subroutine
is called through a return jump.

INPUT REGISTERS: None

OUTPUT REGISTERS: (AO) Found indicator. If (AO)=O, no reply is
located; if (AO)~O, a reply is returned
to the caller.

(A2) ID of replying task

SM-0040 3-6 C

I

SYSTEM TASK PROCESSOR TASK COMMUNICATION

(Sl) OUTPUT+O
Reply

(S2) OUTPUT+l

TSKREQ

This STP common subroutine makes a request to a task for processing and
suspends the caller until a reply is received. If the request cannot be
queued immediately, because either the queue is at its maximum or because
no communication modules are available, the caller is suspended until the
request is queued. Once the request is queued, the caller is suspended
until a reply is received. TSKREQ is called through a return jump. If
one task makes a request to another using TSKREQ, all requests from the
first task to the second must be made using TSKREQ. Mixed use of TSKREQ
and PUTREQjGETREPLY can cause unpredictable results.

INPUT REGISTERS: (A2) 10 of requested task

(Sl) INPUT+O
Request

(S2) INPUT+l

OUTPUT REGISTERS: (Sl) OUTPUT+O
Reply

(S2) OUTPUT+l

REPLIES

This subroutine queues a reply for which no corresponding request has
been made. The reply is queued at the beginning of the reply queue. A
reply sent through this subroutine is seen by GETREPLY before any reply
sent through PUTREPLY.

INPUT REGISTERS: (AI) Discard indicator. If (AI) is positive, control
does not return to the caller until a reply is
queued. If (AI) is negative and the reply
cannot be queued without suspending the caller,
control returns with no action taken.

(A2) 10 of task to receive the reply

(Sl) INPUT+O
Reply

(S2) INPUT+l

OUTPUT REGISTERS: None

SM-0040 3-7 c

I

TASK COMMUNICATION SYSTEM TASK PROCESSOR

3.2.3 USER/STP COMMUNICATION

User tasks initiate user/STP communication. A user program request to
STP is performed when the user task loads register SO (and optionally Sl
and S2) and executes the normal exit instruction. Most system action
requests can be issued through a CAL macro (see the Macros and Opdefs
Reference Manual, CRI publication SR-0012). The user macro also results
in a normal exit from the user program. EXEC routes all normal exits
from a user task to the User Exchange Processor. The handling of these
requests by the User Exchange Processor is described in section 8 of this
manual.

3.2.4 TASK/FRONT-END COMMUNICATION

Tasks can issue messages to any logged on front-end station with a
message processing capability. Messages are either strictly informative
or require a response by the operator.

Messages are queued by the common subroutine MSGQUE and processed by the
Station Call Processor (SCP) task at the first opportunity for
communication to the front end. (See section 7 for detailed information
on message handling by SCP.)

The MSGQ system macro queues a message to the front end using the
interactive queueing mechanism and assigns a message number. The macro
call has the following format:

I r.ocationlResult

MSGQ

x Symbolic name of, or an A or S register containing the
address of the message buffer

The calling task builds the message buffer (including the header and the
text) and supplies a buffer address pointer, ADR. The macro routine
queues the message and supplies any necessary default values.

Register Sl is set up and returned as follows:

o 8 16 24 32 40 48 56 63

Sl 1////////////////////////////////1 MN Status

SM-0040 3-8 C

SYSTEM TASK PROCESSOR TASK COMMUNICATION

MN

Status

Assigned message number, not meaningful if status is not
normal reply.

One of the following status codes:

Code

000
100
101
102
103
104
105

Meaning

Normal reply
station not logged on
Station message processing disabled
Message format error
Outstanding message count exceeded
Message word count too large for station
Message type not supported

MSGQ enters either the complete message, the message header, or nothing
at all into the COS System Log depending on what is specified in the
message's LOG field. (The Log Manager task is not active during
Startup. Therefore, messages sent during Startup are not entered into
the System Log, regardless of the contents of the LOG field.)

SM-0040 3-9 c

STP COMMON ROUTINES

Certain reentrant routines resident in STP are called by return jumps
rather than by a call to another task. These include:

• Task logical I/O routines (TIO)

• Circular I/O routines (CIO)

• Memory management routines

• Item chaining/unchaining routines

• Interactive communication buffer management routines

• Password encryption

• System buffer management

4.1 TASK I/O ROUTINES (TIO)

Task I/O (TIO) is a set of reentrant common routines in STP logically
considered part of any system task that calls it. TIO interprets only
COS blocked format and therefore, only operates on blocked datasets. It
allows a systems programmer to do logical I/O at the system task level
without being concerned about physical I/O. The following COS system
tasks currently call TIO:

Exchange Processor (EXP)
Startup (Z)
Log Manager (MSG)

Primary inputs to TIO consist of a Task Execution Table (TXT) address, a
Dataset Name Table (DNT) address, a Dataset Parameter Table (DSP)
address, and the address of the system buffer area. The logical I/O may
be performed on either a dataset related to the system or a user task
related dataset. TIO does not allocate or deallocate any of the control
structures or buffers for the request, but assumes all control structures
and buffers are set up correctly before the request by the system task.
Figure 4-1 illustrates the linkages between the DNT, DSP and buffers.

SM-0040 4-1 c

4

I

TASK I/O ROUTINES STP C<:»DK>N ROUTINES

DNT Buffer

D5P

Figure 4-1. Dataset table linkages

A system task calls TIO directly by performing a return jump to one of
the TIO externalized labels after setting up the proper input parameters
as delineated in section 4.1.3. After calling TIO, the calling system
task should perform the I/O complete sensing by directly calling a
routine in CIO (CRCIO). The sensing consists of receipt of the DQM or
TQM acknowledgement through a GETREPLY call. It should be noted at this
point that TQM acknowledgements must first be converted to DQM
acknowledge format before calling CRCIO. The format of the input to
CRCIO is as follows:

Sl

S2

Field

Return
status

Return
address

Partial

o

TXT offset

SM-0040

8 16 24 32 40 48 56 63

Return status

Return address I I
(optional) ~I

Partial/

Register Bits

51 0-63

52 0-23

S2 24

52 25-39

TXT offset

Description

DNT address
(JTA relative)

Return status of request; 0 indicates
no error. Other errors are described
in UPDATE comdeck COMEXERR.

Optional return address returned on
acknowledge

Partial Recall flag. If set, the
request is a partial recall from DQM
or TQM.

Relative TXT offset (from B@TXT)

4-2 C

I

8TP COMMON BOU'lINES TASK I/O ROUTINES

Field Register Bits Description

DNT address S2 40-63 JTA-relative DNT address (if an 8TP
DNT the address is relative to B@STP)

TIO exits to the calling system task's main interrupt loop when awaiting
completion of physical I/O. This exit is performed through CIO when it
is called to perform physical sector reads and writes. TIO returns to
the calling task only upon completion of the logical I/O request. The
calling task cannot make another TIO request for a given dataset until
any previous logical request is complete.

The following stepchart illustrates the TIO flow:

1. System Task calls TIO with proper input parameters

2. TIO blocks or deblocks the user data between the user buffer and
the system buffer.

3. If necessary, TIO calls CIO to perform a physical read/write.
CIO exits to the calling task's main interrupt loop.

The calling task is responsible for calling CRCIO in CIO upon receipt of
the DQM acknowledge for the physical sector read/write complete. CRCIO
returns to the main interrupt loop of the calling task until all sectors
have transferred.

When all physical sectors of the request have been transferred and the
block/deblock is complete, the calling task receives control immediately
after the call to TIO.

The following TIO routines are available to system tasks:

Routine

$RWDP

$RWDR

$WWDP

SM-0040

Functions

Read one or more words; partial mode (will not skip to
next end of record).

Read one or more words; record mode (will skip to next
end of record).

write one or more words; partial mode (no end of
record written) •

4-3 C

I

I

TASK I/O BOO'.rINBS S'lP (DK)N BOOTIHBS

Routine Functions

$WWDS write one or more words with unused bits in last word;
record mode (end of record written) •

$WWDR Write zero or more words; record mode (end of record
written) •

$WEOF write EOF; calls $WWDR if no end of record was written.

$WEOD Write EOD; calls $WEOF if no end-of-file was written.

$REWD Rewind dataset; calls $WEOD if the dataset is in write
mode and no end-of-data was written.

To call a TIO routine, a task places parameters required by the routine
in A registers and executes a return jump to the routine. The routine
returns results to the caller through A registers.

CAUTION

These TIO routines have the same names as logically
equivalent routines in the system library, $SYSLIB.
However, the TIO routines reside in STP and the source
for library routines resides in the IOLIBPL program
library.

4.1.1 SYSTEM TABLES USED BY TIO

TIO uses the following system tables for the dataset where I/O is to be
performed:

DNT Dataset Name Table
DSP Dataset Parameter Area

Detailed information on these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

SM-0040 4-4 c

STP COIM)N BOOTINBS TASK I/O ROtlTINBS

Dataset Name Table (DNT)

TIO uses the DNT as indicated by the F$RDC and F$WDC routines available
to users (see description of the Exchange Processor in section 8 of this
publication)~

Dataset Parameter Area (DSP)

TIO uses certain DSPs located in the user field, such as those for $IN,
$OUT, datasets read or written by BUFFER IN/OUT, and sequential COS
blocked datasets that are being closed when in write mode and not
positioned to end of data (EOD). TIO uses reserved words at the end of
the DSPs. These are saved in the JTA when a TIO routine goes into recall
for a job doing buffered I/O.

4.1.2 ERROR PROCESSING

When TIO detects an error, a negative value is returned in AO. The
caller is responsible for processing these errors. Appropriate error
bits in the Dataset Parameter Table (DSP) error status (DPERR) indicate
which error occurred.

4.1.3 TIO LOGICAL READ ROUTINES

The TIO read routines transfer partial or full records of data from the
I/O buffer to the task's data area. The data is placed in the data area
in full words, depending on the read request issued. Figure 4-2 provides
an overview of the logical read operation. The calling routine must
examine DPEOR, DPEOF, and DPEOD in the Dataset Parameter Table (DSP) to
determine end-of-record (EOR), end-of-file (EOF), or end-of-data (EOD)
status. If the record control word indicates unused bits in the last
word of the record, these bits are zeroed in the data area and field
DPUBC is set to the number of unused bits.

$RWDP routine

Words are transmitted from the I/O buffer defined by the Dataset
Parameter Table (DSP) to the area beginning at the first destination word
address (FWA) until either the word count in A3 is satisfied or an EOR is

I encountered. $RWDP calls $RBLK, as necessary.

SM-0040 4-5 c

TASK I/O ROUTINES

(A2)

(A6,~ ____ ~ ____ ~~

(Al

SM-0040

C~ICC

for
DQM

I/O BUFFER

Figure 4-2. TID logical read

4-6

8TP COIH>N ROUTINES

TASK I/O

PHYSICAL I/O

c

I

Sft COIM)N BOtJ'l:IHES TASK I/O ROO'lIHBS

SUBROUTINE NAME: $RWDP - Read words, partial mode

ENTRY CONDITIONS: (Al) DSP address

(A2) FWA of task's data area

(A3) Word count; if 0, no data is transferred.

(A6) DNT address

(A7) TXT address; 0 if not user task related.

RETURN CONDITIONS: (AO) Status:
<0 TIO error (block number error, null

dataset, etc.)
=0 Logical I/O complete

(Al) DSP address

(A2) FWA of task's data area

(A3) Word count

(A4) LWA+l, end of data area

(A6) DNT address

(A7) Same value as on input

(SO) Status:
<0 End-of-record (EOR)
=0 Null record
>0 End-of-count

STEPFLOW: 1. Move words out of buffer; if end of move, go to 5.

SM-0040

2. If not at BCW, go to 5.
3. Call $RBLK.
4. Go to 1.
5. If not record mode ($RWDR), go to 9.
6. Skip to next EOR.
7. If not at BCW, go to 9.
8. Call $RBLK.
9. Update DSP.
10. Exit.

4-7 C

I

TASK I/O BOU'.rIHBS S'rP CUIII)N BOUTIRBS

$RWDR routine

This routine resembles $RWDP; however, following the read, the dataset is
positioned after the EOR that terminates the current record.

SUBROUTINE NAME: $RWDR - Read words, record mode

ENTRY CONDITIONS: Same as $RWDP

RETURN CONDITIONS: Same as $RWDP

STEPFLOW: Same as $RWDP

4.1.4 TIO LOGICAL WRITE ROUTINES

The TIO write routines transfer partial or full records of data from the
task's data area to the I/O buffer. The data is transferred in full words
depending on the write operation requested. Two additional write routines
provide for writing an EOF or an EOD on the dataset. Figure 4-3 provides
an overview of the logical write operations. When writing in record mode,
it is possible to provide a count of unused bits in the last word of the
record. These bits are not zeroed in the buffer, but the record control
word (RCW) indicates unused bits, and the bits are then cleared when the
record is read.

$WWDP routine

The number of words specified by the count are transmitted from the task's
data area beginning at the supplied first word address (FWA) and are
written in the I/O buffer defined by the Dataset Parameter Table (DSP).
$WWDP automatically calls $WBLK, as needed.

SUBROUTINE NAME: $WHOP - Write words, partial mode

ENTRY CONDITIONS: (AI) DSP address

(A2) FWA of task's data area

(A3) Word count; if 0, no data is transferred.

(A6) DNT address

(A7) TXT address; 0 if not user task related.

SM-0040 4-8 c

8ft cmtMOH ROUTINES

SM-0040

(A2l --f - Task's

(A3) Data
Area

J~~~~

CMCC r======1
fo rl..--___ ---'

.J>QM_

I/O BUFFER

mass
storage

Figure 4-3. TIO logical write

4-9

TASK I/O ROUTINES

TASK I/O

PHYSICAL I/O

c

TASK I/O ROUTINES STP COMMON ROUTINES

RETURN CONDITIONS: (AO) Status:

(AI)

(A2)

(A3)

(A4)

(A6)

(A7)

(SO)

STEPFLOW: 1.
2.

<0 TIO error
=0 Logical I/O complete

DSP address

FWA of task's data area

Word count

LWA+l of data area

DNT address

Same value as on input

Status:
<0 End-of-record (EOR)
=0 Null record
>0 End-of-count

If preceding function was a write, go to 3.
Process write after read.

3.
4.

Move words into buffer; if end of move, go to 7.
If not at BOW, go to 3.

5.
6.
7.
8.
9.
10.
11.
12.

$WWDR routine

Call $WBLK.
Go to 3.
If not record mode ($WWDR) , go to 11.
Insert EOR.
If not at BOW, go to 11.
Call $WBLK.
Update DSP.
Exit.

The $WWDR routine resembles $WWDP. However, an EOR record control word
(ROW) terminating the record is inserted in the I/O buffer in the next
word following the data. To simply write an EOR, the task issues a $\~R
with (A3)=0.

SUBROUTINE NAME: $WWDR - write words, record mode

ENTRY CONDITIONS: Same as $WWDP

RETURN CONDITIONS: Same as $WWDP

STEPFLOW: Same as $WWDP

SM-0040 4-10 C

I

8TP COMMON ROtl'rlNES TASK I/O ROUTINES

$WWJ)S routine

The $WWDS routine is identical to $WWDR, except that the last word of the
record contains unused bits, and the EOR record control word (ROW)
constructed contains the unused bit count.

SUBROUTINE NAME: $WWDS - Write words, record mode, with unused bit count

ENTRY CONDITIONS: Same as $WWDR, plus:

(A4) Unused bit count in the last word of the record;
a value from 0-63.

RETURN CONDITIONS: Same as $WWDR

STEPFLOW: Same as $WWDP

$WEOF routine

This routine writes an EOF record control word (ROW) preceded by an EOR
ROW, if necessary, as the next words in the I/O buffer.

SUBROUTINE NAME: $WEOF - Write end-of-file ROW

ENTRY CONDITIONS: (AI) DSP address

(A6) DNT address

(A7) TXT address; 0 if not user task related.

RETURN CONDITIONS: (AO) Status:
<0 TIO error
=0 Logical I/O complete

(A6) DNT address

(A7) Same value as on input

STEPFLOW: 1. If EOR not written, call $WWDR.
2. Call $WWDR to write EOF.
3. Exit.

SM-0040 4-11 C

I

TASK I/O ROUTINES 8TP COMMON ROUTIHBS

$WEOD routine

This routine writes an EOD record control word (ROW) preceded by an EOR
and an EOF, if necessary, as the next words in the I/O buffer. $WEOD
forces the final block of data to be written on the disk~ that is, it
flushes the I/O buffer. A $WEOD cannot be followed by a write.

SUBROUTINE NAME: $WEOD - Write end-of-data ROW

ENTRY CONDITIONS: (AI) DSP address

(A6) DNT address

(A7) TXT address~ 0 if not user task related.

RETURN CONDITIONS: (AO) Status:
<0 TIO error
=0 Logical I/O complete

(A6) DNT address

(A7) Same value as on input

STEPFLOW: 1. If EOF not written, call $WEOF.
2. Call $WWDR to write EOD.
3. Exit.

4.1.5 POSITIONING ROUTINE

TIO supports a single positioning routine, $REWD.

The $REWD routine positions the dataset at the beginning-of-data (BOD).
If the dataset is in write mode and no EOD has been written, $REWD calls
$WEOD.

SUBROUTINE NAME: $REWD - Rewind dataset

ENTRY CONDITIONS: (AI) DSP address

(A6) DNT address

(A7) TXT address~ 0 if not user task related.

RETURN CONDITIONS: (AO) Status:
<0 TIO error
=0 Logical I/O complete

SM-0040 4-12 c

I

8ft' CX»M>N ROUTINES TASK I/O ROUTINES

(A6) ONT address

(A7) Same value as on input

STEPFLOW: 1. If EOD not written, call $WEOD.
2. Reset DSP.
3. Exit.

4.1.6 BLOCK TRANSFER ROUTINES

TIO supports two block transfer routines, $RBLK and $WBLK.

$RBLK routine

$RBLK is called only by other task I/O routines and cannot be called
directly by a task. $RBLK looks to see if the buffer is less than half
full. If it is, it calls CIO to initiate a disk read. CIO continues to
read as long as the user continues to empty the buffer fast enough that
CIO finds buffer space available. If the buffer is more than half full
when $RBLK is called, $RBLK verifies the next block control word (BOW)
(its block number must equal the relative sector number of the dataset)
and returns to the caller.

SUBROUTINE NAME: $RBLK - Read blocks

ENTRY CONDITIONS: (AI) DSP address

(AS) Current BOW address

(A6) ONT address

(A7) Base address of OSP buffer pointers~ uses either
BA or JM address.

RETURN CONDITIONS: (AO) Status:
<0 TIO error
=0 Logical I/O complete

(AI) DSP address

(A4) DPOUT field from DSP

(A6) ONT address

(A7) Same value as input

SM-0040 4-13 C

I

CIRCUlAR I/O BOOTINES STP ~ ROUTINES

STEPFLOW:

$WBLK routine

1. If buffer more than half empty, call CIO at entry
point RDCS.

2. Update DSP.
3. Exit.

$WBLK is called only by other task I/O routines. $WBLK checks to see if
the buffer is more than half full. If it is, it calls CIO to initiate a
disk write and writes a block control word (Bew). CIO continues to write
as long as the user continues to fill the buffer fast enough to keep it
more than half full. If the buffer is less than half full when $WBLK is
called, $WBLK does no more than insert Bews as needed.

SUBROUTINE NAME: $WBLK - Write blocks

ENTRY CONDITIONS: (AI) DSP address

(AS) Next Bew address

(A6) DNT address

(A7) Base address of DSP buffer pointers

RETURN CONDITIONS: (AO) Status:
<0 TIO error
=0 Logical I/O complete

(AI) DSP address

(A6) DNT address

(A7) Same value as input

STEPFLOW: 1. If buffer more than half full, call CIO at entry
point woes.

2. Update DSP.
3. Exit.

4.2 CIRCULAR I/O ROUTINES (CIO)

Physical I/O on a dataset uses a circular buffering technique initiated
by a set of STP common routines known as CIO (Circular Input/Output).

SM-0040 4-14 C

I

I

I

STP COMMON ROUTINES CIRCULAR I/O ROUTINES

CIO routines are directly callable from system tasks. The following
system tasks directly call CIO within COS:

Exchange Processor (EXP)
Log Manager (MSG)
Permanent Dataset Manager (PDM)

CIO calls either the Disk Queue Manager (DQM) or the Tape Queue Manager
(TQM) to perform physical sector transfers. These calls occur through
intertask communication (PUTREQ) from CIO.

These calls are issued by user programs or tasks when data is to be
transferred between the I/O buffer defined by the DSP and mass storage.
However, these requests need not be explicitly issued. FORTRAN I/O
routines in user programs and TIO routines in STP manage the I/O buffers
and make calls to CIO.

The I/O buffer consists of an integral number of fixed-length sectors.
The default number of sectors is defined as installation parameter
I@DNBFZ sectors. For a COS blocked file, the first word of each sector
is a block control word. The size and location of the buffer are
normally defined when the DSP is generated. The default size is defined
by an installation parameter.

Logical I/O on a buffer can be concurrent with physical I/O. That is, on
a read operation, the user can be extracting data from the buffer at the
same time the system is inserting data, with the user read lagging the
system read (sometimes referred to as read-ahead).

Alternatively, on a write operation, the user can be inserting data into
the buffer at the same time the system is emptying it. In this case, the
user write leads the system write (sometimes referred to as write-behind).

The buffers are managed through the IN, OUT, FIRST, and LIMIT pointers in
the DSP. Figure 4-4 illustrates the format of physical I/O. Referring
to step A, the IN pointer advances from FIRST to LIMIT as data is
inserted into the buffer.

Step B illustrates how emptying the buffer lags filling the buffer. The
OUT pointer, which is initially the same as IN, advances toward LIMIT but
always lags IN.

For writing, a buffer can become full when data is inserted faster than
it is extracted.

For reading, a buffer can become empty if data is extracted faster than
it is inserted.

SM-0040 4-15 C

I

CIRCULAR I/O ROUTINES

OUT=F I RST-+

IN -+

LIMIT-+~--------------------~

A. Filling the buffer

FIRST -+

IN -+

OUT -+

LIMIT-+

)

I

+

8TP COMMON ROUTINES

LIMIT+~------------------~

B. Emptying the buffer

",-,
I I
I I

f l
I
I
I
I
I

I I
I ,

'-/'

processing
flow

C. Concurrently filling
and emptying the buffer

Figure 4-4. Physical I/O

Physical reads and writes always involve C@BLKSZ words. On a read, IN is
always at a sector boundary, but OUT, which is being modified by the
user, need not be. Conversely, on a write, OUT is always at a sector
boundary but IN need not be.

SM-0040 4-16 C

S'l'P (DIMON ROUTINES CIRCULAR I/O ROUTINES

I On a read operation, the physical device queue manager (DQM, TQM) and CIO
modify the IN pointer and the caller modifies the OUT pointer. If
IN=OUT, the buffer is empty if errors have occurred (DPERR,O) or if the
DSP is busy (DPBSY=l). The buffer is full when IN=OUT, the DSP is not
busy, and no errors have occurred.

CAUTION

When executing on multiple CPU machines such as the
CRAY X-MP, it is possible for the operating system to
be executing in one CPU at the same time that the user
program is executing in another CPU. When both the
user and the operating system are operating on the same
DSP, a timing condition can exist which might cause the
user to believe that the buffer is full (IN=OUT and not
busy following a read) when in fact the buffer is
empty. This timing condition occurs when the user
examines IN after the operating system has set it.
During the filling of the buffer, after the user has
emptied the buffer, the user can empty the buffer
quickly enough so that the operating system has not yet
cleared the DPBSY field when the user reads it. If the
user program then enters recall believing that an I/O
operation is still active, when resumed, the buffer is
in fact empty, since no I/O request was actually
outstanding -- the previous request was being
terminated. It is the user program's responsibility to
determine whether the buffer is full, and if not, to
initiate an I/O request. All CRI products and library
routines concerned with I/O correctly determine the
true state of the buffer, and re-issue I/O requests
when necessary. It is the responsibility of the
developer of any non-CRI program to make the necessary
modifications. This caution does not apply to those
programs which wait until all I/O has completed on the
dataset before attempting to reference the IN and OUT
pointers.

Dataset I/O streaming occurs when the user is able to remove data from
the buffer (on a read) quickly enough, so the buffer always has room for
the queue manager to initiate another physical I/O request when the
previous request completes.

SM-0040 4-17 C

I

I

CIRCULAR I/O BOOTlNES STP COIM)N ROUTINES

On a write operation, the physical device queue manager and CIO modify
the OUT pointer and the caller modifies the IN pointer. If IN=OUT, the
buffer is full if errors have occurred (DPERR is not equal to 0) or if
the DSP is busy (DPBSY=l). The buffer is empty if IN=OUT, the DSP is not
busy, and no errors have occurred.

CAUTION

When executing on multiple CPU machines such as the
CRAY X-MP, a timing condition can exist which might
cause the user to believe that the buffer is empty
(IN=OUT and not busy following a write) when in fact
the buffer is full. See the preceding caution
concerning a false buffer full condition following a
read.

A mass storage dataset can be declared memory resident. If so, CIO
determines whether a physical I/O request should be issued for the
dataset based on processing direction and whether the buffer is full or
empty. If the request is to write the dataset and the buffer is full
(IN=OUT), CIO issues a physical I/O request. In this case, CIO also
clears the memory-resident indicators in the DSP and DNT. If the buffer
is not full, CIO merely returns to the caller.

If the request is to read the dataset and the buffer is empty (IN=OUT and
DPIBN=O), CIO issues a physical request if the DNT shows that mass
storage space exists. If CIO is called to read and the buffer is not
empty, CIO returns as if a successful read had occurred. If the buffer
is empty, CIO determines whether the requested block (DPIBN) is within
the buffer (IBN*C@BLKSZ<LIMIT-FIRST) and whether the block exists
(IBN<DNLBN). If either-condition is not true, CIO clears the memory
resident flags and the read proceeds as for a null dataset. If both
conditions are true, CIO:

1. Sets DPIBN=DNLBN,
2. Sets DPOBN=requested block (old DPIBN),
3. Sets IN and OUT to point to the correct block boundaries within

the buffer, and
4. Sets the EOI bit in DSP. Any I/O suspend calls made to the Job

Scheduler are canceled before returning.

SM-0040 4-18 C

I

STP C()fH)N ROUTINES CIRCULAR I/O ROUTINES

If mass storage space is allocated and the dataset size from the Dataset
Allocation Table (DAT) is greater than the buffer size, CIa clears the
memory-resident indicators and the read proceeds normally.

4.2.1 CIO ENTRY POINTS

Three main entry points within CIa are externalized for direct linkage
between system tasks and the CIa routines:

CPROC - Main read/write entry point to CIO
CTRCL - Synchronous System Task dataset recall
CRCIO - Asynchronous System Task dataset recall

A system task calls CPROC to initiate I/O on a dataset. The type of
recall the system task performs depends on whether the system task has no
other processing to do while the I/O is in progress (synchronous), or
whether the system task has other processing to do while the I/O is in
progress (asynchronous).

Calls to CTRCL can suspend the calling system task until the DQM/TQM
acknowledge has been received.

Calls to CRCIO assume the initiating system task has already received the
DQM/TQM acknowledge and only wants to perform common acknowledge
processing.

4.2.2 CIO MAIN READ/WRITE ENTRY

The following describes the entry and exit parameters for the main entry
point into CIa:

ENTRY CONDITIONS: (AI) TXT address of the task entry (if user task)
o (if system task)

SM-0040

(A2) DNT address

(A3) DSP address

(A7) Calling system task stack address-XXXSTK. This
address must also be stored in field DNSTK in
the DNT before the call.

(Sl) 0 for Read
1 for Write

R CPROC

4-19 C

I

CIRCULAR I/O ROUTINES STP COMMON ROtr.rINBS

RETURN CONDITIONS: (AI) TXT address of the task entry (if user task)
o (if system task)

(A2) DNT address

(A3) DSP address

(A7) Stack address

Control returns immediately to the caller.

The field DNRCL should be set if the caller wishes to be I/O suspended
when the I/O is initiated and I/O resumed when the I/O is done. This
field is set automatically by CIO in CTRCL. The equivalent of this field
within CIO is DNCRe which gets set whenever a user task is to be I/O
suspended and cleared when the task is I/O resumed.

4.2.3 CIO SYNCHRONOUS RECALL

The following describes the entry and exit parameters for the synchronous
entry point into CIO:

ENTRY CONDITIONS: (AI) TXT address of the task entry (if user task)
o (if system task)

A2 = DNT address

A3 = DSP address

A7 = Calling system stack address-XXXSTK. This
address must also be stored in field DNSTK in
the DNT before the call.

R CTRCL

RETURN CONDITIONS: (AO) 0 if no error, nonzero if error

SM-0040

(AI) TXT address of the task entry (if user task)
o (if system task)

(A2) DNT address

(A3) DSP address

(A7) Stack address

(SO) 0 if no error, nonzero if error

4-20 C

I

5TP CX»M>R ROmINES CIRCULAR I/O ROUTINES

Control returns to the caller when the entire request has been completed.

The field DNRCL should be set if the caller wishes to be I/O suspended
when the I/O is initiated and I/O resumed when the I/O is done. This
field is set automatically by CIa in CTRCL. The equivalent of this field
within CIa is DNCRC which is set whenever a user task is to be I/O
suspended and cleared when the task is I/O resumed.

4.2.4 CIO ASYNCHRONOUS RECALL

The following describes the entry and exit parameters for the
asynchronous entry point into CIa:

ENTRY CONDITIONS: (AI) TXT address of the task entry (if user task),
o (if system task)

(A2) DNT address

(A3) DSP address

(A7) Calling system stack address-XXXSTK. This
address must also be stored in field DNSTK in
the DNT before the call.

(Sl) DQM/TQM reply word O. See section 4.1 for the
reply word format.

(52) DQM/TQM reply word 1

R CRCIO

RETURN CONDITIONS: (AO) 0 if no error, nonzero if error

(AI) TXT address of the task entry (if user task),
o (if system task)

(A2) DNT address

(A3) DSP address

(A7) Stack address

(SO) Zero if no error, nonzero if error

Control returns to the caller at its main interrupt loop.

SM-0040 4-21 C

MEMORY ALLOCATION/DEALLOCATION ROUTINES STP COMMON ROUTINES

4.3 MEMORY ALLOCATION/DEALLOCATION ROUTINES

The MEMAL, MEMDE, and PMEMDE common subroutines provide for allocation
and deallocation of variable size memory areas for temporary use by a
task.

Allocation and deallocation are from memory pools. The number and size
of memory pools are determined when the operating system is generated.

As illustrated in figure 4-5, the Pool Table and the header and trailer
words are used for controlling memory allocation and deallocation. The
Pool Table consists of a header word and one word for each memory pool in
the system. The Pool Table header defines the maximum valid pool
number. The word associated with the memory pool provides the base
address and the size of the memory pool.

Pool Table

HEADER

Pool No.

Memory Pool No. 1

Pool No. n

~

Memory Pool No. n

Figure 4-5. Memory allocation tables

SM-0040 4-22 c

STP COMMON ROUTINES MEMORY ALLOCATION/DEALLOCATION ROUTINES

Each area of a memory pool is surrounded by a header word and a trailer
word. The header and trailer words are identical and indicate the status
(available or unavailable) and the size of the area. The number and size
of the areas change dynamically as tasks obtain words from or return
words to a pool.

4.3.1 MEMORY ALLOCATION - MEMAL

MEMAL is an STP common subroutine that allocates a variable size memory
area for temporary use by a task.

Memory is allocated from a memory pool. The caller provides MEMAL with
the pool number from which allocation is to occur and the number of words
desired. The number of words must be at least one and not more than the
pool size less 2. MEMAL allocates two words more than requested; these
are used by MEMAL as header and trailer words for the area to be
allocated. On return to the caller, MEMAL provides a status and, if
memory is allocated, the address of the first usable word. The allocated
area is zeroed.

ENTRY CONDITIONS: (A6) Number of memory pool from which to allocate

(A7) Number of words desired

RETURN CONDITIONS: (A6) Status:
o Good status
1 Invalid memory pool number
2 Invalid number of words requested
3 Memory not available

(A7) Address of first usable word of memory to be
allocated; meaningless if A6#O.

4.3.2 MEMORY DEALLOCATION - MEMDE

MEMOE is an STP common subroutine that returns memory to its memory pool
for reallocation.

In addition to marking the memory as available for allocation, MEMOE
combines the area with any adjacent available areas, thereby maintaining
the largest possible size for allocation.

SM-0040 4-23 c

MElK>RY ALLOCATION/DEALLOCATION ROUTINES 8T1' ~ ROUTINES

The caller must provide MEMDE with the memory pool number to which memory
should be returned and the address of the first usable word of the memory
to be deallocated.

ENTRY CONDITIONS: (A6) Memory pool number

(A7) Address of first usable word of memory to be
deallocated

RETURN CONDITIONS: (A6) Status:
o Good return
1 Invalid address
2 Area not currently allocated
3 Invalid memory pool number

(A7) Address of memory released; meaningful only if
status is o.

4.3.3 PARTIAL MEMORY DEALLOCATION - PMEMDE

PMEMDE is an STP common subroutine that returns a portion of memory to
its memory pool for reallocation. The portion being returned can be at
either end of the allocated space. Memory cannot be returned to the pool
from the middle of the allocated space. The freed area is combined with
any adjacent available space.

ENTRY CONDITIONS: (A6) Memory pool number

(A7) Address of first usable word of allocated area

(AS) Count of words to free. If (AS) is negative,
ABS (AS) words are released from the beginning
of the allocated space. If (AS) is positive,
(AS) words are released from the end of the
allocated space.

RETURN CONDITIONS: None The requested number of words have been made
available for other use.

The minimum request to PMEMDE is to release three words. A request to
deallocate fewer than three words is ignored without comment unless the
request would result in the deallocation of the entire allocated area.
If the request is greater than or equal to the size of the allocated
area, the entire area is released.

SM-0040 4-24 C

STP COIU«>N ROO'l'INES CHAINING/UNCHAINING SUBROUTINES

4.4 CHAINING/UNCHAINING SUBROUTINES

The CHAIN and UNCHAIN common subroutines provide tasks with a means of
linking data. Each piece of data is termed an item and consists of two
words of header information followed by the information being added to
the chain. As an example, an item can be the input and output registers
used for intertask communications. By chaining registers, tasks need not
be limited to two words of input and two words of output. However, the
CHAIN/UNCHAIN subroutines are not restricted to use for intertask
communications; the amount of information in an item and its type is
defined entirely by the task using the subroutines.

Chaining is established through a chain control word and the first two
words of each item in the chain. Figure 4-6 illustrates a chain of items.

Pointers in the chain control word identify the first and last items on
the chain. The chain control word also contains space for the maximum
number of items that exist on the chain and a count of the number of
items on the chain. However, because the chain control word reflects
only a portion of the entire chain, the maintenance of the count is the
responsibility of the calling task.

The two words used in the chain item provide a forward link to the next
item on the chain, a backward link to the preceding item on the chain,
and the address of the chain control word where this item is linked.

4.4.1 CHAIN ITEM - CHAIN

CHAIN is an STP common subroutine that places an item in a queue
(chain). CHAIN always adds items at the end of the existing queue.
Therefore, if a single destination accepts multiple priorities, creation
of a separate queue for each priority is necessary.

The caller must provide CHAIN with the address of the chain control word
and the address of the chain item.

ENTRY CONDITIONS: (A6) Address of chain control word

(A7) Address of the item to be chained

RETURN CONDITIONS: (A6) Unchanged from input

(A7) Unchanged from input

SM-0040 4-25 C

CHAINING/UNCHAINING SUBROUTINES STP C<»D«>N ROUTINES

n ~I----______________ ~

Figure 4-6. Chain tables

SM-0040 4-26 c

STP COMK>N ROUTINES INTERACTIVE BUFFER MANAGEMENT

4.4.2 UNCHAIN ITEM - UNCHAIN

UNCHAIN is an STP common subroutine that removes an item from a queue.
The item to be removed can be anywhere in the queue.

Although the chain control word contains a count of the items in the
queue, UNCHAIN does not adjust this count; this is the responsibility of
the caller.

The caller must provide UNCHAIN with the address of the item to be
unchained. UNCHAIN determines the appropriate chain control word from
the item.

ENTRY CONDITIONS: (A7) Address of item to be unchained

RETURN CONDITIONS: (A7) Unchanged from input

4.5 INTERACTIVE COMMUNICATION BUFFER MANAGEMENT ROUTINES

The interactive communication buffer management routines are a set of
common routines that operate on the Interactive Buffer Table (IBT) and
queue control words in the Active User Table (AUT). They allocate and
deallocate buffer space, queue and dequeue messages, and transfer
messages to and from the buffer area. To ensure proper management of the
buffers, these routines allocate and deallocate buffers in STP in
nonpreemptable mode.

The interactive communication buffer area is in the upper range of
memory, and the IBT is constructed so that, in the future, the buffer can
be expanded, contracted, or relocated as required by dynamic memory
management. Features of the IBT and the management routines that
minimize overhead in providing dynamic memory management of this area are
the interactive buffer base address, the use of buffer identifiers, and
inverting entry allocation (the highest address buffer is allocated
first). Furthermore, the bit map in the IBT minimizes overhead in
allocating and deallocating buffer space. Buffer area fragmentation is
prevented by allocating memory in small, fixed-size blocks, which can be
linked together.

The interactive buffer management routines manipulate a queue control
word with the following structure:

o 16 32 48

I QCOUNT 11111I11111111111 QTAIL QHEAD

SM-0040 4-27

63

C

INTERACTIVE BOPFER MANAGEMENT STP COMII)H ROUTINES

Field Bits Description

QCOUNT 0-15 Count of entries on the queue

QTAIL 32-47 Buffer identifier of the last buffer on the queue

QHEAD 48-63 Buffer identifier of the first buffer on the queue

4.5.1 ENQMSG ROUTINE

This routine allocates buffer space, moves the message into the buffer,
and queues the buffer on the desired queue.

ENTRY CONDITIONS: (AO) Enqueue type:
=0 Queue at tail
~O Queue at head

(A4) Queue control word address

(AS) Message length

(A6) Message address

RETURN CONDITIONS: (AO) Operation status:
=0 Successful
~O Inadequate buffer space

Registers Al through A4, A7, and Sl through S5 are saved and restored.

4.5.2 NXTMSG ROUTINE

NXTMSG moves the next message in the queue to the record area.

ENTRY CONDITIONS: (AO) Type of move (presently only block is supported)

(A4) Queue control word address

(AS) Maximum move size

(A6) Move address

RETURN CONDITIONS: (AO) Operation status:
=0 Successful
~O No message or message too long

SM-0040 4-28 C

sn COJH>H BOUTINES PASS1IORD ENCRYPTION

(A4) Queue control word address

(AS) Buffer 10

(A6) Address within record area where next buffer can
be moved

Registers Al through A4, A7, and Sl through S5 are saved and restored.

4.5.3 FREEMSG ROUTINE

This routine removes a message from the queue and releases the buffer
space.

ENTRY CONDITIONS: (A4) Queue control word address

(AS) Buffer ID

RETURN CONDITIONS: (AO) Operation status:
=0 Successful
#0 Buffer not on queue

Registers Al through A5, A7, and Sl through S5 are saved and restored.

4.6 PASSWORD ENCRYPTION

PWENC is a common routine used to encrypt passwords. The parameters are
passed through the Encryption Parameter Table (ETT), which is described
in publication SM-0045, the COS Table Descriptions Internal Reference
Manual. The table parameters currently used are:

• The password to encrypt

• The ordinal of the keyword to use in the encryption

The supplied encryption algorithm contains three keywords~ anyone may be
specified for use in the encryption. PWENC replaces the password to be
encrypted by its encrypted version in the ETT.

SUBROUTINE NAME: PWENC - Password encryption

ENTRY CONDITIONS: (Sl) User ETT address

SM-0040 4-29 C

I

SYSTEM BUPPER MANAGEMENT Sft COMMON ROUTINES

EXIT CONDITIONS: Encrypted passwords replace unencrypted passwords in
ETT

(SO) Status:
=0 Normal return
<0 Invalid keyword index specified

4.7 SYSTEM BUFFER MANAGEMENT

The System Buffer or SYSBUF is an area of memory between PDM tables and
user memory. This places the buffer area very high in Central Memory.
This buffer zone is used by SCP and STG for COS/front-end communication
buffers. This is the same relative location of memory that the
communication buffers were allocated from in pre-I.12 releases of COS.

The original buffer is allocated by JSH and is I@SYSBUF words. As more
space is needed, the buffer manager, a common subroutine called BFMAN,
requests JSH for I@BFINCR words to be added to the System Buffer. The
maximum size of the buffer area cannot exceed all of user memory because
STP cannot be rolled. If there is space that is unused (2*I@BFDECR wordS
or more), BFMAN requests JSH to deallocate I@BFDECR words of memory from
the available buffer pool. Memory is added or removed from the end of
the buffer adjacent to user space, which means that availability of user
memory space is affected by fluctuations in communication load. Figure
4-7 shows these memory usage states.

The allocation and deallocation of buffers within the System Buffer is
handled by the BFMAN common subroutine. There are two types of
allocation requests:

• A request for space

• A reallocation

In the second form of allocation request, an existing buffer is traded
for another buffer, allowing BFMAN to attempt to pack buffers together.

Allocation is always done on a first-fit basis, starting at the highest
addresses to force buffer space to be at the user end of the System
Buffer. If no buffer space is available, the request is rejected and a
request for more memory is posted to JSH. The requester should wait and
then renew the request. SCP and STG reissue such requests after an
exchange of messages with the front end. This message exchange allows
enough time for JSH to allocate the memory, and ensures that there are no
front-end timeouts while SCP or STG are waiting for memory. However,

SM-0040 4-30 C

STP COMI«>N ROUTINES

SYSBUF
after
2 allocate
requests

INCREMENT
STATE

PDM

SYSBUF

I@BFINCR

I@BFINCR

USER

STP

EXEC

PDM etc.

SYSBUF

U
S

E
R

STP

EXEC

New SYSBUF
after one
allocate
request

SYSTEM BUFFER MANAGEMENT

DECREMENT
STATE

PDM

SYSBUF

I@BFDECR

USER

STP

EXEC

)

SYSBUF plus
some number
of increments

Figure 4-7. System Buffer memory management

SM-0040 4-31 C

I

8ft COJH)N ROUTINES

suspensions of a transfer or initially slow transfers may result. If SCP
or STG is reallocating a buffer, then BFMAN should be able to at least
reallocate the same buffer.

The processing of a deallocation request is a simpler process. The space
is freed and the BFMAN routine attempts to combine the free space with
adjacent free buffers.

4.7.1 SYSTEM BUFFER INITIALIZATION

The BFMAN common subroutine uses control words within the System Buffer
to manage the individual buffers. A control word precedes and terminates
each buffer within the System Buffer, as shown in figure 4-8.

PDM etc.

SYSBUF

USER

STP and
EXEC

SM-0040

CONTROL WORD

BUFFER

CONTROL WORD

o 1 16 40 63

Figure 4-8. System Buffer control words

4-32 C

STP COIH>N BOOTINBS SYSTEM BUFFER MANAGEMENT

Each control word has three fields.

• An Activity flag (ACT) indicating that the buffer above the
control word, with a higher address, is allocated and active.

• The higher pointer (HP) , which points to the next control word
having an address greater than the current control word.

• The lower pointer (LP) , which points to the next control word
having an address lower than the current control word.

The high and low pointers provide links through the buffer chain that the
buffer manager traverses when looking for allocatable space.

4.7.2 SYSTEM BUFFER INTERNAL MANAGEMENT

The BFMAN routine initializes the System Buffer by putting control words
in the first and last words of the buffer, and setting the highest
address in the variable BUFMAX and lowest address in BUFMIN. As shown in
figure 4-9, the variables BUFMAX and BUFMIN provide pointers to the
buffer limits.

In the just initialized System Buffer, the control word at BUFMAX has the
Active flag set. This flag is a secondary indicator of a lack of buffer
space above that point. The higher pointer is 0, indicating no control
word above BUFMAX. The lower pointer points to the control word at
BUFMIN where the only other control word has been placed. The control
word at BUFMIN does not have the Active flag set indicating that the
space between that control word and the control word pointed to by the
higher pointer, pointing to BUFMAX, is available for allocation. The
lower pointer is 0, indicating no space exists beyond this control word.

4.7.3 BUFFER ALLOCATION

In the allocation of a buffer, the BFMAN routine searches the buffer
space for the first available space at least large enough for the
requested buffer. The search starts at the highest memory address,
forcing buffers to be allocated as high in the buffer zone as possible.
If a perfect fit is found, then only the Active flag need be set and the
request is complete. If a perfect fit is not available, a new control
word is created.

SM-0040 4-33 C

SYSTEM BUFFER MANAGEMENT STP COMMON ROUTINES

ACT

......-BUFMAX

ACT ----.J

(not

Figure 4-9. Initialized System Buffer

The following method is used for allocations requiring creation of a
control word.

1. Subtract the requested buffer size plus one from the address of the
control word above the available space, giving the address of the new
control word, NCW.

2. Subtract the request buffer size from the higher pointer of the
control word below the available space (HPB) , creating a new HPB, or
HPBl.

3. Place the old HPB in the new control word higher pointer. Place HPBI
in the control word below the space, that is, in the lower control
word (LCW).

I 4. Place the old LPA in the NCW.

SM-0040 4-34 c

STP COMMON ROUTINES SYSTEM BUFFER MANAGEMENT

5. Place the address of the new control word (NCW), in the lower pointer
of the control word above the space, that is, in the higher control
word (HCW).

6. Set the Active flag in the NCW.

Figure 4-10 illustrates System Buffer space allocation.

WORD

LOWER
CONTROL WORD ~~~~ ____ ~~ __ ~

Figure 4-10. System Buffer space allocation

4.7.4 SYSTEM BUFFER DEALLOCATION

The deallocation of buffers within the System Buffer can be separated
into two cases:

• Deallocation that does not allow merging of either of the adjacent
buffers or spaces with the area to be deallocated

• Deallocation that does allow at least one of the adjacent areas to
be joined

SM-0040 4-35 C

SYSTEM BUFFER MANAGEMENT STP COIH>N ROUTINES

Deallocation that does not allow the merger consists of clearing the
Active flag in the control word below the buffer. The deallocation with
merge is more complicated. The following procedure shows the processing
necessary to merge both adjacent buffers. Deallocation where only one
adjacent buffer is inactive is only slightly different.

1. Take the control word's higher pointer and pick up the Hew.

2. Verify that the HCW's lower pointer does point to the original
control word (OCW).

3. If the Active flag is not set in the Hew, use that pointer for the
OCW higher pointer.

4. Take the OCW's lower pointer and pick up the Lew.

5. Verify that the Lew's higher pointer points to the OCW.

6. If the Active flag is not set, then replace the OCW's lower pointer
with the LCW's lower pointer.

7. Place the LCW's address in the Hew's lower pointer.

8. Place the OCW at the Lew's address.

Figure 4-11 illustrates System Buffer space deallocation.

4.7.5 SYSTEM BUFFER PERFORMANCE CONSIDERATIONS

Use of memory within the System Buffer is the primary performance
consideration. Optimum use is achieved when all allocated buffers are
packed in the upper end (higher addresses) of the System Buffer. The
lower end of the System Buffer should contain enough space for frequent
bursts of front-end activity but should not have space that is unused for
long periods.

Achieving optimum use requires the following:

• Buffers must be packed~ that is, holes must be squeezed out.

• Space at the end of the buffer area must be monitored so that
unused space can be returned to the user area of memory.

SM-0040 4-36 C

STP COIM>N ROUTINES SYSTEM BUFPER MANAGEMENT

The first-fit method of allocation is one means of achieving buffer
packing. The other is assuring that buffers do not stay allocated for
long periods. The tasks SCP and STG reallocate buffer space after each
use. In the case of output to a front end after a segment buffer is
transmitted, the BFMAN routine is called to reallocate the buffer. The
worst case of reallocation is that the same buffer is reallocated. The
only cost of reallocation is CPU overhead.

Figure 4-11. System buffer space deallocation

SM-0040 4-37 C

SYSTEM BUFFER MANAGEMENT STP COIK>N ROUTINES

The second consideration is monitoring space at the end of the System
Buffer. Having enough extra space to efficiently buffer data can be
balanced against a need for keeping unused space at a minimum, thus
increasing the amount of user memory. This monitoring is accomplished,
in part, by setting a timer if the size of the space passes some
threshold. The space is returned if it stays over the threshold size
until the timer expires. The other part of this balance ensures that the
buffer allocation increment and decrement are set to values that avoid
constant requests to JSH.

SM-0040 4-38 c

I

COS STARTUP

System startup is the process of loading the Cray Operating System (COS)
into Central Memory, beginning execution, and generating or recovering
tables for the operating system. The operating system to be started can
be on a user permanent dataset. If it is on a user-permanent dataset,
then a 2-pass startup is performed, and the parameter file must specify a
2-pass startup. There are three ways to start the system:

• Install

• Deadstart

• Restart

Most of COS Startup resides in the System Task Processor (STP) so that it
can conveniently access system tables and facilities. However, some COS
Startup logic resides in the station software of the station from which
startup occurs (such as the I/O Subsystem station) and in EXEC. Some
tables, such as the Permanent Dataset Information Table, are initialized
when STP is assembled.

5.1 INSTALL OPTION

With Install, COS is started as if for the first time. All CRAY-I or
CRAY X-MP mass storage is assumed to be vacant, except for areas reserved
for Cray Research customer engineers and for the Engineering Flaw Table
(EFT). Briefly, when the Install option is selected, the Startup task:

• Searches for the EFTs, if they exist

• Writes a device label (DVL) on each mass storage unit

• Accumulates flaw information. Flaw information can originate from
the parameter file, from flaws assembled into COS, or from the
Engineering Flaw Table (EFT) which is constructed by engineering
diagnostics and written to sector 17 of the first track on the
device with a usable sector 17.

• Processes mass storage groups. Mass storage groups are described
in section 5.2.

• Creates the Dataset Catalog (DSC) on the master device

SM-0040 5-1 C

5

I

INSTALL OPTION cos STARTUP

• Sets up the DSC and tables in memory, indicating that the only
existing dataset, permanent or temporary, is the one containing
the DSC itself

• Reserves space on the master device for system dumps for use if
the system fails

• Reserves space for the three datasets maintained by an lOS

• Allocates disk space to contain copies of the system overlay
dataset

• Initializes the Rolled Job Index dataset (RJI) and enters it into
the DSC

• Optionally creates the Dataset Catalog Extension Table (DXT) on
the master device (or on some other device according to
installation parameter) and enters it in the DSC

• Initializes job class structure and system directory datasets and
enters them into the DSC

• Allocates disk space for volatile device backup dataset

When Install writes a device label on each mass storage unit, it uses the
first track on each mass storage device that the Device Reservation Table
(ORT) identifies as good for the device label. After writing the device
label, Install reads it back to verify it. If the verification fails,
the track is noted in the DRT as being bad, and the next available track
is used.

The device label on the master device points to the DSC by containing the
Device Allocation Table (OAT) for the OSC. The master device label also
contains a pointer to the first track of an area allocated by Install to
contain system dumps.

The Install procedure accumulates flaw information for a device during
startup. (Startup flaws are described in detail in section 5.5.) At the
end of the Install process, Install packs this information into the
device label created in memory and writes the label to the disk. Install
acquires flaw information from the following: the previously existing
label, if one exists; the Engineering Flaw Table, if one exists;
information assembled into the Disk Reservation Table entry for the
device; and parameter file directives. Whatever Install writes to disk
is validated; any flaws are noted in the ORT and the device label.

SM-0040 5-2 C

I

COS STARTUP DEADSTART OPTION

Install creates the Dataset Catalog (DSC) in blocked format on the master
device while logging any disk errors found in the Device Reservation
Table (DRT) and in the flaw table in the DVL image being built in
memory. Install initializes the DSC to all zeros, except for block and
record control words.

Install optionally creates the Dataset Catalog Extension (DXT) in a
manner similar to the DSC. It can be created during Install or
Deadstart, and is fully described in section 5.2 (Deadstart option).

When Install reserves space on the master device for system dumps for use
if the system fails, it zeroes the reserved area. Any flaws are entered
into the DRT and flaw tables. The amount of space allocated for system
dumps is determined from the value of the installation parameter
I@DMPSIZ. Install writes the list of allocation indexes allocated to the
system dump to the first sector of the first track in the reserved area,
so that Deadstart and Restart can use it.

If an I/O Subsystem (lOS) with at least one disk is part of the
installation, Install reserves and zeroes space for the three directories
maintained by an lOS. The amount of space allocated for each directory
is determined by the installation parameters I@IOPCOS, I@IOPPRM, and
I@IOPIOP. Install also writes the allocation index list to sector 0 of
each dataset.

In general, I/O on a dataset requires a buffer, Dataset Parameter Table
(DSP), Dataset Name Table (DNT), and Dataset Allocation Table (DAT).
Install uses separate buffers and DSPs of its own when working with
device labels and the DSC. At assembly of STP, space for the DNT and DAT
is set aside for post-Install use by Startup. However, Install must
complete initialization of the DNT and the DAT.

The default job class structure is in effect after an Install.

A 2-pass startup is meaningless during an Install. If one is requested,
Startup halts and issues a message to the operator in the S registers
explaining why it has halted.

Install allocates space for the backup datasets for all volatile devices,
then saves these datasets as $dname, where dname is the corresponding
device name.

5.2 DEADSTART OPTION

For a Deadstart, COS is started as if after a normal system shutdown.
That is, permanent datasets mentioned in the DSC are preserved through

SM-0040 5-3 C

I

I

I
I

DEADSTART OPTION COS STARTUP

proper setup of tables in memory. However, input or output queues
mentioned in the Dataset Catalog are deleted.

Briefly, when the Deadstart option is selected, the Startup task:

• Searches for the Engineering Flaw Table (EFT)

• Finds device label (DVL) on each mass storage unit

• Preserves flaw information

• Processes mass storage groups

• If master device, reserves DSC and the disk space occupied by
system dump; initializes DNT and DAT for the DSC.

• Preserves allocated space for the three datasets maintained by I/O
Subsystem

• Attempts to locate and reserve all disk space allocated for system
overlay dataset copies

• Restores all data on volatile devices from the backup datasets as
directed by the parameter file

• Deletes all input and output datasets and reserves all other
permanent datasets

• Either creates the DXT or recovers and validates the DXT if one
already exists

• Establishes Rolled Job Index in memory

• Copies system dump, if one exists, from the preallocated area to
available space and saves the copy as a permanent dataset

• For volatile devices, either allocates and saves backup datasets,
or invalidates information contained on the previously existing
datasets

5.2.1 DEVICE SPACE RESERVATION

Deadstart updates the Device Reservation Table in memory to reflect the
tracks reserved by datasets mentioned in the Dataset Catalog and tracks
mentioned in the flaw portion of the device label, the Engineering Flaw
Table (EFT) on the disk, if one exists, and parameter file directives.

SM-0040 5-4 C

COS STARTUP DEADSTART OPTION

Deadstart rewrites the label on the disk at the end of Deadstart, if any
flaws other than those already mentioned in the device label are added by
the EFT or the parameter file, or are specified to be deleted by the
parameter file.

Deadstart attempts to locate the disk area preallocated for the system
dump. If this area can be found, Deadstart reserves the tracks in the
Device Reservation Table. If a dump that has not been copied exists in
the preallocated area, Deadstart copies the dump to a new dataset and
requests the Permanent Dataset Manager to save the copy so that it can be
accessed by user jobs following completion of Startup. If no new dump
exists, the disk space remains reserved, but the preallocated area is not
copied. If the preallocated area cannot be found, no space is reserved
in the Device Reservation Table.

5.2.2 MASS STORAGE GROUPS

The installation can choose to group several physical mass storage
devices together as one logical device. The logical device is called a
stpipe gpoup. When device striping is used, Startup sets up the
Equipment Table (EQT) entries to reflect all such groups.

Groups are identified by a group identifier contained in the device
label. Devices can be added to or deleted from the group and new groups
can be defined during Startup by an entry in the parameter file or by an
operator entry during configuration change processing.

The logical device corresponding to a stripe group must be present in the
EQT or added during configuration change processing and must have the
device name STRIPE-n. n is a decimal digit in the range 1-9. Up to
9 stripe groups can be defined; each stripe group can contain up to 7
physical devices. Device Reservation Table (DRT) space must also be
available the logical device.

Following processing of all groups, Startup sets all physical members of
a group to indicate the device is down and all datasets are released.
Startup discards all permanent datasets residing on a physical member of
a group. Permanent datasets residing on the logical group device are
retained unless the device is configured as released. If permanent
datasets reside on a group device, devices can not be added to or deleted
from the group.

When a group member is identified, all flaw information for that member
is merged into the DRT entry for the group device. Thus a flawed track
on one physical device causes that track to be unused on all devices that
are members of the same group.

SM-0040 5-5 c

I
DEADSTART OPTION COS STARTUP

See the COS Operational Procedures Reference Manual, publication SM-0043,
for a description of how to define a group, add a device to a group, or
delete a device from a group.

The master device cannot be part of a mass storage group.

I 5.2.3 DATASET CATALOG EXTENSION

Deadstart locates or creates the Dataset Catalog Extension Table (DXT).
The DXT is a system dataset similar to the DSC itself and serves as a
repository for information that will not fit into the DSC conveniently.

The DXT is a permanent dataset with a permanent dataset name of
$DSC-EXTENSION and edition number of 4095. Startup ensures that this
dataset belongs to the system and prohibits unauthorized access. An
exception is made for utilities such as PDSDUMP and AUDIT.

The DXT is created during an Install or a Deadstart. Once created,
subsequent Deadstarts or Restarts recover the DXT dataset during the
normal DSC recovery and validate the DXT information. When the DXT is
created, it is, by default, placed onto the master device; overflow to
another device is not allowed. An installation parameter can be changed
allowing both a nonmaster device to be selected and/or overflow to
occur. Contiguous disk allocation for the DXT is not guaranteed, even
though it can be requested. t A site might wish to free disk space on
the selected device through PDSDUMP and PDSLOAD before a Deadstart.
Although contiguous disk space for the DXT is not required, it enhances
the AUDIT,PERMIT and/or AUDIT,TEXT,NOTES and/or AUDIT,B=bdn performance
Significantly.

An installation parameter controls the size of the DXT. The parameter
can be altered during Startup through a Startup parameter file
directive. Startup can be requested to create the DXT or to increase the
size of the DXT.

To provide high performance in allocating entries in the DXT and to
minimize the impact of introducing another element in the structure of
the current permanent dataset directory, a memory resident allocation
table is maintained in the upper end of memory.

t When contiguous space is requested, Startup ensures that the
contiguous space is available. However, even if the requested
contiguous space is available, there is no guarantee that DQM will
allocate it; DQM currently does not guarantee contiguous allocation.
If contiguous space is requested but unavailable, a fatal error occurs.

SM-0040 5-6 C

COS STARTUP DEADSTART OPl'ION

The public access mode and access tracking attributes are placed in the
main DSC entry. This placement is primarily done to reduce the I/O
requirements for the default use of AUDIT. All other attributes
(permits, tracking, text, and notes) are placed in the DXT. Each
permanent dataset has its own chain of DXT entries which significantly
reduces the search time required when interrogating permit information at
the expense of increased disk space needed for the DXT. The DXT entries
are designed to be installation friendly; that is, additional DXT entry
types can be defined by a site without concerning themselves with future
changes that might be made by CRI.

Any inconsistencies between the DSC and DXT entries for a given permanent
dataset encountered during Startup cause the DXT error flag to be set in
the main DSC entry for the dataset and cause a message to be posted to
both the System Log and the operator.

I 5.2.4 OTHER STARTUP PROCESSING

If an I/O Subsystem (lOS) with at least one disk is part of the
installation and space has been allocated for the three datasets
maintained by the lOS, the space is preserved. If the space has not been
allocated, it is al~ocated following permanent dataset and rolled job
recovery.

Before system dump processing, Deadstart calls the RRJ routine (Recover
Rolled Jobs) to set up the Rolled Job Index. Deadstart attempts to
access the Rolled Job Index dataset. If the dataset can be accessed, all
entries other than entry 0 are cleared (since I/O datasets are not
recovered by a Deadstart) and the dataset is rewritten. If the dataset
cannot be accessed, Deadstart creates and initializes a new edition.

Deadstart also attempts to locate the system overlay area. If it can be
found, Deadstart reserves tracks for it in the DRT. If not found, it is
allocated.

Deadstart scans the Dataset Catalog for input and output datasets,
deleting all such datasets to create an idle system. Permanent datasets
are preserved.

The buffers and Dataset Parameter Tables (DSPs) for the Dataset Catalog
and its extension are assembled into STP.

Deadstart places into effect the job class structure that was written to
the permanent dataset named in the Deadstart parameter file. If no
dataset is named, or if it cannot be accessed or read, the default job
class structure goes into effect.

SM-0040 5-7 C

I

I

I

RESTART OPTION COS STARTUP

If a 2-pass Deadstart is requested, Deadstart locates the specified
system dataset and reads it into memory on pass 1. Once the system is
read, the system and the parameter file are moved down over the current
system, and a normal startup is initiated.

Deadstart attempts, for all volatile devices, to access the backup
dataset, $dname, where dname is the corresponding device name. If
such a dataset exists, the data contained on it is marked invalid.
Otherwise, Deadstart allocates space and saves the dataset.

5.3 RESTART OPTION

Restart is an operator option after a system interruption when recovery
of input and output queues and possibly the jobs in process is desirable.

Briefly, when the Restart option is selected, the Startup task:

• Searches for the Engineering Flaw Table (EFT)

• Finds device label (DVL) on each mass storage unit

• Reserves flaw information

• Processes mass storage groups. Mass storage groups are described
in section 5.2.

• If master device, reserves Dataset Catalog and initializes Dataset
Name Table (DNT) and Dataset Allocation Table (DAT) for the
Dataset Catalog

• Attempts to preserve the area reserved for system dumps

• Restores information on volatile devices from their associated
backup dataset as directed by the parameter file

• Attempts to preserve all permanent datasets and recovers input and
output queues. In memory, builds DAT and System Dataset Table
(SDT) for each input/output dataset. (The SDT entry can have one
or more attached memory pool areas containing TEXT field or
station slot information.)

• If specified, recovers rolled out jobs through call to Recover
Rolled Jobs routine (RRJ)

• Preserves or allocates space for the three data sets maintained by
I/O Subsystem

SM-0040 5-8 C

I

COS STARTUP RESTART OPTION

• Allocates the system overlay dataset

• Locates the Dataset Catalog Extension if available, validates it,
and builds an allocation table in upper memory

• Copies system dump if necessary and saves the copy as a permanent
dataset (in the same way as for Deadstart; see section 5.2.)

• For all volatile devices if the backup dataset already exists, the
data contained on it is marked invalid; otherwise, the dataset is
created.

Restart updates the Device Reservation Table in memory to reflect the
tracks reserved by datasets mentioned in the Dataset Catalog and tracks
mentioned in the flaw portion of the device label, the Engineering Flaw
Table (EFT) on the disk (if one exists), and parameter file directives.
The label on the disk is rewritten at the end of Restart if (a) any flaws
other than those already mentioned in the device label are added through
the EFT or the parameter file, or (b) any flaws are specified to be
deleted through the parameter file.

If an I/O Subsystem (lOS) with at least one disk is part of the
installation, and if space has been allocated for the three datasets
maintained by the lOS, the space is reserved. If the space has not been
allocated, it is allocated.

The system overlay dataset is reserved in a way similar to the way in
which the system dump area is treated. (The system dump area for Restart
is recovered and copied as described under Deadstart, section 5.2.)
If a system overlay dataset was not preallocated or if the validation
checks for it fail, recovery of rolled jobs cannot be performed. In this
case, Startup halts if recovery is specified, or it allocates the area
following permanent dataset recovery, if recovery was disabled.

In attempting to recover rolled out jobs, Restart accesses the Rolled Job
Index dataset and loads it into memory. If the access or the read
receives an error, Restart initializes a new edition and writes it to
disk. If the operator chooses not to recover rolled jobs, Restart clears
and rewrites the index.

The DSPs for the Dataset Catalog are defined during assembly of STP.
Restart scans the DSC to find all entries with the input flag or output
flag set. From these input and output DSC entries on mass storage,
Restart creates SDT entries and DATs in memory. The input and output
queues are threaded by forward and backward link pointers. The first
item in the queue is the one first encountered in the DSC.

SM-0040 5-9 C

RESTART OPTION COS STARTUP

During Dataset Catalog (DSC) recovery, Startup processes the allocation
information for multitype datasets. Startup processes the first DSC
entry for a multitype dataset as a normal entry, allocating the dataset
and initializing it for associated DSC entries. Processing of the
subsequent entries differs from normal recovery for error preprocessing,
OAT body processing, and post-DAT validating. Since all DSC entries for
a dataset are interrelated, any recovery errors are carried through to
all of the entries.

OAT body processing involves a comparison of the DAT body chain from a
previous DSC entry. Any differences cause the dataset to be flagged as
having inconsistent allocation, and all DSC entries are processed
accordingly during a second pass over the DSC.

Post-DAT validation processing essentially involves QDT update and is
performed only when all preceding entries for the dataset pass recovery
validation.

When Restart completes execution, the Startup task creates the JSH task.
A nonempty input queue causes JSH to begin job scheduling. Similarly, a
nonempty output queue activates SCP. The SCP task was created before the
call to the Z routine within Startup.

JSH can also be activated if at least one job was recovered and placed
into the execution queue by subroutine RRJ.

A Restart with recovery of rolled jobs recovers the job class structure
that was in effect before the system interruption from a permanent
dataset, PDN=JOBCLASSROLLED. If a disk error makes recovery impossible,
the structure that was written to the permanent dataset named in the
Restart parameter file goes into effect.

Restart without recovery of rolled jobs places into effect the structure
that was written to the permanent dataset named in the Restart parameter
file.

In either case (Restart with or without recovery), the default structure
goes into effect if no dataset is named or if the named dataset is
inaccessible.

The first pass of a 2-pass Restart is identical to the first pass of a
2-pass Deadstart. (See section 5.2.)

5.3.1 JOB RECOVERY BY RESTART

Following any system failure, whether due to software, hardware, or
environmental problems, the operator at the master operator station can

SM-0040 5-10 C

COS STARTUP RESTART OPrION

attempt to recover any job in the execution queue at the time of the
failure. This section describes job recovery and related operations.

Startup successfully recovers and restarts all jobs that are rolled out
to mass storage at the time of the system failure, or those that rolled
out, rolled back in, and performed no additional activity to cause the
roll image on mass storage to be unusable. A job can be recovered only
if it is certain that the roll image is valid, and that repetition of the
activities of the job following roll in will not cause the results of the
job to change. A job with on-line tapes assigned cannot be recovered.

In some cases, a job that has been rolled out but has subsequently been
rolled in and reconnected to the CPU may have executed some function that
makes the system unable to determine whether the job can be successfully
restarted from the roll dataset image. In this case, the job is declared
irrecoverable and the Startup task leaves the job in the input queue.
Subsequently, COS attempts to rerun the job from the beginning. If a job
is irrecoverable and is ineligible for rerun, Startup returns it to the
input queue, and it terminates with an informative message in both the
user and system logs as soon as the Job Scheduler attempts to reinitiate
the job.

A job that has been initiated but has not been rolled out cannot be
recovered since there is no roll image to recover.

Permanent datasets accessed following roll in might not be available
following a system recovery if one or more mass storage devices become
unavailable. In this event, the recovered job receives an error status
when attempting to reaccess the datasets. Any permanent datasets already
accessed by a job before rollout must be reaccessed successfully during
Startup for a job to be considered successfully recovered.

Recovering a job from its latest roll image is performed in the items
described below. An error in any validation step renders the job
irrecoverable, and an appropriate message is sent to the System Log.

5.3.2 INDEX ENTRY VALIDATION

The first step of validation of job recovery is validation of the
information in the index entry. The job cannot be recovered if the index
states that the job is irrecoverable, or if the roll dataset is either
nonexistent or resides on a nonexistent or unavailable device.

The job is also considered irrecoverable if the date/time stamp in the
index entry does not match the date/time stamp of the system being
restarted, if field JTEPC is nonzero in the job's JTA, and if the
operator or installation specifies not to recover such jobs.

SM-0040 5-11 c

RESTART OPTION COS STARTUP

5.3.3 ROLL DATASET VALIDATION

The partition header information in the index entry is used to read in as
much of the roll dataset as can be located from the one word of
allocation indices contained in the index. Enough of the JTA must be
available for the job to locate the copy of the full roll dataset Dataset
Allocation Table (OAT). This OAT was copied along with the Job Execution
Table (JXT) image to the Job Table Area (JTA) by the Job Scheduler
immediately before rollout. An error on the read renders the job
irrecoverable.

Once the first read completes, the JTA size values taken from the JTA and
from the saved copy of the JXT are compared. An error occurs if the two
do not match. This size is then used to determine if more JTA exists.
If more does exist, the additional information is read in.

Normally, the entire JTA is read in by the first read, but if many large
datasets exist, the JTA can be quite large. RRJ must have the whole JTA
in memory at once. It is an error if the JTA does not fit into available
memory above the message stack, and the job is considered irrecoverable.

The image of the roll OAT is moved from the JTA to the STP OAT area. An
error results if not enough OAT pages can be allocated in STP to hold the
DAT. The roll OAT is then validated. If no errors are found in the OAT,
any remaining portion of the JTA and the last block of the user field are
read in. They must fit, and the reads must have no errors. The last
block of the user field is located using the JXCJS field of the saved JXT
copy. The Job Scheduler stores the current value of the real-time clock
in the first block of the JTA and in the last block of the user field
immediately before rollout. If they do not match, the rollout was only
partially complete at the time the system failure occurred, which is an
error condition.

5.3.4 OAT VALIDATION

Each dataset, including the roll image dataset, must have a Dataset
Allocation Table (DAT) address of zero in the DNT or must point to a
valid OAT. The roll image dataset and the $CS and $IN datasets point to
OATs in the STP tables; all others point to OATs in the Job Table Area
(JTA). To be considered a valid OAT, the following points must be
satisfied:

• A multipage OAT must be entirely within the STP tables or entirely
within the JTAi it cannot be in both places.

SM-0040 5-12 C

COS STARTUP RESTART OPTION

• The DAJORD field for a DAT in STP must be equal to 0; the DAJORD
field for a DA'f in the JTA must be equal to the JXT ordinal.

• Successive pages must be numbered correctly.

• A DAT in the JTA must be pointed to by a negative offset that is
within the range indicated by the JTA size; the same is true for
each successive page.

• For each partition, the named device must exist and must be
available (EQNA must equal 0).

• Each allocation unit index for a partition must be within range
for the device.

• For a multitype DAT (DNQDT is nonzero), each allocation unit index
must have its corresponding DRT bit set; otherwise, an
inconsistent allocation has occurred.

• For a DAT that is not multitype (DNQDT is 0), each allocation unit
index must not have the corresponding DRT set; otherwise, an
allocation conflict has occurred.

• When the end of the last page or last partition is reached, the
remaining AI count and next partition pointers must be O.

• When the end of a partition is reached, the next partition pointer
(DANPA) must point to either the next word in the current page or
the first word following the page header in the next page, or it
must be O.

DAT validation occurs in two passes. The first pass serves as an error
scan and does not set the DRT bits. The second pass actually sets the
DRT bits and decrements the available space counts for the device. In
this way, RRJ can be sure that a dataset is either completely reserved or
completely unreserved, which is necessary for successful deallocation of
resources if a later dataset has an error.

5.3.5 DATASET RESERVATION

Each dataset named in the Dataset Name Table (DNT) chain in the Job Table
Area (JTA) must be processed. Local datasets must have their Dataset
Allocation Tables (DAT) validated and the Device Reservation Table (DRT)
bit maps updated. Permanent datasets must be validated against the
Dataset Catalog. Startup will already have updated the DRT bit maps for
permanent datasets. Permanent Dataset Table (PDS) entries must also be
reconstructed for permanent datasets.

SM-0040 5-13 C

RESTART OPTION COS STAR'roP

The ONT chain is scanned from beginning to end. The memory pool control
word preceding each DNT is checked to be sure that the pool entry is in
use, and the DNT is checked to ensure that there is a name. If there is
no DAT and the dataset device type is not online tape, RRJ goes on to the
next DNT. If the device type is online tape, the job cannot be
recovered. If there is a DAT and it is in STP (DNDAT is greater than 0) ,
the ONT must be for either $CS or $IN. The SDT entries are searched for
an SDT with the correct sequence number, and the DAT address field of the
DNT is corrected. RRJ then goes to the next DNT.

If the OAT is in the JTA (DNDAT is less than 0), the DNT is checked to
see if the dataset is permanent. If it is not, the OAT is validated. If
it is, a pseudo access is performed. If no errors are found, RRJ goes to
the next DNT. When the end of the DNT scan is reached, the job is
considered successfully recovered.

5.3.6 PSEUDO ACCESS OF PERMANENT DATASETS

When a permanent dataset is encountered in the Dataset Name Table (DNT)
scan, RRJ requests the Permanent Dataset Manager to perform a pseudo
access on the dataset. This process causes the Permanent Dataset Manager
to locate the Dataset Catalog (DSC) entry for the dataset from the DADSC
field of the Dataset Allocation Table (OAT) and to compare the OAT in the
Job Table Area (JTA) with the OAT in the OSC.

If the DAT appears valid, POM attempts to construct or update a Permanent
Dataset Table (PDS) entry. The ONT permission flags are used to set the
POS permission flags. If the POS entry already exists, the DNT must
indicate read-only permission.

5.3.7 RESOURCE OEALLOCATION

If an error occurs at any point in the recovery of a job, any system
resources assigned to that job by RRJ must be released. In particular,
any disk space reserved for local datasets before finding an error on a
later dataset, or any POS entries corresponding to datasets that have
already been pseudo accessed must be deallocated. For this purpose, the
Dataset Name Table (DNT) chain is searched until the ONT with the error
is reached again. For releasing local datasets, the Disk Queue Manager
(OQM) deallocate request is used. For releasing Permanent Dataset Table
(POS) entries, the Permanent Dataset Manager (POM) request PMFCRL is
used. The disk space for datasets such as $CS or $IN, which have their
Dataset Allocation Table (OAT) in STP, is not released. The roll image
dataset is released and its STP OAT pages are returned to the system.

SM-0040 5-14 C

I

COS STARTUP RESTART OPTION

5.3.8 JOB RECOVERY COMPLETION

When the end of the Dataset Name Table (DNT) chain is reached without
error, the job is successfully recovered. Assigned resource information
is moved from the Job Execution Table (JXT) to the Generic Resource Table
(GRT). The copy of the JXT from the Job Table Area (JTA) is placed in
the JXT area, and the JXT entries are relinked by priority. The roll
image DNT within the JXT is updated to point correctly to the Dataset
Allocation Table (DAT) , the System Dataset Table (SDT) entry is moved to
the execute queue, and the JXT ordinal is placed in the SDT. All wait
words are cleared. The JXT status bits are set to R, N, and B (rolled
out, not in memory, and suspended by recovery) and all other bits except
0, A and M (operator suspended, abort pending, and waiting for memory)
are zeroed. If there is a dataset in the output queue which was disposed
by this job with the WAIT parameter, the E (waiting for event) bit is set
and an event-wait table entry is constructed. The SDT address in the JTA
is corrected, and the JTA is rewritten to the roll image dataset. If the
operator or installation has decided to recover and lock out certain jobs
(I@LOCK=l), the following conditions cause the JXT and SDT lockout bits
to be set and a message to be issued to the System Log.

• JTEPC is nonzero and the date/time stamps in the index entry and
the current system do not match.

• The current job size or requested job size exceeds the maximum
available.

Under the above conditions with I@LOCK=O, the jobs are recovered as
normal and, with I@LOCK=2, the jobs are rerun if possible.

RRJ then advances to the next index entry.

5.3.9 TERMINATION OF RRJ

When the end of the roll index is reached, all entries corresponding to
jobs that were not recovered have been cleared. The input queue is
scanned, and all jobs that were previously initiated are flagged with a
status in the System Dataset Table (SOT) so that Control Statement
Processor (CSP) will issue log messages when the jobs are reinitiated.
Such jobs may be ineligible for rerun, in which case the status passed to
CSP reflects that condition. CSP then terminates the job immediately
after issuing the logfile messages. The status word RRJSTAT is set to
indicate to the Job Scheduler that the JXT entries are already
initialized and linked. RRJ then returns to Z, the main Startup routine.

SM-0040 5-15 c

2-PASS STARTUP COS STARTUP

5.4 2-PASS STARTUP

A 2-pass startup is detected when Startup encounters the *BOOT and
*SYSTEM directives in the parameter file. These directives tell Startup
that the system currently executing is for locating and transferring
control to another version of the operating system resident on the Cray
mainframe disks.

The procedure followed by pass 1 is identical to that of a I-pass Startup
to the point where the datasets in the Dataset Catalog (DSC) are to be
recovered. At that point, pass 1 makes a task request to the Permanent
Dataset Manager (PDM) to locate the system dataset. Once the system
dataset has been found, Startup validates the DSC entries for the
dataset. Next, the Disk Queue Manager (DQM) reads the dataset into
available memory. The final step Startup performs before requesting EXEC
to move the system is to build the boot exchange package, location 20, of
the new system. This indicates that pass 2 is about to begin.

Pass 2 of a 2-pass startup is exactly the same as a regular startup
except that the *BOOT parameter file directive is ignored (by changing it
to a *NOOP directive before beginning pass 2) •

5.5 STARTUP FLAW PROCESSING

During the initial installation of a disk drive, engineering diagnostics
are executed to analyze the surface of the disk and note any disk
addresses that cannot be reliably written and reread. Such areas are
called flaws. A special table referred to as the Engineering Flaw Table
(EFT) is written to the disk and contains information identifying the
flaws found by the surface analysis. By convention, this table is always
written at a specified address. If this address is flawed, the table may
be offset by as much as 10 tracks (decimal). The address used by the
diagnostic is cylinder 0, head group 0, sector 17 (decimal).

If this sector cannot be written and successfully reread, an attempt is
made to write the table to the next head group address, same cylinder and
sector. This continues to a limit of 10 head groups.

Regardless of which startup option is selected, Startup searches each
device for the EFT during the startup process. If Startup finds an EFT,
it prevents the operating system from overwriting the EFT by setting the
Device Reservation Table (DRT) for the device to indicate that the
allocation unit corresponding to the EFT address is not available.
Startup first examines the predefined disk location for the EFT. If it
does not find an EFT or if an error is received on the read request for

SM-0040 5-16 C

COS STARTUP STARTUP FLAW PROCESSING

the predefined address, Startup advances to the next head group address
and tries again. This process continues until Startup has attempted 10
reads. If no EFT can be found on the device, Startup optionally sends a
warning message to the master operator station, giving the operator the
option of continuing without EFT information. (A *SKIPEFT directive in
the startup parameter file means no warning messages are sent.)

Once the EFT search is complete, Startup searches each device for a
device label. When the device label is located, Startup reserves the
corresponding track in the DRT. The device label can be on the same
track as the EFT. If no device label is found, Startup examines the
Equipment Table (EQT) entry for the device. A fatal Startup error occurs
if no device label is found and if the parameter file does not contain
the WDL parameter on a CONFIG parameter file directive.

If a device label exists, Startup reserves in the DRT any tracks
indicated in the label as flaws. These flaws normally overlap with flaws
indicated by the EFT, but they also normally contain tracks not mentioned
in the EFT. If no device label exists and the UP flag in the EQT is set,
Startup omits this step. Additional flaws may have been specified by
either assembling them into the DRT during system generation (the method
usually used to reserve a specific set of disk addresses for use by
engineering diagnostics) or by *FLAW directives in the Startup parameter
file. If any *FLAW directives were present for the device, Startup
automatically assumes that the specified flaws are new; that is, not
already in the list in the device label. This causes Startup to force a
rewrite of the device label to update the flaw list.

A *DELFLAW directive in the parameter file can cause a flaw previously
noted in the device label to be removed. In this case, Startup forces a
rewrite of the device label to update the flaw list. Depending on how
the flaw being deleted was initially specified, either the flaw is
permanently deleted or each subsequent startup repeats the *DELFLAW
directive. If the flaw was initially entered through a parameter file
*FLAW directive, the deletion is permanent, and the *DELFLAW directive
can be removed. If the flaw is mentioned in the EFT, the *DELFLAW
directive must be retained. If the flaw is assembled into the DRT during
system generation, the *DELFLAW directive must be retained until the
system is reassembled without the flaw.

In either case, if there are differences between the flaws accumulated in
the DRT and the flaw list in the device label, the flaw list in the label
is recreated and the label is rewritten. If the label and the EFT occupy
the same allocation unit, the sector containing the EFT is not
rewritten. Not rewriting prevents problems encountered during the label
rewrite from overwriting the EFT.

SM-0040 5-17 C

INPUT '1'0 STARTUP COS STARTUP

5.6 INPUT TO STARTUP

Input to Startup may consist of a parameter file, the Dataset Catalog
Extension (DXT) Table, and the $SDR and $ROLL datasets. Startup may also
receive configuration and status changes to devices from the system
master operator station.

5.6.1 CONFIGURATION CHANGES

Startup can receive configuration information from any of the following
sources.

• Information assembled into tables at system generation time

• Information entered through parameter file commands

• Information entered interactively during Startup at the
configuration change time

At these times, devices can be added or deleted, or attributes or status
can be changed. These devices include any described in the Equipment
Table (EQT) or Tape Device Table (TDT)/Tape Configuration Table (CNT).
To be able to enter information during the actual Startup processing, the
master operator station must support the station message feature. If
station messages are supported and the operator enters a CONTINUE reply
once all configuration changes are made, Startup scans the Configuration
Table (CNT) in STP memory to ensure that everything is correct. Then,
from the information contained in the EQT, Startup constructs the Device
Channel Table (DCT) and Device Reservation Table (DRT). If any errors
are detected during the configuration processing, the operator is
informed and, if possible, is allowed to correct the error.

5.6.2 PARAMETER FILE

Control of the COS startup procedure is through parameters in the form of
statements on a special file. These statements, which are described in
the COS Operational Procedures Reference Manual, publication SM-0043, are
sent from the operator station. The parameter file can be prepared from
punched cards or from the operator station with the aid of a text
editor. Each parameter must be terminated by an ASCII carriage return
character and cannot be in COS blocked format. Parsing of the command
language is performed in COS, eliminating rewriting of the parsing logic
for each front-end system. The operator station commands copy the
parameter file into Central Memory along with EXEC, STP, and CSP.

SM-0040 5-18 C

COS STARTUP INPUT TO STARTUP

The ZY portion of Startup processes the parameter file and modifies
memory as specified by the directives. This processing takes place
before any of the other tasks are initialized or Startup begins the
processing of any information in the STP tables, thus allowing the
ability to change critical system installation information without
requiring system reassembly. If the operator station handles operator
messages, Startup requests configuration and other necessary information
during its processing.

5.6.3 DATASET CATALOG EXTENSION DATASET (DXT)

The Dataset Catalog extension is further described in section 5.2. This
section describes Startup processing of:

• DXT recovery and validation

• DXT access and control

Recovery and validation

No DXT recovery or validation occurs during an Install or Deadstart when
the DXT is being created. DXT creation is described under Deadstart,
section 5.2. When the DXT is recovered, Startup completes the
intialization of the STP assembled DNT and OAT for the DXT dataset. The
memory-resident DXT Allocation Table (XAT) is also set up at this time.

Presence of the permanent DXT dataset during a Deadstart or Restart is
determined immediately after the DSC recovery. If the DXT is permanent
and the *DXT directive indicates an adjustment to the DXT is required,
the adjustment is made after the DXT recovery is completed if the main
DSC entry for the DXT has no error flags set. For DXT expansion, the
following conditions must also be satisfied:

• Sufficient disk space is available to satisfy the overflow
requirement (the OVF= parameter on the *DXT directive or I@DXTOVF).

• Enough contiguous disk space is available to satisfy the
contiguous allocation requirement (the CAI= parameter on the *DXT
directive or I@DXTCAI).

If any of these conditions is not satisfied, the operator is informed
through the operator interface mechanism.

Any DSC error flag set in the main DSC entry for the DXT dataset causes
one or more informative messages describing the error flags encountered,
followed by a request that a Startup-Install be performed.

SM-0040 5-19 c

INPUT TO STARTUP COS STARTUP

If, during the DSC recovery, it was determined that one or more DSC
entries had associated DXT entries, DXT validation occurs before any DXT
size adjustment. If DXT validation is not required, then any requested
DXT size adjustment is accommodated and followed immediately with the
construction of the upper memory DXT entry allocation bit map (XAT). The
XAT size is directly proportional to the DXT dataset size. The DXT
validation worst case causes the DSC to be scanned twice followed with a
final complete read of the DXT dataset.

Validation begins with the DSC being read sequentially. As each main DSC
entry is encountered, any DXT entries chained to it are reserved in the
DXT allocation bit map (XAT). If a DXT entry is found to be already
reserved in the XAT, the equivalent bit in a pseudo bit map is set rather
than re-setting the real bit and the DSC main entry flagged as having a
DXT chain error. As each DXT entry is read, the In-use flag (DXUSE), the
ordinal sequence (DXORD), and DSC main entry pointer (DXTFPE) are
verified. Any discrepency causes the DXT error flag (DCDXE) to be set in
the main DSC entry. When the end of the DXT chain is reached, the last
DXT entry pointer (DCLDX) in the main DSC entry is verified. Here again,
an error causes DCDXE to be set. The DCDXE flag in the main DSC entry is
similar to other DSC error flags. After the DSC read is completed, a
second DSC read is performed if any bits were set in the pseudo XAT.
During this second DSC read, the pseudo XAT is used to capture all other
crossed allocations. Whenever an error is encountered while validating a
DXT chain, the individual DXT chain validation is halted and continues
onto the next DSC main entry in order to avoid looping. When the second
DSC read completes, any orphaned DXT entries are deactivated. Orphaned
entries result from the Startup DXT validation or from a system
interruption occurring while DXT entries are being deallocated through a
user's delete command. To remove these orphaned entries and to ensure
that the whole DXT dataset can be read from disk without I/O errors,
Startup reads the DXT dataset sequentially. During this read operation
each DXT entry not allocated in the XAT has its In-use flag (DXUSE)
cleared on disk. This procedure ensures that all unreserved DXT entries
are marked. Thus, whenever a new DXT entry is requested by the running
system the DXUSE flag is examined. If the DXUSE flag is already set, the
system is halted. This technique should protect the system against XAT
disagreement with the actual disk allocation.

DXT access and control

During Startup, the Dataset Catalog Extension Table (DXT) dataset is
either created or recovered, and Startup makes an entry indicating the
DXT dataset is held in unique access mode into the Active Permanent
Dataset Table (PDS). In order to facilitate DXT I/O, Startup also
completes the initialization of the STP-resident Dataset Name Table (DNT)
and Dataset Allocation Table (OAT) for the DXT dataset. The Dataset

SM-0040 5-20 C

COS STARTUP INPUT TO STARTUP

Parameter Table (DSP) and associated buffer space for the DXT are created
during the initialization of task PDM.

A job cannot access the DXT dataset because the PDS indicates it already
has been accessed uniquely. However, System Directory (SDR) utilities,
such as PDSDUMP and AUDIT, must be able to access the DXT. This
capability is provided with the PDM function PMFCPX (41 octal). This
function is similar to the PDM function PMFCPG (40 octal) except that
PMFCPX reads DXT pages rather than DSC pages. The same security offered
to the PDM function PMFCPG is also offered to PMFCPX.

5.6.4 SYSTEM DIRECTORY DATASET ($SDR)

A permanent dataset, $SDR, is maintained to contain records specifying
System Directory datasets to be recovered during Restart or Deadstart.
The Dataset Catalog (DSC) contains an entry for $SDR, which is
initialized during Install. Space is allocated based on the number of
SDR entries specified in the system. During Restart or Deadstart, the
dataset is read to rebuild the System Directory. If a failure occurs, a
message is issued to the System Log, and an empty $SDR is created.

The $SDR dataset consists of 512-word blocks. Each block contains eight
logical records, with the first word of each block holding the block
number relative to the beginning of the $SDR file. The first block in
the dataset is a header record containing the maximum number of SDR
entries as specified in the last system that recovered the System
Directory. The value is updated if the number of entries in the system
increases or decreases and recovery is not to be performed. Logical
records in the file are accessed by using the formula: (Relative
resident SDR entry +1)/8. The quotient gives the block number of the
entry within the file, and the remainder gives the logical record number
within the block.

Each $SDR record except the header contains the Permanent Dataset
Definition Table (PDD) of a dataset entered into the System Directory.
When an ACCESS request with the ENTER operand is processed by the
Exchange Processor (EXP), the Dataset Name Table (DNT) of the dataset is
saved in the resident SDR table. The PDD of the dataset is written to
the $SDR dataset. The dataset update is complete before EXP completes
processing the request.

Whenever Restart or Deadstart is performed by the operating system, the
resident System Directory (SDR) is recovered unless the operator
specifies that recovery is not to be performed by means of the *SDR
parameter. When Install is performed, the System Directory is not
recovered, and a user job (JSYSDIR) must be run to create the initial
System Directory entries.

SM-0040 5-21 C

INPUT TO STARTUP cos STARmP

5.6.5 ROLLED JOB INDEX DATASET ($ROLL)

The operating system maintains a special permanent dataset so Startup can
determine which jobs were in execution before a system recovery. This
dataset, referred to as $ROLL, contains information about each job that
has entered execution and has not yet terminated. $ROLL is maintained in
the Dataset Catalog (DSC) with a permanent dataset name of SYSROLLINDEX.
Read, write, and maintenance passwords are defined for it. $ROLL is
initialized and saved during Install.

During either Restart or Deadstart, the recovery of rolled jobs
subroutine, RRJ, attempts to access $ROLL. If the access fails, a new
edition of $ROLL is created, initialized, and saved. If recovery is
requested but $ROLL cannot be accessed, recovery of rolled jobs is
disabled with a message to the System Log. No message appears if $ROLL
cannot be accessed and recovery was not requested.

The information in $ROLL consists of fixed-length entries, one for each
defined Job Execution Table (JXT) entry. The entry corresponding to JXT
ordinal zero is used for validation of the $ROLL dataset and does not
correspond to any job in the system. Information in entry 0 consists of:

• The number of JXT entries defined in the previously deadstarted
system. Recovery is not possible if the previous system defined
more JXT entries than the current system. An error message is
issued in this case.

• The memory size of the previously deadstarted system. This is
informational only.

• The logical name of the device containing $ROLL. This is compared
with the device name from the Dataset Allocation Table (DAT) that
is supplied by the Permanent Dataset Manager when $ROLL is
accessed. A mismatch causes an error message to be issued, and
recovery is disabled.

• The track number allocated to $ROLL. Job Execution Table (JXT)
limitations assume that $ROLL will never exceed one allocation
unit. This number is compared with the Allocation Index (AI) from
the DAT for the accessed $ROLL. A mismatch causes an error
message to be issued, and recovery is disabled.

• The sizes of key tables contained in the Job Table Area (JTA) on
the roll index, in particular, LE@RJ, LE@DNT, and LE@JXT. These
must be the same in the recovered system or RRJ halts. RRJ halts
rather than continuing with recovery disabled so the operator can
Restart with a correct system file without having the roll index
overwritten.

SM-0040 5-22 c

cos STARTUP INPUT TO STARTUP

All other entries in $ROLL correspond to one specific JXT entry. These
entries contain enough information to identify the job assigned to the
JXT entry and to locate the roll image if the job is rolled out. The
index entry also contains a flag indicating whether a job has performed
some function that invalidates the roll image. (See the description of
the RJ table in the COS Table Descriptions Internal Reference Manual,
publication SM-0045, for detailed descriptions of the formats of these
entries.)

Information contained in these entries includes:

• The first three words of the first partition from the OAT for the
roll image dataset. This includes the 2-word partition header and
one word containing up to four allocation unit indices. If the
job has never been rolled out, these words are zeros.

• The job name, job sequence number, station, and terminal ID of job
origin. These determine which SDT entry in the input queue
corresponds to this job.

• An Irrecoverable flag. This indicates that the job cannot be
recovered from the roll image. This flag is set whenever the job
performs one of the following functions:

1. Deletes, adjusts, or modifies a permanent dataset. Since
these functions change the DSC in a manner that could cause
the job to fail if repeated, the roll image is unreliable.

SM-0040

2. Randomly writes to any dataset. The system circular I/O (CIO)
routines recognize a random write to a dataset and declare the
job irrecoverable, since the difference in data may change job
results if the job is restarted at an earlier point.

3. writes following a read, rewind, or skip forward on any
dataset. Since a program that reads or skips to end of data
or end of file may have different results if the terminator is
moved or removed completely by overwriting, the job is
considered irrecoverable.

4. Releases a local dataset. Since disk space returned to the
system is available for use by other jobs, release of a local
dataset causes the job to be irrecoverable. Release of a
permanent dataset does not affect disk allocation and
therefore does not affect recoverability.

Every job rendered irrecoverable by any of the above becomes
recoverable again as soon as it is successfully rolled out.

5-23 C

I

005 ST~P

• Date/time stamp of system that was running when job was rolled
out. This is generated from the STP assembly date and time; it
detects jobs being recovered on a different system.

$ROLL is maintained jointly by the User Exchange Processor (EXP) and the
Job Scheduler (JSH) during system operation. At job initiation, JSH sets
up a corresponding index entry reflecting that the job was never rolled
out and is, therefore, irrecoverable. Subsequently, each time JSH rolls
the job, it sets up the index to point to the roll dataset and designates
the job to be recoverable. The index is written to disk when the Disk
Queue Manager (DQM) informs JSH that the rollout has completed
successfully. EXP recognizes the fact that a job is performing one of
the functions that causes the job to become irrecoverable and signals the
Job Scheduler to set the index entry accordingly and to rewrite the
index. Rewriting of the index always occurs before EXP completes
processing the function.

5.7 TABLES USED BY STARTUP

The Startup task uses the following tables to initialize the system for
Install, Deadstart, or Restart.

AUT Active User Table
CNT Configuration Table
DAT Device Allocation Table
DNT Dataset Name Table
DRT Device Reservation Table
DSC Dataset Catalog
DSP Dataset Parameter Area
DVL Device Label
DXT Dataset Catalog Extension
EFT Engineering Flaw Table
EQT Equipment Table
GRT Generic Resource Table
JTA Job Table Area
JXT Job Execution Table
ODT Overlay Directory Table
PDI Permanent Dataset Information Table
QDT Queued Dataset Table
~I Rolled Job Index Table
SDT System Dataset Table
TDT Tape Descriptor Table

Detailed information about these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

SM-0040 5-24 C

COS STARTUP TABLES USED BY STARTUP

5.7.1 ACTIVE USER TABLE (AUT)

Startup creates and initializes an Active User Table entry for any
interactive job it recovers.

5.7.2 CONFIGURATION TABLE (CNT)

The CNT informs the operating system of the status of online tape
devices. The table can be changed during startup by the parameter file
or by operator commands.

5.7.3 DATASET ALLOCATION TABLE (DAT)

The Startup task creates a DAT for the Dataset Catalog (DSC) dataset.

5.7.4 DATASET NAME TABLE (DNT)

The Startup task initializes the DNT for the Dataset Catalog (DSC). DNTs
are also used for I/O on datasets such as $ROLL.

5.7.5 DEVICE RESERVATION TABLE (DRT)

The DRT, as initially assembled and updated through parameter file
options, lists disk flaws that Startup uses during an install to locate
the first good track. Install updates the DRT upon detecting additional
flaws. Deadstart and Restart reconstruct the DRT based on flaw table
information and DATs for permanent datasets, and set up the area reserved
for system dumps.

5.7.6 DATASET CATALOG TABLE (DSC)

Install creates the DSC dataset on the master device. Deadstart and
Restart use the DSC for bringing up the system following an idle down or
system interruption.

Startup sets the DRT bits for the Dataset Catalog (DSC), the system dump
area, the system overlay dataset, or datasets encountered in the DSC, and
checks the DRT to see if the bit is already set. If a conflict is found,

SM-0040 5-25 C

TABLES USED BY SIJ.'AR'!'UP COS SIJ.'ARIJ.'UP

a special flag is set and a note is made of each such device and track
number. Following completion of the normal I-pass dataset recovery pass,
a second pass is made through the DSC to identify datasets with
conflicts, with System Log messages.

5.7.7 DATASET PARAMETER AREA (DSP)

Startup and Permanent Dataset Manager (PDM) use their own internal
separate DSPs for manipulating the Dataset Catalog (DSC). There is no
central DSP in this regard.

5.7.8 DEVICE LABEL (DVL)

Install writes a device label on the first usable track of each mass
storage or SSD device. The label contains the device name and flaw
information for each device. The master device label also contains the
Dataset Allocation Table (OAT) for the Dataset Catalog (DSC), a pointer
to the first track of the reserved system dump area, and a pointer to the
system overlay dataset. A special flag in the label identifies the
master device.

The Device Label (DVL) usually resides on the first track of its disk
storage unit (DSU) because I@DVLRES, an installation parameter, reserves
tracks at the front of a DSU for attempts to write the DVL. Usually, the
first attempt is successful and the rest of the I@DVLRES tracks are
available for user datasets. However, if enough bad tracks are
discovered when trying to write a DVL, the DVL can inhabit any track.

Because the DVL track location cannot be known beforehand, Deadstart and
Restart search for each DVL. To prevent false DVL finds, each DVL
contains the ASCII characters DLB, the logical device name, and a
checksum.

When a DVL is located, its track is reserved in the Device Reservation
Table (DRT). Also, each flaw mentioned in the DVL is reserved in the
DRT. For the master device, the DSC tracks mentioned by the DVL are also
reserved in the DRT and the DSC DAT is rebuilt in memory. The master
device label also contains the track number of the first track
preallocated for system dumps and the system overlay dataset. These
areas are also reserved in the DRT.

SM-0040 5-26 C

cos STAR'l'OP TABLES USED BY STARTUP

5.7.9 DATASET CATALOG EXTENSION (DXT)

The *DXT directive in the Startup Parameter File controls DXT creation at
Install and Deadstart. The size may be changed through the *DXT
directive during any startup. DXT recovery and validation is described
in section 5.6, Input to Startup. DXT creation is described in section
5.2, Deadstart. Use of the *DXT directive is described in the COS
Operational Procedures Reference Manual, publication SM-0043.

5.7.10 ENGINEERING FLAW TABLE (EFT)

Startup uses the Engineering Flaw Table (EFT) as a source of flaws to be
entered into the DRT. The EFT exists in sector 17 (decimal) of one of
the first 10 tracks on the device.

5.7.11 EQUIPMENT TABLE (EQT)

The EQT is used by Startup as a source of information to describe devices
and the hardware configuration. The EQT can be modified by the parameter
file.

5.7.12 GENERIC RESOURCE TABLE (GRT)

Startup uses the GRT to preset the JOB Statement Parameter Table, and
initialize available resource counts in the GRT from information in the
EQT and TOT. Allocated resource counts for rolled jobs are moved from
the JTA to the GRT during rolled job recovery.

5.7.13 JOB TABLE AREA (JTA)

When recovering rolled jobs, Startup searches the JTA for local
datasets. Startup verifies and allocates the Allocation Indexes (Als)
associated with these local datasets.

5.7.14 JOB EXECUTION TABLE (JXT)

Startup gets the Job Execution Table image for a job from the roll file
and rebuilds the entry in the JXT.

SM-0040 5-27 c

TABLES USED BY STARTUP COS STARTUP

5.7.15 OVERLAY DIRECTORY TABLE (ODT)

The ODT defines what overlays exist in the system and is used by Startup
when it is searching for overlays and moving them to their resident
locations. Errors occur if overlays are found which are not in the ODT
Or the ODT contains overlays which are not located by Startup.

5.7.16 PERMANENT DATASET INFORMATION TABLE (PDI)

Install computes the number of hash pages and the number of overflow
pages in the Dataset Catalog and stores them in the PDI and in the device
label. Deadstart and Restart retrieve these values from the device label.

5.7.17 QUEUED DATASET TABLE (QDT)

Install and Deadstart initialize the QDT with no entries in use. Restart
uses the Dataset Catalog (DSC), as well as the information in the roll
files, to recover the QDT. During a Deadstart, those user-permanent DSC
entries with a nonzero QDT index are rewritten with the QDT field cleared.

5.7.18 ROLLED JOB INDEX TABLE (RJI)

The Rolled Job Index (RJI) is either initialized or read into memory,
depending on the type of startup and operator options in the Startup
parameter file. This index controls the recovery of rolled out jobs.

5.7.19 SYSTEM DATASET TABLE (SDT)

Install and Deadstart initialize the SOT as having all entries in the
available queue. Restart uses the Dataset Catalog (DSC) to recover the
queues for system input and output datasets and makes entries in the SDT
accordingly. SOT entries are threaded into the input and output queues.

5.7.20 TAPE DEVICE TABLE (TDT)

The Tape Queue Manager (TQM) uses the Tape Device Table (TDT) to control
online tape devices. The TDT can be changed by Startup as the result of
changes made in the Tape Configuration Table (CNT).

SM-0040 5-28 C

COS STAR'l'UP STARTUP SUBROU'l'INES

5.8 STARTUP SUBROUTINES

The COS initialization task (Startup) is created by EXEC. Startup
executes only once -- when the operating system is loaded and started
up. Although communication areas exist for Startup, no tasks can ever
place requests in the registers or request that this task be readied.
(In this section, readying the task means clearing its suspended bit.)

Startup leaves messages in memory to notify the operator of failures
during the COS Startup procedure.

Three main subroutines along with many helper subroutines comprise the
Startup Task. The main routines are: Z, RRJ, and SDRREC.

5.8.1 Z SUBROUTINE

The three Startup options (Install, Deadstart, and Restart) run as the
first portion of Startup in STP in the form of a closed subroutine called
by Startup through a return jump to entry point z. z resides at the
upper end of STP. Z is executed just after Startup has created all STP
tasks with the exception of the Job Scheduler (JSH), Log Manager, Job
Class Manager, and Message Processor tasks. When Z completes execution,
Startup creates the remaining tasks in STP. Z executes a return jump to
subroutine RRJ (Recovery of Rolled Jobs) just before exiting. RRJ in
turn carries out any manipulation of the Rolled Job Index dataset that
may be required due to operator specification or installation-selected
defaults.

Since the code of Z is not needed again, as one of its final functions,
Startup moves the image of CSP to overwrite Z and adjusts pointers
accordingly so that the unused memory is made available for user jobs;
Startup can also place one or more copies of the image of CSP on mass
storage (installation defined). In the latter case, pointers are
adjusted to allow the space otherwise occupied by CSP to be used for user
jobs.

JSH and the Station Call Processor (SCP) are two of the tasks created by
Startup. JSH activity is stimulated by the System Dataset Table (SDT)
entries comprising the input queue. JSH is not readied if the input
queue is empty. Similarly, SCP activity is stimulated by entries in the
output queue. The queues are assembled as being empty and are left empty
by the Install and Deadstart options; therefore, JSH and SCP remain idle
when either of these options is selected during Startup. Similarly, the
queue of available SDT entries is assembled as containing all of the SDT
entries.

SM-0040 5-29 C

STAR'l'OP SUBROUTINES COS STARTUP

When the Restart option is selected, however, it sets up SDT entries from
the Dataset Catalog (DSC) and, therefore, alters the input, output, and
available queues. In this way, Restart notifies JSH and SCP that queues
exist for them to process.

If recovery of rolled jobs is selected, Job Execution Table (JXT) entries
can also be constructed to reflect jobs that can be successfully
recovered. In this case, certain JSH flags are set up so that the Job
Scheduler will be aware that jobs are already in the execution queue.

The COS startup procedure requires the time and date for handling the DSC
entries. It obtains the current time and date from the operator station
which is passed to EXEC. EXEC converts the date and time to machine
clock periods and sets the real-time clock to this value.

The SCP task can be active during execution of Z, responding to station
messages. However, a flag in STP controls which messages STP processes
immediately and which are postponed until Z completes.

Also required is the memory size of the Cray computer on which COS is
executing. The actual memory size is defined by an installation
parameter (I@MEM) or through a Startup parameter file statement (*MEMSIZ).

5.8.2 RRJ SUBROUTINE

All three Startup routines call subroutine RRJ before calling System
Directory Recovery (SDRREC) and before processing system dumps. RRJ
executes as a closed subroutine called by Z and performs any processing
of rolled out jobs or the index dataset required. RRJ is called before Z
executes SDR recovery or copies any existing system dump, since disk
space needed to restart a rolled job must be recovered and allocated in
the Disk Reservation Table (DRT) before any new space can be used. RRJ
does not return any status used by Z; it does set a status word
indicating the type of recovery performed, which is used by Job Scheduler
(JSH) to determine how much JXT initialization JSH must perform.

RRJ performs one of several activities depending on the type of startup
being performed.

RRJ execution during Install

Recovery of rolled jobs cannot be performed during an Install, since
permanent datasets and input/output queues are not recovered. Therefore,
RRJ merely initializes $ROLL and issues a SAVE request to the Permanent
Dataset Manager (PDM). The initialization of $ROLL consists of setting

SM-0040 5-30 C

COS STARTUP STAR'rOP SUBROUTINES

up entry 0 (see RJ table description in the COS Table Descriptions
Internal Reference Manual, publication SM-0045) and zeroing all other
entries. The buffer used to write $ROLL remains intact in memory
throughout normal operation of the system, and $ROLL is never read during
normal operation.

RRJ execution during Deadstart

Since input/output queues are not recovered during Deadstart, rolled jobs
cannot be recovered. RRJ attempts to access $ROLL and read it into
memory. The buffer remains intact throughout normal operation, and $ROLL
is never read again during normal operation. If RRJ is enabled by
operator specification, RRJ detects that it is a Deadstart, issues an
error message, and disables recovery.

Once $ROLL has been successfully accessed and read in, the contents of
entry 0 are checked. If errors occur on the access or read, or if entry
o does not validate correctly, RRJ issues error messages and
reinitializes $ROLL. A new edition of $ROLL is created if the access was
unsuccessful or if the existing edition received an error while being
read. Otherwise, the new $ROLL is written over the existing one. If no
errors are received, the $ROLL buffer is cleared to indicate no executing
jobs and the dataset is rewritten.

RRJ execution during Restart

If Restart is selected and if RRJ is able to successfully access and read
$ROLL, RRJ attempts to recover jobs. Error conditions here are handled
as for Deadstart. If the access and read are successful but RRJ was not
enabled by the operator, then RRJ clears $ROLL as for Deadstart. If RRJ
is enabled, RRJ begins scanning the index entries following verification
of entry O. If an error occurs during entry 0 validation, RRJ disables
recovery with a message to the System Log and continues as for Deadstart.

If certain key tables (for example, DNT or POD) change in size, RRJ
detects the change during validation of entry O. This causes a fatal
Startup error.

If no errors occur during $ROLL validation, RRJ attempts to recover
jobs. Messages are issued to the System Log when a job is not recovered
and when recovery has been successful. A successful recovery means that
the job has been entered into the JXT chain at the appropriate spot and
the input System Dataset Table (SOT) entry has been moved from the input
queue to the execute queue. The job status in the JXT becomes rolled out
and suspended by recovery. The waiting for memory, pending abort, and
operator suspended bits are maintained. All other status bits are set to

SM-0040 5-31 C

STARTUP SUBROUTINES COS STARTUP

0, as are any event wait words. Any caller who requested recall based on
an event is responsible for determining if the event is satisfied or if
the recall should be reissued. For example, any outstanding ACQUIRE
requests may have to be reissued. Event wait can be reset if the job has
an outstanding DISPOSE,WAIT request.

5.8.3 SDRREC SUBROUTINE

System Directory (SDR) Recovery (SDRREC) is executed as a closed
subroutine that is called by Startup after Recovery of Rolled Jobs (RRJ)
is complete but before the system dump is copied. RRJ must be executed
first to ensure the integrity of datasets belonging to any jobs being
recovered. Any failures during SDR recovery cause the operating system
to terminate abnormally.

File allocation

SDR recovery begins with a request to access the $SDR dataset. If no
dataset exists, the number of blocks (segments) required to contain the
current number of generated resident SDR entries is computed. A request
is issued to the Disk Queue Manager (DQM) to allocate disk space for the
dataset. Then a request is made to the Permanent Dataset Manager (PDM)
to SAVE the dataset. Once the operating system initialization is
complete, entries can be added to the SDR by ACCESS requests specifying
the ENTER parameter.

SDR recovery

If the $SDR dataset exists, each block of the dataset is read and
processed until a logical record with a binary zero dataset name is found
or until the system-specified number of SDR entries is processed. A
Dataset Name Table (DNT) is built for each dataset. The Permanent
Dataset Definition Table (PDD), in the logical record, and the Dataset
Name Table (DNT) are used to access the dataset. Then the dataset is
entered into the Permanent Dataset Table (PDS). If the dataset access
fails, a message is issued to the System Log, and the entry is ignored.

No recovery specified

If the operator specifies *SDR in the parameter file, indicating the
System Directory is not to be recovered, a new edition of $SDR is
allocated. Once the operating system initialization is complete, entries
can be added to the SDR by ACCESS requests specifying the ENTER operand.

SM-0040 5-32 C

COS STARTUP STARTUP SUBROUTINES

Changes in the number of SDR entries

If System Directory Recovery detects that the system-generated number of
SDR entries is greater than the value saved in the $SDR header record,
the number of blocks required by the system is calculated. If additional
blocks are required, write requests are issued until all blocks are
allocated. An ADJUST request is issued to the Permanent Dataset Manager
to update the DSC for $SDR, and processing continues for SDR recovery.

If System Directory recovery detects that the number of SDR entries
specified by the system has decreased, and if no recovery is specified,
then the dataset is cleared, and the altered number of SDR entries is
recorded in the header record. Once the operating system initialization
is complete, entries can be added to the SD~ by ACCESS requests
specifying the ENTER parameter.

If the number of SDR entries specified by the system has decreased and
recovery is to be performed, a message is issued to the System Log, and
initialization is abnormally terminated.

SM-0040 5-33 C

DISK QUEUE MANAGER (DQM)

The Disk Queue Manager task (DQM) controls the simultaneous operation of
disk storage units on CPU I/O channels or the I/O Subsystem. DQM
provides:

• Allocation/deallocation of mass storage

• Management of mass storage resources (channels, controllers, and
disk storage units)

• Management of disk storage unit request queues

Another task readies DQM whenever it needs allocation, deallocation, or
access of mass storage. After satisfying the request, DQM readies the
calling task and suspends itself. In a Cray Computer System without an
I/O Subsystem, EXEC readies DQM when an I/O request finishes or when a
sector transfer completes for a dataset in recall. In an I/O Subsystem,
EXEC readies DQM when an I/O request finishes.

6.1 DQM INTERFACE WITH OTHER TASKS

6

A task calls DQM through the PUTREQ routine which places the requested
function in INPUT+l and the dataset's Dataset Name Table (DNT) address in
its INPUT+O register and exits with an EXEC request to ready DQM.

In the following, JXO is the Job Execution Table (JXT) offset, calculated
by subtracting B@JXT, the base address of the JXT, from the individual
JXT entry address. JXO is 0 if the call is not job related. DNT is the
DNT address; this address is relative to the JTA if the call is job
related. RCL is a flag that is set if DQM sends an intermediate reply to
recall a task or job when DNRCL=l and some I/O has been completed.

6.1.1 ALLOCATION

Figure 6-1 illustrates the input and output values used by allocation.

The allocator references the following DNT fields: DNLDV, DNAS, DNSE.

SM-0040 6-1 C

IXJl INTERPACE WITH OTHER TASKS DISK QUEUE MANAGER

INPUT+O

I NPUT+l

OUTPUT+O

OUTPUT+l

Field

JXO

DNT

FC

Status

DNT

o 8 16 24 32 40 48 56

V//////////////////////I JXO I DNT

V//1 FC

Status

///////////////////////////////////////1 DNT

Figure 6-1. DQM allocation interface

Word Bits Description

INPUT+O 24-39 JXT offset

INPUT+O 40-63 DNT address

INPUT+l 56-63 Function code (18)

OUTPUT+O 0-63 Return status (see section 6.1.4)

OUTPUT+l 40-63 DNT address

6.1.2 DEALLOCATION

63

Figure 6-2 illustrates the input and output values used by deallocation.

The deallocator references the following DNT fields: DNDAT and DNDCZ
(and DNPDS, for permanent datasets only). Partial deallocation is
detected by comparing DNDCZ and DADSE.

INPUT+O

INPUT+l

OUTPUT+O

OUTPUT+l

SM-0040

o 8 16 24 32 40 48

///////////////////////1 JXO I DNT

///1

Status

///////////////////////1 JXO I DNT

Figure 6-2. DQM deallocation interface

6-2

56

FC

63

C

DISK QUEOE MANAGER DQM INTERFACE WITH OTHER TASKS

Field Word Bits Description

JXO I NPUT+ 0 24-39 JXT offset

DNT INPUT+O 40-63 DNT address

FC INPUT+l 56-63 Function code (28)

Status OUTPUT+O 0-63 Return status (see section 6.1.4)

JXO OUTPUT+l 24-39 JXT offset

DNT OUTPUT+l 40-63 DNT address

6.1.3 QUEUE I/O

Figure 6-3 illustrates the input and output values used by Queue I/O.

The transfer request processor references the following DNT fields:
DNDAT, DNLDV, DNAS, DNSZ, DNNBK, DNSBK, DNDSP, DNP, DNPBS, DNIOB, DNLM,
DNBUF, DNJTF, and DNEND.

I NPUT+O

INPUT+l

OUTPUT+O

OUTPUT+l

Field

Return

JXO

SM-0040

o 8 16 24 32 40 48 56 63

Return I JXO I DNT

1//1 FC

RCL, Status

Return I~I JXO I DNT

Figure 6-3. DQM Queue I/O interface

Word Bits Description

INPUT+O 0-23 The return field is normally used to
save a return address for CIO. If the
queue I/O interface is used directly
without going through CIO, the return
field can contain any information that
needs to be preserved.

INPUT+O 24-39 JXT offset

6-3 C

SYSTEM TABLES USED BY DQM DISK QUEUE MANAGER

Field Word Bits Description

DNT INPUT+O 40-63 DNT address

FC INPUT+l 56-63 Function code (08)

status OUTPUT+O 0-63 Return status (see section 6.1.4)

Return OUTPUT+l 0-23 Same as INPUT+O field

RCL OUTPUT+l 24 Recall flag; see introduction to this
subsection.

JXO OUTPUT+l 25-39 Same as INPUT+O field

DNT OUTPUT+l 40-63 Same as INPUT+O field

6.1.4 RETURN STATUS

The status words contain one of the following values:

Mnemonic Octal
Code Value Meaning

ERUNK 1 Unknown request
ERNMT 2 OAT space exhausted
ERNMS 3 Disk space exhausted
ERNLD 4 Logical device not in system
EREOI 6 Attempt to read beyond end of data
ERUHE 7 Unrecovered hardware error
ERUDE 10 Uncorrected data error
ERIDP 11 Invalid DSP
ERXLM 56 Dataset size limit exceeded

6.2 SYSTEM TABLES USED BY DQM

DQM uses the following system tables. Detailed information on these
tables is available in the COS Table Descriptions Internal Reference
Manual, publication SM-0045.

SM-0040 6-4 c

I

DISK QUEUE MANAGER. SYSTEM TABLES USBD BY D(JI

OAT Dataset Allocation Table
OCT Device Channel Table
DNT Dataset Name Table
DRT Device Reservation Table
DSP Dataset Parameter Table
EQT Equipment Table
GRT Generic Resource Table
JTA Job Table Area
JXT Job Execution Table
RQT Request Table
SCT Subsystem Control Table

Figure 6-4 illustrates the linkages of tables used by DQM.

GRT DCT EQT

DAT DRT

DNT

RQT

DSP

JTA

Figure 6-4. DQM table linkages

6.2.1 DATASET ALLOCATION TABLE (OAT)

The DAT resides in the STP common table area (for system datasets) or the
Job Table Area (JTA) (for user datasets) and associates datasets with
physical space on one or more devices. The OAT consists of a header and
a body. The header is used primarily for managing the main body of the
table which is composed of a pool of 16-word pages. Pages are assigned
to OAT entries as needed.

SM-0040 6-5 c

SYSTEM TABLES USED BY DQM DI~K QUEUE MANAGER

The DAT contains an entry for each active dataset. DQM creates a DAT
entry for a dataset when the dataset is opened or when the user makes the
first write request on the dataset. For a permanent dataset, a new DAT
entry is not created but rather the DAT for the dataset maintained in the
DSC is copied into as many DAT pages as are required.

Figure 6-5 illustrates the structure of the DAT.

A dataset's DAT entry contains a header and one or more partitions. Each
partition represents a separate device on which space is allocated for
the dataset. A partition header contains a pointer to the next partition
for the dataset. The size of a partition depends on the number of
allocation units assigned to the dataset on the device. A partition has
four l6-bit allocation indices per word in the partition.

When a partition overflows the current page, DQM adds a page to the
dataset's DAT entry. Page headers logically link pages comprising the
entry.

6.2.2 DEVICE CHANNEL TABLE (OCT)

The DCT contains information for channel control among each channel's
attached devices. Only one device can be active on a channel at a time.

6.2.3 DATASET NAME TABLE (DNT)

DQM uses the DNT to process a disk request. DQM does the following:

• Gets the DSP address to determine the logical request (if provided)

• Gets the DAT address to determine the physical address

• Stores the logical request in the DNT

• Stores the processing direction in the DNT

6.2.4 DEVICE RESERVATION TABLE (DRT)

The DRT for a device contains a bit map showing reserved allocation units
for the device. DQM manages this table when it allocates or deallocates
space on the device.

SM-0040 6-6 C

DISK QUEUE MANAGER SYSTEM TABLES USED BY DQM

OAT Head

Page Map

b
\ ,

OAT \
Body \

OAT

SM-0040

\

\
\

\

ONT

I
I

~r--'----, /
I

I----_+_~

I
I

I , ,

I ,
I
/

J
I

" OAT Entry
I

" Header

I

~------------~'

Partitionb

I
I

I
I

I
I

I ,

I ,
I

I
I ,

I
I

I
I

I
I

I
I

~~------------~--- ------

\ .. \ :
\\O~

\..... Pagen

15 '. \ , ,
" \

\
\

\
\ ,
" '. Part i t ion

\ x
\

\

OAT Entry

Figure 6-5. DAT structure

6-7

Partition
- - Header -

Als

Device
Partition

c

I

SYSTEM TABLES USED BY D(JI DISK QUEUE MANAGER

6.2.5 DATASET PARAMETER TABLE (DSP)

The DSP contains information for logical I/O requests. If the Dataset
Name Table (DNT) has a DSP associated with it, DQM uses this table to
build the DNT request word.

6.2.6 EQUIPMENT TABLE (EQT)

The EQT contains information for device allocation, physical operation
control, device request queue management, channel configuration,
performance monitoring, and error counting.

6.2.7 GENERIC RESOURCE TABLE (GRT)

The GRT contains information about all defined generic resources. If a
mass storage device is declared as controlled, and made a member of a
generic resource, DQM ensures that job limit declarations are enforced.

6.2.8 JOB TABLE AREA (JTA)

The JTA contains information about a specific job. DQM uses this table
for I/O accounting.

6.2.9 JOB EXECUTION TABLE (JXT)

The JXT contains information about all active jobs. DQM uses this table
to determine the Job Table Area (JTA) location.

6. 2.10 REQUEST TABLE (RQT)

The RQT contains information to be communicated between the I/O requester
and the Disk Queue Manager.

6.2.11 SUBSYSTEM CONTROL TABLE (SCT)

The SCT serves as an interface between DQM and the I/O Subsystem driver
in EXEC. This table holds status information and request parameters.

SM-0040 6-8 C

I

I

DISK QUEUE MANAGER DATASET ALLOCATION

6.3 DATASET ALLOcATION

The Disk Queue Manager supports two allocation modes: preallocation and
dynamic allocation. Preallocation is supported both explicitly and
implicitly. That is, other parts of the system may separately request
preallocation before writing a dataset or can simply write to the
dataset, in which case, preallocation is performed as the first step in
the write process. Dynamic allocation is performed on datasets that are
not preallocated or that overflow their preallocated sizes.

A dataset explicitly assigned a logical device starts on that device if
space is available but can overflow to other devices. Devices can be
designated as private, which means that their space is allocated only by
explicit assignment.

A device can also be declared as controlled, meaning user jobs must
declare a limit on the amount of space used by the job on the device.
DQM enforces the declared limit and allows device overflow at the
declared limit (if the user job indicates that overflow is allowed) •

To dynamically allocate a dataset, the Dataset Name Table (DNT) need only
contain a logical write request specifying the starting sector number and
the number of sectors or a Dataset Parameter Table (DSP) address. If the
currently assigned device becomes full, another device is selected by the
device allocation scheme.

For those allocation requests not specifying a logical device name, the
available disks are assigned to new dataset requests in a round-robin
fashion.

The order of allocation is the order of entries in the Equipment Table.
The Equipment Table should be constructed so rotation occurs among
channels first and then among units. In other words, the first entries
should be unit 0 entries arranged in order of ascending channel number.
Varying the order of entries in the EQT generates a system that allocates
units in a different order.

cos supports one allocation style, one track per allocation index.

Each time DQM assigns an allocation unit to a dataset, it places the
allocation index (AI) for the device in the dataset's Dataset Allocation
Table (DAT) entry and sets the corresponding bit in the Device
Reservation Table (DRT). Deallocation causes the DAT and the DRT to be
cleared and the DAT to be released. Additionally, when the device is a
member of a generic resource, DQM maintains global allocation counts in
the GRT during allocation and deallocation.

The size of an allocation unit is currently defined as one track
(eighteen 5l2-word sectors).

SM-0040 6-9 c

I

RESOURCE MANAGEMENT DISK QUEUE MANAGER

Allocation is always to the device most recently assigned to the dataset
if space is available, that is, to the most recent device partition in
the DAT entry.

6.4 RESOURCE MANAGEMENT

DQM manages the channels, controllers, and storage units assigned to it
to provide:

• Maximum responsiveness to I/O requests

• Maximum throughput of I/O requests

• Streaming of data where possible

DQM manages three types of hardware controllers: DCU-2, DCU-3, and
DCU-4. The DCU-2 and DCU-3 controllers are directly connected to the
Cray mainframe I/O channels and control either DD-19 or DD-29 Disk
Storage Units (DSUs). The DCU-4 controllers are integral to the Buffer
I/O Processor and Disk I/O Processors in the I/O Subsystem and control
DD-29 Disk Storage Units. The DCU-2 and DCU-3 controllers are described
in the Mass Storage Subsystem Hardware Reference Manual, CRI publication
HR-0630. The DCU-4 controller is described in the I/O Subsystem
Reference Manual, CRI publication HR-0030.

SM-0040

DCU-2,3
Controller

I/O Channel CRAY-l CPU

Figure 6-6. DCU-2, DCU-3 controller configuration

6-10 C

DISK QUEUE MANAGER QUEUE MANAGEMENT

6.4.1 DCU-2 AND DCU-3 CONTROLLER MANAGEMENT

For the DCU-2 and DCU-3 controllers, DQM maximizes channel availability
by releasing channels while positioning occurs on units. This allows
several units to be positioned simultaneously or several units to be
positioned simultaneously with transfer from a single unit. The channel
and controller configuration is illustrated in figure 6-6.

6.4.2 DCU-4 CONTROLLER MANAGEMENT

The DCU-4 controllers reside in the Buffer I/O Processor (BIOP) and Disk
I/O Processor (DIOP) in the I/O Subsystem.

Each DCU-4 controller supports four simultaneous data paths. To DQM,
these appear as if there were a one-to-one relationship between
controllers and disk storage units. (See figure 6-7.)

6.4.3 STORAGE UNIT MANAGEMENT

DQM is responsible for maintaining the logical status of each unit,
advancing each unit to the next state, and initiating and controlling
error recovery. The possible logical states for the storage units are:

• Idle

• Waiting seek issue

• Seek issued

• Waiting transfer issue

• Transfer issued

DQM logs disk error conditions and calls the Disk Error Correction (DEC)
task whenever a potentially correctable error occurs.

6.5 QUEUE MANAGEMENT

Each device has a separate queue. The Disk Queue Manager enters requests
in the queue and services them in the order they are received. To
provide streaming, a request is not considered complete until a Dataset

SM-0040 6-11 C

I/O REQUEST FLOW IN DQM DISK QUEUE MANAGER

Parameter Table (DSP) indicates that no more I/O can be performed for
this request.

When a request overflows a device, the DQM places it at the bottom of the
queue for the next device.

6.6 I/O REQUEST FLOW IN DQM

The processing flow is as follows:

MIOP

Dcu-4

Dcu-4

Dcu-4
BIOP

Dcu-4

DCU-4

Dcu-4 OPTIONAL

Dcu-4 OIOP

DCU-4

DCU-4

DCu-4 OPTIONAL

DCU-4 DIOP

DCU-4

I/O SUBSYSTEM

Figure 6-7. DCU-4 controller configuration

SM-0040 6-12

CRAY-l or CRAY X-MP
CPU

C

DISK QUEUE MANAGER DISK HARDWARE ERROR LOGGING

1. DQM receives I/O request from another task.

2. The requesting task is determined and request entry space is
reserved.

3. The Dataset Parameter Table (DSP) request is mapped into a
logical request in the Dataset Name Table (DNT). (If no DSP
exists, the caller must have already set the logical request up.)

4. The DQM enqueue subroutine transforms the logical request into a
physical request and enqueues it.

5. If no requests are outstanding on the requested channel, a
zero-length transfer seek is issued and the task is suspended.

6. DQM is restarted after the hardware accepts the seek function and
checks for any other seeks. If none, it issues the transfer
request and suspends.

7. DQM is restarted. If the dataset is in recall and a half buffer
has been transferred, then the requesting task is restarted. If
it is the last sector of the request, the DSP is examined for
more I/O. If there is more I/O, go to step I and repeat the
sequence. If there is no more I/O, go to step 8. If an error
occurs, an entry is made in the log and the failing block is
retried with margins.

8. DQM is restarted. It dequeues the finished request and starts
the requesting task. DQM is requested to initiate the next
request.

9. The task is suspended.

6.7 DISK HARDWARE ERROR LOGGING

DQM logs all disk errors by placing a binary copy of the Equipment Table
(EQT) in the System Log at the time of the error.

Disk errors are selected by the EXTRACT utility when TYPE=HARDWARE,
SUBTYPE=DISK is specified on the EXTRACT control statement. (For more
information on EXTRACT, see the COS Operational Aids Reference Manual,
publication SM-0044.)

SM-0040 6-13 C

UNCORREC'lED DATA ERROR RECOVERY DISK QUEUE MANAGER

6.8 UNCORRECTED DATA ERROR RECOVERY

When an uncorrected data error is encountered, the bad sector is written
to the I/O buffer, but the buffer pointer DPIN is not advanced to reveal
the transfer. DQM returns an Uncorrected Data Error status (ERUDE). In
order to see the bad sector, the caller must set a flag (DPABS) in the
Dataset Parameter Table (DSP) and issue another F$RDC request, after
having first cleared DPEDE. DQM will then advance DPIN to reveal the bad
sector and clear DPABS. DQM uses two fields of the Dataset Name Table
(DNT) to verify that bad data was encountered (DNBDF) and to determine
whether the first sector requested is the bad sector (DNBBN). If the
Accept Bad Sector flag is set (DPABS) but the first sector requested is
not bad, DQM returns an error status of Invalid DSP (ERIDP). If the
first sector requested is bad but DPABS is not set, DQM returns an error
status of Uncorrected Data Error (ERUDE).

6.9 MAINTENANCE TEST FEATURE

DQM's maintenance test feature validates disk error processing and
logging. It is invoked by loading the maintenance test field of the
Dataset Parameter Table (DSP) (DPMTF) with a test code and data. The
field is loaded on a user job level.

When the feature is enabled, DQM copies the DPMTF field to the EQT to be
read by the disk driver or to the lOP disk packet processing code. This
data is then used to simulate a selected error condition.

NOTE

This feature is normally disabled. It is intended for
use only when performing software maintenance.

The maintenance field is formatted as follows:

o 8 15

I TFCITD41 TD8 I
TFC Test function code (in octal) as follows:

SM-0040 6-14 c

DISK QUEUE MANAGER MAINTENANCE TEST FEATURE

o No maintenance test
1 Recoverable error test (TD8 contains the extended error

status code)
2 Irrecoverable error test (TD8 contains the extended

error status code)
3 Timeout error test
4 lOP disk error test (TD8 contains the disk packet status

code)
5 write with zero check word
6 Simulated memory error (TD4 contains the exchange

package read mode field, TD8 the exchange package
syndrome bits)

7 Undefined test

TD4 Content varies; see the TFC description above.

TD8 Content varies; see the TFC description above.

SM-0040 6-15 C

STATION CALL PROCESSOR (SCP)

The Station Call Processor (SCP) handles functions for one or more
front-end computer systems and provides for:

• Establishing communications with the front-end system

• Responding to front-end requests for functions such as stream
control, I/O transfer, and status requests

• Multiplexing of streams for each logical station

• Multiplexing of logical stations on the same hardware channel

The SCP task is readied by the system Executive (EXEC) Front-end Driver
whenever an output/input pair completes on a channel assigned to
front-end communications.

This section assumes the reader is familiar with the contents of the
Front-end Protocol Internal Reference Manual, CRI publication SM-0042.

7.1 SYSTEM TABLES USED BY SCP

SCP uses the following system tables:

AUT Active User Table
1BT Interactive Buffer Table
LCT Link Configuration Table
LIT Link Interface Table
LXT Link Extension Table
POD Permanent Dataset Definition Table
SOT System Dataset Table
SST Stager (STG) Stream Table

These tables are described in detail in the COS Table Descriptions
Internal Reference Manual, publication SM-0045.

SM-0040 7-1 c

7

SYSTEM TABLES USED BY SCP STATION CALL PROCESSOR

7.1.1 ACTIVE USER TABLE (AUT)

The Active User Table (AUT) controls interactive communication and
contains messages queued for input and output as well as associated
information.

7.1.2 INTERACTIVE BUFFER TABLE (IBT)

The Interactive Buffer Table (IBT) provides control over buffer space
allocated for interactive messages.

7.1.3 LINK CONFIGURATION TABLE (LCT)

The installation builds an entry in the Link Configuration Table (LCT)
for each CPU channel used for front-end communications. The LCT
determines the channel characteristics.

7.1.4 LINK INTERFACE TABLE (LIT)

SCP assigns a Link Interface Table (LIT) entry at startup to each CPU
channel used for front-end communications. This table contains channel
buffer control information and EXEC working storage.

7.1.5 LINK EXTENSION TABLE (LXT)

EXEC assigns a Link Extension Table (LXT) entry for a front-end computer
system at logon time and releases the entry at logoff. This table
contains SCP working storage and is used for communication between EXEC
and SCP concerning a logical front-end 10. Each LXT entry contains 16
Stager Stream Table (SST) entries.

7.1.6 PERMANENT DATASET DEFINITION (POD)

SCP, as a user of permanent dataset management, must generate Permanent
Dataset Definitions (PODS) to accompany requests for saving and deleting
permanent datasets. These PODs reside in STP rather than in a user field.

SM-0040 7-2 C

STATION CALL PROCESSOR PROCESSING FLOW FOR SCP

7.1.7 SYSTEM DATASET TABLE (SOT)

SCP has prime responsibility for the System Dataset Table (SDT). It
takes entries from the available queue for jobs being assigned to the
input queue and returns entries to the available queue after staging
output datasets to the front-end system.

The queue control word (header) and word 36 (W@SDLK) of each SOT entry
create a circular linked list. FLP contains the address of the next SDT
entry or points to the queue header. BLP contains the address of the
previous SOT entry or points back to the queue header. Starting at any
entry, the circular linked list can be searched backward or forward,
stopping at any entry.

When a queue is empty, the pointer points to itself minus 36 (W@SDLK)
(figure 7-1). When a queue is not empty, the first and last entries in
the queue point to the header word minus 36 (W@SDLK) (figure 7-2).

r----:-... ~.----------,
~

I
I
I pseudo SDT 0

I
I

~ I 0 I BLP I FLP!

header - 36

header

Figure 7-1. Header when queue is empty

7.1.8 STAGER STREAM TABLE (SST)

The Stager Stream Table (SST) contains the information for controlling
the input or output of a stream and is the communication link between SCP
and the Dataset Stager (STG) task.

7.2 PROCESSING FLOW FOR SCP

Upon receipt of each message, SCP checks the input link control package
(LCP) in the Link Configuration Table Extension (LXT) LCP buffer for

SM-0040 7-3 C

I

PBOCESSING FLOW FOR SCP STATION CALL PBOCESSOR

..-----------,
I 1 header - 36

... J
1 '1

1 I

...... ~ pseudo SDTO I
...... I I

......
I I 1 I

\" 1 I

\ I I 2 I BLP I FLP I header
\ I

L_ - - - - -r - - - _...1

\ I
\ I

\ I ,

r --. \ I

I l......+ \ I

I \ I

I
,SOTI I

I \ I
I \ L ___ +
I \

I 36 I BLP I FLP

I SOT2
I
L __________ - _ - - - - -- -- - - --,

I
I

36 I BLP I FLP
I
J

- - - - - ~Backward

----------~.~Forward

Figure 7-2. Queue with two entries

illegal message code and illegal parameters. Any error causes an
immediate Message Error response.

scp then processes the input LCP message code as follows:

1. Log on causes sCP to save log on parameters and to initialize the
buffer pool. If log on is not expected, the log off procedure is
executed first, followed by log on processing.

2. Log off causes SCP to deallocate all incoming datasets and makes
the associated System Oataset Table (SOT) entries available. All
outgoing dataset SDT entries are returned to the output queue.

SM-0040 7-4 c

STATION CALL PROCESSOR PROCESSING FLOW FOR SCP

3. Control is a no-oPe

4. Dataset Header causes an SDT entry to be assigned and the header
parameters to be saved in the SDT. A start request is then
posted in the Stager Stream Table (SST) for the STG task.

5. Dataset Segment causes SCP to verify the stream is ready and in
an RCV state. A switch of buffers is made. SCP trades the input
buffer for the empty buffer pointed to by the SST for this
stream. The STG task is then activated with a process buffer
code.

6. Job Status, System Status, Link Status, Mass Storage Status,
Dataset Status, Operator Debug, Logfile Information, Logfile
Entry Request, Configure, Tape Configure, Tape Job Status, and
Interactive Request must be replied to before a second request of
this class is sent. SCP returns an error message if there is an
outstanding message of this class waiting to be processed. The
LCP and segment are verified and the function is processed.

7. Diagnostic Echo Request causes the appropriate Echo Reply to be
built and transmitted immediately. The input segment is used for
the output segment.

8. Message Error causes immediate retransmission of the prior
message.

9. Station Message Reply causes SCP to verify the LCP and segment
size. A memory pool buffer is acquired and the message is moved
to the buffer. If deadstart is finished the reply is logged in
the system logfile. The reply is forwarded to the appropriate
task.

10. Dataset Transfer Reply causes the status field to be examined.
If the status is NO, the request is deleted and the originating
job aborted. If the status is YES, the request is removed from
the request queue. The SOT is placed on the available queue. If
the status is Postpone, the request is put on the bottom of the
request queue and reissued after at least a delay defined by
I@DTRDLY.

SCP then processes the input stream control bytes. Invalid streams are
master cleared and active transfers on these streams are terminated.
Input stream (front end is the sender) types are as follows:

1. Idle - Normal state if front-end station has no activity for this
stream. No System Dataset Table (SOT) entry is associated. The
COS response is Idle.

SM-0040 7-5 C

PROCESSING FLOW FOR SCP STATION CALL PROCESSOR

2. Request To Send - Front-end station is ready to stage a dataset.
SCP immediately responds with Receiving unless there are no
SOTs. SCP responds with Postpone if no SOT entry is available.

3. Sending - Front-end station is prepared to send Dataset Header or
Dataset Segment. SCP immediately responds with Receiving if STG
is finished processing the last segment, or with Suspend if STG
is not yet finished. If the Dataset Stager (STG) task reports
that the dataset is already saved on Cray mass storage, SCP
cancels the stream and stream termination begins.

4. End Data - Front-end station is waiting for Dataset Saved
response from COS. SCP checks to see if the STG task has been
notified that an End was received for this stream. If not, SCP
activates STG with an End function code. COS responds with
Saving. STG reports the dataset is saved. If STG reports the
dataset is already on Cray mass storage, SCP cancels the stream.
If STG detects any error, the stream is canceled and stream
termination begins.

5. Cancel - Front-end station requests that the stream's current
activity be dropped. SCP requests that STG deallocate the input
dataset and make the SOT entry available. The cancel is logged
in the System Log. The COS response is Idle.

6. Postpone - Front-end station requests that the stream's current
activity be dropped. SCP sets the termination code in the Stager
Stream Table (SST) for the stream. This causes STG to terminate
the transfer. (If this dataset originated from a dataset
transfer request, the originating job is not aborted.) The COS
response is Idle.

7. Master Clear - Front-end station encountered an invalid COS
response. SCP processes master clear in the same manner as
postpone. COS response is Idle.

SCP processes the output stream control bytes. Output stream (COS is the
sender) types are as follows:

1. Idle - Normal front-end response if COS state is Idle, Postpone,
Cancel, or Master Clear. COS responds by issuing either Idle or
Request To Send if an output dataset is queued. In the latter
case SCP removes the System Dataset Table (SOT) entry from the
output queue and assigns it to this stream. It is also queued
onto the sending queue for the Link Configuration Table Extension
(LXT) •

SM-0040 7-6 C

STATION~LP~SOOR P~SSING FLOW FOR SCP

2. Preparing To Receive - Front-end station response indicating
preparing to accept Dataset Header. The header is not eligible
to be sent.

3. Receive - Front-end station response indicating readiness to
accept Dataset Header or Dataset Segment. The STG task response
is checked. If no buffer is ready, SND is the next Stream
Control Byte (SCB). If a buffer is ready, the Buffer Ready flag
is set in the Stager Stream Table (SST), and a buffer is sent if
not preempted by another message type.

4. Suspend - Front-end station is ready to temporarily stop
receiving segments for this stream. SCP maintains the response
as Sending. If necessary a segment is prepared for sending.

5. Dataset Saved - Front-end station indicates dataset is saved and
stream can be released. SCP sets the Stager Stream Table (SST)
code requesting stream End termination. The saved response is
logged in the System Logfile. The response is Idle.

6. Postpone - Front-end station is ready to postpone receipt of this
dataset. If the stream is active SCP places the postpone request
in the SST termination field. The response is Idle.

7. Cancel - Front-end station is ready to cancel receipt of this
dataset. The abort code is set in the SST termination field.
The abort is logged in the System Log. The response is Idle.

8. Master Clear - Front-end station encountered an invalid COS
response. For a dataset in the process of being staged out, SCP
sets a postpone request in the Stager Stream Table (SST)
termination field. The response is Idle. (Note this is the same
as Postpone.)

The output link control package (LCP) must now be constructed. If a
Diagnostic Echo Reply is ready, it must be senti otherwise, if a Dataset
Transfer Request is queued, it is sent. If any nonstaging reply is
ready, the appropriate message code (Job Status, System Status, Dataset
Status, Link Status, Mass Storage Status, Operator Debug, Logfile
Information, Interactive Reply, and Logfile Entry Reply) is used.

If there is no nonstaging transmission to be sent, SCP examines the
output streams for transmission of eligible headers or segments using the
appropriate message code (Dataset Header or Dataset Segment). If no
information is to be returned, the message code is Control. SCP moves
the COS stream control bytes (SCBs) into the output link control package
(LCP) to complete the output LCP.

SM-0040 7-7 C

PROCESSING FLOW FOR SCP STATION CALL PROCESSOR

Finally, SCP assigns an input buffer and requests the station driver
(through EXEC) to complete the output transmission and await input.

SM-0040 7-8 C

I

I
I

I

I

EXCHANGE PROCESSOR (EXP)

The Exchange Processor (EXP) task processes all user system action
requests and user error exits. The Exchange Processor also handles
requests from the Job Scheduler (JSH) for initiating or aborting a job.

EXP recognizes that certain functions prevent the restarting of a job
from its most recent roll image, without potentially yielding results
different from those that would be obtained had the job not been
restarted. In these cases, EXP declares the job irrecoverable and causes
the Job Scheduler to update the Rolled Job Index accordingly.

Similarly, EXP recognizes that certain functions (notably permanent
dataset manipulations) make it uncertain whether a job could be rerun
from the beginning without changing its results. In these cases, EXP
declares the job to be nonrerunnable. When the user knows that changes
to permanent datasets will not affect the correct execution of the job if
it is rerun, the user can override EXP and declare the job rerunnable or
can prevent EXP from declaring the job not rerunnable. See Job Rerun and
Job Recovery later in this section for an explanation of recoverable and
rerunnable jobs.

When a user program exchanges to the system due to normal exit, error
exit, or execution error, the Executive (EXEC) sets flags in word TCEP of
the Task Control Block requesting execution of the Exchange Processor and
indicating whether the exchange is normal or in error.

JSH requests EXP by setting another flag in the same word (TCEP) in the
TCB. EXEC readies EXP and exchanges to it, instead of exchanging to the
user, whenever the TCEP word is nonzero for the currently connected job.

After EXP processes a request, it clears TCEP to allow EXEC to return to
the user job.

If EXP cannot finish a request immediately, it suspends itself without
clearing TCEP. EXEC then returns control to EXP, rather than the user,
whenever the user task is assigned to the CPU.

In general, EXP calls JSH to suspend the user task before suspending
itself when it must wait for completion of a request, such as an I/O
request to another task. This allows other user tasks to be assigned the
CPU.

The entity for which EXP executes is a user task. A typical job step
will not be multitasked and for those job steps the terms job and task
are often used interchangeably. In reality, however, EXP makes very few

SM-0040 8-1 C

8

SYSTEM ACTION REQUESTS EXCHANGE PROCESSOR

requests on a job basis. Physical I/O queue manager requests are made on
a task basis, JSH requests are made on a task basis, and so on.

The coordination of multiple tasks within a job requires some special
handling. In certain situations (deleting a task for instance) EXP has
to know that its actions vis-a-vis other tasks in the same job are
uninterruptible. For this purpose, it uses the J$SINGLE request to JSH
to force all other tasks in the same job to be disconnected until a
corresponding end-single-threading call is made. Abort/advance
situations use J$SINGLE to enforce single threading while the user's
reprieve processing code is executing.

Abort/advance situations require that EXP allow only one task to survive
to the next job step. After any reprieve processing, EXP deletes all
tasks except the one for which it is executing.

8.1 SYSTEM ACTION REQUESTS

Exit from a user program occurs when the user program executes an
exchange instruction (004). The user issues a system action request on a
program exit by setting SO to the desired function code and possibly

• setting Sl and/or S2 to optional arguments before exiting. When the
request completes, the user's SO contains a status code. Conventionally,
(SO)=O indicates no error.

I

If an error is encountered, the job normally aborts with appropriate
messages issued to the logfile. For some errors, however, an error code
is placed in the user's SO and the user is allowed to continue processing.

When EXP is readied, it detects the user request because the TCEPN field
for the currently executing task is set. The function code in SO is then
used as an index into the CALL table to obtain the address of the routine
to process this request. If the length field in the CALL table entry is
nonzero, EXP verifies that the address in Sl points to a table within the
user field length. This address is converted to an STP-relative
address. Next, the vital parameters in the Job Communication Block (JCB)
are verified by comparing them with duplicate values in the JTA. The
parameters checked are JCFL, JCNPF, JCBFB, JCDSP, JCMFL, JCLPP, JCILEV,
JCPLEV, JCCLEV, and JCREVN. Several other fields are also verified as
reasonable values.

The mnemonic values used to assemble user codes are defined in common
deck COMEXPFC, which is called into $SYSTXT. These mnemonics should be
used to provide function codes for register SO when making system action
requests. Unless otherwise specified, a function has no effect on a

SM-0040 8-2 C

EXCHANGE PROCESSOR SYSTEM ACTION REQUESTS

job's ability to be recovered or rerun. See Job Rerun and
Irrecoverability of jobs in this section.

Mnemonic
Code

F$ADV

F$ABT

F$DAT

F$TIM

F$MSG

SM-0040

0

I

o

m

h

Octal
Value

000

001

002

8

m

003

8

h

004

Task Description

Advance job. The current job step is terminated
and the job is advanced to the next control
statement.

Abort. The job is advanced to the EXIT control
statement if one exists. If none exists, the job
is terminated.

Get current date. The current date in ASCII
format is returned at the location specified in
Sl in the following format:

16 24 32 40 48 56 63

I / I d d I / I y y

Get current time. The current time in ASCII
format is returned at the location specified by
(Sl) in the following format:

16 24 32 40 48 56 63

I m m 8 8

Enter message in logfi1e. A message beginning at
the location specified by (Sl) is written to the
logfile. (S2) is used to determine if the
message is to be written to the user logfile, the
System Log, or both.

The message is terminated by a zero byte or the
80th character.

I

o 57 61 62

k///ICLASSIORI FC

Bits

57-60

61

8-3

Significance

Class assigned to message

Message-class suppression to be
overridden

C

I

SYSTEM ACTION REQUESTS

Mnemonic
Code

F$MSG
(cont inued)

F$RCL

F$TRM

F$SSW

F$OPN

Octal
Value

005

006

007

010

EXCHANGE PROCESSOR

Task Description

Bits

62-63

S ignif icance

Destination of message:
1 User logfile only
2 System log only
3 System log and user logfiles

Dataset recall. The job is removed from
execution until another block of data has been
transferred without error or until I/O is
complete on the dataset specified. Sl contains
the Open Dataset Name (ODN) Table or DSP address.

Terminate job. The job is terminated normally
and its resources are returned to the system.

Set pseudo sense switch. Sl contains the number
of the switch to be set.

Open dataset. Sl contains processing direction
in bits 0 and 1 and the address of the Open
Dataset Name (DDN) Table. Bits 40-63 of Sl
contain the address.

o 1 40 63

Ipdl/////////////////////////////////////I ODN addp

SM-0040

If the OPEN call is for a system area LFT/DSP
pair (signified by field OoaST equal to OSTSA) ,
an OPEN call creates the following entries (if
not already created) for the dataset whose name
is in the first word of the ODN Table:

• A DNT entry in the user's JTA

• An LFT entry

• A DSP entry

• Allocates a buffer if the dataset is to be
in blocked format

The second, third, and fourth entries may result
in moving existing LFT entries, DSP entries, and
buffers. Additional user field is allocated if
insufficient room exists for

8-4 C

EXCHANGE PROCESSOR

Mnemonic
Code

F$OPN
(continued)

SM-0040

Octal
Value

SYSTEM ACTION REQUESTS

Task Description

adding the LFT, DSP, or buffer. Parameters in
the JCB of the user field reflect any movement of
these tables.

• The negative DSP offset is equal to the DSP
base address (JCDSP)-DSP entry address.

This value is returned in bits 40-63 of word 2 of
the ODN Table.

• The DNT and DSP are modified to reflect the
processing direction requested.

Processing Direction

10 Input
11 Input/Output

If the OPEN call is for a user-area,
system-managed LFT/DSP (signified by field ODOST
equal to OSTUA) the DSP/buffer addresses need to
be supplied (in fields ODDSP and DPFRST/ DPLMT,
respectively). An existing system-area LFT is
searched for. If found, the corresponding DSP is
moved to the DSP specified in ODDSP. All
system-area LFTs which point to the system-area
DSP are moved to the user-area LFTs and changed
to point to the new user-area DSP. The
system-area buffer pointed to by the system-area
DSP is moved to the user-area buffer pointed to
by the user-area DSP. The system-area
LFTS/DSP/buffer are deleted. The user-area LFT
and DSP are marked as such.

If, however, an existing system-area LFT is not
found, a user-area LFT is created pointing to the
user-area DSP and the user-area DSP is marked as
open. The user-area LFT and DSP are marked as
such.

If ODDSP is a positive, nonzero address, and
ODOST is not equal to OSTUA, the user is
requesting direct use of a DSP/buffer pair. No
LFT is created, and the DSP and buffer must be

8-5 c

SYSTEM ACTION REQUESTS

Mnemonic
Code

F$OPN
(continued)

F$MEM

Octal
Value

011

EXCHANGE PROCESSOR

Task Description

wholly contained within the user area (below
JCHLM) •

When the user manages the DSP, the system makes
no attempt to flush the buffer unless the user
makes an explicit F$CLS request pointing to the
user-managed DSP.

Redundant opens result in the following:

1. Datasets appear as if I/O has occurred.
2. DNT fields are moved into the DSP.
3. The new open status is merged with the

current open status.

Request memory. The amount of memory assigned to
a job can be determined or changed. Sl contains
the address of the memory request word. The job
is aborted if filling the request would exceed
the maximum allowable memory for the job. The
memory request word has the following format:

o 1 2 7 16 40 63

SM-0040

§I/ILI////ITI///////I DEL we

M Maximum Memory flag. If M is set by the
caller, JSH returns in we the maximum
allowable amount of memory (in words)
excluding the JTA. No memory is allocated.

L Limit flag. The system sets this flag when
it has assigned the maximum allowable amount
of memory to the user.

T Total flag. If T is set, WC represents the
total memory requested (excluding the JTA)
rather than an increment or decrement, and
DEL is ignored.

DEL Deletion pointer. If the user wants an
increase in memory, DEL must be O. If the
caller wants a decrease in memory, DEL must
contain the beginning address of the area to
be deleted.

8-6 e

I

EXCHANGE PROCESSOR

Mnemonic
Code

F$MEM
(continued)

F$LBN

F$CLS

SM-0040

Octal
Value

012

013

SYSTEM ACTION REQUESTS

Task Description

WC Word count. The user must supply the
absolute number of words to be added to or
deleted from the user's field length. Any
words added to the user's field length are
added to the upper end. If WC=O, no action
is taken other than to return the user's
field length in WC.

Return last block number. Sl contains the
address of the Open Dataset Name Table, the DSP,
or any word containing the local dataset name.
On return, S2 contains the block number of the
last block of the dataset. S2 contains -1 (all
bits set) if the dataset is empty.

Close dataset. Sl contains the address of the
Open Dataset Name (ODN) Table. A close call uses
ODDSP as the DSP address if nonzero. Otherwise,
the system-managed user- and system-area LFT
areas are searched for an LFT with a dataset name
equal to ODDN. If not found, close is a no-ope
If it is found (or ODDSP pointed to a DSP), the
following processing is performed:

• writes an EOD on a sequential blocked
dataset, if the dataset is write mode. If
the dataset is in write mode and is a
blocked dataset, flushes data in the buffer
to disk and writes an EOD RCW, if
necessary. As a result, the job may be
declared temporarily irrecoverable. An
unblocked dataset has no system buffer.

• Releases any system-managed buffer for the
dataset (the DSP is in the system area and
points to a system-area buffer)

• Releases the DSP for the dataset, if it is
system managed

• Releases any LFT entries for the dataset

• Updates the DNT entry for the dataset to
indicate that the dataset is closed

8-7 C

I

SYSTEM ACTION REQUESTS

Mnemonic
Code

F$DNT

F$MDE

F$GNS

F$RLS

SM-0040

Octal
Value

014

015

016

020

EXCHANGE PROCESSOR

Task Description

Create/modify local dataset: DDNFE=O. Sl
contains the address of the DDL. This call
creates a DNT if one does not already exist.

If the dataset already exists, it must be closed
except to change DNLM, DNDC, DNLDV and DNSZ.
Parameters from the DDL that do not contain 0 are
inserted into the DNT.

Sense local dataset. DDNFE=l, DNSTAT=O. Sl
contains the address of the DDL. This call
searches for a DNT. On return, (80)=0 if the
dataset exists; (SO)#O if dataset does not
exist. The dataset need not be closed.
Additional DDL parameters are ignored.

Return dataset characteristics: DDSTAT=l. Sl
contains the address of the Dataset Definition
List (DDL). If the dataset exists a copy is made
in the user area' at the location indicated by
DDDNT. If the dataset does not exist it is
created unless DDNFE is set. If DDNFE is set and
the dataset does not exist, SO~O on return,
otherwise SO=O.

Additionally, for the create/alter DNT calls, if
DDDNT is nonzero, a copy of the created/altered
DNT will be returned to the user area pointed to
by DDDNT.

Set exchange package mode. Sl contains the
address of the word containing new mode setting.
See the CRAY-OS Version 1 Reference Manual,
publication SR-OOll, for mode settings.

Get next control statement. Copy one card image
from control statement buffer to address
specified in Sl. Error code EREFR (1) is
returned in SO if EOF is encountered on the
control statement file.

Return to the system the dataset whose Open
Dataset Name Table address, D8P address, or any
address containing the local dataset name is
specified in 81. The dataset is closed and

8-8 C

EXCHANGE PROCESSOR

Mnemonic
Code

F$RLS
(continued)

F$PDM

F$RDC

F$WDC

F$GRN

F$OIS

F$JDA

SM-0040

Octal
Value

021

022

023

024

025

026

SYSTEM ACTION REQUESTS

Task Description

disposed of according to the disposition code
contained in the Dataset Name Table entry for
this dataset. The dataset is no longer available
to the job. As a result, the job may be declared
irrecoverable.

Permanent dataset management request. Sl
contains address of the Permanent Dataset
Definition (PDD) Table. The format of the PDD
depends on the function requested. As a result,
the job may be declared irrecoverable, not
rerunnable, or both. A check is made of the
caller's privileges to ensure the request is
allowed. The action taken for a security
violation depends on the security mode (see
Appendix A of this manual).

Read device circular. Sl contains the DSP
address. The error bits and the busy bit in the
DSP must be monitored by the caller. Automatic
recall is requested if bit 0 of Sl is set.

write device circular. Sl contains the DSP
address. The error bits and the busy bit in the
DSP must be monitored by the caller. Automatic
recall is requested if bit 0 of Sl is set. As a
result, the job may be declared irrecoverable,
not rerunnable, or both.

Get system revision numbers. Sl contains address
of 2-word table. Information is returned in
ASCII format, left-justified and blank-filled as
follows:

COS x.xx

rrun/dd/yy

Dispose dataset. Sl contains the PDD address.
As a result, the job may be declared
irrecoverable.

Get current Julian date in ASCII format. The

8-9 c

I

SYSTEM ACTION REQUESTS

Mnemonic
Code

F$JDA
(continued)

o

F$JTI

F$ACT

F$SPS

F$CSW

F$TSW

F$BIO

SM-0040

Octal
Value

y

027

030

031

032

033

034

y

EXCHANGE PROCESSOR

Task Description

date is returned at the location specified in Sl,
as follows:

40 63

d d d I ASCII blanks

Return accumulated CPU time for the job in the
location specified by Sl. The time is expressed
in seconds in floating-point format. If the sign
bit of Sl is clear, the job time is returned.
Otherwise, the task time is returned.

Return accounting information to locations
starting at the address specified in Sl. The
format of the information returned is partially
described by the Job Accounting Table. In
addition, if requested, information about
multiple tasks for multitasked jobs is returned
in a buffer pointed to by fields in the JAC. The
format of that information is described by the
Task Accounting Table.

Set P register and suspend user. The operator
enters the RUN command to lift the user
suspension. New program address in Sl.

Clear sense switch. Sl contains the switch
number to be cleared.

Test sense switch. Sl contains the switch number
to be tested.

On return, (Sl)#O if sense switch is set:
(Sl)=O if sense switch is not set.

Buffered I/O request. Sl contains the DSP
address.

Perform record oriented I/O request on a COS
blocked dataset. A record or partial record is
transferred to or from a user-specified data
area. Control returns immediately to the user,
allowing the user to do processing in parallel
with the I/O. The user must check status in the
DSP for completion of the request and for errors.

8-10 C

EXCHANGE PROCESSOR

Mnemonic
Code

F$BIO
(continued)

SM-0040

Octal
Value

SYSTEM ACTION REQUESTS

Task Description

As a result, the job may be declared
irrecoverable.

The DSP must contain the following fields set by
the user when the call is made:

DPBIO Buffered I/O Busy flag must be 0
indicating that any previous request has
completed. This flag is set by the system
when the call is made and cleared when the
request is completed.

If a user wants to relinquish the CPU and
wait for completion of the buffered I/O
request, the user should continue to call
recall (F$RCL) until the buffered I/O Busy
flag is cleared.

DPBER Buffered I/O Error flag must be 0,
indicating that any error on the previous
request has been recognized by the user.

DPBF

If an error has occurred when a request is
completed, DPBER is set to 1. The user
can then check DPERR to determine the
nature of the error.

Function code:

000 Read partial record~ logically
equivalent to $RWDP.

010 Read record~ logically equivalent
to $RWDR.

040 Write partial record~ logically
equivalent to $WWDP.

050 Write record~ logically equivalent
to $WWDR.

052 Write EOF~ logically equivalent to
$WEOF.

056 Write EOD~ logically equivalent to
$WEOD.

8-11 C

I

SYSTEM ACTION REQUESTS

Mnemonic
Code

F$BIO
(continued)

F$DLY

F$AQR

F$NRN

F$RRN

SM-0040

Octal
Value

035

036

037

040

EXCHANGE PROCESSOR

Task Description

156 Rewind; logically equivalent to
$REWD.

DPBWC Word count is the number of words to
transfer to or from the user's record
area. On a read request, the system
returns the actual number of words read.
If a null record is read, a zero word
count is returned in DPBWC. The user can
then use DPEOR, DPEOF and DPEOD to
determine if EOR, EOF, or EOD has been
reached.

DPBWA Word address of user's record area.

Delay job. The job is removed from processing
for the number of milliseconds contained in the
rightmost 24-bits of the location specified by Sl.

Acquire dataset from front end. F$AQR first
checks to see if the requested dataset exists on
mass storage by issuing an ACCESS request to the
Permanent Dataset Manager to obtain the dataset.
If the dataset is not present on mass storage,
F$AQR acquires it from the front end and accesses
it. 51 contains the address of the PDD.

Enable or disable job-not-rerunnable checks.

51 contains the address of a word containing the
Enable/disable flag. If the flag is 0, the job
can be declared not rerunnable. If the flag is
1, the job cannot be declared not rerunnab1e.
This does not affect the existing rerunnability
of the jOb; if the job has already been declared
not rerunnable, it remains so. Other flag values
are illegal.

Enable or disable job rerun. Sl contains the
address of a word containing the Enable/disable
flag. If the flag is 0, rerun is enabled; that
is, an operator RERUN command or a system
recovery might place the job back into the input
queue. If the flag is 1, rerun is disabled; that
is, an operator RERUN command is rejected and a

8-12 c

I

EXCHANGE PBOCESSOR

Mnemonic
Code

F$RRN
(continued)

F$IOA

F$LFT

F$INV

Octal
Value

041

042

043

SYSTEM ACTION REQUBS'l'S

Task Description

system recovery does not allow the job to be
rerun from the beginning.

Set (lock) or clear (unlock) lOA bits in the JCB
and TCB and alter accordingly the limit address
in the user's Exchange Package. When the lOA
bits are 1 (lock user's I/O area), the limit
address is set to (JCDSP); when the lOA bits are
o (unlock user's I/O area), the limit address is
set to (JCFL). Sl contains the address of the
LOCK/UNLOCK indication.

Delete, change, or create an LFT in the JTA. Sl
contains the LFT address in the user field. S2
contains the operation to be performed on an LFT.

DELLFT=O
CHGLFT=l
CRELFT=2

Delete an LFT
Change an LFT
Create an LFT

Invoke a job class structure. The job aborts if
an F$INV request is already pending. Sl must
contain the address of the invoke request word,
which has the following form:

o 28 40 63

SM-0040

V//////////////////////////I LEN LOC

LEN Length of the array located at LOC. The job
aborts if LEN is not a multiple of 10008
or is greater than the maximum size allowed.

LOC Address of the array containing the job
class structure to be invoked

The array at LOC is copied to the Class Structure
Definition Table (CSD) as soon as all of the
job's I/O requests are complete. Then the class
assignments of all the jobs in the input queue
are redetermined.

No Job Execution Tables (JXTs) are allocated
while a J$INVOKE request is pending. (See JSH
functions in section 9.)

8-13 C

SYSTEM ACTION REQUESTS

Mnemonic
Code

F$DJA

F$RPV

F$BGN

F$RCS

F$PRC

F$RTN

SM-0040

Octal
Value

044

045

046

047

050

051

EXCHANGE PROCESSOR

Task Description

Dump job area. S1 contains the address of a
local dataset name. If the dataset is
nonexistent, a dataset named $DUMP is created.
After rewinding $DUMP, the job's Job Table Area
(JTA) and user field are written to the dataset.
The number of words written is the value of field
JTL plus the job's field length, the limit
address (LA) minus the base address (BA). The
dataset created is unformatted and has no ROWs or
BOWs.

Enable or disable reprieve processing. Sl
contains the address of a 3-word table in the
following format:

o First word address of reprieve code
1 First word address of 30-word save area for

exchange package and system use
2 Mask defining error classes to be reprieved

S2 is set to 0 to activate reprieve processing.
If S2 does not contain 0 or -1, the interrupted
abort processing continues. If S2 contains -1,
then Sl contains the address of the exchange
package to be substituted for the current user
exchange package.

Begin user code execution.
address of the BGN Table.

Sl contains the
The code to be

executed is assumed to be loaded in the user
field.

Rewind current control statement file. This
function is available only to CSP for the
rewinding of $CS after block validation.

Procedure dataset invocation. Sl contains the
address of the procedure dataset name. Control
statements are read from the indicated dataset
until EOF or RETURN is encountered, at which
point reversion to the dataset containing the
invocation occurs.

Procedure return; resume reading from the
previous control statement dataset.

8-14 C

EXCHANGE PROCESSOR

Mnemonic
Code

F$LIB

F$INS

F$UROLL

F$ASD

Octal
Value

052

053

054

055

SYSTEM ACTION REQUESTS

Task Description

Library searchlist maintenance. Either get or
set the current library searchlist from or to a
specified buffer.

Sl Buffer address
S2 Subfunction symbol

Symbol Significance

LIBGET (or 0) Return current searchlist
into the specified 64-word
buffer

LIBSET (or 1) Set current list to the
contents of the 64-word
buffer 1 length of list is
determined either by
end-of-buffer or a zeroed
word.

Jump to installation-reserved function. Sl
should contain the address of an optional
parameter list. (S1=0, if no such list exists.)
S2 should contain the subfunction code (greater
than 0), an offset into the subfunction table.
This function allows the installation an
unlimited number of subfunctions.

Roll a jOb; user requested rollout to protect
against system interruptions.

Access system dataset. Search the System
Directory for the dataset name which is pointed
to by Sl. Sl may also have the sign bit set to
indicate no abort if no matching dataset name is
found in the System Directory.

o 5 40 63

Sl = ~AI/////////////////////////////////////I dn addr

SM-0040

On return, if there was an error and the NA flag
was set:

8-15 C

SYSTEM ACTION REQUESTS

Mnemonic
Code

F$ASD
(continued)

Octal
Value

EXCHANGE PROCESSOR

Task Description

o 40 63

so = V///////////////////////////////////////I job abort error code I

F$SYM 056

F$CSB 057

SM-0040

Job abort error codes:

12 JTA overflow
21 Dataset not found
76 Dataset already accessed by job

JCL symbol manipulation. Either set or get a JCL
symbol.

Sl JCL Symbol Table (JST) base address
52 Subfunction symbol

Symbol

SYMGET (or 0)

JSSN
JSVAL
JSLEN

SYMSET (or 1)

Significance

Return characteristics and
symbolic value of the symbol
specified in the JST. JST
input values are:
Symbol name
Address of value buffer
Length of value buffer1 if
0, unlimited length is
assumed.
Set symbolic value for symbol
specified in the JST.

Conditional control statement maintenance.

Sl JCL Block Information Table (JBI) address
52 5ubfunction symbol

5ymbol Significance

C5BINF (or 0) Return information for
current conditional level in
JBI.

CSBDEC (or 2) CSP only. Decrement current
conditional nesting level 1
used by ENDIF verb.

8-16 C

EXCHANGE PROCESSOR

Mnemonic
Code

F$CSB
(continued)

F$ISB

F$EKO

Octal
Value

060

061

SYSTEM ACl'ION REQUESTS

Task Description

CSBEXC (or 3) CSP only. Flag current
conditional nesting level as
not in skip mode; used by
IF, ELSE, and ELSEIF verbs.

Iterative control statement maintenance.

Sl JBI address
S2 Subfunction symbol

Symbol Significance

ISBINF (or 0) Return current iterative
block to specified JBI.

ISBINC (or 1) Increment current iterative
nesting level; used by LOOP
verb.

ISBDEC (or 2) Decrement current iterative
nesting level; used by
EXITLOOP verb.

ISBRST (or 3) Reset iterative block; used
by ENDLOOP verb to increment
loop count and to reposition
control statement

Alter user's ECHO status. Sl contains address of
a I-word parameter block with the following format:

o 32 48 63

V//////I/////////////I//////////I Change mask I New value mask I

F$OPT 062

SM-0040

Bits

32-47

48-63

Significance

Change mask; has a bit set for each
class to be changed.

New value mask; contains the values
for the classes changed. 1 turns the
class off; 0 turns class on. Message
class 0 cannot be turned off. Message
class 0 bit left-justified.

Change job options that can be specified by the
user.

Sl Address of OPT table

8-17 C

SYSTEM ACTION REQUESTS

Mnemonic
Code

F$POS

F$SPM

F$FCH

F$TDT

F$DTT

F$MTT

F$TMT

F$SPY

SM-0040

Octal
Value

063

064

065

066

067

070

071

072

EXCHANGE PROCESSOR

Task Description

Tape dataset position request. Two types of
requests can be made, rewind and position by
block number.

Sl Open Dataset Name Table (ODN) or Position
Parameter List (PPL) address

S2 Function code (0 to rewind, 2 to position)

Ready System Performance Monitor (SPM) task for
statistics gathering. This request is valid only
if the I@USRSPM installation parameter is nonzero.

Fetch dataset from a front end and make it local
to the job. The address of the base of the PDD
is passed in Sl.

Convert timestamp to ASCII date and time. Called
by the TSDT $SYSTXT macro.

Convert ASCII date and time to corresponding
timestamp. Called by the DTTS $SYSTXT macro.

Convert from machine time (RT register value) to
timestamp. Called by the MTTS $SYSTXT macro.

Convert timestamp to corresponding machine time
(RT register value). Called by the TSMT $SYSTXT
macro.

Enable or disable user execution profile.

Sl Address of Execution Profile Table (EP)

Subfunction SPY$ON enables the user execution
profile. User specifies a time slice for
interrupts (in microseconds), the first and last
word addresses of the code area to be monitored,
and a bucket size which specifies the number of
words between FW and LW to be mapped into each
bucket. The bucket size must be an even power of
2. Multiple SPY$ON calls can be made.

SPY$OFF disables the user execution profile and
returns the accumulated information to a buffer
specified by the user. The user must also

8-18 C

EXCHANGE PROCESSOR

Mnemonic
Code

F$SPY
(continued)

F$MEMORY

Octal
Value

073

SYSTEM ACTION REQUESTS

Task Description

specify the length of the buffer. The remaining
fields in the EP table are filled with the values
specified on the enable call: that is, EPFW,
EPTS, and EPBS are returned. If EPCNT=O, the
buffer has 3 extra words on the end which hold,
respectively, UNDER, BETWEEN, and OVER as
counters of times the user P address was less
than all Spy areas, between Spy areas, and
greater than all Spy areas.

SPY$INFO returns the total amount of space needed
for all Spy areas.

The times of interrupts are unreliable on a
CRAY-l system not equipped with a programmable
clock.

Request memory. Change the job's memory
allocation.

Sl Address of the memory request word. The
memory request word has the following
format:

o 8 16 24 32 40 48 56 63

SM-0040

V/////I F 1///////////////////////////////1 FC

F Field Length flag. If F=l, WC
specifies the number of words of field
length to be allocated to the job.

WC Word count. If F=l, we specifies the
number of words of field length that is to
be allocated to the job. If F=O, WC
specifies the number of words to be added
to (if WC is positive) or subtracted from
(if we is negative) the end of the user
code/data area.

Memory can be added to or deleted from the
end of the user code/data area by
specifying we and setting F to O. If the
user code/data area is expanded, the new
memory is initialized to an installation
defined value.

8-19 e

SYSTEM ACTION REQUESTS

Mnemonic
Code

F$MEMORY
(continued)

F$PRV

F$DSD

F$ENC

SM-0040

Octal
Value

074

075

076

EXCHANGE PROCESSOR

Task Description

The job's field length can be changed by
specifying WC and setting F to 1. The
field length is set to the larger of the
requested amount rounded up to the nearest
multiple of 512 words (decimal) or the
smallest multiple of 512 words large enough
to contain the user code/data, LFT, DSP,
and buffer areas.

The job is aborted if filling the request
would result in a field length greater than
the maximum allowed the job. The maximum
is the smaller of the total number of words
available to user jobs minus the job's JTA
or the amount determined by the MFL
parameter on the JOB control statement.

Process user security requests. Subfunctions are
PRVSDR, PRVSPF, PRVRPF, PRVSWP.

PRV$SDR defines a module as being loaded from the
SDRi used only by CSP. Sl points to a PDD for
the SDR dataset.

PRV$SPF sets user privilege bits in the JTA. Sl
points to a User Privilege Table (UPT).

PRV$RPF reads user privilege bits from the JTA.
Sl points to a buffer which is to contain the UPT
upon completion of the request.

PRV$SWP sets system job fields in the JTA. The
job fields are changed only for the duration of
the job step. This subfunction currently sets
the job's dataset ownership value (to the value
supplied). Sl points to a Security Swap Table
(SWT) •

Define secure dataset (to be released at end of
job step) •

Sl Pointer to dataset name

Call STP common routine PWENC to encrypt
password; requires SCPRIV privilege.

8-20 C

I

EXCHANGE PROCESSOR

Mnemonic
Code

F$ENC
(continued)

F$TASK

SM-0040

Octal
Value

077

SYSTEM ACTION REQUESTS

Task Description

Sl Address of Encryption Parameter Table (ETT)
SO =0 for successful completion

~O for invalid keyword index

F$TASK allows the user to create and manipulate
multiple tasks within a single user job step.

Sl contains the address of a TKT table or,
optionally, if the sign bit of Sl is set, the TKT
table is assumed to reside in the user's
registers starting with S2. The subfunction is
passed in field TKFC of the TKT. The possible
subfunctions are:

TASK$CRE
TASK$DEL
TASK$ACT
TASK$DEA

Create a task
Delete a task
Activate a task
Deactivate a task

The protocol for each subfunction is as follows:
To create a user task, the user fills in
TKFC=TASK$CRE, and TKNP with the desired P
address where the new task will begin execution
and does the exchange. The system creates the
new task and fills in TKSTS with the return
status (see below) and TKID with a
system-assigned task ID. The caller's TKMID is
set to the caller's task 10. The new task's
register set is identical to the creating task's
register set with two exceptions. The created
task's P address is as specified in TKNP. The
creating task is also assumed to have a TKT in
its registers starting with S2. This TKT will
have both TKID and TKMIO set to the created
task's 10.

To delete a user task, the user fills in
TKFC=TASK$DEL, and TKID with the task 10 of
the task to be deleted. The deleted task never
comes back into execution. If the task being
deleted is the last task for the job, the delete
is treated as a job advance.

To activate a user task, the user fills in
TKFC=TASK$ACT, and TKID with the task 10 of the

8-21 C

I

SYSTEM ACTION REQUESTS

Mnemonic
Code

F$TASK
(continued)

F$CRASH

F$SYNCH

Octal
Value

100

101

EXCHANGE PROCESSOR

Task Description

task to be activated and exchanges to the
~ystem. The system activates the appropriate
task, which must have been previously deactivated
(with a TASK$DEA) •

To deactivate a user task, the user fills in
TKFC=TASK$DEA, and TKID with the task ID of the
task to be deactivated and exchanges to the
system. The system deactivates the appropriate
task pending a matching TASK$ACT.

Any of the subfunctions which use TKID as input
default to the calling task, if TKID is zero.

The following return statuses are returned
in TKSTS, if TKNA is set. If the NA flag is not
set, the task is aborted with an appropriate
error message. The return statuses are:

TK$ERXJT

TK$ERBP

TK$ERBTS
TK$ERMEM

TK$ERBID

TK$ERCAS

TK$ERTAA

TK$ERTAI

Maximum number of tasks/job
exceeded
Bad P address for new task
passed
Bad TSB address passed t

Job cannot get enough memory
for new TCB
No task exists with passed task
ID
Designated task to activate is
self
Designated task already active
before activate
Designated task already
inactive before deactivate

Allows a user to halt COS under appropriate
conditions. The CRASH flag in low STP
memory must be enabled. The F$CRASH request
is to be used only in system debugging.

Synchronize tape dataset. Sl contains the
aDN address.

t Deferred implementation

SM-0040 8-22 c

I

EXCHANGE PROCESSOR

Mnemonic
Code

F$TPOS

F$TBL

0
0

Octal
Value

102

103

8

USER ERROR EXIT

Task Description

Get tape position information.
Sl Address of buffer to hold information
S2 ODN addres s

Return a copy of the specified system table
to the starting location identified on the
call. Privilege SCNVOK is required.

SO Completion status:

Status Meaning

n
-1

Request completed; n words moved
Table name not found

-2 Address range error
-3 Table truncated

Sl Address of the following parameter
block:

16 24 32 40 48
Name

56 63

1 I Address Length I
Field Word Bits Description

Name 0 0-63 Name of the system table in ASCII,
left-justified with zero fill.

Address 1 0-31 Address of the buffer to receive the
table.

Length 1 32-63 Length of the receiving buffer, in
words.

8.2 USER ERROR EXIT

When a user program executes an error exit instruction or encounters a
hardware execution error (such as a floating-point error, operand range
error, or program range error), an exchange to EXEC occurs. EXEC readies

SM-0040 8-23 C

EXCHANGE PRCX:ESSOR REQUEST MORD EXCHANGE PROCESSOR

I the Exchange Processor after setting the following fields in the TCB of
the job:

I • TCEPX is set to 1.

I • TCEPF is set to the exchange package flags in the user exchange
package, bits 30-38 of word 3.

I

The Exchange Processor either initiates reprieve processing or issues
appropriate error messages and aborts the job step.

If the job is not reprievable, the Exchange Processor skips through the
job control statements to the statement following the next EXIT statement
or to the end of file~ If the statement following the EXIT statement is
DUMPJOB, a dataset named $DUMP is created if it does not already exist.
This dataset contains the job image, including the Job Table Area (JTA)
and the entire user field.

8.3 EXCHANGE PROCESSOR REQUEST WORD

All requests to the Exchange Processor are made through the Exchange
Processor request word (TCEP) in the JTA for the job assigned to the
CPU. The Exchange Processor is readied by EXEC whenever TCEP is
nonzero. The format of TCEP is as follows:

o 2 4 6 16 40

§EICIJIMI//////////////////////////////I A

Field Bits Description

TCEPN 0 Normal exit

TCEPE 1 Error exit or execution error

TCEPC 2 Continuation flag

TCEPJ 3 Job Scheduler Request flag

TCEPM 4 JTA Expansion Request flag

TCEPA 40-63 Continuation address; EXP address if TCEPC=I.

63

The flags in fields N, E, C, and J are mutually exclusive. The user exit
flags (normal exit and error exit) are set by EXEC when the user causes a

SM-0040 8-24 C

I

I

I
I

EXCHANGE PROCESSOR JOB SCHEDULER REQUESTS

normal or error exchange. The Continuation flag, field C, is set by the
Exchange Processor when an EXP function must be restarted after being
partially processed. In this case, TCEPA contains the P address for the
interrupted function. The Job Scheduler Request flag is set by the Job
Scheduler to request that a job be initiated or aborted.

8.4 JOB SCHEDULER REQUESTS

The Job Scheduler (JSH) requests the Exchange Processor to initiate or
abort a job by setting the TCEP word in the job's JTA. The TCEP word
must be 0 before JSH can modify it. JSH sets the TCEPJ field to 1,
indicating a JSH request.

The Exchange Processor is readied by EXEC when the job is connected if
the TCEP word is nonzero, that is, when it becomes the currently
executing job. If TCEP is nonzero at the time JSH needs to use it, JSH
sets the A bit in the JXT. As soon as the job is connected again and
TCEP is 0, JSH is readied. JSH sets the TCEPJ field to 1, and clears the
A bit in the JXT.

8.5 SYSTEM TABLES USED BY EXP

All EXP functions are job related. Consequently, most of the tables used
by EXP are either in the user field or in the Job Table Area (JTA)
immediately below the user field.

System tables usually accessed by the Exchange Processor are:

CALL
JXT
QDT
SDT

Call Table
Job Execution Table
Queued Dataset Table
System Dataset Table

Detailed information of the JXT and SDT tables is available in the COS
Table Descriptions Internal Reference Manual, publication SM-0045.

Under certain circumstances, EXP allocates tables in the memory pool area
of STP. These tables are used as a PDD for rewriting an SOT entry in the
DSC, to hold the contents of the TEXT field of an ACQUIRE, DISPOSE, or
FETCH statement, or for reading the first block of a dataset for SUBMITs
to the input queue.

SM-0040 8-25 c

SYSTEM TABLES USED BY EXP EXCHANGE PROCESSOR

8.5.1 CALL TABLE (CALL)

The CALL table is a static table composed of a I-word entry for each user
system action request. The contents of the user's register SO serve as
an index into the table on a user call. The format of an entry is as
follows:

o 8 16 24 32 40 48 56 63

n IsecuritY~PDD//1 Length Address

Field Bits Description

Security 0-7 Security flags

POD 8 Set if a PDD is involved in the request

Length 16-39 Length of a table whose address is in Sl of the
user exchange package. Length is 0 if Sl does
not contain a table address.

Address 40-63 Address of the routine that processes the request

8.5.2 JOB EXECUTION TABLE (JXT)

The Job Execution Table contains an entry for each job that has been
initiated. The JXT contains job parameters and statistics that may be
required while the job is rolled out to disk.

8.5.3 QUEUED DATASET TABLE (QDT)

EXP modifies the QDT (through common subroutine RELDNT) when a job
releases a local scratch dataset having related disposes.

8.5.4 SYSTEM DATASET TABLE (SOT)

The System Dataset Table contains an entry for the job dataset for each
job in execution. EXP creates an entry in the SDT for each output dataset
(job output and disposed datasets). It also allocates an SDT if a dataset
is submitted to the input queue. The SDT may have associated memory pool

I areas containing user TEXT field or station slot data.

SM-0040 8-26 C

I

EXCHANGE PROCESSOR USER AREA TABLES USED BY EXP

8.6 USER AREA TABLES USED BY EXP

EXP uses the following tables located either in the user field or in the
JTA:

DDL Dataset Definition List
DNT Dataset Name Table
DSP Dataset Parameter Area
JCB Job Communication Block
LFT Logical File Table
ODN Open Dataset Name Table
PDD Permanent Dataset Definition
SWT Security Swap Table
TCB Task Control Block
UPT User Security Privilege Table

8.6.1 DATASET DEFINITION LIST (DOL)

The Dataset Definition List is used to pass dataset parameters used in
creating or modifying the DNT on a F$DNT call.

8.6.2 DATASET NAME TABLE (DNT)

The DNT is a table in the JTA containing an entry for each dataset of a
job. The DNT is used to pass parameters to the Disk Queue Manager. The
DNT contains pointers to the Device Allocation Table and to the active
DSP for the dataset, if one exists. The DNT also contains important
dataset characteristics and status.

8.6.3 DATASET PARAMETER TABLE (DSP)

The DSP is required for all user I/O and contains pointers to the dataset
buffer. DSPs for system-managed datasets such as the control statement
file ($CS) and the user logfile ($LOG) are contained in the JTA. An
additional DSP, for the F$DJA and F$EXU functions, is also contained in
the JTA. Three types of user DSPs are known to the system. A
system-area DSP is one that resides in the area between JCDSP and JCBFB
at the high-address end of the user field length. It is pointed to by a
system-area (between JCLFT and JCDSP) LFT (multiple LFTs if the dataset
has aliases). It conventionally points to a buffer in the system buffer
area (between JCBFB and JCFL). A user-area, system-managed DSP is one
that resides in the user area (between L@JCB and JCHLM). It is pointed

SM-0040 8-27 C

I

USER AREA TABLES USED BY EXP EXCHANGE PROCESSOR

to by a user-area LFT (see LFT description). It points to a buffer in
the user area. A user-area user-managed DSP is one that resides in the
user area. It does not not have any LFTs associated with it. It points
to a buffer in the user area •

. 8.6.4 JOB COMMUNICATION BLOCK (JCB)

The JCB occupies words 0 through 1778 of the user field and supports
communication between EXP and the user.

8.6.5 LOGICAL FILE TABLE (LFT)

The LFT is a table having two sections. LFT entries exist for most open
datasets. They are created by the system or the user when datasets are
opened or aliases added. One section, containing what are known as the
system-area LFTs, resides at the high-address end of the user field
(between JCLFT and JCDSP). It contains an LFT entry for each system-area

DSP. The LFTs in the system area point to system-area DSPs. All active
system-area LFTs have field LFOST equal to OSTSA. The system LFT area is
increased as necessary by the system.

The second section of the LFTs, containing what are known as the
user-area LFTs, resides within the user area. Field JCULFT points to the
base of the first user-area LFT entry. Any number of entries can exist
contiguous with the first LFT entry. A continuation entry consists of
word 0 of the LFT equal to -1, and LFDSP containing a pointer to the next
block of LFTs. Field JCNULE reflects the total number of user-area LFTS
(including continuation entries). The user-area LFTs contain an entry
for each system-managed user-area DSP, and point to those user-area
DSPs. All active user-area LFTs have field LFOST equal to OSTUA. When
an OPEN is done for a user-area system-managed LFT/DSP/buffer, the user

.must ensure that sufficient user-area LFT entries are available. This is
because the system cannot increase the user LFT area. Additionally, the
system maintains in the JTA a copy of all user LFTs, both user-area and
system-area, from which it validates the user LFTs at necessary intervals.

8.6.6 OPEN DATASET NAME TABLE (ODN)

The ODN table in the user field is required when opening or closing a
dataset (FOPN, FRLS, F$RCL, or F$POS call) •

SM-0040 8-28 C

EXCHANGE PROCESSOR JOB RERUN

8.6.7 PERMANENT DATASET DEFINITION (POD)

A PDD table in the user field is required for a user permanent dataset
management request (FPDM, FAQR, or F$DIS). A POD table in the JTA is
used by EXP when releasing a permanent dataset.

8.6.8 SECURITY SWAP TABLE (SWT)

The Security Swap Table (SWT) is used to pass system job fields from the
caller into the JTA when using a F$PRV call with a subfunction of PRV$SWP.

8.6.9 TASK CONTROL BLOCK (TCB)

The Task Control Block contains all execution-point related information
(corresponding to a user task) including the exchange package, B, T, and
V registers, EXP save areas, EXP internal use tables (DOL, POD, etc.),
and CPU timing information.

8.6.10 USER SECURITY PRIVILEGE TABLE (UPT)

The User Security Privilege Table (UPT) passes user privileges, violation
counts, and the user number of a F$PRV call whose subfunction is PRV$SPF
into the JTA. The UPT also passes user privileges, user number, and
violation counts to the caller from the JTA on a F$PRV call with
subfunction PRV$RPF.

8. 7 JOB RERUN

Under certain conditions, termination of job processing and returning to
the input queue for reprocessing at some later time is desirable or
necessary. This is known as rerunning a job. When a job is rerun, the
results of the second (or subsequent) execution should be the same as
those obtained if the original execution continued to a normal
termination. However, after a job has performed certain functions having
a lasting effect on the system (in particular, functions that make
changes in the contents of permanent datasets or the Dataset Catalog) ,
the system is unable to guarantee the same results for the rerun job.

SM-0040 8-29 c

JOB RERUN EXCHANGE PROCESSOR

Normally, when EXP recognizes that the user is performing one of these
functions, the job is declared ineligible for rerun. While a job is
declared ineligible for rerun, it cannot be rerun under any conditions.
Normally, once a job is d~clared ineligible for rerun, its status cannot
be changed again to make it eligible for rerun. A job may become
eligible for rerun again only if the user program specifically requests
such a change, using the F$RRN system call (RERUN macro or RERUN control
statement). The system declares a job eligible for rerun after it has
been declared ineligible, only in response to a specific user request.

Through the F$NRN system call, the user can prevent EXP from declaring a
job not rerunnable, regardless of what functions are performed. This
prohibition remains in effect until the user specifically re-enables the
detection of nonrerunnable functions. This does not affect the current
rerunnability of a job; it merely prevents future declaration of
nonrerunnability. The NORERUN macro and control statements permit
enabling or disabling detection of conditions that normally cause a job
to be not rerunnable.

The following functions on a permanent dataset cause a job to be declared
ineligible for rerun:

• SAVE

• DELETE

• MODIFY

• ADJUST

• Any write operation involving a permanent dataset

Conditions resulting in an attempt to rerun a job are:

• Operator entry of a RERUN command.

If the job has already been declared ineligible for rerun, the
RERUN command is not accepted and the job is not affected.

• A disk error while attempting to read the roll image of a job
copied to mass storage causing a system interruption and the job
to be rerun.

SM-0040

If the job is ineligible for rerun and the roll image cannot be
read, the job is returned to the input queue and aborts with an
informative message as soon as the Job Scheduler attempts to
reinitiate the job.

8-30 c

EXCHANGE PROCESSOR REPRIEVE PROCESSING

• A system software or hardware failure necessitates a system
Restart.

If recovery of rolled jobs is not performed or if the job is
irrecoverable (see Job Recovery), Startup attempts to rerun the
job from the beginning. If the job is ineligible for rerun, it
aborts with an informative message when the Job Scheduler attempts
to reinitiate the job.

In any case, an informative message appears in the user log and System
Logfile whenever a job is rerun or a rerun is necessary, but the job is
ineligible for rerun. A rejected operator RERUN command produces no
messages in either log.

8.8 REPRIEVE PROCESSING

Reprieve processing enables a user program to gain control in a uniquely
identified routine when a job step completes either normally or
abnormally. This routine is entered with reprieve processing enabled.
The user program can recover from the termination; however, an abort due
to an I/O error can produce unpredictable results if the dataset is
accessed in the reprieve routine.

When a job step termination condition occurs, either normally or
abnormally, the F$ADV or F$ABT system action routine determines if a
reprieve request has been issued and if the abort condition has been
specified by the user as reprievable. If so, the reprieve processing
routine, ERPV, gains control and performs these tasks:

1. Clears the current reprieve values

2. Copies the exchange package, Vector Mask register, error class
code, and actual error code contents to the user-specified area

3. Sets up the user-specified reprieve routine to receive control
when the job is selected for execution, by placing its address in
the Program Address register of the exchange package.

Reprieve processing is initiated either by issuing the SETRPV macro
instruction in a CAL program or by calling the SETRPV library routine in
CFT. Both requests invoke execution of the $SETRPV library routine.
$SETRPV issues an F$RPV system action request, which saves the user
specified reprievable error class code and the address of the reprieve
code in the JTA.

The ENDRPV macro instruction in CAL or the ENDRPV call in CFT terminates

SM-0040 8-31 C

IRRECOVERABILITY OF JOBS EXCHANGE PROCESSOR

the job step. The job step terminates as if reprieve processing had
never been in effect.

The CONTREPV macro allows the user to pass the system an Exchange Package
to copy over the current Exchange Package. Thus interrupted execution
can be resumed.

8.9 IRRECOVERABILITY OF JOBS

By performing the following functions, a job will be declared
irrecoverable:

• A random write on any dataset,

• A sequential write on any dataset immediately following any
forward positioning, rewind, or read on that dataset. Thus, the
position of the end of data is changed, which could cause the job
to behave differently if started from a previous roll image.

• A SAVE, DELETE, ADJUST, PERMIT, or MODIFY of a permanent dataset,
and

• A release of a local dataset, returning disk space to the system.

In any event, the job becomes recoverable as soon as the Job Scheduler
rolls the job out to mass storage again.

A job is declared irrecoverable by a call from EXP to the Job Scheduler
(JSH). If the job is already marked irrecoverable, JSH returns without
further action. If the job is not already marked irrecoverable, JSH
suspends the job, changes the Rolled Job Index Table (RJ), and writes the
modified index to disk. When the modified index is successfully written,
JSH resumes the job. Writing of the index always occurs before EXP
performs the request making the rolled image invalid.

SM-0040 8-32 C

I
I

JOB SCHEDULER (JSH)

The Job Scheduler (JSH) task is responsible for:

• Initiating processing of a job

• Initiating processing of user tasks

• Selecting a user task to be active

• Managing job roll-in and roll-out

• Terminating user tasks

• Terminating a job

9.1 INTRODUCTION

A batch job enters the system as an input dataset staged to the Cray
computer by a front-end processor. An interactive job enters the system
as a LOGON request. In either case, the staging task (STG) builds a
System Dataset Table (SOT) entry containing the job card parameters and
sufficient information to find the input dataset, whether it be a mass
storage dataset or an interactive dataset.

9

I When the last user task in a job completes, a J$DELETE (delete task)
request is made to the Job Scheduler. The Job Scheduler then disconnects
the CPU, deallocates the memory, and frees the JXT. As a final step, the
SOT associated with the job is returned to the available queue, and the
disk resident dataset containing the input job is deleted. Except for
the output datasets, which can still be staging back to the front end,
all processing required by the job is complete at this time.

The Job Scheduler performs the following functions for all jobs:

• JXT allocation

I • Initial TXT allocation

• Memory allocation

• CPU connection

SM-0040 9-1 c

I

I
I

I
I

I

JSH DESIGN PHILOSOPHY JOB SCHEDULER

JSH allocates a Job Execution Table (JXT) entry for each job. The
information in the JXT contains the current status of the job, location
in memory or on a roll file, and working values of priorities. The TXT
contains working values concerning CPU use. The most recent job logfile
and most recent control statement message are present in the JXT to allow
the operator to determine the current job step.

JSH allocates memory to each job represented by a JXT entry. After the
memory is allocated, the job is either relocated in memory, read in from
the roll file, or initialized. Based on priority considerations, a
memory allocation can be taken away from a job, and the job can be
written out to the roll file.

JSH allocates the CPUs among the user tasks present in memory and ready
to run. A user task is disconnected from the CPU when it suspends itself
to wait for a system service, when it exhausts its allocated time slice,
or when it is preempted because another (higher priority) user task is
made ready to run.

9.2 JSH DESIGN PHILOSOPHY

The Job Scheduler incorporates the following design criteria:

• Equal jobs should share available resources.

• Resource use should be balanced between CPU-bound and I/O-bound
jobs.

• Higher priority jobs should be allowed more resource use than
lower-priority jobs.

• Responsiveness (quick completion of a job step by human standards)
should be available to those jobs that require it.

System resources must be shared between equal jobs. This criterion leads
to a job scheduler acting as a perfect round-robin mechanism. Each user
task receives a CPU for a certain time slice and is then disconnected.
After a CPU is given to each of the other waiting user tasks for the same
time slice, the scheduler returns to the first user task.

The second criterion arises because not all jobs are equal. Some jobs
are CPU-bound and others are I/O-bound. An I/O-bound user task does not
use its full time slice before beginning the next I/O operation. Such a
user task needs to be connected to the CPU more often in order to
complete in a reasonable elapsed time and to make efficient use of the

SM-0040 9-2 C

I

I
I

I

I

I
I

JOB SCHEDULER JXT ALLOCATION

external channels. This efficiency is accomplished by breaking the
round-robin circle and making a queue. A CPU-bound user task comes to
the head of the queue, exhausts its time slice and moves to the bottom of
the queue. An I/O-bound user task stays at the head of the queue blocked
for I/O and some other user task near the head of the queue is
connected. A CPU-bound user task could possibly exhaust its time slice
and be moved to the bottom of the queue several times before an I/O-bound
user task at the head of the queue exhausts its time slice once.

The third criterion also arises because not all jobs are equal. The jobs
more important to an installation are given a higher priority. The
scheduler is expected to give preference to these jobs. In terms of time
slices, the tasks in a high priority job receive a larger time slice.
This is not an absolute preference. Because all time slices expire,
there are times when a high priority user task follows a low priority job
in the queue. However, if other factors are equal, the high priority job
completes before the low priority job.

The fourth criterion is responsiveness. This is first of all an
interactive requirement. However, an operator KILL command is an example
where responsiveness is needed in a batch environment. While the first
solution is to raise the priority in these situations, this can be
abused. For example, a long job step should not be allowed to dominate
the CPU simply because an operator DROP command terminates the previous
job step. An interactive user should not be rewarded for typing the
control statements of a job that should be left to run overnight.
Responsiveness is worth having only because there is an expectation of
quick completion. In terms of the queue of user tasks waiting for CPU
connection, responsiveness is provided by placing the job at the head of
the queue. Abuse is prevented by giving the user task a short time slice.

These four criteria are design goals applicable to many job schedulers.
The JSH task as released contains defaults in an attempt to meet these
criteria. Because installations differ, there is an implementation
criterion of tunability. The Job Scheduler can be changed to give
preference to the mix of jobs which are important to a given
installation. Anyone of the four design criterion mentioned above can
be disabled or emphasized at the expense of the other three. This is
done at system generation time or by operator commands without taking
down the system.

9.3 JXT ALLOCATION

The scheduling of JXTs is unique in that the JXT allocation cannot be
reversed. If a poor decision is made in memory allocation, the job can

SM-0040 9-3 C

JXT ALLOCATION JOB SCHEDULER

be rolled out and the memory deallocated. Similarly, the CPU can be
disconnected as easily as it can be connected. However, a JXT is locked
to the job until job termination. For this reason, the JXT allocation is
made cautiously.

The number of JXTs available to the system is set by the installation
parameter I@JXTSIZ. The number of JXTs available for allocation is given
by the variable JXTMAX, subject to the upper bound I@JXTSIZ. JXTMAX can
be changed by the operator LIMIT command. A system startup, SUSPEND ALL
operator command, or a SHUTDOWN command will set JXTMAX to zero. No jobs
are initiated until an operator command raises JXTMAX.

The jobs awaiting JXTs are on the SDT input queue in class rank and job
priority order. The SDT entry contains the job name, maximum field
length, $OUT size, generic resource requirements, and CPU time limit from
the job card.

The SDT also contains the job class assignment made by the Job Class
Manager (JCM) when the job enters the input queue. The class assignment
can be based on resource limits such as time limit; in which case it
takes the form of a contract between the system and the job. In return
for initiation priority, the job promises to finish in a given amount of
time. The class assignment can also be used by the installation to
reserve an initiation for jobs important to the site.

A final input to the JXT allocation process is the flag JADDFLAG. This
flag is set nonzero when a change occurs in the system to make it
possible to initiate another job. For example, job termination and job
class assignment both set the JADDFLAG flag. When the flag is set, each

I input SDT entry is examined against the following criteria:

I
First, the priority must be nonzero.

Second, the job must belong to an active class (that is, a class
which is ON).

Third, all JXTs reserved for higher ranked classes must remain
available.

Fourth, the job class where this SDT is assigned must have a JXT
available. This can be either a JXT specifically reserved for this
class or a pool JXT available if the class maximum is not exceeded.

Finally, the system generic resources required by the job must be
available. These are resources such as tape drives which are not shared
between jobs. As a simple deadlock prevention mechanism, a job is not
allowed to initiate unless all the nonsharable resources are allocated to
the job.

SM-0040 9-4 C

I

JOB SCHEDULER MEMORY ALLOCATION

In short, for any job to be initiated, the first job on the input SDT
queue which satisfies these conditions is allocated a JXT. The JXT is
placed in the memory request queue where it competes for a memory
allocation. The variable JADDFLAG is set nonzero to enable another scan
of the SDT queue.

9.4 MEMORY ALLOCATION

Memory allocation is the process of mediating the privilege to reside in
memory among jobs which are not in memory and not suspended and jobs
which are in memory.

I 9.4.1 ROLL TIME VERSUS RESPONSIVENESS

Two contradictory goals need to be considered during memory allocation.
First, because rolling out one job in favor of a second job requires a
comparatively long time in terms of CPU cycles, there should be a lengthy
time interval between such roll decisions. Second, in situations where
responsiveness is a consideration, the process of rolling in the required
job must start immediately. Valid reasons can be given for wanting to
emphasize either of these goals or even both at different times. The Job
Scheduler algorithm was designed with both of these goals in mind.

I 9.4.2 MEMORY REQUEST QUEUE

The first tool used to make the memory allocation decision is an ordered
queue of all jobs awaiting memory. This memory request queue is kept in
order by job card priority. For example, a new priority seven job is
added after existing priority seven jobs, but before any priority six
job. This gives the queue a first-in, first-out ordering among jobs of
equal priority and removes the need to age memory priorities among jobs
having no memory allocation.

I 9.4.3 MEMORY PRIORITY

The second tool used to make the memory allocation decision is simply the
memory priority. This is a 64-bit quantity kept in JXFMP which is
determined by one of the following five formulas:

SM-0040 9-5 C

I

MEMORY ALLOCATION JOB SCHEDULER

The easiest formula gives JXFMP for a suspended job. The formula is:
JXFMP=O. If the job is rolled out, it is not in the memory request
queue. If the job is in memory, it is in the suspended queue and is
rolled first when memory is required.

The next formula gives JXFMP for those jobs in the memory request queue
where responsiveness is not a consideration. The formula is: JXFMP=P.
That is, the memory priority is equal to the job card priority expressed
in floating-point form.

The formula giving JXFMP for those jobs in the memory request queue where
responsiveness is required is: JXFMP=SB (sign bit). These jobs are
found at the head of the memory request queue.

The fourth formula computes the memory priority of a job which has
recently been brought into memory (rolled in or initiated). The formula
is:

JXFMP = P + I@JSMPA + I@JSMPB*(M/I@JFLMAX) - T/I@JSMPC

where:

I P is the JOB control statement priority

I M is the current job size in 1000S word allocation units

I

T is the elapsed time since roll in or initiation completed

I@JSMPA and I@JSMPB are system tuning parameters.

I@JSMPC is a tuning parameter.

I@JFLMAX is an installation parameter which defines the largest
amount of memory granted to any user job.

The two terms I@JSMPA and I@JSMPB raise the priority of a job just rolled
in. The term I@JSMPB can be used to give higher priority to a large job
requiring more time to roll.

The fifth formula, also used for jobs currently having a memory
allocation, sets a floor under the fourth formula. It is given by:

JXFMP = P-I@JSMPD

Note that if I@JSMPD is less than 0, a job is never rolled out to make
room for another job of equal priority. On the other hand, if I@JSMPD is
greater than 2, a priority five job can force a priority seven job to
rollout.

SM-0040 9-6 C

I

JOB SCHEDULER MEMORY ALLOCATION

9.4.4 THRASH LOCKS

The third tool used in making the memory allocation decision is a set of
three tuning parameters which put a limit on how quickly a job is
rolled. These are the system thrash locks found in I@JSLKI, I@JSLK2, and
I@JSLK3. A job receiving a memory allocation cannot be rolled out until
I@JSLKI cycles after the job is rolled in. Conversely, a job rolled out
without being suspended does not enter the memory request queue until
I@JSLK2 + I@JSLK3*(M/I@JFLMAX) clock periods have elapsed. This
minimizes thrashing.

9.4.5 ALLOCATION FLAG

A final input to the memory allocation process is a flag, JALLFLAG. This
flag is set nonzero when:

• The head of the memory request queue changes,

• A rollout completes,

• A job in memory is waiting for more memory, or

• A job eligible to be rolled exhausts its time slice.

When the flag is nonzero, the memory allocation process executes.

9.4.6 TABLES USED BY ALLOCATION

Several counters associated with memory allocation are maintained
throughout JSH. MEMSUSP, MEMROLNG, MEMTALLY and MEMDEMD (defined below)
keep track of the amount of memory currently (or soon to be) available.
The flags, JALLFLAG and JSQZREQS (defined below) are the means by which
memory scheduling is invoked. JSQZREQS is set whenever compaction is
attempted and a job could not be moved because of I/O.

The Memory Request Queue (MEMQ) is used by JSH to keep track of all jobs
eligible for memory allocation. The MEMQ is a priority-ordered queue
(highest-priority job on top). Within priorities, the queue is first in,
first out.

Assuming that free memory is not sufficient for an allocation, a job in
the MEMQ gains a memory allocation if:

SM-0040 9-7 C

I

MEr«>RY ALLOCATION JOB SCHEDULER

• Enough memory is occupied by jobs having memory priority less than
the job waiting and all such memory has been occupied for at least
the in-memory thrash lock (I@JSLKI). This quantity of memory is
called aged memory and kept in cell MEMAGED. MEMAGED is
calculated in subroutine AGEME.

• The job has a higher priority than everything else in the MEMQ.

Almost every SUSPEND/RESUME transition causes a job to be left in the
MEMQ with a special priority called DEMAND priority (JXFMP=SB). The only
restriction on a memory allocation for a DEMAND priority job is the
number of jobs in memory that exceed their thrash locks.

When memory scheduling is invoked, MEMAGED is calculated, in turn, for
each job in the MEMQ. An allocation is performed for jobs with MEMAGED
sufficiently large (or the size of the job is sufficiently small), taking
free memory into account.

JSH keeps track of the amount of subordinate memory relative to a job
waiting for an allocation (MEMSUBRD, defined below) in order to keep
small, low-priority jobs (which are easy to fit into memory) from always
gaining a memory allocation before large high-priority jobs. Subordinate
memory is the amount of memory occupied by jobs of lower JXP. When
MEMSUBRD is sufficient for an allocation but MEMAGED is not, a limit
(JSALLLIM) is set on the MEMQ search and JSH waits until JALLFLAG is
set. Assuming a higher-priority job is not introduced into the MEMQ, the
job at JSALLLIM eventually gains an allocation unless the amount of free
memory changes (JSALLSMD and JSALLMTD).

Whenever a job gains a memory allocation and is removed from the MEMQ,
the MEMQ search limit, JSALLLIM, is set to the bottom of the MEMQ
allowing small, low-priority jobs into memory until a normal or
subordinate allocation is found.

The following cells are maintained in STPTAB.

• MEMORY is the total amount of memory in the system that can be
allocated to user jobs when STAGER is not active.

• MEMJOBS is the total amount of memory that is currently
allocatable to jobs, that is, MEMORY less the dynamic portion of
STAGER buffers.

• MEMTALLY is the total amount of memory which is unallocated (from
the MST) •

• MEMROLNG is the amount of memory being rolled out.

SM-0040 9-8 c

I

JOB SCHEDULER MEMORY ALLOCATION

• MEMSUSP is the amount of memory occupied by jobs having all tasks
suspended.

• MEMAGED is the amount of memory occupied by jobs whose in-memory
thrash locks have expired and who have memory priority less than
the job for which MEMAGED is calculated.

• MEMSUBRD is the amount of memory occupied by jobs having JXP less
than the job for which MEMSUBRD is calculated.

• MEMDEMD is the amount of memory required by all jobs in the MEMQ
having DEMAND priority.

• JROLLCTL is a flag indicating whether rolling is allowed. There
are no operator commands to control the state of this flag.
Rolling is allowed when this flag is set.

• JOBCOUNT is the number of jobs in memory.

• I@EXPANS is the amount of space that must be left free after a
memory allocation. The space need not be contiguous.

• I@JOBMIN is the minimum number of jobs that must be in memory
before expansion space (I@EXPANS) is enforced.

The following cells are used by JSH internally.

• JSALLCPR is the priority of the current allocation, assuming that
MEMQ is not empty. JSALLCPR is almost always checked before
signaling memory allocation with JALLFLAG.

• JSALLCSZ is the size of the current allocation.

• JSAMGOAL is used by subroutine MEMRY to keep track of the amount
of memory that must be freed or rolled to make room for the
current allocation.

• JALLFLAG indicates that memory has been freed or that a new job
has been added to or removed from the MEMQ.

• JSQZREQS indicates that a previous attempt to compress memory
failed (I/O active, job not movable).

• JSALLPEN indicates that an allocation is pending and the scheduler
is waiting for job(s) to finish rolling out.

• JSALLORD is the JXT ordinal of the current allocation.

SM-0040 9-9 C

I

MEl«>RY ALLOCATION JOB SCHEDULER

• JSALLLIM is the JXT ordinal of the lowest priority job that will
be considered during the current pass through memory allocation.

• JSALLSUB indicates that the job at JSALLORD could gain a memory
allocation, if all jobs with lower JXP become available to roll.

• JSALLMTD indicates that a job in memory successfully expanded,
since the last time memory allocation exited with a pending
subordinate memory allocation causing MEMTALLY to decrease.

• JSALLSMD indicates that a job with all tasks suspended had at
least one of its tasks resumed, since the last time memory
allocation exited with a pending subordinate memory allocation
causing MEMSUSP to decrease.

All time intervals used in memory priority calculations are elapsed
times. It is the responsibility of the CPU connection process described
in the next section to schedule CPU time for the job's tasks.

In the examples which follow, jobs A, B, C, and D are identical. Each
has equal priority and requires one third of available memory to
execute. Job L was obtained by doubling the size of job D. Job d is
simply D with a smaller priority.

Figure 9-la shows four jobs that must share memory three at a time. At
time to, jobs A, B, and C arrive in memory. At time tl' the memory
priority of jobs A, B, and C ages to job statement priority P. Since job
D is waiting for memory, A rolls out and D rolls in with an initial
memory priority identical to that of jobs A, B, and C at to. At time

PRIORITY

I@JSLK2~

to

Figure 9-la. Memory priority variation

SM-0040 9-10 C

MEMORY ALLOCATION JOB SCHEDULER

MEMORY
PRIORITY

p

to

B~ _______ _

I@JSLK2

TIME

Figure 9-lc. Memory priority variation

\
JOB
S'£ATEMENT
PRIORITY

Figure 9-ld shows four jobs of equal size, one having smaller priority.
Because I@JSMPD is set large enough, the lower priority job will receive
a memory allocation at certain times. At time to' jobs A, B, and C
arrive in memory. At time tl' job A ages to p. Job A rolls out~ job d
rolls in. At time t 2 , the out of memory thrash lock expires for A. A
rolls in and B rolls out. Note that the memory priority of d is still
higher than that of C. At time t3' the out of memory thrash lock
expires for B. B rolls in; C rolls out. At time t4' the out of memory
thrash lock expires for C. C rolls in; d rolls out. At time ts, the
memory priority of job A ages to p. A rolls out~ d rolls in. At time
t 6 , the out of memory thrash lock expires for A. A rolls in~ BroIls

MEMORY
PRIORITY

SM-0040

TIME

Figure 9-ld. Memory priority variation

9-12

PRIORITY

C

I

I
I

I
I

JOB SCHEDULER CPU CONNECTION

out. At time t7, the out of memory thrash lock expires for B. BroIls
in; C rolls out. At time ta, the out of memory thrash lock expires for
C. C rolls in; d rolls out.

Figure 9-le shows the same situation as figure 9-ld with responsiveness
an added consideration. At the beginning of the graph, job d is
suspended by the operator. At time to' the operator types a DROP
command against the job. The job is rolled in quickly. However, at time
t l , the job is no longer protected by I@JSLKI and is rolled back to the
disk.

MEMORY
PRIORITY

P

p

___ A:~~ __________ _
---- -------- --.- ---- ----LJ
I@JSLK2~

~

TIME

Figure 9-le. Memory priority variation

l JOB STATEMEN'I
PRIORITY

9.5 CPU CONNECTION

The goal of the CPU connection algorithm is to quickly find a user task
eligible to be connected to a CPU and connect it. In addition, system
environment is taken into account to assure that I/O-bound user tasks are
connected more often, high-priority user tasks receive more connect time,
and user tasks requiring responsiveness receive connect time quickly.

The principal tool making the connect decision is an ordered queue of all
user tasks eligible to be connected. To speed the decision, user tasks
are removed from this queue when they are suspended for any reason other
than an I/O suspend. The user task to be connected is the first user
task in the queue which is not suspended for I/O.

Each user task in the queue has a positive time slice kept in JXTS and
expressed in units of CPU cycles. This time slice is allocated by one of
three methods when the job enters the queue:

SM-0040 9-13 C

CPU CONNECTION JOB SCHEDULER

I • If a user task entering the queue has a zero time slice as happens
if the job just rolled in, the time slice is set equal to the

I system tuning parameter I@JSITS. The user task is entered into
the queue at the head.

I • If the user task entering the queue has a negative time slice, as
happens if the previous time slice is exhausted, a new time slice
is computed using the formula:

I

I

I

I
I

I

I

JXTS = I@JSTS3 + I@JSTS2*(P) + I@JSTSl*(P2) + I@JSTSO*(P3)

where:

P is the job card priority and I@JSTS3, ••• , I@JSTSO are system
tuning constants. The user task is entered into the bottom of the
queue. A time slice computed by this formula is subject to an
upper bound to prevent job time limit overrun.

• The third method for assigning a time slice is used when a user
task reenters the queue with an existing positive time slice.
This happens when a job completes a job step and is removed from
the queue to wait for I/O to finish. Because the queue is
constantly changing, the user task cannot be reinserted at its
former location. The user task is entered at the head of the
queue with a time slice equal to:

JXTS = MIN(I@JSITS, JXTS}.

If the user task which is ready is at the head of the queue, it preempts
the currently connected user task.

Each time a user task is disconnected, whether as a result of a suspend
call by the user task or as a result of being preempted, the time spent
executing is subtracted from the current time slice. Because heavily
I/O-bound programs such as disk exercisers can run for a long elapsed
time with little CPU time spent in the user space, an additional amount
reflecting part of the system overhead of doing a disconnect is also
subtracted from the time slice. This additional amount is a system
parameter called the disconnect cost I@JSCOS.

When a time slice becomes negative, the user task is removed from the CPU
queue. In addition, some bookkeeping is performed for the memory
allocation process. The value of the memory priority is updated. If the
memory priority is at the minimum specified by P-I@JSMPD, a bit is set
and further memory priority updates can be skipped. The elapsed time
since last residence change is compared to the system thrash lock
parameter. If it is permissible to roll this job, the available-to-roll
bit is set. Finally, the memory priority of the job whose task is being

SM-0040 9-14 C

I

JOB SCHEDULER

TIME
SLICE
REMAINING

CPU CONNECTION

o~ __ ~ __________ ~ ________ +-______________ __

to

REAL TIME IN MEMORY

Figure 9-2. Time slice for CPU-bound user task

disconnected is compared against the memory priority of the job awaiting
I the next memory allocation. If the job whose task is being disconnected

is rolled to make way for the waiting job, the size of the first job is
added to MEMAGED and the allocation flag JALLFLAG is set nonzero.

I Figure 9-2 shows the graph of the time slice for a CPU-bound user task.

I

Between time to and tIl it is at the head of the queue. From time
tl to t2' it is too close to the bottom to be connected. After time
t 2 , it can be connected if the user tasks ahead of it are blocked for
I/O.

SM-0040

TIME
SLICE
REMAINING

OL-____ ----------~ ________________________ __

to tl

REAL TIME IN MEMORY

Figure 9-3. Time slice for I/O-bound user task

9-15 C

I

I

I

CPU CONNECTION JOB SCHEDULER

Figure 9-3 shows the graph of time slice for an I/O-bound user task.
Between to and tl, it is at the head of the queue.

TIME
SLICE
REMAINING

to tl

REAL TIME IN MEMORY

Figure 9-4. CPU competition

Figure 9-4 shows the time slices of a CPU-bound user task C and an
I/O-bound user task I as they compete for CPU time. At time to, C is
at the head of the queue. Note that C exhausts its second time slice
without coming to the head of the queue.

TIME
SLICE
REMAINING

I@JSITS

o points where J$SUSPK occur

x points where J$RESUME occur

\
\ \ \

~--------------~--------------
REAL TIME IN MEMORY

Figure 9-5. Suspended user task

I Figure 9-5 shows a user task which is performing an AUDIT. Because the
F$PDM call to EXP results in a J$SUSPK (suspend but keep in memory) call

SM-0040 9-16 C

I

I

JOB SCHEDULER MEMORY MANAGEMENT

to JSH, the user task is removed from the queue until a J$RESUME call
signals completion. The reentry time slice is bounded above by I@JSITS.

Figure 9-6 shows an interactive user task beginning a CPU-bound job
step. Because the step cannot complete, the user task loses its
head-of-the-queue advantage.

TIME
SLICE
REMAINING

I@JSITS

9.6 MEMORY MANAGEMENT

REAL TIME IN MEMORY

Figure 9-6. Interactive job

Memory management consists of managing the memory available from the
system for use by jobs. The Job Scheduler performs this task for the
system.

The Job Scheduler (JSH) management of the memory reserved for users will
be described first, then management of an individual job's memory will be
described followed by a description of the memory requests involved in
memory management.

9.6.1 JSH MANAGEMENT OF USER MEMORY

Memory is allocated to the system by STARTUP at both the low-address and
high-address ends of memory. After all system tasks have been
initialized, JSH claims the remaining 512-word decimal blocks of memory
for future allocation to jobs or to the system for system buffers.

SM-0040 9-17 C

MEMORY MANAGEMENT JOB SCHEDULER

Segments of memory are allocated to jobs by the Job Scheduler using a
first fit method; that is, the job is allocated memory from the first
(lowest addressed) segment large enough to contain it. The last (highest
addressed) segment is always allocated to the system. Segments are
allocated in multiples of 512-word decimal blocks.

Deciding who gets memory

JSH allocates the initial system segment during JSH initialization. This
segment is at the high-address end of the block of memory allocated to
jobs (from SBUFBASE to MEMMAX) and is I@BFSIZ words long.

Jobs that are waiting for memory are jobs that are either in memory and
need to expand or they are not in memory (initiating or rolled out to
disk) and need to be brought into memory. When allocation is possible,
JSH looks to see if a job that is waiting for memory can be given
memory. Jobs that are waiting for memory are scanned in descending
priority order.

The system gets priority over jobs for memory_ When a system request is
made for memory, JSH immediately looks to see if the system can be given
memory.

A tally is kept of the total amount of memory that will be available when
all currently scheduled rolls complete. If this tally indicates that
there is enough free memory to satisfy the waiting job (system), the job
(system) will be given the memory. If there is not enough memory
available, any jobs that are either suspended or of a lower priority will
be rolled out if rolling them out would enable the request to be
satisfied. If a job that is in memory cannot expand (that is, not enough
jobs in memory are either suspended or of a lower priority), it will be
considered suspended and will be rolled out if any other job or the
system needs its space.

Expansion space

A job is brought into memory (initiated or rolled in from disk) only if
there is enough memory to contain the job and leave I@EXPANS amount of
expansion space. Expansion space is required to allow the jobs that are
already in memory to expand. Expansion space is ignored whenever there
are fewer than I@JOBMIN jobs in memory.

Figure 9-7 shows memory after JOBI and JOB2 initiate and JOB3 rolls in.
JOB4 will not be brought in because not enough memory is available to
contain the job and the required expansion space.

SM-0040 9-18 c

JOB SCHEDULER MEMORY MANAGEMENT

JOBI

JOB2

JOB3

Available

Figure 9-7. Memory allocation

JOBI JOBI
Available

JOBI
Available JOB2

JOB2 JOB2 JOB2 JOB2

JOB3 JOB3 JOB3 JOB3 JOB3

JOBI
JOB 4

Available Available JOBI

Available Available

System System System System System

(a) (b) (c) (d) (e)

Figure 9-8a - 9-8e. Memory management

SM-0040 9-19 c

MEMORY MANAGEMENT JOB SCHEDULER

Allocating, deallocating, and compacting memory

Figure 9-8a shows memory before any change. Figure 9-8b shows memory
after JOB4 terminates and JOBI decreases its field length. The freed
memory is marked available. Consecutive available segments are merged
into one larger available segment but no other memory compaction is done.

Figure 9-8c shows memory after JOBI increases its field length. JSH
expands a job in place whenever possible.

JOBI JOB I

Available JOB2

JOB2 JOB 3

Available JOB4

JOB 3 JOBS

JOB4
JOB6

JOBS

JOB 6 JOB7

JOB7 JOB8

Available

(a) (b)

Figure 9-9. Memory compaction

SM-0040 9-20 C

JOB SCHEDULER MEMORY MANAGEMENT

Figure 9-8d shows memory after JOBI increases its field length again. If
expansion in place is not possible, the job is moved to the first (lowest
addressed) available segment large enough to contain the job. If there
is enough available space to contain the job but it is not contiguous,
the job will be rolled out and memory will be compacted.

Figure 9-8e shows memory after the system requests more space. Memory is
compacted upward and the system slot is increased by the requested amount.

When a job is being brought into memory and there is enough available
space but it is not contiguous, memory will be compacted. Memory is
compacted toward the low address end of memory until enough contiguous
space is available.

Figure 9-9a shows memory before any change. Figure 9-9b shows memory
after memory is compacted and JOB8 is rolled in.

9.6.2 MANAGEMENT OF A JOB'S MEMORY

A job's memory is composed of several areas. Some of these are managed
exclusively by the system for the user; others are managed by both the
system and the user.

Figure 9-10 illustrates the distinct areas within a job's memory. The
total job size equals the length of the job's Job Table Area (JTA) plus
field length. The lined area between JCHLM and JCLFT is pad (unused
space) within the job. Enough pad is always in the job to guarantee that
the job size is a multiple of 512 decimal words.

Requests to change a job's memory are made by the user and the system.
JSH is the only task that actually changes any area of memory within the
job, except the user code/data area. JCHLM is reset by other tasks and
programs (that is, EXP, eFT, etc.).

User requests

User memory requests are made using the MEMORY control statement, $SYSLIB
MEMORY routine, and CAL MEMORY macro. CSP processes the MEMORY verb by
using the MEMORY macro. The $SYSLIB MEMORY routine also uses the MEMORY
macro. The MEMORY macro makes a system call using the F$MEMORY system
function code only when necessary. Some requests require only a JCB
field access; in those cases the MEMORY macro gets the required JCB
information without calling the system.

SM-0040 9-21 C

MEMORY MANAGEMENT JOB SCHEDULER

o

128

JCHLM

JCLFT

JCDSP

JCBFB

JCFL

Job Table Area

Job Communication Block
,

~

User Code/Data Area

"V / //////// //// /// // ///// ////// ///1
V/////////////////////////////////
V/////////////////////////////////
V/////////////////////////////////

Logical File Tables

Dataset Parameter Area

I/O Buffers

.~/ Field
length

Figure 9-10. The areas of a job's memory

Job
size

EXP processes the F$MEMORY system request by making a J$ALLOC task
request to JSH.

System requests

System memory requests are made for jobs by EXP using a J$ALLOC request
to JSH. System memory requests are made for the system by STG and SCP
using J$GETM and J$RETM requests to JSH.

Special system handling is required when a job advances a step, loads a
binary for execution or terminates.

At job termination, EXP clears JCU (user-managed field length reduction
mode bits) and uses a J$ALLOC task request to JSH to decrease the user
code/data area to the size of the JCB. Since the job is in automatic
field length reduction mode, the field length will automatically be
decreased.

SM-0040 9-22 C

JOB SCHEDULER MEMORY MANAGEMENT

When the job advances a step, CSP is loaded with no field length
reduction. JCUL (the local memory mode bit) is cleared if the last verb
processed was not MEMORY. If the job is in automatic field length
reduction mode, the job's field length will be reduced to a size just
large enough to contain CSP before a system verb is processed (unless the
verb is defined in CSP so as to disallow automatic field length
reduction). MEMORY disallows such automatic field length reduction.

CSP and the loader load binaries for execution. The binary's PDT
contains the program length, the length of blank common, the amount of
pad that is to be left in the field length and whether the job is to be
placed in user-managed field length reduction mode before the binary is
loaded. CSP and the loader use the PDT information to set the correct
field length for the job.

J$ALLOC request processing

JSH processes the J$ALLOC task request. A J$ALLOC request can cause:

• Memory to be added to the end of the JTA,

• Memory to be added to or deleted from the end of the user
code/data area,

• Memory to be added to the beginning or end of the buffer area or
deleted from anywhere in the buffer area,

• Memory to be added to the beginning of the LFT area,

• Memory to be added to the end of the DSP" area, and

• The field length to be increased or decreased.

Changing any area of the job other than the JTA can also cause a change
in the job's field length and/or the amount of pad within the job.

Pad can be used to satisfy requests to expand any area in the job (except
the JTA) without causing the field length to increase. When the JTA
expands, pad is never used. The field length remains the same and the
job size increases by the amount of JTA expansion. When the job needs
memory to increase any area within the job (except the JTA) and there is
not enough pad to satisfy the request, the job's field length will be
increased. The field length is increased by an amount large enough to
satisfy the request and leave I@MINPAD pad in the job. When the job
releases memory from the user code/data and/or buffer areas, the released
memory remains within the job (in the JCHLM-JCLFT area) if the job is in
user-managed field length reduction mode or the resulting total pad would

SM-0040 9-23 C

MEMORY MANAGEMENT JOB SCHEDULER

not exceed I@MAXPAD. If the job is in automatic mode and the resulting
pad would exceed I@MAXPAD, the job's pad is reduced to I@MINPAD.

Figure 9-11 shows a decrease in memory at the end of the user codeldata
area. I indicates pad. x indicates area to be deleted. The field
length does not change because the job is in user-managed field length
reduction mode or the resulting total pad does not exceed I@MAXPAD.
JCHLM is decremented by the requested amount of decrease.

JTA JTA
JCB JCB

user codeldata user codeldata
xxxxxxxxxxxxxx IIIIIIIIIIIIII JCHLM
xxxxxxxxxxxxxx IIIIIIIIIIIIII

JCHLM IIIIIIIIIIIIII IIIIIIIIIIIIII
JCLFT LFT LFT JCLFT

DSP DSP
buffers buffers

Figure 9-11. Decreasing the user codeldata area

JTA JTA
JCB JCB

user codeldata
JCHLM IIIIIIIIIIIIII
JCLFT LFT

DSP
buffers

xxxxxxxxxxxxxx

user codeldata
IIIIIIIIIIIIII JCHLM
IIIIIIIIIIIIII

LFT
DSP

buffers

JCLFT

Figure 9-12. Decreasing the buffer area

Figure 9-12 shows a decrease in memory in the buffer area. I indicates
pad. x indicates area to be deleted. The field length does not change
when the job is in user managed field length reduction mode or the
resulting total pad does not exceed I@MAXPAD. The LFTs, DSPs and the
buffers preceding the deleted buffer are moved to a location equal to
their current location plus the size of the deleted buffer.

Figure 9-13 shows a decrease in memory at the end of the user codeldata
area. I indicates pad. x indicates area to be deleted. The field
length does change when the job is in automatic field length reduction
mode and the resulting total pad would exceed I@MAXPAD. JCHLM is
decremented by the requested amount of decrease. The pad between HLM and
LFT is reduced to I@MINPAD.

SM-0040 9-24 C

JOB SCHEDULER MEMORY MANAGEMENT

JTA
JCB

user codeldata
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

JCHLM 1111111111/111
1111111111/111

JCLFT LFT
DSP

buffers

JTA
JCB

user code/data
IIIIIIIIIIIIII JCHLM

LFT
DSP

buffers

JCLFT

Figure 9-13. Decreasing the user codeldata area

Figure 9-14 shows a decrease in memory in the buffer area. I indicates
pad. x indicates area to be deleted. The field length does change when

JTA
JCB

user codeldata
JCHLM 11111111111111/

11111111111111/
JCLFT LFT

DSP
xxxxxxxxxxxxxxx

buffers

JTA
JCB

user code/data
1111111111111/ JCHLM

LFT JCLFT
DSP

buffers

Figure 9-14. Decreasing the buffer area

the job is in automatic field length reduction mode and the resulting
total pad would exceed I@MAXPAD. The field length is reduced to the sum
of the user codeldata, LFT, DSP and resulting buffer areas, plus I@MINPAD.

SM-0040

JTA
JCB

user code/data
JCHLM 111111111/1111

111/11111/1111
111111111/1111

JCLFT LFT
DSP

buffers

JTA
00000000000000

JCB
user datalcode
1111111111111/ JCHLM
1111111111111/
1111111111111/

LFT
DSP

buffers

JCLFT

Figure 9-15. Increasing the JTA area

9-25 C

MEMORY MANAGEMENT JOB SCHEDULER

When the job requests an increase of memory in the JTA, pad is never used
and the job size always increases by the requested amount. Figure 9-15
shows an increase in memory at the end of the JTA area. I indicates
pad. 0 indicates new area. The field length does not change. The job
size is increased by the requested amount. The entire field length is
moved to a location equal to its current location plus the requested
amount of increase.

When the job requests an increase of memory in any area of the job other
than the JTA, the field length does not increase if there is enough total
pad in the job to satisfy the request.

Figure 9-16 shows an increase in memory at the end of the user codeldata
area. I indicates pad. 0 indicates new area. The field length does not
change because there is enough total pad to satisfy the request. HLM is
increased by the requested amount.

JTA JTA
JCB JCB

user codeldata user code/data
JCHLM 11111/1//1/1/1 00000000000000

111///1/1/1111 00000000000000
1/1/11/1/1/111 //1/11/1///1// JCHLM

JCLFT LFT LFT JCLFT
DSP DSP

buffers buffers

Figure 9-16. Increasing the user codeldata area

Figure 9-17 shows an increase in memory in the buffer area. I indicates
pad. 0 indicates new area. The field length does not change when there
is enough total pad to satisfy the request.

SM-0040

JTA
JCB

user codeldata
JCHLM 111/1/1/1/1/1/

1/111//11/111/
111///1//1/11/

JCLFT LFT
DSP

buffers

JTA
JCB

user code/data
1///1//1///111 JCHLM
1//11/////1111

LFT JCLFT
DSP

00000000000000
buffers

Figure 9-17. Increasing the buffer area

9-26 C

JOB SCHEDULER MEMORY MANAGEMENT

Figure 9-18 shows an increase in memory at the end of the user codeldata
area. I indicates pad. 0 indicates new area. The field length does
change because there is not enough total pad to satisfy the request. The
field length is increased by an amount large enough to satisfy the
request and leave I@MINPAD amount of pad.

JTA
JCB

user codeldata
JCHLM 111111111/1///
JCLFT LFT

DSP
buffers

JTA
JCB

user codeldata
00000000000000
00000000000000
//1/1//1//1/1/ JCHLM
11/11//1111111

LFT JCLFT
DSP

buffers

Figure 9-18. Increasing the user code/data area

Figure 9-19 shows an increase in memory in the buffer area. I indicates
pad. 0 indicates new area. The field length does change because there
is not enough total pad to satisfy the request. The field length is
increased by an amount large enough to satisfy the request and leave
I@MINPAD amount of pad.

When the user requests a specific field length, the total pad within the
job is increased or decreased as needed.

JTA
JCB

user code/data
JCHLM 11111/111/11//
JCLFT LFT

DSP
buffers

JTA
JCB

user codeldata
111/111111//11 JCHLM
/11////1////11

LFT JCLFT
DSP

00000000000000
buffers

00000000000000

Figure 9-19. Increasing the buffer area

Figure 9-20 shows an increase in the job's field length. I indicates
pad. 0 indicates new area. The field length is increased to the
requested amount rounded up to the nearest multiple of 512-decimal

SM-0040 9-27 C

I

JOB INITIATION JOB SCHEDULER

words. The area from JCLFT through the buffers is moved to a location
equal to their current location, plus the amount of field length increase.

JTA
JCB

user codeldata
JCHLM IIIIIIIIIIIIII
JCLFT LFT

DSP
buffers

JTA
JCB

user codeldata
IIIIIIIIIIIIII JCHLM
00000000000000
00000000000000

LFT
DSP

buffers

JCLFT

Figure 9-20. Increasing the field length

Figure 9-21 shows a decrease in the job's field length. I indicates
pad. As much pad as required is returned to the system until the field
length equals the requested amount rounded up to the nearest multiple of
S12-decimal words.

JTA
JCB

user codeldata
JCHLM IIIIIIIIIIIIII

IIIIIIIIIIIIII
IIIIIIIIIIIIII

JCLFT LFT
DSP

buffers

JTA
JCB

user codeldata
IIIIIIIIIIIIII JCHLM

LFT JCLFT
DSP

buffers

Figure 9-21. Decreasing the field length

9.7 JOB INITIATION

When JSH sets up a job for its first chance to execute in the CPU, it
initializes the job field length based on the size of CSP. It then
initializes the job's JXT entry, Job Table Area (JTA) , and the first user
task. Most of the JTA is initially filled with zeros. The exceptions
are the following fields:

SM-0040 9-28 C

JOB SCHEDULER JOB STATUS

I

I

I

I

Field Description

JTJN
JTUSR

JTJCB
JTCMSG

JTSID
JTDID
JTJXT
JTTCB
JTTID

7-character job name (from JXT)
is-character user number (from SOT)

JCB pointers
Conditional message flags

Source ID (from SDT)
Destination 10 (from SOT)
Pointer to JXT entry
Offset to first TCB in JTA
Terminal 10 (from SOT)

JTDNT 3 ONTs (the first 2 for system use only), in the following
order: $CS, $ LOG , and $IN. The ONTs for $CS and $IN
refer to the same dataset.

JTCOP
JTLOP

DSP list for $CS
DSP list for $LOG

JSH makes the DNTs for $CS and $LOG unavailable to the user by storing a
nonzero value in the low-order 8 bits of the first word in each DNT. The
names $CS and $LOG, therefore, cannot be found by F$DNT and are used only
as reference points in a dump. These two ONTs are always placed in the
JTA in the order given above. The user ONTs, theoretically, can be in
any order following the first two. (The DNTs for $CS and $IN refer to
the same dataset.)

JSH sets up DSPs for $CS and $LOG in the JTA, initializing the dataset
name (the same as the dataset name in the DNT) and the four I/O pointers
-- FIRST, IN, OUT, and LIMIT. $CS is opened for input and $LOG is opened
for output.

The DNTs are initialized as shown in table 9-1. The ONT for the
roll-image dataset is in the JXT rather than in the JTA.

9.8 JOB STATUS

The 22-bit status field (JXSTAT) in each job's JXT entry is described in
table 9-2. The bits labeled Q, R, L, 0, and M determine the job's
status; the other bits modify the job's status.

The status of each task in a job is described by the 22-bit task status
field TXSTAT in the task's Task Execution Table (TXT). If all task
status bits in TXSTAT are 0, the user task is said to be waiting to be
connected to the CPU (status W).

SM-0040 9-29 C

JOB STATUS JOB SCHEDULER

Table 9-1. DNT initialization

Files initialized

DNT field Roll Control LOG Standard
dataset Statement File File Input Dataset

DNDN 'ROLLDNT' '$Cs,t '$LOO,t '$IN'
ASCII

DNOC 'll'B 'lO'B 'Ol'B 'OO'B
binary

DNP Itt - - -
binary

DNDC 'sc' , IN' 'PR' , IN'
ASCII

DNDAT - Copied - Copied
address from SDT from SDT

DNPDS 0 1 0 1
binary

DNACS 0007 0007 0007 0007
octal

DNBFZ - 1 1 4ttt
decimal

DNDSP - Yes Yes No
address

t The dataset names $CS and $LOG are unavailable to the user because
the low-order byte of the word where each name is stored is set to a
nonzero value. The roll dataset's DNT is unavailable because it is
not in the JTA.

tt The DNP (processing direction) flag for the roll dataset is toggled
according to the expected direction of the next I/O transfer.

ttt The buffer size for $IN is an installation-dependent parameter.
The numbers given for DNBFZ are multiples of 5l2-word blocks.

SM-0040 9-30 C

JOB SCHEDULER JOB STATUS

Table 9-2. status bit assignments

Bit position Bit Interpretation
in JXSTAT name (when bit is set)

1 K Keep this job in memory; do not roll it out.

2t

3 t

4t I
A

F

H

Abort pending; reason given in TXEPC.

Suspended to single-thread tasks

Suspended by user deactivate

5 C Forced memory allocation pending

6 G Job class invoke pending

7 B Suspended (indefinitely) by recovery

st

9 t I E

I

Suspended until a given event occurs

Dormant, pending recall on I/O completion

10 M Memory allocation is pending

11 o Suspended (indefinitely) by operator

l2t

l3 t I S

T

Suspended by system

Suspended for a given time interval

14 U User roll request pending

15 V Waiting on rolled job index write completion

16 Y waiting for I/O quiet

I l7t D Delete request in progress

IS L Roll image load/unload in progress

19 N Not in memory

I t This bit is a task status bit, and only set in TXSTAT.

SM-0040 9-31 C

I

I

JOB STATUS JOB SCHEDULER

Table 9-2. Status bit assignments (continued)

Bit position Bit Interpretation
in JXSTAT name (when bit is set)

20 Q Queued up: waiting to be initiated.

21 R Rolled out. The M bit can also be set.

22t X Executing

t This bit is a task status bit, and only set in TXSTAT.

Figure 9-22 and table 9-3 illustrate some transitions that normally occur
between job and task statuses. Job status changes are shown with =>.
Task status changes are shown with ->.

Table 9-3. Status-change sequences

Sequence Explanation

X->I

X->w

W->X

X->W
W=>LN=>RN

RJ.~= >LN= >W
W->X

X->W

W=>MN

X->W
W= >LN= >RN= >NRO

SM-0040

A task requests recall on I/O completion.

A task's time slice expires.

A task is given another time slice.

A job's tasks are disconnected,
and the job is rolled out.

A job is rolled in,
and its task is connected.

A task is disconnected,
and the job is queued up for a memory request.

The job's tasks are disconnected as
the job is suspended by operator.

9-32 c

JOB SCBBDtJLER

Operator
SUSPEND
conunand

Memory

request

JOB STATUS

Must wait
for I/O

Disconnect
(time slice

expired)

Request
satisfied

I/O is
complete

Roll-out
forced by
another job

Request
cannot be
satisfied
soon enough

~ ----------~ Roll-out
complete

Roll-out
complete

Preempts
memory from
another job

Operator
RESUME
conunand

Figure 9-22. Normal transitions between job states

SM-0040 9-33 c

I

I

I

I

I

I

I

I

JOB STATUS JOB SCHEDULER

9.8.1 STATUS CHANGES INVOLVED IN CPU SWAPPING

Figure 9-22 shows most of the status changes that can occur for any
particular user task. Those status changes shown with broad solid lines
are the basic changes that all user tasks must undergo. If all the jobs
in the JXT can fit into memory at the same time, these status changes are
the only status changes jobs undergo as long as they make no memory
requests and open no auxiliary datasets.

QN->X

X->I

I->W

X->W

W->X

A job queued in the JXT (Job Execution Table) waiting for
sufficient memory to become available is given its first
CPU time slice to its first task. (The user task actually
exists momentarily in the W status before it begins
executing; but because the new user task's CPU priority is
initialized to the highest possible value, the transition
to status X is immediate.)

The currently executing user task becomes dormant by
requesting suspension pending the completion of a
particular I/O transfer. The CPU becomes available for use
by another user task.

The I/O transfer for which suspension is requested is now
complete. The user task joins others waiting for CPU time.

The executing user task's time slice expires. Unless it is
the only user task eligible for connecting, it is
disconnected from the CPU and joins any other user tasks
that are waiting.

The CPU has just become available. JSH selects the first
user task from the top of the CPU queue which is not
suspended for I/O.

9.8.2 STATUS CHANGES INVOLVED IN MEMORY SWAPPING

In figure 9-22, the paths involved in rolling jobs in and out are shown
as dashed lines.

I Any job with tasks in W status is liable to be rolled out if a job of
higher priority is waiting and the job's in-memory thrash lock has
expired.

I W=>LN

SM-0040

A roll-out I/O request is initiated for a waiting job in
order to make memory available.

9-34 C

I

I

I

I

I

I
I

I

JOB SCHEDULER JOB STATUS

LN=>RN The roll-out I/O request is complete; the job's memory is
released.

RN=>LN Memory is allocated for the job and a roll-in I/O request
is initiated.

LN=>W The roll-in I/O request is complete; the job's tasks begin
contending for CPU time.

9.8.3 STATUS CHANGES INVOLVED IN JOB SUSPENSION AND RESUMPTION

In figure 9-22, the suspended statuses are connected to the rest with
narrow solid lines.

A job's tasks are momentarily suspended when one makes an allocation
request (J$ALLOC). Shortly after it suspends the tasks, JSH checks for
active I/O requests. If there are no I/O requests and the allocation
request can be satisfied, the suspension is lifted. The suspension is
kept in force if the job must be moved but there is no space for it right
away; that is, the M bit remains set and the job is then liable to be
rolled out if memory is in demand.

Suspension also occurs as a result of an explicit user request to suspend
processing until a given time has expired (J$DELAY).

Finally, a job can be suspended and resumed by the operator to prevent
the job from using any system resources.

X->W The currently executing user task makes an allocation
W=>M request and is considered dormant until the request is

satisfied. If the request involves the movement of I/O
buffers or tables, it cannot be satisfied until all the
job's I/O is done. If, after all I/O is done, the request
still cannot be satisfied, the job is rolled out.

MN=~ The allocation request is satisfied before the job is
rolled out. The job's tasks join any other user tasks
waiting for CPU time.

MN=>LN The job is rolled out because memory is in demand. More
space is required to satisfy the allocation request than is
obtained merely by reallocating memory.

X->T or X->E The currently executing user task or EXP makes a
suspension request (J$DELAY or J$AWAIT). The user task is
disconnected and maybe rolled out.

SM-0040 9-35 C

I

I

I

I

I

I

I

JSH INTERFACE WITH OTHER TASKS JOB SCHEDULER

W=>O

W=>LN

LN=>RN

ORN=>RN

RN=>RN

S->W

A job in memory is suspended by operator intervention. A
job that is operator suspended (O) is always rolled out
when active I/O finishes.

A roll-out I/O request to make memory available is
inititated for a suspended job.

The roll-out I/O request is complete; the job's memory is
released.

A job suspended by the operator (and subsequently
rolled-out) is reactivated by the operator. The job is
rolled back in when memory is available.

A job suspended by the system (and subsequently rolled-out)
is reactivated because the system suspension was lifted.
The job is rolled back in when memory is available.

A user task suspended by the system is reactivated while
still in memory.

9.9 JSH INTERFACE WITH OTHER TASKS

The Job Scheduler task is created with all other system tasks by the
startup procedure. It is then called by any other task through the
sequence of instructions shown later in this subsection.

JSH always replies to each request by setting the appropriate output
registers and readying the requesting task. However, the reply is not
always immediate. For some requests, JSH waits until memory is available
or until an I/O transfer is complete before it replies, so that the
requesting task proceeds correctly.

To enable the requesting task to determine what a delayed reply means,
JSH echoes the entire contents of the first input register as the second
output register. This word contains the JSH function code, the TXT
ordinal identifying the task, and additional information supplied by the
requesting task. A status indicator is returned in the first output
register.

SM-0040 9-36 c

I

I

I

JOB SCHEDULER JSH INTERFACE WITH OTHER TASKS

Input register format:

o 24 48 53 63

~:;::::I ~ __________ A_U_X ___________ I ___ u_n_:_:_:_: __ o_r __ A_D_D_R _______ I __ F_C __ 1-----;-:-:--~I

Field Word

AUX INPUT+O

CODE INPUT+O

ADDR I NPUT+ 0

FC INPUT+O

TXO INPUT+O

JXO INPUT+I

Bits

0-23

24-47

24-47

48-52

53-63

53-63

Description

Auxiliary information; unused by JSH.
(Any value the caller places in
INPUT+O is returned verbatim in
OUTPUT+I.)

(J$ABORT request only) Abort code; use
equated labels of the form A$xxxxx,
where xxxxx = DROP, KILL, RERUN, or
other predefined abort code. These
abort codes are also used in the
J$UROLL request.

Word address relative to the beginning
of STP of an additional word or list
of words if needed to fully specify
the call. See the following
individual function descriptions for
more detail.

Function code; use equated labels of
the form J$xxxx, selected from table
9-4.

TXT ordinal for the job in question

JXT ordinal for the job in question.
It can assume a value from I to
I@JXTSIZ.

Output register format:

o 24 48 53 63

OUTPUT+O ~ ____________________________ S_T_A_T_U_S __________________________ ~I
OUTPUT+ I AUX CODE or ADDR I FC I TXO

~--~

SM-0040 9-37 C

I

I

JSB INTERFACE WITH OTHER TASKS JOB SCBBDULER

Field Word

STATUS OUTPUT+O

AUX OUTPUT+l

CODE OUTPUT+l

ADDR OUTPUT+l

FC OUTPUT+l

TXO OUTPUT+l

9.9.1 CALLING SEQUENCE

Bits

0-63

0-23

24-47

24-47

48-52

53-63

Description

Status of requested function:
=0 Requested function completely

accomplished
#0 Error or system is unable to

fulfill request completely

Auxiliary information; unused by
JSH. (Any value the caller places in
INPUT+O is returned verbatim in
OUTPUT+l.)

(J$ABORT request only) Abort code;
use equated labels of the form
A$xxxxX, where ~ = DROP,
KILL, RERUN, or other predefined
abort code. These abort codes are
also used in the J$UROLL request.

Word address relative to the
beginning of STP of an additional
word or list of words if needed to
fully specify the call. See the
following individual function
descriptions for more detail.

Function code; use equated labels of
the form J$xxxx, selected from
table 9-4.

TXT ordinal for the user task in
question

JSH is invoked from any other task by calling either TSKREQ or PUTREQ
with the following instruction sequence:

Location Result

SM-0040

A2
Sl
S2
Sl
S2

Ooerand

JSHID,O
function code (already shifted)
user task's TXT ordinal
Sl!S2
address if any

9-38 C

I

I
I
I

I

JOB SCHEDULER JSB INTERFACE WITH OTHER TASKS

Location Result Ooerand

S2 S2<D'16
Sl Sl:S2
S2 auxiliary information if any
S2 S2<D'40
Sl Sl:S2
S2 job's JXT ordinal
R TSKREQ or PUTREQ

The TSKREQ subroutine enforces synchronous task behavior; that is, it
does not return to its caller until JSH replies. PUTREQ returns as soon
as it stores the input registers, thus permitting asynchronous task
execution.

The requests that tasks can make to JSH are described on the following
pages in the order listed in table 9-4.

Table 9-4. JSH functions

Function Function Input
Code Value Parameters Function

-- no input required -- Fills up JXT with jobs from SDT

J$ALLOC 4000

J$AWAIT 10000

J$DELAY 14000

J$SUSP 20000

J$SUSPK 24000

J$STOP 30000

SM-0040

JXO,ADDR

JXO,ADDR,
TXO

JXO,ADDR,
TXO

JXO,TXO

JXO,TXO

JXO

Changes a job's memory allocation

Suspends a user task until a given
event occurs

Suspends a user task for a given time

Suspends a user task momentarily;
system initiated.

Same as J$SUSP but keeps the job in
memory

Suspends a job indefinitely; operator
action (SUSPEND).

9-39 C

I

I

I
I

I

I

I

JSB INTERFACE WITH OTHER TASKS JOB SCHEDULER

Table 9-4. JSH functions (continued)

Function Function Input
Code Value Parameters

J$CLEAR 34000

J$ABORT 40000

J$RERUN 44000

J$DELETE 50000

J$IOSUSP 54000

J$IOOONE 60000

J$RESUME 64000

J$START 70000

J$INDEX 74000

J$STRALL 100000

J$STPALL 104000

J$RCVR 110000

J$SHTDWN 114000

J$REMK 120000

SM-0040

JXO,TXO

JXO,CODE,
TXO

JXO

JXO,TXO

JXO,TXO

JXO,TXO

JXO,TXO

JXO

JXO

JXO,TXO

Function

Forces the end of a user task's
suspension (except I/O suspend)

Aborts a user task

Same as J$DELETE but places a job back
in the input queue

Deletes a user task, and if this is the
last task for the job, releases all
space allocated to a job

Suspends a user task until an I/O
request receives a response

Resumes an I/O suspended user task

Ends suspension set by J$SUSP or J$SUSPK

Ends an indefinite suspension for a
job; operator action (RESUME).

Marks the job irrecoverable

Ends an indefinite suspension for all
jobs; operator action (RESUME ALL) •

Suspends all jobs indefinitely;
operator action (SUSPEND ALL).

Lifts the suspension from jobs
suspended by a J$SHTDWN or system
interruption

Idles down all job activity in
preparation for a system interruption

Lifts the keep-in-memory restriction

9-40 C

JOB SCHEDULER JSH INTERFACE WITH OTHER TASKS

Table 9-4. JSH functions (continued)

Function Function Input
Code Value Parameters

J$INVOKE 124000 JXO,ADDR

J$UROLL 130000 JXO,CODE

J$CHANGP 134000 JXO,ADDR

J$READY 140000 JXO

J$GETM 144000 CODE

J$RETM 150000 CODE

J$TINIT 154000 TXO,JXO

J$ACT 160000 TXO,JXO

J$DEACT 164000 TXO,JXO

J$SINGLE 170000 TXO,JXO

J$DEADLK 174000 TXO,JXO

9.9.2 INITIALIZE REQUEST

Function

Invokes a job class structure

Rolls a job; user requested to protect
against system interruption.

Change priority - operator request

Force memory allocation for job

Get memory from jobs

Return memory to jobs

Initialize a new user task.

Activate a user task which has been
deactivated through a J$DEACT request.
Requested by user.

Deactivate a user task. Requested by
user.

Single thread request. Used by EXP to
force only one task in a job to be
connected. Allows EXP to handle
reprieve processing cleanly.

Signals a hardware semaphore deadlock
situation.

The initialize request transfers as many jobs as possible from the input
queue to the executing queue.

FUNCTION CODE: None

FUNCTION VALUE: None

SM-0040 9-41 C

JSH IN'rERFACE WITH OTHER TASKS JOB SCHBDULBR

ENTRY:

EXIT:

DESCRIPTION:

None

None

If there are any available JXT entries, jobs are
selected from the input queue (part of the SOT) and
entered into the JXT until the JXT is full or no more
jobs can be initiated in available classes. _ Any job
entered into the JXT is also transferred from the
input queue to the executing queue (still in the SOT) ;
its SOT entry is not deleted until the job terminates.

The number of JXT entries currently in use is stored
in JXTPOP, while the current maximum is in JXTMAX.
Because JXTMAX can be reduced by the operator while
the system is running, live JXT entries can be
scattered throughout the table. Empty JXT entries are
similarly chained together.

The startup program readies JSH for this request after
setting up the input queue in the SDT; subsequently,
the Station Call Processor (SCP) readies JSH again
whenever it adds a new job to the input queue. The
jobs are expected to be queued in order of decreasing
priority and, within priority, in order of decreasing
age.

Whenever a job terminates, JSH checks the input queue
for any waiting jobs previously bypassed because of
lack of room in the JXT.

9.9.3 ALLOCATE REQUEST

The allocate request changes a job's memory allocation.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

o 8

I Flags

SM-0040

J$ALLOC

4000

FC, JXO, and ADDR are required. ADDR is the
STP-relative address of a memory request word having
the following format:

16 40

I111111I DEL WC

9-42 C

63

JOB SCHEDULER JSB INTERFACE WITH OTHER TASKS

Expansion of flag area:

o 123 4 567 8
1////////////////////1 B D 1////1 F J

Field Bits

B 4

D 5

F 7

J 8

DEL 16-39

we 40-63

EXIT:

SM-0040

Description

Buffer flag. B is ignored if F or J=l. If B=l,
we specifies the number of words to be added to
the buffer area. If B=l, DEL, and D are ignored.

DSP flag. D is ignored if J, F, or B=l or DEL is
nonzero. If D=l, an installation-defined DSP
increment is made at the end of the DSP area. If
D=l, we is ignored.

Field Length flag. F is ignored if J=l. If F=l,
we specifies the number of words of field length
that is to be allocated to the job. If F=l, B,
0, and DEL are ignored.

JTA flag. If J=l, we specifies the number of
words to be added to the end of the JTA. If J=l,
F, B, DEL, and D are ignored.

Deletion pointer/flag. DEL is ignored if J, B,
or F=l. If DEL~O, we specifies the number of
words that are to be deleted from the buffer area
and DEL specifies the address relative to the
user's base address of the beginning of the area
to be deleted. If DEL~O, D is ignored.

Word count. we is ignored if D=l. If F=l, we
specifies the number of words of field length
that is to be allocated to the job. If B=l, we
specifies the number of words to be added to the
buffer area. If DEL~O, we specifies the number
of words to be subtracted from the buffer area.
If J=l, we specifies the number of words to be
allocated to the JTA. If F, B, D, J, and DEL are
0, we specifies the number of words to be added
to (if we is positive) or subtracted from (if we
is negative) the user code/data area.

The first output register is a status word which is
set to 0 unless the job is to be aborted as a result
of the request. The second output register is a copy
of the first input register.

9-43 e

I
I

I

JSH INTERFACE WITH OTHER TASKS JOB SCHEDULER

EXIT:
(continued)

DESCRIPTION:

SM-0040

The output registers are set and the caller is readied
immediately after the request is received; the job can
be aborted by returning an appropriate error status to
the calling task.

The JCB also contains values (FL, MFL) that must be
maintained by J$ALLOC. The current field length must
be changed when the field length changes. The maximum
field length allowed can be decreased when the JTA is
expanded.

The job is aborted if filling the request would result
in a field length greater than the maximum allowed the
job. The maximum is the smaller of the system maximum
or the amount determined by the MFL parameter on the
Job statement. The system maximum is the smaller of
the total number of words available to user jobs minus
the job's JTA or the amount determined by I@JFLMAX.

JSH begins processing the memory request by placing
the job in state M and disconnecting all of its tasks
from the CPU. A J$ALLOC request can be made to expand
the JTA for a job whose tasks are disconnected from
the CPU but still doing I/O.

The memory request is honored only after all the job's
outstanding I/O has completed. In the meantime, the
job's tasks are suspended. When the I/O activity is
quiet, the job can be expanded, contracted, moved, or
rolled out.

A request for less space is honored immediately. A
request for more space is honored when there is enough
memory available. Jobs with status M and are waiting
for more memory can be rolled out. When they are
rolled in again, they are rolled into an area large
enough to satisfy the expansion request. If the job's
memory is expanded, the new memory is initialized to
an installation defined value.

The JCB has pointers (HLM, LFT, DSP, BFB, FL, MFL)
that must be maintained by J$ALLOC. Expansion or
compression of any area other than the JTA, always
requires the adjustment of at least one of these
pointers. The LFT and DSP areas contain pointers that
must also be adjusted. The pointers in the LFT area
are updated whenever the nsp pointer is changed. The
pointers in the DSP are updated when the buffers

9-44 C

I

I

I
I

JOB SCHEDULER

DESCRIPTION:
(continued)

JSB INTERFACE WITH OTHER TASKS

move. Expansion of the JTA can result in a decrease
in MFL if MFL plus the new JTA size exceeds all
available memory.

9.9.4 AWAIT REQUEST

The await request suspends execution of a user task until a given event
occurs.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

o 2 6

11.'1/11
CC

Field Bits

ECC 0-2

EPA 6-31

EMV 32-47

ECV 48-63

DESCRIPTION:

SM-0040

J$AWAIT

10000

FC, TXO, JXO, and ADDR are required. ADDR is the
STP-relative address of an event word with the
following format:

32 48

EPA EMV ECV

Description

Condition code (0-3)

STP-relative address of a parcel tested
periodically

Mask value applied in the test

Comparison value used in the test

63

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

JSH disconnects the task from the CPU if necessary,
sets the E bit in the status field, and stores the
event word in the job's TXT entry.

If the task's E bit is set, the parcel at the given
address is periodically ANDed with the mask- and then

9-45 C

I

JSB INTERFACE WITH OTHER TASKS JOB SCHEDULER

DESCRIPTION:
(continued)

subtracted from the comparison value. The event is
said to occur when the result matches the condition
code.

Condition
code

o
1
2
3

Matching
result

Zero
Nonzero
Positive
Negative

A job with all tasks suspended is liable to be rolled
out. When the event occurs, both the E bit is cleared
and the suspension is lifted unless the S, B, or 0 bit
is set.

9.9.5 DELAY REQUEST

I The delay request suspends execution of a user task for a given number of
milliseconds.

FUNCTION CODE:

FUNCTION VALUE:

I ENTRY:

o

EXIT:

SM-0040

J$DELAY

14000

FC, TXO, JXO, and ADDR are required. ADDR is the
STP-relative address of a delay request word having
the following format:

DELAY

63

where DELAY is the number of milliseconds the job is
to be delayed. The maximum delay is 879,609 seconds,
which is more than 10 days.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

9-46 C

I

I

I

I

I

I

I

I

JOB SCHEDULER

DESCRIPTION:

JSH INTERFACE WITH OTHER TASKS

JSH disconnects the task from the CPU if necessary,
sets the T bit in the status field, and stores the
wake-up time in the TXDLY field in the task's TXT
entry.

If the task's T bit is set, the TXDLY field is
compared to the real-time clock every time JSH is
readied. The suspension is lifted when the wake-up
time has been reached. The condition is also
unconditionally lifted during system startup.

A job can be rolled out while its tasks are
suspended. It enters into the normal memory swapping
activity after any of its tasks are reactivated.

Lifting the suspension involves clearing the T bit.
However, the task remains suspended if either the S
(J$SUSP), B, or 0 bit is set. Only a J$RESUME request
clears the S bit. Only a J$START or a J$STRALL
request clears the 0 bit. Only a J$RCVR, a J$START,
or a J$STRALL clears the B bit.

9.9.6 SUSPEND REQUEST

The suspend request suspends execution of a job momentarily.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

SM-0040

J$SUSP or J$SUSPK

20000 or 24000

FC, TXO, and JXO are required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

JSH disconnects the task from the CPU if necessary and
sets the S bit in the status field. The K bit is set
for a J$SUSPK request but left unchanged for a J$SUSP
request. The T and E bits are left unchanged; if they
are set, they are reset only by an event occurring or
the elapsing of a delay time.

9-47 c

I
JSB INTERFACE WITH OTHER TASKS JOB SCHEDULER

DESCRIPTION:
(continued)

The K (keep) bit, if set in any task, prevents the job
from being rolled out while the task is suspended. A
J$RESUME request clears the Sand K bits allowing the
job to participate in normal rollout activity.

9.9.7 STOP REQUEST

The stop request suspends execution of a job indefinitely as a result of
operator action.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

J$STOP

30000

FC and JXO are required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register. The output registers are set
and the caller is readied immediately after the
request is received.

The job's 0 (operator suspended) bit is set. The job
is rolled out as soon as possible.

9.9.8 CLEAR REQUEST

I The clear request forces the end of a task's suspension, no matter why
the suspension is imposed other than I/O suspension.

FUNCTION CODE:

FUNCTION VALUE:

I ENTRY:

EXIT:

SM-0040

J$CLEAR

34000

FC, TXO, and JXO are required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

9-48 c

I

I

JOB SCHEDULER

DESCRIPTION:

JSH IN'fERFACE WITH OTHER TASKS

This call is customarily made only during task
termination and task abort.

JSH clears the job's 0 and B bits and the task's S, T,
and E bits. The task is no longer suspended and
begins to participate in the normal memory swapping
activity unless its K bit is set or unless it is in an
I/O suspend state.

9.9.9 ABORT REQUEST

I The abort request aborts a user task.

I

I

I

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

J$ABORT (in actual coding, use J$ABORT+lS20*A$xxxxx,
where xxxx = DROP, KILL, RERUN, or other predefined
abort code.)

40000

FC, TXO, JXO, and CODE are required. CODE occupies
the same position as ADDR does in other requests.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

JSH begins processing the request by disconnecting the
task from the CPU if necessary, and placing it in A
status. The abort code is stored in the TXT (TXEPC)
to be picked up later by the Exchange Processor.

When TCEPJ (in the task's TeB) is 0, JSH sets TCEPJ so
the Exchange Processor will abort the task when it is
reconnected. JSH then removes the task's A status.

9.9.10 RERUN REQUEST

The rerun request releases all memory and datasets belonging to a given
job except its System Dataset Table (SOT) entry and moves the SDT from
the executing queue back to the input queue so that it is reinitiated.

SM-0040 9-49 C

I

I

I

I

JSH INTERFACE WITH OTHER TASKS JOB SCHEDULER

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

J$RERUN

44000

FC and JXO are required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

This call is the last action taken in the terminating
of a job that is to be rerun. JSH disconnects all of
the job's tasks from the CPU if necessary and as soon
as any pending I/O is complete, frees the job's user
area and its JXT entry. The SDT entry for the job is
moved from the execute queue to the input queue.

9.9.11 DELETE REQUEST

The delete request deletes a user task and releases all memory belonging
to a given job if this is the last task in the job.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

SM-0040

J$DELETE

50000

FC, TXO, and JXO are required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

This call is the last action in the terminating of a
task. JSH disconnects the task from the CPU if
necessary. If this is the last task in the job and
all pending I/O is complete, JSH frees all memory
assigned to the job (the user area, the JXT, and the
empty SDT entry) •

9-50 C

I

I

I

JOB SCHEDULER JSH INTERFACE WITH OTHER TASKS

9.9.12 I/O-SUSPEND REQUEST

The I/O-suspend request suspends execution of a task until an I/O-resume
request is made for the same task.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

J$IOSUSP

54000

FC, TXO, and JXO are required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

JSH disconnects the task from the CPU if necessary,
and sets the I bit in its status field. The task does
not execute until the I/O-suspend is rescinded.

9.9.13 I/O-RESUME REQUEST

I The I/O-resume request reactivates an I/O-suspended task.

FUNCTION CODE:

FUNCTION VALUE:

I ENTRY:

EXIT:

I DESCRIPTION:

SM-0040

J$IODONE

60000

FC, TXO, and JXO are required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

JSH clears the I bit in the task's status field,
changing the task's status to W unless the task is
suspended for other reasons.

9-51 c

JSH INTERFACE WITH OTHER TASKS JOB SCHEDULER

9.9.14 RESUME REQUEST

I The resume request lifts a suspension imposed on a task by J$SUSP or
J$SUSPK.

I

I

I

I

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

J$RESUME

64000

FC, TXO, and JXO are required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

This call is made to restart a task previously
suspended by a call to J$SUSP or J$SUSPK, but it has
no immediate effect if the task is still under
suspension for another reason.

JSH clears the Sand K bits in the tasks status field
and the K bit in the job's status field if no other
tasks have the K bit set. I the B, 0, and K bits are
now clear, the job can now particpate in the normal
memory swapping activity.

9.9.15 START REQUEST

The start request lifts the indefinite suspension from a job suspended by
J$STOP, J$STPALL, J$SHTDWN or a system interruption.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

SM-0040

J$START

70000

FC and JXO are required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

9-52 C

JOB SCHEDULER

DESCRIPTION:

JSH INTERFACE WITH OTHER TASKS

This call is made to restart a job suspended by J$STOP
or J$STPALL. It is also used to lift the suspension
imposed on a job by J$SHTDWN or a system recovery.
Both the 0 (operator suspended) and the B (suspended
by recovery) bits are cleared. This has no immediate
effect if the jobs are still under suspension for
another reason.

9.9.16 INDEX REQUEST

The index request marks a job irrecoverable.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

J$INDEX

74000

FC and JXO are required.

The output registers are set and the caller is readied
immediately after the request is received.

This call is made by the Exchange Processor when a job
is nonrecoverable from the roll image.

JSH checks the job's roll index entry to see if it is
already marked irrecoverable. If it is already
marked, JSH does nothing. If it is not marked, JSH
sets the irrecoverable bit in the job's roll index
entry. The job's V bit is set to indicate an index
write is pending. The job is disconnected and the
index write is initiated.

9.9.17 START ALL REQUEST

The start all request lifts the indefinite suspension from all jobs
suspended by J$STOP, J$STPALL, J$SHTDWN or a system interruption.

FUNCTION CODE: J$STRALL

FUNCTION VALUE: 100000

ENTRY: FC is required.

SM-0040 9-53 C

JSH INTERFACE WITH OTHER TASKS JOB SCHEDULER

EXIT:

DESCRIPTION:

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register. The output registers are set
and the caller is readied immediately after the
request is received.

J$START is applied to all jobs in the JXT.

9.9.18 STOP ALL REQUEST

The stop all request suspends processing of all jobs in the JXT, rolls
them out, and releases their memory.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

J$STPALL

104000

FC is required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

The JXT limit (JXTMAX) is set to O. All jobs are
suspended. (Refer to J$STOP.)

9.9.19 RECOVER REQUEST

The recover request recovers all jobs in the system.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

SM-0040

J$RCVR

110000

FC is required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

9-54 C

I

JOB SCIIEDtJLER

DESCRIPTION:

JSB INTERFACE WITH OTHER TASKS

J$RCVR or J$START must be used after a system
interruption or a J$SHTDWN request. Either request
causes JSH to clear the B bit in the job's status
field. This has no immediate effect if the jobs are
still under suspension for another reason.

9.9.20 SHUTDOWN REQUEST

The shutdown request shuts down the system; it is normally used to
prepare for an expected system interruption. Job activity is idled down,
all jobs are rolled out and their memory released. Station activity is
not affected.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

J$SHTDWN

114000

FC is required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

The B (suspended by recovery) bit is set for all
jobs. The jobs are rolled out as soon as possible.
The JXT limit (JXTMAX) is set to O.

9.9.21 REMOVE K REQUEST

The remove K request lifts the keep-in-memory (K) restriction.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

SM-0040

J$REMK

120000

FC, TXO, and JXO are required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register. The output registers are set
and the caller is readied immediately after the
request is received.

9-55 C

I

I

JSH INTERFACE WITH OTHER TASKS JOB SCHEDULER

DESCRIPTION: The K status bit is cleared for the indicated user
task. If the K bit is now clear forall tasks in the
job, the K bit is cleared in the job's status and the
job may begin to participate in normal memory swapping.

NOTE

The K bit must be set when the J$REMK
request is made.

9.9.22 INVOKE REQUEST

The invoke request invokes a job class structure.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

J$INVOKE

124000

FC, TXO, JXO, and ADDR are required. ADDR is the
STP-relative address of an invoke request word with
the following format:

o 21 40 63

klllllllllllllllili/l LEN LOC

Field Bits

LEN 21-39

LOC 40-63

EXIT:

SM-0040

Description

Length of the array located at LOC. LEN must be
a positive, nonzero multiple of 1000a that
does not exceed I@ICSMAX.

Address, relative to the user's BA, of the array
that contains the job class structure to be
invoked.

The first output register is a status word which is
normally O. It is set to an appropriate error status
when LEN is either less than 1000a, not a multiple
of 1000a, or greater than I@JCSMAX. The second
output register is a copy of the first input register.

9-56 C

I

I

JOB SCHEDULER

EXIT:
(continued)

DESCRIPTION:

JSB INTERFACE WITH OTHER TASKS

The output registers are set, and the caller is
readied immediately after the request is received.

The array at LOC is copied to the CSD table as soon as
all of the job's I/O requests are complete. Then the
class assignments for all jobs in the input queue are
redetermined.

No JXTs are allocated while a J$INVOKE request is
pending. All jobs that issue a J$INVOKE request while
another J$INVOKE request is pending are aborted. This
request is only valid from jobs with a single task.

9.9.23 USER ROLL REQUEST

The user roll request rolls a job out; the function is user requested to
protect against system interruptions.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

J$UROLL

130000

FC and JXO are required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers are set and the caller is readied
immediately after the request is received.

JSH begins processing the request by placing the job's
tasks in S (suspended) state, disconnecting them from
the CPU and marking it to be rolled out. When rollout
is complete, the job's memory remains intact and its
suspension is lifted. The job again participates in
the normal memory swapping activity.

9.9.24 CHANGE PRIORITY REQUEST

The change priority request is used by operator command to change the
priority of a job.

FUNCTION CODE: J$CHANGP

SM-0040 9-57 C

JSH INTERFACE WITH OTHER TASKS JOB SCHEDULER

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

134000

JXO and CODE are required.

The first output register is a status word which is
set to 0 if the priority is changed. The status word
is set to JR$REJC if the job is in a state where the
priority is not changed immediately. The second
output register is a copy of the first input register.

The output registers are set and the caller is readied
immediately after the request is received.

If the request is processed, the low-order 4 bits of
JFADP, the JFADR field are placed into JXP as an
integer and into JXFMP as a floating-point value.

9.9.25 FORCE JOB INTO MEMORY REQUEST

The force job into memory request readies the calling task when the
specified job is in memory.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

SM-0040

J$READY

140000

FC and JXO are required.

The first output register is a status word normally
set to O. The second output register is a copy of the
first input register.

The output registers on are set and the caller is
readied immediately after the request is received.

JSH begins by determining if the job is already in
memory. If so, an error response is returned. If
not, a flag corresponding to the calling task in the
JXRDY field of the JXT is set along with the C status
bit. The job is then scheduled for memory allocation
regardless of its state. When the job is placed in
memory, each task with a flag set in JXRDY is made
ready. The C status bit and all JXRDY flags are
cleared after processing is complete.

9-58 c

JOB SCHEDULER JSB INTERFACE WITH OTHER TASKS

9.9.26 GET MEMORY REQUEST

The get memory request gets memory from jobs.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

J$GETM

144000

FC and CODE are required. CODE occupies the same
position as ADDR does in other requests and is the
number of words of memory that is needed.

The first output register is a status word normally
set to 0; any nonzero value is an error response. The
second output register is a copy of the first input
register.

The output registers are set and the caller is readied
immediately after the request is received.

This call is made by STG or SCP to get memory that is
normally used by jobs. The memory allocated to the
system is increased by the amount specified in CODE as
soon as the space can be made available by rolling
jobs out and compacting memory. The new memory
allocated to the system is at the low address end of
the system's memory segment.

9.9.27 RETURN MEMORY REQUEST

The return memory request returns memory back to jobs.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

SM-0040

J$RETM

150000

FC and CODE are required. CODE occupies the same
position as ADDR does in other requests and is the
number of words of memory that is being returned.

The first output register is a status word normally
set to 0; any nonzero value is an error response. The
second output register is a copy of the first input
register.

The output registers are set and the caller is readied
immediately after the request is received.

9-59 C

I

JSH INTERFACE WITH OTHER TASKS JOB SCHEDULER

DESCRIPTION: This call is made by STG or SCP to return memory to
user jobs. The memory allocated to the system is
reduced by the amount specified in CODE (starting at
the low-address end of the system's memory segment)
immediately.

9.9.28 INITIALIZE USER TASK REQUEST

The initialize user task request tells JSH to begin scheduling a new user
task.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

J$TINIT

154000

FC, TXO, and JXO are required.

The first output reqister is a status word normally
set to 0: any nonzero value is an error response. The
second output register is a copy of the first input
register.

The output registers are set and the caller is readied
immediately after the request.

This request is made by EXP when a user requests a new
task. EXP has already allocated a TXT and TCB.

9.9.29 ACTIVATE USER TASK REQUEST

The activate user task request tells JSH to resume scheduling a user task
which has been idled by a deactivate request.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

SM-0040

J$ACT

160000

FC, TXO, and JXO are required.

The first output register is a status word normally
set to 0: any nonzero value is an error response. The
second output register is a copy of the first input
register.

9-60 C

I

JOB SCHEDULER

EXIT:
(continued)

DESCRIPTION:

JSH INTERFACE WIm OTHER TASKS

The output registers are set and the caller is readied
immediately after the request.

This request is made by EXP when a user requests a
task activate. The J%H suspend status is cleared if
set.

9.9.30 DEACTIVATE USER TASK REQUEST

The deactivate user task request tells JSH to make a user task ineligible
for CPU scheduling.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

J$DEACT

164000

FC, TXO, and JXO are required.

The first output register is a status word normally
set to 0; any nonzero value is an error response. The
second output register is a copy of the first input
register.

The output registers are set and the caller is readied
i~ediately after the request.

This request is made by EXP when a user requests a
task deactivate. JSH sets the J%H suspend condition
for the task. If all tasks in the job have been
deactivated, this task is aborted.

9.9.31 SINGLE-THREAD USER TASKS REQUEST

EXP uses the single-thread user tasks request to remove all but one user
task from CPU scheduling. This request is used primarily for reprieve
processing.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

SM-0040

J$SINGLE

170000

FC, JXO are required. If TXO is supplied, all other
tasks in the job are suspended. If TXO is 0, this is
a resume from single-thread request.

9-61 C

I

JSB INTERPACE WITH OTHER TASKS JOB SCHEDULER

EXIT:

DESCRIPTION:

The first output register is a status word normally
set to 0; any nonzero value is an error response. The
second output register is a copy fo the first input
register.

The output registers are set and the caller is readied
immediately after the request.

This request is made by EXP when reprieve processing
is necessary. It allows EXP to manipulate the job
without interference from tasks for the same job in
other CPUs.

9.9.32 PROCESS USER TASK DEADLOCK REQUEST

The process user task deadlock request tells JSH to analyze for a
possible deadlock situation in the job.

FUNCTION CODE:

FUNCTION VALUE:

ENTRY:

EXIT:

DESCRIPTION:

SM-0040

J$DEADLK

174000

FC, TXO, and JXO are required. This request cannot be
processed on CRAY-l machines because it requires
hardware semaphores.

The first output register is a status word normally
set to 0; any nonzero value is an error response. The
second output register is a copy of th first input
register.

The output registers are set and the caller is readied
immediately after the request.

JSH receives a deadlock request for a user task from
EXP when EXEC has detected a hardware deadlock. The
deadlock is detected when a user task is waiting with
a test and set instruction, but no other CPU is in the
same cluster. On receiving the request, JSH moves the
user task from the CPU queue to a new queue, the
deadlock queue (DLKQ). JSH aborts the user task if
all user tasks are now waiting for semaphores that are
still set or for deactivated user tasks. (EXP has
recorded the number of the semaphore each task is
waiting for.) When connecting user tasks, JSH checks
the DLKQ and removes any tasks for the same job that
are waiting for semaphores that subsequently cleared.

9-62 C

PERMANENT DATASET MANAGER (PDM)

The Permanent Dataset Manager task (PDM) provides a means of creating,
accessing, deleting, maintaining, and auditing disk-resident permanent
datasets.

Permanent datasets are of two types: user permanent datasets, created
through a user request, and system permanent datasets, created by the
system for spooled input and output datasets.

Each type of dataset can have multitype attributes. A multitype dataset
is described by one or more Dataset Catalog (DSC) entries, at least one
of which is a spooled (system permanent) entry.

10

A dataset changes from a single-DSC-entry dataset to a multiple-DSC-entry
dataset when it is staged as a result of one or more DISPOSE statements.
It returns to single-DSC-entry status when all related disposes have
completed.

PDM coordinates these activities through the Queued Dataset Table (QDT).
A temporary dataset also can have multiple DSC entries.

Permanent dataset capabilities that may be requested by the user are
divided into two categories: permanent dataset functions and permanent
dataset utilities. The permanent dataset functions are:

• •
• •
• •

SAVE
ACCESS
DELETE
ADJUST
MODIFY
PERMIT

Creates user permanent dataset
Associates a user permanent dataset with a job
Removes a user permanent dataset from the system
Changes the size of an existing permanent dataset
Changes information for an existing permanent dataset
Grants explicit permission to access a dataset

The system can request that input or output datasets be saved or deleted.

The permanent dataset utilities are:

• PDSDUMP Dumps permanent datasets to a dataset

• PDSLOAD Loads permanent datasets that have been dumped by
PDSDUMP

• AUDIT Produces a report containing status information for
each permanent dataset

SM-0040 10-1 C

FUNCTIONS PERMANENT DATASET MANAGER

Functions not available to users that the Permanent Dataset Manager can
be requested to perform are:

• PSEUDO ACCESS

• REWRITE SDT

10.1 FUNCTIONS

Accesses a permanent dataset during recovery of
rolled jobs. Available only to the Startup task.

Updates the Dataset Catalog (DSC) copy of the job
input System Dataset Table (SDT). Used by the
Exchange Processor to declare a job ineligible for
rerun and to indicate the job was initiated at
least once.

A task calls the Permanent Dataset Manager by placing a Permanent Dataset
Definition Table (PDD) pointer and possibly a return address in its
INPUT+O and a Job Table Area (JTA) and/or Dataset Allocation Table (DAT)
or Dataset Name Table (DNT) pointer in INPUT+l of CMCC, the Permanent
Dataset Manager communication block. The FC field of the PDD indicates
the function to be performed. A return status is always returned in
field ST of the PDD. The return status is described in section 10.2 of
this manual.

Calling sequence:

0 8 16
INPUT+O Ij//////////////I

INPUT+l ~I/ pYS //////1
"-""

Field Word Bits

Return INPUT+O 16-39

PDD INPUT+O 40-63

SYS INPUT+l o

DNT INPUT+l 16-39

SM-0040

24 32 40 48 56 63

Return PDD

DNT or DAT JTA

Description

A 24-bit value that remains unchanged
and is normally used as a return
address

Base address of the PDD relative to STP

If set, this flag identifies the call
as having been initiated by the system.

Dataset Name Table address, if user
(job) call

10-2 C

PERMANENT DATASET MANAGER FUNCTIONS

Field Word

DAT INPUT+l

JTA INPUT+l

Bits

16-39

40-63

Description

Dataset Allocation Table address, if
system call

Base address of the associated job's
JTA. If the SYS flag is not set, the
JTA must be specified.

The function codes processed by the task follow:

Code

PMFCSU=lOa
PMFCSI=12a
PMFCSO=14a
PMFCAU=20a
PMFCAI=26a
PMFCAO=26a
PMFCDU=30a
P~1FCDI=36a

PMFCDO=36a
PMFCPG=40a
PMFCPX=41a
PMFCLU=50a
PMFCLI=52a
PMFCLO=54a
PMFCRL=60a

PMFCPN=70a
PMFCDT=IOOa
PMFCDQ=llOS
PMFCEA=120S

PMFCEI=122S
PMFCEO=124a
PMFCAD=130S
PMFOID=1408
PMFCRSDT=150a
PMFCPSAC=1608
PMFCPU=170a
PMFCPO=1768
Pl-1FCPI=1768
PMFCPE=200S

SM-0040

Description

Save user dataset
Save input dataset
Save output dataset
Access user dataset
Access spooled dataset
Access spooled dataset
Delete user dataset
Delete spooled dataset
Delete spooled dataset
Dataset Catalog (DSC) page request
Dataset Catalog Extension Table (DXT) page request
Load user dataset
Load input dataset
Load output dataset
Update Active Permanent Dataset Table (PDS)/Release
request
Permanent dataset name (PDN) request
Dump time request
Dequeue System Dataset Table (SDT) entry
Queue System Dataset Table (SDT) entry to available
queue
Queue System Dataset Table (SDT) entry to input queue
Queue System Dataset Table (SDT) entry to output queue
Adjust user dataset
Modify user dataset
Rewrite job's input System Dataset Table (SDT) entry
Pseudo access for Rolled Job Recovery (RRJ)
Access user-saved dataset for PDSDUMP
Access output dataset for PDSDUMP
Access input dataset for PDSDUMP
Permit alternate user dataset access

10-3 C

FUNCTIONS PERMANENT DATASET MANAGER

10.1.1 SAVE USER DATASET PROCESSING (FUNCTION CODE 10)

A local dataset can be registered in the Dataset Catalog (DSC) by a user
issuing a SAVE command. By default, the user registering the dataset
becomes its owner. All access permissions (execute-only, read, write and
maintenance) are available to the owner as long as correct control words
are specified. The dataset is uniquely identified in the DSC by recording
the PDN, 10, ED and ownership value. Besides these attributes, other
attributes can be registered such as public access permissions, and
specific user access permissions (permits). Note that PERMIT-specified
access permissions take precedence over permissions granted to the
public-at-large. Spooled datasets always belong to COS (the system).

Whenever the system requests PDM to determine the existence of a permanent
dataset it must supply the ownership value in the PDD; otherwise, PDM
assumes the dataset belongs to the system and consequently uses the
system's ownership value (I@SYSOWN).

The following POD fields are used as input: PDN, 10, ED, TXT, ADN, NOTE,
PAM, TRA, RD, WT, MN, USR (input datasets only), RT, EXO, lA, FM, OJB,
JSQ, DC, DID, SID, TID, SF, PR, TL, MFL, JCN, CL, SYS, JSP, IJSP, JCR, OLM
JST, MML, RGX, OJSQ, WAIT, TXL, SSC, NOTL. In general, PDM saves anything
in the POD for all types of saves (except the station slot for
user-requested saves).

10.1.2 SAVE INPUT OR OUTPUT DATASET PROCESSING (FUNCTION CODES 12, 14)

Save input or output dataset processing uses the same POD fields as save
user dataset processing.

The following POD fields are returned: ED, FPE.

10.1.3 ACCESS PROCESSING (FUNCTION CODES 20, 26)

The ACCESS function attempts to access a dataset whose characteristics are
defined in the supplied POD. The ACCESS function is also used by the
permanent dataset name (PDN) request and the PDSDUMP ACCESS request.

A permanent dataset belonging to a user is uniquely identified by matching
on PDN, 10, ED and ownership value. If no match is found, the ACCESS
request is aborted. If a match is found and one or more control words
(CWs) are specified, the specified CWs must also match; otherwise, the

ACCESS request is aborted. For each nonzero CW recorded in the Dataset
Catalog (DSC) entry that is not specified in the ACCESS command, the
corresponding permission is denied to the user making the request.

SM-0040 10-4 C

PEBMANENT DATASET MANAGER FUNCTIONS

The following Permanent Dataset Definition Table (PDD) fields are used as
input:

Field Contents

DN Local (temporary) dataset name applicable only to user calls

PDN

ID

ED

JSQ

RD

WT

MN

UQ

IR

Permanent dataset name

User identifier for the dataset

Edition number; if this is 0, the highest edition is
accessed.

Job sequence number, used instead of ED when accessing
spooled datasets.

Read control word for read permission

write control word for write permission

Maintenance control word for maintenance permission

Unique access request. This is required if write and/or
maintenance permission is desired.

Immediate return on delayed accesses

TXT Base address of the area to receive text. If this is 0, no
text is transferred. If this number is negative, the
address has been adjusted to be STP-relative. If this
number is positive, the address is to be relocated if an
associated job exists.

Return sequence:

All input values remain unchanged unless the call is a system call, in
which case the following fields are changed:

• The SYS flag is zeroed.

• The DNT field is zeroed.

• The JTA field contains the base address of the first DAT body for
the accessed dataset.

The PDD fields returned are as follows:

SM-0040 10-5 C

FUNCTIONS PERMANENT DATASET MANAGER

Field Contents

ED Edition number accessed

JSQ Job sequence number of dataset accessed (spooled datasets)

FPE DSC page/entry of dataset

10.1.4 DELETE PROCESSING (FUNCTION CODES 30, 36)

Delete processing handles the DELETE control statement, DELETE macro, the
PDSDUMP delete option, and the delete spooled dataset request. When a
dataset is registered in the Dataset Catalog (DSC), a user authorized for
the maintenance of the dataset can delete the dataset from the DSC.
Before issuing the DELETE command, the user must have previously accessed
the dataset uniquely with maintenance permission granted. The DELETE
command can be used to deallocate the disk space occupied by the dataset
while retaining the DSC and Dataset Catalog Extension Table (DXT) entries
(a partial delete). Input consists of a Permanent Dataset Definition
Table (PDD).

The following PDD fields are used on input: DN, PDE.

10.1.5 PAGE REQUEST PROCESSING (FUNCTION CODES 40 and 41)

AUDIT and PDSDUMP use the page request function to determine the permanent
datasets in the Dataset Catalog. Page request uses format 5 of the
Permanent Dataset Definition Table (PDD). Function code 40 reads pages
from the Dataset Catalog (DSC) and function code 41 reads pages from the
Dataset Catalog Extension Table (DXT).

The input from PDD is as follows:

Field Contents

BPG Beginning page number

NPG Number of pages to read

BUF JCB-relative buffer address

SM-0040 10-6 C

PERMANENT DATASET MANAGER FUNCTIONS

The output to PDD is:

Field Contents

NPG Number of pages actually read

NHP Number of hash pages in the DSC or DXT

NOP Number of overflow pages in the DSC or DXT

10.1.6 LOAD PROCESSING (FUNCTION CODES 50, 52, 54)

The load processing request is used by PDSLOAD to reconstruct a Dataset
Catalog (DSC) entry. Input consists of a Permanent Dataset Definition
Table (PDD) in the load request format.

The following PDD fields are used on input: USR, ACN, OWN, DNS, ACS, CAT,
ACT, TDM, MOD, and all fields used by subfunction 10, save user dataset
processing (see section 10.1.1) •

10.1.7 PDS/RELEASE PROCESSING (FUNCTION CODE 60)

Active Permanent Dataset Table {PDS)/Release processing handles the
updating of the PDS table when a user permanent dataset is released.

The following PDD field is used on input: DN.

10.1.8 PDN REQUEST PROCESSING (FUNCTION CODE 70)

The permanent dataset name (PDN) request checks for the existence of a
dataset with the characteristics defined by the PDD. The processing of
this request is handled in large part by the ACCESS process. The input
and returned values are identical to those of the ACCESS function.

10.1.9 DUMP TIME PROCESSING (FUNCTION CODE 100)

Dump time processing sets the dump time in the specified Dataset Catalog
(DSC) entry to the current time and returns that time to the requester in
a user specified buffer. Input is a Permanent Dataset Definition Table
(PDD) •

SM-0040 10-7 C

FUNCTIONS PERMANENT DATASET MANAGER

The following POD fields are used on input: ON, BUF.

10.1.10 DEQUEUE SOT PROCESSING (FUNCTION CODE 110)

Dequeue System Dataset Table (SOT) processing removes the SOT entry from
the input or output queue. Input is a Permanent Dataset Definition Table
(POD).

The following POD fields are used on input: ON, PDN, JSQ.

The following POD field is used on output: SOT.

10.1.11 QUEUE SOT PROCESSING (FUNCTION CODES 120, 122, 124)

Queue System Dataset Table (SOT) processing returns an existing SOT entry
to the available, input, or output queue. Input is a Permanent Dataset
Definition Table (PDD).

The following POD field is used on input: SOT.

10.1.12 ADJUST PROCESSING (FUNCTION CODE 130)

The ADJUST processing modifies the size of an existing user permanent
dataset in the Dataset Catalog (DSC). Input consists of a Permanent
Dataset Definition Table (POD).

The following POD field is used on input: ON.

10.1.13 MODIFY PROCESSING (FUNCTION CODE 140)

Once a dataset has been registered in the Dataset Catalog (DSC), a user
authorized for maintenance permission can modify its attributes. The
MODIFY command allows the following attributes to be changed: PDN, 10,
ED, R, W, M, RT, EXO, PAM, TA, TEXT, NOTES.

Before the MODIFY command is issued, the user must have accessed the
dataset uniquely with maintenance permission granted. Input consists of a
Permanent Dataset Definition Table (PDD).

The following POD fields are used on input: ON, PDN, ED, 10, RO, WT, MN,
PAM, TRA, RT, EXO, TXT, TXL, NOTE, NOTL.

SM-0040 10-8 C

PERMANENT DATASET MANAGER FUNCTIONS

10.1.14 SOT REWRITE PROCESSING (FUNCTION CODE 150)

The fixed portion of the input System Dataset Table (SOT) entry for the
specified job is rewritten in the Dataset Catalog (DSC). This is used
only by User Exchange Processor (EXP) to declare a job ineligible for
rerun and to signal that the job has been previously initiated so that
Startup can recognize if a job is about to be rerun. Input consists of a
Permanent Dataset Definition Table (POD) and the Dataset Allocation Table
(OAT) address for the SOT to be rewritten.

The following POD fields are used on input: PDN, 10, USR, FM, RT, ED,
OJB, SID, DID, DC, JSQ, TID SF, MFL, TL, PR, IJSP, RD, WT, MN, NRR, INIT.

10.1.15 PSEUDO-ACCESS PROCESSING (FUNCTION CODE 160)

When recovery of rolled jobs occurs during Startup, any permanent datasets
that were accessed by a job being recovered must be relinked. Thus Active
Permanent Dataset Table (PDS) entries must be built or updated and the
Dataset Allocation Table (OAT) from the rolled image must be verified
against the OAT in the Dataset Catalog (DSC). Input consists of a
Permanent Dataset Definition Table (POD) and Dataset Name Table (DNT).

The only POD field used on input is the function code. On output, the
status and dataset size (PMDSZ) fields are returned.

10.1.16 PDSDUMP ACCESS PROCESSING (FUNCTION CODES 170, 176)

The PDSDUMP ACCESS request is used solely by the PDSDUMP utility. This
request disables updating of the last access time and the count of the
number of accesses for the dataset it accesses. The processing is
essentially that of the ACCESS function. The input values are identical
to those of the ACCESS function, but the following additional PDD fields
are optional:

Field

DTR

FPE

SM-0040

Contents

Flag indicating that the last-time-dumped field is to be
updated during the access. Setting this flag makes issuing
a dump time request unnecessary.

If this field is nonzero, it specifies the entry and the DSC
page number of the dataset to access. If the dataset at the
specified address does not match the dataset specified in
the PDD, a normal scan of the DSC is performed.

10-9 C

PDD STATUS PERMANENT DATASET MANAGER

10.1.17 PERMIT PROCESSING (FUNCTION CODE 200)

When a dataset is registered in the OSC, the owner can use the PERMIT
function to create or change alternate user access permissions. A permit
pertaining to the owner is ignored without comment. Permits apply to
every edition of a dataset.

The following POD fields are used on input: PDN, ED, OWN, PAM, ADN.

10.2 PDD STATUS

The return status is placed in the PMST field of the Permanent Dataset
Definition Table (PDD) (table 10-1). The 10gfile contains a corresponding
code and message for most of the status conditions.

Table 10-1. POD status

Logfile
Code PMST Status

1 Complete; no error.

1 11 No DNT found for the specified dataset

2 21 Maintenance permission not granted

3 31 Edition already exists

4 41 DSC full

5 51 Function code out of range

6 61 The local dataset name (ON) specified is already in
use by the job

7 71 No permission granted

101 Delay and try again

9 III Requested dataset not in DSC

SM-0040 10-10 C

I

I

PERMANENT DATASET MANAGER PDD STATUS

Logfi1e
Code

10

11

12

14

15

16

18

21

25

26

27

28

SM-0040

Table 10-1. POD status (continued)

PMST Status

121 Edition does not exist

131 Active POS full

141 Dataset not permanent

151 Unused

161 Continuation error

171 OAT full

201 DNT full

211 End of OSC

221 Specified permanent dataset already accessed by
this job

231 Request to read zero pages

241 Invalid page number requested

251 No data has been written to disk

261 SOT does not exist

271 SOT entry not on input or output queue

301 Unable to queue SOT entry

311 Dataset name in PDO is 0

321 Access control word validation error

331 Notes length exceeds maximum allowable value

341 Unique access is not acceptable because the dataset
is part of the System Directory.

10-11 C

I

PDD STATUS PERMANENT DATASET MANAGER

Logfile
Code

29

30

31

34

35

36

40

41

42

SM-0040

PMST

351

361

371

Table 10-1. PDD status (continued)

Status

The text length is zero.

The text length specified exceeds the allowable
maximum.

The device on which all or part of the dataset
resides is down.

401 Error occurred while rewriting the SOT, or the SOT
name and dataset type in the DSC do not match those
in the PDD.

411 Permanent dataset to be pseudo accessed is not
available or the DAT in the DSC does not match the
JTA DAT.

421

431

Access is denied because crossed allocation unit
exists.

The dataset is already permanent.

441 The DSC entry was flagged by Startup as containing a
fatal error; access is denied.

451 The DSC or DXT page buffer supplied is outside the
user field length.

461 No available QDT entries exist.

471 The dataset has outstanding disposes; do not
deallocate disk space.

501

511

521

Allocation of multitype dataset inconsistent with
related datasets.

Multitype dataset has nonexistent QDT entry.

Maximum edition reached

10-12 C

I

PERMANBHT MTASE'r MANAGER PDD STA'l'OS

Logfi1e
Code

43

44

45

46

47

48

49

50

51

52

53

54

SM-0040

PMST

531

541

551

561

571

601

611

621

631

641

651

661

671

701

711

721

731

2001

2002-
2777

Table 10-1. PDD status (continued)

Status

Dataset is on an active SOT queue.

Bad SOT address on Enqueue SOT request

Dataset is on a scratch device.

Access denied because of DXT error

Notes length is zero

Unused

Maximum number of DXT entries per dataset reached

Attributes dataset not local

Attributes dataset not permanent

Invalid notes buffer specified

Invalid text buffer specified

Specified permit entry not found

Invalid DXT buffer address (get/link DXT)

Bad DXT linkage pointer (get/link DXT)

PMPDN and DCPDN do not match (get/link DXT)

Unused

PMSIZE greater than maximum PDD size

Parameter error (internal to $SYSLIB)

This range of status codes is reserved for magnetic
tape support.

10-13 C

TABLES USED BY PDM PERMANENT DATASET MANAGER

10.3 TABLES USED BY PDM

The following tables are used in permanent dataset management:

CSD Class Structure Definition Table
DAT Dataset Allocation Table
DNT Dataset Name Table
DRT Device Reservation Table
DSC Dataset Catalog
DSP Dataset Parameter Area
DXT Dataset Catalog Extension
EQT Equipment Table
JCB Job Communication Block
JTA Job Table Area
JXT Job Execution Table
PDD Permanent Dataset Definition Table
PDI Permanent Dataset Information Table
PDS Permanent Dataset Table
QDT Queued Dataset Table
SDT System Dataset Table
XAT DXT Allocation Table

Detailed information on these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

10.3.1 CLASS STRUCTURE DEFINITION TABLE (CSD)

The CSD is used by load input dataset processing.

10.3.2 DATASET ALLOCATION TABLE (DAT)

When Permanent Dataset Manager is active, two DATs are of interest: the
DAT for the dataset being processed and the DAT for the Dataset Catalog.
The DAT for the DSC is created when the Dataset Catalog DNT is created
and is pointed to by the DSC DNT.

10.3.3 DATASET NAME TABLE (DNT)

When the Permanent Dataset Manager is active, two DNTs are of primary
concern: the DNT for the dataset currently being processed and the DNT
for the DSC (Dataset Catalog). The DNT for the DSC is created by Startup.

SM-0040 10-14 C

PERMANENT DATASET MANAGER TABLES USED BY PDM

10.3.4 DEVICE RESERVATION TABLE (DRT)

PDM updates the DRT to reflect the amount of space in use by permanent
datasets.

10.3.S DATASET CATALOG (DSC)

The DSC is the table that makes a dataset permanent. It is a
disk-resident table partitioned into S12-word pages, each containing a
block control word, a 7-word header, and eight 63-word DSC entries. When
the DSC is initialized, it is cleared. Each DSC entry contains history
information about the dataset and the Dataset Allocation Table (OAT) for
the dataset. As the dataset size increases, the DAT size increases;
therefore, for large datasets, more than one DSC entry may be required.

For an input or output dataset, in addition to control information, the
DSC can also contain user TEXT field information, station slot
information, or both.

The page to which the permanent dataset is assigned is determined by
hashing the permanent dataset name for a dataset created through a SAVE
control statement or macro and hashing the dataset name for spooled
datasets.

10.3.6 DATASET PARAMETER AREA (OSP)

A DSP for the Dataset Catalog (DSC) is assembled into the Permanent
Dataset Manager task. It is used as input to Task I/O for reading and
writing DSC pages.

10.3.7 DATASET CATALOG EXTENSION (DXT)

Many permanent dataset attributes will not fit in the Dataset Catalog
itself, such as multiple PERMIT entries for a dataset. This additional
information is kept in the DXT. Each main OSC entry has a chain of zero
Or more DXT entries associated with it.

The DXT is a permanent disk resident dataset and as such has an entry in
the DSC. It is partitioned into S12-word pages, each containing a block
control word, a 7-word header, and eight 63-word entries.

SM-0040 10-lS C

TABLES USED BY PDM PERMANENT DATASET MANAGER

Each DXT entry belongs to a specific DSC main entry and contains a 3-word
header containing the entry type (CRI or site), an In-use flag, a DXT
entry ordinal, link information for the next DXT entry, and the main DSC
page/entry number of the owning dataset.

The DSC main entry contains head and tail pointers for its associated DXT
entries. The absence of such pointers indicates that no DXT entries
exist.

10.3.8 EQUIPMENT TABLE (EQT)

PDM uses the EQT to locate the DRT.

10.3.9 JOB COMMUNICATION BLOCK (JCB)

Pointers in the JCB are used to validate buffer addresses passed by the
user.

10.3.10 JOB TABLE AREA (JTA)

The Permanent Dataset Manager uses the dataset Dataset Name Table (DNT)
and the user number from the JTA.

10.3.11 JOB EXECUTION TABLE (JXT)

The JXT is used when delaying a user requesting unique access to a
dataset, and in validating buffer addresses passed by the user.

10.3.12 PERMANENT DATASET DEFINITION TABLE (PDD)

The PDD is the input to the Permanent Dataset Manager. It contains the
operation request for the Permanent Dataset Manager in the function code
and all parameters necessary to perform the operation.

SM-0040 10-16 C

PERMANENT DATASET MANAGER THEORY OF OPERATION

10.3.13 PERMANENT DATASET INFORMATION TABLE (PDI)

The POI is set up by Startup and contains device label information
pertinent to permanent dataset management (number of hash and overflow
pages) and contains a pointer to the Dataset Name Table (DNT) for the
Dataset Catalog (DSC).

10.3.14 PERMANENT DATASET TABLE (PDS)

An entry in the PDS exists for each active user permanent dataset. The
PDS monitors user permanent datasets currently in use and controls
dataset access by maintaining the number of users accessing the permanent
dataset and controlling the waiting for access to a permanent dataset.

10.3.15 QUEUED DATASET TABLE (QDT)

The PDM performs most of the maintenance required by the QDT. Due to the
nature of multitype datasets, the common subroutine RELDNT also modifies
entries. PDM performs functions such as assigning entries (spooled
SAVE), updating assigned entries (SAVE, MODIFY, ACCESS, and DELETE), and
releasing entries (DELETE and PDSREL).

10.3.16 SYSTEM DATASET TABLE (SOT)

PDM creates and queues an SOT entry when it loads a spooled dataset. The
SOT entry information is gathered from the Permanent Dataset Definition
Table (POD).

10.3.17 DXT ALLOCATION TABLE (XAT)

The XAT is created by Startup, and contains a bit map showing which DXT
entries are in use, and which are available.

10.4 THEORY OF OPERATION

The Permanent Dataset Manager is called by the Exchange Processor for
SAVE, ACCESS, DISPOSE, RELEASE, DELETE, ADJUST, MODIFY, and PERMIT verbs

SM-0040 10-17 C

THEORY OF OPERATION PERMANENT DATASET MANAGER

and to perform functions for PDSDUMP, PDSLOAD, and AUDIT. The Permanent
Dataset Manager is also called by the following:

• The Station Call Processor (SCP) to create Dataset Catalog (DSC)
entries for spooled input datasets, to delete DSC entries for
spooled output datasets, to perform permanent dataset name (PDN)
requests, and to SAVE datasets staged from front-end stations

• The Exchange Processor (EXP) to create DSC entries for spooled
output datasets, to delete DSC entries for spooled input datasets,
and to rewrite spooled input dataset entries, and

• Startup, to rebuild Active Permanent Dataset Table (PDS) entries
for permanent datasets associated with jobs being recovered or to
access/save system datasets such as $ROLL and $SDR.

Job termination must check to see if a dataset is permanent before
releasing the dataset from the system.

SM-0040 10-18 C

LOG MANAGER (MSG) 11

The Message Processor task (MSG) is the COS Log Manager. MSG writes
messages in the system and user log files in response to requests from
other tasks. Users request entries to be made in these files through
requests to the Exchange Processor (EXP), which in turn calls the Message
Processor. The ID for the Message Processor is MSG; the task priority is
set just below that for the'Disk Queue Manager (DQM) and the Station Call
Processor (SCP).

11.1 LOG PROCESSING

Two separate queues are created in the STP memory pool: one with
messages going to the System Log and one with messages going to user
logs. For each message request, a system log entry and/or a user log
entry is constructed. Then the messages are written from the queues to
the appropriate files through Task I/O (see section 4).

A System Log created by MSG can be used and analyzed by the EXTRACT
program and by the STATS program. Any edition, including the running
edition, can be accessed by a user having the correct read password.

11.1.1 SYSTEM LOG PROCESSING

The System Log is a permanent dataset named $SYSTEMLOG. If no System Log
exists when the system is deadstarted, MSG calls the Permanent Dataset
Manager (PDM) to create edition number 1 of $SYSTEMLOG. An installation
parameter, I@LGDSZ, determines the size of $SYSTEMLOG. Log manager
initializes $SYSTEMLOG with end-of-file (EOF) record control word (RCW)s
and terminates it with an end-of-data (EOD) RCW. This initialization
permits a user program such as EXTRACT to read $SYSTEMLOG without
accidentally running off the end. It also allows MSG to recover its
position on the System Log during a restart.

Disk initialization delays execution only of those system tasks waiting
to write messages on the log. After initialization, MSG rewinds the
dataset to the beginning of information. PDM enters $SYSTEMLOG in the
Dataset Catalog (DSC) after it has been initialized.

SM-0040 11-1 C

LOG PROCESSING LOG MANAGER

If the System Log fills up, a new edition is created and initialized. No
messages are lost when this happens. A new edition is also created
whenever the current edition cannot be accessed or when validation of the
edition number in upper memory fails. Additionally, creation of a new
edition of $SYSTEMLOG may be forced by a parameter file option at startup
time (see the COS Operational Procedures Reference Manual, publication
SM-0043) •

The System Log memory buffer and Dataset Parameter Table (DSP) are
allocated in upper memory to facilitate System Log recovery. A startup
parameter file option provides for no recovery of the System Log memory
buffer once the System Log has been successfully accessed. (See the COS
Operational Procedures Reference Manual, publication SM-0043.)

At system startup, the Log Manager attempts to recover the System Log
using the following procedure.

1. Check the Force-new-$SYSLOG-edition flag. If set, go to step 4.
Access $SYSTEMLOG. If none exists, set x in recovery message
to 1 and go to step 5. Check suppress recovery of $SYSLOG buffer
flag. If set, set x in recovery message to 9 and go to step 3.

2. Validate upper memory table area and buffer pointers. If valid,
set x in recovery message to OK and go to step 6. Set x in
recovery message to appropriate number (2 through 8).

3. Initialize upper memory table area; read $SYSTEMLOG to EOF, and
backspace once. Go to step 6.

4. Call Permanent Dataset Manager to make a permanent dataset name
request (determine current highest edition of $SYSLOG). If
edition requested is less than or equal to the current highest
edition, the system will hang.

5. Initialize upper memory table area. Initialize $SYSTEMLOG with
EOFs. Rewind $SYSTEMLOG. Call PDM to save $SYSTEMLOG in the
Dataset Catalog.

6. Enter SYOl4 - SYSTEMLOG RECOVERY SUCCESS CODE x message in the
System Log. The recovery success codes are as follows:

Code Definition

I $SYSTEMLOG does not exist.

2 Recovery validation word is bad.

3 $SYSTEMLOG edition numbers do not match.

SM-0040 11-2 C

LOG MANAGER LOG PROCESSING

Code Definition

4 $SYSLOG DSP failed validation.

5 The EOR flag is not set in $SYSLOG DSP.

6 Record control is not RCW or BCW.

7 A bad forward word index is in RCW.

8 A bad block number is in BCW.

9 The $SYSTEMLOG buffer in memory is not recovered.

lOnnnn The System Log is read to EOF. The block with the EOF
RCW is not the same block pointed to in the $SYSTEMLOG
buffer. The recovered buffer is discarded, and writing
is resumed in the block with the EOF. nnnn indicates
the number of blocks lost.

11 Error on System Log read to EOF. A new edition is
created.

OK A good recovery occurred.

7. If $SYSLOG was saved, enter SY015 - $SYSTEMLOG SAVED AS EDITION
x message in the System Log and go to step 8. If an error is
returned from PDM and $SYSLOG is not saved, the system hangs.

8. Initialization complete.

11.1.2 USER LOG PROCESSING

A user log dataset named $LOG is created for each job by Job Scheduler
(JSH) when a job is initiated. The buffer for this dataset is in the Job
Table Area (JTA) for the job. Tasks (and the user through the Exchange
Processor) can request MSG to write messages in the user log.

User log messages are placed on one general queue in the memory pool, and
each job can have ten messages backlogged on the queue. If more messages
are to be entered in a user log while at its maximum queue count (before
its backlog can be written from the queue to $LOG) , the MSG task sends a
delay status to the calling task; processing the delay status is up to
the calling task. The queue limit prevents a looping job from filling
the entire queue and hanging the system while waiting for I/O.

SM-0040 11-3 C

TASK CALLS TO MSG LOG MANAGER

The maximum size of each $LOG is limited by the installation parameter
I@LGUSZ.

11.2 TASK CALLS TO MSG

A System Task Processor (STP) calls MSG either through the synchronous
TSKREQ routine or the asynchronous PUTREQ routine. MSG sends a reply to
the calling task containing a return status informing the calling task if
the message was copied to a queue entry in an STP memory pool, or if the
message could not be copied to a queue entry in an STP memory pool
because of $LOG queue overflow or no available consecutive memory pool
space. This allows any part of STP to enter a message in the System Log
and/or user log.

Before executing a return jump to TSKREQ or PUTREQ, STP places the
following information in input registers:

(A2) MSGID,O

(S1) INPUT+O
Request

(S2) INPUT+1

Request format (LOGMSGM macro) :

OR CLASS
o f / 7 10 19 25 40 46

INPUT+O FC~ tl//I TYPE I SUB I LENGTH I

INPUT+1 1///1

Field Word Bits Description

FC INPUT+O 0-1 Function code:

ADDR

JXT

63

1 Write message in user's logfile
only.

2 Write message in System Log only.

3 Write message in both user's
logfile and in System Log.

SM-0040 11-4 C

LOG MANAGER

Field Word

OR INPUT+O

CLASS INPUT+O

TYPE INPUT+O

SUB INPUT+O

LENGTH INPUT+O

ADDR INPUT+O

JXT INPUT+l

Bits

2

3-6

10-18

19-24

25-39

40-63

46-63

TASK CALLS TO MSG

Description

Override bit; if set, disregard
suppresssion of this message's message
class.

Class assigned to message

Major type of log record (see section
11.4)

Subtype of log record (see section
11.4)

Length in words of message. If length
is 0, the message is a character
string terminated by a zero byte in
any position.

Starting address relative to STP of
message to be written

JXT address if message associated with
job; otherwise o.

The calling task receives the following information:

(Sl) OUTPUT+O
(S2) OUTPUT +1

Reply format:

o 63

OUTPUT+O ~ ________________ M_S_G_W_O_RD ________________________ S_TA_T_U_S __________ ~I
OUTPUT+l REQWORD

~--~

Field Word

MSGWORD OUTPUT+O

SM-0040

0-39

Description

First 5 characters of the message
located at ADDR specified in the
input request; either ASCII
characters or binary data.

11-5 C

SYSTEM TABLES USED BY MSG LOG MANAGER

Field Word Bits Description

STATUS OUTPUT+O 40-63 Status of requested function:
=0 Message was successfully queued

in memory pool.

REQWORD OUTPUT+l 0-63

11.3 SYSTEM TABLES USED BY MSG

~O Message was not successfully
queued in memory pool.

Copy of INPUT+O

The following tables are used for message processing.

AUT Active User Table, for interactive mode
DSP Dataset Parameter Area
JTA Job Table Area
JXT Job Execution Table
LGJ Log JXT Table
PDD Permanent Dataset Definition Table
SDT System Dataset Table

Detailed information for these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

11.3.1 ACTIVE USER TABLE (AUT)

MSG uses the following fields in the AUT:

AULSF
AUFF
AUOQC

Logoff special function field
Logged Off Terminal flag
Output queue control word

11.3.2 DATASET PARAMETER AREA (DSP)

Task I/O uses the Dataset Parameter Area (DSP) tables for the $SYSLOG and
the $LOG datasets. The DSP and I/O buffer for $SYSLOG are allocated in
upper memory during system startup. The DSP and I/O buffer for $LOG are
in the user Job Table Area (JTA).

SM-0040 11-6 C

LOG MANAGER SYS'l'FII TABLES USED BY MSG

11.3.3 JOB TABLE AREA (JTA)

MSG uses the following fields in the Job Table Area:

JTLDP
JTTSX
JTDLM
JTMSG
JTLGF
JTJN
JTJXT
JTLOG
JTCSTK
JTTRM2

User Dataset Parameter Table (DSP) address for $LOG
Time spent executing
Disable Log Message flag; set during job termination.
User log record area
User log buffer
Job name
Job Execution Table (JXT) address
Logfile ($LOG) Dataset Name Table (DNT)
PRECHO field in JTCSTK procedure stack field
Terminate Job Immediately flag; set when $LOG is ready to
overflow.

11.3.4 JOB EXECUTION TABLE (JXT)

MSG uses the following fields in the JXT:

JXSDT
JXJN
JXTSX
JXJTA
JXSTAT
JXLFM
JXSTCH
JXORD
JXIA
JXLVL
JXAUT

System Dataset Table (SDT) offset
Jobname
Time spent executing
Job Table Area (JTA) address
Status bit N (not in memory)
Last logfile message
Job status in displayable form
Ordinal number
Interactive flag
Procedure level
Active User Table (AUT) address

11.3.5 LOG JXT TABLE (LGJ)

The LGJ contains a I-word entry for each job having records placed in its
user logfile ($LOG).

11.3.6 PERMANENT DATASET DEFINITION TABLE (PDD)

Permanent Dataset Manager (PDM) requests issued by MSG are accompanied by
Permanent Dataset Definition tables (PODs).

SM-0040 11-7 c

$SYSTEMLOG FORMAT LOG MANAGER

11.3.7 SYSTEM DATASET TABLE (SOT)

MSG obtains the job sequence number, if the message is associated with a
job, from the SOT.

11.4 $SYSTEMLOG FORMAT

Each message in $SYSTEMLOG occupies a single variable-length record on
the System Log. All records of the same type and subtype have the same
format. MSG builds four header words, but it does no other formatting of
the message. It merely transfers the ASCII or binary data from the
location specified by the starting address in the request to the memory
pool queue. Then the entire record is written to the System Log through
Task I/O. The EXTRACT utility program processes each type according to
its format for each different message to produce its report, and the
STATS utility program uses several of the types to procure its daily and
monthly statistical report. (For more information on EXTRACT and STATS,
see the COS Operational Aids Reference Manual, publication SM-0044.)

Format 1 System Log records are created by 1.12 and later versions of
COS; records created by earlier COS versions are considered format O.
Records are formatted as follows:

Format 0:

RECORD+O

RECORD+l

RECORD+2

RECORD+3

.
RECORD+

LENGTH+l

Field

TIME

u

SM-0040

o 10

~I TYPE I SUB

Word

RECORD+O

RECORD+l

15 24 40
TIME

IFMTI////I JSQ I LENGTH

JOBNAME or binary data

ASCII text or binary data

Bits

0-63

o

Description

Real-time clock expressed in cycles

User flag; message also written in
user's logfile.

11-8 c

63

LOG MANAGER

Field

TYPE

SUB

FMT

JSQ

LENGTH

JOBNAME

Format 1:

o

Word Bits

RECORD+l 1-9

RECORD+l 10-15

RECORD+l 16-18

RECORD+l 24-39

RECORD+l 40-63

RECORD+2 0-63

RECORD+3 0-63
through
RECORD+LENGTH+l

10 15

RECORD+O

RECORD+l

RECORD+2

RECORD+3

RECORD+4

PI TYPE I SUB I FMT I

24

$SYSTEMLOG FORMAT

Description

Major message type. See System Log
message types.

Subtype of message. See System Log
message types.

System Log record format (0)

Job sequence number (SDJSQ); used
only if entry is associated with a
job.

Number of words excluding the first'
two words in this record

Job name (JXJN), used for type 1 and
type 4 records. For other record
types, this word contains the
beginning of binary information.

For all but type 1 records, binary
information as supplied by caller;
for type 1 records, ASCII text.

40

TIME

JSQ I LENGTH

TASK

JOBNAME

63

ASCII text or binary data .
RECORD+n

LENGTH+l

Field Word

TIME RECORD+O

u RECORD+l

SM-0040

Bits

0-63

o

Description

Timestamp; encoded date/time.

User flag; message also written in
user's logfile.

11-9 C

$SYSTEMLOG FORMAT

Field

TYPE

SUB

FMT

JSQ

LENGTH

TASK

JOBNAME

Word Bits

RECORD+l 1-9

RECORD+l 10-15

RECORD+l 16-18

RECORD+l 24-39

RECORD+l 40-63

RECORD+2 0-63

RECORD+3 0-63

RECORD+4 0-63
through
RECORD+LENGTH+l

LOG MANAGER

Description

Major message type. See System Log
message subtypes.

Subtype of message. See System Log
message subtypes.

System Log record format (1)

Job sequence number (SDJSG). Used
only if entry is associated with a job

Number of words of actual ASCII or
binary data

Calling task name in ASCII

Job name, (JXJN), used for type 1 and
type 4 records. For other record
types, this word contains o.

ASCII text or binary information as
supplied by caller

The following paragraphs describe formats for different message types
recorded in the System Log.

11.4.1 TYPE 0 - NULL MESSAGES

A type 0 message is a null record that can have a length of O. Null
messages are used to pad blocks so that no message in the System Log
crosses a disk sector boundary. Type 0 messages do not have subtypes.

11.4.2 TYPE 1 - ASCII STRING MESSAGES

Type 1 messages include all user-requested messages and system-generated
informative messages.

The subtype field indicates the originator of the message, as shown in
table 11-1.

Only type 1 messages can be written in a user logfile.

SM-0040 11-10 C

LOG MANAGER $SYSTEMLOG FORMAT

Table 11-1. ASCII message subtypes

Originator Format 0 Format 1
Subtype Subtype

STP 0 0
SCP 1 1
EXP 2 2
PDM 3 3
DEC 4 4
DQM 5 5
MSG 6 6
MEP 7 7
SPM 8 8
JSH 9 9
JCM 10 10
TQM 11 11
OVM 12 12
STG 13
USER 15 61
CSP 16 62
ABORT 17 63

11.4.3 TYPE 2 - STATION CALL PROCESSOR MESSAGES

Type 2 messages are issued by the Station Call Processor. Message
subtypes relating to the station are:

Subtype

1
2
3
4

Message

Staging in of datasets
Staging out of datasets
STAT-CMDi messages relating to station commands.
STAT-MSGi messages relating to station messages.

11.4.4 TYPE 3 - HARDWARE MESSAGES

Type 3 messages record hardware errors detected during normal operations.
These errors are of possible interest to field engineers.

SM-0040 11-11 C

$SYSTEMLOG FORMAT LOG MANAGER

subtype

1
2
3
4
5
6
7
8

Message

I-bit corrected memory errors
Uncorrectable memory errors
Disk errors
Channel errors t
ASCII error messages
I/O Subsystem channel error messages
I/O Subsystem disk error messages
I/O Subsystem tape error messages

11.4.5 TYPE 4 - ACCOUNTING MESSAGES

Type 4 messages include all job-related accounting information. Subtypes
provide for the following types of accounting messages:

Subtype

1
2
3

Message

Job termination
PDM accounting messages
TQM accounting messages

11.4.6 TYPE 5 - STARTUP MESSAGES

Type 5 messages are issued during system startup processing. Message
subtypes are as follows:

Subtype

1
2
3

Message

Permanent dataset recovery
Rolled job recovery
Hardware characteristics record

t Deferred implementation

SM-0040 11-12 C

LOG MANAGER $LOG FORMAT

11.4.7 TYPE 6 - SYSTEM PERFORMANCE MESSAGES

Type 6 messages are issued by the System Performance Monitor on a
periodic basis. These records report on the performance and usage of
COS, the processors, and I/O. Section 14 describes the System
Performance Monitor task in detail.

Subtype Message

2 Task usage
3 EXEC requests
4 User memory usage
5 Disk usage
6 Disk channel usage
7 Link usage
8 EXEC call usage
9 User call usage
11 Job Scheduler management statistics
12 Job class information
13 CPU usage
14 Interrupt count

11.4.8 TYPE 7 - TASK DEBUG MESSAGES

Tasks write type 7 messages in binary. Type 7 messages are used for
debugging.

Subtype Message

1 TQM trace buffer

11.5 $LOG FORMAT

Each job has a user log named $LOG containing a history of the job. Log
messages are generated by the operating system and by the user job
itself. Each message occupies a single variable-length record on $LOG.
At the completion of the job, $LOG is copied to $OUT, which is then
staged for output.

Records are formatted as follows:

SM-0040 11-13 C

SLOG FORMAT

RECORD-3

RECORD-2

RECORD-l

RECORD+O

RECORD+l

RECORD+2

RECORD+3

RECORD+4

RECORD+5

RECORD+n

Field

L

JQ

JX

R

TI

CI

CF

S

o

Lt

6 24

11111111111111111

CF

Word Bits

RECORD-l 0-5

RECORD-l 24-39

RECORD-l 40-63

RECORD+O 0-63

RECORD+l 0-63

RECORD+2 0-63

RECORD+3 0-31

RECORD+3 32-47

LOG MANAGER

32 40 63

Chain itemst

Chain itemst

JQt I JXt

R

TI

CI

I S I LV I SP

10

T

·
·
·

Description

Number of words, excluding the first
three header words

Job sequence number

JXT address

ASCII space codes

Wall-clock time expressed in ASCII
code in the format hh:mm:ss

CPU time expressed in ASCII code,
seven digits and a decimal point

CPU time, four fractional digits

ASCII space codes

t These fields exist only while the record is being built in the memory
pool area, but are discarded when the record is written into the actual
$LOG dataset. Item chaining is described in section 4.4 of this manual.

SM-0040 11-14 C

LOG MANAGER

Field Word

LV RECORD+3

SP RECORD+3

ID RECORD+4

T RECORD+5
through
RECORD+n

SM-0040

Bits

48-55

56-63

0-63

0-63

SLOG FORMAT

Description

Procedure level

ASCII space code

ID of calling task or user in ASCII
code (left-justified)

Message text in ASCII code; last word
is left-justified with zero fill.

11-15 C

MESSAGE PROCESSOR (MEP) 12

The Message Processor task (MEP) exists so that EXEC and the I/O
Subsystem (lOS) can communicate with the System Log. MEP can also pass
configuration information to the lOS (when requested by the lOS). MEP
relays information about errors from EXEC or the I/O Subsystem to MSG,
and detects and reports any problems in I/O Subsystem status. This
information describes double- or single-bit memory errors, Buffer Memory
errors, lOS recovered disk errors, lOS error channel status, and lOS
availability. The installation parameter I@MAXME limits the number of
memory errors that can be entered into the System Log so that it does not
overflow.

12.1 EXEC MEMORY ERROR MESSAGE FORMAT

Messages from EXEC to MEP consist of the standardized Any Packet Table
(APT) header (1 word) followed by five words of memory error
information. The memory error message format is described in section
2.10.

MEP communicates only the last four words of this message to the MSG task
(through PUTREQ) when requesting entry of the error in the System Log.

12.2 I/O SUBSYSTEM INTERFACE

MEP initializes itself with an I/O Subsystem I/O request to all I/O
Subsystem message sources. If a request is rejected, a system down
message is placed in the System Log. If initialization is successful, a
system up message is sent to the System Log.

When the MEP task is in execution, it searches for I/O Subsystem status
changes and for requests to input messages. Whenever an I/O Subsystem
changes to the system up status, a system up message is placed in the
System Log. Whenever an lOS status changes to system down, a system down
message is placed in the System Log. When an input is requested, MEP
supplies a buffer and requests transfer of the message.

SM-0040 12-1 C

I/O SUBSYSTE.:M HARDWARE ERROR MESSAGE FORMATS MESSAGE PROCESSOR

12.3 I/O SUBSYSTEM HARDWARE ERROR MESSAGE FORMATS

lOS hardware generates two types of error messages: error channel status
and disk error status.

The lOS error channel status is a 2-word binary message.

ECTYPE
0 16 32 48 \ 63

0 ECSSID I///~
1 ECSTAT ECPl ECP2 ECP3

Field Word Bits Description

ECSSID 0 0-15 ASCII C for error logging purposes

ECTYPE 0 61-63 Type of error:
4 First error of this type
3 Last error of this type
1 Between first and last error of

this type

ECSTAT 1 0-15 IS-bit augmented error channel status

ECPl 1 15-35 First parameter associated with error
channel

ECP2 1 32-47 Second parameter associated with error
channel

ECP3 1 48-53 'l'hird parameter associated with error
channel

The I/O Subsystem disk error detailed status message t is six words.

o
1

2

3

4

5

o 16
DSSID 1/////////////////1

DSLDV

DSEF I DSLM I
Flags 1///////////////////////////1

DSFCO I
DSFC2 I

t Deferred implementation

SM-0040 12-2

32 48 63
DSLBK

DSIR I DSSKS

DSPN I DSCH

DSFCI

DSFC3

C

MESSAGE PROCESSOR ASCI I MESSAGES

Field Word Bits Description

DSSID 0 0-15 I/O Subsystem station ID

DSLBK 0 32-63 Logical block number

DSLDV 1 0-63 Logical device name

DSEF 2 0-15 Initial status flags

DSLM 2 16-31 Margin position at recovery

DSIR 2 31-47 Initial interlock status register

DSSKS 2 48-63 Initial seek status

Flags:
DSTO 3 0 Timed-out flag
DSRE 3 1 Reservation Error flag
DSCE 3 2 Error Correction Used flag
DSIFC 3 3 Inconsistent Firecode flag

DSPN 3 32-47 lOS processor number

DSCH 3 48-63 lOP channel number

DSFCO 4 0-31 Firecode parameter word 0

DSFCl 4 31-63 Firecode parameter word 1

DSFC2 5 0-31 Firecode parameter word 2

DSFC3 5 32-63 Firecode parameter word 3

12.4 ASCII MESSAGES

MEP requests that the following ASCII messages be entered into the System
Log:

lOP SUBSYSTEM IS UP - lOS is initialized or has been restarted.

lOP SUBSYSTEM IS DOWN - lOS does not respond.

SM-0040 12-3 C

ASCI I MESSAGES MESSAGE PROCESSOR

lOP SUBSYSTEM LOGGING IS ENABLED - lOS error channel interrupt is
enabled.

lOP SUBSYSTEM LOGGING IS DISABLED - lOS error channel interrupt is
disabled.

SM-0040 12-4 c

DISK ERROR CORRECTION (DEC) 13

The Disk Error Correction task (DEC) is called by the CRAY-OS Disk Queue
Manager task (DQM). DEC attempts correction of a disk error by applying
the cyclic redundancy checkword (CRC) algorithm described in the Mass
Storage Subsystem Hardware Reference Manual, CRI publication HR-0630.

13.1 DEC INTERFACE WITH OTHER TASKS

DEC is called by a task through PUTREQ, which places the Equipment Table
(EQT) address in INPUT+O. DEC returns the request word in the reply.

Input registers:

0 8 16 24 32 40 48 56 63
I NPUT+O

I
Return Zero EQT

I INPUT+l Zero

Field Word Bits Description

Return INPUT+O 0-15 Return address; saved across the call.

EQT I NPUT+ 0 40-63 Equipment Table (EQT) address

output registers:

0 8 16 24 32 40 48 56 63

OUTPUT+O I

Return OUTPUT+l

Status

I Zero EQT

Field Word Bits DescriEtion

Status OUTPUT+O 0-63 Error status:
o Corrected error
1 Uncorrected error

SM-0040 13-1 C

SYSTEM TABLE USED BY DEC DISK ERROR CORRECTION

Field Word Bits Description

Return OUTPUT+l 0-15 Copy of INPUT+O

EQT OUTPUT+l 40-63 Copy of INPUT+O

13.2 SYSTEM TABLE USED BY DEC

DEC uses the Equipment Table (EQT).

The EQT contains information for device allocation, physical operation
control, device request queue management, channel configuration,
performance monitoring, error counting, and error correction. Detailed
information on this table is available in the COS Table Descriptions
Internal Reference Manual, publication SM-0045.

SM-0040 13-2 C

SYSTEM PERFORMANCE MONITOR (SPM) 14

The System Performance Monitor (SPM) is a low-priority task that collects
system performance data and periodically sends it to the System Log.
Once SPM is created, it goes into an infinite loop where it is readied by
EXEC, collects information and sends it to the Log Manager, and performs
a time delay. SPM's only communication with other tasks is one way to
the Log Manager. SPM may be readied by EXP if an installation parameter
is defined to allow a user job to request SPM initiation.

14.1 SYSTEM TABLES USED BY SPM

The following system tables are used by SPM:

CSD Class Structure Definition Table
DCT Device Channel Table
IC Interrupt Count Table
MCT Monitor Call Table
STT System Task Table

Detailed information on these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

14.1.1 CLASS STRUCTURE DEFINITION TABLE (CSD)

The CSD is an STP-resident table containing all job class information.

14 .1. 2 DEVICE CHANNEL TABLE (OCT)

The DCT is an STP-resident table. The only field used by SPM is DTCTA,
the cumulative channel reserve time field.

14.1.3 INTERRUPT COUNT TABLE (IC)

The IC counts interrupts for each channel or pseudo channel. This table
is read and zeroed indirectly through EXEC calls.

SM-0040 14-1 C

CONTROL PARAMETERS SYSTEM PERFORMANCE MONITOR

14.1.4 MONITOR CALL TABLE (MeT)

Monitor Call Table (MCT) serves only SPM. It counts each type of call to
EXEC from various tasks.

Table format:

o

I

n

o 8 16 24
Number of

Number of

Number of

14.1.5 SYSTEM TASK TABLE (STT)

32 40 48 56 63

type 0 requests

type 1 requests

·
·
·

type n requests

Four fields of the STT are used by SPM. STCNT maintains the ready count,
STNEC the normal exit count, STTIME the task execution time, and STLPMC
the time of the last SPM call.

14.2 CONTROL PARAMETERS

The following System Task Processor (STP) parameters control SPM's data
collection:

I@SPMDLY

I@SPMMIN

I@SPMON

I@SPMTYP

SM-0040

Delay interval between collection periods in seconds

Delay interval when waiting for buffer space

SPM Task Enable flag, checked every I@SPMDLY seconds

SPM subtype enable vector. Each bit set turns on the
data collection for the respective subtype (or group of
data, as enumerated in section 14.4). The vector is
right-adjusted so that the rightmost bit corresponds to
subtype 12.

14-2 C

SYSTEM PERFORMANCE I«>NITOR ME'mOD OF DATA COLLECTION

I@USRSPM Allow user jobs to ready SPM through the F$SPM EXP
function if I@USRSPM is set nonzero. If I@USRSPM is
0, a job issuing F$SPM is aborted with the message:

"AB026-INVALID (UNDEFINED) USER CALLII.

The value of I@SPMDLY is an installation option. The suggested value is
30 minutes (1800 seconds). In general, the advantages of setting a large
value for the interval are:

• Smaller system overhead, and

• Smaller volume of EXTRACT output.

The advantages of a small interval are:

• More detailed statistics of specific period of time, and

• Smaller probability of losing SPM data through system crashes.

The operator may change parameters while COS is running by entering new
values into the corresponding STP locations using system debug commands.
However, the changed parameters do not take effect until after the
current delay interval.

14.3 METHOD OF DATA COLLECTION

Performance data is stored in STP as well as in EXEC. In general, such
data accumulates with time until it is read by SPM. At that time, the
data areas are zeroed and accumulation resumes. Therefore, each System
Log record contains data accumulated since the last collection period.
EXEC tables are read and zeroed through EXEC requests. During collection
periods, STP is locked, ensuring that other tasks do not read and update
a data area between the time the data is read by SPM and the time the
data area is zeroed.

14.4 DATA COLLECTION AND RECORD DEFINITION

Twelve groups (or subtypes) of data are collected by SPM. Each group is
sent to the Log Manager as a record. All SPM records belong to Log
Manager record type 6. The data subtypes and record definitions are
given in tables 14-1 through 14-12.

SM-0040 14-3 C

DATA COLLECTION AND RECORD DEFINITION SYSTEM PERFORMANCE MONITOR

A listing of subtypes follows:

Table Subt~Ee DescriEtion

14-1 2 Task usage
14-2 3 EXEC requests
14-3 4 User memory usage
14-4 5 Disk usage
14-5 6 Disk channel usage
14-6 7 Link usage
14-7 8 EXEC call usage
14-8 9 User call usage
14-9 11 Job Scheduler management statistics
14-10 12 Job class information
14-11 13 CPU usage
14-12 14 Interrupt count

Table 14-1. Task usage record - subtype 2

Word Data Origin of Data

0 Time interval Calculated in SPM
1 Number of tasks NE@STT (in COSTXT)
2 Number of task 0 readies STCNT field of STT (in EXEC)
3 Number of task 1 readies STCNT field of STT (in EXEC)

· · · · · · · · · N+2 Number of task N readies STCNT field of STT (in EXEC)

SM-0040 14-4 C

SYSTEM PERFORMANCE MONITOR DA'lA COLLEC'lION AND RECORD DBFINI'lION

Table 14-2. EXEC requests record - subtype 3

Word Data Origin of Data

0 Time interval Calculated in SPM
1 Number of tasks NE@STT (in COSTXT)
2 Number of task 0 requests STNEC field in STT (in EXEC)
3 Number of task 1 requests STNEC field in STT (in EXEC)

· · · · · · · · ·
N+2 Number of task N STNEC field in STT (in EXEC)

Table 14-3. User memory usage record - subtype 4

Word Data Origin of Data

0 Time interval Calculated in SPM
1 Available memory integral PM04AMI in STP
2 I/O wait integral PM04IMI in STP
3 CPU wait integral PM04CMI in STP
4 CPU execute integral PM04WMI in STP

SM-0040 14-5 c

DATA COLLECTION AND RECORD DEFINITION SYSTEM PERFORMANCE MONITOR

Table 14-4. Disk usage record - subtype 5

Word Data Origin of Data

0 Time interval Calculated in SPM
1 Number of devices NE@EQT
2 Logical device 0 name LDV field in EQT
3 Blocks transferred (device 0) NBK field in EQT
4 Seek time (device 0) CST field in EQT
5 Transfer time (device 0) TRT field in EQT
6 Number of physical requests

(device 0) NPR field in EQT
7 Number of nonseek requests

(device 0) RSC field in EQT
8 Maximum allocation units, MAU, PDA, AlA fields in DRT

number of permanent Als,
number of free Als

· · · · · · 7*N+2 Logical device N name
7*N+8 Number of nonseek requests

(device N)

Table 14-5. Disk channel usage record - subtype 6

Word Data Origin of Data

0 Time interval Calculated in SPM
1 Number of channels NE@DCT
2 Channel 0 time DTCTA field in DCT (in STP)
3 Channel 1 time DTCTA field in OCT

· · · · · ·
· · · N+2 Channel N time DTCTA field in DCT

SM-0040 14-6 C

SYSTEM PERFORMANCE MONITOR DATA COLLEcrION AND RECORD DEFINITION

Table 14-6. Link usage record - subtype 7

Word Data Origin of Data

0 Time interval Calculated in SPM
1 Number of links Number of active LXT entries
2 Logical 1D (link 0) LXL1D in LXT entry
3 Number of messages (link 0) LXNM in LXT entry
4 Number of words sent (link 0) LXNWS in LXT entry
5 Number of words received LXNWR in LXT entry

(link 0)

· ·
· · · · 4*N+2 Logical 1D (link N)

4*N+3 Number of messages (link N)
4*N+4 Number of words sent (link N)
4*N+5 Number of words received

(link N)

Table 14-7. EXEC call usage record - subtype 8

Word Data Origin of Data

0 Time interval Calculated in SPM
1 Number of types MTCTL (in COSTXT)
2 Number of type 0 requests MeT (in EXEC)
3 Number of type 1 requests MeT (in EXEC)

· · · · · ·
· · · N+2 Number of type requests MeT (in EXEC)

SM-0040 14-7 C

DATA COLLECTION AND RECORD DEFINITION SYSTEM PERFORMANCE MONITOR

Table 14-8. User call usage record - subtype 9

Word Data Origin of Data

0 Time interval Calculated in SPM
1 Number of user

request types
2 Number of type 0 requests
3 Number of type 1 requests

· · · ·
· ·

N+2 Number of type N requests

Table 14-9. Job Scheduler management statistics record - subtype 11

Word

o
1
2
3
4
5
6
7
8
9

10

11
12
13
14
15

16
17

SM-0040

Data

Time interval
Number of memory compacts
Number of rolls
Number of expands
Number of reduces
Number of initiates
Number of terminates
Number of scheduling intervals
Number of index writes
Job class structure name
Number of jobs in the system

Number of active IXTs
Maximum number of JXTs
Number of available pool JXTs
Number of defined JXTs
Number of classes waiting
for JXTs
Number of memory moves
Number of memory words moved

14-8

Origin of Data

Calculated in SPM
PMIIMC in STP
PMIINR in STP
PMIlFLE in STP
PMIlFLR in STP
PMIlNI in STP
PMIlNT in STP
PMllSI in STP
PMIIIN in STP
CSSNM in STP
Input and execute queue
counts in STP
JXTPOP in STP
JXTMAY in STP
JXTMAX-CSSCUM-CSAPL in STP
CSNCL in STP
CSNCW in STP

PMIINM in STP
PMIINWM in STP

C

SYSTEM PERFORMANCE MONITOR DATA COLLECTION AND RECORD DEFINITION

Table 14-10. Job class information record - subtype 12

Word

0
1
2
3
4
5
6

word

o
1

2
3
4
5
6
7

5N+3
5N+4

5N+M+3

SM-0040

Data Origin of Data

Time interval Calculated in SPM
Job class name CSCNM in STP
Number of active JXTs CSACT in STP
Number of jobs waiting for JXTs CSWTG in STP
Number of reserved JXTs CSRES in STP
Maximum number of JXTs CSMAX in STP
Status (ON/OFF) CSOFF in STP

Table 14-11. CPU usage record - subtype 13

Data

Time interval
Number of CPUs

Idle time
User time, CPU 0
Idle time, CPU 0
Blocked time, CPU 0
EXEC time, CPU 0
STP time, CPU 0

System task 0 time
System task 1 time

System task M time

14-9

Origin of Data

Calculated in SPM
C@CPQUAN (installation
parameter)
ITIM (in EXEC)
PWUCUM in PWS (EXEC)
PWI CUM in PWS (EXEC)
PWBCUM in PWS (EXEC)
PWECUM in PWS (EXEC)
PWSCUM in PWS (EXEC)

STTIME field of STT (EXEC)
STTIME field of STT (EXEC)

STTIME field of STT (EXEC)

C

TASK PLOW FOR SPM SYSTEM PERFORMANCE ImNlTOR

Table 14-12. Interrupt count record - subtype 14

Word

o
1
2
3
4

N+3
N+4
N+5

N+M+4
N+M+5
N+M+6

N+M+5

Data

Time interval
Number of channels
Number of flags
Channel 0 interrupts
Channel 1 interrupts

Channel N interrupts
Flag 0 interrupts
Flag 1 interrupts

Flag M interrupts
Flag 0 interrupts
Flag 1 descriptor

Flag M descriptor

14.5 TASK FLOW FOR SPM

Origin of Data

Calculated in SPM
C@CPHCHN+l (EXEC)
NE@IHT (EXEC)
CIT (EXEC)
CIT (EXEC)

CIT (EXEC)
ICT (EXEC)
ICT (EXEC)

ICT (EXEC)
IHT (EXEC)
IHT (EXEC)

IHT (EXEC)

The following general stepflow describes SPM processing.

1. If SPM not enabled, go to 171 otherwise,

2. Get a buffer for each subtype.

3. If not enough memory, return buffers and go to 15; otherwise,

4. Lock STP.

5. If each enabled subtype buffer filled, go to 9; otherwise,

6. Put time interval into word 0 of buffer.

SM-0040 14-10 C

SYSTEM PERFOBMANCE MONITOR TASK FLOW FOR SPM

7. Call corresponding collection routine to fill the buffer.

8. Go to 5.

9. Unlock STP.

10. If there are no buffers left to write, go to 17; otherwise,

11. Call MSG to write the subtype to system log.

12. Check MSG reply.

13. Return the buffer.

14. Go to 10.

15. Time delay for I@SPMMIN seconds.

16. If now have buffer space, go to 4; otherwise,

17. Time delay for I@SPMDLY seconds.

18. Go to 1.

SM-0040 14-11 C

JOB CLASS MANAGER (JCM)

Before a job enters the input queue, it must be given a job class
assignment. The Job Class Manager Task (JCM) assigns a job to a class.
JCM uses the job class structure currently in effect to determine the
class assignment. See JCSDEF in the COS Operational Aids Reference
Manual, publication SM-0044, for a detailed description of a job class
structure.

After a system Install, the following default job class structure is in
effect:

SNAME,SN=DEFAULT.
CLASS,NAME=JOBSERR,RANK=1,CHAR=JSE,RES=O,MAX=63.
CLASS,NAME=NORMAL,RANK=2,CHAR=ORPH,RES=O,MAX=63.
SLIMIT,LI=15.

15.1 JOB CLASS ASSIGNMENT

A job can belong to only one class. A job that qualifies for more than
one class is assigned to the highest ranked class for which it

lS

qualifies. The user can override this assignment to lower the class
through use of the CL parameter on the JOB control statement. The job
must still meet the qualifications of the specified class. If a job does
not qualify for any class, it is assigned to the class defined using
CHAR=ORPH (ORPH suggests orphan).

A JOB statement error occurs in the following cases:

• The job does not qualify for any class, and no class is defined
using CHAR=ORPH.

• The user has overridden class assignment through the CL parameter
on the JOB statement but the job does not meet the class
qualifications of the specified class, or the specified class does
not exist.

• The job is neither recoverable nor rerunnable during a system
restart with recovery of rolled jobs selected or is not rerunnable
during a restart with recovery of rolled jobs disabled.

SM-0040 15-1 C

JCM INTERFACE WITH OTHER TASKS JOB CLASS MANAGER

Job class assignments are redetermined in the following cases:

• After a system startup, job classes are reassigned for all jobs
that are in the input queue at the end of the startup. Jobs that
are recovered are not affected.

• After a new structure is invoked, job classes are reassigned for
all jobs in the input queue.

• After an operator uses the ENTER command to change a job's class,
priority, time limit, TID, or DID, the job class of the specified
job is determined if it is in the input queue.

• After an operator uses the ROUTE command to change a DID, job
classes are reassigned for all jobs in the input queue that had
the original DID.

Once a job receives a JXT, its class assignment does not change unless
the job is rerun. After a restart, jobs are either recovered, rerun, or
marked by the system as having a JOB statement error. Recovered jobs
maintain the class assignment they had before the system interruption.

15.2 JCM INTERFACE WITH OTHER TASKS

The Job Class Manager (JCM) task is created with all other system tasks
by the startup procedure. A task can call JCM by setting the appropriate
input registers and calling PUTREQ and TSKREQ. JCM replies to each
request by setting the appropriate output registers. See section 3 of
this manual for a complete description of task communications.

Input register format:

o 17 40 58 63

I NPUT+O //1 FC

INPUT+l ///////////////1 CMO SDT

Field Word

FC I NPUT+0

CMO I NPUT+l

SDT I NPUT+1

SM-0040

Bits

58-63

17-39

40-63

Description

Function code

Class Map Offset of the associated
class

SDT address of the associated job

15-2 C

JOB CLASS MANAGER JCM INTERFACE WITH OTHER TASKS

Output register format:

0 6 17 40 63
OUTPUT+O FC 1//

OUTPUT+l FC 1///////////1 CMO SOT

Field Word Bits Description

FC OUTPUT+O 0-5 Function code

FC OUTPUT+l 0-5 Funct ion code

CMO OUTPUT+l 17-39 Class Map Offset of the associated
class

SOT OUTPUT+l 40-63 SOT address of the associated job

The requests that tasks can make to JCM are described on the following
pages in the order listed in table 15-1.

Table 15-1. JCM functions

Function Input
Code Parameters Function

CASS SOT Assigns specified job to a class

RCASS SOT Reassigns specified job to a class

ASSIT SOT, CMO Assigns specified job to a specified class

FXC Fixes invoked class structure

FXCI Fixes recovered class structure

15.2.1 CLASSIFY REQUEST

The classify request assigns a specific job to a class: it is called just
before entering a job into the input queue for the first time.

SM-0040 15-3 C

JCM INTERFACE WITH OTHER TASKS JOB CLASS MANAGER

FUNCTION CODE:

ENTRY:

EXIT:

CASS

SOT of specific job required

Specified job is assigned to a class and the
appropriate class-waiting-counts in the class
structure are updated

15.2.2 RECLASSIFY REQUEST

The reclassify request reassigns a specific job to a class; it is called
when a job in the input queue has one of its job statement parameters
(that may affect job classification) altered. The job must be removed
from the input queue before JCM is called and returned to the input queue
after JCM is called.

FUNCTION CODE:

ENTRY:

EXIT:

15.2.3 ASSIGN REQUEST

RCASS

SOT of specific job required

Specified job is removed from its current class.
The appropriate class-waiting-counts in the class
structure are updated; the job then reassigned to
a class and the appropriate class-waiting-counts
are updated.

The assign request assigns a specific job to a specific class; it is
called when the operator issues an ENTER,CL command to assign a job to a
specific class.

FUNCTION CODE:

ENTRY

EXIT:

SM-0040

ASSIT

SOT of specific job and class map offset of
specific class

Specific job is assigned to the specified class
and the class-waiting-counts are updated in the
class structure

15-4 C

JOB CLASS MANAGER JCM INTERFACE WITH OTHER TASKS

15.2.4 FIXCLASS REQUEST

The fixclass request fixes the class structure; it is called after a new
class structure has been invoked and all waiting and allocated counts in
the structure are O.

FUNCTION CODE:

ENTRY:

EXIT:

FUNCTION:

FUNCTION CODE:

ENTRY:

EXIT:

SM-0040

FXC

Nothing required

All jobs in the input queue are reclassified, and
all waiting and allocated counts in the class
structure are determined.

Fix the class structure; called after a system
recovery when all the waiting and allocated
counts in the structure might not be O.

FXCI

Nothing required

All waiting and allocated counts in the class
structure are zeroed. Then all jobs in the input
queue are reclassified, and all waiting and
allocated counts in the class structure are
determined.

15-5 C

OVERLAY MANAGER (OVM) 16

The Cray Operating System (COS), by necessity, is not all concurrently
memory resident. Instead, much of it can be on disk in the form of
system overlays. Overlay management, in which OVM has the major role,
processes function requests that call for the loading and execution of
these system overlays. The corresponding macros which provide tasks with
a means of communicating with OVM, are described in the Macros and Opdefs
Reference Manual, publication SR-OOI2.

OVM performs the following overlay management functions:

Function Function code Macro

Overlay load request OV$FCLD LOAOOVL
Overlay call request OV$FCCL CALLOVL
Overlay goto request OV$FCGO GOTOOVL
Overlay reuse disable request OV$FCDIS DISABLE
Overlay return request OV$FCRTN RTNOVL

The modules of code intended as overlays are identified as such during
system assembly through system macros. These macros ensure that the
assembler and loader construct the loader tables and that during COS
execution, the system is informed of what overlays exist. The overlay
definition macros are also described in the COS Operational Aids
Reference Manual, publication SM-0044.

The areas of the system involved in overlay management are:

DQ,to'l

STPMEM

Provides the mechanism for reading overlays from disk

Allocates/deallocates memory pool space to hold overlays
and their associated tables

STARTUP Allocates or recovers the overlay space on disk, builds the
overlay descriptor tables and moves the overlays to disk

OVM Handles the task requests by loading the appropriate
overlays, updating the tables which describe overlay
residence, and maintaining the overlay calling sequence

The I@ODTSZ and I@SCALLS installation parameters allow an analyst to set
characteristics for overlay management according to an installation's
needs. Installation parameters are defined in the COS Operational
Procedures Reference Manual, publication SM-0043.

SM-0040 16-1 C

SYSTEM TABLES USED BY OVM OVERLAY MANAGER

16.1 SYSTEM TABLES USED BY OVM

The Overlay Manager task (OVM) uses the following tables to control
overlay loading and unloading:

OCS Overlay Call Stack
OCT Overlay Control Table
ODT Overlay Directory Table
OLL Overlay Load Request List

The formats of these tables are described in detail in the COS Table
Descriptions Internal Reference Manual, CRI publication SM-0045.

16. 1.1 OVERLAY CALL STACK (OCS)

The OCS contains an entry giving the caller's ID and the return address
for each call to an overlay. Each CALL adds an entry to the stack, and
each RETURN removes an entry from the stack. OVM allocates space for the
OCS when the overlay is first called.

16.1.2 OVERLAY CONTROL TABLE (OCT)

Each overlay residing in memory has an associated OCT. OVM constructs
the OCT in the memory pool reserved for overlays. Among other things,
the OCT flags whether its associated overlay is currently busy or idle.

16.1.3 OVERLAY DIRECTORY TABLE (ODT)

The ODT is defined in the STP table area. Each overlay defined by a
DEFINOVL macro contains an entry in the ODT. Each entry contains
addressing information and data on the overlay's use. The I@ODTSZ
installation parameter defines the length of the table. The DEFINOVL
macros follow the Startup code and precede the Control Statement
Processor (CSP) code.

16.1.4 OVERLAY LOAD REQUEST LIST (OLL)

The OLL contains a backlog of requests for overlays. When an overlay
load is requested and the memory pool is full, an entry is added to the
OLL to be processed when space becomes available. The OLL resides in the

SM-0040 16-2 C

OVERLAY MANAGER USING OVM FUNCTIONS

STP table area, and its length is determined by the number of entries
specified by the I@OLL installation parameter.

16.2 USING OVM FUNCTIONS

The following sections describe how and when tasks request functions of
OVM.

16.2.1 INITIAL LOAD OVERLAY REQUEST

When a task needs to load an overlay to continue executing, it must issue
a LOADOVL call. The LOADOVL macro sends an OV$FCLD function code to
OVM. For this request, OVM builds an overlay call stack and loads the
requested overlay. If the memory pool contains insufficient space for
the request, the request is placed in the Overlay Load Request List. If
an error occurs that prevents honoring a request, an error is returned to
the caller.

Error code Significance

OV$ECNS No room in the Overlay Load Request List

Input required by OVM for an initial overlay load request consists of the
overlay 10. This ID is an overlay identifier and is defined at
installation.

The format of an OV$FCLD request (LOADOVL macro) follows:

Sl

S2

id

o 24 48

VIIIIIIIIIIIIIIIIIIIIIIII Return address 1

/1/111111111111111/111111111111111111111111111111

Overlay identifier

entry Entry point

The OV$FCLD reply follows:

SM-0040 16-3

63

OV$FCLD

id entry

C

USING OVM FUNCTIONS OVERLAY MANAGER

o 24 40 48 63

Sl fl 111111111111111111111111111111111111 I f-dependent contents

S2 1111111111111111111111111 Return address OV$FCLD

f Flag specifying contents of bits 40-63, as follows:
1 Error code
o Address to which control is transferred

16.2.2 TRANSFER OF CONTROL REQUESTS

When an overlay in execution determines that it needs another overlay to
perform some function, it issues either a CALLOVL or a GOTOOVL. A
CALLOVL is used if the calling overlay wants control returned to it when
the called overlay completes; a GOTOOVL is used if control is not to
return to the caller.

For either request, OVM determines if the overlay is already loaded. If
not, OVM attempts to load it by allocating space in the memory pool and
having the Disk Queue Manager (DQM) read the overlay from disk. The
overlay issuing the request is marked not busy. If there is no space for
loading the overlay, an entry is added to the Overlay Load Request List
(OLL) •

For a CALLOVL, OVM saves the caller ID and return address in the Overlay
Call Stack. When the called overlay completes execution, the calling
overlay is reloaded and OVM restarts the caller at the return address
supplied by the OCS entry. For a GOTOOVL, the information about the
caller is not saved. When the called overlay terminates, OVM restarts
the last overlay that made a CALLOVL or returns to the task that issued
the original LOADOVL.

Input to OVM for a CALLOVL is the desired overlay ID and the return
address. For a GOTOOVL, only the overlay ID is used.

OV$FCCL request (CALLOVL macro) :

o 24 48

1111111111111111111111111 Return address 1 OV$FCCL Sl

S2 VIII id entry

id Overlay identifier

entry Entry point

SM-0040 16-4 C

63

OVERLAY MANAGER USING OW FUNCTIONS

Reply:

o 24 40 63

51 fl////////////////////////////////////I f-dependent contents

52 ////////////////////////1 Return address OV$FCCL

f Flag specifying contents of bits 40-63, as follows:
1 Error code
o Address to which control is transferred

OV$FCGO request (GOTOOVL macro) :

o 48 63

//1 OV$FCGO 51

52 //1 id I entry

id Overlay identifier

entry Entry point

Reply:

o 40 48 63

51 fl/////////////////////////////////////I f-dependent contents

52 //1 OV$FCGO

f Flag specifying contents of bits 40-63, as follows:
1 Error code
o Address to which control is transferred

16.2.3 INHIBITING OVERLAY REU5E

The Overlay Reuse Disable request (or DISABLE macro) signals OVM that the
current overlay must be reloaded before it can be reused. This is used
only if some change in code or an internal table requires over
reinitia1ization.

OVM sets a flag in the OCT signaling that this copy of the overlay cannot
be reused.

5M-0040 16-5 C

USING OVM FUNCTIONS OVERLAY MANAGER

OV$FCDIS request (DISABLE macro) :

o 48 63

Sl VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII/IIIIIIIIIIIIII OV$FCDIS

S2 VIIIIIIIIIIIIIIIIIIIIIIIIIIIII/III/IIIIIIIIIIIIIIIII/l1111111111

Reply:

o 48

Sl o

S2 /1/11 OV$FCDIS

16.2.4 RETURNING TO CALLED OVERLAY

An overlay uses an Overlay Return request to notify OVM that it has
completed execution. When this request is received, OVM uses the
following process to determine which overlay, if any, should be loaded
next.

1. Take the last entry made in the Overlay Call Stack and restart
the specified overlay.

2. If the OCS is empty, return to the calling task.

After each Overlay Return request, OVM attempts to satisfy any
outstanding requests in the OLL.

OV$FCRTN request (RTNOVL macro) :

o 48

Sl /1/111111/1111/111111111111111/111/11111111111111 OV$FCRTN

63

63

S2 111111111111/11/11111/

Reply:

o 40 48 63

Sl fl 1/11111/1111/1111111111111111111111111 I f-dependent contents

S2 /1/111111/11111111111111111111/111111111111111111 OV$FCRTN

SM-0040 16-6 C

OVERLAY MANAGER OVM REQUEST PROCESSING

f Flag specifying contents of bits 40-63, as follows:
1 Error code
o Address to which control is transferred

16.3 OVM REQUEST PROCESSING

The following sections briefly describe how OVM processes requests.

16.3.1 OV$FCLD REQUEST (LOADOVL) PROCESSING

The processing flow follows:

LOADI Execution initiates in OVM and a GETREQ is performed.

LOAD 2 OVM determines that a OV$FCLD request is being processed.

LOAD3 Try to allocate an Overlay Call Stack (OCS) through MEMAL; if
no space exists, go to LOAD13.

LOAD4 Build the OCS entry; this includes the overlay/task ID and
return address of the calling program, and (Sl) from the
request.

LOADS Search the Overlay Control Table (OCT) to determine if the
overlay being called is already in memory and is not busy; if
so, go to LOADII.

LOAD6 Search Overlay Directory Table (ODT) to find matching overlay
ID and entry point; error if not found.

LOAD 7 Attempt to allocate overlay memory pool space for overlay
area and OCT. If space not available, go to LOAD13.

LOAD8 Set up Overlay Control Table (OCT) and put request to Disk
Queue Manager (DQM) to load the overlay.

LOAD9 • After Disk Queue Manager (DQM) loads the overlay, relocate
address references and release space occupied by the Block
Relocation Table (BRT).

LOAD 1 0 Send reply to caller that overlay has been loaded.

LOADll The overlay is already in memory; set OCT busy and other
pertinent information.

SM-0040 16-7 C

OVM REQUEST PBOCBSSING OVERLAY MANAGER

LOAD 1 2

LOAD 1 3

LOAD14

Get corresponding ODT entry and determine address of entry
point to be used. Go to LOADIO.

Space does not currently exist for an Overlay Call Stack
(OCS) or an Overlay Control Table (OCT) and the associated
overlay. If no space remains in the Overlay Load Request
List (OLL), go to LOAD14. Otherwise, build an OLL entry and
try to process other requests.

Send error function back to the caller.

16.3.2 OV$FCCL REQUEST (CALLOVL) PROCESSING

The processing flow follows:

CALLI

CALL 2

CALL3

CALL 4

OVM determines that an OV$FCCL request is being processed.

The Overlay Control Table (OCT) chain is searched for an
entry corresponding to the overlay containing the CALLOVL
macro.

Save information from OCT and set it not busy.

Go to LOAD4.

16.3.3 OV$FCGO REQUEST (GOTOOVL) PROCESSING

The processing flow follows:

GOTOl

G0T02

G0T03

G0T04

SM-0040

OVM determines an OV$FCGO request is being processed.

Search for the Overlay Control Table (OCT) corresponding to
the overlay containing the GOTOOVL macro.

Save pertinent information from OCT and set it not busy.

Go to LOADS.

16-8 C

OVERLAY MANAGER OVII BBQUBST PBOCBSSING

16.3.4 OV$FCDIS REQUEST (DISABLE) PROCESSING

The DISABLE macro can only occur within an overlay. It sets a bit in the
OCT indicating that the overlay must be reloaded before being used.

16.3.5 OV$FCRTN REQUEST (RTNOVL) PROCESSING

The processing flow follows:

RTNl

RTN2

RTN3

RTN4

RTNS

RTN6

SM-0040

OVM determines that an OV$FCRTN request is being processed.

Search for the Overlay Control Table (OCT) entry
corresponding to the overlay that issued the RTNOVL macro.

Get the Overlay Call Stack (OCS) address from the OCT and set
OCT entry not busy.

Decrement number of entries in the OCS, if this is the last
entry, go to RTN6.

Get overlay ID and return address from OCS and go to LOADS.

Put reply to caller containing return address and search for
new request to process.

16-9 C

I

TAPE QUEUE MANAGER (TQM)

The Tape Queue Manager (TQM) manages tape I/O between one or more user
jobs and the I/O Subsystem (lOS). TQM is responsible for operator
communications in the form of mount messages and device, controller, and
channel-reconfiguration processing through the CONFIG common subroutine.
TQM also maintains global availability and allocation counts for devices
so the Job Scheduler (JSH) can appropriately schedule jobs.

17

The minimum I/O Subsystem configuration needed to support magnetic tape
operations consists of a Master I/O Processor (MIOP), a Buffer I/O
Processor (BIOP), an Auxiliary I/O Processor (XIOP), and 500K words of
Buffer Memory. I/O Subsystem software residing in the XIOP physically
controls all block multiplexer channels, control units connected to these
channels, and tape devices connected to these control units.

TQM performs two kinds of tape I/O: user and system. The major activity
is tape reading or writing directly to or from a user's circular buffer.
But at times (for example, for label processing or volume switching), TQM
must defer or queue a user request to perform system functions in support
of a user job. When this happens, TQM sets the Sequencer-active flag and
loads a string of functions (also referred to as sequences) to be
executed. The functions can be I/O Subsystem requests or requests to
execute a subroutine. When the last function in the string is complete,
the Sequencer-active flag is cleared and any queued user request is
resumed. The sequencer thus performs system I/O rather than normal user
I/O.

The logic flow in TQM is as follows.

1. Perform delayed functions. (See section 17.4.)

2. Process all I/O Subsystem replies. (See section 17.5.)

3. Process all COS or operator requests. (See section 17.6.)

4. Return to the idle loop. (See section 17.7.)

SM-0040 17-1 C

I

SYSTEM TABLES USED BY TQM TAPE QUEUE MANAGER

17.1 SYSTEM TABLES USED BY TQM

TQM uses the following tape-related tables to control the configuration
and the activity associated with each device:

CNT Configuration Table
TDT Tape Device Table

In addition, TQM uses the following system tables in the course of
processing:

DEX Auxiliary Dataset Enquiry Table
DNT Dataset Name Table
DSP Dataset Parameter Table
DUX Auxiliary Dataset Update Table
FSH Front-end Service Header
GRT Generic Resource Table
JTA Job Table Area
JXT Job Execution Table
LDT Label Definition Table
SM Station Message Header
VAX Auxiliary Volume Access Table
VUX Auxiliary Volume Update Table

The formats of these tables are illustrated in the COS Table Descriptions
Internal Reference Manual, publication SM-0045.

17.2 TQM INTERFACE WITH THE I/O SUBSYSTEM

Communication between TQM and the I/O Subsystem is accomplished through
the EXEC I/O Subsystem driver, which manages the transfer of 6-word
command and reply packets between TQM and the I/O Subsystem. Packets
going to the I/O Subsystem are contained in the first six words of the
TDT entry being processed, while packets coming to TQM from the I/O
Subsystem are delivered to a single 6-word area near the end of TQM. In
both cases, the Subsystem Control Table (SCT) near the end of TQM (B@SCT
symbolically), controls communication with the I/O Subsystem driver in
EXEC.

As with I/O Subsystem disk I/O, the SCT links TQM to EXEC. For tape
packets, data is transferred between Central Memory in the CPU and I/O
Subsystem Buffer Memory in 512-word increments to minimize the impact on
existing I/O and library routines. The I/O Subsystem notifies TQM of all
physical tape block boundaries, enabling TQM to keep an accurate record
of tape position.

SM-0040 17-2 C

TAPE QUEUE MANAGER TQM INITIALI~TION

The 6-word bidirectional packet is the first six words of the Tape Device
Table (TDT). The packet format permits asynchronous processing of data
transfers between the CPU's Central Memory and Buffer Memory and of the
physical reading or writing of tape. Refer to the COS Table Descriptions
Internal Reference Manual, publication SM-0045, for a detailed
description of the TDT.

17.3 TQM INITIALIZATION

When Startup creates the Tape Queue Manager Task (TQM), TQM receives
control at the symbol TQM. Initialization consists of the following
functions:

1. TQM checks the ASClI-to-EBCDIC and EBCDIC-to-ASCII conversion
tables for compatibility. If the tables are set up improperly,
the system halts.

2. TQM establishes a link with the I/O Subsystem driver in EXEC by
sending to the driver a packet-I/O (PIO) clear request along with
the address of TQM's Subsystem Control Table (SCT) (B@SCT). If
EXEC rejects the request (the I/O Subsystem might not be active) ,
TQM delays for 16 seconds and resends the PIO clear request.

3. When EXEC accepts the PIO request, TQM scans the Tape Device
Table (TDT) and increments device resource counts for each
available device.

17.4 DELAYED FUNCTION PROCESSING

The TQDLY subroutine performs all delayed functions. TQDLY tries to send
any pending mount messages (for example, messages waiting for a station
to log on), to process a pending RESELECT, update the Label Definition
Table (LDT) (for a job that is not rolled in at the moment), complete
some other function (such as update the count of volumes mounted) when a
job is found to be back in memory, or process any pending requests when
there is no associated TDT entry (such as job waiting for a device on an
ACCESS request).

Following the scan for all pending conditions, TQDLY returns to process
any I/O Subsystem replies, beginning at location TQPXR.

SM-0040 17-3 C

I/O SUBSYSTEM REPLY PROCESSING TAPE QUEUE MANAGER

17.5 I/O SUBSYSTEM REPLY PROCESSING

The second major function of TQM is the processing of I/O Subsystem
replies to TQM. If there are no replies from the I/O Subsystem to be
processed, control passes to TQPCR to perform the third major TQM
function, described in section 17.6.

17.5.1 REPLY PACKET FORMAT

The I/O Subsystem sends its replies to TQM in a packet with the same
format as the TQM request packet. The replies usually correspond to a
physical event, such as a block being written to tape. Relevant fields
in the reply packet follow:

TOFCN

TORS

TOVSB

TOMOS

The function that TQM requested the I/O Subsystem to
perform. The functions are the X$ff symbols defined
in COMTQM. The value for TOFCN in the reply packet
might differ from the value of TOFCN in the TOT.

Reply status bits from the I/O Subsystem (and the
function to which they belong) indicating that
processing of the request is complete and/or that an
error occurred for the specified function.

For a read reply, TDVSB contains the number of valid
sectors of data in Buffer Memory. For a write reply,
TDVSB contains the number of tape blocks held in
Buffer Memory.

For read and write replies, TDMOS contains the number
of Buffer Memory unallocated sectors that belong to
the XIOP.

17.5.2 TYPES OF I/O SUBSYSTEM REPLIES

The I/O Subsystem returns the following kinds of replies to TQM:

Intermediate An event occurred for the request; other processing
replies will follow.

Ending A terminal state was reached in the processing of the
request.

SM-0040 17-4 C

TAPE QUEUE MANAGER I/O SUBSYSTEM REPLY PROCESSING

Normal An event occurred that is a normal part of the request.

Error An abnormal event occurred during the processing of
the request. The TQM error classifications are:

Soft Require a volume remount or reject

Firm Require the associated job to be aborted

Hard Require that the device be declared down and
that the associated job be aborted

Void Involve the processing or initializing of any
status bits that are irrelevant to the request

A return status from the I/O Subsystem can consist of a combination of
the replies. For example, if a parity error occurs on the last requested
block during a read, the I/O Subsystem replies TDBFN (block finished) and
TDPDE (permanent data error). The return status, in this example,
includes the following combination of replies:

• Normal. The block finished indicates the completion of a normal
event.

• Ending. The TDBFN reply and TDRBC (requested block count) going
zero indicate the I/O Subsystem completed the request.

• Error. The TDPDE reply indicates that a block of bad data was
read into Buffer Memory.

17.5.3 I/O SUBSYSTEM REPLY PROCESSOR STRUCTURE

Because of the reply mechanism described above, each reply processor in
TQM has the following structure:

• Processing of initial reply status

• Processing or initializing of any normal reply status bits

• Processing of any soft errors

• Processing of any firm errors

• Processing of any hard errors

SM-0040 17-5 C

I/O SUBSYSTEM REPLY PROCESSING TAPE QUEUE MANAGER

• Processing or initializing of any status bits that are irrelevant
to the request

• Performing of any auxiliary processes and proceeding with
processing of the most important initialized event if any exist

17.5.4 REPLY-EXIT ADDRESS

Another integral part of each reply processor is the reply-exit address
which is the address to which transfer passes when all steps of the reply
processor are performed. Initially, each reply processor assumes that
more I/O Subsystem replies will occur and sets the reply-exit address to
TQPXR. Use of the reply-exit address allows each reply processor to
evaluate all possible states conveyed in the reply and to process the
most important state. Generally the reply-exit address is set to one of
the following:

TQPXR

TQPSN

TQ$ERROR

(TDSS3)

TQCIOP2

Check for more replies. If set to this address, no
more processing will be done for this device at exit
time.

Advance sequencer. A normal-end state was reached for
this request, and processing continues with the next
step in the current sequence.

Generalized error handler. Causes transfer of control
to the appropriate error handler. The appropriate
error handler can be TQ$SOFT, TQ$FIRM, TQ$HARD,
TQ$VOID, or sequencer-error address (TDSSl).

Sequencer intermediate reply address. This address is
obtained from the TDT when the active sequence wants
to process the reply in a different way than the
default reply processor.

Resume I/O request streaming (also known as DSP
pointer chasing). This address is used by X$RB and
X$WB to continue the streaming of user I/O requests
when appropriate.

Other addresses may be used for continued processing of the state, such
as EaT on writes. Addresses of this nature generally are contained in
the reply processor.

SM-0040 17-6 C

TAPE QUEUE MANAGER I/O SUBSYSTEM REPLY PROCESSING

17.5.5 INITIALIZATION SUBFUNCTION (TQPXR)

TQPXR is the most common way in which a reply processor is inVOked,
though delay operations may reinitiate a reply processor. TQPXR examines
the SCCIP flag in the I/O Subsystem Control Table (SCT) for any replies
that EXEC has queued from the I/O Subsystem. If replies are queued, TQM
requests the packets through the PIORCV monitor request. If no replies
are queued, control passes to the next major function of TQM, which is
TQPCR (see section 17.7).

When a packet is delivered, the device number (TDDVN) is used as an
ordinal into the Tape Device Table (TDT) to determine which device is
associated with the reply. The converted device number is kept in the AS
register as the base address of the TDT entry for the device. The
contents of AS generally remain set to this address throughout the
processing of the reply.

Under certain conditions, TQM discards all replies for a device, which is
reflected by setting TDSDP to a nonzero value. A condition under which
this usually occurs is when TQM reaches an ending state with respect to a
sequence but the I/O Subsystem has not reached that ending state. For
example, while the sequencer is performing a remount of a volume, the
user releases the dataset. TQM stops the mount process without
negatively affecting the user's RELEASE request by discarding any I/O
Subsystem replies.

Before the invocation of the appropriate reply processor, reflected by
TDFCN in the reply packet, the TDT entry for the device is updated with
values that the I/O Subsystem has returned. These values follow:

TORS

TOVSB

TOMOS

Reply status bits

Used in XRB, XCR, and X$WB to reflect the number of
blocks (write) or sectors (read) the device has in
Buffer Memory.

The number of sectors in Buffer Memory that are not
allocated to any device.

Once the TDT entry is updated, the appropriate reply processor is
determined by using the value of TDFCN in the reply packet (not the TDT
entry since it may differ from the value of TDFCN). The current function
is used as an offset into a jump table.

SM-0040 17-7 C

I/O SUBSYSTEM REPLY PROCESSING TAPE QUEUE MANAGER

17.5.6 WRITE TAPEMARKS AND REWIND FUNCTION

TQ$lTR and TQ$2TR are the reply processors for the write tapemarks and
rewind function. TQM uses the write tapemarks and rewind function to
complete the writing of trailer labels when at end of volume or end of
file; the function is used exclusively under sequencer control. Control
immediately passes to an intermediate-reply address if one exists. The
normal status replies processed are described below.

• Initial status is an an acknowledgement by the I/O Subsystem that
processing of the request is to begin. All status bits are O.
TQM usually waits for other replies before advancing to the next
sequence.

• Tapemark status (TDTMS) indicates a tapemark was written to tape.
The block-finished status (TDBFN) must accompany TDTMS; if it does
not, the I/O Subsystem is in error. Various counts are
manipulated, such as volume-block and label-block counts before
reply-exit address processing is performed. The reply-exit
address can be modified to TQPSN when the current sequence
indicates advance on tapemark status or advance on all tapemarks
being written.

• Beginning-of-tape status (TDBOT) reflects the normal ending status
for this function. TDBOT indicates that the rewind portion of the
request is completed. The reply-exit address is modified when the
current sequence indicates an advance on ending status or advance
on BOT status.

Soft errors require a volume reject or remount. TDNOR (no write ring in
volume) is the only soft error handled in conjunction with the write
tapemarks and rewrite function. This status will be handled by the
sequencer error address (TDSSl).

Firm errors require that the job be aborted. They are permanent dataset
error (TDPDE) and operator hit reset (TDRES). Since all sequences that
use this function have an error address (TDSSl) defined, error processing
occurs at the address defined in TDSSI.

Hard errors reflect a severe hardware failure or a state in which the
device will not be available for some time. possible hard errors follow:

TDLSD The tape is off the end of reel.

TDNTR The device dropped ready status.

SM-0040 17-8 c

TAPE QUEUE MANAGER I/O SUBSYSTEM REPLY PROCESSING

TDNOP The path to the device or the device itself is no
longer communicating with the I/O Subsystem.

TDPEC A protocol error concerning the write tapemarks and
rewind function occurred between TQM and the I/O
Subsystem.

Void errors indicate status bits that have no meaning for the tapemarks
and rewrite function and should not appear in a reply. Possible void
errors follow:

TDDTR

TDLBK

TDNCD

TDWFE

Data was transferred to or from Buffer Memory.

A block was read from tape that is larger than MBS.

The device/controller indicates that it is not capable
of performing this function at the requested density.

The I/O Subsystem detected an error in the transfer of
data from Cray mainframe memory to Buffer Memory.

17.5.7 CONTINUE READ FUNCTION

TQ$CR is the reply processor for the continue-read function. TQM uses
the continue-read function at the end of data while reading a tape
dataset. The purpose of the function is, first, to append EOR, EOF, and
EOD control words to the data read from tape and, second, to treat the
last sector in Buffer Memory as a full sector even when the last sector
is not full.

The continue-read function reply processor requires that the sequencer be
active and that all of the function's status processing be handled by an
intermediate address (TDSS3). Initial status, where all status bits are
0, is the only valid status.

17.5.8 FREE-DEVICE FUNCTION

TQ$FD is the reply processor for the free-device function. TQM uses the
free-device function at various times to release a device from a job.
Device freeing may occur during RELEASE processing or RESELECT
processing. The free-device reply processor differs from other reply
processors in that the cleanup of the TOT entry occurs regardless of
states, etc. The cleanup of the TOT entry includes the following.

SM-0040 17-9 C

I/O SUBSYSTEM REPLY PROCESSING TAPE QUEUE MANAGER

• Clearing the assignment and linkage to a job in both the TDT and
CNT

• Clearing any pending action states that are canceled by the I/O
Subsystem when it processes a free device function

• Clearing any operator or front-end communication messages

• Releasing any pool space associated with the device

• Declaring the drive down if the operator configured it down while
it was active.

17.5.9 READ-BLOCK FUNCTION

TQ$RB is the reply processor for the read-block function. The read-block
function requests data from the tape and transfers read-in data to Cray
Central Memory. The read-block function is used to read user data from
the tape and to read any label information that might exist.

The requested block-count (TDRBC) and requested sector-count (TDRSC)
fields control the work to be done for this request along with the
function code and dataset definition flags in the packet. TDRBC requests
that the I/O Subsystem read the requested block count from tape into
Buffer Memory. TDRSC requests that the I/O Subsystem transfer the
requested sector count from Buffer Memory to Cray Central Memory.

During normal operation, the I/O Subsystem can respond to the request in
a number of ways. It replies each time a tape block is read into Buffer
Memory. It also replies each time it transfers data from Buffer Memory
(which may be less than the requested amount). Unlike write processing,
block-finished replies and data-transfer replies can occur in the same
reply packet.

Aside from the evaluation of the I/O Subsystem reply, read-block reply
processing is an integral part in user I/O request processing. The basic
functions for interfacing to the user are to supply proper CIO replies
and to evaluate and update the DSP for continued I/O.

The read-block function reply processor informs the user each time the
DSP is updated as a result of a data-transfer reply. The read-block
processor also tries to keep the data stream active by chasing the DSP
pointers. To do so, the following conditions must be met.

SM-0040 17-10 C

TAPE QUEUE MANAGER I/O SUBSYSTEM REPLY PROCESSING

• End of data has not yet been read.

• All requested data has been transferred (TDRBC=O).

• There are more full sectors of data in Buffer Memory to transfer
(TDMSC;iO) •

• The user has room in the circular buffer for more data.

If the conditions listed above are met, an intermediate (recall) reply is
given and the reply-exit address is set to TQCIOP2. The intermediate
reply to CIO allows the user to be reconnected to the CPU. The setting
of the reply-exit address to TQCIOP2 reinitiates a scan of the DSP to
determine the amount of new data that can be transferred to the user's
circular buffer.

A normal I/O complete reply to CIO requires that the user re-issue an I/O
request. Such a reply occurs if one of the following is true.

• End of volume is reached, and all full sectors of Buffer Memory
data are transferred to the user.

• End of volume is reached, and all requested sectors of Buffer
Memory data are transferred to the user.

• All requested Buffer Memory data is transferred to the user, and
the user's buffer has less than a sector of available space.

Other replies to CIO which stop the data stream are as follows.

EREOI

ERUDE

End of information is transferred to the circular
buffer.

Bad data is transferred to the circular buffer because
of a bad tape block being read.

Initialization for the read-block function reply processor, as with all
standard reply processors, involves the transfer of control to an
intermediate-sequencer address (TOSS3) when one exists. Also the
sequencer must be active. This mechanism is used by the read-label-group
subroutine, TQCLT.

Normal replies from the I/O Subsystem are as follows.

• Data-transfer status (TODTR) reflects that data is transferred
from Buffer Memory to Cray Central Memory. When TQM receives the
data-transfer status, TQM updates various counts that reflect and
control the transfer, such as the number of sectors remaining to

SM-0040 17-11 C

I/O SUBSYSTEM REPLY PROCESSING TAPE QUEUE MANAGER

be transferred, accounting information, and circular buffer
pointers. A reply is also made to CIO concerning this transfer.
The read-block function might also modify the reply-exit address
in order to continue the data stream. An error status that might
accompany this status is TDDBF. TDDBF indicates that part or all
of the last sector of the data transferred is bad. At most, one
full sector of bad data is transferred per reply.

• Block-finished status (TDBFN) indicates that a single tape block
was read into Buffer Memory from the tape. When accompanied by
TDTMS, a tapemark is read and read-ahead processing is halted. As
with TDDTR accounting, general and control information is
updated. The read-block function reply processor also sets the
reply-exit address to TQCIOP2 when a deficiency in Buffer Memory
data was resolved.

• Tapemark read status (TDTMS) must be accompanied by the TDBFN
status. TDTMS indicates that read-ahead processing is halted
(that is, TDOBC should be cleared) and that end-of-volume
processing is to begin as soon as possible. This is flagged by
setting TDEOV. Before end-of-volume processing, the following
must occur:

Outstanding sector count (TDOSC) is set to the minimum of
TDOSC or TDMSC (number of full sectors in Buffer Memory at
the time of TMS). This change synchronizes TQM and the I/O
Subsystem with respect to any active data-transfer request.

Flag the device as not ready for user I/O, which causes the
job to be placed in an event-wait condition while
end-of-volume processing is active.

Reply to CIO that device is not ready when there is no data
in Buffer Memory for an active user-I/O request. Normally
this reply occurs the next time the user makes an I/O
request. The not-ready mechanism allows the job to roll
during end-of-volume processing

The read-block function reply processor examines the following firm
errors.

TDLBK

TDBOT

SM-0040

A block larger than the value contained in TDMBS was
read from tape. TDLBK is associated with TDBFN. This
error ends the read-ahead portion of the request.

Beginning-of-tape reflective strip detected,
indicating that either the tape has two BOT reflective
strips or that a shiny spot on the tape is detected.
TDBOT status halts read ahead processing.

17-12 C

TAPE QUEUE MANAGER I/O SUBSYSTEM REPLY PROCESSING

TDPEC Protocol error. I/O Subsystem rejected the request
because it seems to be out of sequence. This status
halts read-ahead processing.

The read-block function processes the following hard errors.

TDLSD The tape is off the end of the reel. TDLSD halts
read-ahead processing.

TDRES The operator reset the device. This status stops the
read-ahead processing of tape blocks.

TDNOP The path to the device or the device itself is not
operational which forces read-ahead processing to stop.

The read-block function processes the following unexpected (void)
errors. Void errors halt read-ahead processing.

TDNCD The device is not capable of performing the request at
the requested density.

TDWFE An error occurred in the transfer of data from Cray
Central Memory to Buffer Memory.

Before the transfer of control to the reply-exit address, wrap-up
processing checks if read-ahead processing should be refreshed. This
refresh requests the I/O Subsystem to continue the command chaining of
tape-block reads. It has been determined that a threshold of three
outstanding blocks is the appropriate time to re-issue an X$RB request
(with a nonzero TDRBC) to keep a command chain alive and avoid a physical
stop of the device. This threshold is decreased for the larger blocks
(such as block sizes of one megabyte).

17.5.10 REMOUNT OR MOUNT PROCESSING FUNCTION

TQ$RM or TQ$MN are the reply processors for the remount and mount
processing functions. The remount and mount-processing functions inform
the I/O Subsystem that the operator might mount a tape volume on the
device. The X$MN request also informs the I/O Subsystem that this is the
first operation for this device/dataset combination and requests that the
I/O Subsystem allocate buffers, etc. for subsequent I/O. This reply
processor is under sequencer control. Any of the following can initiate
the request to mount or remount: ACCESS processing, volume-reject
processing, volume-switch processing, or device-reselect processing.

SM-0040 17-13 C

I/O SUBSYSTEM REPLY PROCESSING TAPE QUEUE MANAGER

The operator can direct processing to another device (RESELECT) or can
cancel the processing (ABORT). The job itself can no longer request the
mount. It terminates because of a job abort or operator action (DROP,
KILL, RERUN).

One of the mechanisms used to handle various conditions of this kind is
the setting of the TDDMR flag. This flag indicates that mount and/or
remount replies for the device are ignored. Another mechanism is the use
of an intermediate address for the current sequence. The initialization
that takes place in the remount reply processor is to examine these
conditions. If neither exists, processing will continue with a scan of
the status bits.

The remount or mount processing function examines the following normal
replies.

• Initial reply is an informative reply that indicates that the I/O
Subsystem began processing the mount or remount request but that
the subsequent replies are the ones that require processing.

• Not-ready status (TDNTR) indicates that processing is not ready
because the volume is not at beginning of tape. TDNTR does not
invoke processing because it is an optional status. Not-ready
status is not returned when the volume is mounted at request time.

• Beginning-of-tape status (TDBOT) is the normal ending status for
the request. It indicates the volume is mounted and is ready for
a new operation. In response to a remount/reselect, it also
indicates that the I/O Subsystem linked any residual data from the
previous device to the new one. The basic functions are to clear
any road-block flags (TDWXL and TDWNW), set reply-exit address to
advance sequencer (TQPSN), and clear outstanding mount messages.
If the request was a remount due to a RESELECT command, the old
device is freed.

The remount or mount function reply processor treats any other status as
soft errors. Processing of soft errors includes clearing of the
outstanding mount messages, configuring down the old device (necessary so
that the device is not reselected to itself) and initiating an automatic
reselect. This process keeps the current sequence at the (re)mount
request.

17.5.11 REWIND FUNCTION

TQ$RW is the reply processor for the rewind function. TQM uses the
rewind function (X$RW) to rewind a single volume dataset to beginning of

SM-0040 17-14 C

TAPE QUEUE MANAGER I/O SUBSYSTEM REPLY PROCESSING

tape or to rewind nonlabeled volumes after label scans. Normally this
request occurs under sequencer control.

Control immediately passes to an intermediate-sequencer address if one
exists and if the sequencer is active.

The rewind reply-processing function treats the following as normal
replies

• Initial reply status acknowledges that processing of the X$RW
request is to begin. TQM normally waits for other replies before
advancing to the next sequence.

• Beginning-of-tape status (TDBOT) is a normal ending status
indicating the volume is ready for the next operation. The wait
on loadpoint (TDWXL) road-block flag is cleared to reflect this
state change. If the sequencer advance code is advance on BOT or
advance on ending status, the reply-exit address is modified to
TQPSN.

The rewind reply-processing function handles the following soft errors.

• Device-reset status (TDRES) indicates that the operator pressed
the reset button on the device. Normally this implies simply that
rereadying the device has to be done before the next operation.

The rewind reply-processing function handles the following hard errors.

• Tape-off-reel status (TDLSD) indicates the tape is off the end of
the reel.

• Device-not-ready status (TDNTR) indicates the device status has
changed to not ready.

• Not-operational status (TDNOP) indicates the drive, controller, or
channel is no longer operational.

The rewind reply-processing function handles the following void
(unexpected) status.

• Block-finished status (TDBFN) indicates a tape block was read or
written.

• Data-transferred status (TDDTR) indicates that data was
transferred from or to Cray mainframe memory.

• Tapemark status (TDTMS) indicates a tapemark was read or written.

SM-0040 17-15 c

I/O SUBSYSTEM REPLY PROCESSING TAPE QUEUE MANAGER

• Large-block status (TDLBK) indicates a tape block larger than MBS
was read or written.

• Permanent data error status (TDPDE) indicates a parity error
occurred while trying to read or write a tape block

• End-of-tape status (TDEOT) indicates an end-of-tape reflective
strip was detected.

• Not-capable status (TDNCD) indicates the device cannot perform the
request at the requested density.

• Write-format error status (TDWFE) indicates an error occurred in
the transfer of data to be written to tape.

• Protocol-error status (TDPEC) indicates the request violates the
protocol between TQM and the I/O Subsystem.

17.5.12 WRITE-TAPEMARK FUNCTION

TQ$WT is the reply processor for the write-tapemark function. TQ$WT is
part of the write-label group sequence. It writes the tapemark that
separates the user data from the label data. As with all label
processing, this request is only made while under sequencer control.
Control is transferred to an intermediate sequencer address if one exists
before processing of normal reply status.

The write-tapemark function processor processes the following normal
replies.

• Initial reply status indicates that the I/O Subsystem began the
processing of the request.

• Tapemark status (TDTMS) indicates that a tapemark is written to
tape. The block-finished status must accompany TDTMS. After
updating the various block counts, reply-exit address processing
is performed. The reply-exit address is changed to TQPSN if the
sequencer advance code is: advance on tapemark, advance on
tapemark count equal 0, or ending status.

The write-tapemark function processor processes the following soft errors.

• No ring in reel status (TDNOR) indicates that the tape is write
disabled. Because of the environment in which the request is
issued, the receipt of TDNOR usually indicates a floating
write-ring detector on the device.

SM-0040 17-16 c

TAPE QUEUE MANAGER I/O SUBSYSTEM REPLY PROCESSING

Firm errors require that the job be aborted. They are permanent dataset
error (TDPDE) and operator hit reset (TDRES). Since all sequences that
use this function have an error address defined, processing occurs at
TDSSI.

Hard errors reflect a severe hardware failure or a state in which the
device will not be available for some time. Possible hard errors are as
follows.

TDLSD

TDNTR

TDNOP

TDPEC

The tape is off the end of reel.

The device dropped ready status.

The path to the device or the device itself is no
longer communicating with the I/O Subsystem.

A protocol error concerning the write tapemarks
function occurred between TQM and the I/O Subsystem.

Void errors indicate status bits that have no meaning for the tapemarks
function and should not appear in a reply. Possible void errors are as
follows.

TDDTR

TDLBK

TDNCD

TDWFE

TDBOT

Data was transferred to or from Buffer Memory.

A block was read from tape that is larger than MBS.

The device/controller indicates that it is not capable
of performing this function at the requested density.

The I/O Subsystem detected an error in the transfer of
data from Cray Central Memory to Buffer Memory.

The beginning of a tape reflective spot was detected.
Usually a second BOT reflective strip exists on the
tape, or the tape has a shiny spot on it.

17.5.13 UNLOAD-VOLUME FUNCTION

TQ$UL is the reply processor for the unload-volume function. The
unload-volume function (X$UL) is used in volume reject situations, volume
switches, and release processing. It is followed by either a remount
(X$RM) or a free (X$FD) request. The X$UL function is used under
sequencer control.

If an intermediate reply address is defined and the sequencer is active,
control is transferred to the intermediate reply address.

SM-0040 17-17 C

I/O SUBSYSTEM REPLY PROCESSING TAPE QUEUE MANAGER

This reply processor treats all replies except the initial reply as
normal ending replies because of two reasons: the subsequent request
will have any errors propagated to it and the job and device states are
usually defined better during the subsequent request. The normal
sequence of replies is initial reply followed by not ready reply (TDNTR).

Before resetting the reply-exit address to TQPSN for ending replies, the
TDT entry must be updated to reflect that unload processing is complete
and to initialize various fields for the next volume to be mounted.

17.5.14 WRITE-BLOCK FUNCTION

TQ$WB is the reply processor for the write-block function. The function
of the X$WB request is similar to the functions of the X$RB request
except that all transfers of data are reversed. X$WB controls the
transfer of data from Cray Central Memory to Buffer Memory and from
Buffer Memory to tape (referred to as write-behind processing).

with write-block processing, unlike with read processing, the number of
blocks contained in a sector of data is known. This knowledge eliminates
the need for independent requests for write-behind processing. The I/O
Subsystem is responsible for writing all tape blocks from Buffer Memory
to tape, which in return changes the nature of the various counts (that
is, TDOBC, TDMBC, TDMSC, and TDOSC). In write processing the management
of Buffer Memory is essentially performed in TQCIW (process user-write
request).

Another difference between read and write reply processing is that the
basic replies (block finished and data transferred) cannot occur in the
same reply packet.

Read processing and write processing are handled the same with respect to
intermediate replies to the user for partially completed I/O request,
DSP-pointer chasing, volume-switch detection, processing
end-of-information special cases, and manangement of Buffer Memory.

The user interface for the write reply processor (as with read
processing) includes intermediate (recall) replies, I/O complete replies,
and DSP-pointer evaluation. The ~intent behind the user interface is to
keep the original user-write request active as long as possible before
the I/O complete reply is given. This cuts down the overhead that both
the user and operating system have to perform for each new I/O request.
It also allows the device to be driven at either device speed or
user-program speed, whichever is the slower.

SM-0040 17-18 C

TAPE QUEUE MANAGER I/O SUBSYSTEM REPLY PROCESSING

Intermediate replies are sent to CIO as a result of the transfer of data
from the user's circular buffer to Buffer Memory. During the processing
of a data-transfer reply, TQM gives an intermediate reply if the user has
at least one sector of data in its circular buffer available for transfer
and end of data does not exist in that data. I/O complete replies are
sent for all other conditions.

As with read processing (though simpler), pointer chasing is involved
with intermediate replies. The only condition processed that will halt
the chase is a pending end-of-volume state.

Initialization of the X$WB reply processor consists of setting up some
basic addresses and transferring control to an active
intermediate-sequencer reply address if one exists. An
intermediate-reply address is used when writing the label groups.

Normal replies from the I/O Subsystem for the write-block processing
function are described below.

• The data-transfer status (TDDTR) reflects the movement of data
from Cray Central Memory to Buffer Memory. The amount of data
transferred is given in both sectors (TDTSC) and blocks (TDTBC),
and the total number of blocks in Buffer Memory for this device is
given in TDVSB. If the I/O Subsystem does not transfer the
requested values (TDRSC and TDRBC), a fatal error occurs. After
updating various control, accounting, and informational counts,
the reply-exit address is determined and CIO reply processing is
performed.

• The block-finished status (TDBFN) reflects the movement of data
from Buffer Memory to tape. Unlike data-transfer status, a tape
block is the basic unit for block-finished status. Block-finished
status updates various control, accounting, and informational
counts. This section also modifies the reply-exit address in
order to resume streaming, provided the last DSP evaluation showed
that there was at least one full sector of data in the user's
buffer.

• End-of-tape status (TDEOT) is always accompanied by TDBFN.
End-of-tape status indicates that end-of-tape reflective strip was
detected and that a switch to the next volume is required. When
detected, the reply-exit address is set to the volume-switch
processor within TQ$WB.

• Write-last-block status (TDLBP) is not a status from the I/O
Subsystem but instead is an internal flag that controls the
writing of the last block for transparent mode datasets. Its
intent is to let all outstanding processing finish until the last

SM-0040 17-19 C

I/O SUBSYSTEM REPLY PROCESSING TAPE QUEUE MANAGER

block of data is in Buffer Memory by itself. This wait is needed
because the last block of a transparent tape is generally smaller
than the rest of the blocks that are written (transparent tapes
have a fixed-block size). This isolation of the last block allows
the block size in the packet to change, thereby telling the I/O
Subsystem to write a single smaller block.

write-block processing function error status that imply a volume-reject
condition (soft error) are permanent data error (TDPDE), no ring in reel
(TDNOR), and beginning of tape (TDBOT). The error is reported to the
user through the job logfile, and a switch to the next volume is queued.
Since beginning-of-volume processing checks ring status, the receipt of
TDNOR indicates a physical device problem and not actual trouble with the
volume.

Firm error conditions handled by write-block processing follow:

• Large-block error status (TDLBK) indicates an attempt to transfer
a block larger than the value contained in TDMBS.

• Write-format error status (TDWFE) indicates there is a control
word error in the data transferred to Buffer Memory.

• Reset-of-device error status (TDRES) indicates that the operator
reset the device.

• Protocol-error status (TDPEC) indicates the I/O Subsystem rejected
the request because the request is out of sequence.

Hard error conditions that exist for the write-block processor are as
follows.

• Lost-data error status (TDLSD) indicates that the tape is off the
end of the reel.

• Not-ready error status (TDNTR) indicates the device dropped ready
status.

• Not-operational error status (TDNOP) indicates the path or the
device is no longer in an operational state.

Unexpected (void) error replies for the write-block processor are as
follows.

• Tapemark-detected error status (TDTMS) indicates that a tapemark
is physically read or written.

• Not-capable error status (TDNCD) indicates the device is not
capable of performing the request at the specified density.

SM-0040 17-20 C

TAPE QUEUE MANAGER COS AND OPERATOR REQUEST PROCESSING

17.6 COS AND OPERATOR REQUEST PROCESSING

The third major activity of TQM (TQPCR) is interfacing with the other
tasks in the operating system, which involves station message replies,

I operator requests, and user task requests. User task requests consist of
I/O requests and OPEN, CLOSE, POSITION, ACCESS, SAVE, DELETE, and RELEASE
requests.

I

I

The only tasks that request action are EXP and SCP. EXP originates all
user-related requests, and SCP originates all operator requests.

Format:

0 8 16 24 32 40 48 56
Input+O ////////1 SF I RTN I TXO I FC

Input+l SI//////////////I DNT I AUX

Field Word Bits Description

SF Input+O 8-15 Subfunction code

RTN Input+O 16-39 Return address

TXO Input+O 40-55 Task Execution Table (TXT) ordinal

Fe Input+O 56-63 TQM function code, as follows:

T$CIO (1) CIO request
T$OPN (2) Open dataset
T$POS (3) Rewind dataset
T$CLO (4) Close dataset
T$RLS (5) Release dataset
T$PDM (6) Tape Permanent Dataset

Manager call
T$ILL (7) Codes ~ T$ILL are

invalid

S Input+l 0 System flag (not currently used)

63

DNT Input+l 16-39 STP-relative Dataset Name Table (DNT)
address

AUX Input+l 40-63 Auxiliary address (usually the
address of a table)

SM-0040 17-21 C

COS AND OPERATOR REQUEST PROCESSING TAPE QUEUE MANAGER

17.6.1 SCP REPLY

TQPCRR processes replies from SCP that occur as a result of a
station-directed message issued by TQM. These replies can be responses
from the station operator to a MOUNT or REMOUNT request, responses from
the operator to a volume serial number (VSN) validation request, response
to front-end servicing request, or indications from SCP that the station
to which the message is sent has logged off or relogged on.

When the station operator replies to a MOUNT or REMOUNT, TQM examines the
reply. If the reply is invalid, TQM re-issues the MOUNT or REMOUNT
request.

When the reply from SCP is an operator response to a VSN validation
request (issued only for unlabeled tapes), TQM validates the supplied
VSN. If the VSN is invalid (more than six characters), TQM re-issues the
VSN validation request. If the response is to a SCRATCH volume
(VSN=??????), TQM ensures the validity of the VSN and assigns it to the

SCRATCH volume.

If the station logged off or relogged on, TQM sets a flag in the TDT
entry indicating to subroutine TQDLY that a message must be re-issued.

17.6.2 OPERATOR COMMAND

TQPOC handles operator-command processing. When SCP signals TQM through
PUTREQ that the operator has entered a command to be processed by TQM,
common subroutine GETREQ is called to obtain the command. The response
from GETREQ contains the following:

Register

Sl

52

Contents

Address of memory pool containing the operator command
as typed by the operator

Address of Link Interface Extension Table (LXT) entry
for the sending station (must be returned to SCP by TQM)

The format of the data in the memory pool is as follows:

Words 0-4

Word 5

SM-0040

Station Message (SMT) entry, provided by SCP. (For
details of the format of 5MT, see the COS Table
Descriptions Internal Reference Manual, publication
SM-0045.)

Beginning of the actual ASCII text entered at the
operator console

17-22 C

TAPE QUEUE MANAGER COS AND OPERATOR REQUEST PROCESSING

On return from GETREQ, TQM examines the operator command for validity.
The only valid command is the CONFIG command, which modifies the status
of a tape device. If the command is a CONFIG command, TQM calls the
common subroutine CONFIG to process it. CONFIG determines whether the
parameters of the command are valid and consistent; it alters the CNT and
TOT entries according to the specified parameters. (For the format of
the CONFIG command, see the I/O Subsystem (lOS) Station Operator's Guide,
CRI publication SG-OOSl.)

After processing the command, TQM returns a status to SCP to indicate
whether the command was successfully processed. CONFIG returns an error
to TQM if errors are found in the parameters. The reply from TQM to SCP
has the following format:

Register

Sl

S2

Contents

Status, as follows:
=0 No error
;10 Error

LXT address for sending station, echoed from input

17.6.3 CIO REQUESTS

On entry to TQCIO, the following information is available in A registers:

Register Contents

Al JTA address
A2 JXT address
A4 ONT address
AS TOT address

The calling task 10, the COS function, INPUT+O, and INPUT+l are saved in
the TOT, and the I/O active count in STP is incremented. Entry to TQCIO
can also occur (at TQCIOP2) because of a nSP-pointer update.

If a queued error condition exists for this dataset (TDQHE is nonzero) ,
the reply to this request is sent immediately with the error status. If
no outstanding error condition exists, processing continues by putting
the OSP address in register A3 and setting registers Sl through S4 to the
circular buffer pointers FIRST, IN, OUT, and LIMIT. Control passes to
TQCIR for a read request (F$RDC) or to TQCIW for a write request (F$WDC).

SM-0040 17-23 C

COS AND OPERATOR REQUEST PROCESSING TAPE QUEUE MANAGER

F$RDC request

The F$RDC request (TQCIR) has two primary functions: examination of
pending states and requesting transfer of data to circular buffer. The
pending states that are e.xamined cover a variety of conditions; the major
ones are pending BOV validation, device not ready, and Buffer Memory
empty.

The examination of pending actions occurs in TQCIR because of the
funneling effect this process has on the various states (job, tape, and
operator). The detection of BOV validation is done by TQCIR primarily to
link the type of label validation with the type of I/O being performed.
The detection of Buffer Memory being empty allows the block-finished
reply to determine when to resume a read request. Device-not-ready
detection is a result of the internal EOV/BOV processing being invoked.
Using TQCIR processing allows the isolation of the various conditions
that acccompany a device-not-ready situation. One important condition is
the issuing of a DROP, KILL, or RERUN command of a job already in
device-not-ready event wait.

F$WDC request

The functions of the F$WDC request (TQCIW) are almost identical to its
counter part TQCIR. F$WDC serves as a funnel for the various states that
exist and manages the transfer of user data.

The major difference between TQCIW and TQCIR processing is in the
evaluation and management of Buffer Memory. The difference in Buffer
Memory evaluation is that instead of stopping when Buffer Memory is
empty, with TQCIW a stop occurs when Buffer Memory is full.

The differences between TQCIR and TQCIW in producing the I/O Subsystem
request are that the TQCIW request is a request to write blocks (as well
as a request to transfer data), and the amount of data to transfer is
based upon two factors instead of one. The amount of data to transfer is
based upon the number of blocks currently in Buffer Memory and the number
of blocks in the circular buffer. This aspect of the TQCIW request is
limited, based on the write-behind count (TDTRA).

17.6.4 F$CLS CLOSE REQUEST

TQCLO receives control from TQPCR when TQM receives a call from EXP with
a T$CLO function code.

SM-0040 17-24 C

TAPE QUEUE MANAGER COS AND OPERATOR REQUEST PROCESSING

TQCLO first checks to see if the sequencer is active. If it is, TQM
replies to EXP with a delay status, and EXP tries the call again in a few
seconds.

If the sequencer is not active, TQM checks for a redundant CLOSE. An
immediate reply is sent to EXP if redundancy is discovered. If the
volume is not opened and if the previous TQM request is a T$OPN, the
close accounting message is issued and a reply is sent to EXP. If the
volume is not opened and the previous TQM request is other than a T$OPN,
a reply with delay is sent to EXP. If the volume is opened but a rewind
is in progress, a reply with delay is sent to EXP.

The close is completed by merging with the appropriate path (TQPOSIO for
writes and TQPOS50 for reads) in rewind processing. After close
processing is complete, control returns to TQPCR to check for more
requests to process.

17.6.5 F$OPN OPEN REQUEST

TQOPN gains control from TQPCR when TQM receives a call from EXP with a
T$OPN function code.

TQOPN checks to see if the sequencer is active. If it is active, a reply
with delay is sent to EXP. If the sequencer is not active, TQOPN checks
for a redundant open call. If redundancy is discovered, the open state
stored in the TOT is updated, and a reply is sent to the calling task.

If the open is not redundant (that is, it is an open following an access
or a close), TQM delays open processing until the volume is mounted.

Once the volume is mounted, TQM resumes open processing by reading the
header label group. The scan for the header labels is performed, as
during a volume switch, by the subroutine TQCLT. The evaluation of the
label group for the open is based on the disposition of the dataset.

NEW disposition datasets defer all remaining label processing until the
first I/O operation is requested.

Processing OLD disposition datasets involves the following basic
operations:

• Ensuring the proper volume is mounted

• Obtaining any values the user omitted from the label group

SM-0040 17-25 C

COS AND OPERATOR REQUEST PROCESSING TAPE QUEUE MANAGER

In checking for the proper volume, TQM verifies that the label types,
VSNs, DSNs, and file sections agree. If a discrepancy is found, TQM
either rejects the current volume in favor of another or replies with a
job abort status. Once TQM is sure the proper volume is mounted, it
extracts from the label group (provided the label group exists) any
values that the user omits and places them in the Label Definition Area
(LOT) •

TQM generates default values for fields not in the label group and not
specified in the LOT. These values guarantee matches when the labels are
reevaluated during the first read or write.

17.6.6 F$POM DELETE REQUEST

The F$POM delete request function (TQPOELET) changes the catalog function
to that of delete (remove from front-end servicing catalog) •

17.6.7 F$PDM SAVE REQUEST

The F$PDM save function (TQPSAVE) changes the catalog function for the
dataset to save (update or create an entry in front-end servicing
catalog) •

17.6.8 T$POS POSITION REQUEST

TQPOS gains control from TQPCR when TQM receives a call from the User
Exchange Processor (EXP) with a T$POS function code.

If the specified device is down, an unrecovered hardware error status is
returned to EXP. If the sequencer is active, a delay reply is sent to
EXP. If a rewind is already in progress, an immediate reply is sent to
EXP with control passing to TQPCR to check for more requests.

At this point, a rewind can be executed so the TOT VSN fields are
refreshed from the LDT while the job is still in memory. For output mode
datasets, all data is flushed to tape before writing trailer labels. For
unlabeled (NL) tapes, a trailer label consists of three tapemarks. If
the current volume is not the first volume of the dataset, an unload
remount sequence is executed in order to return to the first reel. A
reply is sent to EXP, and control returns to TQPCR to check for more
requests.

SM-0040 17-26 C

TAPE QUEUE MANAGER COS AND OPERATOR REQUEST PROCESSING

17. 6. 9 F$RLS RELEASE REQUEST

TQRLS receives control from TQPCR when TQM receives a call from the User
Exchange Processor (EXP) with a T$RLS function code.

TQRLS checks to determine whether a tape device is assigned to the
dataset. If no device is assigned to the dataset, TQRLS sends an
immediate reply to EXP, thus completing the release request.

For an assigned device, any outstanding operator messages are cleared.
If the device is down, TQM clears the necessary fields in the TDT and
only a free request is issued to the I/O Subsystem.

If the sequencer is active, TQM sends a delay status to EXP so the
internal sequence completes.

If a rewind must be issued and the I/O Subsystem has no outstanding
activity for the dataset, a delay reply is made to EXP. If the dataset
is in write mode and the I/O Subsystem has no current activity, any
remaining Buffer Memory data is flushed to tape before continuing with
the release call. When all Buffer Memory data is flushed, trailer labels
are written (three tapemarks on NL tapes) •

Once all the data is flushed and the volume properly terminated, TQM
issues an accounting message reflecting the release of the device.

If a volume is mounted, TQM initiates a sequence to unload the device.

TQM returns the device to the system pool unless the request specifies a
release with a device hold, in which case the user retains the
reservation for a generic device. A request is sent to the I/O Subsystem
to free the device assignment. A reply is sent to EXP indicating the
request is complete.

17.6.10 SEQUENCER REQUESTS (TQPSI OR TQPSN)

This routine has the following entry points:

• TQPSI, to process the initial sequencer request

• TQPSN, to process the next sequencer request

• TQPSEND, to terminate the current sequence

SM-:0040 17-27 C

COS AND OPEBA'l'OR REQUEST PROCESSING TAPE Q1JEUB MANAGER

The TQM sequencer provides a facility for tasks, rather than user jobs,
to perform I/O and to execute I/O Subsystem functions and related
subroutines. It is the vehicle for label reading and writing and volume
switching operations.

Sequencer activity is determined by function strings loaded into the
sequencer by a call to TQPSI. A function string can contain as many as
eight functions. A function can result in either an I/O Subsystem
request being issued or a subroutine being executed. These strings are
defined in word pairs with one function per parcel. A string is
terminated by a parcel of zeros or by the eighth parcel, whichever comes
first. These function strings are defined at the end of TQM at TQSSL.

The sequencer function contains the following information:

• Bit 0 of a function parcel (defined by the symbol TQSNXF)
indicates function type. If TQSNXF is set, the parcel contains a
non-I/O Subsystem function. If TQSNXF is not set, the parcel
contains an I/O Subsystem function.

• Bits 4 through 9 of the function parcel hold the sequencer advance
code. This code applies only to I/O Subsystem functions and it
tells TQM when to advance the sequencer to the next function.
These codes are defined at the end of TQM, starting at TQSACO.

• Bits 10 through 15 of the function parcel contain the sequencer
subroutine advance index for non-I/O Subsystem functions or the
actual I/O Subsystem function code for I/O Subsystem requests.
The sequencer subroutine advance index definitions are located at
the end of TQM at TQSAA.

Sequences can be chained as long as the initiation of a chained sequence
occurs after the last function or step of the current sequence has been
initiated.

The SEQINIT macro is used to set up the following values used during a
sequence:

• Sequence-end return address

• Sequence-error return address

• Intermediate processing address

• General 24-bit save value for scratch space

SM-0040 17-28 c

TAPE QUEUE MANAGER IDLE-LOOP PROCESSING

Format:

Location Result Operand

SEQINIT END=end,ERR=err,INT=int,sAV=save

where

end, err, int, and save may be a defined location, an A register,
or S register.

17.7 IDLE-LOOP PROCESSING

Idle-loop processing is performed by the TQIDL routine. When TQM
completes its work, it returns to the idle loop at TQIDL and suspends
itself with a 4-second delay. When called again, it performs the task's
major functions in the following order: any delayed functions, any I/O
Subsystem replies, any COS or operator requests.

17.8 TQM STEPFLOWS

This section contains some basic stepflows for the more commonly used
portions of TQM. The organization of these stepflows essentially
corresponds to a job which performs the following.

ACCESS
OPEN
WRITE
REWIND
READ
CLOSE
RELEASE

17.8.1 GENERAL FLOW FOR DATASET ACCESS PROCESSING

1. Select a device for the dataset. If the job requests more
devices than are reserved, abort the job. If there is a shortage
of devices, enter job-awaiting resource code.

SM-0040 17-29 C

TQM STEPFLOWS TAPE QUEUE MANAGER

2. Initialize various tables including Tape Device Table (TDT),
Dataset Name Table (DNT), Front-end Service Header (FSH), Label
Definition Table memory pool area, (LOT), and Job Table Area
(JTA) •

3. Inquire of the front-end station about the accessibility of this
dataset and about any auxiliary information for the dataset. If
denied access, abort the job. If access if permitted, copy the
LDT (updated by the front-end station) over the user's copy of
the LDT.

4. Perform the various functions to initiate the volume mount:

a. Send a mount message to the master operator.

b. Transmit a mount request to the I/O Subsystem.

5. Indicate to the user what drive is assigned with a logfile
informative message. If the drive assignment changes through a
reselect, the user is notified again.

6. Reply to requesting task (EXP) indicating the request is
complete.

17.8.2 GENERAL FLOW FOR OPEN PROCESSING

The following is the general flow for open processing.

1. Detect and reply to a redundant open.

2. Determine if volume is mounted. If not, make sure there is an
outstanding mount message and request before replying to
requesting task with a delay status.

3. Try to determine the label structure of the mounted volume by
reading in a possible label group. The label group is defined as
1 to 30 blocks (none larger than 80 bytes) followed by a tapemark
with the first four bytes of the first block equal to VOLl (in
ASCII or EBCDIC) •

4. If an OPEN of an existing dataset (not NEW) then:

SM-0040

a. Ensure the actual label type matches requested label type;
abort the job if they differ.

17-30 C

TAPE QUEUE MANAGER TQM STEPFLONS

b. If the mounted volume is labeled:

1) Perform VOLl label validation checks, rejecting the
mounted volume or aborting the job if any validation
checks fail.

2) Copy from the label group any corresponding LOT fields
that are not specified by the user.

5. Generate default values for any fields not specified in the label
pool copy of the LOT.

6. Update the user's DSP based upon the information in the LOT.

7. Set the Tape Device Table flags CLG, CLT, GVS to indicate BOV
validation must occur later.

8. Reply to requesting task (EXP) that open processing is complete.

17.8.3 GENERAL FLOW FOR WRITE DATASET PROCESSING

The following is the general flow for write dataset processing.

1. Detect and process any pending internal processing.

a. Device not-ready (TDCNR) - Place job in event-wait state
for device to become ready.

b. Pending BOV label processing (TDCLG or TDCLT) - Place job
in device-not-ready event-wait and initiate BOV validation
(under sequencer control).

c. Buffer memory full (TDMBC = TDEBC) - Flag the write request
as pending and wait for block-finished reply to resume the
request.

2. Evaluate the DSP and amount of data already in Buffer Memory to
produce an I/O Subsystem write-block request (X$WB). This
evaluation is performed differently for the different dataset
modes.

SM-0040

a. Transparent (DF=TR) - Transform the number of sectors in
the circular buffer into tape blocks to determine if that
number exceeds the excess block count. If so, transfer the
maximum number of sectors to reach the excess block count.
Otherwise, transfer the number of tape blocks in the
circular buffer.

17-31 C

TQM STEPFLOWS TAPE QUEUE MANAGER

b. Interchange (DF=IC) - Using the DSP pointers and the
control words in the circular buffer, produce a
data-transfer request that does not exceed the total number
of sectors available to transfer or the excess block count.

3. Send the write-block request to the I/O Subsystem using the
requested counts that were generated in the step above. Also
save various pointer information that is used to determine the
validity of the user's DSP during the data-transfer reply.

17.8.4 GENERAL FLOW FOR BEGINNING OF VOLUME VALIDATION (TQ$WB300)

The following is the general flow for beginning-of-volume validation.

1. Initialize for the new volume.

a. Clear various state flags from the TDT.

b. Detect and process a cancelation of the mount from the
operator.

c. Set up nonspecific volume request flags.

d. Read the label group if it has not already been read.

2. Ensure that the proper volume is mounted.

a. Request the VSN from the operator for nonlabeled volumes.

b. Reject the volume when the label type of the mounted volume
cannot migrate to the label type requested by the user.

3. Perform initial front-end station communication processing, using
an error-bit mask to show discrepancies between the LDT (user
specifications) and the label group (actual specifications). The
error-bit mask can be modified based upon the reply from the
front-end station to the volume-access request.

4. Send a volume-access request to the servicing front-end station.
Perform reject/abort processing if the front-end station denies
the access.

5. Based on the disposition of the volume, perform an evaluation of
the label-group error-bit mask. Volumes which the user
specifically requested result in job-abort conditions if label
validation fails. Nonspecific volume requests result in a volume
reject for a different scratch volume if validation fails.

SM-0040 17-32 C

TAPE QUEUE MANAGER TQM STEPPLOWS

6. If a MOD dataset, perform MOD tape processing:

a. Forward space to end of file.

b. Validate trailer label.

c. Abort job if not EOF label.

7. If not a MOD dataset, write the label group for this tape:

a. Generate a label group from the information in the LDT
based on label type.

b. Write the label group by invoking the sequencer under
chained control.

8. Send a volume-update message to the servicing front-end station
to communicate the use of the volume.

9. Clean up from the internal processing:

a. Exit the current sequence.

b. Initiate write-behind processing.

c. Clear the device-not-ready event.

17.8.5 GENERAL FLOW FOR I/O SUBSYSTEM WRITE REPLY PROCESSING

The following is the general flow for I/O Subsystem write reply
processing.

1. Initialize processing by setting up the DNT, DSP, JTA, and JXT
addresses that are related to this device. Transfer control to
an intermediate reply address if one exists.

2. Process a data transfer reply (TDDTR).

SM-0040

a. Validate that the I/O Subsystem and TQM are still
synchronized by comparing the transferred counts with the
requested counts.

b. Update counts that show what is in Buffer Memory (TDMBC)
and what remains to be transferred (TDOBC).

c. Update the various informational and accounting fields in
recognition of the transfer above.

17-33 C

I

I

TQM STEPPLOWS TAPE QUEUE MANAGER

d. Update the DSP to reflect the transfer of data out of the
circular buffer.

e. If not a SYNCH request, reply to the user with either an
I/O complete or an intermediate reply, based upon how full
Buffer Memory is, the amount of data left in the circular
buffer, and a possible end-of-data state. Adjust the
reply-exit address accordingly.

3. Process a block-finished reply (TDBFN).

a. Decrement the number of blocks in Buffer Memory that remain
to be written (TDMBC).

b. Update the various informational and accounting fields that
correspond to the movement of tape blocks.

c. If SYNCH request and all blocks written to tape, reply I/O
complete.

d. Detect the possible condition of a write request that is
queued because of Buffer Memory being full. If this
condition exists, then the reply-exit address is set to
TQCIOP2 so as to re-issue the request.

e. Queue a write last block condition, if necessary, by
changing the reply-exit address.

f. Queue a volume-switch condition if end of tape is detected
by setting the reply-exit address (TQ$WB200).

g. Evaluate the return status for any error conditions that
exist.

h. Transfer control to the address in the reply-exit address.

17.8.6 GENERAL FLOW FOR VOLUME SWITCH DURING WRITE

The following is the general flow for volume switch during write.

1. Wait for any outstanding data-transfer request to complete (TDOSC
going to 0).

2. Place the associated job in device-not-ready event wait.

SM-0040 17-34 c

TAPE QUEUE MANAGER TQM STEPFLONS

3. Activate the sequencer to write the trailer label group, based on
the requested label type.

4. Send a volume update request to the servicing front-end station.

5. Obtain the next volume serial number from the LOT. Load the job
into memory, through the J$READY JSH request, if necessary. If a
next VSN does not exist, set it to a scratch volume and change
the current disposition to NEW.

6. Unload the current volume for another volume by initiating the
sequencer.

7. Invoke beginning-of-volume validation.

17.8.7 GENERAL FLOW FOR REWIND/CLOSE PROCESSING

The following is the general flow for rewind/close processing.

1. Initialize processing by detecting the special end cases.

a. Device is down:

1) Clear appropriate fields in TOT.

2) Reply with unrecovered hardware error.

b. Dataset not open, abort with file not open.

c. Sequencer is active, reply with delay status.

d. Rewind is already in progress:

1) Issue rewind accounting state message.

2) Reply rewind complete to user.

2. Process rewind/close for a write mode dataset.

SM-0040

a. Process outstanding write requests if they exist.

1) Delay processing until all data is transferred to
Buffer Memory.

2) Flush the remaining Buffer Memory sectors to tape.

17-35 C

TQM STEPFLONS TAPE QUEUE MANAGER

b. Write the trailer labels by activating the sequencer.

c. Send a volume-update request to the front-end station.

d. Report the end-of-data condition to the system and user
logfiles.

e. Report the rewind/close condition to the system and user
logfiles.

f. Clear appropriate fields in TDT for the next user request.

g. If current volume is the first volume, then reply
rewind/close is complete, else go to step 4.

3. Process rewind/close for a read mode dataset:

a. Stop any read-ahead activity by activating the sequencer
until all outstanding blocks are read.

b. Report the rewind/close to the system and user logfiles.

c. If current volume is the first volume then:

1) Reply rewind/close is complete.

2) Perform a volume rewind by activating the sequencer,
else go to step 4.

4. Process of rewind/close for multivolume dataset:

SM-0040

a. Set up the TDT for the volume switch by setting CLG, CLT,
and GVS.

b. Process a rewind request:

1) Determine whether job is in memory. If not, use the
J$READY request. wait for job to be brought into
memory before the VSN list is examined.

2) Issue a mount message to the master operator station.

3) Issue a remount request to the I/O Subsystem.

4) Switch volumes by activating the sequencer.

5) Reply rewind is complete.

17-36 C

TAPE QUEUE MANAGER TQM STEPFLOWS

c. Process a close request:

1) Unload the current volume by activating the sequencer.

2) After the unload is complete, reply that the close is
complete.

17.8.8 GENERAL FLOW FOR READ DATASET PROCESSING

The following is the general flow for read dataset processing.

1. Detect and process any pending internal processing.

a. Device not ready (TDDNR) - Place the job in event-wait
state, which waits for the device to become ready.

b. Pending BOV label processing (TDCLG or TDCLT) - Place job
in device-not-ready event-wait and initiate BOV validation
under sequencer control.

c. Buffer memory empty (TDMSC=O) - Flag the read request as
pending and wait for block-finished reply to resume the
request.

2. Evaluate the DSP so as to produce a data-transfer request. This
does not need to relate to the amount of data in Buffer Memory,
since the I/O Subsystem transfers any data as soon as data is
available.

3. Send the read-block data-transfer request to the I/O Subsystem.

17.8.9 GENERAL FLOW FOR BEGINNING OF VOLUME READ VALIDATION (TQ$RB300)

The following is the general flow for beginning of volume read validation.

1. Initialize for the new volume.

SM-0040

a. Clear various state flags from the TDT entry.

b. Detect and process a cancelation of the mount from the
operator.

c. Read the label group if it exists and has not already been
read.

17-37 C

TQM STEPFLOWS TAPE QUEUE MANAGER

2. Ensure the proper volume is mounted.

a. Reject if label types differ.

b. Request the VSN from the operator for nonlabeled volumes.

3. Perform initial front-end station commumication processing, using
an error-bit mask to determine conflicts between the user and the
volume mounted.

4. Send a volume-access request to the serv~c~ng front-end station.
Reject or abort if the front-end station denies the access.

5. Evaluate the label error-bit mask. Reject the volume, abort the
job, or continue depending upon the results of the evaluation.

6. Send a volume-update message to the servicing front-end station
to reflect the use of the volume.

7. Reset from the internal processing.

a. Exit the current sequence.

b. Initiate read-ahead processing.

c. Remove the user from the device-not-ready event-wait state.

17.8.10 GENERAL FLOW FOR I/O SUBSYSTEM READ REPLY PROCESSING

The following is the general flow for I/O Subsystem read reply processing.

1. Initialize processing by setting up the DNT, DSP, JTA, and JXT
addresses that correspond to this device. Transfer control to an
intermediate sequencer reply address if one exists.

2. Process a data-transfer reply (TDDTR).

SM-0040

a. Decrement the number of sectors waiting to be transferred
to the circular buffer.

b. Update the various informational and accounting fields that
correspond to the transfer of sectors.

c. Update the DSP to reflect the new data that has been placed
in the circular buffer.

17-38 c

TAPE QUEUE MANAGER TQM STEPFLONS

d. Reply to the user with an I/O complete, an intermediate
reply, or a data-error reply; depending upon the data
transferred, the amount of room available in the circular
buffer, and if the I/O Subsystem has completed the original
request. Modify the reply-exit address so as to comply
with the type of reply given to the user.

3. Process a block-finished reply (TDBFN).

a. Decrement the number of blocks remaining in the read-ahead
count.

b. Update various informational and accounting fields
corresponding to the movement of tape blocks.

c. Detect the possible condition of a read request was halted
because no data existed in Buffer Memory. Modify the
reply-exit address (if one exists) to TQCIOP2 to re-issue
the request if necessary.

4. Process tape mask status (TDTMS).

a. Set appropriate fields in TDT entry so as to synchronize
TQM with the I/O Subsystem on read-ahead processing and
data-transfer processing.

b. Update various counts that reflect label group block counts.

c. Flag the device, and possibly the user job, as in a
device-not-ready state.

d. Flag the device as having a pending EOV condition, which
will be lifted when the data-transfer request is complete.

5. Detect a pending EOV condition. Modify the reply-exit address to
process trailer labels (TQ$RBl90) when the data transfer request
is complete (TDOSC=O).

6. Evaluate the return status for any error conditions that exist.

7. If there are no blocking states, try to issue another read-ahead
request.

8. Transfer control to the address given in the reply-exit address.

SM-0040 17-39 c

TQM STEPPLOWS TAPE QUEUE MANAGER

17.8.11 PROCESS TRAILER LABELS (TQ$RB190)

The following is the general flow to process trailer labels.

1. Set the device as not ready for user I/O.

2. Based on label type, determine if this is an end-of-volume or
end-of-data condition

SM-0040

a. Nonlabeled volumes. Go to end-of-data processing if no
more VSNs exist in volume serial list; otherwise, go to
volume switch (TQ$RB200).

b. Labeled volumes

1) Read trailer label group.

2) Abort job if trailer labels are of a different type
from the header labels. (Apparently, the volume was
not terminated properly when written).

3) Determine if EOV or EOF trailer group. If EOV, go to
volume-switch code (TQ$RB200).

c. End-of-data initialization

1) Flag the condition in the TDT entry.

2) Based upon dataset mode:

a) Transparent - Reply end of information to the user.

b) Interchange - Issue continue-read request to place
EOR, EOF, and EOD control words in user buffer.

3) Send volume-update message to front-end station
concerning the end-of-data condition.

4) Clear device-not-ready state thus allowing the user to
request the last data that exists in Buffer Memory.

17-40 C

TAPE QUEUE MANAGER '1'QM STEPFLONS

17.8.12 PROCESS VOLUME SWITCH FOR READ (TQ$RB200)

The following is the general flow to process volume switch for read.

1. Send volume-update message to servicing front-end station that
corresponds to the end-of-volume state.

2. Obtain the next volume serial number from the LDT.

3. Unload the current volume for the next by initiating the
sequencer.

4. Perform beginning-of-volume validation.

17.8.13 GENERAL FLOW FOR CLOSE PROCESSING

The following is the general flow for close processing.

1. Initialize processing by detecting and processing the special end
cases.

a. Delay the request if the sequencer is active.

b. Redundant close request:

1) Issue close accounting message.

2) Reply close complete.

c. Delay the request if there is an outstanding rewind.

d. Clean up any queued conditions.

e. If device is closed (due to error during label group write) :

1) Issue close accounting message.

2) Reply close complete.

f. Device has been downed:

1) Clear appropriate fields in TDT.

2) Reply with unrecovered hardware error.

2. Based upon last I/O operation, continue processing with step 2 of
rewind or step 3 of rewind.

SM-0040 17-41 C

TQM STEPFLOWS TAPE QUEUE MANAGER

17.8.14 GENERAL FLOW FOR RELEASE PROCESSING

The following is the general flow for release processing.

1. Process the special states for a successful release operation.

a. Clear outstanding operator message.

b. Cancel any outstanding front-end catalog requests.

c. Clear appropriate fields in TDT for system-downed device.

d. Delay release, with delay reply, until sequencer is not
active.

2. Process any write-behind/read-ahead condition:

a. For read-mode datasets, delay until all outstanding
read-ahead activity is done.

b. For write-mode datasets:

1) Flush any Buffer Memory write-behind data to tape.

2) Write the end-of-data label trailer group by activating
the sequencer.

3) Send a volume update request to the front-end station.

4) Report the end-of-data state to the user and system
logfiles.

3. Report the release condition:

a. Send a dataset update request to the front-end station.

b. Report the release state to the user and system logfiles.

4. Unload the volume by activating the sequencer if a volume is
mounted.

5. Return the device to the available pool:

a. Wait for the job to be in memory.

b. Place device in available pool and disconnect it from the
user.

SM-0040 17-42 c

I

I

TAPE QUEUE MANAGER TQM TRACE BUFFER

c. Clean up the TOT.

d. Free any devices linked to the device disconnected from the
user as a result of a RESELECT.

e. Issue free device request to the I/O Subsystem.

6. Reply release complete.

17.8.15 PROCESS TAPE POSITIONING REQUEST

The following is the general flow for tape positioning.

1. Verify that the requested operation can be performed.

2. If output tape, write all data to tape and write a trailer label.

3. If input tape, discard all the read ahead data.

4. Switch volume if needed.

5. Position to requested block.

6. Update the DSP pointers so that the circular buffer appears to be
empty.

17.9 TQM TRACE BUFFER

The TQM trace buffer and the TDT provide information about the current
state of TQM and its recent past. Snaps taken at strategic points within
TQM by using the TQSNAP macro consist of entries with the following
information:

• Real-time clock at the time of the snap

• Snap number (32 bits)

• TQM-relative address from where the snap was called

• 1-8 characters of comment or the label of the routine from where
the snap was called

• Last input packet received by TQM (six words)

SM-0040 17-43 C

I

TQM TRACE BOPPER TAPE QUEUB MANAGER

• Entire TOT entry

• Registers AO-A7 and SO-S7

Since most of this information is on parcel boundaries, the trace is
normally dumped either in parcel format or with the parameter
FORMAT=PARCEL selected on an FOUMP of the TOT and trace buffer. The
formatting area at TQSNAH near the end of the TQM listing details the
precise trace entry format.

Two macros are defined in TQM to make the trace buffer more readable.
They are:

• The @ macro
• The TQSNAP macro

The @ macro is used to define labels in TQM.

Format:

Location Result Operand Comment
1 10 20 35

label

This macro generates the following:

label
%%TQMTAG

=
MICRO

* , label'

The TQSNAP macro has the following format:

Location
1

comment

Result Operand Comment
10 20 35

TQSNAP

From 1 to 8 characters. If more than 8 characters are
specified, the first 8 characters are used.

If comment is not coded, the micro set up by the @ macro is used.

If @ and TQSNAP are used together, trace entries will contain the TQSNAP
comments, or the routine label if no comments are provided.

SM-0040 17-44 C

STAGER (STG) 18

Stager (STG) is a subtask of SCP. The purpose of STG is to separate the
disk I/O processing from the protocol processing in SCP. STG fills data
segment buffers destined for front-end systems with data from mass
storage, and writes data segment buffer contents received from front-end
systems to mass storage. STG also initiates input jobs by processing the
job card, assigning a job sequence number, and calling the Job Class
Manager (JCM) to assign a job class.

SCP makes requests of STG using an unsolicited reply. SCP passes the
address of a Stager Stream Table (SST) as a parameter. The contents of
the table include an SCP message code indicating the processing being
requested and information necessary to process the request. STG
processes the request and responds to SCP in fields provided in the SST.
STG uses its message code field within the SST to indicate the return
status of the request.

18.1 TABLES USED BY STAGER

STG uses the following tables. These tables are fully described in the
COS Table Descriptions Internal Reference Manual, publication SM-0045.

PDD
SDT
SST

18.1.1

Permanent Dataset Definition
System Dataset Table
Stager Stream table

PERMANENT DATASET DEFINITION (PDD)

STG uses the PDD in PDM requests to create and release permanent datasets.

18.1.2 SYSTEM DATASET TABLE (SDT)

STG places information in the SDT for datasets being transferred to or
from a front-end system concerning block size, processing direction,
open/close status, etc.

SM-0040 18-1 C

OVERVIEW OF STG PROCESSING STAGER

lS.1.3 STAGER STREAM TABLE (SST)

The SST resides in the Link Interface Table Extension (LXT). There is
one SST for each stream. This table can be divided into the following
sections.

• The first section is accessed by STG only.

• The second section is accessed by both STG and SCP.

• The last section is accessed by SCP only.

The information within this table is interlocked by the task message
codes. Both STG and SCP have a message code field in the table. The
table is free for use by a task if the field for that tasks message code
is null or O.

lS.2 OVERVIEW OF STG PROCESSING

STG is activated for dataset transfers taking place between Cray
mainframes and front-end systems. The STG task is dormant when no
datasets are being transferred. The protocol message exchange is the
responsibility of SCP and the front-end station.

The actual link-level communication between the mainframe and the front
end is handled by the EXEC Front-end Driver (FED). The FED and SCP
handle the protocol and message exchange. The STG task is responsible
for disk transfers of data being staged to and from the front-end
systems. STG exchanges data segment buffers with SCP. SCP coordinates
the actual reading and writing of the buffers with messages to and from
the front-end system.

SCP requests STG processing for active data streams. These requests are
made during processing of input and output stream control bytes (SCBs),
and the receipt of a dataset header or segment. The number of
outstanding requests that STG can have is limited only by the number of
SSTs available, not by the 16 stream per LXT limitation of the protocol.

While STG responses to SCP requests normally determine output SCB states
and possibly message codes, a lack of response does not keep SCP from
sending a message. Each LCP received from a front end causes the active
SSTs associated with that front end to be checked. As SCP requests are
processed by STG the responses are incorporated into the outgoing
messages.

SM-0040 18-2 C

STAGER OVERVIEW OF STG PROCESSING

It is not always possible to complete the SCP request before the next LCP
is sent because disk reads and writes, PDM requests and space for buffers
are not always available. Even if these functions could keep up, a
single request to STG from SCP could generate several DQM and PDM
requests from STG. The processing of the SCP request will be dropped
each time a request to another task is made. The reply from DQM or PDM
will reinitiate processing of the initial request. STG does not reenter
and process the request from where it left off. Instead it follows the
processing path for the request skipping previously completed portions of
the request by using flags that indicate the processing is complete. A
flag may be an address of a table or buffer. The presence of the address
indicates that processing of that part of the request has completed.

STG processing consists of the following sides:

• The input side, datasets being transferred from front ends to Cray
mass storage.

• The output side, datasets being transferred from the Cray mass
storage to the front end.

The processing side that is being requested is determined by the SST
type. SSTs are preset by SCP for either input or output. For each side
there are three identifiable phases. The first phase is a startup phase,
the second phase is the transfer of the data, and the final phase
involves the termination of the transfer. A particular phase of
processing is requested by SCP through the SCP message request codes.

The startup phase is mainly concerned with allocating buffers for the
transfer and table initialization. The transfer phase involves the
reading and writing of disk, and the exchange of segment buffers with
SCP. The termination phase requires the closing of files and releasing
of buffers.

The errors that occur during the processing include error replies from
DQM and PDM, and Postpone and Cancel requests from SCP. In all cases the
required processing is to stop the transfer. The processing of errors·
for input is done by a special error handler. The output side
termination process takes care of output errors. The input side requires
separate processing because the saving of the dataset is not done. The
dataset instead must be deleted. The output side must close the transfer
just as it is closed for successful transfers. The error handling is
done in much the same manner as the termination phase except that the
error handler always sends a successful reply to SCP.

SM-0040 18-3 c

OVERVIEW OF STG PROCESSING STAGER

18.2.1 INPUT PROCESSING

The input startup phase is entered when a Start message request code is
received by STG.

1. If the dataset already exists, set an End message reply code to
terminate the transfer and exit.

2. Allocate an initial segment buffer. If the segment buffer cannot
be allocated, set a Buffer Wait message reply code and exit. scp
will re-issue the Start request at a later time.

3. Allocate the initial disk buffer. If no space for the buffer can
be found, then release the segment buffer also to prevent buffer
deadlock.

The input transfer phase is unlike the others because it is repeated for
each segment received. The other phases are processed once. The process
buffer, PRBF, message request code initiates this phase. When this code
is issued, SCP removes the address of the empty segment buffer from the
SST and replaces it with the address of the full segment buffer just
received. In this manner, SCP is able to keep one empty segment buffer
for each front end so that there will be a buffer for the next segment or
request.

1. If the current disk buffer is empty, allocate a new one. This
reallocation allows the buffer management routine to pack buffers
in upper memory. Note that the reallocation of a buffer should
always return at least the same buffer so that no Buffer wait
message reply is necessary.

2. Move data from the segment buffer to the disk buffer. When the
disk buffer is full, a write to disk is initiated.

3. If there is data left in the segment buffer, the status is set to
busy while the disk write completes. If no data is left in the
buffer, then the segment buffer is released and reallocated.
This reallocation also forces buffer packing.

Special processing considerations during this phase involve determining
if the file is an input job. Input jobs require job card validation.
Validation is done by calling the job card processor IND.

The input termination phase is initiated by an End message code from
SCP. The End message is requested in response to an End from STG,
indicating the end-of-data.

SM-0040 18-4 C

STAGER OVERVIEW OF STG PROCESSING

1. Any data in the segment buffer is copied to the disk buffer and a
write issued to flush the buffer.

2. The disk buffer and segment buffer are released.

3. If the dataset transfer is from an ACQUIRE or FETCH, exit.

4. A Permanent Dataset Definition (POD) is allocated. If no buffer
space is available a Buffer wait message reply is set. The SCP
message request must be re-issued at a later time.

5. If the dataset is a job, then a job sequence number must be
assigned, and the Job Class Manager called to assign a class.

6. If the dataset is a job, then a PDM function request is set to
save the input dataset.

7. If the dataset is not a job, then a PDM function request is set
to save the user dataset.

8. The PDM function is issued and the status is set Busy. Control
is given up until the PDM request completes.

9. If the PDM request is successful, and the file is not a job, and
there are DATs assigned in STP, then these are released.

10. If the PDM status indicates the dataset already exists, the
message reply to SCP, is set to END

11. If the PDM status indicates any other error, then the message
reply is set to CAN. CAN forces a Cancel request from SCP.

Input error handling is initiated by a Postpone or Cancel message request
from SCP.

1. The segment buffer is released.

2. If I/O is not busy, then release the disk buffers. If I/O is
active, then the request will be processed when I/O terminates.

3. If OATs are allocated, then call DQM to release them. The status
is set to busy and control given up until a reply is received
from DQM.

4. The Acknowledge message reply code to SCP indicates completion of
the error processing.

SM-0040 18-5 C

OVERVIEW OF S'l'G PROCESSING STAGER

18.2.2 OUTPUT PROCESSING

The output startup phase is initiated by a Start message request code
from SCP.

1. Allocate a segment buffer. If no space is available, then a
Buffer Wait reply code is returned to SCP and the Start must be
re-issued.

2. Set parameters in the SDT for reading the dataset.

3. Allocate the disk buffer. If no space is available, then a
Buffer Wait reply code is returned to SCP and the Start must be
re-issued. The segment buffer is also released to prevent
deadlock.

4. A disk read is initiated. This read will be active while SCP
processes the reply and possibly when the next LCP arrives and
SCP issues the first Process Buffer request.

The output transfer phase is repeated each time a Process Buffer is
issued by SCP. The phase is repeated until the file is transferred or an
error occurs.

1. Reallocate a segment buffer if the current buffer is empty. This
reallocation is done to pack down the segment buffers in upper
memory.

2. Compute the number of words in the disk buffer and then move all
the data that will fit into the segment buffer.

3. If the segment buffer is filled a complete status is set,
otherwise, a busy status is set.

4. If EOI is reached on the file, any remainder in the segment is
set to 0, and the SST status is set to indicate EOD. The return
status is set to indicate a Buffer Ready. The SST status will be
the response to the next Process Buffer request.

5. If the disk buffer is empty, it is reallocated to allow for
packing of the buffers in high memory.

6. If EOI will be reached by the next read to fill the disk buffers,
EOI is set in the SST.

7. A disk read request is issued and the status set to busy until
the request can complete.

SM-0040 18-6 C

STAGER SCP/STG COMMUNICATION

Output termination phase

The termination phase is initiated by an END, CAN, or PPN message request
code from SCP.

1. Release any disk or segment buffers that are allocated.

2. Allocate u POD. If no memory is currently available, then return
a Buffer Wait reply to SCP. SCP re-issues the request later.

3. Issue a PDM request to delete the output dataset. Set the status
to busy until the PDM request is complete.

4. If there are other active disposes for this file, then the OATs
are released.

5. If there are no other outstanding disposes for the file, then the
file is released by making a OQM request. The status is set to
busy until the DQM request completes.

6. The POD used to delete the output dataset is released.

18.3 SCP/STG COMMUNICATION

Like the front-end protocol, the communication between SCP and STG is two
way alternate. The SCP task makes requests through the SCP message code
field in the SST and STG replies to the request in the STG message code
field. This communication is not a protocol, however, but a
request/reply mechanism. Each request requires a certain type of
processing and one of a limited set of replies. The reply indicates the
state of the request if it could not be completed and success or failure
if complete.

Under certain circumstances, an STG response forces a specific next
request from SCP. This is caused usually by error conditions but is also
caused in output of datasets when the end of the dataset is reached. The
STG response indicating success and end of data causes the next SCP
request to be a termination request.

The following sections describe the SCP message request codes, STG
message response codes, valid responses and next requests, and finally
termination considerations.

SM-0040 18-7 C

SCP/STG COMMUNICATION STAGER

18.3.1 SCP MESSAGE REQUEST CODES

The SCP message code field in the SST contains a request for processing.
The five valid message codes and STG processing for each are:

SCP message code

STRT

PRBF

END

CAN

PPN

STG processing

Start this stream. On input, requires checking to see
if the dataset already exists. If no dataset exists,
a segment buffer is allocated for the stream. On
output, a segment buffer and disk buffers are
allocated. The filling of the disk buffers is
initiated.

Process a buffer. This message code requests STG to
process the segment buffer pointed to in the SST.
This message code is used both on input and output.
If a dataset is being input, this code means a full
buffer is pointed to by the segment buffer pointer in
the SST. If a dataset is being transferred out, STG
will return the empty segment buffer pointed to by the
segment buffer pointer, allocate a new segment buffer,
and begin filling it.

END this stream. For input datasets this means the
file has completed transferring from the front end.
For output datasets this means that SCP acknowledges
STG's message END.

Cancel this stream. This message code to STG normally
occurs when the station requests that the stream be
canceled or the operator kills the job. The other way
that this message code can appear is in response to a
cancel by STG. STG sends a cancel when there is an
I/O error on a file or an error saving the dataset.

Postpone this stream. This message code occurs when
the station either postpones the dataset or master
clears the stream.

18.3.2 STG MESSAGE REPLY CODES

STG issues the following message codes:

SM-0040 18-8 C

STAGER

STG message code

ACK

BFRD

BFW

END

CAN

PPN

SM-0040

SCP/STG COMMUNICATION

STG processing

Acknowledge the last request. This response
acknowledges an END, on either input or output, a CAN
and a PPN. This is both the initial and terminal
state of STG message code for any file transfers.

A buffer is ready. This message code informs SCP that
STG has completed processing the current buffer
pointed to by the segment buffer pointer in the SST.
For input datasets the pointer would point to an empty
buffer, for output datasets to a full buffer.

Buffer wait code. No buffer space is currently
available. The request processing could not be
completed. The request must be re-issued. The buffer
management routine will eventually make space for the
buffer, either through buffers released by other
transfers completing or by requesting that JSH make
more buffer space available.

End this stream. STG issues this message code under
two conditions. The first is when an input dataset
already exists, causing SCP to cancel the stream. The
second is to indicate the end of an output dataset.
This second case is a normal termination.

Cancel this stream. STG issues this message code for
I/O errors on output and errors saving a dataset. CAN
is one of two ways that STG can initiate abnormal
termination. It is SCP's responsibility to ensure
that the stream is terminated by the front end and by
STG.

Postpone this stream. STG issues this message code
only when an I/O error occurs on input. The reason is
that it is possible when reallocating disk space and
restarting the transfer that the error will not
occur. However, it is the responsibility of the front
end and SCP to reinitiate the transfer.

18-9 C

STG BUFFER MANAGEMENT STAGER

18.4 STG BUFFER MANAGEMENT

STG uses the common subroutine BFMAN, buffer manager, to allocate and
deallocate segment buffers, disk buffers, and temporary PODs. The
subroutine uses memory allocated in upper memory for these buffers. The
buffers are allocated from the buffer zone on a first fit basis. STG
reallocates buffers after each use, that is, after a buffer has been
emptied. This allows BFMAN to pack buffers together thereby allowing
unused memory to bubble up to the top of the buffer zone.

The initial buffer size is controlled by an installation parameter. The
BFMAN subroutine allocates buffers from this area until no more buffers
are available. BFMAN can then request that JSH decrease MEMMAX, thereby
making the buffer area larger. This additional buffer space can be used
for allocating more buffers. If BFMAN detects a large unused segment of
the buffer space, then JSH can be called to increase MEMMAX, thereby
making the buffer area smaller.

The JSH request is made as a task request, since SCP also uses BFMAN to
allocate an initial buffer for each active LXT. SCP always uses task
requests to communicate with JSH. The response from JSH is either an
error reply or an affirmative reply. The error reply would occur due to
some error in the request. The affirmative reply can actually represent
two conditions. The first condition is where JSH has actually moved
MEMMAX, and BFMAN can allocate buffers from the enlarged buffer zone.
The second instance of affirmative reply is when JSH must roll jobs to
complete the request. In this circumstance JSH will actually queue the
request for processing at a later time. It is the responsibility of
BFMAN to compare the new requested MEMMAX to the current MEMMAX to
determine when the request is complete. This comparison will be made

I each time BFMAN is called with a request to allocate a buffer, and has an
outstanding JSH request.

It is possible to continue processing without having JSH allocate more
memory than initially exists. It is even certain that in many cases JSH
will be unable to respond to the request by immediately moving MEMMAX.
For input datasets this would mean suspending the stream until another
transfer terminated and a buffer was freed. For output datasets the SCB
state would remain SND but no data segments would be sent until another
stream terminated and buffer space was freed. In both instances SCP
would request STG action when preparing an LCP to output to the front end.

18.5 MESSAGE REQUEST CODES AND VALID RESPONSES

The following is a description of the codes used in fields SCPC and STGC
in the SST.

SM-0040 18-10 C

STAGER DATASET STAGING EXAMPLES

Message codes and mnemonics are as follows:

Mnemonic
ACK
BFRD
BFW
CAN
END
PPN
PRBF

Significance
Acknowledge
Buffer ready
Buffer wait
Cancel
End stream
Postpone stream
Process buffer

Valid SCP and STG request and response codes are as follows:

Request codes
for SCP

STRT
PRBF
END
CAN
PPN

Response codes
for STG

ACK
BFRO
BFW
END
CAN
PPN

Responses by STG
BFRO, BFW, END, CAN
BFRO, BFW, CAN, END (Output only)
ACK, BFW, CAN (Input only), END (output only)
ACK
ACK

Succeeding responses by SCP
STRT
PRBF, CAN, END, PPN
PRBF, CAN, END, PPN
END, CAN, PPN
CAN
PPN

The results of any file transfer will be that the STG message code
becomes an ACK, and the SCP message code is clear or zero. The STG code
is preset to ACK by SCP at logon.

18.6 DATASET STAGING EXAMPLES

The following examples show the sequence of events during staging to and
from COS. These examples are of a single file being transferred. No
other activity, (commands, displays, or error recovery) is presented.

The following abbreviations are used:

Abbreviation
EOI
SCB
SCPC
STGC

SM-0040

Significance
End of information
Stream control byte
SCP code: field SCPC in the SST.
STG code: field STGC in the SST.

18-11 C

DATASET STAGING EXAMPLES

Staging in a dataset:

Front End

SCB=RTS

Send dataset header
SCB=SND
Send a segment

SCB=SND

SCB=SND
Send a segment

SCB=SND
Send a segment

SCB=SND

SCB=END
Send a segment

SM-0040

SCP

SCB=RCV
Move info to SDT

SCPC=STRT, STGC=O
Activate STG

SCB=RCV

Swap SST & LXT segments
Store SGBC in SST
SCPC=PRBF, STGC=O
Activate STG

SCB=RCV

Swap SST & LXT segments
Store SGBC in SST
SCPC=PRBF, STGC=O
Activate STG

SCB=SUS

SCB=RCV

Swap SST & LXT segments
Store SGBC in SST
SCPC=END, STGC=O
Activate STG

18-12

STAGER

STG

Allocate segment buffer
Allocate disk buffer
STGC=BFRD, SCPC=O

Move data to disk buffer
STGC=BFRD, SCPC=O

Start move to disk buffer
Write disk buffer when full

Reallocate disk buffer
Finish move to disk buffer
Reallocate segment buffer
STGC=BFRD, SCPC=O

c

STAGER

Front End SCP

SCB=SVG

SCB=END
SCB=SVD

SCB=IDL

Staging out a dataset:

Front End

SCB=RCV

SCB=SUS

SCB=RCV

SCB=RCV

SCB=RCV

EOI

SM-0040

SCP

SCB=RTS

Move SDT info to header
SCB=SND dataset header

SCB=SND

SCPC=STRT, STGC=O
Activate STG

SCB=SND

SCB=SND
Send a segment

SCPC=PRBF, STGC=O
Activate STG

SCB=SND

18-13

DATASET STAGING EXAMPLES

STG

Move data to disk buffer
Write disk buffer

Release disk buffer
Save dataset
Release segment buffer
STGC=ACK, SCPC=O

STG

Allocate segment buffer
Allocate disk buffer
Begin reading into disk
buffer

Move data to segment buffer
Store SGBC in SST
STGC=BFRD, SCPC=O

Reallocate segment buffer
Start filling segment
buffer
Reallocate disk buffer
Set flag when reading to

Begin reading into disk
buffer

C

DATASE'l' TRANSFER TBBMINATION PROCESSING

Front End

SCB=RCV

SCB=SVG

SCB=SVD

SCP

SCB=END
Send a segment

SCB=END

SCPC=END, STGC=O
Activate STG

SCB=IDL

18.7 DATASET TRANSFER TERMINATION PROCESSING

STG

Store SGBC in SST
STGC=END, SCPC=O

STAGER

Release segment buffer
Release disk buffer
Delete output dataset

Release output dataset
STGC=ACK, SCPC=O

The following tables are an overview of stream termination processing.
SCP always controls the start of stream initiation and termination, which
is a reflection of the STG status as subtask. In any kind of
termination, STG responds with an ACK, acknowledge. The following tables
show all abnormal termination cases and processing. The termination
cases with an STG message code are those in which STG found the error, or
for an output dataset transfer the end of information. The STG message
code occurs first. In these cases the next SCP message code request is
shown under SCPC. The SCP message code is the master request that causes
the stream termination. The STG response to this request is ACK,
acknowledge.

In.put dataset:
Action on Action

Reason for termination STGC SCPC stream on job Messages
MC or PPN by station PPN IDL
CAN by station CAN IDL Abort CAN by FE
END from station END SVD Resume Save/Acquire OK
Operator kill CAN CAN Abort CAN by COS
Dataset already exists END CAN CAN Resume
I/O error PPN PPN PPN
Error saving dataset CAN CAN CAN Abort CAN by COS

SM-0040 18-14 C

STAGER

Output dataset:

Reason for termination
MC or PPN by station
CAN by station
Operator kill
End of data
I/O error

'fermination conditions
Job in OK

Dataset in OK

CAN or PPN on input
PPN on output
CAN or END on output

If not multitype
If multitype

SM-0040

DATASET TRANSFER TBBMINATION PROCESSING

Action on
STGC SCPC stream

PPN IDL
CAN IDL
CAN CAN

END END END
CAN CAN CAN

Stager processing
Assign a JSQ
Call PDM with PMFCSI
Call PDM with PMFCSU
Release OATs in STP

Action
on job Messa~es

Abort
Abort CAN by COS
Resume Dispose OK
Abort CAN by COS

SCP processing
Move SDT to Q@INPUT

Move SDT to Q@AVAIL

Call DQM with DE LOCATE Move SDT to Q@AVAIL
No processing Move SDT to Q@OUTPUT
Call POM with PMFCDO Move SDT to Q@AVAIL
Call DQM with OELOCATE
Release DATs in STP

18-15 C

I

FLUSH VOLATILE DEVICE (FVD) 19

The Flush Volatile Device task (FVD) performs one function which is the
backing up of information contained on volatile devices. With the advent
of enhanced Buffer Memory and the Solid-state Storage Device (SSD), it
became possible to lose information between the time the system is shut
down and the subsequent startup due to the volatile nature of these
devices. FVD provides the mechanism to back up this information and in
conjunction with Startup, which restores the information to the device,
prevents the loss of information.

19.1 FVD INTERFACE WITH OTHER TASKS

FVD is called only by SCP through TSKREQ, with the device name of the
device to be flushed in INPUT+O. This request is made in conjunction
with a received operator function request of FLUSH.

Format:
J

0 8 16 24 32 40 48 56
I NPUT+ 0

I
DVN

INPUT+I Zero

Field Word Bits Description

DVN INPUT+O 0-63 Device name of the device to be
flushed

After determining that the flush request is correct and that all
conditions are met so the flush can proceed, a response is sent to SCP
through PUTREPLY.

Format:

63

I

o 8 16 24 32 40 48 56 63
OUTPUT+O I~ ___________________________ S_T_A_T_U_S __________________________ ~I
OUTPUT+l DVN

~--~

SM-0040 19-1 C

I

SYSTEM TABLES USED BY FVD

Field Word Bits

Status OUTPUT+O 0-63

FLUSH VOLATILE DEVICE

Description

Error Status

o No error; request accepted.
1 Illegal request
2 Device name not in EQT
3 Attempt to flush nonvolatile

device
4 Wrong device type to be flushed
5 No memory pool space available

for flush buffers
6 Error status from PDM on access

FVD also communicates with the PDM task to access the backup dataset and
with the DQM task to read the information from the device and write it to
the backup dataset.

19.2 SYSTEM TABLES USED BY FVD

FVD uses the following system tables:

EQT Equipment Table
DRT Device Reservation Table

FVD uses tae EQT to determine physical characteristics about the device
being flushed.

FVD also uses Memory Pool One to provide space for its input/output
buffers.

19.3 FVD GENERAL FLOW

The FVD general flow is:

1. GETREQ is called to obtain the request.

2. The device name is checked against the EQT to insure that it is a
valid request.

3. PDM is called to access the corresponding backup dataset.

SM-0040 19-2 c

I

PLUSH VOLATILE DEVICE INTERACTION BEWrEEN PVD AND STARTUP

4. Memory Pool One space is allocated for the I/O buffers.

5. DQM is called to read information from the device and write to
the backup dataset.

6. A pseudo DRT is maintained to indicate any allocation units that
could not be backed up.

7. A header is written to the backup dataset; it contains
information showing the pseudo DRT and that a flush has been
performed.

19.4 INTERACTION BETWEEN FVD AND STARTUP

Even though FVD and Startup do not directly communicate, they still must
interact to accomplish the flush/restore procedure. Startup must create
the backup dataset $dname, where dname is the device name, and FVD
must write a header to the backup dataset so Startup can recognize that a
flush has occurred and can use the pseudo DRT to determine what flushed
information is valid.

SM-0040 19-3 C

CONTROL STATEMENT PROCESSOR (CSP) 20

The Control Statement Processor (CSP) is a system program that executes
in the user field. CSP initiates the job, analyzes, and stores the
various elements of the control statements (that is, cracks them),
processes system verbs, advances the job step by step, processes errors,
and ends the job.

20.1 SYSTEM TABLES USED BY CSP

CSP uses system tables to communicate with STP tasks and system or
user-supplied programs. These tables are located in the user field or in
JTA and are preserved or updated by CSP, STP, or other programs during
the duration of the job. The tables CSP uses are:

DSP Dataset Parameter Area
JCB Job Communication Block
LFT Logical File Table

Detailed information for these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

20.1.1 DATASET PARAMETER AREA (DSP)

The Dataset Parameter Area (DSP) contains dataset status and information
needed for I/O. It begins at the address specified in the JCDSP field of
the JCB. Individual DSP addresses are specified in the LFT. CSP,
through EXP, makes a DSP for $OUT, $IN, and any other datasets known to
the job.

20.1.2 JOB COMMUNICATION BLOCK (JCB)

The Job Communication Block (JCB) is the first 200 8 words of the user
field. CSP places the current control statement in cracked and uncracked
format and information for accessing or building I/O buffers, DSPs, and
LFTs in the JCB. Other information is also be maintained there.

SM-0040 20-1 C

THEORY OF OPERATION CONTROL STATEMENT PROCESSOR

20.1.3 LOGICAL FILE TABLE (LFT)

The Logical File Table (LFT) is located at the address specified in the
JCLFT field of the JCB. esp, through EXP, makes entries for $OUT, $IN,
and any other datasets or .aliases known to the job. The LFT entr ies
point to the DSPs.

20.2 THEORY OF OPERATION

The CSP binary is loaded during system generation and is copied to the
user field when the job is initiated. The job's control statements are
passed to CSP from the first file of the dataset named jobname. Exits
are by normal exchange sequence. CSP initiates the job, cracks control
statements, processes some system verbs, advances the job step by step,
processes errors, and ends the job.

20.2.1 CSP LOAD PROCESS

During system generation, a copy of CSP is appended to the end of the STP
image. During system startup, this copy of esp can remain in memory
immediately following the end of non-Startup code, or it can be written
to disk by Startup. The placement of CSP is determined by an
installation parameter. The installation can cause Startup to make
multiple copies of CSP to reduce conflicts when loading from disk if it
chooses to make CSP disk resident. When the job is submitted, Job
Scheduler (JSH) allocates memory for the job, sets up the Job Table Area
(JTA), and causes the Exchange Processor (EXP) to copy CSP into the user
field at location (BA)+200S. Following loading, CSP is ready to
process a control statement. Any user program called as a result of
processing the control statement is loaded over CSP. When the user
program ends, CSP is again loaded into the user field. Since CSP
executes in the user field, it is subject to roll in/rollout procedures
the same as a user program.

CSP executes as a user program and shares the user exchange package, JTA,
JCB, LFT, DSPs, and I/O buffers with user programs. CSP may, however,
make some requests of STP not allowed by a user program.

20.2.2 ENTRY AND EXIT CONDITIONS

esp assumes that a control statement file for the job has been staged
from the front-end processor to the COS mass storage as the first file of

SM-0040 20-2 C

CONTBOL STATEMENT PBOCESSOR THEORY 01' OPERATION

the dataset jobname (jobname is specified with the IN parameter of
the JOB control statement). Control statements are passed by STP from
the disk to CSP using the control statement buffer (CSB) of the JTA as
the input buffer.

Also, if it is the first time into CSP, register S7 contains a status
from the job's input System Dataset Table (SOT) entry. This status
determines which log message, if any, is to be issued by CSP immediately
following the processing of the JOB control statement. It may also cause
CSP to terminate the job immediately. This status is used by recovery of
rolled jobs to inform users of jobs that were rerun by system recovery or
that could not be recovered and were also not rerunnable.

Entry condition

When control returns to CSP, status is passed in registers SO and Sl.
The EOF status for $CS is passed in SO. The status is equal to 1 (EREFR)
only at absolute job end, when CSP writes the trailer messages to $LOG.
The EOF status is checked only if a control statement is not in the JCB
buffer.

The job initiation status is passed in Sl. It is 1 for job initiation
and 0 thereafter. If (Sl)=l, (S7) is significant.

o 8 16

S7 ~ __________________________ ~~~ ____________________________ ~

Field

EOF 0-63

JFL 0-63

JST 0-63

SM-0040 20-3 C

THEORY OF OPERATION CONTROL STATEMENT PROCESSOR

Exit conditions

Exits from CSP are generally through the normal exchange sequence
described in section 8. The exit and reentry conditions for the system
calls are documented with the system task calls. Reentry from most calls
is to the instruction following the EX instruction. One exception, which
is important for the functioning of CSP, is the F$TRM call.

When CSP makes an F$TRM call, it has prepared all output datasets for
return to the front-end processor and passes no other values to STP. CSP
is never again reentered for that job.

20.2.3 BEGIN JOB

CSP begins a job by first opening the user logfile and entering a
headline message. Next, it processes the JOB control statement, which
must be the first statement in the control statement file. The job
parameter values are set according to the arguments in the JOB
statement. Next, the control statement file ($CS) undergoes block
validation. If not successful, the job terminates. LFT entries, DSPs,
and I/O buffers are made for $OUT and $IN. Unit names FT05 and FT06 in
the LFT are created for $IN and $OUT, respectively.

Depending on the status that EXP passed to CSP in S7, a message may be
written to the user and system logs, immediately following the JOB
statement. Sometimes this message represents a fatal error from Startup,
in which case CSP terminates the job immediately.

20.2.4 CRACK STATEMENTS

CSP makes a request to STP to place one control statement in the JCCCI
field of the JCB and in the logfile. CSP then cracks the statement into
verb, separators, keywords, and values. It places the cracked statement
in the JCCPR field of the JCB. The cracked format is described in the
Library Reference Manual, CRI publication SR-0014. In the cracked
format, the parameter keywords and values are available for processing by
CSP, by system-supplied programs, or by user-supplied programs.

20.2.5 PROCESS STATEMENTS

Every statement is a user's request for some action and is associated
with either a system verb, a dataset verb, or a library-defined verb.

SM-0040 20-4 C

CONTROL STATEMERr PROCESSOR THEORY OF OPERATION

System verbs are processed by the system (CSP and/or STP).

Dataset verbs are processed by loading a program into the user field and
then executing it. The dataset is either local to the job or resident in
the System Directory (SDR). A library-defined verb corresponds to an
entry in a named library which is either loaded into the user field and
executed or treated as the current control statement file.

System calls

In processing control statements, CSP makes frequent system calls to
STP. These calls are described in section 8.

Parameters

Job processing requires assigning values to many parameters. Most
parameters have default values; some have a second default value called a
keyed value. Other parameters have no default values and require that
the user specify a value. The default values for a given control
statement are contained in a default list. Also included in the list are
keywords and the destination address for the final value.

CSP sets the parameter values by using the statement keyword to locate
the default list entry, taking the user-specified value if the keyword is
equated to a value, taking the keyed value if the keyword stands alone,
or taking the default value if the keyword does not appear in the control
statement. The value is then entered at the address specified in the
default list. If there is no default value or keyed value, the sign bit
is set in these words. If the user does not specify a value, the sign
bit remains and an error results.

20.2.6 ADVANCE JOB

A job step, the result of a control statement, consists of the execution
of a program in the user field. The program may be CSP, or it may be a
user-called program which is initiated by CSP and/or LDR. CSP advances
the job, step by step, in the sequence specified by the control
statement file. These steps are summarized under CSP Step Flow.

20.2.7 ERROR EXIT PROCESSING

As CSP advances the job, it alters the normal sequence from that of the
control statement file if an error occurs. If an error is detected in

SM-0040 20-5 C

RECOVERY STATUS MESSAGES CONTROL STATEMENT PBOCESSOR

the JOB statement or if the control statement file contains block
structure errors, all other statements in the control file are ignored
and the job is not processed. If the error occurs for any other control
statement, CSP makes an ABORT system call. The Exchange Processor (EXP)
then performs the control statement processing.

Once an error is encountered, all statements are skipped until an EXIT
control statement is found in the control statement file. If an EXIT is
found, job processing resumes with the control statement after the EXIT
statement~ however, the statements after EXIT are processed only after an
error; they are never seen unless an error occurs.

The job is ended if there is no EXIT control statement in the remainder
of the control statement file.

20.2.8 END JOB

Every job goes through the end job procedure whether or not an error
occurs. End of job and job accounting messages are placed in the logfile
($LOG), and CSP makes a job termination system call, F$TRM. The Exchange
Processor (EXP) completes job termination. $LOG is written to $OUT~ SOUT
is closed~ buffers for datasets which are open in write mode and are
permanent or have a disposition code other than scratch are flushed; the
name of the $OUT.dataset is changed to the job name~ and the dataset is
routed to the front-end processor. Finally, the user area is released to
the system.

20.3 RECOVERY STATUS MESSAGES

CSP can issue messages immediately following the JOB control statement.
These messages are described in the CRAY-OS Message Manual, publication
SR-0039. They are issued in response to a status code sent by EXP on the
first entry into CSP. This status code acts as an index into a table of
message control words. If the message control word indicates that the
status is fatal, CSP ends the job immediately; if it indicates that the
status is nonfatal, CSP continues normally.

Message control word format:

o I 40 63

F/NF----F 111111111111111111111111111111111111111 addr

SM-0040 20-6 C

CON'lBOL STATEMENT PBOCESSOR CSP STEP FUM

Field Bits Description

F/NF o

addr 40-63

Flag:
1 Fatal
o Nonfatal

Address of message text. The message must be
terminated by a zero byte.

20.4 CSP STEP FLOW

The system processes jobs and errors as outlined below and diagrammed in
figure 20-1.

Initiate the job:

1. Copy system bulletin to logfile if it exists and is required by
the installation.

2. Enter system header into logfile.

3. Process JOB statement, ending job if any errors encountered.
Skip this step if job is interactive.

4. If CSP received recovery status:

a: Issue corresponding message to logfile.
b. Terminate job if status indicates to do so.

5. Validate the structure of $CS if the job is not interactive;
terminate the job if any errors found.

6. Assign the datasets $IN and $OUT.

7. Jump to job advancement.

Process control statements:

1. Examine JCB for a control statement. If there is none, request
one through F$GNS; if there are no other statements or the system
has requested termination, end the job.

SM-0040 20-7 C

CSP STEP FLOW

I

I

PROCESS

VERB

YES

SET UP FOR
PROCEDURE

SUBSTITUTION
JUMP TO CALL

VERB

L _______ _

CONTROL STATEMENT PROCESSOR

ADVANCE/ABORT

THE JOB

- - -:EXP

ARE

ECHO STATEMENT
IF

CHARACTERISTIC
SAYS OK

CRACK

STATEMENT

LOAD PROGRAM
IN

USER AREA

: EXP

~ EXP

YES

NO

TERMINATE

JOB

- - __ = EXP processing

CSP processing

Figure 20-1. CSP control statement flow diagram

SM-0040 20-8 c

CONTROL STATEMENT PROCESSOR CSP STEP FLOW

2. Initialize verb characteristics; such as aborting when syntax
errors are encountered, echoing statement to logfile, and
processing of apostrophes and parentheses during statement
cracking.

3. Get verb from statement; determine if it is a system verb. If
so, get the defined characteristics and the processing address
from the system verb table and continue with step 7.

4. Determine if verb is a local dataset. If so:

a. Set processing address to LGO.
b. Set up for entry to LGOi open the dataset.
c. Set verb characteristics to defaults: echo statement

before cracking; abort, if errors encountered during
cracking; delete apostrophes from strings they delimit.

d. Continue with step 7.

5. Determine if verb is an entry in one of the accessible libraries
in the library searchlist. If so, process according to the entry
type:

Absolute entry:

a. Set processing address to LGO.
b. position library to selected entry.
c. Set up ODN and DSP to that of current library.
d. Use default verb characteristics.
e. Continue with step 7.

Procedure entry:

a. position library to selected entry.
b. Set processing address to PPFILE.
c. For verb characteristics: apostrophes are retained in the

strings they delimit (for JCL expressions), statements are
not echoed.

d. Continue with step 7.

6. Assume that verb is a dataset resident in the SDR and use default
verb characteristics.

7. Echo statement to logfile if characteristics indicate to do so.

8. Ensure that if accounting is mandatory, the ACCOUNT statement
appears after the JOB statement.

SM-0040 20-9 C

CSP STEP FLOW CONTROL STATEMENT PROCESSOR

9. Crack statement, suppressing abort if an error occurs. If the
verb was continued illegally or a cracking error occurred with
the verb characteristics indicating abort, advance job through an
abort.

10. Jump to processing address determined in steps 3 through 6.

End job by CSP or EXP request:

1. Close punch and plot datasets.

2. If CHARGES program is to execute (installation defined):

a. Indicate special CSP reentry through a flag in the JCB.
b. Load CHARGES program from SDR via LGO routine.
c. Reenter CSP from system to finish termination through F$TRM.

Error Processing:

1. Enter error message into logfile and then end the job, if:

• First control statement is not JOB,
• The JOB statement contains an error, and
• Block structure errors are in $CS.

2. Enter an error message into the logfile and abort the job if an
error is detected while processing any other verb (CSP, system,
or user).

SM-0040 20-10 C

APPENDIX SECTION

THE COS SECURITY SYSTEM

Security on the Cray Computer System is the mechanism within COS to
prevent unauthorized access and use of user information while allowing
the system manager a means of controlling access to the system and its
data.

A

The concept of security is divided into three topics: Direct control of
the user, defining and tailoring the specific security system, and actual
COS implementation of security.

A.I THE USER

Every user of COS has the following attributes relating to the COS
security system:

• User number. The user number is distinct from the account
number. The account number identifies the user for recording
resource use; the user number identifies the user for system
access purposes.

• Password. The password is used to ensure that only authorized
users have any access whatsoever to COS.

• Privilege set (or mask). The privilege set defines exactly what
types of access a specific user may have to the various functions
and capabilities of COS.

User profiles (user number, password, allowed privileges) are maintained
in the $ACCT and $VALIDATION system files. Every user must be identified
to the system with an ACCOUNT statement.

A.2 COS SECURITY MANAGEMENT

The COS system manager defines two aspects of the security system:
profiles for all valid users of the system, and the privileges of COS
itself.

SM-0040 A-l C

COS SECURITY MANAGEMENT THE COS SECURITY SYSTEM

A.2.1 DEFINING USER PROFILES

COS user profiles are set up using the ACCTDEF and PRVDEF utilities
described in CRI publication SM-0044, the COS Operational Aids Reference
Manual.

ACCTDEF creates and maintains $ACCT, the database of valid aooount
numbers and passwords.

PRVDEF creates and maintains $VALIDATION, the database of valid user
numbers and passwords. PRVDEF also allows the site to define for each
user which privileges that user is allowed. Each possible privilege is
assigned a privilege flag. These privilege flags are written to
$VALIDATION for later use during user validation (ACCOUNT processing) •

The passwords stored in the user validation dataset are stored in an
encrypted form (when I@CRYPT=l, as described below), thereby requiring
both the validation dataset generator (PRVDEF) and the Control Statement
Processor (CSP) to have some means of encrypting the supplied passwords
before writing them or reading them. Password encryption is actually
performed by STP common routine PWENC.

A.2.2 DEFINING SYSTEM PRIVILEGES

The security level of COS as a whole must be defined by the system
manager. The four defined levels of security are controlled by the
installation parameters I@SLVL and I@CRYPT. Note that in all modes, mere
system access is enforced by ACCOUNT processing. The modes available are:

QUIET. All privilege checks are in place and processed, but any
illegal requests are processed without notification as if there were
no checks being made (I@SLVL is -1).

WARN. All privilege checks are in place and processed, but any
illegal requests are honored. However, the user is warned that an
illegal request has been made, and all security tracking messages are
entered into the system log dataset (I@SLVL is 0).

ABORT. All privilege checks are in place and processed and the user
is aborted if an illegal request is received by COS. All security
tracking messages are entered into the system log dataset (I@SLVL is
+1) •

CRYPT. CRYPT is the same as ABORT mode but with the added feature of
password encryption (I@CRYPT is 1 and I@SLVL is 1) •

SM-0040 A-2 C

THE COS SECURITY SYSTEM SBCURI'lY IMPLBMBlftATION

Since many of the modules residing in the System Directory (SDR) require
privileges which the general user should not be allowed to have, each
program residing in the SDR must have its own set of privileges and
restrictions defined. This is done at utility generation time using
Loader control statement parameters GRANT, SECURE, NOECHO. In fact, some
of the system utilities contain information which should be secured, such
as dataset passwords. In order to prevent the unauthorized user from
seeing this data, these modules should be saved as execute-only
datasets. Some of the modules residing in the SDR should be removed and
saved using passwords; these include JCSDEF, ACCTDEF, and EXTRACT.

A.3 SECURITY IMPLEMENTATION

In order to properly control the operation of the system and its
resources, it will sometimes be necessary to override the security
features described here. This is accomplished by identifying the
privileged requests and functions in COS and restricting use of these to
authorized users. This identification of the user (and the user's
privileges) is accomplished through the ACCOUNT statement. This, then,
means that an ACCOUNT statement is required for the security mechanism
described here to work, since the ACCOUNT program will read the
$VALIDATION dataset to obtain the privilege flags defined for each user
number. These flags can be set or cleared at any time by the site
manager with the PRVDEF utility. When the user is validated at job
initiation, the user's privilege flags are moved into the JTA and
maintained for the duration of the job.

In order to provide further security for passwords, all passwords are
immediately encrypted upon definition, and are forever after stored in
their encrypted form. This prevents problems when listings or dumps
containing passwords are left in a place available to public or prying
eyes. Using I-way encryption methods, it is possible to secure the
passwords even if the encrypted password and the encryption method are
known.

The encryption of passwords presents special problems regarding front
ends and stations. Passing Cray-encrypted read, write, and maintenance
passwords to a station would be meaningless to the front end. For this
reason, passwords (the R, W, and M parameters on the ACCESS, SAVE,
MODIFY, PERMIT, DISPOSE, and ACQUIRE control statements) are defined to
apply only to Cray resident datasets. Any passwords needed on the
front end can be sent in either the text field or station slot area.

System security entails more than just limiting users to privileged
functions to which they are entitled. A means of limiting which users

SM-0040 A-3 C

SECURITY IMPLEMENTATION THE COS SECURITY SYSTEM

are allowed use of the system must also exist. This limitation stems
from factors such as including excessive privileged request violations,
user number/password pairs entered incorrectly an excessive number of
times, or not changing the password often enough to guarantee the
required amount of security. The $VALIDATION dataset contains
information necessary to track user system accesses and violations.
$VALIDATION is updated each time the user enters the system to record
such information as number of system accesses, date and time of last
access, and any other items that the site needs to track. $VALIDATION
also contains information as to whether the user is currently disabled
from accessing the system and, if so, why, when and by whom.

A.3.1 SECURITY MANAGEMENT UTILITIES

The utilities ACCTDEF, PRVDEF, and LDR are used as described in the
previous section to define and manage the security system.

A.3.2 ACCOUNT STATEMENT

The user is introduced to COS through the ACCOUNT statement which
validates the user number/password pair and account number/password
pair. A job is processed only if the user number/password pair and the
account number/password pair (if specified) are valid. ACCOUNT
processing is required to read the privilege words for the user from
$VALIDATION and request that they be moved to the Job Table Area (JTA)
for use throughout the life of the job. At the same time, certain fields
in the dataset are updated. Job/user validation includes the following:

1. Default values are provided for user number and privileges.

2. If either accounting or security is enabled, the ACCOUNT
statement is required and the following steps take place;
otherwise, the user is validated to access the system.

3. Determine the job's user number and password:

SM-0040

a. If the ACCOUNT statement contains a US parameter, it is
used as the user number. If not, the US parameter from the
job statement is checked. If present, it is used as the
user number; if not, the account number is used.

b. If the ACCOUNT statement contains a UPW parameter, it is
used as the user password. If not, the account password is
used.

c. The results from the above steps must be two nonzero values
(that is, there must be a user number/password pair) if
security is enabled (I@SLVL positive) or the "no password

A-4 C

THE COS SECURITY SYSTEM SECURITY IMPLEMENTATION

is necessary" privilege has been defined for the user by
PRVDEF. If either the user number or password is not
available, the job is terminated.

d. The result is stored for the ACCOUNT program.

4. ACCOUNT processing is performed:

a. The ACCOUNT module is loaded from the SDR with SCPRIV
privileges.

b. An F$PRV request is made to set the system dataset
ownership value.

c. The system $VALIDATION dataset is accessed uniquely (for
write permission).

d. The user number entry is located and the user
number/password pair is checked; if invalid, the job is
terminated.

e. The entry is validated to be enabled; if not, the job is
terminated.

f. The entry is checked for violation count exceeded; if so,
the job is terminated.

g. The entry is checked for password expired; if so, the job
is terminated.

h. The user entry is updated to indicate latest logon
date/time and count, and the dataset is released.

i. The user is validated for system access. An F$PRV request
is made to move the privilege words into the JTA and set
the dataset ownership value field to the user number.

5. The account number and password are validated:

a. An F$PRV request is made to set the dataset ownership value
to the system value.

b. The $ACCT dataset is accessed.
c. The account number/password pair is checked; if they do not

agree, the job is terminated.
d. The user is permitted to access the system. The $ACCT

dataset is released.

6. The job is advanced. This resets the dataset ownership value to
the user number.

A.3.3 SYSTEM ACTION REQUESTS

The User Exchange Processor (EXP) processes most of the security checks
since EXP is the task that provides the interface between what the user
wants to do and the rest of the system. The security checking EXP
performs is described in section 8.

SM-0040 A-S C

SECURITY IMPLEMEN'lATION THE COS SECURITY SYSTEM

A.3.4 DATA SECURITY

The COS security mechanism provides data security in several ways.

Password blanking

The Control Statement Processor (CSP) prevents the writing of control
statements to the logfile immediately. CSP waits until the statement is
cracked by GPARM before echoing it. GPARM is responsible for editing the
secure parameters from the control statement. The secure parameters are
identified by the parameter definition list of the parameter to be
secured (the initial output array address word). The secure parameter is
edited out of the control statement buffer before it is written to the
logfile (for example, SAVE, DN=dn, R=ppa88, ID=id. is echoed as
SAVE, DN=dn, R=, ID=id.).

Control statement suppression

One goal of COS security is to allow the user to execute programs in as
secure an environment as possible. One mechanism for proprietary program
security is control statement suppression; other mechanisms (secure
memory and secure datasets) are described later in this section. The
Loader NOECHO directive is used when building a secure absolute program
module to suppress writing the current control statement to the user
logfile. That is, the control statement that invoked the actual loading
into memory for execution is not written to the user logfile by the
loader or by CSP.

Password encryption

Password encryption is described at the beginning of this section. Two
situations exist where password encryption is bypassed:

• A dataset's password is lost. A user with the SCACES privilege
allowed may access a user-saved dataset without passwords which
can then be modified to set new passwords.

• PDSDUMP and PDSLOAD need only use encrypted passwords. PDSDUMP
and PDSLOAD read encrypted passwords directly from the DSC, so
password encryption is redundant for dump and load requests.

SM-0040 A-6 C

THE COS SECURITY SYSTEM SECURITY IMPLEMENTATION

Secure datasets

Secure datasets are released at job step advance with their buffers
cleared. The automatic release can be overridden with an F$DSD request
as described in section 8. Secure modules are created by the Relocatable
Loader when the SECURE parameter is specified. Each dataset created
While a secure module is executing is released at the end of that job
step unless specifically exempted by a F$DSD request.

SM-0040 A-7 C

ADDING A TASK

Adding a task to the System Task Processor (STP) affects many areas of
the system. This section provides a brief guideline for implementing a
task consistent with system conventions.

B.l TASK ID

Each task has a symbolic ID and a numeric ID.
the label of a word containing the numeric ID.
noncontiguous words.

The symbolic task ID is
These IDs may be in

When defining a new task, the programmer assigns a 5-character symbolic
ID to a word (in the form XX~D, where XXX is unique to the task) and
defines an integer (0 to 31) to be stored in the word. Usually, the
integer represents the next available task number.

Example:

Location Result Operand Conunent
1 10 20 35

NEWID CON 0 New task ID wor
(about STPTAB.4

d in STP tables
07)

Each task added to the system should also have a unique UPDATE deck
name. Each task has a separate CAL IDENT, and the name specified on the
IDENT statement should usually match the UPDATE deck name. Any
references to tables or data areas in the STP tables module require an
EXT statement in the task and possibly an ENTRY statement in module
STPTAB. Any data areas used only by the new task that need not be
printed in the AUTODUMP, should be included in the task code; such areas
should not be added to STPTAB.

All modules containing calls to the system error-halt macros (ERRXXX)
require a statement defining ERRORI as external (EXT). All modules
require EXT statements for the intertask communication modules (CMODs)
they use (for example, TSKREQ, PUTREQ, and so on) and for utility
routines (such as CHAIN, MEMAL, and so on).

SM-0040 B-1 C

B

INTEIrrASK COMMUNICATION ADDING A TASK

Module STP requires an EXT statement for the address of the first
instruction to be executed during initialization of the task. This EXT
statement is necessary for the proper creation of the task. An ENTRY
statement is required in the task for the symbol specified in the EXT
statement.

An ENTRY in the module and a matching EXT in STPTAB should also be
provided so that the table in the common data area pointing to the
beginning of each task can be expanded to include the new task. The 1D
word described above must also be defined as an ENTRY, and a
corresponding EXT is required in STP.

Other ENTRY and EXT statements can be required by the addition of a new
task, depending on the needs of the task.

B.2 INTERTASK COMMUNICATION

The task communication subroutines (PUTREQ, GETREQ, and so on) use the
system constant MAXTN (defined in COSTXT) to determine how many tasks
exist. When adding a new task, MAXTN must be incremented to reflect the
number of tasks in the system. Since the tasks number from 0, MAXTN has
the value of the first illegal task number.

Requests and replies are contained in communications modules (CMODs),
obtained from a memory pool. When a new task is added, the size of this
memory pool should be reexamined.

The CMODs are controlled by the communications module chain control
(CMCC). When a new task is added to the system, a CMCC must be created
to accommodate communication from all tasks to the new task.
Additionally, each existing CMCC must be expanded to facilitate
communication between the new task and all previously existing tasks.

The CMCCs are ordered and accessed according to numeric task ID.
Therefore, changes must be properly handled. The CMCCs must be
structured as illustrated in section 3.

The new task and other STP tasks must use the common communication
subroutines (TSKREQ, PUTREQ, GETREQ, PUTREPLY, and GETREPLY) for all
intertask communication. Refer to section 3 for a detailed description
of intertask communication.

SM-0040 B-2 C

ADDING A TASK TASK I/O

B.3 TASK I/O

Tasks should use Task I/O (TIO) for system I/O on blocked datasets.

B.4 TASK SUSPENSION

Code the task so that it has a single suspend point.

B.S TASK CREATION

Insert a Create Task request (CTSK) to EXEC into task 0 (deck STP) so the
new task can be scheduled for execution. Be sure to use the same task ID
for this call that was used in intertask communication.

The CTSK call also generates the task's entry into the System Task Table
(STT), sets the task's priority and execution address, and identifies its
exchange package. The STT is large enough to accommodate 32 tasks.

The interaction of the new task with the rest of STP is governed by the
task priority set on the Create Task call. The higher the task's
priority, the more responsive it is to service requests. The COS task
priorities ensure minimum response time to external interrupts. Task
priorities are generally arranged so those tasks having the least to do
with external interrupts have the lowest priorities. The priority of a
new task should be chosen to be consistent with this convention. High
priority is reflected by a small value in the CTSK priority field.

B.6 TASK EXECUTION

The new task can execute as a result of implicit or explicit calls. If
called implicitly, it is triggered by the expiration of a time event or
by an interrupt on a pseudo channel. For interrupts to be recognized and
correlated with a task, the task must be assigned to the channel through
an ARES, FET, or I/O request of EXEC. ARES assignments are usually made
during task initialization. The FET and I/O assignments currently are
made dynamically by the Station Call Processor (SCP) and Disk Queue
Manager (DQM) tasks. It is unlikely any new task would make FET and I/O
calls, since by doing so they could cause serious conflicts in the
system. Similarly, no new task can make an ARES call unless a new pseudo
channel is added.

SM-0040 B-3 C

MODIFICATION TO FDUMP ADDING A TASK

Task execution is triggered by an explicit call whenever another task
makes an RTSS or RTSK call to EXEC for the task. Such calls should use
the symbolic name of the task.

B.7 MODIFICATION TO FDUMP

The data file used by FDUMP to direct AUTO dumping should be modified to
include the new task so a properly formatted dump can be taken.

SM-0040 B-4 C

GLOSSARY

GLOSSARY

A

Abort - To terminate a program or job when a condition (hardware or
software) exists from which the program or computer cannot recover.

permanently assigned by the
(2) A pattern of characters

Absolute address - (1) An address that is
machine designator to a storage location.
that identifies a unique storage location
Synonymous with machine address.

without further modification.

Absolute block - Loader tables consisting of the image of a program in
memory, which can be saved on a dataset for subsequent reloading and
execution.

Address - (1) An identification, as represented by a name, label, or
number, for a register, location in storage, or any other data source or
destination such as the location of a station in a communication
network. (2) Any part of an instruction that specifies the location of
an operand for the instruction.

Allocate - To reserve an amount of some resource in a computing system
for a specific purpose (usually refers to a data storage medium) •

Alphabetic - A character set including, $, %, @, as well as the 26
uppercase letters A through Z.

Alphanumeric - A character set including all alphabetic characters and
the digits 0 through 9.

Arithmetic operator - Part of an expression that indicates action to be
performed during evaluation of expression; can be symbolic character
representing addition, unary plus, subtraction, unary minus,
multiplication, or division.

Assemble - To prepare an object language program from a symbolic language
program by substituting machine operation codes for symbolic operation
codes and absolute or relocatable addresses for symbolic instructions.

B

Base address - The starting absolute address of the memory field length
assigned to the user's job. This address is maintained in the base
address (BA) register. The base address must be a multiple of 208.

SM-0040 Glossary-l c

C GWSSARY

$BLD - A dataset on which load modules are placed by a compiler or
assembler unless the user designates some other dataset.

Blank common block - A common block into which data cannot be stored at
load time. The first declaration need not be the largest. The blank
common block is allocated after all other blocks have been processed.

Block - (1) A tape block is a collection of characters written or read as
a unit. Blocks are separated by an interblock gap and may be from 1
through 1,048,576 bytes. A tape block and a physical record are
synonymous on magnetic tape. (2) In COS blocked format, a block is a
fixed number of contiguous characters preceded by a block control word as
the first word of the block. The internal block size for COS is 512
words (one sector on disk). In Cray manuals, the terms tape block and
512-word block are consistently used to distinguish between the two uses.

Block control word - A word occurring at the beginning of each block in
the COS blocked format that identifies the sequential position of the
block in the dataset and points forward to the next block control word.

BOT - Beginning of tape; the position of the beginning-of-tape reflective
marker.

BOV - Beginning of volume. See BOT.

BPI - Bits per inch. COS supports the 1600 and 6250 bpi recording
densities.

Buffer - A storage device used to compensate for the difference in rate
of flow of data, or time of occurrence of events, when transmitting data
from one device to another. It is normally a block of memory used by the
system to transmit data from one place to another. Buffers are usually
associated with the I/O system.

Buffer Memory - A memory (composed of 64-bit words) in the I/O Subsystem
common to all I/O Processors.

C

Call - The transfer of control to a specified closed routine.

Card image - A one-to-one representation of the contents of a punched
card, for example, a matrix in which a 1 represents a punch and a 0
represents the absence of a punch. In COS blocked format, each card
image is a record.

SM-0040 Glossary-2 C

GOOS~Y D

Catalog (noun) - A list or table of items with descriptive data, usually
arranged so that a specific kind of information can be readily located.

Channel - A path along which signals can be sent.

Character - A logical unit composed of bits representing alphabetic,
numeric, and special symbols. COS software processes 8-bit characters in
the ASCII character set.

Code - (1) A system of character and rules representing information in a
form understandable by a computer. (2) Translation of a problem into a
computer language.

Common block - A block that can be declared by more than one program
module during a load operation. More than one program module can specify
data for a common block but if a conflict occurs, information from later
programs is loaded over previously loaded information. A program can
declare no common blocks or as many as 125 common blocks. The two types
of common blocks are labeled and blank.

Conditional control statement block - Defines the conditions under which
a group of control statements are to be processed. The statements which
define the block and conditions are: IF, ELSE, ELSEIF, and ENDIF.

Control statement - The format, consisting of a verb and its parameters,
used to control the operating system and access its products. Directives
are used to control products.

Control statement input file - A dataset containing valid control
statements as its first file.

$CS - A primary control statement input file.

D

~ - (I) Information manipulated by or produced by a computer program.
(2) Empirical numerical values and numerical constants used in arithmetic
calculation. Data is considered to be that which is transformed by a
process to produce the evidence of work. Parameters, device input, and
working storage are considered data.

Dataset - A quantity of information maintained on mass storage by COS.
Each dataset is identified by a symbolic name called a dataset name.
Datasets are of two types: temporary and permanent. A temporary dataset
is available only to the job that created it. A permanent dataset is
available to the system and to other jobs and is maintained across system
deadstarts.

SM-0040 Glossary-3 C

E GLOSSARY

Dataset name verb - A verb that is the name of a dataset. See local or
system dataset name verb.

Deadstart - The process by which an inactive machine is brought up to an
operational condition ready to process jobs.

Debug - To detect, locate, and remove mistakes from a routine or
malfunction of a computer. Synonymous with troubleshoot.

Delimiter - A character that separates items in a control statement or a
directive; synonymous with separator.

Density - See tape density.

Device - A piece of equipment that mechanically contains and drives a
recording medium.

Directive - A command used to control a product, such as UPDATE.

Diagnostic - (1) Pertaining to the detection and isolation of a
malfunction or a mistake. (2) A message printed when an assembler or
compiler detects a program error.

Disposition code - A code used in I/O processing to indicate the
disposition to be made of a dataset when its corresponding job is
terminated or the dataset is released.

Dump - (1) To copy the contents of all or part of a storage device,
usually from internal storage, at a given instant of time. (2) The
process of performing (1). (3) The document resulting from (1).

E

End-of-data delimiter - Indicates the end of a dataset. In COS blocked
format, this is a record control word with a 178 in the mode field.

End-of-file delimiter - Indicates the end of a file. (1) In COS blocked
format, this is a record control word with a 168 in the mode field.
(2) On magnetic tape, this is a tapemark.

End-of-record delimiter - Indicates the end of a record. (1) In COS
blocked format, this is a record control word with a 10 8 in the mode
field. (2) In an ASCII punched deck, this is indicated by the end of
each card.

SM-0040 Glossary-4 C

GLOSSARY E

Entry point - A location within a block that can be referenced from
program blocks that do not declare the block. Each entry point has a
unique name associated with it. The loader is given a list of entry
points in a loader table. A block can contain any number of entry points.

An entry point name must be I to 8 characters and cannot contain the
characters blank, asterisk, or slash. Some language processors (for
example, FORTRAN) may produce entry point names under more restricted
formats due to their own requirements.

EOO - End-of-data on tape. The definition of EOO is a function of
whether the tape is labeled or nonlabeled and of the type of operation
being performed (input or output). When reading a labeled tape, EOO is
returned to the user when an EOFI trailer label is encountered. When
reading a nonlabeled tape, EOO is returned when a tapemark is read on the
last volume in the volume list for a particular dataset. When writing a
labeled or nonlabeled tape, EOO processing is initiated by a write EOD,
rewind, close, or release request.

EOF - End-of-file on tape.

EO! - End-of-information; see EOO.

EOR - End-of-record on tape.

EOT - End-of-tape; a status, set only on a write operation indicating
sensing of the end of the tape reflective marker.

EOV - End-of-volume. On output, EOV occurs when end-of-tape (EOT) status
is returned on a write operation. This status occurs when the EOT
reflective marker is sensed by the tape device. For input of a labeled
tape dataset, EOV occurs when an EOVI trailer label is read; for input of
a nonlabeled dataset, EOV is returned when a tapemark is encountered and
the volume list is not exhausted.

Exchange package - A 16-word block of data in memory which is associated
with a particular computer program or memory field. It contains the
basic parameters necessary to provide continuity from one execution
interval for the program to the next.

Expression (JCL parameter expression) - A series of characters grouped
into operands and operators which are computed as one value during
parameter evaluation; should be delimited by parentheses.

External reference - A reference in one program block to an entry point
in a block not declared by that program. Throughout the loading process,
externals are matched to entry points (this is also referred to as
satisfying externals); that is, addresses referencing externals are
supplied with the correct address.

SM-0040 Glossary-5 C

F GLOSSARY

F

File - A collection of records in a dataset. In COS blocked format, a
file is terminated by a record control word with 168 in the mode field.

Filemark - See tapemark.

Foreign label - A special condition that can occur during the label scan
at the beginning of a tape. If a NOT CAPABLE status is returned on a BOV
label scan, TQM declares the tape to be foreign labeled (FRN) which
protects a 7-track tape or a 9-track, 800 bpi tape from being accidently
destroyed.

Formal parameter specifications - Parameters in a procedure definition
which identify the character strings within the procedure body that can
be substituted during the procedure's evaluation.

Front-end processor - A computer connected to a Cray mainframe channel.
The front-end processor supplies data and jobs to the Cray computer and
processes or distributes the output from the jobs. Front-end systems are
also referred to as stations in Cray publications.

G

Generic name - Tape resource requirements are expressed using
installation-defined generic names. COS supports up to 16 generic
names. A generic device name is used to group tape devices according to
some common characteristics. Generic names are defined at system
assembly time. Installations can define additional generic names
according to their needs. Standard COS provides one generic device name:

*TAPE Device capable of 6250 and 1600 bpi

H

HLM - High limit of memory, the highest memory address available to the
user for program and data area.

I

$IN - A dataset containing the job control language statements as well as
the source input and data for compilers and assemblers, unless the user
designates some other dataset (FT05 for example).

SM-0040 Glossary-6 c

GLOSSARY J

In-line procedure - A procedure defined in a control statement file.

Input/Output - (1) Commonly called I/O. To communicate from external
equipment to the computer and vice versa. (2) The data involved in such
a communication. (3) Equipment used to communicate with a computer. (4)
The media carrying the data for input/output.

Integer constant - Specifies an octal value or a decimal value that can
be signed as positive or negative.

Interchange format - One of the two ways in which tape datasets can be
read or written. Each tape block of data corresponds to a single logical
record in COS blocked format. Interchange format is selected by setting
DF=IC when a tape dataset is accessed. As far as I/O routines in the
Cray mainframe are concerned, interchange datasets must be in COS blocked
format because the COS blocked structure (BCWs and RCWs) is used to
describe each tape block read or written. This blocked structure allows
the user to write or read variable-length tape blocks at high speed with
data resolution to the 88-bit byte level of the tape device. The record
control word (RCW) is used to define the tape block length on output and
to describe the block length on input. No BOW or RCW ever appears in the
data written on the tape.

Interblock gaps - The physical separation between successive tape blocks
on magnetic tape.

I/O Subsystem - Part of a CRAY-l S Series Model S/1200 through S/4400,
all models of the CRAY-l M Series and CRAY X-MP Series of Computer
Systems consisting of two to four I/O processors and one-half, one, four,
or eight million words of shared Buffer Memory. The optional tape
subsystem is composed of at least one block multiplexer channel, one tape
controller, and two tape units. The tape units supported are
IBM-compatible 9-track, 200 ips, 1600/6250 bpi devices.

Iterative control statement block - Defines the repeated execution of a
series of statements if a condition is satisfied.

J

JCL block control statement - A statement in the control statement file
that is part of a group of control statements called a block which
specifies an action to be taken by COS; the three types of blocks are:
procedure definition, conditional, and iterative.

SM-0040 Glossary-7 C

K GWS~Y

Jo~ - (1) An arbitrarily defined parcel of work submitted to a computing
system. (2) A collection of tasks submitted to the system and treated by
the system as an entity. A job is presented to the system as a formatted
dataset. with respect to a job, the system is parametrically controlled
by the content of the job dataset.

Job Communication Block - The first 2008 words of the job memory
field. This area is used to hold the current control statement and
certain job-related parameters. The area is accessible to the user, the
operating system, and the loader for inter-phase job communication.

Job control statement - Any of the statements used to direct the
operating system in its functioning, as compared to data, programs, or
other information needed to process a job but not intended directly for
the operating system, itself. A control statement may be expressed in
card, card image, or user terminal keyboard entry medium.

Job deck - The physical representation of a job before processing either
as a deck of cards or as a group of records. The first file of the job
dataset contains the job statements and the job parameters which will be
used to control the job. Following files contain the program and data
which the job will require for the various job control statements. The
job deck is terminated by an end-of-data delimiter.

Job input dataset - A dataset named $IN on which the card images of the
job deck are maintained. This consists of programs and data referenced
by various job steps. The user can manipulate the dataset like any other
dataset (excluding write operations).

Job output dataset - Any of a set of datasets recognized by the system by
a special dataset name (for example, $OUT, $PLOT, and $PUNCH), which
becomes a system permanent dataset at job end and is automatically staged
to a front-end computer for processing.

Job step - A unit of work within a job, such as source language
compilation or object program execution.

K

Keyword parameter - A string of 1 to 8 alphanumeric characters that
consists of a keyword followed by one or more values; identified by its
form rather than by its position in the control statement.

L

$LOG - See logfile.

SM-0040 Glossary-8 C

GLOSSARY

Labeled common - A common block into which data can be stored at load
time.

Library - A dataset composed of sequentially organized records and

L

files. The last file of the library contains a library directory. The
rest of the files and records, known as entries, can consist of processed
procedure definitions and/or relocatable modules. The directory gives a
listing of entry names with their associated characteristics.

Library-defined verb - A 1- to S-character name of a program or procedure
definition residing in a library that is a part of the current library
searchlist.

Limit address - The upper address of a memory field. This address is
maintained in the limit address (LA) register.

Literal - A symbol which names, describes, or defines itself and not
something else that it might represent.

IJiteral constant - A string of 1 through S characters delimited with
apostrophes whose ordinal numbers are in the range 040 S through 176S;
value of a character constant corresponds to the ASCII character codes
positioned within a 64-bit word; alignment indicated can be left- or
right-adjusted and zero-filled or left-adjusted and space-filled;
apostrophes remain as part of value.

Literal string - A string delimited with apostrophes which are normally
not treated as part of the value, except with JCL block control
statements which treat the apostrophes as part of the string value.

Loader tables - The form in which code is presented to the loader.
Loader tables are generated by compilers and assemblers according to
loader requirements. The tables contain information required for loading
such as type of code, names, types and lengths of storage blocks, data to
be stored, etc.

Loading - The placement of instructions and data into memory so that it
is ready for execution. Loader input is obtained from one or more
datasets and/or libraries. Upon completion of loading, execution of the
program in the job's memory field is optionally initiated. Loading may
also involve the performance of load-related services such as generation
of a loader map, presetting of unused memory to a user-specified value,
and generation of overlays.

Load point - See BOT.

Local dataset - A temporary or permanent dataset accessible by the user.

SM-0040 Glossary-9 c

M GLOSSARY

Local dataset name verb - A verb that is the name of a local dataset
consisting of an alphabetic character followed by I through 6
alphanumeric characters. Requests that COS load and execute an absolute
binary program from the first record of the named dataset.

Logfile - During the processing of the job, a special dataset named $LOG
is maintained. At job termination, this dataset is appended to the $OUT
file for the job. The job logfile serves as a time-ordered record of the
activities of the job, that is, all control statements processed by the
job, significant information such as dataset usage, all operator
interactions with a job, and errors detected during processing of the job.

Logical operator - Represents logical function performed on operands on a
bit-by-bit basis, returning a 64-bit result; functions are: inclusive
OR, intersection, exclusive OR, unary complement.

M

Macro instruction - An instruction in a source language that is
equivalent to a specified sequence of machine instructions.

Magnetic tape - A tape with a magnetic surface on which data can be
stored by selective polarization of portions of that surface.

Mainframe - The central processor of the computer system. It contains
the arithmetic unit and special register groups. It does not include
input, output, or peripheral units and usually does not include internal
storage. Synonymous with central processing unit (CPU).

Mass storage - The storage of a large amount of data that is also readily
accessible to the central processing unit of a computer.

Memory field - A portion of memory containing instructions and data
usually defined for a specific job. Field limits are defined by the base
address and the limit address. A program in the memory field cannot
execute outside of the field nor refer to operands outside of the field.

Multiprocessing - Use of several computers to logically or functionally
divide jobs or processors, and to execute various programs or segments
asynchronously and simultaneously.

Multiprogramming - A mode of operation that provides for the sharing of
processor resources among multiple, independent, software processes.
This mode, used by many computing systems, makes most efficient use of a
single CPU. In the multiprogramming mode, when several processes are
ready to run, should one process be delayed by I/O, for example, another
process can immediately be switched in to run on the CPU. In contrast, a
system running in monoprogramming mode has only one process ready to run

SM-0040 Glossary-IO C

GLOSSARY

and any delays will leave the CPU idle. Processor resources could
include more than one CPU, and in a multiprogramming environment, these
multiple CPUs would be shared between multiple, independent software
processes.

Multitasking - A special case of multiprocessing, where more than one
task can be executing in a user job. When multitasking, there is no
guarantee that more than one processor will be allowed to work on the
tasks of a given job, no guarantee that the tasks will execute in any
particular order, and no guarantee of which task will finish first. In
this manual, multitasking refers only to user-level tasks (user tasks
and user library tasks).

N

Nesting - Including a block of statements of one kind into a larger

N

block of statements of the same kind, such as an iterative block within a
larger iterative block.

Not Capable - A tape status indicating the reel currently mounted cannot
be read by the control unit and drive. The Not Capable status would be
returned if an 800 bpi tape were mounted on a device that supported only
1600 and 6250 bpi, for example. Since it is not possible to read a Not
Capable tape to verify label type and contents, COS rejects (unloads) all
tapes that return a Not Capable status.

o

$OUT - A dataset that contains the list output from compilers and
assemblers unless the user designates some other dataset. At job end,
the job logfile is added to the $OUT dataset and the dataset is sent to a
front-end computer.

Operand - A character string in an expression that is operated on during
evaluation; types are integer constant, literal constant, symbolic
variable, and subexpresion.

Operating system - (I) The executive, monitor, utility, and any other
routines necessary for the performance of a computer system. (2) A
resident executive program that automates certain aspects of machine
operation, particularly as they relate to initiating and controlling the
processing of jobs.

Operator - A symbolic representation indicating the action to be
performed in an expression; types are arithmetic, relational, and logical
operators.

SM-0040 Glossary-II C

P GWS~Y

Overlaying - A technique for bringing routines into memory from some
other form of storage during processing so that several routines will
occupy the same storage locations at different times. Overlaying is used
when the total memory requirements for instructions exceeds the available
memory.

P

$PROC - A dataset to which in-line procedure definitions are written.

Parameter - A quantity in a control statement which may be given
different values when the control statement is used for a specific
purpose or process.

Parcel - A 16-bit portion of a word which is addressable for instruction
execution but not for operand references. An instruction occupies one or
two parcels; if it occupies two parcels, they may be in separate words.

Parenthetic string - A string delimited with parentheses instead of
apostrophes; parentheses are treated as part of the string when evaluated
except when preceded by an initial, parameter, equivalence, or
concatenation separator character.

Permanent dataset - A dataset known to the operating system as being
permanent; the dataset survives deadstart.

Positional parameter - A parameter that must appear in a precise position
relative to the separators in the control statement.

Procedure - A named sequence of control statements and/or data that is
saved in a library for processing at a later time when activated by a
call to its name by a calling statement; provides the capability of
replacing values within the procedure with other values.

Procedure definition - The definition of a procedure that is saved in a
library to be called for processing at a later time; if defined in a job
control statement is called an in-line procedure definition.

Program - (1) A sequence of coded instructions that solves a problem.
(2) To plan the procedures for solving a problem. This may involve
analyzing the problem, preparing a flow diagram, providing details,
developing and testing subroutines, allocating storage, specifying I/O
formats, and incorporating a computer run into a complete data processing
system.

Program block - The block within a load module usually containing
executable code. It is automatically declared for each program (though
it may be zero-length). It is local to the module; that is, it can be

SM-0040 Glossary-12 C

GLOSSARY

accessed from other load modules only through use of external symbols.
Data placed in a program block always comes from its own load module.

Program name - Also referred to as IDENT name or deck name, the name
contained in the loader PDT table at the beginning of each load module.

R

Program library - (PL) The base dataset used by the UPDATE utility. This
dataset consists of one or more specially formatted card image de~kB,
each separated by an end-of-file.

R

Record - A group of contiguous words or characters related to each other
by virtue of convention. A record may be fixed or variable length. (1)
In COS blocked format, a record ends with a record control word with
lOS in the mode field. (2) In an ASCII-coded punched deck, each card
is a record. (3) For a listable dataset, each line is a record. (4) For
a binary load dataset, each module is a record.

Relational operator - An operator that indicates the comparison to be
performed between the operands in an expression (-1 for a TRUE result and
o for a FALSE result); types are equal, not equal, less than, greater
than, less than or equal, and greater than or equal.

Relative address - An address defined by its relationship to a base
address (BA) such that the base address has a relative address of o.

Relocatable address - An address presented to the loader in such a form
that it can be loaded anywhere in the memory field. A relocatable
address is defined as being relative to the beginning address of a load
module program block or common block.

Relocatable module - This is the basic program unit produced by a
compiler or assembler. CAL produces a relocatable module from source
statements delineated by IDENT and END. In FORTRAN, the corresponding
beginning statements are PROGRAM, SUBROUTINE, BLOCK DATA, or FUNCTION.
The corresponding end statement is END.

A relocatable module consists of several loader tables that define
blocks, their contents, and address relocation information.

Relocate - In programming, to move a routine from one portion of internal
storage to another and to adjust the necessary address references so that
the routine can be executed in its new location. Instruction addresses
are modified relative to a fixed point or origin. If the instruction is
modified using an address below the reference point, relocation is
negative. If addresses are above the reference point, relocation is
positive. Generally, a program is loaded using positive relocation.

SM-0040 Glossary-13 C

I

S GLOSSARY

S

Sector - A physical area on disk equivalent to 512 64-bit words. In COS
blocked format, a block is also 512 contiguous words with a block control
word as the first word of the block. Therefore, the internal block size
for Cray datasets is equivalent to one disk sector. This is the unit of
data transfer between the Cray mainframe and the I/O Subsystem.

Separator - Synonym for delimiter.

String - A sequence of characters delimited by apostrophes or parentheses
which is to be taken literally as a parameter value; see literal string
and parenthetic string.

Subexpression - An expression that is evaluated so that its result
becomes an operand.

Substitution parameters - Parameters on procedure definition prototype
statement or procedure calling statement which provide replacement values
to be substituted during evaluation for strings flagged within the
procedure body.

Symbolic variable - A string of 1 to 8 alphanumeric characters, beginning
with an alpha character that represents values maintained by COS and/or
the user.

System dataset name verb - A verb that is the name of a system-defined
dataset in the System Directory Table (SDR); consists of an alphabetic
character which can be followed by 1 through 6 alphanumeric characters.

System logfile - A permanent dataset named $SYSTEMLOG.

System task - The tasks comprising the System Task Processor (STP) are
referred to as system tasks. STP is described in section 3. The term
task, as used in this manual, refers to a system task, unless otherwise
noted. Likewise, terms such as intertask also refer to system tasks.

System verb - Requests that COS perform a function; consists of an
alphabetic character which can be followed by 1 through 6 alphanumeric
characters

T

Table - A collection of data, each item being uniquely identified either
by some label or by its relative position.

Tape block - A group of contiguous characters recorded on and read from
magnetic tape as a unit.

SM-0040 Glossary-14 C

I

GLOSSARY T

Tape control unit - A piece of equipment connected to a block multiplexer
channel that provides the capability for controlling the operation of one
or more tape devices. Up to four control units may be combined to drive
a maximum of 16 tape devices. The control units are cross-connected to
all devices. Such a configuration is called a 4x16 (four by sixteen) •
If one control unit were to be connected to three devices, it would be
referred to as a lx3 configuration.

Tape density (bpi) - The number of bits per inch on magnetic tape. COS
supports 6250 bpi and 1600 bpi.

Tape format - The way tape datasets are read or written. In
intepchange fo~at, each tape block of data corresponds to a single
logical record in COS blocked format. In tpansparent fo~at, each tape
block is a fixed multiple of 512 words based on the density of the tape.

Tape volume - A reel of magnetic tape.

Tapemark - A special hardware bit configuration recorded on magnetic
tape. It indicates the boundary between combinations of datasets and
labels. It is sometimes called a filemark.

Task - A software process. It is a unit of computation that can be
scheduled and whose instructions must be processed in sequential order.
See also system task, user task, and user library task.

TDT - Tape Device Table entry. Contains one entry for each device in the
configuration. A TDT entry is used to control the activity associated
with a tape device and contains the 6-word packet through which requests
to the I/O Subsystem are made.

Temporary dataset - A dataset which is not permanent and is available
only to the job that created it.

Time slice - The maximum amount of time during which the CPU can be
assigned to a job without re-evaluation as to which job should have the
CPU next.

Timestamp - A I-word encoding of the date and time. A timestamp is
expressed in units of (nanoseconds/l.024). When used to express a date
and time, a timestamp is the number of timestamp units past the system
base date (1 January 1973) and the date/time to be encoded. (See STPUTIL
subroutines MTTS, TSMT, TSDT, DTTS.)

Transparent format - One of two ways tape datasets are read or written.
Each tape block is a fixed multiple of 512 words. Transparent format is
the default tape dataset format and is designated by setting DF=TR when
accessing a tape dataset. This format produces a fixed-length block
dataset (16384 bytes at 1600 bpi or 32768 bytes at 6250 bpi) that may be

SM-0040 Glossary-IS C

I

u GLOSSARY

a COS blocked or unblocked dataset as far as any I/O routines are
concerned. The tape subsytem merely takes four (1600 bpi) or eight (6250
bpi) sectors and processes them as one physical tape block. When a short
block is read, it is considered to be EOD.

U

unit record device - A device such as a card reader, printer, or card
punch for which each unit of data to be processed is considered a record.

Unload - To remove a tape from ready status by rewinding beyond the load
point. The tape is then no longer under control of the computer.

Unsatisfied external - An external reference for which the loader has not
yet loaded a module containing the matching entry point.

User library task - The entity created by calling TSKSTART (initiate a
task) in the multitasking library. Multitasking in a FORTRAN program is
done as user library tasks. That is, when a FORTRAN program creates
multiple tasks, the tasks created are user library tasks. User library
tasks are created and synchronized by user-program calls to the
multitasking library.

The multitasking library scheduler manages (schedules) user library
tasks. The library scheduler creates, deletes, activates, and
deactivates user tasks as needed; the library scheduler is responsible
for assigning user library tasks to user tasks. within a user job, the
user program only knows about user library tasks; EXEC and STP only know
about user tasks; the multitasking library scheduler forms the interface
between user tasks and user library tasks.

User logfile - A dataset named $LOG created for a job when it is
initiated by the Job Scheduler.

User task - The entity referred to in the F$TASK system action request,
as described in section 8.1. User jobs are generally unaware of user
tasks; user task management requests are usually made by the multitasking
library routines.

v

Verb - The first nonblank field of a control statement; specifies the
action to be taken by COS during control statement evaluation.

Volatile device - A physical storage device that loses the information
stored when power is lost to the device. COS reserves sufficient space
on some nonvolatile device or devices to back up all information on a

SM-0040 Glossary-16 C

GLOSSARY W

volatile device. The Solid-state Storage Device (SSD) is an example of a
volatile device.

Volume ---Aphysical-unit of storage media that can be dismounted from a
storage device, for example, a reel of magnetic tape.

Volume identifier - Up to 6 alphanumeric characters used to identify a
physical reel of tape. On labeled tapes, the volume identifier is
actually recorded on tape in the volume header label. Volume identifier
is synonomous with volume serial number.

VSN - Volume serial number. See volume identifier.

W

Word - A group of bits between boundaries imposed by the computer. Word
size must be considered in the implementation of logical divisions such
as character. The word size of a CRAY-I or CRAY X-MP computer is 64 bits.

SM-0040 Glossary-17 C

INDEX

INDEX

A status bit, 9-31
A130 adapter, see Front-end Driver
Abort

code format, 9-37
request, 9-49

Accept Bad Sector flag, DQM use, 6-14
ACCESS, 8-12

ENTER request, 5-21
function defined, 10-1
processing TQM stepf1ow, 17-29
SDRREC use, 5-32
system dataset request, 8-15
TQM processing, 17-21
tracking attributes, 5-7

Account
control statement security use, A-l, A-4
number security use, A-l

Accounting information request, 8-10
EXEC, 2-14
F$SPM request, 8-18

$ACCT dataset, account processing use, A-I,
A-5

ACCTDEF utility security management use,
A-2, A-4

ACQUIRE dataset request, 8-12
text field allocation, 8-25

Active Permanent Dataset Table, see
Permanent Dataset Table

Active User Table (AUT), 1-10
buffer management use, 4-27
MSG use, 11-6
SCP use, 7-2
Startup use, 5-25

Adapter
clear function FED processor, 2-12
status read FED processor, 2-12

ADJUST
function defined, 10-1
job

irrecoverable, 8-32
rerun, 8-30

AGEME routine, Allocation use, 9-8
AI, see Allocation Index
Allocate request; 9-42 thru 9-45
Allocation

see also Memory allocation
DQM function, 6-1 thru 6-2
index (AI), 6-9
unit, 6-9

Any Packet Table (APT)
packet, 2-67
use by Packet I/O Driver, 2-66

APIIP (Packet I/O Driver routine), 2-68

SM-0040 Index-l

APIOP (Packet I/O Driver routine), 2-68
APML assembler, 1-5
Applications programs, 1-5
APRCV (R0051 routine), 2-52
APT, see Any Packet Table
@ macro format, 17-44
AUDIT

BAT used by, 1-14
control statement suspension, 9-16
utility, 5-21, 10-1

AUT, see Active User Table
Auxiliary I/O Processor (XIOP), 17-1
Await request, 9-45

B register values saved by EXEC, 1-21
B status bit, 9-31
Backup dataset, 5-8, 19-1
BAT, see Binary Audit Table
Batch job entry, 9-1
Begin Code Execution

request, 8-14
Table (BGN), F$BGN use, 8-14

Beginning-of-volume validation, 17-32 thru
17-33, 17-37 thru 17-38
BFMAN routine, 4-30 thru 4-38, 18-10
BGN, see Begin Code Execution Table
Binary Audit Table (BAT), 1-14
BIOP, see Buffer I/O Processor
Block number request, 8-7
Blocked dataset, TIO use, 4-1
Boot

exchange package built, 5-16
new system request, 2-29
parameter file directive, 5-16

Breakpoint, see also Debugging
clear request, 2-35
restrictions, 2-94
scheduling, 2-13, 2-14
set request, 2-34
start system request, 2-30

Buffer
Memory, TQM requires, 17-1
space management examples, 9-24 thru

9-28
Buffer I/O Processor (BIOP)

DQM I/O management, 6-10
TQM requires, 17-1

Buffered I/O, 8-10
Busy flag, 8-11
Error flag, 8-11

BUFMAX variable, 4-33
BUFMIN variable, 4-33

c

C status bit, 9-31
C@CPHCHN defined, 2-7
C@CPLCHN defined, 2-7
C@CPMCHN defined, 2-7
C@CPSCHN defined, 2-7
CAl DXT adjustment parameter, 5-19
CAL assembler, 1-4
CALL, see EXP Call Table
CALLOVL macro, 16-4
Canceled timer event trace entry format,

2-77
CBKPT request, 2-35
CBT, see Channel Buffer Table
CCLR interrupt handler,
CCLRA interrupt handler,
CCLRB interrupt handler,
CCLRC interrupt handler,
CCLRD interrupt handler,
CHAIN routine, 4-25

2-47,
2-47,
2-11,
2-47,
2-11,

2-48
2-48
2-47, 2-48
2-48
2-47, 2-48

Channel Buffer Table (CBT), 1-9, 2-8
CHT relationship, 2-8
Channel, see also Channel Buffer Table

(CBT); Channel Table (CHT); Device
Channel Table (DCT)

assignment, 2-10
call by interchange analysis, 2-2
completion, 2-12
control by FED, 2-42
coupler request processor (R005C),

2-45, 2-47
DQM management, 6-10
"DQM use, 6-1
Disk/SSD Driver interrupt handler

assignment, 2-12
error recovery in FED, 2-60
FED interrupt handler assignment, 2-11
FED use, 2-44
I/O

bound job, 9-3
request, 2-10
Service Processor tables, 2-9

interchange analysis, 2-2
interrupt accounting, 2-3, 2-14
interrupt handler, 2-10
interrupt handlers, 2-47 thru 2-51
layouts example, 2-7 thru 2-8
link to task, 2-8
management, 2-7
master clear FED processor, 2-11
NE calls request processor, 2-16
operation stepflow, 2-43
parameters defined, 2-7
processor, 2-10, see also Interrupt

handler
set to RJ, 2-3
system task assignment, 2-10, 3-2
tables, 2-8, 2-9

Channel Extension Table (CXT), 2-9
use by Packet I/O Driver, 2-67

Channel Table (CRT), 1-9, 2-8
assigned task, 2-9
CBT relationship, 2-8
configuration, 2-8
FED use, 2-44
processor address, 2-10

Checksum (FED routine), 2-48, 2-49

SM-0040 Index-2

CHINTCNT request, 2-39
CHKSUM (FED routine), 2-48, 2-49
CHT, see Channel Table
CII (MCU interrupt handler), 2-5
CIa routines, 4-14 thru 4-21

Mark job irrecoverable, 5-23
$RBLK calls, 4-13
return address saved, 6-3
TQM reply, 17-11, 17-19
user requests, 8-9

Circular I/O routines, see CIa
Class Parameter Table, 1-10
Class Structure Definition Table (CSD) , 1-10

F$INV use, 8-13
J$INVOKE use, 9-57
PDM use, 10-14
SPM use, 14-1

Clear
Adapter function FED processor, 2-12
request, 9-48 thru 9-49
system breakpoint request, 2-35

CLEARIP macro, 2-97
Close dataset request, 8-7, 17-21, 17-24

thru 17-25, 17-35 thru 17-37, 17-41
Cluster deadlock interrupts, 2-6
CMCC, see Communication Module Chain Control
CMOD, see Communications module
CNT, see Configuration Table
Common routines, 4-1 thru 4-38
Common routines breakpoint restriction, 2-94
Communication buffer management, 4-30 thru

4-38
Communication Module Chain Control (CMCC),

1-10, 3-3, B-2
Communications module (CMOD), 1-10, 3-3
Conditional control statement maintenance

request, 8-16
CONFIG

command processing, 17-23
parameter file directive, 5-17
routine TQM use, 17-1

Configuration change at startup, 5-18
Configuration Table (CNT), 1-10, 5-18, 5-25
Connect user task request, 2-24
Continuation flag, 8-25
CONTREPV macro EXP processing, 8-32
Control statement file ($CS)

DSP in JTA, 8-27
rewind request, 8-14

Control Statement Processor, see CSP
Control statement request, 8-8
Control word, System Buffer, 4-32 thru 4-36
Controlled device, 6-8, 6-9
Controller

master clear disk request example, 2-65
DQM management, 6-10

Convert request
date, 8-18
time, 8-18

COPYXP macro, 2-97
COS

available forms, 1-1
components, 1-2
general description, 1-1
memory layout, 1-8

c

COS (continued)
physical residence, 1-1
purpose, 1-2
residence, 1-6
startup, see Startup

CPROC (CIO routine), 4-19, 4-20
CPT, see Class Parameter Table
CPU

connection, 9-13 thru 9-17
request, 2-24
delete request, 9-50
I/O suspend, 9-51
rerun request, 9-50
user roll request, 9-57

disconnect request, 2-26
swapping status changes, 9-34
use report request, 2-36

CPU-bound
job, 9-2
user task, 9-15

CPUTIL request, 2-36
Crash, see Halt system
Crash Flag, F$CRASH use, 8-22
Cray Operating System, see COS
CRAY X-MP

cluster
disconnect task, 2-26
dump request, 2-40
loading, 2-25, 2-26
management, 2-95

I/O caution, 4-17, 4-18
semaphore use, 2-94 thru 2-96
SSD control, 2-62
start second CPU request, 2-21
switch processors request, 2-39

CRAY-l S SSD control, 2-62
CRAY-oS, see COS
CRCIO (CIO routine), 4-2, 4-19, 4-21
Create dataset request, 8-8
Create task, 2-16, B-3
$CS, see Control Statement file
CSD, see Class Structure Definition Table
CSP (Control Statement Processor), 1-3, 20-1

thru 20-10
advance job, 20-5
begin job, 20-4
crack statements, 20-4
disk residence, 1-3
end job, 20-6
execution, 1-13
error exit processing, 20-5
F$BGN request, 8-14
F$CSB request, 8-16 thru 8-17
F$PRV request, 8-20
F$RCS request, 8-14
job

advancement, 1-23
memory management, 9-23

load process, 20-2
memory residence, 1-3
overwrites Z, 5-29
password blanking, A-6
placement, 20-2
process statements, 20-4
purpose, 1-2, 20-1

SM-0040 Index-3

CSP (continued)
recovery status messages, 20-6
requests, 20-2
residence, 1-13
Rolled job recovery, 5-15
stepflow, 20-7 thru 20-10
tables used, 20-1
theory of operation, 20-2

CTRCL (CIO routine), 4-19, 4-20 thru 4-21
CTSK request, 2-16
CXT, see Channel Extension Table
Cylinder select disk request example, 2-65

D status bit, 9-31
OAT, see Dataset Allocation Table
Data segment I/O, 2-11
Data Transmit FED processor, 2-11
Dataset, see also permanent dataset

access request, 8-12
acquire request, 8-12
allocation, 6-9 thru 6-10
attributes, 5-7
buffer pointers, 8-27
characteristics in DNT, 8-27
Deadstart use, 5-4
functions and job rerun, 8-30
job, 9-1

initiation, 9-29
irrecoverable functions, 8-32
memory added, 9-23
Startup use, 5-26
TIO use, 4-5

management by COS, 1-27
management request, 8-9
modify request, 8-8
multi type, 10-1
open request, 8-4
random write irrecoverable, 8-32
release request, 8-8
reservation, 5-13
secure request, 8-20, A-7
sense request, 8-8
spooled, 10-1
synchronize tape request, 8-22
tape position request, 8-18, 8-23

Dataset Allocation Table (DAT) , 1-10, 6-5
thru 6-7

DNT points to, 8-27
DQM use, 6-5 thru 6-6, 6-9
DXT use, 5-20
PDM

input, 10-2
use, 10-14

Startup
use, 5-25
validation, 5-12

structure, 6-7
Dataset Catalog (DSC), 10-15

close request, 8-7
create request, 8-8
DAT for, 1-16, 5-2
Deadstart use, 5-4
DSP for, 10-15
Install option, 5-1, 5-2, 5-3

c

Dataset Catalog (DSC) (continued)
job made permanent, 1-22
job output dataset entry, 1-24
master device, 1-15
multitype datasets, 10-1
permanent dataset attributes, 5-7
recovery, 5-10
Restart use, 5-8
separate DSPS, 5-26
Startup use, 1-17, 5-25

Dataset Catalog Extension (DXT), 5-6, 5-18,
10-15

access, 5-20, 5-21
Allocation Table (XAT), 5-19, 10-17
creation, 5-2
Deadstart use, 5-4
parameter file directive, 5-19, 5-27
Restart use, 5-9
recovery, 5-19, 5-20
size change, 5-19
Startup use, 5-27
validation, 5-19, 5-20

Dataset Catalog Extension Information
Table (DXI), 1-11

Dataset Definition List (DDL), 1-14
EXP use, 8-27
fetch request, 8-18

Dataset Name Table (DNT), 5-13
DQM use, 6-1, 6-6, 6-9
DXT use, 5-20
EXP use, 8-27
I/O request use, 1-30
initialization, 9-30
job initiation, 9-29
PDM input, 10-2, 10-14
request word built, 6-8
SDR use, 5-21
Startup use, 5-25
TIO use, 4-1, 4-5

Dataset Parameter Area (DSP), 1-14, 10-15
Accept Bad Sector flag, 6-14
CSP use, 20-1
DQM use, 6-6, 6-8
I/O request use, 1-30
DNT points to, 8-27
DQM use, 6-9
DXT use, 5-20
EXP use, 8-27
LFT points to, 8-27
maintenance test field, 6-14
MSG use, 11-6
three types, 8-27
'fro use, 4-1

Date request, 8-3, 8-9, 8-18
DCP request, 2-26
DCT, see Device Channel Table
DCU-2 Controller

configuration, 6-10
Disk/SSD Driver Control, 2-62
management, 6-11

DCU-3 controller
Disk/SSD Driver Control, 2-62
management, 6-11

DCU-4 controller
configuration, 6-12
management, 6-11

SM-0040 Index-4

DDC280 interrupt handler, 2-12
DDE140 interrupt handler, 2-12
DDFCTIO interrupt handler, 2-12
DDI (ROll routine), 2-63
DDL, see Dataset Definition List
DDRSP interrupt handler, 2-12
DDTO interrupt handler, 2-12
Deadlock

detection, 2-6
interrupt handler, see DLI
queue (DLKQ), J$DEADLK request use, 9-62
request, 9-62
trace entry format, 2-87

Deadstart
option, 1-22, 5-3 thru 5-8
second CPU request, 2-21
2-pass, 5-8

Deallocate (DQM function), 6-2 thru 6-3
DEBUG, see also History trace

function
numbers maximum value, 2-75
request register designator use, 2-34

last call time, 2-74
single-threaded, 2-96
subroutine called, 2-28
History trace use, 2-73

Debugging, see also Breakpoint
commands, 2-31 thru 2-36
capability, 2-94

DEC (Disk Error Correction system task),
13-1 thru 13-2

Define secure dataset request, 8-20
DEFINOVL macro ODT use, 16-2

entry generation, 1-12
Delay

job request, 8-12
system task request, 2-20

Delete
function defined, 10-1
request, 9-50

TQM processing, 17-21, 17-26
job

irrecoverable, 8-32
rerun, 8-30

*DELFLAW parameter file directive, Startup
use, 5-17

Demand priority, Allocation use, 9-8
Dataset Allocation Table (DAT), 5-2
Device

controlled, 6-9
private, 6-9

Device Channel Table (DCT), 1-11
constructed, 5-18
Disk/SSD Driver use, 2-63
DQM use, 6-6
SPM use, 14-1

Device Label (DVL), 1-16, 5-1, 5-2, 5-4, 5-8
rewritten, 5-9
Startup

search, 5-17
use, 5-26

Device Reservation Table (DRT), 1-11
constructed, 5-18
dataset reservation, 5-13
Deadstart use, 5-4

c

Device Reservation Table (continued)
DQM use, 6-6, 6-9
EFT use, 5-16
FVD use, 19-2
mass storage group use, 5-5
PDM use, 10-15
Restart use, 5-9
Startup use, 5-2, 5-25

Directory, dump, see STP Dump Directory
DISABLE macro, 16-5
Disk, see also Mass storage

controller I/O performed, 2-12
DQM management, 6-10
error

correction, see DEC
job rerun, 8-30
log, 6-13
trace entry format, 2-80

formatting, 1-16
I/O request, 2-22

DQM management, 6-10
examples, 2-64 thru 2-66
initialization routine, 2-63

interrupt lost, 2-64
margin select example, 2-66
Queue Manager, see DQM
stripe group, see Mass storage group
storage unit

DQM use, 6-1
I/O performed, 2-12
logical states, 6-11

Disk/SSD Driver, 2-62 thru 2-66
CBT use, 2-8, 2-9, 2-8
channel assignment, 2-10
interrupt handlers named, 2-10, 2-12
request, 2-22
ROll routine, 2-63, 2-64
tables used, 2-63

Display
exchange package request, 2-33
memory request, 2-31

Dispose dataset request, 8-9
text field allocation, 8-25
wait request, Startup processing, 5-32

DLI (deadlock interrupt handler), 2-6
DLIGNORE, deadlock detection use, 2-6
DMEM request, 2-31
DNT, see Dataset Name Table
DQM (Disk Queue Manager System task), 6-1

thru 6-15
allocation request, 6-1 thru 6-2, 6-9

thru 6-10
calling sequence, 6-1
CIa calls, 4-17
data error recovery, 6-14
deallocation request, 5-14, 6-2 thru 6-3
DEC called, 13-1
disk error logging, 6-13 thru 6-14
Disk/SSD Driver called, 2-64
DNT passes parameters, 8-27
FVD calls, 19-2
I/O request flow, 6-12
maintenance test feature, 6-14
non-CIa communication, 1-30

SM-0040 Index-5

DQM (continued)
overlay management, 16-1
packet forwarded, 2-69
queue I/O request, 6-3 thru 6-4
queue management, 6-11
read overlay, 16-4
resource management, 6-10
return status, 6-4
streaming, 6-11
tables used, 6-4 thru 6-8
TIO acknowledgement, 4-2

DROP command responsiveness, 9-3
DRT, see Device Reservation Table
DSC, see Dataset Catalog
DSP, see Dataset Parameter Area
Dump

cluster registers request, 2-40
Deadstart use, 5-4
Directory, see STP Dump Directory
job area request, 8-14
Restart use, 5-8
space reserved, 5-2

$DUMP dataset creation, 8-24
DUMPCL request, 2-40
DUMPJOB control statement processing, 8-24
DVL, see Device Label
DXPR request, 2-33
DXT Allocation Table (XAT) 5-19, 10-17
DXT, see Dataset Catalog Extension Table
*DXT parameter file directive, 5-19, 5-27
Dynamic allocation, DQM, 6-9

E status bit, 9-31
ECALLCNT request, 2-38
ECHO status request, 8-17
ECT, see Error Code Table
EE (error interrupt handler), 2-5
EFT, see Engineeing Flaw Table
ELSE control statement F$CSB request, 8-17
ELSEIF control statement F$CSB request, 8-17
EMEM request, 2-32
ENA

see also Interchange analysis
interrupt handler, 2-12, 2-53

Encryption, password, 4-29, 8-20, A-3, A-6
Encryption Parameter Table (ETT)

F$ENC use, 8-21
PWENC use, 4-29

ENDIF control statement, F$CSB request, 8-16
ENDLOOP control statement, F$ISB use, 8-17
ENDRPV, EXP processing, 8-31
Engineering Flaw Table (EFT), 1-16, 5-16

Deadstart use, 5-4
Install option, 5-1
Restart use, 5-8
Startup use, 5-27

ENQMSG, 4-28
Enter

CL command JCM processing, 15-4
exchange package register request, 2-33
memory request, 2-32
System Directory request, 5-21

EP, see Execution Profile Table

c

Equipment Table (EQT), 1-11, 10-16
configuration change, 5-18
DEC use, 13-1 thru 13-2
device label search, 5-17
Disk/SSD Driver use, 2-63
DQM use, 6-8, 6-9
error log, 6-13
FVD use, 19-2
mass storage group use, 5-5
Startup use, 5-27

ERDEF macro, 1-11
ERPV routine, 8-31
Error

Code Table, 1-11
codes, EXEC, 2-41
exit

interrupt handled, 2-5
trace entry format, 2-80
user, 8-23

interrupt handler, see EE
link I/O, 2-11, 2-12
recovery by FED, 2-42
recovery Disk/SSD Driver, 2-64
return, EXEC, 2-16
TIO, 4-5

ERxxx codes, 2-4, 6-14, 16-4
ETT, see Encryption Parameter Table
Event

wait request, 9-45 thru 9-46
trace entry format, 2-77

Exchange mechanism, 1-17
Exchange Package, 1-18

boot, 5-16
CONTREPV use, 8-32
copied to TCB, 2-27
display request, 2-33
flags

cleared, 2-3 thru 2-6
examined, 2-3

initial X-MP, 2-21
management, 1-18
mode request, 8-8
new limit address, 2-28
register entry request, 2-33
reprieve, 8-14, 8-31
task creation, 2-17, 8-21

Exchange Processor, see EXP
Exchange trace entry, 2-76 thru 2-77
EXEC, 2-1 thru 2-99

breakpoint restriction, 2-94
communication

STP, 1-11
System Log, 12-1
task, 3-2 through 3-3

constant area, 1-7
data area, 1-7
debug aids, 2-73
error

codes, 2-41
return, 2-16

exchange trace entry, 2-76 thru 2-77
EXP readied if TCEP nonzero, 8-25
history trace, see History trace entry
I/O Subsystem driver interface, 6-8,

17-2

SM-0040 Index-6

EXEC (continued)
interprocessor communication, 2-96
JSH A-bit ready, 8-25
macros, 2-97
memory error

detection, 2-73
message format, 12-1

overview, 2-1
packet queueing, 2-66
program area, 1-10
purpose, 1-2
readies DQM, 6-1
request counts report, 2-37
Request Processor, 2-5, 2-16
requests, 2-16 thru 2-41
resource accounting, 2-14
SPM readied, 14-1
Startup residence, 5-1
user

error exchange, 8-23
exit flags set, 8-24

Execution profile
request, 8-18
Table (EP), F$SPY use, 8-18

Execution time, accounting use, 2-14
Executive, see EXEC
EXIT control statement search, 8-24
EXITLOOP control statement F$ISB use, 8-17
EXP (Exchange Processor system task), 8-1

thru 8-32
Call Table (CALL), 8-26
ACCESS, ENTER request, 5-21
CIO, 4-17
continuation address, 8-24
CSP copied, 20-2
index request, 9-53
J$SINGLE request, 8-2
job

irrecoverable, 8-32
rerun, 8-29 thru 8-31
termination memory management, 9-22

JSH
request, 8-25
request flag, 8-25
sets abort code, 9-49

NE schedules, 2-5
overview, 8-1
PDM called, 10-18
reprieve processing, 8-31 thru 8-32
request word, 8-24
rewrite SDT function, 10-2
SDT rewrite processing, 10-9
security checks, A-5
SPM readied, 14-1
tables used, 8-25

system, 8-25
user, 8-27

TCEP nonzero ready, 8-25
TIO, 4-1
TQM requests, 17-21, 17-24 thru 17-25
user

communication, 3-8
error exit, 8-24
task requests, 8-2 thru 8-23, 9-60

thru 9-61

c

Expired time event, 2-2
Expired time event interrupt handler, see

TEl
EXPR request, 2-33
EXTRACT utility

disk error log, 6-13
System Log format, 11-8 thru 11-13

F status bit, 9-31
F$ABT request, 1-23, 8-3, 8-31
F$ACT request, 8-10
F$ADV request, 1-23, 8-3, 8-31
F$AQR request, 8-12, 8-29
F$ASD request, 8-15
F$BGN request, 8-14
F$BIO request, 8-10
F$CLS request, 8-7, 17-24 thru 17-25
F$CRASH request, 8-22
F$CSB request, 8-16
F$CSW request, 8-10
F$DAT request, 8-3
F$DIS request, 8-9, 8-29
F$DJA request, 8-14, 8-27
F$DLY request, 8-12
F$DNT request, 8-8, 8-27
F$DSD request, 8-20, A-7
F$DTT request, 8-18
F$EKO request, 8-17
F$ENC request, 8-20
F$EXU request, 8-27
F$FCH request, 8-18
F$GNS request, 8-8
F$GRN request, 8-9
F$INS request, 8-15
F$INV request, 8-13
F$IOA request, 8-13
F$ISB request, 8-17
F$JDA request, 8-9
F$JTI request, 8-10
F$LBN request, 8-7
F$LFT request, 8-13
F$LIB request, 8-15
F$MDE request, 8-8
F$Mrul request, 8-6
F$MEMORY request, 8-19, 9-21
F$MSG request, 8-3
F$MTT request, 8-18
F$NRN request, 8-12, 8-30
F$OPN request, 8-4, 8-28
F$OPT request, 8-9, 8-17, 8-29, 9-16
F$PDM request, 8-9, 17-26
F$POS request, 8-18, 8-28
F$PRC request, 8-14
F$PRV request, 8-20, 8-29, A-S
F$RCL request, 8-4, 8-11, 8-28
F$RCS request, 8-14
F$RDC request, 8-9, 17-23 thru 17-24
F$RLS request, 8-8, 8-28
F$RPV request, 8-14, 8-31
F$RRN request, 8-12, 8-30
F$RTN request, 8-14
F$SPM request, 8-18
F$SPS request, 8-10
F$SPY request, 8-18

SM-0040 Index-7

F$SSW request, 8-4
F$SYM request, 8-16
F$SYNCH request, 8-22
F$TASK request, 1-26, 8-21 thru 8-22
F$TBL request, 8-23
F$TDT request, 8-18
F$TIM request, 8-3
F$TMT request, 8-18
F$TPOS request, 8-23
F$TRM request, 8-4, 20-4, 20-6
F$TSW request, 8-10
F$UROLL request, 8-15
F$WDC request, 8-9, 17-23 thru 17-24
FALLTHRU macro, 2-99
FDUMP utility, B-4
FED, see Front-end Driver
FET request, 2-19
Fetch dataset request, 8-18

text field allocation, 8-25
Field length management examples, 9-24 thru

9-28
FIQ, see Free Input Queue Table
Flaw information, 1-16, 5-16

Deadstart use, 5-4
Install option, 5-1
Restart use, 5-8

*FLAW parameter file directive, 5-17
Floating-point error

in user job, 8-23
interrupt handled, 2-5

Flush Volatile Device, see FVD
FNDLX (R005 routine), 2-45, 2-46
FOLD (FED routine), 2-48, 2-49
FOQ, see Free Output Queue Table
Force job into memory request, 9-58
Formatting, disk, 1-16
FORTRAN

compiler, 1-4
I/O routines call CIO, 4-17

Free Input Queue Table (FIQ), 2-67
FREEMSG routine, 4-29, 7-1
Front end, see also Front-end Driver

I/O LIT assignment, 2-9
job entry, 9-1
LCP trace entry format, 2-78, 2-80, 2-81
protocol, FED use, 2-42
SCBs trace entry format, 2-81
segment trace entry format, 2-80
servicing request processing, 17-22
stations error recovery in FED, 2-60
system definition, 1-1
output stepflow, 2-43

Front-end Driver (FED), 2-19, 2-42 thru 2-62
see also Front end
channel assignment, 2-10
CHT assignment, 2-9
error recovery, 2-60 thru 2-62
interrupt handler, 2-10, 2-11
LIT assignment, 2-9
processor assigned to channel, 2-12
processors named, 2-45
ROOS request dispatcher, 2-45
ROOSC (IFC interface), 2-11, 2-61
ROOSI (I/O Subsystem), 2-61
R005N (NSC HYPERchannel interface),

2-11, 2-12, 2-61

c

Front end (continued)
SCP readied, 7-1
tables used, 2-44

FVD (Flush Volatile Device system task) ,
19-1 thru 19-3

request format, 19-1 thru 19-2
Startup use, 19-3
stepflow, 19-2 thru 19-3
tables used, 19-2

G status bit, 9-31
Generic Resource Table (GRT), 1-11

DQM use, 6-8, 6-9
recovered from JTA, 5-15
Startup use, 5-27

Generic resources job initiation, 9-4
Get next control statement request, 8-8
Get system revision numbers request, 8-9
GETLX (R005 routine), 2-46
GETPW macro, 2-97, 2-98
GETREPLY routine, 3-3, 3-6, 4-2
GETREQ routine, 3-3, 3-5, 17-22
GETSRO macro, 2-98
Global allocation counts, DQM maintains, 6-9
GOTOOVL macro, 16-5
GPARM routine password blanking, A-6
GRT, see Generic Resource Table

H status bit, 9-31
Halt system

deadlock interrupt, 2-6
F$CRASH request, 8-22
memory error, 2-69, 2-5
message buffer, 2-89 thru 2-93
new task use, B-1
shutdown request, 9-55
stop all jobs request, 9-54
user roll request, 9-57

Handler, see Interrupt handler
Hardware error, 6-13, 8-23
High-speed Channel Controller (HSC) SSD

control, 2-62
HIGHCPUN, deadstart CPU use, 2-22
History Function Table (XFT), 2-73
History trace entry, see also XTT

call format, 2-75
FED, 2-49, 2-50, 2-51
format, 2-75 thru 2-89
function number, 2-27
interrupt handlers, 2-3, 2-5
ready task, 2-17, 2-24
request, 2-27

History Trace Table (XTT), 2-73, see also
History trace entry

HYPERchannel
adapter, see also Front-end Driver
request processor (R005N), 2-45, 2-52
trace entry, 2-75

I status bit, 9-31
I$FWS macro, 2-98

SM-0040 Index-8

I/O, 1-28, 1-29
area lock/unlock request, 8-13
buffer management, 4-17
channel, see channel
circular, see CIO
disk error job rerun, 8-30
DSP, 8-27
in progress, 2-10
interrupt

handler, see 101
trace entry, 2-75

job irrecoverable functions, 8-32
memory error, 2-69
recall request, 8-4, 8-11
request, 2-22

buffered, 8-10
channel assignment, 2-10
DQM readied, 6-1
trace entry format, 2-78

streaming, 4-17, 6-10, 6-11
suspension clear, 9-48
status change, 9-34
suspend, 9-51

I/O-bound
job, 9-2
user task, 9-15

I/O Subsystem (lOS), see also MIOPi Packet
I/O Driver

channel assignment, 2-10
configuration, 12-1
Down

flag, 2-29
packet, 2-69

DQM use, 6-1, 6-10
driver, 2-28

FED request, 2-19
interface, 6-8
TQM, 17-2, 17-3

error
message, 12-2 thru 12-3
processing, 2-61

FED I/O, 2-42
Input Ready flag, 2-29
interrupt processors, 2-12
MIOP message from FED, 2-19
Packet I/O Driver, 2-66 thru 2-69
Packet queueing, 2-66
read reply, 17-38 thru 17-39
Reset flag, 2-29
request processor (R005C), 2-45, 2-51
restart, 2-52, 5-8
return status, 17-5
shutdown, 2-52
software, 1-2
space reserved, 5-2
Startup

processing, 1-2, 5-7
software residence, 5-1

statistics return packet, 2-69
System Log communication, 12-1
TQM

interface, 17-2
reply types, 17-4 thru 17-5
use, 17-1

up packet processing, 2-69
write reply, 17-33 thru 17-34

c

I@BFDECR parameter, 4-30
I@BFINCR parameter, 4-30
I@BFSIZ parameter, initial memory

allocation, 9-18
I@CRYPT parameter, security use, A-2
I@DI-1PSIZ parameter, Install use, 5-3
I@DNBFZ parameter, 4-17
I@DVLRES parameter, device label location,

5-26
I@DXTCAI parameter, DXT adjustment, 5-19
I@DXTOVF parameter, DXT adjustment, 5-19
I@EXPANS parameter, 9-9, 9-18
I@ICSr-1AX parameter, J$INVOKE use, 9-56
I@IOPCOS parameter, Install use, 5-3
I@IOPIOP parameter, Install use, 5-3
I@IOPPRM parameter, Install use, 5-3
I@JCSMAX parameter, J$INVOKE use, 9-56
I@JFLMAX parameter

J$ALLOC use, 9-44
memory priority use, 9-6
thrash lock use, 9-7

I@JOBMIN parameter, 9-9, 9-18
I@JSCOS parameter, CPU disconnection, 9-14
I@JSITS parameter

CPU connection, 9-14
example, 9-17

I@JSLKl in-memory thrash lock aging, 9-7,
9-8, 9-13

I@JSLK2 thrash lock, 9-7, 9-11
I@JSLK3 thrash lock, 9-7
I@JSMPA memory priority parameter, 9-6
I@JSMPB memory priority parameter, 9-6, 9-11
I@JSMPC memory priority parameter, 9-6
I@JSMPD memory priority parameter, 9-6, 9-12
I@JSTSO CPU connection parameter, 9-14
I@JSTSl CPU connection parameter, 9-14
I@JSTS2 CPU connection parameter, 9-14
I@JSTS3 CPU connection parameter, 9-14
I@JXTSIZ parameter, JSH use, 9-4
I@LGDSZ $SYSTEMLOG size, 11-1
I@LGUSZ $LOG size limit, 11-4
I@LOCK parameter, Startup use, 5-15
I@MAXME logged error limit, 12-1
I@MAXPAD parameter, J$ALLOC use, 9-24
I@MEM parameter, Startup use, 5-30
I@MEUCT parameter, memory error halt use,

2-69
I@MINPAD parameter, J$ALLOC use, 9-23
I@ODTSZ overlay management parameter, 16-1
I@OLL parameter, OLL use, 16-3
I@SCALLS overlay management parameter, 16-1
I@SLVL parameter, security use, A-2
I@SPMDLY parameter, SPM use, 14-2
I@SPMMIN parameter, SPM use, 14-2
I@SPMON parameter, SPM use, 14-2
I@SPMTYP parameter, SPM use, 14-2
I@SYSBUF parameter, 4-30
I@USRSPM parameter

F$SPM use, 8-18
SPM use, 14-3

IBT, see Interactive Buffer Table
IC, see Interrupt Count Table
ID, user task, 8-21 thru 8-22
Idle task, 2-73

detects memory error, 2-69
error detection mode, 2-22

SM-0040 Index-9

Idle task (continued)
exchange packages, 1-21
scheduling, 2-14
trace entry, 2-76

IF control statement F$CSB request, 8-17
IHT, see Interrupt Handler Table
Index request, 9-53
Initialize request, 9-41 thru 9-42
Input dataset job entry, 9-1
Install option, 1-21, 5-1, 5-3

device label writing, 1-16
DXT errors require, 5-19
$ROLL initialized, 5-22

Installation function request, 8-15
Interactive

buffer management, 4-27 thru 4-29
Buffer Table (IBT), 1-11

buffer management use, 4-27
SCP use, 7-2

job entry, 9-1
user task example, 9-17

Interchange
analysis, 2-1, 2-2
disk timeout protection, 2-64

Interprocessor
communication, 2-95 thru 2-96
interrupt

deadstart CPU, 2-21
handler, see IPI
I/O polling, 2-94
trace entry format, 2-86

message
I/O polling, 2-94
interchange analysis use, 2-2
processor switching, 2-40

Interprocessor Request Table (IPRQ)
access control, 2-95
interchange analysis use, 2-2
message use, 2-96

Interrupt
accounting, 2-14
categories, 2-10
count report, 2-39
Count Table (IC), 2-14, 14-1
flags set at task creation, 2-17
handler, see also Channel processor;

CII (MCU interrupt handler); DLI
(deadlock interrupt handler); EE
(error interrupt handler)iIOI (I/O
interrupt handler); IPI
(interprocessor interrupt handler); ME
(memory error interrupt handler); NE
(normal exit interrupt handler); PCI
(Programmable Clock interrupt
handler); TEl (expired time event
interrupt handler)
address in CHT, 2-8, 2-44
assigned, 2-12
categories, 2-10
channel processor, 2-10
Disk/SSD processors named, 2-12
FED processors named
Front-end Driver, 2-11, 2-47 thru

2-51, 2-53 thru 2-60
I/O Subsystem, 2-12

c

interchange analysis call, 2-3
overview, 2-3
Packet I/O Driver, 2-68

lost disk, 2-64
PCI trace entry format, 2-78
pending analysis, 2-2
processing overview, 2-1
system task, 3-2

Intertask
communication, 2-23, 3-1, 3-2 thru 3-9,

B-2
message, 2-18, 2-23, 2-80, 2-88 thru

2-89
Invoke

job class structure request, 8-13, 9-56
thru 9-57

pending status bit, 9-31
procedure dataset request, 8-14

101 (I/O interrupt handler), 2-2, 2-3
lOS, see I/O Subsystem
IPCPU routine, 2-96
IPI (Interprocessor interrupt handler), 2-6
IPREQST routine, 2-2, 2-96
IPRQ, see Interprocessor Request Table
Irrecoverable job, 8-32
ITERM (R005 routine), 2-46, 2-47

J$ABORT request, 9-37, 9-49
J$ACT request, 9-60 thru 9-61
J$ALLOC request, 9-22, 9-23, 9-35 thru 9-36
J$AWAIT request, 9-35 thru 9-36, 9-45 thru

9-46
J$CHANGP request, 9-57 thru 9-58
J$CLEAR request, 9-48 thru 9-49
J$DEACT request, 9-61
J$DEADLK request, 9-62
J$DELAY request, 9-35 thru 9-36, 9-46 thru

9-47
J$DELETE request, 9-1, 9-50
J$GETM request, 9-22, 9-59
J$INDEX request, 9-53
J$INVOKE request, 8-13, 9-56 thru 9-57
J$IODONE request, 9-51
J$IOSUSP request, 9-51
J$RCVR request, 9-47, 9-54 thru 9-55
J$READY request, 9-58, 17-35, 17-36
J$REMK request, 9-55 thru 9-56
J$RERUN request, 9-49 thru 9-50
J$RESUME request, 9-52

example, 9-17
J$DELAY use, 9-47
suspend request use, 9-48

J$RETM request, 9-22, 9-59 thru 9-60
J$SHTDWN request, 9-55

J$RCVR request use, 9-55
J$START request use, 9-52
J$STRALL request use, 9-53

J$SINGLE request, 9-61 thru 9-62
J$START request, 9-47, 9-52 thru 9-53
J$STOP request, 9-48

J$START request use, 9-52
J$STRALL request use, 9-53

J$STPALL request, 9-54
J$START request use, 9-52
J$STRALL request use, 9-53

SM-0040

J$STRALL request, 9-47, 9-53 thru 9-54
J$SUSP request, 9-47 thru 9-48, 9-52
J$SUSPK request, 9-47 thru 9-48

example, 9-16
J$RESUME request use, 9-52

J$TINIT request, 9-60
J$UROLL request, 9-37, 9-57
JAC, see Job Accounting Table
J ADDFLAG flag

JXT allocation, 9-4
nonzero, 9-5

JALLFLAG (memory allocation flag), 9-7,
9-9, 9-15

JCB, see Job Communication Block
JCHLM examples, 9-24 thru 9-28
JCL Block Information Table (JBI), 8-16,

8-17
JCL symbol manipulation request, 8-16
JCL Symbol Table (JST), F$SYM use, 8-16
JCLFT examples, 9-24 thru 9-28
JCM (Job Class Manager system task), 15-1

thru 15-5
see also Job class; job class structure
assign request, 15-4
class assignment job card parameters in

SDT, 9-4
classify request, 15-3 thru 15-4
creation, 5-29
description, 15-1
F$INV request, 8-13
fixclass request, 15-5
functions, 15-3
Job class assignment, 15-1
reclassify request, 15-4
request format, 15-2 thru 15-3
STG calls, 18-1

Job, 1-1

Index-IO

see also JSH; User; User task
abort request, 9-49
accounting request, 8-10
advancement, 1-23
batch entry, 9-1
class, see also JCM

assignment, 9-4, 15-1
invoke pending status bit, 9-31
manager, see JCM

class structure
Deadstart use, 5-7
initialized, 5-2
invoke request, 8-13, 9-56 thru 9-57
recovery, 5-10

clear suspension request, 9-48 thru 9-49
connected, 1-21
consists of, 1-2
Control Language, see JCL
control statement error, 15-1
delay request, 8-12
delete request, 9-50
disconnected, 1-21
dump request, 8-14
DXT access, 5-21
error exit, 8-23
executing entry deleted, 1-24
flow, 1-22
initiation, 1-22, 9-4, 9-28 thru 9-29,

20-3

c

Job (continued)
input dataset, 1-24, 1-28
Irrecoverable flag, RRJ use, 5-23
irrecoverable, 8-9, 8-11, 8-32, 9-53
memory

allocation, 9-5
areas, 9-22
layout at initiation, 1-7
management, 9-21 thru 9-28
management examples, 9-24 thru 9-28
request, 9-22

options change request, 8-17
output datasets, 1-24
pad memory, 9-21
priority, 1-23, 9-3, 9-6
queue movement, 1-23
recovery, see Recover Rolled Jobs

routine
resource deallocation, 5-14
Restart, 5-10 thru 5-15

Request flag, 8-25
rerun, 5-11, 8-29 thru 8-31

disable request, 8-12
enable request, 8-12
message, 8-31
request, 9-49 thru 9-50

rerunnable, 8-9, 8-12
responsiveness, 9-3
roll

request, 8-15, 9-57
time, 9-5

Scheduler, see JSH
size, 9-6
state transitions, 9-33
status, 9-29 thru 9-36

bit assignments, 9-31 thru 9-32
bits set by Startup, 5-15
change sequences, 9-32 thru 9-36
change trace entry format, 2-82

step
abort request, 8-3
aborted, 8-24
advance request, 8-3, 8-21

suspend request, 8-10, 9-45 thru 9-48
system action request, 8-2
task time request, 8-10
termination, 1-23, 1-24, 8-4, 8-31,

9-22, 9-42
time

request, 8-10
slice, 9-3

user task relationship, 1-26
Job Accounting Table, 1-14, 8-10
Job Communication Block (JCB), 1-14, 10-16

CSP use, 20-1
EXP use, 8-28
job initiation, 9-29
validation, 8-2

Job Execution Table (JXT), 1-11, 10-16
allocation, 9-3 thru 9-5
DQM use, 6-8
EXP use, 8-26
F$INV pending, 8-13

SM-0040

Job Execution Table (yontinued)
job

JSH

initiation, 9-28 thru 9-29
recovery use, 5-15
termination, 1-24

allocation, 9-2
use, 1-23

limit (JXTMAX) set to 0, 9-55
MSG use, 11-7
$ROLL use, 5-22
Roll dataset validation, 5-12
start all jobs, 9-54
Startup use, 5-27
status, 9-29 thru 9-36

bit assignments, 9-31 thru 9-32
change sequences, 9-32 thru 9-36

Job Table Area (JTA), 1-14, 10-16
dataset reservation, 5-13
DQM use, 6-8
dumped, 8-14, 8-24
EXP

request word, 8-24
use, 8-25

job initiation, 9-28 thru 9-29
LFT management request, 8-13
memory

added, 9-23
management, 9-21

MSG use, 11-6
PDM input, 10-2
Startup use, 5-27
XP in, 1-21

JOBCOUNT defined, 9-9
JROLLCTL flag defined, 9-9
JSALLCPR defined, 9-9
JSALLCSZ defined, 9-9
JSALLLIM defined, 9-10
JSALLMTD defined, 9-10
JSALLORD defined, 9-9
JSALLPEN defined, 9-9
JSALLSMD defined, 9-10
JSALLSUB defined, 9-10
JSAMGOAL defined, 9-9
JSH (Job Scheduler system task), 9-1 thru

Index-ll

9-62
see also Job
A-bit ready, 8-25
abort request, 9-49
Allocate request, 9-42 thru 9-45
await request, 9-45
calling sequence, 9-38 thru 9-39
clear request, 9-48 thru 9-49
cluster register management, 2-95
CPU

allocation, 9-2
connection, 9-13 thru 9-17
switching, 2-96

creation, 5-29, 9-36 thru 9-62
CSP copied, 20-2
Delay request, 9-46 thru 9-47
delete request, 9-50
design philosophy, 9-2 thru 9-3
disconnect task, 2-26
EXP request, 8-24, 8-25

c

JSH (continued)
F$INV request, 8-13
force job into memory request, 9-58
functions, 9-39 thru 9-41
get memory request, 9-59
I/O-resume request, 9-51
I/O-suspend request, 9-51
index request, 9-53
initialization, 9-18
Initialize request, 9-41 thru 9-42
input register format, 9-37
interface, 9-36 thru 9-62
invoke request, 9-56 thru 9-57
J$ALLOC request processing, 9-23
J$SINGLE request from EXP, 8-2
job

initiation, 9-28 thru 9-29
irrecoverable, 8-32
rerun, 8-29 thru 8-31
status, 9-29 thru 9-36
termination memory management, 9-22

JXT allocation, 9-3 thru 9-5
maintains $ROLL
MEMMAX change, 18-10
memory

allocation, 9-2, 9-5
allocation examples, 9-10 thru 9-13
allocation tables used, 9-7
allocation, who gets it, 9-18
compaction, 9-20
expansion space, 9-18
management, 9-17
management examples, 9-18 thru 9-21,

9-24 thru 9-28
management, job, 9-21 thru 9-28
management, user, 9-17
pad, 9-21
priority, 9-5 thru 9-6
priority updated, 9-14
priority variation, 9-10 thru 9-13
request queue, 9-5

output register format, 9-37 thru 9-38
overview, 9-1
pad, 9-21
priority change request, 9-57 thru 9-58
processor switching, 2-40
ready by SCP, 1-22
recover request, 9-54 thru 9-55
remove K request, 9-55 thru 9-56
reply timing, 9-36
rerun request, 9-49 thru 9-50
responsibilities, 9-1
resume request, 9-52
return memory request, 9-59 thru 9-60
roll time, 9-5
scans SDT, 1-22
shutdown request, 9-55
start request, 9-52 thru 9-54
status

bit assignments, 9-31 thru 9-32
change sequences, 9-32 thru 9-36

stop request, 9-48, 9-54
suspend request, 9-47 thru 9-48
suspended job priority, 9-6
System Buffer allocation, 4-30

SM-0040

JSH (continued)
task created, 5-10
time slice, 9-3, 9-14
TQM maintains counts for, 17-1
trace entry formats, 2-82 thru 2-86
tunability, 9-3
user roll request, 9-57
user task

activate request, 9-60
deactivate request, 9-61
deadlock request, 9-62
initialize request, 9-60
single-thread request, 9-61

JSQZREQS flag
allocation use, 9-7
defined, 9-9

JSYSDIR job use, 5-21
JTA, see Job Table Area
Julian date request, 8-9
JXFMP, memory priority, 9-5 thru 9-6
JXSTAT status bits

assignments, 9-31 thru 9-32
change sequences, 9-32 thru 9-36
defined, 9-29

JXT, see Job Execution Table
JXTMAX variable, 9-4, 9-54, 9-55

K status bit, 9-31
KILL command responsiveness, 9-3

L status bit, 9-31
Label Definition Table (LDT), 17-3
Language systems available, 1-3
LCP, see Link Control Package
LCT, see Link Configuration Table
LDR, A-4, A-6
LFT, see Logical File Table
LGJ, see Log JXT Table
Library

routines, 1-5
scheduler semaphore use, 2-95
searchlist maintenance request, 8-15

Limit
address, new system, 2-28
command JXTMAX set, 9-4

Link Configuration Table (LCT), 1-11, 7-2
Link Control Package (LCP)

extension (LCPE), 2-11, 2-12, 2-11
I/O, 2-11, 2-48 thru 2-51
trace entry format, 2-78, 2-80, 2-81
validation, 7-3

Link Interface Extension Table (LXT), 1-11
FED use, 2-45
SCP use, 7-2
STG use, 18-2
TQM use, 17-22

Link Interface Table (LIT), 1-11, 2-9
CHT relationship, 2-9
FED use, 2-44
SCP use, 7-2

Link Trailer Package (LTP), 2-11, 2-48
thru 2-51

LIRCV (FED routine), 2-48, 2-49

Index-12 c

LIT, see Link Interface Table
LKRCL (STP Lock Recall Flag), 2-14
LOADOVL macro, 16-3
Local dataset

Lock

create request, 8-8
modify request, 8-8
release request, 8-8
sence request, 8-8

EXEC, 2-95 thru 2-96
I/O area request, 8-13
STP scheduling use, 2-13, 2-14
Recall Flag (LKRCL) scheduling use, 2-14

LOCKOS routine
processor switching, 2-40
single-thread use, 2-94

I,og JXT Table (LGJ), 11-7
Log Manager, see MSG
$LOG dataset, see User logfile
Logfile, see User logfile
Logical

device assigned, 6-9
I/O routines, see TIO
interprocessor request trace entry

format, 2-87
Logical File Table (LFT), 1-15

CSP use, 20-2
DSP pointed to, 8-27
EXP use, 8-28
F$LFT management, 8-13
memory added, 9-23
two sections, 8-28

LOGMSGM macro request format, 11-4
LOGON request job entry, 9-1
LORCV (FED routine), 2-48, 2-49
Lost disk interrupts, 2-64
LTP, see Link Trailer Package
LXT, see Link Interface Extension Table

M status bit, 9-31
Maintenance Control Unit, see MCU
Margin select disk request example, 2-66
Mass storage subsystem, 1-15

allocation, 6-1
CIO transfer, 4-17
controlled, 6-8, 6-9
dataset management, 1-27
Deadstart use, 5-4
DQM management, 6-10
error log, 6-13
group, 5-5

Deadstart use, 5-4
Install option, 5-1
Restart use, 5-8

Install option, 5-1
label location, 5-26
private, 6-9
unit, 5-8

Master clear
adapter routine, 2-53
channel FED processor, 2-11
disk request example, 2-65
interface routine (CCLR), 2-47, 2-48

Master device
Install option, 5-1, 5-2
label, 5-26
mass storage group use, 5-6

Master I/O processor, see MIOP
Master operator station configuration

change, 5-18
I~TN constant, adding new task, B-2
MCT, see Monitor Call Table
MCU (Maintenance Control Unit)

input channel number, 2-7
interrupt handler, see CII
interrupt trace entry format, 2-86
real-time interrupts, 2-64
startup, 1-2

ME (memory error interrupt handler), 2-5
MEL, see Memory Error Log
MEMAGED

calculated, 9-8
defined, 9-9
updated at disconnect, 9-15

MEMAL routine, 4-22, 4-23
MEMDE routine, 4-22, 4-23 thru 4-24
MEMDEMD memory allocation variable, 9-7, 9-9
MEMJOBS definition, 9-8
MEMMAX initial memory allocation, 9-18,

18-10
Memory

allocation, 9-5, 9-20
examples, 9-10 thru 9-13
flag, 9-7
routines, 4-22 thru 4-24
tables used, 9-7

display request, 2-31
entry request, 2-32
expansion space, 9-18
force job into, 9-58
layout of COS, 1-8
management, 9-17

examples, 9-18 thru 9-21, 9-24 thru
9-28
interactive buffer, 4-27
J$ALLOC request, 9-42 thru 9-45
job, 9-21 thru 9-28

pad, 9-21, 9-23
pool area EXP use, 8-25
priority, 9-5 thru 9-6

updated, 9-14
variation, 9-10 thru 9-13

released from job, 9-50
request, 8-6, 8-19
resident dataset, CIO use, 4-18
restriction removal request, 9-55 thru

9-56
segment trace entry format, 2-82 thru

2-86
size set request, 2-28
subordinate, 9-8
swapping status changes, 9-34 thru 9-35
system request, 9-59 thru 9-60
variables defined, 9-8
who gets it, 9-18

MEMORY, 9-8
control statement, 9-21, 9-23
macro, 9-21
routine, 9-21

SM-0040 Index-13 c

Memory Error
correction, 2-69 thru 2-72, 2-96
Correction task (ME), 2-5

exchange packages, 1-21
logged by, 2-5
not scheduled, 1-25

detection mode request, 2-22
EXEC detection, 2-73
interrupt handler, see ME
Log (MEL), 2-69 thru 2-70
message format, 12-1
Processor, see MEP (Message Processor)
trace entry format, 2-89

Memory Request Queue (MEMQ), 9-5, 9-7
Memory Segment Table, 1-11
MEMQ, see Memory Request Queue
MEMROLNG memory allocation variable, 9-7,

9-8
*MEMSIZE parameter, 2-28, 5-30
MEMSUBRD defined, 9-9
MEMSUSP memory allocation variable, 9-7, 9-9
MEMTALLY memory allocation variable, 9-7,

9-8
MEP (Message Processor system task), 12-1

thru 12-4
ASCII messages, 12-3
creation, 5-29
I/O Subsystem interface, 12-1
ME sends packet to, 2-5
memory error message, 2-70 thru 2-72,

12-1
packet

Message

forwarded, 2-69
queue full, 2-69

buffer management use, 4-27
code, 7-4
interprocessor interchange analysis

use, 2-2
Processor, see MEP
request, 8-3
Transmit FED processor, 2-11
Wait FED processor, 2-11

MIOP (Master I/O Processor), see also I/O
Subsystem

driver processors, 2-68
FED request, 2-19, 2-42
interrupt handler
TQM requires, 17-1

Modify dataset request, 8-8
function defined, 10-1
job

irrecoverable, 8-32
rerun, 8-30

Monitor, see EXEC
Monitor Call Table (MCT)

format, 14-2
Request Processor use, 2-16

Monoprogramming, 1-25
Move system request, 2-29
MSG (Log Manager system task), 11-1 thru

11-15
see also System Log; user logfile
CIO, 4-17
creation, 5-29

MSG (Log Manager system task) (continued)
front-end message entry, 3-9
memory error message, 2-69 thru 2-72
reply format, 11-5
request format, 11-4
System Log

format, 11-8 thru 11-13
processing, 11-1 thru 11-3

tables used, 11-6
TIO, 4-1
user log

format, 11-13 thru 11-15
processing, 11-3 thru 11-4

MSGQ system macro, 3-8
MSGQUE routine, 3-8
MST, see Memory Segment Table
Multiprocessing, 1-25
Multiprocessor considerations, 2-94
Multiprogramming, 1-25
Multitasking, 1-24, 1-26

deadlock interrupts, 2-6
F$TASK request, 8-21 thru 8-22
library, 1-26
scheduler, 1-26

Multitype dataset, 5-10, 10-1
~WLCE routine, 2-54
MVLCP (R005 routine), 2-46, 2-54

N status bit, 9-31
NCLR (FED routine), 2-53, 2-54
NCLRA (FED routine), 2-53, 2-54
NCLRB interrupt handler, 2-12, 2-54
NE (normal exit interrupt handler), 2-5,

2-16
NEND (FED routine), 2-53, 2-54
NENDA (FED routine), 2-53, 2-54
Nesting level changed, 8-17
NETO (FED routine), 2-53, 2-54
Network adapter, see Front-end Driver
NIRCV (FED routine), 2-53, 2-55
*NOOP parameter file directive, 5-16
NORCV (FED routine), 2-53, 2-55
NORERUN, F$NRN use, 8-30
Normal exit

accounting use, 2-14
interrupt handler, see NE
trace entry format, 2-76 thru 2-77

Notes attribute, 5-7
NPEND (FED routine), 2-53, 2-56
NRLCF interrupt handler, 2-11, 2-53, 2-56
NRLCP interrupt handler, 2-11, 2-53, 2-57
NRSEG interrupt handler, 2-11, 2-53, 2-57
NSC adapter, see Front-end Driver
NWLCF interrupt handler, 2-11, 2-53; 2-55
NWLCP interrupt handler, 2-11, 2-53, 2-58
NWSEF interrupt handler, 2-11, 2-53, 2-58
NWSEG interrupt handler, 2-11, 2-53, 2-58
NWXLC interrupt handler, 2-12, 2-53, 2-59
NWXLF interrupt handler, 2-11, 2-53, 2-59
NXTMSG, 4-28

SM-0040 Index-14 c

o status bit, 9-31
OCS, see Overlay Call Stack
OCT, see Overlay Control Table
ODN, see Open Dataset Name Table
ODT, see Overlay Directory Table
OLL, see Overlay Load Request List
Open Dataset Name Table (ODN), 1-15, 8-28
Open dataset request, 8-4, 17-21, 17-25

thru 17-26, 17-30 thru
17-31

Operand range error, 2-5, 8-23
Operator

configuration change, 5-18
DROP command responsiveness, 9-3
error recovery for FED, 2-60
KILL command responsiveness, 9-3
LIMIT command JXTMAX set, 9-4
RERUN command, 8-12, 8-29 thru 8-31,

9-49 thru 9-50
RUN command, 8-10
shutdown request, 9-55
SUSPEND ALL command JXTMAX zero,
9-4

Optimized FORTRAN code, 1-4
Option change request, 8-17
OTERM (R005 routine), 2-46, 2-47
OUTFC (FED routine), 2-54, 2-59 2-60
Overlay Call Stack (OCS), 16-2
Overlay Control Table (OCT), 16-2
Overlay dataset

Deadstart use, 5-4
Restart use, 5-9
space reserved, 5-2, 5-9

Overlay Directory Table (ODT) , 1-12
OVM use, 16-2
Startup use, 5-28

Overlay Load Request List, 1-12, 16-2
Overlay Manager, see OVM
OVF parameter DXT adjustment, 5-19
OVM (Overlay Manager system task), 16-1

thru 16-9
functions, 16-1
requests, 16-3 thru 16-7
stepflows, 16-7 thru 16-9
tables used, 16-2

Ownership value I@SYSOWN, 10-4

Packet, 2-67
I/O request, 2-28
identifiers, 2-68

Packet I/O Driver, 2-66, thru 2-69
see also I/O Subsystem
channel assignment, 2-10
interrupt handler, 2-10

Pad
examples, 9-24 thru 9-28
memory, 9-21
use, 9-23

Parameter file
Deadstart use, 5-4, 5-18 thru 5-19
Restart use, 5-8, 5-9
Startup input, 5-18

Partial deallocation (DQM function), 6-2
Pascal compiler, 1-4

SM-0040

Password encryption, 4-29, A-3
bypassed, A-6
request, 8-20
security use, A-I

PCI (Programmable Clock interrupt handler) ,
2-3

POD, see Permanent Dataset Definition Table
PDI, see Permanent Dataset Information Table
PDM (Permanent Dataset Manager system

task), 10-1 thru 10-18
access dataset processing, 10-4

input, 10-3, 10-9
output, 10-3, 10-9
spooled, 10-3, 10-4 thru 10-6
user, 10-4 thru 10-6, 10-9

adjust user dataset processing, 10-3,
10-8

calling sequence, 10-2
calls CIO, 4-17
DSC page request processing, 10-3, 10-6

thru 10-7
DXT page request processing, 10-3, 10-6

thru 10-7
delete dataset processing

spooled, 10-3, 10-6
user, 10-6

dequeue SOT entry processing, 10-3, 10-8
dump time request processing, 10-3,

10-7 thru 10-8
function codes, 10-3
functions and job

rerun, 8-30
irrecoverable, 8-32

FVD calls, 19-2
initialization, 5-21
load dataset processing

input, 10-3, 10-7
output, 10-3, 10-7
user, 10-3, 10-7

modify user dataset processing, 10-3,
10-8

page request processing, 10-3, 10-6
thru 10-7

PDN request processing, 10-3, 10-7
permit processing, 10-3, 10-10
pseudo access processing, 10-3, 10-9,

5-14
queue SOT entry processing, 10-3, 10-8
release request processing, 10-3, 10-7
resource deal1ocation, 5-14
responsibilities, 10-1
rewrite SOT entry processing, 10-3, 10-9
save dataset processing, 10-4

input, 10-3, 10-4
output, 10-3, 10-4
user, 10-3, 10-4

special functions, 10-2
tables used, 10-14
theory of operation, 10-17 thru 10-18
update PDS/release request processing,

10-3, 10-7
user request, 8-9

PDS, see Permanent Dataset Table
PDSDUMP utility, 10-1

DXT access, 5-21
encryption bypassed, A-6

Index-IS c

PDSLOAD utility, 10-1, A-6
Performance

EXEC accounting, 2-14
F$SPM request, 8-18

Permanent dataset, see also Dataset; PDM
attributes, 5-7
functions named, 10-1, 10-2
job

irrecoverable, 8-32
rerun eligibility, 8-30

management request, 8-9
manager, see PDM
pseudo access, 5-14
types, 10-1
utilities named, 10-1
Restart use, 5-8

Permanent Dataset Definition Table (PDD),
1-15, 10-16

EXP use, 8-29
F$PDM use, 8-9
MSG use, 11-7
PDM input, 10-2
SCP use, 7-2
SDR use, 5-21
STG use, 18-1
status table, 10-10

Permanent Dataset Information Table (PDI),
1-12, 5-28, 10-17

Permanent Dataset Table (PDS), 1-12, 10-17
dataset reservation, 5-13
DXT use, 5-20
pseudo access, 5-14

PERMIT function, 10-1, 10-10
job irrecoverable, 8-32
attribute, 5-7

Physical I/O circular buffer ing, 4-14
PIO request, 2-28
PMEMDE routine, 4-22, 4-24
Pool Table memory allocation, 4-22
Position

information request, 8-23
request TQM processing, 17-21, 17-26,

17-43
tape request, 8-18

POST
macro format, 2-75
macro history trace use, 2-74
request, 2-27, 2-73

Preallocation by DQM, 6-9
Priority

change request, 9-57 thru 9-58
job, 9-3
memory, 9-5 thru 9-6

Private device, 6-9
Privilege

request, 8-20
SCNVOK, F$TBL request, 8-23

Procedure
dataset invocation request, 8-14
return request, 8-14

Processor
request word (TCEP), 8-24
switching, 2-96
task job entry, 1-22

Processor Execution Table (PXT), 1-12, 2-22

SM-0040

Processor Working Storage area (PWS), 2-97
exchange packages in, 1-21
accounting use, 2-14
Processors switch request, 2-39

Program range error, 2-5, 8-23
Programmable clock

F$SPY use, 8-19
interrupt handler, see PCI

Programs, applications, 1-5
PRV$RPF function, 8-20, 8-29
PRV$SDR function, 8-20
PRV$SPF function, 8-20, 8-29
PRV$SWP function, 8-20, 8-29
PRVDEF utility, A-2 thru A-5
Pseudo access function defined, 10-2
PSWITCH request, 2-39
Public access mode attribute, 5-7
PUTREPLY routine, 3-3, 3-6
PUTREQ routine, 3-5

DEC request format, 13-1
DQM calls, 6-1
JCM request format, 15-2
JSH calling sequence, 9-38 thru 9-39
registers destroyed, 3-3
request format, 11-4
TQM request, 17-22

PWENC routine, 4-29 thru 4-30, 8-20
PWS, See Processor Working Storage
PXT, see Processor Execution Table

Q status bit, 9-32
QCT, see Queue Control Table
QDT, see Queued Dataset Table
Queue Control Table (QCT), 2-67
Queue I/O (DQM function), 6-3 thru 6-4
Queued Dataset Table (QDT), 1-12, 10-17

EXP use, 8-26
PDM use, 10-1
Startup use, 5-28
SDT relationship, 1-12

R status bit, 9-32
R005 request, see Front-end Driver
ROll request, see Disk/SSD Driver
R022 request, see Packet I/O Driver
Random write job irrecoverable, 8-32
$RBLK routine, 4-13
RCP request, 2-24
Read

dataset processing TQM stepflow, 17-37
device circular request, 8-9
reply processing TQM stepflow, 17-38

thru 17-39
Ready task, 2-17

and suspend, 2-23
requests accounting, 2-14

Real-time clock
conversion, 8-18
examined by interchange analysis, 2-2
initialized, 5-30

Recall

Index-16

buffered I/O, 8-11
DQr-l readied, 6-1

c

Recall (continued)
Flag (LKRCL) scheduling use, 2-14
request, 8-4

Recover request, 9-54 thru 9-55
Recover Rolled Jobs routine (RRJ), 5-30

Deadstart use, 5-7, 5-31
Install option, 5-30 thru 5-31
Restart option, 5-8, 5-31 thru 5-32
$ROLL use, 5-22
Z calls, 5-29

Recovery, see Startup
Register

designator defined, 2-34
entry request, 2-33

Reject channel processor, see RJ
RELDNT routine, 8-26
Release

job irrecoverable, 8-32
request TQM use, 17-7, 17-21, 17-27,

17-42 thru 17-43
Remove K request, 9-55 thru 9-56
REPLIES routine, 3-5, 3-7
Report usage requests, 2-36 thru 2-39
Reprieve processing, 8-31 thru 8-32

initiated, 8-24
management request, 8-14
single-thread request, 9-62

Request
counts report, 2-37
Processor, 2-16
Table (RQT), 1-12, 6-8

RERUN
control statement, F$RRN use, 8-30
job, 8-29 thru 8-31

logfile message, 8-31
macro, F$RRN use, 8-30
request, 9-49 thru 9-50

Reserved for site use request, 2-21
Resource, 1-22

accounting, EXEC, 2-14
deallocation, 5-14
job recovery, 5-10 thru 5-15
sharing, 9-2
2-pass, 5-10

Restart option, 5-8 thru 5-15
JSH notified, 5-30
SCP notified, 5-30

Resume
job status changes, 9-35 thru 9-36
request, 9-52

RETURN
control statement encountered, 8-14
from procedure dataset request, 8-14

Revision number request, 8-9
$REWD routine, 4-12, 4-4, 8-12
Rewind

control statement file request, 8-14
tape request, 8-18, 17-35 thru 17-37

Rewrite SOT function defined, 10-2
RJ (reject) channel processor, 2-3, 2-10,

2-12
RJI, see Rolled Job Index Table
RLCP (FED routine), 2-11, 2-48, 2-50
RLTP (FED routine), 2-11, 2-48, 2-50
Roll job request, 8-15

SM-0040

$ROLL dataset, see under Rolled Job Index
Rolled Job Index (RJI), 1-12

dataset ($ROLL), 5-22 thru 5-24
format, 5-22 thru 5-24
job initiation, 9-29
permanent name, 5-22
RRJ use, 5-22
validation, 5-22
initialized, 5-2
Restart use, 5-9
Startup input, 5-18

Deadstart use, 5-4, 5-7
entry

initialized, 1-23
validation, 5-11

J$INDEX request use, 9-53
job

termination, 1-24
irrecoverable, 8-32

Startup use, 5-28
Rolled job recovery, see Recover Rolled

Jobs routine
Roo5C request processor, 2-45, 2-47
ROD5I request processor, 2-45, 2-51
Roo5N request processor, 2-45, 2-52
RQT, see Request Table
RRJ, see Recover Rolled Jobs
RSSEG (FED routine), 2-11, 2-48, 2-50
RSSEG interrupt handler, 2-11
RT, see Real-time clock
RTNOVL macro, 16-6
RTSK request, 2-17
RTSS request, 2-23
RUN command use, 8-10
$RWDP, 4-5, 8-11
$RWDR, 8-11, 4-8

S status bit, 9-31
SAVE

function defined, 10-1
job irrecoverable, 8-32
job rerun, 8-30
request TQM processing, 17-21, 17-26

SBKPT request, 2-34
SBU, see System Billing Unit Table
SBUFBASE initial memory allocation, 9-18
SCHUSER (user task scheduler) executed, 2-14
SCP (Station Call Processor system task),

Index-17

7-1 thru 7-8
Breakpoint

processing, 2-13, 2-14
restriction, 2-94

Buffer space reallocated, 4-37
channel assignment bypasses, 2-12
communication buffer management, 4-30

thru 4-38
debugging use, 2-31
DQM direct call, 1-30
FED use, 2-42
front-end/task communication, 3-8
job termination, 1-24
JSH readied for new job, 9-42
memory request, 9-22, 9-59 thru 9-60

c

SCP (continued)
message code, 18-8
packet forwarded, 2-69
PDM called, 10-18
processing flow, 7-3
STG called, 18-1, 18-7
task created, 5-10
TQM requests, 17-21

SCPRIV privilege, F$ENC use, 8-20
SCT, see Subsystem Control Table
$SDR dataset, 5-18, 5-21
SDR, see System Directory
SDRREC routine, 5-32
*SDR parameter file directive use, 5-21,

5-32
SDT, see System Dataset Table
Secure dataset request, 8-20
Security level, A-2
Security request, 8-20
Security Swap Table

EXP use, 8-29
F$PRV use, 8-20

Security system
data security, A-6
description, A-I thru A-7
implementation, A-3
management, A-I thru A-3

SEDSEL request, 2-22
Segment data I/O, 2-11
Select function code, FED writes, 2-11
Semaphore

deadlock processing, 9-62
usage, 2-95 thru 2-96

Sense switch
set request, 8-10, 8-4
test request, 8-10

SEQINIT macro, 17-28, 17-29
Sequencer-active flag set, 17-1
Set memory size request, 2-28
Set system breakpoint request, 2-34
SETCL macro, 2-98
SETIP macro, 2-99
SETRPV, 8-31
Shutdown request, 9-55
Single-bit error corrected by ME, 2-5
Single-thread system wait trace entry

format, 2-87
Single-threading discussion, 2-94
Site-reserved request, 2-21
*SKIPEFT parameter file directive, 5-17
SKOL macro translator, 1-5
Solid-state Storage Device (SSD)

control channel number, 2-7
Disk/SSD Driver Control, 2-62
entry formats, 2-84
I/O, 2-12, 2-63

SPM (System Performance Monitor system
task), 14-1 thru 14-11

data collection method, 14-1, 14-3
F$SPM request, 8-18
initiation, 14-1
parameters controlling, 14-2 thru 14-3
record formats, 14-3 thru 14-10
stepflow, 14-10 thru 14-11
tables used, 14-1

SM-0040

Spooled dataset, 10-1, 10-4
SPY$INFO function, 8-19, 8-18, 8-18
SSD status interrupt handler, 2-12
SSD, see Solid-state Storage Device
SSINT interrupt handler, 2-12
SSREQ (ROll routine), 2-63
SST, see Stager Stream Table
Stage dataset request, 1-13, 8-12, 8-18
Stager Stream Table (SST), 7-3,18-2
Stager, see STG
STAPB field scheduling use, 2-13, 2-14
Start

all request, 9-53 thru 9-54
new system request, 2-29
request, 2-30, 9-52 thru 9-53
second CPU request, 2-21
system request, 2-30

Startup, 1-1, 1-21, 5-1 thru 5-33
*MEMSIZ parameter SMZ request, 2-28
boot new system request, 2-29
calls TIO, 4-1
configuration change, 5-18
creation, 5-29
device label search, 5-17
DQM calls, 1-30
F$RRN use, 8-12
flow processing, 5-16
FVD use, 19-1, 19-3
input, 5-18
Install required, 5-19
job

JSH

class structure, 15-1
recovery, 1-13
rerun, 8-30

creation, 9-36
initialize request, 9-42

JXTMAX zero, 9-4
LIT assignment at, 1-11
master clear SSD channel, 2-7
memory

allocation, 9-17
contents following, 1-6

overlay management, 16-1
parameter file, 5-19
PDM called, 10-18
pseudo access processing, 10-2, 10-9
recover request, 9-54 thru 9-55
start request used, 9-52 thru 9-53
subroutines, 5-29
System Log recovery, 11-2
tables used, 5-24 thru 5-28
task creation, 1-13, 2-17, 3-1, 3-2
time delay ignored, 9-47
2-pass, 5-1, 5-16
TQM creation, 17-3
ZY processing, 5-19

STAT (FED routine), 2-54, 2-59
STATA (FED routine), 2-12, 2-54, 2-60
Station

Call Processor, see SCP
slot data, 5-8, 8-26

Statistics, F$SPM request, 8-18
STATS utility, System Log format, 11-8 thru

11-13

Index-18 c

Status
bit asignments, 9-31 thru 9-32
changes CPU swapping, 9-34

memory swapping, 9-34 thru 9-35
suspension and resumption, 9-35 thru

9-36
STG (Stager system task), 18-1 thru 18-15

buffer
allocation, 9-8
management, 4-30 thru 4-38, 18-10
space, 4-37

input
error handling, 18-5
job, 18-4
startup, 18-4
termination, 18-4
transfer, 18-4

job entry, 9-1
memory request, 9-22, 9-59 thru 9-60
message code, 18-9
output

startup, 18-6
termination, 18-7
transfer, 18-6

processing overview, 18-2
purpose, 18-1
responses, 18-10 thru 18-11
SCP

calls, 18-1
communication, 18-7

staging examples, 18-11 thru 18-14
tables used, 18-1
transfer termination processing, 18-14

thru 18-15
Stop, see also Halt system

all request, 9-54
Buffer, 2-89 thru 2-93, see also Halt

system
messages table, 2-90 thru 2-93
request start system after, 2-30
system request, 2-31

STOP
macro, 2-99, 2-69, 2-90
request, 2-31

STP (System Task Processor), 1-13, 3-1 thru
3-9

see also System task
common routines, 4-1 thru 4-38
Dump Directory, 1-13
EXEC communication, 1-11
general description, 3-1, 3-2
Lock Recall flag (LKRCL) scheduling

use, 2-14
lock scheduling use, 2-13, 2-14
purpose, 1-2
Startup residence, 5-1

STPD, see STP Dump Directory
STPLK field scheduling use, 2-13, 2-14
STPRL field scheduling use, 2-13, 2-14
Stream control bytes, 7-5
Streaming, 4-17

DQM management, 6-10
provided, 6-11

Stripe group, see Mass storage group
STT, see System Task Table

SM-0040

STX, see System Task Exchange Package Table
SUBMIT control state~ent, 8-25
Subsegment data I/O, 2-11
Subsystem Control Table (SCT), 2-9

APIIP use, 2-68
Deadstart option, 5-4
DQM use, 6-8
lOP driver use, 2-29
Packet I/O Driver use, 2-67
TQM use, 17-2

SUSP request, 2-19
SUSPEND ALL command, 9-4
Suspend

job status changes, 9-35 thru 9-36
request, 9-47 thru 9-48
self and ready task, 2-23
task, 2-19
user tasks, 9-45 thru 9-48

Switch
processors request, 2-39
set request, 8-4, 8-10
test request, 8-10

SWT, see Security Swap Table
Symbol manipulation request, 8-16
Synchronize tape dataset request, 8-22
SYSBUF, see System Buffer
$SYSLOG, see System Log
SYSROLLINDEX dataset, 5-22
System

action request, 8-2
Billing Unit Table (SBU), 1-12
ownership value I@SYSOWN, 10-4
performance monitor, see SPM
recovery, see Startup
revision number request, 8-9
table copy request, 8-23
wait for single threading trace entry,

2-87
System Buffer

allocation, 4-33 thru 4-35
deallocation, 4-35 thru 4-36
initialization, 4-32
internal management, 4-33
management, 4-30 thru 4-38
performance, 4-36 thru 4-38
space, 9-17

System Dataset Table (SOT), 1-12, 10-17
delete request use, 9-50

Index-19

eKecuting queue entry deleted, 1-24
EXP use, 8-26
format, 7-3
input queue, 9-4
job

entry, 1-22, 9-1
initiation, 9-29
output dataset entry, 1-24

MSG use, 11-8
rerun request use, 9-49
Restart use, 5-8
rewrite SDT function, 10-2
Startup use, 5-28
STG use, 18-1
SCP use, 7-3
queue movement, 1-23

c

System Directory (SDR), 1-12
see also SDRREC routine
dataset ($SDR), 5-21
F$ASD use, 8-15
initialized, 5-2
recovery, 5-21
security use, A-3
utilities DXT access, 5-21

System dump
Deadstart use, 5-4
Restart use, 5-8
space reserved, 5-2

System Executive, see EXEC
System Log see also MSG

format, 11-8 thru 11-13
front-end message entry, 3-9
Hardware error log, 6-13
memory error message, 2-69 thru 2-72
processing, 11-1
SPM use, 14-1

System task, 1-25
see also STP
adding new task, B-1 thru B-4
breakpoint restriction, 2-94
communication, 3-2 thru 3-9
creation

request, 2-16
creation, 1-13, 3-1, 3-2, 5-29

delay request, 2-20
error detection mode, 2-22
Exchange Package Table, 1-19
exchange trace entry, 2-76
front-end communication, 3-8
History trace entry request, 2-27
ID, 3-1, B-1
intertask communication, 3-1
linked to channel, 2-8
memory

error occurs, 2-69
request, 9-22

named, 3-1
packet queueing, 2-66
Priority Ready List (STPRL)

scheduling use, 2-13, 2-14
task creation, 2-17

Processor, see STP
ready, 3-2

request, 2-17
task and suspend, 2-23

request counts report, 2-37
scheduling, 2-2, 2-14

for channel activity, 2-9
status task creation, 2-17
suspend

by TSKREQ, 3- 7
request, 2-19

usage data, 2-37
user communication, 3-8

System Task Table (STT), 1-9, 2-9
accounting use, 2-14
adding new task, B-3
BOO stored in, 1-21
scheduling use, 2-13, 2-14
SPM use, 14-2
task creation, 2-17
XP management, 1-19

SM-0040

*SYSTEM parameter file directive, 5-16
$SYSTEMLOG dataset, see System Log
SYSWAIT routine single-thread use, 2-94

T register values, 1-21
T status bit, 9-31
Table copy request, 8-23
TACT (R005 routine), 2-46, 2-47
Tape dataset

position request, 8-18
synchronize request, 8-22

Tape Device Table (TDT), 1-13
configuration change, 5-18
free-device cleanup, 17-9
Startup use, 5-28
TQM

creation, 17-3
trace buffer, 17-43
use, 17-3

TQPXR use, 17-7
Tape I/O, 17-1
Tape position

information request, 8-23
request processing TQM stepflow, 7-43

Tape Queue Manager, see TQM
Task Accounting Table, 8-10
Task Breakpoint Table (TBT), 2-13,

2-14
Task Control Block (TCB)

accounting use, 2-14
block creation, 1-27
error exit use, 8-24
EXP

request word, 8-24
use, 8-29

initialize user task, 9-60
job initiation, 9-29

Task, 1-25
I/O, see TIO
10, 8-21 thru 8-22
parameter block, 2-8
system, see System task
types of, 1-24
user, see User task

Task Execution Table (TXT), 1-13
abort code set, 9-49
initialize user task, 9-60
status, 9-29 thru 9-36

bit assignments, 9-31 thru 9-32
change sequences, 9-32 thru 9-36

job termination, 1-24
TIO use, 4-1

Task Priority Table (TPT)
scheduling use, 2-13, 2-14
task creation, 2-17

Task Scheduler
called by start system request, 2-31
disconnect task, 2-25
invoked by interchange analysis, 2-3
overview, 2-2
selects idle task, 2-73

TASK$ACT function, 8-21 thru 8-22
TASK$CRE function, 8-21
TASK$DEL function, 8-21

Index-20 c

'rASKUTIL request, 2-37
TBIDLE field scheduling use, 2-13, 2-14
TCB, see Task Control Block
TCEP, see Exchange Processor Request Word
TCEPJ, JSH use, 9-49
TDELAY request, 2-20
TDT, see Tape Device Table
TEl (expired time event interrupt handler),
2-2, 2-3
Terminate job request, 8-4
Text

attribute, 5-7
field

EXP memory allocation, 8-25
Restart use, 5-8

Thrash lock, 9-7, 9-34 thru 9-35
Time

conversion request, 8-18
delay request, 9-46 thru 9-47
request, 8-3, 8-10

Time event
processing, 2-3, 2-5
table interchange analysis use, 2-2
trace entry format, 2-77

Time slice, 9-3
assignment, 9-14
exhausted allocation flag set, 9-7
status changes, 9-34

Timeout interrupt handler, Disk/SSD Driver,
2-12

Timer event
canceled trace entry format, 2-77
event pending, 2-2

Timestamp conversion request, 8-18
TIO (Task I/O), 4-1 through 4-14

adding new task, B-3
block transfer routines, 4-13
error processing, 4-5
positioning routine, $REWD, 4-12
read

routines, 4-5 thru 4-8
call CIO, 4-17
named, 4-3

write routines, 4-8 thru 4-12
TPT, see Task Priority Table
TQ$lTR routine, 17-8
TQ$2TR routine, 17-8
TQ$CR routine, 17-9
TQ$FD routine, 17-9
TQ$MN routine, 17-13
TQ$RB routine, 17-10
TQ$RM routine, 17-13
TQ$RW routine, 17-14
TQ$UL routine, 17-17
TQ$WB routine, 17-18
TQ$WT routine, 17-16
TQCIO routine, 17-23
TQCIR routine, 17-24
TQCIW routine, 17-24
TQCLO routine, 17-24 thru 17-25
TQDLY routine, 17-3
TQIDL routine, 17-29
TQM (Tape Queue Manager system task), 17-1

thru 17-44
beginning-of-tape status (TDBOT), 17-8

SM-0040

TQM (continued)
CIO

calls, 4-17
reply, 17-19, 17-11
requests, 17-23

continue read function, 17-9
COS request processing, 17-21 thru 17-19
delayed function processing, 17-3
delete request processing, 17-26
F$CLS request processing, 17-24 thru

17-25
F$OPN request processing, 17-25 thru

17-26
F$PDM request processing, 17-26
F$RLS request processing, 17-27
free-device function, 17-9
idle-loop processing, 17-29
initialization, 17-3
initialization subfunction (TQPXR), 17-7
lOS

interface, 17-2
reply processing r 17-4

logic flow, 17-1
mount processing functions, 17-13
operator request processing, 17-21 thru

17-19
operator-command processing, 17-22
packet forwarded, 2-69
processor structure, 17-5
read-block function, 17-10
release request processing, 17-27
remount processing functions, 17-13
reply processor

reply-exit address, 17-6
request format, 17-21
responsibility, 17-1
rewind function, 17-14
save request processing, 17-26
SCP reply, 17-22
sequencer requests, 17-27 thru 17-29
stepf1ows, 17-29
tables used, 17-2
tapemark status (TDTMS), 17-8
TIO acknowledgement, 4-2
T$POS request processing, 17-26
trace buffer, 17-43 thru 17-44
trailer label written, 17-8
unload-volume function, 17-17
write tapemarks and rewind function,

17-8
write-block function, 17-18
write-tapemark function, 17-16

TQOPN routine, 17-25 thru 17-26
TQPCR routine, 17-27
TQPCRR routine, 17-22
TQPDELET routine, 17-26
TQPOC routine processing, 17-22
TQPOS routine, 17-26
TQPSAVE routine, 17-26
TQPSEND sequencer routine, 17-27 thru 17-29
TQPSI sequencer routine, 17-27 thru 17-29
TQPSN sequencer routine, 17-27 thru 17-29
TQPXR routine, 17-7
TQRLS routine, 17-27

Index-21 c

TQSNAP macro
format, 17-44
trace buffer use, 17-43

Trace entry, see History trace entry
Tracking attribute, 5-7
Trailer label processing TQM stepflow, 17-40
Transmit Data FED processor, 2-11
Transmit Message FED processor, 2-11
TSO, see Task scheduler
TSKREQ routine, 3-7

JCM request format, 15-2
JSH calling sequence, 9-38 thru 9-39
registers destroyed, 3-5
request format, 11-4

Tuning parameters, 9-6
Two-pass startup performed, 5-1
TXSTAT

bits defined, 9-29
status bit assignments, 9-31 thru 9-32
status change sequences, 9-32 thru 9-36

TXT, see Task Execution Table

U status bit, 9-31
UCT, see User Call Table
UEP (User Exchange Processor), see EXP
UNCHAIN routine, 4-25, 4-27
Unlock

I/O area request, 8-13
macro forces task scheduling, 2-14

UP flag, Startup use, 5-17
Update level request, 8-9
UPDATE use for system maintenance, 1-1
UPT, see User Security Privilege Table
User

area, 1-14
Call Table, 1-13
exchange, 8-2

package, active, 1-21
processor, see EXP

job, see Job
library task, 1-26, 11-3 thru 11-4
number security use, A-I
program error exit, 8-23
requests, 8-2 thru 8-23
roll request, 9-57
security, 8-20, A-I
suspend request, 8-10

User logfile ($LOG), 9-29
copied to $OUT, 1-24
DSP in JTA, 8-27
format, 11-13 thru 11-15
message request, 8-3
PDM error messages, 10-10

User Security Privilege Table (UPT), 8-20,
8-29

User task, 1-26
see also CPU; EXP; Job; JSH;

Multitasking
abort request, 9-49
accounting request, 8-10
activate request, 8-21 thru 8-22, 9-60

thru 9-61
clear suspension request, 9-48 thru 9-49

User task (continued)
connection, 2-24, 9-13
CPU-bound, 9-3, 9-15
create request, 8-21
deactivate request, 8-22, 9-61
deadlock request, 9-62
delete request, 8-21, 9-50
disconnect request, 2-26
exchange trace entry, 2-76 thru 2-77
F$TASK request, 8-21 thru 8-22
I/O-bound, 9-3, 9-15
ID, 8-21 thru 8-22
initialize request, 9-60
interactive example, 9-17
job

initiation, 9-28 thru 9-29
relationship, 1-26

JSH management, 9-2
memory request, 9-22
rerun request, 9-49 thru 9-50
scheduler (SCHUSER) overview, 2-2, 2-14
single-thread request, 9-61 thru 9-62
status, 9-29 thru 9-36

bit assignments, 9-31 thru 9-32
change sequences, 9-32 thru 9-36
change trace entry format, 2-81

STP communication, 3-8
suspended, 9-16
time

request, 8-10
slice, 9-3

Utility programs, 1-3

V register values saved by EXEC, 1-21
V status bit, 9-31
$VALIDATION dataset security use, A-I thru

A-5
VAX interface FED write, 2-11
Vector Mask register, 8-31
Vectorized FORTRAN code, 1-4
Volatile device

backup, 19-1
space allocated, 5-2
Deadstart use, 5-4, 5-8
Restart use, 5-8

Volume switch processing, 17-34 thru 17-35,
17-41

Volume validation, 17-32 thru 17-33, 17-37
thru 17-38

Wait Message FED processor, 2-11
$WBLK routine, 4-14
WDL (write device label) parameter, Startup

processing, 5-17
$WEOD routine, 4-4, 4-12, 8-11
$WEOF routine, 4-4, 4-11, 8-11
WLCP (FED routine), 2-11, 2-48, 2-50
WLTP interrupt handler, 2-11
Write

dataset processing TQM stepflow, 17-31
thru 17-32

device circular request, 8-9
device label, 5-17

SM-0040 Index-22 c

Write (continued)
disk request example, 2-65
reply processing TQM stepflow, 17-33

thru 17-34
WSSEG (FED routine), 2-48, 2-51, 4-8

F$BIO request use, 8-11
interrupt handler, 2-11

$WWDR routine, 4-4, 4-10, 8-11
$WWDS routine, 4-4
WXLCP (FED routine), 2-11, 2-48, 2-51
WXLTP (FED routine), 2-11, 2-48, 2-51

X status bit, 9-32
X$SIO macro, 2-98
X-MP, see CRAY X-MP
XAT (DXT Allocation Table), 5-19,10-17
XFT, see History Function Table
XIOP, TQM requires, 17-1
XP, see Exchange Package
XPROC interrupt handler, 2-12, 2-53
XSREQ (ROll routine), 2-63
XTT, see History Trace Table

Y status bit, 9-31

Z, 5-29 thru 5-30
ZY (Startup routine) parameter file

processing, 5-19

SM-0040 Index-23 c

READERS COMMENT FORM

cos EXEC/STP/CSP Internal Reference Manual SM-0040 C

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ______________________________________ __

JOB TITLE ________________ _ - i FIRM ______________________________________ ___
RESEARCH, INC.

ADDRESS ______________________ __

CITY _________ STATE ____ ZiP ___ _

FOLD

Attention:
PUBLICATIONS

FOLD

IIIIII

BUSINESS REPLY CARD
HRST CLASS PERMIT NO 6184 ST PAUL MN

POSTAGE WILL BE PAID BY AnORESSEE

... --1 is a • ..."
RESEA~CH, INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A.

STAPIJ:

--- -----~
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

--------,

C')

C
-4
»
r
o
Z
C)

-i
~

en
!:
z
m

	000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	02-61
	02-62
	02-63
	02-64
	02-65
	02-66
	02-67
	02-68
	02-69
	02-70
	02-71
	02-72
	02-73
	02-74
	02-75
	02-76
	02-77
	02-78
	02-79
	02-80
	02-81
	02-82
	02-83
	02-84
	02-85
	02-86
	02-87
	02-88
	02-89
	02-90
	02-91
	02-92
	02-93
	02-94
	02-95
	02-96
	02-97
	02-98
	02-99
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	09-62
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	12-01
	12-02
	12-03
	12-04
	13-01
	13-02
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	15-01
	15-02
	15-03
	15-04
	15-05
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	17-35
	17-36
	17-37
	17-38
	17-39
	17-40
	17-41
	17-42
	17-43
	17-44
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	19-01
	19-02
	19-03
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	B-04
	Glossary-00
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Glossary-05
	Glossary-06
	Glossary-07
	Glossary-08
	Glossary-09
	Glossary-10
	Glossary-11
	Glossary-12
	Glossary-13
	Glossary-14
	Glossary-15
	Glossary-16
	Glossary-17
	Index-00
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	Index-21
	Index-22
	Index-23
	replyA
	replyB
	xBack

