
(

CO NFID ENI IAL

Corvus Mass Storage Systems

General Technical Information

. (formerly titled Disk Technical Reference Manual)

Part Number: 7100-05945-01
Release Date: June 1984

•

Copyright 1982, 1984, Corvus, Inc.

Trademark notices •••
Corvus Concept, Omninet, Omnidrive, The Bank, Mirror •••
Mail Mon i tor •••
Apple II, Apple III, MacIntosh, Apple Pascal, Apple DOS,

ProDOS, SOS, •••
IBM PC, PCDOS, •••
TI Profess lona1 •••
MSDOS, MS Pascal, •••
Pascal MT+, Pascal MT86+, •••

r 0' ~I ':'fr' [, 17 1 ~ I
" ! h 11 U L i" rHo ..

TABLE OF CONTENTS

Scope

Con ven t ion s

1.0 Controller functions

1.1 Read-write commands

1.2 Logical sector address decoding

1.3 Write verify option

1.4 Fast tracks (Bank)

1.5 Semaphores

1.6 Pipes

1.7 Active user table

1.8 Booting

1.9 Drive parameters

1.10 Parking the heads

1.11 Changing Bank tapes or powering off the Bank

1.12 Checking drive interface (Echo command)

1.13 Prep mode

1.14 Format drive

1.15 Format tape

1.16 Media verify (CRC)

1.17 Track sparing

1.18 Physical versus logical addressing

Mass Storage Systems GTI - i -

1.19 Interleave

1.20 Read-write firmware area

1.21 Virtual drive table

1.22 Constellation parameters

2.0 Ornninet Protocols

2.1 Constellation Disk Server Protocols

2.2 Old Disk Server Protocol

2.3 New Disk Server Protocol

2.4 Constellation Name Lookup Protocol

2.5 Active user table

3.0 Outline of a Disk driver

3.1 Ornn inet

Old Disk Server Protocol

New Disk Server Protocol

3.2 Flat cable

4.0 Using other disk commands

5.0 Using Semaphores

6.0 Using Pipes

Mass Storage Systems GTI - ii -

Appendices

A. Device specific information
Revision BIH Controller
Omnidrive
The Bank

Hardware description
Firmware and PROM code
Firmware layout
Drive parameters
Front Panel LED's
DIP switch settings

B. Tables
Constellation device type
Constellation boot number assignments
List of disk commands in numerical order
List of disk return codes
List of transporter return codes
Summary of transporter command vectors

C. Differences between Ornnidrive and Revision B/H Series Drives

D. Transporter card information

E. Flat cable card information

F. Software Developer's Information

Mass Storage Systems GTI - iii -

/ '

/"

(

List of figures

1.1 Functional list of controller commands

2.1 Message exchange for disk server protocol

2.2a Find all disk servers using directed commands

2.2b Find all disk servers using broadcast commands

3.1 Message exchange for disk server protocol, showing
timeouts

3.2 Flowchart of a short command, old disk server protocol

3.3 Flowchart of a long command, old disk server protocol

3.4 Flowchart of wait for disk server response, old disk server
protocol

3.5 Flowchart of fl ush, old disk server protocol

3.6 Flowchart of a short command, new disk server protocol

3.7 Flowchart of a long command, new disk server protocol

3.8 Flowchart of wait for disk server response, new disk server
protocol

3.9 Flowchart of cancel, restart check, new disk server protocol

3.10 Flowchart of flush, new disk server protocol

3.11 Flat cable command sequence

3.12 Flat cable turn around routine

Mass Storage Systems GTI - iv -

Scope

This manual describes the command protocols used by Corvus
mass storage systems. It covers the disk commands and the
Omninet protocols used to send those commands. It also describes
how to use the various features provided by the commands.
It is meant to be used in conjunction with the following manuals:

Omninet General Technical Information,
Corvus pIN 7100-02040

Constellation Software General Technical Information,
Corvus PIN 7100-05944-01

Omninet Protocol Book

conventions

Hexadecimal values are suffixed with an h. For example,
FFh, 02h.

When not otherwise qualified, a sector is 512 bytes. A
block is always 512 bytes.

All program examples are given in psuedo-Pascal and are not
necessarily syntactically correct. The examples are meant to
serve as guidelines to you in implementing your own programs.

In command and table descriptions, lsb means least
significant byte or least significant bit, depending on
context. Similarly, msb means most significant byte or most
significant bit.

Mass Storage Systems GTI - v -

'" -

r-~

I '

n·"'J'rtl"""" -
LUi,li.)~ .

The TYPE column used in describing commands, protocols, and
tables has the following meanings:

Type Meaning

BYTE

WORD

FWRD

ADR3

FAD3

DADR

BSTR

NSTR

FLAG

ARRY

An unsigned 8 bit value.

An unsigned 16 bit value; msb, Isb format.

An unsigned 16 bit value; Isb, msb format~
a byte-flipped WORD.

An unsigned 24 bit value; msb •• lsb format.

An unsigned 24 bit value; Isb .• msb format;
a byte-flipped ADR3.

A 3-byte field, called Disk address;
interpretation is shown in Chapter 1, section
titled Logical sector address decoding.

A string of 1 or more characters, padded on the
right with blanks (20h) •

A string of 1 or more characters, padded on the
right with NULs (OOh).

A byte with bits numbered 7 •. 0; msb •• lsb format.

An array of 1 or more BYTEs.

Mass Storage Systems GTI - vi -

Controller functions

Chapter 1: Controller functions

Corvus currently supports three mass storage devices: the
Revision B/B Series drives, Omnidrive, and The Bank. Each of
these devices may be attached to a Corvus network. The Rev B/B
drives may be attached to a Corvus multiplexer, or through a disk
server to Omninet. Omnidrive and The Bank have built-in Omninet
interfaces.

Although these devices have very different hardware
characteristics, the software interface to each is very similar.
For example, one software disk driver can interface to all these
devices.

This chapter describes the functions supported by Corvus mass
storage devices. Each section describes the function and lists
the relevant commands. Where needed, additional explanatory text
follows.

The commands are described as a string of bytes to be sent to
the device, and a string of bytes that is the expected reply. In
the case of an error, normally only one byte is received, which
is the disk error code. Disk error codes are summarized in
Appendix B.

Chapter 2 describes the Omninet protocols used to send the
commands.

Mass Storage Systems GTI 1-1

Command name

Read/Write Commands:

Read Sector (256 bytes)
Write Sector (256 bytes)
Read Sector (128 bytes)
Read Sector (256 bytes)
Read Sector (512 bytes)
Read Sector (1024 bytes-Bank)
Write Sector (128 bytes)
Write Sector (256 bytes)
Write Sector (512 bytes)
Write Sector (1024 bytes-Bank)
Record write (Bank)

Semaphore Commands:

Semaphore Lock
Semaphore Unlock
Semaphore Initialize
Semaphore Status

Pipe Commands:

Pipe Read
Pipe Write
Pipe Close
Pipe Status 1
Pipe Stat us 2
Pipe Status 0
Pipe Open Write
Pipe Area Initialize
Pipe Open Read

Active User Table Commands:

AadActive
DeleteActiveUsr (Rev B/H)
DeleteActiveNumber(Ornnidrive)
DeleteActiveUsr (Ornnidrive)
FindActive
ReadTempBlock
WriteTempBlock

Controller functions

Command Resu1 t
Code:Modifier Length Length

02h
03h
12h
22h
32h
42h
13h
23h
33h
43h
16h

OBh:Olh
OBh:11h
lAh: 10h
lAb:41h

1Ah:20h
lAh:21h
lAh:40h
1Ah:41h
lAh:41h
lAb: 41h
1Bh:80h
IBh:AOh
IBh:COh

34h: 03h
34h:00h
34h:00h
34h: 01h
34h:05h
C4h
B4h

4
260

4 --
4
4
4

132
260
516

1028
2

10
10

5
5

5
517

5
5
5
5

10
10
10

18
18
18
18
18

2
514

257
1

129
257
513

1025
1
1
1
1
1

12
12

1
257

516
12
12

513
513

1025
12
12
12

2
2
2
2

17
513

1

Figure 1.1: Summary of Disk Commands by Function
(continued on next page •••)

Mass Storage Systems GTI 1-2

Command name

Miscellaneous Commands:

Boot
Read Boot Block
Get Drive Parameters
Park heads (Rev B)
Park heads (Omnidrive)
Echo (Omnidrive,Bank)

Put Drive in Prep Mode:

Prep Mode Select

Prep Mode Commands:

Reset Drive
Format Drive (Rev BIB)
Format Drive (Omnidrive)
Fill Drive (Omnidrive)
Format Tape (Bank)
Reformat Track (Bank)
Verify (Rev B/B,Omnidrive)
Non-destructive Verify (Bank)
Destructive Verify (Bank)
Read Corvus Firmware
Write Corvus Firmware

Controller functions

Code:Modifier

l4h
44h
10h
llh
aOh
F4h

11h

OOh
Olh
Olh
a1h
Olh: Olh
01h:02h
07h
07h:02h
07h:Olh
32h
33h

Command
Length

2
3
2

514
1

513

514

1
513

1
3
a
a
1
6
6
2

514

Result
Length

513
513
129

1
1

513

1

1
1
1
1
1
2

variable
10
10

513
1

Figure 1.1: Summary of Disk Commands by Function (cont.)

Mass Storage Systems GTI 1-3

Read-write commands

1.1 Read-write commands

Five sets of read-write commands are supported, each set
specifying a different sector size. Data can be read or written
in sectors of 128 bytes, 256 bytes, 512 bytes, or 1024 bytes.
There are two sets of commands that support 256 byte sectors;
they are identical.

The Rev B/H controller and the Omnidrive controller ~se a
physical sector size of 512 bytes. When a host sends a write of
a sector size other than 512 bytes to the drive, the controller
first reads the entire physical sector, overlays the written
data onto the appropriate chunk of the physical sector, and then
writes the physical sector. It is therefore recommended that
hosts, where possible, use a write command of 512 bytes to
minimize overhead when writing to the drive.

The Bank physical sector size is 1024 bytes. When a host
sends a write of a sector size other than 1024 bytes to the Bank,
the data is buffered until the whole sector is received; then the
data is written to the media. If any other commands are received
before this buffer is full, or if another sector is to be written
to, the controller performs as described above; that is, it reads
the whole physical sector, overlays the written data onto the
appropriate chunks of the physical sector, and then writes the
physical sector. It is therefore recommended that hosts, where
possible, use a write command of 1024 bytes to minimize overhead

~ when writing to the Bank.

c

The fact that the Bank buffers write commands has one other
ramification: the controller always returns 0 as the disk result
code, indicating a successful write. When it comes time for the
Bank to actually write the sector and an error is encountered, no
error status is reported to the host.

The read function always reads the
returns the appropriate chunk of data.
performance penalty is paid when using
size.

whole physical sector and
Unlike the write mode, no

any particular sector

All of the read-write commands decribed below use a three
byte sector number as the disk address. The interpretation of
sector number is described in the next section.

Mass Storage Systems GTI 1-4

Read-write commands

Command Name: Read a sector (256 byte sector)

Command Length:
Result Length:

Command

4 bytes
257 bytes

--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - 2h
--

1/3 I DADR I sector number
--
Result
--
Offset/Len I Type I Description

0/1 I BYTE I disk result

1 / 256 I ARRY I contents of sector

Command Name: write a sector (256 byte sector)

Command Length:
Result Length:

Command

260 bytes
1 byte

--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - 3h

1/3 I DADR I sector number
--

4 / 256 I ARRY I data to be written

Result

Offset/Len I Type I Description

0/1 I BYTE I disk result

Mass Storage Systems GTI 1-5

Read-write commands

Command Name: Read a sector (128 byte sector)

Command Length:
Result Length:

Command

4 bytes
129 bytes

--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - 12h
--

1/3 I DADR I sector number
--
Result
--
Offset/Len I Type I Description

0/1 , BYTE I disk result

1 / 128 lARRY , contents of sector

Comman d Name:

Command Length:
Result Length:

Command

Write a sector (128 byte sector)

132 bytes
1 byte

Offset/Len I Type I Description

o / 1 I BYTE , command code - 13h
--

1 / 3 I DADR I sector number

4 / 128 , ARRY , data to be written

Result

Offset/Len, Type' Description

0/1 I BYTE I disk result

Mass Storage Systems GTI 1-6

------------ -----------------

Read-write commands

Command Name: Read a sector (256 byte sector)

Command Length:
Result Length:

Command

4 bytes
257 bytes

--
Offset/Len, Type' Description
--

0/1 , BYTE , command code - 22h
--

1/3 , DADR , sector number
--
Result
--
Offset/Len! Type! Description

0/1 , BYTE I disk result

1 / 256 I ARRY I contents of sector
--

Command Name: write a sector (256 byte sector)

Command Length:
Result Length:

Command

260 bytes
1 byte

--
Offset/Len, Type I Description
--

0/1 , BYTE I command code - 23h

1/3 ! DADR , sector number

4 / 256 I ARRY I data to be written

Result

Offset/Len, Type' Description

0/1 I BYTE , disk result
--

Mass Storage systems GTI 1-7

Read-write commands

Command Name: Read a sector (512 byte sector)

Command Length:
Result Length:

Command

4 bytes
513 bytes

--
Offset/Len, Type' Description

o / 1 'BYTE' command code - 32h
--

I / 3 'DADR' sector number
--
,Result

Offset/Len' Type' Description

0/1 , BYTE , disk result

1 / 512 , ARRY , contents of sector

Command Name: Write a sector (512 byte sector)

Command Length: 516 bytes
1 byte Result Length:

Command

Offset/Len, Type' Description

0/1 , BYTE , command code - 33h

1/3 , DADR , sector number

4 / 512 , ARRY , data to be written

Result

Offset/Len I Type' Description

0/1 I BYTE I disk result

Mass Storage Systems GTI 1-8

Read-write commands

Comman d Name: Read a sector (1024 byte sector) (Bank only)

Command Length:
Result Length:

Command

4 bytes
1025 bytes

--
Offset/Len 1 Type 1 Description
--

0/1 1 BYTE 1 command code - 42h
--

1/3 1 DADR 1 sector number
--
Result
--
Offset/Len 1 Type 1 Description

0/1 1 BYTE 1 disk result

1 / 10241 ARRY 1 contents of sector

Command Name: Write a sector (1024 byte sector) (Bank only)

Command Length: 1028 bytes
Result Length: 1 byte

Command
--
Offset/Len 1 Type 1 Description

0/1 1 BYTE 1 command code - 43h
--

1/3 1 DADR 1 sector number

4 / 10241 ARRY 1 data to be written

Result

Offset/Len 1 Type 1 Description

0/1 1 BYTE 1 disk result

1.2 Logical sector address decoding

On the Rev B/H drives, the three byte sector number specified
in a read or write command is decoded into a 4-bit drive number
and a 20-bit address. The decoding is described below:

Mass Storage Systems GTI 1-9

byte 1
d

byte 2
Isb

Read-write commands

byte 3
msb

Byte 1, upper nibble, is the most significant nibble
of the address.

Byte 1, lower nibble, is the drive number.
Byte 2 is the least significant byte of the address~_
Byte 3 is the middle byte of the address.

Thus to write to drive 1, address 02D348h, the host should
send to the controller these bytes:

21h, 48h, D3h

A 20-bit address allows the controller to address
approximately 1 million sectors per drive, or 512MB using 512
byte sectors. Virtual drives can be used to extend the
addressing capabilities of the Rev BIB controller1 see the
section titled Virtual drive table later in this chapter.

For Omnidrive and The Bank, the three byte sector number is
treated as a 24-bit address1 all three bytes are used to indicate
the address. The Omnidrive and Bank controllers can thus address
16 times more data than the Rev BIB controller, or approximately
8 gigabytes using 512 byte sectors. The three byte address is

~ decoded as follows:
~

c

byte 1
d

byte 2
Isb

byte 3
msb

Byte 1, upper nibble, is bits 17-20 of the address.
Byte 1, lower nibble, is decremented by 1, and becomes

bits 21-24 of the address.
Byte 2 is the least significant byte of the address.
Byte 3 is the middle byte of the address.

Thus to write to an address, say 32D348h, the host should
send to the controller these bytes:

24h, 48h, D3h

The controller flips the nibbles in byte d, subtracts lOh
from the result and uses this value as the most significant byte
of the address. Byte 2 is used as the least significant byte and
byte 3 the middle byte.

Note that for addresses of 20 bits or less, the two
addressing schemes are equivalent. For example, to write to
drive 1, address 2D348h, the host sends these bytes:

21h, 48h, D3h

Mass Storage Systems GTI 1-10

Read-wr i te comm.~nds

The address specified in the Read-Write commands is a sector
address, where the size of the sector is specified by the
command. For example, to read block 8 of the device, any of
the following commands can be used:

Command str ing Meaning
-------------- -------
02h, Olh, lOh, OOh sector 16 (256-byte sector)
12h, Olh, 20h, OOh sector 32 (128-byte sectorr
22h, Olh, lOh, OOh sector 16 (256-byte sector)
32h, Olh, 08h, OOh sector 8 (512-byte sector)
42h, Olh, 04h, OOh sector 4 (1024-byte sector1 Bank only)

1.3 Write verify option

The Omnidrive provides the option of specifying
write-verify or non-write-verify. If the write-verify option is
chosen, the controller, after each write to the media, performs
a read operation of that sector to verify that the sector can be
read with a correct CRC. If the non-write-verify option is
specified, there is no read after write.

The tradeoff is between performance and reliability. The
write-verify costs at least an extra revolution of the disk but
it verifies that the data is recorded properly on the media. The
other provides higher performance without the assurance of data
integrity.

The option is represented by one byte in the firmware area.
The standard firmware release has this byte set to
non-write-verify. The option can be changed using the Corvus
diagnostic program.

Rev B/B drives always use write-verify. The Bank always uses
non-write-verify.

1.4 Fast tracks (Bank only)

A Bank tape can be configured to use fast-track or
non-fast-track mode. In fast-track mode, a read completes much
faster than in non-fast-track mode. However, a write takes much
longer in fast-track mode than in non-fast-track mode.
Fast-track mode is therefore recommended for applications which
require heavy look-up of data, but little or no modification of
the data.

In fast-track mode, the first 16 tracks of the user data area
(4MB) are redundantly recorded. For a 200MB tape, the controller
records each sector of data 8 times, once on each of 8 tracks1
each succeeding track has the data skewed 1/8 around the tape r-
loop. For a 100MB tape, the controller records each sector of ~/

Mass Storage Systems GTI 1-11

_ oJ

Read-write commands

data 4 times on 4 tracks; each succeeding track has the data
skewed 1/4 around the tape loop.

When a sector is read, the controller determines where
on the track its head is, and reads from the closest sector.
Thus, the average read access time is 1/8 (or 1/4) that of the
non-fast-track mode.

There are two types of wr i te to the fast tracks area-:- normal
write and record write. For normal write, the controller updates
all the redundant sectors in one pass. Thus, it takes an entire
revolution to complete one write. For record write, the host can
specify the redundant sector to be written. The sector specified
is used for all succeeding Write commands, until the next Record
Write command is received. This feature allows the host to write
to a whole track, then repeat the process for the redundant
tracks.

To turn record write on or off, use the Record Write command.

Command Name: Turn on Record Write (Bank only)

Command Length: 2 bytes
1 byte Result Length:

Command

Offset/Len I Type I Description

0/1 I BYTE I command code - l6h

1/1 I BYTE I sector number*

Result

Offset/Len I Type I Description

0/1 I BYTE I disk result

* For a 200MB tape, valid sector numbers are 80h-87h, specifying
sector 0 through 7; for a 100MB tape, valid sector numbers are
80h-83h, specifying sector 0 through 3.

Mass Storage Systems GTI 1-12

Reild-wr i te commands

Command Name: Turn off Record write (Bank only)

Command Length:
Result Length:

Command

2 bytes
1 byte

--
Offset/Len I Type I Description
---~~-----

0/1 I BYTE I command code - l6h
--

1/1 I BYTE I OOh

Result
--~-----------
Offset/Len I Type I Description

0/1 I BYTE I disk result

When using normal write, updating 100 sectors requires 100
tape revolutions, one for each sector write. When updating many
consecutive sectors, it may be faster to use record write. Let's
assume you want to update sectors 100 to 199 on a 200MB tape.
You first issue a Record Write command for redundant sector a
(80h), and then 100 sector write commands, one for each sector
100 to 199. Depending on the interleaving, this should take only
1 tape revolution. Next you issue a Record Write command for
redundant sector 1 (81h), and then the same 100 sector write
commands. Repeat this sequence for redundant sectors 2 through
7, and you should complete the update in only 8 tape revolutions,
as opposed to the 100 revolutions used in normal write.

1.5 Semaphores

Semaphores provide an indivisible test and set operation for
use by application programs. See chapter 5 for examples of how
to use semaphores.

The semaphore commands are listed below:

Semaphore Lock
Semaphore Unlock
Initialize Semaphore Table
Semaphore Status

Any host can, at any time, request to lock a semaphore. If
the specified semaphore is not already locked, the controller
locks the semaphore. If a semaphore is already locked, the
application program using the semaphores can continue to poll the
semaphore table by resending the Lock command until the desired
semaphore is no longer locked.

Mass Storage Systems GTI 1-13

....

(-'
/

Semaphores

The Semaphore Unlock command always unlocks the semaphore.

The status of the semaphore prior to each operation is also
returned to provide for a full test-set or test-clear operation.

A semaphore can be any 8-byte name, except for 8 bytes of 20h
(ASCII space character). There is no limit on the number of
semaphores that may exist in a given application or network;
however, only 32 semaphores may be locked at anyone time (on
each server).

Two semaphores are equivalent only if each character in the
name is exactly the same. For example, semaphore 'CORVUSll' is
different than semaphore 'corvusll', which is different than
'Corvusll'. The characters do not have to be printing
characters; eight bytes of lOh (ASCII LF character) is a legal
semaphore name.

Omnidrive and The Bank support a wild card character in
semaphore names. The character OOh (ASCII NUL character) matches
any other character in semaphore lock and unlock operations.

The Initialize Semaphore Table command clears the semaphore
table, which is equivalent to unlocking all the semaphores. The
semaphore table can be initialized by any processor, but this
should only be performed on system-wide initialization or for
recovery from error conditions.

The Semaphore Status command returns the semaphore table,
which can then be examined to see which semaphores are locked.

Mass Storage Systems GTI 1-14

Command Name: Semaphore lock

Command Length:
Result Length:

Command

10 bytes
12 bytes

Offset/Len, Type' Description

Semaphores

---~~-----
0/1 , BYTE I command code - OBh

1/1 , BYTE I Olh

2/8 , ARRY I semaphore name

Result
----------------------------~-----------------------------
Offset/Len, Type' Description

0/1 , BYTE , disk result

1/1 , BYTE , semaphore result

2 / 10 'ARRY' unused (no meaning)

Mass Storage Systems GTI 1-15

\
"'-.j

Command Name: Semaphore unlock

Command Length:
Reslllt Length:

Command

10 bytes
12 bytes

Semaphores

--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - OBh
--

1/2 I BYTE I llh

2/8 I ARRY I semaphore name

Reslllt

Offset/Len I Type I Description

0/1 I BYTE I disk reslllt

1/1 I BYTE I semaphore reslllt

2 / 10 I ARRY I llnllsed (no meaning)

Command Name:

Command Length:
Reslllt Length:

Command

Initialize semaphore table

5 bytes
1 byte

Offset/Len I Type I Description
--

0/1 I BYTE I command code - 1Ah

1/1 I BYTE I 10h

2/3 I ARRY I don't care - use OOh

Result

Offset/Len I Type I Description

0/1 I BYTE I disk result

Mass Storage Systems GTI 1-16

- ~---~- ---

Command Name: Semaphore status

Command Length:
Result Length:

Command

5 bytes
257 bytes

Semaphores

--
Offset/Len, Type' Description
--

0/1 , BYTE , command code - lAh
--

1/1 , BYTE , 41h
--

2/1 , BYTE , 03h
--

3/2 , ARRY , don't care - use OOh
-------------------~--------------------------------------

Result
--
Offset/Len I Type I Description
--

0/1 I BYTE I disk result

1 / 256 , BYTE I semaphore table
--

Semaphore results

Value Meaning
----- -------
0 Oh Semaphore Not Set/no error

128 80h Semaphore Set

253 FDh Semaphore table full
254 FEh Error on semaphore table read/write
255 FFh Semaphore not found

Implementation details for semaphores

The semaphores are implemented using a lookup table
containing an 8-byte entry for each of the 32 possible
semaphores. A used entry in the table indicates that the
semaphore is locked. Unused table entries are represented by 8
bytes of 20h (ASCII space character).

When a Lock command is received, the controller searches the
table for a matching entry. If one is found, a Semaphore set
status (80h) is returned. Otherwise, the semaphore is written
over the first empty entry, and a status of Semaphore Not Set
(0) is returned.

Mass Storage Systems GTI 1-17

Semaphores

When an Unlock command is received, the controller searches
the table for a matching entry. If one is found, it is
overwritten with blanks, and a status of Semaphore Set (80h) is
returned. Otherwise, a status of Semaphore Not Set (O) is
ret urned.

The format of the semaphore table is shown below. See
Appendix A for the location of the semaphore table.

Table layout
+-------------+ byte 0 +--<
Isemaphore #1 1 1
+-------------+ 1
Isemaphore #2 1<-----------+
+-------------+ 1
1 1 I
= = 1

+-------------+
Isemaphore #311
+-------------+
Isemaphore #321
+-------------+ byte 255

1

1
I
1
1
+--<

Entry layout
+--------------+
lIst byte 1
+- -+
1 2nd byte 1
+- -+
1 1
= =
1
+- -+
17th byte 1
+- -+
18th byte 1
+--------------+

For Rev B/H drives, the semaphore table is initialized to
blanks only when the firmware is rewritten or when an Initialize
Semaphore Table command is received. For Omnidrives and Banks,
the semaphore table is initialized at power up or when an
Initialize Semaphore Table command is received.

Performance considerations when using semaphores

For Rev B/H drives, a semaphore operation causes 2 disk
reads, and 0 or 1 disk writes. First the semaphore block must be
read from the firmware area. If the Lock or Unlock is
successful, then the semaphore table must be written back to the
disk. Finally, the dispatcher code must be reloaded from the
firmware area.

For Omnidrives and Banks, a semaphore operation causes no
disk I/O, as the semaphore table is maintained in the controller
RAM. The table is not saved when the device is powered off.

1.6 Pipes

Pipes provide synchronized access to a reserved area of the
disk. Any computer can use the pipes commands to read or write
data to the pipes area at any time, and not worry about
conflicting with another computer's read or write to the pipes
area. See chapter 6 for examples of how to use pipes.

Mass Storage Systems GTI 1-18

Pipes

The pipe commands are listed below:

Pipe Open for Write
Pipe Open for Read
Pipe Write
Pipe Read
Pipe Close
Pipe Purge
Pipe Status
Pipe Area Initialize

The pipes area must be initialized before any other pipe
commands are used.

The Pipe Area Initialize command specifies the pipe area
starting block number and the length in number of blocks. Note
that the block size is 512 bytes for the Bank as well as the
Omnidrive and Rev B/H drives. The pipes area must be entirely
within the first 32k blocks of the tape or disk; the starting
block number plus the number of blocks must be less than 32k.
The Pipe Area Initialize command does not actually write
anything to the pipes area, other than the pipes tables.

The normal sequence of events in using the pipes area is as
fOllows:

One host opens the pipe for write. It then uses Pipe Write
commands to write blocks to the pipe. When it has written all
the data, it uses the Pipe Close command to close the pipe.

Later on, either the same host or some other host issues a
Pipe Open for Read command. It uses Pipe Read commands to read
data from the pipe. When done reading, it issues a Pipe Close
command. If the pipe is empty (i.e., all of the data has been
read), it is deleted. If data is still remaining, the host can
open the pipe again later to finish reading the data.

Each time a pipe is opened for write, a new pipe is created.
When a Pipe Open for Read command is received, the lowest
numbered closed pipe with the specified name is opened.

The Pipe Purge command can be used to purge any unwanted
pipes.

The Pipe status command is used to view the state of the
internally managed pipe tables.

Mass Storage Systems GTI 1-19

(

Command Name:

Command Length:
Result Length:

Command

Pipe Open for Write

10 bytes
12 bytes

Pipes

--
Offset/Len, Type' Description
--

0/1 , BYTE , command code - 1Bh
--

1/1 , BYTE , 80h
--

2/8 , BSTR , pipe name

Result

Offset/Len! Type' Description

0/1 ! BYTE I disk result

1/1 ! BYTE I pipe result

2/1 I BYTE I pipe number (1-62)

3/1 I FLAG I pipe state - see below

4/8 , ARRY I unused (no meaning)

Mass Storage Systems GTI 1-20

Command Name: Pipe Open for Read

Command Length:
Result Length:

Command

10 bytes
12 bytes

Pipes

--
Offset/Len, Type I Description

0/1 I BYTE I command code - IBh
--

1/1 I BYTE , COh
--

2/8 , BSTR , pipe name

Result

Offset/Len' Type' Description

0/1 , BYTE , disk result

1/1 , BYTE , pipe result

2/1 , BYTE , pipe number (1-62)
--

3/1 I FLAG , pipe state - see below
--

4/8 , ARRY I unused (no meaning)

Mass Storage Systems GTI 1-21

(

Command Name: Pipe Read

Command Length:
Result Length:

Command

5 bytes
516 bytes

Pipes

--
Offset/Len I Type I Description

0/1 I BYTE I command code - 1Ah

1/1 I BYTE I 20h

2/1 I BYTE I pipe number

3/2 I FWRD I data length - OOh, 02h (512 bytes)

Result

Offset/Len I Type I Description

0/1 I BYTE I disk result

1/1 I BYTE I pipe result

2/2 I FWRD I number of bytes read - OOh, 02h (512 bytes)

4 / 512 I ARRY I data

Mass Storage Systems GTI 1-22

Command Name:

Comman d Len g th :
Result Length:

Command

Pipe Write

517 bytes
12 bytes

Offset/Len I Type I Description

Pipes

--
0/1 I BYTE I command code - lAh

--
1/1 I BYTE I 21h

--
2/1 I BYTE I pipe number

3/2 I FWRD I data length - OOh, 02h (512 bytes)

5 / 512 I ARRY I data to be written

Result

Offset/Len I Type I Description

0/1 I BYTE I disk result
---~--------

1/1 I BYTE I pipe result

2/2 I FWRD I number of bytes written - OOh, 02h (512 bytes)

4/8 I ARRY I unused (no meaning)

Mass Storage Systems GTI 1-23

..

Command Name: Pipe Close, Pipe Purge

Command Length:
Result Length:

Command

5 bytes
2 bytes

Pipes

--
Offset/Len' Type' Description
--~-------

0/1 , BYTE , command code - 1Ah
--

1/1 I BYTE , 40h

2/1 , BYTE , pipe number

3/1 , BYTE , FEh - close write
, , FDh - close read
, , OOh - purge

4/1 , BYTE' don't care - use OOh

Result

Offset/Len I Type' Description

0/1 , BYTE , disk result

1/1 , BYTE , pipe result

Mass Storage Systems GTI 1-24

Command Name:

Command Length:
Result Length:

Command

Pipe Status

5 bytes
513 bytes

Pipes

--
Offset/Len' Type' Description
--

0/1 , BYTE I command code - lAh
--

1/1 , BYTE , 41h
--

2/1 , BYTE , Olh - Pipe Name table
, I 02h - Pipe Pointer table

--
3/2 , ARRY , don't care - use OOh

--
Result
--
Offset/Len, Type' Description

0/1 , BYTE , disk result
--

1 / 512 , ARRY , contents of specified table
--

Mass Storage Systems GTI 1-25

c

Command Name: Pipe Status

Command Length:
Result Length:

Command

5 bytes
1025 bytes

Pipes

--
Offset/Len! Type! Description

0/1 ! BYTE ! command code - lAh

1 / 1 I BYTE ! 41h
--

2 / 1 ! BYTE I OOh

3/2 I ARRY I don't care - use OOh

Result

Offset/Len! Type I Description

0/1 I BYTE I disk result

1 / 512 I ARRY I contents of Pipe Name table

513 / 512 I ARRY I contents of Pipe Pointer table

This is the only command which returns more than 530 bytes. If
you are using a general purpose command buffer for sending device
commands, you may wish to use the version of the Pipe Status
command which returns either the Pipe Name table or the Pipe
Pointer table, so that you do not have to declare a 1025-byte
buffer.

Mass Storage Systems GTI 1-26

Command Name: pipe Area Initialize

Command Length:
Result Length:

Command

10 bytes
2 bytes

Pipes

--
Offset/Len I Type I Description
--

0/1 , BYTE I command code - lBh

1 / 1 'BYTE I AOh
--

2 / 2 I FWRO , starting block number

4/2 , FWRO , length in blocks

6/4 , ARRY , don't care - use OOh

Result
--
Offset/Len' Type I Description

0/1 , BYTE I disk result

1/1 I BYTE , pipe result

Starting block number + Length in blocks must be less than 32k.

Pipe state flag (returned on Pipe Open)

Bit t

bit 7
bit 1
bit 0

Pipe results

Value

0 OOh
B OBh
9 09h

10 OAb
11 OBh
12 OCh
13 OOh
14 OEh
15 OFh

Meaning

l=contains data / O=empty
l=open for read
l=open for write

Meaning

No error.
Tried to read an empty pipe.
Pipe not open for read or write.
Tried to write to a full pipe.
Tried to open an open pipe.
Pipe does not exist.
Pipe buffer full.
Illegal pipe command.
pipes area not initialized.

Mass Storage Systems GTI 1-27

i

Pipes

Implementation details for pipes

Internally, the pipes area is managed by two tables: a Pipe
Name Table and a Pipe Pointer Table. These tables are stored in
different areas on the various disk devices; see appendix A. The
host can retrieve these tables by sending a pipe Status command.

The Pipe Name Table contains 64 entries of 8 bytes each. The
first and last names in the table are reserved for system use.
The first name is WOOFWOOF and the last name is FOOWFOOW. An
entry of all blanks (20h) indicates an unused entry.

The format of the Pipe Name Table is shown below:

+------------+ byte 0
pipe number 0 1 WOOFWOOF 1

+------------+ byte 8
pipe number I 1 1

= =
pipe number 621 1

+------------+ byte 504
pipe number 631 FOOWFOOW I

+------------+

\ The Pipe Pointer Table also contains space for 64 entries of

(

8 bytes each, each entry being formatted as shown below:

Rev BIB Omnidrive/Bank
+------------------+ +------------------+
I pipe number I byte 0 I pipe number I
+------------------+ +------------------+
I starting (msb) I byte 1 I starting (0) I
+- -+ +- -+
I byte I I block (msb) I
+- -+ +- -+
I address (lsb) I I address (lsb) I
+------------------+ +------------------+ I ending (msb) I byte 4 I ending (0) I
+- -+ +- -+
I byte I I block (msb) I
+- -+ +- -+
I address (lsb) I I address (lsb) I
+------------------+ +------------------+
I pipe state I byte 7 I pipe state I
+------------------+ +------------------+

While the format of the Pipe Pointer table on the disk is
different for the Rev BIB drives than it is for Omnidrive and
Bank, the table returned by the pipe Status command always has
the Rev BIB format. That is, the Omnidrive and Bank convert the

Mass Storage Systems GTI 1-28

Pipes

disk format to the Rev BIB format for the Pipe status command.

Pipe number (byte 0) is an index into the Pipe Name Table. A
pipe number of 0 indicates the first entry in the Pipe Name
Table, and a pipe number of 63 indicates the last entry in the
Pipe Name table.

. Entries in the Pipe Pointer Table are ordered by starting
address. Unlike the Pipe Name table, where unused entries are
interspersed with used entries, all of the unused entries in the
Pipe Pointer table occur at the end of the table. The entry with
pipe number 63 marks the end of the used entries.

For the Rev BIB drives, the starting and ending byte
addresses are absolute disk byte addresses. Each should be
divided by 512 to get an absolute block address.

The Pipe State is a flag which is interpreted as shown below:

bit i Meaning
----- -------
bit 7 l=contains data I O=empty
bit 1 l=open for read
bit 0 l=open for write

The first entry in the Pipe Pointer Table always looks like
the following, which corresponds to the WOOFWOOF entry in the
Pipe Name Table:

Rev BIB
+------------------+
I pipe number = 0 I byte 0
+------------------+
I starting byte I byte 1 +- -+
I address of pipes I
+- -+
I area I
+------------------+
I starting byte I byte 4
+- +
I address of pipes I
+- -+
I area + 1024 I
+------------------+
I pipe state = BOh I byte 7
+------------------+

Mass Storage Systems GTI

Omnidrive/Bank
+------------------+
I pipe number = 0 I
+------------------+
I starting block I +- -+
I address of pipes I
+- -+
I area I
+------------------+
I same as bytes I
+- +
I 1 through 3 I
+- -+
I I
+------------------+
I pipe state = BOh I
+------------------+

1-29

Pipes

The last entry in the Pipe Pointer Table always looks like
the following, which corresponds to the FOOWFOOW entry in the
Pipe Name Table):

Rev B/B
+------------------+
I pipe number = 63 I byte 0
+------------------+
I ending byte I byte 1
+- -+
I address of pipes I
+- -+
I area I
+------------------+
I same as bytes I byte 4
+- +
I 1 through 3 I
+- -+
I I
+------------------+
I pipe state = BOh I byte 7
+------------------+

Ornnidrive/Bank
+------------------+
I pipe number = 63 I
+------------------+ I ending block -- I
+- -+
I address of pipes I
+- -+
I area I
+------------------+
I same as bytes I
+- +
I 1 through 3 I
+- -+
I I
+------------------+
I pipe state = BOh I
+------------------+

Whenever a Pipe Area Initialize command is received, the
pipes tables are initialized with the entries for pipes 0 and
63 shown above, and all other entries unused. The pipes area can
be deleted by rewriting the firmware.

Mass Storage Systems GTI 1-30

Pipes

The following example shows a typical state of the pipe
tables. It shows 3 existing pipes, two called PRINTER and one
called FASTLP.

Pipe Pointer table offset pipe Name table
+---------------------+ +-----------------+
I entry for pipe 0 I 0 I WOOFWOOF I
+---------------------+ +-----------------+
I entry for pipe 1 I 1 I PRINTER I --
+---------------------+ +-----------------+
I entry for pipe 6 I 2 I FASTLP I
+---------------------+ +-----------------+
I entry for pipe 2 I 3 I blanks I
+---------------------+ +-----------------+
I entry for pipe 63 I 4 I blanks I
+---------------------+ +-----------------+
I O's I 5 I blanks I
+---------------------+ +-----------------+
I O's I 6 I PRINTER I
+---------------------+ +-----------------+
I I I I
= = = =

I I
+---------------------+ +-----------------+
I O's I 63 I FOOWFOOW I
+---------------------+ +-----------------+

Individual pipe disk space allocation

The pipes area consists of used space and holes (unused
space). There are two kinds of holes:

Active hole -- a contiguous area of unused pipe space
bounded on the low address end by an open for writing pipe.

= =
I I
+-----------------+
I open for I
I writing I
I pipe I
+-----------------+
I active I the open ~ipe in front of the hole
I hole I can grow 1nto this region.
+-----------------+
I pipe I
= =

Mass Storage systems GTI 1-31

Pipes

Inactive hole -- a contiguous area of unused pipe space
bounded on the low address end by the end of a closed
pipe or the end of an open for reading pipe.

= =

+-----------------+
I open for I
I reading or I
I closed pipe I
+-----------------+
I inactive I
I hole I
+-----------------+
I pipe I
= =

the pipe in front of the hole
cannot grow.

New pipe allocations are made by examining all the holes in
the pipe area. The allocator looks for the larger of: (1) the
largest inactive hole or (2) half the size of the largest active
hole. A new pipe starts at the beginning of an inactive hole or
at the midpoint of an active hole. All pipes grow in the same
direction, by increasing address.

When an open for writing pipe hits the end of a hole (that
is, it bumps into an existing pipe), the error code, tried to
write to a full pipe (OAb), is returned. This can happen even if
there is space remaining in other holes.

Performance considerations when using pipes

On a Rev B/H drive, a Pipe Write results in 2 disk reads, and
2 disk writes. First, the pipes code is overlayed into the
controller RAM; then the data is written and the pipe Pointer
Table rewritten; finally, the dispatcher code is reloaded. A
Pipe Read is similar, only there are 3 disk reads and I disk
write. Since the controller code is located in the firmware
area, and the pipes area is in the user area of the drive, a pipe
operation can cause considerable head movement.

For Omnidrives and Banks, the pipes controller code is loaded
at power-on time, and does not have to be swapped in and out.
Also, the Pipe Name Table and the Pipe Pointer Table are located
in the firmware area. For the Omnidrive, the tables are written
back to the drive only when a pipe is closed, so a Pipe Read is 1
disk read operation, and a Pipe Write is 1 disk write operation.
For the Bank, the pipe tables are only written to the media when
the Bank is ready to turn off the motor (see section titled
Changing Bank tapes later in this chapter).

Mass Storage Systems GTI 1-32

Active user table

1.7 Active User Table

The Active User Table is used by Corvus applications software
to keep track of the active devices on the network. At any
given time, it should contain a list of those users who are
connected to the network. See the section titled Active user
table in Chapter 2 for more explanation.

The Bank does not support the Active User Table.

There are six commands supported:

AddActive
DeleteActiveUsr
DeleteActiveNumber (Omnidrive only)
FindActive
ReadTempBlock
WriteTempBlock

The AddActive command adds a user to the table. The host
specifies the user name, the Omninet address, and the device
type. See Appendix B for a list of device types.

The DeleteActiveUsr command deletes a user from the table.
Note that the command code for DeleteActiveUsr is different
for the Rev BIB drives than it is for the Omnidrive.

The DeleteActiveNumber command deletes all users with the
specified Omninet address from the table (Omnidrive only).

The FindActive command returns the Omninet address and the
device type of the user with the specified name.

The ReadTempBlock command can be used to read the entire
Active User Table, and the WriteTempBlock can be used to
initialize the Active User Table.

Mass Storage Systems GTI 1-33

/ ,

(~

Command Name:

Command Length:
Result Length:

Command

Add Active

18 bytes
2 bytes

Active user table

--
Offset/Len' Type' Description
--~-------

0/1 , BYTE , command code - 34h
--

1/1 , BYTE , 03h
--

2 / 10 'BSTR' name

12 / 1 , BYTE" host Omninet address
-------------------~--------------------------------------

13 / 1 , BYTE , host device type

14 / 4 , ARRY , unused - use O's

Result

Offset/Len, Type' Description

0/1 , BYTE , disk result

1/1 , BYTE , table result

Mass Storage Systems GTI 1-34

Active user table

Command Name: Delete Active User (Rev B/H drives only)

Command Length:
Result Length:

Command

18 bytes
2 bytes

--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - 34h
--

1/1 I BYTE I OOh

2 / 10 I BSTR I name

12 / 6 I ARRY I unused - use O's
--
Result

Offset/Len I Type I Description
--

0/1 I BYTE I disk result

1/1 I BYTE I table result

Mass Storage Systems GTI 1-35

(

Active user table

Command Name: Delete Active User (Omnidrive only)

Command Length:
Result Length:

Command

18 bytes
2 bytes

--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - 34h
--

1/1 I BYTE I 01h

2 / 10 I BSTR I name

12 / 6 I ARRY I unused - use O's

Result

Offset/Len I Type I Description

0/1 I BYTE I disk result

1/1 I BYTE I table result

Mass Storage Systems GTI 1-36

Active user table

Command Name: Delete Active Number (Omnidrive only)

Command Length:
Result Length:

Command

18 bytes
2 bytes

--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - 34h
--

1/1 I BYTE , OOh
--

2 / 10 'ARRY I unused - use O's
--

12 /1 I BYTE I host Omninet address
--

13 / 5 , ARRY , unused - use O's
--
Result

Offset/Len, Type I Description
--

0/1 I BYTE , disk result
--

1/1 , BYTE , table result
--

Mass Storage Systems GTI 1-37

Active user table

~ . Command Name: Find Active
• Command Length: 18 bytes

Result Length: 17 bytes

Command
--
Offset/Len I Type I Description

0/1 I BYTE I command code - 34h
--

1/1 I BYTE I OSh

2 / 10 I BSTR I name

12 / 6 I ARRY I unused - use O's

Result

Offset/Len I Type I Description

0/1 I BYTE I disk result

1/1 I BYTE I first byte of name, or table result

2/9 I BSTR I remaining bytes of name

11 / 1 I BYTE I host Omninet address

12 / 1 I BYTE I host device type

13 / 4 I ARRY I unused

(

Mass Storage Systems GTI 1-38

Active user table

Command Name: Read Temp Block

Command Length:
Result Length:

Command

2 bytes
513 bytes

--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - C4h
--

1/1 I BYTE I block number - 0 to 6 for Rev B/B,
I I 0 to 3 for Omnidrive

--
Result

Offset/Len I Type I Description

0/1 I BYTE I disk result
--

1 / 512 I ARRY I contents of block

Command Name: write Temp Block

Command Length: 514 bytes
Result Length: 1 bytes

Command
--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - B4h

1/1 I BYTE I block number - 0 to 6 for Rev B/B,
I I 0 to 3 for Omnidrive

2 / 512 I ARRY I data to be written

Result

Offset/Len I Type I Description
--

0/1 I BYTE I disk result

Mass Storage Systems GTI 1-39

t

(

Table results

Value

o
1
2
3

Meaning

Ok.
No room to add.
Duplicate name.
User not found.

Implementation details for the Active User Table

Active user table

The Active User Table implementation is similar to
semaphores, in that an unused entry is indicated by blanks. When
an AddActive command is received, the controller searches the
table for an entry with a matching name. If one is found, the
entry is overwritten with the new data, and a table result of
duplicate name (2) is returned. If no matching entry is found,
the first entry with blanks is overwritten with the specified
data, and a status of Ok (0) is returned.

For DelectActiveUsr, the first entry with a matching name is
overwritten with blanks. For DeleteActiveNumber, all entries
with matching Omninet addresses are overwritten with blanks.

The table consists of four blocks, located in the firmware
area. The blocks are numbered 0 to 3. Each table entry is 16
bytes long, as shown below:

Mass Storage Systems GTI 1-40

Active user table

Table layout
+----------------+ block 0
I entry'l I
+----------------+
I I

=
I
+----------------+
I entry 132 I
+----------------+ block 1
I entry .33 I
+----------------+
I I

+--<
I
I
I
I
I
I
I

= = <----------+
= = I
I I I
+----------------+ block 3 I
I entry '97 I I
+----------------+ I
I I I
= = I

+--<
+----------------+
I entry 1128 I
+----------------+

Entry layout
+---------------+
I name I byte
+- -+
I I --
= =
I I +- -+
I I byte
+---------------+
IOmninet address/ byte
+---------------+
I device type I byte
+---------------+
I unused I byte
= (0' s) =
I byte
+---------------+

Omninet address is 0 to 63. Device types are listed in
Appendix B.

0

9

10

11

12

15

The normal initialization of the Active User table is
described in the section titled ACsiye USe€ tabtg in Chapter 2.
The table can also be initialized y rewr~ ~ng e firmware, or
by issuing Write Temp Block commands.

Mass Storage Systems GTI 1-41

\
'---

c

Boot commands

1.8 Booting

There are two commands which provide a boot function. The
purpose of these commands is to provide a machine independent
means of booting a host computer.

The first boot command, called the Boot command (14h),
was Corvus' first attempt to provide a boot function. The Boot
command was not flexible enough, so a second boot command, the
Read Boot Block command (44h), was added.

The first Boot command is used by Corvus to support Apple II
computers and Corvus Concept computers. The Read Boot Block
command is used to support all other computers. Each computer is
assigned a computer number by Corvus. See Appendix B for a list
of the currently assigned computer numbers.

Both boot commands return a block of 512 bytes to the host
computer. This block normally contains boot code for the
computer, but can be used for whatever the particular computer
requires.

In order to use the boot commands, an application program
must be written which sets up the data structures used by the
boot commands. Corvus provides such an application program,
called BOOTMGR, with its Constellation II software. Refer to
the manual titled Constellation Software General Technical
Information for more information on how Corvus software uses the
boot commands.

Command Name:

Command Length:
Result Length:

Command

Boot

2 bytes
513 bytes

Offset/Len I Type I Description
--

0/1 I BYTE I command code - 14h

1/1 I BYTE I boot block number (0-7)

Result

Offset/Len I Type I Description
--

0/1 I BYTE I disk result

1 / 512 I ARRY I contents of block

Mass Storage Systems GTI 1-42

B·)ot cornman ds

Command Name: Read Boot Block

Command Length:
Result Length:

Command

3 bytes
513 bytes

--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - 44h
--

1/1 I BYTE I computer number (See Appendix B)

2/1 I BYTE I block number

Result

Offset/Len I Type I Description

0/1 I BYTE I disk result*

1 / 512 I BYTE I contents of block

* If the disk result = FFh, the block could not be found.

Implementation details

For the Boot command, the boot blocks are located in the
firmware area (see Appendix A for exact locations). Blocks 0
through 3 contain 6502 code for the Apple II, and blocks 4
through 7 contain 68000 code for the Corvus Concept. These
blocks are included in the firmware files distributed by Corvus.

For the Read Boot Block command, the following data
structures are used:

Block 8, bytes 36 - 39 contain the absolute block address of
the Corvus volume. The Boot Table is located 6 blocks past this
location. The format of the Boot Table is described below:

Mass Storage Systems GTI 1-43

Boot commands

= =

+-----------------+
I entry .255 I
+-----------------+

block 0

+-<
I

<-----------+
I +-<

block 1

Entry format
+-----------------+
I address (msb) I
+- -+
I address (lsb) I
+-----------------+

The address is a relative block address which is added to
the Boot Table address. The result is the block number of the
Oth block of boot code. The block number specified in the Read
Boot Block command is added to this result to get the absolute
block address of the data to be returned. Thus, the block
address of the data returned is computed as follows:

+ boot code address + boot block #

byte 0

byte 1

Boot Table address
(contents of block 8,
bytes 36-39, + 6)

(from Boot Table) (from Read Boot
Block command)

1.9 Drive parameters

The Get Drive Parameters command can be used by application
programs to find out the user-accessible size of the drive
(device capacity) and other device specific information.
The format given differs slightly from that used for other
commands: the first page shows the information that is returned
from all devices and the second page shows the device specific
information.

Mass Storage Systems GTI 1-44

Drive parameters

Command Name: Get drive parameters

Command Length:
Result Length:

Command

2 bytes
129 bytes

--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - 10h
--

1/1 I BYTE I drive number (starts at 1)
--
Result
--
Offset/Len I Type I Description

0/1 I BYTE I disk result

1 / 32 I BSTR I firmware message
--

33 / 1 I BYTE I ROM version
--

34 / 4 I ARRY I track information (see below)
--

38 / 3 I FAD3 I capacity in 512 byte blocks
--

41 / 16 I ARRY I unused (no meaning)

57 / 1

58 / 12
70 / 6
76 / 14
90 / 16

106 / 1

107 / 3

110 / 1

III / 6

117 / 2

I BYTE I interleave factor

ARRY Table information (see below)
MUX parameters
pipes information
virtual drive table
LSI-II information

I BYTE I physical drive number

I FAD3 I capacity of physical drive

I BYTE I drive type (see below)

I ARRY I tape information (see below)

I WORD I media id (see below)

119 / 1 I BYTE I maximum number of bad tracks (see below)

120 / 8 I ARRY I unused (no meaning)

Mass Storage systems GTI 1-45

Drive parameters

The table below shows the meanings of the status bytes that
are different for the various device types.

Offset/Len \ Type \ Rev B/H Drives \ Omnidrive , Bank

35 / 1 'BYTE' sectors/track ,sectors/track' sectors/track
--, (lsb,msb)

36 / 1 'BYTE' tracks/cylinder 'tracks/cylinder ,--

37 / 2 I FWRD I cylinders/drive , cylinders/drive' tracks/tape

58 / 12 I ARRY I MOX parameters , unused I unused

70 / 2 , FWRD , pipe name tbl ptr I pipe area ptr 'pipe area ptr

72 / 2 , FWRD I pipe pointer tbl 'pipe area size I pipe area size
I 'ptr , ,

74 / 2 I FWRD , pipe area size , unused

76 / 14 lARRY' Virtual drive tbl I unused

90 / 8

98 / 8

110 / 1

III / 3

114 / 2
116 / 1

117 / 2

119 / 2

, ARRY I LSI-II VDO table I unused

I ARRY I LSI-II spared tbl I unused

I BYTE I un used

FAD3

FWRD
FLAG

unused

unused
unused

, WORD I unused

I BYTE , unused
I I

I drive type

unused

unused
unused

I media id

I max • of bad
I tracks

I unused

I unused

I unused

I unused

I drive type (82H)

I*tape life (t of
I minutes)
I start/stop count
I fast track flag
, (=1 fast tracks OJ

I media id

I reserved
I

* The tape life is specified at 500 hours and 2000 start/stops

Mass Storage Systems GTI 1-46

Park command

1.10 Parking the heads

Rev B drives do not require parking of heads.

The Rev H and Omnidrives provide a firmware command that
allows a host to instruct a drive to park its heads in a landing
zone or cylinder. This command is used in preparing the drive
for shipping.

The landing (or parking) cylinder is a reserved cylinder for
Rev H drives; for Omnidrives, the landing cylinder is specified
in the disk parameter block of each drive. Some drives
automatically park the heads during power off; the landing
cylinder in this case is specified as OFFFFh. No actual movement
of the heads is performed when a park command is sent to one of
these drives.

The park command only positions the heads over the landing
cylinder; it does not turn off the motor. When the drive is
parked, it is offline to the network, and no host can communicate
with it. The drive stays parked until it is reset.

Command Name:

Command Length:
Result Length:

Command

Park the heads

514 bytes
1 bytes

Offset/Len I Type I Description

(Rev H Drive ONLY)

--
0/1 I BYTE I command code - Ilh

1/1 I BYTE I drive number (starts at 1)
--

2 / 11 I ARRY I all O's

13 / 2 I WORD I C3h, C3h

15 / 499 I ARRY I all O's

Result
--
Offset/Len I Type I Description

0/1 I BYTE I disk result

This is really a special Prep block.

Mass Storage Systems GTI 1-47

Park command

Command Name: Park the heads

Command Length:
Result Length:

Command

1 byte
1 byte

(Omnidrive ONLY)

--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - 80h

Result

Offset/Len I Type I Description

0/1 I BYTE I disk result

1.11 Changing Bank tapes or powering off the Bank

The Bank tape is continuously looping. While the motor is
on, the tape cannot be removed. If the tape is not accessed for
about 1 minute 15 seconds, the Bank goes into a "shut down" mode.
The controller flushes tape information back to the firmware
area, seeks to track 0, then turns off the motor. At this pOint,
the tape can be removed.

There is a reset switch on the Bank which can be used to
force the "shut down" sequence. However, this switch should
only be used when absolutely necessary.

1.12 Checking drive interface

The Echo command can be used to check the interface to the
drive. The host sends 512 bytes to the drive, and expects to
get the same 512 bytes back.

Mass Storage Systems GTI 1-48

Miscellaneous commands

Command Name: Echo

Command Length:
Result Length:

Command

513 bytes
513 bytes

(Omnidrive/Bank ONLY)

--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - F4h
--

1 / 512 I ARRY I data to be echoed
--
Result

Offset/Len I Type I Description

0/1 I BYTE I disk result

1 / 512 I ARRY I data from command vector

1.13 Prep mode

The host can put the drive into prep mode by sending a prep
command with 512 bytes of executable controller code. The
controller loads this code over the RAM-resident dispatcher whose
function is to interpret the command bytes sent to the
controller. Thus in effect, the prep block can be considered as
a specialized dispatcher. Some applications requiring direct
control of the hardware can utilize this feature (e.g., burn-in
program). The standard prep block shipped by Corvus supports the
following functions:

format the drive or tape
verify the drive (Rev B/B, Omnidrives only)
read from the firmware area
write to the firmware area

fill the drive with a pattern (Omnidrive only)

reformat a track (Bank only)
destructive verify a track (Bank only)
non-destructive verify a track (Bank only)

All prep blocks should support a reset function in order to
take the drive out of prep mode and back to the normal mode.
This is done through a reset command (command code = OOh) in prep
mode. Also, when the controller is put in prep mode, the front
panel LED's are set as a visual indication of this mode. For Rev
B/B drives, the FLT and ROY lights are turned off and the BSY

Mass Storage Systems GTI 1-49

Prep mode commands

f light is turned on. For Omnidrives and Banks, the opposite is
,~ tr ue; i. e., the FLT and RDY lights are turned on and the BSY

light is turned off.

Rev B/H drives can use only one prep block at a time (maximum
512 bytes of code). Omnidrives and Banks, however, use a maximum
of 4 prep blocks (2K of code). The first prep command puts the
drive into prep mode. Any additional prep command blocks are
loaded after the previous block. After the fourth block has been
received, any additional block is overlayed over the fourth one.

Prep blocks are hardware dependent. Prep blocks for Rev B/H
drives contain zeo code, whereas prep blocks for Omnidrives and
Banks contain 6801 code.

Command Name:

Command Length:
Result Length:

Command

Put drive in prep mode

514 bytes
1 byte

Offset/Len I Type I Description

0/1 I BYTE I command code - llh

1/1 I BYTE I drive number (starts at I)

2 / 512 I ARRY I prep block

Result

Offset/Len I Type I Description

0/1 I BYTE I disk result

Mass Storage Systems GTI 1-50

Prep mode commands

Command Name: Reset drive (take drive out of prep mode)

Command Length:
Result Length:

Command

1 bytes
1 byte

--
Offset/Len I Type I Description

0/1 I BYTE I command code - OOh
--
Result
--
Offset/Len I Type I Description

0/1 I BYTE I disk result

1.14 Format drive (Rev B/B, Omnidrive)

In prep mode using the Corvus prep block, the host can send a
format command to the controller. The controller lays down on
the media the sector format, and the data fields are filled with
whatever is specified by the Format command. Omnidrives use the
pattern FFFFh.

A Format command destroys ALL information on the drive,
including the firmware itself. The spared track table, the
virtual drive table, and the pipes tables, as well as the polling
parameters, interleave factor, read after write flag, etc., are
all destroyed by Format. You would not normally format a drive
until this information is written down, so that it may be
manually restored after formatting.

For Rev B/B drives, the controller refuses the Format
command if the Format switch (beneath the front panel LED'S,
second from right) is set to the left. You must set this switch
to the right in order to format the drive.

Drives shipped from Corvus have been formatted, burned-in,
bad tracks logged in the spare table, and the firmware written.
If you must format the drive, you should always verify the drive
after formatting, and spare any bad tracks found. See the
section titled Verity, later in this chapter, for more
information.

Mass Storage Systems GTI 1-51

~ ..

Format command

Command Name: Format drive (Rev B/B drives ONLY)
(drive in prep mode)

Command Length:
Result Length:

Command

n bytes
1 byte

--
Offset/Len/ Type I Description
--

0/1 I BYTE I command code - Olh
--

2 / n-l I ARRY I format pattern
--
Result

Offset/Len I Type I Description

0/1 I BYTE I disk result

The Corvus diagnostic programs send 513 bytes and use pattern
76h or E5h.

Command Name: Format drive (Omnidrives ONLY)
(drive in prep mode)

Command Length:
Result Length:

Command

1 byte
1 byte

--~---
Offset/Len I Type I Description

0/1 I BYTE I command code - Olh

Result

Offset/Len I Type I Description

0/1 I BYTE I disk result

Mass Storage Systems GTI 1-52

Format command

Command Name: Fill the drive (Omnidrives ONLY)
(drive in prep mode)

Command Length: 3 bytes
1 byte Result Length:

Command

Offset/Len I Type I Description

0/1 I BYTE I command code - Blh

1/2 I WORD I fill pattern

Result

Offset/Len I Type I Description

0/1 I BYTE I disk result

Note: The recommended fill pattern is B6D9h.

1.15 Format tape (Bank)

In prep mode using the Corvus prep blocks, the host can send
a tape format command to the Bank. With this command, the host
specifies whether fast tracks are to be used, the tape type
(100MB or 200MB), and the interleave factor to be used.

The interleave factor must be an odd number between 1 and 31.
The controller automatically increases by 1 any specified even
interleave. Any interleave greater than 31 is set to 31.

After receiving the format command (full tape format only),
the controller sends back a success status immediately to
acknowledge that the format command has been received. It then
turns off interrupts, thus taking the Bank offline. During this
time, no devices can communiate with the Bank. After formatting
the media, the controller fills the tape with a pattern (B6D9h).
It then attempts to verify the tape by reading all sectors. Any
bad sectors are spared automatically. The results of the format
are written to firmware block 2.

Any tracks reported as bad have more than 4 bad sectors, and
should not be used. If any bad tracks are reported, the tape
should either be discarded, or dummy volumes allocated over the
bad tracks. See the section titled Physical versus logical
addressing later in this chapter for more information on mapping
track numbers to block addresses.

Mass Storage systems GTI 1-53

Format command

The prep block also allows the host to send a command to
reformat one track. The tape is assumed to have been formatted,
so the controller uses the current interleave and tape
parameters. This feature is provided in case one track has
read-write problems and needs to be reformatted.

The command to reformat one track returns the number of bad
sectors on the track. If the number of bad sectors is greater
than 4, the track is bad. You should use the Get Drive-
Parameters command to check the tape life. Tapes are rated for
500 hours and 2000 start-stops. If either of these numbers is
exceeded, the tape should be discarded. Otherwise, you should
allocate a dummy volume over the bad track. See the section
titled Physical version logical addressing later in this chapter
for information on mapping track numbers to block addresses.

Mass Storage Systems GTI 1-54

Format command

Command Name: Format tape (Bank ONLY)

Command Length:
Result Length:

Command

(Bank in prep mode)

8 bytes
1 byte

--
Offset/Len I Type I Description
--

0/1 I BYTE , command code - Olh
--

1 / 1 'BYTE' 01h
--

2 / 3 'ARRY' unused - use O's

5/1 , FLAG , fast track flag (Olh = fast tracks on)

6/1 I BYTE I tape size (Olh = 200MB; OOh = 100MB)

7/1 , BYTE , interleave factor (odd number 1 to 31)

Result
------------------------------~---------------------------
Offset/Len, Type , Description
--

0/1 , BYTE , result

An even interleave factor is automatically increased by 1.
Interleave greater than 31 is set to 31.

The results are recorded in firmware block 2 in the following
format:

Offset/Len, Type' Description

0/1 , BYTE , result

1/1 , BYTE I bad track count (=n)

2 / 2*n , ARRY , bad track list (each entry is 1sb,msb)

Mass Storage Systems GTI 1-55

(-

Format command

Command Name: Reformat one track (Bank ONLY)
(Bank in prep mode)

Command Length:
Result Length:

Command

8 bytes
2 bytes

--
Offset/Len, Type' Description

0/1 , BYTE , command code - Olh

1/1 I BYTE 1 02h

2/2 , FWRD I track number to format

4/3 , ARRY , unused - use O's

Result

Offset/Len, Type' Description

0/1 , BYTE , result

1/1 I BYTE , number of bad sectors

Track number range is 0-100. The firmware track (track 1)
contains sparing information for the whole tape; if this track
is reformatted, the sparing information for the rest of the tape
will be lost.

1.16 Media verify (CRe)

The verify command is a prep mode command. For Rev B/B
drives, the verify is performed as follows: The controller reads
each sector on the disk. If it is unable to read a particular
sector, it tries again to read the sector. If it can read the
sector within 10 retries, it reports a soft error. If it cannot
read the sector, it rewrites the sector with the data it read,
which is probably bad, and reports a bad sector.

For Omnidrives, each sector is read only once, and a hard
error is reported if the sector is bad. The sector is not
rewritten.

Marginal sectors may be reported on one execution of the
Verify command, yet not show up on the next. Any sector which is
ever reported as bad should be spared. Each media has a maximum
number of tracks tha~ may be spared. If the Verify command
reports more than this number, the media is bad, and should not

Mass Storage Systems GTI 1-56

Verify command

be used.

A list of spared tracks should be maintained on paper near
the drive. Then if it is ever necessary to reformat the drive or
rewrite the entire firmware area, the appropriate tracks can be
respared.

A list of bad sectors is returned to the host. The sector
numbers are physical sector numbers, and are converted tQ_track
numbers with the following algorithm:

track • = [(cylinder t) * (number of heads) 1 + (head t)

Note that those sectors which are already spared may be
reported as bad.

For the Bank, the prep block provides two verify features: a
non-destructive verify and a destructive verify. These commands
work on one track at a time. The non-destructive track verify
reads all the sectors on the specified track and reports the
number of bad sectors found and the sector numbers of the first
four bad sectors. The destructive verify fills the track with
the input pattern (2 bytes) first and then verifies the track as
described for non-destructive verify.

See the section titled Physical versus logical addressins
later in this chapter for information on mapping track numbers to
block addresses.

Mass Storage Systems GTI 1-57

Verify command

Command Name: Verify drive (Omnidrive, Rev B/H ONLY)
(Drive in prep mode)

Command Length: 1 byte
Result Length: 2+4*n bytes

Command
--
Offset/Len, Type' Description
--

0/1 , BYTE , command code - 07h
--
Result

Offset/Len, Type' Description

0/1 , BYTE , result

1/1 , BYTE I number of bad sectors

2/4 lARRY' head, cylinder, sector of 1st bad sector

6/4 , ARRY I head, cylinder, sector of 2nd bad sector

n*4-2 / 4 , ARRY I head, cylinder, sector of nth bad sector

The 4 bytes per sector are interpreted follows:

Offset/Len, Type I Description

0/1 , BYTE , head number

1/2 , FWRD , cylinder number

3/1 , BYTE , sector number

Mass Storage Systems GTI 1-58

Verify command

Command Name: Non-destructive track verify (Bank ONLY)
(Bank in prep mode)

Command Length:
Result Length:

Command

6 bytes
10 bytes

--
Offset/Len I Type I Description
--

0/1 I BYTE I command code - 07h
--

1/1 I BYTE I 02h

2/2 I FWRD , track number

4/2 , ARRY , unused - use O's

Result

Offset/Len' Type I Description

0/1 I BYTE I result

1/1 I BYTE , number of bad sectors

2/2 I WORD I sector number of 1st bad sector
--

8/2 I WORD I sector number of 4th bad sector

The sector number is interpreted as msb = head number and lsb
= sector number. Since there are 256 sectors per section, this
value is also an absolute sector number.

Mass Storage Systems GTI 1-59

Verify command

Command Name: Destructive track verify (Bank ONLY)
(Bank in prep mode)

Command Length:
Result Length:

Command

6 bytes
10 bytes

--
Offset/Len I Type' Description
--

0/1 , BYTE I command code - 07h
--

1/1 , BYTE , Olh
--

2/2 I FWRD I track number

4/2 , WORD , fill pattern

Result

Offset/Len' Type I Description

0/1 , BYTE , result

1/1 I BYTE , number of bad sectors

2/2 I WORD , sector number of 1st bad sector

8/2 , WORD , sector number of 4th bad sector

The recommended fill pattern is B6D9h.

1.17 Track sparing

When the drive is formatted, it is filled with a pattern. A
burn-in can then be performed to find the marginal tracks. These
can be recorded in the firmware track sparing block to make them
invisible.

Each type of mechanism has a different number of spared
tracks allowed. This number is returned by the Get Drive
Parameters command to let the host know the maximum number of
tracks it can spare out. Rev B drives allow 7 spared tracks; Rev
H drives allow 31 spared tracks; Omnidrives allow from 7 to 64
spared tracks, depending on the drive type (see Appendix A).

Internally, the spared tracks are recorded in the firmware
area; see Appendix A for a complete description of the spared
track table. You should also maintain a list of the spared

Mass Storage Systems GTI 1-60

Track sparing

tracks on a piece of paper near the drive, so that if the
firmware is ever overwritten you can respare the proper tracks.

Tracks are spared by updating the firmware blocks containing
the spared track table. The Corvus Diagnostic program provides
this capability.

For Banks, when a tape is formatted, it is also verified and
all the bad sectors are logged in the firmware area. Each track
has four sectors reserved for use as spared tracks.

Since only four sectors are reserved, any track with five or
more bad sectors should not be used. The firmware has no
capability to skip these tracks. Therefore it is recommended
that the tape be discarded or dummy volumes be located over this
track. A dummy Constellation volume can be allocated to this
track to skip it. See the next section for information on
converting sector numbers to block numbers.

1.18 Physical versus logical addressing

The physical layout of each media is shown below.

Rev B/H Omnidrives B~k

Firmware
User area
Unused

tracks 0 - (m-l)
tracks m - n
tracks n+l - z

tracks 0 - 3
tracks 4 - n
tracks n+l - z

track 1
tracks 2 - z

where m = (# of heads/drive) * 2 (see Appendix A)

z = total number of tracks - 1

x = maximum number of spared tracks allowed

n = z - x + number of tracks currently spared

The unused area is used up as tracks are spared.
Track 0 on the Bank is reserved for a l~ding area.

For Rev B/H drives ~d Omnidrives, the drive is viewed as a
series of consecutive physical tracks, where a track is
identified by a head number and a cylinder number (head number
varies fastest). Logical tracks are mapped onto the physical
tracks one-to-one, skipping over spared tracks and the firmware
area. A typical layout of a hypothetical drive is shown below.
This example assumes a 4 track firmware area, 120 tracks total,
with 16 maximum spared tracks allowed. The drive has 4 heads and
20 sectors per track. Two tracks, tracks 34 and 67, are spared:

Mass Storage systems GTI 1-61

\,

Physical versus logical addressing

Physical Head, Cyl Logical

+---------------+ +---------------+
I track ° I 0,0 I firmware area I

firmware area = = = =
v

user
area

v
,.

reserved
for spared
tracks

v

track 3 I 3,0 I I
+---------------+ +---------------+
I track 4 I 0,1 I track 0 I
+---------------+ +---------------+
I track 5 I 1,1 I track 1 I

= = =
I track 33 I 1,8 track 29
+---------------+ +---------------+
I track 34 I 2,8 I spared track I
+---------------+ +---------------+
I track 35 I 3,8 I track 30 I
+---------------+ +---------------+
I I I I
= = = =
+---------------+ +---------------+
I track 67 I 3,16 I spared track I
+---------------+ +---------------+
= = = =

track 103 I 3,25 track 97 I
+---------------+ +---------------+
I track 104 I 0,26 I track 98 I
+---------------+ +---------------+
I track 105 I 1,26 I track 99 I
= = +---------------+
I track 119 I 3,29 .- unused =
+---------------+ +---------------+

When a track is spared, the user data following the spared
track is still there, but is no longer accessible, since the data
is now located at a different logical address.

The algorithm for converting block numbers to physical sector
numbers would be as shown below, if it were not for the firmware
area and spared tracks. The real algorithm is explained
immediately following the simplified form.

sector • =
track t =
bead • =
cylinder •

(block I) modulo (sectors per
(block I) div (sectors per

(track #) modulo (number of
= (track t) div (number of

track)
track)
heads)
heads)

Note that the track number is a temporary result and is not a
directly addressable entity in the drive1 a given block is
addressed physically by sector number, head number and cylinder
number.

The real algorithm for converting block numbers to physical
sector numbers is shown below:

Mass Storage Systems GTI 1-62

Physical versus logical addressing

sector • = (block I) modulo (sectors per track)
logical track # = (block #) div (sectors per track)
physical' track # = (logical track I) plus (firmware

area offset)
physical track # = (physical' track I) plus (one for

every spared track preceding).
head' = (physical track I) modulo (number of heads)
cylinder' = (physical track I) div (number of heads)

Continuing with the example given above, let's convert block
number 1308 to a physical sector address.

sector • = 1308 mod 20 = 8
logical track I = 1308 div 20 = 65
physical' track # =65 + 4 = 69

Tracks 34 and 67 are spared, so add 2
physical track # = 69 + 2 = 71
head • = 71 mod 4 = 1
cylinder • = 71 div 4 = 17

Alternatively, suppose you have run the Verify Drive command,
and it reported a bad track at head 2, cylinder 12, sector 10~
You want to compute the range of blocks that the bad sector lies
within. You must apply the above algorithm in reverse:

physical track • = 2 + (12*4) = 50
Track 34 is already spared, so subtract 1

physical track 1'= 50 - 1 = 49
logical track I = 49 - 4 = 45
starting sector • = 45 * 20 = 900
ending sector • = 900 + 20 - 1 = 919

Thus, the bad sector lies somewhere between sector 900 and
sector 919. You must apply the interleave factor (see next
section) to determine exactly which sector is bad.

For Banks, the tape is viewed as a series of tracks numbered
o to 100. Each track consists of a number of sections; a 200MB
tape has 8 sections per track, while a 100MB tape has 4 sections
per track. Each section contains 256 sectors, and a sector
contains 1024 bytes. On 'a Bank tape, each track has four sectors
reserved for sparing, so a given block number always falls within
the same track. The track number of the track in which a given
block is located is computed as follows:

sector • = (block I) div 2
logical track # = (sector I) div (sectors per track)
physical track • = logical track I + 2

To compute which blocks lie within a given track, use the
following algorithm:

Mass Storage Systems GTI 1-63

.r.["

Physical versus logical addressing

(sectors per track - 4) * 2 blocks per track =
starting block • =
ending block. =

(track # - 2) * (blocks per track)
(starting block #) + (blocks per track) - 1

Thus, if track 17 is reported as bad (more that 4 bad sectors)
by the Track verify command, you compute the bad blocks as
follows (assuming a 200MB tape):

blocks per track = (2048 - 4) * 2
starting block. = (17-2) * 4090
ending block. = 81350 + 4090 - 1

= 4090
= 81350
= 85439

In order to "spare" the track, you should allocate an unused
volume starting at block 81350 that is 4090 blocks in length.

1.19 Interleave

Interleaving provides a way of improving disk performance on
reading sequential sectors. The interleave factor specifies the
distance between logical sectors within a given track. For
example, if we assume 20 sectors per track, an interleave factor
of 1 specifies that the sectors are numbered logically 1 to 20.
An interleave factor of 2 specifies that the sectors are numbered
1, 11, 2, 12, ••• , 10, 20. An interleave factor of 5 specifies
that the sectors are numbered 1, 5, 9, 13, 17, 2, 6, 10, 14, 18,
3 •••

As you can see, the interleave factor specifies how far apart
sequential sectors are located. If the interleave factor is
optimal, a sequential read operation is able to read more than
one sector per disk revolution. Note that different interleave
factors are optimal for different applications. You will have to
decide if changing the interleaye factor will significantly
enhance the speed of one application without penalizing other
users of the drive.

The interleave is specified in the drive information block of
the firmware area. When the firmware is first updated, it uses
the standard interleave specified in the firmware file. Legal
values are given below:

min max default
Rev B/H 1 19 9
Omnidrive 1 17 9
Bank 1 31 11

Interleave for the Bank must be odd.

If the media has information recorded, a change of interleave
effectively scrambles the information. Changing the interleave
back to the old value restores all information. When the
interleave is changed, the sparing information is preserved since

Mass storage Systems GTI 1-64

Interleave

it is physical track information. Also, the firmware blocks are
not interleaved.

The interleave is changed by updating the firmware block
containing it. This capability is provided in the Corvus
Diagnostic program.

1.20 Read-write firmware area

Each mass storage device has a designated firmware area which
is not accessible to normal read-write commands, and is not
counted in reporting the usable blocks on the drive. To access
this area, the host must put the drive in prep mode and send
firmware read-write commands. There is no interleaving performed
on the firmware area, nor may this area have any bad sectors.

For Rev BIB drives, the firmware file currently consists of
40 blocks. (Some old firmware files were 60 blocks.) The
firmware file occupies the first 2 tracks of cylinder 0; a
duplicate firmware file is located in the first 2 tracks of
cylinder 1. The remaining tracks of the first 2 cylinders are
unused. The user area starts at cylinder 2.

The read-write firmware commands require a head and sector as
the address, rather than a block number. Firmware blocks 0 - 19
are head 0, sectors 0 - 19, and blocks 20 - 39 are head 1,
sectors 0 - 19.

For Omnidrives, the firmware file consists of 36 blocks, thus
occupying two entire tracks. A total of four tracks are reserved
on the media so that a duplicate copy of the firmware can be
maintained. The user area starts at track 4.

The firmware blocks are numbered from 0 to 35. The
read-write firmware commands require a block number as the
address. Note that this is different from the Rev BIB drives
where a physical head and sector are specified instead.

For the Bank, track 1 of the tape has the first 38 sectors
designated as the firmware area; only the first 512 bytes of each
physical sector are used. The first three sectors contain
identical information and are called the boot blocks (triple
redundancy for safety). The firmware blocks are numbered 0 to
35, and a block number is used as the address for the firmware
read-write commands.

Mass Storage Systems GTI 1-65

c

Read-write firmware

Command Name: Read a block of Corvus firmware (Rev B/H ONLY)
(Drive in prep mode)

Command Length:
Result Length:

Command

2 bytes
513 bytes

--
Offset/Len! Type! Description
--

0/1 I BYTE I command code - 32h
--

1/1 I BYTE , head (3 bits), sector (5 bits)
--
Result

Offset/Len! Type' Description

0/1 I BYTE , result

1 / 512 , ARRY , contents of specified firmware block

Command Name: Write a block of Corvus firmware (Rev B/H ONLY)
(Drive in prep mode)

Command Length: 514 bytes
1 byte Result Length:

Command

Offset/Len' Type' Description

0/1 I BYTE , command code - 33h

1/1 I BYTE , head (3 bits), sector (5 bits)

2 / 512 I ARRY I data to be written

Result

Offset/Len' Type I Description

0/1 I BYTE I result
--

Mass Storage Systems GTI 1-66

Read-write firmware

Command Name: Read a block of Corvus firmware (Omnidrive/Bank)
(Drive in prep mode)

Command Length:
Result Length:

Command

2 bytes
513 bytes

--
Offset/Len' Type , Description
--

0/1 , BYTE , command code - 32h
--

1/1 , BYTE , block number
--
Result
--
Offset/Len' Type , Description
--

0/1 , BYTE , result

1 / 512 , ARRY , contents of specified firmware block
--

Command Name: Write a block of Corvus firmware (Omnidrive/Bank)
(Drive in prep mode)

Command Length: 514 bytes
1 byte Result Length:

Command

Offset/Len, Type' Description

0/1 , BYTE , command code - 33h

1/1 , BYTE , block number

2 / 512 , ARRY , data to be written

Result

Offset/Len, Type' Description

0/1 , BYTE , result

Mass Storage Systems GTI 1-67

(

Virtual drive table

1.21 Virtual drive table (Rev BIB drives)

The Virtual Drive Table was implemented to avoid rewriting
drivers which had a 16MB addressing limitation.

The controller maintains a table of virtual drives in the
firmware area. This 14 byte table provides for the definition of
up to 7 virtual (logical) drives per physical drive. The format
for the virtual drive table is shown below:

+--------------------+
I track offset (lsb) I +- of 1st virtual -+
I drive (msb) I
+--------------------+
I track offset (lsb) I +- of 2nd virtual -+
I drive (msb) I
+--------------------+
I I
+
I

-+
I

+--------------------+
I track offset (lsb) I
+- of 7th virtual -+
I drive (msb) I
+--------------------+

An entry with a track offset equal to FFFFh indicates the
absence of the corresponding virtual drive.

The track offset is a logical track number, and is simply
multiplied by the number of sectors per track to obtain a block
offset. When a drive number is specified in a Read-Write
command, the controller examines its virtual drive table. If an
entry exists for that drive, the track offset is multiplied by 20
(the number of sectors per track), and the result is added to the
address.

For instance, on a 20MB Rev B drive, which has a user
capacity of 38460 blocks, the Constellation I Apple software
creates a virtual drive table with 0 as the entry for the first
drive, and 947 as the entry for the second drive. Virtual drive
1 consists of blocks a to 18939, and virtual drive 2 consists of
blocks 18940 (20*947) to 38459.

The controller does not check whether an address exceeds the
capacity of a virtual drive. I.e., if virtual drive 2 starts at
track 100 (address 2000 on a Rev BIB drive), then block 2010 can
be addressed as drive 1, block 2010, or as drive 2, block 10.
This allows hosts that do not need the artificial disk division
to share the same disk with those that do.

Mass Storage Systems GTI 1-68

Virtual drive table

The Virtual Drive Table is updated by editing the firmware
block containing it. The Corvus Diagnostic program provides
this capability.

The settings used by Corvus for Apple II Constellation I
systems are listed below:

Drive
Total
blocks

Rev B 20MB 38460
DOS only
Pascal/Basics

Rev B 20MB 35960
DOS only
Pascal/Basics

Drive 2
offset

976
947

911
896

1.22 Constellation parameters

Drive 1
blocks

19520
18940

18220
17920

Dr~ve 2
blocks --

18940
19520

17640
17940

The Constellation parameters are used when a Rev B/B drive
is connected to a master MUX, and the MUX switch (second from
left under the front panel LED's) is set to the right. The
parameters specify what kind of host is connected to each slot in
the MUX; a host cannot communicate with the drive if this table
is not set up properly. Note that the table must be set up /,
BEFORE the MUX is installed. c/

The format of the table is shown below:

Mass Storage Systems GTI 1-69

(
\

('

Constellation paramters

The slots on the MUX are numbered as shown below:

5 4
6 3
7 2
8 1

X

where the flat cable connects at X.

Valid slot values are shown below:

Values

o
1
2

128

Meaning

Nothing
MUX
LSI-II
Computer

Each slot value is set to I (MUX) by default. It is
possible to have a computer connected to a slot with a value of
1; and it is possible to have a MUX connected to a slot with a
value of 128; however, this is not recommended because
performance of the network suffers.

The meaning of each polling parameter is given below:

The

poll param 1: Time scale factor for timing out on a
host. This is the total time the MUX
will stay at one slot, regardless of the
number of transactions completed. This
prevents a user from hogging the network.

poll param 2: Time scale factor for timing out on a
potential host. This determines how
long the multiplexer waits for the first
request at a particular slot.

poll param 3: The maximum number of transactions that
will be accepted from a host before the
multiplexer switches to the next slot.

poll param 4: unused

default values for the polling parameters are:

poll param 1: 180
poll param 2: 16
poll param 3 : 32
poll param 4: 0

Mass Storage Systems GTI 1-70

Constellation paramters

The Constellation parameters are updated by editing the
firmware block containing them. The Corvus' Diagnostic program
provides this capability.

Mass Storage Systems GTI 1-71

../

Omninet Protocols

Chapter 2: Omninet protocols

This chapter describes the Omninet functions of the
Omnidrive, Bank, and disk server for Rev B/H drives. It
describes how disk commands are sent over Omninet.

A brief review of the Omninet General Technical Information
Manual, chapter 3, will help you understand the material_
presented here. In that manual, the Omninet command vectors used
to send and receive messages are described. The two commands
that are relevant t.o this discussion are repeated below:

Send Message
Command vector
--
Offset/Len' Type' Description

0/1 I BYTE I Command code = 40h

1/3 I ADR3 , Result record address

4/1 , BYTE , Destination socket

S / 3 , ADR3 I Data address

8/2 , WORD , Data length

10 / 1 , BYTE I User control length
--

11 / 1 I BYTE , Destination host
--
Result record

Offset/Len I Type' Description

0/1 BYTE Return code - values are:
00-7Fh - message sent successfully
80h - message not acknowledged
8lh - message too long
82h - message sent to unitialized socket
83h - control length mismatch
84h - invalid socket number
8Sh - invalid destination address

1/3 I BYTE I Unused

4 / n I ARRY I User control information

Mass Storage Systems GTI 2-1

Omninet Protocols

Setup Receive Message
Command vector
--
Offset/Len, Type' Description
--

0/1 , BYTE , Command code = FOh
--

1/3 I ADR3 , Result record address
--

4/1 I BYTE I Socket number
--

S / 3 I ADR3 , Data address
---------------------------~----------------------------a / 2 I WORD , Data length
--

10 / 1 I BYTE I User control length

Result record

Offset/Len I Type I Description

0/1

1/1

2/2

4 / n

BYTE Return
FFh
FEh
a4h
aSh
OOh

code - values are:
- initial value (set by user)
- socket set up succesfully
- invalid socket number
- socket already set up
- message received

, BYTE , Source host

I WORD I Data length

lARRY , User control information

Any message exchange on Omninet consists of setting up a
receive socket with a Setup Receive command, sending the message
with a Send command, and waiting for the reply to be received.
You always need at least 4 buffers for this task:

1) a command vector
2) a data buffer
3) a result record for the Setup Receive message,
4) a result record for the Send message.

You can use two separate command vectors: one for Setup Receive
and one for Send, but you don't have to. You can also use
separate data buffers. You MUST use separate result records.

The disk servers on Omninet currently provide two functions:
the execution of disk commands, and a name service. In the
future, they and other servers, developed by Corvus or other

Mass Storage Systems GTI 2-2

/ '

,
!

Omninet Protocols

software developers, will provide many more services. In order
for a server to distinguish which service is being requested,
Corvus has defined a message format which includes a protocol
identifier (protocol 10) as the first 2 bytes of each message.
This protocol 10 identifies what type of service is being
requested or provided. For more information on protocol IDs,
refer to the Omninet Protocol Book.

2.1 COnstellation Disk Server Protocols

The Disk Server Protocol is used to exchange commands and
data between Corvus disk devices on Omninet and the host
computers which they support. The disk commands were defined in
Chapter 1. The Disk Server Protocol defines the format of
Omninet messages which contain disk commands, data, and control
information. It also describes the mechanism for exchanging
those messages. In general, the Disk Server Protocol is a two
way conversation between a client and a server. The server is
usually a Corvus disk device and the client is usually a personal
computer. It is possible for a personal computer to run a
program which enables it to act as a Corvus disk device. Corvus
OmniShare for the IBM-PC, and Corvus DisketteShare for the
Apple II, are two examples of such a program.

The Disk Server Protocol is a transaction based protocol; in
other words, for each message sent, a reply is expected.
There are two basic types of transactions: short commands and
long commands. Short commands (4 bytes or less) involve the
exchange of two messages, while long commands require four
messages to complete a transaction. A disk read is a short
command and a disk write is a long command.

The general message exchange for data transfer is shown in
Figure 2.1. For a short command, the Disk Request message
contains the first four or fewer bytes of the command, and the
Results message contains the results of the command. For a long
command, the Disk Request message contains the first four bytes
of the command. After sending the Disk Request message, the host
waits for a Go message from the server. After receiving the Go
message, the host sends the remaining bytes of the command with a
Last message. The server finally sends the results of the
command with the Results message.

Mass Storage Systems GTI 2-3

Omninet Protocols

Short command Long command

Client Server Client Server

Disk Request Disk Request
0---------------------------) 0---------------------------)

Results Go
<---------------------------0 <--------------------~~-----o

Last
0--------------------------->

Results
<---------------------------0

Figure 2.1: Message exchange for Disk Server Protocol

There are two versions of Disk Server Protocol: old and new.
These are described in detail in sections 2.2 and 2.3. The new
protocol follows the protocol guidelines established in the
Ornninet Protocol Book, supports more operations than the old, and
uses different sockets. The operations supported are listed
below:

old new originator
Disk request (send disk command) X x client
Last (remainder of disk command) x x client
Abort request x client
Go x x server
Results (of disk command) x x server
Cancel request x server
Restart request x server

An example is probably in order. Let's look at the process
of sending both a short and long command. This example uses the
Old Disk Server protocol. You may wish to refer ahead to
section 2.2 for further explanation of the message contents.

Example of a short command:

We will use the Read a Sector (S12-byte sector) command to
read sector 0 from drive 1 on server 1. Recall that this
command is 4 bytes long: command code is 32h, and the sector
address is Olh, OOh, OOh.

Mass Storage Systems GTI 2-4

'<: •• ~~

"'--

sending a short command

First, we must issue a Setup Receive command to the
transporter. The fields marked with - will contain the
indicated data upon receipt of the Results message.

Command vector Receive Result Record
+----------------------+ +------)+--------------------+
'command code = FOh, I , return code = FFh I
+----------------------+ I +--------------------+

result .1---+' - (source address) , +- -+ +---------------~~---+
I record , I - (user data , +- -+ +- -+
, address I I - length) ,
+----------------------+ --+--------------------+--
Isocket number = BOh, I - (user control ,
+----------------------+ +- -+ I user 1---+ I - information) I
+- -+ I +- -+
I data I I I I
+- -+ I +--------------------+
I address , I
+----------------------+ ,
I user data 02h, I User data buffer
+- -+ +------)+--------------------+
I length = 512 OOh I I - (512 bytes of I
+----------------------+ +- -+
Icontrol len = 03h I I - data) I
+----------------------+ = =

I -
+--------------------+

Mass Storage Systems GTI 2-5

sending a short command

When the return code field in the Receive Result Record
changes to FEh, the socket has been successfully set up. We
can now proceed to send the Disk Request message.

Command vector Send Result Record
+----------------------+ +------>+--------------------+
Icommand code = 40h I I 1 return code = FFh 1
+----------------------+ 1 +--------------------+
1 result 1---+ 1 unused 1
+- -+ +- -+
1 record 1 1 1
+- -+ +- -+
1 address 1 1 1
+----------------------+ --+--------------------+--
Isocket number = BOh 1 1 send length OOh 1
+----------------------+ +- -+
1 user 1---+ 1 length = 4 04h I
+- -+ 1 +--------------------+
1 data 1 1 1 receive 02h I
+- -+ 1 +- -+
1 address 1 1 1 length = 512 OOh I
+----------------------+1 +--------------------+
I user data OOh I 1
+- -+ 1
I length = 4 04h 1 1 User data buffer
+----------------------+ +------>+--------------------+
Icontrol len = 04h 1 I read 32h 1
+----------------------+ +- -+
Idestination = Olh I I command Olh I
+----------------------+ +- -+

I OOh 1
+- -+
I OOh 1
+--------------------+

Mass Storage Systems GTI 2-6

(

c

Sending a short command

When the return code field of the Send Result Record changes
to less than 80h, the message has been successfully sent.
Now you must wait for the return code field of the Receive
Result Record to change to OOh, indicating that a message has
been received. If there are no errors, the Receive Result
Record and the User Data Buffer will look like this:

Receive Result Record
+---------------~~---+
I return code = OOh I
+--------------------+
I source addr = Olh I
+--------------------+
I user data 02h I
+- -+
I length = 512 OOh I

--+--------------------+--
I length of 02h I +- -+
I response=5l3 Olh I
+--------------------+
I disk rslt OOh I
+--------------------+

User data buffer
+--------------------+
I contents of disk I
+- -+
I sector 0, 512 I
=
I bytes I
+--------------------+

Example of a long command:

We will use the Write a Sector (5l2-byte sector) to write
sector 0 to drive 1 on server 1. Recall that this command is
516 bytes long: command code is 33h, and the sector address
is Olh, OOh, OOh, followed by 512 bytes of data.

Mass Storage Systems GTI 2-7

Sending a long command

First, we must set up a socket to recevie the Go message.
fields marked with - will contain the indicated data upon
receipt of the Go message.

Command vector Receive Result Record
+----------------------+ +------)+--------------------+
'command code = FOh, , , return code = FFh ,
+----------------------+, +--------------------+
, result 1---+' - (source addre~_s) 1
+- -+ +-----~--------------+
, record , , - (user data ,
+- -+ +- -+
, address 1 ,- length) 1

+----------------------+ +--------------------+
Isocket number = BOh,
+----------------------+ 1 user 1---+ +- -+ 1 User data buffer
1 data 1 +------)+--------------------+ +- -+ 1 - (2 bytes of data) 1
, address 1 +- -+
+----------------------+ , - 1
1 user data OOh I = =
+- -+
1 length = 2 02h 1 +--------------------+ +----------------------+
Icontrol len = OOh 1

+----------------------+

Mass Storage Systems GTI

The

2-8

Sending a long command

When the return code field in the Receive Result Record
changes to FEh, the socket has been successfully set up. We
can now proceed to send the Disk Request message.

Command vector Send Result Record
+----------------------+ +------)+--------------------+
1 command code = 40h 1 1 1 return code = FFh 1
+----------------------+ 1 +--------------------+

result 1---+ 1 unused 1 +- -+ +- -+
1 record 1 1 1 +- -+ +- -+
1 address 1 1 1
+----------------------+ --+--------------------+--
Isocket number = BOh 1 I send 02h 1
+----------------------+ +- -+
1 user 1---+ 1 length = 516 02h 1
+- -+ I +--------------------+
I data 1 1 1 receive OOh I +- -+ I +- -+
I address I I 1 length = 0 OOh I
+----------------------+ 1 +--------------------+
1 user data OOh I ,
+- -+ 1
, length = 4 04h 1 I User data buffer
+----------------------+ +------)+--------------------+
,control len = 04h, , 1st four 33h ,
+----------------------+ +- -+
'destination = Olh, , bytes of Olh ,
+----------------------+ +- -+

1 write OOh ,
+- -+
, command OOh ,
+--------------------+

Mass Storage Systems GTI 2-9

Sending a long command

When the return code field of the Send Result Record changes
to less than BOh, the message has been successfully sent.
Now you must wait for the return code field of the Receive
Result Record to change to OOh, indicating that a message has
been received. If there are no errors, the Receive Result
Record and the User Data Buffer will look like this:

Receive Result Record
+--------------------+
I return code = OOh I
+--------------------+
I source addr = Olh I
+--------------------+
I user data OOh I
+- -+
I length = 2 02h I
+--------------------+

User data buffer
+--------------------+
I 'G' 47h I
+- -+
I '0' 4Fh I
= =
I ,
+--------------------+

Mass Storage Systems GTI 2-10

Sending a long command

After the Go message has been recevied, we are ready to send
the Last message, but first we must set up to receive the
Results message. There will be no user data received, since
the Write command returns only a disk return code, but we
will specify a data buffer anyway.

Command vector Receive Result Record
+----------------------+ +------>+--------------------+
1 command code = FOh 1 1 1 ret urn code = _FFh 1
+----------------------+ 1 +--------------------+ I res u1 t 1---+ I - (source address) 1
+- -+ +--------------------+
1 record 1 1 - (user data 1 +- -+ +- -+
1 address 1 1 - length) 1
+----------------------+ --+--------------------+--
1 socket number = BOh I 1 - (user control 1
+----------------------+ +- -+
I user 1---+' - information) , +- -+, +- -+
, data I I I I
+- -+ I +--------------------+
I address , I
+----------------------+ I
I user data 02h I I User data buffer
+- -+ +------>+--------------------+
, length = 512 OOh I' I
+----------------------+ +- -+
,control len = 03h,' ,
+----------------------+ = =

+--------------------+

Mass Storage Systems GTI 2-11

sending a long command

When the return code field in the Receive Result Record
changes to FEh, the socket has been successfully set up. We
can now proceed to send the Last message. Note that the
socket number is AOh.

Command vector Send Result Record
+----------------------+ +------)+--------------------+
Icommand code = 40h 1 1 1 return code = FFh 1
+--------.--------------+ 1 +-------------------+
1 result 1---+ 1 unused 1 +- -+ +- -+
1 record 1 1 1 +- -+ +- -+
1 address 1 1 I
+----------------------+ +--------------------+
Isocket number = AOh 1

+----------------------+ 1 user 1---+ +- -+ 1 User data buffer
1 data 1 +------)+--------------------+ +- -+ 1 512 bytes of data 1
1 address 1 +- -+
+----------------------+ 1 to be written 1
1 user data 02h 1 =
+- -+ 1
I length = 512 OOh 1 +--------------------+
+----------------------+
Icontrol len = OOh I
+----------------------+
Idestination = Olh 1

+----------------------+

Mass Storage systems GTI 2-12

(
(~

c

Sending a long command

When the return code field of the Send Result Record changes
to less than 80h, the message has been successfully sent.
Now you must wait for the return code field of the Receive
Result Record to change to DOh, indicating that a message has
been received. If there are no errors, the Receive Result
Record and the User Data Buffer will look like this:

Receive Result Record
+---------------~~---+
I return code = DOh I
+--------------------+
I source addr = Olh I
+--------------------+
I user data OOh I
+- -+
I length = 0 OOh I

--+--------------------+--
I length of OOh I +- -+
I response=l Olh I
+--------------------+
I disk rslt DOh I
+--------------------+

User data buffer
+--------------------+
I nothing I
+- -+
I I
=
I I
+--------------------+

For the example above, the sequence of message exchange using
the new protocol would be exactly the same; only the contents of
the User Control and the User Data buffers and the socket usage
would differ.

As you can see from the above example, the disk server
protocol uses the transporter's message splitting feature. The
disk server protocol always knows what packet is expected next,
so it can specify the user's buffer when it sets up a receive.
The control information always goes to a separate data area
managed by the driver. This feature cuts down on the amount of
data movement that must take place, by putting the command
results directly into the user's buffer.

The concept of short and long commands is used because of
limited buffer space in the disk server. The disk server is
capable of queuing one request for each network device. When it
is ready for the Last portion of the disk command, it sends the

Mass Storage Systems GTI 2-13

Sending a long command

Go message. The disk server emulates the Constellation
multiplexer in that once the server services a particular host,
it accepts up to 32 commands before going on to the next host.
See Chapter 3 for more information on disk server service times.

The Omnidrive and Bank controllers support both the old and
the new protocols, while the disk server for Rev BIB drives
supports only the old protocol. All the hosts on the network are
treated separately, i.e. the Omnidrive and Bank can sUPP9~t one
protocol for one host and a different protocol for another host.
The protocol to be used is derived from the type of Omninet
message format received by the controller. It will be used for
only that command.

2.2 Old Constellation Disk Server Protocol

(The Old Disk Server Protocol was written before the idea of
protocol IDs was finalized; therefore it does not abide by the
current protocol guidelines.)

Mass Storage Systems GTI 2-14

c

Old Disk Server Protocol

Name: Disk request Protocol ID: -

User Control Length: 4

User Data Length: 4 or less

Message Type: -

Socket usage: BOh

User Control Format:

Field Name 'Offset/Len I Type' Description

M 0/2 WORD , Number of bytes in command.
, If M>4, then this is a long
, command.

N 2/2 , WORD I Maximum number of return bytes,
, I excluding the disk return code.

User Data Format:

Field Name I Offset/Len I Type I Description

DATA o / n , First 4 or fewer bytes of
I disk command.

This message is used to send the first four bytes of a disk
command to the server.

If M > 4, then a Go message is expected next, otherwise a Results
message is expected.

Mass Storage Systems GTI 2-15

Old Disk Server Protocol

Name: Last Protocol ID: -

User Control Length: 0 Message type: -

User Data Length: depends on command Socket Usage: AOh

User Data Format:

Field Name \Offset/Lenl Type \ Description

DATA o / n I WORD \ M minus 4 bytes of disk command

The Last message is used to send the last M-4 bytes of a long
command to the server. This message is sent in response to a Go
message from the server. M is the M from the Disk Request
message.

If there are no errors, the next message from the server should
be the Results message.

This command is always sent to socket AOh.

Mass Storage Systems GTI 2-16

'''''----

(

Old Disk Server Protocol

Name: Go

User Control Length: 0

User Data Length: 2

User Data Format:

Protocol ID: -

Message type: -

Socket usage: BOh

Field Name I Offset/Len I Type I Description

GO 0/2 I WORD I 'GO' - 474Fh

The Go message is sent by the server in response to a Disk
Request message. It tells the client that the server is ready to
receive the Last message.

If the most significant bit of the first byte of the GO Field
(i.e., the 'G' byte) is on, the disk has been reset and the
operation should be restarted.

Mass Storage Systems GTI 2-17

Old Disk Server Protocol

Name: Results Protocol ID: -

User Control Length: 3 Message type: -

User Data Length: depends on command Socket Usage: BOh

User Control Format:

Field Name IOffset/Lenl Type I Description

NACTUAL I 0 / 2 I WORD I Number of bytes actually returned,
I I I including the disk return code

RET CODE I 2 / 1 I BYTE I Disk return code

User Data Format:

Field Name I Offset/Len I Type I Description

DATA o / n I ARRY I Results of disk command
I I (NACTUAL-l bytes).

This message contains the results of a disk command.

If the most significant bit of the first byte of the NACTUAL
field is on, the disk has been reset and the operation should be
restarted.

Mass Storage Systems GTI 2-18

{ ,
~

Old Disk Server Protocol

Name: Find a server

User Control Length:

User Data Length: 8

User Data Format:

0

bytes

Protocol ID: OlFEh

Message type: Olh

Socket usage: 80h

Field Name /Offset/Len/ Type / Description

PID 0/2 I WORD / Protocol ID I - OlFEh

MSGTYP 2/1 I BYTE / Message type - Olh

M / 3 / 2 / WORD / Length of command - OOOlh

N / 5 / 2 / WORD / Expected length of result - OOOOh

COMMAND 7/1 / BYTE /Illegal command code

This message is used to broadcast an illegal disk command. The
Disk server and the Omnidrive respond to this message with a
Results message; the Bank does not respond to this message.

Some host systems using this protocol broadcast an illegal disk
command during power on to find servers on the network. They try
to boot from the first server that replies. To prevent host
systems from booting from the Bank, the Bank controller ignores
the illegal command opcode FFh and does not return any status.
Other illegal commands are acknowledged.

Mass Storage Systems GTI 2-19

New disk server protocol

2.3 Rew Constellation disk server protocol

Disk servers with PROM versions DS8A.A or DSD18A do not
support the new disk server protocol.

Disk servers with PROM version DSD9BlD and later, Omnidrives,
and Banks support the old disk server protocol as well as the new
disk server protocol.

The new disk server protocol is similar to the old in basic
message exchange; that is, for a short command the client sends a
Disk Request message and expects a Results message; for a long
command, the client sends a Disk Request message, the server
replies with a Go message, the client sends a Last message, and
the server replies with a Results message. However, the new
protocol uses different sockets that the old, and includes more
information with each message. The new protocol also includes
three new messages: Abort, Cancel and Restart.

With the new disk server protocol, the client always sends
the Disk Request message to socket 80h of the server, and the
server always sends the Go message to socket 80h of the client.
For the Last and Results messages, the server and the client
respectively specify to which socket (AOh or BOh) to send the
message. All asynchronous messages (Cancel, Restart, and Abort)
are sent to socket 80h.

The new disk server protocol requires that a media ID be sent
along with each Disk Request. This is to prevent the case when
the media is swapped and the host unknowingly attempts to write
to the wrong tape. During power up, the controller generates a
random number to be used as the media ID of the tape. This
number is based on the value of the free running counter of the
6801 clocks; it is very random and has a value between O-OFFFFh.

The host can obtain the current media ID by issuing a Get
Drive Parameters command with a media ID of zero. A media ID of
zero is honored by the controller regardless of the current ID.
The current media ID is one the parameters returned by the Get
Drive Parameters command.

The controller broadcasts a Cancel message during power up to
inform all hosts on the network about a media change. If a host
does not receive or act upon the Cancel message, it will receive
a Wrong Media ID error message when it tries to access the tape.
The host can recover by reissuing a Get Drive Parameters command
with an ID of zero in order to obtain the new media ID number.

The new disk server protocol also requires that a request ID
be sent along with each disk command. This is done so that
either the disk server or the host can cancel, abort, or restart
a particular command. The request ID is selected by the host,
and can Simply be an integer which is incremented for each

Mass Storage Systems GTI 2-20

New disk server protocol

request.
{ o , Any Cancel, Restart, or Abort message includes a field which

indicates the reason for the abnormal condition. The possible
reason codes are summarized below:

Value

Olh

02h

03h

04h

OSh

Meaning

Timed out - either the disk server timed out
waiting for a Last message, or the host timed out
waiting for a Go or Results message. See chapter
3 for more information on timeouts.

Offline - the disk device is currently offline for
backup or reformatting.

Out of synch - the server has received a Last
message when it was not expecting one.

Wrong media - the MEDIAID in the Disk Request
message does not match the current media ID.

Rebooted - the server has just come online.

Mass Storage Systems GTI 2-21

New disk server protocol

Name: Disk request

User Control Length: 0

User Data Length: 18

User Data Format:

Protocol ID: OlFFh

Message Type: OOOlh

Socket Usage: 80h

Field Name IOffset/Lenl Type I Description

PID o / 2 I WORD I Protocol ID t - OlFFh

MSGTYP I 2 / 2 I WORD I Message type - OOOlh

RQSTID I 4 / 2 I WORD I Request ID

MEDIAID 6 / 2 I WORD I Media ID

RESHOST 8 / 1 I BYTE I Result host

RESSOCK I 9 / 1 I BYTE I Result socket - AOh or BOh

MilO / 2 I WORD I Number of bytes in command.
I I I If M>4, then this is a long
I I I command.

N 12 / 2 I WORD I Maximum number of return bytes,
I I excluding the disk return code.

DCMD 14 / 4 I ARRY I First 4 or fewer bytes of disk
I I command.

This mesage is used to send the first four bytes of a disk
command to the server. It tells the server to which host
(ResHost) and to which socket (ResSock) to send the reply.

The host selects the request ID. The media ID was established
during the first message exchange between the host and this
server. If the media ID does not match the server's current
media ID (because someone has switched Bank tapes, for example),
then the server will not respond to the Disk Request message,
but will send a Cancel message instead. The cancel message
includes the current media ID.

If M > 4, then a Go message is expected next, otherwise a
Results message is expected.

Mass Storage Systems GTI 2-22

New disk server protocol

Name: Last Protocol ID: OlFFh

User Control Length: 12 Message Type: 0002h

User Data Length: depends on command Socket Usage: AOh or BOh

User Control Format:

Field Name IOffset/Lenl Type I Description

PID o / 2 I WORD I Protocol ID t - OlFFh

MSGTYP 2 / 2 I WORD I Message type - 0002h

RQSTID 4 / 2 I WORD I Request ID

reserved I 6 / 2 I WORD I Reserved - use O's

reserved I 8 / 2 I WORD I Reserved - use O's

reserved I 10 / 2 I WORD I Reserved - use O's

User Data Format:

Field Name I Offset/Len I Type I Description

DATA o / n I ARRY I M minus 4 bytes of disk command

The Last message is used to send the last (M-4) bytes of a long
command to the server, where M is the M from the Disk Request
message. This message is sent in response to a Go message from
the server. Last messages are sent to socket AOh or BOh,
whichever was specified in the Go message.

If there are no errors, the next message from the server should
be the Results message.

Mass Storage Systems GTI 2-23

New disk server protocol

Name: Abort

User Control Length: 0

User Data Length: 8

User Data Format:

Protocol ID: OlFFh

Message Type: 0003h

Socket usage: BOh

---~-
Field Name I Offset/Len I Type I Description

PID I 0 / 2 I WORD I Protocol ID t - OlFFh

MSGTYP I 2 / 2 I WORD I Message type - 0003h

RQSTID

REASON

4 / 2 I WORD I Request ID

6/2 WORD Reason for abort:
Olh = timed out waiting for

disk server response

This message tells the server to abort request RQSTID. If the
RQSTID is 0 then abort any requests from this host.

Mass Storage Systems GTI 2-24

~. ,

..~

/

~
~

(

New disk server protocol

Name: Go Protocol ID: OlFFh

User Control Length: 0

User Data Length: a

Message Type: OlOOh

Socket Usage: aOh

User Data Format:

Field Name I Offset/Len I Type I Description

PID o / 2 I WORD I Protocol ID • - OlFFh

MSGTYP 2 / 2 I WORD I Message type - OlOOh

RQSTID 4 / 2 I WORD I Request ID

reserved I 6 / 1 I BYTE I Reserved - use 0

7 / 1 I BYTE I Socket number to which Last LASTSOCK I
I I I message should be sent (AOh or BOh)

The Go message is sent by the server in response to a Disk
Request message. It tells the client that the server is ready to
receive the Last message for request RQSTID.

Mass Storage Systems GTI 2-25

New disk server protocol

Name: Results Protocol ID: OlFFh

User Control Length: 12 Message Type: 0200h

User Data Length: depends on command Socket Usage: AOh or BOh

User Control Format:

Field Name 'Offset/Len, Type' Description

PID o / 2 'WORD' Protocol ID t - OlFFh

MSGTYP 2 / 2 I WORD , Message type - 0200h

RQSTID 4 / 2 'WORD I Request ID

NACTUAL 6 / 2 I WORD I Number of bytes acutally returned,
I , including the disk return code.

reserved I 8 / 1 'BYTE' Reserved - use 0

RET CODE 9 / 1 'BYTE' Disk return code

reserved, 10 / 2 'WORD' Reserved - use O's

User Data Format:

Field Name IOffset/Lenl Type' Description

DATA o / n 'ARRY' Results of disk command
I I (NACTUAL-l bytes)

This message contains the results of a disk command. It is sent
to socket AOh or BOh, whichever was specified in the Disk Request
message.

Mass Storage Systems GTI 2-26

/ "

f J

(

New disk server protocol

Name: Cancel

User Control Length: 0

User Data Length: 10

User Data Format:

Protocol ID: OlFFh

Message Type: 0300h

Socket Usage: SOh

---~~--

Field Name IOffset/Lenl Type I Description

PID o / 2 I WORD I Protocol ID t - OlFFh

MSGTYP 2 / 2 I WORD I Message type - 0300h

RQSTID

REASON

4 / 2 I WORD I Request ID

6/2 WORD Reason for cancel:
02h - disk device has gone

offline
04h - the MEDIAID in the Disk

Request message does not
match the current MEDIAID

MEDIAID S / 2 I WORD I Current Media ID

This is the server's mechanism for cancelling a request. RQSTID
identifies the request which was cancelled.

Mass Storage Systems GTI 2-27

New disk server protocol

Name: Restart

User Control Length: 0

User Data Length: 10

User Data Format:

Protocol ID: OlFFh

Message Type: FFOOh

Socket Usage: 80h

Field Name I Offset/Len I Type I Description

WD o / 2 I WORD I Protocol ID # - OlFFh

MSGTYP I 2 / 2 I WORD I Message type - FFOOh

RQSTID I 4 / 2 I WORD I Request ID

REASON 6/2 WORD Reason for restart:
OSh - server has been rebooted
03h - out of synch: a Last message

was received when one was not
expected.

Olh - timed out: Last message not
received after Go was sent

MEDIAID 8 / 2 I WORD I Current Media ID

This is the server's mechanism for telling the host to restart a
request. This tells the client to send request RQSTID again. If
RQSTID is zero then the client should restart any requests
pending to that server.

MEDIAID is the current media ID. If it does NOT match the
MEDIAID of the pending request, then the the media was changed
(e.g., changing a Bank tape) while the server was offline.

Mass Storage Systems GTI 2-28

Name lookup protocol

2.4 Constellation name lookup protocol

The Constellation name lookup protocol is used to identify
devices on the network by name. It is currently supported by
disk servers OSOISA, OS09BIO, and later, all Omnidrives, and all
Banks. It is NOT supported by disk server OSSA.A.

The messages are summarized below:

Hello
Goodbye
Who Are You
Where Are You
My 10 Is

The Hello and Goodbye messages are broadcast during power up
and power down respectively, to announce the presence or absence
of a device. The Who Are You and Where Are You messages can
either be broadcast or directed; a My 10 Is message is expected
in response.

Each device on the network can be identified by its name, its
Omninet address, or its device type. Using the name lookup
protocol, you can find the answers to such questions as, What are
the addresses of all the disk servers on the network? and What is
the address of the disk server named ROSERVER?

Each device is assigned one or more device types which are
used to identify the types of services it supports. There are
two kinds of device types: generic and specific. Generic device
types define a class of Omninet hosts, while specific device
types define a specific service. The currently assigned device
types are listed in Appendix B.

As always, there are a few exceptions to the rules; the
device types for disk devices are listed below. As you can see,
the disk server and the Bank each respond to only one device
type.

Rev BIH disk server
Omnidrive
Bank

Mass Storage Systems GTI

Generic
1
1

Specific
I
6
5

2-29

Name lookup protocol

For example, the following algorithm finds all (booting)
disk servers on the network:

~~.c.

~ 8Oh.~

t.:i"..k'f ... ,.it.l~
d dJ s/I,1:d..r11, .Pr~ t:

Figure 2.2a: Find all disk servers using directed messages

Mass Storage Systems GTI 2-30

Name lookup protocol

You could also use the following algorithm, but it is not
quite as reliable since it uses a broadcast command and timeouts:

y

Figure 2.2b: Find all disk servers using broadcast messages

Mass Storage Systems GTI 2-31

Name lookup protocol

The following algorithm is used to reply to Who Are You and
Where Are You messages:

1. Respond to all device types that apply.

2. If the device type is FFh, the device responds with its
most specific device type.

3. If the device type is generic, and it is one of the
generic types assigned to this device, then the device
responds with the same generic device type. For example,
if the Omnidrive receives a Who Are You, device type =
Olh, it replies with a My ID Is, device type = Olh.

4. If the device type is specific, then the device
responds with the same device type.

Mass Storage Systems GTI 2-32

~

• Ul
~

Name lookup protocol

Name: Hello Protocol ID: OlFEh

User Control Length: 0

User Data Length: 18

Message Type: OOOOh

Socket Usage: 80h

User Data Format:

Field Name 'Offset/Len I Type' Description

PID o / 2 'WORD' Protocol ID t - OlFEh

MSGTYP , 2 / 2 'WORD' Message type - OOOOh

SOURCE , 4 / 2 I WORD I Omninet address of device

DEVTYPE 6 / 2 I WORD , Device type

NME 8 / 10 I BSTR , Device name

This message should be broadcast whenever a host Rlogs ontoR the
network.

Whenever a disk server receives one of these messages, it adds
the device to its Active User Table. If DEVTYPE is 1,
indicating that the Hello message came from some other disk
server, then the receiving disk server sends back a My ID Is
message to the originator of the Hello message. See the
discussion of the Active User Table in the next section.

Mass Storage Systems GTI 2-33

Name lookup protocol

Name: Goodbye Protocol ID: OlFEh

User Control Length: 0

User Data Length: 18

Message Type: FFFFh

Socket Usage: 80h

User Data Format:

Field Name I Offset/Len I Type I Description

PID o / 2 I WORD I Protocol 1D t - OlFEh

MSGTYP 2 / 2 I WORD I Message type - FFFFh

SOURCE 4 / 2 I WORD I Omninet address of device

DEVTYPE 6 / 2 I WORD I Device type
--~--

NAME 8 / 10 I BSTR I Device name

This message should be broadcast whenever a host nlogs off n the
network.

Mass Storage Systems GTl 2-34

u

q

c

Name lookup protocol

Name: Who Are You Protocol ID: OlFEh

User Control Length: 0 Message Type: 0200h

Socket Usage: BOh User Data Length: B

User Data Format:

Field Name 'Offset/Len, Type' Description

PID o / 2 'WORD' Protocol ID t - OIFEh

MSGTYP 2 / 2 I WORD I Message type - 0200h

SOURCE 4 / 2 'WORD' Omninet address of deivce

DEVTYPE 6 / 2 I WORD I Device type

This message can be directed or broadcast. Only devices which
are assigned the specified DEVTYPE will respond. If DEVTYPE =
FFh, all devices will respond.

The expected response is a My ID Is message.

Mass Storage Systems GTI 2-35

Name lookup protocol

Name: Where Are You

User Control Length: 0

User Data Length: 18

User Data Format:

Protocol ID: 01FEh

Message Type: 0300h

Socket Usage: 80h

Field Name I Offset/Len I Type I Description

PID o / 2 I WORD I Protocol ID t - 01FEh

MSGTYP 2 / 2 I WORD I Message type - 0300h

SOURCE I 4 / 2 I WORD I Omninet address of device

DEVTYPE I 6 / 2 I WORD I Device type

NAME 8 / 10 I BSTR I Device name

This message is broadcast. Only devices with the specified name
and device type will respond.

The expected response is a My ID Is message.

Mass Storage Systems GTI 2-36

~

,
•
•

•
~

(

Name lookup protocol

Name: My ID Is

User Control Length: 0

Protocol ID: OlFEh

Message Type: 1000h

Socket Usage: 80h User Data Length: 18

User Data Format:

Field Name I Offset/Len I Type I Description

PID I 0 / 2 I WORD I Protocol ID t - OlFEh

MSGTYP I 2 / 2 I WORD I Message type - 1000h

SOURCE 4 / 2 I WORD I Omninet address of device

DEVTYPE 6 / 2 I WORD I Device type

NME 8 / 10 I BSTR I Device name

This message is sent in reponse to a Who Are You or a Where Are
You message.

Mass Storage Systems GTI 2-37

Active user table

2.5 Active User Table

It is not pratical to implement the Constellation name
protocol on all hosts, because the name lookup protocol requires
that a host respond to an asynchronous message. Not all
processors or operating systems support asynchronous events.
Therefore, Corvus provides a rudimentary name service with the
Active User Table. This contents of this table was described in
Chapter 1. The Active User Table commands are repeated below:

AddActive
DeleteActiveUsr
DeleteActiveNumber
FindActive
ReadTempBlock
WriteTempBlock

An Active User Table is maintained on each disk device on the
network. Whenever a disk device receives a Hello message, it
adds the user to its Active User Table with an AddActive command.
Similarly, whenever a disk device receives a Goodbye message, it
deletes the user with a DeleteActiveUsr command.

If all the hosts on the network broadcast a Hello message
on boot up, and broadcast a Goodbye message as part of the
shut-down procedure, then the Active User Table will usually
contain a list of which hosts are currently active on the
network.

However, since the Hello and Goodbye messages are normally
broadcast, it is possible that a disk device may miss a Hello or
Goodbye message, and that an Active User Table may not reflect
the actual state of the network. It is also possible, in a
multiple disk server network, that the Active User Table on one
disk device may not be the same as that on another disk device.

Each disk device is responsible for initializing its Active
User Table. Here is the sequence of events that occurs when a
disk server is powered on:

Mass Storage Systems GTI 2-38

~ ..

,
•
•

(

Active user table

1. The disk server broadcasts a Hello message with a
device 10 of 1.

2. If another server is present on the network, it will
add the new server to its Active User table, and send a My
10 Is message back to the new server.

3. If the new server receives a My 10 Is message, it
reads the Active User table from the server that sent the
message, and uses it to initialize its own table.

4. If the new server does not receive a My 10 Is message,
then there are no other disk servers on the network, so it
initializes its Active User table to blanks.

The Omnidrive goes through a process similar to the one
detailed above, with one difference. The Omnidrive broadcasts a
Hello message with a device 10 of 1, so that the old disk server
PROM will recognize it as a disk device. The Omnidrive then
broadcasts another Hello message with a device ID of 6, so that
the Active User Table will contain device 10 6 instead of 1.

Also for the sake of compatability, the Omnidrive replies to
a Hello message with a My ID Is message of device type 1. For
the Who Are You and Where Are You messages, the Omnidrive replies
with device type 6.

The Bank has an Omninet device type of S. This number is
used for the Hello message during power on and for response to
the Who Are You message. The Bank does not implement the Active
User Table.

Mass Storage Systems GTI 2-39

•

Disk drivers

Chapter 3: Outline of a disk driver CONFIDfrJilf'l
This chapter outlines a simple disk driver that interfaces to

any Corvus mass storage device. If -written properly, the same
Omninet driver can support a disk server, an Omnidrive, or a
Bank. A flat cable driver can support a Rev B/H drive directly,
or one connected via a MUX.

When writing a disk driver, you should remember that the
Corvus disk merely supports absolute disk sector reads-writes.
It knows nothing about which computers are connected to it, nor
whether it is connected over flat cable or Omninet. It knows
nothing about volumes or users or file systems. In a network
environment, the drive merely knows which command came from which
computer, so that it can send the reply to the proper computer.
Thus, a disk driver for a Corvus device resides at the BIOS level
of the operating system. This is different from other network
implementations, where references to the disk may be intercepted
at the file level.

A typical BIOS level interface for a disk driver has at least
three entry points: Driver Initialization, Device Read, and
Device Write. These are the only functions discussed here.

The Device Read and Write entry points generally have the
following parameters:

Device number: this number is used as an index into a
table of device characteristics, such as device type,
device location, device size, etc.

Sector number: this is the sector number to be read or
written. Disk devices consist of n sectors, numbered 0
to n-1.

Number of sectors: this is the number of sectors to be
read or written.

Buffer: this is the address of a buffer where the data is
to be read into or written from.

Result code: this value is returned. It either indicates
a successful operation, or indicates the nature of the
failure.

The Device Read portion of the driver sends a Corvus disk
Read Sector command, and returns the data in the user's buffer.
The Device Write portion sends a Write Sector command along with
the data in the user's buffer. The sector command used (128,
256, 512, or 1024 bytes) depends upon the sector size used by the
operating system. The examples below assume a 512 byte sector
size. Any information that depends on sector size is marked.

Mass Storage Systems GTI 3-1

Disk drivers

For the purposes of this chapter, it is assumed that the disk
driver treats the entire disk as one device. See the
Constellation Software General Technical Information Manual for
information on how a Constellation disk driver treats a disk as
more than one device.

There are several types of errors that the driver can
encounter: timeout errors (device does not respond), disk
errors (controller errors), hardware errors (Ornninet transporter
errors). Your driver must map these errors into the codes that
your operating system defines.

3.1 Ornninet

You may want to refer to the following manuals while reading
this section:

Omninet General Technical Information, Chapter 3, pages
31-38, which describes the Omninet commands Setup
Receive, Send, etc.

Chapter 2 of this manual, which describes the disk server
protocols.

Chapter 1 of this manual, which describes the sector read
and write commands.

The disk driver described here is simplified in two ways.
First, this description assumes that the disk driver is the only
user of the tranporter; that is, the disk driver expects to be
able to use the transporter at will and it throws away messages
it does not recognize. In reality, the transporter functions
should be handled by a transporter driver, and the disk driver
should calIon the transporter driver to do transporter
functions. Corvus is currently developing a specification of a
transporter driver and software which uses such a driver.

Secondly, the description of the disk driver given here
ignores whether the transporter is buffered or unbuffered. A
driver which handles a buffered transporter will naturally be
more complicated since it must manage the buffer space and move
data to and from user memory. Of course, if a transporter driver
existed which the disk driver could use, then the transporter
driver would handle the buffering, and the disk driver would not
have to worry about whether the transporter were buffered or not.
This is another reason for having a transporter driver.

However, as mentioned above, the driver described here
does not assume the existence of a transporter driver.

The driver is described by the data structures, flowcharts
and notes on the next few pages. The flowcharts cover how to

Mass Storage Systems GTI 3-2

• .. , '" r

Disk drivers

send short and long commands and describe timeout recovery
procedures. Many systems have no recourse when a timeout error
occurs. A driver written for one of these systems should
implement the timeout recovery described here, but instead of
reporting a timeout error, restart the operation from the
appropriate point.

Figure 3.1 reviews the flow of data for a read (short)
command, and for a write (long) command, and shows the areas
where timeouts can occur.

T
i?

1 ~

LOV'j er.rr1 I'I:M1.ll

f!M :, Dli..JL

c.ev..-p"irl"

T
T3 T
l~ IDS

1-----------..1
l~

Figure 3.1 Timeouts for short and long command exchanges

There are two types of events which would cause a driver to
time out: waiting for a response from the local transporter,
and waiting for a disk server response. These can be broken
down further as follows:

Transporter timeouts

TO: The time between a command strobe and the next ready.
Recommended timeout value: lOms.

Mass Storage Systems GTI 3-3

Disk drivers

Tl: The time between strobing a receive command and the
receive result changing from FFh to FEh. This is very
fast, ususally within 200 microseconds. However, an
incoming receive could happen during the processing of
the setup Receive, so the elapsed time could be
several milliseconds. Recommended timeout value:
10ms.

T2: The time between strobing a Send command and its
result changing. The result for a Send command does
not change until an acknowledgement is received or the
transporter gave up after sending 10 retransmissions.
This can produce a very long delay (in computer time),
since 11 transmissions are possible and the
transporter will accept messages for any receives
which are set up. Recommended timeout value: lOOms.

Disk Server timeouts (refer to figure 3.1)

T3: The time between the completion of the Send of the
Disk Request message and the receipt of the Results
or Go message. This interval could be as long as 3
minutes for a disk, and 11 hours for a Bank.
Recommended timeout value: see below.

T4: The time between the completion of the Send of the
Last message and the receipt of the Results message.
Recommended timeout value: 150ms for a disk, 20
seconds for a Bank.

The disk server itself will timeout between sending a Go
message and receiving the Last message. This timeout value is
768ms. This time is indicated in figure 3.1 by TDS.

Most systems do not use the transporter timeouts (TO, Tl, and
T2) since there is nothing they can do if the transporter is not
working reliably.

All systems must support the disk server timeouts (T3 and T4)
in order to work reliably in a multiple server environment. The
timeout value for T3 must be variable, since a 3 minute or 11
hour timeout is not practical.

The recommended approach to implementing the T3 timeout is to
use an adaptable timeout. Since different devices have
different timing characteristics, the timeout value must depend
upon the device type. Also, as more servers are added to a
network, the response times will lengthen. Therefore, the
timeout value must also adapt to the network environment.

The flow chart in figure 3.4 shows a very simple method for
adapting the timeout values. The timeout value should start out

Mass Storage Systems GTI 3-4

•

(

Disk drivers

relatively short (3 seconds for a disk, 20 seconds for a Bank) ,
and increase only when a long delay is encountered.

The Old Disk Server Protocol is described first, ant then the
New Disk Server Protocol is described.

Mass Storage Systems GTI 3-5

Old disk server protocol

; Sample data structures for a disk server driver using Old Disk
; Server Protocol
· ,
; First the data structure is declared, then a list of offsets
; into the structure are declared.
· , ; Transporter command vector (see Omninet GTI, pgs. 32,33)
· , · ,
· ,
TCmd

It is not necessary to have more than one command vector,
although it is sometimes more convenient to use separate
records which are preinitialized as Send and Setup receive
commands.

• BYTE 0 · OpCode - command code ,
• BYTE 0 · ResAdr - high order byte of result address ,
• WORD 0 · - low order word of result address ,
• BYTE 0 · Sock - socket number ,
• BYTE 0 ; DatAdr - high order byte of data address
.WORD 0 · - low order word of data address ,
.WORD 0 · DataLen - data length ,
• BYTE 0 · CrtlLen - user control length ,
• BYTE OFFh · Dest - destination host number ,

· offsets ,
OpCode .EQU 0 · offset to OpCode ,
ResAdr .EQU 1 · offset to ResAdr ,
Sock .EQU 4 · offset to socket number ,
DatAdr .EQU 5 · offset to DatAdr ,
DataLen.EQU 8 · offset to data length ,
CrtlLen.EQU 10 · offset to user control length ,
Dest .EQU 11 • offset to destination host number (Send only) ,

Mass Storage Systems GTI 3-6

"-

(

Old disk server protocol

; Sample data structures for a disk server driver using Old Disk
Server Protocol (cont.)

Result record definitions (see section 2.2) . , Every driver must have 2 separate result records, one for
; sends, and one for receives.

SndRes .BYTE 0
• BYTE 0
• WORD 0

SndUC • WORD 0
.WORD 0

RCode .EQU 0
M .EQU 0
N .EQU 2

RcvRes • BYTE 0
• BYTE 0
• WORD 0

RcvUC • WORD 0
• BYTE 0

Src .EQU I
Len .EQU 2
DLen .EQU 0
DCode .EQU 2
; . ,
; Data area buffers
;
GoData • BYTE OFFh

• BYTE OFFh

DCmd • WORD 0
• WORD 0

; Send result record
; transporter return code
; unused
; unused
; M - the number of data bytes to send to drive
; N - the maximum number of data bytes
; expected on receive

offsets
; offset to transporter return code
; offset to M
; offset to N

; Receive result record
; transporter return code
; Src - source host number
; Len - actual length of data received
; DLen - number of bytes actually returned from drive
; DCode - disk return code
; offsets
; offset to Src
; offset to Len
; offset to DLen
; offset to DCode

; this is where we receive the IGO I packet

space for the disk command

Mass Storage Systems GTI 3-7

Old disk server protocol

; Sample data structures for a disk server driver using Old Disk
; Server Protocol (cont.)
· ,
; DrvRet is a global variable in the driver which each routine

sets. It is the value that will be returned to the operating
system upon completion of the driver call.

· ,
· ,
;
DrvRet .BYTE 0 ; Driver return code

; DrvRet values:
· ,
• ,
• ,

The codes which are marked with an asterisk (*) are those
which may be returned to the caller of the driver. All
others are used internally. The codes which are marked with
a T are transporter return codes.

;
OkCode • EQU 0
GiveUp .EQU 128
TooLong.EQU 129
NoSock .EQU 130
BadHdr .EQU 131
SndErr .EQU 140
TOErrDS.EQU 252
TOErrTR.EQU 253

; *T
; T - gave up after n retries

T - message too long
; T - socket not initialized
; T - header length mismatch - should never happen
; * - unable to send messages to disk server
; - timed out waiting for disk server response
; * - timed out waiting for transporter

(hardware error)

; The following global variables are set on each read or
write, to the values specified for the device. · ,

TimeOut.WORD 0
DSNum .BYTE 0

; used to control disk server wait loop
; disk server number

Mass Storage Systems GTI 3-8

(

Old disk server protocol

ScJ.4' ~""'."
~ fw.
~ ... s"'jf-

u....;:! f.. ..
.1..,.1.. ~ v

rr~p"":.c .••

i.

%.

Figure 3.2: Flowchart of a short (read) command
Old Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Mass Storage Systems GTI 3-9

Old disk server protocol

1. Setup receive for results.

TCmd+OpCode (- FOh (Setup Receive command)
TCrnd+ResAdr (- address of RcvRes
TCrnd+Sock (- BOh
TCrnd+DatAdr (- address of user's buffer
TCrnd+DataLen (- 512 (use appropriate sector size)
TCrnd+CrtlLen (- 3

RcvRes+Rcode (- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

2. Send disk command.

TCrnd+OpCode (- 40h (Send command)
TCrnd+ResAdr (- address of SndRes
TCrnd+Sock (- BOh
TCrnd+DatAdr (- address of DCmd buffer
TCrnd+DataLen (- 4 (4 byte read command)
TCmd+CrtlLen (- 4
TCrnd+Dest (- DSNum

SndRes+Rcode (- FFh (initialize result code)
SndUC +M (- 4
SndUC +N (- 512 (use appropriate sector size)

DCmd+O
DCmd+l
DCmd+2
DCmd+3

(- 32h (use appropriate read command)
(- sector address byte d
(- sector address Isb
(- sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

3. Wait for disk server response.

This is a loop which is checking the transporter return code
in the receive buffer (RcvRes+Rcode). When this value goes
to zero, the disk read has completed. See figure 3.4 and
accompanying notes.

4. If a timeout error occurred, try to recover. See figure 3.5
for a description of the recovery procedure.

5. Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

6. Check the first byte of the User Control Data (RcvUC +DLen).
If the most significant bit is on, the disk has been reset.

Mass Storage Systems GTI 3-10

/'

Old disk server protocol

Start the entire sequence over.

Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Mass Storage Systems GTI 3-11

r---....-~--8
"'_~ , J.

1---___ -'--<:",

'f_

...... '1' • .ac..&..o.c.

~r Go
~ .. .,~

).i·.1t <;.,G,.c("

Y"e .. f''''''~ '"

z.

Old disk server protocol

5.u\ "'f ~ CM_ S

-bt' t..s.wb

!WIts,.,"

Wo.a ~
ciA .. 1.. s:e.."CA"
a"1'bI1:L '.'

Figure 3.3: Flowchart of a long (write) command
Old Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Mass Storage Systems GTI 3-12

,

Old disk server protocol

1. Setup receive for the 'GO' command.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <- BOh
TCmd+DatAdr <- address of GoData
TCmd+DataLen <- 2
TCmd+CrtlLen <- 0

RcvRes+Rcode <- FFh (must initialize the result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

2. Send the first 4 bytes of the write command.

TCmd+OpCode <- 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <- BOh
TCmd+DatAdr <- address of DCmd buffer
TCmd+DataLen <- 4
TCmd+CrtlLen <- 4
TCmd+Dest <- DSNum

SndRes+Rcode <- FFh (initialize result code)
SndUC +M <- 516 (use appropriate sector size)
SndUC +N <- 0

DCmd+O
DCmd+l
DCmd+2
DCmd+3

<- 33h (use appropriate read command)
<- sector address byte d
<- sector address lsb
<- sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

3. Wait for disk server response.

This is a loop which is checking the transporter return code
(SndRes+Rcode). When this value goes to zero, the 'GO'
message has been received. See figure 3.4 and accompanying
notes.

4. If a timeout error occurred, try to recover. See figure 3.5
for a description of the recovery procedure.

5. Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

6. Check the first byte of the data buffer (GoData). If the

Mass Storage Systems GTI 3-13

Old disk server protocol

most significant bit is on, the disk server has been reset,
and you should restart the sequence from the beginning.

7. If the data received is anything but the 2 bytes 'GO', the
message is irrelevant. setup the receive again, and wait for
another response.

8. Set up another receive to get the results of the next Send.

TCmd+OpCode <- FOh (Setup Receive command)
TCmd+ResAdr <- address of RcvRes
TCmd+Sock <- BOh
TCmd+DatAdr <- address of DCmd buffer
TCmd+DataLen <- 4
TCmd+CrtlLen <- 3

RcvRes+Rcode <- FFh (must initialize the result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

9. Send the rest of the write command. Note that the socket
number is AOh, not BOh as for the previous commands.

TCmd+OpCode <- 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <- AOh
TCmd+DatAdr <- address of user's buffer
TCmd+DataLen <- 512 (use appropriate sector size)
TCmd+CrtlLen <- 0
TCmd+Dest <- DSNum

SndRes+Rcode <- FFh (initialize result code)

User's buffer contains the data to be written.

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

If the transporter result code is 82h (uninitialized socket),
then the disk server has timed out waiting for the second
half of the disk command. You should restart the operation
from the beginning.

10. Check the first byte of the User Control Data (RcvUC +DLen).
If the most significant bit is on, the disk has been reset.
Start the entire sequence over.

Check the disk result code (RcvUC+Dcode). If the most
significant bit is on, report an error.

Mass Storage Systems GTI 3-14

Old disk server protocol

Figure 3.4: Wait for disk server response
Old Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. The timeout value should be set to whatever is specifed in
the device table for this device. If the timeout value is 0,
the driver loops forever, waiting for a response. A timeout
value of 0 should be used only for Mirror and Prep mode
commands.

2. The count of 3 is arbitrary. It is basically a retry count.

3. The loop terminates when the transporter return code goes to
o (message received), or when the timeout value is reached.

4. If the number of retries is exceeded, report a timeout error
and exit.

Mass Storage Systems GTI 3-15

Old disk server protocol

J.

Pigure 3.5: Plush
Old Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. Do an End Receive on socket BOh.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock

<- 10h (End receive command)
<- address of SndRes
<- BOh

SndRes+Rcode <- FFh (initialize result code)

If transporter result (SndRes+Rcode) does not change within
10ms, report a hardware error (DrvRet <- TOErrTR) and exit.

If transporter result (SndRes+Rcode) is not 0, report a
hardware error (DrvRet <- TOErrTR) and exit.

Mass Storage Systems GTI 3-16

Old disk server protocol

2. Send a Flush command.

TCrnd+OpCode <- 40h (Send command)
TCrnd+ResAdr <- address of SndRes
TCrnd+Sock <- BOh
TCrnd+DatAdr <- address of DCmd buffer
TCrnd+DataLen <- 4
TCrnd+CrtlLen <- 4
TCrnd+Dest <- DSNum

SndRes+Rcode <- FFh (initialize result code)
SndUC +M <- 0
SndUC +N <- 0

If transporter result (SndRes+Rcode) does not change within
100 ms, report a hardware error (TOErrTR) and exit.

Mass Storage Systems GTI 3-17

New disk server protocol

The description of the New Disk Server Protocol is very
similar to that of the Old Disk Server Protocol, but there are
two important differences. The first is that the driver must be
prepared to generate request IDs and use media IDS. The second
is that the driver must be prepared to receive a Cancel or
Restart message at any time. The flowcharts for Wait for Disk
Server Response (figure 3.9) and Flush (figure 3.10) are
therefore more complicated. The flowcharts for the Short
(figure 3.6) and Long (figure 3.7) commands look similar to
those for the Old Disk Server Protocol (figures 3.2 and 3.3),
but the explanations differ.

The new disk server protocol requires that you specify to
which socket, AOh or BOh, the server should send the Results
message. The server tells you to which socket you should send
the Last message.

You will also see that some of the fields in the declarations
are described in three places: as part of the RcvUC record, as
part of the SndUc record, and as part of the Dcmd record. This
is because the protocol information is sometimes included in the
User Data portion of the message, and sometimes in the User
Control portion.

Mass Storage Systems GTI 3-18

i
I"

('

;
;

· I

· I

· I

· I

;
;

· I

· I

;

· I

New disk server protocol

Sample data structures for a disk server driver using New Disk
Server Protocol

First the data structure is declared, then a list of offsets
into the structure are declared.

Transporter command vector (see Omninet GTI, pgs. 32,33)
It is not necessary to have more than one command record,
although it is sometimes more convenient to use separate
records which are preinitialized as Send and Setup receive
commands.

TOnd .BYTE 0
.BYTE 0
.WORD 0
.BYTE 0
.BYTE 0
.WORD a
.WORD a
.BYTE 0
.BYTE OFFh

; OpCode - command code

OpCode .EQU a
ResAdr .EQU 1
Sock .EQU 4
DatAdr .EQU 5
DataLen.EQU 8
Cr t 1 Len. EQ U 10
Dest .EQU 11

; ResAdr - high order byte of result address .
I - low order word of result address
; Sock - socket number
; DatAdr - high order byte of data address

- low order word of data address
; DataLen - data length
.
I

CrtlLen - user control length
; Dest - destination host number
; offsets
; offset to
; offset to
; offset to
; offset to
; offset to
; offset to
; offset to

OpCode
ResAdr
socket number
DatAdr
data length
user control length
destination host number (Send only)

Mass Storage Systems GTI 3-19

New disk server protocol

; Sample data structures for a disk server driver using New Disk
Server Protocol (cont.) · , · ,

; Result record definitions (see section 2.3)
· , · ,

Every driver should have 2 separate result records, one for
sends, and one for receives.

· ,
SndRes .BYTE 0

.BYTE 0

.WORD 0
SndUC .WORD 0

.WORD 0

.WORD 0

.WORD 0

.WORD 0

RCode .EQU 0
ProtoID.EQU 0
MsgTyp .EQU 2
RqstID .EQU 4
Reason .EQU 6
MediaI2.EQU 8

RcvRes .BYTE 0
.BYTE 0
.WORD 0

RcvUC .WORD 0
.WORD 0
.WORD 0
.WORD 0
.BYTE 0
.BYTE 0
.WORD 0

Src .EQU 1
Len .EQU 2
NActual.EQU 6
DCode .EQU 9

Rcv80 .BYTE 0
.BYTE 0
.WORD 0

; Send result record
; transporter return code
; unused
: unused
: ProtoID - Protocol ID
: MsgTyp - message type
; RqstID - request ID
; M - the number of data bytes to send to drive
; N - the maximum number of data bytes

expected on receive . ,
; offsets
; offset to
; offset to
; offset to
; offset to
; offset to
; offset to

transporter return code
ProtoID
MsgTyp
RqstID
Reason (for Cancel and Restart)
MediaID (for Cancel and Restart)

; Receive result record
; transporter return code
; Src - source host number
; Len - actual length of data received
; ProtoID - Protocol ID
; MsgTyp - message type
; RqstID - request ID
; NActual - number of bytes returned from drive
; reserved
; DCode - disk return code
; reserved
; offsets
; offset to Src
; offset to Len
: offset to NActual
: offset to DCode
: Second receive result record for Cancel or Restart
: transporter return code
: Src - source host number
• ,

Mass Storage Systems GTI 3-20

New disk server protocol

Sample data structures for a disk server driver using New Disk
; Server Protocol (cont.) . ,
; Data area buffers . ,
DCmd .WORD 0

.WORD 0

.WORD 0

.WORD 0

.BYTE 0

.BYTE 0

.WORD 0

.WORD 0

.WORD 0

.WORD 0

MediaID.EQU 6
ResHost.EQU 8
ResSock.EQU 9
M .EQU 10
N .EQU 12
Cmd .EQU 14

S80Msg .WORD 0
.WORD 0
.WORD 0

" • WORD 0
1:1 .WORD 0

LstSock.EQU 7

;

· ,
;
;

· ,
;

· , · ,
· ,

· , · ,
• ,
;

· ,
· ,
;

· , · ,
· , · ,
;

· , · , · ,

Mass Storage Systems GTI

ProtoID
MsgTyp
RqstID
MediaID
ResHost
ResSock
M
N
space for the disk command (4 bytes)

offsets
offset to MediaID
offset to ResHost
offset to ResSock
offset to M
offset to N
offset to start of command

space for socket 80h messages (Go, Cancel or Restar1
ProtoID
MsgTyp
RqstID
Reason, LastSock
MediaID
offsets
Last socket for Go message

3-21

New disk server protocol

; Sample data structures for a disk server driver uSing New Disk
Server Protocol (cont.) · I

· ,
; DrvRet is a global variable in the driver which each routine

sets. It is the value that will be returned to the operating
system upon completion of the driver call.

· I

· I

· I

DrvRet .BYTE 0 ; Driver return code

; DrvRet values:
• ,
· , · , · I

The codes which are marked with an asterisk (*) are those
which may be returned to the caller of the driver. All
others are used internally. The codes which are marked with
a T are transporter return codes.

· I

Ok Code • EQU 0
GiveUp .EQU 128
TooLong.EQU 129
NoSock .EQU 130
BadHdr .EQU 131
SndErr .EQU 140
TOErrDS.EQU 252
TOErrTR.EQU 253

;

; *T
; T - gave up after n retries
; T - message too long
; T - socket not initialized
; T - header length mismatch should never happen
; * - unable to send messages to disk server
; - timed out waiting for disk server response
; * - timed out waiting for transporter
; (hardware error)

; The following global variables are set on each call from the
; values specified for the device.
· I

TimeOut.WORD 0
DSNum .BYTE OFFh
Media .WORD 0

; used to control disk server wait loop
; disk server number
; media id

; The following global variables are set on each call.
· I

UseSock.BYTE 0
Request.WORD 0

; which socket to use (AOh or BOh)
; bumped by 1 on each call

; The following global variables are set at driver
; initialization
;
MyAddr .BYTE 0 ; this computer's transporter address

Mass Storage Systems GTI 3-22

New disk server protocol

8 ,..------ ,

fw\. ...

1oJ.....<I ft.,.
.L.'~\.. ~ , ...

rrt.p""':w " •

Figure 3.6: Flowchart of a short (read) command
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Mass Storage Systems GTI 3-23

New disk server protocol

1. Setup receive for results.

2.

TCmd+OpCode <- FOh (Setup Receive command)
TCrnd+ResAdr <- address of RcvRes
TCrnd+Sock <- UseSock
TCrnd+DatAdr <- address of user's buffer
TCrnd+DataLen <- 512 (use appropriate sector size)
TCrnd+CrtlLen <- 12

RcvRes+Rcode <- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Setup receive for possible socket BOh message (Cancel or
Restart):

TCrnd+OpCode <- FOh (Setup Receive command)
TCrnd+ResAdr <- address of Rcv80
TCrnd+Sock <- BOh
TCrnd+DatAdr <- address of SBOMsg
TCrnd+DataLen <- B
TCrnd+Crt1Len <- 0

RcvBO+Rcode <- FFh (must initialize result code)

Send disk command.

TCrnd+OpCode <- 40h (Send command)
TCrnd+ResAdr <- address of SndRes
TCrnd+Sock <- BOh
TCrnd+DatAdr <- address of DCrnd buffer
TCrnd+DataLen <- 1B
TCrnd+Crt1Len <- 4
TCrnd+Dest <- DSNum

SndRes+Rcode <- FFh (initialize result code)
SndUc +M <- 4
SndUc +N <- 512 (use appropriate sector size)

DCmd+ProtoID
DCrnd+MsgTyp
DCrnd+RqstID

, DCmd+MediaID
DCmd+ResHost
DCmd+ResSock
DCmd+M
DCmd+N
DCrnd+Cmd
DCmd+Crnd+1
DCmd+Crnd+2
DCmd+Cmd+3

<- OlFFh
<- 0001h (Disk request)
<- Request
<- Media
<- MyAddr
<- UseSock
<- 4 (4 byte read command)
<- 512 (use appropriate sector size)
<- 32h (use appropriate read command)
<- sector address byte d
<- sector address Isb
<- sector address msb

Mass Storage Systems GTI 3-24

'''-

New disk server protocol

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exiL.

3. Wait for disk server response.

This is a loop which is checking the tranpporter return coce
in the receive buffer (RcvR0s+Rcode). When this value goe~
to zero, the disk read has complete~. See figure 3.S and
accompanying notes.

This loop must also check whether a Cancel or Restart
message has been received. See figure 3.9 and accompanying
notes.

4. If a timeout error or cancellation occurred, try to recover.
See figure 3.10 for a description of the recovery procedure.

5. Check the responding disk server (RcvRes+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

6. Check the User Control Data (RcvUC). Ensure the ProtoID is
lFFh, and that MsgTyp is 0200h. If not, the message
received is irrelevant. Setup the receive again, and wait
for another response.

~. Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Do an End Receive on socket SOh.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock

<- lOh (End Receive command)
<- address of SndRes
<- SOh

SndRes+Rcode <- FFh (initialize result code)

Mass Storage Systems GTI 3-25

.....---~-8
t::., ,. i
.;;JC:A f t..&.(...t,..A"'c.

.f.,r Go

~"'·."""v

New disk server protocol

F\I/.s~ •••

~"'f ~,"",yc. e
-b~ faf>~

~~"'"1';'

wc..a f..,.
ci.: .. " s;e y'" c.r
(c'>i':>":":' ' •.

Figure 3.7: Flowchart of a long (write) command
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions on
the following pages.

Mass Storage SystemsGTI 3-26

New disk server protocol

1. Setup receive for the Go message. The Go message is sent to
~ socket BOh.
4

(~

TCmd+OpCode <- FOh (Setup Receive command)
TCrnd+ResAdr <- address of RcvRes
TCrnd+Sock <- BOh
TCrnd+DatAdr <- address of SBOMsg
TCrnd+DataLen <- B
TCrnd+CrtlLen <- 0

RcvBO+Rcode <- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

2. Send the first 4 bytes of the write command.

TCrnd+OpCode (- 40h (Send command)
TCrnd+ResAdr <- address of SndRes
TCmd+Sock (- BOh
TCmd+DatAdr <- address of DCmd buffer
TCmd+DataLen <- IB
TCrnd+CrtlLen <- 4
TCmd+Dest <- DSNum

SndRes+Rcode <- FFh (initialize result code)

DCmd+O
DCmd+2
DCmd+4
DCmd+6
DCmd+B
DCmd+9
DCmd+lO
DCmd+12
DCmd+14
DCmd+15
DCrnd+16
DCmd+17

<- lFFh (protocol id)
<- OOlh (message type = Disk request)
<- request id
<- media id
<- FFh
<- Use Sock
<- 516 (use appropriate sector size)
<- 1
<- 33h (use appropriate read command)
<- sector address byte d
<- sector address lsb
(- sector address msb

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

3. Wait for disk server response.

This is a loop which is checking the transporter return code.
Since the Go message will be received on socket BOh, the
driver must check RcvBO+Rcode, not RcvRes+Rcode, as in all
the other cases. When this value goes to zero, a message has
been received. See figure 3.B and accompanying notes.

This loop must also check whether a Cancel or Restart
message has been received. See figure 3.9 and accompanying

Mass Storage Systems GTI 3-27

New disk server protocol

notes.

4. If a timeout or cancellation error occurred, try to recover.
See figure 3.10 for a description of the recovery procedure.

5. Check the responding disk server (RcvSO+Src). If it does
not match the destination disk server (DSNum) the message
received is irrelevant. Setup the receive again, and wait
for another response.

6. No box.

7. If the data received is anything but the Go message
(SSOMsg+ProtoID=OlFFh, SSOMsg+MsgTyp=OlOOh), the message
is irrelevant. Setup the receive again, and wait for another

S.

response.

Set up another receive to get the results of the next Send.

TCrnd+OpCode <- FOh (Setup Receive command)
TCrnd+ResAdr <- address of RcvRes
TCrnd+Sock <- UseSock
TCrnd+DatAdr <- address of DCmd buffer
TCrnd+DataLen <- 4
TCrnd+CrtlLen <- 12

RcvRes+Rcode <- FFh (must initialize result code)

If transporter result code (RcvRes+Rcode) does not change
within 10 ms, report a hardware error (TOErrTR) and exit.

Setup receive for possible socket SOh message {Cancel or
Restart}:

TCrnd+OpCode <- FOh (Setup Receive command)
TCrnd+ResAdr <- address of RcvSO
TCrnd+Sock <- SOh
TCrnd+DatAdr <- address of SSOMsg
T Crnd+Da taLen <- S
TCrnd+CrtlLen <- 0

RcvSO+Rcode <- FFh (must initialize result code)

9. Send the rest of the Write command.

TCmd+OpCode
TCmd+ResAdr
TCrnd+Sock
TCrnd+DatAdr
TCmd+DataLen
TCmd+CrtlLen
TCmd+Dest

<- 40h (Send command)
<- address of SndRes
<- specified in Go message (SSOMsg+LstSock)
<- address of user's buffer
<- 512 (use appropriate sector size)
<- 12
<- DSNum

Mass Storage Systems GTI 3-2S

(

New disk server protocol

SndRes+Rcode <- FFh (initialize result code)
SndUC +ProtoId<-IFFh
SndUC +Msgtyp<- 002h (Last message)
SndUC +Rqstld<- ReqestId
SndUC +Reserl<- 0
SndUC +Reser2<- 0
SndUC +Reser3<- 0

User's buffer contains the data to be written.

If transporter result code (SndRes+Rcode) does not change
within 100 ms, report a hardware error (TOErrTR) and exit.

If the transporter result code is B2h (uninitialized socket),
then the disk server has timed out waiting for the second
half of the disk command. You should restart the operation
from the beginning.

10. Check that the Results message was received (RcvUC+ProtoID =
lFFh; RcvUC+MsgTyp = 0200h). If not, the message received
is irrelevant. Setup the receive again, and wait for another
response.

Check the disk result (RcvUC+Dcode). If the most
significant bit is on, report an error.

Do an End Receive on socket BOh.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock

<- IOh (End Receive command)
<- address of SndRes
<- BOh

SndRes+Rcode <- FFh (initialize result code)

Mass Storage Systems GTI 3-29

New disk server protocol

e
Figure 3.8: Wait for disk server response

New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. The timeout value should be set to whatever is specifed in
the device table for this device. If the timeout value is 0,
the driver loops forever, waiting for a response. A timeout
value of 0 should be used only for Mirror and Prep mode
commands.

2. The count of 3 is arbitrary. It is basically a retry count.

3. The loop terminates when the transporter return code goes to
o (message received), when a cancel or Restart message is
received, or when the timeout value is reached.

See figure 3.9 for the Cancel and Restart check.

4. If the number of retries is exceeded, report a timeout error
and exit.

Mass Storage Systems GTI 3-30

'~-.

c

New disk server protocol

Figure 3.9: Check for cancel or Restart
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. Has a message been received on socket BOh (RcvBO+Rcode=OOh)?
If not, continue waiting for disk server response.

2. Is the message from our server (RcvBO+Src=DSNum)? If not,
ignore the message, resetup the receive on socket BOh, and
go back to waiting.

3. Is the message a Cancel message (SBOMsg+ProtoID=OlFFh,
SBOMsg+MsgTyp=0300h)? If so, set Cancelled flag, and exit
the wait for response loop.

4. Is the message a Restart message (SBOMsg+ProtoID=OlFFh,
SBOMsg+MsgTyp=FFOOh)? If so, set Restart flag, and exit
the wait for response loop.

5. The message is not a Cancel or Restart, so ignore it.
Resetup the receive, and go back to waiting.

Mass Storage Systems GTI 3-31

New disk server protocol

(ndo. Uc.U\l4t. Oil

$oJ._d. tCih

v

Figure 3.10: Flush
New Disk Server Protocol

The numbers in the flowchart boxes refer to text descriptions
below.

1. Do an End Receive on socket UseSock.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock

<- lOh (End receive command)
<- address of SndRes
<- UseSock.

SndRes+Rcode <- FFh (initialize result code)

If transporter result (SndRes+Rcode) does not change within
lOms, report a hardware error (DrvRet <- TOErrTR) and exit.

If transporter result (SndRes+Rcode) is not 0, report a
hardware error (DrvRet <- TOErrTR) and exit.

Mass Storage Systems GTI 3-32

~.r

~

('

New disk server protocol

2. Check the Cancelled flag. If set, report an error and exit.

3. Check the Restart flag. If set, restart from the beginning.

4. End receive on socket BOh, in preparation for restart.

TCmd+OpCode
TCmd+ResAdr
TCmd+Sock

<- lOh (End receive command)
<- address of SndRes
<- BOh

SndRes+Rcode <- FFh (initialize result code)

5. Send an Abort command.

TCmd+OpCode <- 40h (Send command)
TCmd+ResAdr <- address of SndRes
TCmd+Sock <- BOh
TCmd+DatAdr <- address of DCmd buffer
TCmd+DataLen <- B
TCmd+CrtlLen <- 0
TCmd+Dest <- DSNum

SndRes+Rcode <- FFh (initialize resul t code)

Dcmd+ProtoID <- lFFh
Dcmd+MsgTyp <- 0OO3h (Abort message)
Dcmd+RqstID <- Request
Dcmd+Reason <- Olh (Timedout)

If transporter result (SndRes+Rcode) does not change within
lOOms, report an error (TOErrTR) and exit.

Mass Storage Systems GTI 3-33

Flat cable driver

3.2 Flat cable

You may want to refer to the following manuals while reading
this section:

Chapter I of this manual, which describes the sector
read and write commands.

Appendix A of this manual, which describes the flat cable
interface bus.

Mass storage systems GTI 3-34

('

e

ou.lf~ I..:\h.
COv.A .. ", ... 'Ii- \

Figure 3.11
Flat cable command sequence

Mass Storage Systems GTI

Flat cable driver

Ij..
I

I

jv

It-!

Figure 3.12
Flat cable turnaround routine

3-35

Flat cable driver

Refer to the interface signal descriptions at the end of
Appendix A.

Disk read

1. Send out read command (4 bytes). For each byte, check
that drive is ready (READY line high), then output byte.
See note below.

2. Wait for bus to turn around (READY line high and DIRC
line low).

3. Receive results until drive stops sending. For each byte,
wait for READY line to go high. Then check the DIRC line.
If it is high, the drive has stopped sending; if it is low,
read the data byte and increment the count of bytes received.
In our example, we expect to receive 512 bytes; you should
expect to receive the number of bytes specified by the read
command (128, 256, 512, or 1024).

4. Check first byte received. If the most significant bit
is on, an error occurred.

Disk write

1. Send out write command. In our example, we send out 516
bytes. You should send out the appropriate number for the
write command that you are using (132, 260, 516, or 1028).
For each byte, check that drive is ready (READY line high),
then output byte. See note below.

2. Wait for bus to turn around (READY line high and DIRC line
low) •

3. Receive results until drive stops sending. For each byte,
wait for READY line to go high. Then check the DIRC line.
If it is high, the drive has stopped sending; if it is low,
read the data byte and increment the count of bytes received.
In our example, we expect to receive 1 byte.

4. Check first byte received. If the most significant bit is
on, an error occurred.

Note: Some care must be exercised in sending out at least the
first byte of a command if a multiplexer is being used. There is
a potential timing problem if the system software can be
interrupted during the send of this first byte. On a multiplexer
network, the individual computers must respond within
approximately 50 microseconds after the READY line goes high, or
the multiplexer will switch to the next slot. (It will first
wait for a while after dropping the READY line -- a period

Mass Storage Systems GTI 3-36

Flat cable driver

controlled by the second polling parameter.) If your driver is
interrupted after it detects that the READY line is high, and
before it sends the first byte, then by the time it is ready to
send the first byte, the multiplexer may have already switched to
the next slot.

This problem can be avoided by turning off the interrupt
system during part of the send loop to insure that if your driver
finds the drive ready, it can send out the byte without being
interrupted. See the sample 8086 driver in Appendix E for an
example of this sequence.

Mass Storage Systems GTI 3-37

Sending disk commands

Chapter 4: Sending other disk commands rOf '(ln[-111 ~,' L '~r U :. hL.

The Corvus mass storage devices support more operations than
just read and write. Semaphores, pipes, mirror operations, etc.,
can all be invoked by application programs. This chapter
discusses how these commands may be used by application
programs.

This chapter merely describes how to send the command bytes
and receive the results. The functionality of the commands
is described in other chapters (Chapter 5: Semaphores,
Chapter 6: Pipes).

The interface for sending a drive command generally consists
of specifying the number of bytes to send, the maximum number of
bytes expected to be received, and 2 buffers, one which contains
the bytes to be sent and one which will contain the results.

PROCEDURE SendCom(SendLen: INTEGER; VAR RecvLen: INTEGER;
VAR SendBuf, RecvBuf: Dbuf);

After a call to SendCom, RecvLen contains the number of bytes
actually received, and RecvBuf contains the data.

For example, the code to send a semaphore lock command would
look something like this (the semaphore name is'S '):

TYPE Dbuf: PACKED ARRAY [1 •• 530] OF 0 •• 255;

VAR SendBuf, RecvBuf: Dbuf;
SendLen, RecvLen: INTEGER;

BEGIN

SendLen := 10; {semaphore lock sends 10 bytes}
RecvLen := 530; {the size of RecvBuf }
SendBuf[l] := 11; SendBuf[2] := 1; {command code and subop }
SendBuf[3] := ORD('S'); { semaphore name}
SendBuf [4] : = ORD (' ');
• • •
SendBuf [10] : = ORD (' ');

SendCom(SendLen, RecvLen, SendBuf, RecvBuf);

{ now check resuls }
IF RecvBuf[l] > 127 THEN {
IF RecvBuf[2] = 0 THEN {
CASE RecvBuf[2] OF {

128: { already locked }
253: { table full}
254: { table read-write

Mass Storage Systems GTI

disk error ••• } ELSE
semaphore successfully locked } ELSE
couldn't lock, report error}

error }
\

4-1

Sending disk commands

END;

. . .
END.

Corvus provides a version of the SendCom procedure for each
operating system it supports. The next sections describe each
implementation in detail. Often, there are several layers of
interface, and the application developer can pick the level of
interface desired. Generally, the highest level interface is the
most flexible, but also the most costly in terms of execution
time and memory space required. Of course, you as a software
developer may choose to ignore any software provided by Corvus,
and develop your own interface which talks directly to the
transporter or flat cable card. The flowcharts given in Chapter
3, Disk Driyers, should be helpful in this case.

The same example, a semaphore lock, is used in each
description below, but the procedures described may be used to
send any disk command.

The implementation of the SendCom procedure takes one of two
forms: 1) the SendCom procedure calls an entry pOint in the
disk driver to do the actual send of the command, or 2) the
SendCom procedure is a stand-alone procedure, which does not
require the disk driver to be present.

~ The advantages and disadvantages of form 1, where the SendCom
procedure calls the driver, are summarized below:

Advantages: the send-receive need only be coded once, and it
becomes part of the operating system. Application programs
then do not have to change when they are ported from one
hardware environment to another.

Disadvantages: the application program cannot run unless the
driver is installed. Drivers become part of the resident
operating system, and therefore occupy memory, leaving less
memory available to those applications which do not use
the feature.

The advantages and disadvantages of form 2, where the SendCom
procedure is a stand-alone procedure, are summarized below:

Advantages: the driver need not be installed, leaving more
memory available to the application.

Disadvantages: each application which uses the interface must
be reI inked if the interface changes, either because of
bugs or hardware changes.

Most of the early Corvus implementations, including Apple
Constellation I and CP/M 80, use form 2, a stand-alone procedure,

Mass Storage Systems GTI 4-2

Sending disk commands

to send drive commands. The later implementations, including
MSDOS Constellation II, use form 1.

In most of the Corvus implementations, the procedure SendCom
is usually coded as two separate procedures: CDSEND and CDRECV
(the reason for this is historical). A call to CDSEND must
always be followed immediately by a call to CDRECV. Also, in
most of the Corvus implementations, the SendBuf and RecvBuf are
the same buffer; i.e., the results of a command overlay the
command itself.

Corvus Concept Operating System

Direct communication with the Corvus drive is handled by the
two procedures CDSEND and CDRECV. Any command described in
Chapter 1 may be sent to the Corvus drive using these routines.
These procedure are contained in the unit CCDRVIO, which is in
library C2LIB. C2LIB is included in the standard release of
Concept software.

Please refer to the Pascal Library User Guide
(Corvus PIN 7100-04978). You will need to look at Chapter 14,
Corvus Disk Interface Unit (cCDRVIO).

CDSEND and CDRECV each have two parameters described by the
following type declarations, which appear in the interface
section of unit ccDrvio:

const SndRcvMax = 530;

type CDaddr = RECORD
SlotNo: byte; { slot number }
Kind: SlotTypes; { OrnninetDisk or LocalDisk (defined in CCDefn)
NetNo: byte; { unused }
Stationno: byte; { Ornninet server address }
Driveno: byte; { drive number }
BlkNo: LONGINT; {block number }

type SndRcvStr= RECORD
sIn: INTEGER; { length of command to be sent }
rln: INTEGER; { maximum number of bytes to be returned }
CASE INTEGER OF

2: (c: PACKED ARRAY [l •• SndRcvMax]
1: (b: ARRAY [l •• SndRcvMax]

END;

OF CHAR);
OF byte);

Calls to these procedures occur in pairs. That is, a call to
CDSEND is followed immediately by a call to CDRECV. The same
variables are normally used for both calls.

The unit ccDRVIO must be initialized by calling the
procedure ccDrvlolnit BEFORE calling any other procedures in the

Mass Storage Systems GTI 4-3

\
~/

Sending disk commands

unit. ccDrvIoInit should only be called once, at the beginning of
your program.

The following program fragment demonstrates a normal command
sequence:

· ..
USES {CCLIB} CCDefn,

{C2LIB} ccDrvio;

VAR xcv: SndRcvStr;
NetLoc: CDAddr;
x: INTEGER;

BEGIN
{ initialize the unit } cCDrvIoInit;

InitSlot(NetLoc); { sets NetLoc to boot device }

530; xcv.sln := 10; xcv.rln :=
xcv.b[l] := 11; xcv.b[2]
xcv.c[3] := IS'; xcv.c[4]

:= 1; { semaphore lock command}
: = , ';

· ..
xcv. c [10] : = , ';

CDSEND(NetLoc, xcv);
CDRECV(NetLoc, xcv);

IF xcv.b[l] < 0 THEN { report disk error } ELSE
IF xcv.b[2] = 0 THEN { semaphore successfully locked} ELSE

BEGIN

• • •

x := xcv.b[2];
IF x < 0 THEN x := x+256;
CASE x OF

128: {already locked }
253: {table full }
254: {error on table read-write }
END;

END;

The procedures CDSEND and CDRECV are found in the unit
ccDrvio in the file C2LIB. This unit has several other
procedures in it, so the unit is rather large. If space is a
problem, you can interface directly to the SlotIO driver as
described below.

Commands are sent using the UNITWRITE procedure. Results
are received with the UNITREAD procedure. The parameters are
described below:

Mass Storage Systems GTI 4-4

UNITWRITE (unitno,
buffer,
length,
0,

UNITREAD

control);

unitno,
buffer,
length,
0,
control);

Sending disk commands

{ the SlotIO driver }
{ the command to be sent }
{ length of the command }
{ not used }
{ control contains the slot and
{ server # where the command is
{ to be sent; msb is server t and
{ lsb is slot t. server t is 0
{ for slots 1 to 4 (local disk) }

{ the SlotIO driver }
{ where the results will be stored }
{ maximum length to be received }
{ not used }
{ same as on UNITWRITE }

UNITWRITE and UNITREAD should always be used in pairs; i.e.,
a UNITWRITE should be followed immediately by a UNITREAD. The
function IORESULT should be called following each call to
UNITWRITE or UNITREAD to check for an error. The following
errors may be returned:

Value

o
4

Meaning

no error
disk error (disk result> 7Fh)

The unit number to which the SlotIO driver is assigned may be
obtained by calling the EXTERNAL procedure OSSltDv.

For instance, the following code fragment sends a semaphore
lock command:

VAR c: PACKED ARRAY [1 •• 530] OF CHAR; { the longest command
{ is 530 bytes }

FUNCTION OSSltDv: EXTERNAL;

BEGIN
• • •
c [1] : = CHR (11) ;
c [2] : = CHR (1) ;
c[3] := 'S';
• • •

{ semaphore
{ lock }
{ semaphore

c[lO] :=' ';
UNITWRITE(OSSlotDv, c, 10, 0, $105);

ior := IORESULT;
IF ior = 0 THEN BEGIN

command }

name }

{ send command to }
{ slot 5, server 1 }

UNITREAD(OSSlotDv, c, 530, 0, $105); {get results}
ior := IORESULT;
END;

IF ior=O THEN {all ok} ELSE {report error};

Mass Storage systems GTI 4-5

."

Sending disk commands

CASE ORD(c[2]) OF
0: {semaphore locked successfully }

128: {semaphore was already locked }
253: {semaphore table full }
254: {er r or reading-wr i ting semaphore table }
END; . . .

MSDOS l.x, 2.x COnstellation II

For MSDOS, direct communication with the Corvus drive is
handled by the two procedures CDSEND and CDRECV. Any command
described in the Chapter 1 may be sent to the Corvus drive
using these routines.

The source and object files for the routines described here
are available on diskette as part of the Software Developer's
Kit for MSDOS. See Appendix F for details.

The procedures CDSEND and CDRECV are written in machine
language and are assembled using the Microsoft Assembler.
Because there is no standard or dominant language for MSDOS
applications developers, we have chosen to give the examples here
in the language used by Corvus for MSDOS applications, MS Pascal.
Unfortunately, each language uses a slightly different parameter
passing mechanism. On the developer's diskette mentioned above,
interfaces are provided for MS Pascal and compiled Basic. If you
are using some other language, you will have to make the
appropriate changes to the source for DRIVEC2.ASM and reassemble
it.

The procedures CDSEND and CDRECV are contained in the module
DRIVEC2.0BJ. The routines in this module must be initialized by
calling the function INITIO BEFORE calling any other procedures
in the module. INITIO should be called only once, at the
beginning of your program.

CDSEND and CDRECV each have one parameter described by the
following type declaration:

type Longstring= RECORD
length: INTEGER;
CASE INTEGER OF

{ n should be equal to the length of the
{ command you intend to send or receive
1: (int: PACKED ARRAY [l •• n] OF O •• 255);
2: (str: PACKED ARRAY [l •• n] OF CHAR);

END;

longest }
}

Calls to these procedures occur in pairs. That is, a call to
CDS END is followed immediately by a call to CDRECV. The same
variable is normally used for both calls. The following program

Mass storage Systems GTI 4-6

Sending disk commands

fragment demonstrates a normal command sequence:

· ..
PROCEDURE CDSEND(xcv:longstring); EXTERN;
PROCEDURE CDRECV(xcv:longstring); EXTERN;
FUNCTION INITIO: INTEGER; EXTERN;

VAR xcv: longstring;

BEGIN

IF INITO <> 0 THEN {error ••• }; { initialize the unit }

:= 10; xcv. length
xcv. int [1]
xcv.str[3]
xcv.str[4]

:= 11 ; xcv.int[2] := 1; { semaphore lock command} . -.- 'S' ;
:=

, , . ,
· ..
xcv.str[lO] := ' ';

CDSEND (xcv) ;
CDRECV(xcv) ;

IF xcv.int[1]>127 THEN { report disk error} ELSE
IF xcv.int[2]=0 THEN { semaphore successfully locked} ELSE

BEGIN

· ..

CASE xcv.int[2] OF
128: {already locked }
253: {table full }
254: {er ror on table read-wr i te }
END;

END;

In a multiple server environment, the default server to be
accessed is the boot server. If you wish to send a command to a
server other than the boot server, you can so specify by calling
the procedure SETSRVR. The declaration for this procedure is:

function SETSRVR (srvr: INTEGER): INTEGER; EXTERNAL;

The following function call sets the server to server 3:

• • •
IF INITIO <> 0 THEN { error ••• }
b:= SETSRVR(3);

The function SETSRVR returns the boot server address, and ignores
the parameter if it is greater than 255, or negative. Thus, you
can also use this function to find out the boot server address:

...
IF INITIO <> 0 THEN { error ••• }

Mass Storage Systems GTI 4-7

/--

~-" .-.'

''''''/

Sending disk commands

b := SETSRVR(-l);
{ now b contains the Omninet address of the boot server }

CP/M 86 Constellation II

For CP/M 86, direct communication with the Corvus drive is
handled by the two procedures SEND and RECV. Any command
described in the Chapter 1 may be sent to the Corvus drive
using these routines.

The source and object files for the routines described here
are available on diskette as part of the Software Developer's
Kit for CP/M 86. See Appendix F for details.

The procedures SEND and RECV are written in machine
language and are assembled using the Digital Research assembler.
Because there is no standard or dominant language for CP/M
applications developers, we have chosen to give the examples here
in the language used by Corvus for CP/M applications, Pascal MT+.
Unfortunately, each language uses a slightly different parameter
passing mechanism. On the developer's diskette mentioned above,
an interface is provided for Pascal MT+. If you are using some
other language, you will have to make the appropriate changes to
the source for CPMI086.ASM and reassemble it.

The procedures SEND and RECV are contained in the module
CPMI086.R86. The routines in this module must be initialized by
calling the function INITIO BEFORE calling any other procedures
in the module. INITIO should be called only once, at the
beginning of your program.

SEND and RECV each have one parameter described by the
following type declaration:

type Longstring= RECORD
length: INTEGER;
CASE INTEGER OF

{ n should be equal to the length of the
{ command you intend to send or receive
1: (int: PACKED ARRAY [l •• n] OF 0 •• 255);
2: (str: PACKED ARRAY [l •• n] OF CHAR);

END;

longest }
}

Calls to these procedures occur in pairs. That is, a call to
SEND is followed immediately by a call to RECV. The same
variable is normally used for both calls. The following program
fragment demonstrates a normal command sequence:

• • •
EXTERNAL PROCEDURE SEND(xcv:longstring);
EXTERNAL PROCEDURE CDRECV(xcv:longstring);
EXTERNAL FUNCTION INITIO: INTEGER;

Mass Storage Systems GTI 4-8

Sending disk commands

VAR xcv: longstring;

BEGIN

IF INITO <> 0 THEN {error ••• }; { initialize the unit }

· -.- 10; xcv.length
xcv.int[l]
xcv.str[3]
xcv.str[4]

· -.- 11; xcv.int[2] := 1; { semaphore lock command} · -.-· -.-. . .
xcv.str [10] :=

SEND(xcv);
RECV(xcv) ;

'S' ; , , . ,
, '. ,

IF xcv.int[1]>127 THEN { report disk error} ELSE
IF xcv.int[2]=0 THEN { semaphore successfully locked} ELSE

BEGIN

•••

CASE xcv.int[2] OF
128: {already locked }
253: {table full }
254: {er ror on table read-write }
END;

END;

In a multiple server environment, the default server to be
accessed is the boot server. If you wish to send a command to a
server other than the boot server, you can so specify by calling
the procedure SETSRVR. The declaration for this procedure is:

EXTERNAL function SETSRVR(srvr: INTEGER): INTEGER;

The following function call sets the server to server 3:

•••
IF INITIO <> 0 THEN { error ••• }
b:= SETSRVR(3);

The function SETSRVR returns the boot server address and ignores
the parameter, if the parameter is greater than 255, or negative.
Thus, you can also use this function to find out the boot server
address:

• • •
IF INITIO <> 0 THEN { error ••• }
b := SETSRVR(-l);
{ now b contains the Omninet address of the boot server }

Mass Storage Systems GTI 4-9

(

Sending disk commands

Apple DOS Constellation II

Please read the section on Apple DOS Constellation I first.
Constellation II is not supported on multiplexer networks. If
you are using an Omninet network, you should assemble and use the
code given below in place of OMNIBCI.OBJ, because the transporter
RAM code is different for Constellation II than it was for
Constellation I.

For Apple Constellation II, direct communication with the
Corvus drive is handled by calling an entry pOint in the Corvus
driver. The Corvus driver must have been previously loaded into
the RAM on the transporter card; it is loaded by the boot
process.

The driver is called by activating the slot containing the
card, and then executing a JSR to location C80Bh. The next 8
bytes following the JSR instruction contain the parameters to the
driver:

Bytes

o and 1
2 and 3
4 and 5
6 and 7

Meaning

Address of command buffer.
Length of command.
Address of result buffer.
Maximum length of result.

Here is a listing of OMNIBCI.OBJ for Constellation II:

LEN
BUF

START

• ABSOLUTE
.PROC OMNIBCI

.EQU 0300

.EQU 0302

.ORG 8AOO

LOA LEN
STA CmdLen
LOA LEN+l
STA CmdLen+l
LOA BUF
STA CmdBuf
STA RsltBuf
LOA BUF+l
STA CmdBuf+l
STA RsltBuf+l
LOY t28.
STY RsltLen
LOY 12
STY RsltLen+l

JSR GoRAM

Mass Storage Systems GTI

· move command length ,

· move command address ,

• make result address same as command ,
· address ,

· make result length = 530 ,

; RAM code will return to next instr uction

4-10

Sending disk commands

LDA RsltLen ; return result length
STA LEN
LDA RsltLen+l
STA LEN+l
RTS return to caller

GoRAM BIT OCFFF ; enable Omninet RAM
BIT OC600 · assumes slot 6 I

JSR OC80B ; no return necessary

CmdBuf • WORD 0 ; address of command
CmdLen • WORD 0 • length of command I

RsltBuf.WORD 0 · address of result I

RsltLen.WORD 0 ; maximum length of result

.END

If you use this version of OMNIBCI.OBJ, your programs that
were coded using the OMNIBCI.OBJ provided by Corvus for
Constellation I need not be modified for Constellation II.

Version IV p-systea and Apple Pascal Constellation II

Direct communication with the Corvus drive is handled by the
two procedures CDSEND and CDRECV. Any command described in the
Chapter 1 may be sent to the Corvus drive using these routines.
These procedure are contained in the file CORVUS.LIBRARY, which
is part of the Software Developer's Kit available for Version IV
p-system and Apple Pascal 1.2. See Appendix F for details.

CDSEND and CDRECV are contained in unit UCDRVIO.

CDSEND and CDRECV each have two parameters described by the
following type declarations (these declarations appear in the
interface section of unit UCDrvio):

const SndRcvMax = 530;

type CDaddr = RECORD
SlotNo: byte; { slot number }

/-~.

Kind: SlotTypes; { OmninetDisk or LocalDisk (defined in CCDefn)
NetNo: byte; { unused}
Stationno: byte; { Omninet server address }
Driveno: byte; { drive number }
BlkNo: LONGINT; {block number }

type SndRcvStr= RECORD
sIn: INTEGER; { length of command to be sent }
rln: INTEGER; { maximum number of bytes to be returned }
CASE INTEGER OF

2: (c: PACKED ARRAY [l •• SndRcvMax] OF CHAR);

Mass Storage Systems GTI 4-11

Sending disk commands

1: (b: PACKED ARRAY [l •• SndRcvMax] OF byte);
END;

l'
~ Calls to these procedures occur in pairs. That is, a call to

CDSEND is followed immediately by a call to CDRECV. The same
variables are normally used for both calls.

The unit UCDRVIO must be initialized by calling the
procedure ccDrvIoInit BEFORE calling any other procedures in the
unit. ccDrvIoInit should only be called once, at the beginning of
your program.

The following program fragment demonstrates a normal command
sequence:

· ..
USES {CORVUS.LIBRARY} UCDefn, UCDRVIO;

VAR xcv: SndRcvStr;
NetLoc: CDAddr;
x: INTEGER;

BEGIN
{ initialize the unit } ccDrvIoInit;

InitSlot(NetLoc); { sets NetLoc to boot device }

xcv.sln := 10; xcv.rln := 530;
xcv.b[l] := 11; xcv.b[2] := 1; { semaphore lock command}
xcv.c[3] := 'Sf; xcv.c[4] :=' ';
· ..
xcv.c[lO] := ' ';

CDSEND(NetLoc, xcv);
CDRECV(NetLoc, xcv);

IF xcv.b[l] > 127 THEN { report disk error} ELSE
IF xcv.b[2] = 0 THEN { semaphore successfully locked} ELSE

BEGIN

• • •

x : = xcv. b [2] ;
CASE x OF

128: {already locked }
253: {table full }
254: {error on table read-write }
END;

END;

The procedures CDSEND and CDRECV are found in the unit
UCDrvio in the file CORVUS.LIBRARY. This unit has several other
procedures in it, so the unit is rather large. If space is a
problem, you can interface directly to the machine language
routines contained in the module DRVSTF.CODE. The routines are:

Mass Storage Systems GTI 4-12

Sending disk commands

PROCEDURE drvSend(VAR s:sndRcvStr); EXTERNAL
PROCEDURE drvRecv(VAR s:sndRcvStr); EXTERNAL

Uses PASCAL global variable DISK_SERVER

FUNCTION OSactSlt:INTEGER; EXTERNAL
Returns 1 if we have booted up under CONSTELLATION II,
o if we have not.

FUNCTION OSSltType(slot : INTEGER) : INTEGER; EXTERNAL;
For valid slots, return the interface card type,
l=flat cable 2=Omninet; for all other slots
returns O=no disk

FUNCTION OSactSrv : INTEGER;
Return the active disk server. This procedure assumes
that the driver is attached and we have booted up under
CONSTELLATION II. No checking is done

FUNCTION XPORTER_OK : BOOLEAN;
Returns true if transporter is ok, false if transporter
with duplicate address is on the network. Returns true
if flatCable interface is present.

FUNCTION FIND_ANY_SERVER(VAR server: INTEGER): BOOLEAN;
Returns true if any disk server is found on the network,
and sets the variable server to the address of the disk
server. Returns false if no disk server replys.
Returns true with a server of zero if the interface card
is flat cable

Commands are sent using the drvSend procedure. Results
are received with the drvRecv procedure.

Two global variables must also be declared: active_slot
and disk_server. These must be set prior to calling drY_send.

For instance, the following code fragment sends a semaphore
lock command:

VAR active_slot:
disk_server:
omni_error:

INTEGER;
INTEGER;
INTEGER;

xcv: SndRcvStr;

BEGIN
active_slot := OSactSlt; Disk_server:= OSActSrv;
• • •
xcv.sln := 10; xcv.r1n := 530;
xcv.b[l] := 11; xcv.b[2] := 1; { semaphore lock command}
xcv. c [3] : = 'S'; xcv. c [4] : = ' '; ...
xcv. c [10] : = , ';

Mass Storage Systems GTI 4-13

Sending disk commands

drv_send(xcv) ;
drv_recv (xcv) ;

IF xcv.b[l] > 127 THEN { report disk error} ELSE
IF xcv.b[2] = 0 THEN { semaphore successfully locked} ELSE

BEGIN

. . .

x : = xcv. b [2] ;
CASE x OF

128: {already locked }
253: {table full }
254: {error on table read-write}
END;

END;

Apple Pascal Constellation I

In Pascal, direct communication with the Corvus drive is
handled by the two procedures CDSEND and CDRECV. Any command
described in the Chapter 1 may be sent to the Corvus drive
using these routines.

These procedures are contained in the unit Driveio of
CORVUS.LIBRARY. This unit must be initialized by calling the
procedure Driveioinit BEFORE calling any other procedures in the
unit. Driveioinit should only be called once, at the beginning of
your program.

CDSEND and CDRECV each have one parameter described by the
following type declaration (which appears in the interface
section of Driveio):

type LONGSTR= RECORD
length: INTEGER;
CASE INTEGER OF

{ n should be equal to the length of the
{ command you intend to send or receive
1: (int: PACKED ARRAY [1 •• n] OF O •• 255);
2: (byt: PACKED ARRAY [l •• n] OF CHAR);

END;

longest }
}

Calls to these procedures occur in pairs. That is, a call to
CDSEND is followed immediately by a call to CDRECV. The same
variable is normally used for both calls. The following program
fragment demonstrates a normal command sequence:

• • •
USES Driveio;

VAR xcv: LONGSTR;

Mass Storage Systems GTI 4-14

Sending disk commands

BEGIN

Driveioinit; { initialize the unit }

. -.- 10; xcv.length
xcv.int[l]
xcv.byt[3]
xcv.byt[4]

:= 11; xcv.int [2] := 1; { semaphore lock command}
:= 'S' ; . - , , . .- f

• • •
xcv.byt [10] := I ';

CDSEND (xcv) ;
CDRECV (xcv) ;

IF xcv.int[1]>127 THEN { report disk error} ELSE
IF xcv.int[2]=0 THEN { semaphore successfully locked} ELSE

BEGIN
CASE xcv.int[2] OF

128: {already locked }
253: {table full }
254: {error on table read-write}
END;

END;

The procedures CDSEND and CDRECV are found in the unit
DRIVEIO in the file CORVUS.LIBRARY. These procedures are
independent of whether you are using flat cable or Omninet.
price you pay for this independence is that the unit DRIVEIO
fairly large. You can interface directly to the assembly
language drivers for flat cable or Omninet with the routines
the unit OMNISEND, also in the file CORVUS.LIBRARY. The
interface to these assembly language routines is described next.

The
is

in

Use drv_send and drv_recv for flat cable interface.
Active_slot must be a global variable.

Use omni_send and omni_recv for Omninet interface. Prior to
the first use of these routines in a program, you should use the
code shown below to get the disk server address, unless you make
the assumption that the disk server has a fixed address.
Disk_server and active_slot must be global variables.

In either case, the Corvus interface card may be used in any
slot. The variable active_slot is set to the slot number that
the card is plugged into. But remember that the interface card
must be in slot 6 for normal operation.

CONST
longstr_max = 1030;
broadcast_add = 255;

TYPE

Mass Storage Systems GTI 4-15

"
'- ./

Sending disk commands

byte = 0 •• 2551
LONGSTR= RECORD

length: INTEGER1
CASE INTEGER OF

{ n should be equal to the length of the
{ command you intend to send or receive
1: (int: PACKED ARRAY [l •• n] OF byte);
2: (byt: PACKED ARRAY [l •• n] OF CHAR);

END;

valid_slot = 1 •• 7;

longest }
}

VAR
active_slot (* used by assembler routines to

determine io location *)
(* used by assembler routines *) disk_server

omni_error
byte;
integer; (* used by asm - returns timeout status *)

PROCEDURE drv_send(VAR st : longstr); EXTERNAL;
PROCEDURE drv_recv(VAR st : 10ngstr)1 EXTERNAL 1
PROCEDURE omni_send(VAR st : longstr); EXTERNAL;
PROCEDURE omni_recv(VAR st); EXTERNAL;
(* did not specify type so init portion could send a dummy *)

The following initialization is required for omni_send and omni_recv:

disk_server := broadcast_add;
omnirecv{dummy); (* looks for disk server *)
IF disk_server = broadcast_add THEN (* omnirecv sets disk_server *)

error;

Apple DOS Constellation I

Corvus provides two assembly language procedures (BCI.OBJ and
OMNIBCI.OBJ) for sending arbitrary disk commands. BCI.OBJ is for
multiplexer networks, and OMNIBCI.OBJ is for Omninet networks.

Each routine is a binary file which must be BLOADed into
memory before being called. BCI.OBJ must be loaded at location
300h, while OMNIBCI.OBJ must be loaded at location 8AOOh.
Neither routine is relocatable. BCI.OBJ ends at location 386h,
while OMNIBCI.OBJ ends at location 9044h. OMNIBCI.OBJ is much
longer because it includes buffer space for Omninet messages.

A drive command is poked into memory, and the address and
length of the command are passed to BCI (or OMNIBCI) by poking
the address into location 302h and 303h, and poking the length of
the command into locations 300h and 30lh. BCI (or OMNIBCI) is
then CALLed. Upon return, the length of the result can be peeked
from location 300h and 30lh, and the result itself has been
written into the space pOinted to by the address parameter.

Mass Storage Systems GTI 4-16

Sending disk commands

See the DIAGNOSTIC program, lines 10000-10007 for an example
of how to load BCI (or OMNIBCI). See lines 15000-15110 for an
example of how to call BCI (or OMNIBCI).

BCI does not use the ROM on the Corvus interface card.
OMNIBCI does use the RAM on the transporter card. This RAM is
loaded from a reserved area on the Corvus drive at boot time. If
you want to use OMNIBCI without booting from the Corvus drive,
you must execute the code that loads the RAM. See the BSYSGEN
program, lines 20000-20060 for an example of how to initialize
OMNIBCI.

A listing of BCI.OBJ is included in appendix E.

CP/M 80 Constellation I

You may order the Software Developer's Kit for your
particular machine for examples of how to send commands using the
flat cable interface. ' Version available are listed in Appendix F.

Mass Storage Systems GTI 4-17

Semaphores

Chapter 5: Semaphores

This chapter gives examples of how the semaphores feature of
the Corvus mass storage systems may be used.

Semaphores can be used to control access to any shared
resource on the network. Most often, semaphores are used to
coordinate access to shared files. You should understand that
semaphores merely provide the capability to access shared files1
it is you who must ensure that your programs use this capability.

Programs written for single-user access may not be used to
access shared files1 they must be modified to include semaphore
calls.

User libraries that implement semaphore calls are supplied
with most of the versions of Corvus utilities. A typical
interface consists of two function calls, each with one parameter
specifying the name of the semaphore to be accessed:

function LOCK (SEMA4: string): integer1

function UNLOCK (SEMA4: string): integer1

Each function returns a value which indicates the result of the
operation. The values are as follows:

o Semaphore was not previously locked. For LOCK,
this means that the semaphore has now been locked
successfully.

128 Semaphore was previously locked. For LOCK, this
means that the semaphore could not be locked by
this call. For UNLOCK, this means that the
semaphore is now unlocked.

< 0 Some error occurred, and the semaphore could not
be locked. Specifically, the values returned are

-253 Semaphore table is full.

-254 Error reading/writing semaphore table.

-255 Unknown error.

Thus, a successful LOCK call returns a value of O. A
successful UNLOCK call returns 0 or 128.

As mentioned above, semaphores can be used to control access
to any shared resource on the network. Let's look in detail at
two common uses for semaphores: shared volumes and shared files.

Mass Storage Systems GTI 5-1

Semaphores

Volume sharing implies that several users will be modifying
different files in the same volume. To coordinate such access,
some sort of volume locking scheme must be used. File sharing
implies that several users will be modifying a particular file.
This access requires a file locking scheme.

Volume sharing

The problems associated with volume sharing include
directory update and dynamic file allocation. Both of these
problems can be solved by the volume locking scheme described
below. First, let's look at what happens if you try to do volume
sharing without some sort of locking scheme.

Most systems keep a copy of the directory in memory.
Whenever a new file is opened, an entry is made in the memory
copy of the directory, but this copy is not necessarily written
to disk right away. Thus, if two users open two different files
at approximately the same time, the memory copies of the
directory will differ. Eventually, both copies will be written
back to disk, and one user will lose the file just opened.

Systems which use dynamic file allocation, such as MSDOS and
CP/M, keep a memory image of the disk space allocated. Whenever
a new file is opened, or a new record is written past the current
end of file, the file system searches its file allocation table
for free space on the disk. Enough free space is allocated to
the file to contain up to and including the new record, and a new ""-
end of file mark is written. The file allocation table is
written back to the disk only when absolutely necessary, in order
to minimize disk I/O.

Let's look at what happens when two users are creating files
on the same volume at the same time. Each user has a current
copy of the file allocation table in memory; the operating system
searches the memory copy of the file allocation table for free
space, and allocates the same disk blocks to two different files.
Every time one user updates the data in that disk block, the data
for the other user is destroyed. This can result in many
confusing error messages and incomprehensible data.

Many application writers, for this reason, preallocate any
files their application requires. This operation consists of
opening a file, writing to the last record, and then flushing the
allocation map. Then the application does not have to worry
about further allocation, until the file fills up. Most data
bases are preallocated anyway, as this makes it easier for the
application to manage the data base.

Mass Storage Systems GTI 5-2

Semaphores

Volume locking

Unlike some other network systems, Corvus software does not
define a volume type of shared access. Instead, Corvus software
defines volume access in terms of read-write access or read-only
access. If more than one user has read-write access to the same
volume, then that volume is a shared volume, and access to it
must be protected by using semaphores.

When two users wish to access the same volume, they must
coordinate that access in some way. One way to do this is with
volume locking. In the scheme described here, it is assumed that
each user has the volume in question mounted with read-only
access.

Users must indicate when they are ready to write to the
volume by executing a LOCK program, and specifying the name of
the volume to be locked. The LOCK program will ensure that no
other user currently has write access to the volume, and then
grant the user write access.

How does the program know if any user currently has write
access to the volume in question? This example assumes that if a
certain file, called LOCKED, exists in the volume, then the
volume is currently locked by some user. Furthermore, the name
of the user who locked the volume is contained in the file

(" LOCKED.
\(

The steps the LOCK program must take are listed below:

1) Try to open the file LOCKED. If found, report that
the volume is currently locked, and exit.

2) Change the user's access to read-write. This change
is done in memory, so that it is temporary.

3) Create a file called LOCKED in the volume, and write
the user's name into it.

Thus, if a user executes the LOCK program after the volume is
locked, the user receives an error message saying that the volume
is already locked. Let's look at what happens, however, if the
volume is not locked, and two users happen to execute the LOCK
program at the same time.

Mass Storage Systems GTI 5-3

Semaphores

User 1 User 2

open file LOCKED open file LOCKED

not found, so change not found, so change
access to read-write access to read-write

create file LOCKED, create file LOCKED,
write user name write user name

As you can see, both users think that the volume has been
successfully locked, and both have write access to the volume.
This is NOT supposed to happen. While the likelihood of two
users executing the program at the same time is small, it still
has to be prevented. The only way to prevent it is to use
semaphores.

The reason that both users were able to lock the volume is
that, on a Corvus network, computers have no way to do a read
followed immediately by a write. The computer may send the write
command immediately after the read, but some other computer may
be serviced in between the two operations. The semaphore
operation is the only way to do an indivisible write after read
operation.

In our example, a semaphore called VOLLOCK is used to
synchronize access between the two users. The steps the LOCK
program must do are expanded to the following:

1) Lock the semaphore VOLLOCK. If it can't be locked,
wait in a loop, and try again.

2) Try to open the file LOCKED. If found, report that
the volume is currently locked, unlock the semaphore,
and exit.

3) Change the user's access to read-write. This change
is done in memory, so that it is temporary.

4) Create a file called LOCKED in the volume, and write
the user's name into it.

5) Unlock the semaphore VOLLOCK.

Now let's look at what happens when two users execute the
LOCK program at the same time.

Mass Storage Systems GTI 5-4

c

Semaphores

User 1

Lock semaphore
VOLLOCK

Semaphore successfully
locked.

Open file LOCKED

Not found, so change
access to read-write

Create file LOCKED,
write user name

Unlock semaphore

User 2

Lock semaphore
VOLLOCK

Semaphore already locked,
wait in loop.

semaphore still locked •••

semaphore still locked •••

semaphore still locked •••

Semaphore successfully
locked.

Open file LOCKED.

Found, so cannot lock volume.
Print message, unlock
semaphore and exit.

As you can see, only one user is able to lock the volume at
anyone time.

There are still some problems with the algorithm given above.
On file systems which do directory buffering, the program must
force the directory to be flushed to the disk after creating the
file. Some hints for this are given in the specific operating
system sections below. Also, an UNLOCK program must be provided
so that a user can release access to a volume. This program
must perform the following steps:

1) Delete the file LOCKED.

2) Change the user's access to read only.

Again, in certain file systems, the directory must be flushed
after deleting the file. In this case, no semaphore is locked,
because, in order to delete the file, the user must already have
write access to the volume.

Other problems include a user forgetting to unlock a volume
before powering off. Now no one can write to the volume, since
it is locked and no one has write access to it. This problem can
be gotten round in part by making the LOCK program a little
smarter: if the user executing the LOCK program has the same
name as the user name in the file LOCKED, then grant the user
read-write access.

Mass Storage Systems GTI 5-5

Semaphores

Note that the same semaphore name, VOLLOCK, is used,
regardless of which volume is being locked. Thus, if two users
attempt to lock different volumes at the same time, one user
finds that the semaphore is locked. This is generally not a
problem, since the length of time that the semaphore is locked
should be very short; the second user should notice only a
slight delay before the program completes. Of course, the LOCK
program could use the name of the volume to be locked as the
semaphore name.

In fact, the LOCK program could be made much simpler if the
following algorithm were used:

1) Lock a semaphore with the same name as the volume.
If the semaphore cannot be locked, report error and
exit.

2) Change user access to read-write.

The UNLOCK program has only 2 steps as well:

1) Change user access to read only.

2) Unlock the semaphore with the same name as the volume.

While this algorithm avoids the directory buffering problem
mentioned above, there are two disadvantages to it:

1) There is no way to tell who has the volume locked.

2) Since the semaphore may be locked for an extended
period of time, a network with many users could fill
up the semaphore table.

File or record locking

File or record locking is complicated by the file buffering
schemes used by most operating systems.

Most file systems have one or more file buffers. These
buffers are used to minimize disk overhead by keeping the most
recently accessed file blocks in memory. When the operating
system receives a file read or write call, it first checks its
buffers to see if the specified file block is already in memory;
if it is, then the I/O is done to the memory image, rather than
to the disk. The buffer is flushed to the disk only when
necessary, usually when the buffer must be used for some other
I/O operation. Depending on the number and size of the buffers,
it may be quite a while before a file write is actually
transferred to the disk itself. Most operating systems provide a
system call that forces all buffers to be flushed to the disk.

Mass Storage Systems GTI 5-6

c
'C

('

Semaphores

Thus a write to a file does not actually get recorded on the
disk until some later time. In a network environment, this can
mean disaster for shared data bases, where many users are
attempting to read or write to a common file. Shared file
applications must therefore be coded very carefully~ you must
completely understand the file buffering characteristics of the
file system you are using. The following description of record
locking assumes that you do understand your system's file
buffering.

Basically, you must lock a semaphore on filling a file
buffer, and unlock the semaphore after the buffer has been
flushed. Thus the steps in updating a record are as follows:

1. Lock the semaphore.

2. Read the record (fill the file buffer)

3. Modify the data.

4. Flush the file buffer.

5. Unlock the semaphore.

The semaphore name associated with a given record must be
specified by your program. Your program must ensure that each
record that resides in the same disk block is assigned the same
semaphore name. For example, let's assume that your application
is called ZXY, and it deals with a file structure that has 32
records per disk block (that is, each file buffer can hold 32 of
your application's records). A good algorithm for assigning
semaphore names is shown below:

1. Compute record number DIV 32.

2. Embed this number in the string ZXYOOOOO.

For record 50, your application should lock semaphore ZXY00001.
For record 600, your application should lock semaphore ZXY00018.

Using this algorithm, each record which falls within the same
file buffer is assigned the same semaphore name. Let's look at
what happens when two users execute the program at the same time:

Mass Storage Systems GTI 5-7

User I

Update record 50:

Lock semaphore ZXYOOOOI.

Semaphore successfully locked.

Read record 50.

Make changes.

Flush file buffer to disk.

Unlock semaphore ZXYOOOOI.

Semaphores

User 2

Update record 52:

Lock semaphore ZXYOOOOI.

Semaphore already locked,
wai t in loop •••

Semaphore still locked •••

Semaphore still locked •••

Semaphore still locked •••

Semaphore successfully locked.

Read record 52.

Make changes.

Flush file buffer to disk.

Unlock semaphore ZXYOOOOI.

Note that using this algorithm causes your program to use many
more than the 32 semaphore names provided by Corvus semaphores.
However, only a few semaphores will be locked at anyone time, so
chances are you will never fill up the semaphore table. If you
are worried about this problem, you can set up your own
semaphore table, with semaphore names as long as you wish and
with as many semaphores as you wish. This table could reside in
a file or in a reserved disk block. Access to this user
semaphore table can be controlled with one Corvus semaphore in
the following manner:

1. Lock the Corvus semaphore SEMTAB.

2. Search the user semaphore table for the specified
semaphore name. If there, return the appropriate error.
If not there, add the semaphore and return the
appropriate return code.

3. Unlock the Corvus semaphore SEMTAB.

In the above discussion, we have tried to highlight some of
the problems involved in resource sharing, and how these
problems can be solved by proper use of semaphores. The next
sections describe the library routines provided for each
operating system supported by Corvus.

Mass Storage Systems GTI 5-8

I'
'(

Semaphores

COrvus COncept Operating System

Please refer to the Pascal Library User Guide (Corvus PIN
7100-04978). You need to look at Chapter 14, Corvus Disk
Interface Unit (ccDRVIO), and Chapter 16, Corvus Disk Semaphores
Interface Unit (ccSEMA4).

Note that the procedure CCSEMA4INIT must be called prior to
calling any of the other procedures or functions in the ccSEMA4
unit. The parameter RetLoc specifies which server will be used
for semaphore operations. Specifically, the following fields of
Retloc must be defined before calling CCSEMA4INIT:

Netloc.slotno
Netloc.stationno
Netloc.Kind

slot number
server number (ignored for MUX)
either OmninetDisk or LocalDisk

Here is a portion of a LOCK program for Concept Pascal:

PROGRAM LOCK;
USES {CCLIB}

{C2LIB}

VAR s: Semkey;

CCDEFN,
CCDRVIO, CCSEMA4;

NetAddr: CDAddr; {CDAddr is declared in ccDrvio }
i, err: INTEGER;

BEGIN
cCDrvioInit; { initialize unit ccDRVIO }

Initslot(NetAddr); {this procedure, from ccDrvio,
{ initializes slotno, stationno, and kind
{ fields to boot device. Sets driveno
{ to 1, all other fields to 0 }

ccSema4Init(NetAddr); {initialize unit ccSEMA4 }

. . .
s : = 'VOLLOCK';
i := 0;
REPEAT

i := i+l;

{ get volume name to be locked }

err := SemLock(s);
UNTIL (err <> SemWasSet)

OR (i > 32000);
{ wait for semaphore to be not set }
{ or timeout }

IF err <> SemNotSet THEN ••• { report error and exit program}

••• { lock volume}
{ closing the file causes the directory on disk to be updated }

err := SemUnlock(s); { don't forget to unlock semaphore}

Mass Storage Systems GTI 5-9

Semaphores

END.

Version IV p-system and Apple Pascal Constellation II

Look at the interface sections for the following units:

UCDEFN, UCDRVIO, and OCSEMA4.

These units are found in library CORVUS.LIBRARY.

Note that the procedure CCSEMA4INIT must be called prior to
calling any of the other procedures or functions in the OCSEMA4
unit. The parameter Retloc specifies which server will be used
for semaphore operations. Specifically, the following fields of
Retloc must be defined before calling CCSEMA4INIT:

Netloc.slotno
Netloc.stationno
Netloc.Kind

slot number
server number (ignored for MOX)
either OmninetDisk or LocalDisk

Here is a portion of a LOCK program:

PROGRAM LOCK;
USES {CORVUS. LIBRARY} UCDEFN, UCDRVIO, UCSEMA4;

VAR s: Semkey;
NetAddr: CDAddr; {CDAddr is declared in cCDrvio }
i, err: INTEGER;

BEGIN
ccDrvioInit; { initialize unit ccDRVIO }

Initslot(NetAddr); {this procedure, from ccDrvio,
{ initializes slotno, stationno, and kind
{ fields to boot device. Sets driveno
{ to 1, all other fields to 0 }

ccSema4Init(NetAddr}; {initialize unit ccSEMA4 }

• • •

s := 'VOLLOCK';
i := 0;
REPEAT

i := i+l;

{ get volume name to be locked }

err := SemLock(s};
UNTIL (err <> SemWasSet)

OR (i > SOOO);
{ wait for semaphore to be not set }
{ or timeout }

IF err <> SemNotSet THEN ••• { report error and exit program}

Mass Storage Systems GTI S-IO

,-

Semaphores

••• { lock volume}
{ closing the file causes the directory on disk to be updated }

err := SemUnlock(s); { don't forget to unlock semaphore}

END.

MSDOS l.x and 2.I Constellation II

The MSDOS file system uses both file buffering and dynamic
file allocation. Refer to the DOS manual for information on
managing file buffers and file allocation tables.

The machine language interface described in Chapter 4 may be
used to send semaphore commands. The Software Developer's Kit
contains examples of using semaphores with MS Pascal and compiled
Basic.

A new set of routines provides direct semaphore calls.
These routines are written in machine language and are assembled
using the Microsoft Assembler. Interfacing to these routines
from a high level language may require changing the routines
slightly. This change is required because there is no standard
parameter passing mechanism in MSDOS.

The routine declarations are as follows:

FUNCTION SemLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION SemUnLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION SemStatus(VAR Name: STRING): INTEGER; EXTERN;

These routines are found in the file SEMAASM.OBJ. You must
also use the INITIO and SETSRVR procedures from DRIVEC2.0BJ.

Here is a portion of a LOCK program:

PROGRAM Lock (INPUT,OUTPUT);

CONST SemWasSet = 128;
SemNotSet = 0;

VAR s: LSTRING(80);
err, i: INTEGER;

FUNCTION SemLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION SemUnLock(VAR Name: STRING): INTEGER; EXTERN;
FUNCTION InitIO: INTEGER; EXTERN;

BEGIN
IF INITIO <> 0 THEN { error ••• }

. . . { get volume name to be locked }

Mass Storage Systems GTI 5-11

Semaphores

s : = 'VOLLOCK';
i := OJ
REPEAT

i := i+1;
err := SemLock(s);

UNTIL (err <> SemWasSet)
OR (i > 32000) 1

{ wait for semaphore to be not set }
{ or timeout }

IF err <> SemNotSet THEN { report error and exit program }

••• { lock volume}
{ flush directory to disk }

err := SemUn1ock(s)1 { don't forget to unlock semaphore}

END.

CP/M 86 Constellation II

The machine language interface described in Chapter 4 must be
used to send semaphore commands. The Software Developer's Kit
contains examples of using semaphores with Pascal MT+.

Apple Pascal Constellation I

Look at the interface sections for the following units:

DRIVEIO and SEMA4S.

These units are found in library CORVUS.LIBRARY.

Note that the procedure SEMA4INIT must be called prior to
calling any of the other procedures or functions in the SEMA4S
unit. The parameter is a BOOLEAN which should be set to FALSE.
A TRUE value results in some debugging statements being printed.

Here is a portion of a LOCK program:

PROGRAM LOCK;
USES {CORVUS.LIBRARY} DRIVEIO, SEMA4S1

VAR s: SemkeY1
i, err: I NTEGER 1

BEGIN
Driveiolnit1

Sema4Init(FALSE) 1

...
Mass Storage Systems GTI

{ initialize unit Driveio }

{ initialize unit SEMA4S }

{ get volume name to be locked }

5-12

. "

Semaphores

S := 'VOLLOCK';
i := 0;
REPEAT

i := i+1;
err := SemLock(s);

UNTIL (err <> SemWasSet)
OR (i > 5000);

{ wait for semaphore to be not set }
{ or timeout }

IF err <> SemNotSet THEN ••• { report error and exit program}

••• { lock volume}
{ closing the file causes the directory on disk to be updated }

err := SemUn1ock(s); { don't forget to unlock semaphore}

END.

If you have limited memory available, you may wish to write
your own semaphore routines. See Chapter 4 for information on
interfacing directly to unit DriveIO.

Refer to the Apple Pascal Operating System Reference manual
for information on file buffering and allocation •

Apple DOS Constellation 1/11

Corvus provides two assembly language procedures (BCI.OBJ and
OMNIBCI.OBJ) for sending arbitrary disk commands. BCI.OBJ is for
multiplexer networks, and OMNIBCI.OBJ is for Omninet networks.

The program SHARE on the distribution floppy shows how to
send semaphore commands using these routines.

Refer to the Apple DOS manual for information on file
buffering and allocation.

Mass Storage Systems GTI 5-13

/ "

Using pipes

Chapter 6: Pipes

This chapter gives two examples of how the pipes features of
the Corvus mass storage systems may be used. The first example
is a spooling program; the second shows how messages can be
exchanged using pipes.

User libraries that implement pipes calls are supplied with
several of the versions of Corvus utilities. A typical interface
consists of 9 functions. These are summarized below:

Function Description

PipeStatus
PipeOpRd
PipeOpwr
PipeRead
PipeWrite
PipeClRd
PipeClWr
PipePurge
PipesInit

Get status of pipes area
Open pipe for reading
Open pipe for writing
Read data from pipe
Write data to pipe
Close pipe for reading
Close pipe for writing
Purge pipe
Initialize pipes area on disk

Sample declarations of each function are listed below.

The DrvBlk data type used in these declarations is

TYPE DrvBlk = PACKED ARRAY 0 •• 511 OF 0 •• 2551

The negative error codes referred to in the declarations
are listed here:

Value

-8
-9

-10
-11
-12
-13
-14
-15

< -127

Meaning

Tried to read an empty pipe
Pipe not opened
Tried to write to a full pipe
Pipe open error
Pipe does not exist
No room to open new pipe
Invalid pipes command
Pipes area not initialized
Disk error

Mass Storage Systems GTI 6-1

Using pipes

PipeStatus Function --

PipesStatus uses the Pipe Status command to read the pipe Name
table and the Pipe Pointer table. The definition of the
function is as follows:

FUNCTION PipeStatus(VAR Names, Ptrs: DrvBlk): INTEGER1

Parameter

Names
Ptrs

Data Type

DrvBlk
DrvBlk

Description

Pipe Name Table
Pipe Pointer Table

This function returns 0 if Ok1 a negative result indicates a
pipe error.

PipeOpRd function --

PipeOpRd uses the Pipe Open for Read command to open a pipe for
reading. The definition of this function is as follows:

FUNCTION PipeOpRd(PName: PNameStr): INTEGER;

Parameter Data Type Description

PName PNameStr Name of pipe to open

This function returns the pipe number if the specified pipe
exists, and can be opened. Otherwise, a negative error code is
returned.

PipeOpWr function --

PipeOpWr uses the pipe Open for Write command to open a pipe for
writing. The definition of this function is as follows:·

FUNCTION PipeOpWr(PName: PNameStr): INTEGER;

Parameter Data Type Description

PName PNameStr Name of pipe to open

This function returns the pipe number if the pipe was
successfully opened. Otherwise, a negative error code is
returned.

Mass Storage Systems GTI 6-2

('

Using pipes

PipeRead function ---

PipeRead uses the Pipe Read command to read a block of data from
the specified pipe. The definition of this function is as
follows:

FUNCTION PipeRead(PNum: INTEGER; VAR Info: Drvlk) : INTEGER;

Parameter Data Type Description
--------- --------- -----------
Pnum INTEGER Pipe number
Info DrvBlk Data read from pipe

This function returns the number of bytes read if the read is
successful. Otherwise, a negative error code is returned.
The number of bytes read should always be 512.

Pipewrite function ---

PipeWrite uses the Pipe Write command to write a block of data to
the specified pipe. The definition of this function is as
follows:

FUNCTION PipeWrite(PNum, Wlen: INTEGER;
VAR Info: Drvlk): INTEGER;

Parameter Data Type Description
--------- --------- -----------
Pnum INTEGER Pipe number
Wlen INTEGER Number of bytes to write (=512)
Info DrvBlk Data to be written

This function returns the number of bytes written if the write
is successful. Otherwise, a negative error code is returned.
The number of bytes to write should always be 512.

PipeC1Rd function --

PipeC1Rd uses the Pipe Close command to close the pipe for
reading. The definition of this function is as follows:

FUNCTION pipeC1Rd(PNum: INTEGER): INTEGER;

Parameter Data Type Description

PNum INTEGER Pipe number

This function returns 0 if the pipe was successfully closed.
Otherwise, a negative error code is returned. If the pipe is
empty, it is deleted.

Mass Storage Systems GTI 6-3

Using pipes

PipeCIWr function --

PipeCIWr uses the Pipe Close command to close the pipe for
writing. The definition of this function is as follows:

FUNCTION PipeCIWr(PNum: INTEGER): INTEGER;

Parameter Data Type Description

PNum INTEGER Pipe number

This function returns 0 if the pipe was successfully closed.
Otherwise, a negative error code is returned. Once a pipe has
been closed for writing, no additional data can be written to it.

PipePurge function ---

PipePurge uses the Pipe Close command to purge the pipe. The
definition of this function is as follows:

FUNCTION PipePurge(PNum: INTEGER): INTEGER;

Parameter Data Type Description

PNum INTEGER Pipe number

This function returns 0 if the pipe was successfully purged.
Otherwise, a negative error code is returned.

PipesInit function --

PipesInit uses the pipe Area Initialize command to initialize the
pipes area. The definition of this function is as follows:

FUNCTION PipesInit(Baddr, Bsize: INTEGER): INTEGER;

Parameter

Baddr
Bsize

Data Type

INTEGER
INTEGER

Description

Pipes area starting block number
Pipes area length, in blocks

This function returns 0 if the pipes area was successfully
initialized. Otherwise, a negative error code is returned. You
should use this function with caution, since calling this
function overwrites any data located within the area specified.
The pipes area must be allocated within the first 32k blocks of
drive 1.

Mass Storage Systems GTI 6-4

Using pipes

A simple spooler

A spool program can be used to synchronize access to a
shared printer on a network. One computer is used as a
despooler, and has the printer attached to it. It is running a
despool program, which is looping, looking for pipes with the
name PRINTER to open for read.

A second utility program, called the spooler, can be run on
any other computer on the network. This program asks for the
name of a file to be spooled, opens for write a pipe called
PRINTER, copies the file to the pipe, and then closes the pipe.

Despooler

{ look for a pipe to open }
REPEAT

P := PipeOpRd('PRINTER')
UNTIL p>O;

{Pipe 'PRINTER' opened.}

{ copy data from pipe to }
{ printer }
REPEAT

e := PipeRead(p, buf);
IF e > 0 THEN PRINT(buf);

UNTIL e<O;

e := PipeCIRd(p);

{ the pipe has been purged }

Spooler

Open file f •••
p2 := PipeOpWr('PRINTER');
IF p2 < 0 THEN { error };

{ copy file to pipe }
REPEAT

READBLOCK(f, buf);
e := PipeWrite(p2, buf);

UNTIL EOF(f) OR (e<O);

e := PipeCIWr(p2);
Close file f •••

Of course, the real versions of the DESPOOL and SPOOL
programs will be much longer, as they must provide error
handling and recovery, as well as some text processing. See the
description of the Corvus spool program later in this chapter.

The pipes functions themselves handle the case where two
users execute the SPOOL program at the same time. Each user is
returned a unique pipe number from the PipeOpwr function, which
is used in the calls to the other pipe functions. In fact, the
reason pipes are implemented is to provide exactly this

(' capability: two users can access the pipes area at the same

Mass Storage Systems GTI 6-5

Using pipes

time, and not worry about interfering with each other.

Using pipes to send messages

One of the electronic mail packages available for the Corvus
network uses the pipes area for two functions: to send messages
between two computers on the network, and to synchronize access
to a shared volume. We will look at how the message passing is
accomplished.

The Mail Monitor package from Software Connections consists
of two programs: a Mail program which a user invokes in order
to send or receive mail, and a PostOffice program which is
always running on a dedicated computer. Several users can be
running the Mail program at the same time.

Messages between the Mail programs and the PostOffice are
sent via the pipes area. When the user is ready to receive mail,
the Mail program opens and writes the user number into a pipe
called MSG. The PostOffice sees the pipe, opens it, and reads
the user number contained in it. The PostOffice checks if any
mail is waiting for that user, and sends a message back by
writing to a pipe called USERnn, where nn is the user number
contained in the MSG pipe. TheMail program then opens the
USERnn pipe to get the reply. This process is demonstrated by
the following program fragments:

Mass Storage Systems GTI 6-6

Mail

{ send message }
p := PipeOpWr('MSG');
IF p<O THEN {error}
message := 'USEROl';

Using pipes

PostOffice

{ wait for messages }
REPEAT

pI := PipeOpRd('MSG');
UNTIL pl>O;

e := Pipewrite(p, 512,
IF e<O THEN {error}

message);

e := PipeClWr(p);

{ wait for reply }
REPEAT

P := PipeOpRd('USEROl');
UNTIL p>O;

(Pipe 'USEROl' opened.)
{ read reply }
e := PipeRead(p,msg);
e := PipeCIRd(p);

(Pipe 'MSG' opened.)

{ read message }
e := PipeRead(pl, msg);
e := PipeCIRd(pl);
{ extract pname from }
{ message, and build reply }
pI := PipeOpWr(pname);
IF pI < 0 THEN {error}
e := PipeWrite(pl, 512, msg2);
e := PipeClWr(pl);

{ go back to initial loop to }
{ look for more messages }

Again, there is no code needed to handle the case when two users
execute the Mail program at the same time. The pipes functions
handle all sharing of the pipe area transparently.

The COrvus Spool Program

Corvus provides a spool program for most of the operating
systems supported.

Corvus defines the following format for each pipe:

Mass Storage Systems GTI 6-7

Using pipes

Block 1: preamble block

Offset/Len, Type' Description

0/1 I BYTE I Unused - use O.

1/1 I BYTE I Length of file name.

2 / 80 'BSTR I File name.

82 / 1 I BYTE , Length of message.

83 / 80 'BSTR I Message.

163 / 1 I BYTE I File type (30h=data, 3lh=text).

164 / 348 I ARRY I Unused - use a's.

Blocks 2-n: text or data blocks. If file type is text
(3lh), then each block contains ASCII characters.
End-of-line is indicated by the two byte sequence ODh,
OAb (carriage return/line feed). The last block is
padded with ASCII NUL characters (OOh).

If file type is data (30h), then each block contains
data, which is not looked at or changed by either the
spool program or the despooler.

The spool program opens the specified pipe for writing, and
creates and writes the preamble block. Then it reads from the
text file, converting end-of-line sequences from whatever is used
by the operating system to ODh, OAb. Most of the Corvus spool
programs also convert a specified new page sequence to the ASCII
form feed character (OCh), and also chain text files as specified
by the include sequence.

The despooling function is performed either by a computer
running the despool program (or despool option of the Spool
program), or by a Corvus Utility Server. In either case, the
despool function is going to read pipes and write their contents
to a printer. The despooler opens the pipe and reads the
preamble block. It writes the file name and user message on a
header page. If the preamble block indicates that the file is a
data file, the despooler merely writes the entire contents of
each pipe block to the printer. If the preamble block indicates
that the file is a text file, then the despooler must look at the
contents of each pipe block. If line feeds are off, it looks for
all ODh, OAb byte pairs, and changes the OAh to a OOh. It also
handles paging by counting all ODh, OAb sequences. If the count
reaches the lines per page count specified, the despooler inserts
a form feed (OCh) character. The despooler is also looking for
form feed characters embedded in the text, and resets to count to

Mass Storage Systems GTI 6-8

Using pipes

zero when one is found. All other characters are printed
unchanged.

Corvus Concept Operating System

Please refer to the Pascal Library User Guide (7100-04978).
You should look at Chapter 14, Corvus Disk Interface Unit
(ccDRVIO), and Chapter 15, Corvus Disk Pipes Interface Unit
(ccPIPES).

Note that procedure CCPIPEINIT must be called prior to
calling any of the other procedures or functions in the ccPIPES
unit. The parameter Retloc specifies which server will be
used for pipe operations. Specifically, the following fields of
Retloc must be defined before calling CCPIPEINIT:

Netloc.slotno
Netloc.stationno
Netloc.Kind

slot number
server number (ignored for MUX)
either OmninetDisk or LocalDisk

Here is a portion of s SPOOL program for Concept Pascal:

PROGRAM SPOOL;
USES {CCLIB} CCDEFN,

{C2LIB} CCDRVIO, CCPIPES;

VAR pname: PNameStr;
pno: INTEGER;
err: INTEGER; {error code}
NetAddr: CDAddr;
f: FILE;
n: INTEGER;
buf: DrvBlk;

BEGIN

ccDrviolnit; { initialize unit ccDRVIO }

Initslot(NetAddr}; { this procedure, from ccDrvio,
{ initializes slotno, stationno, and kind
{ fields to boot device. Set driveno to
{ 1, all other fields to 0 }

cCPipeInit(NetAddr); {initialize unit ccPipes }

{ get file name and open it ••• }

pname := 'PRINTER'; { open pipe for writing}
pno := PipeOpWr(pname);
IF pno < 0 THEN { report error and exit ••• };

WHILE NOT EOF(f) DO BEGIN

Mass Storage Systems GTI 6-9

Using pipes

n := BLOCKREAD(f, 1, buf);
err := PipeWrite(pno, 512, buf);
IF err < 0 THEN { report error, purge pipe, and exit ••• };
END;

err := PipeClWr(pno);

{ close file ••• }

END.

Version IV p-system and Apple Pascal Constellation II

Look at the interface secitons for the following units:

UCDEFN, UCDRVIO, and UCPIPES

These units are found in library CORVUS.LIBRARY, which is
included in the Software Developer's Kit.

Note that the procedure CCPIPEINIT must be called prior to
calling any of the other procedures or functions in the ccPIPES
unit. The parameter Retloc specifies which server will be
used for pipe operations. Specifically, the following fields of
Retloc must be defined before calling CCPIPEINIT:

Netloc.slotno
Netloc.stationno
Netloc.Kind

slot number
server number (ignored for MUX)
either OmninetDisk or LocalDisk

Here is a portion of s SPOOL program for Concept Pascal:

PROGRAM SPOOL;
USES {CORVUS.LIBRARY} UCDEFN, UCDRVIO, UCPIPES;

VAR pname: PNameStr;
pno: INTEGER;
err: INTEGER; {error code}
NetAddr: CDAddr;
f: FILE;
n: INTEGER;
buf: DrvBlk;

BEGIN

ccDrvioInit; { initialize unit ccDRVIO }

Initslot(NetAddr); { this procedure, from ccDrvio,
{ initializes slotno, stationno, and kind
{ fields to boot device. Set driveno to
{ 1, all other fields to 0 }

Mass Storage Systems GTI 6-10

Using pipes

ccPipeInit (NetAddr): {initialize unit ccPipes }

{ get file name and open it ••• }

pname := 'PRINTER': { open pipe for writing}
pno := PipeOpWr(pname);
IF pno < 0 THEN { report error and exit ••• }:

WHILE NOT EOF(f) DO BEGIN
n := BLOCKREAD(f, 1, buf);
err := PipeWrite(pno, 512, buf);
IF err < 0 THEN { report error, purge pipe, and exit ••• };
END;

err := PipeClWr(pno);

{ close file ••• }

END.

MSOOS l.x and 2.x

The machine language interface described in Chapter 4 must be
used to send pipes commands. The Software Developer's Kit
contains examples of using pipes with MS Pascal.

CP/M 86 and CP/M 80 Constellation II

The machine language interface described in Chapter 4 must be
used to send pipes commands. The Software Developer's Kit
contains examples of using pipes with Pascal MT+.

Apple Pascal Constellation I

Look at the interface sections for the following units:

DRIVEIO and PIPES.

These units are found in library CORVUS. LIBRARY, which is
contained on the standard distribution diskettes.

Note that the procedure PIPESINIT must be called prior to
calling any of the other procedures or functions in the PIPES
unit. The parameter should be set to FALSE.

Here is a portion of s SPOOL program for Apple Pascal:

PROGRAM SPOOL;
USES {CORVUS.LIBRARY} DRIVEIO, PIPES;

Mass Storage Systems GTI 6-11

Using pipes

VAR pname: PNameStr;
pno: INTEGER;
err: INTEGER; {error code}
f: FILE;
n: INTEGER;
buf: BLOCK;

BEGIN

DriveIoInit; { initialize unit DriveIO }

PipesInit(FALSE); {initialize unit Pipes}

{ get file name and open it ••• }

pname := 'PRINTER'; { open pipe for writing}
pno := PipeOpWr(pname);
IF pno < 0 THEN { report error and exit ••• };

WHILE NOT EOF(f) DO BEGIN
n := BLOCKREAD(f, 1, buf);
err := Pipewrite(pno, 512, buf);
IF err < 0 THEN { report error, purge pipe, and exit ••• };
END;

err := PipeCIWr(pno);

{ close file... }

END.

Apple DOS COnstellation 1/11

Corvus provides two assembly language procedures (BCI.OBJ
and OMNIBCI.OBJ) for sending arbitrary disk commands. BCI.OBJ
is for MUX networks, and OMNIBCI.OBJ is for OmniNet networks.
See Chapter 2 for information on these procedures.

The program SPOOL on the distribution floppy shows how to
send pipes commands using these routines.

Mass Storage Systems GTI 6-12

i"

Appendix A: Device specific information

This appendix discusses the unique characteristics of each
mass storage device.

The following devices are described:

Rev B/H drive
Omnidrive
Bank

For each device, the following information is provided:

Hardware description
Firmware and PROM code interaction
Firmware layout
Device parameters
Front panel LED's
DIP switch settings

Mass Storage Systems GTI A-I

Rev B/H Drives

Rev BIB Drives

The Rev B/H drives may be used stand-alone, in a
Constellation network attached to a Corvus multiplexer, or in an
Omninet network attached to a Corvus disk server.

Up to four drives may be daisy-chained. The controller on
drive one handles all commands except those with a drive number
specifying an add-on drive. For add-on drives to work, drive one
must know how many drives are daisy-chained to it. Drive one
gets this information as part of its power-up procedure. Thus
the add-on drives must be powered-on when drive one is reset.
The drive number is set with a DIP switch; the DIP switch
settings are described later in this section.

Rev BIB hardware description

This section attempts to identify major pieces of the
hardware. It does not try to explain how it works. Refer to
the hardware specification for more details.

The Rev B/H Corvus drives consist of an IMI Winchester hard
disk, two or three printed circuit boards (depending on model) ,
and a power supply.

The disk controller consists of a Z80 microprocessor, 4k
bytes of EPROM, and Sk bytes of RAM. Communication with the
outside world is handled through two input/output ports: one
connected to a bidirectional data bus, and the other providing
control Signals. These signals are available on the 34-pin
Corvus-IMI bus at the back of the drive. The signals on this
bus are further described at the end of this section.

Rev BIB firmware and prom code

Conceptually, firmware is the code running in the controller.
As described in the hardware requirements, Rev BIH code is
resident both in PROM and RAM. Corvus has a convention that
designates the code in PROM as PROM code and that in RAM as
firmware. This document follows that convention.

Part of the controller code is in the 4k PROM. Because of
the limited controller RAM, the firmware consists of several
segments which are overlayed as needed. The main part of the
firmware, the dispatcher, is lk bytes long and is the command
dispatcher. It intercepts the command string sent from the host,
decodes it, then activates the appropriate routines in the PROM
or overlays the appropriate firmware into the RAM.

The firmware code occupies several blocks in an area called

Mass Storage Systems GTI A-2

(

Rev BIB Drives

the firmware area. The firmware area occupies the first two
cylinders of the Rev BIB drive. The first cylinder contains the
firmware, the second one is a duplicate. Besides the firmware
code, the firmware area contains other information such as the
track sparing information, the drive parameters, etc. Refer to
the next section for the layout of this area.

At power on, the PROM code initializes itself and then
examines the front panel switches. If all switches are in the
normal position, the controller reads in the boot block (block 0
of the firmware). The boot block performs some initialization,
then loads the dispatcher into RAM and transfers control to it.
If the firmware is bad, the drive will not corne ready.

If, on power on, the PROM code finds that the Format switch
is on, it utilizes the command dispatcher in PROM. The
capability of this dispatcher is quite limited, however, as it
allows the host only the functions such as format, verify, and
read-write to the firmware area. If, on power on, the PROM code
finds that the LSI-II switch is on, the LSI code is loaded from
the firmware area into RAM.

Rev BIB firmware layout

The first two cylinders on all drives are allocated as the
firmware area, the second cylinder being a backup copy of the
first. There are no spared tracks allowed in this region; all
blocks must be good. The usage for the blocks within a cylinder
is shown below.

Mass Storage Systems GTI A-3

Rev B/H Drives

Block I Len I Description

o 1 I Boot Block.

1 1 I Disk parameter block (see below).

2 1 I Diagnostic block (prep code).

3 1 I Constellation parameter block (see below) •

4 2 I Dispatcher code.
--

6 2 I Pipes and semaphores code. The semaphore
I table is contained in block 7, bytes
I 1 - 256.

8 I 10 I Mirror controller code.

18 I 2 I LSI-II controller code.
--

20 I 2 I Pipes controller code.

22 I 3 I Reserved for future use.
--

25 I 8 I Boot blocks 0-7. Apple II uses 0-3,
I I Concept uses 4-7.

33 4 I Active user table.

37 3 I Reserved.

Mass Storage Systems GTI A-4

c

c

Rev B/H Drives

Block 1, the disk parameter block, contains the following
information:

--
Byte I Len I Description
--

o 16 I Spared track table (Rev B drives) -
I 2 bytes per spared track (lsb,msb). End of
I table is FFFFh.

--
16 1 I Interleave factor.

--
17 1 I Reserved.

--
18 14 Virtual drive table --

2 bytes/entry (lsb,msb). Unused entries are
FFFFh.

32 8 I LSI-II Virtual drive table

40 8 I LSI-II spared track table.

48 I 432 I Reserved.

480 32 Spared track table (Rev H drives)
2 bytes per spared track (lsb,msb). End of
table is FFFFh. Bytes 480-493 must match
bytes 0 to 13 (see below).

There are two spared track tables for Rev B/H. The first 7
entries in the second table should match the 7 entries in the
first table. Rev B drives can have a maximum of 7 spared
tracks; Rev H drives can have a maximum of 31 spared tracks.

Block 2 is the diagnostic, or prep, block. It contains the code
necessary to perform the prep mode functions. This code is put
in the firmware area for archival purposes only. The host uses
a diag file separate from the firmware area.

Mass Storage Systems GTI A-S

Rev BIB Drives

Block 3 is the Constellation parameter block. Its format is
shown below:

Byte I Len I Description

o 12 I Multiplexer slot and polling parameters.
--

12 2 I Block address of Pipe Name Table
I (lsb,msb) (start of pipes area).

14 2 I Block address of Pipe Pointer Table (lsb,msb).

16 2 I Number of blocks in pipes area (lsb,msb).

18 I 470 I Reserved.

488 12 I Reserved for software protection.

500 12 I Reserved for serial number.

Rev B parameters

Model 6 Mb Model 11 Mb Model 20 Mb

Sectors per track 20 20 20
Surfaces (heads) 4 3 5
Cylinders 144 358 388

Total tracks
per drive 576 1074 1940

Reserved for
spares 7 7 7

Reserved for
firmware 8 6 10

Usable tracks
per drive 561 1061 1923

Blocks per 11220 21220 38460
drive

Rev B Front panel LED's and switches

The front panel of the Rev BIB drive has three (3) LEDls: a
FAULT LED, a BUSY LED and a READY LED. During power on , the
FAULT LED and the READY LED should be on, and the BUSY LED
flashing, until the end of the initialization. When the
initialization is done, the following light conditions may
Occur during drive operations:

Mass Storage Systems GTI A-6

f

Rev B/H Drives

FLT LED I BSY LED I RDY LED I Condition

off

off

off

on

on

off

on

I flash I
I 1/4 sec I

off

on

off

off

I Firmware not installed or
I or corrupted

I Ready

I In prep mode

I Operation error
I

When the drive is put in prep mode to be formatted or to have
firmware updated, the FLT and RDY LED are turned off and the BSY
LED turned on. You must be careful when this condition occurs as
the disk can be reformatted and all data can be lost.

There are four toggle switches located beneath the front
panel LED's. These are, from left to right, (1) LSI-II switch,
(2) MUX switch, (3) format switch, (4) reset switch. The normal
position for each switch is to the left.

Rev B DIP switches

There is an 8 position DIP switch accessible through the
trap door located on the bottom of the drive case. This switch
is used to set the drive number for daisy-chained drives.

Mass Storage Systems GTI A-7

Drive
number

Switch setting

1 2 3 4 5 6 7 8
+-------------------------------+

1 X I X I 0 I - I - I - I - I -

2 X I 0 I X I - I - I - I - I -

3 X I 0 I 0 I - I - I - I - I -

4 0 I X I X I - I - I - I - I -

5 0 I X I 0 I - I - I - I - I -

6 0 I 0 I X I - I - I - I - I -

7 0 I 0 I 0 I - I - I - I - I -

+-------------------------------+
X = CLOSED; 0 = OPEN

Rev B/H Drives

The DIP switch pressed in on the side marked OPEN is considered
OPEN.

Rev B parameters

Model 6 Mb Model 11 Mb Model 20 Mb

Sectors per track 20 20 20
Surfaces (heads) 2 4 6
Cylinders 306 306 306

Total tracks 612 1224 1836
per drive

Reserved for 31 31 31
spares

Reserved for 4 8 12
firmware

Usable tracks 577 1185 1793
per drive

Blocks per 11540 23710 35960
drive

Rev B Front panel LED's and switches

Same as Rev B.

Mass Storage Systems GTI A-8

c

(

Rev BIB Drives

Rev B DIP switches

There is an 8 position DIP switch located on the controller
PC board. This switch is used to set the drive number for
daisy-chained drives. To access this switch, you must remove the
top drive cover; the board is mounted on the inside of the drive
cover.

Drive
number

Switch setting

1 2 3 4 5 6 7 8
+---------------+---------------+

1 1 X 1 - 1 - 1 X 1 - 1 - 1 - 1 - 1
1-------------------------------1

2 1 X 1 - 1 - 1 0 1 - 1 - 1 - 1 - 1
1-------------------------------1

3101- 1 - 1 X 1 - 1 - 1 - 1 - 1
1-------------------------------1

4101- 1 - 1 0 1 - 1 - 1 - 1 - 1
+-------------------------------+

X = CLOSED; 0 = OPEN

The DIP switch pressed in on the side marked OPEN is considered
OPEN.

There is also a 4 position DIP switch located on the back
panel of the drive. This switch is used to specify whether an
internal Corvus MIRROR card is present in the drive.

Switch setting

Meaning 1 2 3 4
------- +---------------+
No MIRROR/external MIRROR 1 X 1 X 1 X 1 X 1

1---------------1
PAL/SECAM MIRROR 1 X 1 0 1 0 1 0 1

1---------------1
NTSC MIRROR I 0 1 0 I 0 1 0 1

+----------------
X = CLOSED; 0 = OPEN

The DIP switch pressed in on the side marked OPEN is considered
OPEN.

Mass Storage Systems GTI A-9

Disk Plat cable Interface

All cable assignments are TTL.

Cable wire assignments

NAME ORIGINATOR
Data Bit 0 bi-directitonal
Data Bit 1 bi-directitonal
Data Bit 2 bi-directitonal
Data Bit 3 bi-directitonal
Data Bit 4 bi-directi tonal
Data Bit 5 bi-directitonal
Data Bit 6 bi-directitonal
Data Bit 7 bi-directitonal
DIRe (bus dir) drive
READY drive
-STROBE computer
-RESET drive
+5 volts drive
Ground drive
Alternate select drive
Reserved computer
Unused

Mass Storage Systems GTI

Rev B/H Drives

FLAT CABLE WIRE
25
26
23
24
21
22
19
20

9
27
29
31
3,4,34
6,8,10,17,28,30,32
11
5
1,2,7,12-16,18,33

A-I0

(

Rev B/B Drives

cable timing

General case

Command initiation and computer to drive data transfer.

READY ----------------+ +-------------------+ +-
I I I I
+--------+ +--------+

500 nsec.
<>

-STROBE ----------+ +-------------------------+ +-------------
I I I I +--+ +--+

> 50 nsec.
<=======>

/------------\ /------------\
DATA ---------< >-------------< >----

\------------/ \------------/

The drive indicates its readiness to accept a command by ra1s1ng
the READY line. The computer then puts a command byte to the
data lines and pulses -STROBE (the command byte is to be latched
by the drive on the rising edge of -STROBE). Upon seeing the
-STROBE pulse, the drive drops the READY line as an
acknowledgement to the computer. When ready for the next command
byte the drive again raises the READY line.

The drive takes each command byte as it needs it. If it is
expecting another command byte, and one is not there, the drive
will timeout after approximately 4 seconds. The drive flushes
the current command, and waits for a new command to start.

At the end of the command sequence, the drive keeps the READY
line low until the desired operation has been performed. Upon
completion of the operation, the drive lowers the DIRC line and
raises the READY line, allowing the computer to read data and
status information. Note that all commands consist of a write
phase, during which command and data information is sent to the
drive, followed by a read phase, during which status and data
information is received from the drive.

Mass Storage Systems GTI A-ll

Rev B/B Drives

Drive to computer data transfer.

+--------+ +--------+ +-
I I I I I

READY ----+ +-----------+ +------------//------+
-STROBE ------+ +-----------------+ +----------------//------

I I I I +--+ +--+

/------------\ /------------\
DATA -----< >-----< >-------//----

\------------/ \------------/
DIRe ----+ +----

I I
+--//---+

The drive starts a computer read sequence by lowering the DIRe
line. The drive then puts a byte to the data lines and raises
the ready line. The computer then pulses the -STROBE line,
capturing the data on the rising edge. The drive then lowers the
READY line until the next data byte is ready to send. After the
last byte is transferred, the drive raises the DIRe line prior to
raising the READY line.

Special conditions

There are two special conditions which deviate from the general
cable timing information presented and must be accounted for by
the computer-disk controller or by the computer-disk handler.

ease I -- READY line glitch after the last byte of command.

After the last command byte is received by the drive, the READY
line goes high (for 20 uSEe. or less). Since this occurs prior
to the completion of the command operation, it must be ignored.
Since the glitch occurs while the DIRe line is high, it is easy
to detect either in hardware, by gating, or in software, by the
procedure shown below in pseudo-code.

REPEAT UNTIL (DIRe = LOW) AND (READY = HIGH);

ease 2 -- DIRe line glitches after last byte of Mirror command.

After the last command byte of a Mirror command is received, the
DIRe line repeatedly alternates between high and low, while the
drive talks to the Mirror. Since these changes occur while the
READY line is low, they are easy to detect either in hardware, by

Mass Storage Systems GTI A-12

Rev BIB Drives

gating, or in software, by the procedure shown below in
pseudo-code.

REPEAT UNTIL (READY = HIGH) AND (DIRe = LOW);

Note that the two glitch cases are resolved with a single fix.

cable connector description

A 17 x 2 female connector is attached to the cable. The red
stripe on cable is pin 1.

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
I 11 31 51 71 91111131151171191211231251271291311331
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1 21 41 61 81101121141161181201221241261281301321341
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Pin 1 is normally designated by a square pad on the circuit side
of the interface card.

Mass Storage Systems GTI A-13

Omnidrive

Omnidrive

The Omnidrive is a Winchester hard disk device with a
built-in Omninet disk server interface. Functionally, it
resembles a Rev B/H drive connected to a disk server. The
Omnidrive is designed such that it is compatible with the old
disk server and disk drive combination to minimize software
impact. However, some changes are warranted due to hardware
constraints and systems requirements. Also, certain features are
intended as upgrades to the feature set. All the changes from
Rev B/H controllers are documented in appendix C.

The Omnidrive is a self-contained box with a controller and
disk server on the same PCB. It does not support a flat cable
interface and has no daisy chain capability. To expand the
capacity of the network, more Omnidrives can be attached to the
Omninet cable, effectively forming a multiple server network.

Omnidrive hardware description

This section attempts to identify major pieces of the
hardware. It does not try to explain how it works. Refer to
the hardware specification for more details.

The Omnidrive controller consists of three main sections: a
transporter, a disk server and a disk controller. The
transporter section communicates to the Omninet. It mainly
consists of three chips: a 6801 processor, an ADLC and a custom
gate array. The disk server section adds one RAM to buffer data
in and out of the network. It also has some firmware code that
understands Constellation protocols. The disk controller
utilizes a hard disk controller chip (WD1010) and the 6801 is
used as the processor.

The EPROM requirements are:
8k bytes - 2k disk server, 6k disk controller
(socket can also accommodate 16k bytes PROM; the extra

PROM space is used if more code is needed)

There are four RAM sockets on the controller: two designated
as share RAMs and two as scratch RAMs. The share RAMs can be
accessed by the Omninet gate array chip, thus they can be DMAed
from and to the network. The 6801 processor can also read-write
to these share RAMs. The two scratch RAMs, however, can only be
accessed by the processor (6801). Each RAM socket can take a 2k
by 8 static RAM chip.

Mass Storage Systems GTI A-14

Omnidrive

The shared RAMs are utilized as follows:
2k bytes disk server buffer
2k bytes read-write buffer to 1010

The scratch RAMs are
lk bytes
lk bytes

lk bytes
lk bytes

utilized as follows:
disk server scratch RAM
disk controller scratch RAM

and semaphore table
pipes table
downloaded controller code

Omnidrive fir.vare and prom code

Conceptually, firmware is the code running in the controller.
As described in the hardware requirements, Omnidrive code is
resident both in PROM and RAM. Corvus has a convention that
designates the code in PROM as PROM code and that in RAM as
firmware. This document follows that convention.

Most of the controller code is in the 8k PROM. It handles
the disk server function as well as the actual disk controller
function. The firmware code, lk bytes long, is essentially a
command dispatcher. It intercepts the command string sent from
hosts, decodes it, then activates the appropriate routines in the
PROM.

The firmware code occupies two blocks in an area called the
f:irmware area. The firmware area occupies the first four tracks
of the Omnidrive. The first two tracks contain the firmware, the
last two are duplicates. Beside the firmware code, the firmware
a~ea contains other information such as the track sparing
information, the drive information, the pipes table, etc. Refer
to the next section for the layout of this area.

At power on, the two dispatcher blocks are loaded from the
media to RAM. This RAM code now functions as the command
dispatcher. If the firmware does not exist on the disk, the
controller switches to a special command dispatcher entirely
resident in PROM. The capability of this dispatcher is quite
limited, however, as it allows the host only the functions such
as format, verify, and read-write to the firmware area.

Omnidrive fi~are layout

In the Omnidrive, the first four tracks of the drive are
reserved for the Corvus firmware. The firmware is 36 blocks long
(block number 0-35) and thus occupies 2 tracks. The firmware is
duplicated for safety in the next two tracks.

Mass Storage Systems GTI A-IS

omnidrive

The following is the layout of the firmware area:

Block I Len I Description

o I 1 I Spared track table (see below).

I I 1 I Disk parameter block (see below) •

2 1 I Diagnostic block (prep block) •

3 1 I Constellation parameters (see below).

4 2 I Reserved.

6 2 I Dispatcher code.

8 I 1 I Pipe Name table.

9 I 11 I Reserved.

20 1 I Pipe Pointer table.

21 I 3 I Reserved.

24 I 8 I Boot blocks 0-7. Apple II uses blocks 0-3,
I I Concept uses blocks 4-7.

32 4 I Active user table.

Block 0 is the spared track table. The table has the following
format:

Byte I Len I Description

o I 2 I First spared track (msb,1sb)

2 I 2 I Second spared track (msb,lsb)

• •• I I •••

The end of the table is indicated by an entry of FFFFh. The
number of spared tracks reserved is different for various drive
models. The maximum number of spared tracks for a drive is in
ROM, and can be obtained by the Get Drive Parameters command.
The maximum number of spared tracks supported by the controller
is 64.

Mass Storage Systems GTI A-16

Omnidrive

Block 1 is the disk parameter block. It contains the following
information:

Byte I Len I Description

o I 16 I Reserved.

16 I 1 I Interleave factor.

17 31 I Reserved.

48 I 2 I Starting block address of pipes area (lsb,msb).

50 I 2 I Number of blocks in pipes area (lsb,msb).

52 1 I Write-verify flag.

53 I 195 I Reserved.

248 8 I Format password.

256 I 256 I Reserved.

Block 2 is the diagnostic, or prep, block. It contains the code
necessary to perform the prep mode functions. This code is put
in the firmware area for archival purposes only. The host uses
a diag file separate from the firmware area.

Block 3 is the Constellation block. It currently contains the
following information:

Byte I Len I Description

o I 488 I Reserved.

488 12 I Reserved for software protection.

500 12 I Reserved for serial number.

Mass Storage Systems GTI A-17

Omnidrive

Omnidrive parameters as of l-Feb-84
"

Max ""~ ~

Spared
Heads Cyls Tracks capacity Precom Cyl Land Cyl

1M1 S006H 2 306 12 10728 256 329
1M1 S012H 4 306 20 21600 256 329
1M1 S018H 6 306 28 32472 256 329

Rodime 201 2 306 12 10728 0 319
Rodime 202 4 306 20 21600 0 319
Rodime 203 6 306 28 32472 0 319
Rodime 204 8 306 36 43344 0 319

Dansei RD4064 2 306 12 10728 128 337
Dansei RD4127 4 306 20 21600 128 337
Dansei RD4191 6 306 28 32472 128 337
Dansei RD4255 8 306 36 43344 128 337

Ampex 7 2 306 12 10728 128 319
Ampex 13 4 306 20 21600 128 319
Ampex 20 6 306 28 32472 128 319
Ampex 27 8 306 36 43344 128 319

Microp 1304 6 823 40 88092 400 N/A
Vertex 150 5 987 40 88038 N/A N/A
Rodime R0204E 8 618 40 88200 0 640

Maxtor XTI065 7 918 46 114768 N/A N/A
Maxtor XT1l05 1 918 70 180432 N/A N/A
Maxtor XTl140 15 918 94 246096 N/A N/A

Miniscr 2006 2 306 12 10728 0 336
Miniscr 2012 4 306 20 21600 0 336
Miniscr 4020 4 459 28 32472 0 522

Omnidrive Front panel LED's

The front panel of the Ornnidrive has three LED's: a FAULT
LED, a BUSY LED and a READY LED. During power on , the BUSY LED
should be on until the end of the initialization. When the
initialization is done, the following light condition might
occur:

Mass Storage Systems GTI A-18

{

Omnidrive

FLT LED I BSY LED I RDY LED I Condition

on on off I Firmware not installed or
I corrupted

on

off

on

flash I
1/4 sec I

on

off

off

off

on

on

on

off

I Same address as another
I node on network

I Ready

I In prep mode

I Wrong transporter version
I

each light flash 1/4 sec I RAM error

quick
flash

off off I Operation error
I

When the drive is put in prep mode to be formatted or to have
firmware updated, the FLT and RDY LED are turned on and the BSY
LED turned off. You must be careful when this condition occurs
as the disk can be reformatted and all data lost.

Mass Storage Systems GTI A-19

Omnidrive

Omnidrive DIP switches

One of the design objectives for the Ornnidrive controller is
to have a standard disk interface so that it can communicate with
drive mechanisms from various manufacturers. (ST-412 is the
de-facto standard for 5 1/4" disk drive).

The ST-412 standard only specifies electrical interface
requirements, but drives have different disk parameters (number
of heads, number of cylinders, landing track, etc). The
Ornnidrive controller has an a position DIP switch which is used
to select the drive mechanism type. The tables of the drive
parameters are built into the PROM. The DIP switch selection
forces the controller at power-on time to load the appropriate
table entry into RAM, which the controller then uses as the set
of parameters.

The DIP switch settings for PROM version ODB 0.9 are listed
below.

Switch setting
Drive
type 1 2 3 4 5 6 7 a

+-------------------------------+
IMI 5006H I x I x I x I x I x I x I x I x
IMI 5012H o I x I x I x I x I x I x I x
IMI 501aH x I 0 I x I x I x I x I x I x
Rodime 201 010 I x I x I x I x I x I x
Rodime 202 x I x I 0 I x I x I x I x I x
Rodime 203 o I x I 0 I x I x I x I x I x
Rodime 204 x I 0 I 0 I x I x I x I x I x
Dansei RD4064 010 I 0 I x I x I x I x I x
Dansei RD4127 x I x I x I 0 I x I x I x I x
Dansei RD4191 o I x I x I 0 I x I x I x I x
Dansei RD4255 x I 0 I x I 0 I x I x I x I x

+-------------------------------+
x = CLOSED; 0 = OPEN

The DIP switch pressed in on the side marked OPEN is considered
OPEN.

Mass Storage Systems GTI A-20

Omnidrive

Switch setting
Drive
type 1 2 3 4 5 6 7 8

+-------------------------------+
Ampex 7 010 1 X 1 0 1 X 1 X 1 X 1 X

Ampex 13 X 1 X 1 0 1 0 1 X 1 X 1 X 1 X

Ampex 20 o 1 X 1 0 1 0 1 X 1 X 1 X 1 X

Ampex 27 X 1 0 1 0 1 0 1 X 1 X 1 X 1 X

Micropolis 1304 0101010 1 X 1 X 1 X 1 X

Vertex 150 X 1 X 1 X 1 X 1 0 1 X 1 X 1 X

Rodime R0204E o 1 X 1 X 1 X 1 0 1 X 1 X 1 X

Maxtor XTI065 X 1 0 1 X 1 X 1 0 1 X 1 X 1 X

Maxtor XTII05 010 1 X 1 X 1 0 1 X 1 X 1 X 1
-------------------------------1

Maxtor XT1140 X 1 X 1 0 1 X 1 0 1 X 1 X 1 X 1
-------------------------------1

Miniscribe 2006 o 1 X 1 0 1 X 1 0 1 X 1 X 1 X 1
-------------------------------1

Miniscribe 2012 X 1 0 1 0 1 X 1 0 1 X 1 X 1 X 1
-------------------------------1

Miniscribe 4020 01010 1 X 1 0 1 X 1 X 1 X 1
+-------------------------------+

X = CLOSED; 0 = OPEN

The DIP switch pressed in on the side marked OPEN is considered
OPEN.

Mass Storage Systems GTI A-21

The Bank

The Bank

The Bank is a random access tape device designed to be a back
up and on-line device in an Omninet network. The product
consists of a tape transport (LM 101) and a Bank controller. The
device has a built-in Omninet interface and is a server on the
network. It supports all the standard Corvus disk commands.

The tape is a continuous loop with a loop time of 20
seconds for a 200MB tape and 10 seconds for a 100MB tape. The
long tape has 103 meters of media and the short one 53 meters.
The tape spins at a speed of 5.5 meters/sec. There are 101
tracks on the tape. Track 0 is designated as the landing track.
Track 1 is used as the firmware track. Tracks 2-100 are the user
tracks.

Each track is internally divided into sections, called heads.
Each section is analogous to a track on a Winchester. A section
contains 256 sectors, 1024 bytes each. A 200MB tape has eight
sections, while a 100MB tape has four sections. A 200MB tape
therefore has 2048 sectors per track; four sectors are reserved
for sparing bad ones, so there are 2044 user sectors per track.
For a 100MB tape, there are 1024 sectors per track, with four
used for sparing, leaving 1020 user sectors per track.

Bank hardware description

This section attempts to identify major pieces of the
hardware. It does not try to explain how it works. Refer to
the hardware specification for more details.

The Bank controller consists of three main sections: a
transporter, a disk server and a tape controller. The
transporter section communicates to the Omninet. It mainly
consists of 3 chips: a 6801 processor, an ADLC and a custom gate
array. The disk server section adds one RAM to buffer data in
and out of the net. It also has some firmware code that
understands Constellation protocols. The tape controller
utilizes a hard disk controller chip (WDlOlO) and the 6801 is
used as the processor.

The EPROM requirements are:
8k bytes - 2k disk server, 6k disk controller

There are 5 RAM sockets on the controller: 2 designated as
share RAMs and 3 as scratch RAMs. The share RAMs can be accessed
by the Omninet gate array chip, thus they can be DMAed from or to
the network. The 6801 processor can also read-write to these
share RAMs. The three scratch RAMs, however, can only be
accessed by the processor (6801). Each RAM socket can take a 2k
by 8 static RAM chip.

Mass Storage Systems GTI A-22

The Bank

The shared RAMs are utilized as follows:
2k bytes disk server buffer
2k bytes read-write buffer to 1010

The scratch RAMs are
1k bytes

utilized as follows:

lk bytes

1k bytes
3k bytes

Bank firmware and prom code

disk server scratch RAM
disk controller scratch RAM

and semaphore table
pipes table
downloaded controller code

Conceptually, firmware is the code running in the controller.
As described in the hardware requirements, Bank code is resident
both in PROM and RAM. Corvus has a convention that designates
the code in PROM as PROM code and that in RAM as firmware. This
document follows that convention.

Most of the controller code is in the 8k PROM. It handles
the disk server function as well as the actual tape controller
function. The firmware code, 3k bytes long, is essentially a
command dispatcher, but also contains the pipes and semaphore
code. The command dispatcher intercepts the command string sent

I~ from a host, decodes it, then activates the appropriate routines
~- in the PROM. The pipes and semaphore code perform the functions

their names imply.

The firmware occupies the first 38 blocks of track 1. The
first block is the boot block which contains the parameters for
that tape. This block is duplicated in the next two blocks for
reliability. The dispatcher code occupies two blocks in the
firmware. The pipe and semaphore code occupies four blocks.
Besides this code, the firmware area contains other information
such as the track sparing information, the pipes table, etc.
Refer to the next section for the layout of this area.

At power on, the dispatcher and the pipes and semaphore code
are loaded from the media to RAM. If the firmware does not exist
on the tape, the controller switches to a special command
dispatcher entirely resident in PROM. The capability of this
dispatcher is quite limited, however, as it allows the host only
the functions such as format, verify, read-write to the firmware
area.

Bank fir.vare layout

In each Bank Tape, there is a non-user accessible area where
the Corvus firmware is located. The firmware is 36 blocks long
(block number 0-35) and occupies 38 sectors in track 1 of the
tape. Each sector is 1024 bytes long, but the firmware only

Mass Storage Systems GTI A-23

The Bank

utilizes the first 512 bytes of each sector. The first firmware
block, the boot block, contains vital information about
the tape and is triplicated.

The following is the layout of the firmware area:

Block I Len I Description

o 1 I Boot block, tape parameters, start of spare
I sector table (see below).

1 1 I Contains the rest of the spare sector table.

2 I 1 I Format results (see below).

3 I 1 I Constellation block (see below).

4 2 I Reserved.

6 2 I Dispatcher.

8 1 I Pipe name table.

9 I 3 I Diag blocks 0, 1, 2.

12 I 4 I Pipes and semaphore code.

16 4 I Reserved.

20 1 I Pipe pOinter table.

21 I 3 I Reserved.

24 I 8 I Boot blocks 0-7. Apple II uses 0-3,
I I Concept uses 4-7.

32 4 I Active User table.

Mass Storage Systems GTI A-24

The Bank

Block 0 contains tape information and sector sparing of the first
40 tracks in the following format:

Byte I Len I Description

o 2 I Boot hello message (5AA5h)

2 12 I Bad track bit map
I (first byte corresponds to tracks 0-7,
I arranged MSB: TO, Tl, ••• T7 :LSB)

15 1 I Interleave factor (1 to 31, odd)

16 I 1 I Number of heads on this tape (4 or 8)

17 I 1 I Number of sectors per section (0 = 256 sectors)

18 2 I Number of sectors per track

I (1024 or 2048 - msb,lsb)

20 2 I Number of user sectors per track
I (1020 or 2044 - msb,1sb)

22 3 I Total user sectors

I (101376 or 202356 - msb •• 1sb)

25 3 I Tape index counter (msb,lsb)

28 2 I Number of motor start-stop (msb,lsb)

30 12 I Reserved.

52 2 I Pipe area starting block number (lsb,msb).

54 2 I Pipe area size (length in blocks) (lsb, msb) •

56 1 I Tape type (bit 0 set - fast tracks on;
I bits 1-7 reserved)

57 8 I Tape name in ASCII

65 I 8 I Tape password in ASCII

73 I 2 I Format date in ASCII

75 32 I Tape comment in ASCII

107 85 I Reserved

192 I 320 I Track 0 to track 39 bad sector table

Mass Storage Systems GTI A-25

The Bank

Each track has eight bytes reserved in the bad sector table for
four entries (an entry is two bytes). The first byte of the
entry is the head of the bad sector; the second byte is the
sector number. The entries within a track are sorted in order
(low to high). The unused entries are filled with OFFFFH.

Block 1 contains the rest of the spare sector table:

Byte I Len I Description

o I 488 I Track 40 to track 100 bad sector table

488 24 I Reserved.

Block 2 contains the result of the last tape format. The
layout of this data is shown:

Byte I Len I Description

o 1 I Result code

1 1 I Bad track count

2 I 510 I Bad track list, each entry two bytes (lsb,msb)

Block 3 is the Constellation block. It currently contains the
following information:

Byte I Len I Description

o I 488 I Reserved.

488 12 I Reserved for software protection

500 12 I Reserved for serial number

Blocks 9, 10, 11 are the diag blocks. They contains code to
format, verify, and read-write firmware area. This code is
put in the firmware area for archival only. The host uses a
diag block file that is separate from the firmware file.

Mass Storage Systems GTI A-26

The Bank

Bank parameters

100MB tape 200MB tape

Number of tracks per tape 101 101
Number of sections per track 4 8
Number of sectors per section 256 256
Number of sectors per track 1024 2048
Number of bytes per sector 1024 1024

Number of spare sectors per track 4 4
Number of user sector s per track 1020 2044

Landing track number 0 0
Firmware track number 1 1
Number of user data tracks 99 99

Loop time 9.4 sec 18.8 sec

Tape life 500 hours 500 hours
Number of start-stops 2000 2000

Bank Front panel LED'S

The front panel of the Bank has three LED's: a FAULT LED,
a BUSY LED and a READY LED. During power on , the BUSY LED
should be on until the end of the initialization. When the
initialization is done, the following light condition might
occur:

FLT LED I BSY LED I RDY LED I Condition

on I off off I Fatal hardware error

on I on off I Firmware not installed
I I or corrupted

on on on I Same address as another
I host on network

off I off I on I Ready, tape is OK

flash I off I off I Wrong transporter version

1/4 sec I I I

flash each light 1/4 sec I RAM error

quick I
flash I

off off I Operation error
I -

C- When the Bank is put in prep mode to be formatted or to have

Mass Storage Systems GTI A-27

The Bank

firmware updated, the FLT and RDY LED are turned on and the
BSY LED turned off. You must be careful when this condition
occurs as the tape can be reformatted and all data lost.
The following lights could happen in prep mode:

FLT LED I BSY LED I RDY LED I Condition

on I off on I Bank in prep mode

on I on on I Bank is formatting

off on on I Bank is filling during format

off on I off I Bank is verifying during format

off on I off I Bank is executing cmnds in prep

Mass Storage Systems GTI A-28

(

Constellation Device Types

Appendix B: Tables

Constellation Device Types

Specific types are indented below their generic type.

Value Meaning

01
02

Generic disk device, booting; Corvus disk server
Generic Print Server

03
04
05
06
07-0Fh

10h

Reserved
Mirror Server
Bank

Omnidrive (generic type = 01)
Reserved.

Generic disk device, non-booting

Ilh-lFh Reserved for future mass storage devices.

20h-3Fh Workstations. Workstations are Constellation
Boot number plus 20.

20h Generic Workstation Device Type
21h Apple II

25h Corvus Concept

29h IBMIPC or IBM/XT
2Ah Xerox 820
2Bh Zenith H89
2Ch NEC PC8000
2Dh Commodore PET
2Eh Atari 800
2Fh TRS-80 Model I

30h TRS-80 Model II
31h LSI-II

33h Apple III
34h DEC Rainbow
35h TI Professional
36h Zenith Z-lOO
37h Corvus Concept Plus
38h Corvus Companion
39h Apple MacIntosh
3Ab Sony SMC-7086

40h-5Fh Reserved for future workstations.

Mass Storage Systems GTI B-1

Constellation Device Types

60h-7Fh Operating system types. Operating system types
are Constellation operating system number plus
60h.

6lh Apple Pascal
62h Apple DOS 3.3
63h UCSD Pascal version 2.x
64h MS-DOS l.x
65h Apple SOS
66h Apple Pascal Runtime
67h CP/M 80
68h RT-ll
69h RSX-Il
6Ah PET DOS
6Bh NEWDOS (TRS-80 Mod 1/111)
6Ch NEWDOS-80 (TRS-80 Mod 1/111)
6Dh Atari DOS 2.0
6Eh UNIX System 3
6Fh CP/M 86
70h CCOS (Corvus Concept)
7lh Constellation II pascal IV.x
72h CP/M 68
73h NCI p-system
74h Softech p-system IV.l
75h Apple ProDOS
76h Apple MacIntosh
77h UNIX System 5
78h Apple II CP/M

80n-8Fh Gateways

80h Generic gateway
81h SNA gateway

90h-9Fh Reserved.

AOh-A8h Z80 based utility servers

AOh Generic Utility Server II server
Alh Enhanced print service
A2h Simple pipes bridge

A9h-AFh Reserved for future servers

BOh-FEh Reserved for future devices

FFh Any device.

Mass Storage Systems GTI B-2

(

Constellation Boot number assignments

Constellation Boot number assignments

Boot number Computer type

0, 1, 2, 3
4, 5, 6, 7

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Apple II
Concept
IBM
Xerox 820
Zenith HB9
NEC PCBOOO
Pet
Atari BOO
TRS-80 MOD I
TRS-80 MOD III
LSI-II
Printer server
Apple III
DEC Rainbow
TI Pro
Z-lOO
Concept2
Companion
MacIntosh
Sony SMC-70B6

Mass Storage Systems GTI B-3

Summary of Disk Commands

Summary of Disk Commands in Numerical Order

Command Code:Modifier

Read Sector (256 bytes) 02h
Write Sector (256 bytes) 03h
Semaphore Lock OBh:Olh
Semaphore Unlock OBh:llh
Get Drive Parameters 10h
Prep Mode Select Ilh
Park heads (Rev H) Ilh
Read Sector (128 bytes) l2h
Write Sector (128 bytes) 13h
Boot l4h
Record Write 16h
Semaphore Initialize lAh:l0h
Pipe Read lAh:20h
Pipe Write lAh:21h
Pipe Close lAh:40h
Pipe Status 1 lAh:4lh
Pipe Status 2 lAh:4lh
Pipe Status 0 lAh:4lh
Semaphore Status lAh:41h
Pipe Open Write IBh:80h
Pipe Area Initialize lBh:AOh
Pipe Open Read lBh:COh
Read Sector (256 bytes) 22h
Write Sector (256 bytes) 23h
Read Sector (512 bytes) 32h
Write Sector (512 bytes) 33h
AddActive 34h:03h
DeleteActiveUsr (Rev B/H) 34h:00h
DeleteActiveUsr (Omnidrive) 34h:Olh
DeleteActiveNumber(Ornnidrive)34h:00h
FindActive 34h:05h
Read Sector (1024 bytes) (Bank) 42h
Write Sector (1024 bytes) (Bank) 43h
Read Boot Block 44h
Park heads (Omnidrive) 80h
WriteTempBlock B4h
ReadTempBlock C4h
Echo (Omnidrive/Bank) F4h

Mass Storage Systems GTI

Number of Data Bytes

Sent

4
260

10
10

2
514
514

4
132

2
2
5
5

x+5
5
5
5
5
5

10
10
10

4
260

4
516

18
18
18
18
18

4
1028

3
1

514
2

513

Received

257
1

12
12

129
1
1

129
1

513
1
1

516
12
12

513
513

1025
257

12
12
12

257
1

513
1
2
2
2
2

17
1025

1
513

1
1

513
513

B-4

Disk return codes

Return codes for Rev BIB drives

The disk return code is a byte. The bits are interpreted as
shown below:

Bit #

bits 0-4
bit 5
bit 6
bit 7

Meaning

Error code (see below).
l=recoverable error.
l=verify error.
l=hard error.

Bits 5 and 6, or both, are set whenever a soft error occurs. For
a hard error, bit 7 is always set, and bits 5 and 6 may be set.

Soft error
bit 5 bit 6

32 20h
33 21h
34 22h
35 23h
36 24h

37 25h
38 26h
39 27h
40 28h
41 29h

42 2Ah
43 2Bh
44 2Ch
45 2Dh
46 2Eh

47 2Fh
48 30h
49 31h
50 32h
51 33h

52 34h
53 35h
54 36h
55 37h
56 38h

57 39h
58 3Ab
59 3Bh
60 3Ch
61 3Dh

64 40h
65 41h
66 42h
67 43h
68 44h

69 45h
70 46h
71 47h
72 48h
73 49h

74 4Ab
75 4Bh
76 4Ch
77 4Dh
78 4Eh

79 4Fh
80 SOh
81 51h
82 52h
83 53h

84 54h
85 5sh
86 56h
87 s7h
88 s8h

89 s9h
90 sAh
91 sBh
92 sCh
93 sDh

Hard error
bit 7 bit 5,7 bit 6,7

128 80h 160 AOh 192 COh
129 81h 161 Alh 193 Clh
130 82h 162 A2h 194 C2h
131 83h 163 A3h 195 C3h
132 84h 164 A4h 196 C4h

133 8Sh 165 ASh 197 Csh
134 86h 166 A6h 198 C6h
135 87h 167 A7h 199 C7h
136 88h 168 A8h 200 C8h
137 89h 169 A9h 201 C9h

138 8Ah 170 AAh 202 CAh
139 8Bh 171 ABh 203 CBh
140 8Ch 172 ACh 204 CCh
141 8Dh 173 ADh 205 CDh
142 8Eh 174 AEh 206 CEh

143 8Ph 175 AFh 207 CFh
144 90h 176 BOh 208 DOh
145 91h 177 Blh 209 Dlh
146 92h 178 B2h 210 D2h
147 93b 179 B3h 211 D3h

148 94h 180 B4h 212 D4h
149 9Sb 181 Bsh 213 Dsh
ISO 96h 182 B6h 214 D6h
151 97h 183 B7h 215 D7h
152 98b 184 B8h 216 D8h

153 99b 185 B9h 217 D9h
154 9Ah 186 BAh 218 DAh
ISS 9Bb 187 BBh 219 DBh
156 9Ch 188 BCh 220 DCh
157 9Db 189 BDh 221 DDh

Mass Storage Systems GTI

Meaning

Header fault.
Seek timeout.
Seek fault.
Seek error.
Header CRC error.

Rezero fault.
Rezero timeout.
Drive not online.
Write fault.
Unused.

Read data fault.
Data CRC error.
Sector locate error.
Write protected.
Illegal sector address.

Illegal command op code.
Drive not acknowledged.
Acknowledge stuck active.
Timeout.
Faul t.

CRC.
Seek.
Verification.
Drive speed error.
Drive illegal address error.

Drive r/w fault error.
Drive servo error.
Drive guard band.
Drive PLO error.
Drive r/w unsafe.

B-s

Disk return codes

Return codes for Omnidrive/Bank

Value

o Oh

131 83h

36 24h
132 84h

135 87h
136 88h

43 2Bh
139 8Bh

142 8Eh
143 8Fh

157 9Dh
158 9Eh
159 9Fh

Meaning

No error.

Seek error.

Soft sector header error.
Hard sector header error.

Drive not ready.
Write fault.

Soft CRC error (data).
Hard CRC error (data).

Illegal sector address.
Illegal opcode.

Format firmware track failure.
No tape inserted.
Cannot read boot block.

Active user table errors

Value

o
1
2
3

Meaning

No error.
No room in active user table.
Duplicate name in active user table.
User not found in active user table.

Boot command errors

Value Meaning

4 Drive is not initialized (Const II).

Mass Storage Systems GTI B-6

,

f

(

Pipe states

bit #

bit 7
bit 1
bit 0

Pipe errors

Value

0 OOh
8 08h
9 09h

10 OAh
11 OBh
12 OCh
13 ODh
14 OEh
15 OFh

Semaphore states

Value

0 OOh
128 80h

Semaphore errors

Value

0 OOh
253 FDh
254 FEh
255 FFh

Meaning

l=contains data / O=empty
l=open for read
l=open for write

Meaning

No error.

Disk return codes

Tried to read an empty pipe.
Pipe not open for read or write.
Tried to write to a full pipe.
Tried to open an open pipe.
Pipe does not exist.
Pipe buffer full.
Illegal pipe command.
Pipes area not initialized.

Meaning

Semaphore not set.
Semaphore set.

Meaning

No error.
Semaphore table full.
Semaphore table read-write error.
Unknown error.

Mass Storage Systems GTI B-7

Transporter messages

Transporter result codes

Value

0 OOh

<64 <40h

<128 <80h

Meaning

No error.
Node identification number resulting from an
Initialize or Who Am I command.
Transmit retry count.

128
129

80h
8lh

Transmit failure (retry count exceeded).
Transmitted messages user data portion was too
long for the receiver's buffer.

130
131

132

82h
83h

84h

Message was sent to an uninitialized socket.
Transmitted message control portion length did
not equal receive socket's control buffer length.
Invalid socket number in command vector (must
be 80h, 90h, AOh, or BOh).

133 85h Receive socket in user.
134 86h Invalid destination node number in command vector.

(must be 00-3Fh or FFh).

192 COh Received an ACK for an Echo command.

254 FEh Socket set up successfully.

Transporter command summary

Send message

Command vector
Byte Contents

o Command code = 40h
1 Result record address
4 Destination socket
5 Data address
8 Data length

10 User control length
11 Destination host

Setup receive

Command vector
Byte Contents

o Command code = FOh
1 Result record address
4 Socket number
5 Data address
8 Data length

10 User control length

Mass Storage Systems GTI

Result record
Byte Contents

o Return code
1 Unused
4 User control info

Result record
Byte Contents

o Ret urn code
1 Source host
2 Unused
4 User control info

B-8

/' '

Transporter messages

End receive
~

U
~ Command vector Result record

Byte Contents Byte Contents
a Command code = lOh a Return code
1 Result record address
4 Socket number

Initialize

Command vector Result record
Byte Contents Byte Contents

a Command code = 20h a Return code
1 Result record address

Who amI

Command vector Result record
Byte Contents Byte Contents

a Command code = Olh a Return code
1 Result record address

Echo

Command vector Result record
Byte Contents Byte Contents

(
a Command code = 02h a Return code
1 Result record address
4 Destination node

(

Mass Storage Systems GTI B-9

Transporter cards

Appendix D: Transporter card information

« to be provided »

Mass Storage Systems GTI D-1

Differences between Omnidrive and Rev B/H drives

rOI'rCtUr (fT! ',r L • I L!.iu',L..
~ Appendix C: Differences between Omnidrive and Rev BIB drives

--
This appendix describes the differences between the Omnidrive

and the Rev B/B drives:

o Physical characteristics

The Omnidrive has IS sectors per track while Rev B/B drives
have 20 sectors per track.

o Firmware layout

The Omnidrive firmware area is arranged differently from that
of Rev B/B. Refer to Appendix A for details; the differences
are summarized below:

The firmware block number ranges from 0 to 35 for Omnidrive.
Rev B/H drives use physical head/sector number.

The sparing information for the Omnidrive is recorded in
block 0 of the firmware. The Rev BIB drive records
information in block 1. Omnidrive allows variable number of
spare tracks for different drives.

(0 Prep mode
'z

In Prep mode, the Omnidrive turns on FAULT and READY LEOs;
the Rev B/B turns on BUSY LED.

Omnidrive can accept up to four prep blocks. Rev BIB accepts
only one.

Omnidrive formats with a FFB pattern. A specific fill command
has to be sent to have a different pattern written.

o Read-write

Read after write is an option selectable in the diagnostic
program.

Sector addressing scheme has been changed to support 24-bit
address.

o Parking

Omnidrive implements parking as a firmware command (SOh).
Rev BIB requires a special prep block.

o Omninet device type

The Omnidrive has a new Omninet device type (device 6). This

Mass Storage Systems GTI C-I

Differences between Omnidrive and Rev BIB drives

device type is returned to a Who Are You command.

o Constellation support

A new DeleteActiveNumber command is provided to delete all
active users with the same host number. This command is
currently not supported in Rev BIB drives.

Omnidrive does not have Constellation parameters to support
the multiplexer.

Virtual drives are not supported. To replace the virtual
table, a new sector address scheme is implemented (24 bit
address).

The Omnidrive supports the new Constellation Disk Server
Protocol as well as the existing version. Refer to Chapter
2 for details.

o Pipes and semaphores

Pipes tables (pointer and name) are located in the firmware
area of Omnidrive. Rev BIB pipes tables are stored in the
pipes area.

Pipe tables are resident in RAM at all time. They are
written to the disk when a pipe is closed after write or when
the drive is put in prep mode.

Pipe read-write only works with 512 bytes of data even though
the interface stays the same.

Wild card character (NUL) is supported in semaphore and pipe
operations.

Omnidrive semaphore table is not saved. It is resident in
~1 all the time. It is destroyed when the drive is powered
off.

Mass Storage Systems GTI C-2

Flat cable interface

Appendix E: Corvus Flat cable interface cards
--
This appendix describes the flat cable interface cards provided
by Corvus. See Appendix A for a description of the flat cable
signal assignments. The notes appear on the next page.

computer
" " Pro- ,
I 'cessor' I/O
" Type , Type

Data
Port

Address
Hex/Dec

Status IReady IH-t-D ,
Port IStatuslStatus,

Address ,bit i/lbitt/ ,
Hex/Dec 'value Ivalue INotes

==
A1spa I I Z80 I I/O I DOh/208 I D2h/210 I 0/1 I 1/1 I (5)

Altos "Z80 'I/O '81h/129' 80h/128 '0/0 '1/0

Atar i 400/800" 6502 , , I (8)
--
Apple II " 6502 'Mem , COEOh/, COE1h/, 7/0 '6/0 '(1)

I' , '49376' 49377' , ,

DEC Rainbow "8088' I/O I 20h/ 32 , 21h/ 33 '0/0 '1/1

DEC Robin "Z80 'I/O 'DEh/222' DFh/223 '0/0 '1/1

IBM PC " 8088 'I/O '2EEh/750' 2EFh/751, % '1/1 '(7)
--
LNW80 "Z80 'Mem F781h/ I F780h/, % ,1/0 '(3)

Magnolia Z-891' Z80 'I/O I 59h/ 89 , 58h/ 88 ,0/0 '1/0 '(4)

NEe "Z80 'I/O I 81h/129 , 80h/128 ,0/0 '1/0
--
Osborne 0-1 "Z80 'Mem (5) (5) '6/0 '7/1 '(5)

S-100, Z80
ripoff

" 8080" I/O 'DEh/222 I DFh/223 ,0/0 '1/1
"Z80 I , , I I

Sony SMC-70 "Z80 I I/O '48h/ 72 I 49h/ 73 I % I 1/1

SuperBrain

TRS-80 I

I' Z80 I I/O '81h/129 I 80h/128 I % I 1/~ ,

I' Z80 I Mem
II I

3781h/, 3780h/ I % I 1/0
14209 I 14208 I I

--
TRS-80 II I I Z80 I I/O I DEh/222 I DFh/223 I % I 1/1
--
TRS-80 III I I Z80 I I/O I DEh/222 I DFh/223 I % I 1/1 I (2)

Xerox 820 I' Z80 I I/O 08h/8 09h/9 I % I 1/1 I (6)

Zenith H-89 I' Z80 I I/O '7Ah/122 I 7Bh/123 I % '1/1

Mass Storage Systems GTI E-1

Flat cable interface

Zenith Z-90, I I Z80 I I/O I 7Eh/126 I 7Fh/127 I % I 1/1
Zenith Z-lOO I I 8085 I I I I I / '

Mass Storage Systems GTI E-2

(

Flat cable interface

(1) Card contains space for a 2k PROM; card must be in slot 6
(2) Must output 1 to bit 6 of port OECh first
(3) Same card as TRS-80 I
(4) Not a Corvus product; contains space for a PROM;

bit 2 - auto boot switch, bit 7 - power on
(5) Complex strobe
(6) Complex bus direction control
(7) Card contains space for a 4k PROM
(8) Interface is through game ports 3 and 4.

Mass Storage Systems GTI E-3

Flat cable routine for 6502

Sample interface routine: 6502

; This section describes the source for the machine language program know""
; as BCI. BCI stands for Basic Corvus Interface; this program is used by
; the various Basic utilities to communicate with the Corvus drive. The
; function of this program is to send one command to the Corvus interface,
; and then wait for a reply. The parameters to BCI are used both as input
; -(i.e., the length and command are passed in), and output (i.e., the length
; and result bytes of the reply are passed back in the input locations).
· ,
; Parameters to BCI are:
· , · , · ,

Length of command - this parameter is a word, and is passed
in locations 300,301 (hex; least significant byte first).
Length must always be greater than O.

· ,
· ,

Address of buffer containing command - this parameter is a word,
and is passed in locations 302,303 (hex; least significant byte
is first).

; Entry point to BCI is 304 (hex).
; BCI is NOT relocatable; it loads at 300
; Uses the DMA buffer address location at
; Assumes that the CORVUS card is in slot

• ABSOLUTE

(hex) •
48,49 (hex)
6 •

.TITLE nBCI Copyright 1981, All rights reserved, Corvus Systems, In'

.PROC BCI

LEN .EQU 0300 ; length of command
BUF .EQU 0302 ; address of data buffer containing command

RENBL .EQU OCOE2 ; read strobe
STATUS .EQU OCOEI ; sta t us byte
DATA .EQU OCOEO ; input/output line
DMABUF .EQU 48 ; DMA buffer location

START .ORG 0304
LDA RENBL ; enable read strobe

; initialize byte count, DMA index

LDA BUF
STA DMABUF
LDA BUF+l
STA DMABUF+l
LDY to

; send command to drive

LDX LEN
BNE STESTI

OUTL DEC LEN+l
STESTI BIT STATUS

BMI STESTI

Mass Storage Systems GTI

; count down upper byte of length
; wait for drive to be ready

E-4

{

Flat cable routine for 6502

LDA @DMABUF,Y send byte to drive
STA DATA
INY ; get next byte
BNE NEXTI check for 256 byte rollover
INC DMABUF+l

NEXTI DEX
BNE STESTI
LDA LEN+l
BNE OUTL

. done with sending command, now wait for line to turn around I

TEST2

LOOPI

BIT STATUS
BVe TEST2
BMI TEST2

LDY #10
DEY
BNE LOOPI

BIT STATUS
BVe TEST2
BMI TEST2

; now receive the result

LDA #0
STA LEN
STA LEN+I
LDA BUF
STA DMABUF
LDA BUF+I
STA DMABUF+I

STEST3 BIT STATUS
BVe DONE
BMI STEST3

LDA DATA
STA @DMABUF,Y
INY
BNE STEST3
INC DMABUF+I
BNE STEST3

; read status bit
; wait for bus to turn around
; wait for "ready" bit

delay loop to avoid "ready" glitch

; check it again, just to be sure

; initialize returned byte count

; reset DMA address

; exit if "host to drive"

; read byte from controller
; save in memory buffer

; check for 256 byte rollover

; keep looping until exit

; compute address of end of received data+l, then subtract starting address
; to get total number of bytes received

DONE TYA
CLC
ADC DMABUF
PHA
LDA DMABUF+I

Mass Storage Systems GTI E-5

ADC #0
STA DMAB UF+ I
PLA
SEC
SBC BUF
STA LEN
LDA DMABUF+I
SBC BUF+I
STA LEN+I
RTS
.END

Mass Storage Systems GTI

Flat cable routine for 6502

E-6

Flat cable routine for SOSO/ZSO

Sample interface routine: soao/zao

Mass Storage Systems GTI E-7

Flat cable routine for 8086/8088

Sample interface routine: 8086/8088

TITLE DRIVEIO
· , · , · , · ,
1

· , · ,

~ORVUS/IBM DRIVE INTERFACE UNIT FOR MICROSOFT ---
PAS CAL AND BASI C

VERSION 1.2 BY BRK
(MICROSOFT ASSEMBLER VERSION

; THIS UNIT IMPLEMENTS 5 PROCEDURES:
· ,
1 INITIO
; CDRECV = DRVRECV
1 CDSEND = DRVSEND
· ,
; NOTE: THIS INTERFACE UNIT NOW SUPPORTS BOTH PASCAL AND BASIC
; BUT IT MUST BE RE-ASSEMBLED WITH THE APPROPRIATE SETTING
; OF THE "LTYPE" EQUATE TO DO THIS FOR EACH LANGUAGE.
· , · , · ,
; THE CALLING PROCEDURE IN PASCAL IS :
· , · ,
• ,

CDSEND (VAR st : longstring)

; THE FIRST TWO BYTES OF THE STRING ARE THE LENGTH
; OF THE STRING TO BE SENT OR THE LENGTH OF THE
; STRING RECEIVED.
· , · , function INITIO : INTEGER

; THE FUNCTION RETURNS A VALUE TO INDICATE THE STATUS OF
; THE INITIALIZATION OPERATION. A VALUE OF ZERO INDICATES
1 THAT THE INITIALIZATION WAS SUCCESSFUL. A NON-ZERO VALUE
; INDICATES THE I/O WAS NOT SETUP AND THE CALLING PROGRAM
; SHOULD NOT ATTEMPT TO USE THE CORVUS DRIVERS.
· , · ,
1
1
; THE CALLING PROCEDURE BASIC IS
· ,
1
1

CALL CDSEND (B$)

; THE FIRST TWO BYTES OF THE STRING ARE THE LENGTH
; OF THE STRING TO BE SENT OR THE LENGTH OF THE
1 STRING RECEIVED (I.E. LEFT$(B$,2)).
· ,

CALL INITIO (A%)
· ,

THE FUNCTION RETURNS A VALUE TO INDICATE THE STATUS OF · ,

Mass Storage Systems GTI E-8

(

;

· ,
· ,
· ,

Flat cable routine for 8086/8088

THE INITIALIZATION OPERATION. A VALUE OF ZERO INDICATES
THAT THE INITIALIZATION WAS SUCCESSFUL. A NON-ZERO VALUE
INDICATES THE I/O WAS NOT SETUP AND THE CALLING PROGRAM
SHOULD NOT ATTEMPT TO USE THE CORVUS DRIVERS.

· ,
;=.==

· , · ,
; FIRST VERSION

REVISION HISTORY

BY BRK
;
;
;

10-05-82
11-01-82
05-16-83

improved turn around delay for mirror
merged Pascal and Basic versions

;===

· , TRUE
FALSE
· ,

EQU
EQU

PASCAL EQU
BASIC EQU
· ,
;

, LTYPE

OFFFFH
o

1
2

; LANGUAGE TYPE DESCRIPTOR
; LANGUAGE TYPE DESCRIPTOR

PASCAL ; SET TO LANGUAGE TYPE TO BE USED WITH
;
REVB

EQU

EQU o ; 0 IF REVA OR REVB DRIVE, 1 IF REVB DRIVE ONLY
· , · ,
; ----- CORVUS EQUATES FOR IBM PC -----
· ,
DATA
STAT
DRDY
DIFAC
· , · ,
PGSEG

· , · ,

EQU
EQU
EQU
EQU

2EEH
2EFH
1
2

SEGMENT 'CODE'
ASSUME CS:PGSEG

; DISC I/O PORT i
; DISC STATUS PORT
; MASK FOR DRIVE READY BIT
; MASK FOR BUS DIRECTION BIT

IF LTYPE EQ PAS CAL
DB
ENDIF

'CORVUS/IBM PC FLAT CABLE PASCAL DRIVER AS OF 05-16-83'

· ,
IF LTYPE EQ BASIC
DB
ENDIF

'CORVUS/IBM PC FLAT CABLE BASIC DRIVER AS OF 05-16-83'

• ,
· ,
; INITIALIZE CORVUS I/O DRIVERS ---
· , · , · , · ,
• ,

THIS ROUTINE MUST BE CALLED
ONCE TO SETUP THE DRIVERS BEFORE
THEY ARE USED. IF THE ROUTINE DOES
ANYTHING THAT CAN ONLY BE DONE ONCE,

Mass Storage Systems GTI E-9

,.

(

· I

· I

· I

Flat cable routine for 8086/8088

IT MUST DISABLE THIS SECTION SO THAT
AND ACCIDENTAL SECOND CALL WILL NOT
LOCK UP THE HARDWARE.

PUBLIC INITIO

INITIO PROC FAR
· I

· I

· I

IF
MOV
RET
ENDIF

IF
PUSH
MOV
MOV
MOV
POP
RET
ENDIF

INITIO ENDP
· I

LTYPE EQ PAS CAL
AX,O ; RETURN A ZERO

LTYPE EQ BASIC
BP
BP,SP
BX,6 [BP] ; GET POINTER TO DATA ftINTEGER ft
word ptr [BX],O ; RETURN A ZERO
BP
2

; RECEIVE A STRING OF BYTES FROM THE DRIVE ---
;

PUBLIC CDRECV, DRVRECV
· ,
CDRECV PROC
DRVRECV:

· I

;

· I

· I

PUSH
MOV

IF
MOV
ENDIF

IF
MOV
INC
INC
MOV
ENDIF

PUSH
PUSH
INC
INC

MOV
MOV
CLD

FAR

BP
BP,SP

LTYPE EQ PAS CAL

; SAVE FRAME POINTER
; SET NEW ONE

DI,6 [BP] ; GET ADDRESS OF STRING TO SAVE DATA IN

LTYPE EQ BASIC
BX,6 [BP] ; GET ADDRESS OF STRING DESCRIPTOR
BX
BX ; POINT TO STRING POINTER
DI,[BX] ; GET ADDRESS OF STRING TO SAVE DATA IN

ES
DI
DI
DI

AX,DS
ES,AX

; SAVE POINTER TO 'LENGTH'
; POINT TO START OF DATA AREA

; SET SEGMENT # FOR SAVING DATA
; SET TO AUTO-INCREMENT

Mass Storage Systems GTI E-IO

Flat cable routine for 8086/8088

;
MOV DX,STAT ; POINT TO STATUS PORT

i '-,,--
; FANCY "MIRROR" COMPATIBLE TURN ROUTINE ---
;
TURN:

· I

· I

;

IN
TEST
JNE
TEST
JNE

CALL

IN
TEST
JNE
TEST
JNE

AL,DX
AL,DIFAC
TURN
AL,DRDY
TURN

SDELAY

AL,DX
AL,DIFAC
TURN
AL,DRDY
TURN

CALL SDELAY
· I

· I

RLP:

· I

· I

· ,

;

MOV

IN
TEST
JNE

IN
TEST
JNE

TEST
JNZ

DEC
IN
INC
STOSB
INC
JMP

RLPE: POP
POP
MOV
POP
RET

CDRECV ENDP
· ,

CX,o

AL,DX
AL,DRDY
RLP

AL,DX
AL,DIFAC
RLPE

AL,DRDY
RLP

DX
AL,DX
DX

CX
RLP

DI
ES
[DI] ,ex
BP
2

; GET STATUS BYTE
; LOOK AT BUSS DIRECTION
; WAIT FOR "DRIVE TO HOST"
; LOOK AT "READY STATUS"
; IF NOT READY, KEEP LOOPING

; WAIT A MOMENT

; GET STATUS AGAIN

; WAIT FOR "DRIVE TO HOST"
; LOOK AT "READY STATUS"
; WAIT FOR "READY

; INIT LENGTH COUNT

; GET STATUS BYTE

; LOOP UNTIL READY

; GET STATUS BYTE
; TEST BUS DIRECTION
; IF "HOST TO DRIVE", EXIT

; TEST FOR 'READY'
; DOUBLE CHECK THAT IT IS READY

; POINT TO DATA PORT
; GET DATA BYTE
; POINT BACK TO STATUS PORT
; STORE DATA BYTE IN DATA STRING
; INCREMENT LENGTH COUNTER
; LOOP UNTIL DONE

; GET POINTER BACK TO LENGTH

; SET LENGTH OF RETURNED STRING
; GET FRAME POINTER BACK
; CLEAR RETURN STACK

; SEND STRING OF BYTES TO DRIVE
· ,

PUBLIC CDSEND, DRVSEND
;
CDSEND PROC FAR

Mass Storage Systems GTI E-ll

..

(

DRVSEND:

;

· ,

· ,

· ,

PUSH
MOV

IF
MOV
ENDIF

IF
MOV
INC
INC
MOV
ENDIF

MOV
JCXZ

INC
INC
CLD

LODSB

BP
BP,SP

LTYPE EQ PASCAL

Flat cable routine for 8086/8088

; SAVE FRAME POINTER
; SET NEW ONE

SI,6 [BP] GET ADDRESS OF STRING TO SEND

LTYPE EQ BASIC
BX,6 [BP] ; GET ADDRESS OF STRING DESCRIPTOR
BX
BX ; POINT TO STRING POINTER
SI,[BX] ; GET ADDRESS OF STRING TO SAVE DATA IN

CX, [SI]
ENDSND

SI
SI

; GET STRING LENGTH
; IF NULL STRING, JUST RETURN

; POINT TO START OF DATA TO SEND

; SET TO AUTO-INCREMENT

; GET FIRST BYTE OF DATA
CALL WAITO ; SEND FIRST BYTE USING INTERRUPT TEST

;

· ,
WLP:

WLPB:
· ,

WLPl:

;

WLPl:

• ,

INC
JMP

IN
TEST
JNZ
DEC
LODSB

IF
OUT
INC
LOOP
ENDIF

IF
OUT
LOOP
ENDIF

ENDSND: POP
RET

CDS END ENDP
· , · ,

DX
WLPI

AL,DX
AL,DRDY
WLP
DX

REVB-l
DX,AL
DX
WLP

REVB
DX,AL
WLPB

BP
2

; --- SHORT DELAY ROUTINE
· ,
SDELAY PROC NEAR

Mass Storage Systems GTI

; POINT TO STATUS PORT
; ENTER COUNTING LOOP

; READ STATUS BYTE
; IS DRIVE READY FOR NEXT ACTION?
; NO, SO KEEP LOOPING
; POINT TO DATA PORT
; YES, GET DATA BYTE FROM 'DMA' LOCATION

; FOR REV A OR REV B DRIVES
; SEND DATA BYTE TO DISC
; POINT BACK TO STATUS PORT
; LOOP UNTIL TRANSFER IS COMPLETE

; FOR REV B DRIVES ONLY
; SEND DATA BACK TO STATUS PORT
; LOOP WITHOUT STATUS TEST

; GET FRAME POINTER BACK
; CLEAR RETURN STACK

E-12

DELAY:

SDELAY
· ,

MOV
DEC
JNZ
RET
ENDP

CL,30
CL
DELAY

Flat cable routine for 8086/8088

; SETUP FOR SHORT DELAY
; LOOP UNTI L DONE ,~_,
; DELAY TO AVOID BUS TURN AROUND GLITCHES

; --- WAIT AND OUTPUT BYTE TO CONTROLLER
· , INTERRUPTS ARE SWITCHED HERE
· ,
· , · ,
WAITO

WAIT01:

WAITO
;
PGSEG
· ,

TO AVOID PROBLEMS WITH
CONSTELLATION

PROC NEAR
PUSH AX · , STI · , MOV DX,STAT · , NOP · ,
CLI • ,
IN AL,DX ;
TEST AL,DRDY · ,
JNZ WAITOl · ,
POP AX · ,
DEC DX · , OUT DX,AL · ,
STI · , RET
ENDP

ENDS

END

Mass Storage Systems GTI

SAVE DATA BYTE
ALLOW INTERRUPTS
POINT TO STATUS PORT
ADDITIONAL DELAY FOR
DISABLE INTERRUPTS
GET STATUS BYTE
IS DRIVE READY?
NO, SO LOOP
GET DATA BACK
POINT TO DATA PORT
OUTPUT BYTE
ALLOW INTERRUPTS

INTERRUPT

E-13

•

(

ROM descriptions

Entry points for Apple II ROM:

The routines in the Apple II flat cable ROM assume that the
card is in slot 6.
(See Constellation Software General Technical Information manual
for more information.)

Address

C600h
C6CFh
C68Dh
C815h
C8l8h

Function

Boot
RWTS
Save warm boot image
Read Corvus sector (256-byte read)
Write Corvus sector (256-byte write)

The following bytes identify the Corvus flat cable interface
card:

Address Contents
------- --------
C600h A9h
C60lh 20h
C602h A9h
C603h OOh
C604h A9h
C605h 03h
C606h A9h
C607h 3Ch

Entry points for IBM-pe/TI ROM:

Entry pOints are the same as those described for the Omninet
ROM.

Mass Storage Systems GTI E-14

Software developers Kits

Appendix F: Software Developer's Information

MSOOS

A Software Developer's diskette is available from Corvus
customer service. It contains the following files:

SEMA4.BAS

SEMA4.PAS
SEMA4.EXE

*PIPES.PAS
*PIPES.EXE

DRIVEC2.ASM
DRIVEC2.0BJ
BDRIVEC2.0BJ

DRIVEI02.ASM
DRIVEI02.0BJ
BDRVI02.0BJ

ODRIVI02.ASM
ODRIVI02.0BJ
BODRVI02.0BJ

An example program, written in Basic, which shows
how to send disk commands. It uses the semaphore
commands for the example. This program is meant
to be compiled with the Microsoft BASIC compiler.
It will NOT work with the Basic interpreter.

An example program, written in Microsoft Pascal,
showing how to send disk commands. It uses the
semaphore commands for the example. The compiled
version was linked with DRIVEC2.0BJ.

An example program, written in Microsoft Pascal,
showing how to send disk commands. It uses the
pipes commands for the example. The compiled
version was linked with DRIVEC2.0BJ.

This is the source for the machine language module
used to send drive commands. This version works
with MSDOS 1.0, 1.1, and 2.X1 it works for both
flat cable and Omninet, because it calls the
Corvus disk driver to send the command. The OBJ
files provided are conditionally assembled for
MS Pascal and MS Basic compiler respectively.

This is the source for a machine language module
used to send drive commands via the flat cable
interface card. This version will work for the
IBM-PC and TI-PC; some I/O port equates must be
changed for other interface cards. The OBJ files
provided are conditionally assembled for MS Pascal
and MS Basic compiler respectively.

This is the source for a machine language module
used to send drive commands via the Omninet
transporter. This version will work for the
IBM-PC and TI-PC. The OBJ files provided are
conditionally assembled for MS Pascal and MS Basic
compiler respectively.

IMPORTANT NOTE: The ODRIVI02 routine may NOT be
used on a PC which has the Corvus driver
installed.

*SEMA4ASM.ASM This is a machine language module which supports

Mass Storage Systems GTI F-l

..

Software developers Kits

*SEMA4ASM.OBJ the semaphore functions SemLock, SemUnlock, and
SemStatus. This version is written to interface

t ~ to Microsoft Pascal.
~

*PIPESASM.ASM This is a machine language module which supports
*PIPESASM.OBJ the pipes functions PipeOpRd, PipeOpWr, PipeRead,

PipeWrite, PipeCIRd, PipeCIWr, Pipepurge, and
PipeStatus. This version is written to interface
to Microsoft Pascal.

* These files are not yet available.

Versions supported are:

IBM-PC MSDOS 1.0, 1.1,
TI Professional MSDOS
DEC Rainbow MSDOS
Zenith Z-lOO MSDOS

Formats available are:

2.0, 2.1
1.25, 2.0

IBM-PC 8-sector single-sided

Mass Storage Systems GTI F-2

Software developers Kits

CP/M 86 Constellation II

The following files are contained on the standard distribution
floppies for Constellation II:

SEMA4.CMD
SEMA4.PAS
SEMA4.KMD

An example program, written in Pascal MT86+,
showing how to send disk commands. It uses the
semaphore commands as an example.

CPMI086.DOC
CPMI086.REL

A document file describing the support services
provided by the driver interface unit CPMI086.REL.

Mass Storage Systems GTI F-3

or

..
(-

Software developers Kits

CP/M 80

A Software Developer's diskette is available from Corvus
customer server. It contains the following files:

MIRROR.ASM Source for the Corvus Mirror program. Shows how
to send drive commands for flat cable interface.

CDIAGNOS.ASM Source for the Corvus CDIAGNOS program. Shows
how to send drive commands for flat cable
interface.

Versions supported are:

S-lOO
TRS 80 Model II
Zenith H-89, H-90
Xerox 820
Sony

Formats available are:

S-IOO 8" single-sided, single-density
Northstar 5 1/4"
Vector Graphics 5 1/4"
Zenith H-89
Zenith H-90
Xerox 820
Sony

Mass Storage Systems GTI F-4

•

Software developers Kits

Apple Pascal Constellation I

The following files are contained on the standard Apple floppies
for Constellation I:

CORVUS.LIBRARY Contains units for sending drive commands
(OMNISEND, DRIVEIO), using semaphores (SEMA4),
and using pipes (PIPES).

SPOOL.TEXT An example program showing how to use pipes.
SPOOL. CODE

SHARE.TEXT An example program showing how to use
SHARE. CODE semaphores.

Apple DOS Constellation I

The following files are contained on the standard Apple floppies
for Constellation I:

BCI.OBJ A machine language interface for sending disk
OMNI B CI .OBJ commands.

SPOOL An Applesoft program showing how to use pipes.

SHARE An Applesoft program showing how to use
semaphores.

Mass Storage Systems GTI F-5

..

•

(,

