

~
Burroughs

XE 500
CENTIXTM
Operations
Guide
Copyright © 1986. UNISYS Corporation. Detroit. Michigan 48232

™ Trademark of UNISYS Corporation

Volume 2: Editing
Operations
Relative To Release level 6.0
Priced Item
December 1986

Distribution Code SA
Printed in U S America
1207909

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any
product and related material disclosed herein are only furnished pursuant and
subject to the terms and conditions of a duly executed Program Product License
or Agreement to purchase or lease equipment. The only warranties made by
UNISYS, if any, with respect to the products described in this document are set
forth in such License or Agreement. UNISYS cannot accept any financial or other
responsibility that may be the result of your use of the information or software
material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or
software material complies with the laws, and regulations of the jurisdictions
with respect to which it is used.

The information contained herein is subject to change without notice. Revisions
may be issued to advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded, using the Product
Improvement Card at the back of this manual, or remarks may be addressed
directly to UNISYS Corporation, Corporate Product Information East, 209 W.
lancaster Ave., Paoli, PA 19301, U S America

v

About This Guide

Purpose
This guide describes how to operate the various editors that
are available on the CENTIX operating system. Since much of
the information is presented in tutorial sessions, each reader
is encouraged to participate with them.

Scope
This guide describes the various editors that are provided by
the CENTIX operating system. If you are unfamiliar with the
CENTIX operating system, refer to the XE 500 CENTIX
Operations Guide, Volume 1: Basic Operations. For complete
documentation on CENTIX operating system capabilities,
refer to the XE 500 CENTIX Operations Reference Manual.

Audience
The audience for this guide is the novice CENTIX user who
wants to learn to use any of the various editors which are
available on the CENTIX operating system. Sophisticated
CENTIX users may find useful information concerning some
of the more advanced capabilities of the CENTIX editors.

Prerequisites
The user who reads this guide should at least be familiar with
the information contained in the XE 500 CENTIX Operations
Guide, Volume 1: Basic Operations.

How to Use This Document
Use this guide to learn how to edit files with the CENTIX
editors. Again, all readers are encouraged to participate in
the many tutorial sessions found throughout this guide.

1207909

vi About This Guide

Organization
This guide contains the following sections:

Section 8, Introduction to CENTIX Editing Operations,
describes the various editors available on the CENTIX
operating system.

Section 9, Text Editor (ed)-Basic, provides an introduction
to how to use the text editor (ed) for creating and changing text.

Section 10, Text Editor (ed)-Advanced, describes using
some of the more complex capabilities of the text editor (ed).

Section 11, Visual Editor (vi)-Basic, provides an
introduction to the visual editor (vi).

Section 12, Visual Editor (vi)-Advanced, describes using
some of the more complex capabilities of the visual editor (vi).

Section 13, Text Editor (ex), describes using the text editor (ex).

Section 14, Stream Editor (sed), describes using the stream
editor (sed) and discusses instances in which it is preferable
to using the text editor (ed).

Section 15, Big File Scanner (bfs), describes using the big file
scanner (bfs).

Section 16, Editing BTOS files with vi and ed, describes how
to access and edit BTOS files from a PT 1 500 terminal using
either the vi or ed editor.

An index follows Section 16.

Related Product Information
XE 500 CENTIX Administration Guide

This guide discusses how to administer the XE 500 CENTIX
operating system.

XE 500 CENTIX centrEASE Operations Reference Manual

This manual describes how to use the CENTIX administrative
facility, centrEASE.

About This Guide vii

XE 500 CENTIX C Language Programming Reference Manual

This manual describes the programming language on which
the CENTIX operating system is structured, C.

XE 500 CENTIX Operations Guide, Volume 1: Basic Operations

This manual describes the basic operations of the CENTIX
system and provides an overview for the novice CENTIX
system user.

XE 500 CENTIX Programming Guide

The guide discusses how to program on the XE 500 CENTIX
system.

XE 500 CENTIX Operations Reference Manual

This manual lists and describes all CENTIX shell commands,
system calls, library functions, and special files.

Conventions Used in This Guide
D All commands within text are shown in boldface.

D Variables are shown in italics. For example, in the following
command, filename is a variable:

$ vi f I /snams

When you enter the command, you substitute the actual
name of the file for filename.

D In command lines, optional fields are enclosed in brackets.

1207909

ix

Contents

About This Guide v
Purpose .. .
Scope
Audience
Prerequisites ... v
How to Use This Manual v
Organization ... vi
Related Product Information vi
Conventions Used in This Manual vii

Section 8: Introduction to CENTIX Editing Operations 8-1

Section 9: Text Editor (ed)--Basic 9-1
Getting Started 9-2
Creating Text (a) 9-2
Obtaining Error Messages (?) 9-4
Writing Text (w) 9-4
Exiting ed (q) ... 9-5
Reading Text (r) 9-7
Printing Buffer Contents (p) 9-8
Identifying the Current line (.) 9-9
Deleting lines (d) 9-11
Changing Text (s) 9-13
Context Searching (//) 9-16
Change and Insert Commands (c and i) 9-19
Moving Text Around (m) 9-21
Global Commands (g and v) 9-22
Special Characters 9-23
Summary of Commands 9-26

Section 10: Text Editor (ed)-Advanced 10-1
Special Characters 10-1
Print and list Commands 10-2
Substitute Commands 10-2
Undo Command .. 10-4
Metacharacters .. 1 0-4

1207909

x

Period .. .
Backslash
Dollar Sign .. .
Circumflex
Star
Brackets .. .
Ampersand .. .

Operating on Lines
Substituting Newline Characters
Joining lines
Rearranging lines
Line Addressing in the Editor
Address Arithmetic
Repeated Searches
Default line Numbers
Semicolon
Interrupting the Editor
Global Commands
Basic .. .
Multiline .. .
File Manipulation
Text Editor Functions

File Names .. .
Insert One File into Another
Write Out Part of a File
Move lines Around
Copy lines .. .
Marking a line
Temporary Escape

Editing Scripts .. .

Section 11: Visual Editor (vi)--Basic
Special Purpose Keys
Gatting In and Out of vi
Setting Up Your Terminal Configuration
Invoking the Visual Editor

Editor Copy in Buffer
Writing the Buffer
Ouitting the Visual Editor

Example One
Summary

Contents

10-4
10-6
10-7
10-8
10-9

10-12
10-13
10-14
10-14
10-15
10-16
10-17
10-17
10-18
10-19
10-22
10-24
10-24
10-24
10-26
10-27
10-27
10-27
10-28
10-29
10-30
10-31
10-32
10-32
10-33

11-1
11-1
11-2
11-2
11-2
11-3
11-4
11-4
11-4
11-9

Contents xi

Moving Around in a File 11-10
Window Movements 11-10

Scrolling ... 11-10
Paging .. 11-1 0

Cursor Movements 11-11
Moving by Objects 11-11

Moving Within a line 11-11
low level Character Motions 11-12
Higher level Text Objects 11-12
Moving Around on the Screen 11-13

Moving by Matching Character Strings 11-13
Miscellaneous Movement Features 11-14

Example Two .. 11-14
Summary .. 11-28
Creating New Text 11-29
Append or Insert Mode 11-29

Example Three 11-31
Summary .. 11-35
Deleting Text ... 11-35
Deleting and Recovering with Undo 11-35
Deleting Characters, Words, Sentences, Paragraphs, and lines 11-36

Making Corrections with Operators 11-36
Operating on lines 11-37
Example Four .. 11-37

Summary .. 11-46
Changing Text .. 11-47
Change (Delete and Insert) 11-47
Changing Characters, Words, Sentences, Paragraphs, and lines 11-47

Example Five .. 11-49
Summary•...................... 11-60
Copying Text ... 11-60
The Concept of Yank and Put 11-60
Copying Objects .. 11-61

Example Six .. 11-64
Summary .. 11-75
Moving Text ... 11-76
Moving Objects .. 11-77

Example Seven 11-78
Summary .. 11-92
Repeating Actions with the . Command 11-92
Example Eight ... 11-94
Recovering Lost Text 11-97
Example Nine ... 11-98

1207909

xii

Copying Another File to the Buffer
Example Ten
Writing Sections of the Buffer to Another File
Example Eleven
Global, Substitutions
Example Twelve
Escaping to the Shell
Example Thirteen
Abreviated Example

Section 12: Visual Editor (vi}-Advanced
Getting Started
Specifying the Terminal Type
Editing a File
Editor Copy in Buffer
Arrow Keys .. .
Leaving the Editor
Moving Around in the File
Scrolling and Paging
Searching, Goto, and Previous Context
Moving Around on the Screen
Moving Within a Line
The View Editor
Making Simple Changes
Inserting .. .
Making Small Corrections
Making Corrections with Operators
Operating on Lines
Undoing .. .
Moving About, Rearranging, and Duplicating Text
Low Level Character Motions
Higher Level Text Objects
Rearranging and Duplicating Text
High-Level Commands
Writing, Ouitting, and Editing New Files
Escaping to Shell
Marking and Returning
Adjusting the Screen

Contents

11-99
11-100
11-102
11-103
11-104
11-106
11-107
11-107
11-109

12-1
12-1
12-1
12-1
12-2
12-2
12-2
12-3
12-3
12-4
12-5
12-6
12-7
12-7
12-7
12-9

12-10
12-10
12-11
12-11
12-11
12-13
12-14
12-15
12-15
12-16
12-17
12-17

Contents xiii

Special Topics .. 12-18
Editing on Slow Terminals 12 -18
Options, Set, and Editor Startup Files 12-20
Recovering lost lines 12-26
Recovering lost Files 12-26
Continuous Text Input 12-27
Features for Editing Programs 12-28
Filtering Portions of the Buffer 12-29
Commands for Editing lisp 12-29
Macros ... 12-30
Word Abbreviation 12-31
Abbreviations .. 12-32
Additional Information 12-32
line Representation in the Display 12-32
Counts .. 12-33
More File Manipulation Commands 12-35
More about Searching for Strings 12-37
More about Input Mode 12-38
Uppercase Only Terminate 12-40
Relation Between vi and ex Editors 12-40
Open Mode: vi on Hardcopy Terminals and Glass tty's 12-41
Character Functions Summary 12-42

Section 13: Text Editor (ex) 13-1
Starting the Text Editor 13-1
Manipulating Files 13-2
Current File ... 13-2
Alternate File ... 13-2
File Name Expansion 13-3
Multiple Files and Named Buffers 13-3
Read-Only Mode .. .-..................................... 13-3
Exceptional Conditions 13-4
Errors and Interrupts 13-4
Recovering from Hang-ups and Crashes 13-4
Editing Modes .. 13-5
Command Structure :............................. 13-5
Command Parameters 13·5
Command Variants 13·6
Flag after Commands 13·6
Comments .. 13·6
Multiple Commands Per line 13· 7
Reporting large Changes 13· 7

1207909

xiv

Command Addressing
Addressing Primitives
Combining Addressing Primitives
Command Descriptions
Regular Expressions and Substitute Replacement Patterns
Regular Expressions
Magic and Nomagic
Basic Regular Expression Summary
Combining Regular Expression Primitives
Substitute Replacement Patterns
Option Descriptions
Limitations

Section 14: Stream Editor (sed)
Overall Operation
Command Line
Order of Application of Editing Commands
Pattern Space
Examples
Selecting Lines for Editing
Line Number Addresses ' ..
Context Addresses
Number of Addresses
Functions .. .
Whole line Oriented Functions
Substitute Function

Pattern
Replacement
Flags .. .
Examples

Input/Output Functions
Multiple Input line Functions
Hold and Get Functions
Flow of Control Functions
Miscellaneous Functions

Section 15: Big File Scanner

Section 16: Editing BTOS Files from CENTIX

Contents

13-7
13-7
13-8
13-8

13-19
13-19
13-19
13-20
13-21
13-21
13-22
13-22

14-1
14-2
14-2
14-2
14-3
14-3
14-3
14-4
14-4
14-5
14-6
14-6
14-8
14-9
14-9
14-9

14-10
14-11
14-12
14-13
14-14
14-15

15-1

16-1

Section 8

Introduction to CENTIX Editing
Operations

8-1

The CENTIX operating system provides several different
methods for writing and storing text or computer programs
into files. The following editor programs are provided by the
CENTIX operating system and are presented in tutorial
fashion in this guide.

D Text editor (ed) is an interactive line oriented editor with
commands displayed interspersed with text.

D Visual editor (vi) is a full screen, interactive editor with ex
editor commands available at the bottom of the screen (vi
is a superset of ex).

D Text editor (ex) is an interactive line oriented editor with
commands displayed at the bottom of the screen.

D Stream editor (sed) is a noninteractive editor using
commands that operate on one line at a time.

D Big file scanner (bfs) is used to scan (read-only) very large files.

1207909

Section 9 9-1

Text Editor (ed)--Basic
The ed program is a text editor. A text editor is an interactive
program for creating and changing text, using directions
(commands) provided by you at a terminal. The text is often
a document like this one or perhaps data for a program.

Text can be input with the standard text editor ed. This
section covers enough for your day-to-day needs.

The ed program does all editing actions in a temporary file
called a buffer. The contents of a file to be edited are first
read into the buffer. Changes made in the buffer have no
effect on the original file until the buffer contents are written
to the original file via the w (write) command. If you leave the
ed program without writing, all text in the buffer is lost. After
the buffer contents are written, the previous contents of the
original file are no longer accessible.

The ed program operates in two modes, as follows:

o Command mode

o Input mode

When you first enter the ed program, you are placed in the
command mode by default. While in the command mode, the
ed program accepts editing commands. Editing commands
are single letter commands that have the following format:

[address] command

The bracket characters ([]) above indicate that address is an
optional field that specifies a line range in the buffer on which
the command will execute. A single number address refers to
one particular line in your buffer. Two numbers separated by
a comma refer to a range of lines in your buffer~ If no
address is given, the current line is the default. Since every
command that requires addresses has default addresses, the
addresses can often be omitted. The editing commands are
summarized in part HSummary of Commands and Line
Numbers H found in this section .

• "n.,nnn

9-2 Text Editor (ed)--Basic

The ed program is placed in the input mode by invoking
(executing) certain editing commands such as append (a),
change (c), and insert (i). While ed is accepting text, it is in the
input mode. No commands are recognized when you are in
the input mode. The input mode is left by entering a period
(.) alone at the beginning of a line and pressing the RETURN key.

Getting Started
Assume that you have logged in to a CENTIX system and it
has just printed the prompt,

$

Enter the following command to create a new file or edit an
existing file (remember you must press the RETURN key to
enter each command):

$ ad filename

If the filename already exists, ed will print the number of
characters it wrote to the buffer. If you are creating a new
file, the system will then prompt you with

?fllgname

This output means you have specified a file that does not
exist in your current directory. You can now type in text
using the a (append) command.

Creating Text (a)
As your first problem, suppose some text is to be created
starting from scratch. Perhaps the first draft of a document
or paper is to be entered. Normally, it will have to start
somewhere and undergo changes (editing) later. This
subsection describes how to enter some text to get a file of
text started. How to make changes and corrections to the
text is described later.

When ed is first invoked, it is like working with a blank sheet
of paper (the file)-there is no text or information present on
the paper (in the file). The text must be supplied by the
person using ed; it is usually done by typing in the text or by
reading it into ed from a file. We will start by typing in some
text and return shortly to how to read files.

Text Editor (ed)--8asic 9-3

First a bit of terminology. In ed jargon, the text being worked
on is said to be "kept in a buffer." Think of the buffer as a
blank page, if desired, or simply as the information that is to
be edited. In effect the buffer is like the sheet of paper where
you will write things, then change some of them, and finally
file the whole thing away.

You tell ed what to do to the text by typing instructions
called commands. Most commands are single lowercase
letters, sometimes preceded by information about the
specific lines affected. Each command is typed on a separate
line and ended by pressing the RETURN key. The ed text
editor makes no response to most commands-there is no
prompting or response messages like "ready." This silence is
preferred by some users. Once in the editor, beginners
should enter

p

to get an input prompt and enter

H

for help.

Nots: When starting a new file and immediately entering H, the
system will return the following message "cannot open input
file." Ignore this message for this situation. The message will
not be received when you ask for help after entering an existing file.

The prompt or help can be turned off by entering the P or H a
second time.

The first command is append, written as the letter

a

on a command line; then press the RETURN key. It means
"append (or add) text lines to the buffer as you type them
in." Appending is like writing fresh material on a piece of
paper. So enter Jines of text into the buffer as follows
(remember to press the RETURN key after finishing each line):

a
Now 1st he t I me
for a I I good peop I e
to come to the aid of their party.

1207909

9-4 Text Editor led}--Basic

The way to stop appending is to type a line that contains
only a period (.). The u." is used to tell ed that the appending
is finished. (Even experienced users forget to end appending
with a "." sometimes. If ed seems to be ignoring your entries,
type an extra line with just the "." on it. You may then find
you have added some unnecessary lines to your text that
you will have to take out later.)

After the append command has been used, the buffer will
contain the following three lines:

Now 1st he t I me
for all good people
to come to the aid of their party.

The a and the U." are not there because they are not text.

To add more text to what already exists, just issue another a
command and continue typing.

Obtaining Error Messages (1)
If an error occurs in typing commands into ed, the text editor
will tell you by typing the following:

?

Experienced users can figure out most problems at a glance.
You can get a brief explanation of the error by typing

h

Remember to complete all commands by pressing the
RETURN key. The help command gives a short error
message that explains the reason for the most recent?
diagnostic. If you want the error message printed without
having to enter an h every time, enter

H

Writing Text (w)

You may want to save your text for later use. To write out
the contents of the buffer onto a file, use the write command
followed by the file name to write on.

w filename

Text Editor (ed)--8asic 9-5

This will copy the buffer's contents onto the specified
fI1ename (destroying any previous information in the file). For
example, to save (write) the text in a file named test, enter

w test

Leave a space between wand the file name.

If you specified a file on entering the editor (ed test), that file
(test) is written to by default by entering

w

The ed program will respond for both cases by printing the
number of characters it wrote out. The ed program would
respond with

71

Remember that blanks and the return character at the end of
each line are included in the character count.

The ed program works on a copy of the original file that is
stored in a buffer, not the original file itself. No change in the
contents of the original f!le takes place until you give a. w
(write) command. Writing out the text onto a file from time to
time as it is being created is a good idea.

Exiting ed (q)

To end a session with ed, first save your text by writing it
onto a file using the w (write) command, and then type the q
(quit) command

q

The system will respond with the prompt character

$

At this pOint, your buffer vanishes with all its text. This is
why you would want to write before quitting. Actually, ed will
print the character

?

if you try to quit without writing. At this point, you write if
desired; if not, another q will get you out regardless and will
not save the text in the buffer.

1207909

9-6 Text Editor (ed)--8asic

Example One

Enter ed, create a file called test, and input some text using
the append command (a) as follows:

$ ed test
?test
a
Now Is the time
for a I I good peop I e
to come to the aid of their party.

w
71
q

Note that no system prompt appears while in the text editor.
Do not forget to write the text into a file with the write
command (w). You left ed by using the q command. If you are
in the shell environment, print the file to see that everything
worked. To print a file on the screen, enter ,

$ cat test

in response to the prompt character ($), and the file test is
displayed as is shown below:

$ cat test
Now 1st he t I me
for al I good people
to come to the aid of their party.

Reading Text (r)

Sometimes you want to read a file into the buffer without
destroying anything that is already in the buffer. This is done
by the read command (r). The command

r test

will read the file test into the buffer. The command appends
the file specified to the end of whatever file is already in the
buffer. So if you do a read after an edit command such as

e test
r t est

Text Editor (ed)--Basic 9-7

the buffer will contain two copies of the original text as follows:

N ow 1st he t I me
for a I I good peop I e
to come to the aid of their party.
Now i s the time
for all good people
to come to the aid of their party.

Like the wand e commands, r prints the number of
characters read in after the reading operation is complete.

The read command (r) may also be used to read a file external
to the buffer into the file in the buffer. This means you can
append another file to the file you are editing. While in ed and
at the current line, enter the command

. r f II ensme

and filename will be read into the file (already in the buffer)
immediately after the current line. A dot N. It is a shorthand
notation for the current line. None of the file in the buffer is
destroyed, the external file filename has been read into and
been combined with the file already in the buffer. The file
that was read remains in filename also. You only copied it.
Notice the difference between ·rlt and ",r". The r command
appends another file at the end of the file being edited. The .r
command appends another file after the current line.

. Example Two

Experiment with the e command. Try reading and printing
various files. You may get an error ?name where name is the
name of a file. This means that the file does not exist. Some
typical causes of getting an empty file are spelling the file
name wrong or perhaps trying to read or write a particular
file that your permissions will not allow. Try alternately
reading and appending to see that they work similarly. Verify
that the command

$ e d f I len ame
sys tem resp.onse

is exactly equivalent to

$ ed
e f Ilensme
system response

9-8 Text Editor (ed)--Basic

Printing Buffer Contents (p)

To print or list the contents of the buffer (or parts of it) on
the terminal, use the print command (p). This is done as
follows. Specify the line numbers where printing is to begin
and end. These numbers have a comma between the
beginning number and the ending number, that is, "beginning
line number, ending line number p." For example, to print the
first ten lines of the contents of any buffer (that is, lines 1
through 1 0), type

1.10p

The ed program will respond by printing the specified starting
line (1) through the specified ending line (10).

To print all of the lines in the buffer, use 1,lOp as above if it
is known that there are exactly 30 lines in the buffer. But in
general, it is not known how many lines there are. To print
all the lines in the buffer without knowing the exact number
beforehand, the ed program uses the dollar sign ($) for the
last number in the buffer. To print all the lines in the buffer,
use either of the following command entries:

1 • $p
.p

Either of these commands will print the lines in the buffer
(line 1 through the last line). The 1,$p entry can be
abbreviated ,p. To halt the printing, press the DELETE key.
The ed program will respond

?

and wait for the next input command.

To print the last line of the buffer, you could use

$.$p

but ed lets you abbreviate this to

$p

Text Editor (ed)--Basic

Any single line can be printed by typing the line number
followed by a p. Thus

1p

produces the line

Now 1st he time

that is the first line of the buffer.

9-9

The ed lets you abbreviate even further. You can print any
single line by typing just the line number without any need to
type the letter p. So if you enter

$

ed will print the last line of the buffer. Entering a single line
number will print that line only.

It is also possible to use S in combinations like

$-5.Sp

that prints the last five lines of the buffer. This helps to
determine the end of the contents of the buffer when more is
to be entered.

Example Three

Create some text using the a command and experiment with
the p command. You will find, for example, that line 0 or a
line beyond the end (last line) of the buffer cannot be printed.
Attempts to print a buffer in reverse order by entering

3,1 p

will not work.

Identifying the Current Line (.)

Suppose the buffer still contains the six lines of text (as in
example one), and the following was entered

1 ,3p

and ed has printed the three lines. Try typing just

p

9-10 Text Editor (ed)--Basic

This will print

to come to the aid of their party.

that is the third line of the buffer. It is the last (most recent)
line that anything was done to (in this example it is the line
just printed). The p command can be repeated without line
numbers, and it will continue to print line 3.

The ed maintains a record of the last line that anything was
done to so that it can be used instead of an explicit line
number. This most recent line is referred to by the shorthand
symbol

Dot (.) is a line number in the same way that /fB$ is. Dot
means exactly "the current line," or loosely, "the line
something was done to most recently." The dot can be used
in several ways. One possibility is to enter

· • $p

This will print all the lines from (including) the current line to
the end (last line) of the buffer. In our example, these are
lines 3 through 6.

Some commands change the value of dot, while others do
not. The print command (p) sets dot (.) to the number of the
last line printed; the last command entered (.,$p) will set dot
to the last line in the buffer (line 6).

Dot is most useful when used in combinations like

· +1

(or equivalently, .+ 1p). This means "print the next line" and is
a handy way to step slowly through a buffer. You can also enter

· - 1

(or .-lp), that means "print the line before the current line."
This enables stepping through the buffer backwards if
desired. Another useful one is something like

.-3 •. -1p

that prints the previous three lines.

Text Editor (ed)--8asic 9-11

Do not forget that this changes the value of dot. You can
find out what the line number of dot is at any time by typing

. - (d 0 t lin e numb e r is?)

The ed program will respond by printing the value (line
number) of dot.

Let us summarize some things about the p command and
dot. The p can be preceded by no line numbers, a specific
line number, or a range of line numbers. If there is no line
number given, it prints the current line, the line that dot
refers to. If there is one line number given with or without
the letter p, it prints that line and sets dot there. If there are
two line numbers separated by a comma, it prints all the
lines in that range from the first number to the last number,
and sets dot to the last line printed. If two line numbers are
specified, the first cannot be bigger than the second (refer to
the beginning of example three).

Pressing the RETURN key causes the next line to print. It is
equivalent to

.+1p

Entering a circumflex (1\) is equivalent to entering a hyphen (-).
It can be used in multiples, as 1\1\1\, that will move the current
line or dot line backwards three lines from the current line.
The .. -" or the .. 1\" can be considered equivalent to -1 p since
either moves the dot back one line.

Deleting Lines (d)

Suppose some lines in the buffer are not needed. They may
be removed by use of successi'\le delete commands

d

When d is entered, the deleted lines are not printed. A delete
action is similar to that of the print command (p). The lines to
be deleted are specified for d exactly as they are for p as follows:

stBrtlng IIhe, ending line d

1207909

9-12 Text Editor (ed)--Basic

Thus the command

4.$d

deletes lines 4 through the end. There are now three lines
left. This can be checked by using

1 • $p

Notice that $ now is line 3. Dot is set to the next line after
the last line deleted, unless the last line deleted is the last
line in the buffer. In that case, dot is set to $. The delete
command (d) and the print command (p) may be used
together. Thus

dp

deletes the current line, prints the following line, and sets dot
to the line printed.

Example Four

In trying out these commands, you will find that a will append
lines after the line number that you specify (rather than after
dot); r reads a file in after the line number you specify (not
necessarily at the end of the buffer); and w will write out
exactly the lines specified, not necessarily the whole buffer.
These variations are sometirpes handy. For instance, a file
can be inserted at the beginning of a buffer by entering

Or f II ename

Lines can be entered at the beginning of the buffer by using

08
text

Notice that .w is different from

w

Text Editor (ed)--Basic

Changing Text (s)

We are now ready to try another useful command, the
substitute command

s

9-13

The subsititute command is used to change individual words
or letters within a line or group of lines. It is used for
correcting spelling mistakes and typing errors.

Suppose that, because of a typing error, line 1 says

Now i s t h time

Notice the e has been left off. The s command can be used
to fix this as follows:

1s/th/thel

This says: in line 1, substitute for the characters "th" the
characters "the". Since ed will not print the result
automatically, enter

p

to verify that the substitution worked. You should get

Now 1st he t I me

Notice that dot was set to the line where the substitution
took place since the p command printed that line. Dot is
always set this way with the s command.

The general format of the substitute command is

starting line, ending line s/change this/to this/

Whatever string of characters is between the first pair of
slashes is replaced by whatever is between the second pair
in all the lines between the starting line and ending line. Only
the first occurrence on each line is changed however. (If
every occurrence is to be changed, see Example Five.)

The rules for line numbers are the same as those for the print
command (p) except that dot is set to the last line changed.
(But there is a trap for the unwary: if no substitution took
place, dot is not changed. This causes an error response? as
a warning.)

1207909

9-14 Text Editor . (ed)--8asic

Thus the following can be entered

1. $s/spe Ii ng/spe II i ng/

to correct the first spelling mistake (speling here) on each line
in the text.

If no line numbers are given, the s command assumes you
mean .. make the substitution on line dot," so it changes
things only on the current line. This leads to the common
sequence

s/strlngl/strlng2/p

that makes some correction on the current line and then
prints it (current line) to make sure it worked out right. If it
did not, try again. Notice that there is a p on the same line as
the s command. With few exceptions, p can follow any
substitute command.

It is also legal to say

s/strlngll

that means change string to nothing. In other words, remove
the characters. This is useful for deleting extra words in a
line or removing extra letters from words. For instance, if the
buffer contained

Nowxx Is the time

this can be corrected by entering

s/xxl/p

to get

Now Is the time

Notice that 1/ (two adjacent slashes) means "no characters",
not a blank. (See "Context Searching" in Example Five for
another meaning of "1/").

Text Editor (ed)--Basic 9-15

Example Five

To experiment with the substitute command, see what
happens if you substitute for some word on a line with
several occurrences of the same word. For example, enter

a
the other side of the coin

s/the/on the/p

This results in the following:

on the other side of the coin

A substitute command changes only the first occurrence of
the first string. You can change all occurrences by adding the
g (for global) command to the s command. Change all
occurrences of a string on a line by entering

s/ ... / ... /gp

Notice that slashes delimit the two sets of characters in the s
command. Other characters can be used to delimit instead of
slashes. You can use anything except blanks or tabs. For
example, try using different delimiters like

s1 ... 1 ... 1gp

If the delimiter is the same as the character to be changed,
you will have problems. For example, to change ' occcur' to
. occur' by entering

seeeee

will not work, but entering

saeeae

will work.

Some characters have a special meaning to the editor when
used within the substitute editing command. These
characters are called metacharacters. Metacharacters also
have a special meaning to shell commands. A few of the
metacharacters are

1\ $ \ &

1207909

9-16 Text Editor (ed)--8asic

Metacharacters are useful, however, avoid using
metacharacters in substitutions until you are familiar with
them. If you use metacharacters improperly, you may get
strange results; but this can be undone by entering

up

before writing or doing another substitution. The u command
undoes the last substitute command. For more details about
metacharacters, read the subsection "Special Characters" in
this section.

Context Searching (/ /)
After practicing the substitute command, move on to another
feature-context searching.

If the original three lines of text in the buffer are as follows:

N ow 1st he t I me
for a I I good peop Ie
to come to the aid of their party.

and the word "their" is to be changed to "the", how is the
line that contains "their" located? With only three lines in the
buffer, it is easy to keep track of what line the word "their"
is on. But if the buffer contained several hundred lines and
you had been making changes, deleting and rearranging lines,
and so on, you would no longer really know what this line
number would be. Context searching is a method of
specifying the desired line, regardless of the number, by
specifying some context (string).

The way to search for a line that contains this particular
string of characters is to type

/strlng/

For example, the ed expression

/thelrl

is a context search that finds the desired line. It will locate
the next occurrence of the characters between the slashes. It
also sets dot to that line and prints that line for verification
as follows:

to come to the aid of their party.

Text Editor (ed)--Basic 9-17

Searching for the next occurrence causes ed to start looking
for the string at line . + 1 and search to the end of the buffer.
If not found the search wraps around to line 1 and continues
to the current line if necessary. That is, the search wraps
around from $ to 1. It scans all the lines in the buffer until it
either finds the desired line or gets back to dot again. If the
given string of characters cannot be found in any line, ed
types the error message

?

Otherwise, it prints the line it found.

The search for the desired line and the substitution can be
done together, like this

/thelr/s/thelr/the/p

This will yield

to come to the aid of the party.

There were three parts to that last command: context search
for the desired line, make the substitution, and print the line.

The expression /their/ is a context search expression. In the
simplest form, all context search expressions are like this: a
string of characters surrounded by slashes. Context searches
are interchangeable with line numbers, so that they can be
used by themselves to find and print a desired line or as line
numbers for some other command, like s. They were used
both ways in the examples above.

Suppose the buffer contains the three familiar lines

Now Is the time
for a I I good peop Ie
to come to the aid of their party.

Then the ed line numbers

1207909

/Now/+1
/good/
/party/-1

9-18 Text Editor' (ed)--8asic

are all context search expressions, and they all refer to the
same line (line 2). To change something in line 2, enter

/Now/+1S/good/bad/

or

/good/s/good/bad/

or

/party/-ls/good/bad/

The choice is dictated only by convenience. All three lines
could be printed by entering

/Now/./party/p

or

/Now/ . /Now/+2p

or by many similar combinations. The first example would be
better if you do not know how many lines are involved.

The basic rule is: a context search expression acts like a line
number, so it can be used wherever a line number is needed.

Example Six

Experiment with context searching. Try a body of text with
several occurrences of the same string of characters and
scan through it using the same context search.

Try using context searches as line numbers for the substitute,
print, and delete commands. They can also be used with r, w,
and a.

Try context searching using ?text? instead of using /text/.
This scans lines in the buffer in reverse order instead of the
normal forward order. This is sometimes useful if you go too
far while looking for some string of characters and is an easy
way to back up.

If unusual results are obtained with any of the characters

A $ \ &

refer to the subsection "Special Characters."

Text Editor (ed)--Basic 9-19

The ed program also provides a short method for repeating a
context search for the same string. For example, the ed line
number

/strlng/

will find the next occurrence of string. It often happens that
this is not the desired line, so the search must be repeated.
This can be done by typing

1/

This method searches for the most recently (last) used
context search expression. It can also be used as the first
string of the substitute command, as in

/strlng1/s//strlng2/

This will find the next occurrence of string 1 and replace it by
string2. This can save some typing. Similarly

11

will scan backwards for the same expression.

Change and Insert Commands (c and i)

The change command (c) is used to change or replace the
specified lines with a group of one or more lines. The insert
command (i) is used to insert a group of one or more lines
immediately before the current line.

The change command, written as

c

is used to replace lines with different lines that are typed in
at the terminal. For example, to change the first line (. + 1)
through the last line ($) of a file, enter

. +1 • $c
'" type the lines of text you want here ...

The lines typed between the c command and the ". If (dot)
command will take the place of the original lines between
start line and end line. This is most useful in replacing a line
or several lines that have errors.

1207909

9-20 Text Editor (ed)--Basic

If only one line is specified in the c command, then just that
line is replaced. (As many replacement lines as you like can
be added.) Notice the use of (dot) to end the input. This
works just like the (dot) in the a command and must
appear by itself at the beginning of a new line. If no line
number is given, line dot is replaced. The value of dot is set
to the last line typed.

The insert command is similar to append, for instance

/strlng/i
... type the I ines to be Inserted here ...

will insert the given text before the next line that contains
string. The text between i and N." (dot) is inserted before the
specified line. If no line number is specified, the dot line is
used. Dot is set to the last line inserted.

Example Seven

The c command is like a combination of delete followed by
insert. Experiment to verify that

startlng-Ilne,endlng-Ilne d
I
text

is almost the same as

startlng-Ilne,endlng-Ilne c
tex t

These are not precisely the same if the last line ($) gets deleted.

Experiment with the append command (a) and the insert
command (i) to see that they are similar but not the same.
You will observe that

I I n e - numb era
text

appends after the given line, while

line-number I

tex t

inserts before it. Observe that if no line number is given, i
inserts before line dot, a appends after line dot, and c
changes line dot.

Text Editor (ed)--Basic 9-21

Moving Text Around-(m)

The move command (m) is used for cutting and pasting. It
allows a group of lines to be moved from one place to
another in the buffer. Suppose the first three lines of the
buffer is to be placed at the end of the buffer instead of at
the beginning. This could be performed by entering

1.3w temp
$ r temp
1 .3d

This method will work, but it is easier to use the m command
as follows:

1 .3m$

The general format for the move command is
starting-line ,ending-line m after-this-line

Notice that there is a third line number to be specified; the
line number that the moved lines are to follow. Of course,
the lines to be moved can be specified by context searches.
If you had

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

the two paragraphs could be reversed like this:

/Second/./end of second/m/Flrst/-1

Notice the -1 (the moved text) goes the line mentioned. Dot
gets set to the last line moved.

1207909

9-22 Text Editor' (ed)--Basic

The Global Commands
The two global commands are g and v. The global command 9
is used to execute one or more ed commands on all those
lines in the buffer that match some specified string. For example,

g/string/p

prints all lines that contain string. More usefully,

g/strlngl/s//strlng2/gp

makes the substitution everywhere on the line, then prints
each corrected line. Compare this to

1.$s/strlngl/strlng2/gp

that only prints the last line substituted. Another subtle
difference is that the g command does not give a ? if string 1
is not found, but the s command will.

There may be several commands used with the 9 command,
but every line except the last must end with a \ (backslash).
For example,

g/xxx/-1s/abc/def/\
.+2s/ghlnkl/\
. - 2 •. p

makes changes in the lines before and after each line that
contains the string "xxx, H then prints all three lines.

The v command is the same as 9 except that the commands
are executed on every line that does not match the string
following v. The following input

v/ /d

deletes every line that does not contain a blank.

Text Editor (ed)--Basic 9-23

Special Characters
You may have noticed that context searches and
substitutions do not work when used with metacharacters.
Some of the metacharacters follow:

/\ $ \ &

The ed program treats these characters as special, with
special meanings. For instance, in a context search or the
first string of the substitute command,

I x . Y I

will search for a line with an x, any character. and a y. It
does not search only for a line with an x, a period, and a y.
The character"." matches anything. For example, the input

Ix·yl

matches any of the following:

x+y
x-v
x y
x.y

The following is a complete list of the special characters that
can cause trouble:

A $ \ &

Note: The backslash character (\) is special to the ed program.
Avoid using it when possible.

If you have to use a special character in a substitute
command, you can turn off its magic meaning temporarily by
preceding it with the backslash. Thus

s/\\\.*/backslash dot star I

will change "\. *H into "backslash dot star."

Here is a brief synopsis of the other special characters. First,
the circumflex (A) signifies the beginning of a line. Thus

IAstringl

finds string only if it is at the beginning of a line. It will find

string

but not

the string

1207909

9-24 Text Editor (ed)--8asic

The dollar sign ($) is just the opposite of the circumflex. The
dollar sign is used to search for string at the end of a line.
The input

/ s t r in g$ /

will find an occurrence of string at the end of some line. This
implies, of course, that

/"stringS/

will find a line that contains just string.

The dot (.) character is useful with the repetition character (*).
The a* is a shorthand input that matches several a's.
Therefore . * matches several any things (including no
every things). For example, input

s/·"lstringl

to change an entire line to string, or

s I· " . /I

to delete all characters in the line up to and including the last
comma. (Since .* finds the longest possible match, this goes
up to the last comma.) Enter

1"·$1

to find a line containing exactly one character.

The left bracket (D is used with the right bracket (]) to form
character classes. For example,

1[0123456789]1

matches any single digit. If any character inside the brace is
found, a match occurs. This can be abbreviated to

[0 - 9]

Text Editor (ed)--Basic 9-25

Letters can also be used inside the brackets.

Finally, the ampersand (&) is another shorthand character. It
is used only on the right-hand part of a substitute command
where it means Hwhatever was matched on the left-hand
side. H It is used to save typing. Suppose the current line
contained

Now i 5 the t I me

and you wanted to put parentheses around it. One tedious
method is just to retype the line. Another method is to enter

5/"/(/

or

s/SI)/

" and $. But the easiest way uses the & as follows:

5/.·/(&)/

This will match the whole line and replace it by itself
surrounded by parentheses. The & can be used several times
in a line. Try using

s/.·/&? &11/

to produce

Now Is the time? Now Is the tlmell

You do not have to match the whole line. If the buffer contains

the end of the world

you could type

/world/s//& Is at hand/

to produce

the end of the world Is at hand

Observe this expression carefully, for it illustrates how to
take advantage of ed to save typing. The search string
/world/ found the desired line. The shorthand / / character
found the same word in the line. The & saves you from
typing it again.

1207909

9-26 Text Editor· 1 ed)--Basic

The & is a special character only within the replacement text
of a substitute command and has no special meaning
elsewhere. You can turn off the special meaning of & by
preceding it with a backslash (\). Inputting

s/ampersand/\&/

will convert the word "ampersand" into the literal symbol "&"
in the current (dot) line.

Summary of Commands
The general form of the ed text editor commands is the
command name, perhaps preceded by one or two line
numbers. For the edit command (e), the read command Ir),
and the write command (w), the command name is also
followed by a file name.

a Append adds lines to the buffer (at line dot, unless a different line is specified).
Appending continues until a dot (.) is typed at the beginning (first character) of
a new line. Dot is set to the last line appended.

c Change the specified lines to the new text that follows. Entering new lines is
ended by a dot (.) on a line by itself. If no lines are specified, the current line
(dot) is replaced. Dot is set to last line changed.

d Delete the lines specified. If none are specified, delete line dot. Dot is set to
the first undeleted line, unless S is specified. When S is specified, dot is set to
the last line (S.)

e Edit new file. The edit command causes the entire contents of your present
buffer to be deleted. After the buffer contents are thrown away, the named file
is read in the buffer. This command is not covered in this section.

Print the remembered file name. If a name follows f, the remembered name will
be set to it.

9 The global command g/string/commands will execute the commands on
those lines that contain string.

Insert lines before the specified line or the current line (dot line) until a "." is
typed at the beginning of a new line. Dot is set to last line inserted.

m Move lines specified to the line named after m. Dot is set to the last line moved.

Text Editor (ed)--Basic 9-27

n Print the line number addressed, followed by a tab and the line itself.

p Print specified lines. If no lines are specified, print the current line (line
dot). Pressing the RETURN key once prints the next line in your file.

q The quit command exits from ed. It does not save changes, if you give
it twice in a row without first giving a write command (w).

Read a file into buffer (at end unless specified elsewhere). Dot set to
last line read. If or filename is used, filename is read into the
buffer immediately after the dot line.

s The s/string 1/string2/ command is used to substitute string 1
with string2 in the specified lines. If no lines are specified, the
substitution is done to your current line. Dot is set to the last line in
which a substitution took place. If no substitution took place, dot is not
changed. The command s changes only the first occurrence of string 1
on a line. To change all occurrences on a line, type a 9 after the final slash.

v The exclude command v/string/commands executes commands
only on those lines that contain string.

w The write command writes out the buffer contents onto a file. Dot is
not changed.

o =- The 0 - causes the printout of the current line number. The dot value
prints the current line number. The ... by itself prints the value of the
last line in the file.

/string/

?string?

1207909

The exclamation mark (!) is a temporary escape command. The line
"command- line" causes "command-line" to be executed as a CENTIX
system command.

This command performs a context search for the next line that contains
this string of characters .. strind' and prints it. Dot is set to the line
where string was found. Search starts at line 0 ... 1 wraps around from
the last line S to line 1 and continues to dot (the current line) if necessary.

This command performs a context search in the reverse direction. The
search starts at the line before your current line, scans back to line 1,
wraps around to the last line in your file, and then scans back to your
current line, if necessary.

Section 10 10-1

Text Editor (ed}--Avanced
The advanced editing part is meant to help CENTIX operating
system users (secretaries, typists, programmers, and so on)
make effective use of the more complex capabilities of ed. It
provides explanations and examples of

o Special characters, operating on lines, line addressing, and
global commands in ed.

o Commands for operations on files and parts of files,
including r, w, m, and t commands of ed.

Examples are based on experience and observations of users
and the difficulties they have encountered.

The CENTIX operating system provides tools for text editing,
but that by itself is no guarantee that everyone will make the
most effective use of them. In particular I users who are not
computer specialists (typists, secretaries, casual users) often
use the CENTIX operating system less effectively than they
could. Although this document is written for
nonprogrammers, CENTIX users, regardless of their
background, should find helpful hints on how to get their jobs
done more easily.

The next paragraphs discuss shortcuts and labor-saving
devices. Not all will be instantly useful and others should
provide ideas for future use.

Special Characters
The ed program is the primary interface to the system, so it
is worthwhile to know how to get the most out of it.

1207909

10-2 Text Editor (ed)--Advanced

Print and List Commands

Two commands are provided for printing contents of lines
being edited. Most users are familiar with the print command
(p) in combinations like

1 • $p

to print all lines that are being edited, or

s/abc/def/p

to change the first abc to def on the current line and to print
the results. Less familiar is the list command (I) which gives
slightly more information than p. In particular, I makes
characters visible that are normally invisible, such as tabs and
backspaces. If a line contains some of these, the I command
will print each tab as ">" and each backspace as II <". This
makes it easier to correct typing mistakes that insert extra
spaces adjacent to tabs or a backspace followed by a space.

The I command also "folds" long lines for display purposes.
Any line that exceeds 72 characters is printed on multiple
lines. Each printed line except the last is automatically
terminated by a backslash (\) to indicate that the line was
folded. A dollar character ($) is appended to the real end of
line. This is useful for printing long lines on terminals having
output line capability of only 72 characters per line.

Occasionally, the I command will print in a line a string of
numbers preceded by a backslash, such as \07 or \ 16. These
combinations are used to make characters visible that
normally do not print, for example, formfeed, vertical tab, or
bell. Each such combination is interpreted as a single
character. When such characters are detected, they may
have surprising meanings when printed on some terminals.
Often their presence means that a finger slipped while typing.

Substitute Commands

The substitute command (s) is used for changing the contents
of individual lines. It is probably the most complex and
effective of any ed command.

Text Editor (ed)--Advanced 10-3

The meaning of a trailing global command (g) after a substitute
command is illustrated in the next two commands:

s/abc/def,

and

s/abc/def/g

The first form replaces the first abc on the line with def. If
there is more than one occurrence of abc on the line, the
second form (with the trailing g) changes all of them. Either of
the two forms of the s command can be followed by p or I to
print or list the contents of the line:

s/abc/def/p
s/abc/def/I
s/abc/def/gp
s/abc/def/gl

All are legal and have slightly different meanings.

An s command can be preceded by one or two line numbers
to specify that the substitution is to take place on a group of
lines. Thus:

1,$s/mlspell/mlsspell/

changes the first occurrence of "mispell" to "misspell" on
every line of the file. The following command changes every
occurrence on every line:

1,$s/mlspell/mlsspell/g

By adding a p or I to the end of any of these substitute
commands, only the last line that was changed will be
printed, not all lines. How to print all the lines that were
changed is described in a later paragraph.

Any character can be used to delimit pieces of an s
command. There is nothing sacred about slashes (but
slashes must be used for context searching). For instance,
for a line that contains a lot of slashes already, for example:

/lexec /lsys.fort.go /I and so on ...

a colon could be used as the delimiter. To delete all the
slashes, the command is

s: / : : 9

1207909

10-4 Text Editor (ed)--Advanced

Undo Command

Occasionally, an erroneous substitution is made in a line. The
undo command (u) negates the last command so that data is
restored to its previous state. This command is especially
useful after executing a global command if it is discovered the
command did things that are undesirable.

Metacharacters

When using ed, certain characters have special meanings
when they occur in the left side of a substitute command or in
a search for a particular line. These special characters are
called "metacharactersH and are listed below:

o Period (.)

o Backslash (\)

o Dollar Sign ($)

o Circumflex (A)

o Star (*)

o Brackets ([J)
o Ampersand. (&)

Even though metacharacters are discussed separately in the
following text, they can be combined.

Period

The period (.) on the left side of a substitute command or in a
search stands for any single character. Thus the search

I x . y I

finds any line where x and y occur separated by a single
character, as in

x+y
x-y
x<sp>y
x.y

Text Editor (ed)--Advanced 10-5

The <sp> stands for a space character whenever needed to
make it visible.

Since the period matches any single character, a way to deal
with the "invisible" characters printed by I is available. For
instance, if there is a line that when printed with the I
command, appears as

... th\07Is ...

and it is desired to get rid of the \07 (the bell character), the
most obvious solution is to try

s/\07/1

However, this will fail. Retyping the entire line is a reasonable
tactic if the line in question is not too long. However, for a
very long line, retyping could result in additional errors. Since
\07 really represents a single character, the command

s/th.ls/thls,

gets the job done. The period matches the mysterious
character between the "h" and the "i".

Since the period matches any single character, the command

s, . , . I
converts the first character on the line into a ",".

As is true of many characters in ed, the period has several
meanings depending on its context. In the line

. s, . , . I
o The first period is the line number of the line being edited,

which is called .. dot ...

o The second period is a metacharacter that matches any
single character on that line (in this instance the first
character of the line).

o The third period is the only one that really is a literal
period. On the right side of a substitution, the period is not
special.

1707909

10-6 Text Editor (ed)--Advanced

Backslash

Since a period means "any character," the question arises of
what to do when a period is really needed. For example, to
convert the line:

Now is the time.

into

Now is the time?

the backslash (\) is used. A backslash turns off any special
meaning that the next character might have. In particular, \.
converts the period from a H match anything" into a "match
the period" statement. The \. pair of characters is considered
by ed to be a single literal period. To replace the period with
a question mark, the following command is used:

S/\·/11

The backslash can also be used when searching for lines that
contain a special character. If a search is made to look for a
line that contains

.PP

the search

I.PPI

is not adequate. It will find a line like

THE APPLICATION OF ...

The period matches the letter H A ". But if the command

I\·PPI

is used, only the lines that contain" .PP" are found.

The backslash can also be used to turn off special meanings
for characters other than the period. For example, to find a
line that contains a backslash, the search

1\1

will not work because the \ is not a literal backslash, but
instead means that the second / no longer delimits the
search. A search can be made for a literal backslash by
preceding a backslash with another \:

1\ \I

Text Editor (ed)--Advanced

Similarly, searches can be made for a slash V) with

1\1/

The backslash turns off the meaning of the immediately
following / so that it does not terminate the search
prematurely.

10-7

Some substitute commands, each of which will convert the line

\x\.\y

into the line

are

\x\y

s/\\\·11
sIx . . /xl
s/.·y/yl

The user's erase character and the line kill character (# and @
by default) must also be used with a backslash to turn off
their special meaning. This is a feature of the CENTIX
operating system. When adding text with append (a), insert (i),
or change (c) commands, the backslash is special only for the
erase and line kill characters; and only one backslash should
be used for each one needed.

Dollar Sign

In the left side of a substitute command or in a search
command, the dollar sign ($) stands for "the end of line." The
word "time" is added to the end of the following phrase:

Now is the

with the following command:

sIS/ <s p> t I me /

The result is

Now is the time

A space is needed before "time" in the substitute command;
otherwise, the following will be printed:

Now is thetime

The second comma in the following line can be replaced with
a period without altering the first:

Now is the time, for all good men,

1201909

10-8 Text Editor (ed)--Advanced

The needed command is

5/.$/./

The $ provides context to indicate which specific comma.
Without it, the s command would operate on the first comma
to produce

Now is the time. for all good men,

To convert

Now is the time.

into

Now is the time?

that was previously done with the backslash, the following
command is used:

s/.$/?/

The $ has multiple meanings depending on context. In the line

$s/$/S/

D The first $ refers to the last line of the file.

D The second $ refers to the end of the line.

D The third $ is a literal dollar sign to be added to that line.

Circumflex

The circumflex (,,) stands for the beginning of the line. For
example, if a search is made for a line that begins with "the,"
the command

/the/

will in all likelihood find several lines that contain "the" before
arriving at the line that was wanted. But the command

/"the/

narrows the context, and thus arrives at the desired line
more quickly.

Text Editor (ed)--Advanced

The other use of the circumflex is to enable text to be
inserted at the beginning of a line. For example:

s/"/<sp>/

places a space at the beginning of the current line.

Metacharacters also can be combined. For example, to
search for a line that contains only the characters

.PP

the command

/"\.PP$/

can be used.

Star

10-9

The star (*) is useful to replace all spaces between x and y
with a single space, as in the following example:

text x y text

where text stands for lots of text, and there are an
indeterminate number of spaces between x and y. The line is
too long to retype, and there are too many spaces to count.

A regular expression (typically a single character) followed by
a star stands for as many consecutive occurrences of that
regular expression as possible. To refer to all the spaces at
once, the following command is used:

s/x<sp>·y/x<sp>y/

The construction <sp>· means "as many spaces as
possible." Thus x<sp>*y means: "an x, followed by as many
spaces as possible, and then a y."

The star can be used with any character, not just space. If
the original example was

text x--------y text

then all - characters can be replaced by a single space with
the command

s/x-·y/x<sp>y/

1207909

10-10 Text Editor (ed)--Advanced

If the original line was

text x y text

and if the following command was typed:

s/x.·y/x<sp>y/

what happens depends upon the occurrence of other x's or
y's on the line. If there are no other x's or y's, then
everything works, but it is blind luck, not good management.
Since a period matches any single character, then .• matches
as many single characters as possible. Unless the user is
careful the star can eat up a lot more of the line than
expected. If the line was

text x text x y text y text

then the command will take everything from the first x to the
last y, Which, in this example, is undoubtedly more than is
wanted. The proper way is to turn off the special meaning of
period with \. as shown in the following command:

s/x\.·y/x<sp>y/

Now everything works since \ .• means "as many periods as
possible."

There are times when the pattern .• is exactly what is
wanted. For example, to change

Now is the time for all good men ...

into
Now is the time.

the following deletes everything after the word "time":

,/<sp>for.·/./

There are a couple of additional pitfalls associated with • to
be aware of. Most notable is that "as many as possible"
means zero or more. The fact that zero is a legitimate
possibility is sometimes rather surprising. For example, if a
line contains

text xy text x Y t ex t

and the command is

s/x<sP>'y/x<sp>y/

Text Editor (ed)--Advanced 10-11

the first xy matches this pattern, for it consists of an x, zero
spaces, and a y. The result is that the substitute acts on the
first xy and does not touch the later one that actually
contains some intervening spaces. The proper way is to
specify a pattern like

/x<sp><sp>·y/

which says ,. an x, a space, as many more spaces as
possible, and then a y" (in other words, one or more spaces).

The other behavior of • is also related to the zero being a
legitimate number of occurrences of something followed by a
star. The command

s/x·/y/g

when applied to the line

abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended. The reason
for this behavior is that zero is a legal number of matches,
and there is no x at the beginning of the line (so that gets
converted into a y), nor between the a and the b (so that
gets converted into a y), and so on. The following command:

s/xx·/y/g

where xx· is "one or more x's", when applied to the line

abcdefxghl

produces

abcdefyghi

1207909

10-12 Text Editor (ed)--Advanced

Brackets

Should a number that appears at the beginning of all lines of
a file need to be deleted, a first thought might be to perform
a series of commands like:

1,$5/"1""
1,$5/"2"//
1 , $ 5/"3" //

This is going to take forever if the numbers are long. Unless
it is desired to repeat the commands over and over until
finally all numbers are gone, the digits can be deleted on one
pass. This is the purpose of brackets ([]).

The construction

[0123456789]

matches any single digit. The whole thing is called a
U character class. H With a character class, the job is easy.
The pattern [0123456789]* matches zero or more digits (an
entire number), so

1,$5/"[0123456789]"1/

deletes all digits from the beginning of all lines.

Any characters can appear within a character class; and just
to confuse the issue, there are essentially no special
characters inside the brackets. Even the backslash does not
have a special meaning. The following command searches for
special characters within the brackets:

/[.\$"[]/

Within a character class, the [is not special. To get a] into
a character class, it should be placed as the first character in
the class. For example:

I[].\$"[]/

It is a nuisance to have to spell out the digits. They can be
abbreviated as [0-9]; similarly, [a-z] stands for the lowercase
letters and [A-Z] for uppercase letters.

Text Editor (ed)--Advanced 10-13

The user can specify a character class that means "none of
the following characters." This is done by beginning the class
with a circumflex.

["0-9]

which stands for "any character except a digit." The
following search finds the first line that does not begin with a
tab or space:

1"["(space)(tab)]1

Within a character class, the circumflex has a special
meaning only if it occurs at the beginning. For example:

I" [""] 1

finds a line that does not begin with a circumflex.

Ampersand

The ampersand (&) is used primarily to save typing. For
example, if the following is the original line:

Now is the time

and it needs to be

Now is the best time

the command

s/the/the bestl

can be used, but it is unnecessary to repeat the "the". The &
is used to eliminate the repetition. On the right-hand side of a
substitute command, the ampersand means "whatever was
just matched," so in the command

s/the/& bestl

the & represents "the". This is not much of a saving if the
thing matched is just "the"; but if it is something long or
complicated or if it is something (such as . *) which matches a
lot of text, the & can save some tedious typing. There is also
much less chance of making a typing error in the
replacement text. For example, to parenthesize a line
regardless of its length:

s/·*/(&)1

1207909

10-14 Text Editor (ed)--Advanced

The ampersand can occur more than once on the right side.

s/the/& best and & worst/

makes the original line

Now is the best and the worst time

and

s/.*/&? &11/

converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, the backslash is used to turn off
the special meaning.

a/ampersand/\&/

converts the word into the symbol. The & is not special on
the left-hand side of a substitute, only on the right.

Operating on Lines

Substituting Newline Characters
The ed program provides a facility for splitting a single line
into two or more lines by substituting in a newline character.
If a line is unmanageably long because of editing or merely
because of the way it is typed, it can be divided as follows:

text xy text

can be broken between the x and the y with the following
substitute command:

a/xy/x\
y/

This is actually a single command although it is typed on two
lines. Since the \ turns off special meanings, a \ at the end
of a line makes the newline character no longer special.
When a new line is substituted, dot is left pointing at the last
line created.

Text Editor (ed)--Advanced 10-15

A single line can be made into several lines with this same
mechanism. The word "very" in the following example can
be put on a separate line preceded with the nroff formatter
underline command (.ul):

text a very big text

The commands

s/<sp>very<sp>/\
. u 1\
very\
/

convert the line into four shorter lines

text a
. u I
very
big text

The word H very" is preceded by the line containing the .ul
and spaces around H very" are eliminated at the same time.

Joining Lines
Lines may be connected with the join command ti). Given the
lines

Now Is
<sp>t he time

if dot is set to the first line, then the j command joins them
together. No spaces are added, which is why a space is
shown at the beginning of the second line.

All by itself, a j command joins dot to dot + 1. Any
contiguous set of lines can be joined by specifying the
starting and ending line numbers. For example:

1 ,$ J p

joins all the lines into a big one and prints it.

1207909

10-16 Text Editor led)"--Advanced

Rearranging Lines

The & metacharacter stands for whatever was matched by
the left side of an s command. Similarly, several pieces can
be captured of what was matched; the only difference is it
must be specified on the left side just what pieces the user is
interested in. For instance, if there is a file of lines that
consist of names in the form

Smith, A. B.

Jones, C.

and so on and it was intended to have the initials to precede
the name, as in:

A. B. Smith

C.Jones

it is possible to rectify this with a series of tedious and
error-prone editing commands. The alternative is to "tag" the
pieces of the pattern !in this case, the last name and the
initials) and then rearrange the pieces. On the left side of a
substitution if part of the pattern is enclosed between \(and
\), whatever matched that part is remembered and available
for use on the right side. On the right side, the symbol \1
refers to whatever matched the first \(. .. \) pair, \2 to the
second \(00'\) pair, and so on.

The command

1,$S/"\([",) "\) ,<sp>"\(. O\)/\2<sp>\1/

although hard to read, does the job. The first \too.\) matches
the last name, which is any string up to the comma; this is
referred to on the right side with \1. The second \(00'\) is
whatever follows the comma and any spaces and is referred
to as \2.

With any complicated editing sequence, it is foolhardy to run
it and hope. Global commands provide a way to print those
lines affected by the substitute command.

Text Editor (ed)--Advanced 10-17

Line Addressing in the Editor
Line addressing in ed specifies the lines to be affected by
editing commands. Previous constructions like

1.$s/x/y/

were used to specify a change on all lines. Most users are
familiar with using a single newline character (or return) to
print the next line and with

/string/

to find a line that contains string. Less familiar is the use of

?string?

to scan backwards for the previous occurrence of string. This
is handy when the user realizes that the string to be operated
on is back up the page (file) from the current line being
edited. The slash and question mark are the only characters
that can be used to delimit a context search.

Address Arithmetic
It is possible to combine line numbers like ., $, f ... f, and 1 ... 1
with + and -. Thus:

$ -1

is a command to print the next to last line of the current file
(that is, one line before line $). For example:

$-5.$p

prints the last six lines. If there are not six lines, an error
message will be indicated.

As another example:

.-3 •. +3p

prints from three lines before the current line to three lines
after. The + can be omitted

. - 3 •. 3p

is identical in meaning.

1207909

10-18 Text Editor (ed)--Advanced

Another area in which to save typing effort in specifying lines
is by using - and + as line numbers by themselves. For
instance, a single minus sign

by itself is a command to move back up one line in the file.
Several minus signs can be strung together to move back up
that many lines:

moves up three lines, as does -3. Thus:

-3,+3p

is also identical to the examples above.

Since - is shorter than .-1, constructions like

., . s/bad/good/

are useful. This changes the first occurrence of "bad" to
"good" on both the previous line and the current line.

The + and - can be used in combination with searches using
/string/, ?string?, and $. The search

/strlng/-·

finds the line containing string and positions dot two lines
before it.

Repeated Searches
When the search command is

/horrlb/e string/

and when the line is printed, it is discovered that it is not the
horrible string that was wanted. It is necessary to repeat the
search again, but it is not necessary to retype it. The
construction

/I

is a shorthand for "the string that was previously searched
for," whatever it was. This can be repeated as many times
as necessary. This also applies to the backwards search

11

T ext Editor (ed)--Advanced 10-19

which searches for the same string but in the reverse direction.

Not only can the search be repeated, but the / / construction
can be used on the left side of a substitute command to mean
.. the most recent pattern":

/horrible string/

ed prints line with horrible string.

s//good/p

ed prints the corrected line.

To search backwards and change a line, the following
command is used:

??s//good/

Of course, the & on the right-hand side of a substitute can
still be used to stand for whatever got matched

//s//&<sp>&/p

finds the next occurrence of whatever was searched for last,
replaces it by two copies of itself, and then prints the line to
verify that it worked.

Default Line Numbers

One of the most effective ways to speed editing is by
knowing which lines are affected by a command with no
address and where dot will be positioned when a command
finishes. Editing without specifying unnecessary line numbers
can save a lot of typing. As the most obvious example, the
search command

/strlng/

puts dot at the next line that contains string. No address is
required with commands like:

o p to print the current line

o I to list the current line

o d to delete the current line

1207909

10-20 Text Editor (ed)--Advanced

o a to append text after the current line

octo change the current line

o i to insert text before the current line

o s to make a substitution on the current line.

If there was no string detected, dot stays on the line where it
was. This is also true if it was sitting on the only string when
the command was issued. The same rules hold for searches
that use ?string?; the only difference is direction of search.

The delete command (d) leaves dot at the line following the
last deleted line. However, dot points to the new last line
when the last line is deleted.

Line-changing commands a, c, and i affect (by default) the
current line if no line number is specified. They behave
identically after appending, changing, or inserting dot points
at the last line entered. For example, the following can be
done without specifying any line number for the substitute
command or for the second append command:

a
text
botch (minor error)

s/botch/correct/ (fix botched line)
a

- - - mo ret ext

The following overwrites the major error and permits
continuation of entering information:

a

c

text
horrible botch (major error)

fixed up line (replace entire line)
more text

Text Editor (ed)--Advanced 10-21

The read command (r) will read a file into the text being
edited, either at the end if no address is given or after the
specified line if an address is given. In either case, dot points
at the last line read in. The Or command can be used to read
in a file at the beginning of the text and the Oa or 1 i
commands can be used to start adding text at the beginning.

The write command (w) writes out the entire file. If the
command is preceded by one line number, that line is
written. Preceding the command by two line numbers causes
a range of lines to be written. The w command does not
change dot, therefore, the current line remains the same
regardless of what lines are written. This is true even if a
command like

is made which involves a context search. Since the w
command is easy to use, the text being edited should be
saved regularly just in case the system crashes or a file being
edited is clobbered.

The command with the least intuitive behavior is the s
command. The dot remains at the last line that was changed.
If there were no changes, then dot is unchanged. To
illustrate, if there are three lines in the buffer and dot is
sitting on the middle one

x1
x2
x3

the command

- ,+s/x/y/p

prints the third line, which is the last one changed. But if the
three lines had been

x1
y2
y3

and the same command issued while dot pointed at the
second line, then the result would be to change and print
only the first line and that is where dot would be set.

1207909

10-22 Text Editor (ed)--Advanced

Semicolon
Searches with 1 ... 1 and 1 ... 1 start at the current line and move
forward or backward, respectively, until they either find the
pattern or get back to the current line. Sometimes this is not
what is wanted. Suppose, for example, that the buffer
contains lines like

ab

be

Starting at line 1, one would expect that the command

/a/./b/p

prints all the lines from the ab to the bc, inclusive. This is not
what happens. Both searches (for a and for b) start from the
same point, and thus they both find the line that contains abo
The result is to print a single line. If there had been a line
with a b in it before the ab line, then the print command
would be in error since the second line number would be less
than the first; and it is illegal to try to print lines in reverse
order. This is because the comma separator for line numbers
does not set dot while each address is processed. Each
search starts from the same place.

Text Editor (ed)--Advanced 10-23

In ed, the semicolon (;) can be used just like comma with the
single difference that use of a semicolon forces dot to be set
at that point while line numbers are being evaluated. In
effect, the semicolon moves dot. Thus in the example above,
the command

/a/;/b/p

prints the range of lines from ab to bc because after the a is
found, dot is set to that line, and then b is searched for
starting beyond that line. This property is most often useful
in a very simple situation. If the need is to find the second
occurrence of string, then the commands

/strlng/
/I

print the first occurrence as well as the second. The command

/strlng/;/1

finds the first occurrence of string and sets dot there. Then it
finds the second occurrence and prints only that line.

Searching for the second previous occurrence of string, as in

?strlng?;??

is similar. Printing the third, fourth, and so on occurrence in
either direction is left as an exercise.

When searching for the first occurrence of a character string
in a file where dot is positioned at an arbitrary place within
the file, the command

1;/strlng/

will fail if string is on line 1. You can use the command

O;/strlng/

(one of the few places where 0 is a legal line number) to
start the search at line 1.

1207909

10-24 Text Editor (ed):.-Advanced

Interrupting the Editor
If the user interrupts ed while performing a command by
pressing the DELETE key, the file is put back together again.
The file state is restored as much as possible to what it was
before the command began. Naturally, some changes are
irrevocable. If the file is being read from or written into,
substitutions are being made, or lines are being deleted,
these will be stopped in some clean but unpredictable state
in the middle of the command execution (which is why it is
not usually wise to stop them). Dot mayor may not be changed.

Printing is more clear cut. Dot is not changed until the
printing is done. Thus if a user interrupts ed while some
printing is being done, dot is not sitting on the last printed
line or even near it. Dot is returned to where it was when the
p command was started.

Global Commands

Basic
Global commands (g and v) are used to perform one or more
editing commands on all lines of a file. The 9 command
operates on those lines that contain a specified string. As
the simplest example, the command

g/strlng/p

prints all lines that contain string. The string that goes
between the slashes can be anything that could be used in a
line search or in a substitute command; exactly the same rules
and limitations apply. As another example:

g/"\./P

prints all lines that begin with period.

The v command (there is no mnemonic significance to the
letter "v") is identical to 9 except that it operates on those
lines that do not contain an occurrence of the string. So

v/"\./p

prints the lines that do not begin with period.

Text Editor (ed)--Advanced

The command that follows g or v can be almost any
command. For example:

g/"\./d

deletes all lines that begin with period, and

g/"$/d

deletes all empty (blank) lines.

10-25

Probably the most useful command that can follow a global
command is the substitute command since this can be used to
make a change and print each affected line for verification.
For example, to change the word "This" to "THIS"
everywhere in a file and verify that it worked, the command is

g/Thls/s//THIS/gp

The use of / / in the substitute command means "the previous
pattern", in this case, "'This". The p command is done on
every line that matches the pattern, not just those on which
a substitution took place.

Global commands operate by making two passes over the file.
On the first pass, all lines that match the pattern are marked.
On the second pass, each marked line in turn is examined;
dot is set to that line; and the command executed. This
means that it is possible for the command that follows a g or
v to use addresses, set dot, and so on, quite freely. For example:

g/"\.PP/+

prints the line that follows each .PP macro (the signal for a
new paragraph in some formatting packages). The + means
.. one line past dot," and

g/strlng/?"\.SH?1

searches for each line that contains string, scans backwards
until it finds a line that begins .SH (a section heading) and
prints the line that follows, thus showing the section
headings under which string is mentioned. Finally:

g/"\.EQ/+,/"\.EN/-p

prints all the lines that lie between lines beginning with the
.EQ and .EN formatting macros.

1207909

10-26 Text Editor (ed)--Advanced

The g and v commands can also be preceded by line
numbers, in which case the lines searched are only those in
the range specified.

Multiline
It is possible to do more than one command under the
control of a global command although the syntax for
expressing the operation is not especially natural or easy. As
an example, suppose the task is to change x to y and a to b
on all lines that contain string. Then:

g/strlng/s/x/y/\
s/a/b/

is sufficient. The backslash signals the g command that the
set of commands continues on the next line. It terminates on
the first line that does not end with \. A substitute command
cannot be used to insert a newline character within a g
command.

The command

g/x/s//y/\
s/a/b/

does not work as expected. The remembered pattern is the
last pattern that was actually executed, so sometimes it will
be x (as expected) and sometimes it will be a (not expected).
The desired pattern should be spelled out

g/x/s/x/v/\
s/a/b/

It is also possible to execute a, c, and i commands (append,
change, and insert) under a global command. As with other
multiline constructions, all that is needed is to add a \ at the
end of each line except the last. Thus to add a .nf and .sp
command before each .EQ line, the following is typed:

g/"\.EQ/I\
.nf\
.sp

Text Editor (ed)--Advanced 10-27

There is no need for a final line containing a period to
terminate the i command unless there are further commands
being done under the global. On the other hand, it does no
harm to put it in.

It is good practice after each global command to check that
the command did only what was desired. Surprises
sometimes happen. When they do occur, the undo command
(u) is useful to negate what was done by the last command.

File Manipulation

Text Editor Functions
The text editor (ed) function performs the following
operations:

D Inserts one file into another.

D Writes out part of a file.

D Moves lines around.

D Copies lines.

D Marks.

File Names

It is important to know the editor (ed) commands for reading
and writing files. Equally useful is the edit command (e).
Within ed, the command

e newflle

says "edit newfile without leaving the text editor." The e
command discards whatever is being worked on and starts
over on newfile. This is the same as if one had quit with the
q command and reentered ed with a new file name except
that if a pattern has been remembered a command like II will
still work.

1207909

10-28 Text Editor (edt--Advanced

When entering ed with the command

ed f i /e

ed remembers the name of the file, and any subsequent e, r,
or w commands that do not contain a file name will refer to
this remembered file. Thus:

edfllel
(editing)

w (writes back In fllel)
e file2 (edit different file without leaving ed)

(editing on fi le2)
w (writes back in file2)

and so on does a series of edits on various files without
leaving ed and without typing the name of any file more than
once. By examining the sequence of commands in this
example, it can be seen why many operating systems use e
as a synonym for ed.

The current file name can be found at any time with the f
command by typing f without a file name. Also, the name of
a remembered file can be changed with f. A useful sequence is

ed filel
f f i I e2

(editing)

This obtains a copy of file 1 and guarantees that a
subsequent w command without a file name will write to file2
and will not overwrite the original file.

Insert One File into Another

When a file is to be inserted into another, the r command
can be used. For example, if the file "table" is to be inserted
just after the reference to "Table 1 ,. , the following can be used:

/Table 1/
Table 1 shows that ... (response from ed)
.r table

The critical line is the last one. The .r command reads a file in
after dot. An r command without any address adds lines to
the end of the file, so it is equivalent to the $r command.

Text Editor (ed)--Advanced 10-29

Write Out Part of a File

Another feature is writing to another file part of the
document that is being edited. For example, it is possible to
split into a separate file the table from the previous example,
so it can be formatted or tested separately. If in the file being
edited, there is

text
.TS

data for table
.TE

text

to isolate the table information in a separate file called
"table," first the start of the table (the .TS line) is found, and
then the interesting part is written on file table

/"\.TS/
.TS (response from ed)
.. /"\.TE/w table

The same job can be accomplished with the single command

/"\.TS/;/"\.TE/w table

The point is that the w command can write out a group of
lines instead of the whole file. A single line can be written by
using one line number instead of two. For example, if a
complicated line was just typed and it will be needed again,
it should be saved and read in later rather than retyped:

a
lots of stuff
'stuff to repeat

.w temp
a

more stu f f

. r temp
a

more stu f f

1207909

10-30 Text Editor (ed)--Advanced

Move Lines Around

Moving a paragraph from its present position in a paper to
the end can be done several ways. For example, it is
assumed that each paragraph in the paper begins with the
,pp formatting macro. Another method is to write the
paragraph onto a temporary file, delete it from its current
position, and then read in the temporary file at the end. If dot
is at the ,PP macro that begins the paragraph, this is the
sequence of commands:

.• I"\.PP/-w tamp

.. /1- d
$ r tamp

This states that from where dot is now until one line before
the next ,PP write onto file temp. The same lines are deleted
and the file temp is read in at the end of the working file.

An easier way is to use the move command (m) that ed
provides. This does the whole set of operations at one time
without a temporary file, The m command is like many other
ed commands in that it takes up to two line numbers in front
to tell which lines are to be affected. It is also followed by a
line number that tells where the lines are to go. Thus:

I I n a 1 • I I n e 2m I I n a 3

says "move all the lines from line1 through line2 to after
line3". Any of "line 1", and so on, can be line numbers,
strings between slashes or dollar signs, or other line
specifications. If dot is at the first line of the paragraph, the
command

. . I" \ . P PI' m$

will also accomplish this task.

Text Editor (ed)--Advanced 10-31

As another example of a frequent operation, the order of two
adjacent lines can be reversed by moving the first one after
the second. If dot is positioned at the first line, then

m+

does it. It says to move the line to after the dot. If dot is
positioned on the second line

m- -

does the interchange.

The m command is more concise and direct than writing,
deleting, and rereading. The main difficulty with the m
command is that if patterns are used to specify both the line
being moved and the target line, they must be specified
properly or the wrong lines may be moved. The result of a
botched m command can be a costly mistake. Doing the job
a step at a time makes it easier to verify that each step
accomplished what was wanted. It is also a good idea to
issue a w command before doing anything complicated; then
if an error is made, it is easy to back up.

Copy Lines

The ed program provides a transfer command (t) for making a
copy of a group of one or more Jines at any point. This is
often easier than writing and reading. The t command is
identical to the m command except instead of moving Jines it
duplicates them at the place referenced. Thus:

1 • $ t $

duplicates the entire contents that is being edited. A more
common use for t is creating a series of lines that differ only
slightly. For example:

1207909

a
--- long line of stuff

t. (make a copy)
slxlyl (change it a bit)
t. (make third copy)
slylzl (change it a bit)

10-32 Text Editor (ed)--Advanced

Marking a Line

The ed program provides for marking a line with a particular
name so that the line can be referenced later by its name
regardless of its line number. This can be useful for moving
lines and for keeping track of them as they move. The mark
command is k. The mark name must be a single lowercase
letter. The command

kx

marks the current line with the name x. If a line number
precedes the k, that line is marked. The marked line can then
be referred to with the address

'x

Marks are most useful for moving things around. The first
line of the block to be moved is found and marked with ka.
Then the last line of the block is found and marked with kb.
Dot is then positioned at the place where the lines are to go
and the following command is performed:

• a •• bm

Note: Only one line can have a particular mark name associated
with it at any given time.

Temporary Escape

Sometimes it is convenient to temporarily escape from the
text editor to do some CENTIX operating system command
without leaving the text editor. The escape command (!)
provides a way to do this. If the command

lany CENTIX operating system command

is entered, the current editing state is suspended; and the
command asked for is executed. When the command
finishes, ed will return a signal by printing another! and
editing can be resumed.

Any CENTIX operating system command may be performed
including another ed (this is quite common). In this case,
another! can be done.

Text Editor (ed)--Advanced 10-33

Editing Scripts
If a fairly complicated set of editing operations is to be
performed on an entire set of files, the easiest thing to do is
to make a script file (that is, a file that contains the
operations to be performed), and then apply this script to
each file in turn. For example, if every instance of "This"
needs to be changed to "THIS" and every instance of "That"
needs to be changed to "THA Tn in a large number of files, a
file script is made with the following contents:

9 IT his I s II TH I s I 9
g/That/s//THAT/g
w
q

The following is done:

ad fila1 <script
ad fila2 <script

This causes ed to take its commands from the prepared
script; however, the whole job has to be planned in advance.

By using the CENTIX operating system command interpreter
[shU)], a set of files can be cycled automatically with varying
degrees of ease.

1207909

Section 11 11-1

Visual Editor {vi}--Basic
This chapter provides an introduction to the visual editor (vi).
Vi is a display-oriented, interactive text editor. When using vi,
the screen of your terminal acts as a window for looking into
the file being edited. Changes made to the file are reflected
on the screen.

Using vi, you can insert new text into the file at any place
quite easily. Most of the vi commands move the cursor
around in the file. There are commands to move the cursor
forward and backward in units of characters, words,
sentences, and paragraphs. A small set of operators (such as
d for delete and c for change) are combined with the motion
commands to form operations, such as "delete a word" or
.. change a paragraph," in a simple and natural way. This
regularity and the mnemonic assignment of commands to
keys makes the editor command set easy to remember and use.

This section contains 1 3 extensive examples that will be
useful in learning to use vi. An abbreviated example at the
end of this section will help those interested in using vi for
limited applications.

Special Purpose Keys
Special purpose keys are used by vi and because of their
importance they will be covered early in this chapter. Their
descriptions are as follows:

GO

RETURN

DELETE

CODE

1207909

When you are in the editor, hitting the GO key several times causes
the editor to ring the bell to indicate that it is in an inactive state.
Partially formed commands are canceled with the GO key. When you
insert text in the file, text insertion is ended with the GO key.

The RETURN key is used to signal the end of a line and to start
execution of certain commands.

The DELETE key generates an interrupt that tells the editor to stop
what it is doing. This is a forceful way of making the editor return
to the inactive state.

The CODE key is used with a number of keys to perform various
functions. In this guide, the notation CODE-d means to press the d
key while pressing down the CODE key.

11-2 Visual Editor (vi)--Basic

Getting In and Out of vi

Setting Up Your Terminal Configuration
Vi will work on a large number of video display terminals, and
new terminal types can be added to a terminal description
file. So, before you can start using vi, you must tell the
system the type terminal you are using. Consult with your
system administrator to determine the code for your
terminal. If your terminal does not have a code, one can be
assigned and a description for the terminal created.

After logging on to your CENTIX system, enter the following
command to identify a PT 1500 terminal:

$ TERM-pt
$ export TERM

Invoking the Visual Editor
After telling the system the kind of terminal you have, you
can run vi on a file with the command

$ v I f I I ename

The name of the file to edit is filename. After pressing the
RETURN key, the .screen should clear and the text of your file
appear on the screen. If something else happens, perhaps
you gave the system an incorrect terminal type code, in
which case the editor may make a mess out of your screen.
This happens when vi sends control codes for one kind of
terminal to some other kind of terminal. In this case, you can
type the colon and the q keys (:q) and then press the
RETURN key. This should get you back to the CENTIX
system shell. Determine what you did wrong (ask someone
else if necessary) and try again.

Visual Editor (vi)--Basic 11-3

Another thing that can go wrong is that you typed the wrong
file name and the editor printed the following:

[)

"filename" [New f I Ie]

If this happens, follow the above procedure for getting out of
the editor. Then try again, spelling the file name correctly.
Also, you may have typed a terminal code that is not
recognized by the system. In this case, the following will be
displayed.

$ v If; lename
:Unknown terminal type
[using open mode]
" f i len ame" x I I n e s. y c h a rae t e r s

Again follow the above procedure for getting out of the editor.

If the editor does not seem to respond to the commands you
enter, an interrupt can be sent to the editor by pressing the
DELETE key. You should now be able to leave the editor by
entering the :q command.

Editor Copy in Buffer

Vi does not directly modify the file you are editing. Rather, it
makes a copy of this file in a place called the buffer and
remembers the file's name. You do not affect the contents
of the file unless and until you write the changes made back
into the original file.

1207909

11-4 Visual Editor (vi)--Basic

Writing the Buffer
After working with the editor for a while, you may wish to
write into the buffer as follows:

:w

Your changes will be written into the buffer.

Quitting the Visual Editor
If you wish to leave the editor instead of just writing, enter

:wq

This writes the contents of the editor buffer (including
changes) back into the file you are editing and then quits the
editor. You can also use the ZZ command to write and leave
the editor. If you want to end an editing session and discard
all changes, the following can be entered:

: q I

Be very careful not to use this command when you really
want to save the changes made.

Example One

I Accessing, writing, and quitting a file.

1 Make a copy of a familiar file.

2 To access the file copy, enter the vi command and
filename followed by pressing the RETURN key.

$ vi filename

2 The file name will appear in quotes at the bottom of
the screen. The number of lines and the number of
characters will appear momentarily next to the file
name. The first part of the file will then appear on the
screen. The cursor will be at the top left character in
the file. The file name, number of lines, and number of
characters will remain displayed on the bottom line of
the screen.

Visual Editor (vi)--Basic 11-5

3 Enter the colon command symbol.

The colon appears below the bottom line of the
displayed file displacing the file name and the number
of lines and characters.

4 Enter the write command.

:w

The w appears at the bottom of the screen next to the
colon.

5 Press the RETURN key.

The file name in quotes, the number of lines, and the
number of characters appear at the bottom of the screen.

6 Enter the quit command.

:q

A q will appear next to the colon at the bottom of the
screen. After pressing the RETURN, the system
prompt is displayed on the next line at the bottom of
the screen. You have exited the vi editor. No change
has occurred in your file. (The above procedure can be
accomplished by entering :wq).

II Accessing and quitting a file after writing has occurred.

1 Access your file for the second time.

$ v I f I I ensme

Wait for a screen display. You could enter information
at this time. In this exercise, no information will be
entered.

2 Enter the write command.

1207909

:w

The write command appears at the bottom of the
screen. After pressing the RETURN key, the file name
in quotes, the number of lines, and the number of
characters appear at the bottom of the screen.

11-6 Visual Editor (vi)--Basic

3 Enter the quit command.

: q

The file name, number of lines, and number of
characters is replaced by the :. A q appears at the
bottom of the screen next to the colon. After pressing
the RETURN key, the system prompt appears at the
bottom of the screen. You have left the vi editor once
again. If changes had been made in your buffer file,
they would have been written into your original file.

III Accessing and quitting a file after writing has occurred--a
second method.

Access your file.

$ vi filename

Wait for a screen display. You could enter information
at this time. In this example no information will be entered.

2 Enter a write and quit.

:wq

A wq appears at the bottom of the screen next to the
colon. After pressing the RETURN key, the file name,
number of lines, and number of characters appear at
the bottom of the screen. The system prompt appears
on the next line. You have left the vi editor. If changes
had been made in your buffer file, they would have
been written into your original file.

IV Accessing and quitting a file after writing has occurred--a
third method.

Access your file.

$ vi filename

Wait for a screen display. You could enter information
at this time. In this example no information will be entered.

Visual Editor (vi)--Basic 11·7

2 Enter the write and quit command in uppercase as follows:

zz

The system prompt appears at the bottom of the
screen. You have left vi editor again. If changes had
been made in your buffer file, they would have been
written into your original file.

The ZZ command is identical to the :wq command,
except that it does not respond with the file name,
number of lines, and number of characters when no
changes have been made.

V Accessing and quitting a file without saving changes.

Access your file.

$ vi' ; lename

Wait for a screen display. You could enter information
at this time. In this exercise, no information will be
entered.

2 Enter the quit command without saving changes
command.

: q I

The three characters appear at the bottom of the
screen. After pressing the RETURN key, the system
prompt appears at the bottom of the screen. If any
changes had been made in your buffer file, they would
not be saved.

VI Changing a file name.

1 Access your file.

$ v I f I I ename

Wait for a screen display. You could enter information
at this time. In this example no information will be entered.

2 Enter:w followed by a space, your new file name, and
a RETURN.

: w new' I I ename

1207909

11-8 Visual Editor (vi)--Basic

At the bottom of the screen, the new file name
appears in quotes. Next appears the note [New file],
followed by the number of lines and the number of
characters.

3 Enter the colon command symbol and the quit
command.

:q

The system prompt appears at the bottom of the
screen. In your directory, the original file exists without
change. The new file now appears in your directory;
and if any changes had been made, they would be in
the new file.

VII Starting a new file without input information.

Enter another new file.

$ vi newfllename2

At the bottom of the screen, the new file name
appears in quotes followed by the note [New file]. A
line of tildes (-) appears on the left side of the screen.
The cursor appears on a line above the tildes. You
could enter information at this time.

2 Enter the write command.

:w

The new file name appears in quotes at the bottom of
the screen followed by the message "[New file] 1 line,
1 character."

3 Quit the editor.

:q

The system prompt appears at the bottom of the
screen. You now have a new empty file.

VIII Starting a new file with input information.

Enter another new file.

$ vi newfilename3

Wait for a screen display.

2 Write into the new file by typing

a

Visual Editor (vi)--8asic 11-9

then

Qwerty

and press the GO key.

The first letter H a" puts vi in the append mode and will
not appear on the screen. "qwerty" is the appended
information. The GO key is used to end the append
mode. You have now entered information into a file.

3 Enter the following write and quit command:

zz

The new file name in quotes followed by [New file) 1
line, and 7 characters appears at the bottom of the
screen. The system prompt appears on the next line.
You now have a new file in your directory containing
"qwerty."

Summary

:q

:q!

:w

:w Rswfils

:wq

ZZ

1207909

Quit vi editor when no changes have occurred since last write.

Quit vi editor and do not save changes since last write.

Write buffer to current file.

Write buffer to newfile.

Write and quit.

Write and quit.

11-10 Visual Editor (vi)--Basic

Moving Around in a File

Window Movements

Scrolling

The vi editor has a number of commands for moving around
in the file. The most useful of these is generated by holding
down the CODE key and pressing the D key (CODE-d). In this
chapter, this two-character notation will be used for referring
to the CODE key and an associated key. Refer to the
discussion of the CODE key in the paragraph covering special
purpose keys.

The CODE-d command scrolls down in the file. The d thus
stands for down. Many editor commands are. mnemonic and
this makes them much easier to remember. For instance, the
command to scroll up is CODE-u with u meaning up.

If you want to see more of the file below where you are,
press CODE-e to expose one more line at the bottom of the
screen. The CODE-y command exposes one more line at the
top of the screen.

Paging

There are other ways to move around in the file; the keys
CODE-f and CODE-b move forward and backward a page,
keeping a couple of lines of continuity between screens so
that it is possible to read through a file using these
commands rather than the CODE-d and CODE-u.

There is a difference between scrolling and paging. If you are
trying to read the text in a file, pressing CODE-f to move
forward a page gives you only a little context at which to
look back. Scrolling (CODE-d) on the other hand gives more
context and functions more smoothly. You can continue to
read the text while scrolling is taking place.

Visual Editor (vi)--Basic 11-11

Cursor Movements

The editor command set is independent of the terminal you
are using. On most terminals with cursor positioning keys
(arrow keys), these keys will also work within the editor. If
you do not have cursor positioning keys or even if you do,
use the h, j, k, and I keys as cursor positioning keys.
Experienced users of vi prefer these keys to arrow keys
because they are usually right underneath their fingers.

o h moves cursor to the left (like CODE-h which is a backspace).

o j moves cursor down (in the same column).

o k moves cursor up (in the same column).

o I moves cursor to the right.

SPACE (the spacebar) moves the cursor right one character
and the BACKSPACE key (or CODE-h) moves left one
character. Also, as noted above, the I key will move the
cursor to the right. When you type the + key, the cursor
advances to the next line in the file at the first nonwhite
position on the line. The - key is like + but goes the other
way. These are very common keys for moving the cursor up
and down lines in the file. The RETURN key has the same
effect as the + key.

Note: If the cursor goes off the bottom (or top) of the screen
when using these keys, the text will scroll up (or down) to bring
a line at a time into view.

Moving by Objects

Moving Within a Line

The w key will advance the cursor to the first character in the
next word on the line. The b key will move back to the first
character in a word. The e key advances you to the end of
the current word rather than to the beginning of the next
word. If the line has punctuation in it, the wand b keys stop
at each punctuation mark. You can also go backward and
forward without stopping at punctuation by using Wand B
rather than the lowercase equivalents.

1207909

11-12 Visual Editor (vi)--Basic

The word movement keys (e, w, and b) wraparound the end
of line rather than stopping at the end. You can move to a
word on a line below where you are by repeatedly typing w.

Low Level Character Motions

The command fx finds the next "x" character to the right of
the cursor in the current line. A semicolon (;) finds the next
instance of the same character. By using the f command and
then a sequence of ;'s, you can often get to a particular
place in a line much faster than with a sequence of word
motions or spaces. There is also an F command that
searches for "x" like f but searches backward. The;
command repeats F also.

Higher Level Text Objects

In working with a text file, it is often advantageous to work
in terms of sentences, paragraphs, and sections.

o The (and) operations move to the beginning of the
previous and next sentence, respectively. A sentence is
defined to end at a ., !, or ? that is followed by either the
end of a line or two spaces.

o The { and } operations move to the beginning of the
previous and next paragraph, respectively. A paragraph
begins after each empty line and also at each of a set of
paragraph macros.

o The [[and]] operations move over sections. Sections in
the editor begin after each macro in the sections option
(normally, .NH, .SH, .H, and .HU) and each line with a
formfeed CODE-I in the first column. Section boundaries
are always line and paragraph boundaries.

Visual Editor lvi)--Basic 11-1 J

Moving Around on the Screen

Vi also has commands to take you to the top, middle, and
bottom of the screen. The H command will take you to the
top line (home) on the screen. You can precede it with a
number as in JH. This will take you to the third line on the
screen. Many vi commands take preceding numbers and act
upon them. M takes you to the middle line on the screen,
and L takes you to the last line on the screen. The L
command also takes counts, the 5L command wi" take you
to the fifth line from the bottom.

Moving by Matching Character Strings
Another way to position yourself in the file is by giving the
editor a character string to search for. The / character
followed by a string of characters terminated by pressing the
RETURN key positions the cursor at the next occurrence of
this string. Typing an n takes you to the next occurrence of
this string. Typing an N takes you to the next occurrence of
this string in the opposite direction. The ? character wi"
search backward from where you are and is otherwise like /.

These searches will normally wraparound the end of the file
and thus find the string even if it is not in the direction you
search, provided it is somewhere else in the file. If the search
string given the editor is not present in the file, the editor will
provide a message at the bottom of the screen that the
string was "not found"; and the cursor will return to its initial
position.

If you wish the search to match only at the beginning of a
line, begin the search string with a caret (,,). To match
only at the end of a line, end the search string with a $.
Thus

I"first

will search for the word "first" at the beginning of a line, and

lias t $

searches for the word "last" at the end of a line.

1207909

11-14 Visual Editor lvi)--Basic

Miscellaneous Movement Features
The command G, preceded by a number, will position the
cursor at that line in the file. Thus 1 G will move the cursor to
the first line of the file. If you give G no count, the cursor
moves to the end of the file.

You can also get back to a previous position by using the
command \\ (two grave accents). This is often more
convenient than G because it requires no advance
preparation. If you accidentally enter n or any command that
moves you far away from a context of interest, you can
quickly get back by typing "

Example Two

Note: This example does not use the RETURN key to end
command lines unless specified in the instructions.

I Window movements.

Scrolling.

a Make a copy of a familiar file.

b To access the file copy, enter the vi command and
the name of your file followed by pressing the
RETURN key:

$ v I f I len ame

The file name will appear in quotes at the bottom of
the screen. The first part of the file will then appear
on the screen. The cursor will be at the top left
character in the file. The file name, number of lines,
and number of characters will be displayed on the
bottom of the screen.

c Press the CODE key and the D key at the same time.

CODE- d .

The cursor is advanced down in the file. (The screen
scrolls up adding some new lines at the bottom of the
screen.) (For most terminals, eight is a default number
of lines; your terminal may scroll more or fewer lines.)

Visual Editor (vi)--Basic 11-15

d Press the CODE key and the U key at the same time.

CODE-u

The screen scrolls down, and the cursor is back at the
beginning of the file.

When entering a number with CODE-d or CODE-u, the
number of lines requested last is the permanent
amount scrolled when next the CODE-d or CODE-u is
entered without a number.

e Press the CODE key and the E key at the same time.

CODE-e

One more line is exposed at the bottom of the screen.
The cursor remains on the same line.

f Press the CODE key and the Y key at the same time.

CODE-y

One additional line scrolls on to the top of the screen.
The cursor remains on the same line.

2 Paging.

a Press the CODE key and the F key at the same time.

CODE-f

The screen goes blank momentarily. A new screen
image appears containing the last couple of lines of
the previous screen image at the top of the screen.
These lines are followed by new lines forward in the
file. The cursor is at the top of the screen.

b Press the CODE key and the B key at the same time.

1207909

CODE-b

The screen goes blank momentarily. A new screen
image appears containing the first couple of lines of
the previous screen image at the bottom of the
screen. These lines are preceded by new lines
backward in the file. The cursor is at the bottom of
the screen.

11-16 Visual Editor (vi)--Basic

c Practice paging forward and backward in the file. (A
number may be entered preceding the input of CODE-f
or CODE-b. The number indicates the number of
screen fulls to move forward or backward. It is
difficult to keep up with your position in the file when
paging more than one screen full.)

II Cursor movements.

1 Cursor positioning keys.

If your terminal has cursor positioning (arrow) keys,
perform the following:

a Move the cursor to the right to the end of a line and
back with the left and right cursor positioning keys.

b Move the cursor to the bottom of the screen with the
down cursor positioning key.

c Add lines to the bottom of the screen with the down
cursor positioning key.

d Move the cursor to the top of the screen with the up
cursor positioning key.

e Add lines to the top of the screen with the up cursor
positioning key.

f Move the cursor to the right 20 character spaces by
typing 20 and pressing the right cursor key.

20rlght cursor key

If there are less than 20 characters on the line, the
cursor will stop on the last character in the line.

9 Move the cursor to the left ten character spaces by
typing 1 0 and pressing the left cursor key.

10left cursor key

If there are less characters to the left of the cursor
than ten, the cursor will stop on the first character in
the line.

h Move the cursor down ten lines in the file by typing
10 and pressing the down cursor key.

10down cursor key

Visual Editor (vi)--Basic 11-17

The cursor moves down ten lines. The cursor remains
ten characters to the left. If the line is less than ten
characters long, the cursor is on the last character on
the line.

Move the cursor down 15 more lines.

15down cursor key

The screen scrolls up and the cursor remains ten
characters to the left on the bottom line. If the line is
less than ten characters long, the cursor is on the last
character on the line.

j Move the cursor up 12 lines by typing a 1 2 and
pressing the up cursor key.

12up cursor key

The cursor moves up 12 lines.

k Move the cursor up 13 lines.

13up cursor key

The screen scrolls down and the cursor has returned
to its position prior to moving down 25 lines.

2 h, j, k, and I

a Move the cursor to the right to the end of a line with
lowercase I's and back with lowercase h's. (This
performs the same function as the cursor right and
left keys.)

b Move the cursor to the bottom of the screen with
lowercase j's.

c Add lines to the bottom of the screen with lowercase j's.

d Move the cursor to the top of the screen with
lowercase k's.

e Add lines to the top of the screen with lowercase k's.

f Move the cursor to the right 20 character spaces by
typing 20 and lowercase I.

201

1207909

11-18 Visual Editor (vi)--8asic

If there are less than 20 characters on the line, the
cursor will stop on the last character in the line.

9 Move the cursor to the left ten character spaces by
typing 10 and a lowercase h.

10h

If there are less characters to the left of the cursor
than ten, the cursor will stop on the first characte~ in
the line.

h Move the cursor down ten lines in the file by typing
10 and a lowercase j.

10 j

The cursor moves down ten lines. The cursor remains
ten characters to the left. If the line is less than ten
characters long, the cursor is on the last character on
the line.

i Move the cursor down 15 more lines.

15 j

The screen scrolls up and the cursor remains ten
characters to the left on the bottom line. If the line is
less than ten characters long, the cursor is on the last
character on the line.

j Move the cursor up 1 2 lines by typing a 12 and a
lowercase k.

12k

The cursor moves up 12 lines.

k Move the cursor up 13 lines.

13k

The screen scrolls down and the cursor has returned
to its position prior to moving down 25 lines.

3 BACKSPACE, RETURN, +, ., and SPACEBAR.

a Move the cursor to the right to the end of a line with
the SPACEBAR and back with the BACKSPACE key
(CODE-h will also work).

Visual Editor (vi)--8asic 11-19

b Move the cursor to the bottom of the screen with the
RETURN key. (The + key will also do this.)

c Add lines to the bottom of the screen with the
RETURN key.

d Move the cursor to the top of the screen with the - key.

e Add lines to the top of the screen with the - key.

f Move the cursor to the right 20 character spaces by
typing 20 and pressing the SPACEBAR.

20

If there are less than 20 characters on the line, the
cursor will stop on the last character in the line.

9 Move the cursor to the left ten character spaces by
typing 10 and pressing the BACKSPACE key.

10

If there are less characters to the left of the cursor
than ten, the cursor will stop on the first character in
the line.

h Move the cursor down ten lines in the file by typing
10 and pressing the RETURN key.

10

The cursor moves down ten lines. The cursor moves
to the first character space on the line. (The + key
will perform the same operation.)

i Move the cursor down 15 more lines.

15

The screen scrolls up and the cursor moves down 1 5
lines. The cursor remains in the first character space
on the line.

j Move the cursor up 1 2 lines by typing a 12 and
pressing the hyphen (-) key.

12-

The cursor moves up 12 lines.

1207909

11-20 Visual Editor (vi)--Basic

k Move the cursor up 13 lines.

13 -

The screen scrolls down. The cursor has returned to
its position prior to moving down 25 lines except the
cursor has moved to the first character space on the line.

III Moving by objects.

Moving by characters.

a Place the cursor at the beginning of a long line
containing a large number of entries of the same
character. (The cursor does not have to be on the first
character.)

b Type a lowercase f and a.

fa

The cursor moves to the right to the first" a" on the line.

c Type a semicolon.

The cursor moves to the right to the next Ha" on the line.

d Continue to type semicolons until the last a on the line
is reached.

After reaching the last a on the line, typing more
semicolons will not move the cursor any further.

e Type a comma.

The cursor moves back to the next to last a on the line.

f Move the cursor to the end of the line. (The cursor
does not have to be on the last character on the line.)

9 Type an uppercase F and a lowercase character that
appears several times on the line, for example an e.

Fe

The cursor moves to the left to the next" e" on the line.

Visual Editor (vi)--Basic 11-21

h Type a semicolon.

The cursor moves to the left to the next "e" on the line.

i Continue to type semicolons until the first "e" on the
line is reached.

After reaching the first "e" on the line, typing more
semicolons will not move the cursor any further on the
line.

j Type a comma.

The cursor moves to the right to the second "e" on
the line.

k Move the cursor to the beginning of the line.

I Type a 3 followed by a lowercase f and a. (This step
assumes there are at least three a's on your test line.)

3f8

The cursor moves to the right to the third a on the line.

m Type a 2 followed by a semicolon. (This step
assumes there are at least five" a'" s on your test line.)

2;

The cursor moves to the right two more "a'''s.

n Type a 4 followed by a comma.

4.

The cursor moves to the left four "a'''s.

o Move backward on the line searching for a character
using numbers, F's, semicolons, and commas.

The cursor moves as in the previous three steps
except in the opposite direction.

p Practice moving the cursor to desired characters by
using f' 5, F's, numbers, semicolons, and commas.

1207909

11-22 Visual Editor (vi)--Basic

q Perform the steps just performed for moving to
characters except subtitute a t for the f and a T for the F.

When typing the t, the cursor in each step will move
to the character to the left of the character being
searched for. When typing the T, the cursor in each
step will move to the character to the right of the
character being searched for.

2 Moving by words.

a Type an uppercase W.

w

The cursor moves to the right to the first character in
the next word on the line. If the cursor is on any
character in the last word in the line, the cursor will
move to the first character in the first word in the
next line down.

b Type a lowercase w.

w

The cursor moves as before except the cursor stops
at punctuation and other non-alphabetical and
non-numerical characters.

c Type an uppercase B.

B

The cursor moves to the left to the first character in
the next word in the line. If the cursor is on any
character in the first word in the line, the cursor will
move to the first character in the last word in the next
line up.

d Type a lowercase b.

b

The cursor moves as before except the cursor stops
at punctuation and other non-alphabetical and
non-numerical characters.

Visual Editor (vi)--Basic 11-23

e Type an uppercase E.

E

The cursor moves to the right to the last character in
the current word. If the cursor is on the last character
in a word, the cursor will move to the last character in
the next word to the right. If the cursor is on the last
character of the last word in a line, the cursor will
move to the last character of the first word on the
next line down.

f Type a lowercase e.

e

The cursor moves as before except the cursor stops
at punctuation and other non-alphabetical and
non-numerical characters.

9 Type a 5 and an uppercase W.

5W

The cursor moves to the right to the first character of
the fifth word. The cursor will move down to the next
line(s) if five remaining words are not in the current line.

3 Moving by sentences. The following feature of the vi
editor will work only if two spaces are used between
the end of sentence punctuation and the beginning of
the next sentence.

a Place the cursor at the beginning of a paragraph.

b Enter a right parenthesis.

The cursor moves down to the first character of the
next sentence.

c Enter a left parenthesis.

1207909

The cursor moves up to the first character of the
previous sentence.

11-24 Visual Editor (vi)--Basic

d Type a 4 and a right parenthesis.

4)

The cursor moves down in your file to the first
character of the fifth sentence.

e Type a 3 and a left parenthesis.

3(

The cursor moves up in your file to the first character
of the second sentence in the paragraph.

f Move the cursor to a sentence in the next paragraph
by typing single right parenthesis in succession.

The cursor stops at the beginning of an empty space.
The space between paragraphs counts as one
sentence.

9 Practice moving the cursor by typing numbers, right
parentheses, and left parentheses.

4 Moving by paragraphs.

a Move the cursor to the beginning of your file by using
any of the following:

CODE-u
CODE-b

up cursor key
k

b Type a right brace.

}

The cursor moves down to the beginning of the next
empty line.

c Type a left brace.

{

The cursor moves up to the beginning of the first line
in your file.

Visual Editor (vi)--Basic

d Type a 3 and a right brace.

3)

11-25

The cursor moves down to the third empty line space
in your file.

e Type a 2 and a left brace.

2{

The cursor moves up to the first empty line space in
your file.

f Practice moving by paragraphs using numbers, left
braces, and right braces.

5 Moving to the beginning and ending of lines.

a Place the cursor in the middle of a line.

b Type a zero.

o

The cursor moves to the first character space on the
current line.

c Type a dollar sign.

$

The cursor moves to the last character in the current line.

d Move the cursor back to the middle of the line.

e Type a 2 and a dollar sign.

2$

The cursor moves to the last character of the next
line. When using numbers and $'s, the line count
includes the current line.

IV Moving by matching character strings.

Move the cursor to the first line in your file.

2 Select a word to "search for" that appears on the screen.

3 Type a forward slash.

The slash appears at the bottom left of the screen.

1207909

11-26 Visual Editor Ivi)--Basic

4 Type your word and press the RETURN key.

word

Your word follows the slash at the bottom of the
screen. After pressing the RETURN key, the cursor
moves to the first character of the first appearance of
your word on the screen.

S Find the next occurrence of your word by typing an n.

n

A forward slash appears at the bottom of the screen.
The cursor moves forward in your file to the first
character in the next appearance of your word.

6 Move the cursor to the bottom line of the screen.

7 Select another word to search for that appears on the
screen.

8 Perform a backward search by typing the following:

?word2

Your second word follows the question mark at the
bottom of the screen. After pressing the RETURN key,
the cursor moves to the first character of the first
appearance of your word in a backward direction in
your file.

9 Find the next occurrence of your word by typing an n.

n

A backward slash appears at the bottom of the
screen. The cursor moves backward in your file to the
first character in the next appearance of your word.

10 Type an uppercase N.

N

A forward slash appears at the bottom of the screen.
The cursor moves forward in your file to the first
character of your word2 (back to the same word in the
previous step). (A forward slash and pressing the
RETURN key will also reverse the direction of the search.)

11 Select a word in your file that is the first word on a line.

Visual Editor (vi)--Basic 11-27

12 Move the cursor to a position in your file ahead of the
word.

13 Type a forward slash, a caret, and your third word,
followed by pressing the RETURN key.

/"word3

The information typed appears at the bottom of the
screen . After pressing the RETURN key, the cursor
moves forward to the next appearance of your word at
the beginning of the line.

14 Select a word in your file that is the last word on a line.

15 Move the cursor to a position in your file ahead of the
word.

16 Type a forward slash, your fourth word, and a dollar
sign followed by pressing the RETURN key.

/ word4$

16 The information typed appears at the bottom of the
screen . After pressing the RETURN key, the cursor
moves forward to the next appearance of your word at
the end of a line.

17 Type a forward slash followed by a word that you
know is not in your file. Press the RETURN key.

1207909

/word5

At the bottom of the screen the following message
appears:

IPattern not found

The word initially searched for does not have to appear
on the screen.

String searches normally search to the end or
beginning of the file and continue searching from the
opposite end of your file until your word is found.

11-28

Summary

BACKSPACE

SPACEBAR

CODE-b

CODE-d

CODE-8

CODE-f

CODE-g

CODE-h

CODE-u

CODE-y

+

/
?

B

G

H

M

N

L

W

b

8

h

j

k

Moves cursor one position to the left.

Moves cursor one position to the right.

Moves backward to previous page.

Scrolls down in the file.

Visual Editor (vi)--Basic

Exposes another line at bottom of screen.

Moves forward to next page.

Determines state of file. (file name, current line number, number
of lines in the buffer, and percent of way through the buffer)

Moves cursor one space to the left.

Scrolls up in the file.

Exposes another line at the top of screen.

Advances cursor to beginning of next line.

Moves cursor to beginning of previous line.

Searches forward for a character string.

Searches backward for a character string.

Moves cursor backward a word ignoring punctuation.

Moves cursor to specified line or to last line if default.

Moves cursor to top line (home) on screen.

Moves cursor to middle line on screen.

Repeats scan for next instance of / or ? pattern, but in the
reverse direction of the last search.

Moves cursor to last line on screen.

Moves cursor forward a word ignoring punctuation.

Moves cursor backward a word.

Moves cursor to end of current word.

Moves cursor to the left.

Moves cursor down (in same column).

Moves cursor up (in same column).

Visual Editor (vi)--Basic

n

w

Moves cursor to the right.

Repeats scan for next instance of / or ? pattern.

Moves cursor forward a word.

Creating New Text

Append or Insert Mode

11-29

One of the most useful commands is the insert (i) command.
After typing i, everything typed until you press the GO key is
inserted into the file. If you are on a dumb terminal, it will
seem that some of the characters in your line have been
overwritten; but they will reappear when you press the GO
key. A similar command is the append (a) command.

o i places text to the left of the cursor

o a places text to the right of the cursor.

When working with the text of a single line, a caret (,,)
moves the cursor to the first nonwhite position on the line,
and a S moves it to the end of the line. Thus, Sa will append
new text at the end of the current line. A is equivalent to Sa.
Ai will insert new text at the beginning of the current
line. I is equivalent to Ai.

Many related editor commands are invoked by the same
letter key and differ only in that one is given by a lowercase
key and the other is given by an uppercase key. The
uppercase key often differs from the lowercase key in its
sense of direction (the uppercase key moves backward
and/or up, and the lowercase key moves forward and/or down).

It is often the case that you want to add new lines to the file
you are editing before or after some specific line in the file.
The 0 command creates a new line after the line you are on,
and the 0 command creates a new line before the line you
are on. When you create a new line in this way, the text you
type is inserted on the new line until you press the GO key.

1207909

11-30 Visual Editor (vi)--8asic

Whenever you are typing in text, you can give many lines of
input or just a few characters. To type in more than one line
of text, press the RETURN key at the middle of your input. A
new line will be created for text, and you can continue to
type. If you are on a slow and dumb terminal, the editor may
choose to wait to redraw the tail of the screen and will let
you type over the existing screen lines. This avoids the
lengthy delay that would occur if the editor attempted to
keep the tail of the screen always up to date. The tail of the
screen will be fixed and the missing lines will reappear when
you press the GO key.

While inserting new text, use the characters normally used at
the system command level (usually CODE-h or #) to
backspace
over the last character typed; and the character used to kill
input lines (usually @, CODE-x, or CODE-u) can be used to erase
the input typed on the current line. In fact, CODE-h
(backspace) always erases the last input character regardless
of what your erase character is. CODE-w will erase a whole
word and leave you aher the space following the previous
word. It is useful for quickly backing up in an insert. The
following conditions should be noted:

o When you backspace during an insertion, the characters
you backspace over are not erased. The cursor moves
backward, and the characters remain on the display. This
is ohen useful if you are planning to type in something
similar. In any case, the characters disappear when you
press the GO key. If you want to delete them immediately,
press the GO key and then a again.

o You cannot erase characters that you did not insert, and
you cannot backspace around the end of a line. If you
need to back up to the previous line to make a correction,
just press the GO key and move the cursor back to the
previous line. Aher making the correction, return to where
you were and use the insert or append command again.

Visual Editor (vi)--Basic 11-31

Example Three

Start a new file as follows:

$ vi newfilename

At the bottom of the screen, the new file name appears in
quotes followed by [New me]. A line of tildes (-) appear on
the left side of the screen. The cursor appears on a line
above the tildes.

2 Type a lowercase a.

a

Nothing happens. The editor is in the append mode.

3 Type the following paragraph (including errors). Do not
worry about making typing mistakes. If your mistakes are
too extensive, type :q! and start over. The backspace can
be used to type over your errors. Type two spaces
between sentences when the end of the sentence is not at
the end of a line:

Wh e n you h a v e sue c e s s f u I I Y log g e din. apr 0 gram
called the shell Is listening to your terminal.
The shell read the line you type. splits It Into
a command name and Its arguments. and the
command. A simply an executable program.
located In a file. Normally. the shell looks first
In your current directory for a program with your
directories. There Is nothing special about
system-provided commands except that they are kept
for the shell to find them there.

4 Press the GO key.

The cursor moves to the left one space. The editor is out
of the append mode. The previous steps could have been
performed by typing a lowercase i, text, and pressing the
GO key.

5 Move the cursor to the third line from the top of the file.

6 Move your cursor to the d in the word "read."

1 Type a lowercase a.

a

The cursor moves one space to the right.

1207909

11-32 Visual Editor (vi)--Basic

8 Type a lowercase s.

s

The s is added following "read." The remainder of the
sentence is moved to the right one space.

9 Press the GO key.

The cursor moves to the left one space. The editor is out
of the append mode.

1 0 Move the cursor to the fourth line from the top of the file.

11 Move your cursor to the space following the second "and."

12 Type a lowercase a.

a

The cursor moves one space to the right.

13 Type the following word and then type a space:

executes

The typed information is added following "and. II The "the"
is moved to the right as you type.

14 Press the GO key.

The cursor moves to the left one space. The editor is out
of the append mode.

15 Move the cursor to the fifth line from the top of the file.

16 Move the cursor to the first m in "command."

17 Type a lowercase i.

The cursor remains in the same character space.

18 Type a lowercase o.

o

The 0 is inserted before the first m. The remainder of the
sentence moves over one character space.

19 Press the GO key.

Visual Editor (vi)--Basic 11-33

The cursor moves to the left one space. The editor is out
of the insert mode.

20 Move the cursor to the s in simply.

21 Type a lowercase i.

The cursor remains in the same character space.

22 Type the following text and then type a space:

command is

The typed information is inserted before U simply." The
remainder of the sentence moves over as you type.

23 Press the GO key.

The cursor moves to the left one space. The editor is out
of the insert mode.

24 Move the cursor to any character in the seventh line from
the top of the file.

25 Type a lowercase o.
o

A blank line is added following the line you are on. The
cursor appears at the first character space in the empty line.

26 Type the following text:

command name, and if none Is there, then In system

27 Press the GO key.

The cursor moves to the left one space. The editor is out
of the open mode.

28 Move the cursor to any character in the last line in your file.

29 Type an uppercase O.

o

A blank line is added preceding the line your cursor is on.
The cursor appears at the first character space in the
empty line.

1207909

11-34 Visual Editor (vi)--Basic

30 Type the following text:

in directories where the shell can find them.
You can (press the RETURN key)
also keep commands in your own
directories and arrange

31 Press the GO key.

The cursor moves to the left one space. The editor is out
of the open mode.

32 Correct your typing errors (if any) where possible, using a,
i, 0, and O.

33 The file you have just completed should appear as follows:

When you have successfully logged in, a program
called the shell Is listening to your terminal.
The shell reads the I ine you type, spl i ts I t into
a command name and its arguments, and executes the
command. A command is simply an executable program
located In a file. Normally, the shell looks first
i n you r cur r e n t d ire c tor y for apr 0 gram wit h you r
command name, and If none is there, then in system
directories. There is nothing special about
system-provided commands except that they are
kept In directories where the shell can find them.
You can also keep commands In your own directories
and arrange for the shell to find them there.

34 Save this file for use in other examples by typing the
following:

zz

At the bottom of the screen, your file name appears in
quotes followed by [New file], the number of lines, and the
number of characters,

Visual Editor (vi)--Basic 11-35

Summary

"w Erases a word during an insert.

erase Erases a character during an insert (usually "h or #).

kill Kills the insert on this line (usually @, "X, or "u).

o Opens and inputs new line(s) above the current line.

a Appends text after the cursor.

A Appends text after the line on the same line.

Inserts text before the cursor.

Inserts text before the line on the same line.

o Opens and inputs new line(s) below the current line.

Deleting Text

Deleting and Recovering With Undo
Suppose the last change you made was incorrect; you can
use the insert, delete, and append commands to put the
correct material back. However, since it is often the case
that we regret a change or make a change incorrectly, the
editor provides an undo (u) command to reverse the last
change made. A u also undoes a previous u.

The u command lets you reverse only a single change. After
you make a number of changes to a line, you may decide
that you would rather have the original state of the line back.
The U command restores the current line to the state before
you started changing it.

You can recover text that you deleted even if the u command
will not bring it back; see the subsection on recovering lost
text in this chapter.

11-36 Visual Editor (vi)--Basic

Deleting Characters, Words, Sentences, Paragraphs, and Lines

You can make small corrections in existing text quite easily.
Use the arrow keys to find a character or get near a
character with the word motion keys and then either
backspace (press the BACKSPACE key, CODE-h, or just h) or
SPACE (using the space bar) until the cursor is on the wrong
character. If the character is not needed, then type the x key;
this deletes the character from the file. It is analogous to the
way you x out characters when you make mistakes on a
typewriter. Counts are also useful with x to specify the
number of characters to be deleted.

When operating on the text in a line, it is ohen desirable to
delete characters including the first instance of a character.
Try dfx for some x and notice that the x character is deleted.
Undo this with u and then try dtx (the t stands for "to") to
delete up to the next x, but not the x. The command T is the
reverse of t.

Making Corrections with Operators

The d key acts as a delete operator.

o The dw command deletes a following word.

o The db command deletes a preceding word.

o The d) command will delete the rest of the current
sentence. The d(command will

delete the previous sentence if you are at the beginning of
the current sentence

or

delete the current sentence up to your present position if
you are not at the beginning of the current sentence.

Visual Editor (vi)--Basic

o The d} command will delete the rest of the current
paragraph. The d{ command will

11-37

delete the previous paragraph if you are at the beginning
of the current paragraph

or

delete the current paragraph up to your present position if
you are not at the beginning of the current paragraph.

An uppercase 0 will delete the current line and leave the
cursor on a blank line.

Operating on Lines

It is often the case that you want to operate on lines. A line
can be deleted by typing dd, the d operator twice. This will
delete the line. If you are on a dumb terminal, the editor may
erase the line on the screen replacing it with a line with only
an @ on it. This line does not correspond to any line in your
file, but only acts as a place holder. It helps to avoid a
lengthy redraw of the rest of the screen which would be
necessary to close up the hole created by the deletion on a
terminal without a delete line capability.

You can delete more than one line by preceding the dd with a
count (5dd deletes five lines). You can also give a command
like dL to delete all the lines up to and including the last line
on the screen or d3L to delete through the third from the
bottom line. The / (search) after a d will delete characters
from the current position to the point of the match.

Note: Vi lets you know when you change a large number of
lines so that you can see the extent of the change. It will also
always tell you when a change you make affects text that you
cannot see.

Example Four

Access the file created for Example Three.

$ v If; /ensme

If this file was not saved, enter the file as shown at the
end of Example Three.

1207909

11-38 Visual Editor (vi)--Basic

2 Add the following text to your file (including errors). Add a
blank line at the beginning of the text. Type two spaces
between sentences when the end of the sentence is not at
the end of a line:

(blank line)
The command name is the f Irrst word on an input Iluone
to shel I; the commanding and arguments are separated
from one another the by space and/or tab characters.
The quick brown fox jumped over the lazy
dog's back.

When a program terminates, the shell will ordinarily
regain control and type a $ at you to indicate that
Merry Christmas
Happy New Year
Alnt apple pie wonderful.
itcan be Is ready for another command.
The sheldelete charactersl has many
other capablll ties descr Ibed the big apple
In detail in the user's manual under sh. Carry me back
to ole Vlrglnny.

Your file now contains three paragraphs.

3 Move the cursor to the second word in the second
paragraph (commabnd).

4 Move the cursor to the b.

5 Remove the b by typing a lowercase x.

x

The b is deleted. The remainder of the line moves one
character space to the left.

6 Undo the deletion of the b by typing a lowercase u.

u

The b returns to its former position in the word command.

7 Undo the undo by typing another u.

u

The b is removed for the second time.

8 Move the cursor to the s in firrst.

Visual Editor (vi)--Basic

9 Delete the second r by typing the following:

x

The r is deleted. The remainder of the line moves one
character space to the left.

10 Move the cursor to the n in liuone.

11 Delete the uo by typing the following:

2X

11-39

The uo is deleted. The remainder of the line moves two
character spaces to the left.

12 Undo all of the deletions on the line by typing an
uppercase U.

u

The line returns to its original state.

13 Undo the line undo by typing a lowercase u.

u

The corrected line is restored.

14 Move the cursor to the next line. Move the cursor to the i
in the word commanding.

15 Remove the ing by typing 3x.

3x

The ing is deleted. The remainder of the line moves three
character spaces to the left.

16 Move the cursor to the "the" in the third line in the second
paragraph.

17 Remove the ·"the N by entering the delete word command.

dw

"then is removed. The extra space is also removed. The
remaining characters move to the left.

18 Experiment with the undo as you perform the remainder of
this procedure.

1 9 Move the cursor to the q in the fourth line in the second
paragraph.

1207909

11-40 Visual Editor (vi)--8asic

20 Delete the two words" quick brown" by typing the following:

d2w

"quick brown" is deleted. The remaining characters move
to the left.

21 Move the cursor to any character in the fourth line in the
second paragraph.

22 Delete the line the cursor is on by typing the following:

dd

The line is deleted. The following lines move up one line.

23 Move the cursor to any character in the third line in the
third paragraph.

24 Delete the line the cursor is on and the next line by typing
the following:

2dd

The two lines are deleted. The following lines move up
two lines.

25 Delete the new third line by typing the following:

o

The third line is deleted. A blank line remains.

26 Move the cursor to the space before the .. the" in the fifth
line of the third paragraph.

21 Remove the remainder of the line by typing the following:

d$

"the big apple" is deleted.

28 Move the cursor to the space before "Carry" in the next line.

29 Delete the remainder of the line and the next line by typing
the following:

d2$

Carry me back to ole Virginny is deleted.

30 Move the cursor to the c in can in the third line of the third
paragraph.

Visual Editor (vi)--Basic 11-41

31 Remove" can be" by typing the following:

dfe

All characters from the cursor through the first e are deleted.

32 Move the cursor to the d in "delete characters" in the
fourth line of the third paragraph.

33 Delete "delete characters" by typing the following:

d2 t I

"delete characters" is deleted.

34 Move the cursor to the u in you in the first line of the first
paragraph.

35 Delete the character the cursor is on plus the next nine
characters by typing the following and pressing the
SPACEBAR:

d10

T en characters including spaces are deleted through the
first c in successfully. Undo this deletion.

This can be done in the reverse direction with the
BACKSPACE.

36 Experiment with deleting characters using df, dt,
d-SP ACEBAR, and d-BACKSP ACE using numbers following
the d.

31 Move the cursor to any character in the first line of the
first paragraph.

38 Delete the line the cursor is on through the fifth line in the
file by typing the following:

d5G

The first five lines are deleted. The remaining lines move
up to replace these lines. Undo this deletion.

39 Move the cursor to any character in the eighth line in the
first paragragh.

40 Delete this line plus all lines to the end of the file by typing
the following:

dG

1201909

11-42 Visual Editor (vi)--Basic

The lines are deleted. Tildes follow the line the cursor is
on. The first seven lines remain in the file. Undo this deletion.

41 Move the cursor to any character in the second line of the
first paragraph.

42 Delete this line plus the next two lines by typing the
following command and pressing the RETURN key:

d2

The lines are deleted. Undo this deletion. Typing a d2+
will delete three lines in the same manner.

43 Move the cursor to any character in the fourth line of the
first paragraph.

44 Delete the line the cursor is on plus all lines through the
last line displayed on the screen by typing the following:

dl

The lines are deleted. The remaining lines in the file move
up. Undo this deletion.

45 Move the cursor to any character in the second line of the
third paragraph.

46 Delete the line the cursor is on plus all lines through the
middle line displayed on the screen by typing the
following:

dM

The lines are deleted. The remaining lines in the file fill in
the space occupied by the deleted lines. Undo this
deletion.

47 Move the cursor to the fourth line from the top of the screen.

48 Delete the line the cursor is on through the line at the top
of the screen by typing the following:

dH

The four lines are deleted. The remaining lines in the file
close up. Undo this deletion.

49 Experiment with deleting lines using dH, tfM, dL, and dG
using numbers following the d. Undo all your deletions.

Visual Editor (vi)--Basic 11-43

50 Move the cursor to the U A" in the third sentence in the
first paragraph.

51 Temporarily remove this sentence by typing the following:

d)

The sentence is deleted. The remainder of the next line is
moved up to fill in the line the cursor is on. The remaining
lines move up one line without change. Undo this deletion.

52 Move the cursor to the N in the next line.

53 Temporarily remove the previous sentence by typing the
following:

d (

The previous sentence is deleted. The remainder of the file
moves up as in last deletion. Undo this deletion.

54 Move the cursor to the A in the third sentence.

55 Temporarily delete the next three sentences by typing the
following:

d3)

The next three sentences are deleted. "You can H fills in the
line the cursor is on. The remainder of the file moves up
without change. Undo this deletion.

You can delete more than one previous sentence in the
same manner using d(with the number of sentences
before or after the d.

56 Move the cursor to the s in the word simply in the third
sentence.

57 Temporarily delete the remainder of this sentence by
typing the following:

d)

Beginning with the word simply the remainder of the
sentence is deleted. The remainder of the next line fills in
the line the cursor is on. The remaining portion of the file
moves up without change. Undo this deletion.

You can remove more than one sentence in this manner in
both the forward and reverse directions.

1207909

11-44 Visual Editor (vi)--Basic

58 Move the cursor to the blank line before the first line of
the second paragraph.

59 Temporarily remove this paragraph by typing the
following:

d}

The second paragraph is deleted. The last paragraph is
moved up with a blank line between the two remaining
paragraphs. Undo this deletion.

60 With the cursor on the same blank line, remove the
previous paragraph by typing the following:

d{

The first paragraph is deleted. The cursor is on a blank line
that is now the first line in the file. Undo this deletion.

61 With the cursor on the first line in the file, delete the first
two paragraphs by typing the following:

d2}

One paragraph remains in the file. The cursor is on a blank
line at the beginning of the file. Undo this deletion.

62 Move the cursor to the space before the third paragraph.

63 Delete the first two paragraphs by typing the following:

d2{

One paragraph remains in the file. The cursor is on a blank
line at the beginning of the file. Undo this deletion.

64 Move the cursor to the .. A" in the third sentence in the
first paragraph.

65 Remove the remainder of the first paragraph by typing the
following:

d}

The remainder of the paragraph is deleted. Paragraphs two
anJ three move up with no change. A blank line remains
between paragraphs one and two. Undo this deletion.

You can delete parts of paragraphs in both the forward
and reverse directions. You can also delete more than one
paragraph using this method.

Visual Editor (vi)--Basic 11-45

66 Move the cursor to the s in successfully in the first line of
the first paragraph.

67 Delete all information from the cursor location up to the
" A" in the fifth line by typing the following command and
pressing the RETURN key:

d/A

All the information from the space after "have" up to H A"
is deleted. Beginning with" A", the remainder of the fifth
line fills in the first line. The remainder of the file moves up
with no change. Undo this deletion.

68 Experiment with the various methods of deleting and the
undo command.

69 Save this file for use in the next example. The file should
appear as follows:

Wh e n you h a v e sue c e s s f u I I Y log g e din. apr 0 gram c a I led
the shell Is listening to your terminal. The shell
reads the line you type. splits It Into a command name
and Its arguments. and executes the command. A command
Iss I mp I y an ex e cut a b I e pro gram I 0 cat e din a f I Ie.
Normally. the shell looks first In your current
directory for a program with your command name. and If
non e 1st her e. the n Ins y stem d Ire c tor I e s . The rei s
nothing special about system-provided commands except
that they are kept In directories where the shel I can
find them. You can also keep commands In your own
d Ire c tor I e san dar ran g e for the she I Ito fin d them
there.

The command name Is the first word on an Input line to
shel I; the command and Its arguments are separated from
one another by space and/or tab characters.

When a program terminates. the shell wi II ordlnari Iy
regain control and type a $ at you to Indicate that It
is ready for another command. The shell has many other
cap a b I lit I e s des c rib e din de t a I I I nth e use r • s ma n u a I
under sh.

1207909

11-46 Visual Editor (vi)--Basic

Summary

o Deletes the current line.

U Undoes the deletes made to the current line.

d Deletes the specified object (word, space, and so on).

dd Deletes a line.

u Undoes the last delete.

x Deletes a character.

v~u~ Edrtor (~)-Bas~ 11-47

Changing Text

Change (Delete and Insert)

The c key acts as a change operator. As with the delete
operator, you can change any object that the visual editor
recognizes (characters, words, lines, sentences, paragraphs).
For example, the cw command changes the text of a single word.

When you type in a change command, the end of the text to
be changed is marked with the $ character to indicate that a
change is now anticipated up to the $ character. You are
now placed in the insert mode so that anything you type is
entered into the buffer. You terminate the insert mode by
pressing the GO key.

To summarize, change commands in vi act to delete text
objects and then place you in the insert mode. As with other
inserts, you get back to the command mode by pressing the
GO key.

Note: Vi lets you know when you change a large number of
lines so that you can see the extent of the change. It will also
always tell you when a change you make affects text which
you cannot see.

Changing Characters, Words, Sentences, Paragraphs, and Lines
The simplest change you can make is to change one
character. To do this vi has two possible commands, rand s.
If a character is incorrect, you can replace it with the correct
character by giving the rx command, where x is the correct
character. If the incorrect character should be replaced by
more than one character, make the following command entry
and press the GO key:

sstrlng

which substitutes a string of characters and ends with GO. If
there are a small number of characters wrong, precede s with
a count of the number of characters to be replaced.

1207909

11-48 Visual Editor (vi)--Basic

D The cw command allows you to change a following word.

D The cb command allows you to change a preceding word.

D The c) command allows you to change the rest of the
current sentence. The c(command allows you to

change the previous sentence if you are at the beginning
of the current sentence

or

change the current sentence up to your present position if
you are not at the beginning of the current sentence.

D The c} command allows you to change the rest of the
current paragraph. The c{ command allows you to

change the previous paragraph if you are at the beginning
of the current paragraph

or

change the current paragraph up to your present position if
you are not at the beginning of the current paragraph.

An uppercase C allows you to change information from the
cursor to the end of the current line. The line will be
displayed while you overwrite. Repeating the c operator
twice (cc) will change a whole line erasing its previous
contents and replacing them with text you type before
pressing the GO key. The S command is a convenient
synonym for cc.

You can change more than one character, word, line,
sentence, or paragragh by preceding the change entry with a
number. For example, preceding cc with a count of five (5cc)
allows you to change five lines.

You can also give a command like cl to change all the lines
up to and including the last line on the screen or c3l to
change through the third line from the bottom line. Using the
/ (search) after a c, allows you to change characters from the
current position to the point of the match.

Visual Editor (vi)--Basic 11-49

Example Five

Access the file created for Example Four.

$ vi' i /ename

If this file was not saved, enter the file as shown at the
end of Example Four.

2 Add the following text to your file (including errors). Add a
blank line at the beginning of the text. Type two spaces
between sentences when the end of the sentence is not at
the end of a line:

(blank line)
The fole system Is arriged In a Hierarchy of
four score and seven years ago administrator gave you
a user wrong, he or she also created a directory
for you (ordinarily for a same name as your user
This text Is not the correct text.
This I ine is to be changed
along with this tine.
assumed to be in that directory. Incorrect information
own e r 0 f t his d Ire c tor y, now i s the t I me for a I I
good men to come to the aid of their country.
Pe r mo t Ion for you you r w I I I wit hot her d Ire c tor i e s
and fl lechange char~ctersen granted or denied to you by
their respective owners or by the system administrator.

There are now four paragraphs in your file.

3 Move the cursor to the f in fole in the first line of the fourth
paragraph.

4 Move the cursor to the o.

5 Change the 0 to an i by typing a lowercase r followed by a
lowercase i.

r I

The 0 is changed to an i.

6 Undo the change by typing a lowercase u.

u

The 0 returns in the word file.

1207909

11-50 Visual Editor (vi)--Basic

7 Undo the undo by typing another u.

u

The i is returned for the second time.

8 Move the cursor to the i in "arriged" in the same line.

9 Substitute an for i by entering the substitute command,
"an," and pressing the GO key:

san

The new word is "arranged." The remainder of the line
moves one character space to the right.

1 0 Move the cursor to the H in Hierarchy in the first line.

11 Change the H to h by typing the following:

The H is changed to h.

12 Undo all of the changes on the line by typing an uppercase U.

u

The line returns to its original state.

13 Undo the the line undo by typing a lowercase u.

u

The corrected line is restored.

An uppercase U will now not perform a line undo.

14 Move the cursor to the first character in next line.

15 Replace "four score and seven years ago" by entering the
replace command, the replacement text, and pressing the
GO key:

Rdlrectorles. When the system

The new text is typed over the old text. Remove the
remaining 0 by placing the cursor on the 0 and typing an x.
The new text returns.

Visual Editor (vi)--Basic 11-51

16 Move the cursor to the w in "wrong" in the third line in the
fourth paragraph.

17 Change the word "wrong" to "name" by entering the
change word command, "name," and pressing the GO key:

cwname

A $ sign is placed where the g was at the end of the word
when cw is typed. "name" is typed over "wron." When
the GO key is pressed, the $ disappears. The remaining
characters move to the left one space.

18 Experiment with the "undo" and "undoing the undo" as
you perform the remainder of this procedure.

19 Move the cursor to the f in for in the fourth line in the
fourth paragraph.

20 Change the two words "for a" to "with the" by typing the
following and then pressing the GO key:

c2ww It h the

A $ sign is placed where the "an was when cw is typed.
"with then is typed over "for $. n When the escape key is
pressed, the remaining characters move to the right.

T ext not affected by a change command fills in or expands
as when GO is pressed.

21 Move the cursor to any character in the fifth line in the
fourth paragraph.

22 Change the line the cursor is on by typing the following
and pressing the GO key:

ccname. and known as your login or home dl rectory).

When cc is typed, the line is deleted leaving the cursor at
the beginning of a blank line. The new text is typed into
the blank line.

23 Move the cursor to any character in the sixth line in the
fourth paragraph.

1207909

11-52 Visual Editor Ivi)--Basic

24 Change the line the cursor is on and the next line by typing
the following and pressing the GO key:

2 c cWh en you Jog in, t hat d ire c tor y bee orne s you r cur r en t

(Press the RETURN key)'

d Ire c tor y, and any f i J e n arne you t y p e i s by de f a u J t

The two lines are deleted following the entry of the
second c. The following lines move up one line leaving one
blank line with the cursor at the beginning.

An unlimited number of lines can replace the original two
lines.

25 Move the cursor to the I in Incorrect in the eighth line of
the fourth paragraph.

26 Change the remainder of the line by entering the change
command, typing the new text, and pressing the GO key:

CBecause you are the

As soon as the C is typed, a $ replaces the last character
in the sentence. The new text is typed over the old text.

27 Move the cursor to the n in now in the next line.

28 Change the remainder of the line and the next line by
entering the change command, typing the new text, and
pressing the GO key:

C2you have full permissions
(Press the RETURN key)
to read, write, alter, or destroy its contents.

As soon as the C is typed, the remainder of the line the
cursor is on and the next line disappear. The cursor
remains at its original position until the new text is typed in.

29 Move the cursor to the a in Permotion in the eleventh line
of the fourth paragraph.

30 Change "otion for you" by typing the following and
pressing the GO key:

cfulsslons to have

As soon as cfu is typed, a $ replaces the u in you. The
new text is typed over the old text. The remainder of the
line moves right.

Visual Editor (vi)--8asic

31 Move the cursor to the c in change characters in the
twelth line of the fourth paragraph.

11-53

32 Change "change characters" by typing the following and
pressing the GO key:

c3tes wi I I have be

A $ replaces the s in characters as soon as c3fe is typed.
The new text is typed over the old text. The remainder of
the line moves left when GO is typed.

33 Move the cursor to the u in you in the first line of the first
paragraph.

34 Change the character the cursor is on plus the next nine
characters by typing the following and pressing the GO key:

c10(Press the SPACEBAR)
xxType any number of charactersxx

10 characters including spaces are changed through the
first c in successfully.

This can be done in the reverse direction with the
backspace. Undo this change.

35 Experiment with changing characters using cf, ct,
c-SPACEBAR, and c-BACKSPACE using numbers following
the c.

36 Move the cursor to any character in the first line of the
first paragraph.

37 Change the line the cursor is on through the fifth line in the
file by typing the following:

c5GxxxxxType any number of Ilnesxxxxxxxxxxxx
(press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxx

The first five lines are deleted. The remaining lines move
up to replace these lines. The cursor is on a blank line.
Undo this change.

38 Move the cursor to any character in the eighth line in the
first paragragh.

1207909

11-54 Visual Editor Ivi)--8asic

39 Change this line plus all lines to the end of the file by
typing the following and pressing the GO key:

cGxxxxxxType any number of I inesxxxxxxxxx
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

After typing cG, the desired lines are deleted. The cursor is
on a blank line at the end of the file. Tildes follow the line
the cursor is on. The first seven lines remain in the file.
The new text is added to the end of the file. Undo this change.

40 Move the cursor to any character in the second line of the
first paragraph.

41 Change this line plus the next two lines by typing the
following and pressing the GO key:

c2
(Press the RETURN key)
xxxxxxxxType any number of Ilnesxxxxxx
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

After typing c2 and pressing the RETURN key, the lines are
deleted. The cursor is on a blank line following the first line
in the file. The new text is added following the first line.
Undo this change.

Typing a c2+ will change three lines in the same manner.

42 Move the cursor to any character in the fourth line of the
first paragraph.

43 Change the line the cursor is on plus all lines through the
last line displayed on the screen by typing the following
and pressing the GO key:

cLxxxxxxxxType any number of Ilnesxxxxxx
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxX

After typing cL, the desired lines are deleted. The cursor is
on a blank line. The remaining lines in the file move up.
The new text is added following the third line. Undo this
change.

44 Move the cursor to any character in the second line of the
third paragraph.

Visual Editor (vi)--Basic 11-55

45 Change the line the cursor is on plus all lines through the
middle line displayed on the screen by typing the following
and pressing the GO key:

cMxxxxxxxxType any number of I inesxxxxxx
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

After typing cM, the desired lines are deleted. The cursor
is on a blank line. The remaining lines in the file move up.
The new text is added following the first line. Undo this
change.

46 Move the cursor to the fourth line from the top of the screen.

47 Delete the line the cursor is on through the line at the top
of the screen by typing the following and pressing the GO key:

cHxxxxxxxxType any number of linesxxxxxx
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

After typing cH, the four lines are deleted. The cursor is on
a blank line. The remaining lines in the file move up. The
new text is added preceding the new first line. Undo this
change.

48 Experiment with deleting lines using cH, cM, cl, and cG
using numbers following the c. Undo all your changes.

49 Move the cursor to the ,. A" in the third sentence in the
first paragraph.

50 Temporarily change this sentence by typing the following
and pressing the GO key:

c)xxxxxxxxType any number of I inesxxxxxx
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

After typing c), the sentence is deleted. The remainder of
the next line is moved up to fill in the line. The remaining
lines move up one line without change. The new text is
inserted prior to the remainder of the next line. Undo this
change.

51 Move the cursor to the N in the next line.

1207909

11-56 Visual Editor" (vi)--Basic

52 Temporarily change the previous sentence by typing the
following and pressing the GO key:

c(xxxxxxxxType any number of Ilnesxxxxxx
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxGO

After typing c(, the previous sentence is deleted. The
remainder of the file moves up as in the last change. The
new text is inserted before the next sentence. Undo this
change.

53 Move the cursor to the A in the third sentence.

54 Temporarily change the next three sentences by typing the
following and pressing the GO key:

c3)xxxxxxxxType any number of Ilnesxxxxxx
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

After typing c3), the next three sentences are deleted.
"You can" fills in the line the cursor is on. The remainder
of the file moves up without change. The new text is
inserted before "You can." Undo this change.

You can change more than one previous sentence in the
same manner using c(with the number of sentences
before or after the c.

55 Move the cursor to the s in the word .. simply" in the third
sentence.

56 Temporarily change the remainder of this sentence by
typing the following:

c)xxxxxxxxType any number of Ilnesxxxxxx
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Beginning with the word .. simply," the remainder of the
sentence is deleted. The remainder of the next line fills in
the line the cursor is on. The remaining portion of the file
moves up without change. The new text is inserted before
"Normally." Undo this change. You can change more than
one sentence in this manner in both the forward and
reverse directions.

57 Move the cursor to the first line of the second paragraph.

Visual Editor (vi)--8asic 11-57

58 Temporarily change this paragraph by typing the following
and pressing the GO key:

c}xxxxxxxxType any number of I inesxxxxxx
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

The second paragraph is deleted. The next two
paragraphs are moved up with three blank lines between
the first and second paragraphs. The cursor is at the
beginning of the second empty line. The new paragraph is
inserted between the first and second paragraphs. Undo
this change.

59 Move the cursor to the empty line before paragraph 2.

60 Change the previous paragraph by typing the following and
pressing the GO key:

c{xxxxxxxxType any number of I Inesxxxxx~
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

The first paragraph is deleted. The cursor is on a blank line
that is now the first line in the file. This line is followed by
another blank line. The new text is inserted as the first
paragraph. Undo this change.

61 With the cursor on the first line in the file, change the first
two paragraphs by typing the following and pressing the
GO key:

c2}xxxxxxxxType any number of I inesxxxxxx
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

The first two paragraphs are deleted. The cursor is on a
blank line that is now the first line in the file.

This line is followed by another blank line. The new text is
inserted as the first paragraph. Additional paragraphs can
be added by continuing to type text in a new paragraph.
Undo this change.

62 Move the cursor to the space before the third paragraph.

1207909

11-58 Visual Editor (vi)--8asic

63 Change the first two paragraphs by typing the following
and pressing the GO key:

c2{xxxxxxxxType any number of I inesxxxxxx
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

The first two paragraphs are deleted. The cursor is on a
blank line that is now the first line in the file. This line is
followed by another blank line. The new text is inserted as
the first paragraph. Additional paragraphs can be added by
continuing to type text in a new paragraph. Undo this change.

64 Move the cursor to the A in the third sentence in the first
paragraph.

65 Change the remainder of paragraph one by typing the
following and pressing the GO key:

c}xxxxxxxxType any number of I inesxxxxxx
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

The remainder of the paragraph is deleted. Paragraphs two
through four move up with no change. A blank line
remains between paragraphs one and two. The new text
is added on to the end of the first paragraph. Undo this
change.

You can change parts of paragraphs in both the forward
and reverse directions. You can also change more than
one paragraph using this method.

66 Move the cursor to the s in successfully in the first line of
the first paragraph.

67 Change all information from the cursor location up to the
.. A If in the fifth line by typing the following and pressing
the GO key:

ciA (Press the RETURN key)
xxxxxxxxType any number of I inesxxxxxx
(Press the RETURN key)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

All the information from the space after "have" up to .. AU
is deleted. Beginning with" A", the remainder of the fifth
line fills in line one. The remainder of the file moves up
with no change. The new text is added preceding the A.
Undo this change.

Visual Editor (vi)--Basic 11-59

68 Save this file for use in the next example. The file should
appear as follows:

When you have successfully logged in. a program
called the shell is listening to your terminal.
The shell reads the line you type. splits it into
a command name and its arguments. and executes the
command. A command is simply an executable program
located in a file. Normally. the shell looks first
in your current directory for a program with your
comma n d name. and I f non e 1st her e. the n Ins y stem
directories. There Is nothing special about
system-provided commands except that they are kept
in directories where the shell can find them. You can
a I so keep commands I n you r own d I rec tor i es and a r range
for the she I Ito fin d them the r e .

The command name Is the first word on an input line
to shel I; the command and Its arguments are separated
from one another by space and/or tab characters.

When a program terminates. the shell wi II ordlnarl Iy
regain control and type a $ at you to Indicate that
I tis rea d y for an 0 the r comma n d . The she I I has rna n y
other capabilities described In detail In
the user's manual under sh.

The fi Ie system Is arranged In a hierarchy of
directories. When the system administrator gave you
a user name. he or she also created a directory
for you (0 r din a r I I Y wit h the same n arne as you r use r
name. and known as your login or home directory).
Wh e n you log In. t hat d Ire c tor y b e come s you r cur r e n t
directory. and any file name you type Is by default
assumed to be In that directory. Because you are the
owner of this directory. you have full permissions
to read. write. alter. or destroy Its contents.
Permissions to have your will with other directories
and files wi I I have been granted or denied to you by
their respective owners or by the system administrator.

1207909

11-60

Summary

c
S

c[object]

s

cc

Visual Editor (vi)--Basic

Switches character from lowercase to uppercase and vise versa.

Changes from cursor to the end of the line (same as c$).

Substitute for or change a whole line (same as cc).

Change the specified [object] to the following text until the GO key
is pressed.

Replaces a character.

Replaces a character with a string until the GO key is pressed.

Changes a whole line.

Copying Text

The Concept of Yank and Put

Vi provides a method of making a copy of text and placing
this copy in another location in the file. This method is called
"yank and put." The y operator yanks a copy of any specified
object (word, line, sentence, or paragraph) into a specially
reserved space called a register. The text can then be put
back in the file from the register with the commands p and P;
the p command puts the text after or below the cursor while
P puts the text before or above the cursor.

If the text you yank forms a part of a line or is an object such
as a sentence that partially spans more than one line, then
when you put the text back, it will be placed after the cursor
(or before if you use P). If the yanked text forms whole lines,
whole lines will be put back without changing the current line.

The Y command is used to make a copy of a line. The cursor
can then be moved to any character on another line and the
p used to place the yanked line following the current line. P
places the copied line above the current line. The YP
command makes a copy of the current line and places it
before the current line. The cursor is placed on the first
character of this copy. The command Y is a convenient
abbreviation for yy. The command Yp will also make a copy
of the current line and place it after the current line. You can
give Y a count of lines to yank and thus duplicate several lines.

Visual Editor (vi)--Basic 11-61

Vi has a single unnamed register where the last yanked text
is saved. Each time a yank command is performed that uses
the unnamed register, the previous yank command is lost. To
prevent the loss of this text, the editor has a set of named
registers a through z that can be used to save copies of text.
The general format of the yank command using named
registers is

uxyobject

where x is the name of the register (a through z) into which
an object is copied. The following procedure copies a line
into a new location in a file.

1 Enter

"ayy

This yanks a line from where the cursor is into the named
register a.

2 Move the cursor to the eventual resting place of this line

3 Enter

"ap or
"aP

This puts the line at the new location.

Copying Objects

Yank and put can be used to copy the following objects:

o Characters.

o Words.

o Lines.

o Sentences.

o Paragraphs.

Note: Each of the following objects should be experimented
with to fully understand what happens during a yank and put.

1207909

11-62 Visual Editor (vi)--Basic

Characters can be copied by typing the yank command and
then typing one of the following object commands:

SPACEBAR
BACKSPACE
h

fx

Fx

tx

Tx

Yanks one character in forward direction.

Yanks one character in backward direction.

Yanks one character in backward direction.

Yanks one character in forward direction.

Yanks all characters from cursor up to x in forward direction.

Yanks all characters from cursor up to x in backward direction.

Yanks all characters from cursor up to and including x in
forward direction.

Yanks all characters from cursor up to and including x in
backward direction.

Words can be copied by typing the yank command and then
typing one of the following objects:

w

w

b

B

I

Yanks one word in forward direction (punctuation counts as
word).

Yanks one word in forward direction (punctuation does not
count as word).

Yanks one word in backward direction (punctuation counts
as word).

Yanks one word in backward direction (punctuation does not
count as word).

Yanks one word in forward direction up to last character in
word (punctuation counts as word).

Visual Editor (vi)--8asic 11-63

Lines can be copied (in addition to yy and Y) by typing the
yank command and then typing one of the following objects:

$

RETURN

+
k

H

M

L

G

/

?

Yanks one line from cursor to end of line.

Yanks one line plus line cursor is on in forward direction.

Yanks one line plus line cursor is on in forward direction.

Yanks one line plus line cursor is on in forward direction.

Yanks one line plus line cursor is on in backward direction.

Yanks one line plus line cursor is on in backward direction.

Yanks line cursor is on through top line on screen.

Yanks line cursor is on through middle line on screen.

Yanks line cursor is on through bottom line on screen.

Yanks line cursor is on through last line in file. If a number
precedes G, yanks through that line in forward or reverse
direction.

Yanks from where cursor is up to "searched fo(string in forward
direction.

Yanks from where cursor is through "searched fo(string in
backward direction.

Sentences can be copied by typing the yank command and
then typing one of the following objects:

Yanks from cursor to end of sentence in forward direction.

Yanks from cursor to beginning of sentence in reverse direction.

Paragraphs can be copied by typing the yank command and
then typing one of the following objects:

Yanks from cursor to end of paragraph in forward direction.

Yanks from cursor to beginning of paragraph in reverse direction.

All of the object commands shown above can be preceded
by a number. Using a number allows you to copy more than
one of the object. This is especially useful when copying
characters. The following exercise will demonstrate only a
few of the possible ways to copy text.

1207909

11-64 Visual Editor (vi)--Basic

Example Six

Note: This example contains information covered in Example
Two. The information in Example Two should be reviewed prior
to performing this example. Only a selected amount of text
objects that can be copied is covered in this example.

1 Copying characters.

a Make a copy of the file shown at the end of Example Five.

b Access your file by entering the following command and
pressing the RETURN key:

$ v I f i 'ename

The cursor is on the first character of the first line in the file.

c Yank characters up to the first f on line 1 by typing the
following:

Y t f

Nothing appears to happen. The editor has yanked the
desired characters into the unnamed register.

d Move the cursor to the open line between the first and
second paragraphs.

e Put the characters just yanked into the unnamed register
by typing a lowercase p.

p

If you had success, "When you have success" appears
on the blank line.

f Move the cursor to the first character in the first line in
the third paragraph.

9 Type a lowercase p.

p

"When you have success" is put after the "W" in the line
you are on.

h Move the cursor to the first character in the first line of
the fourth paragraph.

i Type an uppercase P.
p

Visual Editor (vi)--Basic 11-65

"When you have success" is put before the "T" in the line
you are on.

i Move the cursor to the end of the last line in the third
paragraph.

k Type a lowercase p.

p

"When you have success" is added to the end of the line.

I Undo the last put by typing a lowercase u.

u

"When you have success" is deleted from the end of the line.

m Move the cursor back to the first character in the fourth
paragraph.

n Type a lowercase u.

u

"When you have success" is added back to the end of
paragraph three.

The line you are on cannot now be undone.

o Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q I

P Access your file again.

$ v I same f I I II

The file does not contain your yank and put changes.

q With the cursor on the first character in the first
paragraph, type the following and press the SPACEBAR:

y

Nothing happens. You have yanked the W into the
unnamed register.

r Move the cursor to the next line.

s Type a lowercase p.

p

1207909

11-66 Visual Editor (vi)--Basic

The W follows the c in the second line. Not too useful.

t Move the cursor to the first character in the first paragraph.

u Yank the first 21 characters by typing the following:

y21 (Press the SPACEBAR)

Nothing happens. The 21 characters have been yanked
into the unnamed register.

v Move the cursor to the space between the first and
second paragraphs.

w Perform a put by typing a lowercase p.

p

"When you have success" is put on the empty line.

x Move the cursor to the beginning of the third line in the
first paragraph.

y Yank the first 1 5 characters into a named register by
typing the following:

"ay151

Nothing appears to happen. The editor has yanked the
first 15 characters on the line into the register a.

z Move the cursor to the space between the second and
third paragraph.

aa Put the information in the named register a on the empty
line by typing the following:

"ap

"The shell reads" is put on the empty line.

ab Move the cursor to the space after name in the fourth
line of the first paragraph.

ac Yank to the beginning of the line by typing the following:

y14 (Press the BACKSPACE key)

Nothing appears to happen. The 14 characters have
been yanked into the unnamed register.

ad Move the cursor to the empty line between the third and
fourth paragraphs.

Visual Editor Ivi)--Basic

ae Put the information in the unnamed register on the
empty line by typing a lowercase p.

p

"a command name" is put on the empty line.

af Undo the last put by typing a lowercase u.

u

A blank line reappears.

11-67

ag Put the information in the named register on the empty
line by typing the following:

"ap

"The shell reads" is put on the empty line.

ah Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q I

ai Access your file again.

$ v I same f I I e

The file does not contain your yank and put changes.

aj Move your cursor to the space between the first and
second paragraph.

ak Attempt to enter information in register a by typing the
following:

"ap

At the bottom of the screen the editor prints nothing in
register a.

When you quit or write and quit a file, the information in
the named or unnamed registers is lost.

2 Copying words.

a Move your cursor to the s in successfully in the first line
of the file.

1207909

11-68 Visual Editor Ivi)--Basic

b Yank a copy of this word by typing the following:

yw

Nothing appears to happen. The word "successfully" is
yanked into the unnamed register.

c Move the cursor to the empty line between the first and
second paragraph.

d Put the word in the empty line by typing a lowercase p.

p

"successfully" is copied from the unnamed register into
the empty line.

e Move the cursor to the space before terminates in the
first line of the third paragraph.

f Put the word in the unnamed register before terminates
by typing a lowercase p.

p

U successfully" is inserted before terminates.

g Undo this put by typing a lowercase u.

u

"successfully" disappears.

h The cursor is now on the t in terminates. Put the word
before terminates by typing an uppercase P.

p

.. successfully" is inserted before terminates.

i Move the cursor to the "t" in "the" in the second line of
the first paragraph.

j Yank a copy of the next four words beginning with "the"
by typing the following:

"by4w

Nothing appears to happen. "the shell is listening" is
placed in the named register b.

k Move the cursor to the "i" in "is" in the first line of the
fourth paragraph.

Visual Editor (vi)--Basic 11-69

I Put the four words in the b register before "is" by typing
the following:

"bP

"the shell is listening" is put between "system" and "is."

m Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q!

3 Copying lines.

a Access your file again.

$ vi sameflle

The file does not contain your yank and put changes.

b With the cursor on any character in the first paragraph,
type an uppercase Y.
y

The first line has been copied into the unnamed register.

c Move the cursor to any character in the fifth line of the
first paragraph.

d Put a copy of the first line below this line by typing a
lowercase p.

p

e Move the cursor to any character in the last line of the
first paragraph.

f Put the line in the unnamed register before the current line
by typing an uppercase P.

P

9 Move the cursor to any character in the first line in the
second paragraph.

h Type the following:

YP

The current line is duplicated. The cursor is on the first
character of the top copy.

1207909

11-70 Visual Editor (vi)--Basic

i Move the cursor to any character in the first line of the
third paragraph.

j Yank a copy of three lines into named register g by
typing the following:

"g3Y

Nothing appears to happen. The first three lines in the
third paragraph are in register g.

k Move the cursor to any character in the second line of
the fourth paragraph.

I Put the information in register g to follow the second line
by typing the following:

"gp

Three lines from paragraph 3 are copied below the
second line.

m Attempt to put information from register h to follow the
second line by typing the following:

"hp

Nothing in register h is displayed at the bottom of the
screen. Only register g of the named registers has
information stored.

n Move the cursor to the HI" in Hline" in the third line in the
first paragraph.

o Yank a copy of the remainder of the line by typing the
following:

y$

Nothing appears to happen. From Hline" to the end of the
line is in the unnamed register.

p Move the cursor to the first character in the last line in
the first paragraph.

q Copy the information in the unnamed register at the
beginning this line by typing an uppercase P.

p

The characters on the line move right to follow the
information put from the unnamed register.

Visual Editor (vi)--Basic 11-71

r Move the cursor to any character in the first line of the file.

s Yank eight lines by typing the following:

y8$

At the bottom of the screen appears the message "8
lines yanked. II

t Move the cursor to any character in any line of the file.

u Put a copy of the first eight lines at your present location
by typing the following:

p

At the bottom of the screen appears the message "8
more lines." The eight lines from the top of the file follow
the line the cursor is on.

v Undo the last put by typing a lowercase u.

u

At the bottom of the screen appears the message "8
fewer lines." The eight new lines disappear.

w Move the cursor to the "s" in "successfully" in the first
line of the file.

x Yank from .. successfully" up to the word .. simply" in the
fifth line of the paragraph by typing the following:

y/slmply

At the bottom of the file appears five lines yanked.

y Move the cursor to the space following "terminates" in
the first line of the third paragraph.

z Place a copy of the yanked five lines here by typing a
lowercase p.

p

The information from "successfully" through the "is"
preceding "simply" is copied between "terminates" and
"the. II

1207909

11-72 Visual Editor Ivi)--Basic

Normally, when the editor does something with five or
more lines, an indication is provided at the bottom of
the screen. The editor looked at the put as four lines
even though it yanked five lines.

When yanking parts of a line accompanied by one or
more lines into the unnamed register, the yank can only
be put at another location once. A yank of this kind,
where the yanked text is to be put in more than one
location, must be placed in a named register.

aa Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q I

4 Copying sentences.

a Access your file again.

$ v I same f 119

The file does not contain your yank and put changes.

b Move the cursor to the first character in the third
sentence of the first paragraph.

Assure that two spaces are at the end of this sentence.

c Yank this sentence by typing the following:

y)

Nothing appears to happen. A copy of the sentence is in
the unnamed register.

d Move the cursor to the space preceding "There" in the
ninth line of the first paragraph.

e Put the sentence before "There" by typing a lowercase p.

p

The sentence is inserted between "directories" and
"There." When yanking parts of a line accompanied by
one or more lines into the unnamed register, the yank
can only be put at another location once. A yank of this
kind, where the yanked text is to be put in more than
one location, must be placed in a named register.

Visual Editor (vi)--8asic 11-73

f Move the cursor to the "W" in "When" in the second line
of the fourth paragraph.

9 Yank a copy of the next two sentences in the named
register d by typing the following:

"dy2)

At the bottom of the screen appears the message "7
lines yanked. H The two sentences are in register d.

h Move the cursor to the space before "The" in the third
line of the third paragraph.

i Insert the two sentences in register d before "The" by
typing the following:

-dp

At the bottom of the screen appears the message "6
more lines." The two sentences are put between
"command" and "The."

j Move the cursor to the end of the second line in the first
paragraph.

k Put the two sentences in register d after this sentence by
typing the following:

-dp

A t the bottom of the screen appears the message "6
more lines." The two sentences are added following the
end of the line. The line the cursor is on wraps around to
what appears to be another line. This line can be split by
using a delete and put covered in the subsection "Moving
Text."

I Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q I

5 Copying paragraphs.

a Access your file again.

$ v I same f j I e

The file does not contain your yank and put changes.

1207909

11-74 Visual Editor (vi)--Basic

b With the cursor on the first character in the file, yank the
first paragraph into the unnamed register by typing the
following:

y}

A t the bottom of the screen appears the message "13
lines yanked." The first paragraph is copied into the
unnamed register. Move the cursor to any character in
the last line of the file.

c Put a copy of the first paragraph after the last paragraph
by typing a lowercase p.

p

A t the bottom of the screen appears the message "13
more lines." Paragraph one is copied following the last
paragraph. A space can be added by typing an uppercase
o and pressing the GO key.

d Move the cursor to space between the first and second
paragraph.

e Yank a copy of the next two paragraphs by typing the
following:

y2}

A t the bottom of the screen appears the message "1 0
lines yanked." The next two paragraphs are in the
unnamed register.

f Move the cursor to any character in the last line of the
third paragraph.

9 Add the two yanked paragraphs after the current
paragraph by typing a lowercase p.

p

A t the bottom of the screen appears the message II 1 0
more lines." The two paragraphs are added with the
required space between paragraphs.

Spacing between paragraphs may not be yanked
correctly always. A space can be added by typing an
uppercase 0 and pressing the GO key.

Visual Editor (vi)--Basic 11-75

h Move the cursor to the "N" in "Normally" in the sixth line
of the first paragraph.

i Yank a copy of the remainder of this paragraph and the
next paragraph and place them in the named register a by
typing the following:

"ay2}

At the bottom of the screen appears the message "1 2
lines yanked." From "Normally" through the end of the
next paragraph is in register a.

j Move the cursor to space before "The" in the third line of
the third paragraph.

k Put the text in register a by typing the following:

"ap

At the bottom of the screen appears the message "11
more lines." The partial paragraph and the next paragraph
is inserted between "command." and "The."

Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q I

m Save this file for later use.

Summary

"I·"Z Named registers that can precede a yank command.

p Puts yanked text after or below the cursor.

P Puts yanked text before or above the cursor.

y Yanks a copy of the following object into a register.

Y Yanks a copy of the current line into a register.

yy Same as Y. (Yanks a copy of the current line into a register.)

1207909

11-76 Visual Editor (vi)--Basic

Moving Text
To move text from one location to another, use the following
procedure:

1 Delete (or change) the information you need to move; it
will be saved in an area designated as a register.

2 Move the cursor to the location you wish to copy the
information just deleted and perform a .. put ...

The delete operation may be any form of a delete such as:

x
dd

d[object]
C
c[object]
and so on

The text can be put back in the file with the commands p or
P; the p command puts the text after or below the cursor
while P puts the text before or above the cursor. An example
of a delete-and-put command is:

xp

The x deletes the character the cursor is on; the cursor
moves to the next character to the right. The p puts the
deleted character back following the character the cursor is
on. The result is two characters have swapped positions.

If the text you delete forms a part of a line or is an object
such as a sentence that partially spans more than one line,
then when you put the text back, it will be placed after the
cursor (or before if you use P). If the deleted text forms
whole lines, they will be put back as whole lines without
changing the current line.

You may wish to place the text you are to move into a
specific location. The editor has a set of named registers a
through z that you can use to save copies of text. The
general format of the delete command using named registers is

'xdelete object
or
'xchange object

Visual Editor (vi)--Basic 11-77

where x is the name of the register (a through z) into which
an object is deleted. The following procedure moves a line to
a new location in a file.

Enter

·add

This deletes the line the cursor is on into the named
register a.

2 Move the cursor to the eventual resting place of this line.

3 Enter

·ap or
·aP

This puts the line at the new location. You can also do the
same with a change operation. After the new text is
entered and the escape key operated, the deleted text can
be "put" at another location in the file.

Moving Objects
Any delete command or change command can be used to
move the deleted text to a new location in your file. The
following objects can be moved in your file:

o Characters.

o Words.

o Lines.

o Sentences.

o Paragraphs.

When deleting or changing, each of the deleted objects is
automatically placed in the unnamed register unless preceded
by the named register command. The delete and change
commands are covered in earlier parts of this section and will
not be covered here.

1207909

11-78 Visual Edito((vi)--Basic

Example Seven

This exercise contains information covered in Examples Two,
Four, and Five. The information in these exercises should be
reviewed prior to performing this examples. Only a selected
amount of text objects that can be moved is covered in this
example.

1 Moving characters.

a Make a copy of the file shown at the end of Example Five.

b Access your file by typing

$ vi f I /ename

The cursor is on the first character of the first line in the file.

c Switch the first two characters by typing the following:

xp

The "W" was deleted and put into the unnamed register
by the "y." The cursor moved to the next character and
the "W" put back after the cursor from this register by
the "p."

d With the cursor on the first character in this line, delete
characters up to the first f on the first line by typing the
following:

dtf

Characters are deleted. The editor has deleted the
desired characters into the unnamed register.

e Move the cursor to the open line between the first and
second paragraphs.

f Put the characters just deleted on this line by typing a
lowercase p.

p

If you had success, "hWen you have success" appears on
the blank line.

9 Move the cursor to the first character in the first line in
the third paragraph.

Visual Editor (vi)--8asic 11-79

h Type a lowercase p.

p

"hWen you have success" is put after the "W" in the line
you are on.

Move the cursor to the first character in the first line of
the fourth paragraph.

j Type an uppercase P.

p

"hWen you have success" is put before the "T" in the line
you are on.

k Move the cursor to the end of the last line in the third
paragraph.

I Type a lowercase p.

p

"hWen you have success" is added to the end of the line.

m Undo the last put by typing a lowercase u.

u

"hWen you have success" is deleted from the end of the
line.

n Move the cursor back to the the first character in the
fourth paragraph.

o Type a lowercase u.

u

"hWen you have success" is added back to the end of
paragraph three.

The line you are on cannot now be undone.

p Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q'

q Access your file again.

$ vi ssmsfl/s

The file does not contain your delete and put changes.

1207909

11-80 Visual Editor (vi)--Basic

r With the cursor on the second character in the first
paragraph, type the following command and press the
SPACEBAR:

d

The W is deleted. You have deleted the W into the
unnamed register.

s Move the cursor to the next line.

t Type a lowercase p.

p

The W follows the c in the second line. Not too useful.

u Move the cursor to the first character in the first paragraph.

v Delete the first 20 characters by typing the following
and pressing the SPACEBAR:

d20

The characters are deleted. The 20 characters have
been deleted into the unnamed register.

w Move the cursor to the space between the first and
second paragraphs.

x Perform a put by typing a lowercase p.

p

"hen you have success" is put on the empty line.

y Move the cursor to the beginning of the third line in the
first paragraph.

z Delete the first 1 5 characters into a named register by
typing the following:

"ad151

The characters are deleted. The editor has deleted the
first 15 characters on the line into the register a.

aa Move the cursor to the space between the second and
third paragraph.

Visual Editor (vi)--Basic 11-81

ab Put the information in the named register a on the empty
line by typing the following:

Map

"The shell reads" is put on the empty line.

ae Move the cursor to the space after name in the fourth
line of the first paragraph.

ad Delete to the beginning of the line by typing the
following and pressing the BACKSPACE key:

d14

The characters are deleted. The 14 characters have
been deleted into the unnamed register.

ae Move the cursor to the empty line between the third and
fourth paragraphs.

af Put the information in the unnamed register on the
empty line by typing a lowercase p.

p

"a command name" is put on the empty line.

a9 Undo the last put by typing a lowercase u.

u

A blank line reappears.

ah Put the information in the named register on the empty
line by typing the following:

Map

"The shell reads" is put on the empty line.

ai Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q I

aj Access your file again.

$ v I same f i /8

The file does not contain your delete and put changes.

ak Move your cursor to the space between the first and
second paragraph.

1207909

11-82 Visual Editor (vi)--8asic

al Attempt to enter information in register a by typing the
following:

"ap

At the bottom of the screen, the editor prints nothing in
registei a.

When you quit or write and quit a file, the information in
the named or unnamed registers is lost.

2 Moving words.

a Move your cursor to the s in successfully in the first line
of the file.

b Delete this word by typing the following:

dw

"successfully" is deleted. The word "successfully" is
deleted into the unnamed register.

c Move the cursor to the empty line between the first and
second paragraph.

d Put the word in the empty line by typing a lowercase p.

p

"successfully" is copied from the unnamed register into
the empty line.

e Move the cursor to the space before "terminates" in the
first line of the third paragraph.

f Put the word in the unnamed register before
"terminates" by typing a lowercase p.

p

.. successfully" is inserted before "terminates."

9 Undo this put by typing a lowercase u.

u

"successfully" disappears.

Visual Editor (vi)--Basic

h The cursor is now on the "t" in "terminates." Put the
word before terminates by typing an uppercase P.

P

"successfully" is inserted before "terminates."

11-83

Move the cursor to the "t" in "the" in the second line of
the first paragraph.

j Delete the next four words beginning with "the" and put
them into register b by typing the following:

"bd4w

The four words are deleted. "the shell is listening" is
placed in the named register b.

k Move the cursor to the "i" in His" in the first line of the
fourth paragraph.

I Put the four words in the b register before His" by typing
the following:

"bP

"the shell is listening" is put between Hsystem" and His."

m Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q!

3 Moving lines.

a Access your file again.

$ vis ame f I I e

The file does not contain your delete and put changes.

b With the cursor on any character in the first line of the
first paragraph, delete this line by typing the following:

dd

The first line has been deleted and copied into the
unnamed register.

c Move the cursor to any character in the fourth line of the
first paragraph.

1207909

11-84 Visual Editor (vi)--Basic

d Put a copy of the first line below this line by typing a
lowercase p.

p

e Move the cursor to any character in the last line of the
first paragraph.

f Put the line in the unnamed register before the current line
by typing an uppercase P.

p

The deleted first line is placed before the current line.

9 Move the cursor to any character in the first line of the
third paragraph.

h Delete this line and the next two lines into named register
g by typing the following:

"g3dd

Three lines are deleted. The first three lines in the third
paragraph are in register g.

i Move the cursor to any character in the second line of the
fourth paragraph.

i Put the information in register g to follow the second line
by typing the following:

"gp

Three lines from the third paragraph are copied below the
second line.

k Attempt to put information from register h to follow the
second line by typing the following:

"hp

Nothing in register h is displayed at the bottom of the
screen. Only register g of the named registers has
information stored.

I Move the cursor to the "1" in "line" in the second line in
the first paragraph.

Visual Editor (vi)--Basic 11-85

m Delete the remainder of the line by typing the following:

d$

The remainder of the line is deleted. From "line" to the
end of the line is in the unnamed register.

n Type a lowercase 0 and press the GO key.

o

An empty line is created.

o Put the remainder of the previous line here by typing a
lowercase p.

p

You have just split a line. This is especially useful when a
line is too long (sometimes wrapping to the next line).

An easier way to split a line is to move the cursor to the
space before the first character of the word where the
split is to occur and type r. Then press the RETURN key.

p Move the cursor to the first character in the last line in
the first paragraph.

q Put the information in the unnamed register before this
line, but on the same line by typing an uppercase P.

p

The characters on the line move right to follow the
information put from the unnamed register.

r Move the cursor to any character in the first line of the file.

s Delete eight lines by typing the following:

d8S

At the bottom of the screen appears the message .. 8
lines deleted."

t Move the cursor to any character in any line of the file.

1207909

11-86 Visual Editor (vi)--8asic

u Put a copy of the first eight lines at your present
location by typing the following:

p

At the bottom of the screen appears message "8 more
lines." The eight lines from the top of the file follow the
line the cursor is on.

v Undo the last put by typing a lowercase u.

u

At the bottom of the screen appears the message "8
fewer lines." The eight new lines disappear.

w Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q!

x Access your file again.

$ vi ssmeflle

y Move the cursor to the "s" in "successfully" in the first
line of the file.

z Delete from "successfully" up to the word "simply" in
the fifth line of the paragraph by typing the following:

dis Imply

A t the bottom of the file appears the message "5 lines
deleted ...

aa Move the cursor to the space following "terminates" in
the first line of the third paragraph.

ab Place a copy of the deleted five lines here by typing a
lowercase p.

p

The information from "successfully" through the "is"
preceding "simply" is copied between "terminates" and
"the."

Normally, when the editor does something with five or
more lines, an indication is provided at the bottom of
the screen. The editor looked at the put as four lines
even though it deleted five lines.

Visual Editor (vi)--8asic 11-87

When deleting parts of a line accompanied by one or
more lines into the unnamed register, the delete can
only be put at another location once. A delete of this
kind, where the deleted text is to be put in more than
one location, must be placed in a named register.

ac Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q!

4 Moving sentences.

a Access your file again.

4 vis ame f ; /e

The file does not contain your delete and put changes.

b Move the cursor to the first character in the third
sentence of the first paragraph. Make sure that two
spaces are at the end of this sentence.

c Delete this sentence by typing the following:

d)

The sentence is deleted. A copy of the sentence is in
the unnamed register.

d Move the cursor to the space preceding "There" in the
seventh line of the first paragraph.

e Put the sentence before "There" by typing a lowercase p.

p

The sentence is inserted between "directories" and
"There."

When deleting parts of a line accompanied by one or
more lines into the unnamed register, the delete can
only be put at another location once. A delete of this
kind, where the deleted text is to be put in more than
one location, must be placed in a named register.

f Move the cursor to the "w" in "When" in the second
line of the fourth paragraph.

1207909

11-88 Visual Editor (vi)--Basic

g Delete the next two sentences into the named register m
by typing the following:

"md2)

At the bottom of the screen appears the message "7
lines deleted." The two sentences are in register m.

h Move the cursor to the space before "The" in the third
line of the third paragraph.

i Insert the two sentences in register m before "The" by
typing the following:

"mp

At the bottom of the screen appears the message "6
more lines. The two sentences are put between
"command" and "The."

j Move the cursor to the end of the second line in the first
paragraph.

k Put the two sentences in register m after this sentence
by typing the following:

"dp

At the bottom of the screen appears the message "6
more lines." The two sentences are added following the
end of the line.

The line the cursor is on wraps around to what appears
to be another line. This line can be split by using a delete
and put. Refer to moving lines in this example.

I Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q r

5 Moving paragraphs.

a Access your file again.

$ vi sameflle

The file does not contain your delete and put changes.

Visual Editor {vi)--Basic 11-89

b With the cursor on the first character in the file delete the
first paragraph into the unnamed register by typing the
following:

d}

At the bottom of the screen appears the message "1 3
lines deleted." The first paragraph is copied into the
unnamed register. Move the cursor to any character in
the last line of the file

c Put a copy of the first paragraph after the last paragraph
by typing a lowercase p.

p

At the bottom of the screen appears the message "13
more lines. H Paragraph one is copied following the last
paragraph.

A space can be added by typing an uppercase 0 and
pressing the GO key.

d Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q!

e Access your file again.

$ vi sametile

The file does not contain your delete and put changes.

f Move the cursor to space between the first and second
paragraph.

9 Delete the next two paragraphs by typing the following:

d2}

At the bottom of the screen appears the message "10
lines deleted. H The next two paragraphs are in the
unnamed register.

h Move the cursor to any character in the last line of the
first paragraph.

1207909

11-90 Visual Editor (vi)--Basic

Add the two deleted paragraphs after the current
paragraph by typing a lowercase p.

p

A t the bottom of the screen appears the message "10
more lines." The two paragraphs are added with the
required space between paragraphs.

Spacing between paragraphs may not be moved correctly
always. A space can be added by typing an uppercase or
lowercase 0 and pressing the GO key.

j Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q I

k Access your file again.

$ vis ame f I I e

The file does not contain your delete and put changes.

I Move the cursor to the liN" in "Normally" in the sixth line
of the first paragraph.

m Delete the remainder· of this paragraph and the next
paragraph and place them in the named register a by
typing the following:

"ad2)

At the bottom of the screen appears the message "12
lines deleted." From "Normally" through the end of the
next paragraph is in register a.

n Move the cursor to space before "The" in the third line of
the third paragraph.

o Put the text in register a here by typing the following:

"ap

At the bottom of the screen appears the message "',
more lines." The partial paragraph and the next paragraph
is inserted between "command." and "The."

p Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q I

Visual Editor (vi)--Basic

6 Moving objects using the change command.

a Access your file again.

$ vis ame f i I e

11-91

The file does not contain your delete and put changes.

b With the cursor on any character in the first line of the
file, change the first line as follows:

cc

The first line disappears; type in some x' s and then press
the GO key:

xxxxxxxxxxxxx

The deleted line has been put into the unnamed buffer.

c Move the cursor to any character in the fifth line of the
first paragraph.

d Put the line just deleted by the change command after
this line by typing a lowercase p.

p

The deleted line is added after the current line.

e Move the cursor to any character in the first line of the
second paragraph.

f Change the next two lines and put them in register a by
typing the following:

"a2C

The two lines are deleted; add some x's and press the
GO key:

xxxxxxxxxxxxx

The deleted lines have been put into the named buffer a.

9 Move the cursor to any character in the first line of the
last paragraph.

h Put the two lines in register a before the line you are on
by typing the following:

"aP

1207909

·11-92 Visual Editor (vi)--Basic

The two lines deleted by the previous change are added
above the fourth paragraph.

Exit your file without writing the changes just performed
by typing the following and pressing the RETURN key:

: q I

j Change commands are similar to delete commands except
text is added to replace the deleted text. Repeat this
exerci~e substituting the change command and text for the
delete command.

k There are many other ways to move text using the delete
or change operators and object symbols. Experiment and
learn.

I Save this file for later use.

Summary

"a_"z Named registers that can precede a delete command.

p Puts deleted text after or below the cursor.

P Puts deleted text before or above the cursor.

Repeating Actions with the . Command
Vi provides a time saving command, called the "dot"
command. You can repeat the last action by placing the
cursor at the location you wish to repeat the last action and
typing a:

The following actions can be repeated using the dot (.)
command.

o Append.

o Insert.

o Open.

o Delete.

o Change.

o Put.

Visual Editor (vi)--Basic 11-93

The following paragraphs illustrate how each of the above
actions can be repeated using the (.) command.

When you append text at a location and press the GO key, it
may be necessary to add this same text to another location.
In this case, move the cursor to the character that you desire
the text to follow and type a dot.

When you insert text and press the GO key, move the cursor
to the character that you desire the text to precede and type
a dot. When you have opened a new line, added new text,
and pressed the GO key, move the cursor to the line where
the new text is to be repeated and one of the following will
occur when you type a dot. If you had opened the original
line using a lowercase 0, the repeated text will be added
following the line your cursor is on. If you had opened the
original line using an uppercase 0, the repeated text will be
added preceding the line your cursor is on.

After you have deleted text by using an x, dd, 0 or a delete
with an object command, move the cursor to another location;
and by typing a dot, repeat this same command. For
example, if you give the command delete two words by
typing d2w, the two words you desire to remove are deleted.
You can now move the cursor to the first character of two
different words and type a dot and the two new words will
be deleted.

After you have changed text by using an r, 5, S, , cc, C, or a
change with an object command, move the cursor to another
location; and by typing a dot, place the same text added by
the previous change command. For example, if you give the
command change two lines by typing 2cc and type in some
text, the line you are on and the next line is replaced by the
new text. You can now move your cursor to another line and
type a dot. The line your cursor is on and the next line will
be replaced by the text added in the last change.

After you have executed a put command that is associated
with the unnamed register and if you desire to place this text
at another location, the text in the unnamed register may not
be the same. In most cases, you cannot use the dot (.)
command to place the original text at the new location.

1207909

11-94 Visual Editor (vi)--Basic

If you desire to place text at another location that is in a
named register after doing a put, you can save time by using
the dot (.) command instead of having to repeat the register
name.

Example Eight
1 Access the file containing the text at the end of Example Five:

$ vi f I I ename

2 Move the cursor to the "n" in "When" in the first line of
the first paragraph.

3 Append to this word by typing an a followed by a space,
five x's, and press the GO key:

a xxxxx

Five x's now follow When.

4 Move the cursor to the "d" in "located" in the sixth line of
the first paragraph. Append the five x's by typing the
following:

The five x's just added could be a word you wish to repeat.

5 Move the cursor to the "d" in "command" in the eighth line
of the first paragraph and type the following:

The five x's are appended for the second time.

6 Move the cursor to the "e" in "except" in the tenth line of
the first paragraph.

7 Insert two lines of y's by typing the following and pressing
the GO key:

iyyyyy (Press the RETURN key)
yyyyy

7 The line is split with five y's at the end of the first line and
five y's preceding the second line.

8 Move the cursor to the "t" in "them" in the last line of the
first paragraph.

Visual Editor (vi)--Basic 11-95

9 Insert the two lines of y's by typing the following:

The line splits with five y's at the end of the first line and
five y's preceding "them" on the second line.

10 Move the cursor to any character in the first line of the
second paragraph.

11 Add a line of text to follow this line by typing the following
and pressing the GO key:

ozzzzzzzzzz

A blank line opens after the first line and ten z' s are added
to this line.

12 Move the cursor to any character in the first line of the
third paragraph.

13 Add the ten z's by typing the following:

The ten z' s are added on a new line following the line the
cursor is on.

1~ Delete the ten z's on this line by typing the following:

dd

The z' s disappear and the lines close up.

15 Move the cursor to the last line in the third paragraph.

16 Delete this line by using the dot (,) command.

The last line disappears and the file closes up.

17 Move the cursor the "d" in "directory" in the third
sentence of the fourth paragraph.

18 Change this word to "location" by typing the following and
pressing the GO key:

cwlocation

1207909

11-96 Visual Editor (vi)--Basic

19 Locate each of the remaining occurrences of "directory" in
this paragraph and by using the dot (.) command change
the word to "location."

Note that the cursor must be placed on the "d" to make
the correct change. Observe that another change must be
made to change "directories."

20 Move the cursor to the "B" in "Because" in the eighth line
in the fourth paragraph.

21 Yank the remainder of this line and the next two lines by
typing the following:

y3$

22 Move the cursor to the space before "The" in the third
paragraph.

23 Insert the three lines just yanked by typing a lowercase p.

p

24 Move the cursor to the space before "You" near the end
of the first paragraph.

25 Attempt to enter the three lines added in the previous step
by typing a dot.

Wrong text. The same thing would have happened if you
had entered another p. This is a good reason for using a
named register. When using a named register, the text can
be copied in a number of locations using the . or a "xp.
The . can be used only to repeat the last "xp.

26 Exit your file without writing the changes just made by
typing the following and pressing the RETURN key:

: q I

Visual Editor (vi)--Basic 11-97

Recovering Lost Text
You might have a serious problem if you delete text and then
regret that it was deleted. The editor saves the last nine
deleted blocks of text in a set of numbered registers 1 -
through 9. (Text consisting of a few words is not saved in
these registers.) You can get the nth previous deleted block
of text back into your file by the command:

• np

The " indicates that a register name is to follow, n is the
number of the register you wish to try, and p is the put
command that puts text in the register after the cursor. If this
does not bring back the text you wanted; type u to undo this
and repeat the command using a different numbered register.
You can repeat this procedure until you find the correct
deleted text.

An easier way to search for the correct register can be to
use the dot (,) command to repeat the put command. In
general the dot (,) command will repeat the last change. As a
special case, when the last command refers to a numbered
text register, the dot (,) command increments the number of
the register before repeating the put command. Thus, a
sequence of the form

• I P
u

u

and so on

Will, if repeated long enough, show all the deleted text that
was saved. Omit the u commands and place all of the text in
the numbered registers at one location. Stop after any ,
command to put just the then-recovered text at one location.
The command P can also be used rather than p to put the
recovered text before rather than after the cursor.

1207909

11-98 Visual Editor (vi)--8asic

Example Nine
1 Access the file containing the text that appears at the end

of Example Five:

v I f i /ename

2 Delete the first line in the first paragraph by typing the
following:

dd

3 Delete the first line in the second paragraph by typing the
following:

4 Delete the first line in the third paragraph by typing the
following:

5 Delete the first line in the fourth paragraph by typing the
following:

6 Move the cursor to any character in the first line of the first
paragraph.

7 Put the correct line back ahead of this line by typing the
following:

"4P

The original line is retrieved from register 4.

8 Move the cursor to any character in the first line of the
second paragraph.

Visual Editor (vi)--Basic 11-99

9 Put the correct line back ahead of this line by typing the
following:

"3P

The original line is retrieved from register 3.

10 Move the cursor to any character in the first line of the
third paragraph.

11 Put the correct line back ahead of this line by typing the
following:

"2P

The original line is retrieved from register 2.

12 Move the cursor to any character in the first line of the
fourth paragraph.

13 Put the correct line back ahead of this line by typing the
following:

" 1 P

The original line is retrieved from register 1.

14 Exit your file without writing the changes just made by
typing the following and pressing the RETURN key:

:ql

Copying Another File to the Buffer
While using vi, it may be necessary to copy another file into
the file you are editing. This can be accomplished using the :r
command. To copy a file into your file, enter the :, a line
number that you desire the new text to follow, the r, and the
name of the file you wish to copy. Then press the RETURN
key. The format for this command is

:In)r filename

1207909

11-100 Visual Editor {vi)--Basic

[n] can be any line number in your file. If you enter a 0, the
copied file will be added before line 1 in your file. If you enter
a $, the copied file will be added to the end of your file.

When the file is added, the editor will display at the bottom
of the screen the name of the file you copied, the number of
lines in that file, and the number of characters it contains. If
you do not enter a number in the above command, the file to
be copied will be added following the line your cursor was on
when you entered the command.

For example, if you wish to write a file called U test" to follow
line 1 0 in your file, enter the following and press the RETURN
key:

:10r test

Example Ten
Note: This exercise will require the use of two files. The first
one will be the file located at the end of Example Five. The
second file should be a copy of any file in your directory.

1 Access the file contianing text of the file that appears at
the end of Example Five by typing the following:

S v I f I lenllme

2 Move the cursor to any character in the last line of the first
paragraph.

3 Copy another file to follow the line the cursor is on by
typing the following (remember to press the RETURN key):

:r second'lle

The second file is copied following the line the cursor is
on. The name of the file copied followed by the number of
lines and the number of characters appears at the bottom
of the screen.

Visual Editor (vi)--Basic 11-101

4 Copy the second file to precede this file by typing the
following:

:Or secondfi/e

5 Copy the second file to follow this file by typing:

:$r secondflle

6 Exit your file without writing the changes just made by
typing the following:

: q I

1 Access the first file again by typing:

$ vi filename

8 With the cursor on any character in the first line of the file,
add the second file to follow line 29 of this file by typing:

:29r secondflle

9 Move the cursor to the line immediately preceding the
added text.

10 Find the line number by typing the following:

:nu

The line number and the line you are on appears at the
bottom of the screen. You should be on line 29.

11 As indicated at the bottom of the screen, press the
RETURN key to continue.

12 Attempt to undo this read by typing:

u

The wrong lines are deleted.

Anytime you enter a number or the $ before the r and the
line number requested is other than line the cursor is on,
you cannot undo the read just performed.

13 Exit your file without writing the changes just made by
typing the following:

:q I

1207909

11-102 Visual Editor lvi)--Basic

Writing Sections of the Buffer to Another File
You can copy all of or a part of your file to another file by
using the :w command as follows:

:[m].[n]w filename

The [m] represents the line number of the beginning of the
text you wish to copy to another file. The [n] represents the
line number of the last line in the text you wish to copy to
another file. A $ can be entered indicating that you wish to
copy to the end of your file. "filename" represents the name
of the file you wish to copy the text into. For example, if you
wish to write lines 12 through 25 to a new file called "temp"
enter the following:

:12.25w temp

The editor will display at the bottom of the screen the name
of the file "temp" you have copied into, the number of lines,
and the number of characters entered into the file "temp." If
no numbers are entered, the entire file you are in will be
copied to the filename entered. If :w (no numbers and no
filename) is entered, you rewrite your present buffer contents
back to the file you are in.

In many cases, the file you wish to copy information into
already exists. You may desire to either add the new
information to the end of the other file or to write over the
existing information in the other file. Using the example
above, write over the file by making the following command
entry:

: 1 2 • 2 5w I temp

If you forget the !, the editor will display the following
message at the bottom of the screen

F I lee x 1st s - • wIt emp' too v e r w r I t e .

If you wish to append to the temp file, make the following
command entry:

:12.25w temp

The editor will display at the bottom of the screen the name
of the file "temp" you have copied into, the number of lines,
and the number of characters added to the file "temp. If

Visual Editor (vi)--Basic 11-103

Example Eleven
This example will require the use of two files. The first one
will be the file located at the end of Example Five. The
second file should be a copy of any file in your directory.

1 Access the file containing the text that appears at the end
of Example Five by typing the following:

$ vi f i /ensme

2 Move the cursor to any character in the first line of the
second paragraph.

3 Determine the line number the cursor is on by typing the
following:

:nu

The line number is 15. Record this number for later use in
a write command.

4 As indicated in the message that appears at the bottom of
the screen, press the RETURN key to continue.

The cursor returns to line 1 5.

5 Move the cursor to any character in the last line of the
third paragraph.

6 Determine the line number the cursor is on by typing the
following:

:nu

The line number is 23. The message "Hit return to
continue" is displayed at the bottom of the screen. Do not
do it.

7 Write the information from lines 1 5 through 23 into a new
file by typing the following:

: 1 5 • 23w new f I I e

The new file name followed by [Newfi/e), 9/ines, 395
characters is displayed at the bottom of the screen.

1207909

11-104 Visual Editor (vi)--8asic

8 Write the information from lines 15 through 23 to the end
of your second file by typing the following:

:15.23wS8condfiI9

The second file name followed by 9 lines, 395 characters
is displayed at the bottom of the screen.

9 Exit your file without writing the changes just made by
typing the following:

:q I

Global, Substitutions
When it is required to locate a number of occurrences of text
in your file, the :g (global) command and the "search for"
command can be used with the following formats:

o :[m],[n]gjtext

o :[m],[n]gjtext/p

o :[m],[n]gjtextjnu

When the first command format is entered, the cursor will
move to the last occurrence of the text searched for.

When the second command format is entered, the lines
containing all occurrences of the text searched for are
displayed on the screen.

When the third command format is entered, the lines with
line numbers containing all occurrences of the text searched
for are displayed on the screen.

The [m] represents the line number where the search will
start. The [n] represents the line number where the search
will stop. If a $ is entered, the search will continue to the end
of your file. No numbers entered (default) will cause all lines
in the file to be searched. A ? substituted for the / will have
the same effect in the global search.

Visual Editor (vi)--Basic 11-105

Rather than making a global search alone, it may be required
to change the text being searched for. This can be
accomplished by adding a substitute command to the global
search. The following formats can be used for global
substitutes:

o :[m],[n]g/text/s/ /newtext

o :[m1,[n1g/text/s/ /newtext/p

o : [m],[n]g/text/s/ /newtext/c

When the first command format is entered, newtext will be
substituted for text at the first occurrence on each line
requested in the command. The cursor will be placed at the
last occurrence of the changed newtext.

When the second command format is entered, newtext will
be substituted for "text" at the first occurrence on each line
requested in the command. The lines containing all
occurrences of newtext substitutions are displayed on the
screen.

When the third command format is entered, you are in a
H prompt" mode. The .. prompt" mode will allow you to decide
to make the change to newtext at each occurrence of text.
The line with the first occurrence of "text" is displayed at the
bottom of the screen. Each of the characters in text will be
replaced by " (caret). If you type a y followed by pressing the
RETURN key, newtext will be substituted for text in the file.
The next line containing text will then be displayed with ,,' s
replacing text. If you decided not to make the change to
newtext for the line displayed, press the RETURN key and the
next line with text will be displayed. The line displayed may
appear as follows:

Now Is the """" for all good men

Between / and text, a " (caret) can be inserted, and only the
occurrences of text at the beginning of the line will be searched.

Between text and /, a $ can be inserted, and only the
occurrences of text at the end of the line will be searched.

1207909

11-106 Visual Editor (vif--Basic

Example Twelve
1 Access the file that contains the text that appears at the

end of Example Five by making the following command entry:

$ v I filename

2 Find all of the appearances of the word "shell" and print
the line numbers by making the following command entry:

:g/shell/nu

Line numbers 2, 3, 6, 11, 16, 19, and 21 are displayed at
the bottom of the screen. "Hit return to continue" is
displayed at the bottom of the screen. Do not do it.

l Change the first four appearances of "shell" to five x's and
print these lines by making the following command entry:

:2.11g/shell/sl/xxxxx/p

Change the word "shell" to five z's at the first and last
appearances of the word by making the following
command entry:

:g/shell/sl/zzzzz/c

The line with the first appearance of .. shelr with "M""
shown underneath .. shell" is displayed at the bottom of the
screen.

4 Change this word to zzzzz by making the following
command entry:

y

The next line with "shell" is displayed.

5 Do not change this word. Press the RETURN key.

The third line with "shell" is displayed.

6 Do not change this word. Press the RETURN key.

The fourth line with "shell" is displayed

7 Change "shell" to zzzzz.

y

"Hit return to continue" is displayed at the bottom of the
screen.

Visual Editor (vi)--Basic 11-107

8 Press the RETURN key.

The cursor is placed at the last change made by the global
substitution.

9 Exit your file without writing the changes just made by
making the following command entry:

: q I

Escaping to the Shell
You can get to a shell to execute a single command by
giving a vi command of the form

: I cmd

The system will run the single command (cmd); and when
finished, the editor will ask you to press the RETURN key to
continue. When you have finished looking at the output on
the screen, you should press the RETURN key, and the editor
will clear the screen and redraw it. You can then continue
editing. You can also give another: command when it asks
you to press the RETURN key. In this case, the screen will
not be redrawn.

If you wish to execute more than one command in the shell,
then give the command

:sh

This will give you a new shell. When finished with the shell,
end it by pressing CODE-d. The editor will clear the screen
and continue.

Example Thirteen

This example will require the use of two files. The first one
will be the file created at the end of Example Five. The
second file should be a copy of any file in your directory.

Access the file that contains the text that appears at the
end of Example Five by making the following command entry:

$ v I f / lename

1207909

11-108 Visual Editor (vi)--Basic

2 Look at your second file by making the following command
entry:

:Icat secondfi/e

Your second file is displayed to you.

3 As indicated at the bottom of the screen, press the
RETURN key to continue.

The cursor returns to the line you were on before you
escaped to the shell.

4 Escape to the shell by making the following command entry:

:sh

Your system prompt is displayed at the bottom of the screen.

5 Remove the new file you created when you typed in
: 15,23w newfile by making the following command entry:

rm newt lIe

Your system prompt is returned.

6 Check to see if the file is actually gone by making the
following command entry:

Is

A listing of the files in your present directory appears. The
new file just removed should not be in the listing. The
system prompt is displayed after this listing.

7 Return to the file you were editing by pressing CODE-d.

The cursor returns to the place it was located before you
escaped to the shell.

B Exit your file without writing the changes just made by
making the following command entry:

: q I

Visual Editor (vi)--Basic 11-109

Abbreviated Example
This example is an abbreviated example for those who
require a limited use of the editor. Refer to the other
exercises for details. Type what is shown in the displays.
Use the BACKSPACE key to type over errors.

1 Enter the editor to edit a file named Habbex" by making the
following command entry and pressing the RETURN key:

$ vi abbex

Wait for screen display.

2 Enter the append mode.

a

3 Append the following information (press the RETURN key
after completing each line):

When youall have successfully logged in. a program
called the shell is not listening to your terminal.
The she I Ire ads the lin e we t y p e. s p lit sit i n t 0

a command name and its arguments. and the
command. A simply an executable program.
located In a file. Narmally. the shell looks first
in your current directory for a program with your
directories. This text is wrong
system-provided commands except that they are kept
for the shell to find them there.

4 Leave the append mode by pressing the GO key.

5 Move the cursor to the fourth line from the top of the file.

k

Repeat until your cursor is on the correct line. If you
overrun, use the j key to backup.

6 Move your cursor to the space following the second .. and. "

Repeat until you arrive at the correct spot. If you overrun,
use the h key to backup.

7 Enter the append mode.

a

1207909

11-110 Visual Editor (vi)--Basic

8 Enter the following and press the GO key:

executes

9 Move the cursor to the next line by pressing the RETURN key.

10 Using the SPACEBAR move the cursor to the s in simply.

Repeat until you reach the correct spot. If you overrun, use
the BACKSPACE key.

11 Enter the insert mode.

12 Enter the following and press the GO key:

comnand Is

13 Move the cursor down two more lines by pressing the
RETURN key twice.

14 Open a line below the line the cursor is on.

o

15 Enter the following and press the GO key:

c omna n d name. and I f non e 1st her e. the n Ins y stem

16 Move the cursor to any character in the last line in your file.

G

11 Open a line above the line the cursor is on.

o

18 Enter the following text and press the GO key:

In directories where the shell can find them.
You can (Press the RETURN key)
also keep comnands In your own directories

and arrange (Press the GO
key)

19 Move the cursor to the beginning of the file.

1G

Move the cursor to the a in "youall" by moving a word and
three spaces.

will

Visual Editor (vi)--8asic 11-111

20 Remove "all."

xxx

21 Move the cursor to "not" in the second sentence.

4w

22 Remove "not."

dw

23 Delete this line.

dd

24 Restore the line.

u

25 Write the information you have entered thus far but stay in
the editor by making the following command entry and
pressing the RETURN key.

:w

~6 Move the cursor to "we" in the next line.

5w

'27 Change "we" to "you." (Press GO.)

cwyou

Move the cursor to NNarmally" by doing a "search for."
(Press RETURN.)

IN

28 Replace the next "a" with an "0."

Iro

29 Press the RETURN key three time to move the cursor
down three lines. Then use the find f character command
to find "This."

fT

30 Replace the text to the end of the line. (Press the GO key.)

c$There is nothing special about

31 Move the cursor to the beginning of the screen display.

H

1207909

11-112 Visual Editor (vi)--8asic

32 Change this line and the next line to a bunch of Z' s. Press
the GO key.)

2cczzzzzzzzzzzzzzzzzzzzz

33 Restore the original lines.

U

34 Scroll down the file.

35 Scroll up.

AU

36 Move to the last line on the screen.

L

37 . Move the cursor to the end of the line.

$

38 Move the cursor to the beginning of the line.

o

39 Write the first five lines in this file to another file. (Press
the RETURN key.)

:1,5wabbexn

40 Add another known file to the this file following the line
the cursor is on. (Press the RETURN key.)

:r yourfllename

41 Remove the added information.

u

42 The file you have just completed should look like the file at
the end of Example Three.

43 Write and quit.

zz

A t the bottom of the screen appears your file name in
quotes followed by [Newfile], the number of lines, and the
number of characters.

Section 12 12-1

Visual Editor {vi}-Advanced
The reader should be familiar with the information covered in
Section Eleven before using the information in this section.

Getting Started

Specifying Terminal Type
Before you can start vi, the CENTIX system requires you to
identify the kind of terminal you are using. If your terminal
does not have a code, consult with one of the staff members
on your system to determine the code for your terminal. A
code can be assigned and a description for the terminal
created. Assuming you have a PT 1500 terminal, use the
following command sequence

$ TERM-pt
$ export TERM

to identify your terminal.

If you want your terminal type established automatically
when you log in, place the above commands in your . profile file.

Editing a File
After telling the system the kind of terminal you have, make
a copy of a file you are familiar with and run vi on this file
with the command

$ v If; 1ename

Replace filename with the name of the copy file just created.
The screen should clear and the text of your file appear on
the screen. If something else happens, perhaps you gave the
system an incorrect terminal type code, in which case the
editor may have just made a mess out of your screen. This
happens when vi sends control codes for one kind of
terminal to some other kind of terminal. In this case, type the
keys :q (colon and the q key) and then press the RETURN
key. This should get you back to the command level
interpreter. Figure out what you did wrong (ask someone
else if necessary) and try again.

1207909

12-2 Visual Editor (vi)~Advanced

Another thing that can go wrong is you typed the wrong file
name and the editor just printed an error diagnostic. In this
case, follow the above procedure for getting out of the
editor; then try again, spelling the file name correctly.

If the editor does not seem to respond to the commands you
enter, try sending an interrupt to it by pressing the DELETE
key, and then typing the :q command, followed by pressing
the RETURN key.

Editor Copy in Buffer
The vi editor does not directly modify the file you are editing.
Rather, it makes a copy of this file in a place called the buffer
and remembers the file's name. You do not affect the
contents of the file unless and until you write the changes
made back into the original file.

Arrow Keys
The editor command set is independent of the terminal you
are using. On most terminals with cursor positioning keys,
these keys will also work within the editor. If you do not
have cursor positioning keys or even if you do, you can use
the h, i, k, and I keys as cursor positioning keys.

o h moves cursor to the left (like CODE-h which is a backspace).

o i moves cursor down (in the same column).

o k moves cursor up (in the same column).

o I moves cursor to the right.

Leaving the Editor

After you have worked with the editor for a while and wish
to do something else, give the ZZ command to leave the
editor. This writes the contents of the editor buffer (including
any changes made) back into the file you are editing and then
quits the editor.

Visual Editor (vi)-Advanced 12-3

An editor session can also be terminated with the :q!
command All commands read from the last display line can
also be terminated by pressing the GO and the RETURN
keys. This is a dangerous but occasionally essential
command that ends the editor session and discards all your
changes. You need to know about this command in case you
change the editor copy of a file you wish only to look at. Be
very careful not to give this command when you really want
to save the changes you have made.

Moving Around in the File

Scrolling and Paging
The editor has a number of commands for moving around in
the file. The most useful of these is generated by pressing
the CODE and d keys at the same time, or a CODE-d. We will
use this two-character notation for referring to these CODE
keys from now on.

As you know now, if you tried typing CODE-d, this command
scrolls down in the file. The d thus stands for down. Many
editor commands are mnemonic, and this makes them much
easier to remember. For instance, the command to scroll up
is CODE-u. Many dumb terminals cannot scroll up at all, in
which case pressing CODE-u clears the screen and refreshes
it with a line farther back in the file at the top.

If you want to see more of the file below where you are,
press CODE-e to expose one more line at the bottom of the
screen leaving the cursor where it is. The CODE-y (which is
hopelessly nonmnemonic, but next to CODE-u on the
keyboard) command exposes one more line at the top of the
screen.

There are other ways to move around in the file; the keys
CODE-f and CODE-b move forward and backward a page,
keeping a couple of lines of continuity between screens so
that it is possible to read through a file using these
commands rather than the CODE-d and CODE-u.

1207909

12-4 Visual Editor (vi)~Advanced

There is a difference between scrolling and paging. If you are
trying to read the text in a file, pressing CODE-f to move
forward a page gives you only a little context at which to
look back. ScrOlling (CODE-d) on the other hand gives more
context and functions more smoothly. You can continue to
read the text while scrolling is taking place.

Searching, Goto, and Previous Context
Another way to position yourself in the file is by giving the
editor a string to search for. Type the / character followed
by a string of characters, and press the RETURN key. The
editor will position the cursor at the next occurrence of this
string. Then try typing n to go on to the next occurrence of
this string. The? character will search backward from where
you are and is otherwise like /.

These searches will normally wraparound the end of the file
and find the string even if it is not on a line in the direction
you search (provided the string is in the file). You can disable
this wraparound in scans by giving the command:

:se nowrapscan

or

:se nows

If the search string you give the editor is not present in the
file, the editor will print a diagnostic on the last line of the
screen; and the cursor will return to its initial position.

If you wish the search to match only at the beginning of a
line, begin the search string with an caret symbol (A). To
match only at the end of a line, end the search string with a
$. Thus

IAfirst

will search for the word "first" at the beginning of a line, and

Ilast$

searches for the word "Iast" at the end of a line.

Visual Editor (viI-Advanced 12-5

Actually, the string you give to search for can be a regular
expression in the sense of the ex and ed editors. If you do not
wish to learn about this yet, disable this more general facility
by putting the

:se nomagic

command in EXINIT in your environment.

The command G when preceded by a number will pOSition
the cursor at that line in the file. Thus 1 G will move the
cursor to the first line of the file. If you give G no count, then
the cursor moves to the end of the file.

If you are near the end of the file and the last line is not at
the bottom of the screen, the editor will place only the tilde
character (-) on each remaining line. This indicates that the
last line in the file is on the screen; that is, the - lines are
beyond the end of the file.

Determine the state of the file you are editing by typing a
CODE-g command. The editor will show the name of the file
you are editing, the number of the current line, the number of
lines in the buffer, and the percentage of the way through the
buffer the cursor is located. Try doing this now and
remember the number of the line you are on. Give a G
command to get to the end and then another G command to
get back where you started.

You can also get back to a previous position by using the
command" (two grave accents). This is often more
convenient than G because it requires no advance
preparation. Try giving a G or a search with / or ? and then a
" to get back where you started. If you accidentally type n
or any command that moves you far away from a context of
interest, you can quickly get back by typing ".

Moving Around on the Screen
Now try just moving the cursor around on the screen. If your
terminal has arrow keys (four or five keys with arrows going
in each direction) try them and convince yourself that they
work. If the arrow keys do not work, you can always use h,
i, k, and I. Experienced users of vi prefer these keys to arrow
keys because they are usually right beneath their fingers.

1207909

12-6 Visual Editor (vi)..:.....Advanced

Type the + key. Each time you do notice that the cursor
advances to the next line in the file at the first nonwhite
position on the line. The - key is like + but goes the other
way. These are very common keys for moving the cursor up
and down lines in the file.

Note: If the cursor goes off the bottom or top of the screen
when using these keys, then the text will scroll down (and up,
if possible) to bring a line at a time into view. The key has the
same effect as the + key.

The vi editor also has commands to take you to the top,
middle, and bottom of the screen. The H command will take
you to the top line (home) on the screen. Try preceding it
with a number as in 3H. This will take you to the third line on
the screen. Many vi commands take preceding numbers and
do interesting things with them. Try M, which takes you to
the middle line on the screen, and L, which takes you to the
last line on the screen. The L command also takes counts,
the 5L command will take you to the fifth line from the
bottom. The M command does not take counts.

There are two control characters that move the cursor up or
down a line, but keep it in the same column. CODE-n causes
the cursor to move to the same column of the next line. To
move to the same column of the previous line, use the
CODE-p command.

Moving Within a Line
Now try picking a word on some line on the screen, not the
first word on the line. Move the cursor (using the RETURN
key and -) to be on the line where the word is. Try typing the
w key. This will advance the cursor to the next word on the
line. Try typing the b key to back up words in the line. Also
try the e key which advances you to the end of the current
word rather than to the beginning of the next word. Also try
the SPACEBAR, which moves the cursor right one character,
and the BACKSPACE key (or CODE-h), which moves left one
character. The h key works as CODE-h does and is useful if
you do not have a BACKSPACE key. Also, as noted above,
the I key will move the cursor to the right.

Visual Editor (vi)-Advanced 12-7

If the line has punctuation, you may have noticed that the w
and b keys stop at each group of punctuation. You can also
go backward and forward without stopping at punctuation by
using Wand B rather than the lowercase equivalents. Think
of these as bigger words. Try these on a few lines with
punctuation to see how they differ from the lowercase wand b.

The word keys wraparound the end of line rather than
stopping at the end. Try moving to a word on a line below
where you are by repeatedly typing w.

The View Editor

If you want to use the editor to look at a file rather than to
make changes, invoke it as view instead of vi. This will set
the read only option that will prevent you from accidently
overwriting the file.

Making Simple Changes

Inserting
One of the most useful commands is the insert (i) command.
After you type i, everything you type until you press the GO
key is inserted into the file. Try this now; position yourself on
some word in the file and try inserting text before this word.
If you are on a dumb terminal, it will seem that some of the
characters in your line have been overwritten, but they will
reappear when you press the GO key.

Now try finding a word that can, but does not, end in an "s".
Position yourself at that word and type e (move to end of
word), a (append), s and press the GO key (terminate the
textual insert). This sequence of commands can be used to
pluralize a word.

Try inserting and appending a few times to make sure you
understand how this works:

o i places text to the left of the cursor.

o a places text to the right of the cursor.

1207909

12-8 Visual Editor (vi)...:....Advanced

Many related editor commands are invoked by the same
letter key and differ only in that one is given by a lowercase
key and the other is given by an uppercase key. In these
cases, the uppercase key often differs from the lowercase
key in its sense of direction, with the uppercase key working
backward and/or up, while the lowercase key moves forward
and/or down.

It is often the case that you want to add new lines to the file
you are editing before or after some specific line in the file.
Find a line where this makes sense and then give the 0

command to create a new line after the line you are on or
the 0 command to create a new line before the line you are
on. After you create a new line in this way, the text you type
until you press the GO key is inserted on the new line.

Whenever you are typing in text, you can give many lines of
input or just a few characters. To type in more than one line
of text, press a at the middle of your input. A new line will
be created for text, and you can continue to type. If you are
on a slow and dumb terminal, the editor may choose to wait
to redraw the tail of the screen and will let you type over the
existing screen lines. This avoids the lengthy delay that
would occur if the editor attempted to keep the tail of the
screen always up to date. The tail of the screen will be fixed,
and the missing lines will reappear when you press the GO key.

While inserting new text, you can use the characters
normally used at the system command level (usually CODE-h
or #) to backspace over the last character typed. The
character usedto kill input lines (usually @, CODE-x, or
CODE-u) can be used to erase the input you have typed on
the current line. In fact, the CODE-h (backspace) always
works to erase the last input character, regardless of what
your erase character is. The CODE-w command will erase a
whole word and leave you after the space following the
previous word. It is useful for quickly backing up in an insert.
The following conditions should be noted:

Visual Editor (vi)-Advanced 12-9

o When you backspace during an insertion, the characters
you backspace over are not erased; the cursor moves
backward, and the characters remain on the display. This
is often useful if you are planning to type in something
similar. In any case, the characters disappear when you
press the GO key. If you want to get rid of them
immediately, press the GO key and then a again.

o You cannot erase characters that you did not insert, and
you cannot backspace around the end of a line. If you
need to back up to the previous line to make a correction,
just press the GO key and move the cursor back to the
previous line. After making the correction, return to where
you were and use the insert or append command again.

Making Small Corrections
You can make small corrections in existing text quite easily.
Find a single character that is wrong or just pick any
character. Use the arrow keys to find the character, or get
near the character with the word motion keys and then either
backspace (press the BACKSPACE key, CODE-h, or just h) or
space (using the SPACEBAR) until the cursor is on the wrong
character. If the character is not needed, then type the x key;
this deletes the character from the file. It is analogous to the
way you x out characters when you make mistakes on a
typewriter.

If the character is incorrect, replace it with the correct
character by giving the rc command, where c is the correct
character. If the character that is incorrect should be replaced
by more than one character, enter the following command
and press the GO key:

sstr;ng

which substitutes a string of characters. If there are a small
number of characters that are wrong, precede s with a count
of the number of characters to be replaced. Counts are also
useful with x to specify the number of characters to be deleted.

1207909

12-10 Visual Editor (vi)...:-Advanced

Making Corrections with Operators

You already know almost enough to make changes at a
higher level. All you need to know now is that the d key acts
as a delete operator and the e key acts as a change operator.

o The dw command deletes a following word.

o The db command deletes a preceding word.

o The d-SP ACEBAR command deletes a single character and
is equivalent to the x command.

o The. command repeats the last command that made a
change.- The ew command changes the text of a single
word. It is followed with replacement text after pressing
the GO key.

Note: The end of the text to be changed is marked with the $
character so that you can see this mark as you are typing in
new text material.

Operating on Lines

It is often the case that you want to operate on lines. Find a
line you want to delete and type dd, the d operator twice.
This will delete the line. If you are on a dumb terminal, the
editor may erase the line on the screen replacing it with a
line with only an @ on it. This line does not correspond to
any line in your file, but only acts as a place holder. It helps
to avoid a lengthy redraw of the rest of the screen that
would be necessary to close up the hole created by the
deletion on a terminal without a delete line capability.

Repeating the e operator twice (ee) will change a whole line
erasing its previous contents and replacing them with text
you type before pressing the GO key.' The S command is a
convenient synonym for ee, by analogy with s. Think of S as
a substitute on lines, while s is a substitute on characters.

Visual Editor (vi)-Advanced 12-11

You can delete or change more than one line by preceding
the dd or cc with a count (5dd deletes 5 lines). You can also
give a command like dL to delete all the lines up to and
including the last line on the screen or d3L to delete through
the third from the bottom line. One subtle point here involves
using the / (search) after a d. This will normally delete
characters from the current position to the point of the
match. If you desire to delete whole lines including the two
points, give the pattern as /pat/ + 0, a line address.

Note: The vi editor lets you know when you change a large
number of lines so that you can see the extent of the change. It
will also always tell you when a change you make affects text
that you cannot see.

Undoing

Suppose the last change made was incorrect; use the insert,
delete, and append commands to put the correct material back.
However, since it is often the case that we regret a change
or make a change incorrectly, the editor provides an undo (u)
command to reverse the last change made. A u also undoes
a u.

The u command lets you reverse only a single change. After
you make a number of changes to a line, you may decide
that you would rather have the original state of the line back.
The U command restores the current line to the state before
you started changing it.

You can recover text that you deleted even if the u command
will not bring it back. This recovery procedure is covered in
this section in the subsection "Recovering Lost Lines."

Moving About, Rearranging, and Duplicating Text

Low Level Character Motions

Move the cursor to a line where there is a punctuation or a
bracketing character such as a parenthesis or a comma or
period. Try the command Ix where x is the character sought.

1207909

12-12 Visual Editor (vi)-.:.-Advanced

This command finds the next x character to the right of the
cursor in the current line. Try then typing a ;, which finds the
next instance of the same character. By using the f command
and then a sequence of ;' s, you can ohen get to a particular
place in a line much faster than with a sequence of word
motions or pressing the SPACEBAR. There is also an F
command, that is like f, but searches backward. The;
command repeats F also.

When operating on the text in a line, it is ohen desirable to
delete characters including the first instance of a character.
Try dfx for some x and notice that the x character is deleted.
Undo this with u and then try dtx (the t stands for "to") to
delete up to the next x, but not the x. The command T is the
reverse of t.

When working with the text of a single line, an A moves the
cursor to the first nonwhite position on the line, and a $
moves it to the end of the line. Thus, $a will append new
text at the end of the current line.

Your file may have tab characters (Ai) in it. These characters
are represented as a number of spaces expanding to a tab
stop, where tab stops are every eight positions by default.
Tab stops can be set by a command of the form

:se ts- x

where x is four to set tab stops every four columns. The tab
stop setting has an effect on screen representation within
the editor. When the cursor is at a tab, it sits on the last of
the several spaces that represent that tab. Try moving the
cursor back and forth over tabs so you understand how this
works.

On rare occasions, your file may have nonprinting characters
in it. On the screen, nonprinting characters resemble a 1\

character adjacent to another. Spacing or backspacing over
the character reveals that the two characters are, like the
spaces representing a tab character, a single character.

The editor sometimes discards control characters, depending
on the character and the setting of the beautify option if you
attempt to insert them in your file. You can get a control
character in the file by beginning an insert and then typing
CODE-v before the control character. The CODE-v quotes the
following character causing it to be inserted directly into the file.

Visual Editor (vi)-Advanced

Higher Level Text Objects

In working with a document, it is often advantageous to
work in terms of sentences, paragraphs, and sections.

a The (and) operations move to the beginning of the

12-13

previous and next sentence, respectively. Thus the d)
command will delete the rest of the current sentence. The
d(command will:

delete the previous sentence if you are at the
beginning of the current sentence

or

delete the current sentence up to your present
position if you are not at the beginning of the
current sentence.

a A sentence is defined to end at a ., !, or ? followed by
either the end of a line or two spaces. Any number of),],
", and ' closing characters may appear after the ., !, or ?
and before the spaces or end of line.

a The { and} operations move over paragraphs.

a A paragraph begins after each empty line and also at each
of a set of paragraph macros specified by the pairs of
characters in the definition of the string-valued option
paragraphs. The default setting for this option defines the
paragraph macros of the -ms and -mm macro packages,
such as the .IP, .LP, .PP, and .QP, .P and .L1 macros.

You can easily change or extend this set of macros by
assigning a different string to the paragraphs option in
your EXINIT. The .bp request is also considered to start a
paragraph. Each paragraph boundary is also a sentence
boundary. The sentence and paragraph commands can be
given counts to operate over groups of sentences and
paragraphs.

1207909

12-14 Visual Editor (vi)-Advanced

o The [[and]] operations move over sections. They require
the operation character to be doubled because they can
move the cursor from where it currently is. While it is easy
to get back with the \ \ command, these commands
would still be frustrating if they were easy to hit
accidentally.

o Sections in the editor begin after each macro in the
sections option (normally, .NH, .SH, .H, and .HU) and each
line with a formfeed CODE-I in the first column. Section
boundaries are always line and paragraph boundaries.

Try experimenting with the sentence and paragraph
commands until you are sure how they work. If you have a
large document, try looking at it using the section
commands. Section commands interpret a preceding count
as a different window size in which to redraw the screen at
the new location, and this window size is the base size for
newly drawn windows until another size is specified. This is
very useful if you are on a slow terminal and are looking for a
particular section. You can give the first section command
and a small count to see each successive section heading in
a small window.

Rearranging and Duplicating Text
The editor has a single unnamed buffer where the last
deleted or changed text is saved, and a set of named buffers
a-z that you can use to save copies of text and to move text
around in your file and between files.

The y operator yanks a copy of the object that follows into
the unnamed buffer. If preceded by a buffer name, "XV,
where x is replaced by a letter a-z, it places the text in the
named buffer. The text can then be put back in the file. with
the commands p and P; the p command puts the text after or
below the cursor I while P puts the text before or above the
cursor.

Visual Editor (vi)-Advanced 12-15

If the text you yank forms a part of a line or is an object such
as a sentence that partially spans more than one line, then
when you put the text back, it will be placed after the cursor
(or before if you use Pl. If the yanked text forms whole lines,
they will be put back as whole lines without changing the
current line. In this case, the put acts much like an 0 or 0
command.

Try the YP command. This makes a copy of the current line
and leaves you on this copy, which is placed before the
current line. The command Y is a convenient abbreviation for
yy. The command Yp will also make a copy of the current line
and place it after the current line. You can give Y a count of
lines to yank, and thus duplicate several lines; try 3YP.

To move text within the buffer, delete it in one place and put
it back in another. Precede a delete operation by the name of
a buffer in which the text is to be stored as in "a5dd deleting
five lines into the named buffer a. Then move the cursor to
the eventual resting place of these lines and do an "ap or "aP
to put them back. In fact, you can switch and edit another
file before you put the lines back by giving a command of the
form

: e name

where name is the name of the other file you want to edit.
You will have to write back the contents of the current editor
buffer (or discard them) if you have made changes before the
editor will let you switch to the other file. An ordinary delete
command saves the text in the unnamed buffer so that an
ordinary put can move it elsewhere. However, the unnamed
buffer is lost when you change files; so to move text from
one file to another, use a named buffer.

High-Level Commands

Writing, Quitting, and Editing New Files
So far we have seen how to enter the vi editor and to write
out our file using either ZZ or :w commands. The first
command exits from the editor (writing if changes were
made); the second command writes and stays in the editor.

1207909

12-16 Visual Editor (vi)-Advanced

If you have changed the editor copy of the file but do not
wish to save your changes either because you messed up
the file or decided that the changes are not an improvement,
then you can give the command

: q!

to quit from the editor without writing the changes. You can
also reedit the same file (start over) by giving the command

: e'
These commands should be used only rarely and with
caution since it is not possible to recover the changes you
have made after you discard them in this manner.

You can edit a different file without leaving the editor by
giving the command

: e f I /ename

If you have not written out your file before you try to do this,
then the editor wi" tell you this and delay editing the other
file. You can then give the command

:w

(to save your changes) and then the

: e f i /ename

command again or carefully give the command

: elf I / ename

which edits the other file discarding the changes you have
made to the current file. To have the editor automatically
save changes, include set auto write in your EXINIT and use :n
instead of :e.

Escaping to a Shell
You can get to a she" to execute a single command by
giving a vi command of the form

: I cOrTmand

Visual Editor (vi)-Advanced 12-17

The system will run the single command; and when finished,
the editor will ask you to press the RETURN key to continue.
When you have finished looking at the output on the screen,
press the RETURN key and the editor will clear the screen
and redraw it. Then continue editing. You can also give
another : command when it asks you the press the RETURN
key. In this case, the screen will not be redrawn.

If you wish to execute more than one command in the shell,
give the command

:sh

This will give you a new shell. When finished with the shell,
end it by pressing CODE-d. The editor will clear the screen
and continue.

Marking and Returning
The command " returns you to the previous place after a
motion of the cursor by a command such as /, 1, or G. You
can also mark lines in the file with single letter tags and
return to these marks later by naming the tags. Try marking
the current line with the command mx, where you should pick
some letter for x, such as an "a." Then move the cursor to a
different line (any way you like) and type \ a. The cursor will
return to the place you marked. Marks last only until you edit
another file.

When using operators such as d and referring to marked
lines, it is often desirable to delete whole lines rather than
deleting to the exact position in the line marked by m. In this
case, use the form IX rather than \ x. Used without an
operator, IX will move to the first nonwhite character of the
marked line; similarly I " moves to the first nonwhite
character of the line containing the previous context mark \\.

Adjusting the Screen
If the screen image is messed up because of a transmission
error to your terminal or because some program other than
the editor wrote output to your terminal, type a CODE-I, the
ASCII form-feed character I to cause the screen to be
refreshed.

1207909

12-18 Visual Editor (vi}-Advanced

On a dumb terminal if there are @ lines in the middle of the
screen as a result of line deletion, get rid of these lines by
typing CODE-r to cause the editor to retype the screen
closing up these holes.

If you wish to place a certain line on the screen at the top,
middle, or bottom of the screen, position the cursor to that
line and then give a z command. After entering the z
command, press the RETURN key if you want the line to
appear at the top of the window, a . if you want it at the
center, or a - if you want it at the bottom.

Special Topics

Editing on Slow Terminals
When you are on a slow terminal, it is important to limit the
amount of output generated to your screen so that you will
not suffer long delays waiting for the screen to be refreshed.
We have already pointed out how the editor optimizes the
updating of the screen during insertions on dumb terminals to
limit the delays and how the editor erases lines to @ when
they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by
the slowopen option. You can force the editor to use this
mode even on faster terminals by giving the- command

:se slow

If your system is sluggish, this helps lessen the amount of
output coming to your terminal. Disable this option with the
command

:se nos low

The editor can simulate an intelligent terminal on a dumb
one. Try giving the command

:se redraw

This simulation generates a great deal of output and is
generally tolerable only on lightly loaded systems and fast
terminals. Disable this with the command

:se noredraw

Visual Editor (vi)-Advanced 12-19

The editor also makes editing more pleasant at low speed by
starting editing in a small window and letting the window
expand as you edit. This works particularly well on intelligent
terminals. The editor can expand the window easily when
you insert in the middle of the screen on these terminals. If
possible, try the editor on an intelligent terminal to see how
this works.

Control the size of the window that is redrawn each time the
screen is cleared by giving window sizes as argument to the
commands that cause large screen motions:

: I ? [[]) , •

Thus if you are searching for a particular instance of common
string in a file, precede the first search command by a small
number, such as 3; and the editor will draw three line
windows around each instance of the string it locates.

You can easily expand or contract the window and place the
current line as you choose by giving a number with the z
command (after the z and before pressing the RETURN key, "
or -). Thus the command z5, redraws the screen with the
current line in the center of a' five line window.

Note: The command 5z. has an entirely different effect placing
line 5 in the center of a new window.

If the editor is redrawing or otherwise updating large portions
of the display, interrupt this updating by pressing the DELETE
key. If you do this, you may partially confuse the editor
about what is displayed on the screen. You can still edit the
text on the screen if you wish; clear up the confusion by
pressing CODE-I; or move or search again, ignoring the
current state of the display.

12-20 Visual Editor (vi)-Advanced

Options, Set, and Editor Startup Files
The editor has a set of options, some have been mentioned
above. They are as follows:

autoindent, ai default: noai

Can be used to ease the preparation of structured.program text. At the
beginning of each append, change, or insert command or when a new line is
opened or created by an append, change, insert. or substitute operation, vi looks
at the line being appended after, the first line changed, or the line inserted
before and calculates the amount of white space at the start of the line. it then
aligns the cursor at the level of indentation so determined.

If the user then types in lines of text, the lines will continue to be justified at
the displayed indenting level. If more white space is typed at the beginning of a
line, the following line will start aligned with the first nonwhite character of
the previous line. To back the cursor to the preceding tabstop, press CODE-d.
The tabstops (going backwards) are defined as mUltiples of the shiftwidth
option. You cannot backspace over the indent except by sending an end-of-file
with a CODE-d.

Specially processed in this mode is a line with no character added to it, that
turns into a completely blank line (the white space provided for the autoindent
is discarded). Also specially processed in this mode are lines beginning with an
" and immediately followed by a CODE-d. This causes the input to be
repositioned at the beginning of the line while retaining the previous indent for
the next line. Similarly, a 0 followed by a CODE-d repositions at the beginning
without retaining the previous indent.

The autoindent option does not happen in global commands or when the input
is not a terminal.

autoprint,ap default: ap

Causes the current line to be printed after each delete, copy, join, move,
substitute, t, undo, or shift command. This has the same effect as supplying
a trailing p to each such command. The autoprint is suppressed in globals, and
only applies to the last of many commands on a line.

autowrite,aw default: noaw

Causes the contents of the buffer to be written to the current file if you have
modified it and gives a next, rewind, tab, or ! command, or a "" (switch
files) or "] (tag goto) command in visual.

Visual Editor (vi)-Advanced 12-21

Note: The command does not autowrite. In each case, there is
an equivalent way of switching when the autowrite option is
set to avoid the autowrite (ex for next, rewind! for rewind, tag! for
tag, shell for!, and :e # and a :ta! command from within visual).

beautify, bf default: nobeautify

Causes all control characters except tab, newline, and formfeed to be discarded
from the input. A complaint is registered the first time a backspace character is
discarded. The beautify option does not apply to command input.

directory, dir default: dir = /tmp

Specifies the directory in which ex places its buffer file. If this directory in not
writable, then the editor will exit abruptly when it fails to be able to create its
buffer there.

edcompatible default: noedcompatible

Causes the presence or absence of 9 and c suffixes on substitute commands to
be remembered and to be toggled by repeating the suffixes. The suffix r makes
the substitution be as in the - command instead of like &.

errorbells,eb default: noeb

Error messages are preceded by a bell. Bell ringing in open and visual mode on
errors is not suppressed by setting noeb. If possible, the editor always places
the error message in a standout mode of the terminal (such as inverse video)
instead of ringing the bell.

hardtabs, ht default: ht=8

Gives the boundaries on which terminal hardware tabs are set (or on which the
system expands tabs).

ignoraC8se,ic default: noic

All uppercase characters in the text are mapped to lowercase in regular
expression matching. In addition, all uppercase characters in regular expressions
are mapped to lowercase except in character class specifications.

lisp default: nolisp

The autoindent option indents appropriately for lisp code, and the (), { }, [(,
and]] commands in open and visual modes are modified to have meaning for lisp.

list default: no list

1207909

All printed lines will be displayed more unambiguously, showing tabs and
end-of-lines as in the list command.

12-22

magic

mesg

Visual Editor (vi)-Advanced

default: magic for ex and vi

If nomagic is set, the number of regular expression metacharacters is greatly
reduced with only 1\ and $ having special effects. In addition, the
metacharacters - and & of the replacement pattern are treated as normal
characters. All the normal metacharacters may be made magic when nomagic is
set by preceding them with a \.

default: mesg

Causes write permission to be turned off to the terminal while in visual mode,
if nomesg is set.

number,nu default: nonumber

open

Causes all output lines to be printed with line numbers. In addition, each input
line will be prompted for by supplying the line number it will have.

default: open

If noopen, the commands open and visual are not permitted.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal not to do automatic
carriage returns when printing more than one (logical) line of output, greatly
speeding output on terminals without addressable cursors when text with
leading white space is printed.

paragraphs, para default: para==IPlPPPOPP lIbp

prompt

redraw

remap

Specifies the paragraphs for the { and } operations in open and visual mode.
The pairs of characters in the option's value are the names of the macros that
start paragraphs.

default: prompt

Command mode input is prompted for with a colon (:).

default: noredraw

The editor simulates (using great amounts of output) an intelligent terminal on
a dumb terminal (for example, during insertions in visual, the characters to the
right of the cursor position are refreshed as each input character is typed). This
option is useful only at very high speed.

default: remap

If on, macros are repeatedly tried until they are unchanged. For example, if a is
mapped to 0, and 0 is mapped to I, then if remap is set, a will map to I, but
if noremap is set, it will map to O.

Visual Editor (vi)-Advanced 12-23

report

scroll

default: report=5

Specifies a threshold for feedback from commands. Any command that modifies
more than the specified number of lines will provide feedback as to the scope
of its changes. For commands such as global, open, undo, and visual, that
have potentially more far-reaching scope, the net change in the number of lines
in the buffer is presented at the end of the command, subject to this same
threshold. Thus, notification is suppressed during a global command on the
individual commands performed.

default: scroll = 1 /2 window

Determines the number of logical lines scrolled when an end-of-file is received
from a terminal input in command mode and the number of lines printed by a
command mode z command (double the value of scroll).

sections default: sections=SHNHH HU

Specifies the section macros for the [[and]] operations in open and visual
modes. The pairs of characters in the option's value are the names of the
macros that start paragraphs.

shell, sh default: sh = /bin/ sh

Gives the pathname of the shell forked for the shell escape command ! and by
the shell command. The default is taken from SHEll in the environment if present.

shiftwidth, sw default: sw=8

Gives the width a software tabstop used in reverse tabbing with CODE-d when
using autoindent to append text and by the shift commands.

showmatch, sm default: nosm

In open and visual mode when a) or } is typed, it moves the cursor to the
matching (or { for one second if this matching character is on the screen.
Extremely useful with lisp.

slowopen, slow terminal dependent

Affects the display algorithm used in visual mode, holding off display updating
during input of new text to improve throughput when the terminal in use is
both slow and unintelligent.

tabstop, ts default: ts=8

The editor expands tabs in the input file to be on tabstop boundaries for the
purposes of display.

taglength, tl default: tl = 0

1207909

Tags are not significant beyond this many -characters. A value of zero (the
default) means that all characters are significant.

12-24 Visual Editor (vi)-Advanced

tags

term

default: tags=tags/usr/lib/tags

A path of files to be used as tag files for the tag command. A requested tag is
searched for in the specified files, sequentially. By default, files called tags are
searched for in the current directory and in /usr/lib (a master file for the entire
system).

from environment TERM

The terminal type of the output device.

terse default: noterse

Shorter error diagnostics are produced for the experienced user.

warn default: warn

Warn if there has been "[No write since last change]" before a! command escape.

window default: window=speed dependent

The number of lines in a text window in the visual command. The default is
eight at slow speeds (600 baud or less), 16 at medium speed (1200 baud),
and the full screen (minus one line) at higher speeds.

w300, w1200, w9600

These are not true options but set window only if the speed is slow (300),
medium (1200), or high (9600), respectively. They are suitable for an EXINIT
and make it easy to change the 8/16/full screen rule.

wrapscan, ws default: ws

Searches that use regular expressions in addressing will wraparound past the
end of the file.

wrapmargin, wm default: wm""O

Defines a margin for automatic wrap over of text during input in open and
visual modes.

writeany, WI default: nowa

Inhibit checks normally made before write commands allowing a write to any
file that the system protection mechanism will allow.

The options are of three kinds: numeric, string, and toggle.
Set numeric and string options by a statement of the form

set opt=val

and toggle options can be set or not set by statements of
one of the forms

set opt

set noopt

Visual Editor (vi)-Advanced 12-25

These statements can be placed in your EXINIT in your
environment or given while you are running vi by preceding
them with a : and pressing RETURN key.

You can get a list of all options that you have changed with
the command

: se t

or the value of a single option by the command

:set opt?

A list of all possible options and their values is generated by

: se t a I I

Set can be abbreviated se. Multiple options can be placed on
one line, for example:

:se al aw nu

Options set by the set command last only while you stay in
the editor. It is common to want to have certain options set
whenever you use the editor. This can be accomplished by
creating a list of ex commands that are to be run every time
you start ex, edit, or vi (all commands that start with : are ex
commands). A typical list includes a set command and
possibly a few map commands (on V3 editors). Since it is
advisable to get these commands on one line, they can be
separated with the I character; for example:

set al aw terselmap @ ddlmap # x

which establishes the set command options autoindent,
autowrite, terse, makes @ delete a line (the first map), and
makes # delete a character (the second map). This string
should be placed in the variable EXINIT in your environment.
Using the shell, put these lines in the file .profile in your
home or working directory

EXINIT-set al aw terselmap @ ddlmap # x
export EXINIT

or put the line in the file exrc in your home directory.

set al aw terselmap @ ddlmap # x

Of course, the particulars of the line would depend on the
options you wanted to set.

1207909

12-26 Visual Editor (vi)-Advanced

Recovering Lost Lines
You might have a serious problem if you delete a number of
lines and then regret that they were deleted. The editor
saves the last nine deleted blocks of text in a set of
numbered registers 1 through 9.

You can get the nth previous deleted text back in your file by
the command "np. The" here says that a buffer name is to
follow, n is the number of the buffer you wish to try (use the
number 1 for now), and p is the put command that puts text
in the buffer after the cursor. If this does not bring back the
text you wanted, type u to undo this and then . (period) to
repeat the put command.

In general, the. command will repeat the last change. As a
special case, when the last command refers to a numbered
text buffer, the. command increments the number of the
buffer before repeating the command. Thus a sequence of
the form

"Ipu.u.u

will, if repeated long enough, show you all the deleted text
that has been saved for you. Omit the u commands here to
gather up all this text in the buffer or stop after any .
command to keep just the then-recovered text. The
command P can also be used rather than p to put the
recovered text before rather than after the cursor.

Recovering Lost Files

If the system crashes, you can recover the work you were
doing to within a few changes. You will normally receive mail
when you next login giving you the name of the file that has
been saved for you. You should then change to the directory
where you were when the system crashed and give a
command of the form

$ v I - r , I len ame

replacing name with the name of the file you were editing.
This will recover your work to a point near where you left off.

Visual Editor (vi)-Advanced 12-27

Note: In rare cases, some of the lines of the file may be lost.
The editor will give you the numbers of these lines and the text
of the lines will be replaced by the string LOST. These lines will
almost always be among the last few that you changed. You
can either choose to discard the changes that you made (if they
are easy to remake) or to replace the few lost lines by hand.

You can get a listing of the files that are saved for you by
giving the command

$ v I • r

If there is more than one instance of a particular file saved,
the editor gives the newest instance each time you recover
it. You can thus get an older saved copy back by first
recovering the newer copies.

For this feature to work, vi must be correctly installed by a
superuser on your system, and the mail program must exist
to receive mail. The invocation

$ v I . r

will not always list all saved files, but they can be recovered
even if they are not listed.

Continuous Text Input
When typing in large amounts of text, it is convenient to
have lines broken near the right margin automatically. You
can cause this to happen by giving the command

:se wm-10

This causes all lines to be broken at a space at least ten
columns from the right-hand edge of the screen.

If the editor breaks an input line and you wish to put it back
together, tell it to join the lines with J. Give J a count of the
number of lines to be joined (3J to join 3 lines). The editor
supplies white space, if appropriate, at the juncture of the
joined lines and leaves the cursor at this white space. Kill the
white space with x if you do not want it.

1207909

12-28 Visual Editor (vi)-Advanced

Features for Editing Programs

The editor has a number of commands for editing programs.
The thing that most distinguishes editing of programs from
editing of text is the desirability of maintaining an indented
structure to the body of the program. The editor has an
autoindent facility to help generate correctly indented
programs.

To enable this facility, give the command

:se ai

Now try opening a new line with 0 and then type some
characters on the line after a few tabs. If you now start
another line, notice that the editor supplies white space at
the beginning of the line to line it up with the previous line.
You cannot backspace over this indentation, but you can use
CODE-d to backtab over the supplied indentation.

Each time you press CODE-d you back up one position,
normally to an eight-column boundary. This amount is
settable; the editor has an option called shiftwidth that you
can set to change this value. Try giving the command

:see sw-4

and then experimenting with autoindent again.

For shifting lines in the program left and right, there are
operators < and >. These shift the lines you specify right or
left by one shiftwidth. Try < < and> > to shift one line left
or right, and <L and >L to shift the rest of the display left
and right.

If you have a complicated expression and wish to see how
the parentheses match, put the cursor at a left or right
parenthesis and type %. This will show you the matching
parenthesis. This works also for braces ({ }) and brackets ([]).

If you are editing C programs, use the [[and]] keys to
advance or retreat to a line starting with a {, that is, a
function declaration at a time. When]] is used with an
operator, it stops after a line that starts with }; this is
sometimes useful with V]].

Visual Editor (vi)-Advanced 12-29

Filtering Portions of the Buffer
Run system commands over portions of the buffer using the !
operator. Use this operator to sort lines in the buffer or to
reformat portions of the buffer. Try typing in a list of random
words, one per line and ending them with a blank line. Back
up to the beginning of the list and then give the !}50rt
command. This says to sort the next paragraph of material,
and the blank line ends a paragraph.

Commands for Editing Lisp
If you are editing a LISP program, set the lisp option by typing

: 58 lisp

This changes the (and) commands to move backward and
forward over s-expressions. The { and } commands are like
(and) but do not stop at atoms. These can be used to skip
to the next list or through a comment quickly.

The autoindent option works differently for LISP supplying
indent to align at the first argument to the last open list. If
there is no such argument, then the indent is two spaces
more than the last level.

There is another option that is useful for typing in LISP, the
showmatch option. Try setting it with

:se 8m

and then try typing a (some words and then a). Notice that
the cursor shows the position of the (which matches the)
briefly. This happens only if the matching (is on the screen,
and the cursor stays there for at most one second.

The editor also has an operator to realign existing lines as
though they had been typed in with lisp and autoindent set.
This is the = operator. Try the =% command at the beginning
of a function. This will realign all the lines of the function
declaration.

When you are editing LISP, the [[and]] advance and retreat
to lines beginning with a (and are useful for dealing with
entire function definitions.

1207909

12-30 Visual Editor (vi)~Advanced

Macros
The vi editor has a macro facility that lets you create a macro
so that when you enter a single keystroke the editor will act
as though you had entered a longer sequence of keystrokes.
You can do this if you find yourself typing the same
sequence of commands (keystrokes) repeatedly.

There are two types of macros:

o One type is where you put the macro body in a buffer
register, such as x. You can then type @x to invoke the
macro. The @ may be followed by another @ to repeat the
last macro.

o You can use the map command from the vi editor (typically
in your EXINIT) with a command of the form:

:map Ihs rhs

mapping Ihs into rhs. There are restrictions: Ihs should be
one keystroke (either one character or one function key). It
must be entered within one second (unless notimeout is
set, in which case you can type it as slowly as you wish,
and vi will wait for you to finish it before it echoes
anything). The Ihs can be no longer than ten characters,
the rhs no longer than 100. To get a space, tab, or
newline into Ihs or rhs you should escape them with a
CODE-v (it may be necessary to double the CODE-v if the
map command is given inside vi rather than in ex). Spaces
and tabs inside the rhs need not be escaped.

Thus to make the q key write and exit the editor, give the
command and then press CODE-v twice and the RETURN
key twice:

:map q :wq

This means that whenever you type q, it will be as though
you had typed the four characters :wqRETURN. A CODE-v
is needed because without it pressing the RETURN key
would end the : command rather than becoming part of
the map definition. There are two CODE-v's because from
within vi, two CODE-v's must be typed to get on. The first
RETURN is part of the rhs, the second terminates the :
command.

Visual Editor (vi)-Advanced 12-31

Macros can be deleted with

unmap Ihs

If the Ihs of a macro is #0 through #9, this maps the
particular function key instead of the two-character #
sequence. So that terminals without function keys can
access such definitions, the form #x will mean function key x
on all terminals (and need not be typed within one second).
The character # can be changed by using a macro in the
usual way:

: ma p (P res s CODE - v t wi c e) i #

to use tab, for example. This will not affect the map
command, which still uses #, but just the invocation from
visual mode.

The undo command reverses an entire macro call as a unit if it
made any changes.

Placing a ! after the word map causes the mapping to apply
to text input mode rather than command mode. Thus, to
arrange for CODE-t to be the same as four spaces, type

:map (Press CODE-t and then CODE-v) 1I11

where / is a blank. The CODE-v is necessary to prevent the
blanks from being taken as white space between the Ihs and rhs.

Word Abbreviation
A feature similar to macros in text input mode is word
abbreviation. This allows you to type a short word and have
it expanded into a longer word or words. The commands are

and

:abbreviate

or

:unabbreviate

:ab

or

:una

1207909

12-32 Visual Editor (vil~Advanced

These commands have the same syntax as :map. For
example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word "eecs" to always be changed into the
phrase "Electrical Engineering and Computer Sciences."
Word abbreviation is different from macros in that only
whole words are affected. If "eecs" were typed as part of a
larger word, it would be left alone. Also, the partial word is
echoed as it is typed. There is no need for an abbreviation
to be a single keystroke as it should be with a macro.

Abbreviations
The editor has a number of short commands that abbreviate
longer commands we have introduced here.

Additional Information

Line Representation in the Display
The editor folds long logical lines onto many physical lines in
the display. Commands that advance lines advance logical
lines and will skip over all the segments of a line in one
motion. The I command moves the cursor to a specific
column and may be useful for getting near the middle of a
long line to split it in half. Try 80 I on a line that is more than
80 columns long.

Note: You can make long lines very easily by using J to join
together short lines.

The editor puts only full lines on the display; if there is not
enough room on the display to fit a logical line, the editor
leaves the physical line empty placing only an @ on the line
as a place holder. When you delete lines on a dumb
terminal, the editor will often clear just the lines to @ to
save time (rather than rewriting the rest of the screen). You
can always maximize the information on the screen by
giving the CODE-r command.

Visual Editor Ivi)-Advanced 12-33

If you wish, have the editor place line numbers before each
line on the display. Give the command

:se nu

to enable this, and the command

:se nonu

to turn it off. You can have tabs represented as CODE-i and
the ends of lines indicated with $ by giving the command

: s eli s t

The following command removes the display of tabs and
ends of lines:

:se nolist

Lines consisting of only the character are displayed when the
last line in the file is in the middle of the screen. These
represent physical lines that are past the logical end of file.

Counts

Most vi commands will use a preceding count to affect their
behavior in some way. The following table gives the
common ways the counts are used:

new window size
scroll amount
line/column number
repeat effect

:/?[[]]' '
COD~-d CODE-u
zGI
most of the rest

The editor maintains a notion of the current default window
size. On terminals that run at speeds greater than 1200
baud, the editor uses the full terminal screen. On terminals
that are slower than 1200 baud (most dial-up lines are in this
group), the editor uses eight lines as the default window size.
At 1200 baud, the default is 16 lines.

1207909

12-34 Visual Editor (vij...:.-Advanced

This size is the size used when the editor clears and refills
the screen after a search or other motion moves far from the
edge of the current window. Commands that take a new
window size as count a" too often cause the screen to be
redrawn. If you anticipate this but do not need as large a
window as you are currently using, change the screen size
by specifying the new size before these commands.

In any case, the number of lines used on the screen will
expand if you move off the top with a - or similar command
or off the bottom with a command such as pressing the
RETURN key or CODE-d. The window will revert to the last
specified size the next time it is cleared and refilled (but not
by a CODE-I which just redraws the screen as it is).

The scroll commands CODE-d and CODE-u likewise remember
the amount of scroll last specified, using half the basic
window size initially. The simple insert commands use a
count to specify a repetition of the inserted text. Thus

lOa +····(Press the GO key)

will insert a grid-like string of text. A few commands also
use a preceding count as a line or column number.

Except for a few commands that ignore any counts (such as
CODE-r), the rest of the editor commands use a count to
indicate a simple repetition of their effect. Thus 5w advances
five words on the current line, while 5 advances five lines. A
very useful instance of a count as a repetition is a count
given to the . command, which repeats the last changing
command. If you do dwand the 3., you will delete first one
and then three words. You can then delete two more words
with the 2. command.

Visual Editor (vi)-Advanced 12-35

More File Manipulation Commands
The following lists the file manipulation commands that you
can use when you are in vi.

:w
:wq
:x
:8 filename
:8!
:8 + filename
:8 + n
:8 #
:w filename
:w! Dlename
'J,yw Dlename
:r Dlename
:r!command
:n
:n!
:n args
:ta tag

write back changes
write and quit
write (if necessary) and quit (same as ZZ).
edit filename
re-edit, discarding changes
edit, starting at end
edit, starting at line n
edit alternate file
write filename
overwrite filename
write lines x through y to filename
read filename into buffer
read output of command into buffer
edit next file in argument list
edit next file, discarding changes to current
specify new argument list
edit file containing tag tag, at tag

All of these commands are followed by pressing either the
RETURN or the GO key. The most basic commands are :w
and :e. A normal editing session on a single file will end with
a ZZ command. If you are editing for a long period of time,
give :w commands occasionally after major amounts of
editing, and then finish with a ZZ. When you edit more than
one file, finish with a :w and start editing a new file by giving
a :e command or set autowrite and use :0.

If you make changes to the editor copy of a file but do not
wish to write them back, then you must give an ! after the
command you would otherwise use; this forces the editor to
discard any changes you have made. Use this carefully.

1207909

12-36 Visual Editor (vi)~Advanced

The :e command can be given a + argument to start at the
end of the file or a + n argument to start at line n. In
actuality, n may be any editor command not containing a
space, usually a scan like + /pat or + ?pat. In forming new
names to the e command, use the character % which is
replaced by the current file name or the character # which is
replaced by the alternate file name. The alternate file name is
generally the last name typed other than the current file.
Thus, if you try to do a :e and get a diagnostic that you have
not written into the file, give a :w command and then a :e #
command to redo the previous :e.

Write part of the buffer to a file by finding the lines that·
bound the range to be written using CODE-g to obtain the
line numbers. Enter these numbers after the : and before the
w, separated by ,'s. You can also mark these lines with m
and then use an address of the form 'x, 'yon the w command.

Read another file into the buffer after the current line by
using the :r command. You can similarly read in the output
from a command, just use the :r !cmd instead of a file name.

If you wish to edit a set of files in succession, give all the
names on the command line and then edit each one in turn
using the command :n. It is also possible to respecify the list
of files to be edited by giving the :0 command a list of file
names or a pattern to be expanded as you would have given
it on the initial vi command.

If you are editing large programs, you will find the :ta
command very useful. It utilizes a data base of function
names and their locations that can be created by programs
such as ctags, to quickly find a function whose name you
give. If the :ta command will require the editor to switch files,
then you must :w or abandon any changes before switching.
Repeat the :ta command without any arguments to look for
the same tag again.

Visual Editor (vi)-Advanced 12-37

More About Searching for Strings
When you are searching for strings in the file with / or ?, the
editor normally places you at the next or previous occurrence
of the string. If you are using an operator such as d, c, or y,
you may well wish to affect lines up to the line before the
line containing the pattern. You can give a search of the form

/pat/ -n

to refer to the n'th line before the next line containing pat, or
you can use + instead of - to refer to the lines after the one
containing pat. If you do not give a line offset, the editor will
affect characters up to the match place rather than whole
lines; thus use + 0 to affect to the line that matches.

You can have the editor ignore the case of words in the
searches it does by giving the command

: se Ie

The command

:se nole

turns this off.

Strings given to searches may actually be regular
expressions. If you do not want or need this facility, you should

set nomagle

1207909

12-38 Visual Editor (vi)...:....Advanced

in your EXINIT. In this case, only the characters . and $ are
special in patterns. The character \ is also then special (as it
is most everywhere in the system) and may be used to get
at the extended pattern-matching facility. It is also necessary
to use a \ before a / in a forward scan or a ? in a backward
scan. The following gives the extended forms when magic is
set:

"
$

\<

At beginning of pattern, matches beginning of
line.
At end of pattern, matches end of line.
Matches any character.

\>
[string]
["string]
[x-y]

Matches the beginning of a word.
Matches the end of a word.
Matches any single character in string.
Matches any single character not in string.
Matches any character between x and y.
Matches any number of the preceding pattern. *

If you use nomagic mode, then the ., [, and * primitives are
entered with a preceding \.

More About Input Mode
There are a number of characters you can use to make
corrections during text input mode. These are summarized in
the following table:

new window size
scroll amount
line/column number
repeat effect
CODE-h
CODE-w
GO
DELETE

CODE-d
OCODE-d
ACODE-d
CODE-v

:/?[[]]' .
CODE-d CODE-u
z G I
most of the rest
Deletes the last input character.
Deletes the last input word line.
Ends an insertion.
Interrupt an insertion, terminating it abnormally
starts a new line.
Backtabs over autoindent.
Kills all the autoindent.
Same as OCODE-d, but restores indent next line.
Ouotes the next non-printing character into the
file.

Visual Editor (vi)-Advanced 12-39

The most usual way of making corrections to input is by
typing CODE-h to correct a single character or by typing one
or more CODE-w' s to back over incorrect words. If you use #
as the erase character in the normal system, it will work like
CODE-h.

Your system kill character, normally @, CODE-x or CODE-u,
will erase all the input given on the current line. In general,
you can neither erase input back around a line boundary nor
can you erase characters you did not insert with this
insertion command. To make corrections on the previous line
after a new line has been started, press the GO key to end
the insertion, move over and make the correction, and then
return to where you were to continue. The command A that
appends at the end of the current line is often useful for
continuing.

If you wish to type in the erase or kill character (such as # or
@), then you must precede it with a \ just as you would do
at the normal system command level. A more general way of
typing non printing characters into the file is to precede them
with a CODE-v. The CODE-v echoes as a A character on
which the cursor rests. This indicates that the editor expects
you to type a control character. In fact, you may type any
character; and it will be inserted into the file at that point.

Note: This is not quite true. The implementation of the editor
does not allow the NULL (CODE-@) character to appear in files.
Also the LlNEFEED (CODE-j) character is used by the editor to
separate lines in the file, so it cannot appear in the middle of a
line. You can insert any other character, however, if you wait
for the editor to echo the A before you type the character. In
fact, the editor will treat a following letter as a request for the
corresponding control character. This is the only way to type
CODE-s or CODE-q since the system normally uses them to
suspend and resume output and never gives them to the editor
to process.

If you are using autoindent, backtab over the indent that it
supplies by typing a CODE-d. This backs up to a shiftwidth
boundary. This works only immediately after the supplied
autoindent.

1207909

12-40 Visual Editor (vi)..:..-Advanced

When using autoindent, you may wish to place a label at the
left margin of a line. The way to do this easily is to type A

and then CODE-d. The editor will move the cursor to the left
margin for one line and restore the previous indent on the
next. You can also type a 0 followed immediately by a
CODE-d if you wish to kill all the indent and not have it come
back on the next line.

Uppercase Only Terminate
If your terminal has only uppercase, you can still use vi by
using the normal system convention for typing on such a
terminal. Characters that you normally type are converted to
lowercase, and you can type uppercase letters by preceding
them with a \. The characters

) I \

are not available on such terminals, but you can escape them as

\(A\}\I\' .

These characters are represented on the display in the same
way they are typed (the \ character you give will not echo
until you type another key).

Relation Between vi and ex Editors
The vi editor is actually one mode of editing within the editor
ex. When you are running vi, you can escape to the
line-oriented editor of ex by giving the command n. All of the
: commands introduced above are available in ex. Likewise,
most ex commands can be invoked from vi using :. Just give
them without the : and then press the RETURN key.

In rare instances, an internal error may occur in vi. In this
case, you will get a diagnostic and be left in the command
mode of ex. You can then save your work and quit if you
wish by giving a command x after the : that ex prompts you
with, or you can reenter vi by giving ex a vi command.

Visual Editor (vi)-Advanced 12-41

There are a number of things that you can do more easily in
ex than in vi. Systematic changes in line-oriented material are
particularly easy. You can read the advanced editing
documents for the editor ed to find out a lot more about this
style of editing. Experienced users often mix their use of ex
command mode and vi command mode to speed the work
they are doing.

Open Mode: vi on Hardcopy Terminals and Glass tty's

If you are on a hardcopy terminal or a terminal that does not
have a cursor that can move off the bottom line, you can still
use the command set of vi, but in a different mode. When
you give a vi command, the editor will tell you that it is using
open mode. This name comes from the open command in ex,
which is used to get into the same mode.

The only difference between visual mode and open mode is
the way the text is displayed.

In open mode, the editor uses a single line window into the
file and moves backward and forward in the file causing new
lines to be displayed always below the current line. Two
commands of vi work differently in open mode: z and
CODE-r. The z command does not take parameters, but
rather draws a window of context around the current line and
then returns to the current line.

If you are on a hardcopy terminal, the CODE-r command will
retype the current line. On such terminals, the editor normally
uses two lines to represent the current line. The first line is a
copy of the line as you started to edit it, and you work on
the line below this line. When you delete characters, the
editor types a number of \'s to show the characters deleted.
The editor also reprints the current line soon after such
changes so that you can see what the line looks like again.

It is sometimes useful to use this mode on very slow
terminals that can support vi in the full screen mode. You can
do this by entering ex and using an open mode command.

1207909

12-42 Visual Editor (vi)-=-Advanced

Character Functions Summary
This summary shows the uses that the vi editor makes of
each character. Characters are presented in their order in the
ASCII character set: control characters first, most special
characters, digits, uppercase characters, and then lowercase
characters.

Each character is defined with a meaning it has as a com
mand and any meaning it has during an insert. If it has mean
ing only as a command, then only this is discussed.

CODE-@

CODE-a

CODE-b

CODE-c

CODE-d

CODE-e

CODE-f

CODE-g

CODE-h
BACKSPACE

Not a command character.
If typed as the first character of an insertion, it is replaced
with the last text inserted; and the insert terminates. Only
128 characters are saved from the last insert; if more charac
ters have been inserted, the mechanism is not available. A
CODE-@ annot be part of the file due to the editor implementation.

Unused.

Backward window. A count specifies repetition. Two lines of
continuity are kept if possible.

Unused.

As a command, it scrolls down a halfwindow of text. A count
gives the number of (logical) lines to scroll and is remembered
for future CODE-d and CODE-u commands.

During an insert, it backtabs over autoindent white space at
the beginning of a line. This white space cannot be back
spaced over.

Exposes one more line below the current screen in the file,
leaving the cursor where it is if possible.

Forward window. A count specifies repetition. Two lines of
continuity are kept if possible

Equivalent to :f, printing the current file name, whether it has
been modified, the current line number, the number of lines in
the file, and the percent of the way through the file.

Same as left arrow (see h). During an insert, it eliminates the
last input character backing over it but not erasing it. The
character remains so you can see what you typed if you wish
to type something slightly different.

Visual Editor (vi)-Advanced 12-43

CODE-i
TAB

CODE-i

CODE-k

CODE-I

CODE-m ()

CODE-n

CODE-o

CODE-p

CODE-q

CODE-r

CODE-s

1207909

Not a command character.
When inserted, it prints as some number of spaces. When the
cursor is at a tab character, it rests at the last of the spaces
that represent the tab. The spacing of tab stops is controlled
by the tabstop option.

Same as Down arrow. It moves the cursor one line down in
the same column. If the position does not exist, vi comes as
close as possible to the same column. Synonyms include i and
CODE-no

Unused.

The ASCII formfeed character that causes the screen to be
cleared and redrawn. It is useful after a transmission error, if
characters typed by a program other than the editor scramble
the screen, or after output is stopped by an interrupt.

A carriage return advances to the next line, to the first
nonwhite position in the line. Given a count, it advances that
many lines. During an insert, a causes the insert to continue
onto another line.

Same as Down Arrow. It moves the cursor one line down in
the same column. If the position does not exist, vi comes as
close as possible to the same column. Synonyms include j and
CODE-j.

Unused.

Same as Up Arrow. It moves the cursor one line up. A
synonym is k.

Not a command character.
In text input mode, CODE-q quotes the next character, the
same as CODE-v, except that some teletype drivers will eat
the CODE-q so that the editor never sees it.

Redraws the current screen eliminating logical lines not
corresponding to physical lines (lines with only a single @
character on them). On hardcopy terminals in open mode,
retypes the current line.

Unused.
Some teletype drivers use CODE-s to suspend output until
CODE-q is invoked.

Not a command character.
During an insert with autoindent set and at the beginning of
the line, it inserts shiftwidth white space.

12-44

CODE-u

CODE-v

CODE-w

CODE-x

CODE-y

CODE-z

CODE-[
GO

CODE-\

CODE-]

CODE-CODE

SPACEBAR

Visual Editor (vil-=--Advanced

Scrolls the screen up inverting CODE-d which scrolls down. A
count gives the number of (logical) lines to scroll and is
remembered for future CODE-d and CODE-u commands. The
previous scroll amount is common to both. On a dumb
terminal, CODE-u will often necessitate clearing and redrawing
the screen further back in the file.

Not a command character.
In text input mode, it quotes the next character so that it is
possible to insert nonprinting and special characters into the file.

Not a command character.
During an insert, it backs up as b would in command mode;
the deleted characters remain on the display (see CODE-h).

Unused.

Exposes one more line above the current screen leaving the
cursor where it is if possible. There is no mnemonic value for
this key; however, it is next to CODE-u.

Unused.

Cancels a partially formed command (such as a z when no
following character has yet been given), terminates inputs on
the last line (read by commands such as :, I, and 1), and
ends insertions of new text into the buffer.

If the GO key is pressed when quiescent in command state,
the editor rings the bell or flashes the screen. You can thus
press the GO key if you do not know what is happening until
the editor rings the bell. If you do not know if you are in
insert mode, press the GO key and then a and then type the
material to be input, the material will be inserted correctly
whether or not you were in insert mode when you started.

Unused.

Searches for the word that is after the cursor as a tag. It is
equivalent to typing :ta, this word, and then pressing the
RETURN key.

Equivalent to :8 #, returning to the previous position in the
last edited file, or editing a file that you specified if you got a
"No write since last changen diagnostic and do not want to
have to type the file name again. You have to do a :w before
CODE-CODE will work in this case. If you do not wish to
write the file, enter :81 # instead.

Same as Right Arrow (see I).

Visual Editor (vi)-Advanced 12-45

$

&

1207909

An operator that processes lines from the buffer with
reformatting commands. Follow ! with the object to be
processed, and then the command name terminated by
pressing the RETURN key. Doubling! and preceding it by a
count causes count lines to be filtered; otherwise, the count is
passed on to the object after the!. Thus 2! {tmt reformats
the next two paragraphs bV running them through the program
tmt. To read a file or the output of a command into the buffer
use :r. To simply execute a command use :!.

Precedes a named buffer specification. There are named
buffers 1-9 used for saving deleted text and named buffers
a-z into which you can place text.

The macro character, when followed by a number, will
substitute for a function key on terminals without function keys.
In text input mode if this is your erase character, it will delete
the last character you typed and must be preceded with a \
to insert it since it normally backs over the last input
character you gave.

Moves to the end of the current line. If the :S8 list command
is used, then the end of each line will be shown by printing a
$ after the end of the displayed text in the line. When a
count is used, the cursor advances to the end of the line
following the count. For example. 2$ advances the cursor to
the end of the following line.

Moves to the parenthesis or brace that precedes or follows
the parenthesis or brace at the current cursor position.

A synonym for :&. analogous to the 8X & command.

When followed by a'. the cursor returns to the previous
context at the beginning of a line. The previous context is set
whenever the current line is moved in a nonrelative way.
When followed by a letter (a-z). it returns to the line that
was marked with this letter with an m command at the first
nonwhite character in the line.
When used with an operator such as d. the operation takes
place over complete lines; if you use " the operation takes
place from the exact marked place to the current cursor
position within the line.

Retreats to the beginning of a sentence or to the beginning of
a LISP s-expression if the lisp option is set. A sentence ends
at a ., !. or ? followed by either the end of a line or by two
spaces. Any number of closing characters ().], .. , and ') may
appear after the ., I, or ? and before the spaces or end of
line. Sentences also begin at paragraph and section boundaries
(see { and [[). A count advances that many sentences.

12-46

*

+

/

o

Visual Editor (vi)-Advanced

Advances to the beginning of a sentence. A count repeats the
effect. See (for the definition of a sentence.

Unused.

Same as when used as a command.

Reverse of the last I, F, t, or T command, looking the other
way in the current line. Especially useful after typing too many
; characters. A count repeats the search.

Retreats to the previous line at the first nonwhite character.
This is the inverse of + and pressing the RETURN key. If the
line moved to is not on the screen, the screen is scrolled or
cleared and redrawn. If a large amount of scrolling would be
required, the screen is also cleared and redrawn with the
current line at the center.

Repeats the last command that changed the buffer. Especially
useful when deleting words or lines; you can delete some
words/lines and then type . to delete more and more
words/lines. Given a count, it passes it on to the command
being repeated. Thus after a 2dw, a 3. deletes three words.

Reads a string from the last line on the screen and scans
forward for the next occurrence of this string. The search
begins when you press the RETURN key to terminate the
pattern; the cursor moves to the beginning of the last line to
indicate that the search is in progress; the search may be
terminated by pressing the DELETE key or by backspacing
when at the beginning of the bottom line and returning the
cursor to its initial position. Searches normally wrap
end-around to find a string anywhere in the buffer.

When used with an operator, the enclosed region is normally
affected. By mentioning an offset from the line matched by
the pattern, you can force whole lines to be affected. To do
this, give a pattern with a closing / and then an offset + n
or -no

To include the / character in the search string, you must
escape it with a preceding \. A A at the beginning of the
pattern forces the match to occur at the beginning of a line
only; this speeds the search. A S at the end of the pattern
forces the match to occur at the end of a line only. More
extended pattern matching is available. Unless you set
nomagic in your .exrc file, you will have to precede the
characters ., [, *, and - in the search pattern with a 0 to
get them to work as you would expect.

Moves to the first character on the current line. Also used,
when forming numbers, after an initial 1-9.

Visual Editor (vi)-Advanced 12-47

1-9

<

>

?

@

A

B

c

D

E

F

1207909

Used to form numeric arguments to commands.

A prefix to a set of commands for file and option manipulation
and escapes to the system. Input is given on the bottom line
and terminated with a , and the command is then executed.
Return to where you were by pressing the DELETE key if you
type : accidentally.

Repeats the last single character find that used f, F, t, or T.
A count iterates the basic scan.

An operator that shifts lines left one shiftwidth, normally
eight spaces. Like all operators, it affects lines when repeated,
as in < <. Counts are passed through to the basic object,
thus 3« shifts three lines.

Reindents lines for LISP, as though they were typed in with
lisp and auto indent set.

An operator that shifts lines right one shiftwidth, normally
eight spaces. Affects lines when repeated as in ». Counts
repeat the basic object.

Scans backwards, the opposite of /. See the / description for
details on scanning.

A macro character.
If this is the kill character, you must escape it with a \ to
type it in during text input mode since it normally backs over
the input given on the current line.

Appends at the end of line, a synonym for Sa.

Backs up a word, where words are composed of nonblank
sequences, placing the cursor at the beginning of the word. A
count repeats the effect.

Changes the rest of the text on the current line; a synonym
for c$.

Deletes the rest of the text on the current line; a synonym for dS.

Moves forward to the end of a word, defined as blanks and
nonblanks, like Band W. A count repeats the effect.

Finds a single following character, backward in the current
line. A count repeats this search that many times.

12-48

G

H

J

K

L

M

N

o

P

Visual Editor (vi)-Advanced

Goes to the line number given as preceding argument or the
end of the file if no preceding count is given. The screen is
redrawn with the new current line in the center if necessary.

Same as Home arrow. Homes the cursor to the top line on
the screen. If a count is given, then the cursor is moved to
the count's line on the screen. In any case the cursor is
moved to the first nonwhite character on the line. If used as
the target of an operator, full lines are affected.

Inserts at the beginning of a line; a synonym for CODE-i.

Joins lines together, supplying appropriate white space: one
space between words, two spaces after a 0, and no spaces at
a" if the first character of the joined on line is). A count
causes that many lines to be joined rather than the default two.

Unused.

Moves the cursor to the first nonwhite character of the last
line on the screen. With a line count number, moves the cur
sor to the first nonwhite character of the indicated line from
the bottom. Operators affect whole lines when used with l.

Moves the cursor to the middle line on the screen at the first
nonwhite position on the line.

Scans for the next match of the last pattern given to / or ?
but in the reverse direction; this is the reverse of n.

Opens a new line above the current line and inputs text until
the GO key is pressed. A count can be used on dumb termi
nals to specify a number of lines to be opened; this is gener
ally obsolete as the slowopen option works better.

Puts the last deleted text back before/above the cursor. The
text goes back as whole lines above the cursor if it was de
leted as whole lines; otherwise, the text is inserted between
the characters before and at the cursor. The P character may
be preceded by a named buffer specification fIX to retrieve the
contents of the buffer; buffers 1-9 contain deleted material,
buffers a-z are available for general use.

Visual Editor (vi)-Advanced 12-49

Q

R

s

T

u

v
w

x

y

zz

[[

1207909

Quits from vi to ex command mode. In this mode, whole lines
form commands and end when the RETURN key is pressed.
You can give all the: commands; the editor supplies the: as
a prompt.

Replaces characters on the screen with characters you type
(overlay fashion). Terminates when the GO key is pressed.

Changes whole lines; a synonym for CC. A count substitutes
for that many lines. The lines are saved in the numeric buffers
and erased on the screen before the substitution begins.

Takes a single following character, locates the character be
fore the cursor in the current line, and places the cursor just
after that character. A count repeats the effect. Most useful
with operators such as d.

Restores the current line to its state before you started chang
ing it.

Unused.

Moves forward to the beginning of a word in the current line
where words are defined as sequences of blank/nonblank
characters. A count repeats the effect.

Deletes the character before the cursor. A count repeats the
effect, but only characters on the current line are deleted.

Yanks a copy of the current line into the unnamed buffer to
be put back by a later p or P; a synonym for yy. A count
yanks that many lines. May be preceded by a buffer name to
put lines in that buffer.

Exits the editor (same as :x). If any changes have been made,
the buffer is written out to the current file. Then the editor quits.

Backs up the previous section boundary. A section begins at
each macro in the sections options, normally a .NH or .SH,
and also at lines that start with a formfeed CODE-I. Lines be
ginning with { also stop [[; this makes it useful for looking
backwards, a function at a time,- in C programs. If the option
lisp is set, stops at each (at the beginning of a line and is
thus useful for moving backwards at the top level LISP objects.

12-50

\
]]

a

b

c

d

•

9

Visual Editor (vi)-Advanced

Unused.

Forward to a section boundary. See [[for a definition.

Moves to the first nonwhite position on the current line.

Unused.

When followed by a \, returns to the previous context. The
previous context is set whenever the current line is moved in
a nomelative way. When followed by a letter a-z, returns to
the position that was marked with this letter with an m
command. When used with an operator such as d, the
operation takes place from the exact marked place to the
current position within the line; if you use " the operation
takes place over complete lines.

Appends arbitrary text after the current cursor position; the
insert can continue onto multiple lines by using within the
insert. A count causes the inserted text to be replicated, but
only if the inserted text is all on one line. The insertion
terminates when the GO key is pressed.

Backs up to the beginning of a word in the current line. A
word is a sequence of alphanumerics or a sequence of special
characters. A count repeats the effect.

An operator that changes the following object replacing it with
the following input text until the GO key is pressed. If more
than part of a single line is affected, the text that is changed
away is saved in the numeric named buffers.
If only part of the current line is affected, the last character
to be changed away is marked with a $. A count causes that
many objects to be affected, thus both 3c) and c3) change
the following three sentences.

An operator that deletes the following object. If more than
part of a line is affected, the text is saved in the numeric
buffers. A count causes that many objects to be affected;
thus 3dw is the same as d3w.

Advances to the end of the next word, defined as for band
w. A count repeats the effect.

Finds the first instance of the next character following the
cursor on the current line. A count repeats the find.

Unused.

Visual Editor (vi)-Advanced 12-51

h

k

m

n

o

p

q

s

u

1207909

Same as left Arrow. Moves the cursor one character to the
left. like the other arrow keys, either h, the Left Arrow key,
or one of the synonyms (CODE-h) has the same effect. A
count repeats the effect.

Inserts text before the cursor; otherwise, like I.

Same as Down Arrow. Moves the cursor one line down in the
same column. If the position does not exist, vi comes as close
as possible to the same column. Synonyms include CODE-j and
CODE-no

Same as Up Arrow. Moves the cursor one line up. CODE-p is
a synonym.

Same as Right Arrow. Moves the cursor one character to the
right. SPACEBAR is a synonym.

Marks the current position of the cursor in the mark register
that is specified by the next character a-z. Return to this posi
tion or use with an operator using , or'.

Repeats the last / or ? scanning commands.

Opens new lines below the current line; otherwise, like O.

Puts text after/below the cursor; otherwise, like P.

Unused.

Replaces the single character at the cursor with a single char
acter you type. The new character may be a RETURN; this is
the easiest way to split lines. A count replaces each of the
following count characters with the single character given; see
R above, which is usually the more useful iteration of r.

Changes the single character under the cursor to the text that
follows until the GO key is pressed; given a count, that many
characters from the current line are changed. The last charac
ter to be changed is marked with $ as in C.

Advances the cursor up to the character before the next char
acter typed. Most useful with operator such as d and c to de
lete the characters up to a following character. You can use .
to delete more if this does not delete enough the first time.

Undoes the last change made to the current buffer. If repeat
ed, will alternate between these two states, thus is its own
inverse. When used after an insert that inserted text on more
than one line, the lines are saved in the numeric named buffers.

12-52

v

w

x

y

z

CODE·?
DELETE

Visual Editor (vi)-Advanced

Unused.

Advances to the beginning of the next word, as defined by b.

Deletes the single character under the cursor. With a count,
deletes that many characters forward from the cursor position,
but only on the current line.

An operator that yanks the following object into the unnamed
temporary buffer. If preceded by a named buffer specification,
"x, the text is placed in that buffer also. Text can be
recovered by a later p or P.

Redraws the screen with the current line placed as specified
by the following character:

RETURN Specifies the top of the screen.

Specifies the center of the screen.

Specifies the bottom of the screen.

A count may be given after the z and before the following
character to specify the new screen size for the redraw. A
count before the z gives the number of the line to place in the
center of the screen instead of the default current line.

Retreats to the beginning of the preceding paragraph. A
paragraph begins at each macro in the paragraphs option,
normally JP, .LP, .PP, .OP and .bp. A paragraph also begins
after a completely empty line and at each section boundary
(see [[).

Places the cursor on the character in the column specified by
the count.

Advances to the beginning of the next paragraph. See { for
the definition of paragraph.

Switches character from lowercase to uppercase and vise versa.

Interrupts the editor, returning it to command-accepting state.

Section 13 13-1

Text Editor (ex)

Starting the Text Editor
When invoked, ex determines the terminal type from the
TERM variable in the environment. If there is a TERMCAP
variable in the environment and the type of the terminal
described there matches the TERM variable, then that
description is used. Also if the TERMCAP variable contains a
pathname (beginning with a I), then the editor will seek the
description of the terminal in that file (rather than the default
letc/terminfo). If there is a variable EXINIT in the environment,
the editor will execute the commands in that variable;
otherwise, if there is a file .exrc in your HOME directory, ex
reads commands from that file simulating a source
command. Option setting commands placed in EXINIT or
.exrc will be executed before each editor session.

A command to enter the ex editor has the following format
(brackets, [1, indicate optional parameters).

ex [-][-v][-t tag][-r][-I][-wn][-x][-R][+commandj filename

D The most common case edits a single file with no options,
for example:

ex filename

D The - command line option suppresses all interactive-user
feedback and is useful in processing editor scripts in
command files.

D The -v option is equivalent to using vi rather than ex.

D The -t option is equivalent to an initial tag command,
editing the file containing the tag, and positioning the
editor at its definition.

D The -r option is used in recovering after an editor or
system crash, retrieving the last saved version of the
named file, or if no file is specified, typing a list of saved files.

D The -I option sets up for editing LISP setting the
showmatch and lisp options.

D The -w option sets the default window size to n and is
useful on dial-ups to start in small windows.

1207909

13-2 Text Editor (ex)

o The -x option causes ex to prompt for a key. The key is
used to encrypt and decrypt the contents of the file. The
file should already be encrypted using this same key.

o The -R option sets the readonly option at the start.

o The + command argument indicates that the editor should
begin by executing the specified command. If command is
omitted, then command defaults to $, positioning the
editor at the last line of the first file. Other useful
commands here are scanning patterns of the form / pat or
line numbers, for example, + 100 starting at line 100.

o The filename arguments indicate files to be edited.

Manipulating Files

Current File
The ex editor is normally editing the contents of a single file,
whose name is recorded in the current file name. The ex
editor performs all editing actions in a buffer (a temporary
file) into which the text of the file is initially read. Changes
made to the buffer have no effect on the file being edited
until the buffer contents are written out to the file with a write
command. After the buffer contents are written, the previous
contents of the written file are no longer accessible. When a
file is edited, its name becomes the current file name and its
contents are read into the buffer.

The current file is almost always considered to be edited.
This means that the contents of the buffer are logically
connected with the current file name, so that writing the
current buffer contents onto that file, even if it exists, is a
reasonable action. If the current file is not edited, then ex will
not normally write on it if it already exists. The file command
will say "[Not edited]" if the current file is not considered edited.

Alternate File
Each time a new value is given to the current file name, the
previous current file name is saved as the alternate file name.
Similarly, if a file is mentioned but does not become the
current file, it is saved as the alternate file name.

Text Editor (ex) 13-3

File Name Expansion
File names within the editor may be specified using the
normal shell expansion conventions. In addition, the character
% in file names is replaced by the current file name and the
character # by the alternate file name. This makes it easy to
deal alternately with two files and eliminates the need for
retyping the name supplied on an edit command after a "No
write since last change" diagnostic message is received.

Multiple Files and Named Buffers
If more than one file is given on the command line, then the
first file is edited as described above. The remaining
arguments are placed with the first file in the argument list.
The current argument list may be displayed with the args
command. The next file in the argument list may be edited
with the next command. The argument list may also be
respecified by specifying a list of names to the next
command. These names are expanded with the resulting list
of names becoming the new argument list, and ex edits the
first file on the list.

For saving blocks of text while editing and especially when
editing more than one file, ex has a group of named buffers.
These are similar to the normal buffer, except that only a
limited number of operations are available on them. The
buffers have names a through z. It is also possible to refer to
A through Z; the uppercase buffers are the same as the
lowercase but commands append to named buffers rather
than replacing if uppercase names are used.

Read-Only Mode
It is possible to use ex in the read-only mode to look at files
that you have no intention of modifying. This mode protects
you from accidently overwriting the file. Read-only mode is
on when the readonly option is set. It can be turned on with
the -R command line option, by the view command line
invocation, or by setting the readonly option. It can be
cleared by setting the noreadonly mode.

It is possible to write, even while in read-only mode, by
indicating that you really know what you are doing. You can
write to a different file or use the ! form of write.

1207909

13-4 Text Editor (ex)

Exceptional Conditions

Errors and Interrupts

When errors occur, ex (optionally) rings the terminal bell and
prints an error diagnostic. If the primary input is from a file,
editor processing will terminate. If an interrupt signal is
received, ex prints H InterruptH and returns to its command
level. If the primary input is a file, then ex will exit when this
occurs.

Recovering from Hang-ups and Crashes

If a hang-up signal is received and the buffer has been
modified since it was last written or if the system crashes,
either the editor (in the first case) or the system (after it
reboots in the second case) will attempt to preserve the
buffer. The next time you log in you should be able to
recover the work you were doing, losing at most a few lines
of changes from the last point before the hang-up or editor
crash.

To recover a file, use the -r option. For example, if you were
editing the file resume, then you should change to the
directory where you were when the crash occurred, giving
the command

ex - r resume

After checking that the retrieved file is good, write it over
the previous contents of that file.

You will normally get mail from the system telling you when
a file has been saved after a crash. The command

ex -r

will print a list of the files which have been saved for you. In
the case of a hang-up, the file will not appear in the list,
although it can be recovered.

Text Editor (ex) 13-5

Editing Modes
The ex editor has five distinct modes.

o The primary mode is the command mode. Commands are
entered in command mode when a : prompt is present and
are executed each time a complete line is sent.

o In text input mode, the ex editor gathers input lines and
places them in the file. The append, insert, and change
commands use text input mode. No prompt is printed.
This mode is left by typing a single period (.) alone at the
beginning of a line and command mode resumes.

The last three modes are open mode, visual mode (entered
by the commands of the same name), and text insertion
mode (within open and visual modes).

o The open mode allows local editing operations to be
performed on the text in the file. The open command
displays one line at a time and can be used on any terminal.

o The visual mode allows local editing operations to be
performed on the text in the file. The visual command
works on cathode ray tube (CRT) terminals with random
positioning cursors using the screen as a single window
for file editing changes.

Command Structure
Most command names are English words (initial prefixes of
the words are acceptable abbreviations). The ambiguity of
abbreviations is resolved in favor of the more commonly
used commands. As an example, the substitute command can
be abbreviated s. The shortest available abbreviation for the
set command is se.

Command Parameters

Most commands accept prefix addresses specifying the lines
in the file upon which they are to have effect. The forms of
these addresses will be discussed below. A number of
commands also may take a trailing count specifying the
number of lines to be involved in the command (counts are
rounded down if necessary). Thus the lOp command will print
the tenth line in the buffer. The delete 5 command will delete
five lines from the buffer starting with the current line.

1207909

13-6 Text Editor (ex)

Some commands take other information or parameters, the
information always being given after the command name.
Examples would be option names in a set command (set
numbe~, a file name in an edit command, a regular expression
in a substitute command, or a target address for a copy
command (1,5 copy 25).

Command Vari"ants

A number of commands have two distinct variants. The
variant form of the command is invoked by placing an !
immediately after the command name. Some of the default
variants may be controlled by options; in this case, the!
serves to toggle the default.

Flags after Commands

The characters #, p, and I may be placed after many
commands (a p or I must be preceded by a blank or tab
except in the single special case dp). In this case, the
command abbreviated by these characters is executed after
the command completes. Since ex normally prints the new
current line after each change, p is rarely necessary. Any
number of + or - characters may also be given with these
flags. If they appear, the specified offset is applied to the
current line value before the printing command is executed.

Comments

It is possible to give editor commands which are ignored.
This is useful when making complex editor scripts for which
comments are desired. The comment character is the double
quote ("). Any command line beginning with" is ignored.
Comments beginning with " may also be placed at the ends
of commands except in cases where they could be confused
as part of the text (shell escapes and the substitute and map
commands).

Text Editor (ex) 13-7

Multiple Commands Per Line
More than one command may be placed on a line by
separating each pair of commands with a I character.
However, global commands, comments, and the shell escape
(!) must be the last command on a line, as they are not
terminated by a I.

Reporting Large Changes
Most commands that change the contents of the editor
buffer give feedback if the scope of the change exceeds a
threshold given by the report option. This feedback helps to
detect undesirably large changes so that they may be quickly
and easily reversed with an undo command. After commands
with more global effect (such as global or visual), you will be
informed if the net change in the number of lines in the buffer
during this command exceeds this threshold.

Command Addressing

Addressing Primitives
The • represents the current line. Most commands leave the
current line as the last line they affect. The default address for
most commands is the current line, thus • is rarely used alone as
an address.

n The nth line in the editor buffer, lines being numbered sequentially
from 1. .

S The last line in the buffer.

" An abbreviation for 1,S. the entire buffer.

+n -n An offset relative to the current buffer line. The forms .+3, +3,
and + + + are all equivalent; if the current line is line 100, they
all address line 103.

Ipat! Scans forward for a line containing pat (a regular expression).

1207909

Scans normally wraparound the end of the buffer. If all that is
ut::>lItai I:> iu ~JIIlll lilt: Iltll\l lillt: t;ullld;lIilllj flai, i.i1t:iI tilt! tldiilllY i
may be omitted. If pat is omitted or explicitly empty, then the last
regular expression specified is located. The form V scans using
the last regular expression used in a scan. After a substitute, II
scans using the substitute's regular expression.

13-8 Text Editor (ex)

?pat? Scans backward for a line containing pat (a regular expression).
Scans normally wraparound the end of the buffer. If all that is
desired is to print the preceding line containing pat, then the
trailing? may be omitted. If pat is omitted or explicitly empty,
then the last regular expression specified is located. The form \?
scans using the last regular expression used in a scan. After a
substitute, ?? scans using the substitute's regular expression.

" 'x Before each nonrelative motion of the current line ., the previous
current line is marked with a tag, subsequently referred to as ".
This makes it easy to refer or return to this previous context.
Marks may also be established by the mark command using single
lowercase letters x and the marked lines referred to as 'x.

Combining Addressing Primitives
Addresses to commands consist of a series of addressing
primitives separated by , or ;. Such address lists are
evaluated left-to-right. When , seperates addresses, the
current line . is set to the value of the previous addressing
expression before the next address is interpreted. If more
addresses are given than the command requires, then all but
the last one or two are ignored. If the command takes two
addresses, the first addressed line must precede the second
in the buffer. Null address specifications are permitted in a
list of addresses, the default in this case is the current line (.);
thus, ,100 is equivalent to .,100. It is an error to give a prefix
address to a command which expects none.

Command Descriptions
The following form is the format for all ex commands:

address command I parameters count flags

All parts are optional; the degenerate case is the empty
command that prints the next line in the file. For sanity with
use from within visual mode, the ex editor ignores a .
preceding any command. In the following command
descriptions, the default addresses are shown in
parentheses. Note that parentheses are not part of the
command syntax.

abbreviate word rhs Abbreviation: ab

Add the named abbreviation to the current list. When in the input mode in vi, if
word is typed as a complete word, it will be changed to rhs.

Text Editor (ex) 13-9

(.) append
text

Abbreviation: a

a!
text

args

Reads the input text and places it after the specified line. After the command, .
addresses the last line input or the specified line if no lines were input. If
address 0 (zero) is given, text is placed at the beginning of the buffer.

The variant flag to append toggles the setting for the autoindent option during
the input of text.

The members of the argument list are printed with the current argument
delimited by [and].

(.,.) change count
text

Abbreviation: c

c!
text

Replaces the specified lines with the input text. The current line becomes the
last line input; if no lines were input, it is left as for a delete.

The variant toggles autoindent during the change.

(.,.) copy addr flags Abbreviation: co

A copy of the specified lines is placed after addr, which may be O. The current
line. addresses the last line of the copy. The command t is a synonym for copy.

(.,.) delete buffer count flags Abbreviation: d

1207909

Removes the specified lines from the buffer. The line after the last line deleted
becomes the current line; if the lines deleted were originally at the end, the
new last line becomes the current line. If a named buffer is specified by giving
a letter, the specified lines are saved in that buffer or appended to it if an
uppercase letter is used.

13-10

ex file

e! file

Text- Editor (ex)

Abbreviation: e

Used to begin an editing session on a new file. The editor first checks to see if
the current buffer has been modified since the last write command was issued.
If it has been, a warning is issued and the command is aborted. The command
otherwise deletes the entire contents of the editor buffer, makes the named file
the current file, and prints the new file name.

After insuring that this file is not a binary file (such as a directory), a block or
character special file (other than /dev/tty), a terminal, or a binary or executable
file (as indicated by the first word), the editor reads the file into its buffer. If
the read of the file completes without error, the number of lines and characters
read is typed. If there were any non-ASCII characters in the file they are
stripped of their non- ASCII high bits, and any null characters in the file are discarded.

If none of these errors occurred, the file is considered edited. If the trailing
newline character is missing from the last line of the input file, it will be
supplied and a complaint will be issued. This command leaves the current line
(.) at the last line read. If executed from within open or visual mode, the
current line is initially the first line of the file.

The variant form suppresses the complaint about modifications having been
made and not written from the editor buffer, thus discarding all changes which
have been made before editing the new file.

a +n file

Causes the editor to begin at line n rather than at the last line; n may also be
an editor command containing no spaces, for example, + Ipat.

file Abbreviation: f

The file command displays:

the current file name.

whether it has been modified since the last write command.

whether it is read-only mode.

the current line.

the number of lines in the buffer.

the percentage of the way through the buffer of the current line.

In the rare case that the current file is not edited, this is noted also. In this
case, you have to use the form w! to write to the file since the editor is not
sure that a write command will not destroy a file unrelated to the current
contents of the buffer.

Text Editor (ex) 13-11

fils file

The current file name is changed to the file which is considered not edited.

11,$) global I patl cmds Abbreviation: g

First marks each line among those specified which matches the given regular
expression. Then the given command list is executed with . initially set to each
marked line.

The command list consists of the remaining commands on the current input line
and may continue to multiple lines by ending all but the last such line with a \.
If cmds land possibly the trailing / delimiter) is omitted, each line matching pat
is printed. The append, insert, and cbange commands and associated input
are permitted; the . terminating input may be omitted if it would be on the last
line of the command list. The open and visual commands are permitted in the
command list and take input from the terminal.

The global command itself may not appear in cmds. The undo command is
also not permitted there since undo instead can be used to reverse the entire
global command. The options autoprint and autoindent are inhibited during a
global command land possibly the trailing I delimiter), and the value of the
report option is temporarily infinite in deference to a report for the entire global
command. Finally, the context mark (") is set to the value of . before the
global commands begin and is not changed during a global command except
perhaps by an open or visual mode within the global command.

g! I patl cmds Abbreviation: v

The variant form of a global command runs cmds at each line not matching pat.

(.) insert Abbreviation: i
text

i!
text

Places the given text before the specified line. The current line is left at the
last line input. If there were no lines input it is left at the line before the
addressed line. This command differs from append only in the placement of text.

The variant toggles autoindent during the insert.

I.,. + 1) join count flags Abbreviation: j

1207909

Places the text from a specified range of lines together on one line. White
space is adjusted at each junction to provide at least one blank character, two
if there was a . at the end of the line, or none if the first following character
is a). If there is already white space at the end of the line, the white space at
the start of the next line will be discarded.

13-12

'J J.

(.) k x

Text'Editor (ex)

The variant causes a simpler join with no white space processing. Characters in
the lines are simply concatenated.

The k command is a synonym for mark. It does not require a blank or tab
before the following letter.

(.,.) list count flags

Prints the specified lines in a more unambiguous way. Tabs are printed as
CODE-I and the end of each line is marked with a trailing $. The current line is
left at the last line printed.

map Ihs rhs

The map command is used to define macros for use in visual mode. The Ihs
should be a single character or the #n sequence (for a digit) referring to
function key n. When this character or function key is typed in visual mode, it
will be as though the corresponding rhs has been typed. On terminals without
function keys, type #n.

(.) mark x

Gives the specified line mark x, a single lowercase letter. The x must be
preceded by a blank or a tab. The addressing form 'x then addresses this line.
The current line is not affected by this command.

(.,.) move addr Abbreviation: m

next

n!

n filelist

The move command repositions the specified lines to be after addr. The first of
the moved lines becomes the current line.

Abbreviation: n

The next file from the command line argument list is edited.

The variant suppresses warnings about the modifications to the buffer not
having been written out discarding (irretrievably) any changes made.

n + command filelist

The specified filelist is expanded and the resulting list replaces the current
argument list. The first file in the new list is then edited. If command is given
(it must contain no spaces), then it is executed after editing the first such file.

(.,.) number count flags Abbreviation: # or nu

Prints each specified line preceded by its buffer line number. The current line is
left at the last line printed.

Text Editor (ex) 13-13

(.) open flags Abbreviation: a
(.) open I patl flags

Enters intraline editing open mode at each addressed line. If pat is given, then
the cursor will be placed initially at the beginning of the string matched by the
pattern. To exit this mode, use Q.

preserve

The current editor buffer is saved as though the system has just crashed. This
command is for use only in emergencies when a write command has resulted in
an error and you do not know how to save your work. After a preserve, seek help.

(.,.)print count Abbreviation: p or P

Prints the specified lines with nonprinting characters printed as control
characters CODE-x; delete (octal 177) is represented as CODE-1. The current
line is left at the last line printed.

(.)put buffer Abbreviation: pu

quit

q!

1207909

Puts back previously deleted or yanked lines. Normally used with delete to
effect movement of lines or with yank to effect duplication of lines. If no
buffer is specified, then the last deleted or yanked text is restored. No
modifying commands may intervene between the delete or yank and the put,
nor may lines be moved between files without using a named buffer. By using a
named buffer, text may be restored that was saved at any previous time.

Abbreviation: q

Causes the ex editor to terminate. No automatic write of the editor buffer to a
file is performed. However, ex issues a warning message if the file has changed
since the last write command was issued and does not quit (the ex editor will
also issue a diagnostic if there are more files in the argument list). Normally,
you will wish to save your changes and you should give a write command. If
you wish to discard them, use the ql command variant.

Guits from the editor discarding changes to the buffer without complaint.

13-14 Text" Editor (ex)

(.)read filename Abbreviation: r

Places a copy of the text of the given file in the editing buffer after the
specified line. If no filename is given, the current file name is used. The current
file name is not changed unless there is none, in which case filename becomes
the current name. The sensibility restrictions of the edit command apply here
also. !f the file buffer is empty and if there is no current name, then the ex
editor treats this as an edit command.

Address 0 (zero) is legal for this command and causes the file to be read at
the beginning of the buffer. Statistics are given as for the edit command when
the read successfully terminates. After a read command, the current line is the
last line read. However, within open and visual mode, the current line is set to
the first line read rather than the last.

(.)read !command

Reads the output of the command command into the buffer after the specified
line. This is not a variant form of the command. It is a read specifying a
command rather than a filename. A blank or tab before the ! is mandatory.

recover filename

rewind

rew!

Recovers filename from the system save area. It is used after an accidental
hang-up of the phone, a system crash (the system saves a copy of the file you
are editing only if you have made changes to the file), or a preserve command.
When you use the preserve command, you will be notified by mail when a file
is saved.

Abbreviation: rew

The argument list is rewound, and the first file in the list is edited.

Rewinds the argument list discarding any changes made to the current buffer.

set parameter

shell

With no arguments, prints those options whose values have been changed from
their defaults; with parameter all, it prints all of the option values.

Giving an option name followed by a 1 causes the current value of that option
to be printed. The 1 is unnecessary unless the option is Boolean valued.
Boolean options are given values either by the form "set option" to turn them
on or "set nooption" to turn them off. String and numeric options are assigned
via the form "set option-value."

More than one parameter may be given to set; they are interpreted left-to-right.

Abbreviation: sh

A new shell is created. When it terminates, editing resumes.

Text Editor (ex) 13-15

source filename Abbreviation: so

Reads and executes commands from the specified file. The source commands
may be nested.

(.,.)substitute jpatjrepljoptions Abbreviation: 5

count flags

On each specified line, the first instance of pattern pat is replaced by
replacement pattern repl. If the global indicator option character 9 appears, then
all instances are substituted. If the confirm indication character c appears, then
before each substitution, the line to be substituted is typed with the string to
be substituted marked with 1\ characters. By typing a y, one can cause the
substitution to be performed; any other input causes no change to take place.
After a substitute command, the current line is the last line substituted.

lines may be split by substituting newline characters into them. The newline in
repl must be escaped by preceding it with a \. Other metacharacters available
in pat and repl are described below.

(.,.) substitute options count
flags

Abbreviation: $

If pat and repl are omitted, then the last substitution is repeated. This is a
synonym for the & command.

(.,.) t addr flags

ta tag

The t command is a synonym for copy.

The focus of editing switches to the location of tag, to a different line in the
current file where it is defined, or if necessary to another file. If you have
modified the current file before giving a tag command, you must write it out;
giving another tag command, specifying no tag will reuse the previous tag.

The tag file is normally created by a program such as ctags and consists of a
number of lines with three fields separated by. blanks or tabs. The first field
gives the name of the tag, the second the name of the file where the tag
resides, and the third gives an addressing form which can be used by the editor
to find the tab. This field is usually a contextual scan using j patl to be
immune to minor changes in the file. Such scans are always performed as if
nomagic was set.

Names in the tag file must be sorted alphabetically.

unabbreviate word Abbreviation: una

Delete word from the list of abbreviations.

1207909

13-16

undo

Text Editor (ex)

Abbreviation: u

Reverses the changes made in the buffer by the last buffer editing command.

Note that global commands are considered a single command for the purpose
of undo (as are open and visual). Also, the commands write and edit which
interact with the file system cannot be undone; undo is its own inverse.

The undo command always marks the previous value of the current line (.) as
". After an undo command, the current line is the first line restored or the line
before the first line deleted if no lines were restored. For commands with more
global effect such as global and visual, the current line regains its
precommand value after an undo.

unmap Ihs

The macro expansion associated by map for Ihs is removed.

(1,$) v/pat/cmds

version

A synonym for the global command variant g!, running the specified cmds on
each line which does not match pat.

Abbreviation: VB

Prints the current version number of the editor as well as the date the editor
was last changed.

(.) visual type count flags Abbreviation: vi

Enters visual mode at the specified line. The type argument is optional and may
be -, 1\, or • as in the z command to specify the placement of the specified line
on the screen. By default, if type is omitted, the specified line is placed as the
first on the screen. A count specifies an initial window size; the default is the
value of the option window . To exit this mode, type Q.

visual filename
visual + n filename

From visual mode, this command is the same as edit.

Text Editor (ex) 13-17

(1 ,$) write filename Abbreviation: w

Write changes made back to filename, printing the number of lines and
characters written. Normally, filename is omitted and the text goes back where
it came from. If filename is specified, then text will be written to that file.

The editor writes to a file only if it is the current file and is edited, if the file
does not exist, or if the file is actually a teletype (ldev/tty, /dev/null).
Otherwise, you must give the variant form w! to force the write.

If the file does not exist, it is created. The current file name is changed only if
there is no current file name; the current line is never changed.

If an error occurs while writing the current and edited file, the editor considers
that there has been no write since last change even if the buffer had not
previously been modified.

(1 ,$) write> > filename Abbreviation: w> >

Writes the buffer contents at the end of an existing file.

w! filename

Overrides the checking of the normal writ. command and will write to any file
which the system permits.

(1,$) w!command

Writes the specified lines into command

Note that there is a difference between w! which overrides checks and w !
which writes to a command.

wq filename

Like a writ. and then a quit command.

wq! filename

The variant overrides checking on the sensibility of the writ. command, as w! does.

xit filename

If any changes have been made and not written, writes the buffer out. Then, in
any case, quits.

(.,.)yank buffer count Abbreviation: ya

Places the specified lines in the named buffer for later retrieval via put. If no
buffer name is specified, the lines go to a more volatile place (see the put
command description).

(.+ 1) z count

Prints the next count lines (default window).

1207909

13-18 Text Editor (ex)

(.) z type count

Prints a window of text with the specified line at the top. If type is -. the line
is placed at the bottom. a . causes the line to be placed in the center.

Note that forms Z= and ZA also exist; Z= places the current line in the center.
surrounds it with lines of - characters. and leaves the current line at this line.
The form zl\prints the window before z- would. The characters +, " and -
may be repeated for cumulative effect.

A count gives the number of lines to be displayed rather than double the
number specified by the scroll option. On a CRT. the screen is cleared before
display begins unless a count which is less than the screen size is given. The
current line is left at the last line printed.

! command

The remainder of the line after the ! character is sent to a shell to be executed.
Within the text of command. the characters % and # are expanded as in file
names; and the! character is replaced with the text of the previous command.
Thus. in particular. !! repeats the last such shell escape. If any such expansion
is performed. the expanded line will be echoed. The current line is unchanged
by this command.

If there has been "no write" of the buffer contents since the last change to the
editing buffer. then as a warning. a diagnostic message will be printed before
the command is executed. A single ! is printed when the command completes.

(addr, addt, ! command

($) =

Takes the specified address range and supplies it as standard input to
command. The resulting output then replaces the input lines.

Prints the line number of the addressed line. The current line is unchanged.

(.,.) > count flags
(.,.) < count flags

d

Perform intelligent shifting on the specified lines: < shifts left and > shifts
right. The quantity of shift is determined by the shiftwidth option and the
repetition of the specification character. Only white space (blanks and tabs) is
shifted. No nonwhite characters are discarded in a left shift. The current line
becomes the last line that changed due to the shifting.

An end of file from a terminal input scrolls through the file. The scroll option
specifies the size of the scroll, normally a half screen of text.

Text Editor (exl

(.+1,.+11
(.+1,.+111

13-19

An address alone causes the addressed lines to be printed. A blank line prints
the next line in the file.

(.,.1 & options count flags

Repeats the previous substitute command.

(.,.1 - options count flags

Replaces the previous regular expression with the previous replacement pattern
from a substitution.

Regular Expressions and Substitute Replacement
Patterns

Regular Expressions

A regular expression specifies a set of strings of characters.
A member of this set of strings is said to be matched by the
regular expression. The ex editor remembers two previous
regular expressions: the previous regular expression used in a
substitute command and the previous regular expression
used elsewhere (referred to as the previous scanning regular
expression). The previous regular expression can always be
referred to by a null re (j / or 11).

Magic and Nomagic

Regular expressions allowed by the ex editor are constructed
in one of two ways depending on the setting of the magic
option. The ex and vi editors default setting of magic gives
quick access to a powerful set of regular expression
metacharacters. The disadvantage of magic is that the user
must remember that these metacharacters are magic and
precede them with the \ character to use them as ordinary
characters. With the nomagic option, regular expressions are
much simpler, there being only two metacharacters. The
power of the other metacharacters is still available by
preceding the (now) ordinary character with a \.

Note: The \ is a/ways a metacharacter.

1207909

13-20 Text· Editor (ex)

The remainder of the discussion of regular expressions
assumes that the setting of this option is magic. To discern
what is true with nomagic, it suffices to remember that the
only special characters in this case will be A at the beginning
of a regular expression, $ at the end of a regular expression,
and \. With nomagic the characters - and & also lose their
special meanings to the replacement pattern of a substitute.

Basic Regular Expression Summary

The following basic constructs are used to construct magic
mode regular expressions.

char

$

\<

\>

[string]

An ordinary character matches itself. The characters A at the
beginning of a line, $ at the end of line, * as any character other
than the first, ., \, [, and - are not ordinary characters and must
be escaped (preceded) by \ to be treated as such.

At the beginning of a pattern forces the match to succeed only at
the beginning of a line.

At the end of a regular expression forces the match to succeed
only at the end of the line.

Matches any single character except the newline character.

Forces a match to occur only at the beginning of a variable or
word; i.e., either at the beginning of a line or just before a letter,
digit, or underline and after a character which is not one of these.

Forces a match to occur only at the end of a variable or word,
i.e., either the end of the line or before a character which is
neither a letter, a digit, nor the underline character.

Matches any single character in the class defined by string. Most
characters in string define themselves. A pair of characters
separated by - in string defines the set of characters collating
between the specified lower and upper bounds, thus [a-z] as a
regular expression matches any single lowercase letter.

If the first character of string is an A, then the construct matches
those characters which it otherwise would not; thus ["a-z]
matches anything but a lowercase letter (and of course a newline
character). To place any of the characters A, [, or - in string,
escape them with a preceding backslash (\).

Text Editor (ex) 13-21

Combining Regular Expression Primitives

The concatenation of two regular expressions matches the
leftmost and then longest string which can be divided, with
the first piece matching the first regular expression and
the second piece matching the second. Any of the (single
character matching) regular expressions mentioned above
may be followed by the character * to form a regular
expression which matches any number of adjacent
occurrences (including 0) of characters matched by the
regular expression it follows.

The character - may be used in a regular expression and
matches the text which defined the replacement part of the
last substitute command. A regular expression may be
enclosed between the sequences \(and \) with side effects
in the substitute replacement patterns.

Substitute Replacement Patterns

The basic metacharacters for the replacement pattern are &
and -; these are given as \& and \- when nomagic is set.
Each instance of & is replaced by the characters which the
regular expression matched. The - metacharacter stands (in
the replacement pattern) for the defining text of the previous
replacement pattern.

Other metasequences possible in the replacement pattern are
always introduced by the escape character (\). The \n
sequence is replaced by the text matched by the nth regular
subexpression enclosed between \(and \). When nested,
parenthesized sUbexpressions are present, n is determined
by counting occurrences of \(starting from the left. The
sequences \u and \1 cause the immediately following
character in the replacement to be converted to uppercase or
lowercase, respectively, if this character is a letter. The
sequences \U and \L turn such conversion on either until \E
or \8 is encountered or until the end of the replacement pattern.

1207909

13-22 Text" Editor (ex)

Option Descriptions
The set options for the ex editor are covered in Section 12.
They are included in the subsection H Options, Set, and Editor
Startup Files." "

Limitations
Editor limits that the user is likely to encounter are as
follows: 1 024 characters per line, 256 characters per global
command list, 128 characters per file name, 128 characters
in the previous inserted and deleted text in open or visual,
100 characters in a shell escape command, 63 characters in
a string valued option, and 30 characters in a tag name, and
a limit of 250,000 lines if the file is silently enforced.

The visual implementation limits to 32 the number of macros
defined with map and the total number of characters in
macros to be less than 51 2.

Section 14 14-1

Stream Editor (sed)
The stream editor (sed) is a noninteractive text editor that
runs on the CENTIX operating system. It is a lineal
descendant of the text editor (ed). Changes between ed and
sed exist because of differences between interactive and
noninteractive operations. The sed software is especially
useful in the following cases:

o Editing files too large for comfortable interactive editing.

o Editing any size file when the sequence of editing
commands is too complicated to be comfortably typed in
interactive mode.

o Performing multiple global editing functions efficiently in
one pass through the input file.

The effective size of a file that can be edited is limited only
by the requirement that input and output files fit
simultaneously into available secondary storage. This is
because only a few lines of the input file reside in memory at
one time and no temporary files are used.

Complicated editing scripts can be created separately and
given to the sed program as a command file. For complex
edits, this saves considerable typing and attendant errors.
The sed program running from a command file is more
efficient than an interactive editor even if that editor can be
driven by a prewritten script.

Principal loss of functions, compared to an interactive editor,
are include the following drawbacks:

o Lack of relative addressing (because of the line-at-a- time
operation).

o Lack of immediate verification that a command has done
what was intended.

1207909

14-2 Stream Editor (sed)

Overall Operation
The sed program by default copies the standard input to the
standard output, perhaps performing one or more editing
commands on each line before writing it to the output. This
behavior may be modified by arguments on the command line.

Command Line
The general format of an editing command is

sed [-n] [-e scrljJt] [-I sfilename] [filenames]

The general format for the script entry is

[address 1,address2] function [arguments]

o One or both addresses may be omitted.

o The function must be present.

o Any number of blanks or tabs n)ay separate addresses
from the function.

o Tab characters and spaces at the beginning of lines are
ignored.

o Arguments may be required or optional according to the
function given. Three arguments are recognized on the sed
command line:

-n Copy only those lines specified by p (print) functions or p
arguments after s (substitut~) functions.

-8 Take the next argument as an editing command.

-f Take the next argument as a file name; the file should contain
editing commands, one to a line.

Order of Application of Editing Commands
All editing commands are compiled into a form which will be
moderately efficient during the execution phase (when the
commands are actually applied to lines of the input file) and
before any input file is opened.

D Commands are compiled in the order encountered;
generally, the order they will be attempted at execution time.

D Commands are applied one at a time; the input to each
command is the output of all preceding commands.

Stream Editor (sed) 14-3

The default linear order of application of editing commands
can be changed by the t (test substitution) and b (branch)
flow-of-control commands. When the order of application is
changed by these commands, it remains true that the input
line to any command is the output of any previously applied
command.

Pattern Space
The range of pattern matches is called the pattern space.
Ordinarily, pattern space is one line of the input text, but
more than one line can be read into the pattern space by
using the next command (0).

Examples
The examples described in the following subsections use the
following standard input text, except where noted:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph. the sacred river. ran
Through caverns measureless to man
Down to a sunless sea.

The command

2q

will copy the first two lines of the input and quit. The output
will be

In Xanadu"dld Kubla Khan
A stately pleasure dome decree:

Selecting Lines for Editing
Input file lines that editing commands are to be applied can
be selected by addresses. Addresses may be either line
numbers or context addresses.

The application of a group of commands can be controlled
by one address (or address pair) by grouping commands with
braces ({ }).

1207909

14-4 Stream Editor (sed)

Line Number Addresses
A line number is a decimal integer. As each line is read from
the input, a line number counter is incremented. A line
number address matches (selects) the input line causing the
internal counter to equal the address line number. The
counter runs cumulatively through multiple input files. It is not
reset when a new input file is opened. As a special case, the
$ character matches the last line of the last input file.

Context Addresses
A context address is a pattern (a regular expression)
enclosed in slashes (jstring/). Regular expressions recognized
by the sed program are constructed as follows:

D An ordinary character is a regular expression and matches
that character.

D A circumflex ('\) at the beginning of a regular expression
matches the null character at the beginning of a line.

D A dollar sign ($) at the end of a regular expression
matches the null character at the end of a line.

D The \n character matches an embedded newline character
but not the newline character at the end of the pattern space.

D A period (.) matches any character except the terminal
newline character of the pattern space.

D A regular expression followed by an asterisk (*) matches
any number (including 0) of adjacent occurrences of the
regular expression it follows.

D A string of characters in square brackets ([]) matches
any character in the string and no others. If, however, the
first character of the string is a circumflex ("), the regular
expression matches any character except the characters in
the string and the terminal newline character of the pattern
space. The circumflex is the only metacharacter
recognized within the square brackets. If] needs to be in
the set of square brackets, it should be the first
nonmetacharacter. For example:

[] ...] Includes]

["] ...] Does not include]

Stream Editor (sed)

o A concatenation of regular expressions is a regular
expression which matches the concatenation of strings
matched by the components of the regular expression.

14-5

o A regular expression between the sequences \(and \) is
identical in effect to the unadorned regular expression but
has side effects which are described under the s command
(substitute function) below.

o The expression \d means the same string of characters
matched by an expression enclosed in \(and \) earlier in
the same pattern. The d is a single digit; the string
specified is that beginning with occurrence d of \(counting
from the left. For example, the following expression
matches a line beginning with two repeated occurrences
of the same string:

"\(. *\)\ 1

o The null regular expression standing alone (for example, 1/)
is equivalent to the last regular expression compiled.

o Special characters (" $. * [] \ I), when used as literal
characters, must be preceded by a backslash (\).

o For a context address to match, the whole pattern within
the input address must match some portion of the pattern
space.

Number of Addresses
Commands can have 0, 1, or 2 addresses. The maximum
nLimber of allowed addresses is given under each command.
It is considered an error when a command has more
addresses than the maximum allowed.

If a command has no addresses, it is applied to every line in
the input.

If a command has one address, it is applied to all lines that
match that address.

1207909

14-6 Stream Editor (sed)

If a command has two addresses, it is applied to the first line
that matches the first address and to all subsequent lines
until (and including) the first subsequent line which matches
the second address. An attempt is made on subsequent lines
to again match the first address, and the process is
repeated. Two addresses are separated by a comma. The
following indicates some command examples applied to the
standard input text and the resulting match.

/an/
/an.*an/

/"an/

/./
/\./
/"an/
/\(an\).·\1/

Functions

matches lines 1, 3, and 4

matches line 1

matches no lines

matches all lines

matches line 5

matches lines 1, 3, and 4 (number - 0)

matches line 1

Functions are named by a single alphabetic character. In the
following function summaries, the maximum number of
allowable addresses is enclosed in parentheses followed by
the single character function name. Possible arguments
follow in italics, and a description of each function is given.

Whole Line Oriented Functions
(2)d The d function deletes from the file (does not write to the output)

those lines matched by its addresses. It also has the side effect
that no further commands are attempted on the corpse of a deleted
line. As soon as the d function is executed, a new line is read from
the input; and the list of editing commands is restarted from the
beginning on the new line.

(2)n The n function reads the next line from the input replacing the
current line, and the current line is written to the output. The list
of editing commands is continued following the n command.

Stream Editor (sed) 14-7

(1)8\ text

(1)i\ text

(2)c\ text

1207909

The a function causes the text argument (text) to be written to the
output after the line matched by its address. The a command is
inherently multiline; a must appear at the end of a line, and text
may contain any number of lines. To preserve the
one-command-to-a-line fiction, interior newline characters must be
hidden by a backslash character (\) immediately preceding the
newline character. The text is terminated by the first unhidden
newline character not immediately preceded by a backslash.

Once an a function is successfully executed, text will be written to
the output regardless of what later commands do to the line that
triggered it. Even if that line is deleted, text will still be written to
the output. The text is not scanned for address matches, and no
editing commands are attempted on it. The a function does not
cause a change in the line number counter.

The i function causes the text argument (text) to be written to the
output before the line matched by its address. The i command is
inherently multiline; i must appear at the end of a line, and text
may contain any number of lines. To preserve the
one-command-to-a-line fiction, interior newline characters must be
hidden by a backslash character (\) immediately preceding the
newline character. The text is terminated by the first un hidden
newline characternot immediately preceded by a backslash.

Once an i function is successfully executed, text will be written to
the output regardless of what later commands do to the line that
triggered it. Even if that line is deleted, text will still be written to
the output. The text is not scanned for address matches; and no
editing commands are attempted on it. The i function does not
cause a change in the line number counter.

The c function deletes lines selected by its addresses and replaces
them with the lines in the text argument (text). Uke a and i, c
must be followed by a newline character hidden by a backslash;
interior newline characters in text must be hidden by backslashes.
The c command may have two addresses, and therefore select a
range of lines. If it does, all lines in the range are deleted, but only
one copy of text is written to the output, not one copy per line
deleted.

As with 8 and i, text is not scanned for address matches, and no
editing commands are attempted on it. It does not change the line
number counter. After a line has been deleted by a c function, no
further commands are attempted on the corpse. If text is appended
after a line by 8 or r functions and the line is subsequently
changed, the text inserted by the c function will be placed before
the text of the a or r functions (the r function is described later).

14-8 Stream Editor (sed)

Leading blanks and tabs will disappear, as in sed commands,
for text put in the output by these functions. To get leading
blanks and tabs into the output, the first desired blank or tab
is preceded by a backslash. The backslash will not appear in
the output. The list of editing commands, for example:

n
a\
xxxx
d

applied to the standard input produces

In Xanadu did Kubla Khan
XXXX
Wh ere A I ph. the sac red r I ve r. ran
XXXX
Down to a sunless sea.

In this particular case, the same effect would be produced by
either of the two following command lists:

or

n
1\
XXX X
d

n
c\
XXXX

Substitute Function
One important substitute function that changes parts of lines
selected by a context search within the line is

(2)s[pattern][replacement][f/ags]

The s function replaces the part of a line selected by pattern
with replacement. It can be read

Substitute for pattern, replacement

Stream Editor (sed) 14-9

Pattern

The pattern argument (pattern) contains a pattern exactly like
the patterns in addresses. The only difference between
pattern and a context address is that the context address
must be delimited by slash (/) characters; pattern may be
delimited by any character other than space or newline. By
default, only the first string matched by pattern is replaced
unless the 9 flag (described below) is invoked.

Replacement

The replacement argument (replacement) begins immediately
after the second delimiting character of pattern and must be
followed immediately by another instance of the delimiting
character (thus there are exactly three instances of the
delimiting character). The replacement is not a pattern, and
the characters that are special in patterns do not have special
meaning in replacement. Instead, other characters are special:

\& is replaced by the string matched by pattern.

\d is replaced by substring d (d is a single digit), matched by parts of
pattern and enclosed in \(and \). If nested substrings occur in pattem,
substring d is determined by counting opening delimiters (\(). As in
patterns, special characters may be made literal characters by preceding
them with a backslash (\).

Flags

The flags argument (flags) may contain the following:

9

p

1207909

Substitute replacement for all nonoverlapping instances of pattern in
the line. After a successful substitution, the scan for the next
instance of pattern begins just after the end of the inserted
characters. Characters put into the line from replacement are not
rescanned.

Print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a
substitution was actually made by the s function. If several s
functions, each followed by a p flag, successfully substitute in the
same input line, mUltiple copies of the line will be written to the
output - one for each successful substitution.

14-10 Stream Editor (sed)

w filename Write the line to a file if a successful replacement was done. The
w flag causes lines which are actually substituted by the s function
to be written to a file named by filename. If filename exists before
sed is run, it is overwritten; if not, it is created. A single space
must separate wand filename. The possibilities of multiple
somewhat different copies of one input line being written are the
same as for p. A maximum of ten different file names may be
mentioned after w flags and w functions.

Examples

The command

s/to/by/w changes

applied to the example input described earlier produces on
the output

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and on the file named changes

Through caverns measureless by man
Down by a sunless sea.

If the no-copy option is in effect, the command

s/[o,;?:]/*P&*/gp

produces

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred rlver-P,* ran
Down to a sunless sea*Po*

To illustrate the effect of the 9 flag, the command

/X/s/an/AN/p

produces (assuming no-copy mode)

In XANadu did Kubla Khan

and the command

/X/s/an/AN/gp

produces

In XANadu did Kubla KhAN

Stream Editor (sed) 14-11

Input/Output Functions
(2)p The print function writes addressed lines to the standard output

file. They are written at the time the p function is encountered
regardless of what succeeding editing commands may do to the lines.

(2)w filename The writ. function writes addressed lines to the file named by
filename. If the file previously existed, it is overwritten; if not, it is
created. The lines are written exactly as they exist when the write
function is encountered for each line regardless of what subsequent
editing commands may do to them.

Exactly one space must separate the wand filename. A maximum
of ten different files may be mentioned in write functions and w
flags after s functions combined.

(l)r filename The read function reads the contents of filename and appends them
after the line matched by the address. The file is read and appended
regardless of what subsequent editing commands do to the line that
matched its address. If r and a functions are executed on the same
line, the text from a functions and r functions is written to the
output in the order that the functions are executed. Exactly one
space must separate the r and filename. If a file mentioned by an r
function cannot be opened, it is considered a null file, not an error,
and no diagnostic is given.

1207909

Mots: Since there is a limit to the number of files that
can be opened simultaneously, care should be taken
that no more than ten files be mentioned in w
functions or flags. That number is reduced by one if
any' functions are present (only one read file is
opened at a time).

If the file note 1 has the following contents:

Note: Kubla Khan (more properly Kublat Khan;
1216-1294) was the grandson and most eminent
successor of Genghlz (Chlnglz) Khan and
founder of the Mongol dynasty In China.

then the command

/Kubla/r note1

14-12 Stream Editor (sed)

produces

In Xanadu did Kubla Khan

Note: Kubla Khan (more properly Kublal
Khan; 1216-1294) was the grandson and
most eminent successor of Genghlz
(Chlnglz) Khan and founder of the Mongol
dynasty In China.

A stately pleasure dome decree:
Where Alph. the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Multiple Input Line Functions
Three functions, all spelled with capital letters, deal with
pattern spaces containing embedded newline characters.
They are intended principally to provide pattern matches
across lines in the input.

(2)N Append the next input line to the current line in the pattern space.The
two input lines are separated by an embedded newline character. Pattern
matches may extend across embedded newline characters.

(2)0 Delete first part of the pattern space. Delete up to and including the first
newline character in the current pattern space. If the pattern space
becomes empty (the only newline character was the terminal newline
character), read another line from the input. In any case, begin the list of
editing commands again from the beginning.

(2)P Print first part of the pattern space. Print up to and including the first
newline character in the pattern space.

The P and 0 functions are equivalent to their lowercase
counterparts if there are no embedded newline characters in
the pattern space.

Stream Editor (sed) 14-13

Hold and Get Functions
Four functions save and retrieve part of the input for possible
later use.

(2)h Hold pattern space.
The h function copies contents of the pattern space into a hold area
destroying previous contents.

(2)H Hold pattern space.
The H function appends contents of the pattern space to contents of the
hold area. Former and new contents are separated by a newline character.

(2)9 Get contents of hold area.
The 9 function copies contents of the hold area into the pattern space
destroying previous contents.

(2)G Get contents of hold area.
The G function appends contents of the hold area to contents of the
pattern space. Former and new contents are separated by a newline character.

(2)x Exchange.
The exchange command interchanges contents of the pattern space and
the hold area.

The following are examples:

1 h

1s/ dld.·/I
1x
G

sl\n/ : /

when applied to the standard input text produces

In Xanadu did Kubla Khan : In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph. the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

1207909

14-14 Stream Editor (sed)

Flow of Control Functions
These functions do no editing on the input lines but control
the application of functions to the lines selected by the
address part.

(2)! Don't.

(2){

(0): label

(2)b/abel

(2)tlabel

The don't command causes the next command (written on the same
line) to be applied to those input lines not selected by the address part.

Grouping.
The grouping command causes the next set of commands t9 be
applied (or not applied) as a block to the input lines selected by the
addresses of the grouping command. The first of the commands
under control of the grouping may appear on the same line as the {
or on the next line. The group of commands is terminated by a
matching} standing on a line by itself. Groups can be nested.

Place a label.
The label function marks a place in the list of editing commands
that may be referred to by band t functions. The label argument
may be any sequence of eight or fewer characters. If two different
colon functions have identical labels, a compile time diagnostic will
be generated; and no execution attempted.

Branch to label
The branch function causes the sequence of editing commands being
applied to the current input line to be restarted immediately after
the place where a colon function with the same label was
encountered. If no colon function with the same label can be found
after all editing commands have been compiled, a compile time
diagnostic is produced; and no execution is attempted.

A b function with no label is a branch to the end of the list of
editing commands. Whatever should be done with the current input
line is done, and another input line is read. The list of editing
commands is restarted from the beginning on the new line.

Test substitutions.
The t function tests whether any successful substitutions have been
made on the current input line; if so, it branches to labet, if not, it
does nothing. The flag that indicates a successful substitution has
been executed is reset by reading a new input line and executing a
t function.

Stream Editor (sed) 14-15

Miscellaneous Functions
(1) - The - function writes to standard output the line number of the

line matched by its address.

(1) q The q function causes the specified lines to be written to the
output (if it should be), any appended or read text to be written,
and execution to be terminated.

1207909

Section 15 15-1

Big File Scanner (bfs)
Big file scanner (bfs) is similar to ed except that it is read-only
and processes much larger files. Files can be up to 1024K
bytes (the maximum possible size) and 32K lines, with up to
512 characters, including newline, per line (255 for 16-bit
machines). Bfs is usually more efficient than ed for scanning a'
file since the file is not copied to a buffer. It is most useful
for identifying sections of a large file where csplit (1) can be
used to divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is
the size of any file written with the w command. The optional
- suppresses printing of sizes. Input is prompted with * if P
and a carriage return are typed as in ed. Prompting can be
turned off again by inputting another P and carriage return.
Note that messages are given in response to errors if
prompting is turned on.

All address expressions described under ed are supported. In
addition, regular expressions may be surrounded with two
symbols besides / and 7: > indicates downward search
without wraparound, and < indicates upward search without
wraparound. There is a slight difference in mark names: only
the letters a through z may be used, and all 26 marks are
remembered.

The I, g, v, k, p, q, w, =, ! and null commands operate as
described under ed . Commands such as ---, + + +-,
+ + + =, -12, and A4p are accepted. Note that 1,10p and 1,10
will both print the first ten lines. The f command only prints
the name of the file being scanned; there is no remembered
file name. The w command is independent of output
diversion, truncation, or crunching (see the xo, xt, and xc
commands, below). The following ,additional commands are
available:

xf filename

Further commands are taken from the named filename. When
an end-of-file is reached, an interrupt signal is received or an
error occurs; reading resumes with the file containing the xf.
Xf commands may be nested to a depth of ten.

xn

List the marks currently in use (marks are set by the k command).

1207909

15-2 Big File Scanner (bfs)

xo [filename]

Further output from the p and null commands is diverted to
the named filename. If filename is missing, output is diverted
to the standard output. Note that each diversion causes
truncation or creation of the file.

: label

This positions a label in a command file. The label is
terminated by newline, and blanks between the: and the
start of the label are ignored. This command may also be
used to insert comments into a command file since labels
need not be referenced.

(.,.)xb/regular expression/label

A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following
conditions:

o Either address is not between 1 and $.

o The second address is less than the first.

o The regular expression does not match at least one line in
the specified range, including the first and last lines.

On success, . is set to the line matched and a jump is made
to label. This command is the only one that does not issue
an error message on bad addresses, so it may be used to
test whether addresses are bad before other commands are
executed. Note that the command

is an unconditional jump. The xb command is allowed only if
it is read from someplace other than a terminal. If it is read
from a pipe, only a downward jump is possible.

xt number

Output from the p and null commands is truncated to at most
number characters. The initial number is 255.

Big File Scanner (bfs) 15-3

xv[digit][spaces][value]

The variable name is the specified digit following the xv.
xv5100 or xv5 100 both assign the value 100 to the variable 5.
Xv61,100p assigns the value 1, 1 OOp to the variable 6 . To
reference a variable, put a % in front of the variable name.
For example, using the above assignments for variables 5
and 6:

l,%5p
1,%5
%6

will all print the first 1 00 lines.

9 /%5/ p

would globally search for the characters 100 and print each
line containing a match. To escape the special meaning of %,
a \ must precede it.

g/".·[cdsJ/p

could be used to match and list lines containing printf of
characters, decimal integers, or strings. Another feature of
the xv command is that the first line of output from a CENTIX
system command can be stored into a variable. The only
requirement is that the first character of value be an !. For
example:

.w junk
xv51cat junk
Irm junk
lecho "%5"
xv61expr %6 + 1

would put the current line into variable 5, print it, and
increment the variable 6 by one. To escape the special
meaning of! as the first character of value, precede it with a \.

xv7da te

stores the value Idate into variable 7.

1207909

15-4

xbz label

xbn label

Big File Scanner (bfs)

These two commands will test the last saved return code
from the execution of a CENTIX system command
(!command) or nonzero value, respectively, to the specified
label. The two examples below both search for the next five
lines containing the string size.

xv55
: I

Islze/
xv51expr %5 - 1
I I f 0"105 I. 0 e x I t 2

xbn I
xv45
: I

/size/
xv41expr %4 - 1

I If 0%4 - 0 exit 2
xbz I

xc [switch]

If switch is 1, output from the p and null commands is
crunched; if switch is 0 it is not. Without an argument, xc
reverses switch. Initially switch is set for no crunching.
Crunched output has strings of tabs and blanks reduced to
one blank and blank lines suppressed.

Section 16 16-1

Editing BTOS Files with vi and ed
If your CENTIX system is also running BTOS, the ofvi and ofed
commands allow you to edit BTOS files from your PT 1500.
These commands call up the vi and ed editors, allowing you
to edit BTOS files in the same manner as you would any
CENTIX file.

The ofvi command calls up the vi editor and ofed calls up the
ed editor. Once the BTOS file has been accessed, both
editors behave exactly as though you were editing a CENTIX file.

To use either vi or ed to access and edit a BTOS file, perform
the procedure outlined below:

1 Log onto the PT 1500 as root. (You must· have super-user
status in order to execute these commands.) "

The pound prompt (#) appears.

2 Enter ofvi (or of ed, depending on which editor you prefer to
use) followed by the full path name of the BTOS file you
want to edit. Place single quotes around the BTOS path name.

3 Press the RETURN key and the selected BTOS file appears
on your screen.

For example, to use the vi editor to edit the file
[sys]<sys>ConfigUFS.sys, you would log in as root and then
make the following entry:

"ofvl '[sys]<sys>ConflgUFS.sys'

Then press the RETURN key.

If access to the BTOS file is password protected, append a
caret (1\) to the end of the file name, followed by the re"quired
password,

1207909

Index

B
bfs, 15-1 to 15-4
address expressions, 15-1
commands, 15-1 to 15-4
description of, 15-1
big file scanner. See bfs.
BlOS files
editing, 15-1
buffer, 9-3, 11-3, 12-2
finding the last line number in, 9-8

C
conventions, vii

E
ed, 9-1 to 9-27, 10-1 to 10-33
command format, 9-1
command mode, 9-1
error messages, 9-4
escaping temporarily from, 10-32, 9-27
exiting from, 9-5
help, 9-3
input mode, 9-2
input prompt, 9-3
interrupting, 10-24
line addressing, 10-17 to 10-24

address arithmetic, 1 0-17
default line numbers, 1 0-19

line operations, 1 0-14 to 10-16
dividing, 1 0-14
joining, 10-15
rearranging, 1 0-16

metacharacters, 9-15, 9-23 to 9-26
ampersand (&), 9-25, 10-4
backslash (\), 9-23, 10-13
brackets ([)), 9-24, 10-12
circumflex (1\), 9-23, 10-8
dollar sign (), 9-24, 10-7
dot (.), 9-24, 10-4
semicolon (: L t 0-23
star ("), 1 0-9 to 1 0-11

script files, 10-33

1207909

Index-1

Index-2

ad (Cont.)
text operations

appending, 9-2, 9-26, 10-20
changing, 9-19,9-26, 10-20
context searching, 9-16, 9-27
copying lines, 10-31
deleting, 9-11 to 9-12, 9-26, 10-19
editing new file, 9-6 to 9-7, 9-26
exclude, 9-27
global, 9-15, 9-22, 9-26, 10-3, 10-24 to 10-27
inserting, 9-19, 9-26, 10-28
identifying the current line, 9-9
listing current line, 10-2, 10-19
manipulating files, 10-27 to 10-32
marking a line, 10-32
moving, 9-21, 9-26, 10-30
obtaining the last line number, 9-8
opening a new file, 10-27
printing specified lines, 9-8, 9-27, 10-2, 10-19
printing the current line number, 9-27
printing the line number addressed, 9-27
reading, 9-6, 9-27, 10-21
repeated searches, 10-18
substituting, 9-13, 9-27, 10-2, 10-20
undoing, 10-4
writing, 9-4, 9-27, 10-21, 10-29

ex, 13-1 to 13·22
addressing primitives, 13-7

combining, 13-8
changes, report of large, 13-7
command addressing, 13-7
command descriptions, 13-8

abbreviate, 13-8'
append, 13-9
args, 13-9
change, 13-9
copy, 13-9
delete, 13-9
ex, 13-10
file, 13-10
global, 13-11
insert, 13-11
join, 13-11
list, 13-12
map, 13-12
mark, 13-12
move, 13-12
next, 13-12

ex, command descriptions (Cont.)
open, 13-13
preserve, 13-13
print, 13-13
put, 13-13
quit, 13-13
read, 13-14
recover, 13-14
rewind, 13-14
set, 13-14
shell, 13-14
source, 13-15
substitute, 13-15
tag, 13-15
unabbreviate, 13-15
undo, 13-16
unmap, 13-16
version, 13-16
visual, 13-16
write, 13-17
yank, 13-17

command format, 13-1, 13-8
command parameters, 13-5
command structure, 13-5
command variants, 13-6
comments, 13-6
crashes, recovering from, 13-4
errors, 13-4
EXINIT, 13-1
expressions, regular, 13-19

combining, 13-21
summary of, 13-20

. fila name expansion, 13-3
flags, 13-6
interrupt, 13-4
limitations, 13-22
magic, 13-19
modes

append, 13-5
change, 13-5
insert, 13-5
read-only mode, 13-3

multiple commands, 13-7
nomagic, 13-19
option descriptions, 13-1, 13-21
primitives, 13-7
recovering, 13-4
replacement patterns

substitute. 13-21
terminal configuration, 13-1

1207909

Index-3

Index-4

o
ofyi, 15-1
of ed, 15-1

S
sed, 14-1 to 14-15
addresses

context, 14-4
line number, 14-4
number of, 14-5

command line format, 14-2
description of, 14-1
editing commands

order of application, 14-2
pattern space, 14-2

functions, 14-6 to 14-15
flow of control, 14-14
get, 14-13
hold, 14-13
input/output, 14-11
miscellaneous, 14-15
multiple input, 14-12
substitute, 14-8
whole line oriented, 14-6 to 14-8

lines
context addresses, 14-4
number addresses, 14-4
selecting for editing, 14-3

metacharacters, 14-4 to 14-5
backslash (\), 14-5
brackets ([]), 14-4
circumflex ("), 14-4

. dollar sign (), 14-4
dot (.), 14-4
star (*), 14-5

regular expressions, 14-4
stream editor. SIHI sed.

T
text editor. SIB ed and ex.

V
visual editor. S •• vi.
vi 11-1 to 11-112, 12-1 to 12-52
abbreviations used with, 12-31
append mode, 11-29
changing a file name, 11-4, 11-7
character functions

summary of, 12-42 to 12-52
copying text, 11-60 to 11-75, 2-14

copying characters, 11-47 to 11-67
copying lines, 11-47 to 11-63, 11-69 to 11-72
copying paragraphs, 11-47 to 11-63, 11-73 to 11-75
copying sentences, 11-47 to 11-63, 11-72 to 11-73
copying words, 11-47 to 11-63, 11-67 to 11-69
put, 11-60 to 11-75
yank, 11-60 to 11-75

counts, 12-33
deleting text 11-35 to 11-46

deleting a following word, 11-36
deleting a preceding word, 11-36
deleting the rest of the current paragraph, 11-36
deleting the rest of the current sentence, 11-36
using the delete word command, 11-39
using the undo command, 11-35

dot (.) command, 11-92 to 11-98
escaping to shell, 11-107, 12-16
exiting, 11-4, 11-5 to 11-9, 12-2
global substitutions, 11-104 to 107
input mode, 12-38 to 12-40
insert mode, 11-29
invoking, 11-2
line representation, 12-32
lisp, 12-29
macros, 12-30
map command, 12-30
moving around on the screen, 11-10 to 11-29, 12-5

backspacing, 11-18, 11-30
moving around in a file, 11-13,12-3 to 12-5,12-11 to 12-14
moving by characters, 11-12, 11-20
moving by matching character strings, ·11-13, 11-25 to 11-27
moving by paragraphs, 11-24
moving by sentences, 11-23
moving by words, 11-22
moving the cursor, . 11-1', 11-16 to 11-20
moving to a specified line, 11-14
moving within a line, 1,-1" 11-22, 12-6
returning to a previous position, 11-14, 12-17
paging, 11-10,11-15
scrolling, 11-10, 11-14 to 11-15, 12-2

1201909.

Index-5

Index-6

vi (Cont.)
moving text, 11-76 to 11-92

moving characters, 11-77 to 11-82
moving lines, 11-77, 11-83 to 11-87
moving paragraphs, 11-77, 11-88 to 11-92
moving sentences, 11-77, 11-87 to 11-88
moving words, 11-77, 11-82 to 11-83

open mode, 12-41
options, 12-20 to 24

autoindent, 12-20
autoprint, 12-20
autowrite, 12-16, 12-20
beautify, 12-12, 12-21
directory, 12-21
edcompatible, 12-21
errorbells, 12-21 .
hardtabs, 12-21
ignorecase, 12-21
lisp, 12-21
list, 12-21
magic, 12-22
mesg, 12-22
number, 12-22
open, 12-22
optimize, 12-22
paragraphs, 12-22
prompt, 12-22
readonly, 12-7
redraw, 12-22
remap, 12-22
report, 12-23
scroll, 12-23
sections, 12-23
shell, 12-23
shiftwidth, 12-23
showmatch, 12-23
slowopen, 12-23
tabstop, 12-23
taglength, 12-23
tags, 12-24
term, 12-24
terse, 12-24
warn, 12-24
windwo, 12-24
wrapscan, 12-24
wrapmargin, 12-24
writeany, 12-24

refreshing the screen, 12-17

vi (Cont.)
repeating the last action, 11-92 to 11-98
slow terminals, 12-18
special key descriptions, 11-1

GO, 11-1
RETURN, 11-1
DELETE, 11-1
CODE, 11-1

strings, 12-37
terminal configuration, 11-2, 12-1
text operations
accessing, 11-4 to 11-9

appending, 11-29 to 11-35
changing, 11-47 to 11-60
continuous text input, 12-27
copying, 11-60 to 11-76, 11-99 to 11-104
creating, 11-29
deleting, 11-35 to 11-46
editing, 12-1
inserting, 11-29 to 11-35, 12-7
list of, 12-35
marking, 12-17
recovering, 11-97 to 11-99, 12-26
undoing, 11-35, 12-11
writing, 11-5 to 11-9

1201909

Index-7

Title: __________________________ _

Form Number: ____________ _ Date:

Burroughs Corporation is interested in your comments and suggestions regarding
this manual. We will use them to improve the quality of your Product Information.

Please check type of suggestion: 0 Addition D Deletion 0 Revision
D Error

Comments:

Name
Title ___________________________ _

Company

Address ____ ~~------~=_---_=~---~~-----
Street City State Zip

Telephone Number () __________________ _
Area Code

Title: ____________________________ _

Form Number: Date:

Burroughs Corporation is interested in your comments and suggestions regarding
this manual. We will use them to improve the quality of your Product Information.

Please check type of suggestion: 0 Addition D Deletion 0 Revision
D Error

Comments: ~--------------------------

Name
Title _______________________ . ______ _

Company _________________________ _

Address ____ ~~------~=_---_=~---~~-----
Street City State Zip

Telephone Number () __________________ _
Area Code

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 817 DETROIT, MI48232

POSTAGE WILL BE PAID BY ADDRESSEE

Burroughs Corporation
Production Services - East
209 W. Lancaster Avenue
Paoli, Pa 19301 USA

ATTN: Corporate Product Information

1.1111111 I ••• I. I. • II. J .1.11.1111.1 •• 1 ••• 1.1.11111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 817 DETROIT, MI48232

POSTAGE WILL BE PAID BY ADDRESSEE

Burroughs Corporation
Production Services - East
209 W. Lancaster Avenue
Paoli, Pa 19301 USA

ATTN: Corporate Product Information

1.11.11 •• 1 ••• 1.1'1 11'111.11.1 •• 1.1 •• 1 ••• 1.1. 1 •••• 111

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

