

Hav ing both an INTEGER and a WORD type permi ts
mapping of 16-bit quantities in either of two
ways:

o as a signed value ranging from -32767 to
+32767

o as a non-negative value ranging from 0 to
65535

However, do not mix WORD and INTEGER values in an
expression (although doing so generates a warning
rather than an error message). Neither are WORD
and INTEGER values assignment-compatible.

CHAR

In this version of Pascal, CHAR values are 8-bit
ASCII values. CHAR is an ordinal type. All
256-byte values are included in the type CHAR. In
addition, SET OF CHAR is supported. Relational
comparisons use the ASCII collating sequence.

The CHR function changes any ordinal type value to
CHAR type, as long as ORO of the value is in the
range from 0 to 255.

(See the appendix entitled "Standard Character
Set" in your operating system manual for a
complete listing of the ASCII character set.)

BOOLEAN

BOOLEAN is an ordinal type wi th only two (pre
declared) values: FALSE and TRUE. The BOOLEAN
type is a special case of an enumerated type,
where ORO (FALSE) is 0 and ORO (TRUE) is 1. This
means that FALSE < TRUE.

You can redefine the identifiers BOOLEAN, FALSE,
and TRUE, but the compiler implicitly uses the
former type in Boolean expressions and in IF,
REPEAT, and WHILE statements.

No function exists for changing an ordinal type
value to a BOOLEAN type value. However, you can
achieve this effect with the ODD function for
INTEGER and WORD values, or the expression

ORO (value) <> 0

12/87 Simple Types 5-3

ENUMERATED TYPES

An enumerated type defines an ordered set of
values. These values are constants and are
enumerated by the identifiers that denote them.

Examples of enumerated type declarations:

FLAGCOLOR = (RED, WHITE, BLUE)
SUITS = (CLUB, DIAMOND, HEART, SPADE)
DOGS = (MAUDE, EMILY, BRENDAN)

The type values (for example, RED, CLUB, or MAUDE)
do not have to be declared in the CONST section or
any other section in the program.

Every enumerated type is also an ordinal type.
Identifiers for all enumerated type constants must
be unique within their declaration level.

The ORO function, at the standard level, can be
used to change enumerated values into INTEGER
values; the WRD function changes enumerated values
into WORD values.

The values obtained by applying the ORO function
to the constants of an enumerated type always
begin with zero. Thus, the values obtained for
the type FLAGCOLOR, from the example above, are as
follows:

ORO (RED) 0
ORO (WHITE) 1
ORO (BLUE) 2

The RETYPE function, at extend level, can be used
to change INTEGER or WORD values to an enumerated
type. For example:

IF RETYPE (COLOR, I) = BLUE THEN
WRITELN (' TRUE BLUE')

Enumerated types are particularly useful for
representing an abstract collection of names, such
as names for operations or commands. Modifying a
program by adding, a new value to an enumerated
type is much safer than using raw numbers, since
any arrays indexed with the type or any sets based
on the type are changed automatically.

5-4 Pascal Manual 12/87

As an extension to standard Pascal, the exponent
character can be "0" or "d" as well as "E" or "e",
for example, 12.34d56. Note that the 0 or d expo
nent character does not indicate double precision,
as it does in the FORTRAN language.

This version of Pascal performs floating point
operations using the numeric coprocessor chip the
Math service, or the Pascal run-time support
library numeric coprocessor emulator routines.
The numeric coprocessor chip is an option
installed only on some workstations. (See the
SUbsection "Linking Your Program" in section 18,
"using the Compiler," for information on how to
link you program if you have a numeric coprocessor
chip.) The Math service also is an option. See
the Math service Release Notice for inatallation
details.

Operations on two REAL4 operands are calculated in
REAL4 precision with the numeric coprocessor
emulator, but with REAL8 precision if you have a
numeric coprocessor chip installed on your
workstation.

REAL literals are converted first to REAL8 format
and then to REAL4 as necessary (for example, to be
passed as a CONST parameter or to initialize a
variable in a VALUE section). If you need actual
REAL4 constants, you must declare them as REAL4
variables (perhaps adding the REAOONLY attribute)
and assign them a constant in a VALUE section.

Both REAL4 and REAL8 values are passed to
intrinsic functions as reference (CONSTS) param
eters, rather than as value parameters. The
compiler accepts REAL expressions as CONSTS pa
rameters: it will evaluate the expression, assign
the result to a stack temporary, and pass the
address of the temporary, which is usually more
efficient than passing the value itself.

Functions that return REAL values use the long
return method. That is, the caller passes an
additional, hidden, offset address of a stack
temporary, which will receive the result. This
applies to all functions returning REAL4 or REAL8
values, both user-defined and intrinsic. (See the
SUbsection "Boolean Expressions," in section 11,
"Expressions," for a description of REAL compari
sons that produce an unordered result.)

12/87 simple Types 5-9

All results are rounded up to the nearest
representable number (with 0.5 rounded up or down
to make the next digit even.)

INTEGER4

As with INTEGER and WORD values, INTEGER4 values
are a subset of the whole numbers. INTEGER4
values occupy four bytes of storage and range from
-MAXINT4 to MAXINT4. MAXINT4 is a predeclared
constant with the value of 2,147,483,647
(2**31 - 1). The value -2,147,487,648 (-2**31) is
not a valid INTEGER4.

Unlike INTEGER and WORD, the INTEGER4 type is not
considered an ordinal type. There are no INTEGER4
subranges and INTEGER4 cannot be an array index or
the base type of a set. INTEGER4 values also
cannot be used to control FOR and CASE statements.

INTEGER4 is currently an extended numeric type, as
is REAL. Values of type INTEGER or WORD in an
expression change automatically to INTEGER4 if the
expression requires an intermediate value that is
out of the range of either INTEGER or WORD.
Values of type INTEGER4 do not change to REAL in
an expression; you must explicitly use the FLOAT4
function to make the conversion. The functions
ROUND4 and TRUNC4 are also available for
REAL/INTEGER4 conversion.

To assign
instead of
sign-extend
example:

a WORD to an INTEGER4, use BY LONG
the ORD function, because ORD will
the sign bit of the WORD. For

Integer4Var := BYLONG (0, WordExpression);

5-10 Pascal Manual 12/87

The CASE Statement

The CASE statement is similar to the conditional
statement in that it specifies that only one (or
none) of a number of statements must be executed.

CASE and OTHERWISE are reserved words.

The syntax of the CASE statement is:

CASE <index> OF
<valuel>: <statementl>;
<value2>: <statement2>;

<valueN>: <statementN>
END

where

<index>
is any expression of an ordinal type.

CAUTION

The short integer (SINT) data type must not be
used as a value for <index>. If used, results
are undefined.

<valuel>
can be any constant of the same type, or a
list of constants separated by commas, or
a subrange of the same type. The same
applies to <value2>, .• <valueN>.

Each constant in the type can be defined
by not more than one <value>.

<statement1>

12/87

can be anyone statement. (A compound
statement can be used if you want more
than one statement there). It can also be
another conditional and case statement.
This applies also to <statement2>,
<statementN>, <statement> in the example
below.

statements 12-15

At the extend level, the CASE statement can also
look as follows:

CASE <index> OF
<value1>: <statement1>;
<value2>: <statement2>;

<valueN>: <statementN>;
OTHERWISE <statement>

END

When the CASE statement is executed, <index> is
evaluated. If <index> is equal to <value1> (or,
if <value1> is a list of constants or a subrange
and <index> equals one of the constants specified
by <value1», then <statement1> is executed; the
rest of the statements are ignored. Control then
passes to the statement following the CASE
statement.

<index> value is equal to a constant
by <value2>, only <statement2> is

(The same is true for the rest of the

If the
defined
executed.
<value>'s.)

If <index> is not equal to any of the constants
defined by the <value>'s, then one of the
following occurs:

o If the OTHERWISE clause is present,
<statement> is executed, and control is passed
to the statement following the CASE statement.
An empty OTHERWISE clause forces control to
pass on to the next statement following the
CASE statement.

o If the OTHERWISE clause is not present,
results are either undefined or can generate a
run-time error. (See the discussion of the
OTHERWISE clause following the CASE example,
below.)

12-16 pascal Manual 12/87

Example:

VAR OPERATOR (PLUS,MINUS,TIMES):
NEXTCH CHAR;

BEGIN

CASE OPERATOR OF
PLUS: X:= X + Y;
MINUS: X := X - Y:
TIMES: X := X * Y

END;
{OPERATOR is the CASE index. PLUS, MINUS,}
{and TIMES are CASE constants. In this}
{instance they are all of the values}
{assumable by the enumerated variable,}
{OPERATOR.}

CASE NEXTCH OF
'A' •• 'Z', , , : WRITE ('Identifier');
, + " , - " , * " , / ' : WRITE (' operator') ;
{Commas separate CASE constants}
{and ranges of CASE constants.}
OTHERWISE

WRITE ('Unknown Character')
{that is, if any other character}

END

Note that <index> cannot be an INTEGER4, since
INTEGER4 is not an ordinal type.

The CASE syntax for <valuel> •• <valueN> is the same
as for RECORD variant declarations. In standard
Pascal, a CASE constant is one or more constants
separated by commas. At the extend level, you can
substitute a range of constants, such as 'A' •• 'Z',
for a constant. No constant value can apply to
more than one statement.

The extend level also allows the CASE statement to
end with an OTHERWISE clause. The OTHERWISE
clause contains additional statements to be
executed in the event that the CASE index value is
not in the given set of CASE constant" values. One
of two things happens if the CASE index value is
not in the set and no OTHERWISE clause is present:

o If the range-checking switch ($RANGECK) is on,
a run-time error is generated.

o If the range-checking switch is off, the
result is undefined.

12/87 statements 12-17

CAUTION

Depending on optimization, the code generated
by the compiler for a CASE statement can be
either a "jump table" or series of comparisons
(or both). If it is a jump table, a jump to
an arbitrary location in memory can occur if
the control variable is out of range and the
range-checking switch is off.

A semicolon (;) can appear after the final state
ment in the 1 ist, but is not required. The
compiler skips over a colon (:) after an OTHERWISE
and issues a warning.

REPETITIVE STATEMENTS

Repetitive statements specify repeated execution
of a statement. In standard Pascal, these include
the WHILE, REPEAT, and FOR statements.

At the extend level, there are two additional
statements, BREAK and CYCLE, for leaving or
restarting the statements being repeated. These
statements are functionally equivalent to a GOTO
but easier to use.

12-18 Pascal Manual 12/87

The WHILE statement

The WHILE statement repeats a statement zero or
more times, until a Boolean expression becomes
false. The syntax of the WHILE statement is

WHILE <expression> DO <statement>

where

<expression>
is any Boolean expression.

<statement>
is any statement.

WHILE and DO are reserved words.

<statement> is executed while <expression> is
TRUE, that is:

1. <expression> is evaluated.

2. If its value is FALSE, the execution of the
WHILE statement is terminated and control
passes to the next executable statement.

If its value is TRUE, <statement> is executed
and control returns to step 1.

12/87 statements 12-18.1

This page is intentionally left blank.

12-18.2 Pascal Manual 12/87

INDEX

This index covers both Volumes 1 and 2. sections 1
throllgh 12 are in Volume 1. sections 13 through the
Glossary are in Volume 2.

page numbers in boldface indicate the principal dis
cussion of a topic.

*, 11-4
+, 11-4

, 11-4
:=, 12-5
<, 11-7
<=, 11-7
<>, 11-7
=, 11-7
>, 11-7
>=, 11-7

ABORT, 14-12, 17-8,
19-16

A2DRQQ, 14-16
A2SRQQ, 14-16, 17-8,

19-16
ABS, 14-13
Access modes, files, 7-6

to 7-7
ACDRQQ, 14-13
ACSRQQ, 14-13
Actual parameter, 13-8
Addition operators, 11-4
Address, segmented,

13-11
Address types, 8-4 to

8-9, G-3
comparing, 11-8
predeclared, 8-6
READs, 15-16
using, 8-8 to 8-10
WRITEs, 15-23

Address variables, 10-8
to 10-9, 10-13

ADR, 8-8 to 8-10
ADRMEM, 8-6
ADS, 8-8 to 8-10
ADSMEM, 8-6
AISRQQ, 14-13
ALLHQQ, 14-4, 14-14

12/87

ALLMQQ, 14-4, 14-14
Allocation of memory,

14-3 to 14-5
AND, 11-5, 11-7
AND THEN, 12-28
Angle brackets «»,

11-10
ANSI/IEEE standard

Pascal, comparisons
to, B-1 to B-14

ANSRQQ, 14-14
ARCTAN, 14-15
Arithmetic, floating

point, 5-9, 18-8
Arithmetic functions,

14-6 to 14-8
predeclared, 14-7
writing your own, 14-8

Arrays, 6-2 to 6-15
conformant, 6-5, B-1
constant, 9-11 to 9-13
declarations, 6-2
index, 5-10, 6-2, 10-6

to 10-7
internal representa

tion, 6-26, G-4
PACKED, 6-8, 6-3
super arrays, 6-4 to

6-15, B-1, G-3
variable-length, 6-4

to 6-15
ASCII character set,

1-18
ASCII files, 7-5
ASDRQQ, 14-15
ASSIGN, 7-2, 7-9, 14-15,

15-24, 16-3
Assignment compati

bility, 4-7 to 4-8,
12-5 to 12-7

address types, 8-8
INTEGER, 5-3

Index-l

Assignment compati
bility (cont.)

pointer types, 8-3
STRINGs and LSTRINGs,

6-11
WORD, 5-3

Assignment statement,
10-5, 12-5 to 12-7

ASSRQQ, 14-15
ATDRQQ, 14-16
At sign (@), 2-7
ATSRQQ, 14-16
Attributes,

combining, 10-16,
13-18

declaring, 13-19
in modules, 16-9
procedural and func-

tional, 13-15,
13-18 to 13-27

variable, 10-10 to
10-16

video, F-9
Attributes, by name

EXTERN, 10-12 to 10-13
INTERRUPT, 13-14 to

13-26
ORIGIN, 10-13 to

10-14, 13-23 to
13-24

PORT, 10-13 to 10-14,
13-10

PUBLIC, 10-12 to
10-13, 13-20,
13-22 to 13-23

PURE, 13-20, 13-26
READONLY, 10-14 to

10-15, 13-10
STATIC, 10-11 to 10-12

$ BRAVE , 17-10
Base type, 5-2
BEGIN and END, 12-2,

12-3, 12-11
BEGOQQ, 14-10, 14-16
BEGXQQ, 14-17, 19-1,

19-8
Binary files, 7-5
Binary numbers, 9-7 to

9-8
Binary tree search ex

ample, H-11 to H-20

Index-2 Pascal Manual

Bitwise logical func-
tions, 11-5

Block, 13-1
Body, 1-4 to 1-5, 12-1
BOOLEAN type, 5-3, 11-2,

G-2
expressions, 11-7
READs, 15-16
WRITEs, 15-22

Bounds-checking, 5-6
Bounds, super array, 6-6
Braces, ({}), 2-3
Brackets, ([]), 6-24,

10-14, 13-20
BREAK statement, 12-24

to 12-25
Buffer variable, 7-3 to

7-4, 10-8
BYLONG, 14-18
BYTE, 5-6
BYWORD, 14-18

Calculating expressions,
1-12, 11-1

Calling sequence, 13-24
Carriage return, 2-1
CASE constant, 6-19,

12-4
CASE statement, 5-10,

9-4, 12-15 to 12-18
constants in, 5-5
in variant records,

6-19
Case, upper or lower,

2-1
Changing type value,

11-18
CHAR, 5-3, G-2
Character constants, 9-9

to 9-10
Characters, 2-1 to 2-7

case, 2-1
separators, 2-2 to 2-3
special uses in

Pascal, 2-1 to 2-7
underscore, 2-2
unused, 2-6 to 2-7

CHDRQQ, 14-19
CHR, 14-19
CHSRQQ, 14-19
CLOSE, 7-9, 14-19, 15-24
CNDRQQ, 14-20

12/87

CNSRQQ, 14-20
Colon and equals sign

(:=), 12-5
Command form, 18-5
Comments, 2-3 to 2-4

metacommands, 17-1
Comparison, STRINGs and

LSTRINGs, 6-12
Comparisons to other

versions of Pascal,
B-1 to B-14

Compatibility between
types, 4-5 to 4-8

address types, 8-8
pointer types, 8-3
STRINGS, 6-8

Compilands, 1-4 to 1-7,
16-1 to 16-22

accessing one from
another, 13-22

modules, 16-8 to 16-10
units, 16-11 to 16-22;

see also Modules
and units

Compiler, 18-1 to 18-17
bounds-checking, 5-6
compilands, 16-1 to

16-22
controlling source

file, 17-15 to
17-18

directives, 1-2, 17-1
to 17-27; see also
Metacommands

error messages, 19-16,
A-1 to A-51

intermediate files,
18-14

invoking, 18-5 to 18-7
language levels, 1-2
listing file control,

17-19 to 17-22
memory requirements,

18-14 to 18-15
metacommands, 1-2,

17-1 to 17-27
optimization, 5-6
options, 18-3 to 18-4
run-time routines,

19-9
structure, 18-14 to

18-15
variables, 10-1

Compound statements,
12-11 to 12-12

12/87

Computing a value, 1-12
CON CAT , 14-20
Concatenation of

strings, 9-14
Conditional statements,

12-12 to 12-18
Conformant array, 6-5,

B-1
CONST parameters, 10-15,

13-12
CONST section, 9-3, 13-3
Constant arrays, 9-11 to

9-13
Constant coercions, 4-5
Constant expressions,

5-7, 9-14 to 9-15,
11-3

Constant records, 9-11
to 9-13

Constant sets, 9-11 to
9-13

Constants, 1-14, 9-1 to
9-15

arrays, 9-11 to 9-13
CASE, 6-19, 12-4
character, 9-9 to 9-10
identifiers, 3-1, 9-1,

9-3
INTEGER, 9-6
LSTRINGs, 6-10
MAXINT, 5-1
numeric, 9-4
parameters, 13-12
predeclared, 6-10, 9-6
REAL, 5-9, 9-5
records, 9-11 to 9-13
sets, 9-11 to 9-13
structured, 9-11 to

9-13
type compatibility,

4-5
WORD, 9-6

CONSTS parameters, 8-7
to 8-8, 10-15, 13-12

Controlling the video
display, F-9 to F-29

Control variable, 12-20,
13-10

Conversion, INTEGER to
WORD, 14-10; see
also Assignment
compatibility

COPYLST, 6-13, 14-20
COPYSTR, 6-13, 14-21
COS, 14-21

Index-3

CTOS, F-1 to F-22
example showing how to

access, F-6 to F-8
structures, F-5

CYCLE statement, 12-24
to 12-25

$DEBUG, 11-14, 13-25,
17-10

Data conversion func
tions, 14-5 to 14-6

Data types; see Types
Debugging, 19-3

metacommands, 17-8 to
17-14

Declaration section,
1-4, 3-3

Declaration
arrays, 6-2
constants, 9-3
files, 7-1 to 7-2
functions, 1-9, 13-1,

13-5 to 13-7
pointer types, 8-3
procedures, 1-9, 13-1

to 13-4
variable attributes,

10-10; see also
Types

variables, 10-3
DECODE, 14-22
DELETE, 14-23
Derived type, 6-4
DGroup, 18-10, 19-6
Diagrams, syntax, C-1 to

C-13
Digits, 2-2
DIRECT access mode, 7-6

to 7-8
Directives, 13-18 to

13-27
compiler; see Meta

commands
EXTERN, 13-21 to 13-22
FORWARD, 13-19, 13-21

DISCARD, 7-9, 14-23,
15-25

DISMQQ, 14-4, 14-23
DISPOSE, 14-3, 14-24
DIV, 11-5
Division, 11-4 to 11-5
OS Allocation, 18-10

Index-4 Pascal Manual

$ ERRORS , 17-10
$END, 17-16 to 17-17
$ ENTRY , 13-25, 17-10,

19-18
EDF file, F-2
Empty record, 6-20
Empty sets, 11-11
Empty statement, 12-2,

12-5
EMSEQQ, 17-8, 19-16
ENCODE, 14-25
END, 12-3, 12-11
End-of-file, 15-6
End-of-line, 15-6
ENDOQQ, 14-10, 14-25
ENDXQQ, 14-26
ENTGQQ, 16-3, 19-8
Entry point, 19-1
Enumerated types, 5-4 to

5-5, G-2
changing to, 5-4
constants, 9-1
READs, 15-16

EOF, 14-26, 15-6
EOLN, 14-27, 15-6
Equal to (=), 11-7
ErcType, F-3
Error checking, 12-6

run-time routines,
19-2

Error handling
metacommands, 17-8 to

17-14
run-time support

library, 19-16 to
19-21

Error messages, 19-16,
A-1 to A-51

in listing file, 17-26
Escape sequences, video,

F-10 to F-16
EVAL, 11-17, 14-10,

14-27
Evaluating expressions,

11-14 to 11-17,
14-10

Examples, H-1 to H-20
accessing CTOS, F-6 to

F-8
binary tree search,

H-11 to H-20
minimal Pascal, 19-23

to 19-25

12/87

Examples (cont.)
module, 1-5, H-1 to

8-5
units, 1-5, H-6 to

8-10
video display, F-16 to

F-25
Exclamation point (!),

2-3
EXDRQQ, 14-27
EXP, 14-28
Explicit field offsets,

6-21 to 6-23
Exponents, 5-9, 9-5
Expressions, 1-12, 11-1

to 11-18
BOOLEAN, 11-7
common subexpressions,

12-7
constant, 5-7, 9-14 to

9-15, 11-3
conversion of types .

in, 11-3 to 11-6
evaluating, 11-14 to

11-17, 14-10
INTEGER, 11-3
optimization, 11-12,

11-14 to 11-17
passing the value of,

11-14 to 11-17,
13-12

set, 11-9 to 11-11
simple types, 11-2 to

11-6
type compatibility,

4-6, 5-2
using functions

within, 1-8, 11-12
to 11-13, 11-17 to
11-18

EXSRQQ, 14-27
Extensions to standard

Pascal, B-5 to B-9
EXTERN attribute, varia

bles, 10-12 to 10-13
EXTERN directive, 13-21

to 13-22
External definition

file, F-2

FCBFQQ, 7-9
Features, comparisons to

other versions of
Pascal, B-1 to B-14

12/87

Field, 6-16
identifier, 3-1, 6-16,

10-7
tag field, 6-18
values, 10-7
variables, 10-7

File
external definition

(EDF), F-2
listing format, 17-23

to 17-27
object list, 19-3
symbol, 19-3; see also

Files
File control Block,

accessing fields of,
15-24

File-oriented functions,
15-1 to 15-29

File-oriented proce
dures, 15-1 to 15-29

Files, 7-1 to 7-12
access modes, 7-6 to

7-7
ASCII, 7-5
binary, 7-5
buffer variable, 7-3

to 7-4, 10-8
declaring, 7-1 to 7-2
INPUT and OUTPUT, 7-2,

7-8, 15-11, 16-4
internal representa

tion, G-4
temporary, 15-29
text, 7-5, 15-10 to

15-12
File structure, 7-5
File system, 14-3, 15-2

to 15-10
File variable, 7-9
FILLC, 14-28
FILLSC, 14-28
FLOAT, 14-19
FLOAT4, 14-19
Floating point arith-

metic, 5-9, 18-8
FOR statement, 5-10,

12-20 to 12-24
Formal parameter, 13-8
Format, READ, 15-15
Format, WRITE, 15-20 to

15-23
Formatting, textfiles,

15-7
FORWARD, 13-19, 13-21

Index-5

Frames, video display,
F-14

FREECT, 14-4, 14-19
FREMQQ, 14-4, 14-30
Function identifier,

13-5
Functions, 1-8 to 1-9,

13-1 to 13-27
arithmetic, 14-6 to

14-8
current value, 11-17,

13-6
data conversion, 14-5

to 14-6
declaration, 1-9,

13-1, 13-5 to 13-7
designating in an

expression, 11-12
to 11-13

directives, 13-18 to
13-27

directory of available
functions, 14-1 to
14-67; see also
Functions, by name

file-oriented, 15-1 to
15-29

identifiers, 3-1
parameters, 13-8 to

13-17, G-3
predeclared, 14-1
REAL values, 5-9
using as a procedure,

11-17 to 11-18;
see also Attri
butes, by name

Functions, by name
A2DRQQ, 14-16
A2SRQQ, 14-16, 17-8,

19-16
ABS, 14-13
ACDRQQ, 14-13
ACSRQQ, 14-13
AISRQQ, 14-13
ALLHQQ, 14-4, 14-14
ALLMQQ, 14-4, 14-14
ANSRQQ, 14-14
ARCTAN, 14-15
ASDRQQ, 14-15
ASSRQQ, 14-15
ATDRQQ, 14-16
ATSRQQ, 14-16
BYLONG, 14-18
BYWORD, 14-18

Index-6 Pascal Manual

CHDRQQ, 14-19
CHR, 14-19
CHSRQQ, 14-19
CNDRQQ, 14-20
CNSRQQ, 14-20
COS, 14-21
DECODE, 14-22
DISMQQ, 14-4, 14-23
ENDOQQ, 14-10, 14-25
EOF, 14-26, 15-6
EOLN, 14-27, 15-6
EXDRQQ, 14-27
EXP, 14-28
EXSRQQ, 14-27
FLOAT, 14-19
FLOAT4, 14-19
FREECT, 14-19
FREMQQ, 14-30
GET, 14-30, 15-3
GETMQQ, 14-4, 14-30
GTYUQQ, 14-31
HIBYTE, 14-31
HIWORD, 14-31
LADDOK, 14-32
LDDRQQ, 14-32
LDSRQQ, 14-32
LMULOK, 14-33
LN, 14-33
LNDRQQ, 14-33
LNSRQQ, 14-33
LOBYTE, 14-34
LOCKED, 14-34
LOWER, 13-11, 14-35
LOWORD, 14-35
MDDRQQ, 14-37
MDSRQQ, 14-37
MEMAVL, 14-37
MNDRQQ, 14-38
MNSRQQ, 14-38
MXDRQQ, 14-41
MXSRQQ, 14-41
ODD, 14-44
ORD, 14-44
PIDRQQ, 14-46
PISRQQ, 14-46
POSITN, 14-46
PRDRQQ, 14-49
PREALLOCHEAP, 14-47
PREALLOCLONGHEAP,

14-48
PRED, 14-48
PRSRQQ, 14-49
PURE, 13-20, 13-26
RESULT, 13-6, 14-53

12/87

Functions, by name
(cont •.)

RETYPE, 11-18, 14-54
to 14-55

ROUND, 14-56
ROUND4, 14-56
SADDOK, 14-57
SCANEQ, 14-57
SCANNE, 14-58
SHDRQQ, 14-58
SHSRQQ, 14-58
SIN, 14-59
SIZEOF, 14-59
SMULOK, 14-59
SNDRQQ, 14-60
SNSRQQ, 14-60
SQR, 14-60
SQRT, 14-60
SRDRQQ, 14-60
SRSRQQ, 14-60
SUCC, 14-61
THDRQQ, 14-61
THSRQQ, 14-61
TNDRQQ, 14-61
TNSRQQ, 14-61
TRUNC, 14-62
TRUNC4, 14-62
UADDOK, 14-63
UMULOK, 14-63
UPPER, 13-11, 14-65
WRD, 5-2, 14-66

$GOTO, 17-11
GET, 14-30, 15-3
GOTO statements, 12-8 to

12-10
using BREAK and CYCLE

instead, 12-24
greater than (», 11-7
greater than or equal to

(>=), 11-7
GTYUQQ, 14-11, 14-31

Heading, 1-4
Heap, 8-1, 10-11, 11-11,

12-27, 14-3 to 14-5,
14-42 to 14-43,
19-5, B-1, G-3

Hexadecimal numbers, 9-7
to 9-8

HIBYTE, 14-31
HIWORD, 14-31

12/87

$IF, 17-16 to 17-17
$INCLUDE, 16-12, 17-17

example, H-6 to H-9
$INCONST, 17-17
$INDEXCK, 17-11
$INITCK,11-5, 13-4,

13-6, 17-11
$INTEGER, 17-6
II2MSQQ, E-1
IC column of listing

file, 17-25
Identical types, 4-5
Identifiers, 1-17, 3-1

to 3-5
case of characters

used, 2-1
constant, 3-1, 9-1,

9-3
construction of, 2-1

to 2-2
declaring, 3-3
enumerated types, 5-4
field, 6-16
function, 13-5
module, 16-8
predeclared, 3-5, D-1

to D-3
program, 16-3
restrictions, 2-1 to

2-6
scope, 3-2 to 3-4
STRING, 6-8
super type, 6-4
unit, 3-1, 16-13 to

16-14
variable, 3-1, 10-1,

10-6
IEEE real number format,

5-8
conversion of REAL

numbers from old
format to, E-1

IF statement, 12-12 to
12-14

Implementations of
units, 16-19 to
16-22: see also
Units, examples

IN, 11-10
Incompatible types: see

Compatibility be
tween types

Index expression, 10-6
to 10-7

Index-7

Index type of an array,
6-2

Initialization, 14-10,
19-8 to 19-13

metacommand, 17-11
program, 16-4
using to write your

own routines,
19-14

INPUT (file), 7-8,
15-11, 16-4

Input/output, 7-9, 15-7
to 15-9

extend level, 15-24 to
15-29

file, 7-2
predeclared files,

15-10 to 15-12
routines, 14-11
textfiles, 15-10 to

15-12, 15-24 to
15-29

INSERT, 14-32
INTEGER, 5-1 to 5-2,

11-2
assignment compati

bility, 5-3
changing to enumer

ated, 5-4
changing to WORD,

14-10
constants, 9-6
expressions, 11-3
internal representa-

tion, G-1
READs, 15-15
WRITEs, 15-21

INTEGER1, 5-2, 5-6
INTEGER2, 5-2
INTEGER4, 5-10, 11-2

assigning to WORD,
5-10

constants, 9-6
internal representa

tion, G-1
READs, 15-16
WRITEs, 15-22

Interactive I/O
Interface, 16-17 to

16-19; see also
Units, examples

Index-8 Pascal Manual

Internal representation
of data types, G-1
to G-5

arrays, 6-26
pointer types, 8-4
records, 6-26
sets, 6-26
super array, 6-6

INTERRUPT attribute,
13-14 to 13-26

Interrupt vectoring and
enabling, 13-25

Invoking the compiler,
18-5 to 18-7

ISO Pascal, comparisons
to, B-1 to B-14

JG column of listing
file, 17-25

Keyboard LED indicators,
F-9

$LINE, 17-12
$LINESIZE, 17-20
$LIST, 17-20
LABEL section, 12-3,

13-3
LADDOK, 14-32
Lazy evaluation, 15-7 to

15-9
LDDRQQ, 14-32
LDSRQQ, 14-32
LED indicators, F-9
Length access, STRINGs

and LSTRINGs, 6-12
Less than «), 11-7
Less than or equal to

«=) , 11-7
Letters, 2-1; see also

Characters
Libraries; see Run-time

support library
Line number of listing

file, 17-25

12/87

Lines, in textfiles, 2-1
Linking, 18-8 to 18-11
Listing file, 18-3

control, 17-19 to
17-22

format, 17-23 to 17-27
Literals, REAL, 5-9
LMULOK, 14-33
LN, 14-33
LNDRQQ, 14-33
LNSRQQ, 14-33
LOBYTE, 14-34
LOCKED, 14-34
Loop label, 12-4
Looping, use of BREAK

and CYCLE, 12-24
LOWER, 13-11, 14-10,

14-35
Lower case, 2-1
LOWORD, 14-35
LSTRING, 6-6, 6-9 to

6-15
comparing, 11-8
concatenation, 9-14
constants, 6-10, 9-9

to 9-10
differences from

STRINGs, 6-10
examples, 6-14 to 6-15
intrinsics, 14-9 to

14-10
parameter passing,

6-13
READs, 15-17
type compatibility,

4-5 to 4-6
WRITEs, 15-23

$MATHCK, 14-6, 17-12
$MESSAGE, 17-18
M21SQQ, E-l
MARKAS, 14-4, 14-36
MAXINT, 5-1
MAXINT4, 5-10
MDDRQQ, 14-37
MDSRQQ, 14-37
MEMAVL, 14-4, 14-37
Memory allocation, 14-3

to 14-5
Memory organization,

19-5 to 19-7

12/87

Memory requirements,
compiler, 18-14 to
18-15

Metacommands, 1-2, 17-1
to 17-27

error handling and de
bugging, 17-8 to
17-14

giving, 17-1
listing file control,

17-19 to 17-22
optimization with,

17-6
source file control,

17-15 to 17-18
summary, 17-3 to 17-5

Metacommands, by name
$BRAVE, 17-10
$DEBUG, 11-14, 13-25,

17-10
$END, 17-16 to 17-17
$ENTRY, 13-25, 17-10,

19-18
$ERRORS, 17-10
$GOTO, 17-11
$IF, 17-16 to 17-17
$INCLUDE, 16-12, 17-17
$INCONST, 17-17
$INDEXCK, 17-11
$INITCK, 11-5, 13-4,

13-6, 17-11
$INTEGER, 17-6
$LINE, 17-12
$LINESIZE, 17-20
$LIST, 17-20
$MATHCK, 17-12
$MESSAGE, 17-18
$NILCK, 17-13
$OCODE, 17-20
$PAGE, 17-20
$PAGEIF, 17-20
$PAGESIZE, 17-20
$POP, 17-18
$PUSH, 17-18
$RANGECK, 5-6, 12-6,

12-17, 13-9, 17-13
$REAL, 5-8, 17-6
$ROM, 10-4, 17-6
$RUNTIME, 13-25,

17-14, 19-19
$SIMPLE, 11-12, 12-6,

17-6
$SIZE, 17-6

Index-9

Metacommands, by name
(cont.)

$SKIP, 17-20
$SPEED, 17-6
$STACKCK, 13-25, 17-14
$SUBTITLE, 17-20
$SYMTAB, 17-21
$THEN, 17-16 to 17-17
$TITLE, 17-21
$ WARN , 17-14

Metavariables: see Meta
commands and Meta
commands, by name

Minimizing program size,
19-22 to 19-25

Minus (-), 11-4
MISO, 19-9
MNDRQQ, 14-38
MNSRQQ, 14-38
MOD, 11-5
Mode of file, 7-2
Modules, 1-4 to 1-7,

16-8 to 16-10
attributes for proce

dures and func
tions, 16-9

example, 1-5, B-1 to
B-5

identifiers, 3-1, 16-8
structure, 1-5 to 1-7
suppressing the

default PUBLIC
attribute, 13-20

MOVE, 6-13
MOVEL, 14-38
MOVER, 14-39
MOVESL, 14-40
MOVESR, 14-41
Multiplication, 11-4
MXDRQQ, 14-41
MXSRQQ, 14-41

$NILCK, 17-13
NaN, 5-8, 11-9
NEW, 14-3, 14-42 to

14-43
Nondecimal numbering,

9-7 to 9-8
NOT, 11-5, 11-7
Not a number (NaN), 5-8,

11-9
Not equal to «», 11-7

Index-10 Pascal Manual

Notation, 1-18, 2-1 to
2-7, 17-16

NULL, 6-10, 9-10
Null set, 6-24
Numbering, nondecimal,

9-7 to 9-8
Numbers, 5-1 to 5-10

legal digits, 2-2
Numeric constants, 9-4

$OCODE, 17-20
Object file, 18-5
Object list file, 18-3,

19-3
Octal numbers, 9-7 to

9-8
ODD, 14-6, 14-44
Offsets, explicit field

offsets, 6-21 to
6-23

Operand, 11-1
Operating system, acces

sing with Pascal,
F-1 to F-22

Operators, 1-12, 2-5 to
2-6, 11-1 to 11-2

AND THEN, 12-28
and types, 11-2
BOOLEAN, 11-7, 12-28
INTEGER quotient and

remainder, 11-5
OR ELSE, 12-28
precedence, 11-1,

11-15
quotient, 11-5
relational, 11-2
remainder, 11-5
sets, 11-10

Optimization, 5-6,
10-14, 12-6 to 12-7,
12-23

expressions, 11-14 to
11-17

metacommands for, 17-6
minimal run-time use,

19-22 to 19-25
Optimizer, 13-26
OR, 11-5, 11-7
OR ELSE, 12-28
ORO, 14-44

12/87

Ordinal types, 5-1 to
5-7

changing to Boolean,
5-3

changing value, 5-2
subranges, 5-5

ORIGIN attribute, 13-23
to 13-24

variables, 10-13 to
10-14

OTHERWISE statement, in
variant records,
6-19

OUTPUT (predeclared
file), 7-2, 7-8,
15-11

Overflow, 11-14, 13-25,
14-7

error messages, A-5,
A-33

Overlays, 18-16 to 18-17
run-time overlays, ,

18-8
Overview of Pascal

language, 1-1 to
1-18

$PAGE, 17-20
$PAGE, 17-20
$PAGEIF, 17-20
$PAGESIZE, 17-20
$POP, 17-18
$PUSH, 17-18
PACK, 14-6, 14-45
PACKED, 13-10
PACKED array, 6-3, 6-8
PACKED types, 8-11
PAGE, 14-45, 15-7
Panic errors, A-1
Parameters, 13-8

actual, 13-8
CONST, 10-15, 13-12
CONSTANT, 13-12
CONSTS, 8-7 to 8-8,

10-15
formal, 13-8
internal representa

tion, G-3
list, 10-3

12/87

passing, 11-15 to
11-16, 13-6 to
13-17

by reference, 13-12
to 13-13

to STRINGs and
LSTRINGs, 6-13

procedural and func
tional, 13-13 to
13-17

program, 7-8, 16-4,
H-10 to H-18

reference, 4-5 to 4-6,
8-7 to 8-8, 13-9
to 13-11

segment, 13-12
super array, 13-11
value, 13-8 to 13-9
VARS, 8-7 to 8-8

Parentheses in expres
sions, 11-15

Parts of a program, 1-4
to 1-10

TYPE section, 4-4
VALUE section, 1-13

Pascal, 1-1 to 1-18
CTOS, F-1 to F-22
command form, 18-5
comparisons to other

versions, B-1 to
B-14

compiler, 18-1 to
18-17

library; see Run-time
support library

notation, 1-18, 2-1 to
2-7, 17-16

program examples, H-1
to H-5

running a program,
18-12 to 18-13

systems programming
with, F-1 to F-22

Pascal.Lib; see Run-time
support library

PASMAX, 19-9
Passing parameters, 13-6

to 13-17
file buffer variable,

7-3
PIDRQQ, 14-46

Index-11

PISRQQ, 14-46
Plus (+), 11-4
PLYUQQ, 14-11
Pointer type, 6-5, 8-1

to 8-4
compatiblity, 8-3
declarations, 8-3
internal representa-

tion, 8-4, G-2 to
G-3

READs, 15-16
WRITEs, 15-23

Pointer variables, 10-8
to 10-9

PORT attribute, proce
dural, 13-10

PORT attribute, vari
ables, 10-13 to
10-14

portability, 1-2, 5-8,
B-1

POSITN, 14-46
PPMFQQ, 16-6
PRDRQQ, 14-49
PREALLOCHEAP, 14-5,

14-47
PREALLOCLONGHEAP, 14-5,

14-48
precision, 5-9
PRED, 14-48
Predeclared address

types, 8-6
Predeclared constants,

9-6
Predeclared functions,

14-1
Predeclared identifiers,

3-5
summary, 0-1 to 0-3

Predeclared types, 6-6
Primitives, 15-1 to

15-29
Procedural types, 8-12
Procedures, 1-8 to 1-9,

13-1 to 13-27
data conversion, 14-5

to 14-6
declaration, 13-1 to

13-4
directives, 13-18 to

13-27
directory, 14-1 to

14-67
file-oriented, 15-1 to

15-29

Index-12 Pascal Manual

file system, 14-3
identifiers, 3-1
parameters, 13-8 to

13-17, G-3
predeclared, 14-1

Procedures, by name
ABORT, 14-12, 16-8,

19-6
ASSIGN, 7-2, 7-9,

14-15, 15-24, 16-3
BEGOQQ, 14-10, 14-16
BEGXQQ, 14-17, 19-1,

10-8
CLOSE, 7-9, 14-19,

15-24
CONCAT, 14-20
COPYLST, 6-13, 14-20
COPYSTR, 6-13, 14-21
DELETE, 14-23
DISCARD, 7-9, 14-23,

15-25
DISPOSE, 14-3, 14-24
ENCODE, 14-25
ENDXQQ, 14-26
EVAL, 11-17, 14-10,

14-27
FILLC, 14-28
FILLSC, 14-28
GET, 14-30, 15-3
INSERT, 14-32
MARKAS, 14-4, 14-36
MOVE, 6-13
MOVEL, 14-38
MOVER, 14-39
MOVESL, 14-40
MOVESR, 14-41
NEW, 14-3, 14-42 to

14-43
PACK, 14-6, 14-45
PAGE,' 14-45, 15-7
PTYUQQ, 14-11, 14-49
PUT, 14-49, 15-4
READ, 14-50, 15-2,

15-13 to 15-17
READFN, 7-2, 7-9,

14-50, 15-26, 16-3
READLN, 14-51, 15-13

to 15-17
READSET, 7-9, 14-51,

15-26
RELEAS, 14-4, 14-52
RESET, 14-53, 15-4 to

15-5
RESULT, 11-17 to

11-18, 13-6, 14-53

12/87

Procedures, by name
(cont.)

REWRITE, 14-55, 15-5
SEEK, 7-9, 14-58,

15-27 to 15-28
UNLOCK, 14-6, 14-64
UNPACK, 14-64
WRITE, 14-67, 15-2,

15-18 to 15-23
WRITELN, 14-67, 15-18

to 15-23
Procedure statements,

12-7 to 12-8
Program examples; see

Examples
Program parameters, 7-8,

16-3
example, H-11 to H-20

Programs, 1-4 to 1-5
compiling, 18-1 to

18-17
entry point, 19-1
identifiers, 3-1, 16-3
initialization, 16-4
linking, 18-8 to 18-11
parameters; see Pro-

gram parameters
parts of, 16-1 to

16-22
Pascal examples, H-1

to H-5
portability, 1-2, 5-8,

B-1
running, 18-12 to

18-13
size, 19-22 to 19-25
structure, 1-3 to

1-10, 1-13, 16-1
to 16-7, 19-9

VALUE section, 10-4
VAR section, 10-3

PRSRQQ, 14-49
PTYUQQ, 14-11, 14-49
PUBLIC attribute, 13-20,

13-22 to 13-23
variables, 10-12 to

10-13
Punctuation, 2-4 to 2-5

syntax diagrams, C-13
PURE attribute, 13-20,

13-26
PUT, 14-49, 15-4

12/87

Question mark, (7), 2-7,
B-1

$RANGECK, 5-6, 12-6,
12-17, 13-9, 17-13

$REAL, 5-8, 17-6
$ROM, 10-4, 17-6
$RUNTIME, 13-25, 17-14,

19-19
Radix, 9-7 to 9-8
Range-checking, 5-6; see

$RANGECK
Range of data types; see

Internal representa
tion

READ, 14-50, 15-2, 15-13
to 15-17

formats, 15-15
READFN, 7-2, 7-9, 14-50,

15-26, 16-3
Reading, STRINGs and

LSTRINGs, 6-12
READLN, 14-51, 15-13 to

15-17
READONLY attribute,

10-14 to 10-15,
13-10

READSET, 7-9, 14-51,
15-26

REAL type, 5-8 to 5-9,
11-2

comparing, 11-9
constants, 9-5
conversion to IEEE

format, E-1
internal representa

tion, 5-8, G-1
mixing with INTEGER,

11-4
READs, 15-16
WRITEs, 15-22

REAL4, 5-8 to 5-9
REAL8, 5-8 to 5-9
Record, 6-16 to 6-23

constant, 9-11 to 9-13
empty, 6-20
explicit field off-

sets, 6-21 to 6-23
field, 6-16

Index-13

Record (cont.)
field variables and

values, 10-7
internal representa

tion, 6-26, G-4
variant record, 6-17

to 6-21, 9-4
WITH statement, 12-26

to 12-28
Recursion, 13-1
Reference parameters,

4-5 to 4-6, 8-7 to
8-8, 13-9 to 13-11

Reference types, 8-1 to
8-12, G-2 to G-3

comparing, 11-8
compatibility, 4-6
READs, 15-16
WRITEs, 15-23

Reference variables,
10-8 to 10-9

Relative address types;
see Address types
and ADR

RELEAS, 14-4, 14-52
Remainder, 11-5
REPEAT statement, 12-19

to 12-20
Repetitive statements,

12-18 to 12-25
Reserved words, 2-6

summary, 0-1 to 0-3
RESET, 14-53, 15-4 to

15-5
RESULT, 11-17 to 11-18,

13-6, 14-53
RETURN statement, 12-26
RETYPE, 11-18, 14-54 to

14-55
REWRITE, 14-55, 15-5
ROUND, 14-56
ROUND4, 14-56
Run file, 18-3, 18-12
Run-time error messages,

A-42 to A-51
Run-time routines, 19-9
Run-time support

library, 16-12, 19-1
to 19-25

architecture, 19-4 to
19-21

avoiding, 19-22 to
19-24

entry point, 19-1

Index-14 Pascal Manual

error handling, 19-16
to 19-21

initialization, 19-1,
19-8 to 19-13

memory organization,
19-5 to 19-7

program structure,
19-9

suffixes, 19-4
using initialization

and termination
points, 19-14 to
19-16

Running a program, 18-12
to 18-13

$SIMPLE, 12-6, 17-6,
11-12

$SIZE, 17-6
$SKIP, 17-20
$SPEED, 17-6
$STACKCK, 13-25, 17-14
$SUBTITLE, 17-20
$SYMTAB, 17-21
SADDOK, 14-57
SCANEQ, 14-57
SCANNE, 14-58
Scientific notation, 9-5
Scope of identifiers,

3-2 to 3-4
Screen; see Video

display
Screen attributes, F-9
SEEK, 7-9, 14-58, 15-27

to 15-28
Segment, data segment,

18-10
Segment parameters,

13-12
Segmented address,

passing as a parame
ter, 13-11

Segmented address types;
see Address types
and ADS

Semaphore, 14-11
Semicolon, 12-2
Separator characters,

2-2 to 2-3, 12-2
SEQUENTIAL access mode,

7-6 to 7-7
SET, 11-2

12/87

set constants, 5-5
set constructors, 5-5
set expressions, 11-9 to

11-11
SET of CHAR, 5-3
Sets, 6-24 to 6-26

and variables, 11-11
base type, 5-10, 6-24
bytes allocated for,

6-26
constant, 9-11 to 9-13
efficient use of, 6-25
empty, 11-11
internal representa-

tion, 6-26, G-4
null set, 6-24
operators, 11-10

SHDRQQ, 14-58
SHSRQQ, 14-58
Simple statements, 12-5

to 12-10
Simple type expressions,

11-2 to 11-6
simple types, 5-1 to

5-10
compatibility, 4-6

SIN, 14-59
sine, 14-15
SINT, 5-2, 5-6
SIZEOF, 14-4, 14-59
SMULOK, 14-59
SNDRQQ, 14-60
SNSRQQ, 14-60
Source file, metacom

mands to control,
17-15 to 17-18

SQR, 14-60
SQRT, 14-60
Square brackets ([]),

13-20
instead of BEGIN and

END, 12-3
SRDRQQ, 14-60
SRSRQQ, 14-60
Stack, 11-11, 13-1,

13-2, 14-3 to 14-5,
15-24, 18-9, 19-5

Standard ISO Pascal,
comparisons to, B-1
to B-14

Standard Pascal, exten
sions to, B-5 to B-9

Statement, CASE, 6-19
Statement, OTHERWISE,

6-19

12/87

Statement labels, iden
tifiers for, 3-1

Statements, 1-10 to
1-11, 12-1 to 12-18,
12-24 to 12-25

compound, 12-11 to
12-12

conditional, 12-12 to
12-18

empty, 12-2, 12-5
labels, 12-3 to 12-4
procedure, 12-7 to

12-8
repetitive, 12-18 to

12-25
separating, 12-2
sequential control,

12-28
simple, 12-5 to 12-10
structured, 12-1,

12-11 to 12-28
syntax, 12-2 to 12-4

Statements, by name
Assignment, 10-5, 12-5

to 12-7
BREAK, 12-24 to 12-25
CASE, 9-4, 12-15 to

12-18
CYCLE, 12-24 to 12-25
FOR, 12-20 to 12-24
GOTO, 12-3, 12-8 to

12-10
IF, 12-12 to 12-14
REPEAT, 12-19 to 12-20
RETURN, 12-26
WHILE, 12-18 to 12-19
WITH, 12-26 to 12-28

STATIC attribute, 10-11
to 10-12

status messages, A-1 to
A-51

STRINGs, 6-6 to 6-15
concatenation, 9-14
comparing, 11-8
constant, 9-9 to 9-10
examples, 6-14 to 6-15
intrinsics, 14-9 to

14-10
identifier, 6-8
type compatibility,

4-6, 6-8
constant, 6-8, 9-9 to

9-10
parameter passing,

6-9, 6-13

Index-1S

STRINGs (cont.)
READs, 15-17
variable length; see

LSTRING
WRITEs, 15-23

Structure of programs,
16-1 to 16-7

Structure, run-time,
19-9

Structured constants,
9-11 to 9-13

Structured statements,
12-11 to 12-28

Structured types, 6-1,
8-11

Structures, internal
representation, G-4

Subrange types, 5-5 to
5-7, 15-14

subranges, using con
stant expressions as
bounds, 5-7

Subroutines; see Proce
dures, Functions,
Modules, or units

Subtraction operators,
11-4

SUCC, 14-61
Super arrays, 6-4 to

6-15
compatibility, 4-5
identifiers, 3-1
predeclared, 6-6
internal representa-

tion, 6-6, G-3
parameters, 13-11
upper bound, 6-6

Super type identifiers,
6-4

Swap buffer, 18-16 to
18-17

Symbol, 17-16
Symbol file, 19-3
Syntax

diagrams, C-1 to C-13
statements, 12-2 to

12-4; see also
Notation

Systems programming, F-1
to F-22

$THEN, 17-16 to 17-17
$TITLE, 17-21
Tag field, 6-18

Index-16 Pascal Manual

Tangent, 14-15, 14-16
Temporary files, 15-29
TERMINAL access mode,

7-6 to 7-7
Termination, 19-8 to

19-13
Text files, 7-5, 15-10

to 15-12
formatting, 15-7
THDRQQ, 14-61
THSRQQ, 14-61
TNDRQQ, 14-61
TNSRQQ, 14-61
Trouble shooting, error

messages, A-1 to
A-51

TRUNC, 14-62
TRUNC4, 14-62
TYPE section, 4-4
Type compatibility,

STRINGs, 6-8
Type conversion, 11-3 to

11-6
Type declaration, 4-3 to

4-4
TYPE section, 13-3
Types, 1-14 to 1-15, 4-1

to 4-8
address, 8-4 to 8-9,

15-16, 15-23
and expressions, 5-2
array, 6-2 to 6-15
assignment compati-

bility, 4-5, 4-7
to 4-8

base, 5-2
BOOLEAN, 5-3, 11-2,

15-16, 15-22
BYTE, 5-6
CHAR, 5-3
Compatibility, 4-5 to

4-8, 6-8, 4-5 to
4-8

conversion, 14-5 to
14-6

conversion in expres
sions, 11-3 to
11-6

declaring, 4-3 to 4-4
derived type, 6-4
Enumerated, 5-4 to

5-5, 15-16, 15-22
file, 7-1 to 7-12
for variables or

values, 4-1

12/87

Types (cont.)
identical, 4-5
identifiers and, 3-1
identity of, 4-5
INTEGER, 5-1 to 5-2,

11-2, 15-15, 15-21
INTEGER1, 5-6, 5-2
INTEGER2, 5-2
INTEGER4, 5-10, 11-2,

15-16, 15-22
internal representa

tion of, G-1 to
G-5

LSTRING, 6-6, 6-9 to
6-15, 15-17, 15-23

ordinal, 5-1 to 5-7
PACKED, 8-11
pointer, 6-5, 8-1 to

8-4, 15-16, 15-23
predeclared subrange,

5-6
procedural, 8-12
REAL, 5-8 to 5-9,

11-2, 15-16, 15-22
REAL4, 5-8 to 5-9
REAL8, 5-8 to 5-9
Record, 6-16 to 6-23
Reference, 4-1, 8-1 to

8-12, 15-16, 15-23
SET, 11-2
sets, 6-24 to 6-26
simple, 4-1, 5-1 to

5-10
SINT, 5-2, 5-6
STRING, 6-6 to 6-9,

15-17, 15-23
structured, 4-1, 8-11,

6-1
sub range , 5-5 to 5-7,

15-14
super array, 6-4 to

6-15, 13-11, B-1
super, 4-4
WORD, 5-2 to 5-3,

11-0, 15-15, 15-21

UADDOK, 14-63
UMULOK, 14-63
Unary minus, 11-4
Unary plus, 11-4
Underscore (), 2-2, B-1

12/87

Units, 1-4 to 1-7, 16-11
to 16-22, 19-22

examples, 1-5, H-6 to
H-10

identifiers, 3-1,
16-13 to 16-14

in other languages,
16-21

structure, 1-6 to 1-7
using attributes with,

13-19
version number of

implementation,
16-21

Unit U, 19-9
UNLOCK, 14-64
UNPACK, 14-6, 14-64
UPPER, 13-11, 14-10,

14-65
Upper case, 2-1
USCD Pascal, comparisons

to, B-12 to B-14
USE, 16-12

Value parameters, 13-8
to 13-9

VALUE section, 1-13,
10-4, 13-3

Values, 1-13, 10-1 to
10-16

computing, 1-12
enumerated set of, 5-4
field, 10-7
in assignment state

ments, 10-5
indexed, 10-6 to 10-7

VAR, 13-9
VAR parameter, 13-12
VAR section, 10-3,

10-10, 13-3
Variables, 1-13, 10-1 to

10-16
address, 10-8 to 10-9,

10-13
assignment statement,

12-5
attributes for, 10-10

to 10-16
buffer, 10-8 to 10-9
declaring, 10-3, 10-10
field, 10-7

Index-17

Variables (cont.)
identifiers, 3-1, 10-6
in assignment state-

ments, 10-5
indexed, 10-6 to 10-7
initializing, 10-4
memory location, 10-11
multiple attributes,

10-16
names, 1-17
passing segmented ad

dress of, 8-7 to
8-8

reference, 10-8 to
10-9

segmented address,
10-13

types, 4-1
using, 10-5 to 10-10
value, 14-6; see also

variant record
variant record, 6-17 to

6-21, 9-4
empty, 6-20
labels, 5-5

VARS, 13-11
VARS parameters, 8-7 to

8-8, 13-12
Video display, F-9 to

F-29
frames, F-14

Virtual Code Management
facility, 18-16 to
18-17

Index-18 Pascal Manual

$WARN, 17-14
Warnings, A-1
WHILE, 12-18 to 12-19
WITH, 12-26 to 12-28
WORD, 5-2 to 5-3, 11-2

assigning INTEGER4 to,
5-10

assignment compati
bility, 5-3

changing to enumer
ated, 5-4

constants, 9-6
internal representa

tion, G-1
READs, 15-15
WRITEs, 15-21

Word ANDing, 5-2
Word shifting, 5-2
WRD, 5-2, 14-66
WRITE, 14-67, 15-2,

15-18 to 15-23
WRITELN, 14-67, 15-18 to

15-23
Writing, STRINGs and

LSTRINGs, 6-12

XOR, 11-5

12/87

PASCAL REFERENCE MANUAL: VOLUME 2

Copyright © 1981, 1984, 1987 by Convergent
Technologies, Inc.,

San Jose, CA. Printed in USA.

Third Edition (September 1984) A-09-008S2-01-A
Update Notice 1 (December 1987) 09-01363-01

All rights reserved. No part of this document may be reproduced, trans
mitted, stored in a retrieval system, or translated into any language without
the prior written consent of Convergent Technologies, Inc.

Convergent Technologies makes no representations or warranties with respect
to the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular puryose. Further, Convergent
Technologies reserves the right to revise this pubhcation and to make changes
from time to time in its content without being obligated to notify any person
of such revision or changes.

Convergent Technologies and NGEN are registered trademarks of
Convergent Technologies, Inc.

Art Designer, AutoBoot, Chart Designer, ClusterCard, CIusterNet,
ClusterShare, Context Manager/VM, Convergent, CT-DBMS, CT-MAIL,
CT-Net, CTIX, CTOS, CTOS/VM, DISTRIX, Document Designer, The
Operator, AWS, CWS, IWS, S/50, S/120, S1220, S/320, S/640, SI1280,

Multibus, TeleCluster, Voice/Data Services, Voice Processor,
WGS/Calendar, WGS/Desktop Manager, WGS/Mail, and X-Bus are

trademarks of Convergent Technologies, Inc.

This document was produced using the Document Designer Series.

CONTENTS: VOLUME 2

13

14

INTRODUCTION TO PROCEDURES AND
FUNCTIONS ••••••••••..•••..••.•••••••••••
PROCEDURES ••••••••••••••••••••••••••..••
FUNCTIONS •••••••••.••.••..•••••••••••...
PARAMETERS TO PROCEDURES AND FUNCTIONS ••

Value Parameters ••••••.•••.•••••••••••
Reference Parameters .•.••••••••.••••••

Super Array Parameters ••••••••••••••
Constant and Segment Parameters •••••

Procedural and Functional
Parameters ••.•••••••••..••••••••••..••

DIRECTIVES AND ATTRIBUTES .•••• ~ •••••••••
The FORWARD Directive •.•.•••••••••••••
The EXTERN Directive ••••••••••••.••••.
The PUBLIC Attribute ••.••••.••••••••••
The ORIGIN Attribute •••••••••••••••.••
The INTERRUPT Attribute .••••••••••.•••
The PURE Attribute ••••.•••••••••••.•••

AVAILABLE PROCEDURES AND FUNCTIONS •••.••
FILE SySTEM .•••••••••••••.••..••.•••••••
DYNAMIC ALLOCATION •••...•••.•.••.•.••.•.
DATA CONVERSION •••••••••••••••••••••••••
ARITHMETIC FUNCTIONS ••.•••••••••••••••••
STRING INTRINSICS ••••••••••••••••••••••.
INTEGER/WORD CONVERSION PROCEDURES ••••••
EXPRESSION EVALUATION •••••••.•••.•••.•••
INITIALIZATION, TERMINATION, AND ERROR
ROUTINES •••••••••.•••..••.••••••••••.•••
I/O ROUTINES •••••••••••••.••••••••••••••
SEMAPHORE ROUTINES ••••.••.••••••••••.•••
DIRECTORY OF PROCEDURES AND FUNCTIONS •••

ABORT •••••••••••••••••••••.••••••••••.
ABS ••••••••••••••••••.•••••.••••.••.••
ACSRQQ and ACDRQQ •••....•••••.•.•••.•.
AISRQQ ••••••••••••..•••.•.•.•••.•••••.
ALLHQQ •••••••••••••.•.•••••.••••••.•••
ALLMQQ ••••••••••••••....••..••••••••••
ANSRQQ ••••••••••••••..•.••.•••••••••••
ARCTAN •••••••••••.•••••.••••••••••••••
ASSRQQ and ASDRQQ •••...•••••••••••••.•
ASSIGN •••••••••••••••..•••••••••••••••
ATSRQQ and ATDRQQ •.•.••••••.••••••••••
A2SRQQ and A2DRQQ ..••.•..••••••••••.••
BEGOQQ •••••••••••••••.•.•••.••••••••••
BEGXQQ •••.•.•••.••.......••.•...•••••.
BYLONG ••••••••••••.......•.••.•..••••.
BYWORD .••••••••••••.•.•..••...•..•..••

12/87 contents: Volume 2

13-1
13-3
13-5
13-8
13-8
13-9

13-11
13-12

13-13
13-18
13-21
13-21
13-22
13-23
13-24
13-26

14-1
14-3
14-3
14-5
14-6
14-9

14-10
14-10

14-10
14-11
14-11
14-12
14-12
14-13
14-13
14-13
14-14
14-14
14-14
14-15
14-15
14-15
14-16
14-16
14-16
14-17
14-18
14-18

iii

iv

CHR •••••••••••••••••••••••••••••••••••
CHSRQQ and CHDRQQ •••••••••••••••••••••
CLOSE •••••••••••••••••••••••••••••••••
CNSRQQ and CNDRQQ ••••••••••••••••••••
CON CAT ••••••••••••••••••••••••••••••••
COPYLST
COPYSTR •••••••••••••••••••••••••••••••
COS •••••••••••••••••••••••••••••••••••
DECODE ••••••••••••••••••••••••••••••••
DELETE ••••••••••••••••••••••••••••••••
DISCARD •••••••••••••••••••••••••••••••
DISMQQ ••••••••••••••••••••••••••••••••
DISPOSE •••••••••••••••••••••••••••••••
DISPOSE •••••••••••••••••••••••••••••••
ENCODE ••••••••••••••••••••••••••••••••
ENDOQQ ••••••••••••••••••••••••••••••••
ENDXQQ ••••••••••••••••••••••••••••••••
EOF •.••••••••••••••••••••••••••••••••••
EOLN' ••••••••••••••••••••••••••••••••••
EVAL .•••••••••••••••••••••••••••••••••
EXSRQQ and EXDRQQ •••••••••••••••••••••
EXP •••••••••••••••••••••••••••••••••••
FILLC •••••.••••..••.•••••.•••••••••.••
FILLSC ••••••••••••••••••••••••••••••••
FLOAT •••••••••••••••••••••••••••••••••
FLOAT4 •••.••••••••••••••.•••••••••••••
FREE CT ••••••••••••••••••••••••••••••••
FREEMQQ •••••••••••••••••••••••••••••••
GET •••••••••••••••••••••••••••••••••••
GETMQQ ••••••••••••••••••••••••••••••••
GTYUQQ ••••••••••••••••••••••••••••••••
HIBYTE ••••••••••••••••••••••••••••••••
HIWORD ••••••••••••••••••••••••••••••••
INSERT .•••••••..•••.•••.••••..••••••••
I.ADDOK ••••••••••••••••••••••••••••••••
LDSRQQ and LDDRQQ •••••••••••••••••• ===
lMULOK ••••••••••••••••••••••••••••••••
LN' ••••••••••••••••••••••••••••••••••••
LN'SRQQ and LN'DRQQ •••••••••••••••••••••
LOBYTE ••••••••••••••••••••••••••••••••
LOCKED ••••••••••••••••••••••••••••••••
LOWER •••••••••••••••••••••••••••••••••
LOWORD ••••••••••••••••••••••••••••••••
MARKAS ••••••••••••••••••••••••••••••••
MDSRQQ and MDDRQQ •••••••••••••••••••••
MEMA VL ••••••••••••••••••••••••••••••••
MNSRQQ and MNDRQQ •••••••••••••••••••••
MOVEL •••••••••••••••••••••••••••••••••
MOVER •••••••••••••••••••••••••••••••••
MOVESL ••••••••••••••••••••••••••••••••
MOVESR ••••••••••••••••••••••••••••••••
MXSRQQ and MXDRQQ •••••••••••••••••••••

Pascal Manual

14-19
14-19
14-19
14-20
14-20
14-20
14-21
14-21
14-22
14-23
14-23
14-23
14-24
14-24
14-25
14-25
14-26
14-26
14-27
14-27
14-27
14-28
14-28
14-28
14-29
14-29
14-29
14-30
14-30
14-30
14-31
14-31
14-31
14-32
14-32
14-32
14-33
14-33
14-33
14-34
14-34
14-35
14-35
14-36
14-37
14-37
14-38
14-38
14-39
14-40
14-41
14-41

12/87

19 aUN TIME AND DEBUGGING ••••••••••••••••••
OVERVIEW OF THE PASCAL RUN TIME •••••••••
DEBUGGING .••••••••.•••••••••.••••.•..•••
RUN-TIME ARCHITECTURE •••••••••.••.••••••

Run-Time Routines ••••••••••••...••••••
Memory Organization ••••••••.•..•••••••

Initialization and Termination .•••••••••
Machine Level Initialization ••.•.•.•.•
Program Level Initialization •.••••••••
Program Termination ..••••••••.••••••••
Using the Initialization and
Termination Points in Your Program .•.•

Error Handl ing .•.•••••••••••••••••...•••
Machine Error Context •••••••••••••••••
Source Error Context ••••••••••••••••••

AVOIDING THE USE OF RUN-TIME ROUTINES •••
Examples •.••••••••••••••••.••••.••••••

Example 1: Min.Pas ••••••••••••••..••
Example 2: Max.Pas ••••••••••••••••••

APPENDIX A: COMPILER ERROR MESSAGES ••••••••

APPENDIX B: COMPARISONS TO THE ISO STANDARD
AND OTHER PASCALS ••••••••••.•.•

APPENDIX C: PASCAL SYNTAX DIAGRAMS •••••••••

APPENDIX D: SUMMARY OF RESERVED WORDS AND
PREDECLARED IDENTIFIERS ••••••••

APPENDIX E: CONVERSION TO AND FROM IEEE
FORMAT ...••••••••••••••••••.•••

APPENDIX F: USING PASCAL AS A SYSTEMS
PROGRAMMING LANGUAGE .•••••..•••

APPENDIX G: INTERNAL REPRESENTATIONS OF
DATA TyPES ..•••••••.•••••.•.•..

APPENDIX H: PROGRAMMING EXAMPLES .••••..••..

19-1
19-1
19-3
19-4
19-4
19-5
19-8

19-10
19-11
19-13

19-14
19-16
19-19
19-20
19-22
19-23
19-23
19-25

A-I

B-1

C-l

0-1

E-l

F-l

G-l

H-l

GLOSSARY. • • • • • • • . • • . • . . • . • • • • • • • • • • • • • Glossary-l

INDEX Index-l

12/87 contents: Volume 2 vii

LIST OF FIGURES

Figure Page

16-1. A unit •••••.••.•••••••••••.•.••••••• 16-11
16-2. unit with File X.INT and a

compiland Using the Unit •••••••••••• 16-13
18-1. Os Allocation •••••••••••••••.••••••• 18-11
19-1. Memory organization, Single Partition

Operating System •.•••••.•••••.•••••• 19-7

LIST OF TABLES

Table

13-1.

14-1.

14-2.

14-3.
14-4.

14-5.
14-6.
15-1.

15-2.
17-1.
17-2.
17-3.
17-4.
17-5.
17-6.
17-7.
19-1.
19-2.
19-3.
19-4.
B-1.
D-1.

D-2.

F-1.
F-2.
F-3.

viii

Directives and Attributes for
Procedures and Functions ••••.••••••• 13-19
categories of Available Procedures
and Functions •••••••••••••..•••••••• 14-2
File System Procedures and
Functions. • • • • • • • . • • • • • • . • • • • • • • • • • • 14-3
Predeclared Arithmetic Functions.... 14-7
REAL Functions from the Run-time
Library. • 14-8
Conversion to INTEGER ••••.•••••••••• 14-44
Conversion to WORD •••••••••••••••••• 14-66
File System Procedures and
Functions •••••••••••••••.••.•.••••••
Lazy Evaluation •••••••••••••••••••••
Metacommand Notation ••••••.•••••••••
Metacommands .•••••••••••••••••••••••
Optimization Level •••••••••••••• eee~
Error Handling and Debugging .•••••••
Source File Control .•••••••..•••••••
Listing File Control Metacommands •••
symbol Table Notation •••••••••••••••
unit Identifier Suffixes ••••••••••••
Pascal Program Structure •.••••••••••
Error Number Classification •••••••••
Run-Time Values in BRTEQQ •••••••••••
Our Pascal and UCSD Pascal ••••••••••
Predeclared Identifiers at the
Standard Level ••••••••••••••••••••••
Predeclared Identifiers at the Extend
Level ..•••••••••••••••••••••••••••••
Pascal Data Types for Use with CTOS.
Character Attributes ••..•.••••••••••
LED Parameters •.•••••••....•..••••••

Pascal Manual

15-1
15-8
17-2
17-3
17-6
17-9

17-15
17-19
17-22

19-5
19-9

19-18
19-19

B-14

D-2

D-3
F-4

F-11
F-15

12/87

the interrupt associated with it occurs. Further
more, INTERRUPT procedures take no parameters.
(To associate an INTERRUPT procedure with an
interrupt see the section entitled "Interrupt
Handlers" in your operating system manual.)

Declaring a procedure with the INTERRUPT attribute
ensures that the procedure conforms to the con
straints of an interrupt handler in which

o a special calling sequence saves all status on
the stack

o the status saved includes machine registers
and flags, plus any special global compiler
data such as the frame pointer

o the saved status is restored upon exit from
the procedure

All INTERRUPT procedures must be nested directly
within a compiland.

Interrupts are not automatically vectored to
INTERRUPT procedures and are neither enabled or
disabled by an INTERRUPT procedure.

This version of Pascal does not provide interrupt
vectoring or enabling.

An INTERRUPT procedure should usually return
normally, in order to continue processing in the
interrupted routine. Therefore,

o You should not execute a GOTO that leaves an
INTERRUPT procedure.

o All debug checking should be turned off (that
is, $DEBUG-, $ENTRY-, and $RUNTIME-).

o Stack overflow cannot be checked even if
$STACKCK is on.

The use of INTERRUPT procedures introduces re
entrancy into Pascal code: generated code is re
entrant, as is the run-time system (except for the
heap unit and portions of the file unit.

Note that caution should be used when non
reentrant code is used in INTERRUPT procedures.
For example, if the heap allocator is executing

12/87 Introduction to Procedures/Functions 13-25

when an interrupt occurs and the INTERRUPT proce
dure tries to allocate a block from the heap, the
structure of the heap could become invalid. This
condition causes a run-time error.

It is safest to avoid performing any I/O wi thin
the INTERRUPT procedure. Alternatively, you can
avoid most problems with I/O in an INTERRUPT
procedure by not opening or closing any files
(that is, not declaring any local file variables
or creating files on the heap) and by not per
forming input or output with any file that might
be in the process of performing I/O when the
interrupt occurs.

THE PURE ATTRIBUTE

The PURE attribute applies only to functions, not
to procedures or variables. PURE indicates to the
compiler's optimizer that the function does not
modify any global variables either directly or by
calling some other procedure or function.

Example of a PURE declaration:

FUNCTION AVERAGE (CONST TABLE: RVECTOR):
REAL [PURE];

For further illustration,
statements:

A := VEC [I * 10 7];
B := FOO;
C := VEC [I * 10 9];

examine these

If the function FOO is given the PURE attribute,
the optimizer only generates code to compute I*10
once. However, FOO, if it is not declared PURE,
can modify I so that 1*10 must be recomputed after
the call to FOO.

Functions are not considered PURE unless given the
attribute explicitly. A PURE function should not

o assign to a nonlocal variable

o have any VAR or VARS parameters (CONST and
CONSTS parameters are permitted)

o call any functions that are not PURE

13-26 Pascal Manual 12/87

ABS

FUNCTION ABS (X: NUMERIC): NUMERIC;

An arithmetic function.

Returns the absolute value of X. Both X and
the return value are of the same numeric type:
REAL4, REALS, INTEGER, WORD, or INTEGER4.
Since WORD values are unsigned, ABS (X) always
returns X if X is of type WORD.

ACSRQQ and ACDRQQ

FUNCTION ACSRQQ (CONSTS A: REAL4): REAL4; EXTERN;
FUNCTION ACDRQQ (CONSTS A: REALS): REALS; EXTERN;

Arithmetic functions.

Return the arc cosine of A. Both A and the
return value are of type REAL4 or REALS, as
shown.

These functions are from the run-time library
and must be declared EXTERN before use.

AISRQQ

FUNCTION AISRQQ (CONSTS A: REAL4): REAL4; EXTERN;

Arithmetic function.

Returns the integral part of A, truncated to
ward zero. Both A and the return value are of
type REAL4, as shown.

This function is from the run-time library and
must be declared EXTERN before use.

12/87 Available Procedures and Functions 14-13

ALLHQQ

FUNCTION ALLHQQ (SIZE: WORD): WORD; EXTERN;

A library routine (heap management function).

Returns zero if the heap is full, one if the
heap structure is in error I MAXWORD if the
allocator has been interrupted. Otherwise, it
returns the pointer value for an allocated
variable with the size requested.

Generally, ALLHQQ is used wi th the RETYPE
function. For example:

ALLMQQ

P VAR := RETYPE (P TYPE, ALLHQQ (28»;
{RETYPE converts the value returned by}
{ALLHQQ (28) to the type P TYPE.}
{This value is assigned to-P_VAR.}

IF WRD (P VAR) < 2 THEN GO ABORT;
{PVAR is then checked for a heap}
{full or heap structure error.}

FUNCTION ALLMQQ(wants: WORD) : ADSMEM; EXTERN;

Allocates a block of 'wants' bytes on the long
heap and returns the block address. The block
cannot be larger than 64K bytes.

This function is from the run-time library and
must be declared EXTERN before use.

ANSRQQ

FUNCTION ANSRQQ (CONSTS A: REAL4): REAL4; EXTERN;

Arithmetic function.

Returns the integral part of A, which is the
resul t of truncating the sum of A and 0.5.
Both A and the return value are of type REAL4,
as shown.

This function is from the run-time library and
must be declared EXTERN before use.

14-14 pascal Manual 12/87

ARCTAN

FUNCTION ARCTAN (X: REAL): REAL:

An arithmetic function.

Returns the arc tangent of X in radians. Both
X and the return value are of type REAL. To
force a particular precision, declare ATSRQQ
(CONSTS REAL4) and/or ATDRQQ (CONSTS REALS)
and use them instead.

ASSRQQ and ASDRQQ

FUNCTION ASSRQQ (CONSTS A: REAL4): REAL4; EXTERN:
FUNCTION ASDRQQ (CONSTS A: REALS): REALS; EXTERN;

Arithmetic functions.

Return the arc sine of A. Both A and the
return value are of type REALS or REAL4, as
shown.

These functions are from the run-time library
and must be declared EXTERN before use.

ASSIGN

PROCEDURE ASSIGN (VAR F : FILE OF .• : CONSTS N:
STRING):

A file system procedure (extend level I/O).

Assigns an operating system filename in a
STRING (or LSTRING) to a file F.

See the subsection "Extend Level Procedures"
in section 15, "File-Oriented Procedures and
Functions," for a description.

12/87 Available Procedures and Functions 14-15

ATSRQQ and ATDRQQ

FUNCTION ATSRQQ (CONSTS A: REAL4): REAL4; EXTERN;
FUNCTION ATDRQQ (CONSTS A: REALS): REALS; EXTERN;

See ARCTAN.

A2SRQQ and A2DRQQ

FUNCTION A2SRQQ (CONSTS A, B: REAL4) :
EXTERN;
FUNCTION A2DRQQ (CONSTS A, B: REALS) :
EXTERN;

Arithmetic functions.

Return the arc tangent of (A/B).
B, as well as the return value,
REAL4 or REALS, as shown.

REAL4;

REALS;

Both A and
are of type

These functions are from the run-time library
and must be declared EXTERN before use.

BEGOQQ

PROCEDURE BEGOQQ; EXTERN;

A library routine (initialization).

BEGOQQ is called during initialization, and
the default version does nothing. However,
you can write your own version of BEGOQQ, if
for example, you want to invoke a debugger or
to write customized messages to the video
display, such as the time of execution.

See also ENDOQQ.

14-16 Pascal Manual 12/87

PREALLOCHEAP

FUNCTION PREALLOCHEAP (VARS CBALLOC: WORD): WORD;
EXTERN;

A library function.

Allocates short-lived memory from the oper
ating system memory pool. This memory is
unused after this call. It then can be used
for the heap by heap management routines.

This preallocation is useful if your program
then calls the operating system directly to
allocate short-lived memory. (See the section
entitled "Memory Management" in the your
operating system manual for further
information on memory organization and
management.)

Lets you specify how much storage is to be
allocated for the short heap. You can then
use short-lived memory without worrying about
running out of heap space.

CBALLOC Is the count of bytes to allocate
for the heap

If cbAlloc is #OFFFF, the maximum
possible storage is allocated for
the heap

12/87 Available Procedures and Functions 14-47

PREALLOCLONGHEAP

FUNCTION PREALLOCLONGHEAP (CPARA: WORD)
EXTERN;

A run-time library function.

WORD;

Normally, the first call to a long heap allo
cation routine allocates as much short-lived
memory as possible for the short heap and
takes all the rest of the short-lived memory
for the long heap (to satisfy the current and
possible future requests). To avoid the rest
of the short-lived memory being allocated for
the long heap, you can preallocate the short
lived memory for the long heap using
PREALLOCLONGHEAP.

CPARA is the number of paragraphs (number of
bytes divided by 16) to be allocated for the
long heap. This procedure

o allocates as much short-lived memory as
possible for the short heap

o allocates CPARA paragraphs of short-lived
memory for the long heap

PRED

I f there are less than CPARA paragraphs
available, all available short-lived
memory is allocated.

If CPARA #OFFFF, then all available
short-lived memory is allocated.

FUNCTION PRED (X: ORDINAL): ORDINAL;

Determines the ordinal "predecessor" to X.
The ORO of the result returned is equal to ORO
(X) - 1. An error occurs if the predecessor
is out of range or overflow occurs. These
errors are caught if appropriate debug
switches are on.

This function can also be used with INTEGER4.

14-48 Pascal Manual 12/87

PRSRQQ and PRDRQQ

FUNCTION PRSRQQ (CONSTS A, B: REAL4) : REAL4;
EXTERN;
FUNCTION PRDRQQ (CONSTS A, B: REAL8) : REAL8;
EXTERN;

Arithmetic functions.

The return value is A**B (A to the REAL power
of B). Both A and B are of type REAL4 or
REAL7, as shown. An error occurs if A < 0
(even if B happens to have an integer value).

These functions are from the run-time library
and must be declared EXTERN before use.

PTYUQQ

PROCEDURE PTYUQQ (LEN: WORD; LOC: ADSMEM); EXTERN;

PUT

A library routine (terminal I/O).

wri tes LEN characters, beginning at LOC in
memory, to the video display.

Example:

PTYUQQ (8, ADS 'PROMPT: I);

Together with GETYQQ and PLYUQQ, PTYUQQ is
useful for doing terminal I/O in a low
overhead environment. These functions are
part of a collection of routines called Unit
U, which implements the Pascal file system.

PROCEDURE PUT (VAR F : FILE OF ..);

A file system procedure.

writes the value of the file buffer variable
FA to the currently pointed-to component of F
and advances the file pointer.

See the sUbsection "GET and PUT" in section
15, "File-Oriented Procedures and Functions,"
for a description.

12/87 Available Procedures and Functions 14-49

READ

PROCEDURE READ (VAR F : FILE OF
PN):

A file system procedure.

. . , P1, P2, .•

READ reads data from files. Both READ and
READLN are defined in terms of the more
primitive operation, GET.

See the subsection "Textfile Input and Output"
in section 15, "File-Oriented Procedures and
Functions," for a description.

READFN

PROCEDURE READFN (VAR F : FILE OF .. : P1, P2, ••
PN):

A file system procedure (extend level I/O).

READFN is the same as READ (not READLN) with
two exceptions:

o File parameter F should be present (INPUT
is assumed but a warning is given.)

o If a parameter P is of type FILE, a
sequence of characters forming a valid
filename is read from F and assigned to P
in the same manner as ASSIGN.

Parameters of other types are read in the same
way as in the READ procedure.

See the SUbsection "Extend Level Procedures"
in section 15, "File-Oriented Procedures and
Functions," for a description.

14-50 pascal Manual 12/87

sccc

FUNCTION SUCC (X: ORDINAL): ORDINAL;

A data conversion function.

Determines the ordinal "successor" to X. The
ORO of the returned result is equal to ORO (X)
+ 1. An error occurs if the successor is out
of range or overflow occurs. These errors are
caught if appropriate debug switches are on.

This function can also be used with INTEGER4.

THSRQQ and THDRQQ

FUNCTION THSRQQ (CONSTS A: REAL4): REAL4; EXTERN;
FUNCTION THDRQQ (CONSTS A: REALS): REALS; EXTERN;

Arithmetic functions.

Return the hyperbolic tangent of A. Both A
and the return value are of type REAL4 or
REALS, as shown.

These functions are from the run-time library
and must be declared EXTERN before use.

TNSRQQ and TNDRQQ

FUNCTION TNSRQQ (CONSTS A: REAL4): REAL4; EXTERN;
FUNCTION TNDRQQ (CONSTS A: REALS): REALS; EXTERN;

Arithmetic functions.

Return the tangent of A. Both A and the
return value are of type REAL4 or REALS, as
shown.

These functions are from the run-time library
and must be declared EXTERN before use.

12/87 Available Procedures and Functions 14-61

TaUBe

FUNCTION TRUNC (X: REAL): INTEGER;

An arithmetic function.

Truncates X toward zero. X is of type REAL4
or REAL8, and the return value is of type
INTEGER.

Examples

TRUNC (1.6) is 1
TRUNC (-1.6) is 1

Error message 2136, REAL Indefinite, is
reported if ABS (X - 1. 0) >= MAXINT. (See
Appendix A for a description of the compiler
error messages.)

TRUNC4

FUNCTION TRUNC4 (X: REAL): INTEGER4;

An arithmetic function.

Truncates real X toward zero. X is of type
REAL4 or REAL8, and the return value is of
type INTEGER4.

Examples:

TRUNC4 (1.6) is 1
TRUNC4 (-1.6) is -1

An error occurs if ABS (X -1.0) >= MAXINT4.

14-62 Pascal Manual 12/87

File variables with the STATIC attribute in
procedures and functions are also closed auto
matically when the procedure or function
returns. Files allocated statically at the
program, module, or implementation level are
automatically closed when the entire program
terminates.

If necessary, when a CLOSE is executed, a file
being written to has its operating system buf
fers flushed. However, the buffer variable is
not PUT. If a file of type TEXT is being
written and the last nonempty line does not
end with a line marker, one is added to the
end of the last line. If the file has the
mode SEQUENTIAL and is being written, an end
of-file is written.

Note that some run-time errors may remove
control from the run-time system. In these
cases, files being written may not be closed,
and the information in them may be lost. A
CLOSE on a file that is already closed or
never opened (no RESET or REWRITE) is per
mitted. CLOSE is not ignored if error
trapping is on and there was a previous error.
CLOSE turns off error trapping for the file
and clears the error status if no errors were
found.

PROCEDURE DISCARD (VAR F):

A file system procedure (extend level I/O).

Closes and deletes an open file. DISCARD is
much like CLOSE except that the file is
deleted.

12/87File-oriented Procedures and Functions 15-25

PROCEDURE READFN (VAR F; Pl, P2, •• Pn);

A file system procedure (extend level I/O).

READFN is the same as READ (not READLN) with
two exceptions:

o File parameter F should be present (INPUT
is assumed, but a warning is given if F is
omitted) •

o If a parameter P is of type FILE, a
sequence of characters forming a valid
file name is read from F and assigned to P
in the same manner as ASSIGN.

Parameters of other types are read in the same
way as the READ procedure.

Note that READFN is like READ, not like
READLN, and does not read the trailing line
marker. If the first parameter in a READFN
call is a file of any type, it is assumed to
be the textfile from which characters are
read. It is not assumed that the file's name
should be read using INPUT as the de·fault
source.

READFN is used internally to read a program's
parameters. It is useful when reading a file
name and assigning the file name to a file in
one operation.

PROCEDURE READSET
(VAR F; VAR L; LSTRING, CONST S: SETOFCHAR);

A file system procedure (extend level I/O).

READSET reads characters and puts them into L,
as long as the characters are in the set Sand
there is room in L. If no file parameter is
given, INPUT is assumed, as in READ and WRITE.
Leading spaces, tabs, form feeds , and line
markers are always skipped.

Reading ceases at the first line marker, which
is never in the type CHAR.

15-26 Pascal Manual 12/87

This example assumes the program was invoked with
a command form such as:

Type
File name ____________________________________ ___

(For details of how to construct command forms,·
see the New Command command in the Executive
Manual.)

Also note that the workstation operating system
has more sophisticated parameter management facil
ities than those offered by the Pascal run-time,
and can be used to access all subparameters
entered in the command form, as well as the com
mand name itself. (See the section entitled
"Parameter Management" in your operating system
manual for details.)

12/87 compilable Parts of a Program 16-7

MODULES

Modules provide a simple, straightforward method
for combining several compilable segments into one
program. Units, described in the next subsection,
provide a more powerful and structured method for
achieving the same end.

Basically, a module is a program without a body.
The identifier in the module heading has the same
scope as a program identifier. The heading can
also include attributes that apply to all proce
dures and functions in the module. There are no
module parameters; nor is there a module body. A
module ends with the reserved word END and a
period.

Example of a module:

MODULE BETA [PUBLIC); {optional attributes}

PROCEDURE GAMMA;
BEGIN WRITELN ('Gamma') END;

16-8

FUNCTION DELTA: WORD;
BEGIN DELTA := 123 END;

END.

Pascal Manual

{no body before END}

12/87

Table 17-2. Metacommands. (Page 3 of 3)

Metacommand Name

$RANGECK

$REAL

$ROM

$RUNTIME

$SIMPLE

$SIZE

$SKIP

$SPEED

$STACKCK

$SUBTITLE

$SYMTAB

$TITLE

$ WARN

12/87

Function

Checks for subrange validity.

Sets the length of the REAL
type.

Gives a warning on static
initialization.

Determines the context of
run-time errors.

Disables
tions.

global optimiza-

Minimizes the size of code
generated.

Skips a specified number of
lines or skips to end of
page.

Minimizes the execution time
of code.

Checks for stack overflow at
procedure or function entry.

Sets the page subtitle.

Sends the symbol table to the
listing file.

Sets the page title.

Gives a warning message in
the listing file.

Metacommands 17-5

OPTIMIZATION LEVEL

The metacommands shown in Table 17-3 let you
control the degree to which optimization is used.

Table 17-3. Optimization Level.

Name Description

$INTEGER:<n> sets the length of the INTEGER
type (default is 2.)

$REAL:<n>

$ROM-

$SIMPLE

$SIZE

$SPEED

sets the length of the REAL
type.

Gives an error on static ini
tialization.

Disables global optimizations.

Minimizes the size of code gen
erated. $SIZE is the default
setting.

Minimizes the execution time of
code.

$INTEGER and $REAL set the length (that is,
precision) of the standard INTEGER and REAL data
types. $INTEGER can only be set to 2 (the
default), for 16-bit integers. However, you can
set $REAL to 4 (the default) or 8, to make type
REAL identical to REAL4 or REAL8, respectively.

The $SIMPLE metacommand turns off common
sUbexpression optimization. $SIZE and $SPEED
currently turn it back on again. $SIZE, $SPEED,
and $SIMPLE are all mutually exclusive. The
default is $SIZE.

17-6 Pascal Manual 12/87

18 USING THE PASCAL COMPILER

You run a Pascal program by first compiling its
one or more source modules, using the Linker to
link the resulting object files with the Pascal
library, and invoking the resulting run file. The
run file is usually invoked through the Executive.

The Pascal compiler translates your Pascal source
programs into object modules. The compiler
provides a source listing, error messages, and a
number of compiler meta commands to aid in program
development and debugging.

The compiler comes with a set of object libraries
to be linked with your code. These libraries pro
vide complete run-time support for input/output,
arithmetic functions, and inline code execution by
the optional numeric coprocessor that is available
with some workstations or with the optional Math
service. When you link your program, the Linker
automatically accesses these libraries when
necessary. (The run-time libraries are discussed
in section 19, "Run Time and Debugging.")

Using the Linker, you can also combine Pascal
object modules with those of other languages, for
example FORTRAN, to facilitate writing applica
tions that need different languages for different
parts.

Pascal supports systems programming by providing
access to all operating system services, such as
direct (random) access to disk files, interrupt
handling, and process creation. Calls also extend
the range of services needed by the commercial
application programmer: DAM, ISAM, Sort/Merge,
and the Forms Run Time.

12/87 Using the Pascal Compiler 18-1

COMPILING, LINKING, AND RUNNING PASCAL: OVERVIEW

To create and execute a Pascal program,

1. Create and edit the source file. You can use
the Editor or the Word Processor to create the
source file.

2. Compile the program. The compiler flags
syntax errors as it reads your source file.
You can place compiler controls called meta
commands within your program to generate
diagnostic calls for run-time errors. If com
pilation is successful, the compiler creates a
relocatable object file.

3. Use the Linker's Bind command to link compiled
object files with the run-time library. A
compiled obj ect file is not executable and
must be linked with one or more run-time
libraries, using the Linker. Separately
compiled subroutines in other languages or
assembly language programs can also be linked
to your program at this time. The Linker
produces an executable file called a version 6
run file.

4. Use the Executive Run command to execute the
resulting run file. (Alternatively, you can
use the Executive command New Command to
create a special command that you can use to
execute your run file.)

Repeat this
successfully
errors.

process
compiled,

until your
linked, and

program has
run without

Since compiler metacommands can slow your program
down, once the program runs without errors, remove
or comment out any meta commands that are no longer
necessary, then recompile, relink, and rerun your
program.

18-2 Pascal Manual 12/87

Pass Two of the compiler produces the object file.
When it is complete a message similar to the one
below is displayed:

Code Area Size
Cons Area Size
Data Area Size

#05EC
#00E6
#0264

1516)
230)
612)

Pass Two No Errors Detected

The first three lines indicate, first in hexadeci
mal and then in decimal notation, the amount of
space taken by executable code (Code), constants
(Cons), and variables (Data). The number of
errors given is for Pass Two only.

The third pass produces the object list file and
is executed only if you request one.

For a more detailed discussion of the compiler see
the subsection "Compiler Structure" below.

12/87 Usinq the Pascal compiler 18-7

LINKING A PASCAL PROGRAM

After the Pascal modules are compiled, you must
link the resulting object modules with the Linker
to produce an executable version 6 run file.

The Linker is invoked through the Executive, by
typing "Bind" (or as many letters as required to
make the command unique) into the Executive
command form. The following form is displayed:

Bind
object modules
Run file
[Map file]
[Publics?]
[Line numbers?]
[Stack size]
[Max array, data, code]
[Min array, data, code]
[Run file mode]
[Version]
[Libraries]
[OS allocation?]
[Symbol file]

Using the Linker and completing each of the fields
of the Bind form are discussed in detail in the
Linker/Librarian Manual. The following special
features of the Linker are important for use with
Pascal:

Object modules
Enter the object file ~ame,
PasFirst. obj . PasFirst. obj ~s an
assembly language module included
with Pascal 10.0 software that
ensures a successful link.
Following this module name, enter
the name(s) of any other object
modules you want 1 inked. Leave a
space between each object file
specification. (If you have too
many entries to fit on the command
line, you must place the entries in
a file, called an at-file, then
place the file name on the command
line prefixed by an at sign (@).
The use of at-files is discussed in
the Executive Manual.)

18-8 Pascal Manual 12/87

[Stack size]

[Run file mode]

12/87

If your program includes run-time
overlays, you must include the file
[Sys]<Sys>PasSwp.obj in this field.

If your program includes floating
point calculations and you have a
numeric coprocessor installed on
your workstation, you can
include the entry
@[Sys]<sys>Pascal8087.fls. If you
do not have a numeric coprocessor
installed on your workstation, you
can install the Math service. (See
the Math service Release Notice for
installation details.) When
installed, this service emulates
the coprocessor. (I f you do not
have either a numeric coprocessor
or the Math service installed and
your program uses floating point
constants or variables, the numeric
coprocessor emulator is
automatically linked to your
programs.)

If you are linking a minimal Pascal
file

Minimal
the sub
Run-time

"Run time

program, include the
[sys]<sys>Pasmin.obj.
Pascal is discussed in
section "Avoiding the
Library" in section 19,
and Debugging."

Default for Pascal: 8K

If you wish to change stack size,
specify the desired size here.

The default for this field is real.
If you choose to have your program
execute in protected mode, you must
select from the other options for
this field. The Linker/Librarian
Manual describes each of these
options in detail. Note also that
if your program is to execute in
protected mode, it must be written
according to the guidelines for
compatible programs. These are

Using the Pascal Compiler 18-9

[Libraries]

described in the Engineering Update
for CTOS/VM 2.0. (For additional
details on real and protected mode,
see the Linker/Librarian Manual.)

When linking a Pascal program, the
Linker automatically searches the
library [sYS]<sys>Pascal.Lib (if it
exists) for any unresolved external
symbols. The 1 ibrary
[Sys]<sys>CTOS.Lib is also
searched.

You can specify any additional
libraries you wish, for example, if
you are linking with subprograms
wri tten in other languages, then
the I ibraries for those languages
must be specified.

I f you are 1 inking a program from
which you wish to exclude any
references to the Pascal run-time
library, it is recommended that you
specify the libraries that you do
wish to link with your program
followed by the word none. For
example,

[Libraries] [Sys]<Sys>CTOS.Lib none

In this case, if any calls are made
to the run time, the Linker
indicates an unresolved external.

18-9.1 Pascal Manual 12/87

12/87

This paqe is intentionally left
blank.

Usinq the Pascal Compiler 18-9.2

[DS Allocation?] Default for Pascal: Yes

18-10

This field is used to minimize the
run-time value of DS (the data
segment register) by offsetting all
references to group DGroup.

Group DGroup consists of 64K bytes
or less allocated for constants,
data, and stack.

If you specify "Yes", the default,
then the entire 64K bytes can be
used for your data if necessary.
The Code Segment is loaded at the
high end of memory, above the data
segment. Relative addressing
starts at the highest word, no
matter how much space is really
needed for DGroup.

If you specify "No," however, the
aata segment takes only the amount
of space actually needed and is
loaded at the high end of memory,
with the Code Segment below it.

For example, if your program uses
only 32K of data and you specify
"Yes" for [DS Allocation?] then the
address of DS is DS : FFFF , whereas
if you specify "No" the address is
DS: $00032K. . Figure 18-1 illus
trates this.

Most Pascal applications require
[DS Allocation?] to be "Yes. "
Object module procedures and tasks
produced by the Pascal compiler use
a single value in DS during their
entire execution, and include the
group DGroup with OS equal to
DGroup. This feature must be used
for linking Pascal tasks that make
use of the Pascal heap.

Run files linked using Pasmin.obj
can have DS Allocation set to
either "Yes" or "No."

Pascal Manual 12/87

The third pass, performed by the file
[Sys] <Sys>PascalLst.Run, produces the object
listing file and is only invoked if you specifi
cally request an object listing when you complete
the Pascal command form. During the third pass
the files Pasibf.Tmp and Pasibf.Oid are deleted.

All intermediate files contain Pascal records. A
common constant and type definition file is used
called Pascom.nnm, which defines the intermediate
code and symbol table types. A similar file is
used during the second and third passes for the
intermediate binary file definition.

The intermediate code (or ICode) record contains
an ICode number, opcode, and up to four arguments;
an argument can be the ICode number of another
ICode to represent expressions in tree form, or
another value, such as a symbol table reference,
constant, or length. The intermediate binary code
record contains several variants for absolute code
or data bytes, public or external references,
label references and definitions, etc.

The symbol table record is complex, with a variant
for every kind of identifier (such as, assorted
data types, variables, procedures, and functions.)

The compiler itself takes memory, and in addition
needs memory for its internal tables. It puts
some of these tables into the long heap, the
others into the short heap. The long heap is
limited only by the computer memory. Exact size
of the compiler and memory requirements for the
short heap and the compiler stack are detailed in
the Pascal Release Notice.

A compilation can sometimes terminate abnormally
on the first pass with the error message 'Compiler
out of Memory.' This message usually indicates
stack/heap space overflow. Examples of infor
mation that is stored in the short heap are:
PUBLIC and EXTERN declarations, and TYPE declara
tions. Reducing the number of the these decla
rations in your program, can help it to compile
successfully. Note, however, that these decla
rations do not affect the size of the program when
it runs. They only affect memory requirements
during compilation.

12/87 Usinq the Pascal Compiler 18-15

VIRTUAL CODE MANAGEMENT FACILITY

Pascal is compatible with the virtual Code
Management facility. The virtual Code Management
facility is described in detail in the section
entitled "virtual Code Management" (or "virtual
Code Segment Management") in your operating system
manual.

As with all applications that use the virtual Code
Management facility, the swap buffer must be
allocated and initialized before any overlay is
called. You can overlay both portions of the
Pascal run-time system and portions of your own
program.

To include portions of the run-time system in
overlays, the following are necessary:

o Include PasSwp.obj in the Object modules field
of the Linker command form.

o write a procedure called BEGOQQ to perform
user initialization. These procedures must be
included (in the Object Modules field of the
Linker command form) when the Pascal
application is linked.

Pascal provides an empty procedure, BEGOQQ as an
entry point. You can use it to initialize a swap
buffer before any Pascal run-time initialization
takes place. You must allocate and initialize the
swap buffer in BEGOQQ to ensure that the swap
buffer is ready when the Pascal run-time system is
invoked.

For example:

module misoqq[];

Type adsw = ads of word;

(* Initoverlays is a CTOS function
initializing a swap
buffer.

*)

Function Initoverlays(pBuf:adsw;cb:word):word;
extern;

Procedure CheckErc(erc:word); extern;

18-16 Pascal Manual 12/87

19 RUN TIME AND DEBUGGING

The run-time support libraries contain object
modules that can be linked to your program to
satisfy unresolved external references. When your
Pascal program is linked, the library files
[Sys]<Sys>Pascal.Lib and [Sys]<Sys>CTOS.Lib are
automatically searched and the appropriate modules
are linked to it if necessary.

The run-time support libraries provide all
input/output (I/O) support needed to run your
programs on your system. I f you choose to use
floating-point software routines all required
arithmetic and interface software is also provided
by the run-time libraries. If you have a numeric
coprocessor installed on your system, you can
specify a special library at link time to take
advantage of this chip for your floating-point
routines. (See Section 18, "Using the Pascal
Compiler, " for more information on how to link
your program.)

OVERVIEW OF THE PASCAL RUN TIME

Run-time routines linked to a Pascal program are
described briefly below. Pascal run-time routines
all have six character names and end in the suffix
QQ. Run-time routines are discussed in detail in
the sUbsection "Run-Time Architecture" below.

The run file produced by the Linker for a Pascal
program has the entry point BEGXQQ, which is a
routine written in assembly language. This rou
tine sets the initial stack pointer, the starting
address of the heap, and various other routine
variables. There is also a call to initialize the
Pascal file system. Finally, there is a call to
the Pascal program, which is always given the name
ENTGQQ.

The Pascal main program continues the initializa
tion process. Every unit mentioned in a USES
clause in any interfaces or in the program is
initialized by calling it as a procedure, in the
order bf the USES clauses. Any files declared in
the program are initialized by calling NEWFQQ for
each one. Finally, any program parameters are
read and assigned to their variables, and the
actual program code begins.

12/87 Run Time and Debugging 19-1

When the program terminates, the call to ENTGQQ
returns to procedure BEGXQQ, which calls ENDXQQ.
The Pascal file system is then called to close all
open files and to discard all temporary files. A
call to Exit in the operating system terminates
the program.

Inside a Pascal application, many calls are also
made to the Pascal run time to accomplish tasks
too complicated to be done by straight generated
code. For example, most error checking is accom
plished by calling run-time helpers. You can
identify these calls by their names: all run-time
routines have six character names ending in QQ.

Note that run-time routines are not reentrant.
Therefore, if one application creates several
processes that execute concurrently a piece of
code written in Pascal, care must be taken that
only one of them is executing Pascal run-time code
at anyone time.

All eTOS facilities are available for use from
Pascal. Interfaces to routines are described in
your operating system manual and examples of the
use of the operating system from Pascal are given
in this manual in Appendix F, "Using Pascal as a
Systems Programming Language."

19-2 Pascal Manual 12/87

DEBUGGING

Pascal programs may be run under the control of
the Debugger. (Note that the term Debugger here
does not refer to Pascal error handling routines,
but to the Debugger available with the standard
software for your workstation.) To pass control
to the Debugger, use CODE-GO rather than GO when
you invoke your program. using the Debugger is
described in detail in the Debugger Manual.

The use of symbol files and object list files is
very helpful in the debugging of Pascal programs.

The symbol file gives you the addresses of public
variables for your program. The symbol file is
created by the Linker when your program is linked.
The name of the symbol file has the extension
".Sym".

The entry point into the main program is ENTGQQ (a
public variable).

The object list file is a symbolic assembler-like
listing of the object code that lists addresses
of the instructions relative to the start of the
program or module.

The example below shows code from an object list
file for the Pascal 'statement i := i+1; where i is
an integer.

L5:
** 000011
** 000014
** 000015

MOV
INC
MOV

AX,1
AX
I,AX

The L5 indicates that this statement is on line 5
of the program. The numbers on the left side of
the code indicate the hexadecimal offset from the
beginning of the code segment for the particular
instruction. For example, the MOV AX,1 instruc
tion begins at CS:11, where CS is the current code
segment address.

12/87 Run Time and Debugginq 19-3

RUN-TIME ARCHITECTURE

RUN-TIME ROUTINES

The Pascal run-time entry point and variable names
all have six characters, the last three of which
consist of a unit identification letter followed
by the letters "QQ".

Table 19-1 shows the current unit identifier
suffixes.

Table 19-1. unit Identifier suffixes.
(Page 1 of 2).

Suffix

AQQ

BQQ

CQQ

DQQ

EQQ

FQQ

GQQ

HQQ

IQQ

JQQ

KQQ

LQQ

MQQ

NQQ

unit Function

Reserved

Compile time utilities

Encode, decode

Double precision real

Error handling

Pascal file system (Unit F)

Generated code helpers

Heap allocator

Reserved

Reserved

FCB definition

STRING, LSTRING

Reserved

Reserved

19-4 Pas'cal Manual 12/87

Table 19-1. unit Identifier Suffixes.
(Page 2 of 2).

Suffix

PQQ

RQQ

SQQ

TQQ

UQQ

VQQ

WQQ

XQQ

YQQ

ZQQ

unit Function

Reserved

Real (single precision)

Set operations

Reserved

Operating system file system

Reserved

Reserved

Initialize/terminate

Special utilities

Reserved

MEMORY ORGANIZATION

Memory on the cpu is divided into segments, each
containing up to 64K bytes. The Linker also puts
segments into classes and groups. All segments
with the same class name are loaded next to each
other. All segments with the same group name must
reside in one area up to 64K bytes long; that is,
all segments in a group can be accessed with one
segment register.

Pascal uses the medium model of computation, that
is, it uses multiple code segments, but only one
data segment, called DGroup. Memory is allocated
within DGroup for all static variables, constants
that reside in memory, the stack, and the short
heap.

12/87 Run Time and Debugging 19-5

DGroup is addressed using the OS (current data) or
SS (current stack) segment register. Normally, OS
and SS contain the same value, although OS may be
changed temporarily to some other segment and
changed back again. SS is never changed; its seg
ment registers always contain abstract "segment
val ues" and the contents are never examined or
operated on. Long addresses, such as ADS vari
ables, use the ES segment register for addressing.

Memory in DGroup is normally allocated from the
top down; that is, the highest addressed byte has
DGroup offset 65535, and the lowest allocated byte
has some positive offset. This allocation means
offset zero in DGroup may address a byte in the
code portion of memory, in the operating system
below the code, or even below absolute memory
address zero. (In the latter case the values in
OS and SS are "negative.")

DGroup has two parts:

o a fixed-length upper portion containing static
variables and constants

o a variable-length lower portion containing the
heap and the stack

After your program is loaded, during initializa
tion (in ENTXQQ), the fixed upper portion is
placed as high as possible to make room for the
lower portion. If there is enough memory, DGroup
is expanded to the full 64K bytes; if there is
not enough room for this, it is expanded as much
as possible.

Figure 19-1 illustrates memory organization as
described above.

Note that memory organization appears differently
than as shown in Figure 19-1, if, when you link
your program, you set the field "[OS Allocation?]
to "No." In that case the Data segment is not
expandable and is loaded above the Code segment.
(See the sUbsection "Linking Your Program" in
section 18, "Using the Compiler," for an explana
tion of OS Allocation.)

19-6 Pascal Manual 12/87

Top (Highest Address)

Installed System Services

CODE

Ds Offset 65536

CONsT

DATA

Stack
Heap

Ds Offset >= 0

Long Heap

Unused

Long-Lived Memory

Operating System

Address 0:00

Figure 19-1. Memory orqanization, sinqle
Partition Operatinq system.

12/87 Run Time and Debugging 19-7

INITIALIZATION AND TERMINATION

Every executable file contains one, and only one,
starting address. As a rule, when object modules
are involved, this starting address is at the
entry point BEGXQQ in the module PASMAX. A pro
gram (as opposed to a module or implementation)
has a starting address at the entry point ENTGQQ.
BEGXQQ calls ENTGQQ.

The following discussion assumes that a main pro
gram along with other object modules is loaded and
executed. However, you can also link a main
program in assembly or some other language with
other object modules. In this case, some of the
initialization and termination done by the PASMAX
module may need to be done. elsewhere.

When a program is linked with the run-time library
and execution begins, several levels of initial
ization are required. The levels, in the order in
which they occur, are the following:

o machine-oriented initialization

o run-time initialization

o program and unit initialization

The general scheme is shown in Table 19-2.

19-8 Pascal Manual 12/87

Table 19-2. Pascal Program structure.

PASMAX module

ENDXQQ: {Aborts come here}
Call ENDOQQ
Call ENDYQQ
Call ENDUQQ
Call ENDX87
Exit to operating system

BEGXQQ: set stack pointer, frame pointer
Initialize PUBLIC variables
Set machine-dependent flags,
registers, and other values
Call INIX87
Call INIUQQ
Call BEGOQQ
Call ENTGQQ {Execute program}
Call ENDXQQ {Termination}

INTR module

INIX87: Real processor initialization

ENDX87: Real processor termination

UNIT U module

INIUQQ: Operating system specific file unit
initialization

ENDUQQ: operating system specific file unit
termination

MISO module

BEGOQQ: (Available for other user
initialization procedures)

ENDOQQ: (Available for other user
termination procedures)

Program module

ENTGQQ: Call INIFQQ

12/87

If $ENTRY on, CALL ENTEQQ
Initialize static data
Initialize units
FOR program parameters DO

Call PPMFQQ
Execute program
If $ENTRY on, CALL EXTEQQ

Run Time and Debugging 19-9

Machine Level Initialization

The entry point of a load module is the routine
BEGXQQ, in the module PAS MAX . BEGXQQ does the
following:

o Initializes constant and static variables.
Theini tial stack pointer is put into PUBLIC
variable STKBQQ and is used to restore the
stack pointer after an interprocedure GOTO to
the main program.

o Sets the frame pointer (that is, the pointer
to the current procedure) to zero.

o Ini tializes a number of PUBLIC variables to
zero or NIL. These include

RESEQQ, a machine error context

CSXEQQ, a source error context list header

PNUXQQ, an initialized unit list header

HDRFQQ, an open file list header

o sets machine dependent registers, flags, and
other values.

o Sets the short heap control variables. BEGHQQ
and CURHQQ are set to the lowest address for
the heap: the word at this address is set to
a heap block header for a free block the
length of the initial heap. ENDHQQ is set to
the address of the first word after the heap.
(The initial heap is empty.) The stack and
the heap grow together, and the PUBLIC vari
able STKHQQ is set to the lowest legal stack
address (ENDHQQ, plus a safety gap).

The long heap is initialized when the user
calls a long heap routine.

o If the program uses REAL numbers, calls
INIX87, the real processor initializer. This
routine initializes the numeric coprocessor or
sets numeric coprocessor emulator interrupt
vectors, as appropriate.

19-10 Pascal Manual 12/87

o Calls INIUQQ, the file unit initializer. If
the file unit is not used and you do not want
it loaded, a dummy INIUQQ routine that only
returns must be loaded. Pasmin. Obj provides
an empty INIFQQ instead of calling INIUQQ.

o Calls BEGOQQ, the escape initializer. In a
normal load module, an empty BEGOQQ that only
returns is included. However, this call
provides an escape mechanism for any other
initialization. For example, it could ini
tialize tables for an interrupt driven
profiler or to initialize overlay management.

If you want a nonempty initialization, you
must write your own BEGOQQ routine. (See
Appendix F, "using Pascal as a Systems Pro
gramming Language," for an example of a module
that uses BEGOQQ to allocate and initialize a
swap buffer.)

o Calls ENTGQQ, the entry point of your program.

o Calls ENDXQQ, the termination procedure.

Program Level Initialization

Your main program continues the initialization
process. First, the file system, a parameterless
procedure called INIFQQ, is called. If you link
your program with Pasmin.Obj, an empty INIFQQ is
provided.

After the file initialization, if the meta command
$ENTRY is on during compilation, ENTEQQ is called
to set the source error context. Next, each file
at the program level gets an initialization call
to NEWFQQ.

After static data initialization comes unit
initialization. Every USES clause in the source,
including those in INTERFACEs, generates a call to
the initialization code for the unit.

units mayor may not contain initialization code.
If the interface contains a trailing pair of BEGIN
and END statements, initialization code in the
implementation is presumed. units are ini
tialized in the order that the USES clauses are
encountered.

12/87 Run Time and Debugging 19-11

Finally, any program parameters are read or other
wise initialized, and your program begins. Except
for INPUT and OUTPUT, PPMFQQ is called for each
parameter to set the parameter's string value as
the next line in the file INPUT. Then one of the
READFN routines "reads" and decodes the value,
ass igning it to the parameter. The parameter's
identifier is passed to PPMFQQ for use as a
prompt. PPMFQQ first calls PPMUQQ to get the text
of any parameters from the command form. If
PPMUQQ returns an error, then PPMFQQ does the
prompting and reads the response directly.

User unit initialization is much like user program
initialization. The following actions occur:

o error context initialization, if $ENTRY meta
command was on during compilation

o variable (file) initialization

o unit initialization for USES clause

o user unit initialization

Calls to initialize a unit can come from more than
one uni t. The unit interface has a version
number, and each initial ization call must check
that the version number in effect when the unit
was used in another compilation is the same as the
version number in effect when the unit imple
mentation itself was compiled. Except for this,
unit initialization calls after the first one
should have no effect; that is, a unit's initial
ization code should be executed only once. Both
version-number checking and single , initial-code
execution are handled with code automatically
generated at the start of the body of the unit.
This has the effect of

IF INUXQQ (useversion, ownversion, intrec,
unitid)

THEN RETURN

The interface version number used by the compiland
using the interface is always passed as a value
parameter to the implementation initialization
code. This is passed as "useversion" to INUZQQ.
The interface version number in the implementation
itself is passed as "ownversion" to INUXQQ.
INUXQQ generates an error if the two are unequal.

19-12 Pascal Manual 12/87

INUZQQ also maintains a list of initialized units.
INUXQQ returns true if the unit is found in the
list, or else puts the unit in the list and
returns false. The list header is PNUXQQ. A list
entry passed to INUXQQ as "initrec" is initialized
to the address of the unit's identifier (unitid)
plus a pointer to the next entry.

User modules (and uninitialized implementations of
units) may have initialization code, much like a
program and unit implementation's initialization
code, but without user initialization code or
INUXQQ calls.

The initialization call for a module or uninitial
ized unit cannot be issued automatically. When
the module is compiled, a warning is given if an
initialization call is required (that is, if there
are any files declared or USES clauses.) To
initialize a module, declare the module name as an
external procedure and call it at the beginning of
the program.

Proqram Termination

Program termination occurs in one of three ways:

o The program may terminate normally, in which
case the procedure ENDXQQ is called.

o The program may abort because of an error
condition, either with a user call to ABORT or
a run-time call to an error handling routine.
In either case, an error message, error code,
and error status are passed to EMSEQQ, which
does whatever error handling it can and calls
ENDXQQ.

o ENDXQQ can be declared as an external proce-
dure and called directly.

ENDXQQ first calls ENDOQQ, the escape terminator,
which normally just returns to ENDXQQ. Then
ENDXQQ calls ENDYQQ, the generic file system ter
minator. ENDYQQ closes all open Pascal files,
using the file list headers HDRFQQ and HDRVQQ.
ENDXQQ calls ENDUQQ, the file unit terminator.

12/87 Run Time and Debugging 19-13

Finally, ENDXQQ calls ENDX87 to terminate the
real number processor (numeric coprocessor or
emulator.) As with INIUQQ and INIFQQ, if your
program requires no file handling, you can declare
empty parameterless procedures for ENDYQQ and
ENDUQQ. The main initialization and termination
routines are in module PASMAX. Procedure BEGOQQ
is in the module MISOALT1; ENDUQQ is in RICUQQ;
and ENDYQQ is in MISY.

Usinq the Initialization and Termination Points in
Your Proqram

The routines BEGOQQ and ENDOQQ are provided by the
run-time library as entry points for you to use.
The program example that follows uses these entry
points to display the date and time.

{$debug-}

Program UserlnitAndTermination (Output);

Type

{This program sample describes how to use the
initialization and termination entry points
that the run time provides for the user.

The nubs provided for initialization and
termination are labeled 'BEGOQQ' and 'ENDOQQ'
respectively.

Since these entry points are defined by the
run-time library, this compiland must be
linked with Pascal.Lib.}

pbType = ads of word;
DateTimeType = array [1 .. 2] of word:
ExpDateTimeType = array [1 .. 4] of word;

Var [public]
lsDateTime :lstring(30):
DateTime : DateTimeType;
ExpDateTime:ExpDateTimeType:

19-14 Pascal Manual 12/87

{Definition of CTOS externals to be used:}

Var [extern]
bsVid:array [1 •• 130] of byte;
{'bsVid' is an open video bytestream declared
in CTOS.Lib}

Function FormatTime
(plsDateTimeRet:pbType;
pExpDateTime:pbType) :word; extern;

Function GetDateTime
(pDateTimeRet:pbType) :word; extern;

Function ExpandDateTime
(dateTime : DateTimeType;
pExpDateTime:pbType) :word; extern;

Function WriteBsRecord (
pBswa :pbType;
pbRec :pbType;
cbRec :word;
pbCbRet :pbType) :word; extern;

Procedure CheckErc
(erc :word); extern;

Procedure BEGOQQ[public];
var cbRet :word;
begin
{This procedure will be called by the run
time initialization. It will display a
banner with the date/time}

12/87

CheckErc (GetDateTime (ads DateTime)};
CheckErc (ExpandDateTime (DateTime, ads

ExpDateTime)};
CheckErc (FormatTime (ads lsDateTime, ads

ExpDateTime)};
CheckErc (WriteBsRecord (ads bsVid,

ads 'Program initialization at '
26, ads cbRet});

CheckErc (WriteBsRecord (ads bsVid,
ads lsDateTime[1] , IsDateTime.len,
ads cbRet});

CheckErc (WriteBsRecord (ads bsVid, ads
#Oa, 1, ads cbRet)};

end;

Run Time and Debugging 19-15

Procedure ENDOQQ[public]:
var cbRet :word;
begin

{This procedure will be called by the run
time termination before the first
executable statement of the program. It
will display a banner with the date/time.
Note that if the CTOS calls 'Exit' or
'ErrorExit' are used the run-time
termination is circumvented.}

CheckErc (GetDateTime (ads DateTime»i
CheckErc (ExpandDateTime (DateTime, ads

ExpDateTime»;
CheckErc (FormatTime (ads IsDateTime, ads

ExpDateTime)};
CheckErc (WriteBsRecord (ads bsVid, ads

'Program termination at " 23, ads
cbRet»;

CheckErc (WriteBsRecord (ads bsVid, ads
IsDateTime[l], lsDateTime.len, ads
cbRet»i

CheckErc (writeBsRecord (ads bsVid, ads #Oa,
1, ads cbRet»;

end;

begin{start of program, after run-time
initialization}

end.

writeln;
writeln ('Hello');
Writeln;

ERROR HANDLING

Run-time errors are detected in one of four ways:

o The user program calls EMSEQQ (that is,
ABORT) •

o A run-time routine calls EMSEQQ.

o An error checking routine in the error module
calls EMSEQQ.

o An internal helper routine calls an error mes
sage routine in the error unit which, in turn,
calls EMSEQQ.

19-16 Pascal Manual 12/87

Handling an error detected at run-time usually
involves identifying the type and location of the
error and then terminating the program. The error
type has three components

o a message

o an error number (Pascal error code)

o an error status code (operating system return
code)

The message describes the error and the number can
be used to look up more information. The error
status value is undefined, although for file
system errors it may be an operating system return
code. However, the error status value may also be
used for other special purposes. Table 19-3 shows
the general scheme for error code numbering.

An error location has two parts:

o machine error context

o source program context

The machine error context is the program counter,
stack pointer, and stack frame pointer at the
point of the error. The program counter is always
the address following a call to a run-time routine
(for example, a return address.)

12/87 Run Time and Debugging 19-17

Table 19-3. Error Number Classification.

Range Classification

1- 999 Reserved for user ABORT calls

1000-1099 unit U file system errors

1100-1199 unit F file system errors

1200-1299 unit V file system errors

1300-1999 Reserved

2000-2049 Heap, stack, memory

2050-2099 Ordinal and long integer arithmetic

2100-2149 Real and double real arithmetic

2150-2199 structures, sets, and strings

2200-2399 Reserved

2400-2449 Unused

2450-2499 Other internal errors

2500-2999 Reserved

The source program context is optional; it is
controlled by metacommands. If the $ENTRY meta
command is on the program context consists of

o the source file name of the compiland con
taining the error

o the name of the routine in which the error
occurred (program, unit, module, procedure, or
function)

19-18 pascal Manual 12/87

o the line number of the routine in the listing
file

o the page number of the routine in the listing
file

If the $LINE metacommand is also on, the line
number of the statement containing the error is
also given. Setting $LINE also sets $ENTRY.

Machine Error context

By default, run-time routines are compiled with
the $RUNTIME metacommand set. This generates
special calls for each run-time routine at the
entry and exit points so that, for any error that
occurs in a run-time routine, the location of that
error is in the user program. The entry call,
BRTEQQ, saves the context (frame pointer, stack
pointer, and program counter) at the point where
the run-time routine is called by the user
program. The exit call restores the context. The
run-time entry helper, BRTEQQ, uses the run-time
values shown in Table 19-4.

Table 19-4. Run-Time Values inBRTEQQ.

Value Descri}2tion

RESEQQ Stack pointer

REFEQQ Frame pointer

REPEQQ Program counter offset

RECEQQ Program counter segment

12/87 Run Time and Debugging 19-19

The first thing that BRTEQQ does is examine
RESEQQ. If this value is not zero, the current
run-time routine was called from another run-time
routine and the error context has already been
set, so it just returns. If RESEQQ is zero, how
ever, the error context must be saved. The
caller's stack pointer is determined from the
current frame pointer and stored in RESEQQ. The
address of the caller's saved frame pointer and
return address (program counter) in the frame is
determined. Then the caller's frame pointer is
saved in REFEQQ. The caller's program counter
(for example, BRTEQQ's caller's return address) is
saved: the offset in REPEQQ and the segment (if
any) in RECEQQ.

The run-time exit helper, ERTEQQ, has no param
eters. It determines the caller's stack pointer
(again, from the frame pointer) and compares it
against RESEQQ. If these values are equal, the
original run-time routine called by your program
is returning, so RESEQQ is set back to zero.

EMSEQQ uses RESEQQ, REFEQQ, REPEQQ and RECEQQ to
display the machine error context.

Source Error context

Giving the source error context involves extra
overhead, since source location data must be
included in the object code in some form. This is
done with calls that set the current source
context as it occurs. These calls can also be
used to break program execution as part of the
debug process. The overhead of source location
data, especially line number calls, can be signi
ficant. Routine entry and exit calls, while
requiring more overhead individually, are much
less frequent, so the overall overhead is less.

19-20 Pascal Manual 12/87

The procedure entry call to ENTEQQ passes two VAR
parameters: the first is a LSTRING containing the
source file name; the second is a record that
contains the following:

o the line number of the procedure (a WORD)

o the page number of the procedure (a WORD)

o the procedure or function identifier (an
LSTRING)

The file name is that of the compiland source (the
main source file name, not the names of any
$INCLUDE files.) If one name is given in an
INTERFACE and another in a USES clause, the USES
identifier is used. The line and page are those
designated by the procedure header.

Entry and exit calls are generated for the main
program, unit initialization, and module initial
ization, in which case the identifier is the
program, unit, or module name, respectively.

The procedure exit call to EXTEQQ does not pass
any parameters. It pops the current source rou
tine context off a stack maintained in the heap.

The line number call to LNTEQQ passes a line
number as a value parameter. The current 1 ine
number is kept in the PUBLIC variable CLNEQQ.
Since the current routine is always available (be
cause $LINE implies $ENTRY), the compiland source
file name and the name of the routine containing
the line are available along with the line number.
Line number calls are generated just before the
code in the first statement on a source line. The
statement can, of course, be part of a larger
statement. The $LINE+ metacommand should be
placed at least a couple of symbols before the
start of the first statement intended for a line
number call. ($LINE- also takes effect early.)

Most of the error handling routines are in modules
ERRE and PASE. The source error context entry
points ENTEQQ, EXTEQQ, and LNTEQQ are in the debug
module DEBE.

12/87 Run Time and Debugging 19-21

AVOIDING THE USE OF RUN-TIME ROUTINES

You may wish to write programs with Pascal that
are specifically designed to use a minimum amount
of memory. To do so, you should not use Pascal
features that call run-time routines in your
source code, and should avoid linking your program
to the run-time library.

Use of the file input/output, real numbers, and
sets all involve the run-time library routines.
Units involve use of the run-time library,
al though use of modules does not. Use of the
$DEBUG metacommand also brings in the run time.
section 14, "Available Procedures and Functions,"
indicates which procedures and functions are
implemented through the run-time library.

The Pascal run-time modules linked with a Pascal
program may occupy from 36.5 to 70K bytes of
memory. Out of that, 4 to 5.5K bytes are taken by
the run-time data. Run-time data, the user's
data, the stack, and the short heap all share one
memory segment (64K bytes). For more information,
see your current Pascal Release Notice.

You can suppress linking the run-time library by
explicitly specifying the module
[sys]<sys>PasMin.obj in the object module line of
the Linker command form. In this case, your
program must provide the run-time support that is
normally provided by the Pascal run time. This
includes file and memory management and also all
the run-time services that use the file and memory
management (for instance, the numeric coprocessor
emulator). If you do link in PasMin.obj, you can
enter either "Yes" or "No" for [DS Allocation?].

A useful technique when avoiding the run-time
library support is to enter "none" as the last
parameter for the [Libraries] field of the Linker
command form. This ensures that
[Sys]<Sys>Pascal.Lib is not linked to your program
and the run time cannot be accessed. Any calls
made to the run time then appear as unresol ved
external references. (See the SUbsection "Linking
a Pascal Program" in section 18, "Using the Pascal
Compiler," for an example of how to complete the
[Libraries] field.)

19-22 Pascal Manual 12/87

EXAMPLES

Each sample program below performs the same func
tion. The first program does not use the run-time
routines.

Example 1: Min.Pas

{$debug-}

Program TypeFile_NoRunTime;

{This program does not use any elements of the
Pascal run-time system. ByteStreams are used
in place of Pascal I/O and CTOS parameter
management is used instead of Pascal parameter
management. Also the metacommand '$debug-' is
included to turn off the run-time error
checking.}

Const

Type

modeRead=#6d72;
modeWrite=#6d77;

pbType
ppType
sdType

=ads of word;
=ads of pbType;
=record

pb [OO]:pbType;
cb [04] :word;
end;

pSdType =ads of sdType;

Function RgParam (
iParam,
jParam :word;
pSdRet :pSdType) :word; extern;

Function OpenByteStream
pBswa :pbType;
pbFileSpec :pbType;
cbFileSpec :word;
pbPassword :pbType;
cbPassword :word;
mode :word;
pbBuffer :pbType;
cbBuffer :word) :word; extern;

Function ReadByte (
pBswa :pbType;
pByte :pbType) :word; extern;

12/87 Run Time and Debugging 19-23

Function WriteByte (
pBswa :pbType;
b :byte) :word; extern;

Function CloseBytestream (
pBswa :pbType) :word; extern;

Procedure CheckErc (
erc :word) ; extern;

Var [public]
erc,
cbRet : word;
bswa :array [1 .• 130] of byte;
bsBuffer:array [1 .• 1024] of byte;
b :byte;

Var [extern]
bsVid :byte; {open video bytestream

from CTOS.Lib}

Procedure Init[public];
var sd :sdType;
begin
CheckErc (RgParam (1,0, ads sd»;
{get 1st Executive paramameter, the file to be
typed, and open it}
CheckErc (OpenByteStream (ads bswa,

sd.pb,

end;

sd.cb,
ads ' "
0,
modeRead,
ads bsBuffer,
1024» ;

Procedure TypeFile[public];
begin
While true do

begin
erc := ReadByte (ads bswa, ads b):
if erc<>O then break:{end of file}
CheckErc (WriteByte (ads bsVid, b»;
end;

CheckErc (CloseBytestream (ads bswa»:
end;

19-24 pascal Manual 12/87

begin {program start}
Init;
TypeFile;

end.

Example 2: Max.Pas

Program
(Input,OutPut,lsFileSpec);

TypeFile_UsingRunTime

{This program types the file specified by the
first parameter of a command form
('lsFileSpec'), to the Video}

Var [public]
inputFile,
outputFile
lsFileSpec
b

:file of byte;
:lstring(91);

~: byte;

Procedure Init[public];
begin
{the Pascal initialization run time loads
lsFileSpec, see "program" statement with the
first field of the Executive command form}

inputFile.trap := true;{trap I/O errors}
Assign (inputFile, lsFileSpec);
Reset (inputFile);
Assign (outputFile, '[vid]');
Rewrite (outputfile);
end;

Procedure TypeFile[public];
begin
While true do

begin
Read (inputFile, b);
if inputFile.errs <> 0 then break;{end of

file}
Write (outputFile,b);
end;

end;

begin{program start}
Init;
TypeFile;

end.

12/87 Run Time and Debugging 19-25

APPENDIX A: COMPILER ERROR MESSAGES

This section lists error messages generated by the
Pascal compiler. For operating system status
messages and error codes see the status Codes
Manual. -----

ERRORS DETECTED BY THE FRONT END (PARSER/SEMANTIC
ANALYZER

Front end error and warning messages incl ude a
number as well as a message, and most contain a
row of dashes and an arrow to the location of the
error. The front end recovers from most errors.
However a few such errors are called panic errors,
in which case the front end only lists the rest of
the program. Panic errors also give the message:

Compiler Cannot Continue!

and occur in the following conditions:

o Error count set by $ERRORS exceeded.

o End of file occurs when not expected.

o Identifier scopes too deeply nested.

o Cannot find PROGRAM, MODULE, or IMPLEMENTATION
keyword.

o Cannot find PROGRAM, MODULE, or IMPLEMENTATION
identifier.

The word "Warning" before a message indicates the
intermediate code files produced by the front end
are correct, and the condition is not severe or is
just considered "unsafe." Other messages indicate
true errors; writing to the intermediate files
stops, and these files are discarded when the
front end is finished.

The error message "Compiler" refers to an internal
consistency check which failed; no matter what
source program is compiled, there should be no way
to get one of these messages. The comment in this
list refers to the compiler routine containing the
call.

FRONT END ERROR LIST

12/87 compiler Error Messages A-1

Decimal
Value

101

102

103

104

105

106

107

108

109

Meaning

Invalid Line Number

Line number is above 32767; there are
too many lines in the source file.

Line Too Long Truncated

Source lines are currently limited to
142 characters.

Identifier Too Long Truncated

Any identifier longer than the maximum
is truncated.

Number Too Long Truncated

Numeric constants are limited to the
identifier length.

End of string Not Found

The line ended before the closing quote
was found.

Assumed string

A double quote (") or an accent mark
(') is assumed to enclose a string; use
a single quote (') instead.

Unexpected End of File

End of file appears in a number, or
metacommand, etc. [while scanning].

Metacommand Expected Command Ignored

A $ at the start of a comment is not
followed by an identifier.

Unknown Metacommand Ignored

A metacommand identifier was unknown or
invalid in this version.

A-2 Pascal Manual 12/87

Decimal
Value

110

111

112

113

114

115

116

117

12/87

Meaning

Constant Identifier Unknown or Invalid
Assumed Zero

A meta command is set to a constant
identifier (as in $DEBUG: A) and the
identifier is unknown or not constant
of the right type.

[Unassigned]

Invalid Numeric Constant Assumed Zero

A meta command is set to a numeric
constant (as in $DEBUG: 1) and the con
stant has the wrong format or is out of
range.

Invalid Meta Value Assumed Zero

A metacommand is set to neither a
constant or identifier.

Invalid Metacommand

One of +, -, or : is expected following
a metacommand.

Wrong Type Value for Metacommand
Skipped

The metacommand expects a string but an
integer is given, or vice versa.

Meta Value out of Range Skipped

o The $LINESIZE integer value was
below 16 or above 160.

o The $REAL:N integer value was not 4
or 8.

o The $INTEGER:N integer value was
not 2.

File Identifier Too Long Skipped

The $INCLUDE string value for the
filename was too long.

Compiler Error Messages A-3

Decimal
Value

118

119

120

121

122

123

124

125

126

127

Meaning

Too Many File Levels

There are too many $ INCLUDE file
nesting levels.

Invalid Initialize Meta

A $POP meta command has no corresponding
$PUSH metacommand.

CONST Identifier Expected

A $INCONST metacommand was not followed
by an identifier.

Invalid INPUT Number Assumed Zero

The user input invoked by $INCONST was
invalid in some way.

Invalid Metacommand Skipped

A $IF and its value was not followed by
$THEN or $ELSE.

Unexpected Metacommand Skipped

A $THEN, $ELSE, or $END was found
unrelated to a $IF metacommand.

Unexpected Metacommand

The meta command was not in a comment;
it was processed anyway.

Assumed Hexadecimal

A # was led without a "16" warning.

Invalid Real Constant

A type REAL constant was used with a
leading or trailing decimal point.

Invalid Character Skipped

Source file character is not acceptable
in program text.

A-4 Pascal Manual 12/87

Decimal
Value

128

129

130

131

132

Meaning

Forward Proc Missing

The procedure or function given in the
message was declared FORWARD but not
found. [Message occurs in $SYMTAB
area.]

Label Not Encountered

The label given in the message was
declared or used in a GOTO, BREAK, or
CYCLE but not found. [Message occurs
in $SYMTAB area].

Program Parameter Bad

The program parameter given in the
message was never declared or has the
wrong type for READFN. [Message occurs
in $SYMTAB area].

[Unassigned]

[Unassigned]

NOTE

The following overflow errors can occur in
several contexts.

133

134

135

12/87

Type Size Overflow

The data type implies a structure big
ger than 32766 bytes.

Constant Memory Overflow

Constant memory allocation has gone
above 65534 bytes.

static Memory Overflow

static memory allocation has gone above
65534 bytes.

compiler Error Messages A-S

Decimal
Value

136

137

138

139

140

141

142

Meaning

stack Memory Overflow

stack frame memory allocation has gone
above 65534 bytes.

Integer Constant Overflow

A type INTEGER or other, signed con
stant expression out of range.

Word Constant Overflow

A type WORD or other unsigned constant
expression is out of range.

Value Not in Range for Record

Record tag value is not in range of
variant, in a structured constant, a
long form NEW/DISPOSE/SIZEOF, or other
application.

Too Many Compiler Labels

The compiler needs internal labels~ the
program is too big.

Compiler [in BOUNDS]

This refers to an internal consistency
check which failed; no matter what
source program is compiled, this mes
sage should not occur. The compiler is
in error, not your source program. The
comment in this list refers to the com
piler routine containing the call.

Too Many Identifier Levels

Identifier scope level is over 15.
(This is a compiler panic error. See
explanation at the front of this
section.)

A-6 Pascal Manual 12/87

Decimal
Value

143

144

145

146

Meaning

Compiler [in DECLEVL]

This refers to an internal consistency
check which failed: no matter what
source program is compiled, this mes
sage should not occur. The compiler is
in error, not your source program. The
comment in this list refers to the com
piler routine containing the call.

Compiler [in LOOKUP7: often a PASKEY
file format error]

If this error occurs, you can rename
the file [Sys]<sys>Paskey to another
name (thus, saving it) and try to re
compile your program. However, this
error refers to an internal consistency
check that failed; no matter what
source program is compiled, this mes
sage should not occur.

Identifier Already Declared

An identifier can only be declared once
in a given scope level.

Unexpected End of File

End of file in a statement, decla
ration, etc. [while parsing].

NOTE

The following common sUbstitution mistakes get
their own special messages, and are corrected
with just a warning.

147 Assumed

148 Assumed

149 := Assumed =

12/87 compiler Error Messages A-7

Decimal
Value Meaning

150 Assumed :=

151 Assumed

152 Assumed

153 Assumed

154 Assumed

155 Assumed

156 Assumed

157 to
161 [Unassigned]

NOTE

I f a particular symbol is expected in the
source but not found, it may be inserted with
one of the following messages.

162 Insert Symbol

[this message should not occur; it is a
minor compiler error]

163 Insert ,

164 Insert

165 Insert

166 Insert :=

167 Insert OF

168 Insert

169 Insert

170 Insert

171 Insert

A-8 Pascal Manual 12/87

Decimal
Value Meaning:

172 Insert DO

173 Insert

174 Insert .
175 Insert

176 Insert END

177 Insert TO

178 Insert THEN

179 Insert *
180 to
184 [Unassigned]

NOTE

I f a particular symbol is expected in the
source but is found after some invalid
symbols, the invalid ones are deleted with the
following two messages.

185

186

187

188

12/87

Invalid Symbol - Begin Skip

End Skip

End Skip

The previous error message ended with
the phrase "Begin Skip"; this message
marks the end of skipped source text.

Section or Expression Too Long

Compiler limit; try rearranging the
program or breaking up long expressions
by assigning intermediate values to
temporary variables.

compiler Error Messages A-9

Decimal
Value

189

190

191

192

193

194

195

196

197

A-10

Meaning

Invalid set Operator or Function

These include, for example, MOD oper
ator or ODD function with sets.

Invalid Real Operator or Function

These include, for example, MOD oper
ator or ODD function with reals.

Invalid Value Type for Operator or
Function

These include, for example, MOD oper
ator or ODD function wi th enumerated
type.

[Unassigned]

[Unassigned]

Type Too Long

A variable or type with greater than
32766 bytes is used.

Compiler [in SIZEOFT, {B}]

This refers to an internal consistency
check that failed; no matter what
source program is compiled, this mes
sage should not occur. The compiler is
in error, not your source program. The
comment in this list refers to the com
piler routine containing the call.

Zero Size Value

Use of the empty record "RECORD END" as
if it had a size.

Compiler [in ALLOCAT, {B}]

This refers to an internal consistency
check that failed; no matter what
source program is compiled, this mes
sage should not occur. The compiler is
in error, not your source program. The
comment in this list refers to the com
piler routine containing the call.

Pascal Manual 12/87

Decimal
Value

198

199

200

201

202

203

204

205

12/87

Meaning

Constant Expression Value out of Range

Check array index, sub range assignment,
other subrange check.

Integer Type Not Compatible with Word
Type

A common error that indicates confusing
signed and unsigned arithmetic; either
change the positive signed value to un
signed with WRD () or change the
unsigned value « MAXINT) to signed
with ORO ().

[Unassigned]

Types Not Assignment Compatible

Check assignment statement or value
parameter; see the sUbsection "Type
Compatibility" in section 4, "Introduc
tion to Data Types."

Types Not Compatible in Expression

Expression mixes incompatible types;
see the sUbsection "Type compatibility"
in section 4, "Introduction to Data
Types."

Not Array - Begin Skip

A variable followed by a left bracket
(or parenthesis) is not an array.

Invalid Ordinal Expression Assumed
Integer Zero

The expression has the wrong type or a
type that is not ordinal.

Invalid Use of PACKED Components

A component of a PACKED structure has
no address (it may not be on a byte
boundary); it cannot be passed by
reference.

compiler Error Messages A-11

Decimal
Value

206

207

208

209

210

211

212

213

A-12

Meaning

Not Record Field Ignored

A variable followed by a dot is not a
record, address, or file.

Invalid Field

A record variable and dot are not
followed by a valid field.

File Dereference Considered Harmful

When the address of a file buffer
variable is calculated, the special
actions normally done with buffer vari
ables, that is, lazy evaluation (for
textfiles) or concurrency (for binary
files), cannot be done; the buffer
variable at this address may not be
valid. (See section 7, "Files," and
Section 15, "File-Oriented Procedures
and Functions.")

cannot Dereference Value

A variable followed by a caret is not a
pointer, address, or file.

Invalid Segment Dereference

A variable resides at a segmented
address, but a default segment address
is needed. You may need to make a local
copy of the variable.

Ordinal Expression Invalid or Not
Constant

A constant ordinal expression was
expected.

[unassigned]

[unassigned]

Pascal Manual 12/87

Decimal
Value

214

215

216

217

218

219

220

221

12/87

Meaning

out of Range for Set - 255 Assumed

An element of a set constant must have
an ordinal value <= 255.

Type Too Long or contains File - Begin
Skip

A structured constant must have 255 or
fewer bytes; also, it cannot be or con
tain a file type or an LSTRING type.

Extra Array Components Ignored

An array constant has too many compo
nents for the array type.

Extra Record Components Ignored

A record constant has too many compo
nents for the record type.

Constant Value Expected Zero Assumed

A v~lue in a structured constant is not
constant.

[Unassigned]

Compiler [in STRCONS]

This refers to an internal consistency
check which failed; no matter what
SOUl:'c.e program is compiled, this mes
sage should not occur. The compiler is
in error, not your source program. The
comment in this list refers to the com
piler routine containing the call.

Components Expected for Type

A structured constant
components for its type.

needs

compiler Error Messaqes

more

A-13

Decimal
Value

222

223

224

225

226

227

228

229

230

A-14

Meaning

Overflow - 255 Components in string
Constant

A string constant must have 255 or
fewer bytes.

Use NULL

The predeclared constant NULL must be
used instead of two quotes.

Cannot Assign with Supertype LSTRING

A super array LSTRING cannot be source
or the target of assignment.

string Expression Not Constant

String concatenation with the asterisk
only applies to constants.

String Expected Character - 255 Assumed

Somehow a string constant had no char
acters, perhaps using NULL.

Invalid Address of Function

Assignment or other address reference
to the function value is not in the
scope of the function. This error also
occurs when RESULT is used outside the
scope of the function.

Cannot Assign to Variable

Assignment to READONLY, CONST, or FOR
control variable.

[Unassigned]

Unknown Identifier Assumed Integer -
Begin Skip

Unknown identifier,
address is needed.

Pascal Manual

for which the

12/87

Decimal
Value

231

232

233

12/87

Meaning

VAR Parameter or WITH Record Assumed
Integer - Begin Skip

Invalid identifier,
address is needed.

for which the

Cannot Assign to Type

The target of assignment is a file or
otherwise cannot be assigned.

Invalid Procedure or Function
Parameter - Begin Skip

An error
procedure
following:

in the use of
or function,

an intrinsic
such as the

o The first parameter to NEW or
DISPOSE is not a pointer variable.

o The long form of a NEW/DISPOSE/
SIZEOF record tag value was not
found.

o The long form of a NEW/DISPOSE/
SIZEOF super array, has too many
bounds.

o The long form of a NEW/DISPOSE/
SIZEOF super array, does not have
enough bounds.

o A NEW or SIZEOF super array was not
given bounds.

o ORO or WRD was performed on a value
that is not of an ordinal type.

o LOWER or UPPER was performed on an
invalid value or type.

o PACK or UNPACK was performed on a
super array, array of files.

o The first parameter to RETYPE is
not a type identifier.

o A RESULT parameter is not a func
tion identifier.

compiler Error Messages A-1S

A-16

o A CODEBYTE parameter value is
greater than 255.

o An intrinsic is used which is not
available in this version.

o ORO or WRO of an INTEGER4 value out
of range.

o A HIWORD or LOWORO parameter is not
ordinal or INTEGER4.

Pascal Manual 12/87

Decimal
Value

234

235

236

237

238

239

240

12/87

Meaning

Type Invalid Assumed Integer

o A parameter to READ, WRITE, ENCODE,
or DECODE is not of type INTEGER,
WORD, REAL, BOOLEAN, enumerated, or
pointer.

o A parameter to READ and WRITE is
not of type CHAR, STRING, or
LSTRING.

o A parameter to READFN is not of
type FILE.

o A program parameter does not have a
"readable" type; in this case the
error occurs at the BEGIN keyword
for the main program.

Assumed File INPUT

The first READFN parameter is not a
file, so INPUT is assumed.

Not File Assumed Text File

The first parameter to READ or WRITE
(or READLN or WRITELN) was assumed to
be the file hut this assumption was not
correct; please give INPUT or OUTPUT
explicitly to avoid this message.

Assumed INPUT

INPUT was not given as a program
parameter.

Assumed OUTPUT

OUTPUT was not given as a program
parameter.

LSTRING Expected

The target of a READSET, ENCODE, or
DECODE must be an LSTRING.

[Unassigned]

compiler Error Messages A-17

Decimal
Value

241

242

243

244

245

246

247

248

249

A-18

Meaning

Invalid Segment Variable

The variable resides at a segmented
address, but a default segment address
is needed. You may need to make local
copy of the variable.

File Parameter Expected - Begin Skip

READSET expects a textfile parameter.

Character Set Expected

READSET expects a SET OF CHAR
parameter.

Unexpected Parameter - Begin Skip

EOF, EOLN, and PAGE do not take more
than one parameter.

Not Text File

EOLN, PAGE, READLN and WRITELN only
apply to textfiles.

[Unassigned]

Invalid Function

Use of the intrinsic function WRD is
invalid.

Size Not Identical

The warning is given in RETYPE; it may
or may not work as intended.

Procedural Type Parameter List Not
Compatible

The parameter lists for formal and
actual procedural parameters are not
compatible. The number of parameters
is different: the function result type
or parameter type is different: or the
attributes are wrong.

Pascal Manual 12/87

Decimal
Value

250

251

252

253

254

255

256

12/87

Meaning

cannot Use Procedure with Attribute

You cannot call an INTERRUPT procedure,
directly or indirectly.

Unexpected Parameter - Begin Skip

The procedure or function has no param
eters, but a left parenthesis was
found.

Cannot Use Procedure or Function as
Parameter

An intrinsic procedure or function
cannot be passed as parameter.

Parameter Not Procedure or Function -
Begin Skip

A procedural parameter was expected;
you need a procedure or function here.

Supertype Array Parameter Not
Compatible

Actual parameter is not same or derived
super type as formal.

Compiler [in ACTUALS]

This refers to an internal consistency
check which failed; no matter what
source program is compiled, this
message should not occur. The compiler
is in error, not your source program.
The comment in this list refers to the
compiler routine containing the call.

VAR or CONST Parameter Types Not
Identical

Actual and formal reference parameter
types must be identical.

compiler Error Messages A-19

Decimal
Value

257

258

259

260

261

262

263

264

265

266

A-20

Meaning

Parameter List Size Wrong - Begin Skip

Too few or too many parameters were
used; skips only if too many.

Invalid Procedural Parameter to EXTERN

The actual procedure or function is
invoked with intrasegment calls, and so
cannot be passed to an external code
segment. Give the PUBLIC attribute to
the procedure or function to fix this.

Invalid Set Constant for Type

The set is not constant, the base types
are not identical, or the constant is
too big.

Unknown Identifier in Expression
Assumed Zero

The identifier is undefined (or mis
spelled) in an expression.

Identifier Wrong in Expression Assumed
Zero

A gene;:-al identifier
expressJ.on has occurred:
file type ide

error in an
for example,

Assumed Parameter Index or Field -
Begin Skip

After error 260 or 261, anything in
parentheses or square brackets, or a
dot followed by an identifier, is
skipped.

[Unassigned]

[Unassigned]

Invalid Numeric Constant Assumed Zero

A decode error in an assumed INTEGER
(or WORD) literal constant.

[Unassigned]

Pascal Manual 12/87

Decimal
Value

267

268

269

270

271

272

273

274

275

276

277

12/87

Meaning

Invalid Real Numeric constant

A decode error in an assumed type REAL
literal constant.

cannot Begin Expression Skipped

A symbol cannot start an expression, so
it has been deleted.

cannot Begin Expression Assumed Zero

A symbol cannot start an expression, so
zero has been inserted.

Constant Overflow

DIV or MOD by the constant zero
(INTEGER or WORD).

Word Constant Overflow

Unary minus, on a WORD operand (try NOT
word + 1).

Word Constant Overflow

WORD constant minus a WORD constant
gives a negative result.

[Unassigned]

[unassigned]

Invalid Range

The lower bound of a subrange is
greater than upper bound (e.g., 2 .• 1).

CASE Constant Expected

A constant value is expected for a CASE
statement or record variant.

Value Already in Use

In a CASE statement or record variant,
a value has already been assigned (as
in CASE 1 .. 3: XXX; 2: YYY; END).

compiler Error Messaqes A-21

Decimal
Value

278

279

280

281

282

283

284

285

286

A-22

Meaning

Invalid Symbol

" " was used in a CASE or record
variant.

Label Expected

In a BREAK, CYCLE, or GOTO statement,
or starting a statement, or in a LABEL
section, the expected label was not
found.

Invalid Integer Label

Nondecimal notation (e.g., 8#77, etc.)
is not allowed in labels.

Label Assumed Declared

This label did not appear in the LABEL
section.

[Unassigned]

Expression Not Boolean Type

The expression following IF, WHILE, or
UNTIL must be BOOLEAN.

Skip to End of Statement

An unexpected ELSE or UNTIL clause was
skipped.

Compiler [in STATEMT {B}]

This refers to an internal consistency
check which failed; no matter what
source program is compiled, this mes
sage should not occur. The compiler is
in error, not your source program. The
comment in this list refers to the com
piler routine containing the call.

Ignored

A semicolon before ELSE is always in
error, and is skipped.

Pascal Manual 12/87

Decimal
Value

287

288

289

290

291

292

12/87

Meaning

[Unassigned]

Skipped

A colon after OTHERWISE is always in
error, and is skipped.

Variable Expected For FOR Statement -
Begin Skip

A variable identifier must come after
FOR.

[Unassigned]

FOR Variable Not Ordinal or Static or
Declared in Procedure

The FOR statement control variable must
not be

o type REAL, INTEGER4, or other non
ordinal type

o the component of an array, record,
or file type

o the referent of a pointer type or
address type

o in the stack or heap,
locally declared

unless

o nonlocally declared,
static memory

unless in

o a reference parameter (VAR or VARS
parameter)

o a variable with a segmented ORIGIN
attribute

Skip to :=

In a FOR statement, the assignment is
expected here.

Compiler Error Messages A-23

Decimal
Value

293

294

295

296

297

298

299

300

301

302

303

A-24

Meaning

GOTO Invalid

The GO TO or label here involves an
invalid GOTO statement.

GOTO Considered Harmful

The $GOTOCK metacommand is on, and here
is a GOTO.

[Unassigned]

Label Not Loop Label

The BREAK or CYCLE label is not before
a FOR, WHILE, or REPEAT.

Not in Loop

The BREAK or CYCLE statement is not in
a FOR, WHILE, or REPEAT.

Record Expected - Begin Skip

A WITH statement expects a record
variable.

[Unassigned]

Label Already in Use Previous Use
Ignored

This label has already appeared in
front of a statement.

Invalid Use of Procedure or Function
Parameter

A procedure parameter was used as a
function, or vice versa.

[Unassigned]

Unknown Identifier Skip statement

The starting statement identifier is
undefined (or misspelled).

Pascal Manual 12/87

Decimal
Value

304

305

306

307

308

309

310

311

12/87

Meaning

Invalid Identifier Skip Statement

A general identifier error starts a
statement; for example, file type ide

Statement Not Expected

A MODULE or uninitialized IMPLEMEN
TATION with a main BEGIN •• END.

Function Assignment Not Found

Somewhere in the function's body its
value must be assigned.

Unexpected END Skipped

An END was unexpected; perhaps a
missing BEGIN, CASE, or RECORD.

Compiler [in CONTEXT {B}]

This refers to an internal consistency
check which failed; no matter what
source program is compiled, this mes
sage should not occur. The compiler is
in error, not your source program. The
comment in this list refers to the com
piler routine containing the call.

Attribute Invalid

An attribute valid only for procedures
and functions was given for variable or
vice versa, or an invalid attribute mix
such as PUBLIC and EXTERN was used.

Attribute Expected

A left bracket indicates attributes,
but this is not an attribute.

Skip to Identifier

This symbol was skipped to get to the
identifier which follows.

compiler Error Messages A-25

Decimal
Value

312

313

314

315

316

317

318

319

320

321

322

A-26

Meaning

Identifier Expected

A list of identifiers is expected, but
this is not an identifier.

[Unassigned]

Identifier Expected Skip to ;

A new identifier to be declared was
expected but not found.

Type Unknown or Invalid Assumed
Integer - Begin Skip

Parameter or function return type not
identifier, undeclared, or value
parameter or function return with file
or super array.

Identifier Expected

No identifier appears after a PROCEDURE
or FUNCTION in a parameter list.

[unassigned]

Compiler internal error.

compiler internal error.

Previous Forward Skip Parameter List

The parameter list and function return
type are not repeated when a forward
(or interface) procedure or function is
defined.

Not EXTERN

A procedure or function with the ORIGIN
attribute must be EXTERN.

Invalid Attribute with Function or
Parameter

An INTERRUPT procedure cannot have
parameters or be a function.

Pascal Manual 12/87

Decimal
Value

323

324

325

326

327

328

329

330

331

12/87

Meaning

Invalid Attribute in Procedure or
Function

A nested procedure or function cannot
have attributes or be EXTERN.

Compiler internal error.

Already Forward

FORWARD cannot be used twice for the
same procedure or function.

Identifier Expected for Procedure or
Function

The keywords PROCEDURE or FUNCTION must
be followed by an identifier.

Invalid Symbol Skipped

FORWARD or EXTERN directives are never
used in interfaces.

EXTERN Invalid with Attribute

An EXTERN procedure cannot have the
PUBLIC attribute.

Ordinal Type Identifier Expected
Integer Assumed - Begin Skip

An ordinal type identifier is expected
for a record tag type.

contains File Cannot Initialize

A file in a record variant, while
allowed, is considered unsafe and is
not initialized automatically with the
usual NEWFQQ call.

Type Identifier Expected Assumed
Integer

This error occurs when an ordinal type
identifier is expected.

Compiler Error Messages A-27

Decimal
Value

332

333

334

335

336

337

338

339

340

A-28

Meaning

Invalid Type

Declaring the WORD type.

Not Supertype Assumed string

This looks like a super array type
designator but type identifier is not a
super array type so STRING super array
type is assumed.

Type Expected Integer Assumed

This is a general message; a type
clause or type identifier is expected.

Out of Range 255 for LSTRING

An LSTRING designator cannot have an
upper bound over 255.

Cannot Use Supertype Use Designator

Super array type must be reference
parameter or pointer referent.

Supertype Designator Not Found

All upper bounds must be given in a
super array designator.

contains File Cannot Initialize

A super array of a file type, while
allowed, is considered unsafe and is
not initialized automatically with the
usual NEWFQQ call.

Supertype Not Array Skip to ;

An Integer is assumed. The keyword
SUPER is always followed by ARRAY in a
type clause.

Invalid Set Range Integer 0 to 255

The base type of a set must be within
the sub range 0 .. 255.

Pascal Manual 12/87

Decimal
Value

341

342

343

344

345

346

347

348

349

12/87

Meaning

File contains File

A file type cannot contain a file type,
directly or indirectly.

PACKED Identifier Invalid Ignored

The PACKED keyword must be followed by
one of ARRAY, RECORD, SET, or FILE; it
cannot be followed by a type
identifier.

Unexpected PACKED

The PACKED keyword only applies to
structured types. (See above.)

[Unassigned]

Skip to ;

A semicolon is expected at the end of a
declaration (not at end of line).

Insert ;

semicolon expected at end of
declaration (at end of line).

Cannot Use Value section with ROM
Memory

Setting $ROM on prevents the use of a
VALUE section.

UNIT Procedure or Function Invalid
EXTERN

In an IMPLEMENTATION, any interface
procedures and functions not imple
mented must be declared EXTERN at the
beginning of the IMPLEMENTATION, but
this EXTERN occurs later.

[Unassigned]

compiler Error Messages A-29

Decimal
Value

350

351

352

353

354

355

356

357

A-30

Meaning

Not Array - Begin Skip

A variable in a VALUE section followed
by square bracket not array.

Not Record - Begin Skip

A variable in VALUE section followed by
a dot is not a record type.

Invalid Field

In the VALUE section
assumed to be afield
record.

Constant Value Expected

an identifier
is not in the

In the VALUE section a variable can
only be initialized to a constant.

Not Assignment Operator Skip to ;

The assignment operator was not found
in a VALUE section.

Cannot Initialize Identifier Skip to ;

A symbol in the VALUE section is not a
variable declared at this level in
fixed (STATIC) memory, or has the
ORIGIN or EXTERN attribute.

Cannot Use Value section

Put the VALUE section in the IMPLEMEN
TATION, not the INTERFACE.

Unknown Forward Pointer Type Assumed
Integer

The identifier for the referent of a
reference type declared earlier in this
TYPE (or VAR) section was never
declared itself.

Pascal Manual 12/87

Decimal
Value

358

359

360

361

362

363

364

12/87

Meaning

Pointer Type Assumed Forward

In this TYPE section, a pointer or
address type occurred in which the
referent type was already declared in
an enclosing scope, but the identifier
for the referent type was declared
again later in the same TYPE section.
For example: TYPE A=WORD; PROCEDURE Bi
TYPE C=AAi A=REAL;Message says the
forward type is used in this case (such
as, REAL).

Cannot Use Label section

Put a LABEL section in the IMPLEMEN
TATION, not the INTERFACE.

Forward Pointer to Supertype

The referent of a reference type
declared in this TYPE section is a
super array type; the supertype
declaration must come earlier.

Constant Expression Expected Zero
Assumed

In a CONST section, the expression is
not constant.

Attribute Invalid

In a VAR section, PUBLIC or ORIGIN with
are used with EXTERN, or ORIGIN in
attribute brackets after the VAR
keyword.

[Unassigned]

contains File Initialize Module

File variables must be initialized.
Thus, when a file variable is declared
in a module the module must be called
(as a parameterless procedure) to
initialize these files.

compiler Error Messaqes A-31

Decimal
Value

365

366

367

368

369

370

371

372

A-32

Meaning

origin variable contains File Cannot
Initialize

File variables must be initialized, but
ORIGIN variables are never initialized,
so the user must initialize this file.

UNIT Identifier Expected Skip to ;

USES was not followed by the identifier
of a unit.

Initialize Module to Initialize UNIT

A USES clause triggers a unit initial
ization call, but to invoke this call
the module must be called as a
procedure.

Identifier List Too Long - Extra
Assumed Integer

In a USES clause with a list of identi
fiers, more identifiers were found in
the list than are constituents of the
interface.

End of UNIT Identifier - List Ignored

In a USES clause with a list of identi
fiers, fewer identifiers were found in
the list than are constituents of the
interface.

[Unassigned]

UNIT Identifier Expected

After the phrase INTERFACE; a UNIT
identifier was not found.

Compiler error

This error occurs when the keyword UNIT
is missing in an interface.

Pascal Manual 12/87

Decimal
Value

373

374

375

376

377

378

12/87

Meaning

Identifier in UNIT List Not Declared

One of the identifiers in the interface
UNIT list was not declared in the body
of the interface.

Program Identifier Expected

No identifier appears after the PROGRAM
or MODULE keyword. (This is a compiler
panic error. See explanation at the
front of this section.)

UNIT Identifier Expected

No unit identifier after IMPLEMENTATION
OF. (This is a compiler panic error.
See explanation at the front of this
section.)

Program Not Found

PROGRAM, MODULE, or IMPLEMENTATION OF
keywords not found (panic). Can occur
if source file is not a Pascal
compiland.

File End Expected Skip to End

The assumed end of the compiland was
processed, but there is more.

Program Not Found

The main body of a PROGRAM or initial
ized IMPLEMENTATION, or the final END
of a MODULE or other IMPLEMENTATION,
was not found.

Compiler Error Messages A-33

ERRORS DETECTED BY THE BACK END (OPTIMIZER/CODE
GENERATOR)

The following program errors are detected by the
back end:

o Attempt to divide by zero. For example,

A DIV o.

o Overflow during integer constant folding. For
example,

MAXINT+A+MAXINT.

o Expression too complex or too many internal
labels.

(Try breaking up the expression by using
assignments to temporary variables.)

The optimizer and code generator perform a large
amount of internal consistency checking. When one
of these checks encounters an unexpected
condition, the result is an internal error
generated by the module where the inconsistency
was discovered.

Such errors should generally not occur. When they
do occur, we request that they be reported
promptly. Since it may be difficult to analyze
such reports unless they include the complete
source code involved, please include the complete
source code in a machine readable form.

The format of an optimizer error message is as
shown below:

*** Internal Error <error number>
Near Line <source line number>
contact Technical Support

where <error number> is an internal error number
and <source line number> is the last source line
number seen by the optimizer. The error may not
have occurred exactly at this line, but it is
likely to be within a few lines following this
line. The <source line number> corresponds to the
line numbers on the listing generated by the front
end.

A-34 Pascal Manual 12/87

Module OPTIM (status Numbers 0 to 99)

1 Bad ICode file format (PRSDECI0).

2 Bad symbols file format; cannot find function
return variable (READ_SYMTAB).

3 Multiple symbols file entries for symbol that
is not a procedure or function (READ_SYMTAB).

4 Forward reference to an Icod4 number (XLATE).

5 ICode reference to a missing symbol
(XLATE_SYM).

6 Duplicate ICode numbers in same block
(ENTER_XLATE).

7 Invalid or unexpected operand for ADDR ICode
(PHASEl).

8 Invalid addressing mode for ADDR ICode
(PHASEl).

9 Invalid or unexpected operand for DRRR ICode
(PHASEl).

10 Invalid or unexpected operand for DRFR ICode
(PHASEl).

11 Invalid symbol type for UPPR ICode (PHASEl).

12 Invalid addressing mode for ASMS/ASVS
(PHASEl).

13 Bad tree format; assignment target tree does
not have a SYMR node as its leftmost lead
(DEL_TARGET).

14 Unknown ICode value (SUREX).

15 Bad statement list returned from SPLITTREE
(OPTIM - main program).

16 Bad statement list returned from PHASEI
(OPTIM).

17 Bad statement list returned from CHECK LENGTH
(OPTIM).

18 Bad statement list returned from PHASE2
(OPTIM).

19 Bad statement list returned from PHASE3
(OPTIM).

20 Bad statement list returned from MD XFURM
(OPTIM).

21 Bad statement list returned from SUREX
(OPTIM).

12/87 Compiler Error Messages A-35

Module GEN6 (status Numbers 100 to 199)

100 static nesting level < 0 (NESTLEV).
101 Invalid or unexpected operand for OFFR ICode

(MD_XFORM) •
102 Invalid flag values for CONR (MD_XFORM).

103 Invalid or unexpected operand for UPPR ICode
(MD_XFORM) •

104 Invalid symbol type for UPPR operand
(MD_XFORM) •

105 Too many levels of indirection for UPPR
operand (MD_XFORM).

106 Invalid addressing mode for VALP ICode
(MD_XFORM) •

107 Invalid or unexpected operand for LVAP ICode
(MD_XFORM) •

108 Multiple definition of an internal label
(GENDONE).

109 Cannot load long constant value with a length
> 4 (CASELONR).

110 Invalid offset value for OFSR ICode
(CASEOFSR).

111 Register table entry or use count for OFSR
ICode is bad (CASEOFSR).

112 Invalid nesting for procedure/function call
(CALLPF) •

113 Invalid function return length (CASECALP).

114 Bad use count for SFRT ICode operands
(CASESFRT).

115 Symbol type is invalid, must be a variable
(CLASS) •

116 Operand use count is already 0 (COUNTUSE).

117 User label must begin a basic block
(DEF_ULAB) •

118 Duplicate definition of user label
(DEF_ULAB) .

119 Address flag missing for LONR ICode
(EMITIMM).

120 Address flag missing for SYMR ICode
(EMITIMM) •

A-36 Pascal Manual , 12/87

121 Variable must be static (EMITIMM).

122 Symbol type must be variable (EMITIMM).

123 Invalid ICode type (EMITIMM).

124 Cannot save a multibyte value (EMPTYREG).

125 Invalid register contents (EMPTYREG).

126 Symbol type must be variable (GENREF).

127 Missing address flag for long constant
reference (GENREF).

128 Invalid ICode type (GENREF).

129 Value must be in an index register (GENREF).

130 Value must be in an index register (GENREFI).

131 No registers available for allocation
(GETREG).

132 Register BX already in use (IMBXES).

133 Register must be SI or DI (INDREF).

134 Symbol must be variable (INDREF).

135 Missing address bit for long constant refer-
ence (LOADR).

136 Symbol must be a variable (LOADR).

137 Invalid ICode type (LOADR).

138 Symbol type must be a label (LONGGOTO).

139 Register residence flags do not match reg-
ister table contents (MOVER).

140 Value must be in some register (REGN).

141 Invalid operand register specified by tem
plate (REGSPEC).

142 Operand's register residence flag does not
match the specified register (REGSPEC).

143 Operand must be in a register (X_BINOP).

144 Unexpected opcode value (X_BINOP).

145 Contents of BX do not match operand
(X_CHKBXES).

146 Invalid ICode operator (X_CMPI).

147 Invalid ICode operand (X_CMPI).

148 Invalid variable kind (must be static) or
address bit missing (X_CMPI).

149 Invalid ICode operator; must have two
operands (X_COMOPR).

12/87 compiler Error Messaqes A-37

150 Desired register already in use (WANTREG).
151 Desired register already in use (X_DONE).
152 Index must already be in a register

(X_DONEA) •
153 Invalid register contents (X_DONEA).
154 Symbol must be a variable (X_DONEA).
155 Invalid ICode operand (X_DONEA).
156 Invalid condition code for IF template

(X IFCOND).
157 Invalid condition code for IFOPR template

(X_IFOCOND).
158 Register BX contents are wrong (X_INREGS).
159 Source register is empty (X_MOVREG).
160 Register residence flag for operand is bad

(X _MOVREG) •
161 Invalid register designated; cannot access

high half of register (X_SELFH).
163 Invalid ICode for assignment target (X_STOR).
164 Invalid ICode operator; must have two

operands (X_REVOPR).
165 Invalid opcode value (X_UNIOP).
166 Invalid register specification (X_XCHG).
167 Cannot exchange registers containing part of

a multiregister value (X_XCHG).
168 Register residence flag does not match

register table contents (X_XCHG)
169 Register residence flag does not match

register table contents (X_XCHG).
170 Register table contents do not match their

associated register residence flags
(INTERPRET) •

171 Operand must be a CONR node (INTERPRET).
172 No match for this operand class in the

templates for this ICode (SCANCLASS).
173 Register BX is already in use (INTERPRET).
174 Use count was not decremented properly

(INTERPRET).
175 Use count was not decremented properly

(INTERPRET).
176 Error in template processing (INTERPRET).

A-38 Pascal Manual 12/87

177 Invalid register specification: cannot access
high/low half of the register (INTERPRET).

178 Invalid or unexpected template operator
(INTERPRET).

179 Invalid length for OFFR ICode; must be length
1, 2, or 4 (GEN_SUBTREE).

180 Symbol table entry for RTPP ICode does not
match the current procedure/function
(GEN_SUBTREE).

181 Symbol table entry for RTPP ICode must be a
procedure or function (GEN_SUBTREE).

182 Invalid or unexpected ICode value
(GEN_SUBTREE).

Module SUBR (status Numbers 200 to 299)

200 Value too large to convert to WORD type, BOOT
compiler only (WRDTOINT).

201 Missing address bit for assignment target
(TARGCHECK).

202 Invalid ICode for assignment target
(TARGCHECK).

203 Unexpected opcode value, BOOT compiler only
(GET_OPCFLAGS).

204 Invalid opcode flag value (GETTYP).

205 Invalid opcode flag value (GETTYP).

Module FOLD (status Numbers 300 to 399)

300 Invalid operand count, must have two operands
(FOLD_CONS).

301 Invalid constant values for operands to the
NOTB ICode (FOLD_CONS).

Module CHKLEN (status Numbers 400 to 499)

400 Operand length cannot be 0 (CHECKLEN).

401 Length of operands must match if both are
greater than 0 (CHECKLEN).

402 Operand length must be -1, 1, or 2
(CHECKLEN).

12/87 Compiler Error Messages A-39

403 Operand length must be -1, 1, or 2
(MUST10R2).

404 New length must be 1 or 2 (COERCE).

405 Assignment target must be variable or
function (TARG_LEN).

406 Invalid ICode for assignment target
(TARG_LEN).

407 Invalid symbol type for SYMR ICode
(CHECK_LENGTH).

408 Assignment target length must be 4 for AS48
(CHECK_LENGTH).

409 Invalid addressing for VAXP operand
(CHECK_LENGTH).

410 Unexpected ICode value (CHECK_LENGTH).

Module CTL6 (status Numbers 500 to 599)

500 Code generator-computed code size does not
match the computed code size.

501 Invalid class override, CS OTYP record
(BINPS).

502 Invalid symbol type, CS_SYM record (BINPS2).

503 Internal label reference to an undefined
label, CS_CJMP record (BINPS2).

504 Internal label reference to an undefined
label, CS_ILAB record (BINPS2).

505 Internal label location does not match
current location counter, CS OILB record
(BINPS2). -

506 User label reference to an undefined label,
CS_ULAB record (BINPS2).

507 User label location does not match current
location counter, CS_OULB record (BINPS2).

508 P-code procedure/function entry address does
not match current location counter,
CS_PFBEG/CS PROB record (BINPS2).

509 Procedure/function entry address does not
match current location counter, CS PFBEG/CS
PROB record (BINPS2). -

510 Unknown binary interpass file record type
(BINPS2) .

A-40 Pascal Manual 12/87

Module DUMP86 (status numbers 600 to 699)

600 unexpected interpass record type (GETBYTE).

601 Unexpected end of data (GETDATA).

602 Invalid data size (GETDATA).

603 Invalid data size (GETDATA).

604 Unexpected end of data (GETDISP).

605 Unexpected interpass record type (GETDISP).

606 Unexpected end of data (GETLABEL).

607 Invalid label type, must be short label
(GETLABEL).

608 Unexpected interpass record type (GETLABEL).

609 Invalid opcode (WRITEOP).

610 Invalid opcode, no PUSH CS opcode exists
(PUSHPOPSEG).

611 Cannot do sign extension on operands for
logical operators AND, OR, XOR (BINARYOPS).

612 Invalid mode value (LOADPTR).

613 Invalid opcode value (SHIFTOPS).

614 Unused opcode (GROUPC).

615
to
626 Unused opcode (DUMP86)

Module DUMP (status Numbers 700 to 799)

700 Invalid opcode value (OPNAME).

701 Unknown working value (DMP1ID).

702 Unexpected symbol type (DMP1ID).

703 Invalid operator mode value (WRIMOD).

704 Unexpected ICode value (DMPNOD).

705 Unexpected interpass record type (DMPBREC).

12/87 Compiler Error Messages A-41

RUN-TIME ERROR MESSAGES

Errors detected at run time are either file system
errors or other program exceptions. File system
errors are described first.

FILE SYSTEM ERRORS

File system error codes range from 1000 to 1999
and are based on the ERRC field of the file
control block.

852-013

File system errors are reported in the following
format:

If <error code> is in the range 1000 to 1099, then
the error was detected by the CTOS operating
system and <status code> is a CTOS status code.
See the Status Codes Manual for interpretation of
status codes. -----

If <error code> is in the range 1100 to 1999, then
the error was detected by the Pascal file system.
These error codes are explained below:

Decimal
Value

1100

1101

1102

1103

1104

A-42

Meaning

ASSIGN or READFN of file name to open
file.

Reference to buffer variable of closed
textfile.

Textfile READ or WRITE call to closed
file.

READ when EOF is true (SEQUENTIAL
mode).

READ to REWRITE file, or WRITE to RESET
file (SEQUENTIAL mode).

Pascal Manual 12/87

Decimal
Value

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

12/87

Meaning

EOF call to closed file.

GET call to closed file.

GET call when EOF is true (SEQUENTIAL
mode) •

GET call to REWRITE file (SEQUENTIAL
mode).

PUT call to closed file.

PUT call to RESET file (SEQUENTIAL
mode).

Line too long in DIRECT textfile.

Decode error in textfile READ BOOLEAN.

Value out of range in textfile READ
CHAR.

Decode error in textfile READ INTEGER.

Decode error in textfile READ SINT
(integer subrange).

Decode error in textfile READ REAL.

LSTRING target not big enough in
READSET.

Decode error in textfile READ WORD.

Decode error in textfile READ BYTE
(word subrange).

SEEK call to closed file.

SEEK call to file not in DIRECT mode.

Encode error (field width > 255) in
textfile WRITE BOOLEAN.

Encode error (field width > 255) in
textfile WRITE INTEGER.

compiler Error Messages A-43

Decimal
Value

1124

1125

1126

1127

Meaning

Encode error (field width > 255) in
textfile WRITE REAL.

Encode error (field width > 255) in
textfile WRITE WORD.

Decode error in textfile READ INTEGER4.

Encode error in textfile WRITE
INTEGER4.

The <error type> field of the file system error
report is based on the ERRS field of the file
control block. Error types are described below:

o (no error).

1 Hard data. Hard data error.

2 Device name. Invalid device or volume name.

3 Operation. Invalid operation: GET if EOF,
RESET a printer, etc.

4 File system. File system internal error.

5 Device offline. Device or volume no longer
available.

6 Lost file. File no longer available.

7 File name. Invalid syntax, name too long,
etc.

8 Device full. Disk full, directory full, etc.

9 Unknown device. Device or volume not found.

10 File not found.

11 Protected file.

12 File in use.

13 File not open.

14 Data format. Data format, decode, or range
error .

. 15 Line too long. Buffer overflow.

A-44 Pascal Manual ' 12/87

OTHER RUN-TIME ERRORS

Nonfile system error codes range from 2000 to
2999. In some cases, metacommands control whether
errors are checked. In other cases, they are
al ways checked. The metacommand control I ing a
check, if any, is given in the list below.

2000 to 2049 Memory Errors

Since the stack and the heap grow toward each
other, these errors are all related: for example,
a stack overflow can cause a "Heap is Invalid"
error if $STACKCK is off and the stack overflows.

Decimal
Value

2000

2001

2002

2003

2004

12/87

Meaning

stack Overflow

While calling a procedure or function,
the stack ran out of memory. Checked
if $STACKCK+ and in some other cases.

No Room in Heap

Not enough room is available in the
heap for a new variable. This error is
always detected.

Heap Is Invalid

While allocating memory in the heap for
a new variable, an error in the heap
structure was found. This error is
always detected.

Heap Allocator Interrupted

An interrupt procedure was invoked that
interrupted NEW and called NEW again.
The heap allocator modifies the heap:
thus it is a critical section.

Allocation Internal Error

An unexpected error return occurred
while requesting additional heap space
from the operating system. Contact
technical support.

compiler Error Messages A-45

Decimal
Value

2031

2032

2033

2034

2035

Meaning

Nil Pointer Reference

DISPOSE or $NILCK+ found a pointer with
a NIL value.

Uninitialized Pointer

DISPOSE or $NILCK+ found an uninitial
ized pointer. Pointers are given this
value only if $NILCK is on.

Invalid Pointer Range

DISPOSE or $NILCK+ found a pointer that
does not point into the heap or is
otherwise invalid. The pointer may
have pointed to a DISPOSED block that
was removed from the heap.

Pointer to Disposed Var

DISPOSE or $NILCK+ found a pointer to a
heap block that has been disposed.
Calling DISPOSE twice for the same
variable is invalid.

Long DISPOSE Sizes Unequal

When the long form of DISPOSE was used,
the actual length of the variable did
not equal the length based on the tag
values given.

2050 to 2099 Ordinal Arithmetic

Decimal
Value

2050

A-46

Meaning

No CASE Value Matches Selector

In a CASE statement without an OTHER
WISE clause, none of the branch
statements had a CASE constant value
equal to the selector expression value.
This is checked if $RANGECK+ is used.

Pascal Manual 12/87

Decimal
Value

2051

2052

Meaning

Unsigned Divide by Zero

WORD value divided by zero.

Signed Divide by Zero

INTEGER value divided by zero.

2053 Unsigned Math Overflow

2054

2055

2056

12/87

A WORD result occurred outside
o •• MAXWORD. This is checked if
$MATHCK+ is used.

Signed Math Overflow

An INTEGER result occurred outside
-MAXINT •• MAXINT. This is checked if
$MATHCK+ is used.

Unsigned Value Out of Range

Assignment of a value parameter in
which the source value is out of range
for the target value. The target can
be a subrange of WORD (including BYTE),
or CHAR, or an enumerated type.

This error can also occur in SUCC and
PRED functions, and when the length of
an LSTRING is assigned. These are
checked with $RANGECK+.

Another time this error occurs is when
an array index is out of bounds and the
array has an unsigned index type. This
is checked with $INDEXCK+.

Signed Value Out of Range

This is the same as 2055, but applies
to the INTEGER type and its subranges.

compiler Error Messages A-47

Decimal
Value

2057

2058

Meaning

Uninitialized 16-Bit Integer Used

An INTEGER or 16-bi t INTEGER subrange
variable is used without being assigned
first, or such a variable has the
invalid value, -32768. This condition
is checked with $INITCK+.

Uninitialized 8-Bit Integer Used

A SINT or 8-bit INTEGER subrange vari
able is used without being assigned
first, or such a variable has the
invalid value -128. This condition is
checked with $INITCK+.

2100 to 2149 Type REAL Arithmetic

Decimal
Value

2100

2101

2104

2105

A-48

Meaning

REAL Divide by Zero

A REAL value was divided by zero. This
condition is always detected.

REAL Math Overflow

A REAL value is too large for represen
tation. This condition is always
detected.

SQRT of Negative Argument

A square root function is used on an
argument < o. This condition is always
detected.

LN of Non-Positive Argument

A natural log function is used on an
argument <= o. This condition is
always detected.

Pascal Manual 12/87

Decimal
Value

2106

2131

2132

2133

2135

2136

12/87

Meaning

TRUNC/ROUND Argument Range

Results from converting a REAL outside
the range of INTEGER. This condition
is always detected.

Tangent Argument Too Small

The tangent argument is so small that
the result is invalid. This condition
is always detected.

Arcsin or Arccos of REAL> 1.0

The arcsin or arccos argument is
greater than one. This condition is
always detected.

Negative Real Raised to a Real Power

An invalid argument in exponentiation.
This condition is always detected.

REAL Math Underflow

The significance of a REAL expression
was reduced to zero.

REAL Indefinite
previous error)

(uninitialized or

The REAL value called "indefinite" was
encountered; this can occur if $INITCK
was on and an uninitialized real
variable was used, or if a previous
error set a variable to indefinite as
part of its masked error response.

compiler Error Messaqes A-49

2150 to 2199 structured Type Errors

Decimal
Value

2150

2151

2180

2181

A-50

Meaning

string Too Long in COPYSTR

A COPYSTR intrinsic source string is
too large for target string. This
condition is always detected.

LSTRING Too Long in Intrinsic Procedure

A target LSTRING is too small in
INSERT, DELETE, CONCAT, or COPYLST
intrinsic procedure. This condition is
always detected.

Set Element Greater Than 255

A value in a constructed set is above
maximum. This condition is always
detected.

Set Element Out of Range

A value in a set assignment or set
value parameter is too large for the
target set. This condition is detected
with $RANGECK+.

Pascal Manual 12/87

2200 to 2249 INTEGER4 Arithmetic Errors

Decimal
Value Meaning:

2200 INTEGER4 Divide by Zero

2201 INTEGER4 Math Overflow

2234 INTEGER4 Zero to Negative Power

2250 to 2999 Other Errors

Decimal
Value

2450

12/87

Meaning:

Unit Version Number Mismatch

During unit initialization, the user
(the one with the USES clause) and the
implementation of an interface were
discovered to have been compiled with
unequal interface version numbers.
This condition is always detected.

compiler Error Messages A-51

CONST

ercOk
modeAppend
modeModify
modeRead
modewrite

0;
RETYPE (WORD, 'ma');
RETYPE (WORD, 'rom');
RETYPE (WORD, 'mr');

= RETYPE(WORD, 'mw');

Pascal data types are not totally adequate for use
with the CTOS operating system; therefore, data
types that are roughly equivalent were chosen for
Syslit.Edf in the example above. The semantics of
the data types used in Syslit.Edf are shown below:

ErcType

FlagType

FhType

LfaType

ModeType

POINTER

QUAD

2-byte unsigned integer; contains
error status returned from a CTOS
facility. Error status of 0 is no
error.

l-byte unsigned integer. 0 means
flag is off, and 1 means flag is
on.

2-byte unsigned integer; contains a
file handle (number) that uniquely
identifies open files for the file
system.

4-byte unsigned integer; contains a
logical file address (number) that
identifies an offset from the
beginning of a file.

2-byte string; contains two charac
ters that indicate a file's access
mode for the file system.

4-byte segmented address; contains
two words, of which the low word is
the relative address within a seg
ment, and the high word is the
segment base address.

4-byte unsigned integer; contains
a number in the range 0 to
4,294,967,295 (used for arithmetic
involving logical file addresses).
Note that INTEGER4 does not satisfy
this range.

12/87 Pascal as systems Programming Language F-3

Table F-l shows the CTOS type and the equivalent.
Pascal type.

Table F-1. pascal Data Types for Use with eTOS.

CTOS Type Equivalent Pascal Type

ercType WORD

pbType or ADS of WORD or ADS of BYTE
pointer

flagType

The current compiler allows y~ur
program to access a byte value uS1ng
ADS of BYTE. (Previously, compilers
always transferred a word). In
protected mode, using ADS of BYTE
avoids the general protection fault,
which would occur if the word
containing the byte value to be
accessed extended beyond the memory
allocated for the segment. For
details on protected mode memory
management, see the iAPX 286
Programmer's Reference Manual and
the 80386 Programmer's Reference
Manual.

BOOLEAN {OOh false, Olh true}

fhType WORD

modeType WORD

lfaType or INTEGER4
quadType
DWORD

INTEGER4 is not strictly an Lfa or a
Quad, since the most significant bit
is used as a sign, but it works for
positive numbers.

F-4 Pascal Manual 12/87

SCBType record
SysBuildType
OsType
saMinLL
saCurrLL
saCurrSL
saMaxSL
saMemMax
end;

[OO]:byte;
[Ol]:byte;
[02]:paraType:
[04]:paraType:
[06]:paraTypei
[08]:paraType:
[lO]:paraTypei

pSCBType ads of SCBType;

VersionType Istring(30)i
{version is an 'sb' string, a.k.a, lstring}

pVersionType = ads of VersionType;

{definitions of CTOS externals:}

Function GetpStructure (
structCode :wordi
ph :word:
{partition handle}
ppStructureRet : ppType :word; extern;

Procedure CheckErc (
erc :word)i externi

Procedure DumpCTOSVersion [public];
Const oVersion = #254;

{oVersion is the relative address of the
pointer to the pointer to the version. It can
be found in the System Common Address Table
(SCAT) described in your operating system
manual. The segment address for all
fields in the SCAT is zero}

var
pVersion :pVersionTypei

{pointer to CTOS version}
version :VersionTypei

begin

{GetpStructure takes as arguments a structure
code or relative address of a structure
defined in the SCAT, a partition handle (if
zero then the handle of the partition the
program is running in), and the address of the
address to be returned}

12/87 Pascal as systems Programming Language F-7

CheckErc (GetpStructure (oVersion, 0,
ads pVersion»:

Version := pVersionA;
{deference pointer to our lstring}

{note: deferencing structure pointers
requires the run time. structure pointers
can be deferenced without the run time on a
field by field basis}

Writeln ('CTOS version
end:

, , Version) ;

Procedure DumpMemoryMap [public];
Const oSCB = #2C8i
{relative address of the pointer to the System
Configuration Block}

var

begin

sOsMemory,
sMaxMemory,
sParagraph
pSCB
{pointer to

:integer4;
:pSCBType;

SCB}

CheckErc (GetpStructure (oSCB, 0, ads pSCB»:
sParagraph := 16:
sOsMemory := sParagraph * pSCBA.saMinLL;
sMaxMemory := sParagraph * pSCBA.saMemMax;
writeln ('OS memory', sOsMemory, , bytes');
Writeln ('Total memory', sMaxMemory, , bytes');
end;

begin
DumpCTOSVersion;
DumpMemoryMapi

end.

F-8 Pascal Manual 12/87

CONTROL OF THE VIDEO DISPLAY

You can control the video display using one of
three different methods: Video Bytestreams,
Direct Video Access (Video Access Method) through
CTOS, or the Forms package.

Using Forms is described in detail in the Forms
Manual. Examples of using Forms with Pascal are
available as application notes from technical
support.

The section entitled "Video," in your operating
system manual describes the Video Access Method
(VAM) in detail. In addition, an example showing
the use of VAM is included at the end of this
section. Direct Video Access has the advantage
that it does not use the Pascal run-time library.

The remainder of this section describes video byte
streams and shows how to control the video display
from your Pascal program by writing a mul tibyte
escape sequence to the display. This allows you
to use WRITE and WRITELN to send an escape
sequence to the screen in Pascal in the same way
that you can use OpenByteStream in CTOS. In this
way, a program can

o control character attributes (blinking, re
verse video, underscoring, half-bright)

o control screen attributes (reverse video, half
bright)

o fill a rectangle with a single character

o control scrolling of lines

o direct video display output to any frame

o control pausing between full frames of data

o control the keyboard LED indicators

o erase to the end of the current line or frame

12/87 Pascal as systems Programming Language F-9

A multibyte escape sequence consists of the video
display escape character, a command character, and
parameters. The video display escape character is
CHR(255). To print an escape character, precede
it with another escape character.

The following pages give the format for escape
sequences that control the various features of the
video display. Note that these formats show the
asterisk (*) as the concatenation operator, but
the asterisk can only be used to create constant
string expressions. Variable string expressions
wi th concatenation, should use the LSTRING
intrinsic CONCAT.

ERROR CONDITIONS IN ESCAPE SEQUENCES

An escape character sequence is in error if the
command characters or parameters are unrecognized
or the parameters are inconsistent.

The following program turns on the cursor, writes
the message "This is a test," and waits for input:

PROGRAM Test (INPUT, OUTPUT):
VAR

LS : LSTRING (128);

BEGIN
LS := CHR(255) * 'vn';
Write (LS, 'This is a test');
ReadLn;

END.

VIDEO DISPLAY COORDINATES

Pascal interprets some parameters as ~ and y
coordinates on the video display.

A value of 255 for ~ or y specifies, respectively,
the last column or line of the frame.

If the value of ~ or y is less than 255 and
greater than the last column or line, then the
parameters are in error.

F-10 Pascal Manual , 12/87

Format 2

CHR(255) * 'V'<parameter>

where

<parameter>
is N or F.

Format 2 is used to make the cursor visible if the
<parameter> is N or to make the cursor invisible
if the <parameter> is F.

FILLING A RECTANGLE: THE 'F' COMMAND

CHR(255) * 'F' * <character>
* CHR«Xposition»
* CHR«Yposition»
* CHR«width» * CHR«height»

where

<character>
is any character;

<Xposition>, <Yposition>, <width>, and <length>
are integer expressions.

The 'F' command is used to fill a rectangle on the
video display wi th <character>. The currently
enabled character attributes are given to each
character in the rectangle. A <character> always
specifies a character in the standard character
set.

The coordinates «Xposition>,<Yposition»
the upper left corner of the rectangle.
of 255 for <width> and <height> specifies,
tively, the remaining width or height
frame.

specify
A value
respec
of the

CONTROLLING LINE SCROLLING: THE'S' COMMAND

CHR(255) * 'Sf
* CHR«firstline»
* CHR«lastline»
* CHR«count» * '<direction>'

where

<direction>
is D or U.

12/87 Pascal as Systems Programming Language F-13

If the <direction> is D, the'S' command is used
to scroll down a portion of the frame beginning at
line <firstline> and extending to (but not in
cluding) <lastline>. The <count> lines are
scrolled and the top <count> lines of the frame
portion are filled with blanks.

If the <direction> is U, the'S' command is used
to scroll up a portion of the frame beginning at
line <lastline> and extending to (but not
including) <firstline>. The <count> lines are
scrolled and the bottom <count> lines of the frame
portion are filled with blanks.

DIRECTING VIDEO DISPLAY OUTPUT: THE 'X' COMMAND

CHR(255) * 'X' * CHR«frame»

The 'X' command is used to direct video output to
the <frame>'th frame of the video display.

The video display is divided into frames. (See
the section enti tIed "Video," in your operating
system manual for a discussion of video frames.)

The main frame is the default frame.

If <frame> is 1, the 'X' command is used to direct
video output to the status Frame at the top of the
video display.

If <frame> is 2, the output is directed to the
line that separates the status Frame from the main
frame.

CONTROLLING PAUSING BETWEEN FULL FRAMES: THE 'PI
·COMMAND

CHR(255) * 'P<parameter>,

where

<parameter>
is N or F.

F-14 Pascal Manual 12/87

APPENDIX H: PROGRAMMING EXAMPLES

EXAMPLES SHOWING THE USE OF MODULES AND UNITS

The following two examples both perform the same
job, converting a temperature in Celsius to
Fahrenheit. Both use an external function.

Example 1 uses a module to declare the function,
while Example 2 uses a unit.

All the examples in this Appendix were compiled
and run with 10.0 level software.

EXAMPLE 1

The two files are separately compiled, then linked
to create the run file Pel.Run. Pel. Pas contains
the main program, and Pe2 . Pas contains a module
that declares a function that changes temperature
from Celsius to Fahrenheit.

Instructions for compiling, linking, and running
the two compilands are given in the subsection
"Instructions for Compiling, Linking, and Running
Example 1."

Main Program: Pel. Pas

Files Pel. Pas and Pe2. Pas must be compiled
separately and linked together.

This program converts Celsius temperature to
Fahrenhei t. It prompts the user to enter the
Celsius temperature, then converts that to
Fahrenheit, and displays the result on the screen.
It then prompts the user for another Celsius
tempera ture, and so on. The program term ina tes
when the user enters a number less than -200.

The program uses an external function, Fahrenheit,
to compute the Fahrenheit temperature. That
function is declared in a separate compiland in
the file Pe2.Pas.

12/87 Programming Examples H-l

Program CelsiusToFahrenheit(Input,output);

VAR celsTemp : REAL;

FUNCTION Fahrenheit (celsius
EXTERN;

BEGIN

REPEAT

REAL)

(* Prompt the user for input. *)

write ('Enter Celsius temperature l):

REAL;

write (I (-200 or less to exit): I);

(* Read the response.*)

readln(celsTemp):

IF celsTemp <= -200 THEN BREAK; (* Check for
sentinel value*)

(* Convert Celsius temperature to Fahrenheit and
display the result. *)

writeln;
writeln(celsTemp:6:3,' C = "

Fahrenheit(celsTemp):6:3,1 FI);
writeln;

UNTIL FALSE

END.

B-2 Pascal Manual 12/87

Module: Pe2.Pas

Files Pel.Pas and Pe2.Pas must be compiled
separately and linked together.

The file Pe2.Pas, which follows, contains a module
declaring the function Fahrenheit.

module Fah;

FUNCTION Fahrenheit(cels:REAL) : REAL;

(* This function converts Celsius temperature to
Fahrenheit.
ON ENTRY: cels is temperature in degrees Celsius.
RETURN: The function returns temperature in
degrees Fahrenheit. *)

BEGIN

Fahrenheit := cels * (9/5) + 32

END; (* End of Fahrenheit.*)

END. (* End of module.*)

12/87 Programming Examples H-3

Instructions for Compilinq, Linkinq, and Runninq
Example 1

To invoke the compiler, type "Pascal" into the
Executive command form. Complete the Pascal com
mand form as shown below, then press GO:

Pascal
Source file Pe1.Pas
[Object file] --~-----------------------
[List file]
[Object list file]

After the program has compiled, compile the module
the same way, but complete the command form as
shown below:

Pascal
Source file Pe2.Pas
[Object file] --~-----------------------
[List file]
[Object list file]

Then link the resulting object files, Pe1.0bj and
Pe2.0bj. In addition to these files, you mu~t
link the object file, PasFirst.obj, which 1S
included with the 10.0 software. To do this,
invoke the Linker through the Executive, by typing
"Bind" (or as many letters as required to make the
command unique) into the Executive command form.
Then, complete the Bind command form as shown
below:

Bind
Object modules
Run file
[Map file]
[Publics?]
[Line nUmbers?]
[Stack size]
[Max array, data,

code]
[Min array, data,

code]
[Run file mode]
[Version]
[Libraries]
[OS allocation?]
[Symbol file]

PasFirst.Obj Pel.Obj Pe2.0bj
Pel.Run

For details on the PasFirst.obj object file, see
"Linking a Pascal Program" in Chapter 18.

H-4 Pascal Manual 12/87

The resulting run file, Pel.Run, can be invoked by
completing the Run command form as shown below.
Remember, to terminate the program, enter a
Celcius temperature of less than -200.

Run
Run file _P_e_l_._R_u_n __________________________ _
[Case]
[Parameter 1]
[Parameter 2]
[Parameter 3]
[Parameter 16]

12/87 Proqramminq Examples H-S

EXAMPLE 2

The three files shown below perform the same job
as the files shown in Example 1.

Pe3. Pas contains the main program, and Pe4. Pas
contains a unit that declares a function that
changes temperature from Celsius to Fahrenheit.

These two files are separately compiled, then
linked to create the run file Pe3.Run.

The interface file, Pei.Inf (the third file shown
below), is used by both Pe3.Pas and Pe4.Pas. It
is not compiled separately.

Instructions for compiling, linking, and running
the two compilands are given in the sUbsection
"Instructions for Compiling, Linking, and Running
Example 2."

Main Proqram: Pe3.Pas

This file, Pe3. Pas, must be compiled separately
and linked together with Pe4. Pas. Both Pe3. Pas
and Pe4.Pas use an interface in the file Pei3.Inf.
The File Pei3.Inf cannot be compiled separately.

Pe3.Pas and Pe4.Pas implement the same program as
the files Pe1.Pas and Pe2.Pas in Example 1, but
here we use a unit instead of a module to
implement the function Fahrenheit.

The program converts Celsius temperature to
Fahrenhei t • It prompts the user to enter the
Celsius temperature, then it converts it to
Fahrenheit, and displays the result on the screen.
It then prompts the user for another Celsius
temperature, and so on. The program terminates
when the user enters a number less then -200.

The program uses an external function, Fahrenheit,
to compute the Fahrenhei t temperature. That
function is declared in a separate compiland in
the file Pe4.Pas.

H-6 Pascal Manual 12/87

(* $INCLUDE:'Pei3.Inf' --- interface file.*)

Program CelsiusToFahrenheit(Input,Output);

USES Fah(Fahrenheit);

VAR celsTemp : REAL;

BEGIN

REPEAT

(* Prompt the user for input.*)

write ('Enter Celsius temperature');
write (' (-200 or less to exit): ');

(* Read the response.*)

readln(celsTemp):

IF celsTemp <= -200 THEN BREAK: (* Check for
sentinel value*)

(* Convert Celsius temperature to Fahrenheit and
display the result.*)

writeln:
writeln(celsTemp:6:3,' C = "

Fahrenheit(celsTemp}:6:3,' F'}:
writeln:

UNTIL FALSE

END.

12/87 Programming Examples H-7

unit: Pe4.Pas

Pe4. Pas must be compiled separately and linked
together with Pe3.Pas. Both files use an
interface in the file Pei3. Inf. File Pei3. Inf
cannot be compiled separately.

(*This file contains an implementation of unit Fah
*)

(* $INCLUDE:'Pei3.Inf' --- interface file.*)

IMPLEMENTATION OF Fah;

FUNCTION CompFah; (* (eels : REAL) : REAL *)

(* This function converts Celsius temperature to
Fahrenheit.
ON ENTRY: eels is temperature in degrees Celsius.
RETURN: The function returns temperature in
degrees Fahrenheit.
*)

BEGIN

CompFah := eels * (9/5) + 32

END; (* End of CompFah.*)

END. (* End of module.*)

Interface: Pei3.INF

Interface for the unit Fah. This file is INCLUDEd
into the files Pe3.Pas and Pe4.Pas. This file is
not a compiland (it is not compiled separately).

INTERFACE (2); (* 2 is a version number.*)

UNIT Fah(CompFah);

FUNCTION CompFah(cels

END;

H-8 Pascal Manual

REAL) REAL;

12/87

Instructions for Compiling, Linking, and Running
Example 2

Invoke the compiler, as described in the sub
section "Instructions for Compiling, Linking, and
Running Example 1," above, and compile Pe3.Pas and
Pe4 • Pas each separately. Complete the command
form as shown below:

Pascal
Source file ~P~e~3~.~P~a~s~ ____________________ _
[Object file]
[List file]
[Object list file]

Pascal
Source file ~P~e~4~.~P~a~s~ ____________________ _
[Object file]
[List file]
[Object list file]

Then link the resulting object files, Pe3.0bj and
Pe4 .Obj. In addition to these files, you must
link the object file, PasFirst.obj, which is
incl uded wi th the 10.0 software. To do this,
invoke the Linker through the Executive, by typing
"Bind" (or as many letters as required to make the
command unique) into the Executive command form.
Then, complete the Bind command form as shown
below:

Bind
Object modules
Run file
[Map file]
[Publics?]
[Line numbers?]
[Stack size]
[Max array, data,

code]
[Min array, data,

code]
[Run file mode]
[Version]
[Libraries]
[OS allocation?]
[Symbol file]

PasFirst.Obj Pe3.0bj Pe4.0bj
Pe4.Run

For details on the PasFirst.obj object file, see
"Linking a Pascal Program" in Chapter 18.

12/87 programming Examples H-9

The resulting run file, Pe3.Run, can be invoked by
completing the Run command form as shown below.
Remember, to terminate the program, enter a
Celsius temperature of less than -200.

Run
Run file ~P~e~3~.~R~u~n~ ______________________ __
[Case]
[Parameter 1]
[Parameter 2]
[Parameter 3]
[Parameter 16]

H-10 Pascal Manual 12/87

EXAMPLE 3: BINARY TREE SEARCH

The following example shows a more complicated
Pascal program than the examples given above. The
program reads a file of characters, orders them
(by their ASCII value), and prints them out in
order. It stores the characters in an ordered
binary tree and traverses the tree in order.
Characters are read until it reaches the end of
file or a period character (•) whichever comes
first. The program uses an additional program
parameter, Keyfile, as well as the file Input and
output.

The entire example consists of two compilands (a
main program and a module that defines procedures)
and an $INCLUDEd file that is not compiled
separately.

Instructions for compiling, linking, and running
the program appear below.

12/87 programming Examples H-11

MAIN PROGRAM: MAINTREE.PAS

This file has the main program for the trees
example. The program reads a file of keys, builds
an ordered binary tree out of them, then traverses
the tree in order, displaying the keys.

PROGRAM DisplayOrderedKeys(input,output,keyFile):

(* $INCLUDE:'Tree.Dcl' --- TYPE declarations.*)

VAR keyFile: KeyFileType: (* input file of keys.*)

(* External procedures and functions.*)

FUNCTION BuildTree (VAR keyFile : KeyFileType)
TreeNodePtr:EXTERN:

(*This function builds a tree and returns
a pointer to the tree.

PARAMETER: keyFile --- the file where the keys
are.

RETURN: the function returns a pointer to the tree
built.

*)

PROCEDURE TraverseTreeInOrder(root: TreeNodePtr:
PROCEDURE Action(key:KeyType»: EXTERN:

(* This procedure traverses a tree in order while
calling a procedure to process each key.
PARAMETERS: root --- pointer to tree root,

*)

Action --- procedure to process each
key.

PROCEDURE DisplayKey(key:KeyType): EXTERN:

(* This procedure displays a key on the screen.
PARAMETER: key --- key to display.
*)

(* Internal procedure.*)

H-12 Pascal Manual 12/87

PROCEDURE DisplayTree(root:TreeNodePtr):

(* This procedure displays the keys ordered by
their value on the screen. It writes a heading,
then the keys.
PARAMETER : root --- pointer to the tree root.
*)

BEGIN

(* Write the heading.*)

writeln:
writeln(,
writeln;

ORDERED KEYS'):

(*Display the keys.*)

TraverseTreeInOrder(root,DisplayKey);

writeln (* New line at the end*)

END;

BEGIN (* Main program*)

reset(keyFile);

DisplayTree(BuildTree(keyFile»;

writeln;
writeln('Program terminated.')

END.

12/87 programming Examples H-13

MODULE: TREEMODULE.PAS

(* This module contains procedures to build and
display trees.*)

module trees[]~

(* $INCLUDE:ITree.Dcl l *)

CONST
SentinKey = I.'; (* sentinel key value.*)

FUNCTION GetNewNode(VAR root:TreeNodePtr;
key: KeyType) : TreeNodePtr;

(* This function finds a place in a tree where a
key should be inserted, creates a node for
the key and inserts the node into the tree.
It does not fill the node fields.
PARAMETERS: root --- a pointer to the tree root,

key --- the key.
RETURN: The function returns a pointer to the new

node.
Note that root can be changed if the tree is
empty. *)

BEGIN

IF root NIL
THEN

(* If tree is empty*)

ELSE

END;

BEGIN
new(root);
GetNewNode :=
END

(* root points to new node*)
root (* return the pointer*)

(* tree is not empty *)

IF key <= rootA.nodeKey
THEN (* Insert new node into*)

(* left sub-tree*)

GetNewNode := GetNewNode(rootA.left,key)

ELSE (* Into right sub-tree*)

GetNewNode .- GetNewNode(rootA.right,key)

(*---------------------------------------*)

H-14 Pascal Manual 12/87

PROCEDURE FillNode(node : TreeNodePtr;
key: KeyType);

(* This procedure initializes new node fields:
left and right pointers to NIL, the key to 'key'.
PARAMETERS: node --- pointer to the "node,

key --- the key.
*)
BEGIN

WITH node" DO
BEGIN

END;

left := NIL;
right := NIL;
nodeKey := key
END

(*--------------------------------------*)
PROCEDURE InsertKey(VAR root : TreeNodePtr;

key: KeyType);

(*" This procedure inserts a key into a tree.
PARAMETERS: root --- pointer to tree root,

key --- the key.
*)

BEGIN

FillNode (GetNewNode (root, key) ,key)

END;

(*-----------------------------------*)

12/87 programming Examples H-15

FUNCTION BuildTree (VAR keyFile : KeyFileType) :
TreeNodePtr [PUBLIC];

(*This function builds a tree and returns
a pointer to the tree.

PARAMETER: keyFile --- the file where the keys
are.

RETURN: the function returns a pointer to the tree
built.

*)
VAR

key : KeyType; (* holds current key. *)
root: TreeNodePtr: (*pointer to tree root.*)

BEGIN

root := NIL:

REPEAT (*Loop reading keys and inserting*)
(*them into the tree. *)

IF (EOF(keyFile» THEN BREAK: (*stop reading*)
(*keys if reached*)
(* end of file. *)

(* read a key and insert it into the tree.*)

read (keyFile,key):
InsertKey (root,key):

UNTIL key = SentinKey:

BuildTree := root

END;

(*-----------------------------------*)

H-16 Pascal Manual 12/87

PROCEDURE TraverseTreeInOrder(root: TreeNodePtr;
PROCEDURE Action(key:KeyType» [PUBLIC);

(* This procedure traverses a tree in order while
calling a procedure to process each key.
PARAMETERS: root --- pointer to tree root,

Action --- procedure to process each
key.

*)

BEGIN

IF root <> NIL
THEN

END;

BEGIN
(* Traverse left sub-tree*)
TraverseTreeInOrder(rootA.left,Action);
(* Process root key*)
Action(rootA.nodeKey);
(* Traverse right sub-tree*)
TraverseTreeInOrder(rootA.right,Action)
END

(*~-------------------------------------*)

PROCEDURE DisplayKey(key:KeyType) [PUBLIC);

(* This procedure displays a key on the screen.
PARAMETER: key --- key to display.
*)

BEGIN

write (key)

END;

END.

12/87 programming Examples H-17

INCLUDED DECLARATION FILE: TREE. DeL

(* Declarations for the tree example *)

TYPE

H-18

KeyType = CHAR; (* Type of tree key*)
KeyFileType = FILE OF KeyType;
TreeNodeptr = ATreeNode; (* Pointer to tree*)
TreeNode = RECORD

nodeKey : KeyType;
left : TreeNodePtr;
right : TreeNodePtr

END;

Pascal Manual 12/87

INSTRUCTIONS FOR COMPILING, LINKING, AND RUNNING
EXAMPLE 3

Example 3 is compiled exactly as Example 2, except
that the two compilands are TreeMain.Pas and
TreeModule.Pas. The file Tree.Dcl is included
automatically in both files because the $INCLUDE
metacommand is used in both source files.

After you have compiled, link the resulting object
files, TreeMain.Obj and TreeModule.Obj. In
addition to these files, you must link the object
file, PasFirst.obj, which is included with the
10. 0 so ftware. (For deta i 1 s on the PasF irst . obj
object file, see "Linking a Pascal Program" in
Chapter 18.)

To invoke the Linker through the Executive, type
"Bind" (or as many letters as required to make the
command unique) into the Executive command form.
Then, complete the Bind command form as shown
below:

Bind
Object modules @Filename
Run file =T~r-e-e7M~a'i~n-.~R~u-n---------------

[Map file]
[Publics?]
[Line numbers?]
[stack size]
[Max array, data, code] ________________________ ___
[Min array, data, code] ________________________ ___
[Run file mode]
[Version]
[Libraries]
[DS allocation?]
[Symbol file]

Note that, in this example, the object file names
(PasFirst.Obj, TreeMain.Obj, and TreeModule.obj)
are in the at-file, Filename. (For details on how
to use at-files, see the Executive Manual.)

12/87 Programming Examples H-19

The resulting run file, TreeMain.Run, can be
invoked by completing the Run command form as
shown below. The parameter Inputfile is any file
containing ASCII characters that you choose to
use. Inputfile must be the name of a real file in
your directory.

Run
Run file ~T~r~e~e~M~a~i~n~.~R~u~n~ __________________ __
[Case]
[Parameter 1] ~I~n~p~u~t~f~i~l~e~ ____________________ __
[Parameter 2]
[Parameter 3]
[Parameter 16]

H-20 Pascal Manual J 12/87

INDEX

This index covers both volumes 1 and 2. sections 1
through 12 are in Volume 1. sections 13 through the
Glossary are in Volume 2.

Page numbers in boldface indicate the principal dis
cussion of a topic.

*, 11-4
+, 11-4

, 11-4
:=, 12-5
<, 11-7
<=, 11-7
<>, 11-7
=, 11-7
>, 11-7
>=, 11-7

ABORT, 14-12, 17-8,
19-16

A2DRQQ, 14-16
A2SRQQ, 14-16, 17-8,

19-16
ABS, 14-13
Access modes, files, 7-6

to 7-7
ACDRQQ, 14-13
ACSRQQ, 14-13
Actual parameter, 13-8
Addition operators, 11-4
Address, segmented,

13-11
Address types, 8-4 to

8-9, G-3
comparing, 11-8
predeclared, 8-6
READs, 15-16
using, 8-8 to 8-10
WRITEs, 15-23

Address variables, 10-8
to 10-9, 10-13

ADR, 8-8 to 8-10
ADRMEM, 8-6
ADS, 8-8 to 8-10
ADSMEM, 8-6
AISRQQ, 14-13
ALLHQQ, 14-4, 14-14

12/87

ALLMQQ, 14-4, 14-14
Allocation of memory,

14-3 to 14-5
AND, 11-5, 11-7
AND THEN, 12-28
Angle brackets «»,

11-10
ANSI/IEEE standard

Pascal, comparisons
to, B-1 to B-14

ANSRQQ, 14-14
ARCTAN, 14-15
Arithmetic, floating

point, 5-9, 18-8
Arithmetic functions,

14-6 to 14-8
predeclared, 14-7
writing your own, 14-8

Arrays, 6-2 to 6-15
conformant, 6-5, B-1
constant, 9-11 to 9-13
declarations, 6-2
index, 5-10, 6-2, 10-6

to 10-7
internal representa

tion, 6-26, G-4
PACKED, 6-8, 6-3
super arrays, 6-4 to

6-15, B-1, G-3
variable-length, 6-4

to 6-15
ASCII character set,

1-18
ASCII files, 7-5
ASDRQQ, 14-15
ASSIGN, 7-2, 7-9, 14-15,

15-24, 16-3
Assignment compati

bility, 4-7 to 4-8,
12-5 to 12-7

address types, 8-8
INTEGER, 5-3

Index-1

Assignment compati
bility (cont.)

pointer types, 8-3
STRINGs and LSTRINGs,

6-11
WORD, 5-3

Assignment statement,
10-5, 12-5 to 12-7

ASSRQQ, 14-15
ATDRQQ, 14-16
At sign (@), 2-7
ATSRQQ, 14-16
Attributes,

combining, 10-16,
13-18

declaring, 13-19
in modules, 16-9
procedural and func-

tional, 13-15,
13-18 to 13-27

variable, 10-10 to
10-16

video, F-9
Attributes, by name

EXTERN, 10-12 to 10-13
INTERRUPT, 13-14 to

13-26
ORIGIN, 10-13 to

10-14, 13-23 to
13-24

PORT, 10-13 to 10-14,
13-10

PUBLIC, 10-12 to
10-13, 13-20,
13-22 to 13-23

PURE, 13-20, 13-26
READONLY, 10-14 to

10-15, 13-10
STATIC, 10-11 to 10-12

$BRAVE, 17-10
Base type, 5-2
BEGIN and END, 12-2,

12-3, 12-11
BEGOQQ, 14-10, 14-16
BEGXQQ, 14-17, 19-1,

19-8
Binary files, 7-5
Binary numbers, 9-7 to

9-8
Binary tree search ex

ample, H-11 to H-20

Index-2 Pascal Manual

Bitwise logical func-
tions, 11-5

Block, 13-1
Body, 1-4 to 1-5, 12-1
BOOLEAN typ~, 5-3, 11-2,

G-2
expressions, 11-7
READs, 15-16
WRITEs, 15-22

Bounds-checking, 5-6
Bounds, super array, 6-6
Braces, ({}), 2-3
Brackets, ([]), 6-24,

10-14, 13-20
BREAK statement, 12-24

to 12-25
Buffer variable, 7-3 to

7-4, 10-8
BYLONG, 14-18
BYTE, 5-6
BYWORD, 14-18

Calculating expressions,
1-12, 11-1

Calling sequence, 13-24
Carriage return, 2-1
CASE constant, 6-19,

12-4
CASE statement, 5-10,

9-4, 12-15 to 12-18
constants in, 5-5
in variant records,

6-19
Case, upper or lower,

2-1
Changing type value,

11-18
CHAR, 5-3, G-2
Character constants, 9-9

to 9-10
Characters, 2-1 to 2-7

case, 2-1
separators, 2-2 to 2-3
special uses in

Pascal, 2-1 to 2-7
underscore, 2-2
unused, 2-6 to 2-7

CHDRQQ, 14-19
CHR, 14-19
CHSRQQ, 14-19
CLOSE, 7-9, 14-19, 15-24
CNDRQQ, 14-20

12/87

CNSRQQ, 14-20
Colon and equals sign

(:=), 12-5
Command form, 18-5
Comments, 2-3 to 2-4

metacommands, 17-1
Comparison, STRINGs and

LSTRINGs, 6-12
Comparisons to other

versions of Pascal,
B-1 to B-14

Compatibility between
types, 4-5 to 4-8

address types, 8-8
pointer types, 8-3
STRINGS, 6-8

Compilands, 1-4 to 1-7,
16-1 to 16-22

accessing one from
another, 13-22

modules, 16-8 to 16-10
units, 16-11 to 16-22;

see also Modules
and units

Compiler, 18-1 to 18-17
bounds-checking, 5-6

·compilands, 16-1 to
16-22

controlling source
file, 17-15 to
17-18

directives, 1-2, 17-1
to 17-27; see also
Metacommands

error messages, 19-16,
A-1 to A-51

intermediate files,
18-14

invoking, 18-5 to 18-7
language levels, 1-2
listing file control,

17-19 to 17-22
memory requirements,

18-14 to 18-15
metacommands, 1-2,

17-1 to 17-27
optimization, 5-6
options, 18-3 to 18-4
run-time routines,

19-9
structure, 18-14 to

18-15
variables, 10-1

Compound statements,
12-11 to 12-12

12/87

Computing a value, 1-12
CONCAT, 14-20
Concatenation of

strings, 9-14
Conditional statements,

12-12 to 12-18
Conformant array, 6-5,

B-1
CONST parameters, 10-15,

13-12
CONST section, 9-3, 13-3
Constant arrays, 9-11 to

9-13
Constant coercions, 4-5
Constant expressions,

5-7, 9-14 to 9-15,
11-3

Constant records, 9-11
to 9-13

Constant sets, 9-11 to
9-13

Constants, 1-14, 9-1 to
9-15

arrays, 9-11 to 9-13
CASE, 6-19, 12-4
character, 9-9 to 9-10
identifiers, 3-1, 9-1,

9-3
INTEGER, 9-6
LSTRINGs, 6-10
MAXINT, 5-1
numeric, 9-4
parameters, 13-12
predeclared, 6-10, 9-6
REAL, 5-9, 9-5
records, 9-11 to 9-13
sets, 9-11 to 9-13
structured, 9-11 to

9-13
type compatibility,

4-5
WORD, 9-6

CONSTS parameters, 8-7
to 8-8, 10-15, 13-12

Controlling the video
display, F-9 to F-29

Control variable, 12-20,
13-10

Conversion, INTEGER to
WORD, 14-10; see
also Assignment
compatibility

COPYLST, 6-13, 14-20
COPYSTR, 6-13, 14-21
COS, 14-21 .

Index-3

CTOS, F-1 to F-22
example showing how to

access, F-6 to F-8
structures, F-5

CYCLE statement, 12-24
to 12-25

$DEBUG, 11-14, 13-25,
17-10

Data conversion func
tions, 14-5 to 14-6

Data types; see Types
Debugging, 19-3

metacommands, 17-8 to
17-14

Declaration section,
1-4, 3-3

Declaration
arrays, 6-2
constants, 9-3
files, 7-1 to 7-2
functions, 1-9, 13-1,

13-5 to 13-7
pointer types, 8-3
procedures, 1-9, 13-1

to 13-4
variable attributes,

10-10; see also
Types

variables, 10-3
DECODE, 14-22
DELETE, 14-23
Derived type, 6-4
DGroup, 18-10, 19-6
Diagrams, syntax, C-1 to

C-13
Digits, 2-2
DIRECT access mode, 7-6

to 7-8
Directives, 13-18 to

13-27
compiler; see Meta

commands
EXTERN, 13-21 to 13-22
FORWARD, 13-19, 13-21

DISCARD, 7-9, 14-23,
15-25

DISMQQ, 14-4, 14-23
DISPOSE, 14-3, 14-24
DIV, 11-5
Division, 11-4 to 11-5
OS Allocation, 18-10

Index-4 Pascal Manual

$ERRORS, 17-10
$END, 17-16 to 17-17
$ENTRY, 13-25, 17-10,

19-18
EDF file, F-2
Empty record, 6-20
Empty sets, 11-11
Empty statement, 12-2,

12-5
EMSEQQ, 17-8, 19-16
ENCODE, 14-25
END, 12-3, 12-11
End-of-file, 15-6
End-of-line, 15-6
ENDOQQ, 14-10, 14-25
ENDXQQ, 14-26
ENTGQQ, 16-3, 19-8
Entry point, 19-1
Enumerated types, 5-4 to

5-5, G-2
changing to, 5-4
constants, 9-1
READs, 15-16

EOF, 14-26, 15-6
EOLN, 14-27, 15-6
Equal to (=), 11-7
ErcType, F-3
Error checking, 12-6

run-time routines,
19-2

Error handling
metacommands, 17-8 to

17-14
run-time support

library, 19-16 to
19-21

Error messages, 19-16,
A-1 to A-51

in listing file, 17-26
Escape sequences, video,

F-10 to F-16
EVAL, 11-17, 14-10,

14-27
Evaluating expressions,

11-14 to 11-17,
14-10

Examples, H-l to H-20
accessing CTOS, F-6 to

F-8
binary tree search,

H-11 to H-20
minimal Pascal, 19-23

to 19-25

12/87

Examples (cont.)
module, 1-5, B-1 to

B-5
units, 1-5, B-6 to

B-10
video display, F-16 to

F-25
Exclamation point (1),

2-3
EXDRQQ, 14-27
EXP, 14-28
Explicit field offsets,

6-21 to 6-23
Exponents, 5-9, 9-5
Expressions, 1-12, 11-1

to 11-18
BOOLEAN, 11-7
common subexpressions,

12-7
constant, 5-7, 9-14 to

9-15 11-3
conversi~n of types

in, 11-3 to 11-6
evaluating, 11-14 to

11-17, 14-10
INTEGER, 11-3
optimization, 11-12,

11-14 to 11-17
passing the value of,

11-14 to 11-17,
13-12

set, 11-9 to 11-11
simple types, 11-2 to

11-6
type compatibility,

4-6, 5-2
using functions

within, 1-8, 11-12
to 11-13, 11-17 to
11-18

EXSRQQ, 14-27
Extensions to standard

Pascal, B-5 to B-9
EXTERN attribute, varia

bles, 10-12 to 10-13
EXTERN directive, 13-21

to 13-22
External definition

file, F-2

FCBFQQ, 7-9
Features, comparisons to

other versions of
Pascal, B-1 to B-14

12/87

Field, 6-16
identifier, 3-1, 6-16,

10-7
tag field, 6-18
values, 10-7
variables, 10-7

File
external definition

(EDF), F-2
listing format, 17-23

to 17-27
object list, 19-3
symbol, 19-3; see also

Files
File Control Block,

accessing fields of,
15-24

File-oriented functions,
15-1 to 15-29

File-oriented proce
dures, 15-1 to 15-29

Files, 7-1 to 7-12
access modes, 7-6 to

7-7
ASCII, 7-5
binary, 7-5
buffer variable, 7-3

to 7-4, 10-8
declaring, 7-1 to 7-2
INPUT and OUTPUT, 7-2,

7-8, 15-11, 16-4
internal representa

tion, G-4
temporary, 15-29
text, 7-5, 15-10 to

15-12
File structure, 7-5
File system, 14-3, 15-2

to 15-10
File variable, 7-9
FILLC, 14-28
FILLSC, 14-28
FLOAT, 14-19
FLOAT4, 14-19
Floating point arith-

metic, 5-9, 18-8
FOR statement, 5-10,

12-20 to 12-24
Formal parameter, 13-8
Format, READ, 15-15
Format, WRITE, 15-20 to

15-23
Formatting, textfiles,

15-7
FORWARD, 13-19, 13-21

Index-5

Frames, video display,
F-14

FREECT, 14-4, 14-19
FREMQQ, 14-4, 14-30
Function identifier,

13-5
Functions, 1-8 to 1-9,

13-1 to 13-27
arithmetic, 14-6 to

14-8
current value, 11-17,

13-6
data conversion, 14-5

to 14-6
declaration, 1-9,

13-1, 13-5 to 13-7
designating in an

expression, 11-12
to 11-13

directives, 13-18 to
13-27

directory of available
functions, 14-1 to
14-67; see also
Functions, by name

file-oriented, 15-1 to
15-29

·identifiers, 3-1
parameters, 13-8 to

13-17, G-3
predeclared, 14-1
REAL values, 5-9
using as a procedure,

11-17 to 11-18;
see also Attri
butes, by name

Functions, by name
A2DRQQ, 14-16
A2SRQQ, 14-16, 17-8,

19-16
ABS, 14-13
ACDRQQ, 14-13
ACSRQQ, 14-13
AlSRQQ, 14-13
ALLHQQ, 14-4, 14-14
ALLMQQ, 14-4, 14-14
ANSRQQ, 14-14
ARCTAN, 14-15
ASDRQQ, 14-15
ASSRQQ, 14-15
ATDRQQ, 14-16
ATSRQQ, 14-16
BYLONG, 14-18
BYWORD, 14-18

Index-6 Pascal Manual

CHDRQQ, 14-19
CHR, 14-19
CHSRQQ, 14-19
CNDRQQ, 14-20
CNSRQQ, 14-20
COS, 14-21
DECODE, 14-22
DlSMQQ, 14-4, 14-23
ENDOQQ, 14-10, 14-25
EOF, 14-26, 15-6
EOLN, 14-27, 15-6
EXDRQQ, 14~27
EXP, 14-28
EXSRQQ, 14-27
FLOAT, 14-19
FLOAT 4 , 14-19
FREECT, 14-19
FREMQQ, 14-30
GET, 14-30, 15-3
GETMQQ, 14-4, 14-30
GTYUQQ, 14-31
HlBYTE, 14-31
HlWORD, 14-31
LADDOK, 14-32
LDDRQQ, 14-32
LDSRQQ, 14-32
LMULOK, 14-33
LN, 14-33
LNDRQQ, 14-33
LNSRQQ, 14-33
LOBYTE, 14-34
LOCKED, 14-34
LOWER, 13-11, 14-35
LOWORD, 14-35
MDDRQQ, 14-37
MDSRQQ, 14-37
MEMAVL, 14-37
MNDRQQ, 14-38
MNSRQQ, 14-38
MXDRQQ, 14-41
MXSRQQ, 14-41
ODD, 14-44
ORO, 14-44
PlDRQQ, 14-46
PlSRQQ, 14-46
POSlTN, 14-46
PRDRQQ, 14-49
PREALLOCHEAP, 14-47
PREALLOCLONGHEAP,

14-48
PRED, 14-48
PRSRQQ, 14-49
PURE, 13-20, 13-26
RESULT, 13-6, 14-53

12/87

Functions, by name
(cont.)

RETYPE, 11-18, 14-54
to 14-55

ROUND, 14-56
ROUND4, 14-56
SADDOK, 14-57
SCANEQ, 14-57
SCANNE, 14-58
SHDRQQ, 14-58
SHSRQQ, 14-58
SIN, 14-59
SIZEOF, 14-59
SMULOK, 14-59
SNDRQQ, 14-60
SNSRQQ, 14-60
SQR, 14-60
SQRT, 14-60
SRDRQQ, 14-60
SRSRQQ, 14-60
SUCC, 14-61
THDRQQ, 14-61
THSRQQ, 14-61
TNDRQQ, 14-61
TNSRQQ, 14-61
TRUNC, 14-62

·TRUNC4, 14-62
UADDOK, 14-63
UMULOK, 14-63
UPPER, 13-11, 14-65
WRD, 5-2, 14-66

$GOTO, 17-11
GET, 14-30, 15-3
GOTO statements, 12-8 to

12-10
using BREAK and CYCLE

instead, 12-24
greater than (», 11-7
greater than or equal to

(>=), 11-7
GTYUQQ, 14-11, 14-31

Heading, 1-4
Heap, 8-1, 10-11, 11-11,

12-27, 14-3 to 14-5,
14-42 to 14-43,
19-5, B-1, G-3

Hexadecimal numbers, 9-7
to 9-8

HIBYTE, 14-31
HIWORD, 14-31

12/87

$IF, 17-16 to 17-17
$INCLUDE, 16-12, 17-17

example, H-6 to H-9
$INCONST, 17-17
$INDEXCK, 17-11
$INITCK,11-5, 13-4,

13-6, 17-11
$INTEGER, 17-6
II2MSQQ, E-1
IC column of listing

file, 17-25
Identical types, 4-5
Identifiers, 1-17, 3-1

to 3-5
case of characters

used, 2-1
constant, 3-1, 9-1,

9-3
construction of, 2-1

to 2-2
declaring, 3-3
enumerated types, 5-4
field, 6-16
function, 13-5
module, 16-8
predeclared, 3-5, D-1

to D-3
program, 16-3
restrictions, 2-1 to

2-6
scope, 3-2 to 3-4
STRING, 6-8
super type, 6-4
unit, 3-1, 16-13 to

16-14
variable, 3-1, 10-1,

10-6
IEEE real number format,

5-8
conv~rsion of REAL

numbers from old
format to, E-1

IF statement, 12-12 to
12-14

Implementations of
units, 16-19 to
16-22; see also
Units, examples

IN, 11-10
Incompatible types; see

Compatibility be
tween types

Index expression, 10-6
to 10-7

Index-7

Index type of an array,
6-2

Initialization, 14-10,
19-8 to 19-13

metacommand, 17-11
program, 16-4
using to write your

own routines,
19-14

INPUT (file), 1-8,
15-11, 16-4

Input/Output, 7-9, 15-1
to 15-9

extend level, 15-24 to
15-29

file, 7-2
predeclared files,

15-10 to 15-12
routines, 14-11
textfiles, 15-10 to

15-12, 15-24 to
15-29

INSERT, 14-32
INTEGER, 5-1 to 5-2,

11-2
assignment compati

bility, 5-3
changing to enumer

ated, 5-4
changing to WORD,

14-10
constants, 9-6
expressions, 11-3
internal representa-

tion, G-1
READs, 15-15
WRITEs, 15-21

INTEGER1, 5-2, 5-6
INTEGER2, 5-2
INTEGER4, 5-10, 11-2

assigning to WORD,
5-10

constants, 9-6
internal representa

tion, G-1
READs, 15-16
WRITEs, 15-22

Interactive I/O
Interface, 16-17 to

16-19; see also
Units, examples

Index-8 Pascal Manual

Internal representation
of data types, G-1
to G-5

arrays, 6-26
pointer types, 8-4
records, 6-26
sets, 6-26
super array, 6-6

INTERRUPT attribute,
13-14 to 13-26

Interrupt vectoring and
enabling, 13-25

Invoking the compiler,
18-5 to 18-7

ISO Pascal, comparisons
to, B-1 to B-14

JG column of listing
file, 17-25

Keyboard LED indicators,
F-9

$LINE, 17-12
$LINESIZE, 17-20
$LIST, 17-20
LABEL section, 12-3,

13-3
LADDOK, 14-32
Lazy evaluation, 15-7 to

15-9
LDDRQQ, 14-32
LDSRQQ, 14-32
LED indicators, F-9
Length access, STRINGs

and LSTRINGs, 6-12
Less than «), 11-7
Less than or equal to

«=), 11-7
Letters, 2-1; see also

Characters
Libraries; see Run-time

support library
Line number of listing

file, 17-25

12/81

Lines, in textfiles, 2-1
Linking, 18-8 to 18-11
Listing file, 18-3

control, 17-19 to
17-22

format, 17-23 to 17-27
Literals, REAL, 5-9
LMULOK, 14-33
LN, 14-33
LNDRQQ, 14-33
LNSRQQ, 14-33
LOBYTE, 14-34
LOCKED, 14-34
Loop label, 12-4
Looping, use of BREAK

and CYCLE, 12-24
LOWER, 13-11, 14-10,

14-35
Lower case, 2-1
LOWORD, 14-35
LSTRING, 6-6, 6-9 to

6-15
comparing, 11-8
concatenation, 9-14
constants, 6-10, 9-9

to 9-10
differences from

STRINGs, 6-10
examples, 6-14 to 6-15
intrinsics, 14-9 to

14-10
parameter passing,

6-13
READs, 15-17
type compatibility,

4-5 to 4-6
WRITEs, 15-23

$MATHCK, 14-6, 17-12
$MESSAGE, 17-18
M21SQQ, E-l
MARKAS, 14-4, 14-36
MAXINT, 5-1
MAXINT4, 5-10
MDDRQQ, 14-37
MDSRQQ, 14-37
MEMAVL, 14-4, 14-37
Memory allocation, 14-3

to 14-5
Memory organization,

19-5 to 19-7

12/87

Memory requirements,
compiler, 18-14 to
18-15

Metacommands, 1-2, 17-1
to 17-27

error handling and de
bugging, 17-8 to
17-14

giving, 17-1
listing file control,

17-19 to 17-22
optimization with,

17-6
source file control,

17-15 to 17-18
summary, 17-3 to 17-5

Metacommands, by name
$BRAVE, 17-10
$DEBUG, 11-14, 13-25,

17-10
$END, 17-16 to 17-17
$ENTRY, 13-25, 17-10,

19-18
$ERRORS, 17-10
$GOTO, 17-11
$IF, 17-16 to 17-17
$INCLUDE, 16-12, 17-17
$INCONST, 17-17
$INDEXCK, 17-11
$INITCK, 11-5, 13-4,

13-6, 17-11
$INTEGER, 17-6
$LINE, 17-12
$LINESIZE, 17-20
$LIST, 17-20
$MATHCK, 17-12
$MESSAGE, 17-18
$NILCK, 17-13
$OCODE, 17-20
$ PAGE , 17-20
$PAGEIF, 17-20
$PAGESIZE, 17-20
$POP, 17-18
$PUSH, 17-18
$RANGECK, 5-6, 12-6,

12-17, 13-9, 17-13
$REAL, 5-8, 17-6
$ROM, 10-4, 17-6
$RUNTIME, 13-25,

17-14, 19-19
$SIMPLE, 11-12, 12-6,

17-6
$SIZE, 17-6

Index-9

Metacommands, by name
(cont.)

$SKIP, 17-20
$SPEED, 17-6
$STACKCK, 13-25, 17-14
$SUBTITLE, 17-20
$SYMTAB, 17-21
$THEN, 17-16 to 17-17
$TITLE, 17-21
$WARN, 17-14

Metavariables: see Meta
commands and Meta
commands, by name

Minimizing program size,
19-22 to 19-25

Minus (-), 11-4
MISO, 19-9
MNDRQQ, 14-38
MNSRQQ, 14-38
MOD, 11-5
Mode of file, 7-2
Modules, 1-4 to 1-7,

16-8 to 16-10
attributes for proce

dures and func
tions, 16-9

-example, 1-5, B-1 to
B-5

identifiers, 3-1, 16-8
structure, 1-5 to 1-7
suppressing the

default PUBLIC
attribute, 13-20

MOVE, 6-13
MOVEL, 14-38
MOVER, 14-39
MOVESL, 14-40
MOVESR, 14-41
Multiplication, 11-4
MXDRQQ, 14-41
MXSRQQ, 14-41

$NILCK, 17-13
NaN, 5-8, 11-9
NEW, 14-3, 14-42 to

14-43
Nondecimal numbering,

9-7 to 9-8
NOT, 11-5, 11-7
Not a number (NaN), 5-8,

11-9
Not equal to «», 11-7

Index-10 Pascal Manual

Notation, 1-18, 2-1 to
2-7, 17-16

NULL, 6-10, 9-10
Null set, 6-24
Numbering, nondecimal,

9-7 to 9-8
Numbers, 5-1 to 5-10

legal digits, 2-2
Numeric constants, 9-4

$OCODE, 17-20
Object file, 18-5
Object list file, 18-3,

19-3
Octal numbers, 9-7 to

9-8
ODD, 14-6, 14-44
Offsets, explicit field

offsets, 6-21 to
6-23

Operand, 11-1
Operating system, acces

sing with Pascal,
F-l to F-22

Operators, 1-12, 2-5 to
2-6, 11-1 to 11-2

AND THEN, 12-28
and types, 11-2
BOOLEAN, 11-7, 12-28
INTEGER quotient and

remainder, 11-5
OR ELSE, 12-28
precedence, 11-1,

11-15
quotient, 11-5
relational, 11-2
remainder, 11-5
sets, 11-10

Optimization, 5-6,
10-14, 12-6 to 12-7,
12-23

expressions, 11-14 to
11-17

meta commands for, 17-6
minimal run-time use,

19-22 to 19-25
Optimizer, 13-26
OR, 11-5, 11-7
OR ELSE, 12-28
ORO, 14-44

12/87

Ordinal types, 5-1 to
5-7

changing to Boolean,
5-3

changing value, 5-2
subranges, 5-5

ORIGIN attribute, 13-23
to 13-24

variables, 10-13 to
10-14

OTHERWISE statement, in
variant records,
6-19

OUTPUT (predeclared
file), 7-2, 7-8,
15-11

Overflow, 11-14, 13-25,
14-7

error messages, A-5,
A-33

Overlays, 18-16 to 18-17
run-time overlays,

18-8
Overview of Pascal

language, 1-1 to
1-18

$PAGE, 17-20
$PAGE, 17-20
$PAGEIF, 17-20
$PAGESIZE, 17-20
$POP, 17-18
$PUSH, 17-18
PACK, 14-6, 14-45
PACKED, 13-10
PACKED array, 6-3, 6-8
PACKED types, 8-11
PAGE, 14-45, 15-7
Panic errors, A-1
Parameters, 13-8

actual, 13-8
CONST, 10-15, 13-12
CONSTANT, 13-12
CONSTS, 8-7 to 8-8,

10-15
formal, 13-8
internal representa

tion, G-3
list, 10-3

12/87

passing, 11-15 to
11-16, 13-6 to
13-17

by reference, 13-12
to 13-13

to STRINGs and
LSTRINGs, 6-13

procedural and func
tional, 13-13 to
13-17

program, 7-8, 16-4,
H-10 to H-18

reference, 4-5 to 4-6,
8-7 to 8-8, 13-9
to 13-11

segment, 13-12
super array, 13-11
value; 13-8 to 13-9
VARS, 8-7 to 8-8

Parentheses in expres
sions, 11-15

Parts of a program, 1-4
to 1-10

TYPE section, 4-4
VALUE section, 1-13

Pascal, 1-1 to 1-18
CTOS, F-1 to F-22
command form, 18-5
comparisons to other

versions, B-1 to
B-14

compiler, 18-1 to
18-17

library; see Run-time
support library

notation, 1-18, 2-1 to
2-7, 17-16

program examples, H-1
to H-5

running a program,
18-12 to 18-13

systems programming
with, F-1 to F-22

Pascal.Lib; see Run-time
support library

PASMAX, 19-9
Passing parameters, 13-6

to 13-17
file buffer variable,

7-3
PIDRQQ, 14-46

Index-11

PISRQQ, 14-46
Plus (+), 11-4
PLYUQQ, 14-11
Pointer type, 6-5, 8-1

to 8-4
compatiblity, 8-3
declarations, 8-3
internal representa-

tion, 8-4, G-2 to
G-3

READs, 15-16
WRITEs, 15-23

Pointer variables, 10-8
to 10-9

PORT attribute, proce
dural, 13-10

PORT attribute, vari
ables, 10-13 to
10-14

Portability, 1-2, 5-8,
B-1

POSITN, 14-46
PPMFQQ, 16-6
PRDRQQ, 14-49
PREALLOCHEAP, 14-5,

14-47
PREALLOCLONGHEAP, 14-5,

14-48
Precision, 5-9
PRED, 14-48
Predeclared address

types, 8-6
Predeclared constants,

9-6
Predeclared functions,

14-1
Predeclared identifiers,

3-5
summary, D-1 to D-3

Predeclared types, 6-6
. Primitives, 15-1 to

15-29
Procedural types, 8-12
Procedures, 1-8 to 1-9,

13-1 to 13-27
data conversion, 14-5

to 14-6
declaration, 13-1 to

13-4
directives, 13-18 to

13-27
directory, 14-1 to

14-67
file-oriented, 15-1 to

15-29

Index-12 Pasoal Manual

file system, 14-3
identifiers, 3-1
parameters, 13-8 to

13-17, G-3
predeclared, 14-1

Procedures, by name
ABORT, 14-12, 16-8,

19-6
ASSIGN, 7-2, 7-9,

14-15, 15-24, 16-3
BEGOQQ, 14-10, 14-16
BEGXQQ, 14-17, 19-1,

10-8
CLOSE, 7-9, 14-19,

15-24
CONCAT, 14-20
COPYLST, 6-13, 14-20
COPYSTR, 6-13, 14-21
DELETE, 14-23
DISCARD, 7-9, 14-23,

15-25
DISPOSE, 14-3, 14-24
ENCODE, 14-25
ENDXQQ, 14-26
EVAL, 11-17, 14-10,

14-27
FILLC, 14-28
FILLSC, 14-28
GET, 14-30, 15-3
INSERT, 14-32
MARKAS, 14-4, 14-36
MOVE, 6-13
MOVEL, 14-38
MOVER, 14-39
MOVESL, 14-40
MOVESR, 14-41
NEW, 14-3, 14-42 to

14-43
PACK, 14-6, 14-45
PAGE, 14-45, 15-7
PTYUQQ, 14-11, 14-49
PUT, 14-49, 15-4
READ, 14-50, 15-2,

15-13 to 15-17
READFN, 7-2, 7-9,

14-50, 15-26, 16-3
READLN, 14-51, 15-13

to 15-17
READSET, 7-9, 14-51,

15-26
RELEAS, 14-4, 14-52
RESET, 14-53, 15-4 to

15-5
RESULT, 11-17 to

11-18, 13-6, 14-53

12/87

Procedures, by name
(cont.)

REWRITE, 14-55, 15-5
SEEK, 7-9, 14-58,

15-27 to 15-28
UNLOCK, 14-6. 14-64
UNPACK, 14-64
WRITE, 14-67, 15-2,

15-18 to 15-23
WRITELN, 14-67, 15-18

to 15-23
Procedure statements,

12-7 to 12-8
Program examples; see

Examples
Program parameters, 7-8,

16-3
example, H-11 to H-20

Programs, 1-4 to 1-5
compiling, 18-1 to

18-17
entry point, 19-1
identifiers, 3-1, 16-3
initialization, 16-4
linking, 18-8 to 18-11
parameters; see Pro-

gram parameters
parts of, 16-1 to

16-22
Pascal examples, H-l

to H-5
portability, 1-2, 5-8,

B-1
running, 18-12 to

18-13
size, 19-22 to 19-25
structure, 1-3 to

1-10, 1-13, 16-1
to 16-7, 19-9

VALUE section, 10-4
VAR section, 10-3

PRSRQQ, 14-49
PTYUQQ, 14-11, 14-49
PUBLIC attribute, 13-20,

13-22 to 13-23
variables, 10-12 to

10-13
Punctuation, 2-4 to 2-5

syntax diagrams, C-13
PURE attribute, 13-20,

13-26
PUT, 14-49, 15-4

12/87

Question mark, (?), 2-7,
B-1

$RANGECK, 5-6, 12-6,
12-17, 13-9, 17-13

$REAL, 5-8, 17-6
$ROM, 10-4, 17-6
$RUNTIME, 13-25, 17-14,

19-19
Radix, 9-7 to 9-8
Range-checking, 5-6; see

$RANGECK
Range of data types; see

Internal representa
tion

READ, 14-50, 15-2, 15-13
to 15-17

formats, 15-15
READFN, 7-2, 7-9, 14-50,

15-26, 16-3
Reading, STRINGs and

LSTRINGs, 6-12
READLN, 14-51, 15-13 to

15-17
READONLY attribute,

10-14 to 10-15,
13-10

READSET, 7-9, 14-51,
15-26

REAL type, 5-8 to 5-9,
11-2

comparing, 11-9
constants, 9-5
conversion to IEEE

format, E-1
internal representa

tion, 5-8, G-1
mixing with INTEGER,

11-4
READs, 15-16
WRITEs, 15-22

REAL4, 5-8 to 5-9
REAL8, 5-8 to 5-9
Record, 6-16 to 6-23

constant, 9-11 to 9-13
empty, 6-20
explicit field off-

sets, 6-21 to 6-23
field, 6-16

Index-13

Record (cont.)
field variables and

values, 10-7
internal representa

tion, 6-26, G-4
variant record, 6-17

to 6-21, 9-4
WITH statement, 12-26

to 12-28
Recursion, 13-1
Reference parameters,

4-5 to 4-6, 8-7 to
8-8, 13-9 to 13-11

Reference types, 8-1 to
8-12, G-2 to G-3

comparing, 11-8
compatibility, 4-6
READs, 15-16
WRITEs, 15-23

Reference variables,
10-8 to 10-9

Relative address types;
see Address types
and AOR

RELEAS, 14-4, 14-52
Remainder, 11-5
REPEAT statement, 12-19

to 12-20
Repetitive statements,

12-18 to 12-25
Reserved words, 2-6

summary, 0-1 to 0-3
RESET, 14-53, 15-4 to

15-5
RESULT, 11-17 to 11-18,

13-6, 14-53
RETURN statement, 12-26
RETYPE, 11-18, 14-54 to

14-55
REWRITE, 14-55, 15-5
ROUND, 14-56
ROUND4, 14-56
Run file, 18-3, 18-12
Run-time error messages,

A-42 to A-51
Run-time routines, 19-9
Run-time support

library, 16-12, 19-1
to 19-25

architecture, 19-4 to
19-21

avoiding, 19-22 to
19-24

entry point, 19-1

Index-14 Pascal Manual

error handling, 19-16
to 19-21

initialization, 19-1,
19-8 to 19-13

memory organization,
19-5 to 19-7

program structure,
19-9

suffixes, 19-4
using initialization

and termination
pOints, 19-14 to
19-16

Running a program, 18-12
to 18-13

$SIMPLE, 12-6, 17-6,
11-12

$SIZE, 17-6
$SKIP, 17-20
$SPEED, 17-6
$STACKCK, 13-25, 17-14
$SUBTITLE, 17-20
$SYMTAB, 17-21
SADDOK, 14-57
SCANEQ, 14-57
SCANNE, 14-58
Scientific notation, 9-5
Scope of identifiers,

3-2 to 3-4
Screen; see Video

display
Screen attributes, F-9
SEEK, 7-9, 14-58, 15-27

to 15-28
Segment, data segment,

18-10
Segment parameters,

13-12
Segmented address,

passing as a parame
ter, 13-11

Segmented address types;
see Address types
and ADS

Semaphore, 14-11
Semicolon, 12-2
Separator characters,

2-2 to 2-3, 12-2
SEQUENTIAL access mode,

7-6 to 7-7
SET, 11-2

12/87

set constants, 5-5
Set constructors, 5-5
Set expressions, 11-9 to

11-11
SET of CHAR, 5-3
Sets, 6-24 to 6-26

and variables, 11-11
base type, 5-10, 6-24
bytes allocated for,

6-26
constant, 9-11 to 9-13
efficient use of, 6-25
empty, 11-11
internal representa-

tion, 6-26, G-4
null set, 6-24
operators, 11-10

SHDRQQ, 14-58
SHSRQQ, 14-58
Simple statements, 12-5

to 12-10
Simple type expressions,

11-2 to 11-6
Simple types, 5-1 to

5-10
compatibility, 4-6

SIN, 14-59
Sine,14-15
SINT, 5-2, 5-6
SIZEOF, 14-4, 14-59
SMULOK, 14-59
SNDRQQ, 14-60
SNSRQQ, 14-60
Source file, meta com

mands to control,
17-15 to 17-18

SQR, 14-60
SQRT, 14-60
Square brackets ([]),

13-20
instead of BEGIN and

END, 12-3
SRDRQQ, 14-60
SRSRQQ, 14-60
Stack, 11-11, 13-1,

13-2, 14-3 to 14-5,
15-24, 18-9, 19-5

Standard ISO Pascal,
comparisons to, B-1
to B-14

Standard Pascal, exten
sions to, B-5 to B-9

Statement, CASE, 6-19
Statement, OTHERWISE,

6-19

12/87

Statement labels, iden
tifiers for, 3-1

Statements, 1-10 to
1-11, 12-1 to 12-18,
12-24 to 12-25

compound, 12-11 to
12-12

conditional, 12-12 to
12-18

empty, 12-2, 12-5
labels, 12-3 to 12-4
procedure, 12-7 to

12-8
repetitive, 12-18 to

12-25
separating, 12-2
sequential control,

12-28
simple, 12-5 to 12-10
structured, 12-1,

12-11 to 12-28
syntax, 12-2 to 12-4

Statements, by name
Assignment, 10-5, 12-5

to 12-7
BREAK, 12-24 to 12-25
CASE, 9-4, 12-15 to

12-18
CYCLE, 12-24 to 12-25
FOR, 12-20 to 12-24
GOTO, 12-3, 12-8 to

12-10
IF, 12-12 to 12-14
REPEAT, 12-19 to 12-20
RETURN, 12-26
WHILE, 12-18 to 12-19
WITH, 12-26 to 12-28

STATIC attribute, 10-11
to 10-12

Status messages, A-1 to
A-51

STRINGs, 6-6 to 6-15
concatenation, 9-14
comparing, 11-8
constant, 9-9 to 9-10
examples, 6-14 to 6-15
intrinsics, 14-9 to

14-10
identifier, 6-8
type compatibility,

4-6, 6-8
constant, 6-8, 9-9 to

9-10
parameter passing,

6-9, 6-13

Index-15

STRINGs (cont.)
READs, 15-17
variable length; see

LSTRING
WRITEs, 15-23

Structure of programs,
16-1 to 16-7

structure, run-time,
19-9

structured constants,
9-11 to 9-13

structured statements,
12-11 to 12-28

Structured types, 6-1,
8-11

Structures, internal
representation, G-4

Subrange types, 5-5 to
5-7, 15-14

Subranges, using con
stant expressions as
bounds, 5-7

Subroutines; see Proce
dures, Functions,
Modules, or units

Subtraction operators,
11-4

SUCC, 14-61
Super arrays, 6-4 to

6-15
compatibility, 4-5
identifiers, 3-1
predeclared, 6-6
internal representa-

tion, 6-6, G-3
parameters, 13-11
upper bound, 6-6

Super type identifiers,
6-4

Swap buffer, 18-16 to
18-17

Symbol, 17-16
Symbol file, 19-3
Syntax

diagrams, C-1 to C-13
statements, 12-2 to

12-4; see also
Notation

Systems programming, F-1
to F-22

$THEN, 17-16 to 17-17
$TITLE, 17-21
Tag field, 6-18

Index-16 Pascal Manual

Tangent, 14-15, 14-16
Temporary files, 15-29
TERMINAL access mode,

7-6 to 7-7
Termination, 19-8 to

19-13
Text files, 7-5, 15-10

to 15-12
formatting, 15-7
THDRQQ, 14-61
THSRQQ, 14-61
TNDRQQ, 14-61
TNSRQQ, 14-61
Trouble shooting, error

messages, A-1 to
A-51

TRUNC, 14-62
TRUNC4, 14-62
TYPE section, 4-4
Type compatibility,

STRINGs, 6-8
Type conversion, 11-3 to

11-6
Type declaration, 4-3 to

4-4
TYPE section, 13-3
Types, 1-14 to 1-15, 4-1

to 4-8
address, 8-4 to 8-9,

15-16, 15-23
and expressions, 5-2
array, 6-2 to 6-15
assignment compati-

bility, 4-5, 4-7
to 4-8

base, 5-2
BOOLEAN, 5-3, 11-2,

15-16, 15-22
BYTE, 5-6
CHAR, 5-3
Compatibility, 4-5 to

4-8, 6-8, 4-5 to
4-8

conversion, 14-5 to
14-6

conversion in expres
sions, 11-3 to
11-6

declaring, 4-3 to 4-4
derived type, 6-4
Enumerated, 5-4 to

5-5, 15-16, 15-22
file, 7-1 to 7-12
for variables or

values, 4-1

12/87

Types (cont.)
identical, 4-5
identifiers and, 3-1
identity of, 4-5
INTEGER, 5-1 to 5-2,

11-2, 15-15, 15-21
INTEGER1, 5-6, 5-2
INTEGER2, 5-2
INTEGER4, 5-10, 11-2,

15-16, 15-22
internal representa

tion of, G-1 to
G-5

LSTRING, 6-6, 6-9 to
6-15, 15-17, 15-23

ordinal, 5-1 to 5-7
PACKED, 8-11
pointer, 6-5, 8-1 to

8-4, 15-16, 15-23
predeclared subrange,

5-6
procedural, 8-12
REAL, 5-8 to 5-9,

11-2, 15-16, 15-22
REAL4, 5-8 to 5-9
REAL8, 5-8 to 5-9
Record, 6-16 to 6-23
Reference, 4-1, 8-1 to

8-12, 15-16, 15-23
SET, 11-2
sets, 6-24 to 6-26
simple, 4-1, 5-1 to

5-10
SINT, 5-2, 5-6
STRING, 6-6 to 6-9,

15-17, 15-23
structured, 4-1, 8-11,

6-1
subrange, 5-5 to 5-7,

15-14
super array, 6-4 to

6-15, 13-11, B-1
super, 4-4
WORD, 5-2 to 5-3,

I1-D, 15-15, 15-21

UADDOK, 14-63
UMULOK, 14-63
Unary minus, 11-4
Unary plus, 11-4
Underscore (), 2-2, B-1

12/87

Units, 1-4 to 1-7, 16-11
to 16-22, 19-22

examples, 1-5, H-6 to
H-10

identifiers, 3-1,
16-13 to 16-14

in other languages,
16-21

structure, 1-6 to 1-7
using attributes with,

13-19
version number of

implementation,
16-21

Unit U, 19-9
UNLOCK, 14-64
UNPACK, 14-6, 14-64
UPPER, 13-11, 14-10,

14-65
Upper case, 2-1
USCD Pascal, comparisons

to, B-12 to B-14
USE, 16-12

Value parameters, 13-8
to 13-9

VALUE section, 1-13,
10-4, 13-3

Values, 1-13, 10-1 to
10-16

computing, 1-12
enumerated set of, 5-4
field, 10-7
in assignment state

ments, 10-5
indexed, 10-6 to 10-7

VAR, 13-9
VAR parameter, 13-12
VAR section, 10-3,

10-10, 13-3
Variables, 1-13, 10-1 to

10-16
address, 10-8 to 10-9,

10-13
assignment statement,

12-5
attributes for, 10-10

to 10-16
buffer, 10-8 to 10-9
declaring, 10-3, 10-10
field, 10-7

:Index-17

variables (cont.)
identifiers, 3-1, 10-6
in assignment state-

ments, 10-5
indexed, 10-6 to 10-7
initializing, 10-4
memory location, 10-11
multiple attributes,

10-16
names, 1-17
passing segmented ad

dress of, 8-7 to
8-8

reference, 10-8 to
10-9

segmented address,
10-13

types, 4-1
using, 10-5 to 10-10
value, 14-6; see also

variant record
variant record, 6-17 to

6-21, 9-4
empty, 6-20
labels, 5-5

VARS, 13-11
VARS parameters, 8-7 to

8-8, 13-12
Video display, F-9 to

F-29
frames, F-14

virtual Code Management
facility, 18-16 to
18-17

Index-18 Pascal Manual

$WARN, 17-14
Warnings, A-l
WHILE, 12-18 to 12-19
WITH, 12-26 to 12-28
WORD, 5-2 to 5-3, 11-2

assigning INTEGER4 to,
5-10

assignment compati
bility, 5-3

changing to enumer
ated, 5-4

constants, 9-6
internal representa

tion, G-1
READs, 15-15
WRITEs, 15-21

Word ANDing, 5-2
Word shifting, 5-2
WRD, 5-2, 14-66
WRITE, 14-67, 15-2,

15-18 to 15-23
WRITELN, 14-67, 15-18 to

15-23
Writing, STRINGs and

LSTRINGs, 6-12

XOR, 11-5

12/87

Conve~nt

2700 North First Street
San Jose, CA 95150-6685

Printed in USA

